xref: /openbmc/linux/drivers/scsi/mpt3sas/mpt3sas_base.c (revision 19dc81b4017baffd6e919fd71cfc8dcbd5442e15)
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64 
65 
66 #include "mpt3sas_base.h"
67 
68 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
69 
70 
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72 
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH	30000
75 #define MAX_CHAIN_DEPTH		100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79 
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83 
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87 
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91 
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95 	" max msix vectors");
96 
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100 	"irq poll weight (default= one fourth of HBA queue depth)");
101 
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104 	" enable detection of firmware fault and halt firmware - (default=0)");
105 
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109 	"Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 	"0 - balanced: high iops mode is enabled &\n\t\t"
111 	"interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 	"1 - iops: high iops mode is disabled &\n\t\t"
113 	"interrupt coalescing is enabled on all queues,\n\t\t"
114 	"2 - latency: high iops mode is disabled &\n\t\t"
115 	"interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 	"\t\tdefault - default perf_mode is 'balanced'"
117 	);
118 
119 static int poll_queues;
120 module_param(poll_queues, int, 0444);
121 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
122 	"This parameter is effective only if host_tagset_enable=1. &\n\t\t"
123 	"when poll_queues are enabled then &\n\t\t"
124 	"perf_mode is set to latency mode. &\n\t\t"
125 	);
126 
127 enum mpt3sas_perf_mode {
128 	MPT_PERF_MODE_DEFAULT	= -1,
129 	MPT_PERF_MODE_BALANCED	= 0,
130 	MPT_PERF_MODE_IOPS	= 1,
131 	MPT_PERF_MODE_LATENCY	= 2,
132 };
133 
134 static int
135 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
136 		u32 ioc_state, int timeout);
137 static int
138 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
139 static void
140 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
141 
142 /**
143  * mpt3sas_base_check_cmd_timeout - Function
144  *		to check timeout and command termination due
145  *		to Host reset.
146  *
147  * @ioc:	per adapter object.
148  * @status:	Status of issued command.
149  * @mpi_request:mf request pointer.
150  * @sz:		size of buffer.
151  *
152  * Return: 1/0 Reset to be done or Not
153  */
154 u8
155 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
156 		u8 status, void *mpi_request, int sz)
157 {
158 	u8 issue_reset = 0;
159 
160 	if (!(status & MPT3_CMD_RESET))
161 		issue_reset = 1;
162 
163 	ioc_err(ioc, "Command %s\n",
164 		issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
165 	_debug_dump_mf(mpi_request, sz);
166 
167 	return issue_reset;
168 }
169 
170 /**
171  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
172  * @val: ?
173  * @kp: ?
174  *
175  * Return: ?
176  */
177 static int
178 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
179 {
180 	int ret = param_set_int(val, kp);
181 	struct MPT3SAS_ADAPTER *ioc;
182 
183 	if (ret)
184 		return ret;
185 
186 	/* global ioc spinlock to protect controller list on list operations */
187 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
188 	spin_lock(&gioc_lock);
189 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
190 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
191 	spin_unlock(&gioc_lock);
192 	return 0;
193 }
194 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
195 	param_get_int, &mpt3sas_fwfault_debug, 0644);
196 
197 /**
198  * _base_readl_aero - retry readl for max three times.
199  * @addr: MPT Fusion system interface register address
200  *
201  * Retry the readl() for max three times if it gets zero value
202  * while reading the system interface register.
203  */
204 static inline u32
205 _base_readl_aero(const volatile void __iomem *addr)
206 {
207 	u32 i = 0, ret_val;
208 
209 	do {
210 		ret_val = readl(addr);
211 		i++;
212 	} while (ret_val == 0 && i < 3);
213 
214 	return ret_val;
215 }
216 
217 static inline u32
218 _base_readl(const volatile void __iomem *addr)
219 {
220 	return readl(addr);
221 }
222 
223 /**
224  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
225  *				  in BAR0 space.
226  *
227  * @ioc: per adapter object
228  * @reply: reply message frame(lower 32bit addr)
229  * @index: System request message index.
230  */
231 static void
232 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
233 		u32 index)
234 {
235 	/*
236 	 * 256 is offset within sys register.
237 	 * 256 offset MPI frame starts. Max MPI frame supported is 32.
238 	 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
239 	 */
240 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
241 	void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
242 			MPI_FRAME_START_OFFSET +
243 			(cmd_credit * ioc->request_sz) + (index * sizeof(u32));
244 
245 	writel(reply, reply_free_iomem);
246 }
247 
248 /**
249  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
250  *				to system/BAR0 region.
251  *
252  * @dst_iomem: Pointer to the destination location in BAR0 space.
253  * @src: Pointer to the Source data.
254  * @size: Size of data to be copied.
255  */
256 static void
257 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
258 {
259 	int i;
260 	u32 *src_virt_mem = (u32 *)src;
261 
262 	for (i = 0; i < size/4; i++)
263 		writel((u32)src_virt_mem[i],
264 				(void __iomem *)dst_iomem + (i * 4));
265 }
266 
267 /**
268  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
269  *
270  * @dst_iomem: Pointer to the destination location in BAR0 space.
271  * @src: Pointer to the Source data.
272  * @size: Size of data to be copied.
273  */
274 static void
275 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
276 {
277 	int i;
278 	u32 *src_virt_mem = (u32 *)(src);
279 
280 	for (i = 0; i < size/4; i++)
281 		writel((u32)src_virt_mem[i],
282 			(void __iomem *)dst_iomem + (i * 4));
283 }
284 
285 /**
286  * _base_get_chain - Calculates and Returns virtual chain address
287  *			 for the provided smid in BAR0 space.
288  *
289  * @ioc: per adapter object
290  * @smid: system request message index
291  * @sge_chain_count: Scatter gather chain count.
292  *
293  * Return: the chain address.
294  */
295 static inline void __iomem*
296 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
297 		u8 sge_chain_count)
298 {
299 	void __iomem *base_chain, *chain_virt;
300 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
301 
302 	base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
303 		(cmd_credit * ioc->request_sz) +
304 		REPLY_FREE_POOL_SIZE;
305 	chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
306 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
307 	return chain_virt;
308 }
309 
310 /**
311  * _base_get_chain_phys - Calculates and Returns physical address
312  *			in BAR0 for scatter gather chains, for
313  *			the provided smid.
314  *
315  * @ioc: per adapter object
316  * @smid: system request message index
317  * @sge_chain_count: Scatter gather chain count.
318  *
319  * Return: Physical chain address.
320  */
321 static inline phys_addr_t
322 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
323 		u8 sge_chain_count)
324 {
325 	phys_addr_t base_chain_phys, chain_phys;
326 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
327 
328 	base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
329 		(cmd_credit * ioc->request_sz) +
330 		REPLY_FREE_POOL_SIZE;
331 	chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
332 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
333 	return chain_phys;
334 }
335 
336 /**
337  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
338  *			buffer address for the provided smid.
339  *			(Each smid can have 64K starts from 17024)
340  *
341  * @ioc: per adapter object
342  * @smid: system request message index
343  *
344  * Return: Pointer to buffer location in BAR0.
345  */
346 
347 static void __iomem *
348 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
349 {
350 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
351 	// Added extra 1 to reach end of chain.
352 	void __iomem *chain_end = _base_get_chain(ioc,
353 			cmd_credit + 1,
354 			ioc->facts.MaxChainDepth);
355 	return chain_end + (smid * 64 * 1024);
356 }
357 
358 /**
359  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
360  *		Host buffer Physical address for the provided smid.
361  *		(Each smid can have 64K starts from 17024)
362  *
363  * @ioc: per adapter object
364  * @smid: system request message index
365  *
366  * Return: Pointer to buffer location in BAR0.
367  */
368 static phys_addr_t
369 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
370 {
371 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
372 	phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
373 			cmd_credit + 1,
374 			ioc->facts.MaxChainDepth);
375 	return chain_end_phys + (smid * 64 * 1024);
376 }
377 
378 /**
379  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
380  *			lookup list and Provides chain_buffer
381  *			address for the matching dma address.
382  *			(Each smid can have 64K starts from 17024)
383  *
384  * @ioc: per adapter object
385  * @chain_buffer_dma: Chain buffer dma address.
386  *
387  * Return: Pointer to chain buffer. Or Null on Failure.
388  */
389 static void *
390 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
391 		dma_addr_t chain_buffer_dma)
392 {
393 	u16 index, j;
394 	struct chain_tracker *ct;
395 
396 	for (index = 0; index < ioc->scsiio_depth; index++) {
397 		for (j = 0; j < ioc->chains_needed_per_io; j++) {
398 			ct = &ioc->chain_lookup[index].chains_per_smid[j];
399 			if (ct && ct->chain_buffer_dma == chain_buffer_dma)
400 				return ct->chain_buffer;
401 		}
402 	}
403 	ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
404 	return NULL;
405 }
406 
407 /**
408  * _clone_sg_entries -	MPI EP's scsiio and config requests
409  *			are handled here. Base function for
410  *			double buffering, before submitting
411  *			the requests.
412  *
413  * @ioc: per adapter object.
414  * @mpi_request: mf request pointer.
415  * @smid: system request message index.
416  */
417 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
418 		void *mpi_request, u16 smid)
419 {
420 	Mpi2SGESimple32_t *sgel, *sgel_next;
421 	u32  sgl_flags, sge_chain_count = 0;
422 	bool is_write = false;
423 	u16 i = 0;
424 	void __iomem *buffer_iomem;
425 	phys_addr_t buffer_iomem_phys;
426 	void __iomem *buff_ptr;
427 	phys_addr_t buff_ptr_phys;
428 	void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
429 	void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
430 	phys_addr_t dst_addr_phys;
431 	MPI2RequestHeader_t *request_hdr;
432 	struct scsi_cmnd *scmd;
433 	struct scatterlist *sg_scmd = NULL;
434 	int is_scsiio_req = 0;
435 
436 	request_hdr = (MPI2RequestHeader_t *) mpi_request;
437 
438 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
439 		Mpi25SCSIIORequest_t *scsiio_request =
440 			(Mpi25SCSIIORequest_t *)mpi_request;
441 		sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
442 		is_scsiio_req = 1;
443 	} else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
444 		Mpi2ConfigRequest_t  *config_req =
445 			(Mpi2ConfigRequest_t *)mpi_request;
446 		sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
447 	} else
448 		return;
449 
450 	/* From smid we can get scsi_cmd, once we have sg_scmd,
451 	 * we just need to get sg_virt and sg_next to get virtual
452 	 * address associated with sgel->Address.
453 	 */
454 
455 	if (is_scsiio_req) {
456 		/* Get scsi_cmd using smid */
457 		scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
458 		if (scmd == NULL) {
459 			ioc_err(ioc, "scmd is NULL\n");
460 			return;
461 		}
462 
463 		/* Get sg_scmd from scmd provided */
464 		sg_scmd = scsi_sglist(scmd);
465 	}
466 
467 	/*
468 	 * 0 - 255	System register
469 	 * 256 - 4352	MPI Frame. (This is based on maxCredit 32)
470 	 * 4352 - 4864	Reply_free pool (512 byte is reserved
471 	 *		considering maxCredit 32. Reply need extra
472 	 *		room, for mCPU case kept four times of
473 	 *		maxCredit).
474 	 * 4864 - 17152	SGE chain element. (32cmd * 3 chain of
475 	 *		128 byte size = 12288)
476 	 * 17152 - x	Host buffer mapped with smid.
477 	 *		(Each smid can have 64K Max IO.)
478 	 * BAR0+Last 1K MSIX Addr and Data
479 	 * Total size in use 2113664 bytes of 4MB BAR0
480 	 */
481 
482 	buffer_iomem = _base_get_buffer_bar0(ioc, smid);
483 	buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
484 
485 	buff_ptr = buffer_iomem;
486 	buff_ptr_phys = buffer_iomem_phys;
487 	WARN_ON(buff_ptr_phys > U32_MAX);
488 
489 	if (le32_to_cpu(sgel->FlagsLength) &
490 			(MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
491 		is_write = true;
492 
493 	for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
494 
495 		sgl_flags =
496 		    (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
497 
498 		switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
499 		case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
500 			/*
501 			 * Helper function which on passing
502 			 * chain_buffer_dma returns chain_buffer. Get
503 			 * the virtual address for sgel->Address
504 			 */
505 			sgel_next =
506 				_base_get_chain_buffer_dma_to_chain_buffer(ioc,
507 						le32_to_cpu(sgel->Address));
508 			if (sgel_next == NULL)
509 				return;
510 			/*
511 			 * This is coping 128 byte chain
512 			 * frame (not a host buffer)
513 			 */
514 			dst_chain_addr[sge_chain_count] =
515 				_base_get_chain(ioc,
516 					smid, sge_chain_count);
517 			src_chain_addr[sge_chain_count] =
518 						(void *) sgel_next;
519 			dst_addr_phys = _base_get_chain_phys(ioc,
520 						smid, sge_chain_count);
521 			WARN_ON(dst_addr_phys > U32_MAX);
522 			sgel->Address =
523 				cpu_to_le32(lower_32_bits(dst_addr_phys));
524 			sgel = sgel_next;
525 			sge_chain_count++;
526 			break;
527 		case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
528 			if (is_write) {
529 				if (is_scsiio_req) {
530 					_base_clone_to_sys_mem(buff_ptr,
531 					    sg_virt(sg_scmd),
532 					    (le32_to_cpu(sgel->FlagsLength) &
533 					    0x00ffffff));
534 					/*
535 					 * FIXME: this relies on a a zero
536 					 * PCI mem_offset.
537 					 */
538 					sgel->Address =
539 					    cpu_to_le32((u32)buff_ptr_phys);
540 				} else {
541 					_base_clone_to_sys_mem(buff_ptr,
542 					    ioc->config_vaddr,
543 					    (le32_to_cpu(sgel->FlagsLength) &
544 					    0x00ffffff));
545 					sgel->Address =
546 					    cpu_to_le32((u32)buff_ptr_phys);
547 				}
548 			}
549 			buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
550 			    0x00ffffff);
551 			buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
552 			    0x00ffffff);
553 			if ((le32_to_cpu(sgel->FlagsLength) &
554 			    (MPI2_SGE_FLAGS_END_OF_BUFFER
555 					<< MPI2_SGE_FLAGS_SHIFT)))
556 				goto eob_clone_chain;
557 			else {
558 				/*
559 				 * Every single element in MPT will have
560 				 * associated sg_next. Better to sanity that
561 				 * sg_next is not NULL, but it will be a bug
562 				 * if it is null.
563 				 */
564 				if (is_scsiio_req) {
565 					sg_scmd = sg_next(sg_scmd);
566 					if (sg_scmd)
567 						sgel++;
568 					else
569 						goto eob_clone_chain;
570 				}
571 			}
572 			break;
573 		}
574 	}
575 
576 eob_clone_chain:
577 	for (i = 0; i < sge_chain_count; i++) {
578 		if (is_scsiio_req)
579 			_base_clone_to_sys_mem(dst_chain_addr[i],
580 				src_chain_addr[i], ioc->request_sz);
581 	}
582 }
583 
584 /**
585  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
586  * @arg: input argument, used to derive ioc
587  *
588  * Return:
589  * 0 if controller is removed from pci subsystem.
590  * -1 for other case.
591  */
592 static int mpt3sas_remove_dead_ioc_func(void *arg)
593 {
594 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
595 	struct pci_dev *pdev;
596 
597 	if (!ioc)
598 		return -1;
599 
600 	pdev = ioc->pdev;
601 	if (!pdev)
602 		return -1;
603 	pci_stop_and_remove_bus_device_locked(pdev);
604 	return 0;
605 }
606 
607 /**
608  * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
609  * @ioc: Per Adapter Object
610  *
611  * Return: nothing.
612  */
613 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
614 {
615 	Mpi26IoUnitControlRequest_t *mpi_request;
616 	Mpi26IoUnitControlReply_t *mpi_reply;
617 	u16 smid;
618 	ktime_t current_time;
619 	u64 TimeStamp = 0;
620 	u8 issue_reset = 0;
621 
622 	mutex_lock(&ioc->scsih_cmds.mutex);
623 	if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
624 		ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
625 		goto out;
626 	}
627 	ioc->scsih_cmds.status = MPT3_CMD_PENDING;
628 	smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
629 	if (!smid) {
630 		ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
631 		ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
632 		goto out;
633 	}
634 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
635 	ioc->scsih_cmds.smid = smid;
636 	memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
637 	mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
638 	mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
639 	mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
640 	current_time = ktime_get_real();
641 	TimeStamp = ktime_to_ms(current_time);
642 	mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32);
643 	mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
644 	init_completion(&ioc->scsih_cmds.done);
645 	ioc->put_smid_default(ioc, smid);
646 	dinitprintk(ioc, ioc_info(ioc,
647 	    "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
648 	    TimeStamp));
649 	wait_for_completion_timeout(&ioc->scsih_cmds.done,
650 		MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
651 	if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
652 		mpt3sas_check_cmd_timeout(ioc,
653 		    ioc->scsih_cmds.status, mpi_request,
654 		    sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
655 		goto issue_host_reset;
656 	}
657 	if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
658 		mpi_reply = ioc->scsih_cmds.reply;
659 		dinitprintk(ioc, ioc_info(ioc,
660 		    "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
661 		    le16_to_cpu(mpi_reply->IOCStatus),
662 		    le32_to_cpu(mpi_reply->IOCLogInfo)));
663 	}
664 issue_host_reset:
665 	if (issue_reset)
666 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
667 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
668 out:
669 	mutex_unlock(&ioc->scsih_cmds.mutex);
670 }
671 
672 /**
673  * _base_fault_reset_work - workq handling ioc fault conditions
674  * @work: input argument, used to derive ioc
675  *
676  * Context: sleep.
677  */
678 static void
679 _base_fault_reset_work(struct work_struct *work)
680 {
681 	struct MPT3SAS_ADAPTER *ioc =
682 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
683 	unsigned long	 flags;
684 	u32 doorbell;
685 	int rc;
686 	struct task_struct *p;
687 
688 
689 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
690 	if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
691 			ioc->pci_error_recovery)
692 		goto rearm_timer;
693 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
694 
695 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
696 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
697 		ioc_err(ioc, "SAS host is non-operational !!!!\n");
698 
699 		/* It may be possible that EEH recovery can resolve some of
700 		 * pci bus failure issues rather removing the dead ioc function
701 		 * by considering controller is in a non-operational state. So
702 		 * here priority is given to the EEH recovery. If it doesn't
703 		 * not resolve this issue, mpt3sas driver will consider this
704 		 * controller to non-operational state and remove the dead ioc
705 		 * function.
706 		 */
707 		if (ioc->non_operational_loop++ < 5) {
708 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
709 							 flags);
710 			goto rearm_timer;
711 		}
712 
713 		/*
714 		 * Call _scsih_flush_pending_cmds callback so that we flush all
715 		 * pending commands back to OS. This call is required to avoid
716 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
717 		 * and this call is safe since dead ioc will never return any
718 		 * command back from HW.
719 		 */
720 		mpt3sas_base_pause_mq_polling(ioc);
721 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
722 		/*
723 		 * Set remove_host flag early since kernel thread will
724 		 * take some time to execute.
725 		 */
726 		ioc->remove_host = 1;
727 		/*Remove the Dead Host */
728 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
729 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
730 		if (IS_ERR(p))
731 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
732 				__func__);
733 		else
734 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
735 				__func__);
736 		return; /* don't rearm timer */
737 	}
738 
739 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
740 		u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
741 		    ioc->manu_pg11.CoreDumpTOSec :
742 		    MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
743 
744 		timeout /= (FAULT_POLLING_INTERVAL/1000);
745 
746 		if (ioc->ioc_coredump_loop == 0) {
747 			mpt3sas_print_coredump_info(ioc,
748 			    doorbell & MPI2_DOORBELL_DATA_MASK);
749 			/* do not accept any IOs and disable the interrupts */
750 			spin_lock_irqsave(
751 			    &ioc->ioc_reset_in_progress_lock, flags);
752 			ioc->shost_recovery = 1;
753 			spin_unlock_irqrestore(
754 			    &ioc->ioc_reset_in_progress_lock, flags);
755 			mpt3sas_base_mask_interrupts(ioc);
756 			mpt3sas_base_pause_mq_polling(ioc);
757 			_base_clear_outstanding_commands(ioc);
758 		}
759 
760 		ioc_info(ioc, "%s: CoreDump loop %d.",
761 		    __func__, ioc->ioc_coredump_loop);
762 
763 		/* Wait until CoreDump completes or times out */
764 		if (ioc->ioc_coredump_loop++ < timeout) {
765 			spin_lock_irqsave(
766 			    &ioc->ioc_reset_in_progress_lock, flags);
767 			goto rearm_timer;
768 		}
769 	}
770 
771 	if (ioc->ioc_coredump_loop) {
772 		if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
773 			ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
774 			    __func__, ioc->ioc_coredump_loop);
775 		else
776 			ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
777 			    __func__, ioc->ioc_coredump_loop);
778 		ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
779 	}
780 	ioc->non_operational_loop = 0;
781 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
782 		rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
783 		ioc_warn(ioc, "%s: hard reset: %s\n",
784 			 __func__, rc == 0 ? "success" : "failed");
785 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
786 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
787 			mpt3sas_print_fault_code(ioc, doorbell &
788 			    MPI2_DOORBELL_DATA_MASK);
789 		} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
790 		    MPI2_IOC_STATE_COREDUMP)
791 			mpt3sas_print_coredump_info(ioc, doorbell &
792 			    MPI2_DOORBELL_DATA_MASK);
793 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
794 		    MPI2_IOC_STATE_OPERATIONAL)
795 			return; /* don't rearm timer */
796 	}
797 	ioc->ioc_coredump_loop = 0;
798 	if (ioc->time_sync_interval &&
799 	    ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
800 		ioc->timestamp_update_count = 0;
801 		_base_sync_drv_fw_timestamp(ioc);
802 	}
803 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
804  rearm_timer:
805 	if (ioc->fault_reset_work_q)
806 		queue_delayed_work(ioc->fault_reset_work_q,
807 		    &ioc->fault_reset_work,
808 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
809 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
810 }
811 
812 /**
813  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
814  * @ioc: per adapter object
815  *
816  * Context: sleep.
817  */
818 void
819 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
820 {
821 	unsigned long	 flags;
822 
823 	if (ioc->fault_reset_work_q)
824 		return;
825 
826 	ioc->timestamp_update_count = 0;
827 	/* initialize fault polling */
828 
829 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
830 	snprintf(ioc->fault_reset_work_q_name,
831 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
832 	    ioc->driver_name, ioc->id);
833 	ioc->fault_reset_work_q =
834 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
835 	if (!ioc->fault_reset_work_q) {
836 		ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
837 		return;
838 	}
839 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
840 	if (ioc->fault_reset_work_q)
841 		queue_delayed_work(ioc->fault_reset_work_q,
842 		    &ioc->fault_reset_work,
843 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
844 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
845 }
846 
847 /**
848  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
849  * @ioc: per adapter object
850  *
851  * Context: sleep.
852  */
853 void
854 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
855 {
856 	unsigned long flags;
857 	struct workqueue_struct *wq;
858 
859 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
860 	wq = ioc->fault_reset_work_q;
861 	ioc->fault_reset_work_q = NULL;
862 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
863 	if (wq) {
864 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
865 			flush_workqueue(wq);
866 		destroy_workqueue(wq);
867 	}
868 }
869 
870 /**
871  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
872  * @ioc: per adapter object
873  * @fault_code: fault code
874  */
875 void
876 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
877 {
878 	ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
879 }
880 
881 /**
882  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
883  * @ioc: per adapter object
884  * @fault_code: fault code
885  *
886  * Return: nothing.
887  */
888 void
889 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
890 {
891 	ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
892 }
893 
894 /**
895  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
896  * completes or times out
897  * @ioc: per adapter object
898  * @caller: caller function name
899  *
900  * Return: 0 for success, non-zero for failure.
901  */
902 int
903 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
904 		const char *caller)
905 {
906 	u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
907 			ioc->manu_pg11.CoreDumpTOSec :
908 			MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
909 
910 	int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
911 					timeout);
912 
913 	if (ioc_state)
914 		ioc_err(ioc,
915 		    "%s: CoreDump timed out. (ioc_state=0x%x)\n",
916 		    caller, ioc_state);
917 	else
918 		ioc_info(ioc,
919 		    "%s: CoreDump completed. (ioc_state=0x%x)\n",
920 		    caller, ioc_state);
921 
922 	return ioc_state;
923 }
924 
925 /**
926  * mpt3sas_halt_firmware - halt's mpt controller firmware
927  * @ioc: per adapter object
928  *
929  * For debugging timeout related issues.  Writing 0xCOFFEE00
930  * to the doorbell register will halt controller firmware. With
931  * the purpose to stop both driver and firmware, the enduser can
932  * obtain a ring buffer from controller UART.
933  */
934 void
935 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
936 {
937 	u32 doorbell;
938 
939 	if (!ioc->fwfault_debug)
940 		return;
941 
942 	dump_stack();
943 
944 	doorbell = ioc->base_readl(&ioc->chip->Doorbell);
945 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
946 		mpt3sas_print_fault_code(ioc, doorbell &
947 		    MPI2_DOORBELL_DATA_MASK);
948 	} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
949 	    MPI2_IOC_STATE_COREDUMP) {
950 		mpt3sas_print_coredump_info(ioc, doorbell &
951 		    MPI2_DOORBELL_DATA_MASK);
952 	} else {
953 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
954 		ioc_err(ioc, "Firmware is halted due to command timeout\n");
955 	}
956 
957 	if (ioc->fwfault_debug == 2)
958 		for (;;)
959 			;
960 	else
961 		panic("panic in %s\n", __func__);
962 }
963 
964 /**
965  * _base_sas_ioc_info - verbose translation of the ioc status
966  * @ioc: per adapter object
967  * @mpi_reply: reply mf payload returned from firmware
968  * @request_hdr: request mf
969  */
970 static void
971 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
972 	MPI2RequestHeader_t *request_hdr)
973 {
974 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
975 	    MPI2_IOCSTATUS_MASK;
976 	char *desc = NULL;
977 	u16 frame_sz;
978 	char *func_str = NULL;
979 
980 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
981 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
982 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
983 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
984 		return;
985 
986 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
987 		return;
988 	/*
989 	 * Older Firmware version doesn't support driver trigger pages.
990 	 * So, skip displaying 'config invalid type' type
991 	 * of error message.
