1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/kthread.h>
61 #include <linux/aer.h>
62 
63 
64 #include "mpt3sas_base.h"
65 
66 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
67 
68 
69 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
70 
71  /* maximum controller queue depth */
72 #define MAX_HBA_QUEUE_DEPTH	30000
73 #define MAX_CHAIN_DEPTH		100000
74 static int max_queue_depth = -1;
75 module_param(max_queue_depth, int, 0);
76 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
77 
78 static int max_sgl_entries = -1;
79 module_param(max_sgl_entries, int, 0);
80 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
81 
82 static int msix_disable = -1;
83 module_param(msix_disable, int, 0);
84 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
85 
86 static int max_msix_vectors = -1;
87 module_param(max_msix_vectors, int, 0);
88 MODULE_PARM_DESC(max_msix_vectors,
89 	" max msix vectors");
90 
91 static int mpt3sas_fwfault_debug;
92 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
93 	" enable detection of firmware fault and halt firmware - (default=0)");
94 
95 static int
96 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
97 
98 /**
99  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
100  *
101  */
102 static int
103 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
104 {
105 	int ret = param_set_int(val, kp);
106 	struct MPT3SAS_ADAPTER *ioc;
107 
108 	if (ret)
109 		return ret;
110 
111 	/* global ioc spinlock to protect controller list on list operations */
112 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
113 	spin_lock(&gioc_lock);
114 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
115 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
116 	spin_unlock(&gioc_lock);
117 	return 0;
118 }
119 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
120 	param_get_int, &mpt3sas_fwfault_debug, 0644);
121 
122 /**
123  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
124  * @arg: input argument, used to derive ioc
125  *
126  * Return 0 if controller is removed from pci subsystem.
127  * Return -1 for other case.
128  */
129 static int mpt3sas_remove_dead_ioc_func(void *arg)
130 {
131 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
132 	struct pci_dev *pdev;
133 
134 	if ((ioc == NULL))
135 		return -1;
136 
137 	pdev = ioc->pdev;
138 	if ((pdev == NULL))
139 		return -1;
140 	pci_stop_and_remove_bus_device_locked(pdev);
141 	return 0;
142 }
143 
144 /**
145  * _base_fault_reset_work - workq handling ioc fault conditions
146  * @work: input argument, used to derive ioc
147  * Context: sleep.
148  *
149  * Return nothing.
150  */
151 static void
152 _base_fault_reset_work(struct work_struct *work)
153 {
154 	struct MPT3SAS_ADAPTER *ioc =
155 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
156 	unsigned long	 flags;
157 	u32 doorbell;
158 	int rc;
159 	struct task_struct *p;
160 
161 
162 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
163 	if (ioc->shost_recovery || ioc->pci_error_recovery)
164 		goto rearm_timer;
165 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
166 
167 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
168 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
169 		pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
170 		    ioc->name);
171 
172 		/* It may be possible that EEH recovery can resolve some of
173 		 * pci bus failure issues rather removing the dead ioc function
174 		 * by considering controller is in a non-operational state. So
175 		 * here priority is given to the EEH recovery. If it doesn't
176 		 * not resolve this issue, mpt3sas driver will consider this
177 		 * controller to non-operational state and remove the dead ioc
178 		 * function.
179 		 */
180 		if (ioc->non_operational_loop++ < 5) {
181 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
182 							 flags);
183 			goto rearm_timer;
184 		}
185 
186 		/*
187 		 * Call _scsih_flush_pending_cmds callback so that we flush all
188 		 * pending commands back to OS. This call is required to aovid
189 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
190 		 * and this call is safe since dead ioc will never return any
191 		 * command back from HW.
192 		 */
193 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
194 		/*
195 		 * Set remove_host flag early since kernel thread will
196 		 * take some time to execute.
197 		 */
198 		ioc->remove_host = 1;
199 		/*Remove the Dead Host */
200 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
201 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
202 		if (IS_ERR(p))
203 			pr_err(MPT3SAS_FMT
204 			"%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
205 			ioc->name, __func__);
206 		else
207 			pr_err(MPT3SAS_FMT
208 			"%s: Running mpt3sas_dead_ioc thread success !!!!\n",
209 			ioc->name, __func__);
210 		return; /* don't rearm timer */
211 	}
212 
213 	ioc->non_operational_loop = 0;
214 
215 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
216 		rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
217 		    FORCE_BIG_HAMMER);
218 		pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
219 		    __func__, (rc == 0) ? "success" : "failed");
220 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
221 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
222 			mpt3sas_base_fault_info(ioc, doorbell &
223 			    MPI2_DOORBELL_DATA_MASK);
224 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
225 		    MPI2_IOC_STATE_OPERATIONAL)
226 			return; /* don't rearm timer */
227 	}
228 
229 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
230  rearm_timer:
231 	if (ioc->fault_reset_work_q)
232 		queue_delayed_work(ioc->fault_reset_work_q,
233 		    &ioc->fault_reset_work,
234 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
235 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
236 }
237 
238 /**
239  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
240  * @ioc: per adapter object
241  * Context: sleep.
242  *
243  * Return nothing.
244  */
245 void
246 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
247 {
248 	unsigned long	 flags;
249 
250 	if (ioc->fault_reset_work_q)
251 		return;
252 
253 	/* initialize fault polling */
254 
255 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
256 	snprintf(ioc->fault_reset_work_q_name,
257 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
258 	    ioc->driver_name, ioc->id);
259 	ioc->fault_reset_work_q =
260 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
261 	if (!ioc->fault_reset_work_q) {
262 		pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
263 		    ioc->name, __func__, __LINE__);
264 			return;
265 	}
266 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
267 	if (ioc->fault_reset_work_q)
268 		queue_delayed_work(ioc->fault_reset_work_q,
269 		    &ioc->fault_reset_work,
270 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
271 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
272 }
273 
274 /**
275  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
276  * @ioc: per adapter object
277  * Context: sleep.
278  *
279  * Return nothing.
280  */
281 void
282 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
283 {
284 	unsigned long flags;
285 	struct workqueue_struct *wq;
286 
287 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
288 	wq = ioc->fault_reset_work_q;
289 	ioc->fault_reset_work_q = NULL;
290 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
291 	if (wq) {
292 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
293 			flush_workqueue(wq);
294 		destroy_workqueue(wq);
295 	}
296 }
297 
298 /**
299  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
300  * @ioc: per adapter object
301  * @fault_code: fault code
302  *
303  * Return nothing.
304  */
305 void
306 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
307 {
308 	pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
309 	    ioc->name, fault_code);
310 }
311 
312 /**
313  * mpt3sas_halt_firmware - halt's mpt controller firmware
314  * @ioc: per adapter object
315  *
316  * For debugging timeout related issues.  Writing 0xCOFFEE00
317  * to the doorbell register will halt controller firmware. With
318  * the purpose to stop both driver and firmware, the enduser can
319  * obtain a ring buffer from controller UART.
320  */
321 void
322 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
323 {
324 	u32 doorbell;
325 
326 	if (!ioc->fwfault_debug)
327 		return;
328 
329 	dump_stack();
330 
331 	doorbell = readl(&ioc->chip->Doorbell);
332 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
333 		mpt3sas_base_fault_info(ioc , doorbell);
334 	else {
335 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
336 		pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
337 			ioc->name);
338 	}
339 
340 	if (ioc->fwfault_debug == 2)
341 		for (;;)
342 			;
343 	else
344 		panic("panic in %s\n", __func__);
345 }
346 
347 /**
348  * _base_sas_ioc_info - verbose translation of the ioc status
349  * @ioc: per adapter object
350  * @mpi_reply: reply mf payload returned from firmware
351  * @request_hdr: request mf
352  *
353  * Return nothing.
354  */
355 static void
356 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
357 	MPI2RequestHeader_t *request_hdr)
358 {
359 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
360 	    MPI2_IOCSTATUS_MASK;
361 	char *desc = NULL;
362 	u16 frame_sz;
363 	char *func_str = NULL;
364 
365 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
366 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
367 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
368 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
369 		return;
370 
371 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
372 		return;
373 
374 	switch (ioc_status) {
375 
376 /****************************************************************************
377 *  Common IOCStatus values for all replies
378 ****************************************************************************/
379 
380 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
381 		desc = "invalid function";
382 		break;
383 	case MPI2_IOCSTATUS_BUSY:
384 		desc = "busy";
385 		break;
386 	case MPI2_IOCSTATUS_INVALID_SGL:
387 		desc = "invalid sgl";
388 		break;
389 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
390 		desc = "internal error";
391 		break;
392 	case MPI2_IOCSTATUS_INVALID_VPID:
393 		desc = "invalid vpid";
394 		break;
395 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
396 		desc = "insufficient resources";
397 		break;
398 	case MPI2_IOCSTATUS_INVALID_FIELD:
399 		desc = "invalid field";
400 		break;
401 	case MPI2_IOCSTATUS_INVALID_STATE:
402 		desc = "invalid state";
403 		break;
404 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
405 		desc = "op state not supported";
406 		break;
407 
408 /****************************************************************************
409 *  Config IOCStatus values
410 ****************************************************************************/
411 
412 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
413 		desc = "config invalid action";
414 		break;
415 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
416 		desc = "config invalid type";
417 		break;
418 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
419 		desc = "config invalid page";
420 		break;
421 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
422 		desc = "config invalid data";
423 		break;
424 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
425 		desc = "config no defaults";
426 		break;
427 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
428 		desc = "config cant commit";
429 		break;
430 
431 /****************************************************************************
432 *  SCSI IO Reply
433 ****************************************************************************/
434 
435 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
436 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
437 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
438 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
439 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
440 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
441 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
442 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
443 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
444 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
445 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
446 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
447 		break;
448 
449 /****************************************************************************
450 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
451 ****************************************************************************/
452 
453 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
454 		desc = "eedp guard error";
455 		break;
456 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
457 		desc = "eedp ref tag error";
458 		break;
459 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
460 		desc = "eedp app tag error";
461 		break;
462 
463 /****************************************************************************
464 *  SCSI Target values
465 ****************************************************************************/
466 
467 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
468 		desc = "target invalid io index";
469 		break;
470 	case MPI2_IOCSTATUS_TARGET_ABORTED:
471 		desc = "target aborted";
472 		break;
473 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
474 		desc = "target no conn retryable";
475 		break;
476 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
477 		desc = "target no connection";
478 		break;
479 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
480 		desc = "target xfer count mismatch";
481 		break;
482 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
483 		desc = "target data offset error";
484 		break;
485 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
486 		desc = "target too much write data";
487 		break;
488 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
489 		desc = "target iu too short";
490 		break;
491 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
492 		desc = "target ack nak timeout";
493 		break;
494 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
495 		desc = "target nak received";
496 		break;
497 
498 /****************************************************************************
499 *  Serial Attached SCSI values
500 ****************************************************************************/
501 
502 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
503 		desc = "smp request failed";
504 		break;
505 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
506 		desc = "smp data overrun";
507 		break;
508 
509 /****************************************************************************
510 *  Diagnostic Buffer Post / Diagnostic Release values
511 ****************************************************************************/
512 
513 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
514 		desc = "diagnostic released";
515 		break;
516 	default:
517 		break;
518 	}
519 
520 	if (!desc)
521 		return;
522 
523 	switch (request_hdr->Function) {
524 	case MPI2_FUNCTION_CONFIG:
525 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
526 		func_str = "config_page";
527 		break;
528 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
529 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
530 		func_str = "task_mgmt";
531 		break;
532 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
533 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
534 		func_str = "sas_iounit_ctl";
535 		break;
536 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
537 		frame_sz = sizeof(Mpi2SepRequest_t);
538 		func_str = "enclosure";
539 		break;
540 	case MPI2_FUNCTION_IOC_INIT:
541 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
542 		func_str = "ioc_init";
543 		break;
544 	case MPI2_FUNCTION_PORT_ENABLE:
545 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
546 		func_str = "port_enable";
547 		break;
548 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
549 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
550 		func_str = "smp_passthru";
551 		break;
552 	default:
553 		frame_sz = 32;
554 		func_str = "unknown";
555 		break;
556 	}
557 
558 	pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
559 		ioc->name, desc, ioc_status, request_hdr, func_str);
560 
561 	_debug_dump_mf(request_hdr, frame_sz/4);
562 }
563 
564 /**
565  * _base_display_event_data - verbose translation of firmware asyn events
566  * @ioc: per adapter object
567  * @mpi_reply: reply mf payload returned from firmware
568  *
569  * Return nothing.
570  */
571 static void
572 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
573 	Mpi2EventNotificationReply_t *mpi_reply)
574 {
575 	char *desc = NULL;
576 	u16 event;
577 
578 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
579 		return;
580 
581 	event = le16_to_cpu(mpi_reply->Event);
582 
583 	switch (event) {
584 	case MPI2_EVENT_LOG_DATA:
585 		desc = "Log Data";
586 		break;
587 	case MPI2_EVENT_STATE_CHANGE:
588 		desc = "Status Change";
589 		break;
590 	case MPI2_EVENT_HARD_RESET_RECEIVED:
591 		desc = "Hard Reset Received";
592 		break;
593 	case MPI2_EVENT_EVENT_CHANGE:
594 		desc = "Event Change";
595 		break;
596 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
597 		desc = "Device Status Change";
598 		break;
599 	case MPI2_EVENT_IR_OPERATION_STATUS:
600 		if (!ioc->hide_ir_msg)
601 			desc = "IR Operation Status";
602 		break;
603 	case MPI2_EVENT_SAS_DISCOVERY:
604 	{
605 		Mpi2EventDataSasDiscovery_t *event_data =
606 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
607 		pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
608 		    (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
609 		    "start" : "stop");
610 		if (event_data->DiscoveryStatus)
611 			pr_info("discovery_status(0x%08x)",
612 			    le32_to_cpu(event_data->DiscoveryStatus));
613 			pr_info("\n");
614 		return;
615 	}
616 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
617 		desc = "SAS Broadcast Primitive";
618 		break;
619 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
620 		desc = "SAS Init Device Status Change";
621 		break;
622 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
623 		desc = "SAS Init Table Overflow";
624 		break;
625 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
626 		desc = "SAS Topology Change List";
627 		break;
628 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
629 		desc = "SAS Enclosure Device Status Change";
630 		break;
631 	case MPI2_EVENT_IR_VOLUME:
632 		if (!ioc->hide_ir_msg)
633 			desc = "IR Volume";
634 		break;
635 	case MPI2_EVENT_IR_PHYSICAL_DISK:
636 		if (!ioc->hide_ir_msg)
637 			desc = "IR Physical Disk";
638 		break;
639 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
640 		if (!ioc->hide_ir_msg)
641 			desc = "IR Configuration Change List";
642 		break;
643 	case MPI2_EVENT_LOG_ENTRY_ADDED:
644 		if (!ioc->hide_ir_msg)
645 			desc = "Log Entry Added";
646 		break;
647 	case MPI2_EVENT_TEMP_THRESHOLD:
648 		desc = "Temperature Threshold";
649 		break;
650 	}
651 
652 	if (!desc)
653 		return;
654 
655 	pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
656 }
657 
658 /**
659  * _base_sas_log_info - verbose translation of firmware log info
660  * @ioc: per adapter object
661  * @log_info: log info
662  *
663  * Return nothing.
664  */
665 static void
666 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
667 {
668 	union loginfo_type {
669 		u32	loginfo;
670 		struct {
671 			u32	subcode:16;
672 			u32	code:8;
673 			u32	originator:4;
674 			u32	bus_type:4;
675 		} dw;
676 	};
677 	union loginfo_type sas_loginfo;
678 	char *originator_str = NULL;
679 
680 	sas_loginfo.loginfo = log_info;
681 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
682 		return;
683 
684 	/* each nexus loss loginfo */
685 	if (log_info == 0x31170000)
686 		return;
687 
688 	/* eat the loginfos associated with task aborts */
689 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
690 	    0x31140000 || log_info == 0x31130000))
691 		return;
692 
693 	switch (sas_loginfo.dw.originator) {
694 	case 0:
695 		originator_str = "IOP";
696 		break;
697 	case 1:
698 		originator_str = "PL";
699 		break;
700 	case 2:
701 		if (!ioc->hide_ir_msg)
702 			originator_str = "IR";
703 		else
704 			originator_str = "WarpDrive";
705 		break;
706 	}
707 
708 	pr_warn(MPT3SAS_FMT
709 		"log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
710 		ioc->name, log_info,
711 	     originator_str, sas_loginfo.dw.code,
712 	     sas_loginfo.dw.subcode);
713 }
714 
715 /**
716  * _base_display_reply_info -
717  * @ioc: per adapter object
718  * @smid: system request message index
719  * @msix_index: MSIX table index supplied by the OS
720  * @reply: reply message frame(lower 32bit addr)
721  *
722  * Return nothing.
723  */
724 static void
725 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
726 	u32 reply)
727 {
728 	MPI2DefaultReply_t *mpi_reply;
729 	u16 ioc_status;
730 	u32 loginfo = 0;
731 
732 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
733 	if (unlikely(!mpi_reply)) {
734 		pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
735 		    ioc->name, __FILE__, __LINE__, __func__);
736 		return;
737 	}
738 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
739 
740 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
741 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
742 		_base_sas_ioc_info(ioc , mpi_reply,
743 		   mpt3sas_base_get_msg_frame(ioc, smid));
744 	}
745 
746 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
747 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
748 		_base_sas_log_info(ioc, loginfo);
749 	}
750 
751 	if (ioc_status || loginfo) {
752 		ioc_status &= MPI2_IOCSTATUS_MASK;
753 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
754 	}
755 }
756 
757 /**
758  * mpt3sas_base_done - base internal command completion routine
759  * @ioc: per adapter object
760  * @smid: system request message index
761  * @msix_index: MSIX table index supplied by the OS
762  * @reply: reply message frame(lower 32bit addr)
763  *
764  * Return 1 meaning mf should be freed from _base_interrupt
765  *        0 means the mf is freed from this function.
766  */
767 u8
768 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
769 	u32 reply)
770 {
771 	MPI2DefaultReply_t *mpi_reply;
772 
773 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
774 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
775 		return 1;
776 
777 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
778 		return 1;
779 
780 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
781 	if (mpi_reply) {
782 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
783 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
784 	}
785 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
786 
787 	complete(&ioc->base_cmds.done);
788 	return 1;
789 }
790 
791 /**
792  * _base_async_event - main callback handler for firmware asyn events
793  * @ioc: per adapter object
794  * @msix_index: MSIX table index supplied by the OS
795  * @reply: reply message frame(lower 32bit addr)
796  *
797  * Return 1 meaning mf should be freed from _base_interrupt
798  *        0 means the mf is freed from this function.
799  */
800 static u8
801 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
802 {
803 	Mpi2EventNotificationReply_t *mpi_reply;
804 	Mpi2EventAckRequest_t *ack_request;
805 	u16 smid;
806 
807 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
808 	if (!mpi_reply)
809 		return 1;
810 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
811 		return 1;
812 
813 	_base_display_event_data(ioc, mpi_reply);
814 
815 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
816 		goto out;
817 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
818 	if (!smid) {
819 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
820 		    ioc->name, __func__);
821 		goto out;
822 	}
823 
824 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
825 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
826 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
827 	ack_request->Event = mpi_reply->Event;
828 	ack_request->EventContext = mpi_reply->EventContext;
829 	ack_request->VF_ID = 0;  /* TODO */
830 	ack_request->VP_ID = 0;
831 	mpt3sas_base_put_smid_default(ioc, smid);
832 
833  out:
834 
835 	/* scsih callback handler */
836 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
837 
838 	/* ctl callback handler */
839 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
840 
841 	return 1;
842 }
843 
844 /**
845  * _base_get_cb_idx - obtain the callback index
846  * @ioc: per adapter object
847  * @smid: system request message index
848  *
849  * Return callback index.
850  */
851 static u8
852 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
853 {
854 	int i;
855 	u8 cb_idx;
856 
857 	if (smid < ioc->hi_priority_smid) {
858 		i = smid - 1;
859 		cb_idx = ioc->scsi_lookup[i].cb_idx;
860 	} else if (smid < ioc->internal_smid) {
861 		i = smid - ioc->hi_priority_smid;
862 		cb_idx = ioc->hpr_lookup[i].cb_idx;
863 	} else if (smid <= ioc->hba_queue_depth) {
864 		i = smid - ioc->internal_smid;
865 		cb_idx = ioc->internal_lookup[i].cb_idx;
866 	} else
867 		cb_idx = 0xFF;
868 	return cb_idx;
869 }
870 
871 /**
872  * _base_mask_interrupts - disable interrupts
873  * @ioc: per adapter object
874  *
875  * Disabling ResetIRQ, Reply and Doorbell Interrupts
876  *
877  * Return nothing.
