1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 #include <linux/aer.h> 64 65 66 #include "mpt3sas_base.h" 67 68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 69 70 71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 72 73 /* maximum controller queue depth */ 74 #define MAX_HBA_QUEUE_DEPTH 30000 75 #define MAX_CHAIN_DEPTH 100000 76 static int max_queue_depth = -1; 77 module_param(max_queue_depth, int, 0444); 78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 79 80 static int max_sgl_entries = -1; 81 module_param(max_sgl_entries, int, 0444); 82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 83 84 static int msix_disable = -1; 85 module_param(msix_disable, int, 0444); 86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 87 88 static int smp_affinity_enable = 1; 89 module_param(smp_affinity_enable, int, 0444); 90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 91 92 static int max_msix_vectors = -1; 93 module_param(max_msix_vectors, int, 0444); 94 MODULE_PARM_DESC(max_msix_vectors, 95 " max msix vectors"); 96 97 static int irqpoll_weight = -1; 98 module_param(irqpoll_weight, int, 0444); 99 MODULE_PARM_DESC(irqpoll_weight, 100 "irq poll weight (default= one fourth of HBA queue depth)"); 101 102 static int mpt3sas_fwfault_debug; 103 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 104 " enable detection of firmware fault and halt firmware - (default=0)"); 105 106 static int perf_mode = -1; 107 module_param(perf_mode, int, 0444); 108 MODULE_PARM_DESC(perf_mode, 109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t" 110 "0 - balanced: high iops mode is enabled &\n\t\t" 111 "interrupt coalescing is enabled only on high iops queues,\n\t\t" 112 "1 - iops: high iops mode is disabled &\n\t\t" 113 "interrupt coalescing is enabled on all queues,\n\t\t" 114 "2 - latency: high iops mode is disabled &\n\t\t" 115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n" 116 "\t\tdefault - default perf_mode is 'balanced'" 117 ); 118 119 enum mpt3sas_perf_mode { 120 MPT_PERF_MODE_DEFAULT = -1, 121 MPT_PERF_MODE_BALANCED = 0, 122 MPT_PERF_MODE_IOPS = 1, 123 MPT_PERF_MODE_LATENCY = 2, 124 }; 125 126 static int 127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, 128 u32 ioc_state, int timeout); 129 static int 130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 131 static void 132 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc); 133 134 /** 135 * mpt3sas_base_check_cmd_timeout - Function 136 * to check timeout and command termination due 137 * to Host reset. 138 * 139 * @ioc: per adapter object. 140 * @status: Status of issued command. 141 * @mpi_request:mf request pointer. 142 * @sz: size of buffer. 143 * 144 * @Returns - 1/0 Reset to be done or Not 145 */ 146 u8 147 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 148 u8 status, void *mpi_request, int sz) 149 { 150 u8 issue_reset = 0; 151 152 if (!(status & MPT3_CMD_RESET)) 153 issue_reset = 1; 154 155 ioc_err(ioc, "Command %s\n", 156 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 157 _debug_dump_mf(mpi_request, sz); 158 159 return issue_reset; 160 } 161 162 /** 163 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 164 * @val: ? 165 * @kp: ? 166 * 167 * Return: ? 168 */ 169 static int 170 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 171 { 172 int ret = param_set_int(val, kp); 173 struct MPT3SAS_ADAPTER *ioc; 174 175 if (ret) 176 return ret; 177 178 /* global ioc spinlock to protect controller list on list operations */ 179 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 180 spin_lock(&gioc_lock); 181 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 182 ioc->fwfault_debug = mpt3sas_fwfault_debug; 183 spin_unlock(&gioc_lock); 184 return 0; 185 } 186 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 187 param_get_int, &mpt3sas_fwfault_debug, 0644); 188 189 /** 190 * _base_readl_aero - retry readl for max three times. 191 * @addr: MPT Fusion system interface register address 192 * 193 * Retry the readl() for max three times if it gets zero value 194 * while reading the system interface register. 195 */ 196 static inline u32 197 _base_readl_aero(const volatile void __iomem *addr) 198 { 199 u32 i = 0, ret_val; 200 201 do { 202 ret_val = readl(addr); 203 i++; 204 } while (ret_val == 0 && i < 3); 205 206 return ret_val; 207 } 208 209 static inline u32 210 _base_readl(const volatile void __iomem *addr) 211 { 212 return readl(addr); 213 } 214 215 /** 216 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 217 * in BAR0 space. 218 * 219 * @ioc: per adapter object 220 * @reply: reply message frame(lower 32bit addr) 221 * @index: System request message index. 222 */ 223 static void 224 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 225 u32 index) 226 { 227 /* 228 * 256 is offset within sys register. 229 * 256 offset MPI frame starts. Max MPI frame supported is 32. 230 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 231 */ 232 u16 cmd_credit = ioc->facts.RequestCredit + 1; 233 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 234 MPI_FRAME_START_OFFSET + 235 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 236 237 writel(reply, reply_free_iomem); 238 } 239 240 /** 241 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 242 * to system/BAR0 region. 243 * 244 * @dst_iomem: Pointer to the destination location in BAR0 space. 245 * @src: Pointer to the Source data. 246 * @size: Size of data to be copied. 247 */ 248 static void 249 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 250 { 251 int i; 252 u32 *src_virt_mem = (u32 *)src; 253 254 for (i = 0; i < size/4; i++) 255 writel((u32)src_virt_mem[i], 256 (void __iomem *)dst_iomem + (i * 4)); 257 } 258 259 /** 260 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 261 * 262 * @dst_iomem: Pointer to the destination location in BAR0 space. 263 * @src: Pointer to the Source data. 264 * @size: Size of data to be copied. 265 */ 266 static void 267 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 268 { 269 int i; 270 u32 *src_virt_mem = (u32 *)(src); 271 272 for (i = 0; i < size/4; i++) 273 writel((u32)src_virt_mem[i], 274 (void __iomem *)dst_iomem + (i * 4)); 275 } 276 277 /** 278 * _base_get_chain - Calculates and Returns virtual chain address 279 * for the provided smid in BAR0 space. 280 * 281 * @ioc: per adapter object 282 * @smid: system request message index 283 * @sge_chain_count: Scatter gather chain count. 284 * 285 * Return: the chain address. 286 */ 287 static inline void __iomem* 288 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 289 u8 sge_chain_count) 290 { 291 void __iomem *base_chain, *chain_virt; 292 u16 cmd_credit = ioc->facts.RequestCredit + 1; 293 294 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 295 (cmd_credit * ioc->request_sz) + 296 REPLY_FREE_POOL_SIZE; 297 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 298 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 299 return chain_virt; 300 } 301 302 /** 303 * _base_get_chain_phys - Calculates and Returns physical address 304 * in BAR0 for scatter gather chains, for 305 * the provided smid. 306 * 307 * @ioc: per adapter object 308 * @smid: system request message index 309 * @sge_chain_count: Scatter gather chain count. 310 * 311 * Return: Physical chain address. 312 */ 313 static inline phys_addr_t 314 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 315 u8 sge_chain_count) 316 { 317 phys_addr_t base_chain_phys, chain_phys; 318 u16 cmd_credit = ioc->facts.RequestCredit + 1; 319 320 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 321 (cmd_credit * ioc->request_sz) + 322 REPLY_FREE_POOL_SIZE; 323 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 324 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 325 return chain_phys; 326 } 327 328 /** 329 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 330 * buffer address for the provided smid. 331 * (Each smid can have 64K starts from 17024) 332 * 333 * @ioc: per adapter object 334 * @smid: system request message index 335 * 336 * Return: Pointer to buffer location in BAR0. 337 */ 338 339 static void __iomem * 340 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 341 { 342 u16 cmd_credit = ioc->facts.RequestCredit + 1; 343 // Added extra 1 to reach end of chain. 344 void __iomem *chain_end = _base_get_chain(ioc, 345 cmd_credit + 1, 346 ioc->facts.MaxChainDepth); 347 return chain_end + (smid * 64 * 1024); 348 } 349 350 /** 351 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 352 * Host buffer Physical address for the provided smid. 353 * (Each smid can have 64K starts from 17024) 354 * 355 * @ioc: per adapter object 356 * @smid: system request message index 357 * 358 * Return: Pointer to buffer location in BAR0. 359 */ 360 static phys_addr_t 361 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 362 { 363 u16 cmd_credit = ioc->facts.RequestCredit + 1; 364 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 365 cmd_credit + 1, 366 ioc->facts.MaxChainDepth); 367 return chain_end_phys + (smid * 64 * 1024); 368 } 369 370 /** 371 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 372 * lookup list and Provides chain_buffer 373 * address for the matching dma address. 374 * (Each smid can have 64K starts from 17024) 375 * 376 * @ioc: per adapter object 377 * @chain_buffer_dma: Chain buffer dma address. 378 * 379 * Return: Pointer to chain buffer. Or Null on Failure. 380 */ 381 static void * 382 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 383 dma_addr_t chain_buffer_dma) 384 { 385 u16 index, j; 386 struct chain_tracker *ct; 387 388 for (index = 0; index < ioc->scsiio_depth; index++) { 389 for (j = 0; j < ioc->chains_needed_per_io; j++) { 390 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 391 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 392 return ct->chain_buffer; 393 } 394 } 395 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 396 return NULL; 397 } 398 399 /** 400 * _clone_sg_entries - MPI EP's scsiio and config requests 401 * are handled here. Base function for 402 * double buffering, before submitting 403 * the requests. 404 * 405 * @ioc: per adapter object. 406 * @mpi_request: mf request pointer. 407 * @smid: system request message index. 408 */ 409 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 410 void *mpi_request, u16 smid) 411 { 412 Mpi2SGESimple32_t *sgel, *sgel_next; 413 u32 sgl_flags, sge_chain_count = 0; 414 bool is_write = false; 415 u16 i = 0; 416 void __iomem *buffer_iomem; 417 phys_addr_t buffer_iomem_phys; 418 void __iomem *buff_ptr; 419 phys_addr_t buff_ptr_phys; 420 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 421 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 422 phys_addr_t dst_addr_phys; 423 MPI2RequestHeader_t *request_hdr; 424 struct scsi_cmnd *scmd; 425 struct scatterlist *sg_scmd = NULL; 426 int is_scsiio_req = 0; 427 428 request_hdr = (MPI2RequestHeader_t *) mpi_request; 429 430 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 431 Mpi25SCSIIORequest_t *scsiio_request = 432 (Mpi25SCSIIORequest_t *)mpi_request; 433 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 434 is_scsiio_req = 1; 435 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 436 Mpi2ConfigRequest_t *config_req = 437 (Mpi2ConfigRequest_t *)mpi_request; 438 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 439 } else 440 return; 441 442 /* From smid we can get scsi_cmd, once we have sg_scmd, 443 * we just need to get sg_virt and sg_next to get virual 444 * address associated with sgel->Address. 445 */ 446 447 if (is_scsiio_req) { 448 /* Get scsi_cmd using smid */ 449 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 450 if (scmd == NULL) { 451 ioc_err(ioc, "scmd is NULL\n"); 452 return; 453 } 454 455 /* Get sg_scmd from scmd provided */ 456 sg_scmd = scsi_sglist(scmd); 457 } 458 459 /* 460 * 0 - 255 System register 461 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 462 * 4352 - 4864 Reply_free pool (512 byte is reserved 463 * considering maxCredit 32. Reply need extra 464 * room, for mCPU case kept four times of 465 * maxCredit). 466 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 467 * 128 byte size = 12288) 468 * 17152 - x Host buffer mapped with smid. 469 * (Each smid can have 64K Max IO.) 470 * BAR0+Last 1K MSIX Addr and Data 471 * Total size in use 2113664 bytes of 4MB BAR0 472 */ 473 474 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 475 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 476 477 buff_ptr = buffer_iomem; 478 buff_ptr_phys = buffer_iomem_phys; 479 WARN_ON(buff_ptr_phys > U32_MAX); 480 481 if (le32_to_cpu(sgel->FlagsLength) & 482 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 483 is_write = true; 484 485 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 486 487 sgl_flags = 488 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 489 490 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 491 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 492 /* 493 * Helper function which on passing 494 * chain_buffer_dma returns chain_buffer. Get 495 * the virtual address for sgel->Address 496 */ 497 sgel_next = 498 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 499 le32_to_cpu(sgel->Address)); 500 if (sgel_next == NULL) 501 return; 502 /* 503 * This is coping 128 byte chain 504 * frame (not a host buffer) 505 */ 506 dst_chain_addr[sge_chain_count] = 507 _base_get_chain(ioc, 508 smid, sge_chain_count); 509 src_chain_addr[sge_chain_count] = 510 (void *) sgel_next; 511 dst_addr_phys = _base_get_chain_phys(ioc, 512 smid, sge_chain_count); 513 WARN_ON(dst_addr_phys > U32_MAX); 514 sgel->Address = 515 cpu_to_le32(lower_32_bits(dst_addr_phys)); 516 sgel = sgel_next; 517 sge_chain_count++; 518 break; 519 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 520 if (is_write) { 521 if (is_scsiio_req) { 522 _base_clone_to_sys_mem(buff_ptr, 523 sg_virt(sg_scmd), 524 (le32_to_cpu(sgel->FlagsLength) & 525 0x00ffffff)); 526 /* 527 * FIXME: this relies on a a zero 528 * PCI mem_offset. 529 */ 530 sgel->Address = 531 cpu_to_le32((u32)buff_ptr_phys); 532 } else { 533 _base_clone_to_sys_mem(buff_ptr, 534 ioc->config_vaddr, 535 (le32_to_cpu(sgel->FlagsLength) & 536 0x00ffffff)); 537 sgel->Address = 538 cpu_to_le32((u32)buff_ptr_phys); 539 } 540 } 541 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 542 0x00ffffff); 543 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 544 0x00ffffff); 545 if ((le32_to_cpu(sgel->FlagsLength) & 546 (MPI2_SGE_FLAGS_END_OF_BUFFER 547 << MPI2_SGE_FLAGS_SHIFT))) 548 goto eob_clone_chain; 549 else { 550 /* 551 * Every single element in MPT will have 552 * associated sg_next. Better to sanity that 553 * sg_next is not NULL, but it will be a bug 554 * if it is null. 555 */ 556 if (is_scsiio_req) { 557 sg_scmd = sg_next(sg_scmd); 558 if (sg_scmd) 559 sgel++; 560 else 561 goto eob_clone_chain; 562 } 563 } 564 break; 565 } 566 } 567 568 eob_clone_chain: 569 for (i = 0; i < sge_chain_count; i++) { 570 if (is_scsiio_req) 571 _base_clone_to_sys_mem(dst_chain_addr[i], 572 src_chain_addr[i], ioc->request_sz); 573 } 574 } 575 576 /** 577 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 578 * @arg: input argument, used to derive ioc 579 * 580 * Return: 581 * 0 if controller is removed from pci subsystem. 582 * -1 for other case. 583 */ 584 static int mpt3sas_remove_dead_ioc_func(void *arg) 585 { 586 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 587 struct pci_dev *pdev; 588 589 if (!ioc) 590 return -1; 591 592 pdev = ioc->pdev; 593 if (!pdev) 594 return -1; 595 pci_stop_and_remove_bus_device_locked(pdev); 596 return 0; 597 } 598 599 /** 600 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp. 601 * @ioc: Per Adapter Object 602 * 603 * Return nothing. 604 */ 605 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc) 606 { 607 Mpi26IoUnitControlRequest_t *mpi_request; 608 Mpi26IoUnitControlReply_t *mpi_reply; 609 u16 smid; 610 ktime_t current_time; 611 u64 TimeStamp = 0; 612 u8 issue_reset = 0; 613 614 mutex_lock(&ioc->scsih_cmds.mutex); 615 if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) { 616 ioc_err(ioc, "scsih_cmd in use %s\n", __func__); 617 goto out; 618 } 619 ioc->scsih_cmds.status = MPT3_CMD_PENDING; 620 smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx); 621 if (!smid) { 622 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__); 623 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 624 goto out; 625 } 626 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 627 ioc->scsih_cmds.smid = smid; 628 memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t)); 629 mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL; 630 mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER; 631 mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP; 632 current_time = ktime_get_real(); 633 TimeStamp = ktime_to_ms(current_time); 634 mpi_request->Reserved7 = cpu_to_le32(TimeStamp & 0xFFFFFFFF); 635 mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp >> 32); 636 init_completion(&ioc->scsih_cmds.done); 637 ioc->put_smid_default(ioc, smid); 638 dinitprintk(ioc, ioc_info(ioc, 639 "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n", 640 TimeStamp)); 641 wait_for_completion_timeout(&ioc->scsih_cmds.done, 642 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ); 643 if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) { 644 mpt3sas_check_cmd_timeout(ioc, 645 ioc->scsih_cmds.status, mpi_request, 646 sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset); 647 goto issue_host_reset; 648 } 649 if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) { 650 mpi_reply = ioc->scsih_cmds.reply; 651 dinitprintk(ioc, ioc_info(ioc, 652 "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n", 653 le16_to_cpu(mpi_reply->IOCStatus), 654 le32_to_cpu(mpi_reply->IOCLogInfo))); 655 } 656 issue_host_reset: 657 if (issue_reset) 658 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 659 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 660 out: 661 mutex_unlock(&ioc->scsih_cmds.mutex); 662 } 663 664 /** 665 * _base_fault_reset_work - workq handling ioc fault conditions 666 * @work: input argument, used to derive ioc 667 * 668 * Context: sleep. 669 */ 670 static void 671 _base_fault_reset_work(struct work_struct *work) 672 { 673 struct MPT3SAS_ADAPTER *ioc = 674 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 675 unsigned long flags; 676 u32 doorbell; 677 int rc; 678 struct task_struct *p; 679 680 681 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 682 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) || 683 ioc->pci_error_recovery) 684 goto rearm_timer; 685 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 686 687 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 688 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 689 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 690 691 /* It may be possible that EEH recovery can resolve some of 692 * pci bus failure issues rather removing the dead ioc function 693 * by considering controller is in a non-operational state. So 694 * here priority is given to the EEH recovery. If it doesn't 695 * not resolve this issue, mpt3sas driver will consider this 696 * controller to non-operational state and remove the dead ioc 697 * function. 698 */ 699 if (ioc->non_operational_loop++ < 5) { 700 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 701 flags); 702 goto rearm_timer; 703 } 704 705 /* 706 * Call _scsih_flush_pending_cmds callback so that we flush all 707 * pending commands back to OS. This call is required to aovid 708 * deadlock at block layer. Dead IOC will fail to do diag reset, 709 * and this call is safe since dead ioc will never return any 710 * command back from HW. 711 */ 712 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 713 /* 714 * Set remove_host flag early since kernel thread will 715 * take some time to execute. 716 */ 717 ioc->remove_host = 1; 718 /*Remove the Dead Host */ 719 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 720 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 721 if (IS_ERR(p)) 722 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 723 __func__); 724 else 725 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 726 __func__); 727 return; /* don't rearm timer */ 728 } 729 730 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 731 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 732 ioc->manu_pg11.CoreDumpTOSec : 733 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 734 735 timeout /= (FAULT_POLLING_INTERVAL/1000); 736 737 if (ioc->ioc_coredump_loop == 0) { 738 mpt3sas_print_coredump_info(ioc, 739 doorbell & MPI2_DOORBELL_DATA_MASK); 740 /* do not accept any IOs and disable the interrupts */ 741 spin_lock_irqsave( 742 &ioc->ioc_reset_in_progress_lock, flags); 743 ioc->shost_recovery = 1; 744 spin_unlock_irqrestore( 745 &ioc->ioc_reset_in_progress_lock, flags); 746 mpt3sas_base_mask_interrupts(ioc); 747 _base_clear_outstanding_commands(ioc); 748 } 749 750 ioc_info(ioc, "%s: CoreDump loop %d.", 751 __func__, ioc->ioc_coredump_loop); 752 753 /* Wait until CoreDump completes or times out */ 754 if (ioc->ioc_coredump_loop++ < timeout) { 755 spin_lock_irqsave( 756 &ioc->ioc_reset_in_progress_lock, flags); 757 goto rearm_timer; 758 } 759 } 760 761 if (ioc->ioc_coredump_loop) { 762 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP) 763 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d", 764 __func__, ioc->ioc_coredump_loop); 765 else 766 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d", 767 __func__, ioc->ioc_coredump_loop); 768 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE; 769 } 770 ioc->non_operational_loop = 0; 771 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 772 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 773 ioc_warn(ioc, "%s: hard reset: %s\n", 774 __func__, rc == 0 ? "success" : "failed"); 775 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 776 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 777 mpt3sas_print_fault_code(ioc, doorbell & 778 MPI2_DOORBELL_DATA_MASK); 779 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 780 MPI2_IOC_STATE_COREDUMP) 781 mpt3sas_print_coredump_info(ioc, doorbell & 782 MPI2_DOORBELL_DATA_MASK); 783 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 784 MPI2_IOC_STATE_OPERATIONAL) 785 return; /* don't rearm timer */ 786 } 787 ioc->ioc_coredump_loop = 0; 788 if (ioc->time_sync_interval && 789 ++ioc->timestamp_update_count >= ioc->time_sync_interval) { 790 ioc->timestamp_update_count = 0; 791 _base_sync_drv_fw_timestamp(ioc); 792 } 793 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 794 rearm_timer: 795 if (ioc->fault_reset_work_q) 796 queue_delayed_work(ioc->fault_reset_work_q, 797 &ioc->fault_reset_work, 798 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 799 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 800 } 801 802 /** 803 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 804 * @ioc: per adapter object 805 * 806 * Context: sleep. 807 */ 808 void 809 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 810 { 811 unsigned long flags; 812 813 if (ioc->fault_reset_work_q) 814 return; 815 816 ioc->timestamp_update_count = 0; 817 /* initialize fault polling */ 818 819 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 820 snprintf(ioc->fault_reset_work_q_name, 821 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 822 ioc->driver_name, ioc->id); 823 ioc->fault_reset_work_q = 824 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 825 if (!ioc->fault_reset_work_q) { 826 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 827 return; 828 } 829 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 830 if (ioc->fault_reset_work_q) 831 queue_delayed_work(ioc->fault_reset_work_q, 832 &ioc->fault_reset_work, 833 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 834 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 835 } 836 837 /** 838 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 839 * @ioc: per adapter object 840 * 841 * Context: sleep. 842 */ 843 void 844 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 845 { 846 unsigned long flags; 847 struct workqueue_struct *wq; 848 849 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 850 wq = ioc->fault_reset_work_q; 851 ioc->fault_reset_work_q = NULL; 852 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 853 if (wq) { 854 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 855 flush_workqueue(wq); 856 destroy_workqueue(wq); 857 } 858 } 859 860 /** 861 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 862 * @ioc: per adapter object 863 * @fault_code: fault code 864 */ 865 void 866 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) 867 { 868 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 869 } 870 871 /** 872 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state 873 * @ioc: per adapter object 874 * @fault_code: fault code 875 * 876 * Return nothing. 877 */ 878 void 879 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 880 { 881 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code); 882 } 883 884 /** 885 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump 886 * completes or times out 887 * @ioc: per adapter object 888 * @caller: caller function name 889 * 890 * Returns 0 for success, non-zero for failure. 891 */ 892 int 893 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc, 894 const char *caller) 895 { 896 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 897 ioc->manu_pg11.CoreDumpTOSec : 898 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 899 900 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT, 901 timeout); 902 903 if (ioc_state) 904 ioc_err(ioc, 905 "%s: CoreDump timed out. (ioc_state=0x%x)\n", 906 caller, ioc_state); 907 else 908 ioc_info(ioc, 909 "%s: CoreDump completed. (ioc_state=0x%x)\n", 910 caller, ioc_state); 911 912 return ioc_state; 913 } 914 915 /** 916 * mpt3sas_halt_firmware - halt's mpt controller firmware 917 * @ioc: per adapter object 918 * 919 * For debugging timeout related issues. Writing 0xCOFFEE00 920 * to the doorbell register will halt controller firmware. With 921 * the purpose to stop both driver and firmware, the enduser can 922 * obtain a ring buffer from controller UART. 923 */ 924 void 925 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 926 { 927 u32 doorbell; 928 929 if (!ioc->fwfault_debug) 930 return; 931 932 dump_stack(); 933 934 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 935 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 936 mpt3sas_print_fault_code(ioc, doorbell & 937 MPI2_DOORBELL_DATA_MASK); 938 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 939 MPI2_IOC_STATE_COREDUMP) { 940 mpt3sas_print_coredump_info(ioc, doorbell & 941 MPI2_DOORBELL_DATA_MASK); 942 } else { 943 writel(0xC0FFEE00, &ioc->chip->Doorbell); 944 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 945 } 946 947 if (ioc->fwfault_debug == 2) 948 for (;;) 949 ; 950 else 951 panic("panic in %s\n", __func__); 952 } 953 954 /** 955 * _base_sas_ioc_info - verbose translation of the ioc status 956 * @ioc: per adapter object 957 * @mpi_reply: reply mf payload returned from firmware 958 * @request_hdr: request mf 959 */ 960 static void 961 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 962 MPI2RequestHeader_t *request_hdr) 963 { 964 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 965 MPI2_IOCSTATUS_MASK; 966 char *desc = NULL; 967 u16 frame_sz; 968 char *func_str = NULL; 969 970 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 971 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 972 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 973 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 974 return; 975 976 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 977 return; 978 /* 979 * Older Firmware version doesn't support driver trigger pages. 980 * So, skip displaying 'config invalid type' type 981 * of error message. 982 */ 983 if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 984 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr; 985 986 if ((rqst->ExtPageType == 987 MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) && 988 !