992 	 */
993 	if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
994 		Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
995 
996 		if ((rqst->ExtPageType ==
997 		    MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
998 		    !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
999 			return;
1000 		}
1001 	}
1002 
1003 	switch (ioc_status) {
1004 
1005 /****************************************************************************
1006 *  Common IOCStatus values for all replies
1007 ****************************************************************************/
1008 
1009 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
1010 		desc = "invalid function";
1011 		break;
1012 	case MPI2_IOCSTATUS_BUSY:
1013 		desc = "busy";
1014 		break;
1015 	case MPI2_IOCSTATUS_INVALID_SGL:
1016 		desc = "invalid sgl";
1017 		break;
1018 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
1019 		desc = "internal error";
1020 		break;
1021 	case MPI2_IOCSTATUS_INVALID_VPID:
1022 		desc = "invalid vpid";
1023 		break;
1024 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1025 		desc = "insufficient resources";
1026 		break;
1027 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1028 		desc = "insufficient power";
1029 		break;
1030 	case MPI2_IOCSTATUS_INVALID_FIELD:
1031 		desc = "invalid field";
1032 		break;
1033 	case MPI2_IOCSTATUS_INVALID_STATE:
1034 		desc = "invalid state";
1035 		break;
1036 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1037 		desc = "op state not supported";
1038 		break;
1039 
1040 /****************************************************************************
1041 *  Config IOCStatus values
1042 ****************************************************************************/
1043 
1044 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1045 		desc = "config invalid action";
1046 		break;
1047 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1048 		desc = "config invalid type";
1049 		break;
1050 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1051 		desc = "config invalid page";
1052 		break;
1053 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1054 		desc = "config invalid data";
1055 		break;
1056 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1057 		desc = "config no defaults";
1058 		break;
1059 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1060 		desc = "config cant commit";
1061 		break;
1062 
1063 /****************************************************************************
1064 *  SCSI IO Reply
1065 ****************************************************************************/
1066 
1067 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1068 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1069 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1070 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1071 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1072 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1073 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1074 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1075 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1076 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1077 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1078 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1079 		break;
1080 
1081 /****************************************************************************
1082 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
1083 ****************************************************************************/
1084 
1085 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1086 		desc = "eedp guard error";
1087 		break;
1088 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1089 		desc = "eedp ref tag error";
1090 		break;
1091 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1092 		desc = "eedp app tag error";
1093 		break;
1094 
1095 /****************************************************************************
1096 *  SCSI Target values
1097 ****************************************************************************/
1098 
1099 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1100 		desc = "target invalid io index";
1101 		break;
1102 	case MPI2_IOCSTATUS_TARGET_ABORTED:
1103 		desc = "target aborted";
1104 		break;
1105 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1106 		desc = "target no conn retryable";
1107 		break;
1108 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1109 		desc = "target no connection";
1110 		break;
1111 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1112 		desc = "target xfer count mismatch";
1113 		break;
1114 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1115 		desc = "target data offset error";
1116 		break;
1117 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1118 		desc = "target too much write data";
1119 		break;
1120 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1121 		desc = "target iu too short";
1122 		break;
1123 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1124 		desc = "target ack nak timeout";
1125 		break;
1126 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1127 		desc = "target nak received";
1128 		break;
1129 
1130 /****************************************************************************
1131 *  Serial Attached SCSI values
1132 ****************************************************************************/
1133 
1134 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1135 		desc = "smp request failed";
1136 		break;
1137 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1138 		desc = "smp data overrun";
1139 		break;
1140 
1141 /****************************************************************************
1142 *  Diagnostic Buffer Post / Diagnostic Release values
1143 ****************************************************************************/
1144 
1145 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1146 		desc = "diagnostic released";
1147 		break;
1148 	default:
1149 		break;
1150 	}
1151 
1152 	if (!desc)
1153 		return;
1154 
1155 	switch (request_hdr->Function) {
1156 	case MPI2_FUNCTION_CONFIG:
1157 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1158 		func_str = "config_page";
1159 		break;
1160 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
1161 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1162 		func_str = "task_mgmt";
1163 		break;
1164 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1165 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1166 		func_str = "sas_iounit_ctl";
1167 		break;
1168 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1169 		frame_sz = sizeof(Mpi2SepRequest_t);
1170 		func_str = "enclosure";
1171 		break;
1172 	case MPI2_FUNCTION_IOC_INIT:
1173 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
1174 		func_str = "ioc_init";
1175 		break;
1176 	case MPI2_FUNCTION_PORT_ENABLE:
1177 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
1178 		func_str = "port_enable";
1179 		break;
1180 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
1181 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1182 		func_str = "smp_passthru";
1183 		break;
1184 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
1185 		frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1186 		    ioc->sge_size;
1187 		func_str = "nvme_encapsulated";
1188 		break;
1189 	default:
1190 		frame_sz = 32;
1191 		func_str = "unknown";
1192 		break;
1193 	}
1194 
1195 	ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1196 		 desc, ioc_status, request_hdr, func_str);
1197 
1198 	_debug_dump_mf(request_hdr, frame_sz/4);
1199 }
1200 
1201 /**
1202  * _base_display_event_data - verbose translation of firmware asyn events
1203  * @ioc: per adapter object
1204  * @mpi_reply: reply mf payload returned from firmware
1205  */
1206 static void
1207 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1208 	Mpi2EventNotificationReply_t *mpi_reply)
1209 {
1210 	char *desc = NULL;
1211 	u16 event;
1212 
1213 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1214 		return;
1215 
1216 	event = le16_to_cpu(mpi_reply->Event);
1217 
1218 	switch (event) {
1219 	case MPI2_EVENT_LOG_DATA:
1220 		desc = "Log Data";
1221 		break;
1222 	case MPI2_EVENT_STATE_CHANGE:
1223 		desc = "Status Change";
1224 		break;
1225 	case MPI2_EVENT_HARD_RESET_RECEIVED:
1226 		desc = "Hard Reset Received";
1227 		break;
1228 	case MPI2_EVENT_EVENT_CHANGE:
1229 		desc = "Event Change";
1230 		break;
1231 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1232 		desc = "Device Status Change";
1233 		break;
1234 	case MPI2_EVENT_IR_OPERATION_STATUS:
1235 		if (!ioc->hide_ir_msg)
1236 			desc = "IR Operation Status";
1237 		break;
1238 	case MPI2_EVENT_SAS_DISCOVERY:
1239 	{
1240 		Mpi2EventDataSasDiscovery_t *event_data =
1241 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1242 		ioc_info(ioc, "Discovery: (%s)",
1243 			 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1244 			 "start" : "stop");
1245 		if (event_data->DiscoveryStatus)
1246 			pr_cont(" discovery_status(0x%08x)",
1247 			    le32_to_cpu(event_data->DiscoveryStatus));
1248 		pr_cont("\n");
1249 		return;
1250 	}
1251 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1252 		desc = "SAS Broadcast Primitive";
1253 		break;
1254 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1255 		desc = "SAS Init Device Status Change";
1256 		break;
1257 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1258 		desc = "SAS Init Table Overflow";
1259 		break;
1260 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1261 		desc = "SAS Topology Change List";
1262 		break;
1263 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1264 		desc = "SAS Enclosure Device Status Change";
1265 		break;
1266 	case MPI2_EVENT_IR_VOLUME:
1267 		if (!ioc->hide_ir_msg)
1268 			desc = "IR Volume";
1269 		break;
1270 	case MPI2_EVENT_IR_PHYSICAL_DISK:
1271 		if (!ioc->hide_ir_msg)
1272 			desc = "IR Physical Disk";
1273 		break;
1274 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1275 		if (!ioc->hide_ir_msg)
1276 			desc = "IR Configuration Change List";
1277 		break;
1278 	case MPI2_EVENT_LOG_ENTRY_ADDED:
1279 		if (!ioc->hide_ir_msg)
1280 			desc = "Log Entry Added";
1281 		break;
1282 	case MPI2_EVENT_TEMP_THRESHOLD:
1283 		desc = "Temperature Threshold";
1284 		break;
1285 	case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1286 		desc = "Cable Event";
1287 		break;
1288 	case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1289 		desc = "SAS Device Discovery Error";
1290 		break;
1291 	case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1292 		desc = "PCIE Device Status Change";
1293 		break;
1294 	case MPI2_EVENT_PCIE_ENUMERATION:
1295 	{
1296 		Mpi26EventDataPCIeEnumeration_t *event_data =
1297 			(Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1298 		ioc_info(ioc, "PCIE Enumeration: (%s)",
1299 			 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1300 			 "start" : "stop");
1301 		if (event_data->EnumerationStatus)
1302 			pr_cont("enumeration_status(0x%08x)",
1303 				le32_to_cpu(event_data->EnumerationStatus));
1304 		pr_cont("\n");
1305 		return;
1306 	}
1307 	case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1308 		desc = "PCIE Topology Change List";
1309 		break;
1310 	}
1311 
1312 	if (!desc)
1313 		return;
1314 
1315 	ioc_info(ioc, "%s\n", desc);
1316 }
1317 
1318 /**
1319  * _base_sas_log_info - verbose translation of firmware log info
1320  * @ioc: per adapter object
1321  * @log_info: log info
1322  */
1323 static void
1324 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1325 {
1326 	union loginfo_type {
1327 		u32	loginfo;
1328 		struct {
1329 			u32	subcode:16;
1330 			u32	code:8;
1331 			u32	originator:4;
1332 			u32	bus_type:4;
1333 		} dw;
1334 	};
1335 	union loginfo_type sas_loginfo;
1336 	char *originator_str = NULL;
1337 
1338 	sas_loginfo.loginfo = log_info;
1339 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1340 		return;
1341 
1342 	/* each nexus loss loginfo */
1343 	if (log_info == 0x31170000)
1344 		return;
1345 
1346 	/* eat the loginfos associated with task aborts */
1347 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1348 	    0x31140000 || log_info == 0x31130000))
1349 		return;
1350 
1351 	switch (sas_loginfo.dw.originator) {
1352 	case 0:
1353 		originator_str = "IOP";
1354 		break;
1355 	case 1:
1356 		originator_str = "PL";
1357 		break;
1358 	case 2:
1359 		if (!ioc->hide_ir_msg)
1360 			originator_str = "IR";
1361 		else
1362 			originator_str = "WarpDrive";
1363 		break;
1364 	}
1365 
1366 	ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1367 		 log_info,
1368 		 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1369 }
1370 
1371 /**
1372  * _base_display_reply_info - handle reply descriptors depending on IOC Status
1373  * @ioc: per adapter object
1374  * @smid: system request message index
1375  * @msix_index: MSIX table index supplied by the OS
1376  * @reply: reply message frame (lower 32bit addr)
1377  */
1378 static void
1379 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1380 	u32 reply)
1381 {
1382 	MPI2DefaultReply_t *mpi_reply;
1383 	u16 ioc_status;
1384 	u32 loginfo = 0;
1385 
1386 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1387 	if (unlikely(!mpi_reply)) {
1388 		ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1389 			__FILE__, __LINE__, __func__);
1390 		return;
1391 	}
1392 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1393 
1394 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1395 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
1396 		_base_sas_ioc_info(ioc , mpi_reply,
1397 		   mpt3sas_base_get_msg_frame(ioc, smid));
1398 	}
1399 
1400 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1401 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1402 		_base_sas_log_info(ioc, loginfo);
1403 	}
1404 
1405 	if (ioc_status || loginfo) {
1406 		ioc_status &= MPI2_IOCSTATUS_MASK;
1407 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1408 	}
1409 }
1410 
1411 /**
1412  * mpt3sas_base_done - base internal command completion routine
1413  * @ioc: per adapter object
1414  * @smid: system request message index
1415  * @msix_index: MSIX table index supplied by the OS
1416  * @reply: reply message frame(lower 32bit addr)
1417  *
1418  * Return:
1419  * 1 meaning mf should be freed from _base_interrupt
1420  * 0 means the mf is freed from this function.
1421  */
1422 u8
1423 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1424 	u32 reply)
1425 {
1426 	MPI2DefaultReply_t *mpi_reply;
1427 
1428 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1429 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1430 		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1431 
1432 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1433 		return 1;
1434 
1435 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1436 	if (mpi_reply) {
1437 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1438 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1439 	}
1440 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1441 
1442 	complete(&ioc->base_cmds.done);
1443 	return 1;
1444 }
1445 
1446 /**
1447  * _base_async_event - main callback handler for firmware asyn events
1448  * @ioc: per adapter object
1449  * @msix_index: MSIX table index supplied by the OS
1450  * @reply: reply message frame(lower 32bit addr)
1451  *
1452  * Return:
1453  * 1 meaning mf should be freed from _base_interrupt
1454  * 0 means the mf is freed from this function.
1455  */
1456 static u8
1457 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1458 {
1459 	Mpi2EventNotificationReply_t *mpi_reply;
1460 	Mpi2EventAckRequest_t *ack_request;
1461 	u16 smid;
1462 	struct _event_ack_list *delayed_event_ack;
1463 
1464 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1465 	if (!mpi_reply)
1466 		return 1;
1467 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1468 		return 1;
1469 
1470 	_base_display_event_data(ioc, mpi_reply);
1471 
1472 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1473 		goto out;
1474 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1475 	if (!smid) {
1476 		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1477 					GFP_ATOMIC);
1478 		if (!delayed_event_ack)
1479 			goto out;
1480 		INIT_LIST_HEAD(&delayed_event_ack->list);
1481 		delayed_event_ack->Event = mpi_reply->Event;
1482 		delayed_event_ack->EventContext = mpi_reply->EventContext;
1483 		list_add_tail(&delayed_event_ack->list,
1484 				&ioc->delayed_event_ack_list);
1485 		dewtprintk(ioc,
1486 			   ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1487 				    le16_to_cpu(mpi_reply->Event)));
1488 		goto out;
1489 	}
1490 
1491 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1492 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1493 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1494 	ack_request->Event = mpi_reply->Event;
1495 	ack_request->EventContext = mpi_reply->EventContext;
1496 	ack_request->VF_ID = 0;  /* TODO */
1497 	ack_request->VP_ID = 0;
1498 	ioc->put_smid_default(ioc, smid);
1499 
1500  out:
1501 
1502 	/* scsih callback handler */
1503 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1504 
1505 	/* ctl callback handler */
1506 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1507 
1508 	return 1;
1509 }
1510 
1511 static struct scsiio_tracker *
1512 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1513 {
1514 	struct scsi_cmnd *cmd;
1515 
1516 	if (WARN_ON(!smid) ||
1517 	    WARN_ON(smid >= ioc->hi_priority_smid))
1518 		return NULL;
1519 
1520 	cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1521 	if (cmd)
1522 		return scsi_cmd_priv(cmd);
1523 
1524 	return NULL;
1525 }
1526 
1527 /**
1528  * _base_get_cb_idx - obtain the callback index
1529  * @ioc: per adapter object
1530  * @smid: system request message index
1531  *
1532  * Return: callback index.
1533  */
1534 static u8
1535 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1536 {
1537 	int i;
1538 	u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1539 	u8 cb_idx = 0xFF;
1540 
1541 	if (smid < ioc->hi_priority_smid) {
1542 		struct scsiio_tracker *st;
1543 
1544 		if (smid < ctl_smid) {
1545 			st = _get_st_from_smid(ioc, smid);
1546 			if (st)
1547 				cb_idx = st->cb_idx;
1548 		} else if (smid == ctl_smid)
1549 			cb_idx = ioc->ctl_cb_idx;
1550 	} else if (smid < ioc->internal_smid) {
1551 		i = smid - ioc->hi_priority_smid;
1552 		cb_idx = ioc->hpr_lookup[i].cb_idx;
1553 	} else if (smid <= ioc->hba_queue_depth) {
1554 		i = smid - ioc->internal_smid;
1555 		cb_idx = ioc->internal_lookup[i].cb_idx;
1556 	}
1557 	return cb_idx;
1558 }
1559 
1560 /**
1561  * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1562  *				when driver is flushing out the IOs.
1563  * @ioc: per adapter object
1564  *
1565  * Pause polling on the mq poll (io uring) queues when driver is flushing
1566  * out the IOs. Otherwise we may see the race condition of completing the same
1567  * IO from two paths.
1568  *
1569  * Returns nothing.
1570  */
1571 void
1572 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1573 {
1574 	int iopoll_q_count =
1575 	    ioc->reply_queue_count - ioc->iopoll_q_start_index;
1576 	int qid;
1577 
1578 	for (qid = 0; qid < iopoll_q_count; qid++)
1579 		atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1580 
1581 	/*
1582 	 * wait for current poll to complete.
1583 	 */
1584 	for (qid = 0; qid < iopoll_q_count; qid++) {
1585 		while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) {
1586 			cpu_relax();
1587 			udelay(500);
1588 		}
1589 	}
1590 }
1591 
1592 /**
1593  * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1594  * @ioc: per adapter object
1595  *
1596  * Returns nothing.
1597  */
1598 void
1599 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1600 {
1601 	int iopoll_q_count =
1602 	    ioc->reply_queue_count - ioc->iopoll_q_start_index;
1603 	int qid;
1604 
1605 	for (qid = 0; qid < iopoll_q_count; qid++)
1606 		atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1607 }
1608 
1609 /**
1610  * mpt3sas_base_mask_interrupts - disable interrupts
1611  * @ioc: per adapter object
1612  *
1613  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1614  */
1615 void
1616 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1617 {
1618 	u32 him_register;
1619 
1620 	ioc->mask_interrupts = 1;
1621 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1622 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1623 	writel(him_register, &ioc->chip->HostInterruptMask);
1624 	ioc->base_readl(&ioc->chip->HostInterruptMask);
1625 }
1626 
1627 /**
1628  * mpt3sas_base_unmask_interrupts - enable interrupts
1629  * @ioc: per adapter object
1630  *
1631  * Enabling only Reply Interrupts
1632  */
1633 void
1634 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1635 {
1636 	u32 him_register;
1637 
1638 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1639 	him_register &= ~MPI2_HIM_RIM;
1640 	writel(him_register, &ioc->chip->HostInterruptMask);
1641 	ioc->mask_interrupts = 0;
1642 }
1643 
1644 union reply_descriptor {
1645 	u64 word;
1646 	struct {
1647 		u32 low;
1648 		u32 high;
1649 	} u;
1650 };
1651 
1652 static u32 base_mod64(u64 dividend, u32 divisor)
1653 {
1654 	u32 remainder;
1655 
1656 	if (!divisor)
1657 		pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1658 	remainder = do_div(dividend, divisor);
1659 	return remainder;
1660 }
1661 
1662 /**
1663  * _base_process_reply_queue - Process reply descriptors from reply
1664  *		descriptor post queue.
1665  * @reply_q: per IRQ's reply queue object.
1666  *
1667  * Return: number of reply descriptors processed from reply
1668  *		descriptor queue.
1669  */
1670 static int
1671 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1672 {
1673 	union reply_descriptor rd;
1674 	u64 completed_cmds;
1675 	u8 request_descript_type;
1676 	u16 smid;
1677 	u8 cb_idx;
1678 	u32 reply;
1679 	u8 msix_index = reply_q->msix_index;
1680 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1681 	Mpi2ReplyDescriptorsUnion_t *rpf;
1682 	u8 rc;
1683 
1684 	completed_cmds = 0;
1685 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
1686 		return completed_cmds;
1687 
1688 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1689 	request_descript_type = rpf->Default.ReplyFlags
1690 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1691 	if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1692 		atomic_dec(&reply_q->busy);
1693 		return completed_cmds;
1694 	}
1695 
1696 	cb_idx = 0xFF;
1697 	do {
1698 		rd.word = le64_to_cpu(rpf->Words);
1699 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1700 			goto out;
1701 		reply = 0;
1702 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1703 		if (request_descript_type ==
1704 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1705 		    request_descript_type ==
1706 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1707 		    request_descript_type ==
1708 		    MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1709 			cb_idx = _base_get_cb_idx(ioc, smid);
1710 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1711 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
1712 				rc = mpt_callbacks[cb_idx](ioc, smid,
1713 				    msix_index, 0);
1714 				if (rc)
1715 					mpt3sas_base_free_smid(ioc, smid);
1716 			}
1717 		} else if (request_descript_type ==
1718 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1719 			reply = le32_to_cpu(
1720 			    rpf->AddressReply.ReplyFrameAddress);
1721 			if (reply > ioc->reply_dma_max_address ||
1722 			    reply < ioc->reply_dma_min_address)
1723 				reply = 0;
1724 			if (smid) {
1725 				cb_idx = _base_get_cb_idx(ioc, smid);
1726 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1727 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1728 					rc = mpt_callbacks[cb_idx](ioc, smid,
1729 					    msix_index, reply);
1730 					if (reply)
1731 						_base_display_reply_info(ioc,
1732 						    smid, msix_index, reply);
1733 					if (rc)
1734 						mpt3sas_base_free_smid(ioc,
1735 						    smid);
1736 				}
1737 			} else {
1738 				_base_async_event(ioc, msix_index, reply);
1739 			}
1740 
1741 			/* reply free queue handling */
1742 			if (reply) {
1743 				ioc->reply_free_host_index =
1744 				    (ioc->reply_free_host_index ==
1745 				    (ioc->reply_free_queue_depth - 1)) ?
1746 				    0 : ioc->reply_free_host_index + 1;
1747 				ioc->reply_free[ioc->reply_free_host_index] =
1748 				    cpu_to_le32(reply);
1749 				if (ioc->is_mcpu_endpoint)
1750 					_base_clone_reply_to_sys_mem(ioc,
1751 						reply,
1752 						ioc->reply_free_host_index);
1753 				writel(ioc->reply_free_host_index,
1754 				    &ioc->chip->ReplyFreeHostIndex);
1755 			}
1756 		}
1757 
1758 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1759 		reply_q->reply_post_host_index =
1760 		    (reply_q->reply_post_host_index ==
1761 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1762 		    reply_q->reply_post_host_index + 1;
1763 		request_descript_type =
1764 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1765 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1766 		completed_cmds++;
1767 		/* Update the reply post host index after continuously
1768 		 * processing the threshold number of Reply Descriptors.
1769 		 * So that FW can find enough entries to post the Reply
1770 		 * Descriptors in the reply descriptor post queue.
1771 		 */
1772 		if (completed_cmds >= ioc->thresh_hold) {
1773 			if (ioc->combined_reply_queue) {
1774 				writel(reply_q->reply_post_host_index |
1775 						((msix_index  & 7) <<
1776 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1777 				    ioc->replyPostRegisterIndex[msix_index/8]);
1778 			} else {
1779 				writel(reply_q->reply_post_host_index |
1780 						(msix_index <<
1781 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1782 						&ioc->chip->ReplyPostHostIndex);
1783 			}
1784 			if (!reply_q->is_iouring_poll_q &&
1785 			    !reply_q->irq_poll_scheduled) {
1786 				reply_q->irq_poll_scheduled = true;
1787 				irq_poll_sched(&reply_q->irqpoll);
1788 			}
1789 			atomic_dec(&reply_q->busy);
1790 			return completed_cmds;
1791 		}
1792 		if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1793 			goto out;
1794 		if (!reply_q->reply_post_host_index)
1795 			rpf = reply_q->reply_post_free;
1796 		else
1797 			rpf++;
1798 	} while (1);
1799 
1800  out:
1801 
1802 	if (!completed_cmds) {
1803 		atomic_dec(&reply_q->busy);
1804 		return completed_cmds;
1805 	}
1806 
1807 	if (ioc->is_warpdrive) {
1808 		writel(reply_q->reply_post_host_index,
1809 		ioc->reply_post_host_index[msix_index]);
1810 		atomic_dec(&reply_q->busy);
1811 		return completed_cmds;
1812 	}
1813 
1814 	/* Update Reply Post Host Index.
1815 	 * For those HBA's which support combined reply queue feature
1816 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1817 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1818 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1819 	 * 2. Then update this register with new reply host index value
1820 	 *    in ReplyPostIndex field and the MSIxIndex field with
1821 	 *    msix_index value reduced to a value between 0 and 7,
1822 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1823 	 *    Host Index Register supports 8 MSI-X vectors.
1824 	 *
1825 	 * For other HBA's just update the Reply Post Host Index register with
1826 	 * new reply host index value in ReplyPostIndex Field and msix_index
1827 	 * value in MSIxIndex field.
1828 	 */
1829 	if (ioc->combined_reply_queue)
1830 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1831 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1832 			ioc->replyPostRegisterIndex[msix_index/8]);
1833 	else
1834 		writel(reply_q->reply_post_host_index | (msix_index <<
1835 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1836 			&ioc->chip->ReplyPostHostIndex);
1837 	atomic_dec(&reply_q->busy);
1838 	return completed_cmds;
1839 }
1840 
1841 /**
1842  * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1843  * @shost: Scsi_Host object
1844  * @queue_num: hw ctx queue number
1845  *
1846  * Return number of entries that has been processed from poll queue.
1847  */
1848 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1849 {
1850 	struct MPT3SAS_ADAPTER *ioc =
1851 	    (struct MPT3SAS_ADAPTER *)shost->hostdata;
1852 	struct adapter_reply_queue *reply_q;
1853 	int num_entries = 0;
1854 	int qid = queue_num - ioc->iopoll_q_start_index;
1855 
1856 	if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1857 	    !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1858 		return 0;
1859 
1860 	reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1861 
1862 	num_entries = _base_process_reply_queue(reply_q);
1863 	atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1864 
1865 	return num_entries;
1866 }
1867 
1868 /**
1869  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1870  * @irq: irq number (not used)
1871  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1872  *
1873  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1874  */
1875 static irqreturn_t
1876 _base_interrupt(int irq, void *bus_id)
1877 {
1878 	struct adapter_reply_queue *reply_q = bus_id;
1879 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1880 
1881 	if (ioc->mask_interrupts)
1882 		return IRQ_NONE;
1883 	if (reply_q->irq_poll_scheduled)
1884 		return IRQ_HANDLED;
1885 	return ((_base_process_reply_queue(reply_q) > 0) ?
1886 			IRQ_HANDLED : IRQ_NONE);
1887 }
1888 
1889 /**
1890  * _base_irqpoll - IRQ poll callback handler
1891  * @irqpoll: irq_poll object
1892  * @budget: irq poll weight
1893  *
1894  * Return: number of reply descriptors processed
1895  */
1896 static int
1897 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1898 {
1899 	struct adapter_reply_queue *reply_q;
1900 	int num_entries = 0;
1901 
1902 	reply_q = container_of(irqpoll, struct adapter_reply_queue,
1903 			irqpoll);
1904 	if (reply_q->irq_line_enable) {
1905 		disable_irq_nosync(reply_q->os_irq);
1906 		reply_q->irq_line_enable = false;
1907 	}
1908 	num_entries = _base_process_reply_queue(reply_q);
1909 	if (num_entries < budget) {
1910 		irq_poll_complete(irqpoll);
1911 		reply_q->irq_poll_scheduled = false;
1912 		reply_q->irq_line_enable = true;
1913 		enable_irq(reply_q->os_irq);
1914 		/*
1915 		 * Go for one more round of processing the
1916 		 * reply descriptor post queue in case the HBA
1917 		 * Firmware has posted some reply descriptors
1918 		 * while reenabling the IRQ.
1919 		 */
1920 		_base_process_reply_queue(reply_q);
1921 	}
1922 
1923 	return num_entries;
1924 }
1925 
1926 /**
1927  * _base_init_irqpolls - initliaze IRQ polls
1928  * @ioc: per adapter object
1929  *
1930  * Return: nothing
1931  */
1932 static void
1933 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1934 {
1935 	struct adapter_reply_queue *reply_q, *next;
1936 
1937 	if (list_empty(&ioc->reply_queue_list))
1938 		return;
1939 
1940 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1941 		if (reply_q->is_iouring_poll_q)
1942 			continue;
1943 		irq_poll_init(&reply_q->irqpoll,
1944 			ioc->hba_queue_depth/4, _base_irqpoll);
1945 		reply_q->irq_poll_scheduled = false;
1946 		reply_q->irq_line_enable = true;
1947 		reply_q->os_irq = pci_irq_vector(ioc->pdev,
1948 		    reply_q->msix_index);
1949 	}
1950 }
1951 
1952 /**
1953  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1954  * @ioc: per adapter object
1955  *
1956  * Return: Whether or not MSI/X is enabled.
1957  */
1958 static inline int
1959 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1960 {
1961 	return (ioc->facts.IOCCapabilities &
1962 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1963 }
1964 
1965 /**
1966  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1967  * @ioc: per adapter object
1968  * @poll: poll over reply descriptor pools incase interrupt for
1969  *		timed-out SCSI command got delayed
1970  * Context: non-ISR context
1971  *
1972  * Called when a Task Management request has completed.
1973  */
1974 void
1975 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1976 {
1977 	struct adapter_reply_queue *reply_q;
1978 
1979 	/* If MSIX capability is turned off
1980 	 * then multi-queues are not enabled
1981 	 */
1982 	if (!_base_is_controller_msix_enabled(ioc))
1983 		return;
1984 
1985 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1986 		if (ioc->shost_recovery || ioc->remove_host ||
1987 				ioc->pci_error_recovery)
1988 			return;
1989 		/* TMs are on msix_index == 0 */
1990 		if (reply_q->msix_index == 0)
1991 			continue;
1992 
1993 		if (reply_q->is_iouring_poll_q) {
1994 			_base_process_reply_queue(reply_q);
1995 			continue;
1996 		}
1997 
1998 		synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1999 		if (reply_q->irq_poll_scheduled) {
2000 			/* Calling irq_poll_disable will wait for any pending
2001 			 * callbacks to have completed.
2002 			 */
2003 			irq_poll_disable(&reply_q->irqpoll);
2004 			irq_poll_enable(&reply_q->irqpoll);
2005 			/* check how the scheduled poll has ended,
2006 			 * clean up only if necessary
2007 			 */
2008 			if (reply_q->irq_poll_scheduled) {
2009 				reply_q->irq_poll_scheduled = false;
2010 				reply_q->irq_line_enable = true;
2011 				enable_irq(reply_q->os_irq);
2012 			}
2013 		}
2014 	}
2015 	if (poll)
2016 		_base_process_reply_queue(reply_q);
2017 }
2018 
2019 /**
2020  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2021  * @cb_idx: callback index
2022  */
2023 void
2024 mpt3sas_base_release_callback_handler(u8 cb_idx)
2025 {
2026 	mpt_callbacks[cb_idx] = NULL;
2027 }
2028 
2029 /**
2030  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2031  * @cb_func: callback function
2032  *
2033  * Return: Index of @cb_func.
2034  */
2035 u8
2036 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2037 {
2038 	u8 cb_idx;
2039 
2040 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2041 		if (mpt_callbacks[cb_idx] == NULL)
2042 			break;
2043 
2044 	mpt_callbacks[cb_idx] = cb_func;
2045 	return cb_idx;
2046 }
2047 
2048 /**
2049  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2050  */
2051 void
2052 mpt3sas_base_initialize_callback_handler(void)
2053 {
2054 	u8 cb_idx;
2055 
2056 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2057 		mpt3sas_base_release_callback_handler(cb_idx);
2058 }
2059 
2060 
2061 /**
2062  * _base_build_zero_len_sge - build zero length sg entry
2063  * @ioc: per adapter object
2064  * @paddr: virtual address for SGE
2065  *
2066  * Create a zero length scatter gather entry to insure the IOCs hardware has
2067  * something to use if the target device goes brain dead and tries
2068  * to send data even when none is asked for.
2069  */
2070 static void
2071 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2072 {
2073 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2074 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2075 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2076 	    MPI2_SGE_FLAGS_SHIFT);
2077 	ioc->base_add_sg_single(paddr, flags_length, -1);
2078 }
2079 
2080 /**
2081  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2082  * @paddr: virtual address for SGE
2083  * @flags_length: SGE flags and data transfer length
2084  * @dma_addr: Physical address
2085  */
2086 static void
2087 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2088 {
2089 	Mpi2SGESimple32_t *sgel = paddr;
2090 
2091 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2092 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2093 	sgel->FlagsLength = cpu_to_le32(flags_length);
2094 	sgel->Address = cpu_to_le32(dma_addr);
2095 }
2096 
2097 
2098 /**
2099  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2100  * @paddr: virtual address for SGE
2101  * @flags_length: SGE flags and data transfer length
2102  * @dma_addr: Physical address
2103  */
2104 static void
2105 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2106 {
2107 	Mpi2SGESimple64_t *sgel = paddr;
2108 
2109 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2110 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2111 	sgel->FlagsLength = cpu_to_le32(flags_length);
2112 	sgel->Address = cpu_to_le64(dma_addr);
2113 }
2114 
2115 /**
2116  * _base_get_chain_buffer_tracker - obtain chain tracker
2117  * @ioc: per adapter object
2118  * @scmd: SCSI commands of the IO request
2119  *
2120  * Return: chain tracker from chain_lookup table using key as
2121  * smid and smid's chain_offset.