878  */
879 static void
880 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
881 {
882 	u32 him_register;
883 
884 	ioc->mask_interrupts = 1;
885 	him_register = readl(&ioc->chip->HostInterruptMask);
886 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
887 	writel(him_register, &ioc->chip->HostInterruptMask);
888 	readl(&ioc->chip->HostInterruptMask);
889 }
890 
891 /**
892  * _base_unmask_interrupts - enable interrupts
893  * @ioc: per adapter object
894  *
895  * Enabling only Reply Interrupts
896  *
897  * Return nothing.
898  */
899 static void
900 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
901 {
902 	u32 him_register;
903 
904 	him_register = readl(&ioc->chip->HostInterruptMask);
905 	him_register &= ~MPI2_HIM_RIM;
906 	writel(him_register, &ioc->chip->HostInterruptMask);
907 	ioc->mask_interrupts = 0;
908 }
909 
910 union reply_descriptor {
911 	u64 word;
912 	struct {
913 		u32 low;
914 		u32 high;
915 	} u;
916 };
917 
918 /**
919  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
920  * @irq: irq number (not used)
921  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
922  * @r: pt_regs pointer (not used)
923  *
924  * Return IRQ_HANDLE if processed, else IRQ_NONE.
925  */
926 static irqreturn_t
927 _base_interrupt(int irq, void *bus_id)
928 {
929 	struct adapter_reply_queue *reply_q = bus_id;
930 	union reply_descriptor rd;
931 	u32 completed_cmds;
932 	u8 request_desript_type;
933 	u16 smid;
934 	u8 cb_idx;
935 	u32 reply;
936 	u8 msix_index = reply_q->msix_index;
937 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
938 	Mpi2ReplyDescriptorsUnion_t *rpf;
939 	u8 rc;
940 
941 	if (ioc->mask_interrupts)
942 		return IRQ_NONE;
943 
944 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
945 		return IRQ_NONE;
946 
947 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
948 	request_desript_type = rpf->Default.ReplyFlags
949 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
950 	if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
951 		atomic_dec(&reply_q->busy);
952 		return IRQ_NONE;
953 	}
954 
955 	completed_cmds = 0;
956 	cb_idx = 0xFF;
957 	do {
958 		rd.word = le64_to_cpu(rpf->Words);
959 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
960 			goto out;
961 		reply = 0;
962 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
963 		if (request_desript_type ==
964 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
965 		    request_desript_type ==
966 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
967 			cb_idx = _base_get_cb_idx(ioc, smid);
968 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
969 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
970 				rc = mpt_callbacks[cb_idx](ioc, smid,
971 				    msix_index, 0);
972 				if (rc)
973 					mpt3sas_base_free_smid(ioc, smid);
974 			}
975 		} else if (request_desript_type ==
976 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
977 			reply = le32_to_cpu(
978 			    rpf->AddressReply.ReplyFrameAddress);
979 			if (reply > ioc->reply_dma_max_address ||
980 			    reply < ioc->reply_dma_min_address)
981 				reply = 0;
982 			if (smid) {
983 				cb_idx = _base_get_cb_idx(ioc, smid);
984 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
985 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
986 					rc = mpt_callbacks[cb_idx](ioc, smid,
987 					    msix_index, reply);
988 					if (reply)
989 						_base_display_reply_info(ioc,
990 						    smid, msix_index, reply);
991 					if (rc)
992 						mpt3sas_base_free_smid(ioc,
993 						    smid);
994 				}
995 			} else {
996 				_base_async_event(ioc, msix_index, reply);
997 			}
998 
999 			/* reply free queue handling */
1000 			if (reply) {
1001 				ioc->reply_free_host_index =
1002 				    (ioc->reply_free_host_index ==
1003 				    (ioc->reply_free_queue_depth - 1)) ?
1004 				    0 : ioc->reply_free_host_index + 1;
1005 				ioc->reply_free[ioc->reply_free_host_index] =
1006 				    cpu_to_le32(reply);
1007 				wmb();
1008 				writel(ioc->reply_free_host_index,
1009 				    &ioc->chip->ReplyFreeHostIndex);
1010 			}
1011 		}
1012 
1013 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1014 		reply_q->reply_post_host_index =
1015 		    (reply_q->reply_post_host_index ==
1016 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1017 		    reply_q->reply_post_host_index + 1;
1018 		request_desript_type =
1019 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1020 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1021 		completed_cmds++;
1022 		if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1023 			goto out;
1024 		if (!reply_q->reply_post_host_index)
1025 			rpf = reply_q->reply_post_free;
1026 		else
1027 			rpf++;
1028 	} while (1);
1029 
1030  out:
1031 
1032 	if (!completed_cmds) {
1033 		atomic_dec(&reply_q->busy);
1034 		return IRQ_NONE;
1035 	}
1036 
1037 	wmb();
1038 	if (ioc->is_warpdrive) {
1039 		writel(reply_q->reply_post_host_index,
1040 		ioc->reply_post_host_index[msix_index]);
1041 		atomic_dec(&reply_q->busy);
1042 		return IRQ_HANDLED;
1043 	}
1044 
1045 	/* Update Reply Post Host Index.
1046 	 * For those HBA's which support combined reply queue feature
1047 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1048 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1049 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1050 	 * 2. Then update this register with new reply host index value
1051 	 *    in ReplyPostIndex field and the MSIxIndex field with
1052 	 *    msix_index value reduced to a value between 0 and 7,
1053 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1054 	 *    Host Index Register supports 8 MSI-X vectors.
1055 	 *
1056 	 * For other HBA's just update the Reply Post Host Index register with
1057 	 * new reply host index value in ReplyPostIndex Field and msix_index
1058 	 * value in MSIxIndex field.
1059 	 */
1060 	if (ioc->msix96_vector)
1061 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1062 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1063 			ioc->replyPostRegisterIndex[msix_index/8]);
1064 	else
1065 		writel(reply_q->reply_post_host_index | (msix_index <<
1066 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1067 			&ioc->chip->ReplyPostHostIndex);
1068 	atomic_dec(&reply_q->busy);
1069 	return IRQ_HANDLED;
1070 }
1071 
1072 /**
1073  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1074  * @ioc: per adapter object
1075  *
1076  */
1077 static inline int
1078 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1079 {
1080 	return (ioc->facts.IOCCapabilities &
1081 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1082 }
1083 
1084 /**
1085  * mpt3sas_base_flush_reply_queues - flushing the MSIX reply queues
1086  * @ioc: per adapter object
1087  * Context: ISR conext
1088  *
1089  * Called when a Task Management request has completed. We want
1090  * to flush the other reply queues so all the outstanding IO has been
1091  * completed back to OS before we process the TM completetion.
1092  *
1093  * Return nothing.
1094  */
1095 void
1096 mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1097 {
1098 	struct adapter_reply_queue *reply_q;
1099 
1100 	/* If MSIX capability is turned off
1101 	 * then multi-queues are not enabled
1102 	 */
1103 	if (!_base_is_controller_msix_enabled(ioc))
1104 		return;
1105 
1106 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1107 		if (ioc->shost_recovery)
1108 			return;
1109 		/* TMs are on msix_index == 0 */
1110 		if (reply_q->msix_index == 0)
1111 			continue;
1112 		_base_interrupt(reply_q->vector, (void *)reply_q);
1113 	}
1114 }
1115 
1116 /**
1117  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1118  * @cb_idx: callback index
1119  *
1120  * Return nothing.
1121  */
1122 void
1123 mpt3sas_base_release_callback_handler(u8 cb_idx)
1124 {
1125 	mpt_callbacks[cb_idx] = NULL;
1126 }
1127 
1128 /**
1129  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1130  * @cb_func: callback function
1131  *
1132  * Returns cb_func.
1133  */
1134 u8
1135 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1136 {
1137 	u8 cb_idx;
1138 
1139 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1140 		if (mpt_callbacks[cb_idx] == NULL)
1141 			break;
1142 
1143 	mpt_callbacks[cb_idx] = cb_func;
1144 	return cb_idx;
1145 }
1146 
1147 /**
1148  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1149  *
1150  * Return nothing.
1151  */
1152 void
1153 mpt3sas_base_initialize_callback_handler(void)
1154 {
1155 	u8 cb_idx;
1156 
1157 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1158 		mpt3sas_base_release_callback_handler(cb_idx);
1159 }
1160 
1161 
1162 /**
1163  * _base_build_zero_len_sge - build zero length sg entry
1164  * @ioc: per adapter object
1165  * @paddr: virtual address for SGE
1166  *
1167  * Create a zero length scatter gather entry to insure the IOCs hardware has
1168  * something to use if the target device goes brain dead and tries
1169  * to send data even when none is asked for.
1170  *
1171  * Return nothing.
1172  */
1173 static void
1174 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1175 {
1176 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1177 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1178 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1179 	    MPI2_SGE_FLAGS_SHIFT);
1180 	ioc->base_add_sg_single(paddr, flags_length, -1);
1181 }
1182 
1183 /**
1184  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1185  * @paddr: virtual address for SGE
1186  * @flags_length: SGE flags and data transfer length
1187  * @dma_addr: Physical address
1188  *
1189  * Return nothing.
1190  */
1191 static void
1192 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1193 {
1194 	Mpi2SGESimple32_t *sgel = paddr;
1195 
1196 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1197 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1198 	sgel->FlagsLength = cpu_to_le32(flags_length);
1199 	sgel->Address = cpu_to_le32(dma_addr);
1200 }
1201 
1202 
1203 /**
1204  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1205  * @paddr: virtual address for SGE
1206  * @flags_length: SGE flags and data transfer length
1207  * @dma_addr: Physical address
1208  *
1209  * Return nothing.
1210  */
1211 static void
1212 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1213 {
1214 	Mpi2SGESimple64_t *sgel = paddr;
1215 
1216 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1217 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1218 	sgel->FlagsLength = cpu_to_le32(flags_length);
1219 	sgel->Address = cpu_to_le64(dma_addr);
1220 }
1221 
1222 /**
1223  * _base_get_chain_buffer_tracker - obtain chain tracker
1224  * @ioc: per adapter object
1225  * @smid: smid associated to an IO request
1226  *
1227  * Returns chain tracker(from ioc->free_chain_list)
1228  */
1229 static struct chain_tracker *
1230 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1231 {
1232 	struct chain_tracker *chain_req;
1233 	unsigned long flags;
1234 
1235 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1236 	if (list_empty(&ioc->free_chain_list)) {
1237 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1238 		dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1239 			"chain buffers not available\n", ioc->name));
1240 		return NULL;
1241 	}
1242 	chain_req = list_entry(ioc->free_chain_list.next,
1243 	    struct chain_tracker, tracker_list);
1244 	list_del_init(&chain_req->tracker_list);
1245 	list_add_tail(&chain_req->tracker_list,
1246 	    &ioc->scsi_lookup[smid - 1].chain_list);
1247 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1248 	return chain_req;
1249 }
1250 
1251 
1252 /**
1253  * _base_build_sg - build generic sg
1254  * @ioc: per adapter object
1255  * @psge: virtual address for SGE
1256  * @data_out_dma: physical address for WRITES
1257  * @data_out_sz: data xfer size for WRITES
1258  * @data_in_dma: physical address for READS
1259  * @data_in_sz: data xfer size for READS
1260  *
1261  * Return nothing.
1262  */
1263 static void
1264 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1265 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1266 	size_t data_in_sz)
1267 {
1268 	u32 sgl_flags;
1269 
1270 	if (!data_out_sz && !data_in_sz) {
1271 		_base_build_zero_len_sge(ioc, psge);
1272 		return;
1273 	}
1274 
1275 	if (data_out_sz && data_in_sz) {
1276 		/* WRITE sgel first */
1277 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1278 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1279 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1280 		ioc->base_add_sg_single(psge, sgl_flags |
1281 		    data_out_sz, data_out_dma);
1282 
1283 		/* incr sgel */
1284 		psge += ioc->sge_size;
1285 
1286 		/* READ sgel last */
1287 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1288 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1289 		    MPI2_SGE_FLAGS_END_OF_LIST);
1290 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1291 		ioc->base_add_sg_single(psge, sgl_flags |
1292 		    data_in_sz, data_in_dma);
1293 	} else if (data_out_sz) /* WRITE */ {
1294 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1295 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1296 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1297 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1298 		ioc->base_add_sg_single(psge, sgl_flags |
1299 		    data_out_sz, data_out_dma);
1300 	} else if (data_in_sz) /* READ */ {
1301 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1302 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1303 		    MPI2_SGE_FLAGS_END_OF_LIST);
1304 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1305 		ioc->base_add_sg_single(psge, sgl_flags |
1306 		    data_in_sz, data_in_dma);
1307 	}
1308 }
1309 
1310 /* IEEE format sgls */
1311 
1312 /**
1313  * _base_add_sg_single_ieee - add sg element for IEEE format
1314  * @paddr: virtual address for SGE
1315  * @flags: SGE flags
1316  * @chain_offset: number of 128 byte elements from start of segment
1317  * @length: data transfer length
1318  * @dma_addr: Physical address
1319  *
1320  * Return nothing.
1321  */
1322 static void
1323 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1324 	dma_addr_t dma_addr)
1325 {
1326 	Mpi25IeeeSgeChain64_t *sgel = paddr;
1327 
1328 	sgel->Flags = flags;
1329 	sgel->NextChainOffset = chain_offset;
1330 	sgel->Length = cpu_to_le32(length);
1331 	sgel->Address = cpu_to_le64(dma_addr);
1332 }
1333 
1334 /**
1335  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1336  * @ioc: per adapter object
1337  * @paddr: virtual address for SGE
1338  *
1339  * Create a zero length scatter gather entry to insure the IOCs hardware has
1340  * something to use if the target device goes brain dead and tries
1341  * to send data even when none is asked for.
1342  *
1343  * Return nothing.
1344  */
1345 static void
1346 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1347 {
1348 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1349 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1350 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1351 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1352 }
1353 
1354 /**
1355  * _base_build_sg_scmd - main sg creation routine
1356  * @ioc: per adapter object
1357  * @scmd: scsi command
1358  * @smid: system request message index
1359  * Context: none.
1360  *
1361  * The main routine that builds scatter gather table from a given
1362  * scsi request sent via the .queuecommand main handler.
1363  *
1364  * Returns 0 success, anything else error
1365  */
1366 static int
1367 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1368 		struct scsi_cmnd *scmd, u16 smid)
1369 {
1370 	Mpi2SCSIIORequest_t *mpi_request;
1371 	dma_addr_t chain_dma;
1372 	struct scatterlist *sg_scmd;
1373 	void *sg_local, *chain;
1374 	u32 chain_offset;
1375 	u32 chain_length;
1376 	u32 chain_flags;
1377 	int sges_left;
1378 	u32 sges_in_segment;
1379 	u32 sgl_flags;
1380 	u32 sgl_flags_last_element;
1381 	u32 sgl_flags_end_buffer;
1382 	struct chain_tracker *chain_req;
1383 
1384 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1385 
1386 	/* init scatter gather flags */
1387 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1388 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
1389 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1390 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1391 	    << MPI2_SGE_FLAGS_SHIFT;
1392 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1393 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1394 	    << MPI2_SGE_FLAGS_SHIFT;
1395 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1396 
1397 	sg_scmd = scsi_sglist(scmd);
1398 	sges_left = scsi_dma_map(scmd);
1399 	if (sges_left < 0) {
1400 		sdev_printk(KERN_ERR, scmd->device,
1401 		 "pci_map_sg failed: request for %d bytes!\n",
1402 		 scsi_bufflen(scmd));
1403 		return -ENOMEM;
1404 	}
1405 
1406 	sg_local = &mpi_request->SGL;
1407 	sges_in_segment = ioc->max_sges_in_main_message;
1408 	if (sges_left <= sges_in_segment)
1409 		goto fill_in_last_segment;
1410 
1411 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1412 	    (sges_in_segment * ioc->sge_size))/4;
1413 
1414 	/* fill in main message segment when there is a chain following */
1415 	while (sges_in_segment) {
1416 		if (sges_in_segment == 1)
1417 			ioc->base_add_sg_single(sg_local,
1418 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
1419 			    sg_dma_address(sg_scmd));
1420 		else
1421 			ioc->base_add_sg_single(sg_local, sgl_flags |
1422 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1423 		sg_scmd = sg_next(sg_scmd);
1424 		sg_local += ioc->sge_size;
1425 		sges_left--;
1426 		sges_in_segment--;
1427 	}
1428 
1429 	/* initializing the chain flags and pointers */
1430 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1431 	chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1432 	if (!chain_req)
1433 		return -1;
1434 	chain = chain_req->chain_buffer;
1435 	chain_dma = chain_req->chain_buffer_dma;
1436 	do {
1437 		sges_in_segment = (sges_left <=
1438 		    ioc->max_sges_in_chain_message) ? sges_left :
1439 		    ioc->max_sges_in_chain_message;
1440 		chain_offset = (sges_left == sges_in_segment) ?
1441 		    0 : (sges_in_segment * ioc->sge_size)/4;
1442 		chain_length = sges_in_segment * ioc->sge_size;
1443 		if (chain_offset) {
1444 			chain_offset = chain_offset <<
1445 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
1446 			chain_length += ioc->sge_size;
1447 		}
1448 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1449 		    chain_length, chain_dma);
1450 		sg_local = chain;
1451 		if (!chain_offset)
1452 			goto fill_in_last_segment;
1453 
1454 		/* fill in chain segments */
1455 		while (sges_in_segment) {
1456 			if (sges_in_segment == 1)
1457 				ioc->base_add_sg_single(sg_local,
1458 				    sgl_flags_last_element |
1459 				    sg_dma_len(sg_scmd),
1460 				    sg_dma_address(sg_scmd));
1461 			else
1462 				ioc->base_add_sg_single(sg_local, sgl_flags |
1463 				    sg_dma_len(sg_scmd),
1464 				    sg_dma_address(sg_scmd));
1465 			sg_scmd = sg_next(sg_scmd);
1466 			sg_local += ioc->sge_size;
1467 			sges_left--;
1468 			sges_in_segment--;
1469 		}
1470 
1471 		chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1472 		if (!chain_req)
1473 			return -1;
1474 		chain = chain_req->chain_buffer;
1475 		chain_dma = chain_req->chain_buffer_dma;
1476 	} while (1);
1477 
1478 
1479  fill_in_last_segment:
1480 
1481 	/* fill the last segment */
1482 	while (sges_left) {
1483 		if (sges_left == 1)
1484 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1485 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1486 		else
1487 			ioc->base_add_sg_single(sg_local, sgl_flags |
1488 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1489 		sg_scmd = sg_next(sg_scmd);
1490 		sg_local += ioc->sge_size;
1491 		sges_left--;
1492 	}
1493 
1494 	return 0;
1495 }
1496 
1497 /**
1498  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1499  * @ioc: per adapter object
1500  * @scmd: scsi command
1501  * @smid: system request message index
1502  * Context: none.
1503  *
1504  * The main routine that builds scatter gather table from a given
1505  * scsi request sent via the .queuecommand main handler.