(ioc->logging_level & MPT_DEBUG_CONFIG)) { 989 return; 990 } 991 } 992 993 switch (ioc_status) { 994 995 /**************************************************************************** 996 * Common IOCStatus values for all replies 997 ****************************************************************************/ 998 999 case MPI2_IOCSTATUS_INVALID_FUNCTION: 1000 desc = "invalid function"; 1001 break; 1002 case MPI2_IOCSTATUS_BUSY: 1003 desc = "busy"; 1004 break; 1005 case MPI2_IOCSTATUS_INVALID_SGL: 1006 desc = "invalid sgl"; 1007 break; 1008 case MPI2_IOCSTATUS_INTERNAL_ERROR: 1009 desc = "internal error"; 1010 break; 1011 case MPI2_IOCSTATUS_INVALID_VPID: 1012 desc = "invalid vpid"; 1013 break; 1014 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 1015 desc = "insufficient resources"; 1016 break; 1017 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 1018 desc = "insufficient power"; 1019 break; 1020 case MPI2_IOCSTATUS_INVALID_FIELD: 1021 desc = "invalid field"; 1022 break; 1023 case MPI2_IOCSTATUS_INVALID_STATE: 1024 desc = "invalid state"; 1025 break; 1026 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 1027 desc = "op state not supported"; 1028 break; 1029 1030 /**************************************************************************** 1031 * Config IOCStatus values 1032 ****************************************************************************/ 1033 1034 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 1035 desc = "config invalid action"; 1036 break; 1037 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 1038 desc = "config invalid type"; 1039 break; 1040 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 1041 desc = "config invalid page"; 1042 break; 1043 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 1044 desc = "config invalid data"; 1045 break; 1046 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 1047 desc = "config no defaults"; 1048 break; 1049 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 1050 desc = "config cant commit"; 1051 break; 1052 1053 /**************************************************************************** 1054 * SCSI IO Reply 1055 ****************************************************************************/ 1056 1057 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 1058 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 1059 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 1060 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 1061 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 1062 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 1063 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 1064 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 1065 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 1066 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 1067 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 1068 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 1069 break; 1070 1071 /**************************************************************************** 1072 * For use by SCSI Initiator and SCSI Target end-to-end data protection 1073 ****************************************************************************/ 1074 1075 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 1076 desc = "eedp guard error"; 1077 break; 1078 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 1079 desc = "eedp ref tag error"; 1080 break; 1081 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 1082 desc = "eedp app tag error"; 1083 break; 1084 1085 /**************************************************************************** 1086 * SCSI Target values 1087 ****************************************************************************/ 1088 1089 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 1090 desc = "target invalid io index"; 1091 break; 1092 case MPI2_IOCSTATUS_TARGET_ABORTED: 1093 desc = "target aborted"; 1094 break; 1095 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 1096 desc = "target no conn retryable"; 1097 break; 1098 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 1099 desc = "target no connection"; 1100 break; 1101 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 1102 desc = "target xfer count mismatch"; 1103 break; 1104 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 1105 desc = "target data offset error"; 1106 break; 1107 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 1108 desc = "target too much write data"; 1109 break; 1110 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 1111 desc = "target iu too short"; 1112 break; 1113 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 1114 desc = "target ack nak timeout"; 1115 break; 1116 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 1117 desc = "target nak received"; 1118 break; 1119 1120 /**************************************************************************** 1121 * Serial Attached SCSI values 1122 ****************************************************************************/ 1123 1124 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 1125 desc = "smp request failed"; 1126 break; 1127 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 1128 desc = "smp data overrun"; 1129 break; 1130 1131 /**************************************************************************** 1132 * Diagnostic Buffer Post / Diagnostic Release values 1133 ****************************************************************************/ 1134 1135 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 1136 desc = "diagnostic released"; 1137 break; 1138 default: 1139 break; 1140 } 1141 1142 if (!desc) 1143 return; 1144 1145 switch (request_hdr->Function) { 1146 case MPI2_FUNCTION_CONFIG: 1147 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 1148 func_str = "config_page"; 1149 break; 1150 case MPI2_FUNCTION_SCSI_TASK_MGMT: 1151 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 1152 func_str = "task_mgmt"; 1153 break; 1154 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 1155 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 1156 func_str = "sas_iounit_ctl"; 1157 break; 1158 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 1159 frame_sz = sizeof(Mpi2SepRequest_t); 1160 func_str = "enclosure"; 1161 break; 1162 case MPI2_FUNCTION_IOC_INIT: 1163 frame_sz = sizeof(Mpi2IOCInitRequest_t); 1164 func_str = "ioc_init"; 1165 break; 1166 case MPI2_FUNCTION_PORT_ENABLE: 1167 frame_sz = sizeof(Mpi2PortEnableRequest_t); 1168 func_str = "port_enable"; 1169 break; 1170 case MPI2_FUNCTION_SMP_PASSTHROUGH: 1171 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 1172 func_str = "smp_passthru"; 1173 break; 1174 case MPI2_FUNCTION_NVME_ENCAPSULATED: 1175 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 1176 ioc->sge_size; 1177 func_str = "nvme_encapsulated"; 1178 break; 1179 default: 1180 frame_sz = 32; 1181 func_str = "unknown"; 1182 break; 1183 } 1184 1185 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 1186 desc, ioc_status, request_hdr, func_str); 1187 1188 _debug_dump_mf(request_hdr, frame_sz/4); 1189 } 1190 1191 /** 1192 * _base_display_event_data - verbose translation of firmware asyn events 1193 * @ioc: per adapter object 1194 * @mpi_reply: reply mf payload returned from firmware 1195 */ 1196 static void 1197 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 1198 Mpi2EventNotificationReply_t *mpi_reply) 1199 { 1200 char *desc = NULL; 1201 u16 event; 1202 1203 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 1204 return; 1205 1206 event = le16_to_cpu(mpi_reply->Event); 1207 1208 switch (event) { 1209 case MPI2_EVENT_LOG_DATA: 1210 desc = "Log Data"; 1211 break; 1212 case MPI2_EVENT_STATE_CHANGE: 1213 desc = "Status Change"; 1214 break; 1215 case MPI2_EVENT_HARD_RESET_RECEIVED: 1216 desc = "Hard Reset Received"; 1217 break; 1218 case MPI2_EVENT_EVENT_CHANGE: 1219 desc = "Event Change"; 1220 break; 1221 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1222 desc = "Device Status Change"; 1223 break; 1224 case MPI2_EVENT_IR_OPERATION_STATUS: 1225 if (!ioc->hide_ir_msg) 1226 desc = "IR Operation Status"; 1227 break; 1228 case MPI2_EVENT_SAS_DISCOVERY: 1229 { 1230 Mpi2EventDataSasDiscovery_t *event_data = 1231 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1232 ioc_info(ioc, "Discovery: (%s)", 1233 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1234 "start" : "stop"); 1235 if (event_data->DiscoveryStatus) 1236 pr_cont(" discovery_status(0x%08x)", 1237 le32_to_cpu(event_data->DiscoveryStatus)); 1238 pr_cont("\n"); 1239 return; 1240 } 1241 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1242 desc = "SAS Broadcast Primitive"; 1243 break; 1244 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1245 desc = "SAS Init Device Status Change"; 1246 break; 1247 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1248 desc = "SAS Init Table Overflow"; 1249 break; 1250 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1251 desc = "SAS Topology Change List"; 1252 break; 1253 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1254 desc = "SAS Enclosure Device Status Change"; 1255 break; 1256 case MPI2_EVENT_IR_VOLUME: 1257 if (!ioc->hide_ir_msg) 1258 desc = "IR Volume"; 1259 break; 1260 case MPI2_EVENT_IR_PHYSICAL_DISK: 1261 if (!ioc->hide_ir_msg) 1262 desc = "IR Physical Disk"; 1263 break; 1264 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1265 if (!ioc->hide_ir_msg) 1266 desc = "IR Configuration Change List"; 1267 break; 1268 case MPI2_EVENT_LOG_ENTRY_ADDED: 1269 if (!ioc->hide_ir_msg) 1270 desc = "Log Entry Added"; 1271 break; 1272 case MPI2_EVENT_TEMP_THRESHOLD: 1273 desc = "Temperature Threshold"; 1274 break; 1275 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1276 desc = "Cable Event"; 1277 break; 1278 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1279 desc = "SAS Device Discovery Error"; 1280 break; 1281 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1282 desc = "PCIE Device Status Change"; 1283 break; 1284 case MPI2_EVENT_PCIE_ENUMERATION: 1285 { 1286 Mpi26EventDataPCIeEnumeration_t *event_data = 1287 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1288 ioc_info(ioc, "PCIE Enumeration: (%s)", 1289 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1290 "start" : "stop"); 1291 if (event_data->EnumerationStatus) 1292 pr_cont("enumeration_status(0x%08x)", 1293 le32_to_cpu(event_data->EnumerationStatus)); 1294 pr_cont("\n"); 1295 return; 1296 } 1297 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1298 desc = "PCIE Topology Change List"; 1299 break; 1300 } 1301 1302 if (!desc) 1303 return; 1304 1305 ioc_info(ioc, "%s\n", desc); 1306 } 1307 1308 /** 1309 * _base_sas_log_info - verbose translation of firmware log info 1310 * @ioc: per adapter object 1311 * @log_info: log info 1312 */ 1313 static void 1314 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) 1315 { 1316 union loginfo_type { 1317 u32 loginfo; 1318 struct { 1319 u32 subcode:16; 1320 u32 code:8; 1321 u32 originator:4; 1322 u32 bus_type:4; 1323 } dw; 1324 }; 1325 union loginfo_type sas_loginfo; 1326 char *originator_str = NULL; 1327 1328 sas_loginfo.loginfo = log_info; 1329 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1330 return; 1331 1332 /* each nexus loss loginfo */ 1333 if (log_info == 0x31170000) 1334 return; 1335 1336 /* eat the loginfos associated with task aborts */ 1337 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1338 0x31140000 || log_info == 0x31130000)) 1339 return; 1340 1341 switch (sas_loginfo.dw.originator) { 1342 case 0: 1343 originator_str = "IOP"; 1344 break; 1345 case 1: 1346 originator_str = "PL"; 1347 break; 1348 case 2: 1349 if (!ioc->hide_ir_msg) 1350 originator_str = "IR"; 1351 else 1352 originator_str = "WarpDrive"; 1353 break; 1354 } 1355 1356 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1357 log_info, 1358 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1359 } 1360 1361 /** 1362 * _base_display_reply_info - 1363 * @ioc: per adapter object 1364 * @smid: system request message index 1365 * @msix_index: MSIX table index supplied by the OS 1366 * @reply: reply message frame(lower 32bit addr) 1367 */ 1368 static void 1369 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1370 u32 reply) 1371 { 1372 MPI2DefaultReply_t *mpi_reply; 1373 u16 ioc_status; 1374 u32 loginfo = 0; 1375 1376 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1377 if (unlikely(!mpi_reply)) { 1378 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1379 __FILE__, __LINE__, __func__); 1380 return; 1381 } 1382 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1383 1384 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1385 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1386 _base_sas_ioc_info(ioc , mpi_reply, 1387 mpt3sas_base_get_msg_frame(ioc, smid)); 1388 } 1389 1390 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1391 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1392 _base_sas_log_info(ioc, loginfo); 1393 } 1394 1395 if (ioc_status || loginfo) { 1396 ioc_status &= MPI2_IOCSTATUS_MASK; 1397 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1398 } 1399 } 1400 1401 /** 1402 * mpt3sas_base_done - base internal command completion routine 1403 * @ioc: per adapter object 1404 * @smid: system request message index 1405 * @msix_index: MSIX table index supplied by the OS 1406 * @reply: reply message frame(lower 32bit addr) 1407 * 1408 * Return: 1409 * 1 meaning mf should be freed from _base_interrupt 1410 * 0 means the mf is freed from this function. 1411 */ 1412 u8 1413 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1414 u32 reply) 1415 { 1416 MPI2DefaultReply_t *mpi_reply; 1417 1418 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1419 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1420 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1421 1422 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1423 return 1; 1424 1425 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1426 if (mpi_reply) { 1427 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1428 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1429 } 1430 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1431 1432 complete(&ioc->base_cmds.done); 1433 return 1; 1434 } 1435 1436 /** 1437 * _base_async_event - main callback handler for firmware asyn events 1438 * @ioc: per adapter object 1439 * @msix_index: MSIX table index supplied by the OS 1440 * @reply: reply message frame(lower 32bit addr) 1441 * 1442 * Return: 1443 * 1 meaning mf should be freed from _base_interrupt 1444 * 0 means the mf is freed from this function. 1445 */ 1446 static u8 1447 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1448 { 1449 Mpi2EventNotificationReply_t *mpi_reply; 1450 Mpi2EventAckRequest_t *ack_request; 1451 u16 smid; 1452 struct _event_ack_list *delayed_event_ack; 1453 1454 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1455 if (!mpi_reply) 1456 return 1; 1457 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1458 return 1; 1459 1460 _base_display_event_data(ioc, mpi_reply); 1461 1462 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1463 goto out; 1464 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1465 if (!smid) { 1466 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1467 GFP_ATOMIC); 1468 if (!delayed_event_ack) 1469 goto out; 1470 INIT_LIST_HEAD(&delayed_event_ack->list); 1471 delayed_event_ack->Event = mpi_reply->Event; 1472 delayed_event_ack->EventContext = mpi_reply->EventContext; 1473 list_add_tail(&delayed_event_ack->list, 1474 &ioc->delayed_event_ack_list); 1475 dewtprintk(ioc, 1476 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1477 le16_to_cpu(mpi_reply->Event))); 1478 goto out; 1479 } 1480 1481 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1482 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1483 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1484 ack_request->Event = mpi_reply->Event; 1485 ack_request->EventContext = mpi_reply->EventContext; 1486 ack_request->VF_ID = 0; /* TODO */ 1487 ack_request->VP_ID = 0; 1488 ioc->put_smid_default(ioc, smid); 1489 1490 out: 1491 1492 /* scsih callback handler */ 1493 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1494 1495 /* ctl callback handler */ 1496 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1497 1498 return 1; 1499 } 1500 1501 static struct scsiio_tracker * 1502 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1503 { 1504 struct scsi_cmnd *cmd; 1505 1506 if (WARN_ON(!smid) || 1507 WARN_ON(smid >= ioc->hi_priority_smid)) 1508 return NULL; 1509 1510 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1511 if (cmd) 1512 return scsi_cmd_priv(cmd); 1513 1514 return NULL; 1515 } 1516 1517 /** 1518 * _base_get_cb_idx - obtain the callback index 1519 * @ioc: per adapter object 1520 * @smid: system request message index 1521 * 1522 * Return: callback index. 1523 */ 1524 static u8 1525 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1526 { 1527 int i; 1528 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1529 u8 cb_idx = 0xFF; 1530 1531 if (smid < ioc->hi_priority_smid) { 1532 struct scsiio_tracker *st; 1533 1534 if (smid < ctl_smid) { 1535 st = _get_st_from_smid(ioc, smid); 1536 if (st) 1537 cb_idx = st->cb_idx; 1538 } else if (smid == ctl_smid) 1539 cb_idx = ioc->ctl_cb_idx; 1540 } else if (smid < ioc->internal_smid) { 1541 i = smid - ioc->hi_priority_smid; 1542 cb_idx = ioc->hpr_lookup[i].cb_idx; 1543 } else if (smid <= ioc->hba_queue_depth) { 1544 i = smid - ioc->internal_smid; 1545 cb_idx = ioc->internal_lookup[i].cb_idx; 1546 } 1547 return cb_idx; 1548 } 1549 1550 /** 1551 * mpt3sas_base_mask_interrupts - disable interrupts 1552 * @ioc: per adapter object 1553 * 1554 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1555 */ 1556 void 1557 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1558 { 1559 u32 him_register; 1560 1561 ioc->mask_interrupts = 1; 1562 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1563 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1564 writel(him_register, &ioc->chip->HostInterruptMask); 1565 ioc->base_readl(&ioc->chip->HostInterruptMask); 1566 } 1567 1568 /** 1569 * mpt3sas_base_unmask_interrupts - enable interrupts 1570 * @ioc: per adapter object 1571 * 1572 * Enabling only Reply Interrupts 1573 */ 1574 void 1575 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1576 { 1577 u32 him_register; 1578 1579 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1580 him_register &= ~MPI2_HIM_RIM; 1581 writel(him_register, &ioc->chip->HostInterruptMask); 1582 ioc->mask_interrupts = 0; 1583 } 1584 1585 union reply_descriptor { 1586 u64 word; 1587 struct { 1588 u32 low; 1589 u32 high; 1590 } u; 1591 }; 1592 1593 static u32 base_mod64(u64 dividend, u32 divisor) 1594 { 1595 u32 remainder; 1596 1597 if (!divisor) 1598 pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); 1599 remainder = do_div(dividend, divisor); 1600 return remainder; 1601 } 1602 1603 /** 1604 * _base_process_reply_queue - Process reply descriptors from reply 1605 * descriptor post queue. 1606 * @reply_q: per IRQ's reply queue object. 1607 * 1608 * Return: number of reply descriptors processed from reply 1609 * descriptor queue. 1610 */ 1611 static int 1612 _base_process_reply_queue(struct adapter_reply_queue *reply_q) 1613 { 1614 union reply_descriptor rd; 1615 u64 completed_cmds; 1616 u8 request_descript_type; 1617 u16 smid; 1618 u8 cb_idx; 1619 u32 reply; 1620 u8 msix_index = reply_q->msix_index; 1621 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1622 Mpi2ReplyDescriptorsUnion_t *rpf; 1623 u8 rc; 1624 1625 completed_cmds = 0; 1626 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1627 return completed_cmds; 1628 1629 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1630 request_descript_type = rpf->Default.ReplyFlags 1631 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1632 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1633 atomic_dec(&reply_q->busy); 1634 return completed_cmds; 1635 } 1636 1637 cb_idx = 0xFF; 1638 do { 1639 rd.word = le64_to_cpu(rpf->Words); 1640 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1641 goto out; 1642 reply = 0; 1643 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1644 if (request_descript_type == 1645 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1646 request_descript_type == 1647 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1648 request_descript_type == 1649 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1650 cb_idx = _base_get_cb_idx(ioc, smid); 1651 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1652 (likely(mpt_callbacks[cb_idx] != NULL))) { 1653 rc = mpt_callbacks[cb_idx](ioc, smid, 1654 msix_index, 0); 1655 if (rc) 1656 mpt3sas_base_free_smid(ioc, smid); 1657 } 1658 } else if (request_descript_type == 1659 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1660 reply = le32_to_cpu( 1661 rpf->AddressReply.ReplyFrameAddress); 1662 if (reply > ioc->reply_dma_max_address || 1663 reply < ioc->reply_dma_min_address) 1664 reply = 0; 1665 if (smid) { 1666 cb_idx = _base_get_cb_idx(ioc, smid); 1667 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1668 (likely(mpt_callbacks[cb_idx] != NULL))) { 1669 rc = mpt_callbacks[cb_idx](ioc, smid, 1670 msix_index, reply); 1671 if (reply) 1672 _base_display_reply_info(ioc, 1673 smid, msix_index, reply); 1674 if (rc) 1675 mpt3sas_base_free_smid(ioc, 1676 smid); 1677 } 1678 } else { 1679 _base_async_event(ioc, msix_index, reply); 1680 } 1681 1682 /* reply free queue handling */ 1683 if (reply) { 1684 ioc->reply_free_host_index = 1685 (ioc->reply_free_host_index == 1686 (ioc->reply_free_queue_depth - 1)) ? 1687 0 : ioc->reply_free_host_index + 1; 1688 ioc->reply_free[ioc->reply_free_host_index] = 1689 cpu_to_le32(reply); 1690 if (ioc->is_mcpu_endpoint) 1691 _base_clone_reply_to_sys_mem(ioc, 1692 reply, 1693 ioc->reply_free_host_index); 1694 writel(ioc->reply_free_host_index, 1695 &ioc->chip->ReplyFreeHostIndex); 1696 } 1697 } 1698 1699 rpf->Words = cpu_to_le64(ULLONG_MAX); 1700 reply_q->reply_post_host_index = 1701 (reply_q->reply_post_host_index == 1702 (ioc->reply_post_queue_depth - 1)) ? 0 : 1703 reply_q->reply_post_host_index + 1; 1704 request_descript_type = 1705 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1706 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1707 completed_cmds++; 1708 /* Update the reply post host index after continuously 1709 * processing the threshold number of Reply Descriptors. 1710 * So that FW can find enough entries to post the Reply 1711 * Descriptors in the reply descriptor post queue. 1712 */ 1713 if (completed_cmds >= ioc->thresh_hold) { 1714 if (ioc->combined_reply_queue) { 1715 writel(reply_q->reply_post_host_index | 1716 ((msix_index & 7) << 1717 MPI2_RPHI_MSIX_INDEX_SHIFT), 1718 ioc->replyPostRegisterIndex[msix_index/8]); 1719 } else { 1720 writel(reply_q->reply_post_host_index | 1721 (msix_index << 1722 MPI2_RPHI_MSIX_INDEX_SHIFT), 1723 &ioc->chip->ReplyPostHostIndex); 1724 } 1725 if (!reply_q->irq_poll_scheduled) { 1726 reply_q->irq_poll_scheduled = true; 1727 irq_poll_sched(&reply_q->irqpoll); 1728 } 1729 atomic_dec(&reply_q->busy); 1730 return completed_cmds; 1731 } 1732 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1733 goto out; 1734 if (!reply_q->reply_post_host_index) 1735 rpf = reply_q->reply_post_free; 1736 else 1737 rpf++; 1738 } while (1); 1739 1740 out: 1741 1742 if (!completed_cmds) { 1743 atomic_dec(&reply_q->busy); 1744 return completed_cmds; 1745 } 1746 1747 if (ioc->is_warpdrive) { 1748 writel(reply_q->reply_post_host_index, 1749 ioc->reply_post_host_index[msix_index]); 1750 atomic_dec(&reply_q->busy); 1751 return completed_cmds; 1752 } 1753 1754 /* Update Reply Post Host Index. 1755 * For those HBA's which support combined reply queue feature 1756 * 1. Get the correct Supplemental Reply Post Host Index Register. 1757 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1758 * Index Register address bank i.e replyPostRegisterIndex[], 1759 * 2. Then update this register with new reply host index value 1760 * in ReplyPostIndex field and the MSIxIndex field with 1761 * msix_index value reduced to a value between 0 and 7, 1762 * using a modulo 8 operation. Since each Supplemental Reply Post 1763 * Host Index Register supports 8 MSI-X vectors. 1764 * 1765 * For other HBA's just update the Reply Post Host Index register with 1766 * new reply host index value in ReplyPostIndex Field and msix_index 1767 * value in MSIxIndex field. 1768 */ 1769 if (ioc->combined_reply_queue) 1770 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1771 MPI2_RPHI_MSIX_INDEX_SHIFT), 1772 ioc->replyPostRegisterIndex[msix_index/8]); 1773 else 1774 writel(reply_q->reply_post_host_index | (msix_index << 1775 MPI2_RPHI_MSIX_INDEX_SHIFT), 1776 &ioc->chip->ReplyPostHostIndex); 1777 atomic_dec(&reply_q->busy); 1778 return completed_cmds; 1779 } 1780 1781 /** 1782 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1783 * @irq: irq number (not used) 1784 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1785 * 1786 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1787 */ 1788 static irqreturn_t 1789 _base_interrupt(int irq, void *bus_id) 1790 { 1791 struct adapter_reply_queue *reply_q = bus_id; 1792 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1793 1794 if (ioc->mask_interrupts) 1795 return IRQ_NONE; 1796 if (reply_q->irq_poll_scheduled) 1797 return IRQ_HANDLED; 1798 return ((_base_process_reply_queue(reply_q) > 0) ? 1799 IRQ_HANDLED : IRQ_NONE); 1800 } 1801 1802 /** 1803 * _base_irqpoll - IRQ poll callback handler 1804 * @irqpoll: irq_poll object 1805 * @budget: irq poll weight 1806 * 1807 * returns number of reply descriptors processed 1808 */ 1809 static int 1810 _base_irqpoll(struct irq_poll *irqpoll, int budget) 1811 { 1812 struct adapter_reply_queue *reply_q; 1813 int num_entries = 0; 1814 1815 reply_q = container_of(irqpoll, struct adapter_reply_queue, 1816 irqpoll); 1817 if (reply_q->irq_line_enable) { 1818 disable_irq_nosync(reply_q->os_irq); 1819 reply_q->irq_line_enable = false; 1820 } 1821 num_entries = _base_process_reply_queue(reply_q); 1822 if (num_entries < budget) { 1823 irq_poll_complete(irqpoll); 1824 reply_q->irq_poll_scheduled = false; 1825 reply_q->irq_line_enable = true; 1826 enable_irq(reply_q->os_irq); 1827 /* 1828 * Go for one more round of processing the 1829 * reply descriptor post queue incase if HBA 1830 * Firmware has posted some reply descriptors 1831 * while reenabling the IRQ. 1832 */ 1833 _base_process_reply_queue(reply_q); 1834 } 1835 1836 return num_entries; 1837 } 1838 1839 /** 1840 * _base_init_irqpolls - initliaze IRQ polls 1841 * @ioc: per adapter object 1842 * 1843 * returns nothing 1844 */ 1845 static void 1846 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) 1847 { 1848 struct adapter_reply_queue *reply_q, *next; 1849 1850 if (list_empty(&ioc->reply_queue_list)) 1851 return; 1852 1853 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1854 irq_poll_init(&reply_q->irqpoll, 1855 ioc->hba_queue_depth/4, _base_irqpoll); 1856 reply_q->irq_poll_scheduled = false; 1857 reply_q->irq_line_enable = true; 1858 reply_q->os_irq = pci_irq_vector(ioc->pdev, 1859 reply_q->msix_index); 1860 } 1861 } 1862 1863 /** 1864 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1865 * @ioc: per adapter object 1866 * 1867 * Return: Whether or not MSI/X is enabled. 1868 */ 1869 static inline int 1870 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1871 { 1872 return (ioc->facts.IOCCapabilities & 1873 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1874 } 1875 1876 /** 1877 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1878 * @ioc: per adapter object 1879 * @poll: poll over reply descriptor pools incase interrupt for 1880 * timed-out SCSI command got delayed 1881 * Context: non ISR conext 1882 * 1883 * Called when a Task Management request has completed. 1884 */ 1885 void 1886 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll) 1887 { 1888 struct adapter_reply_queue *reply_q; 1889 1890 /* If MSIX capability is turned off 1891 * then multi-queues are not enabled 1892 */ 1893 if (!_base_is_controller_msix_enabled(ioc)) 1894 return; 1895 1896 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1897 if (ioc->shost_recovery || ioc->remove_host || 1898 ioc->pci_error_recovery) 1899 return; 1900 /* TMs are on msix_index == 0 */ 1901 if (reply_q->msix_index == 0) 1902 continue; 1903 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 1904 if (reply_q->irq_poll_scheduled) { 1905 /* Calling irq_poll_disable will wait for any pending 1906 * callbacks to have completed. 1907 */ 1908 irq_poll_disable(&reply_q->irqpoll); 1909 irq_poll_enable(&reply_q->irqpoll); 1910 /* check how the scheduled poll has ended, 1911 * clean up only if necessary 1912 */ 1913 if (reply_q->irq_poll_scheduled) { 1914 reply_q->irq_poll_scheduled = false; 1915 reply_q->irq_line_enable = true; 1916 enable_irq(reply_q->os_irq); 1917 } 1918 } 1919 } 1920 if (poll) 1921 _base_process_reply_queue(reply_q); 1922 } 1923 1924 /** 1925 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 1926 * @cb_idx: callback index 1927 */ 1928 void 1929 mpt3sas_base_release_callback_handler(u8 cb_idx) 1930 { 1931 mpt_callbacks[cb_idx] = NULL; 1932 } 1933 1934 /** 1935 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 1936 * @cb_func: callback function 1937 * 1938 * Return: Index of @cb_func. 1939 */ 1940 u8 1941 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 1942 { 1943 u8 cb_idx; 1944 1945 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 1946 if (mpt_callbacks[cb_idx] == NULL) 1947 break; 1948 1949 mpt_callbacks[cb_idx] = cb_func; 1950 return cb_idx; 1951 } 1952 1953 /** 1954 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 1955 */ 1956 void 1957 mpt3sas_base_initialize_callback_handler(void) 1958 { 1959 u8 cb_idx; 1960 1961 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 1962 mpt3sas_base_release_callback_handler(cb_idx); 1963 } 1964 1965 1966 /** 1967 * _base_build_zero_len_sge - build zero length sg entry 1968 * @ioc: per adapter object 1969 * @paddr: virtual address for SGE 1970 * 1971 * Create a zero length scatter gather entry to insure the IOCs hardware has 1972 * something to use if the target device goes brain dead and tries 1973 * to send data even when none is asked for. 1974 */ 1975 static void 1976 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 1977 { 1978 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 1979 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 1980 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 1981 MPI2_SGE_FLAGS_SHIFT); 1982 ioc->base_add_sg_single(paddr, flags_length, -1); 1983 } 1984 1985 /** 1986 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 1987 * @paddr: virtual address for SGE 1988 * @flags_length: SGE flags and data transfer length 1989 * @dma_addr: Physical address 1990 */ 1991 static void 1992 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1993 { 1994 Mpi2SGESimple32_t *sgel = paddr; 1995 1996 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 1997 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1998 sgel->FlagsLength = cpu_to_le32(flags_length); 1999 sgel->Address = cpu_to_le32(dma_addr); 2000 } 2001 2002 2003 /** 2004 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 2005 * @paddr: virtual address for SGE 2006 * @flags_length: SGE flags and data transfer length 2007 * @dma_addr: Physical address 2008 */ 2009 static void 2010 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 2011 { 2012 Mpi2SGESimple64_t *sgel = paddr; 2013 2014 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 2015 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 2016 sgel->FlagsLength = cpu_to_le32(flags_length); 2017 sgel->Address = cpu_to_le64(dma_addr); 2018 } 2019 2020 /** 2021 * _base_get_chain_buffer_tracker - obtain chain tracker 2022 * @ioc: per adapter object 2023 * @scmd: SCSI commands of the IO request 2024 * 2025 * Return: chain tracker from chain_lookup table using key as 2026 * smid and smid's chain_offset. 2027 */ 2028 static struct chain_tracker * 2029 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 2030 struct scsi_cmnd *scmd) 2031 { 2032 struct chain_tracker *chain_req; 2033 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 2034 u16 smid = st->smid; 2035 u8 chain_offset = 2036 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 2037 2038 if (chain_offset == ioc->chains_needed_per_io) 2039 return NULL; 2040 2041 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 2042 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 2043 return chain_req; 2044 } 2045 2046 2047 /** 2048 * _base_build_sg - build generic sg 2049 * @ioc: per adapter object 2050 * @psge: virtual address for SGE 2051 * @data_out_dma: physical address for WRITES 2052 * @data_out_sz: data xfer size for WRITES 2053 * @data_in_dma: physical address for READS 2054 * @data_in_sz: data xfer size for READS 2055 */ 2056 static void 2057 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 2058 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2059 size_t data_in_sz) 2060 { 2061 u32 sgl_flags; 2062 2063 if (!data_out_sz && !data_in_sz) { 2064 _base_build_zero_len_sge(ioc, psge); 2065 return; 2066 } 2067 2068 if (data_out_sz && data_in_sz) { 2069 /* WRITE sgel first */ 2070 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2071 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 2072 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2073 ioc->base_add_sg_single(psge, sgl_flags | 2074 data_out_sz, data_out_dma); 2075 2076 /* incr sgel */ 2077 psge += ioc->sge_size; 2078 2079 /* READ sgel last */ 2080 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2081 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2082 MPI2_SGE_FLAGS_END_OF_LIST); 2083 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2084 ioc->base_add_sg_single(psge, sgl_flags | 2085 data_in_sz, data_in_dma); 2086 } else if (data_out_sz) /* WRITE */ { 2087 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2088 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2089 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 2090 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2091 ioc->base_add_sg_single(psge, sgl_flags | 2092 data_out_sz, data_out_dma); 2093 } else if (data_in_sz) /* READ */ { 2094 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2095 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2096 MPI2_SGE_FLAGS_END_OF_LIST); 2097 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2098 ioc->base_add_sg_single(psge, sgl_flags | 2099 data_in_sz, data_in_dma); 2100 } 2101 } 2102 2103 /* IEEE format sgls */ 2104 2105 /** 2106 * _base_build_nvme_prp - This function is called for NVMe end devices to build 2107 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP 2108 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 2109 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 2110 * used to describe a larger data buffer. If the data buffer is too large to 2111 * describe using the two PRP entriess inside the NVMe message, then PRP1 2112 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 2113 * list located elsewhere in memory to describe the remaining data memory 2114 * segments. The PRP list will be contiguous. 2115 * 2116 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 2117 * consists of a list of PRP entries to describe a number of noncontigous 2118 * physical memory segments as a single memory buffer, just as a SGL does. Note 2119 * however, that this function is only used by the IOCTL call, so the memory 2120 * given will be guaranteed to be contiguous. There is no need to translate 2121 * non-contiguous SGL into a PRP in this case. All PRPs will describe 2122 * contiguous space that is one page size each. 2123 * 2124 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 2125 * a PRP list pointer or a PRP element, depending upon the command. PRP2 2126 * contains the second PRP element if the memory being described fits within 2 2127 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 2128 * 2129 * A PRP list pointer contains the address of a PRP list, structured as a linear 2130 * array of PRP entries. Each PRP entry in this list describes a segment of 2131 * physical memory. 2132 * 2133 * Each 64-bit PRP entry comprises an address and an offset field. The address 2134 * always points at the beginning of a 4KB physical memory page, and the offset 2135 * describes where within that 4KB page the memory segment begins. Only the 2136 * first element in a PRP list may contain a non-zero offest, implying that all 2137 * memory segments following the first begin at the start of a 4KB page. 2138 * 2139 * Each PRP element normally describes 4KB of physical memory, with exceptions 2140 * for the first and last elements in the list. If the memory being described 2141 * by the list begins at a non-zero offset within the first 4KB page, then the 2142 * first PRP element will contain a non-zero offset indicating where the region 2143 * begins within the 4KB page. The last memory segment may end before the end 2144 * of the 4KB segment, depending upon the overall size of the memory being 2145 * described by the PRP list. 2146 * 2147 * Since PRP entries lack any indication of size, the overall data buffer length 2148 * is used to determine where the end of the data memory buffer is located, and 2149 * how many PRP entries are required to describe it. 2150 * 2151 * @ioc: per adapter object 2152 * @smid: system request message index for getting asscociated SGL 2153 * @nvme_encap_request: the NVMe request msg frame pointer 2154 * @data_out_dma: physical address for WRITES 2155 * @data_out_sz: data xfer size for WRITES 2156 * @data_in_dma: physical address for READS 2157 * @data_in_sz: data xfer size for READS 2158 */ 2159 static void 2160 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 2161 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 2162 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2163 size_t data_in_sz) 2164 { 2165 int prp_size = NVME_PRP_SIZE; 2166 __le64 *prp_entry, *prp1_entry, *prp2_entry; 2167 __le64 *prp_page; 2168 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 2169 u32 offset, entry_len; 2170 u32 page_mask_result, page_mask; 2171 size_t length; 2172 struct mpt3sas_nvme_cmd *nvme_cmd = 2173 (void *)nvme_encap_request->NVMe_Command; 2174 2175 /* 2176 * Not all commands require a data transfer. If no data, just return 2177 * without constructing any PRP. 2178 */ 2179 if (!data_in_sz && !data_out_sz) 2180 return; 2181 prp1_entry = &nvme_cmd->prp1; 2182 prp2_entry = &nvme_cmd->prp2; 2183 prp_entry = prp1_entry; 2184 /* 2185 * For the PRP entries, use the specially allocated buffer of 2186 * contiguous memory. 