2122  */
2123 static struct chain_tracker *
2124 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2125 			       struct scsi_cmnd *scmd)
2126 {
2127 	struct chain_tracker *chain_req;
2128 	struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2129 	u16 smid = st->smid;
2130 	u8 chain_offset =
2131 	   atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2132 
2133 	if (chain_offset == ioc->chains_needed_per_io)
2134 		return NULL;
2135 
2136 	chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2137 	atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2138 	return chain_req;
2139 }
2140 
2141 
2142 /**
2143  * _base_build_sg - build generic sg
2144  * @ioc: per adapter object
2145  * @psge: virtual address for SGE
2146  * @data_out_dma: physical address for WRITES
2147  * @data_out_sz: data xfer size for WRITES
2148  * @data_in_dma: physical address for READS
2149  * @data_in_sz: data xfer size for READS
2150  */
2151 static void
2152 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2153 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2154 	size_t data_in_sz)
2155 {
2156 	u32 sgl_flags;
2157 
2158 	if (!data_out_sz && !data_in_sz) {
2159 		_base_build_zero_len_sge(ioc, psge);
2160 		return;
2161 	}
2162 
2163 	if (data_out_sz && data_in_sz) {
2164 		/* WRITE sgel first */
2165 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2166 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2167 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2168 		ioc->base_add_sg_single(psge, sgl_flags |
2169 		    data_out_sz, data_out_dma);
2170 
2171 		/* incr sgel */
2172 		psge += ioc->sge_size;
2173 
2174 		/* READ sgel last */
2175 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2176 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2177 		    MPI2_SGE_FLAGS_END_OF_LIST);
2178 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2179 		ioc->base_add_sg_single(psge, sgl_flags |
2180 		    data_in_sz, data_in_dma);
2181 	} else if (data_out_sz) /* WRITE */ {
2182 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2183 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2184 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2185 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2186 		ioc->base_add_sg_single(psge, sgl_flags |
2187 		    data_out_sz, data_out_dma);
2188 	} else if (data_in_sz) /* READ */ {
2189 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2190 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2191 		    MPI2_SGE_FLAGS_END_OF_LIST);
2192 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2193 		ioc->base_add_sg_single(psge, sgl_flags |
2194 		    data_in_sz, data_in_dma);
2195 	}
2196 }
2197 
2198 /* IEEE format sgls */
2199 
2200 /**
2201  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2202  *                        a native SGL (NVMe PRP).
2203  * @ioc: per adapter object
2204  * @smid: system request message index for getting asscociated SGL
2205  * @nvme_encap_request: the NVMe request msg frame pointer
2206  * @data_out_dma: physical address for WRITES
2207  * @data_out_sz: data xfer size for WRITES
2208  * @data_in_dma: physical address for READS
2209  * @data_in_sz: data xfer size for READS
2210  *
2211  * The native SGL is built starting in the first PRP
2212  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2213  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2214  * used to describe a larger data buffer.  If the data buffer is too large to
2215  * describe using the two PRP entriess inside the NVMe message, then PRP1
2216  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2217  * list located elsewhere in memory to describe the remaining data memory
2218  * segments.  The PRP list will be contiguous.
2219  *
2220  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2221  * consists of a list of PRP entries to describe a number of noncontigous
2222  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2223  * however, that this function is only used by the IOCTL call, so the memory
2224  * given will be guaranteed to be contiguous.  There is no need to translate
2225  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2226  * contiguous space that is one page size each.
2227  *
2228  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2229  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2230  * contains the second PRP element if the memory being described fits within 2
2231  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2232  *
2233  * A PRP list pointer contains the address of a PRP list, structured as a linear
2234  * array of PRP entries.  Each PRP entry in this list describes a segment of
2235  * physical memory.
2236  *
2237  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2238  * always points at the beginning of a 4KB physical memory page, and the offset
2239  * describes where within that 4KB page the memory segment begins.  Only the
2240  * first element in a PRP list may contain a non-zero offset, implying that all
2241  * memory segments following the first begin at the start of a 4KB page.
2242  *
2243  * Each PRP element normally describes 4KB of physical memory, with exceptions
2244  * for the first and last elements in the list.  If the memory being described
2245  * by the list begins at a non-zero offset within the first 4KB page, then the
2246  * first PRP element will contain a non-zero offset indicating where the region
2247  * begins within the 4KB page.  The last memory segment may end before the end
2248  * of the 4KB segment, depending upon the overall size of the memory being
2249  * described by the PRP list.
2250  *
2251  * Since PRP entries lack any indication of size, the overall data buffer length
2252  * is used to determine where the end of the data memory buffer is located, and
2253  * how many PRP entries are required to describe it.
2254  */
2255 static void
2256 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2257 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2258 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2259 	size_t data_in_sz)
2260 {
2261 	int		prp_size = NVME_PRP_SIZE;
2262 	__le64		*prp_entry, *prp1_entry, *prp2_entry;
2263 	__le64		*prp_page;
2264 	dma_addr_t	prp_entry_dma, prp_page_dma, dma_addr;
2265 	u32		offset, entry_len;
2266 	u32		page_mask_result, page_mask;
2267 	size_t		length;
2268 	struct mpt3sas_nvme_cmd *nvme_cmd =
2269 		(void *)nvme_encap_request->NVMe_Command;
2270 
2271 	/*
2272 	 * Not all commands require a data transfer. If no data, just return
2273 	 * without constructing any PRP.
2274 	 */
2275 	if (!data_in_sz && !data_out_sz)
2276 		return;
2277 	prp1_entry = &nvme_cmd->prp1;
2278 	prp2_entry = &nvme_cmd->prp2;
2279 	prp_entry = prp1_entry;
2280 	/*
2281 	 * For the PRP entries, use the specially allocated buffer of
2282 	 * contiguous memory.
2283 	 */
2284 	prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2285 	prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2286 
2287 	/*
2288 	 * Check if we are within 1 entry of a page boundary we don't
2289 	 * want our first entry to be a PRP List entry.
2290 	 */
2291 	page_mask = ioc->page_size - 1;
2292 	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2293 	if (!page_mask_result) {
2294 		/* Bump up to next page boundary. */
2295 		prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2296 		prp_page_dma = prp_page_dma + prp_size;
2297 	}
2298 
2299 	/*
2300 	 * Set PRP physical pointer, which initially points to the current PRP
2301 	 * DMA memory page.
2302 	 */
2303 	prp_entry_dma = prp_page_dma;
2304 
2305 	/* Get physical address and length of the data buffer. */
2306 	if (data_in_sz) {
2307 		dma_addr = data_in_dma;
2308 		length = data_in_sz;
2309 	} else {
2310 		dma_addr = data_out_dma;
2311 		length = data_out_sz;
2312 	}
2313 
2314 	/* Loop while the length is not zero. */
2315 	while (length) {
2316 		/*
2317 		 * Check if we need to put a list pointer here if we are at
2318 		 * page boundary - prp_size (8 bytes).
2319 		 */
2320 		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2321 		if (!page_mask_result) {
2322 			/*
2323 			 * This is the last entry in a PRP List, so we need to
2324 			 * put a PRP list pointer here.  What this does is:
2325 			 *   - bump the current memory pointer to the next
2326 			 *     address, which will be the next full page.
2327 			 *   - set the PRP Entry to point to that page.  This
2328 			 *     is now the PRP List pointer.
2329 			 *   - bump the PRP Entry pointer the start of the
2330 			 *     next page.  Since all of this PRP memory is
2331 			 *     contiguous, no need to get a new page - it's
2332 			 *     just the next address.
2333 			 */
2334 			prp_entry_dma++;
2335 			*prp_entry = cpu_to_le64(prp_entry_dma);
2336 			prp_entry++;
2337 		}
2338 
2339 		/* Need to handle if entry will be part of a page. */
2340 		offset = dma_addr & page_mask;
2341 		entry_len = ioc->page_size - offset;
2342 
2343 		if (prp_entry == prp1_entry) {
2344 			/*
2345 			 * Must fill in the first PRP pointer (PRP1) before
2346 			 * moving on.
2347 			 */
2348 			*prp1_entry = cpu_to_le64(dma_addr);
2349 
2350 			/*
2351 			 * Now point to the second PRP entry within the
2352 			 * command (PRP2).
2353 			 */
2354 			prp_entry = prp2_entry;
2355 		} else if (prp_entry == prp2_entry) {
2356 			/*
2357 			 * Should the PRP2 entry be a PRP List pointer or just
2358 			 * a regular PRP pointer?  If there is more than one
2359 			 * more page of data, must use a PRP List pointer.
2360 			 */
2361 			if (length > ioc->page_size) {
2362 				/*
2363 				 * PRP2 will contain a PRP List pointer because
2364 				 * more PRP's are needed with this command. The
2365 				 * list will start at the beginning of the
2366 				 * contiguous buffer.
2367 				 */
2368 				*prp2_entry = cpu_to_le64(prp_entry_dma);
2369 
2370 				/*
2371 				 * The next PRP Entry will be the start of the
2372 				 * first PRP List.
2373 				 */
2374 				prp_entry = prp_page;
2375 			} else {
2376 				/*
2377 				 * After this, the PRP Entries are complete.
2378 				 * This command uses 2 PRP's and no PRP list.
2379 				 */
2380 				*prp2_entry = cpu_to_le64(dma_addr);
2381 			}
2382 		} else {
2383 			/*
2384 			 * Put entry in list and bump the addresses.
2385 			 *
2386 			 * After PRP1 and PRP2 are filled in, this will fill in
2387 			 * all remaining PRP entries in a PRP List, one per
2388 			 * each time through the loop.
2389 			 */
2390 			*prp_entry = cpu_to_le64(dma_addr);
2391 			prp_entry++;
2392 			prp_entry_dma++;
2393 		}
2394 
2395 		/*
2396 		 * Bump the phys address of the command's data buffer by the
2397 		 * entry_len.
2398 		 */
2399 		dma_addr += entry_len;
2400 
2401 		/* Decrement length accounting for last partial page. */
2402 		if (entry_len > length)
2403 			length = 0;
2404 		else
2405 			length -= entry_len;
2406 	}
2407 }
2408 
2409 /**
2410  * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2411  *			SGLs specific to NVMe drives only
2412  *
2413  * @ioc:		per adapter object
2414  * @scmd:		SCSI command from the mid-layer
2415  * @mpi_request:	mpi request
2416  * @smid:		msg Index
2417  * @sge_count:		scatter gather element count.
2418  *
2419  * Return:		true: PRPs are built
2420  *			false: IEEE SGLs needs to be built
2421  */
2422 static void
2423 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2424 		struct scsi_cmnd *scmd,
2425 		Mpi25SCSIIORequest_t *mpi_request,
2426 		u16 smid, int sge_count)
2427 {
2428 	int sge_len, num_prp_in_chain = 0;
2429 	Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2430 	__le64 *curr_buff;
2431 	dma_addr_t msg_dma, sge_addr, offset;
2432 	u32 page_mask, page_mask_result;
2433 	struct scatterlist *sg_scmd;
2434 	u32 first_prp_len;
2435 	int data_len = scsi_bufflen(scmd);
2436 	u32 nvme_pg_size;
2437 
2438 	nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2439 	/*
2440 	 * Nvme has a very convoluted prp format.  One prp is required
2441 	 * for each page or partial page. Driver need to split up OS sg_list
2442 	 * entries if it is longer than one page or cross a page
2443 	 * boundary.  Driver also have to insert a PRP list pointer entry as
2444 	 * the last entry in each physical page of the PRP list.
2445 	 *
2446 	 * NOTE: The first PRP "entry" is actually placed in the first
2447 	 * SGL entry in the main message as IEEE 64 format.  The 2nd
2448 	 * entry in the main message is the chain element, and the rest
2449 	 * of the PRP entries are built in the contiguous pcie buffer.
2450 	 */
2451 	page_mask = nvme_pg_size - 1;
2452 
2453 	/*
2454 	 * Native SGL is needed.
2455 	 * Put a chain element in main message frame that points to the first
2456 	 * chain buffer.
2457 	 *
2458 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2459 	 *        a native SGL.
2460 	 */
2461 
2462 	/* Set main message chain element pointer */
2463 	main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2464 	/*
2465 	 * For NVMe the chain element needs to be the 2nd SG entry in the main
2466 	 * message.
2467 	 */
2468 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2469 		((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2470 
2471 	/*
2472 	 * For the PRP entries, use the specially allocated buffer of
2473 	 * contiguous memory.  Normal chain buffers can't be used
2474 	 * because each chain buffer would need to be the size of an OS
2475 	 * page (4k).
2476 	 */
2477 	curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2478 	msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2479 
2480 	main_chain_element->Address = cpu_to_le64(msg_dma);
2481 	main_chain_element->NextChainOffset = 0;
2482 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2483 			MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2484 			MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2485 
2486 	/* Build first prp, sge need not to be page aligned*/
2487 	ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2488 	sg_scmd = scsi_sglist(scmd);
2489 	sge_addr = sg_dma_address(sg_scmd);
2490 	sge_len = sg_dma_len(sg_scmd);
2491 
2492 	offset = sge_addr & page_mask;
2493 	first_prp_len = nvme_pg_size - offset;
2494 
2495 	ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2496 	ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2497 
2498 	data_len -= first_prp_len;
2499 
2500 	if (sge_len > first_prp_len) {
2501 		sge_addr += first_prp_len;
2502 		sge_len -= first_prp_len;
2503 	} else if (data_len && (sge_len == first_prp_len)) {
2504 		sg_scmd = sg_next(sg_scmd);
2505 		sge_addr = sg_dma_address(sg_scmd);
2506 		sge_len = sg_dma_len(sg_scmd);
2507 	}
2508 
2509 	for (;;) {
2510 		offset = sge_addr & page_mask;
2511 
2512 		/* Put PRP pointer due to page boundary*/
2513 		page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2514 		if (unlikely(!page_mask_result)) {
2515 			scmd_printk(KERN_NOTICE,
2516 				scmd, "page boundary curr_buff: 0x%p\n",
2517 				curr_buff);
2518 			msg_dma += 8;
2519 			*curr_buff = cpu_to_le64(msg_dma);
2520 			curr_buff++;
2521 			num_prp_in_chain++;
2522 		}
2523 
2524 		*curr_buff = cpu_to_le64(sge_addr);
2525 		curr_buff++;
2526 		msg_dma += 8;
2527 		num_prp_in_chain++;
2528 
2529 		sge_addr += nvme_pg_size;
2530 		sge_len -= nvme_pg_size;
2531 		data_len -= nvme_pg_size;
2532 
2533 		if (data_len <= 0)
2534 			break;
2535 
2536 		if (sge_len > 0)
2537 			continue;
2538 
2539 		sg_scmd = sg_next(sg_scmd);
2540 		sge_addr = sg_dma_address(sg_scmd);
2541 		sge_len = sg_dma_len(sg_scmd);
2542 	}
2543 
2544 	main_chain_element->Length =
2545 		cpu_to_le32(num_prp_in_chain * sizeof(u64));
2546 	return;
2547 }
2548 
2549 static bool
2550 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2551 	struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2552 {
2553 	u32 data_length = 0;
2554 	bool build_prp = true;
2555 
2556 	data_length = scsi_bufflen(scmd);
2557 	if (pcie_device &&
2558 	    (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2559 		build_prp = false;
2560 		return build_prp;
2561 	}
2562 
2563 	/* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2564 	 * we built IEEE SGL
2565 	 */
2566 	if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2567 		build_prp = false;
2568 
2569 	return build_prp;
2570 }
2571 
2572 /**
2573  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2574  * determine if the driver needs to build a native SGL.  If so, that native
2575  * SGL is built in the special contiguous buffers allocated especially for
2576  * PCIe SGL creation.  If the driver will not build a native SGL, return
2577  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2578  * supports NVMe.
2579  * @ioc: per adapter object
2580  * @mpi_request: mf request pointer
2581  * @smid: system request message index
2582  * @scmd: scsi command
2583  * @pcie_device: points to the PCIe device's info
2584  *
2585  * Return: 0 if native SGL was built, 1 if no SGL was built
2586  */
2587 static int
2588 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2589 	Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2590 	struct _pcie_device *pcie_device)
2591 {
2592 	int sges_left;
2593 
2594 	/* Get the SG list pointer and info. */
2595 	sges_left = scsi_dma_map(scmd);
2596 	if (sges_left < 0) {
2597 		sdev_printk(KERN_ERR, scmd->device,
2598 			"scsi_dma_map failed: request for %d bytes!\n",
2599 			scsi_bufflen(scmd));
2600 		return 1;
2601 	}
2602 
2603 	/* Check if we need to build a native SG list. */
2604 	if (!base_is_prp_possible(ioc, pcie_device,
2605 				scmd, sges_left)) {
2606 		/* We built a native SG list, just return. */
2607 		goto out;
2608 	}
2609 
2610 	/*
2611 	 * Build native NVMe PRP.
2612 	 */
2613 	base_make_prp_nvme(ioc, scmd, mpi_request,
2614 			smid, sges_left);
2615 
2616 	return 0;
2617 out:
2618 	scsi_dma_unmap(scmd);
2619 	return 1;
2620 }
2621 
2622 /**
2623  * _base_add_sg_single_ieee - add sg element for IEEE format
2624  * @paddr: virtual address for SGE
2625  * @flags: SGE flags
2626  * @chain_offset: number of 128 byte elements from start of segment
2627  * @length: data transfer length
2628  * @dma_addr: Physical address
2629  */
2630 static void
2631 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2632 	dma_addr_t dma_addr)
2633 {
2634 	Mpi25IeeeSgeChain64_t *sgel = paddr;
2635 
2636 	sgel->Flags = flags;
2637 	sgel->NextChainOffset = chain_offset;
2638 	sgel->Length = cpu_to_le32(length);
2639 	sgel->Address = cpu_to_le64(dma_addr);
2640 }
2641 
2642 /**
2643  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2644  * @ioc: per adapter object
2645  * @paddr: virtual address for SGE
2646  *
2647  * Create a zero length scatter gather entry to insure the IOCs hardware has
2648  * something to use if the target device goes brain dead and tries
2649  * to send data even when none is asked for.
2650  */
2651 static void
2652 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2653 {
2654 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2655 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2656 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2657 
2658 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2659 }
2660 
2661 /**
2662  * _base_build_sg_scmd - main sg creation routine
2663  *		pcie_device is unused here!
2664  * @ioc: per adapter object
2665  * @scmd: scsi command
2666  * @smid: system request message index
2667  * @unused: unused pcie_device pointer
2668  * Context: none.
2669  *
2670  * The main routine that builds scatter gather table from a given
2671  * scsi request sent via the .queuecommand main handler.
2672  *
2673  * Return: 0 success, anything else error
2674  */
2675 static int
2676 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2677 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2678 {
2679 	Mpi2SCSIIORequest_t *mpi_request;
2680 	dma_addr_t chain_dma;
2681 	struct scatterlist *sg_scmd;
2682 	void *sg_local, *chain;
2683 	u32 chain_offset;
2684 	u32 chain_length;
2685 	u32 chain_flags;
2686 	int sges_left;
2687 	u32 sges_in_segment;
2688 	u32 sgl_flags;
2689 	u32 sgl_flags_last_element;
2690 	u32 sgl_flags_end_buffer;
2691 	struct chain_tracker *chain_req;
2692 
2693 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2694 
2695 	/* init scatter gather flags */
2696 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2697 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
2698 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2699 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2700 	    << MPI2_SGE_FLAGS_SHIFT;
2701 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2702 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2703 	    << MPI2_SGE_FLAGS_SHIFT;
2704 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2705 
2706 	sg_scmd = scsi_sglist(scmd);
2707 	sges_left = scsi_dma_map(scmd);
2708 	if (sges_left < 0) {
2709 		sdev_printk(KERN_ERR, scmd->device,
2710 		 "scsi_dma_map failed: request for %d bytes!\n",
2711 		 scsi_bufflen(scmd));
2712 		return -ENOMEM;
2713 	}
2714 
2715 	sg_local = &mpi_request->SGL;
2716 	sges_in_segment = ioc->max_sges_in_main_message;
2717 	if (sges_left <= sges_in_segment)
2718 		goto fill_in_last_segment;
2719 
2720 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2721 	    (sges_in_segment * ioc->sge_size))/4;
2722 
2723 	/* fill in main message segment when there is a chain following */
2724 	while (sges_in_segment) {
2725 		if (sges_in_segment == 1)
2726 			ioc->base_add_sg_single(sg_local,
2727 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
2728 			    sg_dma_address(sg_scmd));
2729 		else
2730 			ioc->base_add_sg_single(sg_local, sgl_flags |
2731 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2732 		sg_scmd = sg_next(sg_scmd);
2733 		sg_local += ioc->sge_size;
2734 		sges_left--;
2735 		sges_in_segment--;
2736 	}
2737 
2738 	/* initializing the chain flags and pointers */
2739 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2740 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2741 	if (!chain_req)
2742 		return -1;
2743 	chain = chain_req->chain_buffer;
2744 	chain_dma = chain_req->chain_buffer_dma;
2745 	do {
2746 		sges_in_segment = (sges_left <=
2747 		    ioc->max_sges_in_chain_message) ? sges_left :
2748 		    ioc->max_sges_in_chain_message;
2749 		chain_offset = (sges_left == sges_in_segment) ?
2750 		    0 : (sges_in_segment * ioc->sge_size)/4;
2751 		chain_length = sges_in_segment * ioc->sge_size;
2752 		if (chain_offset) {
2753 			chain_offset = chain_offset <<
2754 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
2755 			chain_length += ioc->sge_size;
2756 		}
2757 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2758 		    chain_length, chain_dma);
2759 		sg_local = chain;
2760 		if (!chain_offset)
2761 			goto fill_in_last_segment;
2762 
2763 		/* fill in chain segments */
2764 		while (sges_in_segment) {
2765 			if (sges_in_segment == 1)
2766 				ioc->base_add_sg_single(sg_local,
2767 				    sgl_flags_last_element |
2768 				    sg_dma_len(sg_scmd),
2769 				    sg_dma_address(sg_scmd));
2770 			else
2771 				ioc->base_add_sg_single(sg_local, sgl_flags |
2772 				    sg_dma_len(sg_scmd),
2773 				    sg_dma_address(sg_scmd));
2774 			sg_scmd = sg_next(sg_scmd);
2775 			sg_local += ioc->sge_size;
2776 			sges_left--;
2777 			sges_in_segment--;
2778 		}
2779 
2780 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2781 		if (!chain_req)
2782 			return -1;
2783 		chain = chain_req->chain_buffer;
2784 		chain_dma = chain_req->chain_buffer_dma;
2785 	} while (1);
2786 
2787 
2788  fill_in_last_segment:
2789 
2790 	/* fill the last segment */
2791 	while (sges_left) {
2792 		if (sges_left == 1)
2793 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2794 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2795 		else
2796 			ioc->base_add_sg_single(sg_local, sgl_flags |
2797 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2798 		sg_scmd = sg_next(sg_scmd);
2799 		sg_local += ioc->sge_size;
2800 		sges_left--;
2801 	}
2802 
2803 	return 0;
2804 }
2805 
2806 /**
2807  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2808  * @ioc: per adapter object
2809  * @scmd: scsi command
2810  * @smid: system request message index
2811  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2812  * constructed on need.
2813  * Context: none.
2814  *
2815  * The main routine that builds scatter gather table from a given
2816  * scsi request sent via the .queuecommand main handler.
2817  *
2818  * Return: 0 success, anything else error
2819  */
2820 static int
2821 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2822 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2823 {
2824 	Mpi25SCSIIORequest_t *mpi_request;
2825 	dma_addr_t chain_dma;
2826 	struct scatterlist *sg_scmd;
2827 	void *sg_local, *chain;
2828 	u32 chain_offset;
2829 	u32 chain_length;
2830 	int sges_left;
2831 	u32 sges_in_segment;
2832 	u8 simple_sgl_flags;
2833 	u8 simple_sgl_flags_last;
2834 	u8 chain_sgl_flags;
2835 	struct chain_tracker *chain_req;
2836 
2837 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2838 
2839 	/* init scatter gather flags */
2840 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2841 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2842 	simple_sgl_flags_last = simple_sgl_flags |
2843 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2844 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2845 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2846 
2847 	/* Check if we need to build a native SG list. */
2848 	if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2849 			smid, scmd, pcie_device) == 0)) {
2850 		/* We built a native SG list, just return. */
2851 		return 0;
2852 	}
2853 
2854 	sg_scmd = scsi_sglist(scmd);
2855 	sges_left = scsi_dma_map(scmd);
2856 	if (sges_left < 0) {
2857 		sdev_printk(KERN_ERR, scmd->device,
2858 			"scsi_dma_map failed: request for %d bytes!\n",
2859 			scsi_bufflen(scmd));
2860 		return -ENOMEM;
2861 	}
2862 
2863 	sg_local = &mpi_request->SGL;
2864 	sges_in_segment = (ioc->request_sz -
2865 		   offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2866 	if (sges_left <= sges_in_segment)
2867 		goto fill_in_last_segment;
2868 
2869 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2870 	    (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2871 
2872 	/* fill in main message segment when there is a chain following */
2873 	while (sges_in_segment > 1) {
2874 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2875 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2876 		sg_scmd = sg_next(sg_scmd);
2877 		sg_local += ioc->sge_size_ieee;
2878 		sges_left--;
2879 		sges_in_segment--;
2880 	}
2881 
2882 	/* initializing the pointers */
2883 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2884 	if (!chain_req)
2885 		return -1;
2886 	chain = chain_req->chain_buffer;
2887 	chain_dma = chain_req->chain_buffer_dma;
2888 	do {
2889 		sges_in_segment = (sges_left <=
2890 		    ioc->max_sges_in_chain_message) ? sges_left :
2891 		    ioc->max_sges_in_chain_message;
2892 		chain_offset = (sges_left == sges_in_segment) ?
2893 		    0 : sges_in_segment;
2894 		chain_length = sges_in_segment * ioc->sge_size_ieee;
2895 		if (chain_offset)
2896 			chain_length += ioc->sge_size_ieee;
2897 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2898 		    chain_offset, chain_length, chain_dma);
2899 
2900 		sg_local = chain;
2901 		if (!chain_offset)
2902 			goto fill_in_last_segment;
2903 
2904 		/* fill in chain segments */
2905 		while (sges_in_segment) {
2906 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2907 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2908 			sg_scmd = sg_next(sg_scmd);
2909 			sg_local += ioc->sge_size_ieee;
2910 			sges_left--;
2911 			sges_in_segment--;
2912 		}
2913 
2914 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2915 		if (!chain_req)
2916 			return -1;
2917 		chain = chain_req->chain_buffer;
2918 		chain_dma = chain_req->chain_buffer_dma;
2919 	} while (1);
2920 
2921 
2922  fill_in_last_segment:
2923 
2924 	/* fill the last segment */
2925 	while (sges_left > 0) {
2926 		if (sges_left == 1)
2927 			_base_add_sg_single_ieee(sg_local,
2928 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2929 			    sg_dma_address(sg_scmd));
2930 		else
2931 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2932 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2933 		sg_scmd = sg_next(sg_scmd);
2934 		sg_local += ioc->sge_size_ieee;
2935 		sges_left--;
2936 	}
2937 
2938 	return 0;
2939 }
2940 
2941 /**
2942  * _base_build_sg_ieee - build generic sg for IEEE format
2943  * @ioc: per adapter object
2944  * @psge: virtual address for SGE
2945  * @data_out_dma: physical address for WRITES
2946  * @data_out_sz: data xfer size for WRITES
2947  * @data_in_dma: physical address for READS
2948  * @data_in_sz: data xfer size for READS
2949  */
2950 static void
2951 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2952 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2953 	size_t data_in_sz)
2954 {
2955 	u8 sgl_flags;
2956 
2957 	if (!data_out_sz && !data_in_sz) {
2958 		_base_build_zero_len_sge_ieee(ioc, psge);
2959 		return;
2960 	}
2961 
2962 	if (data_out_sz && data_in_sz) {
2963 		/* WRITE sgel first */
2964 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2965 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2966 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2967 		    data_out_dma);
2968 
2969 		/* incr sgel */
2970 		psge += ioc->sge_size_ieee;
2971 
2972 		/* READ sgel last */
2973 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2974 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2975 		    data_in_dma);
2976 	} else if (data_out_sz) /* WRITE */ {
2977 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2978 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2979 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2980 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2981 		    data_out_dma);
2982 	} else if (data_in_sz) /* READ */ {
2983 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2984 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2985 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2986 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2987 		    data_in_dma);
2988 	}
2989 }
2990 
2991 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2992 
2993 /**
2994  * _base_config_dma_addressing - set dma addressing
2995  * @ioc: per adapter object
2996  * @pdev: PCI device struct
2997  *
2998  * Return: 0 for success, non-zero for failure.