1506  *
1507  * Returns 0 success, anything else error
1508  */
1509 static int
1510 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1511 	struct scsi_cmnd *scmd, u16 smid)
1512 {
1513 	Mpi2SCSIIORequest_t *mpi_request;
1514 	dma_addr_t chain_dma;
1515 	struct scatterlist *sg_scmd;
1516 	void *sg_local, *chain;
1517 	u32 chain_offset;
1518 	u32 chain_length;
1519 	int sges_left;
1520 	u32 sges_in_segment;
1521 	u8 simple_sgl_flags;
1522 	u8 simple_sgl_flags_last;
1523 	u8 chain_sgl_flags;
1524 	struct chain_tracker *chain_req;
1525 
1526 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1527 
1528 	/* init scatter gather flags */
1529 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1530 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1531 	simple_sgl_flags_last = simple_sgl_flags |
1532 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1533 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1534 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1535 
1536 	sg_scmd = scsi_sglist(scmd);
1537 	sges_left = scsi_dma_map(scmd);
1538 	if (sges_left < 0) {
1539 		sdev_printk(KERN_ERR, scmd->device,
1540 			"pci_map_sg failed: request for %d bytes!\n",
1541 			scsi_bufflen(scmd));
1542 		return -ENOMEM;
1543 	}
1544 
1545 	sg_local = &mpi_request->SGL;
1546 	sges_in_segment = (ioc->request_sz -
1547 	    offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1548 	if (sges_left <= sges_in_segment)
1549 		goto fill_in_last_segment;
1550 
1551 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1552 	    (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1553 
1554 	/* fill in main message segment when there is a chain following */
1555 	while (sges_in_segment > 1) {
1556 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1557 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1558 		sg_scmd = sg_next(sg_scmd);
1559 		sg_local += ioc->sge_size_ieee;
1560 		sges_left--;
1561 		sges_in_segment--;
1562 	}
1563 
1564 	/* initializing the pointers */
1565 	chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1566 	if (!chain_req)
1567 		return -1;
1568 	chain = chain_req->chain_buffer;
1569 	chain_dma = chain_req->chain_buffer_dma;
1570 	do {
1571 		sges_in_segment = (sges_left <=
1572 		    ioc->max_sges_in_chain_message) ? sges_left :
1573 		    ioc->max_sges_in_chain_message;
1574 		chain_offset = (sges_left == sges_in_segment) ?
1575 		    0 : sges_in_segment;
1576 		chain_length = sges_in_segment * ioc->sge_size_ieee;
1577 		if (chain_offset)
1578 			chain_length += ioc->sge_size_ieee;
1579 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1580 		    chain_offset, chain_length, chain_dma);
1581 
1582 		sg_local = chain;
1583 		if (!chain_offset)
1584 			goto fill_in_last_segment;
1585 
1586 		/* fill in chain segments */
1587 		while (sges_in_segment) {
1588 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1589 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1590 			sg_scmd = sg_next(sg_scmd);
1591 			sg_local += ioc->sge_size_ieee;
1592 			sges_left--;
1593 			sges_in_segment--;
1594 		}
1595 
1596 		chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1597 		if (!chain_req)
1598 			return -1;
1599 		chain = chain_req->chain_buffer;
1600 		chain_dma = chain_req->chain_buffer_dma;
1601 	} while (1);
1602 
1603 
1604  fill_in_last_segment:
1605 
1606 	/* fill the last segment */
1607 	while (sges_left > 0) {
1608 		if (sges_left == 1)
1609 			_base_add_sg_single_ieee(sg_local,
1610 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1611 			    sg_dma_address(sg_scmd));
1612 		else
1613 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1614 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1615 		sg_scmd = sg_next(sg_scmd);
1616 		sg_local += ioc->sge_size_ieee;
1617 		sges_left--;
1618 	}
1619 
1620 	return 0;
1621 }
1622 
1623 /**
1624  * _base_build_sg_ieee - build generic sg for IEEE format
1625  * @ioc: per adapter object
1626  * @psge: virtual address for SGE
1627  * @data_out_dma: physical address for WRITES
1628  * @data_out_sz: data xfer size for WRITES
1629  * @data_in_dma: physical address for READS
1630  * @data_in_sz: data xfer size for READS
1631  *
1632  * Return nothing.
1633  */
1634 static void
1635 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1636 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1637 	size_t data_in_sz)
1638 {
1639 	u8 sgl_flags;
1640 
1641 	if (!data_out_sz && !data_in_sz) {
1642 		_base_build_zero_len_sge_ieee(ioc, psge);
1643 		return;
1644 	}
1645 
1646 	if (data_out_sz && data_in_sz) {
1647 		/* WRITE sgel first */
1648 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1649 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1650 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1651 		    data_out_dma);
1652 
1653 		/* incr sgel */
1654 		psge += ioc->sge_size_ieee;
1655 
1656 		/* READ sgel last */
1657 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1658 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1659 		    data_in_dma);
1660 	} else if (data_out_sz) /* WRITE */ {
1661 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1662 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1663 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1664 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1665 		    data_out_dma);
1666 	} else if (data_in_sz) /* READ */ {
1667 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1668 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1669 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1670 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1671 		    data_in_dma);
1672 	}
1673 }
1674 
1675 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1676 
1677 /**
1678  * _base_config_dma_addressing - set dma addressing
1679  * @ioc: per adapter object
1680  * @pdev: PCI device struct
1681  *
1682  * Returns 0 for success, non-zero for failure.
1683  */
1684 static int
1685 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1686 {
1687 	struct sysinfo s;
1688 	u64 consistent_dma_mask;
1689 
1690 	if (ioc->dma_mask)
1691 		consistent_dma_mask = DMA_BIT_MASK(64);
1692 	else
1693 		consistent_dma_mask = DMA_BIT_MASK(32);
1694 
1695 	if (sizeof(dma_addr_t) > 4) {
1696 		const uint64_t required_mask =
1697 		    dma_get_required_mask(&pdev->dev);
1698 		if ((required_mask > DMA_BIT_MASK(32)) &&
1699 		    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1700 		    !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1701 			ioc->base_add_sg_single = &_base_add_sg_single_64;
1702 			ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1703 			ioc->dma_mask = 64;
1704 			goto out;
1705 		}
1706 	}
1707 
1708 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1709 	    && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1710 		ioc->base_add_sg_single = &_base_add_sg_single_32;
1711 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1712 		ioc->dma_mask = 32;
1713 	} else
1714 		return -ENODEV;
1715 
1716  out:
1717 	si_meminfo(&s);
1718 	pr_info(MPT3SAS_FMT
1719 		"%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1720 		ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1721 
1722 	return 0;
1723 }
1724 
1725 static int
1726 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1727 				      struct pci_dev *pdev)
1728 {
1729 	if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1730 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1731 			return -ENODEV;
1732 	}
1733 	return 0;
1734 }
1735 
1736 /**
1737  * _base_check_enable_msix - checks MSIX capabable.
1738  * @ioc: per adapter object
1739  *
1740  * Check to see if card is capable of MSIX, and set number
1741  * of available msix vectors
1742  */
1743 static int
1744 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1745 {
1746 	int base;
1747 	u16 message_control;
1748 
1749 	/* Check whether controller SAS2008 B0 controller,
1750 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
1751 	 */
1752 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1753 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
1754 		return -EINVAL;
1755 	}
1756 
1757 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1758 	if (!base) {
1759 		dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1760 			ioc->name));
1761 		return -EINVAL;
1762 	}
1763 
1764 	/* get msix vector count */
1765 	/* NUMA_IO not supported for older controllers */
1766 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1767 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1768 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1769 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1770 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1771 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1772 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1773 		ioc->msix_vector_count = 1;
1774 	else {
1775 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
1776 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1777 	}
1778 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
1779 		"msix is supported, vector_count(%d)\n",
1780 		ioc->name, ioc->msix_vector_count));
1781 	return 0;
1782 }
1783 
1784 /**
1785  * _base_free_irq - free irq
1786  * @ioc: per adapter object
1787  *
1788  * Freeing respective reply_queue from the list.
1789  */
1790 static void
1791 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1792 {
1793 	struct adapter_reply_queue *reply_q, *next;
1794 
1795 	if (list_empty(&ioc->reply_queue_list))
1796 		return;
1797 
1798 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1799 		list_del(&reply_q->list);
1800 		irq_set_affinity_hint(reply_q->vector, NULL);
1801 		free_cpumask_var(reply_q->affinity_hint);
1802 		synchronize_irq(reply_q->vector);
1803 		free_irq(reply_q->vector, reply_q);
1804 		kfree(reply_q);
1805 	}
1806 }
1807 
1808 /**
1809  * _base_request_irq - request irq
1810  * @ioc: per adapter object
1811  * @index: msix index into vector table
1812  * @vector: irq vector
1813  *
1814  * Inserting respective reply_queue into the list.
1815  */
1816 static int
1817 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1818 {
1819 	struct adapter_reply_queue *reply_q;
1820 	int r;
1821 
1822 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1823 	if (!reply_q) {
1824 		pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1825 		    ioc->name, (int)sizeof(struct adapter_reply_queue));
1826 		return -ENOMEM;
1827 	}
1828 	reply_q->ioc = ioc;
1829 	reply_q->msix_index = index;
1830 	reply_q->vector = vector;
1831 
1832 	if (!alloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL))
1833 		return -ENOMEM;
1834 	cpumask_clear(reply_q->affinity_hint);
1835 
1836 	atomic_set(&reply_q->busy, 0);
1837 	if (ioc->msix_enable)
1838 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1839 		    ioc->driver_name, ioc->id, index);
1840 	else
1841 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1842 		    ioc->driver_name, ioc->id);
1843 	r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1844 	    reply_q);
1845 	if (r) {
1846 		pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1847 		    reply_q->name, vector);
1848 		kfree(reply_q);
1849 		return -EBUSY;
1850 	}
1851 
1852 	INIT_LIST_HEAD(&reply_q->list);
1853 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1854 	return 0;
1855 }
1856 
1857 /**
1858  * _base_assign_reply_queues - assigning msix index for each cpu
1859  * @ioc: per adapter object
1860  *
1861  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1862  *
1863  * It would nice if we could call irq_set_affinity, however it is not
1864  * an exported symbol
1865  */
1866 static void
1867 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1868 {
1869 	unsigned int cpu, nr_cpus, nr_msix, index = 0;
1870 	struct adapter_reply_queue *reply_q;
1871 
1872 	if (!_base_is_controller_msix_enabled(ioc))
1873 		return;
1874 
1875 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1876 
1877 	nr_cpus = num_online_cpus();
1878 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1879 					       ioc->facts.MaxMSIxVectors);
1880 	if (!nr_msix)
1881 		return;
1882 
1883 	cpu = cpumask_first(cpu_online_mask);
1884 
1885 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1886 
1887 		unsigned int i, group = nr_cpus / nr_msix;
1888 
1889 		if (cpu >= nr_cpus)
1890 			break;
1891 
1892 		if (index < nr_cpus % nr_msix)
1893 			group++;
1894 
1895 		for (i = 0 ; i < group ; i++) {
1896 			ioc->cpu_msix_table[cpu] = index;
1897 			cpumask_or(reply_q->affinity_hint,
1898 				   reply_q->affinity_hint, get_cpu_mask(cpu));
1899 			cpu = cpumask_next(cpu, cpu_online_mask);
1900 		}
1901 
1902 		if (irq_set_affinity_hint(reply_q->vector,
1903 					   reply_q->affinity_hint))
1904 			dinitprintk(ioc, pr_info(MPT3SAS_FMT
1905 			    "error setting affinity hint for irq vector %d\n",
1906 			    ioc->name, reply_q->vector));
1907 		index++;
1908 	}
1909 }
1910 
1911 /**
1912  * _base_disable_msix - disables msix
1913  * @ioc: per adapter object
1914  *
1915  */
1916 static void
1917 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1918 {
1919 	if (!ioc->msix_enable)
1920 		return;
1921 	pci_disable_msix(ioc->pdev);
1922 	ioc->msix_enable = 0;
1923 }
1924 
1925 /**
1926  * _base_enable_msix - enables msix, failback to io_apic
1927  * @ioc: per adapter object
1928  *
1929  */
1930 static int
1931 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1932 {
1933 	struct msix_entry *entries, *a;
1934 	int r;
1935 	int i;
1936 	u8 try_msix = 0;
1937 
1938 	if (msix_disable == -1 || msix_disable == 0)
1939 		try_msix = 1;
1940 
1941 	if (!try_msix)
1942 		goto try_ioapic;
1943 
1944 	if (_base_check_enable_msix(ioc) != 0)
1945 		goto try_ioapic;
1946 
1947 	ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1948 	    ioc->msix_vector_count);
1949 
1950 	printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1951 	  ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1952 	  ioc->cpu_count, max_msix_vectors);
1953 
1954 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1955 		max_msix_vectors = 8;
1956 
1957 	if (max_msix_vectors > 0) {
1958 		ioc->reply_queue_count = min_t(int, max_msix_vectors,
1959 			ioc->reply_queue_count);
1960 		ioc->msix_vector_count = ioc->reply_queue_count;
1961 	} else if (max_msix_vectors == 0)
1962 		goto try_ioapic;
1963 
1964 	entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1965 	    GFP_KERNEL);
1966 	if (!entries) {
1967 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
1968 			"kcalloc failed @ at %s:%d/%s() !!!\n",
1969 			ioc->name, __FILE__, __LINE__, __func__));
1970 		goto try_ioapic;
1971 	}
1972 
1973 	for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
1974 		a->entry = i;
1975 
1976 	r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
1977 	if (r) {
1978 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
1979 			"pci_enable_msix_exact failed (r=%d) !!!\n",
1980 			ioc->name, r));
1981 		kfree(entries);
1982 		goto try_ioapic;
1983 	}
1984 
1985 	ioc->msix_enable = 1;
1986 	for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
1987 		r = _base_request_irq(ioc, i, a->vector);
1988 		if (r) {
1989 			_base_free_irq(ioc);
1990 			_base_disable_msix(ioc);
1991 			kfree(entries);
1992 			goto try_ioapic;
1993 		}
1994 	}
1995 
1996 	kfree(entries);
1997 	return 0;
1998 
1999 /* failback to io_apic interrupt routing */
2000  try_ioapic:
2001 
2002 	ioc->reply_queue_count = 1;
2003 	r = _base_request_irq(ioc, 0, ioc->pdev->irq);
2004 
2005 	return r;
2006 }
2007 
2008 /**
2009  * mpt3sas_base_unmap_resources - free controller resources
2010  * @ioc: per adapter object
2011  */
2012 void
2013 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2014 {
2015 	struct pci_dev *pdev = ioc->pdev;
2016 
2017 	dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2018 		ioc->name, __func__));
2019 
2020 	_base_free_irq(ioc);
2021 	_base_disable_msix(ioc);
2022 
2023 	if (ioc->msix96_vector)
2024 		kfree(ioc->replyPostRegisterIndex);
2025 
2026 	if (ioc->chip_phys) {
2027 		iounmap(ioc->chip);
2028 		ioc->chip_phys = 0;
2029 	}
2030 
2031 	if (pci_is_enabled(pdev)) {
2032 		pci_release_selected_regions(ioc->pdev, ioc->bars);
2033 		pci_disable_pcie_error_reporting(pdev);
2034 		pci_disable_device(pdev);
2035 	}
2036 }
2037 
2038 /**
2039  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2040  * @ioc: per adapter object
2041  *
2042  * Returns 0 for success, non-zero for failure.
2043  */
2044 int
2045 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2046 {
2047 	struct pci_dev *pdev = ioc->pdev;
2048 	u32 memap_sz;
2049 	u32 pio_sz;
2050 	int i, r = 0;
2051 	u64 pio_chip = 0;
2052 	u64 chip_phys = 0;
2053 	struct adapter_reply_queue *reply_q;
2054 
2055 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2056 	    ioc->name, __func__));
2057 
2058 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2059 	if (pci_enable_device_mem(pdev)) {
2060 		pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2061 			ioc->name);
2062 		ioc->bars = 0;
2063 		return -ENODEV;
2064 	}
2065 
2066 
2067 	if (pci_request_selected_regions(pdev, ioc->bars,
2068 	    ioc->driver_name)) {
2069 		pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2070 			ioc->name);
2071 		ioc->bars = 0;
2072 		r = -ENODEV;
2073 		goto out_fail;
2074 	}
2075 
2076 /* AER (Advanced Error Reporting) hooks */
2077 	pci_enable_pcie_error_reporting(pdev);
2078 
2079 	pci_set_master(pdev);
2080 
2081 
2082 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
2083 		pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2084 		    ioc->name, pci_name(pdev));
2085 		r = -ENODEV;
2086 		goto out_fail;
2087 	}
2088 
2089 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2090 	     (!memap_sz || !pio_sz); i++) {
2091 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2092 			if (pio_sz)
2093 				continue;
2094 			pio_chip = (u64)pci_resource_start(pdev, i);
2095 			pio_sz = pci_resource_len(pdev, i);
2096 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2097 			if (memap_sz)
2098 				continue;
2099 			ioc->chip_phys = pci_resource_start(pdev, i);
2100 			chip_phys = (u64)ioc->chip_phys;
2101 			memap_sz = pci_resource_len(pdev, i);
2102 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2103 		}
2104 	}
2105 
2106 	if (ioc->chip == NULL) {
2107 		pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2108 			" or resource not found\n", ioc->name);
2109 		r = -EINVAL;
2110 		goto out_fail;
2111 	}
2112 
2113 	_base_mask_interrupts(ioc);
2114 
2115 	r = _base_get_ioc_facts(ioc, CAN_SLEEP);
2116 	if (r)
2117 		goto out_fail;
2118 
2119 	if (!ioc->rdpq_array_enable_assigned) {
2120 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2121 		ioc->rdpq_array_enable_assigned = 1;
2122 	}
2123 
2124 	r = _base_enable_msix(ioc);
2125 	if (r)
2126 		goto out_fail;
2127 
2128 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
2129 	 * revision HBAs and also only when reply queue count is greater than 8
2130 	 */
2131 	if (ioc->msix96_vector && ioc->reply_queue_count > 8) {
2132 		/* Determine the Supplemental Reply Post Host Index Registers
2133 		 * Addresse. Supplemental Reply Post Host Index Registers
2134 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2135 		 * each register is at offset bytes of
2136 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2137 		 */
2138 		ioc->replyPostRegisterIndex = kcalloc(
2139 		     MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT,
2140 		     sizeof(resource_size_t *), GFP_KERNEL);
2141 		if (!ioc->replyPostRegisterIndex) {
2142 			dfailprintk(ioc, printk(MPT3SAS_FMT
2143 			"allocation for reply Post Register Index failed!!!\n",
2144 								   ioc->name));
2145 			r = -ENOMEM;
2146 			goto out_fail;
2147 		}
2148 
2149 		for (i = 0; i < MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT; i++) {
2150 			ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2151 			     ((u8 *)&ioc->chip->Doorbell +
2152 			     MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2153 			     (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2154 		}
2155 	} else
2156 		ioc->msix96_vector = 0;
2157 
2158 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2159 		pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2160 		    reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2161 		    "IO-APIC enabled"), reply_q->vector);
2162 
2163 	pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2164 	    ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2165 	pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2166 	    ioc->name, (unsigned long long)pio_chip, pio_sz);
2167 
2168 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
2169 	pci_save_state(pdev);
2170 	return 0;
2171 
2172  out_fail:
2173 	mpt3sas_base_unmap_resources(ioc);
2174 	return r;
2175 }
2176 
2177 /**
2178  * mpt3sas_base_get_msg_frame - obtain request mf pointer
2179  * @ioc: per adapter object
2180  * @smid: system request message index(smid zero is invalid)
2181  *
2182  * Returns virt pointer to message frame.
2183  */
2184 void *
2185 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2186 {
2187 	return (void *)(ioc->request + (smid * ioc->request_sz));
2188 }
2189 
2190 /**
2191  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2192  * @ioc: per adapter object
2193  * @smid: system request message index
2194  *
2195  * Returns virt pointer to sense buffer.
2196  */
2197 void *
2198 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2199 {
2200 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2201 }
2202 
2203 /**
2204  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2205  * @ioc: per adapter object
2206  * @smid: system request message index
2207  *
2208  * Returns phys pointer to the low 32bit address of the sense buffer.
2209  */
2210 __le32
2211 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2212 {
2213 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2214 	    SCSI_SENSE_BUFFERSIZE));
2215 }
2216 
2217 /**
2218  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2219  * @ioc: per adapter object
2220  * @phys_addr: lower 32 physical addr of the reply
2221  *
2222  * Converts 32bit lower physical addr into a virt address.