2187 */ 2188 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 2189 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2190 2191 /* 2192 * Check if we are within 1 entry of a page boundary we don't 2193 * want our first entry to be a PRP List entry. 2194 */ 2195 page_mask = ioc->page_size - 1; 2196 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 2197 if (!page_mask_result) { 2198 /* Bump up to next page boundary. */ 2199 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 2200 prp_page_dma = prp_page_dma + prp_size; 2201 } 2202 2203 /* 2204 * Set PRP physical pointer, which initially points to the current PRP 2205 * DMA memory page. 2206 */ 2207 prp_entry_dma = prp_page_dma; 2208 2209 /* Get physical address and length of the data buffer. */ 2210 if (data_in_sz) { 2211 dma_addr = data_in_dma; 2212 length = data_in_sz; 2213 } else { 2214 dma_addr = data_out_dma; 2215 length = data_out_sz; 2216 } 2217 2218 /* Loop while the length is not zero. */ 2219 while (length) { 2220 /* 2221 * Check if we need to put a list pointer here if we are at 2222 * page boundary - prp_size (8 bytes). 2223 */ 2224 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 2225 if (!page_mask_result) { 2226 /* 2227 * This is the last entry in a PRP List, so we need to 2228 * put a PRP list pointer here. What this does is: 2229 * - bump the current memory pointer to the next 2230 * address, which will be the next full page. 2231 * - set the PRP Entry to point to that page. This 2232 * is now the PRP List pointer. 2233 * - bump the PRP Entry pointer the start of the 2234 * next page. Since all of this PRP memory is 2235 * contiguous, no need to get a new page - it's 2236 * just the next address. 2237 */ 2238 prp_entry_dma++; 2239 *prp_entry = cpu_to_le64(prp_entry_dma); 2240 prp_entry++; 2241 } 2242 2243 /* Need to handle if entry will be part of a page. */ 2244 offset = dma_addr & page_mask; 2245 entry_len = ioc->page_size - offset; 2246 2247 if (prp_entry == prp1_entry) { 2248 /* 2249 * Must fill in the first PRP pointer (PRP1) before 2250 * moving on. 2251 */ 2252 *prp1_entry = cpu_to_le64(dma_addr); 2253 2254 /* 2255 * Now point to the second PRP entry within the 2256 * command (PRP2). 2257 */ 2258 prp_entry = prp2_entry; 2259 } else if (prp_entry == prp2_entry) { 2260 /* 2261 * Should the PRP2 entry be a PRP List pointer or just 2262 * a regular PRP pointer? If there is more than one 2263 * more page of data, must use a PRP List pointer. 2264 */ 2265 if (length > ioc->page_size) { 2266 /* 2267 * PRP2 will contain a PRP List pointer because 2268 * more PRP's are needed with this command. The 2269 * list will start at the beginning of the 2270 * contiguous buffer. 2271 */ 2272 *prp2_entry = cpu_to_le64(prp_entry_dma); 2273 2274 /* 2275 * The next PRP Entry will be the start of the 2276 * first PRP List. 2277 */ 2278 prp_entry = prp_page; 2279 } else { 2280 /* 2281 * After this, the PRP Entries are complete. 2282 * This command uses 2 PRP's and no PRP list. 2283 */ 2284 *prp2_entry = cpu_to_le64(dma_addr); 2285 } 2286 } else { 2287 /* 2288 * Put entry in list and bump the addresses. 2289 * 2290 * After PRP1 and PRP2 are filled in, this will fill in 2291 * all remaining PRP entries in a PRP List, one per 2292 * each time through the loop. 2293 */ 2294 *prp_entry = cpu_to_le64(dma_addr); 2295 prp_entry++; 2296 prp_entry_dma++; 2297 } 2298 2299 /* 2300 * Bump the phys address of the command's data buffer by the 2301 * entry_len. 2302 */ 2303 dma_addr += entry_len; 2304 2305 /* Decrement length accounting for last partial page. */ 2306 if (entry_len > length) 2307 length = 0; 2308 else 2309 length -= entry_len; 2310 } 2311 } 2312 2313 /** 2314 * base_make_prp_nvme - 2315 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only 2316 * 2317 * @ioc: per adapter object 2318 * @scmd: SCSI command from the mid-layer 2319 * @mpi_request: mpi request 2320 * @smid: msg Index 2321 * @sge_count: scatter gather element count. 2322 * 2323 * Return: true: PRPs are built 2324 * false: IEEE SGLs needs to be built 2325 */ 2326 static void 2327 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2328 struct scsi_cmnd *scmd, 2329 Mpi25SCSIIORequest_t *mpi_request, 2330 u16 smid, int sge_count) 2331 { 2332 int sge_len, num_prp_in_chain = 0; 2333 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2334 __le64 *curr_buff; 2335 dma_addr_t msg_dma, sge_addr, offset; 2336 u32 page_mask, page_mask_result; 2337 struct scatterlist *sg_scmd; 2338 u32 first_prp_len; 2339 int data_len = scsi_bufflen(scmd); 2340 u32 nvme_pg_size; 2341 2342 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2343 /* 2344 * Nvme has a very convoluted prp format. One prp is required 2345 * for each page or partial page. Driver need to split up OS sg_list 2346 * entries if it is longer than one page or cross a page 2347 * boundary. Driver also have to insert a PRP list pointer entry as 2348 * the last entry in each physical page of the PRP list. 2349 * 2350 * NOTE: The first PRP "entry" is actually placed in the first 2351 * SGL entry in the main message as IEEE 64 format. The 2nd 2352 * entry in the main message is the chain element, and the rest 2353 * of the PRP entries are built in the contiguous pcie buffer. 2354 */ 2355 page_mask = nvme_pg_size - 1; 2356 2357 /* 2358 * Native SGL is needed. 2359 * Put a chain element in main message frame that points to the first 2360 * chain buffer. 2361 * 2362 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2363 * a native SGL. 2364 */ 2365 2366 /* Set main message chain element pointer */ 2367 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2368 /* 2369 * For NVMe the chain element needs to be the 2nd SG entry in the main 2370 * message. 2371 */ 2372 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2373 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2374 2375 /* 2376 * For the PRP entries, use the specially allocated buffer of 2377 * contiguous memory. Normal chain buffers can't be used 2378 * because each chain buffer would need to be the size of an OS 2379 * page (4k). 2380 */ 2381 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2382 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2383 2384 main_chain_element->Address = cpu_to_le64(msg_dma); 2385 main_chain_element->NextChainOffset = 0; 2386 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2387 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2388 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2389 2390 /* Build first prp, sge need not to be page aligned*/ 2391 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2392 sg_scmd = scsi_sglist(scmd); 2393 sge_addr = sg_dma_address(sg_scmd); 2394 sge_len = sg_dma_len(sg_scmd); 2395 2396 offset = sge_addr & page_mask; 2397 first_prp_len = nvme_pg_size - offset; 2398 2399 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2400 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2401 2402 data_len -= first_prp_len; 2403 2404 if (sge_len > first_prp_len) { 2405 sge_addr += first_prp_len; 2406 sge_len -= first_prp_len; 2407 } else if (data_len && (sge_len == first_prp_len)) { 2408 sg_scmd = sg_next(sg_scmd); 2409 sge_addr = sg_dma_address(sg_scmd); 2410 sge_len = sg_dma_len(sg_scmd); 2411 } 2412 2413 for (;;) { 2414 offset = sge_addr & page_mask; 2415 2416 /* Put PRP pointer due to page boundary*/ 2417 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2418 if (unlikely(!page_mask_result)) { 2419 scmd_printk(KERN_NOTICE, 2420 scmd, "page boundary curr_buff: 0x%p\n", 2421 curr_buff); 2422 msg_dma += 8; 2423 *curr_buff = cpu_to_le64(msg_dma); 2424 curr_buff++; 2425 num_prp_in_chain++; 2426 } 2427 2428 *curr_buff = cpu_to_le64(sge_addr); 2429 curr_buff++; 2430 msg_dma += 8; 2431 num_prp_in_chain++; 2432 2433 sge_addr += nvme_pg_size; 2434 sge_len -= nvme_pg_size; 2435 data_len -= nvme_pg_size; 2436 2437 if (data_len <= 0) 2438 break; 2439 2440 if (sge_len > 0) 2441 continue; 2442 2443 sg_scmd = sg_next(sg_scmd); 2444 sge_addr = sg_dma_address(sg_scmd); 2445 sge_len = sg_dma_len(sg_scmd); 2446 } 2447 2448 main_chain_element->Length = 2449 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2450 return; 2451 } 2452 2453 static bool 2454 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2455 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2456 { 2457 u32 data_length = 0; 2458 bool build_prp = true; 2459 2460 data_length = scsi_bufflen(scmd); 2461 if (pcie_device && 2462 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) { 2463 build_prp = false; 2464 return build_prp; 2465 } 2466 2467 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2468 * we built IEEE SGL 2469 */ 2470 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2471 build_prp = false; 2472 2473 return build_prp; 2474 } 2475 2476 /** 2477 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2478 * determine if the driver needs to build a native SGL. If so, that native 2479 * SGL is built in the special contiguous buffers allocated especially for 2480 * PCIe SGL creation. If the driver will not build a native SGL, return 2481 * TRUE and a normal IEEE SGL will be built. Currently this routine 2482 * supports NVMe. 2483 * @ioc: per adapter object 2484 * @mpi_request: mf request pointer 2485 * @smid: system request message index 2486 * @scmd: scsi command 2487 * @pcie_device: points to the PCIe device's info 2488 * 2489 * Return: 0 if native SGL was built, 1 if no SGL was built 2490 */ 2491 static int 2492 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2493 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2494 struct _pcie_device *pcie_device) 2495 { 2496 int sges_left; 2497 2498 /* Get the SG list pointer and info. */ 2499 sges_left = scsi_dma_map(scmd); 2500 if (sges_left < 0) { 2501 sdev_printk(KERN_ERR, scmd->device, 2502 "scsi_dma_map failed: request for %d bytes!\n", 2503 scsi_bufflen(scmd)); 2504 return 1; 2505 } 2506 2507 /* Check if we need to build a native SG list. */ 2508 if (!base_is_prp_possible(ioc, pcie_device, 2509 scmd, sges_left)) { 2510 /* We built a native SG list, just return. */ 2511 goto out; 2512 } 2513 2514 /* 2515 * Build native NVMe PRP. 2516 */ 2517 base_make_prp_nvme(ioc, scmd, mpi_request, 2518 smid, sges_left); 2519 2520 return 0; 2521 out: 2522 scsi_dma_unmap(scmd); 2523 return 1; 2524 } 2525 2526 /** 2527 * _base_add_sg_single_ieee - add sg element for IEEE format 2528 * @paddr: virtual address for SGE 2529 * @flags: SGE flags 2530 * @chain_offset: number of 128 byte elements from start of segment 2531 * @length: data transfer length 2532 * @dma_addr: Physical address 2533 */ 2534 static void 2535 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2536 dma_addr_t dma_addr) 2537 { 2538 Mpi25IeeeSgeChain64_t *sgel = paddr; 2539 2540 sgel->Flags = flags; 2541 sgel->NextChainOffset = chain_offset; 2542 sgel->Length = cpu_to_le32(length); 2543 sgel->Address = cpu_to_le64(dma_addr); 2544 } 2545 2546 /** 2547 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2548 * @ioc: per adapter object 2549 * @paddr: virtual address for SGE 2550 * 2551 * Create a zero length scatter gather entry to insure the IOCs hardware has 2552 * something to use if the target device goes brain dead and tries 2553 * to send data even when none is asked for. 2554 */ 2555 static void 2556 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2557 { 2558 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2559 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2560 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2561 2562 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2563 } 2564 2565 /** 2566 * _base_build_sg_scmd - main sg creation routine 2567 * pcie_device is unused here! 2568 * @ioc: per adapter object 2569 * @scmd: scsi command 2570 * @smid: system request message index 2571 * @unused: unused pcie_device pointer 2572 * Context: none. 2573 * 2574 * The main routine that builds scatter gather table from a given 2575 * scsi request sent via the .queuecommand main handler. 2576 * 2577 * Return: 0 success, anything else error 2578 */ 2579 static int 2580 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2581 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2582 { 2583 Mpi2SCSIIORequest_t *mpi_request; 2584 dma_addr_t chain_dma; 2585 struct scatterlist *sg_scmd; 2586 void *sg_local, *chain; 2587 u32 chain_offset; 2588 u32 chain_length; 2589 u32 chain_flags; 2590 int sges_left; 2591 u32 sges_in_segment; 2592 u32 sgl_flags; 2593 u32 sgl_flags_last_element; 2594 u32 sgl_flags_end_buffer; 2595 struct chain_tracker *chain_req; 2596 2597 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2598 2599 /* init scatter gather flags */ 2600 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2601 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2602 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2603 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2604 << MPI2_SGE_FLAGS_SHIFT; 2605 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2606 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2607 << MPI2_SGE_FLAGS_SHIFT; 2608 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2609 2610 sg_scmd = scsi_sglist(scmd); 2611 sges_left = scsi_dma_map(scmd); 2612 if (sges_left < 0) { 2613 sdev_printk(KERN_ERR, scmd->device, 2614 "scsi_dma_map failed: request for %d bytes!\n", 2615 scsi_bufflen(scmd)); 2616 return -ENOMEM; 2617 } 2618 2619 sg_local = &mpi_request->SGL; 2620 sges_in_segment = ioc->max_sges_in_main_message; 2621 if (sges_left <= sges_in_segment) 2622 goto fill_in_last_segment; 2623 2624 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2625 (sges_in_segment * ioc->sge_size))/4; 2626 2627 /* fill in main message segment when there is a chain following */ 2628 while (sges_in_segment) { 2629 if (sges_in_segment == 1) 2630 ioc->base_add_sg_single(sg_local, 2631 sgl_flags_last_element | sg_dma_len(sg_scmd), 2632 sg_dma_address(sg_scmd)); 2633 else 2634 ioc->base_add_sg_single(sg_local, sgl_flags | 2635 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2636 sg_scmd = sg_next(sg_scmd); 2637 sg_local += ioc->sge_size; 2638 sges_left--; 2639 sges_in_segment--; 2640 } 2641 2642 /* initializing the chain flags and pointers */ 2643 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2644 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2645 if (!chain_req) 2646 return -1; 2647 chain = chain_req->chain_buffer; 2648 chain_dma = chain_req->chain_buffer_dma; 2649 do { 2650 sges_in_segment = (sges_left <= 2651 ioc->max_sges_in_chain_message) ? sges_left : 2652 ioc->max_sges_in_chain_message; 2653 chain_offset = (sges_left == sges_in_segment) ? 2654 0 : (sges_in_segment * ioc->sge_size)/4; 2655 chain_length = sges_in_segment * ioc->sge_size; 2656 if (chain_offset) { 2657 chain_offset = chain_offset << 2658 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2659 chain_length += ioc->sge_size; 2660 } 2661 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2662 chain_length, chain_dma); 2663 sg_local = chain; 2664 if (!chain_offset) 2665 goto fill_in_last_segment; 2666 2667 /* fill in chain segments */ 2668 while (sges_in_segment) { 2669 if (sges_in_segment == 1) 2670 ioc->base_add_sg_single(sg_local, 2671 sgl_flags_last_element | 2672 sg_dma_len(sg_scmd), 2673 sg_dma_address(sg_scmd)); 2674 else 2675 ioc->base_add_sg_single(sg_local, sgl_flags | 2676 sg_dma_len(sg_scmd), 2677 sg_dma_address(sg_scmd)); 2678 sg_scmd = sg_next(sg_scmd); 2679 sg_local += ioc->sge_size; 2680 sges_left--; 2681 sges_in_segment--; 2682 } 2683 2684 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2685 if (!chain_req) 2686 return -1; 2687 chain = chain_req->chain_buffer; 2688 chain_dma = chain_req->chain_buffer_dma; 2689 } while (1); 2690 2691 2692 fill_in_last_segment: 2693 2694 /* fill the last segment */ 2695 while (sges_left) { 2696 if (sges_left == 1) 2697 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2698 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2699 else 2700 ioc->base_add_sg_single(sg_local, sgl_flags | 2701 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2702 sg_scmd = sg_next(sg_scmd); 2703 sg_local += ioc->sge_size; 2704 sges_left--; 2705 } 2706 2707 return 0; 2708 } 2709 2710 /** 2711 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2712 * @ioc: per adapter object 2713 * @scmd: scsi command 2714 * @smid: system request message index 2715 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2716 * constructed on need. 2717 * Context: none. 2718 * 2719 * The main routine that builds scatter gather table from a given 2720 * scsi request sent via the .queuecommand main handler. 2721 * 2722 * Return: 0 success, anything else error 2723 */ 2724 static int 2725 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2726 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2727 { 2728 Mpi25SCSIIORequest_t *mpi_request; 2729 dma_addr_t chain_dma; 2730 struct scatterlist *sg_scmd; 2731 void *sg_local, *chain; 2732 u32 chain_offset; 2733 u32 chain_length; 2734 int sges_left; 2735 u32 sges_in_segment; 2736 u8 simple_sgl_flags; 2737 u8 simple_sgl_flags_last; 2738 u8 chain_sgl_flags; 2739 struct chain_tracker *chain_req; 2740 2741 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2742 2743 /* init scatter gather flags */ 2744 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2745 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2746 simple_sgl_flags_last = simple_sgl_flags | 2747 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2748 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2749 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2750 2751 /* Check if we need to build a native SG list. */ 2752 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2753 smid, scmd, pcie_device) == 0)) { 2754 /* We built a native SG list, just return. */ 2755 return 0; 2756 } 2757 2758 sg_scmd = scsi_sglist(scmd); 2759 sges_left = scsi_dma_map(scmd); 2760 if (sges_left < 0) { 2761 sdev_printk(KERN_ERR, scmd->device, 2762 "scsi_dma_map failed: request for %d bytes!\n", 2763 scsi_bufflen(scmd)); 2764 return -ENOMEM; 2765 } 2766 2767 sg_local = &mpi_request->SGL; 2768 sges_in_segment = (ioc->request_sz - 2769 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2770 if (sges_left <= sges_in_segment) 2771 goto fill_in_last_segment; 2772 2773 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2774 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2775 2776 /* fill in main message segment when there is a chain following */ 2777 while (sges_in_segment > 1) { 2778 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2779 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2780 sg_scmd = sg_next(sg_scmd); 2781 sg_local += ioc->sge_size_ieee; 2782 sges_left--; 2783 sges_in_segment--; 2784 } 2785 2786 /* initializing the pointers */ 2787 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2788 if (!chain_req) 2789 return -1; 2790 chain = chain_req->chain_buffer; 2791 chain_dma = chain_req->chain_buffer_dma; 2792 do { 2793 sges_in_segment = (sges_left <= 2794 ioc->max_sges_in_chain_message) ? sges_left : 2795 ioc->max_sges_in_chain_message; 2796 chain_offset = (sges_left == sges_in_segment) ? 2797 0 : sges_in_segment; 2798 chain_length = sges_in_segment * ioc->sge_size_ieee; 2799 if (chain_offset) 2800 chain_length += ioc->sge_size_ieee; 2801 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2802 chain_offset, chain_length, chain_dma); 2803 2804 sg_local = chain; 2805 if (!chain_offset) 2806 goto fill_in_last_segment; 2807 2808 /* fill in chain segments */ 2809 while (sges_in_segment) { 2810 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2811 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2812 sg_scmd = sg_next(sg_scmd); 2813 sg_local += ioc->sge_size_ieee; 2814 sges_left--; 2815 sges_in_segment--; 2816 } 2817 2818 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2819 if (!chain_req) 2820 return -1; 2821 chain = chain_req->chain_buffer; 2822 chain_dma = chain_req->chain_buffer_dma; 2823 } while (1); 2824 2825 2826 fill_in_last_segment: 2827 2828 /* fill the last segment */ 2829 while (sges_left > 0) { 2830 if (sges_left == 1) 2831 _base_add_sg_single_ieee(sg_local, 2832 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2833 sg_dma_address(sg_scmd)); 2834 else 2835 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2836 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2837 sg_scmd = sg_next(sg_scmd); 2838 sg_local += ioc->sge_size_ieee; 2839 sges_left--; 2840 } 2841 2842 return 0; 2843 } 2844 2845 /** 2846 * _base_build_sg_ieee - build generic sg for IEEE format 2847 * @ioc: per adapter object 2848 * @psge: virtual address for SGE 2849 * @data_out_dma: physical address for WRITES 2850 * @data_out_sz: data xfer size for WRITES 2851 * @data_in_dma: physical address for READS 2852 * @data_in_sz: data xfer size for READS 2853 */ 2854 static void 2855 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2856 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2857 size_t data_in_sz) 2858 { 2859 u8 sgl_flags; 2860 2861 if (!data_out_sz && !data_in_sz) { 2862 _base_build_zero_len_sge_ieee(ioc, psge); 2863 return; 2864 } 2865 2866 if (data_out_sz && data_in_sz) { 2867 /* WRITE sgel first */ 2868 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2869 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2870 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2871 data_out_dma); 2872 2873 /* incr sgel */ 2874 psge += ioc->sge_size_ieee; 2875 2876 /* READ sgel last */ 2877 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2878 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2879 data_in_dma); 2880 } else if (data_out_sz) /* WRITE */ { 2881 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2882 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2883 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2884 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2885 data_out_dma); 2886 } else if (data_in_sz) /* READ */ { 2887 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2888 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2889 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2890 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2891 data_in_dma); 2892 } 2893 } 2894 2895 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 2896 2897 /** 2898 * _base_config_dma_addressing - set dma addressing 2899 * @ioc: per adapter object 2900 * @pdev: PCI device struct 2901 * 2902 * Return: 0 for success, non-zero for failure. 2903 */ 2904 static int 2905 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 2906 { 2907 struct sysinfo s; 2908 2909 if (ioc->is_mcpu_endpoint || 2910 sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma || 2911 dma_get_required_mask(&pdev->dev) <= 32) 2912 ioc->dma_mask = 32; 2913 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */ 2914 else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) 2915 ioc->dma_mask = 63; 2916 else 2917 ioc->dma_mask = 64; 2918 2919 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)) || 2920 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask))) 2921 return -ENODEV; 2922 2923 if (ioc->dma_mask > 32) { 2924 ioc->base_add_sg_single = &_base_add_sg_single_64; 2925 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 2926 } else { 2927 ioc->base_add_sg_single = &_base_add_sg_single_32; 2928 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 2929 } 2930 2931 si_meminfo(&s); 2932 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 2933 ioc->dma_mask, convert_to_kb(s.totalram)); 2934 2935 return 0; 2936 } 2937 2938 /** 2939 * _base_check_enable_msix - checks MSIX capabable. 2940 * @ioc: per adapter object 2941 * 2942 * Check to see if card is capable of MSIX, and set number 2943 * of available msix vectors 2944 */ 2945 static int 2946 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2947 { 2948 int base; 2949 u16 message_control; 2950 2951 /* Check whether controller SAS2008 B0 controller, 2952 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 2953 */ 2954 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 2955 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 2956 return -EINVAL; 2957 } 2958 2959 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 2960 if (!base) { 2961 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 2962 return -EINVAL; 2963 } 2964 2965 /* get msix vector count */ 2966 /* NUMA_IO not supported for older controllers */ 2967 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 2968 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 2969 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 2970 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 2971 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 2972 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 2973 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 2974 ioc->msix_vector_count = 1; 2975 else { 2976 pci_read_config_word(ioc->pdev, base + 2, &message_control); 2977 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 2978 } 2979 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 2980 ioc->msix_vector_count)); 2981 return 0; 2982 } 2983 2984 /** 2985 * _base_free_irq - free irq 2986 * @ioc: per adapter object 2987 * 2988 * Freeing respective reply_queue from the list. 2989 */ 2990 static void 2991 _base_free_irq(struct MPT3SAS_ADAPTER *ioc) 2992 { 2993 struct adapter_reply_queue *reply_q, *next; 2994 2995 if (list_empty(&ioc->reply_queue_list)) 2996 return; 2997 2998 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 2999 list_del(&reply_q->list); 3000 if (ioc->smp_affinity_enable) 3001 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 3002 reply_q->msix_index), NULL); 3003 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 3004 reply_q); 3005 kfree(reply_q); 3006 } 3007 } 3008 3009 /** 3010 * _base_request_irq - request irq 3011 * @ioc: per adapter object 3012 * @index: msix index into vector table 3013 * 3014 * Inserting respective reply_queue into the list. 3015 */ 3016 static int 3017 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 3018 { 3019 struct pci_dev *pdev = ioc->pdev; 3020 struct adapter_reply_queue *reply_q; 3021 int r; 3022 3023 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 3024 if (!reply_q) { 3025 ioc_err(ioc, "unable to allocate memory %zu!\n", 3026 sizeof(struct adapter_reply_queue)); 3027 return -ENOMEM; 3028 } 3029 reply_q->ioc = ioc; 3030 reply_q->msix_index = index; 3031 3032 atomic_set(&reply_q->busy, 0); 3033 if (ioc->msix_enable) 3034 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 3035 ioc->driver_name, ioc->id, index); 3036 else 3037 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 3038 ioc->driver_name, ioc->id); 3039 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 3040 IRQF_SHARED, reply_q->name, reply_q); 3041 if (r) { 3042 pr_err("%s: unable to allocate interrupt %d!\n", 3043 reply_q->name, pci_irq_vector(pdev, index)); 3044 kfree(reply_q); 3045 return -EBUSY; 3046 } 3047 3048 INIT_LIST_HEAD(&reply_q->list); 3049 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 3050 return 0; 3051 } 3052 3053 /** 3054 * _base_assign_reply_queues - assigning msix index for each cpu 3055 * @ioc: per adapter object 3056 * 3057 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 3058 * 3059 * It would nice if we could call irq_set_affinity, however it is not 3060 * an exported symbol 3061 */ 3062 static void 3063 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 3064 { 3065 unsigned int cpu, nr_cpus, nr_msix, index = 0; 3066 struct adapter_reply_queue *reply_q; 3067 int local_numa_node; 3068 3069 if (!_base_is_controller_msix_enabled(ioc)) 3070 return; 3071 3072 if (ioc->msix_load_balance) 3073 return; 3074 3075 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 3076 3077 nr_cpus = num_online_cpus(); 3078 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 3079 ioc->facts.MaxMSIxVectors); 3080 if (!nr_msix) 3081 return; 3082 3083 if (ioc->smp_affinity_enable) { 3084 3085 /* 3086 * set irq affinity to local numa node for those irqs 3087 * corresponding to high iops queues. 3088 */ 3089 if (ioc->high_iops_queues) { 3090 local_numa_node = dev_to_node(&ioc->pdev->dev); 3091 for (index = 0; index < ioc->high_iops_queues; 3092 index++) { 3093 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 3094 index), cpumask_of_node(local_numa_node)); 3095 } 3096 } 3097 3098 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3099 const cpumask_t *mask; 3100 3101 if (reply_q->msix_index < ioc->high_iops_queues) 3102 continue; 3103 3104 mask = pci_irq_get_affinity(ioc->pdev, 3105 reply_q->msix_index); 3106 if (!mask) { 3107 ioc_warn(ioc, "no affinity for msi %x\n", 3108 reply_q->msix_index); 3109 goto fall_back; 3110 } 3111 3112 for_each_cpu_and(cpu, mask, cpu_online_mask) { 3113 if (cpu >= ioc->cpu_msix_table_sz) 3114 break; 3115 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3116 } 3117 } 3118 return; 3119 } 3120 3121 fall_back: 3122 cpu = cpumask_first(cpu_online_mask); 3123 nr_msix -= ioc->high_iops_queues; 3124 index = 0; 3125 3126 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3127 unsigned int i, group = nr_cpus / nr_msix; 3128 3129 if (reply_q->msix_index < ioc->high_iops_queues) 3130 continue; 3131 3132 if (cpu >= nr_cpus) 3133 break; 3134 3135 if (index < nr_cpus % nr_msix) 3136 group++; 3137 3138 for (i = 0 ; i < group ; i++) { 3139 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3140 cpu = cpumask_next(cpu, cpu_online_mask); 3141 } 3142 index++; 3143 } 3144 } 3145 3146 /** 3147 * _base_check_and_enable_high_iops_queues - enable high iops mode 3148 * @ioc: per adapter object 3149 * @hba_msix_vector_count: msix vectors supported by HBA 3150 * 3151 * Enable high iops queues only if 3152 * - HBA is a SEA/AERO controller and 3153 * - MSI-Xs vector supported by the HBA is 128 and 3154 * - total CPU count in the system >=16 and 3155 * - loaded driver with default max_msix_vectors module parameter and 3156 * - system booted in non kdump mode 3157 * 3158 * returns nothing. 3159 */ 3160 static void 3161 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc, 3162 int hba_msix_vector_count) 3163 { 3164 u16 lnksta, speed; 3165 3166 if (perf_mode == MPT_PERF_MODE_IOPS || 3167 perf_mode == MPT_PERF_MODE_LATENCY) { 3168 ioc->high_iops_queues = 0; 3169 return; 3170 } 3171 3172 if (perf_mode == MPT_PERF_MODE_DEFAULT) { 3173 3174 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta); 3175 speed = lnksta & PCI_EXP_LNKSTA_CLS; 3176 3177 if (speed < 0x4) { 3178 ioc->high_iops_queues = 0; 3179 return; 3180 } 3181 } 3182 3183 if (!reset_devices && ioc->is_aero_ioc && 3184 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES && 3185 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES && 3186 max_msix_vectors == -1) 3187 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES; 3188 else 3189 ioc->high_iops_queues = 0; 3190 } 3191 3192 /** 3193 * _base_disable_msix - disables msix 3194 * @ioc: per adapter object 3195 * 3196 */ 3197 static void 3198 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 3199 { 3200 if (!ioc->msix_enable) 3201 return; 3202 pci_free_irq_vectors(ioc->pdev); 3203 ioc->msix_enable = 0; 3204 } 3205 3206 /** 3207 * _base_alloc_irq_vectors - allocate msix vectors 3208 * @ioc: per adapter object 3209 * 3210 */ 3211 static int 3212 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc) 3213 { 3214 int i, irq_flags = PCI_IRQ_MSIX; 3215 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues }; 3216 struct irq_affinity *descp = &desc; 3217 3218 if (ioc->smp_affinity_enable) 3219 irq_flags |= PCI_IRQ_AFFINITY; 3220 else 3221 descp = NULL; 3222 3223 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues, 3224 ioc->reply_queue_count); 3225 3226 i = pci_alloc_irq_vectors_affinity(ioc->pdev, 3227 ioc->high_iops_queues, 3228 ioc->reply_queue_count, irq_flags, descp); 3229 3230 return i; 3231 } 3232 3233 /** 3234 * _base_enable_msix - enables msix, failback to io_apic 3235 * @ioc: per adapter object 3236 * 3237 */ 3238 static int 3239 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3240 { 3241 int r; 3242 int i, local_max_msix_vectors; 3243 u8 try_msix = 0; 3244 3245 ioc->msix_load_balance = false; 3246 3247 if (msix_disable == -1 || msix_disable == 0) 3248 try_msix = 1; 3249 3250 if (!try_msix) 3251 goto try_ioapic; 3252 3253 if (_base_check_enable_msix(ioc) != 0) 3254 goto try_ioapic; 3255 3256 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count); 3257 pr_info("\t no of cores: %d, max_msix_vectors: %d\n", 3258 ioc->cpu_count, max_msix_vectors); 3259 if (ioc->is_aero_ioc) 3260 _base_check_and_enable_high_iops_queues(ioc, 3261 ioc->msix_vector_count); 3262 ioc->reply_queue_count = 3263 min_t(int, ioc->cpu_count + ioc->high_iops_queues, 3264 ioc->msix_vector_count); 3265 3266 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 3267 local_max_msix_vectors = (reset_devices) ? 