2999  */
3000 static int
3001 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
3002 {
3003 	struct sysinfo s;
3004 
3005 	if (ioc->is_mcpu_endpoint ||
3006 	    sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
3007 	    dma_get_required_mask(&pdev->dev) <= 32)
3008 		ioc->dma_mask = 32;
3009 	/* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
3010 	else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
3011 		ioc->dma_mask = 63;
3012 	else
3013 		ioc->dma_mask = 64;
3014 
3015 	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)) ||
3016 	    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)))
3017 		return -ENODEV;
3018 
3019 	if (ioc->dma_mask > 32) {
3020 		ioc->base_add_sg_single = &_base_add_sg_single_64;
3021 		ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3022 	} else {
3023 		ioc->base_add_sg_single = &_base_add_sg_single_32;
3024 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3025 	}
3026 
3027 	si_meminfo(&s);
3028 	ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3029 		ioc->dma_mask, convert_to_kb(s.totalram));
3030 
3031 	return 0;
3032 }
3033 
3034 /**
3035  * _base_check_enable_msix - checks MSIX capabable.
3036  * @ioc: per adapter object
3037  *
3038  * Check to see if card is capable of MSIX, and set number
3039  * of available msix vectors
3040  */
3041 static int
3042 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3043 {
3044 	int base;
3045 	u16 message_control;
3046 
3047 	/* Check whether controller SAS2008 B0 controller,
3048 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3049 	 */
3050 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3051 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3052 		return -EINVAL;
3053 	}
3054 
3055 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3056 	if (!base) {
3057 		dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3058 		return -EINVAL;
3059 	}
3060 
3061 	/* get msix vector count */
3062 	/* NUMA_IO not supported for older controllers */
3063 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3064 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3065 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3066 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3067 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3068 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3069 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3070 		ioc->msix_vector_count = 1;
3071 	else {
3072 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
3073 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3074 	}
3075 	dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3076 				  ioc->msix_vector_count));
3077 	return 0;
3078 }
3079 
3080 /**
3081  * mpt3sas_base_free_irq - free irq
3082  * @ioc: per adapter object
3083  *
3084  * Freeing respective reply_queue from the list.
3085  */
3086 void
3087 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3088 {
3089 	unsigned int irq;
3090 	struct adapter_reply_queue *reply_q, *next;
3091 
3092 	if (list_empty(&ioc->reply_queue_list))
3093 		return;
3094 
3095 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3096 		list_del(&reply_q->list);
3097 		if (reply_q->is_iouring_poll_q) {
3098 			kfree(reply_q);
3099 			continue;
3100 		}
3101 
3102 		if (ioc->smp_affinity_enable) {
3103 			irq = pci_irq_vector(ioc->pdev, reply_q->msix_index);
3104 			irq_update_affinity_hint(irq, NULL);
3105 		}
3106 		free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3107 			 reply_q);
3108 		kfree(reply_q);
3109 	}
3110 }
3111 
3112 /**
3113  * _base_request_irq - request irq
3114  * @ioc: per adapter object
3115  * @index: msix index into vector table
3116  *
3117  * Inserting respective reply_queue into the list.
3118  */
3119 static int
3120 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3121 {
3122 	struct pci_dev *pdev = ioc->pdev;
3123 	struct adapter_reply_queue *reply_q;
3124 	int r, qid;
3125 
3126 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3127 	if (!reply_q) {
3128 		ioc_err(ioc, "unable to allocate memory %zu!\n",
3129 			sizeof(struct adapter_reply_queue));
3130 		return -ENOMEM;
3131 	}
3132 	reply_q->ioc = ioc;
3133 	reply_q->msix_index = index;
3134 
3135 	atomic_set(&reply_q->busy, 0);
3136 
3137 	if (index >= ioc->iopoll_q_start_index) {
3138 		qid = index - ioc->iopoll_q_start_index;
3139 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3140 		    ioc->driver_name, ioc->id, qid);
3141 		reply_q->is_iouring_poll_q = 1;
3142 		ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3143 		goto out;
3144 	}
3145 
3146 
3147 	if (ioc->msix_enable)
3148 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3149 		    ioc->driver_name, ioc->id, index);
3150 	else
3151 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3152 		    ioc->driver_name, ioc->id);
3153 	r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3154 			IRQF_SHARED, reply_q->name, reply_q);
3155 	if (r) {
3156 		pr_err("%s: unable to allocate interrupt %d!\n",
3157 		       reply_q->name, pci_irq_vector(pdev, index));
3158 		kfree(reply_q);
3159 		return -EBUSY;
3160 	}
3161 out:
3162 	INIT_LIST_HEAD(&reply_q->list);
3163 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3164 	return 0;
3165 }
3166 
3167 /**
3168  * _base_assign_reply_queues - assigning msix index for each cpu
3169  * @ioc: per adapter object
3170  *
3171  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3172  */
3173 static void
3174 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3175 {
3176 	unsigned int cpu, nr_cpus, nr_msix, index = 0, irq;
3177 	struct adapter_reply_queue *reply_q;
3178 	int iopoll_q_count = ioc->reply_queue_count -
3179 	    ioc->iopoll_q_start_index;
3180 	const struct cpumask *mask;
3181 
3182 	if (!_base_is_controller_msix_enabled(ioc))
3183 		return;
3184 
3185 	if (ioc->msix_load_balance)
3186 		return;
3187 
3188 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3189 
3190 	nr_cpus = num_online_cpus();
3191 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3192 					       ioc->facts.MaxMSIxVectors);
3193 	if (!nr_msix)
3194 		return;
3195 
3196 	if (ioc->smp_affinity_enable) {
3197 
3198 		/*
3199 		 * set irq affinity to local numa node for those irqs
3200 		 * corresponding to high iops queues.
3201 		 */
3202 		if (ioc->high_iops_queues) {
3203 			mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev));
3204 			for (index = 0; index < ioc->high_iops_queues;
3205 			    index++) {
3206 				irq = pci_irq_vector(ioc->pdev, index);
3207 				irq_set_affinity_and_hint(irq, mask);
3208 			}
3209 		}
3210 
3211 		list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3212 			const cpumask_t *mask;
3213 
3214 			if (reply_q->msix_index < ioc->high_iops_queues ||
3215 			    reply_q->msix_index >= ioc->iopoll_q_start_index)
3216 				continue;
3217 
3218 			mask = pci_irq_get_affinity(ioc->pdev,
3219 			    reply_q->msix_index);
3220 			if (!mask) {
3221 				ioc_warn(ioc, "no affinity for msi %x\n",
3222 					 reply_q->msix_index);
3223 				goto fall_back;
3224 			}
3225 
3226 			for_each_cpu_and(cpu, mask, cpu_online_mask) {
3227 				if (cpu >= ioc->cpu_msix_table_sz)
3228 					break;
3229 				ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3230 			}
3231 		}
3232 		return;
3233 	}
3234 
3235 fall_back:
3236 	cpu = cpumask_first(cpu_online_mask);
3237 	nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3238 	index = 0;
3239 
3240 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3241 		unsigned int i, group = nr_cpus / nr_msix;
3242 
3243 		if (reply_q->msix_index < ioc->high_iops_queues ||
3244 		    reply_q->msix_index >= ioc->iopoll_q_start_index)
3245 			continue;
3246 
3247 		if (cpu >= nr_cpus)
3248 			break;
3249 
3250 		if (index < nr_cpus % nr_msix)
3251 			group++;
3252 
3253 		for (i = 0 ; i < group ; i++) {
3254 			ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3255 			cpu = cpumask_next(cpu, cpu_online_mask);
3256 		}
3257 		index++;
3258 	}
3259 }
3260 
3261 /**
3262  * _base_check_and_enable_high_iops_queues - enable high iops mode
3263  * @ioc: per adapter object
3264  * @hba_msix_vector_count: msix vectors supported by HBA
3265  *
3266  * Enable high iops queues only if
3267  *  - HBA is a SEA/AERO controller and
3268  *  - MSI-Xs vector supported by the HBA is 128 and
3269  *  - total CPU count in the system >=16 and
3270  *  - loaded driver with default max_msix_vectors module parameter and
3271  *  - system booted in non kdump mode
3272  *
3273  * Return: nothing.
3274  */
3275 static void
3276 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3277 		int hba_msix_vector_count)
3278 {
3279 	u16 lnksta, speed;
3280 
3281 	/*
3282 	 * Disable high iops queues if io uring poll queues are enabled.
3283 	 */
3284 	if (perf_mode == MPT_PERF_MODE_IOPS ||
3285 	    perf_mode == MPT_PERF_MODE_LATENCY ||
3286 	    ioc->io_uring_poll_queues) {
3287 		ioc->high_iops_queues = 0;
3288 		return;
3289 	}
3290 
3291 	if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3292 
3293 		pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3294 		speed = lnksta & PCI_EXP_LNKSTA_CLS;
3295 
3296 		if (speed < 0x4) {
3297 			ioc->high_iops_queues = 0;
3298 			return;
3299 		}
3300 	}
3301 
3302 	if (!reset_devices && ioc->is_aero_ioc &&
3303 	    hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3304 	    num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3305 	    max_msix_vectors == -1)
3306 		ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3307 	else
3308 		ioc->high_iops_queues = 0;
3309 }
3310 
3311 /**
3312  * mpt3sas_base_disable_msix - disables msix
3313  * @ioc: per adapter object
3314  *
3315  */
3316 void
3317 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3318 {
3319 	if (!ioc->msix_enable)
3320 		return;
3321 	pci_free_irq_vectors(ioc->pdev);
3322 	ioc->msix_enable = 0;
3323 	kfree(ioc->io_uring_poll_queues);
3324 }
3325 
3326 /**
3327  * _base_alloc_irq_vectors - allocate msix vectors
3328  * @ioc: per adapter object
3329  *
3330  */
3331 static int
3332 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3333 {
3334 	int i, irq_flags = PCI_IRQ_MSIX;
3335 	struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3336 	struct irq_affinity *descp = &desc;
3337 	/*
3338 	 * Don't allocate msix vectors for poll_queues.
3339 	 * msix_vectors is always within a range of FW supported reply queue.
3340 	 */
3341 	int nr_msix_vectors = ioc->iopoll_q_start_index;
3342 
3343 
3344 	if (ioc->smp_affinity_enable)
3345 		irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3346 	else
3347 		descp = NULL;
3348 
3349 	ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3350 	    ioc->reply_queue_count, nr_msix_vectors);
3351 
3352 	i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3353 	    ioc->high_iops_queues,
3354 	    nr_msix_vectors, irq_flags, descp);
3355 
3356 	return i;
3357 }
3358 
3359 /**
3360  * _base_enable_msix - enables msix, failback to io_apic
3361  * @ioc: per adapter object
3362  *
3363  */
3364 static int
3365 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3366 {
3367 	int r;
3368 	int i, local_max_msix_vectors;
3369 	u8 try_msix = 0;
3370 	int iopoll_q_count = 0;
3371 
3372 	ioc->msix_load_balance = false;
3373 
3374 	if (msix_disable == -1 || msix_disable == 0)
3375 		try_msix = 1;
3376 
3377 	if (!try_msix)
3378 		goto try_ioapic;
3379 
3380 	if (_base_check_enable_msix(ioc) != 0)
3381 		goto try_ioapic;
3382 
3383 	ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3384 	pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3385 		ioc->cpu_count, max_msix_vectors);
3386 
3387 	ioc->reply_queue_count =
3388 		min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3389 
3390 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3391 		local_max_msix_vectors = (reset_devices) ? 1 : 8;
3392 	else
3393 		local_max_msix_vectors = max_msix_vectors;
3394 
3395 	if (local_max_msix_vectors == 0)
3396 		goto try_ioapic;
3397 
3398 	/*
3399 	 * Enable msix_load_balance only if combined reply queue mode is
3400 	 * disabled on SAS3 & above generation HBA devices.
3401 	 */
3402 	if (!ioc->combined_reply_queue &&
3403 	    ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3404 		ioc_info(ioc,
3405 		    "combined ReplyQueue is off, Enabling msix load balance\n");
3406 		ioc->msix_load_balance = true;
3407 	}
3408 
3409 	/*
3410 	 * smp affinity setting is not need when msix load balance
3411 	 * is enabled.
3412 	 */
3413 	if (ioc->msix_load_balance)
3414 		ioc->smp_affinity_enable = 0;
3415 
3416 	if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3417 		ioc->shost->host_tagset = 0;
3418 
3419 	/*
3420 	 * Enable io uring poll queues only if host_tagset is enabled.
3421 	 */
3422 	if (ioc->shost->host_tagset)
3423 		iopoll_q_count = poll_queues;
3424 
3425 	if (iopoll_q_count) {
3426 		ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3427 		    sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3428 		if (!ioc->io_uring_poll_queues)
3429 			iopoll_q_count = 0;
3430 	}
3431 
3432 	if (ioc->is_aero_ioc)
3433 		_base_check_and_enable_high_iops_queues(ioc,
3434 		    ioc->msix_vector_count);
3435 
3436 	/*
3437 	 * Add high iops queues count to reply queue count if high iops queues
3438 	 * are enabled.
3439 	 */
3440 	ioc->reply_queue_count = min_t(int,
3441 	    ioc->reply_queue_count + ioc->high_iops_queues,
3442 	    ioc->msix_vector_count);
3443 
3444 	/*
3445 	 * Adjust the reply queue count incase reply queue count
3446 	 * exceeds the user provided MSIx vectors count.
3447 	 */
3448 	if (local_max_msix_vectors > 0)
3449 		ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3450 		    ioc->reply_queue_count);
3451 	/*
3452 	 * Add io uring poll queues count to reply queues count
3453 	 * if io uring is enabled in driver.
3454 	 */
3455 	if (iopoll_q_count) {
3456 		if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3457 			iopoll_q_count = 0;
3458 		ioc->reply_queue_count = min_t(int,
3459 		    ioc->reply_queue_count + iopoll_q_count,
3460 		    ioc->msix_vector_count);
3461 	}
3462 
3463 	/*
3464 	 * Starting index of io uring poll queues in reply queue list.
3465 	 */
3466 	ioc->iopoll_q_start_index =
3467 	    ioc->reply_queue_count - iopoll_q_count;
3468 
3469 	r = _base_alloc_irq_vectors(ioc);
3470 	if (r < 0) {
3471 		ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3472 		goto try_ioapic;
3473 	}
3474 
3475 	/*
3476 	 * Adjust the reply queue count if the allocated
3477 	 * MSIx vectors is less then the requested number
3478 	 * of MSIx vectors.
3479 	 */
3480 	if (r < ioc->iopoll_q_start_index) {
3481 		ioc->reply_queue_count = r + iopoll_q_count;
3482 		ioc->iopoll_q_start_index =
3483 		    ioc->reply_queue_count - iopoll_q_count;
3484 	}
3485 
3486 	ioc->msix_enable = 1;
3487 	for (i = 0; i < ioc->reply_queue_count; i++) {
3488 		r = _base_request_irq(ioc, i);
3489 		if (r) {
3490 			mpt3sas_base_free_irq(ioc);
3491 			mpt3sas_base_disable_msix(ioc);
3492 			goto try_ioapic;
3493 		}
3494 	}
3495 
3496 	ioc_info(ioc, "High IOPs queues : %s\n",
3497 			ioc->high_iops_queues ? "enabled" : "disabled");
3498 
3499 	return 0;
3500 
3501 /* failback to io_apic interrupt routing */
3502  try_ioapic:
3503 	ioc->high_iops_queues = 0;
3504 	ioc_info(ioc, "High IOPs queues : disabled\n");
3505 	ioc->reply_queue_count = 1;
3506 	ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3507 	r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3508 	if (r < 0) {
3509 		dfailprintk(ioc,
3510 			    ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3511 				     r));
3512 	} else
3513 		r = _base_request_irq(ioc, 0);
3514 
3515 	return r;
3516 }
3517 
3518 /**
3519  * mpt3sas_base_unmap_resources - free controller resources
3520  * @ioc: per adapter object
3521  */
3522 static void
3523 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3524 {
3525 	struct pci_dev *pdev = ioc->pdev;
3526 
3527 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3528 
3529 	mpt3sas_base_free_irq(ioc);
3530 	mpt3sas_base_disable_msix(ioc);
3531 
3532 	kfree(ioc->replyPostRegisterIndex);
3533 	ioc->replyPostRegisterIndex = NULL;
3534 
3535 
3536 	if (ioc->chip_phys) {
3537 		iounmap(ioc->chip);
3538 		ioc->chip_phys = 0;
3539 	}
3540 
3541 	if (pci_is_enabled(pdev)) {
3542 		pci_release_selected_regions(ioc->pdev, ioc->bars);
3543 		pci_disable_pcie_error_reporting(pdev);
3544 		pci_disable_device(pdev);
3545 	}
3546 }
3547 
3548 static int
3549 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3550 
3551 /**
3552  * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3553  *     and if it is in fault state then issue diag reset.
3554  * @ioc: per adapter object
3555  *
3556  * Return: 0 for success, non-zero for failure.
3557  */
3558 int
3559 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3560 {
3561 	u32 ioc_state;
3562 	int rc = -EFAULT;
3563 
3564 	dinitprintk(ioc, pr_info("%s\n", __func__));
3565 	if (ioc->pci_error_recovery)
3566 		return 0;
3567 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3568 	dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3569 
3570 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3571 		mpt3sas_print_fault_code(ioc, ioc_state &
3572 		    MPI2_DOORBELL_DATA_MASK);
3573 		mpt3sas_base_mask_interrupts(ioc);
3574 		rc = _base_diag_reset(ioc);
3575 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3576 	    MPI2_IOC_STATE_COREDUMP) {
3577 		mpt3sas_print_coredump_info(ioc, ioc_state &
3578 		     MPI2_DOORBELL_DATA_MASK);
3579 		mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3580 		mpt3sas_base_mask_interrupts(ioc);
3581 		rc = _base_diag_reset(ioc);
3582 	}
3583 
3584 	return rc;
3585 }
3586 
3587 /**
3588  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3589  * @ioc: per adapter object
3590  *
3591  * Return: 0 for success, non-zero for failure.
3592  */
3593 int
3594 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3595 {
3596 	struct pci_dev *pdev = ioc->pdev;
3597 	u32 memap_sz;
3598 	u32 pio_sz;
3599 	int i, r = 0, rc;
3600 	u64 pio_chip = 0;
3601 	phys_addr_t chip_phys = 0;
3602 	struct adapter_reply_queue *reply_q;
3603 	int iopoll_q_count = 0;
3604 
3605 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3606 
3607 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3608 	if (pci_enable_device_mem(pdev)) {
3609 		ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3610 		ioc->bars = 0;
3611 		return -ENODEV;
3612 	}
3613 
3614 
3615 	if (pci_request_selected_regions(pdev, ioc->bars,
3616 	    ioc->driver_name)) {
3617 		ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3618 		ioc->bars = 0;
3619 		r = -ENODEV;
3620 		goto out_fail;
3621 	}
3622 
3623 /* AER (Advanced Error Reporting) hooks */
3624 	pci_enable_pcie_error_reporting(pdev);
3625 
3626 	pci_set_master(pdev);
3627 
3628 
3629 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
3630 		ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3631 		r = -ENODEV;
3632 		goto out_fail;
3633 	}
3634 
3635 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3636 	     (!memap_sz || !pio_sz); i++) {
3637 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3638 			if (pio_sz)
3639 				continue;
3640 			pio_chip = (u64)pci_resource_start(pdev, i);
3641 			pio_sz = pci_resource_len(pdev, i);
3642 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3643 			if (memap_sz)
3644 				continue;
3645 			ioc->chip_phys = pci_resource_start(pdev, i);
3646 			chip_phys = ioc->chip_phys;
3647 			memap_sz = pci_resource_len(pdev, i);
3648 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3649 		}
3650 	}
3651 
3652 	if (ioc->chip == NULL) {
3653 		ioc_err(ioc,
3654 		    "unable to map adapter memory! or resource not found\n");
3655 		r = -EINVAL;
3656 		goto out_fail;
3657 	}
3658 
3659 	mpt3sas_base_mask_interrupts(ioc);
3660 
3661 	r = _base_get_ioc_facts(ioc);
3662 	if (r) {
3663 		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3664 		if (rc || (_base_get_ioc_facts(ioc)))
3665 			goto out_fail;
3666 	}
3667 
3668 	if (!ioc->rdpq_array_enable_assigned) {
3669 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3670 		ioc->rdpq_array_enable_assigned = 1;
3671 	}
3672 
3673 	r = _base_enable_msix(ioc);
3674 	if (r)
3675 		goto out_fail;
3676 
3677 	iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3678 	for (i = 0; i < iopoll_q_count; i++) {
3679 		atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3680 		atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3681 	}
3682 
3683 	if (!ioc->is_driver_loading)
3684 		_base_init_irqpolls(ioc);
3685 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
3686 	 * revision HBAs and also only when reply queue count is greater than 8
3687 	 */
3688 	if (ioc->combined_reply_queue) {
3689 		/* Determine the Supplemental Reply Post Host Index Registers
3690 		 * Addresse. Supplemental Reply Post Host Index Registers
3691 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3692 		 * each register is at offset bytes of
3693 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3694 		 */
3695 		ioc->replyPostRegisterIndex = kcalloc(
3696 		     ioc->combined_reply_index_count,
3697 		     sizeof(resource_size_t *), GFP_KERNEL);
3698 		if (!ioc->replyPostRegisterIndex) {
3699 			ioc_err(ioc,
3700 			    "allocation for replyPostRegisterIndex failed!\n");
3701 			r = -ENOMEM;
3702 			goto out_fail;
3703 		}
3704 
3705 		for (i = 0; i < ioc->combined_reply_index_count; i++) {
3706 			ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3707 			     ((u8 __force *)&ioc->chip->Doorbell +
3708 			     MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3709 			     (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3710 		}
3711 	}
3712 
3713 	if (ioc->is_warpdrive) {
3714 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3715 		    &ioc->chip->ReplyPostHostIndex;
3716 
3717 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3718 			ioc->reply_post_host_index[i] =
3719 			(resource_size_t __iomem *)
3720 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3721 			* 4)));
3722 	}
3723 
3724 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3725 		if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3726 			pr_info("%s: enabled: index: %d\n",
3727 			    reply_q->name, reply_q->msix_index);
3728 			continue;
3729 		}
3730 
3731 		pr_info("%s: %s enabled: IRQ %d\n",
3732 			reply_q->name,
3733 			ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3734 			pci_irq_vector(ioc->pdev, reply_q->msix_index));
3735 	}
3736 
3737 	ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3738 		 &chip_phys, ioc->chip, memap_sz);
3739 	ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3740 		 (unsigned long long)pio_chip, pio_sz);
3741 
3742 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
3743 	pci_save_state(pdev);
3744 	return 0;
3745 
3746  out_fail:
3747 	mpt3sas_base_unmap_resources(ioc);
3748 	return r;
3749 }
3750 
3751 /**
3752  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3753  * @ioc: per adapter object
3754  * @smid: system request message index(smid zero is invalid)
3755  *
3756  * Return: virt pointer to message frame.
3757  */
3758 void *
3759 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3760 {
3761 	return (void *)(ioc->request + (smid * ioc->request_sz));
3762 }
3763 
3764 /**
3765  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3766  * @ioc: per adapter object
3767  * @smid: system request message index
3768  *
3769  * Return: virt pointer to sense buffer.
3770  */
3771 void *
3772 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3773 {
3774 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3775 }
3776 
3777 /**
3778  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3779  * @ioc: per adapter object
3780  * @smid: system request message index
3781  *
3782  * Return: phys pointer to the low 32bit address of the sense buffer.
3783  */
3784 __le32
3785 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3786 {
3787 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3788 	    SCSI_SENSE_BUFFERSIZE));
3789 }
3790 
3791 /**
3792  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3793  * @ioc: per adapter object
3794  * @smid: system request message index
3795  *
3796  * Return: virt pointer to a PCIe SGL.
3797  */
3798 void *
3799 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3800 {
3801 	return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3802 }
3803 
3804 /**
3805  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3806  * @ioc: per adapter object
3807  * @smid: system request message index
3808  *
3809  * Return: phys pointer to the address of the PCIe buffer.
3810  */
3811 dma_addr_t
3812 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3813 {
3814 	return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3815 }
3816 
3817 /**
3818  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3819  * @ioc: per adapter object
3820  * @phys_addr: lower 32 physical addr of the reply
3821  *
3822  * Converts 32bit lower physical addr into a virt address.
3823  */
3824 void *
3825 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3826 {
3827 	if (!phys_addr)
3828 		return NULL;
3829 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3830 }
3831 
3832 /**
3833  * _base_get_msix_index - get the msix index
3834  * @ioc: per adapter object
3835  * @scmd: scsi_cmnd object
3836  *
3837  * Return: msix index of general reply queues,
3838  * i.e. reply queue on which IO request's reply
3839  * should be posted by the HBA firmware.
3840  */
3841 static inline u8
3842 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3843 	struct scsi_cmnd *scmd)
3844 {
3845 	/* Enables reply_queue load balancing */
3846 	if (ioc->msix_load_balance)
3847 		return ioc->reply_queue_count ?
3848 		    base_mod64(atomic64_add_return(1,
3849 		    &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3850 
3851 	if (scmd && ioc->shost->nr_hw_queues > 1) {
3852 		u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3853 
3854 		return blk_mq_unique_tag_to_hwq(tag) +
3855 			ioc->high_iops_queues;
3856 	}
3857 
3858 	return ioc->cpu_msix_table[raw_smp_processor_id()];
3859 }
3860 
3861 /**
3862  * _base_get_high_iops_msix_index - get the msix index of
3863  *				high iops queues
3864  * @ioc: per adapter object
3865  * @scmd: scsi_cmnd object
3866  *
3867  * Return: msix index of high iops reply queues.
3868  * i.e. high iops reply queue on which IO request's
3869  * reply should be posted by the HBA firmware.
3870  */
3871 static inline u8
3872 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3873 	struct scsi_cmnd *scmd)
3874 {
3875 	/**
3876 	 * Round robin the IO interrupts among the high iops
3877 	 * reply queues in terms of batch count 16 when outstanding
3878 	 * IOs on the target device is >=8.
3879 	 */
3880 
3881 	if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3882 		return base_mod64((
3883 		    atomic64_add_return(1, &ioc->high_iops_outstanding) /
3884 		    MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3885 		    MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3886 
3887 	return _base_get_msix_index(ioc, scmd);
3888 }
3889 
3890 /**
3891  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3892  * @ioc: per adapter object
3893  * @cb_idx: callback index
3894  *
3895  * Return: smid (zero is invalid)
3896  */
3897 u16
3898 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3899 {
3900 	unsigned long flags;
3901 	struct request_tracker *request;
3902 	u16 smid;
3903 
3904 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3905 	if (list_empty(&ioc->internal_free_list)) {
3906 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3907 		ioc_err(ioc, "%s: smid not available\n", __func__);
3908 		return 0;
3909 	}
3910 
3911 	request = list_entry(ioc->internal_free_list.next,
3912 	    struct request_tracker, tracker_list);
3913 	request->cb_idx = cb_idx;
3914 	smid = request->smid;
3915 	list_del(&request->tracker_list);
3916 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3917 	return smid;
3918 }
3919 
3920 /**
3921  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3922  * @ioc: per adapter object
3923  * @cb_idx: callback index
3924  * @scmd: pointer to scsi command object
3925  *
3926  * Return: smid (zero is invalid)
3927  */
3928 u16
3929 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3930 	struct scsi_cmnd *scmd)
3931 {
3932 	struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3933 	u16 smid;
3934 	u32 tag, unique_tag;
3935 
3936 	unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3937 	tag = blk_mq_unique_tag_to_tag(unique_tag);
3938 
3939 	/*
3940 	 * Store hw queue number corresponding to the tag.
3941 	 * This hw queue number is used later to determine
3942 	 * the unique_tag using the logic below. This unique_tag
3943 	 * is used to retrieve the scmd pointer corresponding
3944 	 * to tag using scsi_host_find_tag() API.
3945 	 *
3946 	 * tag = smid - 1;
3947 	 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3948 	 */
3949 	ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3950 
3951 	smid = tag + 1;
3952 	request->cb_idx = cb_idx;
3953 	request->smid = smid;
3954 	request->scmd = scmd;
3955 	INIT_LIST_HEAD(&request->chain_list);
3956 	return smid;
3957 }
3958 
3959 /**
3960  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3961  * @ioc: per adapter object
3962  * @cb_idx: callback index
3963  *
3964  * Return: smid (zero is invalid)
3965  */
3966 u16
3967 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3968 {
3969 	unsigned long flags;
3970 	struct request_tracker *request;
3971 	u16 smid;
3972 
3973 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3974 	if (list_empty(&ioc->hpr_free_list)) {
3975 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3976 		return 0;
3977 	}
3978 
3979 	request = list_entry(ioc->hpr_free_list.next,
3980 	    struct request_tracker, tracker_list);
3981 	request->cb_idx = cb_idx;
3982 	smid = request->smid;
3983 	list_del(&request->tracker_list);
3984 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3985 	return smid;
3986 }
3987 
3988 static void
3989 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3990 {
3991 	/*
3992 	 * See _wait_for_commands_to_complete() call with regards to this code.