2223  */
2224 void *
2225 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2226 {
2227 	if (!phys_addr)
2228 		return NULL;
2229 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2230 }
2231 
2232 /**
2233  * mpt3sas_base_get_smid - obtain a free smid from internal queue
2234  * @ioc: per adapter object
2235  * @cb_idx: callback index
2236  *
2237  * Returns smid (zero is invalid)
2238  */
2239 u16
2240 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2241 {
2242 	unsigned long flags;
2243 	struct request_tracker *request;
2244 	u16 smid;
2245 
2246 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2247 	if (list_empty(&ioc->internal_free_list)) {
2248 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2249 		pr_err(MPT3SAS_FMT "%s: smid not available\n",
2250 		    ioc->name, __func__);
2251 		return 0;
2252 	}
2253 
2254 	request = list_entry(ioc->internal_free_list.next,
2255 	    struct request_tracker, tracker_list);
2256 	request->cb_idx = cb_idx;
2257 	smid = request->smid;
2258 	list_del(&request->tracker_list);
2259 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2260 	return smid;
2261 }
2262 
2263 /**
2264  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2265  * @ioc: per adapter object
2266  * @cb_idx: callback index
2267  * @scmd: pointer to scsi command object
2268  *
2269  * Returns smid (zero is invalid)
2270  */
2271 u16
2272 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2273 	struct scsi_cmnd *scmd)
2274 {
2275 	unsigned long flags;
2276 	struct scsiio_tracker *request;
2277 	u16 smid;
2278 
2279 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2280 	if (list_empty(&ioc->free_list)) {
2281 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2282 		pr_err(MPT3SAS_FMT "%s: smid not available\n",
2283 		    ioc->name, __func__);
2284 		return 0;
2285 	}
2286 
2287 	request = list_entry(ioc->free_list.next,
2288 	    struct scsiio_tracker, tracker_list);
2289 	request->scmd = scmd;
2290 	request->cb_idx = cb_idx;
2291 	smid = request->smid;
2292 	list_del(&request->tracker_list);
2293 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2294 	return smid;
2295 }
2296 
2297 /**
2298  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2299  * @ioc: per adapter object
2300  * @cb_idx: callback index
2301  *
2302  * Returns smid (zero is invalid)
2303  */
2304 u16
2305 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2306 {
2307 	unsigned long flags;
2308 	struct request_tracker *request;
2309 	u16 smid;
2310 
2311 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2312 	if (list_empty(&ioc->hpr_free_list)) {
2313 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2314 		return 0;
2315 	}
2316 
2317 	request = list_entry(ioc->hpr_free_list.next,
2318 	    struct request_tracker, tracker_list);
2319 	request->cb_idx = cb_idx;
2320 	smid = request->smid;
2321 	list_del(&request->tracker_list);
2322 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2323 	return smid;
2324 }
2325 
2326 /**
2327  * mpt3sas_base_free_smid - put smid back on free_list
2328  * @ioc: per adapter object
2329  * @smid: system request message index
2330  *
2331  * Return nothing.
2332  */
2333 void
2334 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2335 {
2336 	unsigned long flags;
2337 	int i;
2338 	struct chain_tracker *chain_req, *next;
2339 
2340 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2341 	if (smid < ioc->hi_priority_smid) {
2342 		/* scsiio queue */
2343 		i = smid - 1;
2344 		if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2345 			list_for_each_entry_safe(chain_req, next,
2346 			    &ioc->scsi_lookup[i].chain_list, tracker_list) {
2347 				list_del_init(&chain_req->tracker_list);
2348 				list_add(&chain_req->tracker_list,
2349 				    &ioc->free_chain_list);
2350 			}
2351 		}
2352 		ioc->scsi_lookup[i].cb_idx = 0xFF;
2353 		ioc->scsi_lookup[i].scmd = NULL;
2354 		ioc->scsi_lookup[i].direct_io = 0;
2355 		list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2356 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2357 
2358 		/*
2359 		 * See _wait_for_commands_to_complete() call with regards
2360 		 * to this code.
2361 		 */
2362 		if (ioc->shost_recovery && ioc->pending_io_count) {
2363 			if (ioc->pending_io_count == 1)
2364 				wake_up(&ioc->reset_wq);
2365 			ioc->pending_io_count--;
2366 		}
2367 		return;
2368 	} else if (smid < ioc->internal_smid) {
2369 		/* hi-priority */
2370 		i = smid - ioc->hi_priority_smid;
2371 		ioc->hpr_lookup[i].cb_idx = 0xFF;
2372 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2373 	} else if (smid <= ioc->hba_queue_depth) {
2374 		/* internal queue */
2375 		i = smid - ioc->internal_smid;
2376 		ioc->internal_lookup[i].cb_idx = 0xFF;
2377 		list_add(&ioc->internal_lookup[i].tracker_list,
2378 		    &ioc->internal_free_list);
2379 	}
2380 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2381 }
2382 
2383 /**
2384  * _base_writeq - 64 bit write to MMIO
2385  * @ioc: per adapter object
2386  * @b: data payload
2387  * @addr: address in MMIO space
2388  * @writeq_lock: spin lock
2389  *
2390  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2391  * care of 32 bit environment where its not quarenteed to send the entire word
2392  * in one transfer.
2393  */
2394 #if defined(writeq) && defined(CONFIG_64BIT)
2395 static inline void
2396 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2397 {
2398 	writeq(cpu_to_le64(b), addr);
2399 }
2400 #else
2401 static inline void
2402 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2403 {
2404 	unsigned long flags;
2405 	__u64 data_out = cpu_to_le64(b);
2406 
2407 	spin_lock_irqsave(writeq_lock, flags);
2408 	writel((u32)(data_out), addr);
2409 	writel((u32)(data_out >> 32), (addr + 4));
2410 	spin_unlock_irqrestore(writeq_lock, flags);
2411 }
2412 #endif
2413 
2414 static inline u8
2415 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2416 {
2417 	return ioc->cpu_msix_table[raw_smp_processor_id()];
2418 }
2419 
2420 /**
2421  * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2422  * @ioc: per adapter object
2423  * @smid: system request message index
2424  * @handle: device handle
2425  *
2426  * Return nothing.
2427  */
2428 void
2429 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2430 {
2431 	Mpi2RequestDescriptorUnion_t descriptor;
2432 	u64 *request = (u64 *)&descriptor;
2433 
2434 
2435 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2436 	descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
2437 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2438 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2439 	descriptor.SCSIIO.LMID = 0;
2440 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2441 	    &ioc->scsi_lookup_lock);
2442 }
2443 
2444 /**
2445  * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2446  * @ioc: per adapter object
2447  * @smid: system request message index
2448  * @handle: device handle
2449  *
2450  * Return nothing.
2451  */
2452 void
2453 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2454 	u16 handle)
2455 {
2456 	Mpi2RequestDescriptorUnion_t descriptor;
2457 	u64 *request = (u64 *)&descriptor;
2458 
2459 	descriptor.SCSIIO.RequestFlags =
2460 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2461 	descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2462 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2463 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2464 	descriptor.SCSIIO.LMID = 0;
2465 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2466 	    &ioc->scsi_lookup_lock);
2467 }
2468 
2469 /**
2470  * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2471  * @ioc: per adapter object
2472  * @smid: system request message index
2473  *
2474  * Return nothing.
2475  */
2476 void
2477 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2478 {
2479 	Mpi2RequestDescriptorUnion_t descriptor;
2480 	u64 *request = (u64 *)&descriptor;
2481 
2482 	descriptor.HighPriority.RequestFlags =
2483 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2484 	descriptor.HighPriority.MSIxIndex =  0;
2485 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
2486 	descriptor.HighPriority.LMID = 0;
2487 	descriptor.HighPriority.Reserved1 = 0;
2488 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2489 	    &ioc->scsi_lookup_lock);
2490 }
2491 
2492 /**
2493  * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2494  * @ioc: per adapter object
2495  * @smid: system request message index
2496  *
2497  * Return nothing.
2498  */
2499 void
2500 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2501 {
2502 	Mpi2RequestDescriptorUnion_t descriptor;
2503 	u64 *request = (u64 *)&descriptor;
2504 
2505 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2506 	descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
2507 	descriptor.Default.SMID = cpu_to_le16(smid);
2508 	descriptor.Default.LMID = 0;
2509 	descriptor.Default.DescriptorTypeDependent = 0;
2510 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2511 	    &ioc->scsi_lookup_lock);
2512 }
2513 
2514 /**
2515  * _base_display_OEMs_branding - Display branding string
2516  * @ioc: per adapter object
2517  *
2518  * Return nothing.
2519  */
2520 static void
2521 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
2522 {
2523 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2524 		return;
2525 
2526 	switch (ioc->pdev->subsystem_vendor) {
2527 	case PCI_VENDOR_ID_INTEL:
2528 		switch (ioc->pdev->device) {
2529 		case MPI2_MFGPAGE_DEVID_SAS2008:
2530 			switch (ioc->pdev->subsystem_device) {
2531 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
2532 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2533 				    MPT2SAS_INTEL_RMS2LL080_BRANDING);
2534 				break;
2535 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
2536 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2537 				    MPT2SAS_INTEL_RMS2LL040_BRANDING);
2538 				break;
2539 			case MPT2SAS_INTEL_SSD910_SSDID:
2540 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2541 				    MPT2SAS_INTEL_SSD910_BRANDING);
2542 				break;
2543 			default:
2544 				pr_info(MPT3SAS_FMT
2545 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2546 				 ioc->name, ioc->pdev->subsystem_device);
2547 				break;
2548 			}
2549 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
2550 			switch (ioc->pdev->subsystem_device) {
2551 			case MPT2SAS_INTEL_RS25GB008_SSDID:
2552 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2553 				    MPT2SAS_INTEL_RS25GB008_BRANDING);
2554 				break;
2555 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
2556 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2557 				    MPT2SAS_INTEL_RMS25JB080_BRANDING);
2558 				break;
2559 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
2560 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2561 				    MPT2SAS_INTEL_RMS25JB040_BRANDING);
2562 				break;
2563 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
2564 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2565 				    MPT2SAS_INTEL_RMS25KB080_BRANDING);
2566 				break;
2567 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
2568 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2569 				    MPT2SAS_INTEL_RMS25KB040_BRANDING);
2570 				break;
2571 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
2572 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2573 				    MPT2SAS_INTEL_RMS25LB040_BRANDING);
2574 				break;
2575 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
2576 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2577 				    MPT2SAS_INTEL_RMS25LB080_BRANDING);
2578 				break;
2579 			default:
2580 				pr_info(MPT3SAS_FMT
2581 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2582 				 ioc->name, ioc->pdev->subsystem_device);
2583 				break;
2584 			}
2585 		case MPI25_MFGPAGE_DEVID_SAS3008:
2586 			switch (ioc->pdev->subsystem_device) {
2587 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
2588 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2589 					MPT3SAS_INTEL_RMS3JC080_BRANDING);
2590 				break;
2591 
2592 			case MPT3SAS_INTEL_RS3GC008_SSDID:
2593 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2594 					MPT3SAS_INTEL_RS3GC008_BRANDING);
2595 				break;
2596 			case MPT3SAS_INTEL_RS3FC044_SSDID:
2597 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2598 					MPT3SAS_INTEL_RS3FC044_BRANDING);
2599 				break;
2600 			case MPT3SAS_INTEL_RS3UC080_SSDID:
2601 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2602 					MPT3SAS_INTEL_RS3UC080_BRANDING);
2603 				break;
2604 			default:
2605 				pr_info(MPT3SAS_FMT
2606 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2607 				 ioc->name, ioc->pdev->subsystem_device);
2608 				break;
2609 			}
2610 			break;
2611 		default:
2612 			pr_info(MPT3SAS_FMT
2613 			 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2614 			 ioc->name, ioc->pdev->subsystem_device);
2615 			break;
2616 		}
2617 		break;
2618 	case PCI_VENDOR_ID_DELL:
2619 		switch (ioc->pdev->device) {
2620 		case MPI2_MFGPAGE_DEVID_SAS2008:
2621 			switch (ioc->pdev->subsystem_device) {
2622 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
2623 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2624 				 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
2625 				break;
2626 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
2627 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2628 				 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
2629 				break;
2630 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
2631 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2632 				 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
2633 				break;
2634 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
2635 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2636 				 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
2637 				break;
2638 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
2639 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2640 				 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
2641 				break;
2642 			case MPT2SAS_DELL_PERC_H200_SSDID:
2643 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2644 				 MPT2SAS_DELL_PERC_H200_BRANDING);
2645 				break;
2646 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
2647 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2648 				 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
2649 				break;
2650 			default:
2651 				pr_info(MPT3SAS_FMT
2652 				   "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
2653 				   ioc->name, ioc->pdev->subsystem_device);
2654 				break;
2655 			}
2656 			break;
2657 		case MPI25_MFGPAGE_DEVID_SAS3008:
2658 			switch (ioc->pdev->subsystem_device) {
2659 			case MPT3SAS_DELL_12G_HBA_SSDID:
2660 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2661 					MPT3SAS_DELL_12G_HBA_BRANDING);
2662 				break;
2663 			default:
2664 				pr_info(MPT3SAS_FMT
2665 				   "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
2666 				   ioc->name, ioc->pdev->subsystem_device);
2667 				break;
2668 			}
2669 			break;
2670 		default:
2671 			pr_info(MPT3SAS_FMT
2672 			   "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
2673 			   ioc->pdev->subsystem_device);
2674 			break;
2675 		}
2676 		break;
2677 	case PCI_VENDOR_ID_CISCO:
2678 		switch (ioc->pdev->device) {
2679 		case MPI25_MFGPAGE_DEVID_SAS3008:
2680 			switch (ioc->pdev->subsystem_device) {
2681 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2682 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2683 					MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2684 				break;
2685 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2686 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2687 					MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2688 				break;
2689 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2690 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2691 					MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2692 				break;
2693 			default:
2694 				pr_info(MPT3SAS_FMT
2695 				  "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2696 				  ioc->name, ioc->pdev->subsystem_device);
2697 				break;
2698 			}
2699 			break;
2700 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
2701 			switch (ioc->pdev->subsystem_device) {
2702 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2703 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2704 				MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2705 				break;
2706 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2707 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2708 				MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
2709 				);
2710 				break;
2711 			default:
2712 				pr_info(MPT3SAS_FMT
2713 				 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2714 				 ioc->name, ioc->pdev->subsystem_device);
2715 				break;
2716 			}
2717 			break;
2718 		default:
2719 			pr_info(MPT3SAS_FMT
2720 			   "Cisco SAS HBA: Subsystem ID: 0x%X\n",
2721 			   ioc->name, ioc->pdev->subsystem_device);
2722 			break;
2723 		}
2724 		break;
2725 	case MPT2SAS_HP_3PAR_SSVID:
2726 		switch (ioc->pdev->device) {
2727 		case MPI2_MFGPAGE_DEVID_SAS2004:
2728 			switch (ioc->pdev->subsystem_device) {
2729 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2730 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2731 				    MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2732 				break;
2733 			default:
2734 				pr_info(MPT3SAS_FMT
2735 				   "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2736 				   ioc->name, ioc->pdev->subsystem_device);
2737 				break;
2738 			}
2739 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
2740 			switch (ioc->pdev->subsystem_device) {
2741 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2742 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2743 				    MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2744 				break;
2745 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2746 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2747 				    MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2748 				break;
2749 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2750 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2751 				 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2752 				break;
2753 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2754 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2755 				    MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2756 				break;
2757 			default:
2758 				pr_info(MPT3SAS_FMT
2759 				   "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2760 				   ioc->name, ioc->pdev->subsystem_device);
2761 				break;
2762 			}
2763 		default:
2764 			pr_info(MPT3SAS_FMT
2765 			   "HP SAS HBA: Subsystem ID: 0x%X\n",
2766 			   ioc->name, ioc->pdev->subsystem_device);
2767 			break;
2768 		}
2769 	default:
2770 		break;
2771 	}
2772 }
2773 
2774 /**
2775  * _base_display_ioc_capabilities - Disply IOC's capabilities.
2776  * @ioc: per adapter object
2777  *
2778  * Return nothing.
2779  */
2780 static void
2781 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2782 {
2783 	int i = 0;
2784 	char desc[16];
2785 	u32 iounit_pg1_flags;
2786 	u32 bios_version;
2787 
2788 	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2789 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
2790 	pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2791 	   "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2792 	    ioc->name, desc,
2793 	   (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2794 	   (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2795 	   (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2796 	   ioc->facts.FWVersion.Word & 0x000000FF,
2797 	   ioc->pdev->revision,
2798 	   (bios_version & 0xFF000000) >> 24,
2799 	   (bios_version & 0x00FF0000) >> 16,
2800 	   (bios_version & 0x0000FF00) >> 8,
2801 	    bios_version & 0x000000FF);
2802 
2803 	_base_display_OEMs_branding(ioc);
2804 
2805 	pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2806 
2807 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2808 		pr_info("Initiator");
2809 		i++;
2810 	}
2811 
2812 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2813 		pr_info("%sTarget", i ? "," : "");
2814 		i++;
2815 	}
2816 
2817 	i = 0;
2818 	pr_info("), ");
2819 	pr_info("Capabilities=(");
2820 
2821 	if (!ioc->hide_ir_msg) {
2822 		if (ioc->facts.IOCCapabilities &
2823 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2824 			pr_info("Raid");
2825 			i++;
2826 		}
2827 	}
2828 
2829 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2830 		pr_info("%sTLR", i ? "," : "");
2831 		i++;
2832 	}
2833 
2834 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2835 		pr_info("%sMulticast", i ? "," : "");
2836 		i++;
2837 	}
2838 
2839 	if (ioc->facts.IOCCapabilities &
2840 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2841 		pr_info("%sBIDI Target", i ? "," : "");
2842 		i++;
2843 	}
2844 
2845 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2846 		pr_info("%sEEDP", i ? "," : "");
2847 		i++;
2848 	}
2849 
2850 	if (ioc->facts.IOCCapabilities &
2851 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2852 		pr_info("%sSnapshot Buffer", i ? "," : "");
2853 		i++;
2854 	}
2855 
2856 	if (ioc->facts.IOCCapabilities &
2857 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2858 		pr_info("%sDiag Trace Buffer", i ? "," : "");
2859 		i++;
2860 	}
2861 
2862 	if (ioc->facts.IOCCapabilities &
2863 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2864 		pr_info("%sDiag Extended Buffer", i ? "," : "");
2865 		i++;
2866 	}
2867 
2868 	if (ioc->facts.IOCCapabilities &
2869 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2870 		pr_info("%sTask Set Full", i ? "," : "");
2871 		i++;
2872 	}
2873 
2874 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2875 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2876 		pr_info("%sNCQ", i ? "," : "");
2877 		i++;
2878 	}
2879 
2880 	pr_info(")\n");
2881 }
2882 
2883 /**
2884  * mpt3sas_base_update_missing_delay - change the missing delay timers
2885  * @ioc: per adapter object
2886  * @device_missing_delay: amount of time till device is reported missing
2887  * @io_missing_delay: interval IO is returned when there is a missing device
2888  *
2889  * Return nothing.
2890  *
2891  * Passed on the command line, this function will modify the device missing
2892  * delay, as well as the io missing delay. This should be called at driver
2893  * load time.
2894  */
2895 void
2896 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2897 	u16 device_missing_delay, u8 io_missing_delay)
2898 {
2899 	u16 dmd, dmd_new, dmd_orignal;
2900 	u8 io_missing_delay_original;
2901 	u16 sz;
2902 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2903 	Mpi2ConfigReply_t mpi_reply;
2904 	u8 num_phys = 0;
2905 	u16 ioc_status;
2906 
2907 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2908 	if (!num_phys)
2909 		return;
2910 
2911 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2912 	    sizeof(Mpi2SasIOUnit1PhyData_t));
2913 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2914 	if (!sas_iounit_pg1) {
2915 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2916 		    ioc->name, __FILE__, __LINE__, __func__);
2917 		goto out;
2918 	}
2919 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2920 	    sas_iounit_pg1, sz))) {
2921 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2922 		    ioc->name, __FILE__, __LINE__, __func__);
2923 		goto out;
2924 	}
2925 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2926 	    MPI2_IOCSTATUS_MASK;
2927 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2928 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2929 		    ioc->name, __FILE__, __LINE__, __func__);
2930 		goto out;
2931 	}
2932 
2933 	/* device missing delay */
2934 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2935 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2936 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2937 	else
2938 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2939 	dmd_orignal = dmd;
2940 	if (device_missing_delay > 0x7F) {
2941 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2942 		    device_missing_delay;
2943 		dmd = dmd / 16;
2944 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2945 	} else
2946 		dmd = device_missing_delay;
2947 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2948 
2949 	/* io missing delay */
2950 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2951 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2952 
2953 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2954 	    sz)) {
2955 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2956 			dmd_new = (dmd &
2957 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2958 		else
2959 			dmd_new =
2960 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2961 		pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
2962 			ioc->name, dmd_orignal, dmd_new);
2963 		pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
2964 			ioc->name, io_missing_delay_original,
2965 		    io_missing_delay);
2966 		ioc->device_missing_delay = dmd_new;
2967 		ioc->io_missing_delay = io_missing_delay;
2968 	}
2969 
2970 out:
2971 	kfree(sas_iounit_pg1);
2972 }
2973 /**
2974  * _base_static_config_pages - static start of day config pages
2975  * @ioc: per adapter object
2976  *
2977  * Return nothing.