1 : 8; 3268 else 3269 local_max_msix_vectors = max_msix_vectors; 3270 3271 if (local_max_msix_vectors > 0) 3272 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 3273 ioc->reply_queue_count); 3274 else if (local_max_msix_vectors == 0) 3275 goto try_ioapic; 3276 3277 /* 3278 * Enable msix_load_balance only if combined reply queue mode is 3279 * disabled on SAS3 & above generation HBA devices. 3280 */ 3281 if (!ioc->combined_reply_queue && 3282 ioc->hba_mpi_version_belonged != MPI2_VERSION) { 3283 ioc_info(ioc, 3284 "combined ReplyQueue is off, Enabling msix load balance\n"); 3285 ioc->msix_load_balance = true; 3286 } 3287 3288 /* 3289 * smp affinity setting is not need when msix load balance 3290 * is enabled. 3291 */ 3292 if (ioc->msix_load_balance) 3293 ioc->smp_affinity_enable = 0; 3294 3295 r = _base_alloc_irq_vectors(ioc); 3296 if (r < 0) { 3297 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r); 3298 goto try_ioapic; 3299 } 3300 3301 ioc->msix_enable = 1; 3302 ioc->reply_queue_count = r; 3303 for (i = 0; i < ioc->reply_queue_count; i++) { 3304 r = _base_request_irq(ioc, i); 3305 if (r) { 3306 _base_free_irq(ioc); 3307 _base_disable_msix(ioc); 3308 goto try_ioapic; 3309 } 3310 } 3311 3312 ioc_info(ioc, "High IOPs queues : %s\n", 3313 ioc->high_iops_queues ? "enabled" : "disabled"); 3314 3315 return 0; 3316 3317 /* failback to io_apic interrupt routing */ 3318 try_ioapic: 3319 ioc->high_iops_queues = 0; 3320 ioc_info(ioc, "High IOPs queues : disabled\n"); 3321 ioc->reply_queue_count = 1; 3322 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 3323 if (r < 0) { 3324 dfailprintk(ioc, 3325 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 3326 r)); 3327 } else 3328 r = _base_request_irq(ioc, 0); 3329 3330 return r; 3331 } 3332 3333 /** 3334 * mpt3sas_base_unmap_resources - free controller resources 3335 * @ioc: per adapter object 3336 */ 3337 static void 3338 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 3339 { 3340 struct pci_dev *pdev = ioc->pdev; 3341 3342 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3343 3344 _base_free_irq(ioc); 3345 _base_disable_msix(ioc); 3346 3347 kfree(ioc->replyPostRegisterIndex); 3348 ioc->replyPostRegisterIndex = NULL; 3349 3350 3351 if (ioc->chip_phys) { 3352 iounmap(ioc->chip); 3353 ioc->chip_phys = 0; 3354 } 3355 3356 if (pci_is_enabled(pdev)) { 3357 pci_release_selected_regions(ioc->pdev, ioc->bars); 3358 pci_disable_pcie_error_reporting(pdev); 3359 pci_disable_device(pdev); 3360 } 3361 } 3362 3363 static int 3364 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 3365 3366 /** 3367 * _base_check_for_fault_and_issue_reset - check if IOC is in fault state 3368 * and if it is in fault state then issue diag reset. 3369 * @ioc: per adapter object 3370 * 3371 * Returns: 0 for success, non-zero for failure. 3372 */ 3373 static int 3374 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc) 3375 { 3376 u32 ioc_state; 3377 int rc = -EFAULT; 3378 3379 dinitprintk(ioc, pr_info("%s\n", __func__)); 3380 if (ioc->pci_error_recovery) 3381 return 0; 3382 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 3383 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state)); 3384 3385 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 3386 mpt3sas_print_fault_code(ioc, ioc_state & 3387 MPI2_DOORBELL_DATA_MASK); 3388 rc = _base_diag_reset(ioc); 3389 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 3390 MPI2_IOC_STATE_COREDUMP) { 3391 mpt3sas_print_coredump_info(ioc, ioc_state & 3392 MPI2_DOORBELL_DATA_MASK); 3393 mpt3sas_base_wait_for_coredump_completion(ioc, __func__); 3394 rc = _base_diag_reset(ioc); 3395 } 3396 3397 return rc; 3398 } 3399 3400 /** 3401 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 3402 * @ioc: per adapter object 3403 * 3404 * Return: 0 for success, non-zero for failure. 3405 */ 3406 int 3407 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 3408 { 3409 struct pci_dev *pdev = ioc->pdev; 3410 u32 memap_sz; 3411 u32 pio_sz; 3412 int i, r = 0, rc; 3413 u64 pio_chip = 0; 3414 phys_addr_t chip_phys = 0; 3415 struct adapter_reply_queue *reply_q; 3416 3417 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3418 3419 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 3420 if (pci_enable_device_mem(pdev)) { 3421 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 3422 ioc->bars = 0; 3423 return -ENODEV; 3424 } 3425 3426 3427 if (pci_request_selected_regions(pdev, ioc->bars, 3428 ioc->driver_name)) { 3429 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 3430 ioc->bars = 0; 3431 r = -ENODEV; 3432 goto out_fail; 3433 } 3434 3435 /* AER (Advanced Error Reporting) hooks */ 3436 pci_enable_pcie_error_reporting(pdev); 3437 3438 pci_set_master(pdev); 3439 3440 3441 if (_base_config_dma_addressing(ioc, pdev) != 0) { 3442 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 3443 r = -ENODEV; 3444 goto out_fail; 3445 } 3446 3447 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 3448 (!memap_sz || !pio_sz); i++) { 3449 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 3450 if (pio_sz) 3451 continue; 3452 pio_chip = (u64)pci_resource_start(pdev, i); 3453 pio_sz = pci_resource_len(pdev, i); 3454 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3455 if (memap_sz) 3456 continue; 3457 ioc->chip_phys = pci_resource_start(pdev, i); 3458 chip_phys = ioc->chip_phys; 3459 memap_sz = pci_resource_len(pdev, i); 3460 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 3461 } 3462 } 3463 3464 if (ioc->chip == NULL) { 3465 ioc_err(ioc, 3466 "unable to map adapter memory! or resource not found\n"); 3467 r = -EINVAL; 3468 goto out_fail; 3469 } 3470 3471 mpt3sas_base_mask_interrupts(ioc); 3472 3473 r = _base_get_ioc_facts(ioc); 3474 if (r) { 3475 rc = _base_check_for_fault_and_issue_reset(ioc); 3476 if (rc || (_base_get_ioc_facts(ioc))) 3477 goto out_fail; 3478 } 3479 3480 if (!ioc->rdpq_array_enable_assigned) { 3481 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3482 ioc->rdpq_array_enable_assigned = 1; 3483 } 3484 3485 r = _base_enable_msix(ioc); 3486 if (r) 3487 goto out_fail; 3488 3489 if (!ioc->is_driver_loading) 3490 _base_init_irqpolls(ioc); 3491 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3492 * revision HBAs and also only when reply queue count is greater than 8 3493 */ 3494 if (ioc->combined_reply_queue) { 3495 /* Determine the Supplemental Reply Post Host Index Registers 3496 * Addresse. Supplemental Reply Post Host Index Registers 3497 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3498 * each register is at offset bytes of 3499 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3500 */ 3501 ioc->replyPostRegisterIndex = kcalloc( 3502 ioc->combined_reply_index_count, 3503 sizeof(resource_size_t *), GFP_KERNEL); 3504 if (!ioc->replyPostRegisterIndex) { 3505 ioc_err(ioc, 3506 "allocation for replyPostRegisterIndex failed!\n"); 3507 r = -ENOMEM; 3508 goto out_fail; 3509 } 3510 3511 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3512 ioc->replyPostRegisterIndex[i] = (resource_size_t *) 3513 ((u8 __force *)&ioc->chip->Doorbell + 3514 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3515 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3516 } 3517 } 3518 3519 if (ioc->is_warpdrive) { 3520 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3521 &ioc->chip->ReplyPostHostIndex; 3522 3523 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3524 ioc->reply_post_host_index[i] = 3525 (resource_size_t __iomem *) 3526 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3527 * 4))); 3528 } 3529 3530 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) 3531 pr_info("%s: %s enabled: IRQ %d\n", 3532 reply_q->name, 3533 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3534 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3535 3536 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3537 &chip_phys, ioc->chip, memap_sz); 3538 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3539 (unsigned long long)pio_chip, pio_sz); 3540 3541 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3542 pci_save_state(pdev); 3543 return 0; 3544 3545 out_fail: 3546 mpt3sas_base_unmap_resources(ioc); 3547 return r; 3548 } 3549 3550 /** 3551 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3552 * @ioc: per adapter object 3553 * @smid: system request message index(smid zero is invalid) 3554 * 3555 * Return: virt pointer to message frame. 3556 */ 3557 void * 3558 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3559 { 3560 return (void *)(ioc->request + (smid * ioc->request_sz)); 3561 } 3562 3563 /** 3564 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3565 * @ioc: per adapter object 3566 * @smid: system request message index 3567 * 3568 * Return: virt pointer to sense buffer. 3569 */ 3570 void * 3571 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3572 { 3573 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3574 } 3575 3576 /** 3577 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3578 * @ioc: per adapter object 3579 * @smid: system request message index 3580 * 3581 * Return: phys pointer to the low 32bit address of the sense buffer. 3582 */ 3583 __le32 3584 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3585 { 3586 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3587 SCSI_SENSE_BUFFERSIZE)); 3588 } 3589 3590 /** 3591 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3592 * @ioc: per adapter object 3593 * @smid: system request message index 3594 * 3595 * Return: virt pointer to a PCIe SGL. 3596 */ 3597 void * 3598 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3599 { 3600 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3601 } 3602 3603 /** 3604 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3605 * @ioc: per adapter object 3606 * @smid: system request message index 3607 * 3608 * Return: phys pointer to the address of the PCIe buffer. 3609 */ 3610 dma_addr_t 3611 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3612 { 3613 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3614 } 3615 3616 /** 3617 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3618 * @ioc: per adapter object 3619 * @phys_addr: lower 32 physical addr of the reply 3620 * 3621 * Converts 32bit lower physical addr into a virt address. 3622 */ 3623 void * 3624 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3625 { 3626 if (!phys_addr) 3627 return NULL; 3628 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3629 } 3630 3631 /** 3632 * _base_get_msix_index - get the msix index 3633 * @ioc: per adapter object 3634 * @scmd: scsi_cmnd object 3635 * 3636 * returns msix index of general reply queues, 3637 * i.e. reply queue on which IO request's reply 3638 * should be posted by the HBA firmware. 3639 */ 3640 static inline u8 3641 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc, 3642 struct scsi_cmnd *scmd) 3643 { 3644 /* Enables reply_queue load balancing */ 3645 if (ioc->msix_load_balance) 3646 return ioc->reply_queue_count ? 3647 base_mod64(atomic64_add_return(1, 3648 &ioc->total_io_cnt), ioc->reply_queue_count) : 0; 3649 3650 if (scmd && ioc->shost->nr_hw_queues > 1) { 3651 u32 tag = blk_mq_unique_tag(scmd->request); 3652 3653 return blk_mq_unique_tag_to_hwq(tag) + 3654 ioc->high_iops_queues; 3655 } 3656 3657 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3658 } 3659 3660 /** 3661 * _base_get_high_iops_msix_index - get the msix index of 3662 * high iops queues 3663 * @ioc: per adapter object 3664 * @scmd: scsi_cmnd object 3665 * 3666 * Returns: msix index of high iops reply queues. 3667 * i.e. high iops reply queue on which IO request's 3668 * reply should be posted by the HBA firmware. 3669 */ 3670 static inline u8 3671 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc, 3672 struct scsi_cmnd *scmd) 3673 { 3674 /** 3675 * Round robin the IO interrupts among the high iops 3676 * reply queues in terms of batch count 16 when outstanding 3677 * IOs on the target device is >=8. 3678 */ 3679 3680 if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH) 3681 return base_mod64(( 3682 atomic64_add_return(1, &ioc->high_iops_outstanding) / 3683 MPT3SAS_HIGH_IOPS_BATCH_COUNT), 3684 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 3685 3686 return _base_get_msix_index(ioc, scmd); 3687 } 3688 3689 /** 3690 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3691 * @ioc: per adapter object 3692 * @cb_idx: callback index 3693 * 3694 * Return: smid (zero is invalid) 3695 */ 3696 u16 3697 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3698 { 3699 unsigned long flags; 3700 struct request_tracker *request; 3701 u16 smid; 3702 3703 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3704 if (list_empty(&ioc->internal_free_list)) { 3705 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3706 ioc_err(ioc, "%s: smid not available\n", __func__); 3707 return 0; 3708 } 3709 3710 request = list_entry(ioc->internal_free_list.next, 3711 struct request_tracker, tracker_list); 3712 request->cb_idx = cb_idx; 3713 smid = request->smid; 3714 list_del(&request->tracker_list); 3715 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3716 return smid; 3717 } 3718 3719 /** 3720 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3721 * @ioc: per adapter object 3722 * @cb_idx: callback index 3723 * @scmd: pointer to scsi command object 3724 * 3725 * Return: smid (zero is invalid) 3726 */ 3727 u16 3728 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3729 struct scsi_cmnd *scmd) 3730 { 3731 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3732 u16 smid; 3733 u32 tag, unique_tag; 3734 3735 unique_tag = blk_mq_unique_tag(scmd->request); 3736 tag = blk_mq_unique_tag_to_tag(unique_tag); 3737 3738 /* 3739 * Store hw queue number corresponding to the tag. 3740 * This hw queue number is used later to determine 3741 * the unique_tag using the logic below. This unique_tag 3742 * is used to retrieve the scmd pointer corresponding 3743 * to tag using scsi_host_find_tag() API. 3744 * 3745 * tag = smid - 1; 3746 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag; 3747 */ 3748 ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag); 3749 3750 smid = tag + 1; 3751 request->cb_idx = cb_idx; 3752 request->smid = smid; 3753 request->scmd = scmd; 3754 INIT_LIST_HEAD(&request->chain_list); 3755 return smid; 3756 } 3757 3758 /** 3759 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3760 * @ioc: per adapter object 3761 * @cb_idx: callback index 3762 * 3763 * Return: smid (zero is invalid) 3764 */ 3765 u16 3766 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3767 { 3768 unsigned long flags; 3769 struct request_tracker *request; 3770 u16 smid; 3771 3772 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3773 if (list_empty(&ioc->hpr_free_list)) { 3774 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3775 return 0; 3776 } 3777 3778 request = list_entry(ioc->hpr_free_list.next, 3779 struct request_tracker, tracker_list); 3780 request->cb_idx = cb_idx; 3781 smid = request->smid; 3782 list_del(&request->tracker_list); 3783 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3784 return smid; 3785 } 3786 3787 static void 3788 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 3789 { 3790 /* 3791 * See _wait_for_commands_to_complete() call with regards to this code. 3792 */ 3793 if (ioc->shost_recovery && ioc->pending_io_count) { 3794 ioc->pending_io_count = scsi_host_busy(ioc->shost); 3795 if (ioc->pending_io_count == 0) 3796 wake_up(&ioc->reset_wq); 3797 } 3798 } 3799 3800 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 3801 struct scsiio_tracker *st) 3802 { 3803 if (WARN_ON(st->smid == 0)) 3804 return; 3805 st->cb_idx = 0xFF; 3806 st->direct_io = 0; 3807 st->scmd = NULL; 3808 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 3809 st->smid = 0; 3810 } 3811 3812 /** 3813 * mpt3sas_base_free_smid - put smid back on free_list 3814 * @ioc: per adapter object 3815 * @smid: system request message index 3816 */ 3817 void 3818 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3819 { 3820 unsigned long flags; 3821 int i; 3822 3823 if (smid < ioc->hi_priority_smid) { 3824 struct scsiio_tracker *st; 3825 void *request; 3826 3827 st = _get_st_from_smid(ioc, smid); 3828 if (!st) { 3829 _base_recovery_check(ioc); 3830 return; 3831 } 3832 3833 /* Clear MPI request frame */ 3834 request = mpt3sas_base_get_msg_frame(ioc, smid); 3835 memset(request, 0, ioc->request_sz); 3836 3837 mpt3sas_base_clear_st(ioc, st); 3838 _base_recovery_check(ioc); 3839 ioc->io_queue_num[smid - 1] = 0; 3840 return; 3841 } 3842 3843 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3844 if (smid < ioc->internal_smid) { 3845 /* hi-priority */ 3846 i = smid - ioc->hi_priority_smid; 3847 ioc->hpr_lookup[i].cb_idx = 0xFF; 3848 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 3849 } else if (smid <= ioc->hba_queue_depth) { 3850 /* internal queue */ 3851 i = smid - ioc->internal_smid; 3852 ioc->internal_lookup[i].cb_idx = 0xFF; 3853 list_add(&ioc->internal_lookup[i].tracker_list, 3854 &ioc->internal_free_list); 3855 } 3856 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3857 } 3858 3859 /** 3860 * _base_mpi_ep_writeq - 32 bit write to MMIO 3861 * @b: data payload 3862 * @addr: address in MMIO space 3863 * @writeq_lock: spin lock 3864 * 3865 * This special handling for MPI EP to take care of 32 bit 3866 * environment where its not quarenteed to send the entire word 3867 * in one transfer. 3868 */ 3869 static inline void 3870 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 3871 spinlock_t *writeq_lock) 3872 { 3873 unsigned long flags; 3874 3875 spin_lock_irqsave(writeq_lock, flags); 3876 __raw_writel((u32)(b), addr); 3877 __raw_writel((u32)(b >> 32), (addr + 4)); 3878 spin_unlock_irqrestore(writeq_lock, flags); 3879 } 3880 3881 /** 3882 * _base_writeq - 64 bit write to MMIO 3883 * @b: data payload 3884 * @addr: address in MMIO space 3885 * @writeq_lock: spin lock 3886 * 3887 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 3888 * care of 32 bit environment where its not quarenteed to send the entire word 3889 * in one transfer. 3890 */ 3891 #if defined(writeq) && defined(CONFIG_64BIT) 3892 static inline void 3893 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3894 { 3895 wmb(); 3896 __raw_writeq(b, addr); 3897 barrier(); 3898 } 3899 #else 3900 static inline void 3901 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3902 { 3903 _base_mpi_ep_writeq(b, addr, writeq_lock); 3904 } 3905 #endif 3906 3907 /** 3908 * _base_set_and_get_msix_index - get the msix index and assign to msix_io 3909 * variable of scsi tracker 3910 * @ioc: per adapter object 3911 * @smid: system request message index 3912 * 3913 * returns msix index. 3914 */ 3915 static u8 3916 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3917 { 3918 struct scsiio_tracker *st = NULL; 3919 3920 if (smid < ioc->hi_priority_smid) 3921 st = _get_st_from_smid(ioc, smid); 3922 3923 if (st == NULL) 3924 return _base_get_msix_index(ioc, NULL); 3925 3926 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd); 3927 return st->msix_io; 3928 } 3929 3930 /** 3931 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 3932 * @ioc: per adapter object 3933 * @smid: system request message index 3934 * @handle: device handle 3935 */ 3936 static void 3937 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, 3938 u16 smid, u16 handle) 3939 { 3940 Mpi2RequestDescriptorUnion_t descriptor; 3941 u64 *request = (u64 *)&descriptor; 3942 void *mpi_req_iomem; 3943 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3944 3945 _clone_sg_entries(ioc, (void *) mfp, smid); 3946 mpi_req_iomem = (void __force *)ioc->chip + 3947 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3948 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3949 ioc->request_sz); 3950 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3951 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3952 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3953 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3954 descriptor.SCSIIO.LMID = 0; 3955 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3956 &ioc->scsi_lookup_lock); 3957 } 3958 3959 /** 3960 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 3961 * @ioc: per adapter object 3962 * @smid: system request message index 3963 * @handle: device handle 3964 */ 3965 static void 3966 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3967 { 3968 Mpi2RequestDescriptorUnion_t descriptor; 3969 u64 *request = (u64 *)&descriptor; 3970 3971 3972 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3973 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3974 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3975 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3976 descriptor.SCSIIO.LMID = 0; 3977 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3978 &ioc->scsi_lookup_lock); 3979 } 3980 3981 /** 3982 * _base_put_smid_fast_path - send fast path request to firmware 3983 * @ioc: per adapter object 3984 * @smid: system request message index 3985 * @handle: device handle 3986 */ 3987 static void 3988 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3989 u16 handle) 3990 { 3991 Mpi2RequestDescriptorUnion_t descriptor; 3992 u64 *request = (u64 *)&descriptor; 3993 3994 descriptor.SCSIIO.RequestFlags = 3995 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 3996 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3997 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3998 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3999 descriptor.SCSIIO.LMID = 0; 4000 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4001 &ioc->scsi_lookup_lock); 4002 } 4003 4004 /** 4005 * _base_put_smid_hi_priority - send Task Management request to firmware 4006 * @ioc: per adapter object 4007 * @smid: system request message index 4008 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0. 4009 */ 4010 static void 4011 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4012 u16 msix_task) 4013 { 4014 Mpi2RequestDescriptorUnion_t descriptor; 4015 void *mpi_req_iomem; 4016 u64 *request; 4017 4018 if (ioc->is_mcpu_endpoint) { 4019 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4020 4021 /* TBD 256 is offset within sys register. */ 4022 mpi_req_iomem = (void __force *)ioc->chip 4023 + MPI_FRAME_START_OFFSET 4024 + (smid * ioc->request_sz); 4025 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4026 ioc->request_sz); 4027 } 4028 4029 request = (u64 *)&descriptor; 4030 4031 descriptor.HighPriority.RequestFlags = 4032 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4033 descriptor.HighPriority.MSIxIndex = msix_task; 4034 descriptor.HighPriority.SMID = cpu_to_le16(smid); 4035 descriptor.HighPriority.LMID = 0; 4036 descriptor.HighPriority.Reserved1 = 0; 4037 if (ioc->is_mcpu_endpoint) 4038 _base_mpi_ep_writeq(*request, 4039 &ioc->chip->RequestDescriptorPostLow, 4040 &ioc->scsi_lookup_lock); 4041 else 4042 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4043 &ioc->scsi_lookup_lock); 4044 } 4045 4046 /** 4047 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 4048 * firmware 4049 * @ioc: per adapter object 4050 * @smid: system request message index 4051 */ 4052 void 4053 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4054 { 4055 Mpi2RequestDescriptorUnion_t descriptor; 4056 u64 *request = (u64 *)&descriptor; 4057 4058 descriptor.Default.RequestFlags = 4059 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 4060 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4061 descriptor.Default.SMID = cpu_to_le16(smid); 4062 descriptor.Default.LMID = 0; 4063 descriptor.Default.DescriptorTypeDependent = 0; 4064 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4065 &ioc->scsi_lookup_lock); 4066 } 4067 4068 /** 4069 * _base_put_smid_default - Default, primarily used for config pages 4070 * @ioc: per adapter object 4071 * @smid: system request message index 4072 */ 4073 static void 4074 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4075 { 4076 Mpi2RequestDescriptorUnion_t descriptor; 4077 void *mpi_req_iomem; 4078 u64 *request; 4079 4080 if (ioc->is_mcpu_endpoint) { 4081 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4082 4083 _clone_sg_entries(ioc, (void *) mfp, smid); 4084 /* TBD 256 is offset within sys register */ 4085 mpi_req_iomem = (void __force *)ioc->chip + 4086 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 4087 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4088 ioc->request_sz); 4089 } 4090 request = (u64 *)&descriptor; 4091 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4092 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4093 descriptor.Default.SMID = cpu_to_le16(smid); 4094 descriptor.Default.LMID = 0; 4095 descriptor.Default.DescriptorTypeDependent = 0; 4096 if (ioc->is_mcpu_endpoint) 4097 _base_mpi_ep_writeq(*request, 4098 &ioc->chip->RequestDescriptorPostLow, 4099 &ioc->scsi_lookup_lock); 4100 else 4101 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4102 &ioc->scsi_lookup_lock); 4103 } 4104 4105 /** 4106 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using 4107 * Atomic Request Descriptor 4108 * @ioc: per adapter object 4109 * @smid: system request message index 4110 * @handle: device handle, unused in this function, for function type match 4111 * 4112 * Return nothing. 4113 */ 4114 static void 4115 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4116 u16 handle) 4117 { 4118 Mpi26AtomicRequestDescriptor_t descriptor; 4119 u32 *request = (u32 *)&descriptor; 4120 4121 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4122 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4123 descriptor.SMID = cpu_to_le16(smid); 4124 4125 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4126 } 4127 4128 /** 4129 * _base_put_smid_fast_path_atomic - send fast path request to firmware 4130 * using Atomic Request Descriptor 4131 * @ioc: per adapter object 4132 * @smid: system request message index 4133 * @handle: device handle, unused in this function, for function type match 4134 * Return nothing 4135 */ 4136 static void 4137 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4138 u16 handle) 4139 { 4140 Mpi26AtomicRequestDescriptor_t descriptor; 4141 u32 *request = (u32 *)&descriptor; 4142 4143 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4144 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4145 descriptor.SMID = cpu_to_le16(smid); 4146 4147 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4148 } 4149 4150 /** 4151 * _base_put_smid_hi_priority_atomic - send Task Management request to 4152 * firmware using Atomic Request Descriptor 4153 * @ioc: per adapter object 4154 * @smid: system request message index 4155 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0 4156 * 4157 * Return nothing. 4158 */ 4159 static void 4160 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4161 u16 msix_task) 4162 { 4163 Mpi26AtomicRequestDescriptor_t descriptor; 4164 u32 *request = (u32 *)&descriptor; 4165 4166 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4167 descriptor.MSIxIndex = msix_task; 4168 descriptor.SMID = cpu_to_le16(smid); 4169 4170 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4171 } 4172 4173 /** 4174 * _base_put_smid_default_atomic - Default, primarily used for config pages 4175 * use Atomic Request Descriptor 4176 * @ioc: per adapter object 4177 * @smid: system request message index 4178 * 4179 * Return nothing. 4180 */ 4181 static void 4182 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4183 { 4184 Mpi26AtomicRequestDescriptor_t descriptor; 4185 u32 *request = (u32 *)&descriptor; 4186 4187 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4188 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4189 descriptor.SMID = cpu_to_le16(smid); 4190 4191 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4192 } 4193 4194 /** 4195 * _base_display_OEMs_branding - Display branding string 4196 * @ioc: per adapter object 4197 */ 4198 static void 4199 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 4200 { 4201 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 4202 return; 4203 4204 switch (ioc->pdev->subsystem_vendor) { 4205 case PCI_VENDOR_ID_INTEL: 4206 switch (ioc->pdev->device) { 4207 case MPI2_MFGPAGE_DEVID_SAS2008: 4208 switch (ioc->pdev->subsystem_device) { 4209 case MPT2SAS_INTEL_RMS2LL080_SSDID: 4210 ioc_info(ioc, "%s\n", 4211 MPT2SAS_INTEL_RMS2LL080_BRANDING); 4212 break; 4213 case MPT2SAS_INTEL_RMS2LL040_SSDID: 4214 ioc_info(ioc, "%s\n", 4215 MPT2SAS_INTEL_RMS2LL040_BRANDING); 4216 break; 4217 case MPT2SAS_INTEL_SSD910_SSDID: 4218 ioc_info(ioc, "%s\n", 4219 MPT2SAS_INTEL_SSD910_BRANDING); 4220 break; 4221 default: 4222 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4223 ioc->pdev->subsystem_device); 4224 break; 4225 } 4226 break; 4227 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4228 switch (ioc->pdev->subsystem_device) { 4229 case MPT2SAS_INTEL_RS25GB008_SSDID: 4230 ioc_info(ioc, "%s\n", 4231 MPT2SAS_INTEL_RS25GB008_BRANDING); 4232 break; 4233 case MPT2SAS_INTEL_RMS25JB080_SSDID: 4234 ioc_info(ioc, "%s\n", 4235 MPT2SAS_INTEL_RMS25JB080_BRANDING); 4236 break; 4237 case MPT2SAS_INTEL_RMS25JB040_SSDID: 4238 ioc_info(ioc, "%s\n", 4239 MPT2SAS_INTEL_RMS25JB040_BRANDING); 4240 break; 4241 case MPT2SAS_INTEL_RMS25KB080_SSDID: 4242 ioc_info(ioc, "%s\n", 4243 MPT2SAS_INTEL_RMS25KB080_BRANDING); 4244 break; 4245 case MPT2SAS_INTEL_RMS25KB040_SSDID: 4246 ioc_info(ioc, "%s\n", 4247 MPT2SAS_INTEL_RMS25KB040_BRANDING); 4248 break; 4249 case MPT2SAS_INTEL_RMS25LB040_SSDID: 4250 ioc_info(ioc, "%s\n", 4251 MPT2SAS_INTEL_RMS25LB040_BRANDING); 4252 break; 4253 case MPT2SAS_INTEL_RMS25LB080_SSDID: 4254 ioc_info(ioc, "%s\n", 4255 MPT2SAS_INTEL_RMS25LB080_BRANDING); 4256 break; 4257 default: 4258 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4259 ioc->pdev->subsystem_device); 4260 break; 4261 } 4262 break; 4263 case MPI25_MFGPAGE_DEVID_SAS3008: 4264 switch (ioc->pdev->subsystem_device) { 4265 case MPT3SAS_INTEL_RMS3JC080_SSDID: 4266 ioc_info(ioc, "%s\n", 4267 MPT3SAS_INTEL_RMS3JC080_BRANDING); 4268 break; 4269 4270 case MPT3SAS_INTEL_RS3GC008_SSDID: 4271 ioc_info(ioc, "%s\n", 4272 MPT3SAS_INTEL_RS3GC008_BRANDING); 4273 break; 4274 case MPT3SAS_INTEL_RS3FC044_SSDID: 4275 ioc_info(ioc, "%s\n", 4276 MPT3SAS_INTEL_RS3FC044_BRANDING); 4277 break; 4278 case MPT3SAS_INTEL_RS3UC080_SSDID: 4279 ioc_info(ioc, "%s\n", 4280 MPT3SAS_INTEL_RS3UC080_BRANDING); 4281 break; 4282 default: 4283 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4284 ioc->pdev->subsystem_device); 4285 break; 4286 } 4287 break; 4288 default: 4289 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4290 ioc->pdev->subsystem_device); 4291 break; 4292 } 4293 break; 4294 case PCI_VENDOR_ID_DELL: 4295 switch (ioc->pdev->device) { 4296 case MPI2_MFGPAGE_DEVID_SAS2008: 4297 switch (ioc->pdev->subsystem_device) { 4298 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 4299 ioc_info(ioc, "%s\n", 4300 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 4301 break; 4302 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 4303 ioc_info(ioc, "%s\n", 4304 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 4305 break; 4306 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 4307 ioc_info(ioc, "%s\n", 4308 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 4309 break; 4310 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 4311 ioc_info(ioc, "%s\n", 4312 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 4313 break; 4314 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 4315 ioc_info(ioc, "%s\n", 4316 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 4317 break; 4318 case MPT2SAS_DELL_PERC_H200_SSDID: 4319 ioc_info(ioc, "%s\n", 4320 MPT2SAS_DELL_PERC_H200_BRANDING); 4321 break; 4322 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 4323 ioc_info(ioc, "%s\n", 4324 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 4325 break; 4326 default: 4327 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 4328 ioc->pdev->subsystem_device); 4329 break; 4330 } 4331 break; 4332 case MPI25_MFGPAGE_DEVID_SAS3008: 4333 switch (ioc->pdev->subsystem_device) { 4334 case MPT3SAS_DELL_12G_HBA_SSDID: 4335 ioc_info(ioc, "%s\n", 4336 MPT3SAS_DELL_12G_HBA_BRANDING); 4337 break; 4338 default: 4339 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 4340 ioc->pdev->subsystem_device); 4341 break; 4342 } 4343 break; 4344 default: 4345 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 4346 ioc->pdev->subsystem_device); 4347 break; 4348 } 4349 break; 4350 case PCI_VENDOR_ID_CISCO: 4351 switch (ioc->pdev->device) { 4352 case MPI25_MFGPAGE_DEVID_SAS3008: 4353 switch (ioc->pdev->subsystem_device) { 4354 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 4355 ioc_info(ioc, "%s\n", 4356 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 4357 break; 4358 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 4359 ioc_info(ioc, "%s\n", 4360 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 4361 break; 4362 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4363 ioc_info(ioc, "%s\n", 4364 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4365 break; 4366 default: 4367 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4368 ioc->pdev->subsystem_device); 4369 break; 4370 } 4371 break; 4372 case MPI25_MFGPAGE_DEVID_SAS3108_1: 4373 switch (ioc->pdev->subsystem_device) { 4374 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4375 ioc_info(ioc, "%s\n", 4376 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4377 break; 4378 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 4379 ioc_info(ioc, "%s\n", 4380 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 4381 break; 4382 default: 4383 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4384 ioc->pdev->subsystem_device); 4385 break; 4386 } 4387 break; 4388 default: 4389 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 4390 ioc->pdev->subsystem_device); 4391 break; 4392 } 4393 break; 4394 case MPT2SAS_HP_3PAR_SSVID: 4395 switch (ioc->pdev->device) { 4396 case MPI2_MFGPAGE_DEVID_SAS2004: 4397 switch (ioc->pdev->subsystem_device) { 4398 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 4399 ioc_info(ioc, "%s\n", 4400 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 4401 break; 4402 default: 4403 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4404 ioc->pdev->subsystem_device); 4405 break; 4406 } 4407 break; 4408 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4409 switch (ioc->pdev->subsystem_device) { 4410 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 4411 ioc_info(ioc, "%s\n", 4412 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 4413 break; 4414 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 4415 ioc_info(ioc, "%s\n", 4416 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 4417 break; 4418 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 4419 ioc_info(ioc, "%s\n", 4420 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 4421 break; 4422 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 4423 ioc_info(ioc, "%s\n", 4424 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 4425 break; 4426 default: 4427 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4428 ioc->pdev->subsystem_device); 4429 break; 4430 } 4431 break; 4432 default: 4433 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 4434 ioc->pdev->subsystem_device); 4435 break; 4436 } 4437 default: 4438 break; 4439 } 4440 } 4441 4442 /** 4443 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 4444 * version from FW Image Header. 