3993 	 */
3994 	if (ioc->shost_recovery && ioc->pending_io_count) {
3995 		ioc->pending_io_count = scsi_host_busy(ioc->shost);
3996 		if (ioc->pending_io_count == 0)
3997 			wake_up(&ioc->reset_wq);
3998 	}
3999 }
4000 
4001 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
4002 			   struct scsiio_tracker *st)
4003 {
4004 	if (WARN_ON(st->smid == 0))
4005 		return;
4006 	st->cb_idx = 0xFF;
4007 	st->direct_io = 0;
4008 	st->scmd = NULL;
4009 	atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4010 	st->smid = 0;
4011 }
4012 
4013 /**
4014  * mpt3sas_base_free_smid - put smid back on free_list
4015  * @ioc: per adapter object
4016  * @smid: system request message index
4017  */
4018 void
4019 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4020 {
4021 	unsigned long flags;
4022 	int i;
4023 
4024 	if (smid < ioc->hi_priority_smid) {
4025 		struct scsiio_tracker *st;
4026 		void *request;
4027 
4028 		st = _get_st_from_smid(ioc, smid);
4029 		if (!st) {
4030 			_base_recovery_check(ioc);
4031 			return;
4032 		}
4033 
4034 		/* Clear MPI request frame */
4035 		request = mpt3sas_base_get_msg_frame(ioc, smid);
4036 		memset(request, 0, ioc->request_sz);
4037 
4038 		mpt3sas_base_clear_st(ioc, st);
4039 		_base_recovery_check(ioc);
4040 		ioc->io_queue_num[smid - 1] = 0;
4041 		return;
4042 	}
4043 
4044 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4045 	if (smid < ioc->internal_smid) {
4046 		/* hi-priority */
4047 		i = smid - ioc->hi_priority_smid;
4048 		ioc->hpr_lookup[i].cb_idx = 0xFF;
4049 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4050 	} else if (smid <= ioc->hba_queue_depth) {
4051 		/* internal queue */
4052 		i = smid - ioc->internal_smid;
4053 		ioc->internal_lookup[i].cb_idx = 0xFF;
4054 		list_add(&ioc->internal_lookup[i].tracker_list,
4055 		    &ioc->internal_free_list);
4056 	}
4057 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4058 }
4059 
4060 /**
4061  * _base_mpi_ep_writeq - 32 bit write to MMIO
4062  * @b: data payload
4063  * @addr: address in MMIO space
4064  * @writeq_lock: spin lock
4065  *
4066  * This special handling for MPI EP to take care of 32 bit
4067  * environment where its not quarenteed to send the entire word
4068  * in one transfer.
4069  */
4070 static inline void
4071 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4072 					spinlock_t *writeq_lock)
4073 {
4074 	unsigned long flags;
4075 
4076 	spin_lock_irqsave(writeq_lock, flags);
4077 	__raw_writel((u32)(b), addr);
4078 	__raw_writel((u32)(b >> 32), (addr + 4));
4079 	spin_unlock_irqrestore(writeq_lock, flags);
4080 }
4081 
4082 /**
4083  * _base_writeq - 64 bit write to MMIO
4084  * @b: data payload
4085  * @addr: address in MMIO space
4086  * @writeq_lock: spin lock
4087  *
4088  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4089  * care of 32 bit environment where its not quarenteed to send the entire word
4090  * in one transfer.
4091  */
4092 #if defined(writeq) && defined(CONFIG_64BIT)
4093 static inline void
4094 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4095 {
4096 	wmb();
4097 	__raw_writeq(b, addr);
4098 	barrier();
4099 }
4100 #else
4101 static inline void
4102 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4103 {
4104 	_base_mpi_ep_writeq(b, addr, writeq_lock);
4105 }
4106 #endif
4107 
4108 /**
4109  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4110  *                                variable of scsi tracker
4111  * @ioc: per adapter object
4112  * @smid: system request message index
4113  *
4114  * Return: msix index.
4115  */
4116 static u8
4117 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4118 {
4119 	struct scsiio_tracker *st = NULL;
4120 
4121 	if (smid < ioc->hi_priority_smid)
4122 		st = _get_st_from_smid(ioc, smid);
4123 
4124 	if (st == NULL)
4125 		return  _base_get_msix_index(ioc, NULL);
4126 
4127 	st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4128 	return st->msix_io;
4129 }
4130 
4131 /**
4132  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4133  * @ioc: per adapter object
4134  * @smid: system request message index
4135  * @handle: device handle
4136  */
4137 static void
4138 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4139 	u16 smid, u16 handle)
4140 {
4141 	Mpi2RequestDescriptorUnion_t descriptor;
4142 	u64 *request = (u64 *)&descriptor;
4143 	void *mpi_req_iomem;
4144 	__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4145 
4146 	_clone_sg_entries(ioc, (void *) mfp, smid);
4147 	mpi_req_iomem = (void __force *)ioc->chip +
4148 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4149 	_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4150 					ioc->request_sz);
4151 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4152 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4153 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4154 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4155 	descriptor.SCSIIO.LMID = 0;
4156 	_base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4157 	    &ioc->scsi_lookup_lock);
4158 }
4159 
4160 /**
4161  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4162  * @ioc: per adapter object
4163  * @smid: system request message index
4164  * @handle: device handle
4165  */
4166 static void
4167 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4168 {
4169 	Mpi2RequestDescriptorUnion_t descriptor;
4170 	u64 *request = (u64 *)&descriptor;
4171 
4172 
4173 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4174 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4175 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4176 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4177 	descriptor.SCSIIO.LMID = 0;
4178 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4179 	    &ioc->scsi_lookup_lock);
4180 }
4181 
4182 /**
4183  * _base_put_smid_fast_path - send fast path request to firmware
4184  * @ioc: per adapter object
4185  * @smid: system request message index
4186  * @handle: device handle
4187  */
4188 static void
4189 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4190 	u16 handle)
4191 {
4192 	Mpi2RequestDescriptorUnion_t descriptor;
4193 	u64 *request = (u64 *)&descriptor;
4194 
4195 	descriptor.SCSIIO.RequestFlags =
4196 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4197 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4198 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4199 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4200 	descriptor.SCSIIO.LMID = 0;
4201 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4202 	    &ioc->scsi_lookup_lock);
4203 }
4204 
4205 /**
4206  * _base_put_smid_hi_priority - send Task Management request to firmware
4207  * @ioc: per adapter object
4208  * @smid: system request message index
4209  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4210  */
4211 static void
4212 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4213 	u16 msix_task)
4214 {
4215 	Mpi2RequestDescriptorUnion_t descriptor;
4216 	void *mpi_req_iomem;
4217 	u64 *request;
4218 
4219 	if (ioc->is_mcpu_endpoint) {
4220 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4221 
4222 		/* TBD 256 is offset within sys register. */
4223 		mpi_req_iomem = (void __force *)ioc->chip
4224 					+ MPI_FRAME_START_OFFSET
4225 					+ (smid * ioc->request_sz);
4226 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4227 							ioc->request_sz);
4228 	}
4229 
4230 	request = (u64 *)&descriptor;
4231 
4232 	descriptor.HighPriority.RequestFlags =
4233 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4234 	descriptor.HighPriority.MSIxIndex =  msix_task;
4235 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
4236 	descriptor.HighPriority.LMID = 0;
4237 	descriptor.HighPriority.Reserved1 = 0;
4238 	if (ioc->is_mcpu_endpoint)
4239 		_base_mpi_ep_writeq(*request,
4240 				&ioc->chip->RequestDescriptorPostLow,
4241 				&ioc->scsi_lookup_lock);
4242 	else
4243 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4244 		    &ioc->scsi_lookup_lock);
4245 }
4246 
4247 /**
4248  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4249  *  firmware
4250  * @ioc: per adapter object
4251  * @smid: system request message index
4252  */
4253 void
4254 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4255 {
4256 	Mpi2RequestDescriptorUnion_t descriptor;
4257 	u64 *request = (u64 *)&descriptor;
4258 
4259 	descriptor.Default.RequestFlags =
4260 		MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4261 	descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
4262 	descriptor.Default.SMID = cpu_to_le16(smid);
4263 	descriptor.Default.LMID = 0;
4264 	descriptor.Default.DescriptorTypeDependent = 0;
4265 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4266 	    &ioc->scsi_lookup_lock);
4267 }
4268 
4269 /**
4270  * _base_put_smid_default - Default, primarily used for config pages
4271  * @ioc: per adapter object
4272  * @smid: system request message index
4273  */
4274 static void
4275 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4276 {
4277 	Mpi2RequestDescriptorUnion_t descriptor;
4278 	void *mpi_req_iomem;
4279 	u64 *request;
4280 
4281 	if (ioc->is_mcpu_endpoint) {
4282 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4283 
4284 		_clone_sg_entries(ioc, (void *) mfp, smid);
4285 		/* TBD 256 is offset within sys register */
4286 		mpi_req_iomem = (void __force *)ioc->chip +
4287 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4288 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4289 							ioc->request_sz);
4290 	}
4291 	request = (u64 *)&descriptor;
4292 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4293 	descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4294 	descriptor.Default.SMID = cpu_to_le16(smid);
4295 	descriptor.Default.LMID = 0;
4296 	descriptor.Default.DescriptorTypeDependent = 0;
4297 	if (ioc->is_mcpu_endpoint)
4298 		_base_mpi_ep_writeq(*request,
4299 				&ioc->chip->RequestDescriptorPostLow,
4300 				&ioc->scsi_lookup_lock);
4301 	else
4302 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4303 				&ioc->scsi_lookup_lock);
4304 }
4305 
4306 /**
4307  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4308  *   Atomic Request Descriptor
4309  * @ioc: per adapter object
4310  * @smid: system request message index
4311  * @handle: device handle, unused in this function, for function type match
4312  *
4313  * Return: nothing.
4314  */
4315 static void
4316 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4317 	u16 handle)
4318 {
4319 	Mpi26AtomicRequestDescriptor_t descriptor;
4320 	u32 *request = (u32 *)&descriptor;
4321 
4322 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4323 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4324 	descriptor.SMID = cpu_to_le16(smid);
4325 
4326 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4327 }
4328 
4329 /**
4330  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4331  * using Atomic Request Descriptor
4332  * @ioc: per adapter object
4333  * @smid: system request message index
4334  * @handle: device handle, unused in this function, for function type match
4335  * Return: nothing
4336  */
4337 static void
4338 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4339 	u16 handle)
4340 {
4341 	Mpi26AtomicRequestDescriptor_t descriptor;
4342 	u32 *request = (u32 *)&descriptor;
4343 
4344 	descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4345 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4346 	descriptor.SMID = cpu_to_le16(smid);
4347 
4348 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4349 }
4350 
4351 /**
4352  * _base_put_smid_hi_priority_atomic - send Task Management request to
4353  * firmware using Atomic Request Descriptor
4354  * @ioc: per adapter object
4355  * @smid: system request message index
4356  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4357  *
4358  * Return: nothing.
4359  */
4360 static void
4361 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4362 	u16 msix_task)
4363 {
4364 	Mpi26AtomicRequestDescriptor_t descriptor;
4365 	u32 *request = (u32 *)&descriptor;
4366 
4367 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4368 	descriptor.MSIxIndex = msix_task;
4369 	descriptor.SMID = cpu_to_le16(smid);
4370 
4371 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4372 }
4373 
4374 /**
4375  * _base_put_smid_default_atomic - Default, primarily used for config pages
4376  * use Atomic Request Descriptor
4377  * @ioc: per adapter object
4378  * @smid: system request message index
4379  *
4380  * Return: nothing.
4381  */
4382 static void
4383 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4384 {
4385 	Mpi26AtomicRequestDescriptor_t descriptor;
4386 	u32 *request = (u32 *)&descriptor;
4387 
4388 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4389 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4390 	descriptor.SMID = cpu_to_le16(smid);
4391 
4392 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4393 }
4394 
4395 /**
4396  * _base_display_OEMs_branding - Display branding string
4397  * @ioc: per adapter object
4398  */
4399 static void
4400 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4401 {
4402 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4403 		return;
4404 
4405 	switch (ioc->pdev->subsystem_vendor) {
4406 	case PCI_VENDOR_ID_INTEL:
4407 		switch (ioc->pdev->device) {
4408 		case MPI2_MFGPAGE_DEVID_SAS2008:
4409 			switch (ioc->pdev->subsystem_device) {
4410 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
4411 				ioc_info(ioc, "%s\n",
4412 					 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4413 				break;
4414 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
4415 				ioc_info(ioc, "%s\n",
4416 					 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4417 				break;
4418 			case MPT2SAS_INTEL_SSD910_SSDID:
4419 				ioc_info(ioc, "%s\n",
4420 					 MPT2SAS_INTEL_SSD910_BRANDING);
4421 				break;
4422 			default:
4423 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4424 					 ioc->pdev->subsystem_device);
4425 				break;
4426 			}
4427 			break;
4428 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4429 			switch (ioc->pdev->subsystem_device) {
4430 			case MPT2SAS_INTEL_RS25GB008_SSDID:
4431 				ioc_info(ioc, "%s\n",
4432 					 MPT2SAS_INTEL_RS25GB008_BRANDING);
4433 				break;
4434 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
4435 				ioc_info(ioc, "%s\n",
4436 					 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4437 				break;
4438 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
4439 				ioc_info(ioc, "%s\n",
4440 					 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4441 				break;
4442 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
4443 				ioc_info(ioc, "%s\n",
4444 					 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4445 				break;
4446 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
4447 				ioc_info(ioc, "%s\n",
4448 					 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4449 				break;
4450 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
4451 				ioc_info(ioc, "%s\n",
4452 					 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4453 				break;
4454 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
4455 				ioc_info(ioc, "%s\n",
4456 					 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4457 				break;
4458 			default:
4459 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4460 					 ioc->pdev->subsystem_device);
4461 				break;
4462 			}
4463 			break;
4464 		case MPI25_MFGPAGE_DEVID_SAS3008:
4465 			switch (ioc->pdev->subsystem_device) {
4466 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
4467 				ioc_info(ioc, "%s\n",
4468 					 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4469 				break;
4470 
4471 			case MPT3SAS_INTEL_RS3GC008_SSDID:
4472 				ioc_info(ioc, "%s\n",
4473 					 MPT3SAS_INTEL_RS3GC008_BRANDING);
4474 				break;
4475 			case MPT3SAS_INTEL_RS3FC044_SSDID:
4476 				ioc_info(ioc, "%s\n",
4477 					 MPT3SAS_INTEL_RS3FC044_BRANDING);
4478 				break;
4479 			case MPT3SAS_INTEL_RS3UC080_SSDID:
4480 				ioc_info(ioc, "%s\n",
4481 					 MPT3SAS_INTEL_RS3UC080_BRANDING);
4482 				break;
4483 			default:
4484 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4485 					 ioc->pdev->subsystem_device);
4486 				break;
4487 			}
4488 			break;
4489 		default:
4490 			ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4491 				 ioc->pdev->subsystem_device);
4492 			break;
4493 		}
4494 		break;
4495 	case PCI_VENDOR_ID_DELL:
4496 		switch (ioc->pdev->device) {
4497 		case MPI2_MFGPAGE_DEVID_SAS2008:
4498 			switch (ioc->pdev->subsystem_device) {
4499 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4500 				ioc_info(ioc, "%s\n",
4501 					 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4502 				break;
4503 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4504 				ioc_info(ioc, "%s\n",
4505 					 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4506 				break;
4507 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4508 				ioc_info(ioc, "%s\n",
4509 					 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4510 				break;
4511 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4512 				ioc_info(ioc, "%s\n",
4513 					 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4514 				break;
4515 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4516 				ioc_info(ioc, "%s\n",
4517 					 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4518 				break;
4519 			case MPT2SAS_DELL_PERC_H200_SSDID:
4520 				ioc_info(ioc, "%s\n",
4521 					 MPT2SAS_DELL_PERC_H200_BRANDING);
4522 				break;
4523 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4524 				ioc_info(ioc, "%s\n",
4525 					 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4526 				break;
4527 			default:
4528 				ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4529 					 ioc->pdev->subsystem_device);
4530 				break;
4531 			}
4532 			break;
4533 		case MPI25_MFGPAGE_DEVID_SAS3008:
4534 			switch (ioc->pdev->subsystem_device) {
4535 			case MPT3SAS_DELL_12G_HBA_SSDID:
4536 				ioc_info(ioc, "%s\n",
4537 					 MPT3SAS_DELL_12G_HBA_BRANDING);
4538 				break;
4539 			default:
4540 				ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4541 					 ioc->pdev->subsystem_device);
4542 				break;
4543 			}
4544 			break;
4545 		default:
4546 			ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4547 				 ioc->pdev->subsystem_device);
4548 			break;
4549 		}
4550 		break;
4551 	case PCI_VENDOR_ID_CISCO:
4552 		switch (ioc->pdev->device) {
4553 		case MPI25_MFGPAGE_DEVID_SAS3008:
4554 			switch (ioc->pdev->subsystem_device) {
4555 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4556 				ioc_info(ioc, "%s\n",
4557 					 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4558 				break;
4559 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4560 				ioc_info(ioc, "%s\n",
4561 					 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4562 				break;
4563 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4564 				ioc_info(ioc, "%s\n",
4565 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4566 				break;
4567 			default:
4568 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4569 					 ioc->pdev->subsystem_device);
4570 				break;
4571 			}
4572 			break;
4573 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
4574 			switch (ioc->pdev->subsystem_device) {
4575 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4576 				ioc_info(ioc, "%s\n",
4577 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4578 				break;
4579 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4580 				ioc_info(ioc, "%s\n",
4581 					 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4582 				break;
4583 			default:
4584 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4585 					 ioc->pdev->subsystem_device);
4586 				break;
4587 			}
4588 			break;
4589 		default:
4590 			ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4591 				 ioc->pdev->subsystem_device);
4592 			break;
4593 		}
4594 		break;
4595 	case MPT2SAS_HP_3PAR_SSVID:
4596 		switch (ioc->pdev->device) {
4597 		case MPI2_MFGPAGE_DEVID_SAS2004:
4598 			switch (ioc->pdev->subsystem_device) {
4599 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4600 				ioc_info(ioc, "%s\n",
4601 					 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4602 				break;
4603 			default:
4604 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4605 					 ioc->pdev->subsystem_device);
4606 				break;
4607 			}
4608 			break;
4609 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4610 			switch (ioc->pdev->subsystem_device) {
4611 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4612 				ioc_info(ioc, "%s\n",
4613 					 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4614 				break;
4615 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4616 				ioc_info(ioc, "%s\n",
4617 					 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4618 				break;
4619 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4620 				ioc_info(ioc, "%s\n",
4621 					 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4622 				break;
4623 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4624 				ioc_info(ioc, "%s\n",
4625 					 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4626 				break;
4627 			default:
4628 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4629 					 ioc->pdev->subsystem_device);
4630 				break;
4631 			}
4632 			break;
4633 		default:
4634 			ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4635 				 ioc->pdev->subsystem_device);
4636 			break;
4637 		}
4638 		break;
4639 	default:
4640 		break;
4641 	}
4642 }
4643 
4644 /**
4645  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4646  *				version from FW Image Header.
4647  * @ioc: per adapter object
4648  *
4649  * Return: 0 for success, non-zero for failure.
4650  */
4651 	static int
4652 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4653 {
4654 	Mpi2FWImageHeader_t *fw_img_hdr;
4655 	Mpi26ComponentImageHeader_t *cmp_img_hdr;
4656 	Mpi25FWUploadRequest_t *mpi_request;
4657 	Mpi2FWUploadReply_t mpi_reply;
4658 	int r = 0, issue_diag_reset = 0;
4659 	u32  package_version = 0;
4660 	void *fwpkg_data = NULL;
4661 	dma_addr_t fwpkg_data_dma;
4662 	u16 smid, ioc_status;
4663 	size_t data_length;
4664 
4665 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4666 
4667 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4668 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
4669 		return -EAGAIN;
4670 	}
4671 
4672 	data_length = sizeof(Mpi2FWImageHeader_t);
4673 	fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4674 			&fwpkg_data_dma, GFP_KERNEL);
4675 	if (!fwpkg_data) {
4676 		ioc_err(ioc,
4677 		    "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4678 			__FILE__, __LINE__, __func__);
4679 		return -ENOMEM;
4680 	}
4681 
4682 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4683 	if (!smid) {
4684 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4685 		r = -EAGAIN;
4686 		goto out;
4687 	}
4688 
4689 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4690 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4691 	ioc->base_cmds.smid = smid;
4692 	memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4693 	mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4694 	mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4695 	mpi_request->ImageSize = cpu_to_le32(data_length);
4696 	ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4697 			data_length);
4698 	init_completion(&ioc->base_cmds.done);
4699 	ioc->put_smid_default(ioc, smid);
4700 	/* Wait for 15 seconds */
4701 	wait_for_completion_timeout(&ioc->base_cmds.done,
4702 			FW_IMG_HDR_READ_TIMEOUT*HZ);
4703 	ioc_info(ioc, "%s: complete\n", __func__);
4704 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4705 		ioc_err(ioc, "%s: timeout\n", __func__);
4706 		_debug_dump_mf(mpi_request,
4707 				sizeof(Mpi25FWUploadRequest_t)/4);
4708 		issue_diag_reset = 1;
4709 	} else {
4710 		memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4711 		if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4712 			memcpy(&mpi_reply, ioc->base_cmds.reply,
4713 					sizeof(Mpi2FWUploadReply_t));
4714 			ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4715 						MPI2_IOCSTATUS_MASK;
4716 			if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4717 				fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4718 				if (le32_to_cpu(fw_img_hdr->Signature) ==
4719 				    MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4720 					cmp_img_hdr =
4721 					    (Mpi26ComponentImageHeader_t *)
4722 					    (fwpkg_data);
4723 					package_version =
4724 					    le32_to_cpu(
4725 					    cmp_img_hdr->ApplicationSpecific);
4726 				} else
4727 					package_version =
4728 					    le32_to_cpu(
4729 					    fw_img_hdr->PackageVersion.Word);
4730 				if (package_version)
4731 					ioc_info(ioc,
4732 					"FW Package Ver(%02d.%02d.%02d.%02d)\n",
4733 					((package_version) & 0xFF000000) >> 24,
4734 					((package_version) & 0x00FF0000) >> 16,
4735 					((package_version) & 0x0000FF00) >> 8,
4736 					(package_version) & 0x000000FF);
4737 			} else {
4738 				_debug_dump_mf(&mpi_reply,
4739 						sizeof(Mpi2FWUploadReply_t)/4);
4740 			}
4741 		}
4742 	}
4743 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4744 out:
4745 	if (fwpkg_data)
4746 		dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4747 				fwpkg_data_dma);
4748 	if (issue_diag_reset) {
4749 		if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4750 			return -EFAULT;
4751 		if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4752 			return -EFAULT;
4753 		r = -EAGAIN;
4754 	}
4755 	return r;
4756 }
4757 
4758 /**
4759  * _base_display_ioc_capabilities - Display IOC's capabilities.
4760  * @ioc: per adapter object
4761  */
4762 static void
4763 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4764 {
4765 	int i = 0;
4766 	char desc[16];
4767 	u32 iounit_pg1_flags;
4768 	u32 bios_version;
4769 
4770 	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4771 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
4772 	ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4773 		 desc,
4774 		 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4775 		 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4776 		 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4777 		 ioc->facts.FWVersion.Word & 0x000000FF,
4778 		 ioc->pdev->revision,
4779 		 (bios_version & 0xFF000000) >> 24,
4780 		 (bios_version & 0x00FF0000) >> 16,
4781 		 (bios_version & 0x0000FF00) >> 8,
4782 		 bios_version & 0x000000FF);
4783 
4784 	_base_display_OEMs_branding(ioc);
4785 
4786 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4787 		pr_info("%sNVMe", i ? "," : "");
4788 		i++;
4789 	}
4790 
4791 	ioc_info(ioc, "Protocol=(");
4792 
4793 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4794 		pr_cont("Initiator");
4795 		i++;
4796 	}
4797 
4798 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4799 		pr_cont("%sTarget", i ? "," : "");
4800 		i++;
4801 	}
4802 
4803 	i = 0;
4804 	pr_cont("), Capabilities=(");
4805 
4806 	if (!ioc->hide_ir_msg) {
4807 		if (ioc->facts.IOCCapabilities &
4808 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4809 			pr_cont("Raid");
4810 			i++;
4811 		}
4812 	}
4813 
4814 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4815 		pr_cont("%sTLR", i ? "," : "");
4816 		i++;
4817 	}
4818 
4819 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4820 		pr_cont("%sMulticast", i ? "," : "");
4821 		i++;
4822 	}
4823 
4824 	if (ioc->facts.IOCCapabilities &
4825 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4826 		pr_cont("%sBIDI Target", i ? "," : "");
4827 		i++;
4828 	}
4829 
4830 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4831 		pr_cont("%sEEDP", i ? "," : "");
4832 		i++;
4833 	}
4834 
4835 	if (ioc->facts.IOCCapabilities &
4836 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4837 		pr_cont("%sSnapshot Buffer", i ? "," : "");
4838 		i++;
4839 	}
4840 
4841 	if (ioc->facts.IOCCapabilities &
4842 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4843 		pr_cont("%sDiag Trace Buffer", i ? "," : "");
4844 		i++;
4845 	}
4846 
4847 	if (ioc->facts.IOCCapabilities &
4848 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4849 		pr_cont("%sDiag Extended Buffer", i ? "," : "");
4850 		i++;
4851 	}
4852 
4853 	if (ioc->facts.IOCCapabilities &
4854 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4855 		pr_cont("%sTask Set Full", i ? "," : "");
4856 		i++;
4857 	}
4858 
4859 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4860 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4861 		pr_cont("%sNCQ", i ? "," : "");
4862 		i++;
4863 	}
4864 
4865 	pr_cont(")\n");
4866 }
4867 
4868 /**
4869  * mpt3sas_base_update_missing_delay - change the missing delay timers
4870  * @ioc: per adapter object
4871  * @device_missing_delay: amount of time till device is reported missing
4872  * @io_missing_delay: interval IO is returned when there is a missing device
4873  *
4874  * Passed on the command line, this function will modify the device missing
4875  * delay, as well as the io missing delay. This should be called at driver
4876  * load time.
4877  */
4878 void
4879 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4880 	u16 device_missing_delay, u8 io_missing_delay)
4881 {
4882 	u16 dmd, dmd_new, dmd_orignal;
4883 	u8 io_missing_delay_original;
4884 	u16 sz;
4885 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4886 	Mpi2ConfigReply_t mpi_reply;
4887 	u8 num_phys = 0;
4888 	u16 ioc_status;
4889 
4890 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4891 	if (!num_phys)
4892 		return;
4893 
4894 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4895 	    sizeof(Mpi2SasIOUnit1PhyData_t));
4896 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4897 	if (!sas_iounit_pg1) {
4898 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4899 			__FILE__, __LINE__, __func__);
4900 		goto out;
4901 	}
4902 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4903 	    sas_iounit_pg1, sz))) {
4904 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4905 			__FILE__, __LINE__, __func__);
4906 		goto out;
4907 	}
4908 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4909 	    MPI2_IOCSTATUS_MASK;
4910 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4911 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4912 			__FILE__, __LINE__, __func__);
4913 		goto out;
4914 	}
4915 
4916 	/* device missing delay */
4917 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4918 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4919 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4920 	else
4921 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4922 	dmd_orignal = dmd;
4923 	if (device_missing_delay > 0x7F) {
4924 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4925 		    device_missing_delay;
4926 		dmd = dmd / 16;
4927 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4928 	} else
4929 		dmd = device_missing_delay;
4930 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4931 
4932 	/* io missing delay */
4933 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4934 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4935 
4936 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4937 	    sz)) {
4938 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4939 			dmd_new = (dmd &
4940 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4941 		else
4942 			dmd_new =
4943 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4944 		ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4945 			 dmd_orignal, dmd_new);
4946 		ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4947 			 io_missing_delay_original,
4948 			 io_missing_delay);
4949 		ioc->device_missing_delay = dmd_new;
4950 		ioc->io_missing_delay = io_missing_delay;
4951 	}
4952 
4953 out:
4954 	kfree(sas_iounit_pg1);
4955 }
4956 
4957 /**
4958  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4959  *    according to performance mode.
4960  * @ioc : per adapter object
4961  *
4962  * Return: zero on success; otherwise return EAGAIN error code asking the
4963  * caller to retry.
4964  */
4965 static int
4966 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4967 {
4968 	Mpi2IOCPage1_t ioc_pg1;
4969 	Mpi2ConfigReply_t mpi_reply;
4970 	int rc;
4971 
4972 	rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4973 	if (rc)
4974 		return rc;
4975 	memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4976 
4977 	switch (perf_mode) {
4978 	case MPT_PERF_MODE_DEFAULT:
4979 	case MPT_PERF_MODE_BALANCED:
4980 		if (ioc->high_iops_queues) {
4981 			ioc_info(ioc,
4982 				"Enable interrupt coalescing only for first\t"
4983 				"%d reply queues\n",
4984 				MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4985 			/*
4986 			 * If 31st bit is zero then interrupt coalescing is
4987 			 * enabled for all reply descriptor post queues.
4988 			 * If 31st bit is set to one then user can
4989 			 * enable/disable interrupt coalescing on per reply
4990 			 * descriptor post queue group(8) basis. So to enable
4991 			 * interrupt coalescing only on first reply descriptor
4992 			 * post queue group 31st bit and zero th bit is enabled.
4993 			 */
4994 			ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4995 			    ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4996 			rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4997 			if (rc)
4998 				return rc;
4999 			ioc_info(ioc, "performance mode: balanced\n");
5000 			return 0;
5001 		}
5002 		fallthrough;
5003 	case MPT_PERF_MODE_LATENCY:
5004 		/*
5005 		 * Enable interrupt coalescing on all reply queues
5006 		 * with timeout value 0xA
5007 		 */
5008 		ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
5009 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5010 		ioc_pg1.ProductSpecific = 0;
5011 		rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5012 		if (rc)
5013 			return rc;
5014 		ioc_info(ioc, "performance mode: latency\n");
5015 		break;
5016 	case MPT_PERF_MODE_IOPS:
5017 		/*
5018 		 * Enable interrupt coalescing on all reply queues.