2978  */
2979 static void
2980 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
2981 {
2982 	Mpi2ConfigReply_t mpi_reply;
2983 	u32 iounit_pg1_flags;
2984 
2985 	mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
2986 	if (ioc->ir_firmware)
2987 		mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
2988 		    &ioc->manu_pg10);
2989 
2990 	/*
2991 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
2992 	 * flag unset in NVDATA.
2993 	 */
2994 	mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
2995 	if (ioc->manu_pg11.EEDPTagMode == 0) {
2996 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
2997 		    ioc->name);
2998 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
2999 		ioc->manu_pg11.EEDPTagMode |= 0x1;
3000 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3001 		    &ioc->manu_pg11);
3002 	}
3003 
3004 	mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3005 	mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3006 	mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3007 	mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3008 	mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3009 	mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3010 	_base_display_ioc_capabilities(ioc);
3011 
3012 	/*
3013 	 * Enable task_set_full handling in iounit_pg1 when the
3014 	 * facts capabilities indicate that its supported.
3015 	 */
3016 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3017 	if ((ioc->facts.IOCCapabilities &
3018 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3019 		iounit_pg1_flags &=
3020 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3021 	else
3022 		iounit_pg1_flags |=
3023 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3024 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3025 	mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3026 
3027 	if (ioc->iounit_pg8.NumSensors)
3028 		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3029 }
3030 
3031 /**
3032  * _base_release_memory_pools - release memory
3033  * @ioc: per adapter object
3034  *
3035  * Free memory allocated from _base_allocate_memory_pools.
3036  *
3037  * Return nothing.
3038  */
3039 static void
3040 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3041 {
3042 	int i = 0;
3043 	struct reply_post_struct *rps;
3044 
3045 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3046 	    __func__));
3047 
3048 	if (ioc->request) {
3049 		pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3050 		    ioc->request,  ioc->request_dma);
3051 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3052 			"request_pool(0x%p): free\n",
3053 			ioc->name, ioc->request));
3054 		ioc->request = NULL;
3055 	}
3056 
3057 	if (ioc->sense) {
3058 		pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3059 		if (ioc->sense_dma_pool)
3060 			pci_pool_destroy(ioc->sense_dma_pool);
3061 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3062 			"sense_pool(0x%p): free\n",
3063 			ioc->name, ioc->sense));
3064 		ioc->sense = NULL;
3065 	}
3066 
3067 	if (ioc->reply) {
3068 		pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3069 		if (ioc->reply_dma_pool)
3070 			pci_pool_destroy(ioc->reply_dma_pool);
3071 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3072 			"reply_pool(0x%p): free\n",
3073 			ioc->name, ioc->reply));
3074 		ioc->reply = NULL;
3075 	}
3076 
3077 	if (ioc->reply_free) {
3078 		pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3079 		    ioc->reply_free_dma);
3080 		if (ioc->reply_free_dma_pool)
3081 			pci_pool_destroy(ioc->reply_free_dma_pool);
3082 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3083 			"reply_free_pool(0x%p): free\n",
3084 			ioc->name, ioc->reply_free));
3085 		ioc->reply_free = NULL;
3086 	}
3087 
3088 	if (ioc->reply_post) {
3089 		do {
3090 			rps = &ioc->reply_post[i];
3091 			if (rps->reply_post_free) {
3092 				pci_pool_free(
3093 				    ioc->reply_post_free_dma_pool,
3094 				    rps->reply_post_free,
3095 				    rps->reply_post_free_dma);
3096 				dexitprintk(ioc, pr_info(MPT3SAS_FMT
3097 				    "reply_post_free_pool(0x%p): free\n",
3098 				    ioc->name, rps->reply_post_free));
3099 				rps->reply_post_free = NULL;
3100 			}
3101 		} while (ioc->rdpq_array_enable &&
3102 			   (++i < ioc->reply_queue_count));
3103 
3104 		if (ioc->reply_post_free_dma_pool)
3105 			pci_pool_destroy(ioc->reply_post_free_dma_pool);
3106 		kfree(ioc->reply_post);
3107 	}
3108 
3109 	if (ioc->config_page) {
3110 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3111 		    "config_page(0x%p): free\n", ioc->name,
3112 		    ioc->config_page));
3113 		pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3114 		    ioc->config_page, ioc->config_page_dma);
3115 	}
3116 
3117 	if (ioc->scsi_lookup) {
3118 		free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3119 		ioc->scsi_lookup = NULL;
3120 	}
3121 	kfree(ioc->hpr_lookup);
3122 	kfree(ioc->internal_lookup);
3123 	if (ioc->chain_lookup) {
3124 		for (i = 0; i < ioc->chain_depth; i++) {
3125 			if (ioc->chain_lookup[i].chain_buffer)
3126 				pci_pool_free(ioc->chain_dma_pool,
3127 				    ioc->chain_lookup[i].chain_buffer,
3128 				    ioc->chain_lookup[i].chain_buffer_dma);
3129 		}
3130 		if (ioc->chain_dma_pool)
3131 			pci_pool_destroy(ioc->chain_dma_pool);
3132 		free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3133 		ioc->chain_lookup = NULL;
3134 	}
3135 }
3136 
3137 /**
3138  * _base_allocate_memory_pools - allocate start of day memory pools
3139  * @ioc: per adapter object
3140  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3141  *
3142  * Returns 0 success, anything else error
3143  */
3144 static int
3145 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc,  int sleep_flag)
3146 {
3147 	struct mpt3sas_facts *facts;
3148 	u16 max_sge_elements;
3149 	u16 chains_needed_per_io;
3150 	u32 sz, total_sz, reply_post_free_sz;
3151 	u32 retry_sz;
3152 	u16 max_request_credit;
3153 	unsigned short sg_tablesize;
3154 	u16 sge_size;
3155 	int i;
3156 
3157 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3158 	    __func__));
3159 
3160 
3161 	retry_sz = 0;
3162 	facts = &ioc->facts;
3163 
3164 	/* command line tunables for max sgl entries */
3165 	if (max_sgl_entries != -1)
3166 		sg_tablesize = max_sgl_entries;
3167 	else {
3168 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3169 			sg_tablesize = MPT2SAS_SG_DEPTH;
3170 		else
3171 			sg_tablesize = MPT3SAS_SG_DEPTH;
3172 	}
3173 
3174 	if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3175 		sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3176 	else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3177 		sg_tablesize = min_t(unsigned short, sg_tablesize,
3178 				      SCSI_MAX_SG_CHAIN_SEGMENTS);
3179 		pr_warn(MPT3SAS_FMT
3180 		 "sg_tablesize(%u) is bigger than kernel"
3181 		 " defined SCSI_MAX_SG_SEGMENTS(%u)\n", ioc->name,
3182 		 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3183 	}
3184 	ioc->shost->sg_tablesize = sg_tablesize;
3185 
3186 	ioc->hi_priority_depth = facts->HighPriorityCredit;
3187 	ioc->internal_depth = ioc->hi_priority_depth + (5);
3188 	/* command line tunables  for max controller queue depth */
3189 	if (max_queue_depth != -1 && max_queue_depth != 0) {
3190 		max_request_credit = min_t(u16, max_queue_depth +
3191 		    ioc->hi_priority_depth + ioc->internal_depth,
3192 		    facts->RequestCredit);
3193 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3194 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
3195 	} else
3196 		max_request_credit = min_t(u16, facts->RequestCredit,
3197 		    MAX_HBA_QUEUE_DEPTH);
3198 
3199 	ioc->hba_queue_depth = max_request_credit;
3200 
3201 	/* request frame size */
3202 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
3203 
3204 	/* reply frame size */
3205 	ioc->reply_sz = facts->ReplyFrameSize * 4;
3206 
3207 	/* calculate the max scatter element size */
3208 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3209 
3210  retry_allocation:
3211 	total_sz = 0;
3212 	/* calculate number of sg elements left over in the 1st frame */
3213 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3214 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3215 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3216 
3217 	/* now do the same for a chain buffer */
3218 	max_sge_elements = ioc->request_sz - sge_size;
3219 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3220 
3221 	/*
3222 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3223 	 */
3224 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
3225 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3226 	    + 1;
3227 	if (chains_needed_per_io > facts->MaxChainDepth) {
3228 		chains_needed_per_io = facts->MaxChainDepth;
3229 		ioc->shost->sg_tablesize = min_t(u16,
3230 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3231 		* chains_needed_per_io), ioc->shost->sg_tablesize);
3232 	}
3233 	ioc->chains_needed_per_io = chains_needed_per_io;
3234 
3235 	/* reply free queue sizing - taking into account for 64 FW events */
3236 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3237 
3238 	/* calculate reply descriptor post queue depth */
3239 	ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3240 				ioc->reply_free_queue_depth +  1 ;
3241 	/* align the reply post queue on the next 16 count boundary */
3242 	if (ioc->reply_post_queue_depth % 16)
3243 		ioc->reply_post_queue_depth += 16 -
3244 		(ioc->reply_post_queue_depth % 16);
3245 
3246 
3247 	if (ioc->reply_post_queue_depth >
3248 	    facts->MaxReplyDescriptorPostQueueDepth) {
3249 		ioc->reply_post_queue_depth =
3250 				facts->MaxReplyDescriptorPostQueueDepth -
3251 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
3252 		ioc->hba_queue_depth =
3253 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
3254 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3255 	}
3256 
3257 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3258 	    "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3259 	    "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3260 	    ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3261 	    ioc->chains_needed_per_io));
3262 
3263 	/* reply post queue, 16 byte align */
3264 	reply_post_free_sz = ioc->reply_post_queue_depth *
3265 	    sizeof(Mpi2DefaultReplyDescriptor_t);
3266 
3267 	sz = reply_post_free_sz;
3268 	if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3269 		sz *= ioc->reply_queue_count;
3270 
3271 	ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3272 	    (ioc->reply_queue_count):1,
3273 	    sizeof(struct reply_post_struct), GFP_KERNEL);
3274 
3275 	if (!ioc->reply_post) {
3276 		pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3277 			ioc->name);
3278 		goto out;
3279 	}
3280 	ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
3281 	    ioc->pdev, sz, 16, 0);
3282 	if (!ioc->reply_post_free_dma_pool) {
3283 		pr_err(MPT3SAS_FMT
3284 		 "reply_post_free pool: pci_pool_create failed\n",
3285 		 ioc->name);
3286 		goto out;
3287 	}
3288 	i = 0;
3289 	do {
3290 		ioc->reply_post[i].reply_post_free =
3291 		    pci_pool_alloc(ioc->reply_post_free_dma_pool,
3292 		    GFP_KERNEL,
3293 		    &ioc->reply_post[i].reply_post_free_dma);
3294 		if (!ioc->reply_post[i].reply_post_free) {
3295 			pr_err(MPT3SAS_FMT
3296 			"reply_post_free pool: pci_pool_alloc failed\n",
3297 			ioc->name);
3298 			goto out;
3299 		}
3300 		memset(ioc->reply_post[i].reply_post_free, 0, sz);
3301 		dinitprintk(ioc, pr_info(MPT3SAS_FMT
3302 		    "reply post free pool (0x%p): depth(%d),"
3303 		    "element_size(%d), pool_size(%d kB)\n", ioc->name,
3304 		    ioc->reply_post[i].reply_post_free,
3305 		    ioc->reply_post_queue_depth, 8, sz/1024));
3306 		dinitprintk(ioc, pr_info(MPT3SAS_FMT
3307 		    "reply_post_free_dma = (0x%llx)\n", ioc->name,
3308 		    (unsigned long long)
3309 		    ioc->reply_post[i].reply_post_free_dma));
3310 		total_sz += sz;
3311 	} while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3312 
3313 	if (ioc->dma_mask == 64) {
3314 		if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3315 			pr_warn(MPT3SAS_FMT
3316 			    "no suitable consistent DMA mask for %s\n",
3317 			    ioc->name, pci_name(ioc->pdev));
3318 			goto out;
3319 		}
3320 	}
3321 
3322 	ioc->scsiio_depth = ioc->hba_queue_depth -
3323 	    ioc->hi_priority_depth - ioc->internal_depth;
3324 
3325 	/* set the scsi host can_queue depth
3326 	 * with some internal commands that could be outstanding
3327 	 */
3328 	ioc->shost->can_queue = ioc->scsiio_depth;
3329 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3330 		"scsi host: can_queue depth (%d)\n",
3331 		ioc->name, ioc->shost->can_queue));
3332 
3333 
3334 	/* contiguous pool for request and chains, 16 byte align, one extra "
3335 	 * "frame for smid=0
3336 	 */
3337 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3338 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3339 
3340 	/* hi-priority queue */
3341 	sz += (ioc->hi_priority_depth * ioc->request_sz);
3342 
3343 	/* internal queue */
3344 	sz += (ioc->internal_depth * ioc->request_sz);
3345 
3346 	ioc->request_dma_sz = sz;
3347 	ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3348 	if (!ioc->request) {
3349 		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3350 		    "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3351 		    "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3352 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3353 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3354 			goto out;
3355 		retry_sz += 64;
3356 		ioc->hba_queue_depth = max_request_credit - retry_sz;
3357 		goto retry_allocation;
3358 	}
3359 
3360 	if (retry_sz)
3361 		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3362 		    "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3363 		    "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3364 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3365 
3366 	/* hi-priority queue */
3367 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3368 	    ioc->request_sz);
3369 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3370 	    ioc->request_sz);
3371 
3372 	/* internal queue */
3373 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3374 	    ioc->request_sz);
3375 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3376 	    ioc->request_sz);
3377 
3378 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3379 		"request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3380 		ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3381 	    (ioc->hba_queue_depth * ioc->request_sz)/1024));
3382 
3383 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3384 	    ioc->name, (unsigned long long) ioc->request_dma));
3385 	total_sz += sz;
3386 
3387 	sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3388 	ioc->scsi_lookup_pages = get_order(sz);
3389 	ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3390 	    GFP_KERNEL, ioc->scsi_lookup_pages);
3391 	if (!ioc->scsi_lookup) {
3392 		pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3393 			ioc->name, (int)sz);
3394 		goto out;
3395 	}
3396 
3397 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3398 		ioc->name, ioc->request, ioc->scsiio_depth));
3399 
3400 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3401 	sz = ioc->chain_depth * sizeof(struct chain_tracker);
3402 	ioc->chain_pages = get_order(sz);
3403 	ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3404 	    GFP_KERNEL, ioc->chain_pages);
3405 	if (!ioc->chain_lookup) {
3406 		pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3407 			ioc->name);
3408 		goto out;
3409 	}
3410 	ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
3411 	    ioc->request_sz, 16, 0);
3412 	if (!ioc->chain_dma_pool) {
3413 		pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
3414 			ioc->name);
3415 		goto out;
3416 	}
3417 	for (i = 0; i < ioc->chain_depth; i++) {
3418 		ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
3419 		    ioc->chain_dma_pool , GFP_KERNEL,
3420 		    &ioc->chain_lookup[i].chain_buffer_dma);
3421 		if (!ioc->chain_lookup[i].chain_buffer) {
3422 			ioc->chain_depth = i;
3423 			goto chain_done;
3424 		}
3425 		total_sz += ioc->request_sz;
3426 	}
3427  chain_done:
3428 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3429 		"chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3430 		ioc->name, ioc->chain_depth, ioc->request_sz,
3431 		((ioc->chain_depth *  ioc->request_sz))/1024));
3432 
3433 	/* initialize hi-priority queue smid's */
3434 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3435 	    sizeof(struct request_tracker), GFP_KERNEL);
3436 	if (!ioc->hpr_lookup) {
3437 		pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3438 		    ioc->name);
3439 		goto out;
3440 	}
3441 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3442 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3443 		"hi_priority(0x%p): depth(%d), start smid(%d)\n",
3444 		ioc->name, ioc->hi_priority,
3445 	    ioc->hi_priority_depth, ioc->hi_priority_smid));
3446 
3447 	/* initialize internal queue smid's */
3448 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
3449 	    sizeof(struct request_tracker), GFP_KERNEL);
3450 	if (!ioc->internal_lookup) {
3451 		pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3452 		    ioc->name);
3453 		goto out;
3454 	}
3455 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3456 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3457 		"internal(0x%p): depth(%d), start smid(%d)\n",
3458 		ioc->name, ioc->internal,
3459 	    ioc->internal_depth, ioc->internal_smid));
3460 
3461 	/* sense buffers, 4 byte align */
3462 	sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3463 	ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
3464 	    0);
3465 	if (!ioc->sense_dma_pool) {
3466 		pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
3467 		    ioc->name);
3468 		goto out;
3469 	}
3470 	ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
3471 	    &ioc->sense_dma);
3472 	if (!ioc->sense) {
3473 		pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
3474 		    ioc->name);
3475 		goto out;
3476 	}
3477 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3478 	    "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3479 	    "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3480 	    SCSI_SENSE_BUFFERSIZE, sz/1024));
3481 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3482 	    ioc->name, (unsigned long long)ioc->sense_dma));
3483 	total_sz += sz;
3484 
3485 	/* reply pool, 4 byte align */
3486 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3487 	ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3488 	    0);
3489 	if (!ioc->reply_dma_pool) {
3490 		pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3491 		    ioc->name);
3492 		goto out;
3493 	}
3494 	ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3495 	    &ioc->reply_dma);
3496 	if (!ioc->reply) {
3497 		pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3498 		    ioc->name);
3499 		goto out;
3500 	}
3501 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3502 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3503 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3504 		"reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3505 		ioc->name, ioc->reply,
3506 	    ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3507 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3508 	    ioc->name, (unsigned long long)ioc->reply_dma));
3509 	total_sz += sz;
3510 
3511 	/* reply free queue, 16 byte align */
3512 	sz = ioc->reply_free_queue_depth * 4;
3513 	ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3514 	    ioc->pdev, sz, 16, 0);
3515 	if (!ioc->reply_free_dma_pool) {
3516 		pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3517 			ioc->name);
3518 		goto out;
3519 	}
3520 	ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3521 	    &ioc->reply_free_dma);
3522 	if (!ioc->reply_free) {
3523 		pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3524 			ioc->name);
3525 		goto out;
3526 	}
3527 	memset(ioc->reply_free, 0, sz);
3528 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3529 	    "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3530 	    ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3531 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3532 		"reply_free_dma (0x%llx)\n",
3533 		ioc->name, (unsigned long long)ioc->reply_free_dma));
3534 	total_sz += sz;
3535 
3536 	ioc->config_page_sz = 512;
3537 	ioc->config_page = pci_alloc_consistent(ioc->pdev,
3538 	    ioc->config_page_sz, &ioc->config_page_dma);
3539 	if (!ioc->config_page) {
3540 		pr_err(MPT3SAS_FMT
3541 			"config page: pci_pool_alloc failed\n",
3542 			ioc->name);
3543 		goto out;
3544 	}
3545 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3546 		"config page(0x%p): size(%d)\n",
3547 		ioc->name, ioc->config_page, ioc->config_page_sz));
3548 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3549 		ioc->name, (unsigned long long)ioc->config_page_dma));
3550 	total_sz += ioc->config_page_sz;
3551 
3552 	pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3553 	    ioc->name, total_sz/1024);
3554 	pr_info(MPT3SAS_FMT
3555 		"Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3556 	    ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3557 	pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3558 	    ioc->name, ioc->shost->sg_tablesize);
3559 	return 0;
3560 
3561  out:
3562 	return -ENOMEM;
3563 }
3564 
3565 /**
3566  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3567  * @ioc: Pointer to MPT_ADAPTER structure
3568  * @cooked: Request raw or cooked IOC state
3569  *
3570  * Returns all IOC Doorbell register bits if cooked==0, else just the
3571  * Doorbell bits in MPI_IOC_STATE_MASK.