4445 * @ioc: per adapter object 4446 * 4447 * Return: 0 for success, non-zero for failure. 4448 */ 4449 static int 4450 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 4451 { 4452 Mpi2FWImageHeader_t *fw_img_hdr; 4453 Mpi26ComponentImageHeader_t *cmp_img_hdr; 4454 Mpi25FWUploadRequest_t *mpi_request; 4455 Mpi2FWUploadReply_t mpi_reply; 4456 int r = 0; 4457 u32 package_version = 0; 4458 void *fwpkg_data = NULL; 4459 dma_addr_t fwpkg_data_dma; 4460 u16 smid, ioc_status; 4461 size_t data_length; 4462 4463 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4464 4465 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 4466 ioc_err(ioc, "%s: internal command already in use\n", __func__); 4467 return -EAGAIN; 4468 } 4469 4470 data_length = sizeof(Mpi2FWImageHeader_t); 4471 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 4472 &fwpkg_data_dma, GFP_KERNEL); 4473 if (!fwpkg_data) { 4474 ioc_err(ioc, 4475 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n", 4476 __FILE__, __LINE__, __func__); 4477 return -ENOMEM; 4478 } 4479 4480 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4481 if (!smid) { 4482 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 4483 r = -EAGAIN; 4484 goto out; 4485 } 4486 4487 ioc->base_cmds.status = MPT3_CMD_PENDING; 4488 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4489 ioc->base_cmds.smid = smid; 4490 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 4491 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 4492 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 4493 mpi_request->ImageSize = cpu_to_le32(data_length); 4494 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 4495 data_length); 4496 init_completion(&ioc->base_cmds.done); 4497 ioc->put_smid_default(ioc, smid); 4498 /* Wait for 15 seconds */ 4499 wait_for_completion_timeout(&ioc->base_cmds.done, 4500 FW_IMG_HDR_READ_TIMEOUT*HZ); 4501 ioc_info(ioc, "%s: complete\n", __func__); 4502 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4503 ioc_err(ioc, "%s: timeout\n", __func__); 4504 _debug_dump_mf(mpi_request, 4505 sizeof(Mpi25FWUploadRequest_t)/4); 4506 r = -ETIME; 4507 } else { 4508 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 4509 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 4510 memcpy(&mpi_reply, ioc->base_cmds.reply, 4511 sizeof(Mpi2FWUploadReply_t)); 4512 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4513 MPI2_IOCSTATUS_MASK; 4514 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 4515 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data; 4516 if (le32_to_cpu(fw_img_hdr->Signature) == 4517 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) { 4518 cmp_img_hdr = 4519 (Mpi26ComponentImageHeader_t *) 4520 (fwpkg_data); 4521 package_version = 4522 le32_to_cpu( 4523 cmp_img_hdr->ApplicationSpecific); 4524 } else 4525 package_version = 4526 le32_to_cpu( 4527 fw_img_hdr->PackageVersion.Word); 4528 if (package_version) 4529 ioc_info(ioc, 4530 "FW Package Ver(%02d.%02d.%02d.%02d)\n", 4531 ((package_version) & 0xFF000000) >> 24, 4532 ((package_version) & 0x00FF0000) >> 16, 4533 ((package_version) & 0x0000FF00) >> 8, 4534 (package_version) & 0x000000FF); 4535 } else { 4536 _debug_dump_mf(&mpi_reply, 4537 sizeof(Mpi2FWUploadReply_t)/4); 4538 } 4539 } 4540 } 4541 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4542 out: 4543 if (fwpkg_data) 4544 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 4545 fwpkg_data_dma); 4546 return r; 4547 } 4548 4549 /** 4550 * _base_display_ioc_capabilities - Disply IOC's capabilities. 4551 * @ioc: per adapter object 4552 */ 4553 static void 4554 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 4555 { 4556 int i = 0; 4557 char desc[16]; 4558 u32 iounit_pg1_flags; 4559 u32 bios_version; 4560 4561 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 4562 strncpy(desc, ioc->manu_pg0.ChipName, 16); 4563 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", 4564 desc, 4565 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 4566 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 4567 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 4568 ioc->facts.FWVersion.Word & 0x000000FF, 4569 ioc->pdev->revision, 4570 (bios_version & 0xFF000000) >> 24, 4571 (bios_version & 0x00FF0000) >> 16, 4572 (bios_version & 0x0000FF00) >> 8, 4573 bios_version & 0x000000FF); 4574 4575 _base_display_OEMs_branding(ioc); 4576 4577 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4578 pr_info("%sNVMe", i ? "," : ""); 4579 i++; 4580 } 4581 4582 ioc_info(ioc, "Protocol=("); 4583 4584 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 4585 pr_cont("Initiator"); 4586 i++; 4587 } 4588 4589 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 4590 pr_cont("%sTarget", i ? "," : ""); 4591 i++; 4592 } 4593 4594 i = 0; 4595 pr_cont("), Capabilities=("); 4596 4597 if (!ioc->hide_ir_msg) { 4598 if (ioc->facts.IOCCapabilities & 4599 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 4600 pr_cont("Raid"); 4601 i++; 4602 } 4603 } 4604 4605 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 4606 pr_cont("%sTLR", i ? "," : ""); 4607 i++; 4608 } 4609 4610 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 4611 pr_cont("%sMulticast", i ? "," : ""); 4612 i++; 4613 } 4614 4615 if (ioc->facts.IOCCapabilities & 4616 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 4617 pr_cont("%sBIDI Target", i ? "," : ""); 4618 i++; 4619 } 4620 4621 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 4622 pr_cont("%sEEDP", i ? "," : ""); 4623 i++; 4624 } 4625 4626 if (ioc->facts.IOCCapabilities & 4627 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 4628 pr_cont("%sSnapshot Buffer", i ? "," : ""); 4629 i++; 4630 } 4631 4632 if (ioc->facts.IOCCapabilities & 4633 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 4634 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 4635 i++; 4636 } 4637 4638 if (ioc->facts.IOCCapabilities & 4639 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 4640 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 4641 i++; 4642 } 4643 4644 if (ioc->facts.IOCCapabilities & 4645 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 4646 pr_cont("%sTask Set Full", i ? "," : ""); 4647 i++; 4648 } 4649 4650 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4651 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 4652 pr_cont("%sNCQ", i ? "," : ""); 4653 i++; 4654 } 4655 4656 pr_cont(")\n"); 4657 } 4658 4659 /** 4660 * mpt3sas_base_update_missing_delay - change the missing delay timers 4661 * @ioc: per adapter object 4662 * @device_missing_delay: amount of time till device is reported missing 4663 * @io_missing_delay: interval IO is returned when there is a missing device 4664 * 4665 * Passed on the command line, this function will modify the device missing 4666 * delay, as well as the io missing delay. This should be called at driver 4667 * load time. 4668 */ 4669 void 4670 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4671 u16 device_missing_delay, u8 io_missing_delay) 4672 { 4673 u16 dmd, dmd_new, dmd_orignal; 4674 u8 io_missing_delay_original; 4675 u16 sz; 4676 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4677 Mpi2ConfigReply_t mpi_reply; 4678 u8 num_phys = 0; 4679 u16 ioc_status; 4680 4681 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4682 if (!num_phys) 4683 return; 4684 4685 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 4686 sizeof(Mpi2SasIOUnit1PhyData_t)); 4687 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4688 if (!sas_iounit_pg1) { 4689 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4690 __FILE__, __LINE__, __func__); 4691 goto out; 4692 } 4693 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4694 sas_iounit_pg1, sz))) { 4695 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4696 __FILE__, __LINE__, __func__); 4697 goto out; 4698 } 4699 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4700 MPI2_IOCSTATUS_MASK; 4701 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4702 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4703 __FILE__, __LINE__, __func__); 4704 goto out; 4705 } 4706 4707 /* device missing delay */ 4708 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4709 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4710 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4711 else 4712 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4713 dmd_orignal = dmd; 4714 if (device_missing_delay > 0x7F) { 4715 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4716 device_missing_delay; 4717 dmd = dmd / 16; 4718 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4719 } else 4720 dmd = device_missing_delay; 4721 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4722 4723 /* io missing delay */ 4724 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4725 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4726 4727 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4728 sz)) { 4729 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4730 dmd_new = (dmd & 4731 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4732 else 4733 dmd_new = 4734 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4735 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4736 dmd_orignal, dmd_new); 4737 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4738 io_missing_delay_original, 4739 io_missing_delay); 4740 ioc->device_missing_delay = dmd_new; 4741 ioc->io_missing_delay = io_missing_delay; 4742 } 4743 4744 out: 4745 kfree(sas_iounit_pg1); 4746 } 4747 4748 /** 4749 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields 4750 * according to performance mode. 4751 * @ioc : per adapter object 4752 * 4753 * Return nothing. 4754 */ 4755 static void 4756 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc) 4757 { 4758 Mpi2IOCPage1_t ioc_pg1; 4759 Mpi2ConfigReply_t mpi_reply; 4760 4761 mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy); 4762 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t)); 4763 4764 switch (perf_mode) { 4765 case MPT_PERF_MODE_DEFAULT: 4766 case MPT_PERF_MODE_BALANCED: 4767 if (ioc->high_iops_queues) { 4768 ioc_info(ioc, 4769 "Enable interrupt coalescing only for first\t" 4770 "%d reply queues\n", 4771 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 4772 /* 4773 * If 31st bit is zero then interrupt coalescing is 4774 * enabled for all reply descriptor post queues. 4775 * If 31st bit is set to one then user can 4776 * enable/disable interrupt coalescing on per reply 4777 * descriptor post queue group(8) basis. So to enable 4778 * interrupt coalescing only on first reply descriptor 4779 * post queue group 31st bit and zero th bit is enabled. 4780 */ 4781 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 | 4782 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1)); 4783 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4784 ioc_info(ioc, "performance mode: balanced\n"); 4785 return; 4786 } 4787 fallthrough; 4788 case MPT_PERF_MODE_LATENCY: 4789 /* 4790 * Enable interrupt coalescing on all reply queues 4791 * with timeout value 0xA 4792 */ 4793 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa); 4794 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4795 ioc_pg1.ProductSpecific = 0; 4796 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4797 ioc_info(ioc, "performance mode: latency\n"); 4798 break; 4799 case MPT_PERF_MODE_IOPS: 4800 /* 4801 * Enable interrupt coalescing on all reply queues. 4802 */ 4803 ioc_info(ioc, 4804 "performance mode: iops with coalescing timeout: 0x%x\n", 4805 le32_to_cpu(ioc_pg1.CoalescingTimeout)); 4806 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4807 ioc_pg1.ProductSpecific = 0; 4808 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4809 break; 4810 } 4811 } 4812 4813 /** 4814 * _base_get_event_diag_triggers - get event diag trigger values from 4815 * persistent pages 4816 * @ioc : per adapter object 4817 * 4818 * Return nothing. 4819 */ 4820 static void 4821 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 4822 { 4823 Mpi26DriverTriggerPage2_t trigger_pg2; 4824 struct SL_WH_EVENT_TRIGGER_T *event_tg; 4825 MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg; 4826 Mpi2ConfigReply_t mpi_reply; 4827 int r = 0, i = 0; 4828 u16 count = 0; 4829 u16 ioc_status; 4830 4831 r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply, 4832 &trigger_pg2); 4833 if (r) 4834 return; 4835 4836 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4837 MPI2_IOCSTATUS_MASK; 4838 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4839 dinitprintk(ioc, 4840 ioc_err(ioc, 4841 "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n", 4842 __func__, ioc_status)); 4843 return; 4844 } 4845 4846 if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) { 4847 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger); 4848 count = min_t(u16, NUM_VALID_ENTRIES, count); 4849 ioc->diag_trigger_event.ValidEntries = count; 4850 4851 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0]; 4852 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0]; 4853 for (i = 0; i < count; i++) { 4854 event_tg->EventValue = le16_to_cpu( 4855 mpi_event_tg->MPIEventCode); 4856 event_tg->LogEntryQualifier = le16_to_cpu( 4857 mpi_event_tg->MPIEventCodeSpecific); 4858 event_tg++; 4859 mpi_event_tg++; 4860 } 4861 } 4862 } 4863 4864 /** 4865 * _base_get_scsi_diag_triggers - get scsi diag trigger values from 4866 * persistent pages 4867 * @ioc : per adapter object 4868 * 4869 * Return nothing. 4870 */ 4871 static void 4872 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 4873 { 4874 Mpi26DriverTriggerPage3_t trigger_pg3; 4875 struct SL_WH_SCSI_TRIGGER_T *scsi_tg; 4876 MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg; 4877 Mpi2ConfigReply_t mpi_reply; 4878 int r = 0, i = 0; 4879 u16 count = 0; 4880 u16 ioc_status; 4881 4882 r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply, 4883 &trigger_pg3); 4884 if (r) 4885 return; 4886 4887 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4888 MPI2_IOCSTATUS_MASK; 4889 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4890 dinitprintk(ioc, 4891 ioc_err(ioc, 4892 "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n", 4893 __func__, ioc_status)); 4894 return; 4895 } 4896 4897 if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) { 4898 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger); 4899 count = min_t(u16, NUM_VALID_ENTRIES, count); 4900 ioc->diag_trigger_scsi.ValidEntries = count; 4901 4902 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0]; 4903 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0]; 4904 for (i = 0; i < count; i++) { 4905 scsi_tg->ASCQ = mpi_scsi_tg->ASCQ; 4906 scsi_tg->ASC = mpi_scsi_tg->ASC; 4907 scsi_tg->SenseKey = mpi_scsi_tg->SenseKey; 4908 4909 scsi_tg++; 4910 mpi_scsi_tg++; 4911 } 4912 } 4913 } 4914 4915 /** 4916 * _base_get_mpi_diag_triggers - get mpi diag trigger values from 4917 * persistent pages 4918 * @ioc : per adapter object 4919 * 4920 * Return nothing. 4921 */ 4922 static void 4923 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 4924 { 4925 Mpi26DriverTriggerPage4_t trigger_pg4; 4926 struct SL_WH_MPI_TRIGGER_T *status_tg; 4927 MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg; 4928 Mpi2ConfigReply_t mpi_reply; 4929 int r = 0, i = 0; 4930 u16 count = 0; 4931 u16 ioc_status; 4932 4933 r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply, 4934 &trigger_pg4); 4935 if (r) 4936 return; 4937 4938 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4939 MPI2_IOCSTATUS_MASK; 4940 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4941 dinitprintk(ioc, 4942 ioc_err(ioc, 4943 "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n", 4944 __func__, ioc_status)); 4945 return; 4946 } 4947 4948 if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) { 4949 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger); 4950 count = min_t(u16, NUM_VALID_ENTRIES, count); 4951 ioc->diag_trigger_mpi.ValidEntries = count; 4952 4953 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0]; 4954 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0]; 4955 4956 for (i = 0; i < count; i++) { 4957 status_tg->IOCStatus = le16_to_cpu( 4958 mpi_status_tg->IOCStatus); 4959 status_tg->IocLogInfo = le32_to_cpu( 4960 mpi_status_tg->LogInfo); 4961 4962 status_tg++; 4963 mpi_status_tg++; 4964 } 4965 } 4966 } 4967 4968 /** 4969 * _base_get_master_diag_triggers - get master diag trigger values from 4970 * persistent pages 4971 * @ioc : per adapter object 4972 * 4973 * Return nothing. 4974 */ 4975 static void 4976 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 4977 { 4978 Mpi26DriverTriggerPage1_t trigger_pg1; 4979 Mpi2ConfigReply_t mpi_reply; 4980 int r; 4981 u16 ioc_status; 4982 4983 r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply, 4984 &trigger_pg1); 4985 if (r) 4986 return; 4987 4988 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4989 MPI2_IOCSTATUS_MASK; 4990 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4991 dinitprintk(ioc, 4992 ioc_err(ioc, 4993 "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n", 4994 __func__, ioc_status)); 4995 return; 4996 } 4997 4998 if (le16_to_cpu(trigger_pg1.NumMasterTrigger)) 4999 ioc->diag_trigger_master.MasterData |= 5000 le32_to_cpu( 5001 trigger_pg1.MasterTriggers[0].MasterTriggerFlags); 5002 } 5003 5004 /** 5005 * _base_check_for_trigger_pages_support - checks whether HBA FW supports 5006 * driver trigger pages or not 5007 * @ioc : per adapter object 5008 * 5009 * Returns trigger flags mask if HBA FW supports driver trigger pages, 5010 * otherwise returns EFAULT. 5011 */ 5012 static int 5013 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc) 5014 { 5015 Mpi26DriverTriggerPage0_t trigger_pg0; 5016 int r = 0; 5017 Mpi2ConfigReply_t mpi_reply; 5018 u16 ioc_status; 5019 5020 r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply, 5021 &trigger_pg0); 5022 if (r) 5023 return -EFAULT; 5024 5025 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5026 MPI2_IOCSTATUS_MASK; 5027 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 5028 return -EFAULT; 5029 5030 return le16_to_cpu(trigger_pg0.TriggerFlags); 5031 } 5032 5033 /** 5034 * _base_get_diag_triggers - Retrieve diag trigger values from 5035 * persistent pages. 5036 * @ioc : per adapter object 5037 * 5038 * Return nothing. 5039 */ 5040 static void 5041 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5042 { 5043 int trigger_flags; 5044 5045 /* 5046 * Default setting of master trigger. 5047 */ 5048 ioc->diag_trigger_master.MasterData = 5049 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 5050 5051 trigger_flags = _base_check_for_trigger_pages_support(ioc); 5052 if (trigger_flags < 0) 5053 return; 5054 5055 ioc->supports_trigger_pages = 1; 5056 5057 /* 5058 * Retrieve master diag trigger values from driver trigger pg1 5059 * if master trigger bit enabled in TriggerFlags. 5060 */ 5061 if ((u16)trigger_flags & 5062 MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) 5063 _base_get_master_diag_triggers(ioc); 5064 5065 /* 5066 * Retrieve event diag trigger values from driver trigger pg2 5067 * if event trigger bit enabled in TriggerFlags. 5068 */ 5069 if ((u16)trigger_flags & 5070 MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) 5071 _base_get_event_diag_triggers(ioc); 5072 5073 /* 5074 * Retrieve scsi diag trigger values from driver trigger pg3 5075 * if scsi trigger bit enabled in TriggerFlags. 5076 */ 5077 if ((u16)trigger_flags & 5078 MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) 5079 _base_get_scsi_diag_triggers(ioc); 5080 /* 5081 * Retrieve mpi error diag trigger values from driver trigger pg4 5082 * if loginfo trigger bit enabled in TriggerFlags. 5083 */ 5084 if ((u16)trigger_flags & 5085 MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) 5086 _base_get_mpi_diag_triggers(ioc); 5087 } 5088 5089 /** 5090 * _base_update_diag_trigger_pages - Update the driver trigger pages after 5091 * online FW update, incase updated FW supports driver 5092 * trigger pages. 5093 * @ioc : per adapter object 5094 * 5095 * Return nothing. 5096 */ 5097 static void 5098 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc) 5099 { 5100 5101 if (ioc->diag_trigger_master.MasterData) 5102 mpt3sas_config_update_driver_trigger_pg1(ioc, 5103 &ioc->diag_trigger_master, 1); 5104 5105 if (ioc->diag_trigger_event.ValidEntries) 5106 mpt3sas_config_update_driver_trigger_pg2(ioc, 5107 &ioc->diag_trigger_event, 1); 5108 5109 if (ioc->diag_trigger_scsi.ValidEntries) 5110 mpt3sas_config_update_driver_trigger_pg3(ioc, 5111 &ioc->diag_trigger_scsi, 1); 5112 5113 if (ioc->diag_trigger_mpi.ValidEntries) 5114 mpt3sas_config_update_driver_trigger_pg4(ioc, 5115 &ioc->diag_trigger_mpi, 1); 5116 } 5117 5118 /** 5119 * _base_static_config_pages - static start of day config pages 5120 * @ioc: per adapter object 5121 */ 5122 static void 5123 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 5124 { 5125 Mpi2ConfigReply_t mpi_reply; 5126 u32 iounit_pg1_flags; 5127 int tg_flags = 0; 5128 ioc->nvme_abort_timeout = 30; 5129 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0); 5130 if (ioc->ir_firmware) 5131 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 5132 &ioc->manu_pg10); 5133 5134 /* 5135 * Ensure correct T10 PI operation if vendor left EEDPTagMode 5136 * flag unset in NVDATA. 5137 */ 5138 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); 5139 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 5140 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 5141 ioc->name); 5142 ioc->manu_pg11.EEDPTagMode &= ~0x3; 5143 ioc->manu_pg11.EEDPTagMode |= 0x1; 5144 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 5145 &ioc->manu_pg11); 5146 } 5147 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 5148 ioc->tm_custom_handling = 1; 5149 else { 5150 ioc->tm_custom_handling = 0; 5151 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 5152 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 5153 else if (ioc->manu_pg11.NVMeAbortTO > 5154 NVME_TASK_ABORT_MAX_TIMEOUT) 5155 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 5156 else 5157 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 5158 } 5159 ioc->time_sync_interval = 5160 ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK; 5161 if (ioc->time_sync_interval) { 5162 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK) 5163 ioc->time_sync_interval = 5164 ioc->time_sync_interval * SECONDS_PER_HOUR; 5165 else 5166 ioc->time_sync_interval = 5167 ioc->time_sync_interval * SECONDS_PER_MIN; 5168 dinitprintk(ioc, ioc_info(ioc, 5169 "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n", 5170 ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval & 5171 MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute")); 5172 } else { 5173 if (ioc->is_gen35_ioc) 5174 ioc_warn(ioc, 5175 "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n"); 5176 } 5177 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 5178 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 5179 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 5180 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 5181 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5182 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 5183 _base_display_ioc_capabilities(ioc); 5184 5185 /* 5186 * Enable task_set_full handling in iounit_pg1 when the 5187 * facts capabilities indicate that its supported. 5188 */ 5189 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 5190 if ((ioc->facts.IOCCapabilities & 5191 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 5192 iounit_pg1_flags &= 5193 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5194 else 5195 iounit_pg1_flags |= 5196 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5197 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 5198 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5199 5200 if (ioc->iounit_pg8.NumSensors) 5201 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 5202 if (ioc->is_aero_ioc) 5203 _base_update_ioc_page1_inlinewith_perf_mode(ioc); 5204 if (ioc->is_gen35_ioc) { 5205 if (ioc->is_driver_loading) 5206 _base_get_diag_triggers(ioc); 5207 else { 5208 /* 5209 * In case of online HBA FW update operation, 5210 * check whether updated FW supports the driver trigger 5211 * pages or not. 5212 * - If previous FW has not supported driver trigger 5213 * pages and newer FW supports them then update these 5214 * pages with current diag trigger values. 5215 * - If previous FW has supported driver trigger pages 5216 * and new FW doesn't support them then disable 5217 * support_trigger_pages flag. 5218 */ 5219 tg_flags = _base_check_for_trigger_pages_support(ioc); 5220 if (!ioc->supports_trigger_pages && tg_flags != -EFAULT) 5221 _base_update_diag_trigger_pages(ioc); 5222 else if (ioc->supports_trigger_pages && 5223 tg_flags == -EFAULT) 5224 ioc->supports_trigger_pages = 0; 5225 } 5226 } 5227 } 5228 5229 /** 5230 * mpt3sas_free_enclosure_list - release memory 5231 * @ioc: per adapter object 5232 * 5233 * Free memory allocated during enclosure add. 5234 */ 5235 void 5236 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 5237 { 5238 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 5239 5240 /* Free enclosure list */ 5241 list_for_each_entry_safe(enclosure_dev, 5242 enclosure_dev_next, &ioc->enclosure_list, list) { 5243 list_del(&enclosure_dev->list); 5244 kfree(enclosure_dev); 5245 } 5246 } 5247 5248 /** 5249 * _base_release_memory_pools - release memory 5250 * @ioc: per adapter object 5251 * 5252 * Free memory allocated from _base_allocate_memory_pools. 5253 */ 5254 static void 5255 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 5256 { 5257 int i = 0; 5258 int j = 0; 5259 int dma_alloc_count = 0; 5260 struct chain_tracker *ct; 5261 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 5262 5263 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5264 5265 if (ioc->request) { 5266 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 5267 ioc->request, ioc->request_dma); 5268 dexitprintk(ioc, 5269 ioc_info(ioc, "request_pool(0x%p): free\n", 5270 ioc->request)); 5271 ioc->request = NULL; 5272 } 5273 5274 if (ioc->sense) { 5275 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5276 dma_pool_destroy(ioc->sense_dma_pool); 5277 dexitprintk(ioc, 5278 ioc_info(ioc, "sense_pool(0x%p): free\n", 5279 ioc->sense)); 5280 ioc->sense = NULL; 5281 } 5282 5283 if (ioc->reply) { 5284 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 5285 dma_pool_destroy(ioc->reply_dma_pool); 5286 dexitprintk(ioc, 5287 ioc_info(ioc, "reply_pool(0x%p): free\n", 5288 ioc->reply)); 5289 ioc->reply = NULL; 5290 } 5291 5292 if (ioc->reply_free) { 5293 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 5294 ioc->reply_free_dma); 5295 dma_pool_destroy(ioc->reply_free_dma_pool); 5296 dexitprintk(ioc, 5297 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 5298 ioc->reply_free)); 5299 ioc->reply_free = NULL; 5300 } 5301 5302 if (ioc->reply_post) { 5303 dma_alloc_count = DIV_ROUND_UP(count, 5304 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 5305 for (i = 0; i < count; i++) { 5306 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0 5307 && dma_alloc_count) { 5308 if (ioc->reply_post[i].reply_post_free) { 5309 dma_pool_free( 5310 ioc->reply_post_free_dma_pool, 5311 ioc->reply_post[i].reply_post_free, 5312 ioc->reply_post[i].reply_post_free_dma); 5313 dexitprintk(ioc, ioc_info(ioc, 5314 "reply_post_free_pool(0x%p): free\n", 5315 ioc->reply_post[i].reply_post_free)); 5316 ioc->reply_post[i].reply_post_free = 5317 NULL; 5318 } 5319 --dma_alloc_count; 5320 } 5321 } 5322 dma_pool_destroy(ioc->reply_post_free_dma_pool); 5323 if (ioc->reply_post_free_array && 5324 ioc->rdpq_array_enable) { 5325 dma_pool_free(ioc->reply_post_free_array_dma_pool, 5326 ioc->reply_post_free_array, 5327 ioc->reply_post_free_array_dma); 5328 ioc->reply_post_free_array = NULL; 5329 } 5330 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 5331 kfree(ioc->reply_post); 5332 } 5333 5334 if (ioc->pcie_sgl_dma_pool) { 5335 for (i = 0; i < ioc->scsiio_depth; i++) { 5336 dma_pool_free(ioc->pcie_sgl_dma_pool, 5337 ioc->pcie_sg_lookup[i].pcie_sgl, 5338 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5339 ioc->pcie_sg_lookup[i].pcie_sgl = NULL; 5340 } 5341 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 5342 } 5343 if (ioc->config_page) { 5344 dexitprintk(ioc, 5345 ioc_info(ioc, "config_page(0x%p): free\n", 5346 ioc->config_page)); 5347 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 5348 ioc->config_page, ioc->config_page_dma); 5349 } 5350 5351 kfree(ioc->hpr_lookup); 5352 ioc->hpr_lookup = NULL; 5353 kfree(ioc->internal_lookup); 5354 ioc->internal_lookup = NULL; 5355 if (ioc->chain_lookup) { 5356 for (i = 0; i < ioc->scsiio_depth; i++) { 5357 for (j = ioc->chains_per_prp_buffer; 5358 j < ioc->chains_needed_per_io; j++) { 5359 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5360 if (ct && ct->chain_buffer) 5361 dma_pool_free(ioc->chain_dma_pool, 5362 ct->chain_buffer, 5363 ct->chain_buffer_dma); 5364 } 5365 kfree(ioc->chain_lookup[i].chains_per_smid); 5366 } 5367 dma_pool_destroy(ioc->chain_dma_pool); 5368 kfree(ioc->chain_lookup); 5369 ioc->chain_lookup = NULL; 5370 } 5371 5372 kfree(ioc->io_queue_num); 5373 ioc->io_queue_num = NULL; 5374 } 5375 5376 /** 5377 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are 5378 * having same upper 32bits in their base memory address. 