5019 		 */
5020 		ioc_info(ioc,
5021 		    "performance mode: iops with coalescing timeout: 0x%x\n",
5022 		    le32_to_cpu(ioc_pg1.CoalescingTimeout));
5023 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5024 		ioc_pg1.ProductSpecific = 0;
5025 		rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5026 		if (rc)
5027 			return rc;
5028 		break;
5029 	}
5030 	return 0;
5031 }
5032 
5033 /**
5034  * _base_get_event_diag_triggers - get event diag trigger values from
5035  *				persistent pages
5036  * @ioc : per adapter object
5037  *
5038  * Return: nothing.
5039  */
5040 static int
5041 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5042 {
5043 	Mpi26DriverTriggerPage2_t trigger_pg2;
5044 	struct SL_WH_EVENT_TRIGGER_T *event_tg;
5045 	MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
5046 	Mpi2ConfigReply_t mpi_reply;
5047 	int r = 0, i = 0;
5048 	u16 count = 0;
5049 	u16 ioc_status;
5050 
5051 	r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5052 	    &trigger_pg2);
5053 	if (r)
5054 		return r;
5055 
5056 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5057 	    MPI2_IOCSTATUS_MASK;
5058 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5059 		dinitprintk(ioc,
5060 		    ioc_err(ioc,
5061 		    "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5062 		   __func__, ioc_status));
5063 		return 0;
5064 	}
5065 
5066 	if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5067 		count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5068 		count = min_t(u16, NUM_VALID_ENTRIES, count);
5069 		ioc->diag_trigger_event.ValidEntries = count;
5070 
5071 		event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5072 		mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5073 		for (i = 0; i < count; i++) {
5074 			event_tg->EventValue = le16_to_cpu(
5075 			    mpi_event_tg->MPIEventCode);
5076 			event_tg->LogEntryQualifier = le16_to_cpu(
5077 			    mpi_event_tg->MPIEventCodeSpecific);
5078 			event_tg++;
5079 			mpi_event_tg++;
5080 		}
5081 	}
5082 	return 0;
5083 }
5084 
5085 /**
5086  * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5087  *				persistent pages
5088  * @ioc : per adapter object
5089  *
5090  * Return: 0 on success; otherwise return failure status.
5091  */
5092 static int
5093 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5094 {
5095 	Mpi26DriverTriggerPage3_t trigger_pg3;
5096 	struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5097 	MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
5098 	Mpi2ConfigReply_t mpi_reply;
5099 	int r = 0, i = 0;
5100 	u16 count = 0;
5101 	u16 ioc_status;
5102 
5103 	r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5104 	    &trigger_pg3);
5105 	if (r)
5106 		return r;
5107 
5108 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5109 	    MPI2_IOCSTATUS_MASK;
5110 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5111 		dinitprintk(ioc,
5112 		    ioc_err(ioc,
5113 		    "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5114 		    __func__, ioc_status));
5115 		return 0;
5116 	}
5117 
5118 	if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5119 		count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5120 		count = min_t(u16, NUM_VALID_ENTRIES, count);
5121 		ioc->diag_trigger_scsi.ValidEntries = count;
5122 
5123 		scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5124 		mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5125 		for (i = 0; i < count; i++) {
5126 			scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5127 			scsi_tg->ASC = mpi_scsi_tg->ASC;
5128 			scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5129 
5130 			scsi_tg++;
5131 			mpi_scsi_tg++;
5132 		}
5133 	}
5134 	return 0;
5135 }
5136 
5137 /**
5138  * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5139  *				persistent pages
5140  * @ioc : per adapter object
5141  *
5142  * Return: 0 on success; otherwise return failure status.
5143  */
5144 static int
5145 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5146 {
5147 	Mpi26DriverTriggerPage4_t trigger_pg4;
5148 	struct SL_WH_MPI_TRIGGER_T *status_tg;
5149 	MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
5150 	Mpi2ConfigReply_t mpi_reply;
5151 	int r = 0, i = 0;
5152 	u16 count = 0;
5153 	u16 ioc_status;
5154 
5155 	r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5156 	    &trigger_pg4);
5157 	if (r)
5158 		return r;
5159 
5160 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5161 	    MPI2_IOCSTATUS_MASK;
5162 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5163 		dinitprintk(ioc,
5164 		    ioc_err(ioc,
5165 		    "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5166 		    __func__, ioc_status));
5167 		return 0;
5168 	}
5169 
5170 	if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5171 		count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5172 		count = min_t(u16, NUM_VALID_ENTRIES, count);
5173 		ioc->diag_trigger_mpi.ValidEntries = count;
5174 
5175 		status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5176 		mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5177 
5178 		for (i = 0; i < count; i++) {
5179 			status_tg->IOCStatus = le16_to_cpu(
5180 			    mpi_status_tg->IOCStatus);
5181 			status_tg->IocLogInfo = le32_to_cpu(
5182 			    mpi_status_tg->LogInfo);
5183 
5184 			status_tg++;
5185 			mpi_status_tg++;
5186 		}
5187 	}
5188 	return 0;
5189 }
5190 
5191 /**
5192  * _base_get_master_diag_triggers - get master diag trigger values from
5193  *				persistent pages
5194  * @ioc : per adapter object
5195  *
5196  * Return: nothing.
5197  */
5198 static int
5199 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5200 {
5201 	Mpi26DriverTriggerPage1_t trigger_pg1;
5202 	Mpi2ConfigReply_t mpi_reply;
5203 	int r;
5204 	u16 ioc_status;
5205 
5206 	r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5207 	    &trigger_pg1);
5208 	if (r)
5209 		return r;
5210 
5211 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5212 	    MPI2_IOCSTATUS_MASK;
5213 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5214 		dinitprintk(ioc,
5215 		    ioc_err(ioc,
5216 		    "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5217 		   __func__, ioc_status));
5218 		return 0;
5219 	}
5220 
5221 	if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5222 		ioc->diag_trigger_master.MasterData |=
5223 		    le32_to_cpu(
5224 		    trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5225 	return 0;
5226 }
5227 
5228 /**
5229  * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5230  *					driver trigger pages or not
5231  * @ioc : per adapter object
5232  * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5233  *
5234  * Return: trigger flags mask if HBA FW supports driver trigger pages;
5235  * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5236  * return EAGAIN if diag reset occurred due to FW fault and asking the
5237  * caller to retry the command.
5238  *
5239  */
5240 static int
5241 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5242 {
5243 	Mpi26DriverTriggerPage0_t trigger_pg0;
5244 	int r = 0;
5245 	Mpi2ConfigReply_t mpi_reply;
5246 	u16 ioc_status;
5247 
5248 	r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5249 	    &trigger_pg0);
5250 	if (r)
5251 		return r;
5252 
5253 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5254 	    MPI2_IOCSTATUS_MASK;
5255 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5256 		return -EFAULT;
5257 
5258 	*trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5259 	return 0;
5260 }
5261 
5262 /**
5263  * _base_get_diag_triggers - Retrieve diag trigger values from
5264  *				persistent pages.
5265  * @ioc : per adapter object
5266  *
5267  * Return: zero on success; otherwise return EAGAIN error codes
5268  * asking the caller to retry.
5269  */
5270 static int
5271 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5272 {
5273 	int trigger_flags;
5274 	int r;
5275 
5276 	/*
5277 	 * Default setting of master trigger.
5278 	 */
5279 	ioc->diag_trigger_master.MasterData =
5280 	    (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5281 
5282 	r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5283 	if (r) {
5284 		if (r == -EAGAIN)
5285 			return r;
5286 		/*
5287 		 * Don't go for error handling when FW doesn't support
5288 		 * driver trigger pages.
5289 		 */
5290 		return 0;
5291 	}
5292 
5293 	ioc->supports_trigger_pages = 1;
5294 
5295 	/*
5296 	 * Retrieve master diag trigger values from driver trigger pg1
5297 	 * if master trigger bit enabled in TriggerFlags.
5298 	 */
5299 	if ((u16)trigger_flags &
5300 	    MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5301 		r = _base_get_master_diag_triggers(ioc);
5302 		if (r)
5303 			return r;
5304 	}
5305 
5306 	/*
5307 	 * Retrieve event diag trigger values from driver trigger pg2
5308 	 * if event trigger bit enabled in TriggerFlags.
5309 	 */
5310 	if ((u16)trigger_flags &
5311 	    MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5312 		r = _base_get_event_diag_triggers(ioc);
5313 		if (r)
5314 			return r;
5315 	}
5316 
5317 	/*
5318 	 * Retrieve scsi diag trigger values from driver trigger pg3
5319 	 * if scsi trigger bit enabled in TriggerFlags.
5320 	 */
5321 	if ((u16)trigger_flags &
5322 	    MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5323 		r = _base_get_scsi_diag_triggers(ioc);
5324 		if (r)
5325 			return r;
5326 	}
5327 	/*
5328 	 * Retrieve mpi error diag trigger values from driver trigger pg4
5329 	 * if loginfo trigger bit enabled in TriggerFlags.
5330 	 */
5331 	if ((u16)trigger_flags &
5332 	    MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5333 		r = _base_get_mpi_diag_triggers(ioc);
5334 		if (r)
5335 			return r;
5336 	}
5337 	return 0;
5338 }
5339 
5340 /**
5341  * _base_update_diag_trigger_pages - Update the driver trigger pages after
5342  *			online FW update, in case updated FW supports driver
5343  *			trigger pages.
5344  * @ioc : per adapter object
5345  *
5346  * Return: nothing.
5347  */
5348 static void
5349 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5350 {
5351 
5352 	if (ioc->diag_trigger_master.MasterData)
5353 		mpt3sas_config_update_driver_trigger_pg1(ioc,
5354 		    &ioc->diag_trigger_master, 1);
5355 
5356 	if (ioc->diag_trigger_event.ValidEntries)
5357 		mpt3sas_config_update_driver_trigger_pg2(ioc,
5358 		    &ioc->diag_trigger_event, 1);
5359 
5360 	if (ioc->diag_trigger_scsi.ValidEntries)
5361 		mpt3sas_config_update_driver_trigger_pg3(ioc,
5362 		    &ioc->diag_trigger_scsi, 1);
5363 
5364 	if (ioc->diag_trigger_mpi.ValidEntries)
5365 		mpt3sas_config_update_driver_trigger_pg4(ioc,
5366 		    &ioc->diag_trigger_mpi, 1);
5367 }
5368 
5369 /**
5370  * _base_assign_fw_reported_qd	- Get FW reported QD for SAS/SATA devices.
5371  *				- On failure set default QD values.
5372  * @ioc : per adapter object
5373  *
5374  * Returns 0 for success, non-zero for failure.
5375  *
5376  */
5377 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5378 {
5379 	Mpi2ConfigReply_t mpi_reply;
5380 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
5381 	Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5382 	int sz;
5383 	int rc = 0;
5384 
5385 	ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5386 	ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5387 	ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5388 	ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5389 	if (!ioc->is_gen35_ioc)
5390 		goto out;
5391 	/* sas iounit page 1 */
5392 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData);
5393 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
5394 	if (!sas_iounit_pg1) {
5395 		pr_err("%s: failure at %s:%d/%s()!\n",
5396 		    ioc->name, __FILE__, __LINE__, __func__);
5397 		return rc;
5398 	}
5399 	rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5400 	    sas_iounit_pg1, sz);
5401 	if (rc) {
5402 		pr_err("%s: failure at %s:%d/%s()!\n",
5403 		    ioc->name, __FILE__, __LINE__, __func__);
5404 		goto out;
5405 	}
5406 	ioc->max_wideport_qd =
5407 	    (le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth)) ?
5408 	    le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth) :
5409 	    MPT3SAS_SAS_QUEUE_DEPTH;
5410 	ioc->max_narrowport_qd =
5411 	    (le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth)) ?
5412 	    le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth) :
5413 	    MPT3SAS_SAS_QUEUE_DEPTH;
5414 	ioc->max_sata_qd = (sas_iounit_pg1->SATAMaxQDepth) ?
5415 	    sas_iounit_pg1->SATAMaxQDepth : MPT3SAS_SATA_QUEUE_DEPTH;
5416 	/* pcie iounit page 1 */
5417 	rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5418 	    &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5419 	if (rc) {
5420 		pr_err("%s: failure at %s:%d/%s()!\n",
5421 		    ioc->name, __FILE__, __LINE__, __func__);
5422 		goto out;
5423 	}
5424 	ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5425 	    (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5426 	    MPT3SAS_NVME_QUEUE_DEPTH;
5427 out:
5428 	dinitprintk(ioc, pr_err(
5429 	    "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5430 	    ioc->max_wideport_qd, ioc->max_narrowport_qd,
5431 	    ioc->max_sata_qd, ioc->max_nvme_qd));
5432 	kfree(sas_iounit_pg1);
5433 	return rc;
5434 }
5435 
5436 /**
5437  * _base_static_config_pages - static start of day config pages
5438  * @ioc: per adapter object
5439  */
5440 static int
5441 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5442 {
5443 	Mpi2ConfigReply_t mpi_reply;
5444 	u32 iounit_pg1_flags;
5445 	int tg_flags = 0;
5446 	int rc;
5447 	ioc->nvme_abort_timeout = 30;
5448 
5449 	rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5450 	    &ioc->manu_pg0);
5451 	if (rc)
5452 		return rc;
5453 	if (ioc->ir_firmware) {
5454 		rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5455 		    &ioc->manu_pg10);
5456 		if (rc)
5457 			return rc;
5458 	}
5459 	/*
5460 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
5461 	 * flag unset in NVDATA.
5462 	 */
5463 	rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5464 	    &ioc->manu_pg11);
5465 	if (rc)
5466 		return rc;
5467 	if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5468 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5469 		    ioc->name);
5470 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
5471 		ioc->manu_pg11.EEDPTagMode |= 0x1;
5472 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5473 		    &ioc->manu_pg11);
5474 	}
5475 	if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5476 		ioc->tm_custom_handling = 1;
5477 	else {
5478 		ioc->tm_custom_handling = 0;
5479 		if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5480 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5481 		else if (ioc->manu_pg11.NVMeAbortTO >
5482 					NVME_TASK_ABORT_MAX_TIMEOUT)
5483 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5484 		else
5485 			ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5486 	}
5487 	ioc->time_sync_interval =
5488 	    ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5489 	if (ioc->time_sync_interval) {
5490 		if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5491 			ioc->time_sync_interval =
5492 			    ioc->time_sync_interval * SECONDS_PER_HOUR;
5493 		else
5494 			ioc->time_sync_interval =
5495 			    ioc->time_sync_interval * SECONDS_PER_MIN;
5496 		dinitprintk(ioc, ioc_info(ioc,
5497 		    "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5498 		    ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5499 		    MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5500 	} else {
5501 		if (ioc->is_gen35_ioc)
5502 			ioc_warn(ioc,
5503 			    "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5504 	}
5505 	rc = _base_assign_fw_reported_qd(ioc);
5506 	if (rc)
5507 		return rc;
5508 	rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5509 	if (rc)
5510 		return rc;
5511 	rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5512 	if (rc)
5513 		return rc;
5514 	rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5515 	if (rc)
5516 		return rc;
5517 	rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5518 	if (rc)
5519 		return rc;
5520 	rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5521 	if (rc)
5522 		return rc;
5523 	rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5524 	if (rc)
5525 		return rc;
5526 	_base_display_ioc_capabilities(ioc);
5527 
5528 	/*
5529 	 * Enable task_set_full handling in iounit_pg1 when the
5530 	 * facts capabilities indicate that its supported.
5531 	 */
5532 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5533 	if ((ioc->facts.IOCCapabilities &
5534 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5535 		iounit_pg1_flags &=
5536 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5537 	else
5538 		iounit_pg1_flags |=
5539 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5540 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5541 	rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5542 	if (rc)
5543 		return rc;
5544 
5545 	if (ioc->iounit_pg8.NumSensors)
5546 		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5547 	if (ioc->is_aero_ioc) {
5548 		rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5549 		if (rc)
5550 			return rc;
5551 	}
5552 	if (ioc->is_gen35_ioc) {
5553 		if (ioc->is_driver_loading) {
5554 			rc = _base_get_diag_triggers(ioc);
5555 			if (rc)
5556 				return rc;
5557 		} else {
5558 			/*
5559 			 * In case of online HBA FW update operation,
5560 			 * check whether updated FW supports the driver trigger
5561 			 * pages or not.
5562 			 * - If previous FW has not supported driver trigger
5563 			 *   pages and newer FW supports them then update these
5564 			 *   pages with current diag trigger values.
5565 			 * - If previous FW has supported driver trigger pages
5566 			 *   and new FW doesn't support them then disable
5567 			 *   support_trigger_pages flag.
5568 			 */
5569 			_base_check_for_trigger_pages_support(ioc, &tg_flags);
5570 			if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5571 				_base_update_diag_trigger_pages(ioc);
5572 			else if (ioc->supports_trigger_pages &&
5573 			    tg_flags == -EFAULT)
5574 				ioc->supports_trigger_pages = 0;
5575 		}
5576 	}
5577 	return 0;
5578 }
5579 
5580 /**
5581  * mpt3sas_free_enclosure_list - release memory
5582  * @ioc: per adapter object
5583  *
5584  * Free memory allocated during enclosure add.
5585  */
5586 void
5587 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5588 {
5589 	struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5590 
5591 	/* Free enclosure list */
5592 	list_for_each_entry_safe(enclosure_dev,
5593 			enclosure_dev_next, &ioc->enclosure_list, list) {
5594 		list_del(&enclosure_dev->list);
5595 		kfree(enclosure_dev);
5596 	}
5597 }
5598 
5599 /**
5600  * _base_release_memory_pools - release memory
5601  * @ioc: per adapter object
5602  *
5603  * Free memory allocated from _base_allocate_memory_pools.
5604  */
5605 static void
5606 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5607 {
5608 	int i = 0;
5609 	int j = 0;
5610 	int dma_alloc_count = 0;
5611 	struct chain_tracker *ct;
5612 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5613 
5614 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5615 
5616 	if (ioc->request) {
5617 		dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5618 		    ioc->request,  ioc->request_dma);
5619 		dexitprintk(ioc,
5620 			    ioc_info(ioc, "request_pool(0x%p): free\n",
5621 				     ioc->request));
5622 		ioc->request = NULL;
5623 	}
5624 
5625 	if (ioc->sense) {
5626 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5627 		dma_pool_destroy(ioc->sense_dma_pool);
5628 		dexitprintk(ioc,
5629 			    ioc_info(ioc, "sense_pool(0x%p): free\n",
5630 				     ioc->sense));
5631 		ioc->sense = NULL;
5632 	}
5633 
5634 	if (ioc->reply) {
5635 		dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5636 		dma_pool_destroy(ioc->reply_dma_pool);
5637 		dexitprintk(ioc,
5638 			    ioc_info(ioc, "reply_pool(0x%p): free\n",
5639 				     ioc->reply));
5640 		ioc->reply = NULL;
5641 	}
5642 
5643 	if (ioc->reply_free) {
5644 		dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5645 		    ioc->reply_free_dma);
5646 		dma_pool_destroy(ioc->reply_free_dma_pool);
5647 		dexitprintk(ioc,
5648 			    ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5649 				     ioc->reply_free));
5650 		ioc->reply_free = NULL;
5651 	}
5652 
5653 	if (ioc->reply_post) {
5654 		dma_alloc_count = DIV_ROUND_UP(count,
5655 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5656 		for (i = 0; i < count; i++) {
5657 			if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5658 			    && dma_alloc_count) {
5659 				if (ioc->reply_post[i].reply_post_free) {
5660 					dma_pool_free(
5661 					    ioc->reply_post_free_dma_pool,
5662 					    ioc->reply_post[i].reply_post_free,
5663 					ioc->reply_post[i].reply_post_free_dma);
5664 					dexitprintk(ioc, ioc_info(ioc,
5665 					   "reply_post_free_pool(0x%p): free\n",
5666 					   ioc->reply_post[i].reply_post_free));
5667 					ioc->reply_post[i].reply_post_free =
5668 									NULL;
5669 				}
5670 				--dma_alloc_count;
5671 			}
5672 		}
5673 		dma_pool_destroy(ioc->reply_post_free_dma_pool);
5674 		if (ioc->reply_post_free_array &&
5675 			ioc->rdpq_array_enable) {
5676 			dma_pool_free(ioc->reply_post_free_array_dma_pool,
5677 			    ioc->reply_post_free_array,
5678 			    ioc->reply_post_free_array_dma);
5679 			ioc->reply_post_free_array = NULL;
5680 		}
5681 		dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5682 		kfree(ioc->reply_post);
5683 	}
5684 
5685 	if (ioc->pcie_sgl_dma_pool) {
5686 		for (i = 0; i < ioc->scsiio_depth; i++) {
5687 			dma_pool_free(ioc->pcie_sgl_dma_pool,
5688 					ioc->pcie_sg_lookup[i].pcie_sgl,
5689 					ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5690 			ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5691 		}
5692 		dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5693 	}
5694 	if (ioc->config_page) {
5695 		dexitprintk(ioc,
5696 			    ioc_info(ioc, "config_page(0x%p): free\n",
5697 				     ioc->config_page));
5698 		dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5699 		    ioc->config_page, ioc->config_page_dma);
5700 	}
5701 
5702 	kfree(ioc->hpr_lookup);
5703 	ioc->hpr_lookup = NULL;
5704 	kfree(ioc->internal_lookup);
5705 	ioc->internal_lookup = NULL;
5706 	if (ioc->chain_lookup) {
5707 		for (i = 0; i < ioc->scsiio_depth; i++) {
5708 			for (j = ioc->chains_per_prp_buffer;
5709 			    j < ioc->chains_needed_per_io; j++) {
5710 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
5711 				if (ct && ct->chain_buffer)
5712 					dma_pool_free(ioc->chain_dma_pool,
5713 						ct->chain_buffer,
5714 						ct->chain_buffer_dma);
5715 			}
5716 			kfree(ioc->chain_lookup[i].chains_per_smid);
5717 		}
5718 		dma_pool_destroy(ioc->chain_dma_pool);
5719 		kfree(ioc->chain_lookup);
5720 		ioc->chain_lookup = NULL;
5721 	}
5722 
5723 	kfree(ioc->io_queue_num);
5724 	ioc->io_queue_num = NULL;
5725 }
5726 
5727 /**
5728  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5729  *	having same upper 32bits in their base memory address.
5730  * @reply_pool_start_address: Base address of a reply queue set
5731  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5732  *
5733  * Return: 1 if reply queues in a set have a same upper 32bits in their base
5734  * memory address, else 0.
5735  */
5736 
5737 static int
5738 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
5739 {
5740 	long reply_pool_end_address;
5741 
5742 	reply_pool_end_address = reply_pool_start_address + pool_sz;
5743 
5744 	if (upper_32_bits(reply_pool_start_address) ==
5745 		upper_32_bits(reply_pool_end_address))
5746 		return 1;
5747 	else
5748 		return 0;
5749 }
5750 
5751 /**
5752  * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5753  * @ioc: Adapter object
5754  *
5755  * Return: 0 for success, non-zero for failure.
5756  **/
5757 static inline int
5758 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5759 {
5760 	int reduce_sz = 64;
5761 
5762 	if ((ioc->hba_queue_depth - reduce_sz) >
5763 	    (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5764 		ioc->hba_queue_depth -= reduce_sz;
5765 		return 0;
5766 	} else
5767 		return -ENOMEM;
5768 }
5769 
5770 /**
5771  * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5772  *			for pcie sgl pools.
5773  * @ioc: Adapter object
5774  * @sz: DMA Pool size
5775  *
5776  * Return: 0 for success, non-zero for failure.
5777  */
5778 
5779 static int
5780 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5781 {
5782 	int i = 0, j = 0;
5783 	struct chain_tracker *ct;
5784 
5785 	ioc->pcie_sgl_dma_pool =
5786 	    dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5787 	    ioc->page_size, 0);
5788 	if (!ioc->pcie_sgl_dma_pool) {
5789 		ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5790 		return -ENOMEM;
5791 	}
5792 
5793 	ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5794 	ioc->chains_per_prp_buffer =
5795 	    min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5796 	for (i = 0; i < ioc->scsiio_depth; i++) {
5797 		ioc->pcie_sg_lookup[i].pcie_sgl =
5798 		    dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5799 		    &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5800 		if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5801 			ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5802 			return -EAGAIN;
5803 		}
5804 
5805 		if (!mpt3sas_check_same_4gb_region(
5806 		    (long)ioc->pcie_sg_lookup[i].pcie_sgl, sz)) {
5807 			ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5808 			    ioc->pcie_sg_lookup[i].pcie_sgl,
5809 			    (unsigned long long)
5810 			    ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5811 			ioc->use_32bit_dma = true;
5812 			return -EAGAIN;
5813 		}
5814 
5815 		for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5816 			ct = &ioc->chain_lookup[i].chains_per_smid[j];
5817 			ct->chain_buffer =
5818 			    ioc->pcie_sg_lookup[i].pcie_sgl +
5819 			    (j * ioc->chain_segment_sz);
5820 			ct->chain_buffer_dma =
5821 			    ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5822 			    (j * ioc->chain_segment_sz);
5823 		}
5824 	}
5825 	dinitprintk(ioc, ioc_info(ioc,
5826 	    "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5827 	    ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5828 	dinitprintk(ioc, ioc_info(ioc,
5829 	    "Number of chains can fit in a PRP page(%d)\n",
5830 	    ioc->chains_per_prp_buffer));
5831 	return 0;
5832 }
5833 
5834 /**
5835  * _base_allocate_chain_dma_pool - Allocating DMA'able memory
5836  *			for chain dma pool.
5837  * @ioc: Adapter object
5838  * @sz: DMA Pool size
5839  *
5840  * Return: 0 for success, non-zero for failure.
5841  */
5842 static int
5843 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5844 {
5845 	int i = 0, j = 0;
5846 	struct chain_tracker *ctr;
5847 
5848 	ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5849 	    ioc->chain_segment_sz, 16, 0);
5850 	if (!ioc->chain_dma_pool)
5851 		return -ENOMEM;
5852 
5853 	for (i = 0; i < ioc->scsiio_depth; i++) {
5854 		for (j = ioc->chains_per_prp_buffer;
5855 		    j < ioc->chains_needed_per_io; j++) {
5856 			ctr = &ioc->chain_lookup[i].chains_per_smid[j];
5857 			ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
5858 			    GFP_KERNEL, &ctr->chain_buffer_dma);
5859 			if (!ctr->chain_buffer)
5860 				return -EAGAIN;
5861 			if (!mpt3sas_check_same_4gb_region((long)
5862 			    ctr->chain_buffer, ioc->chain_segment_sz)) {
5863 				ioc_err(ioc,
5864 				    "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
5865 				    ctr->chain_buffer,
5866 				    (unsigned long long)ctr->chain_buffer_dma);
5867 				ioc->use_32bit_dma = true;
5868 				return -EAGAIN;
5869 			}
5870 		}
5871 	}
5872 	dinitprintk(ioc, ioc_info(ioc,
5873 	    "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
5874 	    ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
5875 	    (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
5876 	    ioc->chain_segment_sz))/1024));
5877 	return 0;
5878 }
5879 
5880 /**
5881  * _base_allocate_sense_dma_pool - Allocating DMA'able memory
5882  *			for sense dma pool.
5883  * @ioc: Adapter object
5884  * @sz: DMA Pool size
5885  * Return: 0 for success, non-zero for failure.
5886  */
5887 static int
5888 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5889 {
5890 	ioc->sense_dma_pool =
5891 	    dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
5892 	if (!ioc->sense_dma_pool)
5893 		return -ENOMEM;
5894 	ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
5895 	    GFP_KERNEL, &ioc->sense_dma);
5896 	if (!ioc->sense)
5897 		return -EAGAIN;
5898 	if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5899 		dinitprintk(ioc, pr_err(
5900 		    "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
5901 		    ioc->sense, (unsigned long long) ioc->sense_dma));
5902 		ioc->use_32bit_dma = true;
5903 		return -EAGAIN;
5904 	}
5905 	ioc_info(ioc,
5906 	    "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
5907 	    ioc->sense, (unsigned long long)ioc->sense_dma,
5908 	    ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
5909 	return 0;
5910 }
5911 
5912 /**
5913  * _base_allocate_reply_pool - Allocating DMA'able memory
5914  *			for reply pool.
5915  * @ioc: Adapter object
5916  * @sz: DMA Pool size
5917  * Return: 0 for success, non-zero for failure.
5918  */
5919 static int
5920 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5921 {
5922 	/* reply pool, 4 byte align */
5923 	ioc->reply_dma_pool = dma_pool_create("reply pool",
5924 	    &ioc->pdev->dev, sz, 4, 0);
5925 	if (!ioc->reply_dma_pool)
5926 		return -ENOMEM;
5927 	ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5928 	    &ioc->reply_dma);
5929 	if (!ioc->reply)
5930 		return -EAGAIN;
5931 	if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) {
5932 		dinitprintk(ioc, pr_err(
5933 		    "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
5934 		    ioc->reply, (unsigned long long) ioc->reply_dma));
5935 		ioc->use_32bit_dma = true;
5936 		return -EAGAIN;
5937 	}
5938 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5939 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5940 	ioc_info(ioc,
5941 	    "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5942 	    ioc->reply, (unsigned long long)ioc->reply_dma,
5943 	    ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
5944 	return 0;
5945 }
5946 
5947 /**
5948  * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
5949  *			for reply free dma pool.