3572  */
3573 u32
3574 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3575 {
3576 	u32 s, sc;
3577 
3578 	s = readl(&ioc->chip->Doorbell);
3579 	sc = s & MPI2_IOC_STATE_MASK;
3580 	return cooked ? sc : s;
3581 }
3582 
3583 /**
3584  * _base_wait_on_iocstate - waiting on a particular ioc state
3585  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3586  * @timeout: timeout in second
3587  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3588  *
3589  * Returns 0 for success, non-zero for failure.
3590  */
3591 static int
3592 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
3593 	int sleep_flag)
3594 {
3595 	u32 count, cntdn;
3596 	u32 current_state;
3597 
3598 	count = 0;
3599 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3600 	do {
3601 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
3602 		if (current_state == ioc_state)
3603 			return 0;
3604 		if (count && current_state == MPI2_IOC_STATE_FAULT)
3605 			break;
3606 		if (sleep_flag == CAN_SLEEP)
3607 			usleep_range(1000, 1500);
3608 		else
3609 			udelay(500);
3610 		count++;
3611 	} while (--cntdn);
3612 
3613 	return current_state;
3614 }
3615 
3616 /**
3617  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3618  * a write to the doorbell)
3619  * @ioc: per adapter object
3620  * @timeout: timeout in second
3621  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3622  *
3623  * Returns 0 for success, non-zero for failure.
3624  *
3625  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3626  */
3627 static int
3628 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
3629 
3630 static int
3631 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3632 	int sleep_flag)
3633 {
3634 	u32 cntdn, count;
3635 	u32 int_status;
3636 
3637 	count = 0;
3638 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3639 	do {
3640 		int_status = readl(&ioc->chip->HostInterruptStatus);
3641 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3642 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3643 				"%s: successful count(%d), timeout(%d)\n",
3644 				ioc->name, __func__, count, timeout));
3645 			return 0;
3646 		}
3647 		if (sleep_flag == CAN_SLEEP)
3648 			usleep_range(1000, 1500);
3649 		else
3650 			udelay(500);
3651 		count++;
3652 	} while (--cntdn);
3653 
3654 	pr_err(MPT3SAS_FMT
3655 		"%s: failed due to timeout count(%d), int_status(%x)!\n",
3656 		ioc->name, __func__, count, int_status);
3657 	return -EFAULT;
3658 }
3659 
3660 /**
3661  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3662  * @ioc: per adapter object
3663  * @timeout: timeout in second
3664  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3665  *
3666  * Returns 0 for success, non-zero for failure.
3667  *
3668  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3669  * doorbell.
3670  */
3671 static int
3672 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3673 	int sleep_flag)
3674 {
3675 	u32 cntdn, count;
3676 	u32 int_status;
3677 	u32 doorbell;
3678 
3679 	count = 0;
3680 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3681 	do {
3682 		int_status = readl(&ioc->chip->HostInterruptStatus);
3683 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3684 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3685 				"%s: successful count(%d), timeout(%d)\n",
3686 				ioc->name, __func__, count, timeout));
3687 			return 0;
3688 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3689 			doorbell = readl(&ioc->chip->Doorbell);
3690 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
3691 			    MPI2_IOC_STATE_FAULT) {
3692 				mpt3sas_base_fault_info(ioc , doorbell);
3693 				return -EFAULT;
3694 			}
3695 		} else if (int_status == 0xFFFFFFFF)
3696 			goto out;
3697 
3698 		if (sleep_flag == CAN_SLEEP)
3699 			usleep_range(1000, 1500);
3700 		else
3701 			udelay(500);
3702 		count++;
3703 	} while (--cntdn);
3704 
3705  out:
3706 	pr_err(MPT3SAS_FMT
3707 	 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3708 	 ioc->name, __func__, count, int_status);
3709 	return -EFAULT;
3710 }
3711 
3712 /**
3713  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3714  * @ioc: per adapter object
3715  * @timeout: timeout in second
3716  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3717  *
3718  * Returns 0 for success, non-zero for failure.
3719  *
3720  */
3721 static int
3722 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3723 	int sleep_flag)
3724 {
3725 	u32 cntdn, count;
3726 	u32 doorbell_reg;
3727 
3728 	count = 0;
3729 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3730 	do {
3731 		doorbell_reg = readl(&ioc->chip->Doorbell);
3732 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3733 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3734 				"%s: successful count(%d), timeout(%d)\n",
3735 				ioc->name, __func__, count, timeout));
3736 			return 0;
3737 		}
3738 		if (sleep_flag == CAN_SLEEP)
3739 			usleep_range(1000, 1500);
3740 		else
3741 			udelay(500);
3742 		count++;
3743 	} while (--cntdn);
3744 
3745 	pr_err(MPT3SAS_FMT
3746 		"%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3747 		ioc->name, __func__, count, doorbell_reg);
3748 	return -EFAULT;
3749 }
3750 
3751 /**
3752  * _base_send_ioc_reset - send doorbell reset
3753  * @ioc: per adapter object
3754  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3755  * @timeout: timeout in second
3756  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3757  *
3758  * Returns 0 for success, non-zero for failure.
3759  */
3760 static int
3761 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3762 	int sleep_flag)
3763 {
3764 	u32 ioc_state;
3765 	int r = 0;
3766 
3767 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3768 		pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3769 		    ioc->name, __func__);
3770 		return -EFAULT;
3771 	}
3772 
3773 	if (!(ioc->facts.IOCCapabilities &
3774 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3775 		return -EFAULT;
3776 
3777 	pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3778 
3779 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3780 	    &ioc->chip->Doorbell);
3781 	if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3782 		r = -EFAULT;
3783 		goto out;
3784 	}
3785 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3786 	    timeout, sleep_flag);
3787 	if (ioc_state) {
3788 		pr_err(MPT3SAS_FMT
3789 			"%s: failed going to ready state (ioc_state=0x%x)\n",
3790 			ioc->name, __func__, ioc_state);
3791 		r = -EFAULT;
3792 		goto out;
3793 	}
3794  out:
3795 	pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3796 	    ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3797 	return r;
3798 }
3799 
3800 /**
3801  * _base_handshake_req_reply_wait - send request thru doorbell interface
3802  * @ioc: per adapter object
3803  * @request_bytes: request length
3804  * @request: pointer having request payload
3805  * @reply_bytes: reply length
3806  * @reply: pointer to reply payload
3807  * @timeout: timeout in second
3808  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3809  *
3810  * Returns 0 for success, non-zero for failure.
3811  */
3812 static int
3813 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3814 	u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3815 {
3816 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3817 	int i;
3818 	u8 failed;
3819 	u16 dummy;
3820 	__le32 *mfp;
3821 
3822 	/* make sure doorbell is not in use */
3823 	if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3824 		pr_err(MPT3SAS_FMT
3825 			"doorbell is in use (line=%d)\n",
3826 			ioc->name, __LINE__);
3827 		return -EFAULT;
3828 	}
3829 
3830 	/* clear pending doorbell interrupts from previous state changes */
3831 	if (readl(&ioc->chip->HostInterruptStatus) &
3832 	    MPI2_HIS_IOC2SYS_DB_STATUS)
3833 		writel(0, &ioc->chip->HostInterruptStatus);
3834 
3835 	/* send message to ioc */
3836 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3837 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3838 	    &ioc->chip->Doorbell);
3839 
3840 	if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3841 		pr_err(MPT3SAS_FMT
3842 			"doorbell handshake int failed (line=%d)\n",
3843 			ioc->name, __LINE__);
3844 		return -EFAULT;
3845 	}
3846 	writel(0, &ioc->chip->HostInterruptStatus);
3847 
3848 	if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3849 		pr_err(MPT3SAS_FMT
3850 			"doorbell handshake ack failed (line=%d)\n",
3851 			ioc->name, __LINE__);
3852 		return -EFAULT;
3853 	}
3854 
3855 	/* send message 32-bits at a time */
3856 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3857 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3858 		if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3859 			failed = 1;
3860 	}
3861 
3862 	if (failed) {
3863 		pr_err(MPT3SAS_FMT
3864 			"doorbell handshake sending request failed (line=%d)\n",
3865 			ioc->name, __LINE__);
3866 		return -EFAULT;
3867 	}
3868 
3869 	/* now wait for the reply */
3870 	if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3871 		pr_err(MPT3SAS_FMT
3872 			"doorbell handshake int failed (line=%d)\n",
3873 			ioc->name, __LINE__);
3874 		return -EFAULT;
3875 	}
3876 
3877 	/* read the first two 16-bits, it gives the total length of the reply */
3878 	reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3879 	    & MPI2_DOORBELL_DATA_MASK);
3880 	writel(0, &ioc->chip->HostInterruptStatus);
3881 	if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3882 		pr_err(MPT3SAS_FMT
3883 			"doorbell handshake int failed (line=%d)\n",
3884 			ioc->name, __LINE__);
3885 		return -EFAULT;
3886 	}
3887 	reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3888 	    & MPI2_DOORBELL_DATA_MASK);
3889 	writel(0, &ioc->chip->HostInterruptStatus);
3890 
3891 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
3892 		if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3893 			pr_err(MPT3SAS_FMT
3894 				"doorbell handshake int failed (line=%d)\n",
3895 				ioc->name, __LINE__);
3896 			return -EFAULT;
3897 		}
3898 		if (i >=  reply_bytes/2) /* overflow case */
3899 			dummy = readl(&ioc->chip->Doorbell);
3900 		else
3901 			reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3902 			    & MPI2_DOORBELL_DATA_MASK);
3903 		writel(0, &ioc->chip->HostInterruptStatus);
3904 	}
3905 
3906 	_base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3907 	if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3908 		dhsprintk(ioc, pr_info(MPT3SAS_FMT
3909 			"doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3910 	}
3911 	writel(0, &ioc->chip->HostInterruptStatus);
3912 
3913 	if (ioc->logging_level & MPT_DEBUG_INIT) {
3914 		mfp = (__le32 *)reply;
3915 		pr_info("\toffset:data\n");
3916 		for (i = 0; i < reply_bytes/4; i++)
3917 			pr_info("\t[0x%02x]:%08x\n", i*4,
3918 			    le32_to_cpu(mfp[i]));
3919 	}
3920 	return 0;
3921 }
3922 
3923 /**
3924  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3925  * @ioc: per adapter object
3926  * @mpi_reply: the reply payload from FW
3927  * @mpi_request: the request payload sent to FW
3928  *
3929  * The SAS IO Unit Control Request message allows the host to perform low-level
3930  * operations, such as resets on the PHYs of the IO Unit, also allows the host
3931  * to obtain the IOC assigned device handles for a device if it has other
3932  * identifying information about the device, in addition allows the host to
3933  * remove IOC resources associated with the device.
3934  *
3935  * Returns 0 for success, non-zero for failure.
3936  */
3937 int
3938 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
3939 	Mpi2SasIoUnitControlReply_t *mpi_reply,
3940 	Mpi2SasIoUnitControlRequest_t *mpi_request)
3941 {
3942 	u16 smid;
3943 	u32 ioc_state;
3944 	unsigned long timeleft;
3945 	bool issue_reset = false;
3946 	int rc;
3947 	void *request;
3948 	u16 wait_state_count;
3949 
3950 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3951 	    __func__));
3952 
3953 	mutex_lock(&ioc->base_cmds.mutex);
3954 
3955 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3956 		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3957 		    ioc->name, __func__);
3958 		rc = -EAGAIN;
3959 		goto out;
3960 	}
3961 
3962 	wait_state_count = 0;
3963 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3964 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3965 		if (wait_state_count++ == 10) {
3966 			pr_err(MPT3SAS_FMT
3967 			    "%s: failed due to ioc not operational\n",
3968 			    ioc->name, __func__);
3969 			rc = -EFAULT;
3970 			goto out;
3971 		}
3972 		ssleep(1);
3973 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3974 		pr_info(MPT3SAS_FMT
3975 			"%s: waiting for operational state(count=%d)\n",
3976 			ioc->name, __func__, wait_state_count);
3977 	}
3978 
3979 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3980 	if (!smid) {
3981 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3982 		    ioc->name, __func__);
3983 		rc = -EAGAIN;
3984 		goto out;
3985 	}
3986 
3987 	rc = 0;
3988 	ioc->base_cmds.status = MPT3_CMD_PENDING;
3989 	request = mpt3sas_base_get_msg_frame(ioc, smid);
3990 	ioc->base_cmds.smid = smid;
3991 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
3992 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3993 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
3994 		ioc->ioc_link_reset_in_progress = 1;
3995 	init_completion(&ioc->base_cmds.done);
3996 	mpt3sas_base_put_smid_default(ioc, smid);
3997 	timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3998 	    msecs_to_jiffies(10000));
3999 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4000 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4001 	    ioc->ioc_link_reset_in_progress)
4002 		ioc->ioc_link_reset_in_progress = 0;
4003 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4004 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4005 		    ioc->name, __func__);
4006 		_debug_dump_mf(mpi_request,
4007 		    sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4008 		if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4009 			issue_reset = true;
4010 		goto issue_host_reset;
4011 	}
4012 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4013 		memcpy(mpi_reply, ioc->base_cmds.reply,
4014 		    sizeof(Mpi2SasIoUnitControlReply_t));
4015 	else
4016 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4017 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4018 	goto out;
4019 
4020  issue_host_reset:
4021 	if (issue_reset)
4022 		mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4023 		    FORCE_BIG_HAMMER);
4024 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4025 	rc = -EFAULT;
4026  out:
4027 	mutex_unlock(&ioc->base_cmds.mutex);
4028 	return rc;
4029 }
4030 
4031 /**
4032  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4033  * @ioc: per adapter object
4034  * @mpi_reply: the reply payload from FW
4035  * @mpi_request: the request payload sent to FW
4036  *
4037  * The SCSI Enclosure Processor request message causes the IOC to
4038  * communicate with SES devices to control LED status signals.
4039  *
4040  * Returns 0 for success, non-zero for failure.
4041  */
4042 int
4043 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4044 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4045 {
4046 	u16 smid;
4047 	u32 ioc_state;
4048 	unsigned long timeleft;
4049 	bool issue_reset = false;
4050 	int rc;
4051 	void *request;
4052 	u16 wait_state_count;
4053 
4054 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4055 	    __func__));
4056 
4057 	mutex_lock(&ioc->base_cmds.mutex);
4058 
4059 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4060 		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4061 		    ioc->name, __func__);
4062 		rc = -EAGAIN;
4063 		goto out;
4064 	}
4065 
4066 	wait_state_count = 0;
4067 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4068 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4069 		if (wait_state_count++ == 10) {
4070 			pr_err(MPT3SAS_FMT
4071 			    "%s: failed due to ioc not operational\n",
4072 			    ioc->name, __func__);
4073 			rc = -EFAULT;
4074 			goto out;
4075 		}
4076 		ssleep(1);
4077 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4078 		pr_info(MPT3SAS_FMT
4079 			"%s: waiting for operational state(count=%d)\n",
4080 			ioc->name,
4081 		    __func__, wait_state_count);
4082 	}
4083 
4084 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4085 	if (!smid) {
4086 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4087 		    ioc->name, __func__);
4088 		rc = -EAGAIN;
4089 		goto out;
4090 	}
4091 
4092 	rc = 0;
4093 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4094 	request = mpt3sas_base_get_msg_frame(ioc, smid);
4095 	ioc->base_cmds.smid = smid;
4096 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4097 	init_completion(&ioc->base_cmds.done);
4098 	mpt3sas_base_put_smid_default(ioc, smid);
4099 	timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
4100 	    msecs_to_jiffies(10000));
4101 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4102 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4103 		    ioc->name, __func__);
4104 		_debug_dump_mf(mpi_request,
4105 		    sizeof(Mpi2SepRequest_t)/4);
4106 		if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4107 			issue_reset = false;
4108 		goto issue_host_reset;
4109 	}
4110 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4111 		memcpy(mpi_reply, ioc->base_cmds.reply,
4112 		    sizeof(Mpi2SepReply_t));
4113 	else
4114 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4115 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4116 	goto out;
4117 
4118  issue_host_reset:
4119 	if (issue_reset)
4120 		mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4121 		    FORCE_BIG_HAMMER);
4122 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4123 	rc = -EFAULT;
4124  out:
4125 	mutex_unlock(&ioc->base_cmds.mutex);
4126 	return rc;
4127 }
4128 
4129 /**
4130  * _base_get_port_facts - obtain port facts reply and save in ioc
4131  * @ioc: per adapter object
4132  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4133  *
4134  * Returns 0 for success, non-zero for failure.
4135  */
4136 static int
4137 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
4138 {
4139 	Mpi2PortFactsRequest_t mpi_request;
4140 	Mpi2PortFactsReply_t mpi_reply;
4141 	struct mpt3sas_port_facts *pfacts;
4142 	int mpi_reply_sz, mpi_request_sz, r;
4143 
4144 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4145 	    __func__));
4146 
4147 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4148 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4149 	memset(&mpi_request, 0, mpi_request_sz);
4150 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4151 	mpi_request.PortNumber = port;
4152 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4153 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4154 
4155 	if (r != 0) {
4156 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4157 		    ioc->name, __func__, r);
4158 		return r;
4159 	}
4160 
4161 	pfacts = &ioc->pfacts[port];
4162 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4163 	pfacts->PortNumber = mpi_reply.PortNumber;
4164 	pfacts->VP_ID = mpi_reply.VP_ID;
4165 	pfacts->VF_ID = mpi_reply.VF_ID;
4166 	pfacts->MaxPostedCmdBuffers =
4167 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4168 
4169 	return 0;
4170 }
4171 
4172 /**
4173  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4174  * @ioc: per adapter object
4175  * @timeout:
4176  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4177  *
4178  * Returns 0 for success, non-zero for failure.
4179  */
4180 static int
4181 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout,
4182 	int sleep_flag)
4183 {
4184 	u32 ioc_state;
4185 	int rc;
4186 
4187 	dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4188 	    __func__));
4189 
4190 	if (ioc->pci_error_recovery) {
4191 		dfailprintk(ioc, printk(MPT3SAS_FMT
4192 		    "%s: host in pci error recovery\n", ioc->name, __func__));
4193 		return -EFAULT;
4194 	}
4195 
4196 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4197 	dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4198 	    ioc->name, __func__, ioc_state));
4199 
4200 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4201 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4202 		return 0;
4203 
4204 	if (ioc_state & MPI2_DOORBELL_USED) {
4205 		dhsprintk(ioc, printk(MPT3SAS_FMT
4206 		    "unexpected doorbell active!\n", ioc->name));
4207 		goto issue_diag_reset;
4208 	}
4209 
4210 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4211 		mpt3sas_base_fault_info(ioc, ioc_state &
4212 		    MPI2_DOORBELL_DATA_MASK);
4213 		goto issue_diag_reset;
4214 	}
4215 
4216 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
4217 	    timeout, sleep_flag);
4218 	if (ioc_state) {
4219 		dfailprintk(ioc, printk(MPT3SAS_FMT
4220 		    "%s: failed going to ready state (ioc_state=0x%x)\n",
4221 		    ioc->name, __func__, ioc_state));
4222 		return -EFAULT;
4223 	}
4224 
4225  issue_diag_reset:
4226 	rc = _base_diag_reset(ioc, sleep_flag);
4227 	return rc;
4228 }
4229 
4230 /**
4231  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4232  * @ioc: per adapter object
4233  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4234  *
4235  * Returns 0 for success, non-zero for failure.