5379 * @reply_pool_start_address: Base address of a reply queue set 5380 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 5381 * 5382 * Return: 1 if reply queues in a set have a same upper 32bits in their base 5383 * memory address, else 0. 5384 */ 5385 5386 static int 5387 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz) 5388 { 5389 long reply_pool_end_address; 5390 5391 reply_pool_end_address = reply_pool_start_address + pool_sz; 5392 5393 if (upper_32_bits(reply_pool_start_address) == 5394 upper_32_bits(reply_pool_end_address)) 5395 return 1; 5396 else 5397 return 0; 5398 } 5399 5400 /** 5401 * _base_reduce_hba_queue_depth- Retry with reduced queue depth 5402 * @ioc: Adapter object 5403 * 5404 * Return: 0 for success, non-zero for failure. 5405 **/ 5406 static inline int 5407 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc) 5408 { 5409 int reduce_sz = 64; 5410 5411 if ((ioc->hba_queue_depth - reduce_sz) > 5412 (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) { 5413 ioc->hba_queue_depth -= reduce_sz; 5414 return 0; 5415 } else 5416 return -ENOMEM; 5417 } 5418 5419 /** 5420 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory 5421 * for pcie sgl pools. 5422 * @ioc: Adapter object 5423 * @sz: DMA Pool size 5424 * 5425 * Return: 0 for success, non-zero for failure. 5426 */ 5427 5428 static int 5429 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5430 { 5431 int i = 0, j = 0; 5432 struct chain_tracker *ct; 5433 5434 ioc->pcie_sgl_dma_pool = 5435 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 5436 ioc->page_size, 0); 5437 if (!ioc->pcie_sgl_dma_pool) { 5438 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 5439 return -ENOMEM; 5440 } 5441 5442 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 5443 ioc->chains_per_prp_buffer = 5444 min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io); 5445 for (i = 0; i < ioc->scsiio_depth; i++) { 5446 ioc->pcie_sg_lookup[i].pcie_sgl = 5447 dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL, 5448 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5449 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 5450 ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 5451 return -EAGAIN; 5452 } 5453 5454 if (!mpt3sas_check_same_4gb_region( 5455 (long)ioc->pcie_sg_lookup[i].pcie_sgl, sz)) { 5456 ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n", 5457 ioc->pcie_sg_lookup[i].pcie_sgl, 5458 (unsigned long long) 5459 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5460 ioc->use_32bit_dma = true; 5461 return -EAGAIN; 5462 } 5463 5464 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 5465 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5466 ct->chain_buffer = 5467 ioc->pcie_sg_lookup[i].pcie_sgl + 5468 (j * ioc->chain_segment_sz); 5469 ct->chain_buffer_dma = 5470 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 5471 (j * ioc->chain_segment_sz); 5472 } 5473 } 5474 dinitprintk(ioc, ioc_info(ioc, 5475 "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 5476 ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024)); 5477 dinitprintk(ioc, ioc_info(ioc, 5478 "Number of chains can fit in a PRP page(%d)\n", 5479 ioc->chains_per_prp_buffer)); 5480 return 0; 5481 } 5482 5483 /** 5484 * _base_allocate_chain_dma_pool - Allocating DMA'able memory 5485 * for chain dma pool. 5486 * @ioc: Adapter object 5487 * @sz: DMA Pool size 5488 * 5489 * Return: 0 for success, non-zero for failure. 5490 */ 5491 static int 5492 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5493 { 5494 int i = 0, j = 0; 5495 struct chain_tracker *ctr; 5496 5497 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 5498 ioc->chain_segment_sz, 16, 0); 5499 if (!ioc->chain_dma_pool) 5500 return -ENOMEM; 5501 5502 for (i = 0; i < ioc->scsiio_depth; i++) { 5503 for (j = ioc->chains_per_prp_buffer; 5504 j < ioc->chains_needed_per_io; j++) { 5505 ctr = &ioc->chain_lookup[i].chains_per_smid[j]; 5506 ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool, 5507 GFP_KERNEL, &ctr->chain_buffer_dma); 5508 if (!ctr->chain_buffer) 5509 return -EAGAIN; 5510 if (!mpt3sas_check_same_4gb_region((long) 5511 ctr->chain_buffer, ioc->chain_segment_sz)) { 5512 ioc_err(ioc, 5513 "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n", 5514 ctr->chain_buffer, 5515 (unsigned long long)ctr->chain_buffer_dma); 5516 ioc->use_32bit_dma = true; 5517 return -EAGAIN; 5518 } 5519 } 5520 } 5521 dinitprintk(ioc, ioc_info(ioc, 5522 "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n", 5523 ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth * 5524 (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) * 5525 ioc->chain_segment_sz))/1024)); 5526 return 0; 5527 } 5528 5529 /** 5530 * _base_allocate_sense_dma_pool - Allocating DMA'able memory 5531 * for sense dma pool. 5532 * @ioc: Adapter object 5533 * @sz: DMA Pool size 5534 * Return: 0 for success, non-zero for failure. 5535 */ 5536 static int 5537 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5538 { 5539 ioc->sense_dma_pool = 5540 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0); 5541 if (!ioc->sense_dma_pool) 5542 return -ENOMEM; 5543 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, 5544 GFP_KERNEL, &ioc->sense_dma); 5545 if (!ioc->sense) 5546 return -EAGAIN; 5547 if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) { 5548 dinitprintk(ioc, pr_err( 5549 "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n", 5550 ioc->sense, (unsigned long long) ioc->sense_dma)); 5551 ioc->use_32bit_dma = true; 5552 return -EAGAIN; 5553 } 5554 ioc_info(ioc, 5555 "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n", 5556 ioc->sense, (unsigned long long)ioc->sense_dma, 5557 ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024); 5558 return 0; 5559 } 5560 5561 /** 5562 * _base_allocate_reply_pool - Allocating DMA'able memory 5563 * for reply pool. 5564 * @ioc: Adapter object 5565 * @sz: DMA Pool size 5566 * Return: 0 for success, non-zero for failure. 5567 */ 5568 static int 5569 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5570 { 5571 /* reply pool, 4 byte align */ 5572 ioc->reply_dma_pool = dma_pool_create("reply pool", 5573 &ioc->pdev->dev, sz, 4, 0); 5574 if (!ioc->reply_dma_pool) 5575 return -ENOMEM; 5576 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 5577 &ioc->reply_dma); 5578 if (!ioc->reply) 5579 return -EAGAIN; 5580 if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) { 5581 dinitprintk(ioc, pr_err( 5582 "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n", 5583 ioc->reply, (unsigned long long) ioc->reply_dma)); 5584 ioc->use_32bit_dma = true; 5585 return -EAGAIN; 5586 } 5587 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 5588 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 5589 ioc_info(ioc, 5590 "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n", 5591 ioc->reply, (unsigned long long)ioc->reply_dma, 5592 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024); 5593 return 0; 5594 } 5595 5596 /** 5597 * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory 5598 * for reply free dma pool. 5599 * @ioc: Adapter object 5600 * @sz: DMA Pool size 5601 * Return: 0 for success, non-zero for failure. 5602 */ 5603 static int 5604 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5605 { 5606 /* reply free queue, 16 byte align */ 5607 ioc->reply_free_dma_pool = dma_pool_create( 5608 "reply_free pool", &ioc->pdev->dev, sz, 16, 0); 5609 if (!ioc->reply_free_dma_pool) 5610 return -ENOMEM; 5611 ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, 5612 GFP_KERNEL, &ioc->reply_free_dma); 5613 if (!ioc->reply_free) 5614 return -EAGAIN; 5615 if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) { 5616 dinitprintk(ioc, 5617 pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n", 5618 ioc->reply_free, (unsigned long long) ioc->reply_free_dma)); 5619 ioc->use_32bit_dma = true; 5620 return -EAGAIN; 5621 } 5622 memset(ioc->reply_free, 0, sz); 5623 dinitprintk(ioc, ioc_info(ioc, 5624 "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 5625 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024)); 5626 dinitprintk(ioc, ioc_info(ioc, 5627 "reply_free_dma (0x%llx)\n", 5628 (unsigned long long)ioc->reply_free_dma)); 5629 return 0; 5630 } 5631 5632 /** 5633 * _base_allocate_reply_post_free_array - Allocating DMA'able memory 5634 * for reply post free array. 5635 * @ioc: Adapter object 5636 * @reply_post_free_array_sz: DMA Pool size 5637 * Return: 0 for success, non-zero for failure. 5638 */ 5639 5640 static int 5641 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc, 5642 u32 reply_post_free_array_sz) 5643 { 5644 ioc->reply_post_free_array_dma_pool = 5645 dma_pool_create("reply_post_free_array pool", 5646 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 5647 if (!ioc->reply_post_free_array_dma_pool) 5648 return -ENOMEM; 5649 ioc->reply_post_free_array = 5650 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 5651 GFP_KERNEL, &ioc->reply_post_free_array_dma); 5652 if (!ioc->reply_post_free_array) 5653 return -EAGAIN; 5654 if (!mpt3sas_check_same_4gb_region((long)ioc->reply_post_free_array, 5655 reply_post_free_array_sz)) { 5656 dinitprintk(ioc, pr_err( 5657 "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n", 5658 ioc->reply_free, 5659 (unsigned long long) ioc->reply_free_dma)); 5660 ioc->use_32bit_dma = true; 5661 return -EAGAIN; 5662 } 5663 return 0; 5664 } 5665 /** 5666 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory 5667 * for reply queues. 5668 * @ioc: per adapter object 5669 * @sz: DMA Pool size 5670 * Return: 0 for success, non-zero for failure. 5671 */ 5672 static int 5673 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz) 5674 { 5675 int i = 0; 5676 u32 dma_alloc_count = 0; 5677 int reply_post_free_sz = ioc->reply_post_queue_depth * 5678 sizeof(Mpi2DefaultReplyDescriptor_t); 5679 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 5680 5681 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct), 5682 GFP_KERNEL); 5683 if (!ioc->reply_post) 5684 return -ENOMEM; 5685 /* 5686 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and 5687 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should 5688 * be within 4GB boundary i.e reply queues in a set must have same 5689 * upper 32-bits in their memory address. so here driver is allocating 5690 * the DMA'able memory for reply queues according. 5691 * Driver uses limitation of 5692 * VENTURA_SERIES to manage INVADER_SERIES as well. 5693 */ 5694 dma_alloc_count = DIV_ROUND_UP(count, 5695 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 5696 ioc->reply_post_free_dma_pool = 5697 dma_pool_create("reply_post_free pool", 5698 &ioc->pdev->dev, sz, 16, 0); 5699 if (!ioc->reply_post_free_dma_pool) 5700 return -ENOMEM; 5701 for (i = 0; i < count; i++) { 5702 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) { 5703 ioc->reply_post[i].reply_post_free = 5704 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 5705 GFP_KERNEL, 5706 &ioc->reply_post[i].reply_post_free_dma); 5707 if (!ioc->reply_post[i].reply_post_free) 5708 return -ENOMEM; 5709 /* 5710 * Each set of RDPQ pool must satisfy 4gb boundary 5711 * restriction. 5712 * 1) Check if allocated resources for RDPQ pool are in 5713 * the same 4GB range. 5714 * 2) If #1 is true, continue with 64 bit DMA. 5715 * 3) If #1 is false, return 1. which means free all the 5716 * resources and set DMA mask to 32 and allocate. 5717 */ 5718 if (!mpt3sas_check_same_4gb_region( 5719 (long)ioc->reply_post[i].reply_post_free, sz)) { 5720 dinitprintk(ioc, 5721 ioc_err(ioc, "bad Replypost free pool(0x%p)" 5722 "reply_post_free_dma = (0x%llx)\n", 5723 ioc->reply_post[i].reply_post_free, 5724 (unsigned long long) 5725 ioc->reply_post[i].reply_post_free_dma)); 5726 return -EAGAIN; 5727 } 5728 dma_alloc_count--; 5729 5730 } else { 5731 ioc->reply_post[i].reply_post_free = 5732 (Mpi2ReplyDescriptorsUnion_t *) 5733 ((long)ioc->reply_post[i-1].reply_post_free 5734 + reply_post_free_sz); 5735 ioc->reply_post[i].reply_post_free_dma = 5736 (dma_addr_t) 5737 (ioc->reply_post[i-1].reply_post_free_dma + 5738 reply_post_free_sz); 5739 } 5740 } 5741 return 0; 5742 } 5743 5744 /** 5745 * _base_allocate_memory_pools - allocate start of day memory pools 5746 * @ioc: per adapter object 5747 * 5748 * Return: 0 success, anything else error. 5749 */ 5750 static int 5751 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 5752 { 5753 struct mpt3sas_facts *facts; 5754 u16 max_sge_elements; 5755 u16 chains_needed_per_io; 5756 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 5757 u32 retry_sz; 5758 u32 rdpq_sz = 0, sense_sz = 0; 5759 u16 max_request_credit, nvme_blocks_needed; 5760 unsigned short sg_tablesize; 5761 u16 sge_size; 5762 int i; 5763 int ret = 0, rc = 0; 5764 5765 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5766 5767 5768 retry_sz = 0; 5769 facts = &ioc->facts; 5770 5771 /* command line tunables for max sgl entries */ 5772 if (max_sgl_entries != -1) 5773 sg_tablesize = max_sgl_entries; 5774 else { 5775 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 5776 sg_tablesize = MPT2SAS_SG_DEPTH; 5777 else 5778 sg_tablesize = MPT3SAS_SG_DEPTH; 5779 } 5780 5781 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 5782 if (reset_devices) 5783 sg_tablesize = min_t(unsigned short, sg_tablesize, 5784 MPT_KDUMP_MIN_PHYS_SEGMENTS); 5785 5786 if (ioc->is_mcpu_endpoint) 5787 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 5788 else { 5789 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 5790 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 5791 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 5792 sg_tablesize = min_t(unsigned short, sg_tablesize, 5793 SG_MAX_SEGMENTS); 5794 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 5795 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 5796 } 5797 ioc->shost->sg_tablesize = sg_tablesize; 5798 } 5799 5800 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 5801 (facts->RequestCredit / 4)); 5802 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 5803 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 5804 INTERNAL_SCSIIO_CMDS_COUNT)) { 5805 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 5806 facts->RequestCredit); 5807 return -ENOMEM; 5808 } 5809 ioc->internal_depth = 10; 5810 } 5811 5812 ioc->hi_priority_depth = ioc->internal_depth - (5); 5813 /* command line tunables for max controller queue depth */ 5814 if (max_queue_depth != -1 && max_queue_depth != 0) { 5815 max_request_credit = min_t(u16, max_queue_depth + 5816 ioc->internal_depth, facts->RequestCredit); 5817 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 5818 max_request_credit = MAX_HBA_QUEUE_DEPTH; 5819 } else if (reset_devices) 5820 max_request_credit = min_t(u16, facts->RequestCredit, 5821 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 5822 else 5823 max_request_credit = min_t(u16, facts->RequestCredit, 5824 MAX_HBA_QUEUE_DEPTH); 5825 5826 /* Firmware maintains additional facts->HighPriorityCredit number of 5827 * credits for HiPriprity Request messages, so hba queue depth will be 5828 * sum of max_request_credit and high priority queue depth. 5829 */ 5830 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 5831 5832 /* request frame size */ 5833 ioc->request_sz = facts->IOCRequestFrameSize * 4; 5834 5835 /* reply frame size */ 5836 ioc->reply_sz = facts->ReplyFrameSize * 4; 5837 5838 /* chain segment size */ 5839 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 5840 if (facts->IOCMaxChainSegmentSize) 5841 ioc->chain_segment_sz = 5842 facts->IOCMaxChainSegmentSize * 5843 MAX_CHAIN_ELEMT_SZ; 5844 else 5845 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 5846 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 5847 MAX_CHAIN_ELEMT_SZ; 5848 } else 5849 ioc->chain_segment_sz = ioc->request_sz; 5850 5851 /* calculate the max scatter element size */ 5852 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 5853 5854 retry_allocation: 5855 total_sz = 0; 5856 /* calculate number of sg elements left over in the 1st frame */ 5857 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 5858 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 5859 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 5860 5861 /* now do the same for a chain buffer */ 5862 max_sge_elements = ioc->chain_segment_sz - sge_size; 5863 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 5864 5865 /* 5866 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 5867 */ 5868 chains_needed_per_io = ((ioc->shost->sg_tablesize - 5869 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 5870 + 1; 5871 if (chains_needed_per_io > facts->MaxChainDepth) { 5872 chains_needed_per_io = facts->MaxChainDepth; 5873 ioc->shost->sg_tablesize = min_t(u16, 5874 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 5875 * chains_needed_per_io), ioc->shost->sg_tablesize); 5876 } 5877 ioc->chains_needed_per_io = chains_needed_per_io; 5878 5879 /* reply free queue sizing - taking into account for 64 FW events */ 5880 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 5881 5882 /* mCPU manage single counters for simplicity */ 5883 if (ioc->is_mcpu_endpoint) 5884 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 5885 else { 5886 /* calculate reply descriptor post queue depth */ 5887 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 5888 ioc->reply_free_queue_depth + 1; 5889 /* align the reply post queue on the next 16 count boundary */ 5890 if (ioc->reply_post_queue_depth % 16) 5891 ioc->reply_post_queue_depth += 16 - 5892 (ioc->reply_post_queue_depth % 16); 5893 } 5894 5895 if (ioc->reply_post_queue_depth > 5896 facts->MaxReplyDescriptorPostQueueDepth) { 5897 ioc->reply_post_queue_depth = 5898 facts->MaxReplyDescriptorPostQueueDepth - 5899 (facts->MaxReplyDescriptorPostQueueDepth % 16); 5900 ioc->hba_queue_depth = 5901 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 5902 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 5903 } 5904 5905 ioc_info(ioc, 5906 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), " 5907 "sge_per_io(%d), chains_per_io(%d)\n", 5908 ioc->max_sges_in_main_message, 5909 ioc->max_sges_in_chain_message, 5910 ioc->shost->sg_tablesize, 5911 ioc->chains_needed_per_io); 5912 5913 /* reply post queue, 16 byte align */ 5914 reply_post_free_sz = ioc->reply_post_queue_depth * 5915 sizeof(Mpi2DefaultReplyDescriptor_t); 5916 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK; 5917 if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 5918 || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK)) 5919 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count; 5920 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz); 5921 if (ret == -EAGAIN) { 5922 /* 5923 * Free allocated bad RDPQ memory pools. 5924 * Change dma coherent mask to 32 bit and reallocate RDPQ 5925 */ 5926 _base_release_memory_pools(ioc); 5927 ioc->use_32bit_dma = true; 5928 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 5929 ioc_err(ioc, 5930 "32 DMA mask failed %s\n", pci_name(ioc->pdev)); 5931 return -ENODEV; 5932 } 5933 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz)) 5934 return -ENOMEM; 5935 } else if (ret == -ENOMEM) 5936 return -ENOMEM; 5937 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 : 5938 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK)); 5939 ioc->scsiio_depth = ioc->hba_queue_depth - 5940 ioc->hi_priority_depth - ioc->internal_depth; 5941 5942 /* set the scsi host can_queue depth 5943 * with some internal commands that could be outstanding 5944 */ 5945 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 5946 dinitprintk(ioc, 5947 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 5948 ioc->shost->can_queue)); 5949 5950 /* contiguous pool for request and chains, 16 byte align, one extra " 5951 * "frame for smid=0 5952 */ 5953 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 5954 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 5955 5956 /* hi-priority queue */ 5957 sz += (ioc->hi_priority_depth * ioc->request_sz); 5958 5959 /* internal queue */ 5960 sz += (ioc->internal_depth * ioc->request_sz); 5961 5962 ioc->request_dma_sz = sz; 5963 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 5964 &ioc->request_dma, GFP_KERNEL); 5965 if (!ioc->request) { 5966 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 5967 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5968 ioc->request_sz, sz / 1024); 5969 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 5970 goto out; 5971 retry_sz = 64; 5972 ioc->hba_queue_depth -= retry_sz; 5973 _base_release_memory_pools(ioc); 5974 goto retry_allocation; 5975 } 5976 5977 if (retry_sz) 5978 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 5979 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5980 ioc->request_sz, sz / 1024); 5981 5982 /* hi-priority queue */ 5983 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 5984 ioc->request_sz); 5985 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 5986 ioc->request_sz); 5987 5988 /* internal queue */ 5989 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 5990 ioc->request_sz); 5991 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 5992 ioc->request_sz); 5993 5994 ioc_info(ioc, 5995 "request pool(0x%p) - dma(0x%llx): " 5996 "depth(%d), frame_size(%d), pool_size(%d kB)\n", 5997 ioc->request, (unsigned long long) ioc->request_dma, 5998 ioc->hba_queue_depth, ioc->request_sz, 5999 (ioc->hba_queue_depth * ioc->request_sz) / 1024); 6000 6001 total_sz += sz; 6002 6003 dinitprintk(ioc, 6004 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 6005 ioc->request, ioc->scsiio_depth)); 6006 6007 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 6008 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 6009 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 6010 if (!ioc->chain_lookup) { 6011 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 6012 goto out; 6013 } 6014 6015 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 6016 for (i = 0; i < ioc->scsiio_depth; i++) { 6017 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 6018 if (!ioc->chain_lookup[i].chains_per_smid) { 6019 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 6020 goto out; 6021 } 6022 } 6023 6024 /* initialize hi-priority queue smid's */ 6025 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 6026 sizeof(struct request_tracker), GFP_KERNEL); 6027 if (!ioc->hpr_lookup) { 6028 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 6029 goto out; 6030 } 6031 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 6032 dinitprintk(ioc, 6033 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 6034 ioc->hi_priority, 6035 ioc->hi_priority_depth, ioc->hi_priority_smid)); 6036 6037 /* initialize internal queue smid's */ 6038 ioc->internal_lookup = kcalloc(ioc->internal_depth, 6039 sizeof(struct request_tracker), GFP_KERNEL); 6040 if (!ioc->internal_lookup) { 6041 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 6042 goto out; 6043 } 6044 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 6045 dinitprintk(ioc, 6046 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 6047 ioc->internal, 6048 ioc->internal_depth, ioc->internal_smid)); 6049 6050 ioc->io_queue_num = kcalloc(ioc->scsiio_depth, 6051 sizeof(u16), GFP_KERNEL); 6052 if (!ioc->io_queue_num) 6053 goto out; 6054 /* 6055 * The number of NVMe page sized blocks needed is: 6056 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 6057 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 6058 * that is placed in the main message frame. 8 is the size of each PRP 6059 * entry or PRP list pointer entry. 8 is subtracted from page_size 6060 * because of the PRP list pointer entry at the end of a page, so this 6061 * is not counted as a PRP entry. The 1 added page is a round up. 6062 * 6063 * To avoid allocation failures due to the amount of memory that could 6064 * be required for NVMe PRP's, only each set of NVMe blocks will be 6065 * contiguous, so a new set is allocated for each possible I/O. 6066 */ 6067 6068 ioc->chains_per_prp_buffer = 0; 6069 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 6070 nvme_blocks_needed = 6071 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 6072 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 6073 nvme_blocks_needed++; 6074 6075 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 6076 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 6077 if (!ioc->pcie_sg_lookup) { 6078 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 6079 goto out; 6080 } 6081 sz = nvme_blocks_needed * ioc->page_size; 6082 rc = _base_allocate_pcie_sgl_pool(ioc, sz); 6083 if (rc == -ENOMEM) 6084 return -ENOMEM; 6085 else if (rc == -EAGAIN) 6086 goto try_32bit_dma; 6087 total_sz += sz * ioc->scsiio_depth; 6088 } 6089 6090 rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz); 6091 if (rc == -ENOMEM) 6092 return -ENOMEM; 6093 else if (rc == -EAGAIN) 6094 goto try_32bit_dma; 6095 total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io - 6096 ioc->chains_per_prp_buffer) * ioc->scsiio_depth); 6097 dinitprintk(ioc, 6098 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 6099 ioc->chain_depth, ioc->chain_segment_sz, 6100 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 6101 /* sense buffers, 4 byte align */ 6102 sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 6103 rc = _base_allocate_sense_dma_pool(ioc, sense_sz); 6104 if (rc == -ENOMEM) 6105 return -ENOMEM; 6106 else if (rc == -EAGAIN) 6107 goto try_32bit_dma; 6108 total_sz += sense_sz; 6109 ioc_info(ioc, 6110 "sense pool(0x%p)- dma(0x%llx): depth(%d)," 6111 "element_size(%d), pool_size(%d kB)\n", 6112 ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth, 6113 SCSI_SENSE_BUFFERSIZE, sz / 1024); 6114 /* reply pool, 4 byte align */ 6115 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 6116 rc = _base_allocate_reply_pool(ioc, sz); 6117 if (rc == -ENOMEM) 6118 return -ENOMEM; 6119 else if (rc == -EAGAIN) 6120 goto try_32bit_dma; 6121 total_sz += sz; 6122 6123 /* reply free queue, 16 byte align */ 6124 sz = ioc->reply_free_queue_depth * 4; 6125 rc = _base_allocate_reply_free_dma_pool(ioc, sz); 6126 if (rc == -ENOMEM) 6127 return -ENOMEM; 6128 else if (rc == -EAGAIN) 6129 goto try_32bit_dma; 6130 dinitprintk(ioc, 6131 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 6132 (unsigned long long)ioc->reply_free_dma)); 6133 total_sz += sz; 6134 if (ioc->rdpq_array_enable) { 6135 reply_post_free_array_sz = ioc->reply_queue_count * 6136 sizeof(Mpi2IOCInitRDPQArrayEntry); 6137 rc = _base_allocate_reply_post_free_array(ioc, 6138 reply_post_free_array_sz); 6139 if (rc == -ENOMEM) 6140 return -ENOMEM; 6141 else if (rc == -EAGAIN) 6142 goto try_32bit_dma; 6143 } 6144 ioc->config_page_sz = 512; 6145 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 6146 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 6147 if (!ioc->config_page) { 6148 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 6149 goto out; 6150 } 6151 6152 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n", 6153 ioc->config_page, (unsigned long long)ioc->config_page_dma, 6154 ioc->config_page_sz); 6155 total_sz += ioc->config_page_sz; 6156 6157 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 6158 total_sz / 1024); 6159 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 6160 ioc->shost->can_queue, facts->RequestCredit); 6161 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 6162 ioc->shost->sg_tablesize); 6163 return 0; 6164 6165 try_32bit_dma: 6166 _base_release_memory_pools(ioc); 6167 if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) { 6168 /* Change dma coherent mask to 32 bit and reallocate */ 6169 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 6170 pr_err("Setting 32 bit coherent DMA mask Failed %s\n", 6171 pci_name(ioc->pdev)); 6172 return -ENODEV; 6173 } 6174 } else if (_base_reduce_hba_queue_depth(ioc) != 0) 6175 return -ENOMEM; 6176 goto retry_allocation; 6177 6178 out: 6179 return -ENOMEM; 6180 } 6181 6182 /** 6183 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 6184 * @ioc: Pointer to MPT_ADAPTER structure 6185 * @cooked: Request raw or cooked IOC state 6186 * 6187 * Return: all IOC Doorbell register bits if cooked==0, else just the 6188 * Doorbell bits in MPI_IOC_STATE_MASK. 6189 */ 6190 u32 6191 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 6192 { 6193 u32 s, sc; 6194 6195 s = ioc->base_readl(&ioc->chip->Doorbell); 6196 sc = s & MPI2_IOC_STATE_MASK; 6197 return cooked ? sc : s; 6198 } 6199 6200 /** 6201 * _base_wait_on_iocstate - waiting on a particular ioc state 6202 * @ioc: ? 6203 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 6204 * @timeout: timeout in second 6205 * 6206 * Return: 0 for success, non-zero for failure. 6207 */ 6208 static int 6209 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 6210 { 6211 u32 count, cntdn; 6212 u32 current_state; 6213 6214 count = 0; 6215 cntdn = 1000 * timeout; 6216 do { 6217 current_state = mpt3sas_base_get_iocstate(ioc, 1); 6218 if (current_state == ioc_state) 6219 return 0; 6220 if (count && current_state == MPI2_IOC_STATE_FAULT) 6221 break; 6222 if (count && current_state == MPI2_IOC_STATE_COREDUMP) 6223 break; 6224 6225 usleep_range(1000, 1500); 6226 count++; 6227 } while (--cntdn); 6228 6229 return current_state; 6230 } 6231 6232 /** 6233 * _base_dump_reg_set - This function will print hexdump of register set. 6234 * @ioc: per adapter object 6235 * 6236 * Returns nothing. 6237 */ 6238 static inline void 6239 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc) 6240 { 6241 unsigned int i, sz = 256; 6242 u32 __iomem *reg = (u32 __iomem *)ioc->chip; 6243 6244 ioc_info(ioc, "System Register set:\n"); 6245 for (i = 0; i < (sz / sizeof(u32)); i++) 6246 pr_info("%08x: %08x\n", (i * 4), readl(®[i])); 6247 } 6248 6249 /** 6250 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 6251 * a write to the doorbell) 6252 * @ioc: per adapter object 6253 * @timeout: timeout in seconds 6254 * 6255 * Return: 0 for success, non-zero for failure. 6256 * 6257 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 6258 */ 6259 6260 static int 6261 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6262 { 6263 u32 cntdn, count; 6264 u32 int_status; 6265 6266 count = 0; 6267 cntdn = 1000 * timeout; 6268 do { 6269 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6270 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6271 dhsprintk(ioc, 6272 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6273 __func__, count, timeout)); 6274 return 0; 6275 } 6276 6277 usleep_range(1000, 1500); 6278 count++; 6279 } while (--cntdn); 6280 6281 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6282 __func__, count, int_status); 6283 return -EFAULT; 6284 } 6285 6286 static int 6287 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6288 { 6289 u32 cntdn, count; 6290 u32 int_status; 6291 6292 count = 0; 6293 cntdn = 2000 * timeout; 6294 do { 6295 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6296 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6297 dhsprintk(ioc, 6298 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6299 __func__, count, timeout)); 6300 return 0; 6301 } 6302 6303 udelay(500); 6304 count++; 6305 } while (--cntdn); 6306 6307 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6308 __func__, count, int_status); 6309 return -EFAULT; 6310 6311 } 6312 6313 /** 6314 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 6315 * @ioc: per adapter object 6316 * @timeout: timeout in second 6317 * 6318 * Return: 0 for success, non-zero for failure. 6319 * 6320 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 6321 * doorbell. 6322 */ 6323 static int 6324 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 6325 { 6326 u32 cntdn, count; 6327 u32 int_status; 6328 u32 doorbell; 6329 6330 count = 0; 6331 cntdn = 1000 * timeout; 6332 do { 6333 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6334 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 6335 dhsprintk(ioc, 6336 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6337 __func__, count, timeout)); 6338 return 0; 6339 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6340 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 6341 if ((doorbell & MPI2_IOC_STATE_MASK) == 6342 MPI2_IOC_STATE_FAULT) { 6343 mpt3sas_print_fault_code(ioc, doorbell); 6344 return -EFAULT; 6345 } 6346 if ((doorbell & MPI2_IOC_STATE_MASK) == 6347 MPI2_IOC_STATE_COREDUMP) { 6348 mpt3sas_print_coredump_info(ioc, doorbell); 6349 return -EFAULT; 6350 } 6351 } else if (int_status == 0xFFFFFFFF) 6352 goto out; 6353 6354 usleep_range(1000, 1500); 6355 count++; 6356 } while (--cntdn); 6357 6358 out: 6359 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6360 __func__, count, int_status); 6361 return -EFAULT; 6362 } 6363 6364 /** 6365 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 6366 * @ioc: per adapter object 6367 * @timeout: timeout in second 6368 * 6369 * Return: 0 for success, non-zero for failure. 