5950  * @ioc: Adapter object
5951  * @sz: DMA Pool size
5952  * Return: 0 for success, non-zero for failure.
5953  */
5954 static int
5955 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5956 {
5957 	/* reply free queue, 16 byte align */
5958 	ioc->reply_free_dma_pool = dma_pool_create(
5959 	    "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
5960 	if (!ioc->reply_free_dma_pool)
5961 		return -ENOMEM;
5962 	ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
5963 	    GFP_KERNEL, &ioc->reply_free_dma);
5964 	if (!ioc->reply_free)
5965 		return -EAGAIN;
5966 	if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) {
5967 		dinitprintk(ioc,
5968 		    pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
5969 		    ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
5970 		ioc->use_32bit_dma = true;
5971 		return -EAGAIN;
5972 	}
5973 	memset(ioc->reply_free, 0, sz);
5974 	dinitprintk(ioc, ioc_info(ioc,
5975 	    "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5976 	    ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
5977 	dinitprintk(ioc, ioc_info(ioc,
5978 	    "reply_free_dma (0x%llx)\n",
5979 	    (unsigned long long)ioc->reply_free_dma));
5980 	return 0;
5981 }
5982 
5983 /**
5984  * _base_allocate_reply_post_free_array - Allocating DMA'able memory
5985  *			for reply post free array.
5986  * @ioc: Adapter object
5987  * @reply_post_free_array_sz: DMA Pool size
5988  * Return: 0 for success, non-zero for failure.
5989  */
5990 
5991 static int
5992 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
5993 	u32 reply_post_free_array_sz)
5994 {
5995 	ioc->reply_post_free_array_dma_pool =
5996 	    dma_pool_create("reply_post_free_array pool",
5997 	    &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5998 	if (!ioc->reply_post_free_array_dma_pool)
5999 		return -ENOMEM;
6000 	ioc->reply_post_free_array =
6001 	    dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
6002 	    GFP_KERNEL, &ioc->reply_post_free_array_dma);
6003 	if (!ioc->reply_post_free_array)
6004 		return -EAGAIN;
6005 	if (!mpt3sas_check_same_4gb_region((long)ioc->reply_post_free_array,
6006 	    reply_post_free_array_sz)) {
6007 		dinitprintk(ioc, pr_err(
6008 		    "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6009 		    ioc->reply_free,
6010 		    (unsigned long long) ioc->reply_free_dma));
6011 		ioc->use_32bit_dma = true;
6012 		return -EAGAIN;
6013 	}
6014 	return 0;
6015 }
6016 /**
6017  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6018  *                     for reply queues.
6019  * @ioc: per adapter object
6020  * @sz: DMA Pool size
6021  * Return: 0 for success, non-zero for failure.
6022  */
6023 static int
6024 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6025 {
6026 	int i = 0;
6027 	u32 dma_alloc_count = 0;
6028 	int reply_post_free_sz = ioc->reply_post_queue_depth *
6029 		sizeof(Mpi2DefaultReplyDescriptor_t);
6030 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6031 
6032 	ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6033 			GFP_KERNEL);
6034 	if (!ioc->reply_post)
6035 		return -ENOMEM;
6036 	/*
6037 	 *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6038 	 *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6039 	 *  be within 4GB boundary i.e reply queues in a set must have same
6040 	 *  upper 32-bits in their memory address. so here driver is allocating
6041 	 *  the DMA'able memory for reply queues according.
6042 	 *  Driver uses limitation of
6043 	 *  VENTURA_SERIES to manage INVADER_SERIES as well.
6044 	 */
6045 	dma_alloc_count = DIV_ROUND_UP(count,
6046 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6047 	ioc->reply_post_free_dma_pool =
6048 		dma_pool_create("reply_post_free pool",
6049 		    &ioc->pdev->dev, sz, 16, 0);
6050 	if (!ioc->reply_post_free_dma_pool)
6051 		return -ENOMEM;
6052 	for (i = 0; i < count; i++) {
6053 		if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6054 			ioc->reply_post[i].reply_post_free =
6055 			    dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6056 				GFP_KERNEL,
6057 				&ioc->reply_post[i].reply_post_free_dma);
6058 			if (!ioc->reply_post[i].reply_post_free)
6059 				return -ENOMEM;
6060 			/*
6061 			 * Each set of RDPQ pool must satisfy 4gb boundary
6062 			 * restriction.
6063 			 * 1) Check if allocated resources for RDPQ pool are in
6064 			 *	the same 4GB range.
6065 			 * 2) If #1 is true, continue with 64 bit DMA.
6066 			 * 3) If #1 is false, return 1. which means free all the
6067 			 * resources and set DMA mask to 32 and allocate.
6068 			 */
6069 			if (!mpt3sas_check_same_4gb_region(
6070 				(long)ioc->reply_post[i].reply_post_free, sz)) {
6071 				dinitprintk(ioc,
6072 				    ioc_err(ioc, "bad Replypost free pool(0x%p)"
6073 				    "reply_post_free_dma = (0x%llx)\n",
6074 				    ioc->reply_post[i].reply_post_free,
6075 				    (unsigned long long)
6076 				    ioc->reply_post[i].reply_post_free_dma));
6077 				return -EAGAIN;
6078 			}
6079 			dma_alloc_count--;
6080 
6081 		} else {
6082 			ioc->reply_post[i].reply_post_free =
6083 			    (Mpi2ReplyDescriptorsUnion_t *)
6084 			    ((long)ioc->reply_post[i-1].reply_post_free
6085 			    + reply_post_free_sz);
6086 			ioc->reply_post[i].reply_post_free_dma =
6087 			    (dma_addr_t)
6088 			    (ioc->reply_post[i-1].reply_post_free_dma +
6089 			    reply_post_free_sz);
6090 		}
6091 	}
6092 	return 0;
6093 }
6094 
6095 /**
6096  * _base_allocate_memory_pools - allocate start of day memory pools
6097  * @ioc: per adapter object
6098  *
6099  * Return: 0 success, anything else error.
6100  */
6101 static int
6102 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6103 {
6104 	struct mpt3sas_facts *facts;
6105 	u16 max_sge_elements;
6106 	u16 chains_needed_per_io;
6107 	u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6108 	u32 retry_sz;
6109 	u32 rdpq_sz = 0, sense_sz = 0;
6110 	u16 max_request_credit, nvme_blocks_needed;
6111 	unsigned short sg_tablesize;
6112 	u16 sge_size;
6113 	int i;
6114 	int ret = 0, rc = 0;
6115 
6116 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6117 
6118 
6119 	retry_sz = 0;
6120 	facts = &ioc->facts;
6121 
6122 	/* command line tunables for max sgl entries */
6123 	if (max_sgl_entries != -1)
6124 		sg_tablesize = max_sgl_entries;
6125 	else {
6126 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6127 			sg_tablesize = MPT2SAS_SG_DEPTH;
6128 		else
6129 			sg_tablesize = MPT3SAS_SG_DEPTH;
6130 	}
6131 
6132 	/* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6133 	if (reset_devices)
6134 		sg_tablesize = min_t(unsigned short, sg_tablesize,
6135 		   MPT_KDUMP_MIN_PHYS_SEGMENTS);
6136 
6137 	if (ioc->is_mcpu_endpoint)
6138 		ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6139 	else {
6140 		if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6141 			sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6142 		else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6143 			sg_tablesize = min_t(unsigned short, sg_tablesize,
6144 					SG_MAX_SEGMENTS);
6145 			ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6146 				 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6147 		}
6148 		ioc->shost->sg_tablesize = sg_tablesize;
6149 	}
6150 
6151 	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6152 		(facts->RequestCredit / 4));
6153 	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6154 		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6155 				INTERNAL_SCSIIO_CMDS_COUNT)) {
6156 			ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6157 				facts->RequestCredit);
6158 			return -ENOMEM;
6159 		}
6160 		ioc->internal_depth = 10;
6161 	}
6162 
6163 	ioc->hi_priority_depth = ioc->internal_depth - (5);
6164 	/* command line tunables  for max controller queue depth */
6165 	if (max_queue_depth != -1 && max_queue_depth != 0) {
6166 		max_request_credit = min_t(u16, max_queue_depth +
6167 			ioc->internal_depth, facts->RequestCredit);
6168 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6169 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
6170 	} else if (reset_devices)
6171 		max_request_credit = min_t(u16, facts->RequestCredit,
6172 		    (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6173 	else
6174 		max_request_credit = min_t(u16, facts->RequestCredit,
6175 		    MAX_HBA_QUEUE_DEPTH);
6176 
6177 	/* Firmware maintains additional facts->HighPriorityCredit number of
6178 	 * credits for HiPriprity Request messages, so hba queue depth will be
6179 	 * sum of max_request_credit and high priority queue depth.
6180 	 */
6181 	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6182 
6183 	/* request frame size */
6184 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
6185 
6186 	/* reply frame size */
6187 	ioc->reply_sz = facts->ReplyFrameSize * 4;
6188 
6189 	/* chain segment size */
6190 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6191 		if (facts->IOCMaxChainSegmentSize)
6192 			ioc->chain_segment_sz =
6193 					facts->IOCMaxChainSegmentSize *
6194 					MAX_CHAIN_ELEMT_SZ;
6195 		else
6196 		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6197 			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6198 						    MAX_CHAIN_ELEMT_SZ;
6199 	} else
6200 		ioc->chain_segment_sz = ioc->request_sz;
6201 
6202 	/* calculate the max scatter element size */
6203 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6204 
6205  retry_allocation:
6206 	total_sz = 0;
6207 	/* calculate number of sg elements left over in the 1st frame */
6208 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6209 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6210 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6211 
6212 	/* now do the same for a chain buffer */
6213 	max_sge_elements = ioc->chain_segment_sz - sge_size;
6214 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6215 
6216 	/*
6217 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6218 	 */
6219 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
6220 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6221 	    + 1;
6222 	if (chains_needed_per_io > facts->MaxChainDepth) {
6223 		chains_needed_per_io = facts->MaxChainDepth;
6224 		ioc->shost->sg_tablesize = min_t(u16,
6225 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6226 		* chains_needed_per_io), ioc->shost->sg_tablesize);
6227 	}
6228 	ioc->chains_needed_per_io = chains_needed_per_io;
6229 
6230 	/* reply free queue sizing - taking into account for 64 FW events */
6231 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6232 
6233 	/* mCPU manage single counters for simplicity */
6234 	if (ioc->is_mcpu_endpoint)
6235 		ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6236 	else {
6237 		/* calculate reply descriptor post queue depth */
6238 		ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6239 			ioc->reply_free_queue_depth +  1;
6240 		/* align the reply post queue on the next 16 count boundary */
6241 		if (ioc->reply_post_queue_depth % 16)
6242 			ioc->reply_post_queue_depth += 16 -
6243 				(ioc->reply_post_queue_depth % 16);
6244 	}
6245 
6246 	if (ioc->reply_post_queue_depth >
6247 	    facts->MaxReplyDescriptorPostQueueDepth) {
6248 		ioc->reply_post_queue_depth =
6249 				facts->MaxReplyDescriptorPostQueueDepth -
6250 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
6251 		ioc->hba_queue_depth =
6252 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
6253 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6254 	}
6255 
6256 	ioc_info(ioc,
6257 	    "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6258 	    "sge_per_io(%d), chains_per_io(%d)\n",
6259 	    ioc->max_sges_in_main_message,
6260 	    ioc->max_sges_in_chain_message,
6261 	    ioc->shost->sg_tablesize,
6262 	    ioc->chains_needed_per_io);
6263 
6264 	/* reply post queue, 16 byte align */
6265 	reply_post_free_sz = ioc->reply_post_queue_depth *
6266 	    sizeof(Mpi2DefaultReplyDescriptor_t);
6267 	rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6268 	if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6269 	    || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6270 		rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6271 	ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6272 	if (ret == -EAGAIN) {
6273 		/*
6274 		 * Free allocated bad RDPQ memory pools.
6275 		 * Change dma coherent mask to 32 bit and reallocate RDPQ
6276 		 */
6277 		_base_release_memory_pools(ioc);
6278 		ioc->use_32bit_dma = true;
6279 		if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6280 			ioc_err(ioc,
6281 			    "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6282 			return -ENODEV;
6283 		}
6284 		if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6285 			return -ENOMEM;
6286 	} else if (ret == -ENOMEM)
6287 		return -ENOMEM;
6288 	total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6289 	    DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6290 	ioc->scsiio_depth = ioc->hba_queue_depth -
6291 	    ioc->hi_priority_depth - ioc->internal_depth;
6292 
6293 	/* set the scsi host can_queue depth
6294 	 * with some internal commands that could be outstanding
6295 	 */
6296 	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6297 	dinitprintk(ioc,
6298 		    ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6299 			     ioc->shost->can_queue));
6300 
6301 	/* contiguous pool for request and chains, 16 byte align, one extra "
6302 	 * "frame for smid=0
6303 	 */
6304 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6305 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6306 
6307 	/* hi-priority queue */
6308 	sz += (ioc->hi_priority_depth * ioc->request_sz);
6309 
6310 	/* internal queue */
6311 	sz += (ioc->internal_depth * ioc->request_sz);
6312 
6313 	ioc->request_dma_sz = sz;
6314 	ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6315 			&ioc->request_dma, GFP_KERNEL);
6316 	if (!ioc->request) {
6317 		ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6318 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
6319 			ioc->request_sz, sz / 1024);
6320 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6321 			goto out;
6322 		retry_sz = 64;
6323 		ioc->hba_queue_depth -= retry_sz;
6324 		_base_release_memory_pools(ioc);
6325 		goto retry_allocation;
6326 	}
6327 
6328 	if (retry_sz)
6329 		ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6330 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
6331 			ioc->request_sz, sz / 1024);
6332 
6333 	/* hi-priority queue */
6334 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6335 	    ioc->request_sz);
6336 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6337 	    ioc->request_sz);
6338 
6339 	/* internal queue */
6340 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6341 	    ioc->request_sz);
6342 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6343 	    ioc->request_sz);
6344 
6345 	ioc_info(ioc,
6346 	    "request pool(0x%p) - dma(0x%llx): "
6347 	    "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6348 	    ioc->request, (unsigned long long) ioc->request_dma,
6349 	    ioc->hba_queue_depth, ioc->request_sz,
6350 	    (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6351 
6352 	total_sz += sz;
6353 
6354 	dinitprintk(ioc,
6355 		    ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6356 			     ioc->request, ioc->scsiio_depth));
6357 
6358 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6359 	sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6360 	ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6361 	if (!ioc->chain_lookup) {
6362 		ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6363 		goto out;
6364 	}
6365 
6366 	sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6367 	for (i = 0; i < ioc->scsiio_depth; i++) {
6368 		ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6369 		if (!ioc->chain_lookup[i].chains_per_smid) {
6370 			ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6371 			goto out;
6372 		}
6373 	}
6374 
6375 	/* initialize hi-priority queue smid's */
6376 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6377 	    sizeof(struct request_tracker), GFP_KERNEL);
6378 	if (!ioc->hpr_lookup) {
6379 		ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6380 		goto out;
6381 	}
6382 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6383 	dinitprintk(ioc,
6384 		    ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6385 			     ioc->hi_priority,
6386 			     ioc->hi_priority_depth, ioc->hi_priority_smid));
6387 
6388 	/* initialize internal queue smid's */
6389 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
6390 	    sizeof(struct request_tracker), GFP_KERNEL);
6391 	if (!ioc->internal_lookup) {
6392 		ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6393 		goto out;
6394 	}
6395 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6396 	dinitprintk(ioc,
6397 		    ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6398 			     ioc->internal,
6399 			     ioc->internal_depth, ioc->internal_smid));
6400 
6401 	ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6402 	    sizeof(u16), GFP_KERNEL);
6403 	if (!ioc->io_queue_num)
6404 		goto out;
6405 	/*
6406 	 * The number of NVMe page sized blocks needed is:
6407 	 *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6408 	 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6409 	 * that is placed in the main message frame.  8 is the size of each PRP
6410 	 * entry or PRP list pointer entry.  8 is subtracted from page_size
6411 	 * because of the PRP list pointer entry at the end of a page, so this
6412 	 * is not counted as a PRP entry.  The 1 added page is a round up.
6413 	 *
6414 	 * To avoid allocation failures due to the amount of memory that could
6415 	 * be required for NVMe PRP's, only each set of NVMe blocks will be
6416 	 * contiguous, so a new set is allocated for each possible I/O.
6417 	 */
6418 
6419 	ioc->chains_per_prp_buffer = 0;
6420 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6421 		nvme_blocks_needed =
6422 			(ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6423 		nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6424 		nvme_blocks_needed++;
6425 
6426 		sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6427 		ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6428 		if (!ioc->pcie_sg_lookup) {
6429 			ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6430 			goto out;
6431 		}
6432 		sz = nvme_blocks_needed * ioc->page_size;
6433 		rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6434 		if (rc == -ENOMEM)
6435 			return -ENOMEM;
6436 		else if (rc == -EAGAIN)
6437 			goto try_32bit_dma;
6438 		total_sz += sz * ioc->scsiio_depth;
6439 	}
6440 
6441 	rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6442 	if (rc == -ENOMEM)
6443 		return -ENOMEM;
6444 	else if (rc == -EAGAIN)
6445 		goto try_32bit_dma;
6446 	total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6447 		ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6448 	dinitprintk(ioc,
6449 	    ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6450 	    ioc->chain_depth, ioc->chain_segment_sz,
6451 	    (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6452 	/* sense buffers, 4 byte align */
6453 	sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6454 	rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6455 	if (rc  == -ENOMEM)
6456 		return -ENOMEM;
6457 	else if (rc == -EAGAIN)
6458 		goto try_32bit_dma;
6459 	total_sz += sense_sz;
6460 	ioc_info(ioc,
6461 	    "sense pool(0x%p)- dma(0x%llx): depth(%d),"
6462 	    "element_size(%d), pool_size(%d kB)\n",
6463 	    ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
6464 	    SCSI_SENSE_BUFFERSIZE, sz / 1024);
6465 	/* reply pool, 4 byte align */
6466 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6467 	rc = _base_allocate_reply_pool(ioc, sz);
6468 	if (rc == -ENOMEM)
6469 		return -ENOMEM;
6470 	else if (rc == -EAGAIN)
6471 		goto try_32bit_dma;
6472 	total_sz += sz;
6473 
6474 	/* reply free queue, 16 byte align */
6475 	sz = ioc->reply_free_queue_depth * 4;
6476 	rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6477 	if (rc  == -ENOMEM)
6478 		return -ENOMEM;
6479 	else if (rc == -EAGAIN)
6480 		goto try_32bit_dma;
6481 	dinitprintk(ioc,
6482 		    ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6483 			     (unsigned long long)ioc->reply_free_dma));
6484 	total_sz += sz;
6485 	if (ioc->rdpq_array_enable) {
6486 		reply_post_free_array_sz = ioc->reply_queue_count *
6487 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
6488 		rc = _base_allocate_reply_post_free_array(ioc,
6489 		    reply_post_free_array_sz);
6490 		if (rc == -ENOMEM)
6491 			return -ENOMEM;
6492 		else if (rc == -EAGAIN)
6493 			goto try_32bit_dma;
6494 	}
6495 	ioc->config_page_sz = 512;
6496 	ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6497 			ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6498 	if (!ioc->config_page) {
6499 		ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6500 		goto out;
6501 	}
6502 
6503 	ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6504 	    ioc->config_page, (unsigned long long)ioc->config_page_dma,
6505 	    ioc->config_page_sz);
6506 	total_sz += ioc->config_page_sz;
6507 
6508 	ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6509 		 total_sz / 1024);
6510 	ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6511 		 ioc->shost->can_queue, facts->RequestCredit);
6512 	ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6513 		 ioc->shost->sg_tablesize);
6514 	return 0;
6515 
6516 try_32bit_dma:
6517 	_base_release_memory_pools(ioc);
6518 	if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6519 		/* Change dma coherent mask to 32 bit and reallocate */
6520 		if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6521 			pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6522 			    pci_name(ioc->pdev));
6523 			return -ENODEV;
6524 		}
6525 	} else if (_base_reduce_hba_queue_depth(ioc) != 0)
6526 		return -ENOMEM;
6527 	goto retry_allocation;
6528 
6529  out:
6530 	return -ENOMEM;
6531 }
6532 
6533 /**
6534  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6535  * @ioc: Pointer to MPT_ADAPTER structure
6536  * @cooked: Request raw or cooked IOC state
6537  *
6538  * Return: all IOC Doorbell register bits if cooked==0, else just the
6539  * Doorbell bits in MPI_IOC_STATE_MASK.
6540  */
6541 u32
6542 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6543 {
6544 	u32 s, sc;
6545 
6546 	s = ioc->base_readl(&ioc->chip->Doorbell);
6547 	sc = s & MPI2_IOC_STATE_MASK;
6548 	return cooked ? sc : s;
6549 }
6550 
6551 /**
6552  * _base_wait_on_iocstate - waiting on a particular ioc state
6553  * @ioc: ?
6554  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6555  * @timeout: timeout in second
6556  *
6557  * Return: 0 for success, non-zero for failure.
6558  */
6559 static int
6560 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6561 {
6562 	u32 count, cntdn;
6563 	u32 current_state;
6564 
6565 	count = 0;
6566 	cntdn = 1000 * timeout;
6567 	do {
6568 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
6569 		if (current_state == ioc_state)
6570 			return 0;
6571 		if (count && current_state == MPI2_IOC_STATE_FAULT)
6572 			break;
6573 		if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6574 			break;
6575 
6576 		usleep_range(1000, 1500);
6577 		count++;
6578 	} while (--cntdn);
6579 
6580 	return current_state;
6581 }
6582 
6583 /**
6584  * _base_dump_reg_set -	This function will print hexdump of register set.
6585  * @ioc: per adapter object
6586  *
6587  * Return: nothing.
6588  */
6589 static inline void
6590 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6591 {
6592 	unsigned int i, sz = 256;
6593 	u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6594 
6595 	ioc_info(ioc, "System Register set:\n");
6596 	for (i = 0; i < (sz / sizeof(u32)); i++)
6597 		pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6598 }
6599 
6600 /**
6601  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6602  * a write to the doorbell)
6603  * @ioc: per adapter object
6604  * @timeout: timeout in seconds
6605  *
6606  * Return: 0 for success, non-zero for failure.
6607  *
6608  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6609  */
6610 
6611 static int
6612 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6613 {
6614 	u32 cntdn, count;
6615 	u32 int_status;
6616 
6617 	count = 0;
6618 	cntdn = 1000 * timeout;
6619 	do {
6620 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6621 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6622 			dhsprintk(ioc,
6623 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6624 					   __func__, count, timeout));
6625 			return 0;
6626 		}
6627 
6628 		usleep_range(1000, 1500);
6629 		count++;
6630 	} while (--cntdn);
6631 
6632 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6633 		__func__, count, int_status);
6634 	return -EFAULT;
6635 }
6636 
6637 static int
6638 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6639 {
6640 	u32 cntdn, count;
6641 	u32 int_status;
6642 
6643 	count = 0;
6644 	cntdn = 2000 * timeout;
6645 	do {
6646 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6647 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6648 			dhsprintk(ioc,
6649 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6650 					   __func__, count, timeout));
6651 			return 0;
6652 		}
6653 
6654 		udelay(500);
6655 		count++;
6656 	} while (--cntdn);
6657 
6658 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6659 		__func__, count, int_status);
6660 	return -EFAULT;
6661 
6662 }
6663 
6664 /**
6665  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6666  * @ioc: per adapter object
6667  * @timeout: timeout in second
6668  *
6669  * Return: 0 for success, non-zero for failure.
6670  *
6671  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6672  * doorbell.
6673  */
6674 static int
6675 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6676 {
6677 	u32 cntdn, count;
6678 	u32 int_status;
6679 	u32 doorbell;
6680 
6681 	count = 0;
6682 	cntdn = 1000 * timeout;
6683 	do {
6684 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6685 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6686 			dhsprintk(ioc,
6687 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6688 					   __func__, count, timeout));
6689 			return 0;
6690 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6691 			doorbell = ioc->base_readl(&ioc->chip->Doorbell);
6692 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
6693 			    MPI2_IOC_STATE_FAULT) {
6694 				mpt3sas_print_fault_code(ioc, doorbell);
6695 				return -EFAULT;
6696 			}
6697 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
6698 			    MPI2_IOC_STATE_COREDUMP) {
6699 				mpt3sas_print_coredump_info(ioc, doorbell);
6700 				return -EFAULT;
6701 			}
6702 		} else if (int_status == 0xFFFFFFFF)
6703 			goto out;
6704 
6705 		usleep_range(1000, 1500);
6706 		count++;
6707 	} while (--cntdn);
6708 
6709  out:
6710 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6711 		__func__, count, int_status);
6712 	return -EFAULT;
6713 }
6714 
6715 /**
6716  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6717  * @ioc: per adapter object
6718  * @timeout: timeout in second
6719  *
6720  * Return: 0 for success, non-zero for failure.
6721  */
6722 static int
6723 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6724 {
6725 	u32 cntdn, count;
6726 	u32 doorbell_reg;
6727 
6728 	count = 0;
6729 	cntdn = 1000 * timeout;
6730 	do {
6731 		doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
6732 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6733 			dhsprintk(ioc,
6734 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6735 					   __func__, count, timeout));
6736 			return 0;
6737 		}
6738 
6739 		usleep_range(1000, 1500);
6740 		count++;
6741 	} while (--cntdn);
6742 
6743 	ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6744 		__func__, count, doorbell_reg);
6745 	return -EFAULT;
6746 }
6747 
6748 /**
6749  * _base_send_ioc_reset - send doorbell reset
6750  * @ioc: per adapter object
6751  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6752  * @timeout: timeout in second
6753  *
6754  * Return: 0 for success, non-zero for failure.
6755  */
6756 static int
6757 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6758 {
6759 	u32 ioc_state;
6760 	int r = 0;
6761 	unsigned long flags;
6762 
6763 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6764 		ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6765 		return -EFAULT;
6766 	}
6767 
6768 	if (!(ioc->facts.IOCCapabilities &
6769 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6770 		return -EFAULT;
6771 
6772 	ioc_info(ioc, "sending message unit reset !!\n");
6773 
6774 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6775 	    &ioc->chip->Doorbell);
6776 	if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6777 		r = -EFAULT;
6778 		goto out;
6779 	}
6780 
6781 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6782 	if (ioc_state) {
6783 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6784 			__func__, ioc_state);
6785 		r = -EFAULT;
6786 		goto out;
6787 	}
6788  out:
6789 	if (r != 0) {
6790 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6791 		spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6792 		/*
6793 		 * Wait for IOC state CoreDump to clear only during
6794 		 * HBA initialization & release time.
6795 		 */
6796 		if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6797 		    MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6798 		    ioc->fault_reset_work_q == NULL)) {
6799 			spin_unlock_irqrestore(
6800 			    &ioc->ioc_reset_in_progress_lock, flags);
6801 			mpt3sas_print_coredump_info(ioc, ioc_state);
6802 			mpt3sas_base_wait_for_coredump_completion(ioc,
6803 			    __func__);
6804 			spin_lock_irqsave(
6805 			    &ioc->ioc_reset_in_progress_lock, flags);
6806 		}
6807 		spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6808 	}
6809 	ioc_info(ioc, "message unit reset: %s\n",
6810 		 r == 0 ? "SUCCESS" : "FAILED");
6811 	return r;
6812 }
6813 
6814 /**
6815  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6816  * @ioc: per adapter object
6817  * @timeout: timeout in seconds
6818  *
6819  * Return: Waits up to timeout seconds for the IOC to
6820  * become operational. Returns 0 if IOC is present
6821  * and operational; otherwise returns %-EFAULT.
6822  */
6823 
6824 int
6825 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6826 {
6827 	int wait_state_count = 0;
6828 	u32 ioc_state;
6829 
6830 	do {
6831 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6832 		if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6833 			break;
6834 
6835 		/*
6836 		 * Watchdog thread will be started after IOC Initialization, so
6837 		 * no need to wait here for IOC state to become operational
6838 		 * when IOC Initialization is on. Instead the driver will
6839 		 * return ETIME status, so that calling function can issue
6840 		 * diag reset operation and retry the command.
6841 		 */
6842 		if (ioc->is_driver_loading)
6843 			return -ETIME;
6844 
6845 		ssleep(1);
6846 		ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
6847 				__func__, ++wait_state_count);
6848 	} while (--timeout);
6849 	if (!timeout) {
6850 		ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
6851 		return -EFAULT;
6852 	}
6853 	if (wait_state_count)
6854 		ioc_info(ioc, "ioc is operational\n");
6855 	return 0;
6856 }
6857 
6858 /**
6859  * _base_handshake_req_reply_wait - send request thru doorbell interface
6860  * @ioc: per adapter object
6861  * @request_bytes: request length
6862  * @request: pointer having request payload
6863  * @reply_bytes: reply length
6864  * @reply: pointer to reply payload
6865  * @timeout: timeout in second
6866  *
6867  * Return: 0 for success, non-zero for failure.