4236  */
4237 static int
4238 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4239 {
4240 	Mpi2IOCFactsRequest_t mpi_request;
4241 	Mpi2IOCFactsReply_t mpi_reply;
4242 	struct mpt3sas_facts *facts;
4243 	int mpi_reply_sz, mpi_request_sz, r;
4244 
4245 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4246 	    __func__));
4247 
4248 	r = _base_wait_for_iocstate(ioc, 10, sleep_flag);
4249 	if (r) {
4250 		dfailprintk(ioc, printk(MPT3SAS_FMT
4251 		    "%s: failed getting to correct state\n",
4252 		    ioc->name, __func__));
4253 		return r;
4254 	}
4255 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4256 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4257 	memset(&mpi_request, 0, mpi_request_sz);
4258 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4259 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4260 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4261 
4262 	if (r != 0) {
4263 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4264 		    ioc->name, __func__, r);
4265 		return r;
4266 	}
4267 
4268 	facts = &ioc->facts;
4269 	memset(facts, 0, sizeof(struct mpt3sas_facts));
4270 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4271 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4272 	facts->VP_ID = mpi_reply.VP_ID;
4273 	facts->VF_ID = mpi_reply.VF_ID;
4274 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4275 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4276 	facts->WhoInit = mpi_reply.WhoInit;
4277 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4278 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4279 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4280 	facts->MaxReplyDescriptorPostQueueDepth =
4281 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4282 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4283 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4284 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4285 		ioc->ir_firmware = 1;
4286 	if ((facts->IOCCapabilities &
4287 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4288 		ioc->rdpq_array_capable = 1;
4289 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4290 	facts->IOCRequestFrameSize =
4291 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4292 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4293 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4294 	ioc->shost->max_id = -1;
4295 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4296 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4297 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4298 	facts->HighPriorityCredit =
4299 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
4300 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4301 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4302 
4303 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4304 		"hba queue depth(%d), max chains per io(%d)\n",
4305 		ioc->name, facts->RequestCredit,
4306 	    facts->MaxChainDepth));
4307 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4308 		"request frame size(%d), reply frame size(%d)\n", ioc->name,
4309 	    facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4310 	return 0;
4311 }
4312 
4313 /**
4314  * _base_send_ioc_init - send ioc_init to firmware
4315  * @ioc: per adapter object
4316  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4317  *
4318  * Returns 0 for success, non-zero for failure.
4319  */
4320 static int
4321 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4322 {
4323 	Mpi2IOCInitRequest_t mpi_request;
4324 	Mpi2IOCInitReply_t mpi_reply;
4325 	int i, r = 0;
4326 	struct timeval current_time;
4327 	u16 ioc_status;
4328 	u32 reply_post_free_array_sz = 0;
4329 	Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4330 	dma_addr_t reply_post_free_array_dma;
4331 
4332 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4333 	    __func__));
4334 
4335 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4336 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4337 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4338 	mpi_request.VF_ID = 0; /* TODO */
4339 	mpi_request.VP_ID = 0;
4340 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
4341 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4342 
4343 	if (_base_is_controller_msix_enabled(ioc))
4344 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4345 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4346 	mpi_request.ReplyDescriptorPostQueueDepth =
4347 	    cpu_to_le16(ioc->reply_post_queue_depth);
4348 	mpi_request.ReplyFreeQueueDepth =
4349 	    cpu_to_le16(ioc->reply_free_queue_depth);
4350 
4351 	mpi_request.SenseBufferAddressHigh =
4352 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
4353 	mpi_request.SystemReplyAddressHigh =
4354 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
4355 	mpi_request.SystemRequestFrameBaseAddress =
4356 	    cpu_to_le64((u64)ioc->request_dma);
4357 	mpi_request.ReplyFreeQueueAddress =
4358 	    cpu_to_le64((u64)ioc->reply_free_dma);
4359 
4360 	if (ioc->rdpq_array_enable) {
4361 		reply_post_free_array_sz = ioc->reply_queue_count *
4362 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
4363 		reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4364 			reply_post_free_array_sz, &reply_post_free_array_dma);
4365 		if (!reply_post_free_array) {
4366 			pr_err(MPT3SAS_FMT
4367 			"reply_post_free_array: pci_alloc_consistent failed\n",
4368 			ioc->name);
4369 			r = -ENOMEM;
4370 			goto out;
4371 		}
4372 		memset(reply_post_free_array, 0, reply_post_free_array_sz);
4373 		for (i = 0; i < ioc->reply_queue_count; i++)
4374 			reply_post_free_array[i].RDPQBaseAddress =
4375 			    cpu_to_le64(
4376 				(u64)ioc->reply_post[i].reply_post_free_dma);
4377 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4378 		mpi_request.ReplyDescriptorPostQueueAddress =
4379 		    cpu_to_le64((u64)reply_post_free_array_dma);
4380 	} else {
4381 		mpi_request.ReplyDescriptorPostQueueAddress =
4382 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4383 	}
4384 
4385 	/* This time stamp specifies number of milliseconds
4386 	 * since epoch ~ midnight January 1, 1970.
4387 	 */
4388 	do_gettimeofday(&current_time);
4389 	mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
4390 	    (current_time.tv_usec / 1000));
4391 
4392 	if (ioc->logging_level & MPT_DEBUG_INIT) {
4393 		__le32 *mfp;
4394 		int i;
4395 
4396 		mfp = (__le32 *)&mpi_request;
4397 		pr_info("\toffset:data\n");
4398 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4399 			pr_info("\t[0x%02x]:%08x\n", i*4,
4400 			    le32_to_cpu(mfp[i]));
4401 	}
4402 
4403 	r = _base_handshake_req_reply_wait(ioc,
4404 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4405 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
4406 	    sleep_flag);
4407 
4408 	if (r != 0) {
4409 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4410 		    ioc->name, __func__, r);
4411 		goto out;
4412 	}
4413 
4414 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4415 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4416 	    mpi_reply.IOCLogInfo) {
4417 		pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4418 		r = -EIO;
4419 	}
4420 
4421 out:
4422 	if (reply_post_free_array)
4423 		pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4424 				    reply_post_free_array,
4425 				    reply_post_free_array_dma);
4426 	return r;
4427 }
4428 
4429 /**
4430  * mpt3sas_port_enable_done - command completion routine for port enable
4431  * @ioc: per adapter object
4432  * @smid: system request message index
4433  * @msix_index: MSIX table index supplied by the OS
4434  * @reply: reply message frame(lower 32bit addr)
4435  *
4436  * Return 1 meaning mf should be freed from _base_interrupt
4437  *        0 means the mf is freed from this function.
4438  */
4439 u8
4440 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4441 	u32 reply)
4442 {
4443 	MPI2DefaultReply_t *mpi_reply;
4444 	u16 ioc_status;
4445 
4446 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4447 		return 1;
4448 
4449 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4450 	if (!mpi_reply)
4451 		return 1;
4452 
4453 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4454 		return 1;
4455 
4456 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4457 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4458 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4459 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4460 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4461 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4462 		ioc->port_enable_failed = 1;
4463 
4464 	if (ioc->is_driver_loading) {
4465 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4466 			mpt3sas_port_enable_complete(ioc);
4467 			return 1;
4468 		} else {
4469 			ioc->start_scan_failed = ioc_status;
4470 			ioc->start_scan = 0;
4471 			return 1;
4472 		}
4473 	}
4474 	complete(&ioc->port_enable_cmds.done);
4475 	return 1;
4476 }
4477 
4478 /**
4479  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4480  * @ioc: per adapter object
4481  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4482  *
4483  * Returns 0 for success, non-zero for failure.
4484  */
4485 static int
4486 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4487 {
4488 	Mpi2PortEnableRequest_t *mpi_request;
4489 	Mpi2PortEnableReply_t *mpi_reply;
4490 	unsigned long timeleft;
4491 	int r = 0;
4492 	u16 smid;
4493 	u16 ioc_status;
4494 
4495 	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4496 
4497 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4498 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4499 		    ioc->name, __func__);
4500 		return -EAGAIN;
4501 	}
4502 
4503 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4504 	if (!smid) {
4505 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4506 		    ioc->name, __func__);
4507 		return -EAGAIN;
4508 	}
4509 
4510 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4511 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4512 	ioc->port_enable_cmds.smid = smid;
4513 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4514 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4515 
4516 	init_completion(&ioc->port_enable_cmds.done);
4517 	mpt3sas_base_put_smid_default(ioc, smid);
4518 	timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
4519 	    300*HZ);
4520 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4521 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4522 		    ioc->name, __func__);
4523 		_debug_dump_mf(mpi_request,
4524 		    sizeof(Mpi2PortEnableRequest_t)/4);
4525 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4526 			r = -EFAULT;
4527 		else
4528 			r = -ETIME;
4529 		goto out;
4530 	}
4531 
4532 	mpi_reply = ioc->port_enable_cmds.reply;
4533 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4534 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4535 		pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4536 		    ioc->name, __func__, ioc_status);
4537 		r = -EFAULT;
4538 		goto out;
4539 	}
4540 
4541  out:
4542 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4543 	pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4544 	    "SUCCESS" : "FAILED"));
4545 	return r;
4546 }
4547 
4548 /**
4549  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4550  * @ioc: per adapter object
4551  *
4552  * Returns 0 for success, non-zero for failure.
4553  */
4554 int
4555 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4556 {
4557 	Mpi2PortEnableRequest_t *mpi_request;
4558 	u16 smid;
4559 
4560 	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4561 
4562 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4563 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4564 		    ioc->name, __func__);
4565 		return -EAGAIN;
4566 	}
4567 
4568 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4569 	if (!smid) {
4570 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4571 		    ioc->name, __func__);
4572 		return -EAGAIN;
4573 	}
4574 
4575 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4576 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4577 	ioc->port_enable_cmds.smid = smid;
4578 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4579 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4580 
4581 	mpt3sas_base_put_smid_default(ioc, smid);
4582 	return 0;
4583 }
4584 
4585 /**
4586  * _base_determine_wait_on_discovery - desposition
4587  * @ioc: per adapter object
4588  *
4589  * Decide whether to wait on discovery to complete. Used to either
4590  * locate boot device, or report volumes ahead of physical devices.
4591  *
4592  * Returns 1 for wait, 0 for don't wait
4593  */
4594 static int
4595 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4596 {
4597 	/* We wait for discovery to complete if IR firmware is loaded.
4598 	 * The sas topology events arrive before PD events, so we need time to
4599 	 * turn on the bit in ioc->pd_handles to indicate PD
4600 	 * Also, it maybe required to report Volumes ahead of physical
4601 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4602 	 */
4603 	if (ioc->ir_firmware)
4604 		return 1;
4605 
4606 	/* if no Bios, then we don't need to wait */
4607 	if (!ioc->bios_pg3.BiosVersion)
4608 		return 0;
4609 
4610 	/* Bios is present, then we drop down here.
4611 	 *
4612 	 * If there any entries in the Bios Page 2, then we wait
4613 	 * for discovery to complete.
4614 	 */
4615 
4616 	/* Current Boot Device */
4617 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
4618 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4619 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4620 	/* Request Boot Device */
4621 	   (ioc->bios_pg2.ReqBootDeviceForm &
4622 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4623 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4624 	/* Alternate Request Boot Device */
4625 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
4626 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4627 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4628 		return 0;
4629 
4630 	return 1;
4631 }
4632 
4633 /**
4634  * _base_unmask_events - turn on notification for this event
4635  * @ioc: per adapter object
4636  * @event: firmware event
4637  *
4638  * The mask is stored in ioc->event_masks.
4639  */
4640 static void
4641 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4642 {
4643 	u32 desired_event;
4644 
4645 	if (event >= 128)
4646 		return;
4647 
4648 	desired_event = (1 << (event % 32));
4649 
4650 	if (event < 32)
4651 		ioc->event_masks[0] &= ~desired_event;
4652 	else if (event < 64)
4653 		ioc->event_masks[1] &= ~desired_event;
4654 	else if (event < 96)
4655 		ioc->event_masks[2] &= ~desired_event;
4656 	else if (event < 128)
4657 		ioc->event_masks[3] &= ~desired_event;
4658 }
4659 
4660 /**
4661  * _base_event_notification - send event notification
4662  * @ioc: per adapter object
4663  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4664  *
4665  * Returns 0 for success, non-zero for failure.
4666  */
4667 static int
4668 _base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4669 {
4670 	Mpi2EventNotificationRequest_t *mpi_request;
4671 	unsigned long timeleft;
4672 	u16 smid;
4673 	int r = 0;
4674 	int i;
4675 
4676 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4677 	    __func__));
4678 
4679 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4680 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4681 		    ioc->name, __func__);
4682 		return -EAGAIN;
4683 	}
4684 
4685 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4686 	if (!smid) {
4687 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4688 		    ioc->name, __func__);
4689 		return -EAGAIN;
4690 	}
4691 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4692 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4693 	ioc->base_cmds.smid = smid;
4694 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4695 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4696 	mpi_request->VF_ID = 0; /* TODO */
4697 	mpi_request->VP_ID = 0;
4698 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4699 		mpi_request->EventMasks[i] =
4700 		    cpu_to_le32(ioc->event_masks[i]);
4701 	init_completion(&ioc->base_cmds.done);
4702 	mpt3sas_base_put_smid_default(ioc, smid);
4703 	timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4704 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4705 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4706 		    ioc->name, __func__);
4707 		_debug_dump_mf(mpi_request,
4708 		    sizeof(Mpi2EventNotificationRequest_t)/4);
4709 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
4710 			r = -EFAULT;
4711 		else
4712 			r = -ETIME;
4713 	} else
4714 		dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4715 		    ioc->name, __func__));
4716 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4717 	return r;
4718 }
4719 
4720 /**
4721  * mpt3sas_base_validate_event_type - validating event types
4722  * @ioc: per adapter object
4723  * @event: firmware event
4724  *
4725  * This will turn on firmware event notification when application
4726  * ask for that event. We don't mask events that are already enabled.
4727  */
4728 void
4729 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4730 {
4731 	int i, j;
4732 	u32 event_mask, desired_event;
4733 	u8 send_update_to_fw;
4734 
4735 	for (i = 0, send_update_to_fw = 0; i <
4736 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4737 		event_mask = ~event_type[i];
4738 		desired_event = 1;
4739 		for (j = 0; j < 32; j++) {
4740 			if (!(event_mask & desired_event) &&
4741 			    (ioc->event_masks[i] & desired_event)) {
4742 				ioc->event_masks[i] &= ~desired_event;
4743 				send_update_to_fw = 1;
4744 			}
4745 			desired_event = (desired_event << 1);
4746 		}
4747 	}
4748 
4749 	if (!send_update_to_fw)
4750 		return;
4751 
4752 	mutex_lock(&ioc->base_cmds.mutex);
4753 	_base_event_notification(ioc, CAN_SLEEP);
4754 	mutex_unlock(&ioc->base_cmds.mutex);
4755 }
4756 
4757 /**
4758  * _base_diag_reset - the "big hammer" start of day reset
4759  * @ioc: per adapter object
4760  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4761  *
4762  * Returns 0 for success, non-zero for failure.
4763  */
4764 static int
4765 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4766 {
4767 	u32 host_diagnostic;
4768 	u32 ioc_state;
4769 	u32 count;
4770 	u32 hcb_size;
4771 
4772 	pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4773 
4774 	drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4775 	    ioc->name));
4776 
4777 	count = 0;
4778 	do {
4779 		/* Write magic sequence to WriteSequence register
4780 		 * Loop until in diagnostic mode
4781 		 */
4782 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4783 			"write magic sequence\n", ioc->name));
4784 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4785 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4786 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4787 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4788 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4789 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4790 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4791 
4792 		/* wait 100 msec */
4793 		if (sleep_flag == CAN_SLEEP)
4794 			msleep(100);
4795 		else
4796 			mdelay(100);
4797 
4798 		if (count++ > 20)
4799 			goto out;
4800 
4801 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4802 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4803 			"wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4804 		    ioc->name, count, host_diagnostic));
4805 
4806 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4807 
4808 	hcb_size = readl(&ioc->chip->HCBSize);
4809 
4810 	drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4811 	    ioc->name));
4812 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4813 	     &ioc->chip->HostDiagnostic);
4814 
4815 	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
4816 	if (sleep_flag == CAN_SLEEP)
4817 		msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4818 	else
4819 		mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4820 
4821 	/* Approximately 300 second max wait */
4822 	for (count = 0; count < (300000000 /
4823 		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4824 
4825 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4826 
4827 		if (host_diagnostic == 0xFFFFFFFF)
4828 			goto out;
4829 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4830 			break;
4831 
4832 		/* Wait to pass the second read delay window */
4833 		if (sleep_flag == CAN_SLEEP)
4834 			msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4835 								/ 1000);
4836 		else
4837 			mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4838 								/ 1000);
4839 	}
4840 
4841 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4842 
4843 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4844 		"restart the adapter assuming the HCB Address points to good F/W\n",
4845 		    ioc->name));
4846 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4847 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4848 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4849 
4850 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4851 		    "re-enable the HCDW\n", ioc->name));
4852 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4853 		    &ioc->chip->HCBSize);
4854 	}
4855 
4856 	drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4857 	    ioc->name));
4858 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4859 	    &ioc->chip->HostDiagnostic);
4860 
4861 	drsprintk(ioc, pr_info(MPT3SAS_FMT
4862 		"disable writes to the diagnostic register\n", ioc->name));
4863 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4864 
4865 	drsprintk(ioc, pr_info(MPT3SAS_FMT
4866 		"Wait for FW to go to the READY state\n", ioc->name));
4867 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4868 	    sleep_flag);
4869 	if (ioc_state) {
4870 		pr_err(MPT3SAS_FMT
4871 			"%s: failed going to ready state (ioc_state=0x%x)\n",
4872 			ioc->name, __func__, ioc_state);
4873 		goto out;
4874 	}
4875 
4876 	pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4877 	return 0;
4878 
4879  out:
4880 	pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4881 	return -EFAULT;
4882 }
4883 
4884 /**
4885  * _base_make_ioc_ready - put controller in READY state
4886  * @ioc: per adapter object
4887  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4888  * @type: FORCE_BIG_HAMMER or SOFT_RESET
4889  *
4890  * Returns 0 for success, non-zero for failure.
4891  */
4892 static int
4893 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4894 	enum reset_type type)
4895 {
4896 	u32 ioc_state;
4897 	int rc;
4898 	int count;
4899 
4900 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4901 	    __func__));
4902 
4903 	if (ioc->pci_error_recovery)
4904 		return 0;
4905 
4906 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4907 	dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4908 	    ioc->name, __func__, ioc_state));
4909 
4910 	/* if in RESET state, it should move to READY state shortly */
4911 	count = 0;
4912 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4913 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4914 		    MPI2_IOC_STATE_READY) {
4915 			if (count++ == 10) {
4916 				pr_err(MPT3SAS_FMT
4917 					"%s: failed going to ready state (ioc_state=0x%x)\n",
4918 				    ioc->name, __func__, ioc_state);
4919 				return -EFAULT;
4920 			}
4921 			if (sleep_flag == CAN_SLEEP)
4922 				ssleep(1);
4923 			else
4924 				mdelay(1000);
4925 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4926 		}
4927 	}
4928 
4929 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4930 		return 0;
4931 
4932 	if (ioc_state & MPI2_DOORBELL_USED) {
4933 		dhsprintk(ioc, pr_info(MPT3SAS_FMT
4934 			"unexpected doorbell active!\n",
4935 			ioc->name));
4936 		goto issue_diag_reset;
4937 	}
4938 
4939 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4940 		mpt3sas_base_fault_info(ioc, ioc_state &
4941 		    MPI2_DOORBELL_DATA_MASK);
4942 		goto issue_diag_reset;
4943 	}
4944 
4945 	if (type == FORCE_BIG_HAMMER)
4946 		goto issue_diag_reset;
4947 
4948 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4949 		if (!(_base_send_ioc_reset(ioc,
4950 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
4951 			return 0;
4952 	}
4953 
4954  issue_diag_reset:
4955 	rc = _base_diag_reset(ioc, CAN_SLEEP);
4956 	return rc;
4957 }
4958 
4959 /**
4960  * _base_make_ioc_operational - put controller in OPERATIONAL state
4961  * @ioc: per adapter object
4962  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4963  *
4964  * Returns 0 for success, non-zero for failure.