6370 */ 6371 static int 6372 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 6373 { 6374 u32 cntdn, count; 6375 u32 doorbell_reg; 6376 6377 count = 0; 6378 cntdn = 1000 * timeout; 6379 do { 6380 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell); 6381 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 6382 dhsprintk(ioc, 6383 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6384 __func__, count, timeout)); 6385 return 0; 6386 } 6387 6388 usleep_range(1000, 1500); 6389 count++; 6390 } while (--cntdn); 6391 6392 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 6393 __func__, count, doorbell_reg); 6394 return -EFAULT; 6395 } 6396 6397 /** 6398 * _base_send_ioc_reset - send doorbell reset 6399 * @ioc: per adapter object 6400 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 6401 * @timeout: timeout in second 6402 * 6403 * Return: 0 for success, non-zero for failure. 6404 */ 6405 static int 6406 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 6407 { 6408 u32 ioc_state; 6409 int r = 0; 6410 unsigned long flags; 6411 6412 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 6413 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 6414 return -EFAULT; 6415 } 6416 6417 if (!(ioc->facts.IOCCapabilities & 6418 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 6419 return -EFAULT; 6420 6421 ioc_info(ioc, "sending message unit reset !!\n"); 6422 6423 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 6424 &ioc->chip->Doorbell); 6425 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 6426 r = -EFAULT; 6427 goto out; 6428 } 6429 6430 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6431 if (ioc_state) { 6432 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6433 __func__, ioc_state); 6434 r = -EFAULT; 6435 goto out; 6436 } 6437 out: 6438 if (r != 0) { 6439 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6440 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 6441 /* 6442 * Wait for IOC state CoreDump to clear only during 6443 * HBA initialization & release time. 6444 */ 6445 if ((ioc_state & MPI2_IOC_STATE_MASK) == 6446 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 || 6447 ioc->fault_reset_work_q == NULL)) { 6448 spin_unlock_irqrestore( 6449 &ioc->ioc_reset_in_progress_lock, flags); 6450 mpt3sas_print_coredump_info(ioc, ioc_state); 6451 mpt3sas_base_wait_for_coredump_completion(ioc, 6452 __func__); 6453 spin_lock_irqsave( 6454 &ioc->ioc_reset_in_progress_lock, flags); 6455 } 6456 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 6457 } 6458 ioc_info(ioc, "message unit reset: %s\n", 6459 r == 0 ? "SUCCESS" : "FAILED"); 6460 return r; 6461 } 6462 6463 /** 6464 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 6465 * @ioc: per adapter object 6466 * @timeout: timeout in seconds 6467 * 6468 * Return: Waits up to timeout seconds for the IOC to 6469 * become operational. Returns 0 if IOC is present 6470 * and operational; otherwise returns -EFAULT. 6471 */ 6472 6473 int 6474 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 6475 { 6476 int wait_state_count = 0; 6477 u32 ioc_state; 6478 6479 do { 6480 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 6481 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 6482 break; 6483 ssleep(1); 6484 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 6485 __func__, ++wait_state_count); 6486 } while (--timeout); 6487 if (!timeout) { 6488 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 6489 return -EFAULT; 6490 } 6491 if (wait_state_count) 6492 ioc_info(ioc, "ioc is operational\n"); 6493 return 0; 6494 } 6495 6496 /** 6497 * _base_handshake_req_reply_wait - send request thru doorbell interface 6498 * @ioc: per adapter object 6499 * @request_bytes: request length 6500 * @request: pointer having request payload 6501 * @reply_bytes: reply length 6502 * @reply: pointer to reply payload 6503 * @timeout: timeout in second 6504 * 6505 * Return: 0 for success, non-zero for failure. 6506 */ 6507 static int 6508 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 6509 u32 *request, int reply_bytes, u16 *reply, int timeout) 6510 { 6511 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 6512 int i; 6513 u8 failed; 6514 __le32 *mfp; 6515 6516 /* make sure doorbell is not in use */ 6517 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 6518 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 6519 return -EFAULT; 6520 } 6521 6522 /* clear pending doorbell interrupts from previous state changes */ 6523 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 6524 MPI2_HIS_IOC2SYS_DB_STATUS) 6525 writel(0, &ioc->chip->HostInterruptStatus); 6526 6527 /* send message to ioc */ 6528 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 6529 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 6530 &ioc->chip->Doorbell); 6531 6532 if ((_base_spin_on_doorbell_int(ioc, 5))) { 6533 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6534 __LINE__); 6535 return -EFAULT; 6536 } 6537 writel(0, &ioc->chip->HostInterruptStatus); 6538 6539 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 6540 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 6541 __LINE__); 6542 return -EFAULT; 6543 } 6544 6545 /* send message 32-bits at a time */ 6546 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 6547 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 6548 if ((_base_wait_for_doorbell_ack(ioc, 5))) 6549 failed = 1; 6550 } 6551 6552 if (failed) { 6553 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 6554 __LINE__); 6555 return -EFAULT; 6556 } 6557 6558 /* now wait for the reply */ 6559 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 6560 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6561 __LINE__); 6562 return -EFAULT; 6563 } 6564 6565 /* read the first two 16-bits, it gives the total length of the reply */ 6566 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 6567 & MPI2_DOORBELL_DATA_MASK); 6568 writel(0, &ioc->chip->HostInterruptStatus); 6569 if ((_base_wait_for_doorbell_int(ioc, 5))) { 6570 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6571 __LINE__); 6572 return -EFAULT; 6573 } 6574 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 6575 & MPI2_DOORBELL_DATA_MASK); 6576 writel(0, &ioc->chip->HostInterruptStatus); 6577 6578 for (i = 2; i < default_reply->MsgLength * 2; i++) { 6579 if ((_base_wait_for_doorbell_int(ioc, 5))) { 6580 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6581 __LINE__); 6582 return -EFAULT; 6583 } 6584 if (i >= reply_bytes/2) /* overflow case */ 6585 ioc->base_readl(&ioc->chip->Doorbell); 6586 else 6587 reply[i] = le16_to_cpu( 6588 ioc->base_readl(&ioc->chip->Doorbell) 6589 & MPI2_DOORBELL_DATA_MASK); 6590 writel(0, &ioc->chip->HostInterruptStatus); 6591 } 6592 6593 _base_wait_for_doorbell_int(ioc, 5); 6594 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 6595 dhsprintk(ioc, 6596 ioc_info(ioc, "doorbell is in use (line=%d)\n", 6597 __LINE__)); 6598 } 6599 writel(0, &ioc->chip->HostInterruptStatus); 6600 6601 if (ioc->logging_level & MPT_DEBUG_INIT) { 6602 mfp = (__le32 *)reply; 6603 pr_info("\toffset:data\n"); 6604 for (i = 0; i < reply_bytes/4; i++) 6605 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 6606 le32_to_cpu(mfp[i])); 6607 } 6608 return 0; 6609 } 6610 6611 /** 6612 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 6613 * @ioc: per adapter object 6614 * @mpi_reply: the reply payload from FW 6615 * @mpi_request: the request payload sent to FW 6616 * 6617 * The SAS IO Unit Control Request message allows the host to perform low-level 6618 * operations, such as resets on the PHYs of the IO Unit, also allows the host 6619 * to obtain the IOC assigned device handles for a device if it has other 6620 * identifying information about the device, in addition allows the host to 6621 * remove IOC resources associated with the device. 6622 * 6623 * Return: 0 for success, non-zero for failure. 6624 */ 6625 int 6626 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 6627 Mpi2SasIoUnitControlReply_t *mpi_reply, 6628 Mpi2SasIoUnitControlRequest_t *mpi_request) 6629 { 6630 u16 smid; 6631 u8 issue_reset = 0; 6632 int rc; 6633 void *request; 6634 6635 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6636 6637 mutex_lock(&ioc->base_cmds.mutex); 6638 6639 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 6640 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 6641 rc = -EAGAIN; 6642 goto out; 6643 } 6644 6645 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 6646 if (rc) 6647 goto out; 6648 6649 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6650 if (!smid) { 6651 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6652 rc = -EAGAIN; 6653 goto out; 6654 } 6655 6656 rc = 0; 6657 ioc->base_cmds.status = MPT3_CMD_PENDING; 6658 request = mpt3sas_base_get_msg_frame(ioc, smid); 6659 ioc->base_cmds.smid = smid; 6660 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 6661 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 6662 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 6663 ioc->ioc_link_reset_in_progress = 1; 6664 init_completion(&ioc->base_cmds.done); 6665 ioc->put_smid_default(ioc, smid); 6666 wait_for_completion_timeout(&ioc->base_cmds.done, 6667 msecs_to_jiffies(10000)); 6668 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 6669 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 6670 ioc->ioc_link_reset_in_progress) 6671 ioc->ioc_link_reset_in_progress = 0; 6672 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6673 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status, 6674 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4, 6675 issue_reset); 6676 goto issue_host_reset; 6677 } 6678 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 6679 memcpy(mpi_reply, ioc->base_cmds.reply, 6680 sizeof(Mpi2SasIoUnitControlReply_t)); 6681 else 6682 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 6683 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6684 goto out; 6685 6686 issue_host_reset: 6687 if (issue_reset) 6688 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 6689 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6690 rc = -EFAULT; 6691 out: 6692 mutex_unlock(&ioc->base_cmds.mutex); 6693 return rc; 6694 } 6695 6696 /** 6697 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 6698 * @ioc: per adapter object 6699 * @mpi_reply: the reply payload from FW 6700 * @mpi_request: the request payload sent to FW 6701 * 6702 * The SCSI Enclosure Processor request message causes the IOC to 6703 * communicate with SES devices to control LED status signals. 6704 * 6705 * Return: 0 for success, non-zero for failure. 6706 */ 6707 int 6708 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 6709 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 6710 { 6711 u16 smid; 6712 u8 issue_reset = 0; 6713 int rc; 6714 void *request; 6715 6716 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6717 6718 mutex_lock(&ioc->base_cmds.mutex); 6719 6720 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 6721 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 6722 rc = -EAGAIN; 6723 goto out; 6724 } 6725 6726 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 6727 if (rc) 6728 goto out; 6729 6730 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6731 if (!smid) { 6732 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6733 rc = -EAGAIN; 6734 goto out; 6735 } 6736 6737 rc = 0; 6738 ioc->base_cmds.status = MPT3_CMD_PENDING; 6739 request = mpt3sas_base_get_msg_frame(ioc, smid); 6740 ioc->base_cmds.smid = smid; 6741 memset(request, 0, ioc->request_sz); 6742 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 6743 init_completion(&ioc->base_cmds.done); 6744 ioc->put_smid_default(ioc, smid); 6745 wait_for_completion_timeout(&ioc->base_cmds.done, 6746 msecs_to_jiffies(10000)); 6747 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6748 mpt3sas_check_cmd_timeout(ioc, 6749 ioc->base_cmds.status, mpi_request, 6750 sizeof(Mpi2SepRequest_t)/4, issue_reset); 6751 goto issue_host_reset; 6752 } 6753 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 6754 memcpy(mpi_reply, ioc->base_cmds.reply, 6755 sizeof(Mpi2SepReply_t)); 6756 else 6757 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 6758 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6759 goto out; 6760 6761 issue_host_reset: 6762 if (issue_reset) 6763 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 6764 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6765 rc = -EFAULT; 6766 out: 6767 mutex_unlock(&ioc->base_cmds.mutex); 6768 return rc; 6769 } 6770 6771 /** 6772 * _base_get_port_facts - obtain port facts reply and save in ioc 6773 * @ioc: per adapter object 6774 * @port: ? 6775 * 6776 * Return: 0 for success, non-zero for failure. 6777 */ 6778 static int 6779 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 6780 { 6781 Mpi2PortFactsRequest_t mpi_request; 6782 Mpi2PortFactsReply_t mpi_reply; 6783 struct mpt3sas_port_facts *pfacts; 6784 int mpi_reply_sz, mpi_request_sz, r; 6785 6786 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6787 6788 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 6789 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 6790 memset(&mpi_request, 0, mpi_request_sz); 6791 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 6792 mpi_request.PortNumber = port; 6793 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6794 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6795 6796 if (r != 0) { 6797 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6798 return r; 6799 } 6800 6801 pfacts = &ioc->pfacts[port]; 6802 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 6803 pfacts->PortNumber = mpi_reply.PortNumber; 6804 pfacts->VP_ID = mpi_reply.VP_ID; 6805 pfacts->VF_ID = mpi_reply.VF_ID; 6806 pfacts->MaxPostedCmdBuffers = 6807 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 6808 6809 return 0; 6810 } 6811 6812 /** 6813 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 6814 * @ioc: per adapter object 6815 * @timeout: 6816 * 6817 * Return: 0 for success, non-zero for failure. 6818 */ 6819 static int 6820 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 6821 { 6822 u32 ioc_state; 6823 int rc; 6824 6825 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6826 6827 if (ioc->pci_error_recovery) { 6828 dfailprintk(ioc, 6829 ioc_info(ioc, "%s: host in pci error recovery\n", 6830 __func__)); 6831 return -EFAULT; 6832 } 6833 6834 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6835 dhsprintk(ioc, 6836 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6837 __func__, ioc_state)); 6838 6839 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 6840 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6841 return 0; 6842 6843 if (ioc_state & MPI2_DOORBELL_USED) { 6844 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 6845 goto issue_diag_reset; 6846 } 6847 6848 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6849 mpt3sas_print_fault_code(ioc, ioc_state & 6850 MPI2_DOORBELL_DATA_MASK); 6851 goto issue_diag_reset; 6852 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 6853 MPI2_IOC_STATE_COREDUMP) { 6854 ioc_info(ioc, 6855 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n", 6856 __func__, ioc_state); 6857 return -EFAULT; 6858 } 6859 6860 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6861 if (ioc_state) { 6862 dfailprintk(ioc, 6863 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6864 __func__, ioc_state)); 6865 return -EFAULT; 6866 } 6867 6868 issue_diag_reset: 6869 rc = _base_diag_reset(ioc); 6870 return rc; 6871 } 6872 6873 /** 6874 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 6875 * @ioc: per adapter object 6876 * 6877 * Return: 0 for success, non-zero for failure. 6878 */ 6879 static int 6880 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 6881 { 6882 Mpi2IOCFactsRequest_t mpi_request; 6883 Mpi2IOCFactsReply_t mpi_reply; 6884 struct mpt3sas_facts *facts; 6885 int mpi_reply_sz, mpi_request_sz, r; 6886 6887 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6888 6889 r = _base_wait_for_iocstate(ioc, 10); 6890 if (r) { 6891 dfailprintk(ioc, 6892 ioc_info(ioc, "%s: failed getting to correct state\n", 6893 __func__)); 6894 return r; 6895 } 6896 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 6897 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 6898 memset(&mpi_request, 0, mpi_request_sz); 6899 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 6900 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6901 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6902 6903 if (r != 0) { 6904 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6905 return r; 6906 } 6907 6908 facts = &ioc->facts; 6909 memset(facts, 0, sizeof(struct mpt3sas_facts)); 6910 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 6911 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 6912 facts->VP_ID = mpi_reply.VP_ID; 6913 facts->VF_ID = mpi_reply.VF_ID; 6914 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 6915 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 6916 facts->WhoInit = mpi_reply.WhoInit; 6917 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 6918 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 6919 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 6920 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 6921 ioc->combined_reply_queue = 0; 6922 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 6923 facts->MaxReplyDescriptorPostQueueDepth = 6924 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 6925 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 6926 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 6927 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 6928 ioc->ir_firmware = 1; 6929 if ((facts->IOCCapabilities & 6930 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 6931 ioc->rdpq_array_capable = 1; 6932 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) 6933 && ioc->is_aero_ioc) 6934 ioc->atomic_desc_capable = 1; 6935 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 6936 facts->IOCRequestFrameSize = 6937 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 6938 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6939 facts->IOCMaxChainSegmentSize = 6940 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 6941 } 6942 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 6943 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 6944 ioc->shost->max_id = -1; 6945 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 6946 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 6947 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 6948 facts->HighPriorityCredit = 6949 le16_to_cpu(mpi_reply.HighPriorityCredit); 6950 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 6951 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 6952 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 6953 6954 /* 6955 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 6956 */ 6957 ioc->page_size = 1 << facts->CurrentHostPageSize; 6958 if (ioc->page_size == 1) { 6959 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 6960 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 6961 } 6962 dinitprintk(ioc, 6963 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 6964 facts->CurrentHostPageSize)); 6965 6966 dinitprintk(ioc, 6967 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 6968 facts->RequestCredit, facts->MaxChainDepth)); 6969 dinitprintk(ioc, 6970 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 6971 facts->IOCRequestFrameSize * 4, 6972 facts->ReplyFrameSize * 4)); 6973 return 0; 6974 } 6975 6976 /** 6977 * _base_send_ioc_init - send ioc_init to firmware 6978 * @ioc: per adapter object 6979 * 6980 * Return: 0 for success, non-zero for failure. 6981 */ 6982 static int 6983 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 6984 { 6985 Mpi2IOCInitRequest_t mpi_request; 6986 Mpi2IOCInitReply_t mpi_reply; 6987 int i, r = 0; 6988 ktime_t current_time; 6989 u16 ioc_status; 6990 u32 reply_post_free_array_sz = 0; 6991 6992 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6993 6994 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 6995 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 6996 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 6997 mpi_request.VF_ID = 0; /* TODO */ 6998 mpi_request.VP_ID = 0; 6999 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 7000 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 7001 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 7002 7003 if (_base_is_controller_msix_enabled(ioc)) 7004 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 7005 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 7006 mpi_request.ReplyDescriptorPostQueueDepth = 7007 cpu_to_le16(ioc->reply_post_queue_depth); 7008 mpi_request.ReplyFreeQueueDepth = 7009 cpu_to_le16(ioc->reply_free_queue_depth); 7010 7011 mpi_request.SenseBufferAddressHigh = 7012 cpu_to_le32((u64)ioc->sense_dma >> 32); 7013 mpi_request.SystemReplyAddressHigh = 7014 cpu_to_le32((u64)ioc->reply_dma >> 32); 7015 mpi_request.SystemRequestFrameBaseAddress = 7016 cpu_to_le64((u64)ioc->request_dma); 7017 mpi_request.ReplyFreeQueueAddress = 7018 cpu_to_le64((u64)ioc->reply_free_dma); 7019 7020 if (ioc->rdpq_array_enable) { 7021 reply_post_free_array_sz = ioc->reply_queue_count * 7022 sizeof(Mpi2IOCInitRDPQArrayEntry); 7023 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 7024 for (i = 0; i < ioc->reply_queue_count; i++) 7025 ioc->reply_post_free_array[i].RDPQBaseAddress = 7026 cpu_to_le64( 7027 (u64)ioc->reply_post[i].reply_post_free_dma); 7028 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 7029 mpi_request.ReplyDescriptorPostQueueAddress = 7030 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 7031 } else { 7032 mpi_request.ReplyDescriptorPostQueueAddress = 7033 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 7034 } 7035 7036 /* 7037 * Set the flag to enable CoreDump state feature in IOC firmware. 7038 */ 7039 mpi_request.ConfigurationFlags |= 7040 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE); 7041 7042 /* This time stamp specifies number of milliseconds 7043 * since epoch ~ midnight January 1, 1970. 7044 */ 7045 current_time = ktime_get_real(); 7046 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 7047 7048 if (ioc->logging_level & MPT_DEBUG_INIT) { 7049 __le32 *mfp; 7050 int i; 7051 7052 mfp = (__le32 *)&mpi_request; 7053 ioc_info(ioc, "\toffset:data\n"); 7054 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 7055 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 7056 le32_to_cpu(mfp[i])); 7057 } 7058 7059 r = _base_handshake_req_reply_wait(ioc, 7060 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 7061 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30); 7062 7063 if (r != 0) { 7064 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7065 return r; 7066 } 7067 7068 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 7069 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 7070 mpi_reply.IOCLogInfo) { 7071 ioc_err(ioc, "%s: failed\n", __func__); 7072 r = -EIO; 7073 } 7074 7075 /* Reset TimeSync Counter*/ 7076 ioc->timestamp_update_count = 0; 7077 return r; 7078 } 7079 7080 /** 7081 * mpt3sas_port_enable_done - command completion routine for port enable 7082 * @ioc: per adapter object 7083 * @smid: system request message index 7084 * @msix_index: MSIX table index supplied by the OS 7085 * @reply: reply message frame(lower 32bit addr) 7086 * 7087 * Return: 1 meaning mf should be freed from _base_interrupt 7088 * 0 means the mf is freed from this function. 7089 */ 7090 u8 7091 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 7092 u32 reply) 7093 { 7094 MPI2DefaultReply_t *mpi_reply; 7095 u16 ioc_status; 7096 7097 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 7098 return 1; 7099 7100 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 7101 if (!mpi_reply) 7102 return 1; 7103 7104 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 7105 return 1; 7106 7107 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 7108 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 7109 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 7110 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 7111 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 7112 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 7113 ioc->port_enable_failed = 1; 7114 7115 if (ioc->is_driver_loading) { 7116 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 7117 mpt3sas_port_enable_complete(ioc); 7118 return 1; 7119 } else { 7120 ioc->start_scan_failed = ioc_status; 7121 ioc->start_scan = 0; 7122 return 1; 7123 } 7124 } 7125 complete(&ioc->port_enable_cmds.done); 7126 return 1; 7127 } 7128 7129 /** 7130 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 7131 * @ioc: per adapter object 7132 * 7133 * Return: 0 for success, non-zero for failure. 7134 */ 7135 static int 7136 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 7137 { 7138 Mpi2PortEnableRequest_t *mpi_request; 7139 Mpi2PortEnableReply_t *mpi_reply; 7140 int r = 0; 7141 u16 smid; 7142 u16 ioc_status; 7143 7144 ioc_info(ioc, "sending port enable !!\n"); 7145 7146 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7147 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7148 return -EAGAIN; 7149 } 7150 7151 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 7152 if (!smid) { 7153 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7154 return -EAGAIN; 7155 } 7156 7157 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 7158 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7159 ioc->port_enable_cmds.smid = smid; 7160 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 7161 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 7162 7163 init_completion(&ioc->port_enable_cmds.done); 7164 ioc->put_smid_default(ioc, smid); 7165 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 7166 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 7167 ioc_err(ioc, "%s: timeout\n", __func__); 7168 _debug_dump_mf(mpi_request, 7169 sizeof(Mpi2PortEnableRequest_t)/4); 7170 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 7171 r = -EFAULT; 7172 else 7173 r = -ETIME; 7174 goto out; 7175 } 7176 7177 mpi_reply = ioc->port_enable_cmds.reply; 7178 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 7179 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 7180 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 7181 __func__, ioc_status); 7182 r = -EFAULT; 7183 goto out; 7184 } 7185 7186 out: 7187 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7188 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 7189 return r; 7190 } 7191 7192 /** 7193 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 7194 * @ioc: per adapter object 7195 * 7196 * Return: 0 for success, non-zero for failure. 7197 */ 7198 int 7199 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 7200 { 7201 Mpi2PortEnableRequest_t *mpi_request; 7202 u16 smid; 7203 7204 ioc_info(ioc, "sending port enable !!\n"); 7205 7206 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7207 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7208 return -EAGAIN; 7209 } 7210 7211 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 7212 if (!smid) { 7213 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7214 return -EAGAIN; 7215 } 7216 7217 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 7218 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7219 ioc->port_enable_cmds.smid = smid; 7220 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 7221 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 7222 7223 ioc->put_smid_default(ioc, smid); 7224 return 0; 7225 } 7226 7227 /** 7228 * _base_determine_wait_on_discovery - desposition 7229 * @ioc: per adapter object 7230 * 7231 * Decide whether to wait on discovery to complete. Used to either 7232 * locate boot device, or report volumes ahead of physical devices. 7233 * 7234 * Return: 1 for wait, 0 for don't wait. 7235 */ 7236 static int 7237 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 7238 { 7239 /* We wait for discovery to complete if IR firmware is loaded. 7240 * The sas topology events arrive before PD events, so we need time to 7241 * turn on the bit in ioc->pd_handles to indicate PD 7242 * Also, it maybe required to report Volumes ahead of physical 7243 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 7244 */ 7245 if (ioc->ir_firmware) 7246 return 1; 7247 7248 /* if no Bios, then we don't need to wait */ 7249 if (!ioc->bios_pg3.BiosVersion) 7250 return 0; 7251 7252 /* Bios is present, then we drop down here. 7253 * 7254 * If there any entries in the Bios Page 2, then we wait 7255 * for discovery to complete. 7256 */ 7257 7258 /* Current Boot Device */ 7259 if ((ioc->bios_pg2.CurrentBootDeviceForm & 7260 MPI2_BIOSPAGE2_FORM_MASK) == 7261 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7262 /* Request Boot Device */ 7263 (ioc->bios_pg2.ReqBootDeviceForm & 7264 MPI2_BIOSPAGE2_FORM_MASK) == 7265 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7266 /* Alternate Request Boot Device */ 7267 (ioc->bios_pg2.ReqAltBootDeviceForm & 7268 MPI2_BIOSPAGE2_FORM_MASK) == 7269 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 7270 return 0; 7271 7272 return 1; 7273 } 7274 7275 /** 7276 * _base_unmask_events - turn on notification for this event 7277 * @ioc: per adapter object 7278 * @event: firmware event 7279 * 7280 * The mask is stored in ioc->event_masks. 7281 */ 7282 static void 7283 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 7284 { 7285 u32 desired_event; 7286 7287 if (event >= 128) 7288 return; 7289 7290 desired_event = (1 << (event % 32)); 7291 7292 if (event < 32) 7293 ioc->event_masks[0] &= ~desired_event; 7294 else if (event < 64) 7295 ioc->event_masks[1] &= ~desired_event; 7296 else if (event < 96) 7297 ioc->event_masks[2] &= ~desired_event; 7298 else if (event < 128) 7299 ioc->event_masks[3] &= ~desired_event; 7300 } 7301 7302 /** 7303 * _base_event_notification - send event notification 7304 * @ioc: per adapter object 7305 * 7306 * Return: 0 for success, non-zero for failure. 7307 */ 7308 static int 7309 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 7310 { 7311 Mpi2EventNotificationRequest_t *mpi_request; 7312 u16 smid; 7313 int r = 0; 7314 int i; 7315 7316 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7317 7318 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7319 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7320 return -EAGAIN; 7321 } 7322 7323 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7324 if (!smid) { 7325 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7326 return -EAGAIN; 7327 } 7328 ioc->base_cmds.status = MPT3_CMD_PENDING; 7329 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7330 ioc->base_cmds.smid = smid; 7331 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 7332 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 7333 mpi_request->VF_ID = 0; /* TODO */ 7334 mpi_request->VP_ID = 0; 7335 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7336 mpi_request->EventMasks[i] = 7337 cpu_to_le32(ioc->event_masks[i]); 7338 init_completion(&ioc->base_cmds.done); 7339 ioc->put_smid_default(ioc, smid); 7340 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 7341 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7342 ioc_err(ioc, "%s: timeout\n", __func__); 7343 _debug_dump_mf(mpi_request, 7344 sizeof(Mpi2EventNotificationRequest_t)/4); 7345 if (ioc->base_cmds.status & MPT3_CMD_RESET) 7346 r = -EFAULT; 7347 else 7348 r = -ETIME; 7349 } else 7350 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 7351 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7352 return r; 7353 } 7354 7355 /** 7356 * mpt3sas_base_validate_event_type - validating event types 7357 * @ioc: per adapter object 7358 * @event_type: firmware event 7359 * 7360 * This will turn on firmware event notification when application 7361 * ask for that event. We don't mask events that are already enabled. 7362 */ 7363 void 7364 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 7365 { 7366 int i, j; 7367 u32 event_mask, desired_event; 7368 u8 send_update_to_fw; 7369 7370 for (i = 0, send_update_to_fw = 0; i < 7371 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 7372 event_mask = ~event_type[i]; 7373 desired_event = 1; 7374 for (j = 0; j < 32; j++) { 7375 if (!