4965  */
4966 static int
4967 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4968 {
4969 	int r, i;
4970 	unsigned long	flags;
4971 	u32 reply_address;
4972 	u16 smid;
4973 	struct _tr_list *delayed_tr, *delayed_tr_next;
4974 	u8 hide_flag;
4975 	struct adapter_reply_queue *reply_q;
4976 	long reply_post_free;
4977 	u32 reply_post_free_sz, index = 0;
4978 
4979 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4980 	    __func__));
4981 
4982 	/* clean the delayed target reset list */
4983 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4984 	    &ioc->delayed_tr_list, list) {
4985 		list_del(&delayed_tr->list);
4986 		kfree(delayed_tr);
4987 	}
4988 
4989 
4990 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4991 	    &ioc->delayed_tr_volume_list, list) {
4992 		list_del(&delayed_tr->list);
4993 		kfree(delayed_tr);
4994 	}
4995 
4996 	/* initialize the scsi lookup free list */
4997 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4998 	INIT_LIST_HEAD(&ioc->free_list);
4999 	smid = 1;
5000 	for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5001 		INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5002 		ioc->scsi_lookup[i].cb_idx = 0xFF;
5003 		ioc->scsi_lookup[i].smid = smid;
5004 		ioc->scsi_lookup[i].scmd = NULL;
5005 		ioc->scsi_lookup[i].direct_io = 0;
5006 		list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5007 		    &ioc->free_list);
5008 	}
5009 
5010 	/* hi-priority queue */
5011 	INIT_LIST_HEAD(&ioc->hpr_free_list);
5012 	smid = ioc->hi_priority_smid;
5013 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5014 		ioc->hpr_lookup[i].cb_idx = 0xFF;
5015 		ioc->hpr_lookup[i].smid = smid;
5016 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5017 		    &ioc->hpr_free_list);
5018 	}
5019 
5020 	/* internal queue */
5021 	INIT_LIST_HEAD(&ioc->internal_free_list);
5022 	smid = ioc->internal_smid;
5023 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
5024 		ioc->internal_lookup[i].cb_idx = 0xFF;
5025 		ioc->internal_lookup[i].smid = smid;
5026 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
5027 		    &ioc->internal_free_list);
5028 	}
5029 
5030 	/* chain pool */
5031 	INIT_LIST_HEAD(&ioc->free_chain_list);
5032 	for (i = 0; i < ioc->chain_depth; i++)
5033 		list_add_tail(&ioc->chain_lookup[i].tracker_list,
5034 		    &ioc->free_chain_list);
5035 
5036 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5037 
5038 	/* initialize Reply Free Queue */
5039 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
5040 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
5041 	    ioc->reply_sz)
5042 		ioc->reply_free[i] = cpu_to_le32(reply_address);
5043 
5044 	/* initialize reply queues */
5045 	if (ioc->is_driver_loading)
5046 		_base_assign_reply_queues(ioc);
5047 
5048 	/* initialize Reply Post Free Queue */
5049 	reply_post_free_sz = ioc->reply_post_queue_depth *
5050 	    sizeof(Mpi2DefaultReplyDescriptor_t);
5051 	reply_post_free = (long)ioc->reply_post[index].reply_post_free;
5052 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5053 		reply_q->reply_post_host_index = 0;
5054 		reply_q->reply_post_free = (Mpi2ReplyDescriptorsUnion_t *)
5055 		    reply_post_free;
5056 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
5057 			reply_q->reply_post_free[i].Words =
5058 			    cpu_to_le64(ULLONG_MAX);
5059 		if (!_base_is_controller_msix_enabled(ioc))
5060 			goto skip_init_reply_post_free_queue;
5061 		/*
5062 		 * If RDPQ is enabled, switch to the next allocation.
5063 		 * Otherwise advance within the contiguous region.
5064 		 */
5065 		if (ioc->rdpq_array_enable)
5066 			reply_post_free = (long)
5067 			    ioc->reply_post[++index].reply_post_free;
5068 		else
5069 			reply_post_free += reply_post_free_sz;
5070 	}
5071  skip_init_reply_post_free_queue:
5072 
5073 	r = _base_send_ioc_init(ioc, sleep_flag);
5074 	if (r)
5075 		return r;
5076 
5077 	/* initialize reply free host index */
5078 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5079 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5080 
5081 	/* initialize reply post host index */
5082 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5083 		if (ioc->msix96_vector)
5084 			writel((reply_q->msix_index & 7)<<
5085 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
5086 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5087 		else
5088 			writel(reply_q->msix_index <<
5089 				MPI2_RPHI_MSIX_INDEX_SHIFT,
5090 				&ioc->chip->ReplyPostHostIndex);
5091 
5092 		if (!_base_is_controller_msix_enabled(ioc))
5093 			goto skip_init_reply_post_host_index;
5094 	}
5095 
5096  skip_init_reply_post_host_index:
5097 
5098 	_base_unmask_interrupts(ioc);
5099 	r = _base_event_notification(ioc, sleep_flag);
5100 	if (r)
5101 		return r;
5102 
5103 	if (sleep_flag == CAN_SLEEP)
5104 		_base_static_config_pages(ioc);
5105 
5106 
5107 	if (ioc->is_driver_loading) {
5108 
5109 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5110 		    == 0x80) {
5111 			hide_flag = (u8) (
5112 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5113 			    MFG_PAGE10_HIDE_SSDS_MASK);
5114 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5115 				ioc->mfg_pg10_hide_flag = hide_flag;
5116 		}
5117 
5118 		ioc->wait_for_discovery_to_complete =
5119 		    _base_determine_wait_on_discovery(ioc);
5120 
5121 		return r; /* scan_start and scan_finished support */
5122 	}
5123 
5124 	r = _base_send_port_enable(ioc, sleep_flag);
5125 	if (r)
5126 		return r;
5127 
5128 	return r;
5129 }
5130 
5131 /**
5132  * mpt3sas_base_free_resources - free resources controller resources
5133  * @ioc: per adapter object
5134  *
5135  * Return nothing.
5136  */
5137 void
5138 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5139 {
5140 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5141 	    __func__));
5142 
5143 	/* synchronizing freeing resource with pci_access_mutex lock */
5144 	mutex_lock(&ioc->pci_access_mutex);
5145 	if (ioc->chip_phys && ioc->chip) {
5146 		_base_mask_interrupts(ioc);
5147 		ioc->shost_recovery = 1;
5148 		_base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5149 		ioc->shost_recovery = 0;
5150 	}
5151 
5152 	mpt3sas_base_unmap_resources(ioc);
5153 	mutex_unlock(&ioc->pci_access_mutex);
5154 	return;
5155 }
5156 
5157 /**
5158  * mpt3sas_base_attach - attach controller instance
5159  * @ioc: per adapter object
5160  *
5161  * Returns 0 for success, non-zero for failure.
5162  */
5163 int
5164 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5165 {
5166 	int r, i;
5167 	int cpu_id, last_cpu_id = 0;
5168 
5169 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5170 	    __func__));
5171 
5172 	/* setup cpu_msix_table */
5173 	ioc->cpu_count = num_online_cpus();
5174 	for_each_online_cpu(cpu_id)
5175 		last_cpu_id = cpu_id;
5176 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
5177 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5178 	ioc->reply_queue_count = 1;
5179 	if (!ioc->cpu_msix_table) {
5180 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
5181 			"allocation for cpu_msix_table failed!!!\n",
5182 			ioc->name));
5183 		r = -ENOMEM;
5184 		goto out_free_resources;
5185 	}
5186 
5187 	if (ioc->is_warpdrive) {
5188 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5189 		    sizeof(resource_size_t *), GFP_KERNEL);
5190 		if (!ioc->reply_post_host_index) {
5191 			dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5192 				"for cpu_msix_table failed!!!\n", ioc->name));
5193 			r = -ENOMEM;
5194 			goto out_free_resources;
5195 		}
5196 	}
5197 
5198 	ioc->rdpq_array_enable_assigned = 0;
5199 	ioc->dma_mask = 0;
5200 	r = mpt3sas_base_map_resources(ioc);
5201 	if (r)
5202 		goto out_free_resources;
5203 
5204 	if (ioc->is_warpdrive) {
5205 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
5206 		    &ioc->chip->ReplyPostHostIndex;
5207 
5208 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
5209 			ioc->reply_post_host_index[i] =
5210 			(resource_size_t __iomem *)
5211 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
5212 			* 4)));
5213 	}
5214 
5215 	pci_set_drvdata(ioc->pdev, ioc->shost);
5216 	r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5217 	if (r)
5218 		goto out_free_resources;
5219 
5220 	switch (ioc->hba_mpi_version_belonged) {
5221 	case MPI2_VERSION:
5222 		ioc->build_sg_scmd = &_base_build_sg_scmd;
5223 		ioc->build_sg = &_base_build_sg;
5224 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5225 		break;
5226 	case MPI25_VERSION:
5227 		/*
5228 		 * In SAS3.0,
5229 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5230 		 * Target Status - all require the IEEE formated scatter gather
5231 		 * elements.
5232 		 */
5233 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5234 		ioc->build_sg = &_base_build_sg_ieee;
5235 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5236 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5237 		break;
5238 	}
5239 
5240 	/*
5241 	 * These function pointers for other requests that don't
5242 	 * the require IEEE scatter gather elements.
5243 	 *
5244 	 * For example Configuration Pages and SAS IOUNIT Control don't.
5245 	 */
5246 	ioc->build_sg_mpi = &_base_build_sg;
5247 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5248 
5249 	r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5250 	if (r)
5251 		goto out_free_resources;
5252 
5253 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5254 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5255 	if (!ioc->pfacts) {
5256 		r = -ENOMEM;
5257 		goto out_free_resources;
5258 	}
5259 
5260 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5261 		r = _base_get_port_facts(ioc, i, CAN_SLEEP);
5262 		if (r)
5263 			goto out_free_resources;
5264 	}
5265 
5266 	r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
5267 	if (r)
5268 		goto out_free_resources;
5269 
5270 	init_waitqueue_head(&ioc->reset_wq);
5271 
5272 	/* allocate memory pd handle bitmask list */
5273 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5274 	if (ioc->facts.MaxDevHandle % 8)
5275 		ioc->pd_handles_sz++;
5276 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5277 	    GFP_KERNEL);
5278 	if (!ioc->pd_handles) {
5279 		r = -ENOMEM;
5280 		goto out_free_resources;
5281 	}
5282 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5283 	    GFP_KERNEL);
5284 	if (!ioc->blocking_handles) {
5285 		r = -ENOMEM;
5286 		goto out_free_resources;
5287 	}
5288 
5289 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
5290 
5291 	/* base internal command bits */
5292 	mutex_init(&ioc->base_cmds.mutex);
5293 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5294 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5295 
5296 	/* port_enable command bits */
5297 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5298 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5299 
5300 	/* transport internal command bits */
5301 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5302 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5303 	mutex_init(&ioc->transport_cmds.mutex);
5304 
5305 	/* scsih internal command bits */
5306 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5307 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5308 	mutex_init(&ioc->scsih_cmds.mutex);
5309 
5310 	/* task management internal command bits */
5311 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5312 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5313 	mutex_init(&ioc->tm_cmds.mutex);
5314 
5315 	/* config page internal command bits */
5316 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5317 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5318 	mutex_init(&ioc->config_cmds.mutex);
5319 
5320 	/* ctl module internal command bits */
5321 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5322 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5323 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5324 	mutex_init(&ioc->ctl_cmds.mutex);
5325 
5326 	if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
5327 	    !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
5328 	    !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
5329 	    !ioc->ctl_cmds.sense) {
5330 		r = -ENOMEM;
5331 		goto out_free_resources;
5332 	}
5333 
5334 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5335 		ioc->event_masks[i] = -1;
5336 
5337 	/* here we enable the events we care about */
5338 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5339 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5340 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5341 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5342 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5343 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5344 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5345 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5346 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5347 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5348 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5349 
5350 	r = _base_make_ioc_operational(ioc, CAN_SLEEP);
5351 	if (r)
5352 		goto out_free_resources;
5353 
5354 	ioc->non_operational_loop = 0;
5355 	return 0;
5356 
5357  out_free_resources:
5358 
5359 	ioc->remove_host = 1;
5360 
5361 	mpt3sas_base_free_resources(ioc);
5362 	_base_release_memory_pools(ioc);
5363 	pci_set_drvdata(ioc->pdev, NULL);
5364 	kfree(ioc->cpu_msix_table);
5365 	if (ioc->is_warpdrive)
5366 		kfree(ioc->reply_post_host_index);
5367 	kfree(ioc->pd_handles);
5368 	kfree(ioc->blocking_handles);
5369 	kfree(ioc->tm_cmds.reply);
5370 	kfree(ioc->transport_cmds.reply);
5371 	kfree(ioc->scsih_cmds.reply);
5372 	kfree(ioc->config_cmds.reply);
5373 	kfree(ioc->base_cmds.reply);
5374 	kfree(ioc->port_enable_cmds.reply);
5375 	kfree(ioc->ctl_cmds.reply);
5376 	kfree(ioc->ctl_cmds.sense);
5377 	kfree(ioc->pfacts);
5378 	ioc->ctl_cmds.reply = NULL;
5379 	ioc->base_cmds.reply = NULL;
5380 	ioc->tm_cmds.reply = NULL;
5381 	ioc->scsih_cmds.reply = NULL;
5382 	ioc->transport_cmds.reply = NULL;
5383 	ioc->config_cmds.reply = NULL;
5384 	ioc->pfacts = NULL;
5385 	return r;
5386 }
5387 
5388 
5389 /**
5390  * mpt3sas_base_detach - remove controller instance
5391  * @ioc: per adapter object
5392  *
5393  * Return nothing.
5394  */
5395 void
5396 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5397 {
5398 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5399 	    __func__));
5400 
5401 	mpt3sas_base_stop_watchdog(ioc);
5402 	mpt3sas_base_free_resources(ioc);
5403 	_base_release_memory_pools(ioc);
5404 	pci_set_drvdata(ioc->pdev, NULL);
5405 	kfree(ioc->cpu_msix_table);
5406 	if (ioc->is_warpdrive)
5407 		kfree(ioc->reply_post_host_index);
5408 	kfree(ioc->pd_handles);
5409 	kfree(ioc->blocking_handles);
5410 	kfree(ioc->pfacts);
5411 	kfree(ioc->ctl_cmds.reply);
5412 	kfree(ioc->ctl_cmds.sense);
5413 	kfree(ioc->base_cmds.reply);
5414 	kfree(ioc->port_enable_cmds.reply);
5415 	kfree(ioc->tm_cmds.reply);
5416 	kfree(ioc->transport_cmds.reply);
5417 	kfree(ioc->scsih_cmds.reply);
5418 	kfree(ioc->config_cmds.reply);
5419 }
5420 
5421 /**
5422  * _base_reset_handler - reset callback handler (for base)
5423  * @ioc: per adapter object
5424  * @reset_phase: phase
5425  *
5426  * The handler for doing any required cleanup or initialization.
5427  *
5428  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5429  * MPT3_IOC_DONE_RESET
5430  *
5431  * Return nothing.
5432  */
5433 static void
5434 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5435 {
5436 	mpt3sas_scsih_reset_handler(ioc, reset_phase);
5437 	mpt3sas_ctl_reset_handler(ioc, reset_phase);
5438 	switch (reset_phase) {
5439 	case MPT3_IOC_PRE_RESET:
5440 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
5441 		"%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5442 		break;
5443 	case MPT3_IOC_AFTER_RESET:
5444 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
5445 		"%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5446 		if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5447 			ioc->transport_cmds.status |= MPT3_CMD_RESET;
5448 			mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5449 			complete(&ioc->transport_cmds.done);
5450 		}
5451 		if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5452 			ioc->base_cmds.status |= MPT3_CMD_RESET;
5453 			mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5454 			complete(&ioc->base_cmds.done);
5455 		}
5456 		if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5457 			ioc->port_enable_failed = 1;
5458 			ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5459 			mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5460 			if (ioc->is_driver_loading) {
5461 				ioc->start_scan_failed =
5462 				    MPI2_IOCSTATUS_INTERNAL_ERROR;
5463 				ioc->start_scan = 0;
5464 				ioc->port_enable_cmds.status =
5465 				    MPT3_CMD_NOT_USED;
5466 			} else
5467 				complete(&ioc->port_enable_cmds.done);
5468 		}
5469 		if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5470 			ioc->config_cmds.status |= MPT3_CMD_RESET;
5471 			mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5472 			ioc->config_cmds.smid = USHRT_MAX;
5473 			complete(&ioc->config_cmds.done);
5474 		}
5475 		break;
5476 	case MPT3_IOC_DONE_RESET:
5477 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
5478 			"%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5479 		break;
5480 	}
5481 }
5482 
5483 /**
5484  * _wait_for_commands_to_complete - reset controller
5485  * @ioc: Pointer to MPT_ADAPTER structure
5486  * @sleep_flag: CAN_SLEEP or NO_SLEEP
5487  *
5488  * This function waiting(3s) for all pending commands to complete
5489  * prior to putting controller in reset.
5490  */
5491 static void
5492 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
5493 {
5494 	u32 ioc_state;
5495 	unsigned long flags;
5496 	u16 i;
5497 
5498 	ioc->pending_io_count = 0;
5499 	if (sleep_flag != CAN_SLEEP)
5500 		return;
5501 
5502 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5503 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5504 		return;
5505 
5506 	/* pending command count */
5507 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5508 	for (i = 0; i < ioc->scsiio_depth; i++)
5509 		if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5510 			ioc->pending_io_count++;
5511 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5512 
5513 	if (!ioc->pending_io_count)
5514 		return;
5515 
5516 	/* wait for pending commands to complete */
5517 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5518 }
5519 
5520 /**
5521  * mpt3sas_base_hard_reset_handler - reset controller
5522  * @ioc: Pointer to MPT_ADAPTER structure
5523  * @sleep_flag: CAN_SLEEP or NO_SLEEP
5524  * @type: FORCE_BIG_HAMMER or SOFT_RESET
5525  *
5526  * Returns 0 for success, non-zero for failure.
5527  */
5528 int
5529 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
5530 	enum reset_type type)
5531 {
5532 	int r;
5533 	unsigned long flags;
5534 	u32 ioc_state;
5535 	u8 is_fault = 0, is_trigger = 0;
5536 
5537 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5538 	    __func__));
5539 
5540 	if (ioc->pci_error_recovery) {
5541 		pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5542 		    ioc->name, __func__);
5543 		r = 0;
5544 		goto out_unlocked;
5545 	}
5546 
5547 	if (mpt3sas_fwfault_debug)
5548 		mpt3sas_halt_firmware(ioc);
5549 
5550 	/* TODO - What we really should be doing is pulling
5551 	 * out all the code associated with NO_SLEEP; its never used.
5552 	 * That is legacy code from mpt fusion driver, ported over.
5553 	 * I will leave this BUG_ON here for now till its been resolved.
5554 	 */
5555 	BUG_ON(sleep_flag == NO_SLEEP);
5556 
5557 	/* wait for an active reset in progress to complete */
5558 	if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5559 		do {
5560 			ssleep(1);
5561 		} while (ioc->shost_recovery == 1);
5562 		dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5563 		    __func__));
5564 		return ioc->ioc_reset_in_progress_status;
5565 	}
5566 
5567 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5568 	ioc->shost_recovery = 1;
5569 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5570 
5571 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5572 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5573 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5574 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
5575 		is_trigger = 1;
5576 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5577 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5578 			is_fault = 1;
5579 	}
5580 	_base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5581 	_wait_for_commands_to_complete(ioc, sleep_flag);
5582 	_base_mask_interrupts(ioc);
5583 	r = _base_make_ioc_ready(ioc, sleep_flag, type);
5584 	if (r)
5585 		goto out;
5586 	_base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5587 
5588 	/* If this hard reset is called while port enable is active, then
5589 	 * there is no reason to call make_ioc_operational
5590 	 */
5591 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
5592 		ioc->remove_host = 1;
5593 		r = -EFAULT;
5594 		goto out;
5595 	}
5596 	r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5597 	if (r)
5598 		goto out;
5599 
5600 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5601 		panic("%s: Issue occurred with flashing controller firmware."
5602 		      "Please reboot the system and ensure that the correct"
5603 		      " firmware version is running\n", ioc->name);
5604 
5605 	r = _base_make_ioc_operational(ioc, sleep_flag);
5606 	if (!r)
5607 		_base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5608 
5609  out:
5610 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5611 	    ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5612 
5613 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5614 	ioc->ioc_reset_in_progress_status = r;
5615 	ioc->shost_recovery = 0;
5616 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5617 	ioc->ioc_reset_count++;
5618 	mutex_unlock(&ioc->reset_in_progress_mutex);
5619 
5620  out_unlocked:
5621 	if ((r == 0) && is_trigger) {
5622 		if (is_fault)
5623 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5624 		else
5625 			mpt3sas_trigger_master(ioc,
5626 			    MASTER_TRIGGER_ADAPTER_RESET);
5627 	}
5628 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5629 	    __func__));
5630 	return r;
5631 }
5632