(event_mask & desired_event) && 7376 (ioc->event_masks[i] & desired_event)) { 7377 ioc->event_masks[i] &= ~desired_event; 7378 send_update_to_fw = 1; 7379 } 7380 desired_event = (desired_event << 1); 7381 } 7382 } 7383 7384 if (!send_update_to_fw) 7385 return; 7386 7387 mutex_lock(&ioc->base_cmds.mutex); 7388 _base_event_notification(ioc); 7389 mutex_unlock(&ioc->base_cmds.mutex); 7390 } 7391 7392 /** 7393 * _base_diag_reset - the "big hammer" start of day reset 7394 * @ioc: per adapter object 7395 * 7396 * Return: 0 for success, non-zero for failure. 7397 */ 7398 static int 7399 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 7400 { 7401 u32 host_diagnostic; 7402 u32 ioc_state; 7403 u32 count; 7404 u32 hcb_size; 7405 7406 ioc_info(ioc, "sending diag reset !!\n"); 7407 7408 pci_cfg_access_lock(ioc->pdev); 7409 7410 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 7411 7412 count = 0; 7413 do { 7414 /* Write magic sequence to WriteSequence register 7415 * Loop until in diagnostic mode 7416 */ 7417 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 7418 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 7419 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 7420 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 7421 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 7422 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 7423 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 7424 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 7425 7426 /* wait 100 msec */ 7427 msleep(100); 7428 7429 if (count++ > 20) { 7430 ioc_info(ioc, 7431 "Stop writing magic sequence after 20 retries\n"); 7432 _base_dump_reg_set(ioc); 7433 goto out; 7434 } 7435 7436 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 7437 drsprintk(ioc, 7438 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 7439 count, host_diagnostic)); 7440 7441 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 7442 7443 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 7444 7445 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 7446 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 7447 &ioc->chip->HostDiagnostic); 7448 7449 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 7450 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 7451 7452 /* Approximately 300 second max wait */ 7453 for (count = 0; count < (300000000 / 7454 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 7455 7456 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 7457 7458 if (host_diagnostic == 0xFFFFFFFF) { 7459 ioc_info(ioc, 7460 "Invalid host diagnostic register value\n"); 7461 _base_dump_reg_set(ioc); 7462 goto out; 7463 } 7464 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 7465 break; 7466 7467 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 7468 } 7469 7470 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 7471 7472 drsprintk(ioc, 7473 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 7474 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 7475 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 7476 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 7477 7478 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 7479 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 7480 &ioc->chip->HCBSize); 7481 } 7482 7483 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 7484 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 7485 &ioc->chip->HostDiagnostic); 7486 7487 drsprintk(ioc, 7488 ioc_info(ioc, "disable writes to the diagnostic register\n")); 7489 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 7490 7491 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 7492 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 7493 if (ioc_state) { 7494 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 7495 __func__, ioc_state); 7496 _base_dump_reg_set(ioc); 7497 goto out; 7498 } 7499 7500 pci_cfg_access_unlock(ioc->pdev); 7501 ioc_info(ioc, "diag reset: SUCCESS\n"); 7502 return 0; 7503 7504 out: 7505 pci_cfg_access_unlock(ioc->pdev); 7506 ioc_err(ioc, "diag reset: FAILED\n"); 7507 return -EFAULT; 7508 } 7509 7510 /** 7511 * _base_make_ioc_ready - put controller in READY state 7512 * @ioc: per adapter object 7513 * @type: FORCE_BIG_HAMMER or SOFT_RESET 7514 * 7515 * Return: 0 for success, non-zero for failure. 7516 */ 7517 static int 7518 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 7519 { 7520 u32 ioc_state; 7521 int rc; 7522 int count; 7523 7524 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7525 7526 if (ioc->pci_error_recovery) 7527 return 0; 7528 7529 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7530 dhsprintk(ioc, 7531 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 7532 __func__, ioc_state)); 7533 7534 /* if in RESET state, it should move to READY state shortly */ 7535 count = 0; 7536 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 7537 while ((ioc_state & MPI2_IOC_STATE_MASK) != 7538 MPI2_IOC_STATE_READY) { 7539 if (count++ == 10) { 7540 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 7541 __func__, ioc_state); 7542 return -EFAULT; 7543 } 7544 ssleep(1); 7545 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7546 } 7547 } 7548 7549 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 7550 return 0; 7551 7552 if (ioc_state & MPI2_DOORBELL_USED) { 7553 ioc_info(ioc, "unexpected doorbell active!\n"); 7554 goto issue_diag_reset; 7555 } 7556 7557 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 7558 mpt3sas_print_fault_code(ioc, ioc_state & 7559 MPI2_DOORBELL_DATA_MASK); 7560 goto issue_diag_reset; 7561 } 7562 7563 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 7564 /* 7565 * if host reset is invoked while watch dog thread is waiting 7566 * for IOC state to be changed to Fault state then driver has 7567 * to wait here for CoreDump state to clear otherwise reset 7568 * will be issued to the FW and FW move the IOC state to 7569 * reset state without copying the FW logs to coredump region. 7570 */ 7571 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) { 7572 mpt3sas_print_coredump_info(ioc, ioc_state & 7573 MPI2_DOORBELL_DATA_MASK); 7574 mpt3sas_base_wait_for_coredump_completion(ioc, 7575 __func__); 7576 } 7577 goto issue_diag_reset; 7578 } 7579 7580 if (type == FORCE_BIG_HAMMER) 7581 goto issue_diag_reset; 7582 7583 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 7584 if (!(_base_send_ioc_reset(ioc, 7585 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 7586 return 0; 7587 } 7588 7589 issue_diag_reset: 7590 rc = _base_diag_reset(ioc); 7591 return rc; 7592 } 7593 7594 /** 7595 * _base_make_ioc_operational - put controller in OPERATIONAL state 7596 * @ioc: per adapter object 7597 * 7598 * Return: 0 for success, non-zero for failure. 7599 */ 7600 static int 7601 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 7602 { 7603 int r, i, index, rc; 7604 unsigned long flags; 7605 u32 reply_address; 7606 u16 smid; 7607 struct _tr_list *delayed_tr, *delayed_tr_next; 7608 struct _sc_list *delayed_sc, *delayed_sc_next; 7609 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 7610 u8 hide_flag; 7611 struct adapter_reply_queue *reply_q; 7612 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 7613 7614 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7615 7616 /* clean the delayed target reset list */ 7617 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 7618 &ioc->delayed_tr_list, list) { 7619 list_del(&delayed_tr->list); 7620 kfree(delayed_tr); 7621 } 7622 7623 7624 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 7625 &ioc->delayed_tr_volume_list, list) { 7626 list_del(&delayed_tr->list); 7627 kfree(delayed_tr); 7628 } 7629 7630 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 7631 &ioc->delayed_sc_list, list) { 7632 list_del(&delayed_sc->list); 7633 kfree(delayed_sc); 7634 } 7635 7636 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 7637 &ioc->delayed_event_ack_list, list) { 7638 list_del(&delayed_event_ack->list); 7639 kfree(delayed_event_ack); 7640 } 7641 7642 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 7643 7644 /* hi-priority queue */ 7645 INIT_LIST_HEAD(&ioc->hpr_free_list); 7646 smid = ioc->hi_priority_smid; 7647 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 7648 ioc->hpr_lookup[i].cb_idx = 0xFF; 7649 ioc->hpr_lookup[i].smid = smid; 7650 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 7651 &ioc->hpr_free_list); 7652 } 7653 7654 /* internal queue */ 7655 INIT_LIST_HEAD(&ioc->internal_free_list); 7656 smid = ioc->internal_smid; 7657 for (i = 0; i < ioc->internal_depth; i++, smid++) { 7658 ioc->internal_lookup[i].cb_idx = 0xFF; 7659 ioc->internal_lookup[i].smid = smid; 7660 list_add_tail(&ioc->internal_lookup[i].tracker_list, 7661 &ioc->internal_free_list); 7662 } 7663 7664 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 7665 7666 /* initialize Reply Free Queue */ 7667 for (i = 0, reply_address = (u32)ioc->reply_dma ; 7668 i < ioc->reply_free_queue_depth ; i++, reply_address += 7669 ioc->reply_sz) { 7670 ioc->reply_free[i] = cpu_to_le32(reply_address); 7671 if (ioc->is_mcpu_endpoint) 7672 _base_clone_reply_to_sys_mem(ioc, 7673 reply_address, i); 7674 } 7675 7676 /* initialize reply queues */ 7677 if (ioc->is_driver_loading) 7678 _base_assign_reply_queues(ioc); 7679 7680 /* initialize Reply Post Free Queue */ 7681 index = 0; 7682 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 7683 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 7684 /* 7685 * If RDPQ is enabled, switch to the next allocation. 7686 * Otherwise advance within the contiguous region. 7687 */ 7688 if (ioc->rdpq_array_enable) { 7689 reply_q->reply_post_free = 7690 ioc->reply_post[index++].reply_post_free; 7691 } else { 7692 reply_q->reply_post_free = reply_post_free_contig; 7693 reply_post_free_contig += ioc->reply_post_queue_depth; 7694 } 7695 7696 reply_q->reply_post_host_index = 0; 7697 for (i = 0; i < ioc->reply_post_queue_depth; i++) 7698 reply_q->reply_post_free[i].Words = 7699 cpu_to_le64(ULLONG_MAX); 7700 if (!_base_is_controller_msix_enabled(ioc)) 7701 goto skip_init_reply_post_free_queue; 7702 } 7703 skip_init_reply_post_free_queue: 7704 7705 r = _base_send_ioc_init(ioc); 7706 if (r) { 7707 /* 7708 * No need to check IOC state for fault state & issue 7709 * diag reset during host reset. This check is need 7710 * only during driver load time. 7711 */ 7712 if (!ioc->is_driver_loading) 7713 return r; 7714 7715 rc = _base_check_for_fault_and_issue_reset(ioc); 7716 if (rc || (_base_send_ioc_init(ioc))) 7717 return r; 7718 } 7719 7720 /* initialize reply free host index */ 7721 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 7722 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 7723 7724 /* initialize reply post host index */ 7725 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 7726 if (ioc->combined_reply_queue) 7727 writel((reply_q->msix_index & 7)<< 7728 MPI2_RPHI_MSIX_INDEX_SHIFT, 7729 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 7730 else 7731 writel(reply_q->msix_index << 7732 MPI2_RPHI_MSIX_INDEX_SHIFT, 7733 &ioc->chip->ReplyPostHostIndex); 7734 7735 if (!_base_is_controller_msix_enabled(ioc)) 7736 goto skip_init_reply_post_host_index; 7737 } 7738 7739 skip_init_reply_post_host_index: 7740 7741 mpt3sas_base_unmask_interrupts(ioc); 7742 7743 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 7744 r = _base_display_fwpkg_version(ioc); 7745 if (r) 7746 return r; 7747 } 7748 7749 _base_static_config_pages(ioc); 7750 r = _base_event_notification(ioc); 7751 if (r) 7752 return r; 7753 7754 if (ioc->is_driver_loading) { 7755 7756 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 7757 == 0x80) { 7758 hide_flag = (u8) ( 7759 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 7760 MFG_PAGE10_HIDE_SSDS_MASK); 7761 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 7762 ioc->mfg_pg10_hide_flag = hide_flag; 7763 } 7764 7765 ioc->wait_for_discovery_to_complete = 7766 _base_determine_wait_on_discovery(ioc); 7767 7768 return r; /* scan_start and scan_finished support */ 7769 } 7770 7771 r = _base_send_port_enable(ioc); 7772 if (r) 7773 return r; 7774 7775 return r; 7776 } 7777 7778 /** 7779 * mpt3sas_base_free_resources - free resources controller resources 7780 * @ioc: per adapter object 7781 */ 7782 void 7783 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 7784 { 7785 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7786 7787 /* synchronizing freeing resource with pci_access_mutex lock */ 7788 mutex_lock(&ioc->pci_access_mutex); 7789 if (ioc->chip_phys && ioc->chip) { 7790 mpt3sas_base_mask_interrupts(ioc); 7791 ioc->shost_recovery = 1; 7792 _base_make_ioc_ready(ioc, SOFT_RESET); 7793 ioc->shost_recovery = 0; 7794 } 7795 7796 mpt3sas_base_unmap_resources(ioc); 7797 mutex_unlock(&ioc->pci_access_mutex); 7798 return; 7799 } 7800 7801 /** 7802 * mpt3sas_base_attach - attach controller instance 7803 * @ioc: per adapter object 7804 * 7805 * Return: 0 for success, non-zero for failure. 7806 */ 7807 int 7808 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 7809 { 7810 int r, i, rc; 7811 int cpu_id, last_cpu_id = 0; 7812 7813 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7814 7815 /* setup cpu_msix_table */ 7816 ioc->cpu_count = num_online_cpus(); 7817 for_each_online_cpu(cpu_id) 7818 last_cpu_id = cpu_id; 7819 ioc->cpu_msix_table_sz = last_cpu_id + 1; 7820 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 7821 ioc->reply_queue_count = 1; 7822 if (!ioc->cpu_msix_table) { 7823 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n"); 7824 r = -ENOMEM; 7825 goto out_free_resources; 7826 } 7827 7828 if (ioc->is_warpdrive) { 7829 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 7830 sizeof(resource_size_t *), GFP_KERNEL); 7831 if (!ioc->reply_post_host_index) { 7832 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n"); 7833 r = -ENOMEM; 7834 goto out_free_resources; 7835 } 7836 } 7837 7838 ioc->smp_affinity_enable = smp_affinity_enable; 7839 7840 ioc->rdpq_array_enable_assigned = 0; 7841 ioc->use_32bit_dma = false; 7842 ioc->dma_mask = 64; 7843 if (ioc->is_aero_ioc) 7844 ioc->base_readl = &_base_readl_aero; 7845 else 7846 ioc->base_readl = &_base_readl; 7847 r = mpt3sas_base_map_resources(ioc); 7848 if (r) 7849 goto out_free_resources; 7850 7851 pci_set_drvdata(ioc->pdev, ioc->shost); 7852 r = _base_get_ioc_facts(ioc); 7853 if (r) { 7854 rc = _base_check_for_fault_and_issue_reset(ioc); 7855 if (rc || (_base_get_ioc_facts(ioc))) 7856 goto out_free_resources; 7857 } 7858 7859 switch (ioc->hba_mpi_version_belonged) { 7860 case MPI2_VERSION: 7861 ioc->build_sg_scmd = &_base_build_sg_scmd; 7862 ioc->build_sg = &_base_build_sg; 7863 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 7864 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7865 break; 7866 case MPI25_VERSION: 7867 case MPI26_VERSION: 7868 /* 7869 * In SAS3.0, 7870 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 7871 * Target Status - all require the IEEE formated scatter gather 7872 * elements. 7873 */ 7874 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 7875 ioc->build_sg = &_base_build_sg_ieee; 7876 ioc->build_nvme_prp = &_base_build_nvme_prp; 7877 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 7878 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 7879 if (ioc->high_iops_queues) 7880 ioc->get_msix_index_for_smlio = 7881 &_base_get_high_iops_msix_index; 7882 else 7883 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7884 break; 7885 } 7886 if (ioc->atomic_desc_capable) { 7887 ioc->put_smid_default = &_base_put_smid_default_atomic; 7888 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; 7889 ioc->put_smid_fast_path = 7890 &_base_put_smid_fast_path_atomic; 7891 ioc->put_smid_hi_priority = 7892 &_base_put_smid_hi_priority_atomic; 7893 } else { 7894 ioc->put_smid_default = &_base_put_smid_default; 7895 ioc->put_smid_fast_path = &_base_put_smid_fast_path; 7896 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; 7897 if (ioc->is_mcpu_endpoint) 7898 ioc->put_smid_scsi_io = 7899 &_base_put_smid_mpi_ep_scsi_io; 7900 else 7901 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 7902 } 7903 /* 7904 * These function pointers for other requests that don't 7905 * the require IEEE scatter gather elements. 7906 * 7907 * For example Configuration Pages and SAS IOUNIT Control don't. 7908 */ 7909 ioc->build_sg_mpi = &_base_build_sg; 7910 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 7911 7912 r = _base_make_ioc_ready(ioc, SOFT_RESET); 7913 if (r) 7914 goto out_free_resources; 7915 7916 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 7917 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 7918 if (!ioc->pfacts) { 7919 r = -ENOMEM; 7920 goto out_free_resources; 7921 } 7922 7923 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 7924 r = _base_get_port_facts(ioc, i); 7925 if (r) { 7926 rc = _base_check_for_fault_and_issue_reset(ioc); 7927 if (rc || (_base_get_port_facts(ioc, i))) 7928 goto out_free_resources; 7929 } 7930 } 7931 7932 r = _base_allocate_memory_pools(ioc); 7933 if (r) 7934 goto out_free_resources; 7935 7936 if (irqpoll_weight > 0) 7937 ioc->thresh_hold = irqpoll_weight; 7938 else 7939 ioc->thresh_hold = ioc->hba_queue_depth/4; 7940 7941 _base_init_irqpolls(ioc); 7942 init_waitqueue_head(&ioc->reset_wq); 7943 7944 /* allocate memory pd handle bitmask list */ 7945 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 7946 if (ioc->facts.MaxDevHandle % 8) 7947 ioc->pd_handles_sz++; 7948 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 7949 GFP_KERNEL); 7950 if (!ioc->pd_handles) { 7951 r = -ENOMEM; 7952 goto out_free_resources; 7953 } 7954 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 7955 GFP_KERNEL); 7956 if (!ioc->blocking_handles) { 7957 r = -ENOMEM; 7958 goto out_free_resources; 7959 } 7960 7961 /* allocate memory for pending OS device add list */ 7962 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 7963 if (ioc->facts.MaxDevHandle % 8) 7964 ioc->pend_os_device_add_sz++; 7965 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 7966 GFP_KERNEL); 7967 if (!ioc->pend_os_device_add) { 7968 r = -ENOMEM; 7969 goto out_free_resources; 7970 } 7971 7972 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 7973 ioc->device_remove_in_progress = 7974 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 7975 if (!ioc->device_remove_in_progress) { 7976 r = -ENOMEM; 7977 goto out_free_resources; 7978 } 7979 7980 ioc->fwfault_debug = mpt3sas_fwfault_debug; 7981 7982 /* base internal command bits */ 7983 mutex_init(&ioc->base_cmds.mutex); 7984 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7985 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7986 7987 /* port_enable command bits */ 7988 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7989 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7990 7991 /* transport internal command bits */ 7992 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7993 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 7994 mutex_init(&ioc->transport_cmds.mutex); 7995 7996 /* scsih internal command bits */ 7997 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7998 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 7999 mutex_init(&ioc->scsih_cmds.mutex); 8000 8001 /* task management internal command bits */ 8002 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8003 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 8004 mutex_init(&ioc->tm_cmds.mutex); 8005 8006 /* config page internal command bits */ 8007 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8008 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 8009 mutex_init(&ioc->config_cmds.mutex); 8010 8011 /* ctl module internal command bits */ 8012 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8013 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 8014 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 8015 mutex_init(&ioc->ctl_cmds.mutex); 8016 8017 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 8018 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 8019 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 8020 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 8021 r = -ENOMEM; 8022 goto out_free_resources; 8023 } 8024 8025 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 8026 ioc->event_masks[i] = -1; 8027 8028 /* here we enable the events we care about */ 8029 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 8030 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 8031 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 8032 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 8033 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 8034 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 8035 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 8036 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 8037 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 8038 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 8039 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 8040 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 8041 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 8042 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 8043 if (ioc->is_gen35_ioc) { 8044 _base_unmask_events(ioc, 8045 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 8046 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 8047 _base_unmask_events(ioc, 8048 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 8049 } 8050 } 8051 r = _base_make_ioc_operational(ioc); 8052 if (r) 8053 goto out_free_resources; 8054 8055 /* 8056 * Copy current copy of IOCFacts in prev_fw_facts 8057 * and it will be used during online firmware upgrade. 8058 */ 8059 memcpy(&ioc->prev_fw_facts, &ioc->facts, 8060 sizeof(struct mpt3sas_facts)); 8061 8062 ioc->non_operational_loop = 0; 8063 ioc->ioc_coredump_loop = 0; 8064 ioc->got_task_abort_from_ioctl = 0; 8065 return 0; 8066 8067 out_free_resources: 8068 8069 ioc->remove_host = 1; 8070 8071 mpt3sas_base_free_resources(ioc); 8072 _base_release_memory_pools(ioc); 8073 pci_set_drvdata(ioc->pdev, NULL); 8074 kfree(ioc->cpu_msix_table); 8075 if (ioc->is_warpdrive) 8076 kfree(ioc->reply_post_host_index); 8077 kfree(ioc->pd_handles); 8078 kfree(ioc->blocking_handles); 8079 kfree(ioc->device_remove_in_progress); 8080 kfree(ioc->pend_os_device_add); 8081 kfree(ioc->tm_cmds.reply); 8082 kfree(ioc->transport_cmds.reply); 8083 kfree(ioc->scsih_cmds.reply); 8084 kfree(ioc->config_cmds.reply); 8085 kfree(ioc->base_cmds.reply); 8086 kfree(ioc->port_enable_cmds.reply); 8087 kfree(ioc->ctl_cmds.reply); 8088 kfree(ioc->ctl_cmds.sense); 8089 kfree(ioc->pfacts); 8090 ioc->ctl_cmds.reply = NULL; 8091 ioc->base_cmds.reply = NULL; 8092 ioc->tm_cmds.reply = NULL; 8093 ioc->scsih_cmds.reply = NULL; 8094 ioc->transport_cmds.reply = NULL; 8095 ioc->config_cmds.reply = NULL; 8096 ioc->pfacts = NULL; 8097 return r; 8098 } 8099 8100 8101 /** 8102 * mpt3sas_base_detach - remove controller instance 8103 * @ioc: per adapter object 8104 */ 8105 void 8106 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 8107 { 8108 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8109 8110 mpt3sas_base_stop_watchdog(ioc); 8111 mpt3sas_base_free_resources(ioc); 8112 _base_release_memory_pools(ioc); 8113 mpt3sas_free_enclosure_list(ioc); 8114 pci_set_drvdata(ioc->pdev, NULL); 8115 kfree(ioc->cpu_msix_table); 8116 if (ioc->is_warpdrive) 8117 kfree(ioc->reply_post_host_index); 8118 kfree(ioc->pd_handles); 8119 kfree(ioc->blocking_handles); 8120 kfree(ioc->device_remove_in_progress); 8121 kfree(ioc->pend_os_device_add); 8122 kfree(ioc->pfacts); 8123 kfree(ioc->ctl_cmds.reply); 8124 kfree(ioc->ctl_cmds.sense); 8125 kfree(ioc->base_cmds.reply); 8126 kfree(ioc->port_enable_cmds.reply); 8127 kfree(ioc->tm_cmds.reply); 8128 kfree(ioc->transport_cmds.reply); 8129 kfree(ioc->scsih_cmds.reply); 8130 kfree(ioc->config_cmds.reply); 8131 } 8132 8133 /** 8134 * _base_pre_reset_handler - pre reset handler 8135 * @ioc: per adapter object 8136 */ 8137 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 8138 { 8139 mpt3sas_scsih_pre_reset_handler(ioc); 8140 mpt3sas_ctl_pre_reset_handler(ioc); 8141 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 8142 } 8143 8144 /** 8145 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands 8146 * @ioc: per adapter object 8147 */ 8148 static void 8149 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc) 8150 { 8151 dtmprintk(ioc, 8152 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__)); 8153 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 8154 ioc->transport_cmds.status |= MPT3_CMD_RESET; 8155 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 8156 complete(&ioc->transport_cmds.done); 8157 } 8158 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 8159 ioc->base_cmds.status |= MPT3_CMD_RESET; 8160 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 8161 complete(&ioc->base_cmds.done); 8162 } 8163 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 8164 ioc->port_enable_failed = 1; 8165 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 8166 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 8167 if (ioc->is_driver_loading) { 8168 ioc->start_scan_failed = 8169 MPI2_IOCSTATUS_INTERNAL_ERROR; 8170 ioc->start_scan = 0; 8171 ioc->port_enable_cmds.status = 8172 MPT3_CMD_NOT_USED; 8173 } else { 8174 complete(&ioc->port_enable_cmds.done); 8175 } 8176 } 8177 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 8178 ioc->config_cmds.status |= MPT3_CMD_RESET; 8179 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 8180 ioc->config_cmds.smid = USHRT_MAX; 8181 complete(&ioc->config_cmds.done); 8182 } 8183 } 8184 8185 /** 8186 * _base_clear_outstanding_commands - clear all outstanding commands 8187 * @ioc: per adapter object 8188 */ 8189 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc) 8190 { 8191 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc); 8192 mpt3sas_ctl_clear_outstanding_ioctls(ioc); 8193 _base_clear_outstanding_mpt_commands(ioc); 8194 } 8195 8196 /** 8197 * _base_reset_done_handler - reset done handler 8198 * @ioc: per adapter object 8199 */ 8200 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 8201 { 8202 mpt3sas_scsih_reset_done_handler(ioc); 8203 mpt3sas_ctl_reset_done_handler(ioc); 8204 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 8205 } 8206 8207 /** 8208 * mpt3sas_wait_for_commands_to_complete - reset controller 8209 * @ioc: Pointer to MPT_ADAPTER structure 8210 * 8211 * This function is waiting 10s for all pending commands to complete 8212 * prior to putting controller in reset. 8213 */ 8214 void 8215 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 8216 { 8217 u32 ioc_state; 8218 8219 ioc->pending_io_count = 0; 8220 8221 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8222 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 8223 return; 8224 8225 /* pending command count */ 8226 ioc->pending_io_count = scsi_host_busy(ioc->shost); 8227 8228 if (!ioc->pending_io_count) 8229 return; 8230 8231 /* wait for pending commands to complete */ 8232 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 8233 } 8234 8235 /** 8236 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts 8237 * attributes during online firmware upgrade and update the corresponding 8238 * IOC variables accordingly. 8239 * 8240 * @ioc: Pointer to MPT_ADAPTER structure 8241 */ 8242 static int 8243 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc) 8244 { 8245 u16 pd_handles_sz; 8246 void *pd_handles = NULL, *blocking_handles = NULL; 8247 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL; 8248 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts; 8249 8250 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) { 8251 pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 8252 if (ioc->facts.MaxDevHandle % 8) 8253 pd_handles_sz++; 8254 8255 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz, 8256 GFP_KERNEL); 8257 if (!pd_handles) { 8258 ioc_info(ioc, 8259 "Unable to allocate the memory for pd_handles of sz: %d\n", 8260 pd_handles_sz); 8261 return -ENOMEM; 8262 } 8263 memset(pd_handles + ioc->pd_handles_sz, 0, 8264 (pd_handles_sz - ioc->pd_handles_sz)); 8265 ioc->pd_handles = pd_handles; 8266 8267 blocking_handles = krealloc(ioc->blocking_handles, 8268 pd_handles_sz, GFP_KERNEL); 8269 if (!blocking_handles) { 8270 ioc_info(ioc, 8271 "Unable to allocate the memory for " 8272 "blocking_handles of sz: %d\n", 8273 pd_handles_sz); 8274 return -ENOMEM; 8275 } 8276 memset(blocking_handles + ioc->pd_handles_sz, 0, 8277 (pd_handles_sz - ioc->pd_handles_sz)); 8278 ioc->blocking_handles = blocking_handles; 8279 ioc->pd_handles_sz = pd_handles_sz; 8280 8281 pend_os_device_add = krealloc(ioc->pend_os_device_add, 8282 pd_handles_sz, GFP_KERNEL); 8283 if (!pend_os_device_add) { 8284 ioc_info(ioc, 8285 "Unable to allocate the memory for pend_os_device_add of sz: %d\n", 8286 pd_handles_sz); 8287 return -ENOMEM; 8288 } 8289 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0, 8290 (pd_handles_sz - ioc->pend_os_device_add_sz)); 8291 ioc->pend_os_device_add = pend_os_device_add; 8292 ioc->pend_os_device_add_sz = pd_handles_sz; 8293 8294 device_remove_in_progress = krealloc( 8295 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL); 8296 if (!device_remove_in_progress) { 8297 ioc_info(ioc, 8298 "Unable to allocate the memory for " 8299 "device_remove_in_progress of sz: %d\n " 8300 , pd_handles_sz); 8301 return -ENOMEM; 8302 } 8303 memset(device_remove_in_progress + 8304 ioc->device_remove_in_progress_sz, 0, 8305 (pd_handles_sz - ioc->device_remove_in_progress_sz)); 8306 ioc->device_remove_in_progress = device_remove_in_progress; 8307 ioc->device_remove_in_progress_sz = pd_handles_sz; 8308 } 8309 8310 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts)); 8311 return 0; 8312 } 8313 8314 /** 8315 * mpt3sas_base_hard_reset_handler - reset controller 8316 * @ioc: Pointer to MPT_ADAPTER structure 8317 * @type: FORCE_BIG_HAMMER or SOFT_RESET 8318 * 8319 * Return: 0 for success, non-zero for failure. 8320 */ 8321 int 8322 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 8323 enum reset_type type) 8324 { 8325 int r; 8326 unsigned long flags; 8327 u32 ioc_state; 8328 u8 is_fault = 0, is_trigger = 0; 8329 8330 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 8331 8332 if (ioc->pci_error_recovery) { 8333 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 8334 r = 0; 8335 goto out_unlocked; 8336 } 8337 8338 if (mpt3sas_fwfault_debug) 8339 mpt3sas_halt_firmware(ioc); 8340 8341 /* wait for an active reset in progress to complete */ 8342 mutex_lock(&ioc->reset_in_progress_mutex); 8343 8344 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 8345 ioc->shost_recovery = 1; 8346 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 8347 8348 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8349 MPT3_DIAG_BUFFER_IS_REGISTERED) && 8350 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8351 MPT3_DIAG_BUFFER_IS_RELEASED))) { 8352 is_trigger = 1; 8353 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8354 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT || 8355 (ioc_state & MPI2_IOC_STATE_MASK) == 8356 MPI2_IOC_STATE_COREDUMP) { 8357 is_fault = 1; 8358 ioc->htb_rel.trigger_info_dwords[1] = 8359 (ioc_state & MPI2_DOORBELL_DATA_MASK); 8360 } 8361 } 8362 _base_pre_reset_handler(ioc); 8363 mpt3sas_wait_for_commands_to_complete(ioc); 8364 mpt3sas_base_mask_interrupts(ioc); 8365 r = _base_make_ioc_ready(ioc, type); 8366 if (r) 8367 goto out; 8368 _base_clear_outstanding_commands(ioc); 8369 8370 /* If this hard reset is called while port enable is active, then 8371 * there is no reason to call make_ioc_operational 8372 */ 8373 if (ioc->is_driver_loading && ioc->port_enable_failed) { 8374 ioc->remove_host = 1; 8375 r = -EFAULT; 8376 goto out; 8377 } 8378 r = _base_get_ioc_facts(ioc); 8379 if (r) 8380 goto out; 8381 8382 r = _base_check_ioc_facts_changes(ioc); 8383 if (r) { 8384 ioc_info(ioc, 8385 "Some of the parameters got changed in this new firmware" 8386 " image and it requires system reboot\n"); 8387 goto out; 8388 } 8389 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 8390 panic("%s: Issue occurred with flashing controller firmware." 8391 "Please reboot the system and ensure that the correct" 8392 " firmware version is running\n", ioc->name); 8393 8394 r = _base_make_ioc_operational(ioc); 8395 if (!r) 8396 _base_reset_done_handler(ioc); 8397 8398 out: 8399 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED"); 8400 8401 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 8402 ioc->shost_recovery = 0; 8403 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 8404 ioc->ioc_reset_count++; 8405 mutex_unlock(&ioc->reset_in_progress_mutex); 8406 8407 out_unlocked: 8408 if ((r == 0) && is_trigger) { 8409 if (is_fault) 8410 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 8411 else 8412 mpt3sas_trigger_master(ioc, 8413 MASTER_TRIGGER_ADAPTER_RESET); 8414 } 8415 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 8416 return r; 8417 } 8418