6868  */
6869 static int
6870 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
6871 	u32 *request, int reply_bytes, u16 *reply, int timeout)
6872 {
6873 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
6874 	int i;
6875 	u8 failed;
6876 	__le32 *mfp;
6877 
6878 	/* make sure doorbell is not in use */
6879 	if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
6880 		ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
6881 		return -EFAULT;
6882 	}
6883 
6884 	/* clear pending doorbell interrupts from previous state changes */
6885 	if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
6886 	    MPI2_HIS_IOC2SYS_DB_STATUS)
6887 		writel(0, &ioc->chip->HostInterruptStatus);
6888 
6889 	/* send message to ioc */
6890 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
6891 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
6892 	    &ioc->chip->Doorbell);
6893 
6894 	if ((_base_spin_on_doorbell_int(ioc, 5))) {
6895 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6896 			__LINE__);
6897 		return -EFAULT;
6898 	}
6899 	writel(0, &ioc->chip->HostInterruptStatus);
6900 
6901 	if ((_base_wait_for_doorbell_ack(ioc, 5))) {
6902 		ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
6903 			__LINE__);
6904 		return -EFAULT;
6905 	}
6906 
6907 	/* send message 32-bits at a time */
6908 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
6909 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
6910 		if ((_base_wait_for_doorbell_ack(ioc, 5)))
6911 			failed = 1;
6912 	}
6913 
6914 	if (failed) {
6915 		ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
6916 			__LINE__);
6917 		return -EFAULT;
6918 	}
6919 
6920 	/* now wait for the reply */
6921 	if ((_base_wait_for_doorbell_int(ioc, timeout))) {
6922 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6923 			__LINE__);
6924 		return -EFAULT;
6925 	}
6926 
6927 	/* read the first two 16-bits, it gives the total length of the reply */
6928 	reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6929 	    & MPI2_DOORBELL_DATA_MASK);
6930 	writel(0, &ioc->chip->HostInterruptStatus);
6931 	if ((_base_wait_for_doorbell_int(ioc, 5))) {
6932 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6933 			__LINE__);
6934 		return -EFAULT;
6935 	}
6936 	reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6937 	    & MPI2_DOORBELL_DATA_MASK);
6938 	writel(0, &ioc->chip->HostInterruptStatus);
6939 
6940 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
6941 		if ((_base_wait_for_doorbell_int(ioc, 5))) {
6942 			ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6943 				__LINE__);
6944 			return -EFAULT;
6945 		}
6946 		if (i >=  reply_bytes/2) /* overflow case */
6947 			ioc->base_readl(&ioc->chip->Doorbell);
6948 		else
6949 			reply[i] = le16_to_cpu(
6950 			    ioc->base_readl(&ioc->chip->Doorbell)
6951 			    & MPI2_DOORBELL_DATA_MASK);
6952 		writel(0, &ioc->chip->HostInterruptStatus);
6953 	}
6954 
6955 	_base_wait_for_doorbell_int(ioc, 5);
6956 	if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
6957 		dhsprintk(ioc,
6958 			  ioc_info(ioc, "doorbell is in use (line=%d)\n",
6959 				   __LINE__));
6960 	}
6961 	writel(0, &ioc->chip->HostInterruptStatus);
6962 
6963 	if (ioc->logging_level & MPT_DEBUG_INIT) {
6964 		mfp = (__le32 *)reply;
6965 		pr_info("\toffset:data\n");
6966 		for (i = 0; i < reply_bytes/4; i++)
6967 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6968 			    le32_to_cpu(mfp[i]));
6969 	}
6970 	return 0;
6971 }
6972 
6973 /**
6974  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6975  * @ioc: per adapter object
6976  * @mpi_reply: the reply payload from FW
6977  * @mpi_request: the request payload sent to FW
6978  *
6979  * The SAS IO Unit Control Request message allows the host to perform low-level
6980  * operations, such as resets on the PHYs of the IO Unit, also allows the host
6981  * to obtain the IOC assigned device handles for a device if it has other
6982  * identifying information about the device, in addition allows the host to
6983  * remove IOC resources associated with the device.
6984  *
6985  * Return: 0 for success, non-zero for failure.
6986  */
6987 int
6988 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6989 	Mpi2SasIoUnitControlReply_t *mpi_reply,
6990 	Mpi2SasIoUnitControlRequest_t *mpi_request)
6991 {
6992 	u16 smid;
6993 	u8 issue_reset = 0;
6994 	int rc;
6995 	void *request;
6996 
6997 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6998 
6999 	mutex_lock(&ioc->base_cmds.mutex);
7000 
7001 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7002 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7003 		rc = -EAGAIN;
7004 		goto out;
7005 	}
7006 
7007 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7008 	if (rc)
7009 		goto out;
7010 
7011 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7012 	if (!smid) {
7013 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7014 		rc = -EAGAIN;
7015 		goto out;
7016 	}
7017 
7018 	rc = 0;
7019 	ioc->base_cmds.status = MPT3_CMD_PENDING;
7020 	request = mpt3sas_base_get_msg_frame(ioc, smid);
7021 	ioc->base_cmds.smid = smid;
7022 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7023 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7024 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7025 		ioc->ioc_link_reset_in_progress = 1;
7026 	init_completion(&ioc->base_cmds.done);
7027 	ioc->put_smid_default(ioc, smid);
7028 	wait_for_completion_timeout(&ioc->base_cmds.done,
7029 	    msecs_to_jiffies(10000));
7030 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7031 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7032 	    ioc->ioc_link_reset_in_progress)
7033 		ioc->ioc_link_reset_in_progress = 0;
7034 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7035 		mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7036 		    mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7037 		    issue_reset);
7038 		goto issue_host_reset;
7039 	}
7040 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7041 		memcpy(mpi_reply, ioc->base_cmds.reply,
7042 		    sizeof(Mpi2SasIoUnitControlReply_t));
7043 	else
7044 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7045 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7046 	goto out;
7047 
7048  issue_host_reset:
7049 	if (issue_reset)
7050 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7051 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7052 	rc = -EFAULT;
7053  out:
7054 	mutex_unlock(&ioc->base_cmds.mutex);
7055 	return rc;
7056 }
7057 
7058 /**
7059  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7060  * @ioc: per adapter object
7061  * @mpi_reply: the reply payload from FW
7062  * @mpi_request: the request payload sent to FW
7063  *
7064  * The SCSI Enclosure Processor request message causes the IOC to
7065  * communicate with SES devices to control LED status signals.
7066  *
7067  * Return: 0 for success, non-zero for failure.
7068  */
7069 int
7070 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7071 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7072 {
7073 	u16 smid;
7074 	u8 issue_reset = 0;
7075 	int rc;
7076 	void *request;
7077 
7078 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7079 
7080 	mutex_lock(&ioc->base_cmds.mutex);
7081 
7082 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7083 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7084 		rc = -EAGAIN;
7085 		goto out;
7086 	}
7087 
7088 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7089 	if (rc)
7090 		goto out;
7091 
7092 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7093 	if (!smid) {
7094 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7095 		rc = -EAGAIN;
7096 		goto out;
7097 	}
7098 
7099 	rc = 0;
7100 	ioc->base_cmds.status = MPT3_CMD_PENDING;
7101 	request = mpt3sas_base_get_msg_frame(ioc, smid);
7102 	ioc->base_cmds.smid = smid;
7103 	memset(request, 0, ioc->request_sz);
7104 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7105 	init_completion(&ioc->base_cmds.done);
7106 	ioc->put_smid_default(ioc, smid);
7107 	wait_for_completion_timeout(&ioc->base_cmds.done,
7108 	    msecs_to_jiffies(10000));
7109 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7110 		mpt3sas_check_cmd_timeout(ioc,
7111 		    ioc->base_cmds.status, mpi_request,
7112 		    sizeof(Mpi2SepRequest_t)/4, issue_reset);
7113 		goto issue_host_reset;
7114 	}
7115 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7116 		memcpy(mpi_reply, ioc->base_cmds.reply,
7117 		    sizeof(Mpi2SepReply_t));
7118 	else
7119 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7120 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7121 	goto out;
7122 
7123  issue_host_reset:
7124 	if (issue_reset)
7125 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7126 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7127 	rc = -EFAULT;
7128  out:
7129 	mutex_unlock(&ioc->base_cmds.mutex);
7130 	return rc;
7131 }
7132 
7133 /**
7134  * _base_get_port_facts - obtain port facts reply and save in ioc
7135  * @ioc: per adapter object
7136  * @port: ?
7137  *
7138  * Return: 0 for success, non-zero for failure.
7139  */
7140 static int
7141 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7142 {
7143 	Mpi2PortFactsRequest_t mpi_request;
7144 	Mpi2PortFactsReply_t mpi_reply;
7145 	struct mpt3sas_port_facts *pfacts;
7146 	int mpi_reply_sz, mpi_request_sz, r;
7147 
7148 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7149 
7150 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7151 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7152 	memset(&mpi_request, 0, mpi_request_sz);
7153 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7154 	mpi_request.PortNumber = port;
7155 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7156 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7157 
7158 	if (r != 0) {
7159 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7160 		return r;
7161 	}
7162 
7163 	pfacts = &ioc->pfacts[port];
7164 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7165 	pfacts->PortNumber = mpi_reply.PortNumber;
7166 	pfacts->VP_ID = mpi_reply.VP_ID;
7167 	pfacts->VF_ID = mpi_reply.VF_ID;
7168 	pfacts->MaxPostedCmdBuffers =
7169 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7170 
7171 	return 0;
7172 }
7173 
7174 /**
7175  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7176  * @ioc: per adapter object
7177  * @timeout:
7178  *
7179  * Return: 0 for success, non-zero for failure.
7180  */
7181 static int
7182 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7183 {
7184 	u32 ioc_state;
7185 	int rc;
7186 
7187 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7188 
7189 	if (ioc->pci_error_recovery) {
7190 		dfailprintk(ioc,
7191 			    ioc_info(ioc, "%s: host in pci error recovery\n",
7192 				     __func__));
7193 		return -EFAULT;
7194 	}
7195 
7196 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7197 	dhsprintk(ioc,
7198 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7199 			   __func__, ioc_state));
7200 
7201 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7202 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7203 		return 0;
7204 
7205 	if (ioc_state & MPI2_DOORBELL_USED) {
7206 		dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7207 		goto issue_diag_reset;
7208 	}
7209 
7210 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7211 		mpt3sas_print_fault_code(ioc, ioc_state &
7212 		    MPI2_DOORBELL_DATA_MASK);
7213 		goto issue_diag_reset;
7214 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7215 	    MPI2_IOC_STATE_COREDUMP) {
7216 		ioc_info(ioc,
7217 		    "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7218 		    __func__, ioc_state);
7219 		return -EFAULT;
7220 	}
7221 
7222 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7223 	if (ioc_state) {
7224 		dfailprintk(ioc,
7225 			    ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7226 				     __func__, ioc_state));
7227 		return -EFAULT;
7228 	}
7229 
7230  issue_diag_reset:
7231 	rc = _base_diag_reset(ioc);
7232 	return rc;
7233 }
7234 
7235 /**
7236  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7237  * @ioc: per adapter object
7238  *
7239  * Return: 0 for success, non-zero for failure.
7240  */
7241 static int
7242 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7243 {
7244 	Mpi2IOCFactsRequest_t mpi_request;
7245 	Mpi2IOCFactsReply_t mpi_reply;
7246 	struct mpt3sas_facts *facts;
7247 	int mpi_reply_sz, mpi_request_sz, r;
7248 
7249 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7250 
7251 	r = _base_wait_for_iocstate(ioc, 10);
7252 	if (r) {
7253 		dfailprintk(ioc,
7254 			    ioc_info(ioc, "%s: failed getting to correct state\n",
7255 				     __func__));
7256 		return r;
7257 	}
7258 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7259 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7260 	memset(&mpi_request, 0, mpi_request_sz);
7261 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7262 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7263 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7264 
7265 	if (r != 0) {
7266 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7267 		return r;
7268 	}
7269 
7270 	facts = &ioc->facts;
7271 	memset(facts, 0, sizeof(struct mpt3sas_facts));
7272 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7273 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7274 	facts->VP_ID = mpi_reply.VP_ID;
7275 	facts->VF_ID = mpi_reply.VF_ID;
7276 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7277 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7278 	facts->WhoInit = mpi_reply.WhoInit;
7279 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7280 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7281 	if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7282 	    MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7283 		ioc->combined_reply_queue = 0;
7284 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7285 	facts->MaxReplyDescriptorPostQueueDepth =
7286 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7287 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7288 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7289 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7290 		ioc->ir_firmware = 1;
7291 	if ((facts->IOCCapabilities &
7292 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7293 		ioc->rdpq_array_capable = 1;
7294 	if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7295 	    && ioc->is_aero_ioc)
7296 		ioc->atomic_desc_capable = 1;
7297 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7298 	facts->IOCRequestFrameSize =
7299 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7300 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7301 		facts->IOCMaxChainSegmentSize =
7302 			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7303 	}
7304 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7305 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7306 	ioc->shost->max_id = -1;
7307 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7308 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7309 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7310 	facts->HighPriorityCredit =
7311 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
7312 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7313 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7314 	facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7315 
7316 	/*
7317 	 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7318 	 */
7319 	ioc->page_size = 1 << facts->CurrentHostPageSize;
7320 	if (ioc->page_size == 1) {
7321 		ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7322 		ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7323 	}
7324 	dinitprintk(ioc,
7325 		    ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7326 			     facts->CurrentHostPageSize));
7327 
7328 	dinitprintk(ioc,
7329 		    ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7330 			     facts->RequestCredit, facts->MaxChainDepth));
7331 	dinitprintk(ioc,
7332 		    ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7333 			     facts->IOCRequestFrameSize * 4,
7334 			     facts->ReplyFrameSize * 4));
7335 	return 0;
7336 }
7337 
7338 /**
7339  * _base_send_ioc_init - send ioc_init to firmware
7340  * @ioc: per adapter object
7341  *
7342  * Return: 0 for success, non-zero for failure.
7343  */
7344 static int
7345 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7346 {
7347 	Mpi2IOCInitRequest_t mpi_request;
7348 	Mpi2IOCInitReply_t mpi_reply;
7349 	int i, r = 0;
7350 	ktime_t current_time;
7351 	u16 ioc_status;
7352 	u32 reply_post_free_array_sz = 0;
7353 
7354 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7355 
7356 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7357 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7358 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7359 	mpi_request.VF_ID = 0; /* TODO */
7360 	mpi_request.VP_ID = 0;
7361 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7362 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7363 	mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7364 
7365 	if (_base_is_controller_msix_enabled(ioc))
7366 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7367 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7368 	mpi_request.ReplyDescriptorPostQueueDepth =
7369 	    cpu_to_le16(ioc->reply_post_queue_depth);
7370 	mpi_request.ReplyFreeQueueDepth =
7371 	    cpu_to_le16(ioc->reply_free_queue_depth);
7372 
7373 	mpi_request.SenseBufferAddressHigh =
7374 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
7375 	mpi_request.SystemReplyAddressHigh =
7376 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
7377 	mpi_request.SystemRequestFrameBaseAddress =
7378 	    cpu_to_le64((u64)ioc->request_dma);
7379 	mpi_request.ReplyFreeQueueAddress =
7380 	    cpu_to_le64((u64)ioc->reply_free_dma);
7381 
7382 	if (ioc->rdpq_array_enable) {
7383 		reply_post_free_array_sz = ioc->reply_queue_count *
7384 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
7385 		memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7386 		for (i = 0; i < ioc->reply_queue_count; i++)
7387 			ioc->reply_post_free_array[i].RDPQBaseAddress =
7388 			    cpu_to_le64(
7389 				(u64)ioc->reply_post[i].reply_post_free_dma);
7390 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7391 		mpi_request.ReplyDescriptorPostQueueAddress =
7392 		    cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7393 	} else {
7394 		mpi_request.ReplyDescriptorPostQueueAddress =
7395 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7396 	}
7397 
7398 	/*
7399 	 * Set the flag to enable CoreDump state feature in IOC firmware.
7400 	 */
7401 	mpi_request.ConfigurationFlags |=
7402 	    cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7403 
7404 	/* This time stamp specifies number of milliseconds
7405 	 * since epoch ~ midnight January 1, 1970.
7406 	 */
7407 	current_time = ktime_get_real();
7408 	mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7409 
7410 	if (ioc->logging_level & MPT_DEBUG_INIT) {
7411 		__le32 *mfp;
7412 		int i;
7413 
7414 		mfp = (__le32 *)&mpi_request;
7415 		ioc_info(ioc, "\toffset:data\n");
7416 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7417 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7418 			    le32_to_cpu(mfp[i]));
7419 	}
7420 
7421 	r = _base_handshake_req_reply_wait(ioc,
7422 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7423 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7424 
7425 	if (r != 0) {
7426 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7427 		return r;
7428 	}
7429 
7430 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7431 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7432 	    mpi_reply.IOCLogInfo) {
7433 		ioc_err(ioc, "%s: failed\n", __func__);
7434 		r = -EIO;
7435 	}
7436 
7437 	/* Reset TimeSync Counter*/
7438 	ioc->timestamp_update_count = 0;
7439 	return r;
7440 }
7441 
7442 /**
7443  * mpt3sas_port_enable_done - command completion routine for port enable
7444  * @ioc: per adapter object
7445  * @smid: system request message index
7446  * @msix_index: MSIX table index supplied by the OS
7447  * @reply: reply message frame(lower 32bit addr)
7448  *
7449  * Return: 1 meaning mf should be freed from _base_interrupt
7450  *          0 means the mf is freed from this function.
7451  */
7452 u8
7453 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7454 	u32 reply)
7455 {
7456 	MPI2DefaultReply_t *mpi_reply;
7457 	u16 ioc_status;
7458 
7459 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7460 		return 1;
7461 
7462 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7463 	if (!mpi_reply)
7464 		return 1;
7465 
7466 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7467 		return 1;
7468 
7469 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7470 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7471 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7472 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7473 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7474 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7475 		ioc->port_enable_failed = 1;
7476 
7477 	if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7478 		ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7479 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7480 			mpt3sas_port_enable_complete(ioc);
7481 			return 1;
7482 		} else {
7483 			ioc->start_scan_failed = ioc_status;
7484 			ioc->start_scan = 0;
7485 			return 1;
7486 		}
7487 	}
7488 	complete(&ioc->port_enable_cmds.done);
7489 	return 1;
7490 }
7491 
7492 /**
7493  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7494  * @ioc: per adapter object
7495  *
7496  * Return: 0 for success, non-zero for failure.
7497  */
7498 static int
7499 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7500 {
7501 	Mpi2PortEnableRequest_t *mpi_request;
7502 	Mpi2PortEnableReply_t *mpi_reply;
7503 	int r = 0;
7504 	u16 smid;
7505 	u16 ioc_status;
7506 
7507 	ioc_info(ioc, "sending port enable !!\n");
7508 
7509 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7510 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7511 		return -EAGAIN;
7512 	}
7513 
7514 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7515 	if (!smid) {
7516 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7517 		return -EAGAIN;
7518 	}
7519 
7520 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7521 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7522 	ioc->port_enable_cmds.smid = smid;
7523 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7524 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7525 
7526 	init_completion(&ioc->port_enable_cmds.done);
7527 	ioc->put_smid_default(ioc, smid);
7528 	wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7529 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7530 		ioc_err(ioc, "%s: timeout\n", __func__);
7531 		_debug_dump_mf(mpi_request,
7532 		    sizeof(Mpi2PortEnableRequest_t)/4);
7533 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7534 			r = -EFAULT;
7535 		else
7536 			r = -ETIME;
7537 		goto out;
7538 	}
7539 
7540 	mpi_reply = ioc->port_enable_cmds.reply;
7541 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7542 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7543 		ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7544 			__func__, ioc_status);
7545 		r = -EFAULT;
7546 		goto out;
7547 	}
7548 
7549  out:
7550 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7551 	ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7552 	return r;
7553 }
7554 
7555 /**
7556  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7557  * @ioc: per adapter object
7558  *
7559  * Return: 0 for success, non-zero for failure.
7560  */
7561 int
7562 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7563 {
7564 	Mpi2PortEnableRequest_t *mpi_request;
7565 	u16 smid;
7566 
7567 	ioc_info(ioc, "sending port enable !!\n");
7568 
7569 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7570 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7571 		return -EAGAIN;
7572 	}
7573 
7574 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7575 	if (!smid) {
7576 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7577 		return -EAGAIN;
7578 	}
7579 	ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7580 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7581 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7582 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7583 	ioc->port_enable_cmds.smid = smid;
7584 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7585 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7586 
7587 	ioc->put_smid_default(ioc, smid);
7588 	return 0;
7589 }
7590 
7591 /**
7592  * _base_determine_wait_on_discovery - desposition
7593  * @ioc: per adapter object
7594  *
7595  * Decide whether to wait on discovery to complete. Used to either
7596  * locate boot device, or report volumes ahead of physical devices.
7597  *
7598  * Return: 1 for wait, 0 for don't wait.
7599  */
7600 static int
7601 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7602 {
7603 	/* We wait for discovery to complete if IR firmware is loaded.
7604 	 * The sas topology events arrive before PD events, so we need time to
7605 	 * turn on the bit in ioc->pd_handles to indicate PD
7606 	 * Also, it maybe required to report Volumes ahead of physical
7607 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7608 	 */
7609 	if (ioc->ir_firmware)
7610 		return 1;
7611 
7612 	/* if no Bios, then we don't need to wait */
7613 	if (!ioc->bios_pg3.BiosVersion)
7614 		return 0;
7615 
7616 	/* Bios is present, then we drop down here.
7617 	 *
7618 	 * If there any entries in the Bios Page 2, then we wait
7619 	 * for discovery to complete.
7620 	 */
7621 
7622 	/* Current Boot Device */
7623 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
7624 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7625 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7626 	/* Request Boot Device */
7627 	   (ioc->bios_pg2.ReqBootDeviceForm &
7628 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7629 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7630 	/* Alternate Request Boot Device */
7631 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
7632 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7633 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7634 		return 0;
7635 
7636 	return 1;
7637 }
7638 
7639 /**
7640  * _base_unmask_events - turn on notification for this event
7641  * @ioc: per adapter object
7642  * @event: firmware event
7643  *
7644  * The mask is stored in ioc->event_masks.
7645  */
7646 static void
7647 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7648 {
7649 	u32 desired_event;
7650 
7651 	if (event >= 128)
7652 		return;
7653 
7654 	desired_event = (1 << (event % 32));
7655 
7656 	if (event < 32)
7657 		ioc->event_masks[0] &= ~desired_event;
7658 	else if (event < 64)
7659 		ioc->event_masks[1] &= ~desired_event;
7660 	else if (event < 96)
7661 		ioc->event_masks[2] &= ~desired_event;
7662 	else if (event < 128)
7663 		ioc->event_masks[3] &= ~desired_event;
7664 }
7665 
7666 /**
7667  * _base_event_notification - send event notification
7668  * @ioc: per adapter object
7669  *
7670  * Return: 0 for success, non-zero for failure.
7671  */
7672 static int
7673 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7674 {
7675 	Mpi2EventNotificationRequest_t *mpi_request;
7676 	u16 smid;
7677 	int r = 0;
7678 	int i, issue_diag_reset = 0;
7679 
7680 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7681 
7682 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7683 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7684 		return -EAGAIN;
7685 	}
7686 
7687 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7688 	if (!smid) {
7689 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7690 		return -EAGAIN;
7691 	}
7692 	ioc->base_cmds.status = MPT3_CMD_PENDING;
7693 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7694 	ioc->base_cmds.smid = smid;
7695 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7696 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7697 	mpi_request->VF_ID = 0; /* TODO */
7698 	mpi_request->VP_ID = 0;
7699 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7700 		mpi_request->EventMasks[i] =
7701 		    cpu_to_le32(ioc->event_masks[i]);
7702 	init_completion(&ioc->base_cmds.done);
7703 	ioc->put_smid_default(ioc, smid);
7704 	wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7705 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7706 		ioc_err(ioc, "%s: timeout\n", __func__);
7707 		_debug_dump_mf(mpi_request,
7708 		    sizeof(Mpi2EventNotificationRequest_t)/4);
7709 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
7710 			r = -EFAULT;
7711 		else
7712 			issue_diag_reset = 1;
7713 
7714 	} else
7715 		dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7716 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7717 
7718 	if (issue_diag_reset) {
7719 		if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7720 			return -EFAULT;
7721 		if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7722 			return -EFAULT;
7723 		r = -EAGAIN;
7724 	}
7725 	return r;
7726 }
7727 
7728 /**
7729  * mpt3sas_base_validate_event_type - validating event types
7730  * @ioc: per adapter object
7731  * @event_type: firmware event
7732  *
7733  * This will turn on firmware event notification when application
7734  * ask for that event. We don't mask events that are already enabled.
7735  */
7736 void
7737 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7738 {
7739 	int i, j;
7740 	u32 event_mask, desired_event;
7741 	u8 send_update_to_fw;
7742 
7743 	for (i = 0, send_update_to_fw = 0; i <
7744 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7745 		event_mask = ~event_type[i];
7746 		desired_event = 1;
7747 		for (j = 0; j < 32; j++) {
7748 			if (!(event_mask & desired_event) &&
7749 			    (ioc->event_masks[i] & desired_event)) {
7750 				ioc->event_masks[i] &= ~desired_event;
7751 				send_update_to_fw = 1;
7752 			}
7753 			desired_event = (desired_event << 1);
7754 		}
7755 	}
7756 
7757 	if (!send_update_to_fw)
7758 		return;
7759 
7760 	mutex_lock(&ioc->base_cmds.mutex);
7761 	_base_event_notification(ioc);
7762 	mutex_unlock(&ioc->base_cmds.mutex);
7763 }
7764 
7765 /**
7766  * _base_diag_reset - the "big hammer" start of day reset
7767  * @ioc: per adapter object
7768  *
7769  * Return: 0 for success, non-zero for failure.
7770  */
7771 static int
7772 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7773 {
7774 	u32 host_diagnostic;
7775 	u32 ioc_state;
7776 	u32 count;
7777 	u32 hcb_size;
7778 
7779 	ioc_info(ioc, "sending diag reset !!\n");
7780 
7781 	pci_cfg_access_lock(ioc->pdev);
7782 
7783 	drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7784 
7785 	count = 0;
7786 	do {
7787 		/* Write magic sequence to WriteSequence register
7788 		 * Loop until in diagnostic mode
7789 		 */
7790 		drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7791 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7792 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7793 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7794 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7795 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7796 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7797 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7798 
7799 		/* wait 100 msec */
7800 		msleep(100);
7801 
7802 		if (count++ > 20) {
7803 			ioc_info(ioc,
7804 			    "Stop writing magic sequence after 20 retries\n");
7805 			_base_dump_reg_set(ioc);
7806 			goto out;
7807 		}
7808 
7809 		host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7810 		drsprintk(ioc,
7811 			  ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7812 				   count, host_diagnostic));
7813 
7814 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7815 
7816 	hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7817 
7818 	drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7819 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7820 	     &ioc->chip->HostDiagnostic);
7821 
7822 	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
7823 	msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7824 
7825 	/* Approximately 300 second max wait */
7826 	for (count = 0; count < (300000000 /
7827 		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7828 
7829 		host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7830 
7831 		if (host_diagnostic == 0xFFFFFFFF) {
7832 			ioc_info(ioc,
7833 			    "Invalid host diagnostic register value\n");
7834 			_base_dump_reg_set(ioc);
7835 			goto out;
7836 		}
7837 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7838 			break;
7839 
7840 		msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
7841 	}
7842 
7843 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
7844 
7845 		drsprintk(ioc,
7846 			  ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
7847 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
7848 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
7849 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
7850 
7851 		drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
7852 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
7853 		    &ioc->chip->HCBSize);
7854 	}
7855 
7856 	drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
7857 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
7858 	    &ioc->chip->HostDiagnostic);
7859 
7860 	drsprintk(ioc,
7861 		  ioc_info(ioc, "disable writes to the diagnostic register\n"));
7862 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7863 
7864 	drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
7865 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
7866 	if (ioc_state) {
7867 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7868 			__func__, ioc_state);
7869 		_base_dump_reg_set(ioc);
7870 		goto out;
7871 	}
7872 
7873 	pci_cfg_access_unlock(ioc->pdev);
7874 	ioc_info(ioc, "diag reset: SUCCESS\n");
7875 	return 0;
7876 
7877  out:
7878 	pci_cfg_access_unlock(ioc->pdev);
7879 	ioc_err(ioc, "diag reset: FAILED\n");
7880 	return -EFAULT;
7881 }
7882 
7883 /**
7884  * mpt3sas_base_make_ioc_ready - put controller in READY state
7885  * @ioc: per adapter object
7886  * @type: FORCE_BIG_HAMMER or SOFT_RESET
7887  *
7888  * Return: 0 for success, non-zero for failure.
7889  */
7890 int
7891 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
7892 {
7893 	u32 ioc_state;
7894 	int rc;
7895 	int count;
7896 
7897 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7898 
7899 	if (ioc->pci_error_recovery)
7900 		return 0;
7901 
7902 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7903 	dhsprintk(ioc,
7904 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7905 			   __func__, ioc_state));
7906 
7907 	/* if in RESET state, it should move to READY state shortly */
7908 	count = 0;
7909 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
7910 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
7911 		    MPI2_IOC_STATE_READY) {
7912 			if (count++ == 10) {
7913 				ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7914 					__func__, ioc_state);
7915 				return -EFAULT;
7916 			}
7917 			ssleep(1);
7918 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7919 		}
7920 	}
7921 
7922 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
7923 		return 0;
7924 
7925 	if (ioc_state & MPI2_DOORBELL_USED) {
7926 		ioc_info(ioc, "unexpected doorbell active!\n");
7927 		goto issue_diag_reset;
7928 	}
7929 
7930 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7931 		mpt3sas_print_fault_code(ioc, ioc_state &
7932 		    MPI2_DOORBELL_DATA_MASK);
7933 		goto issue_diag_reset;
7934 	}
7935 
7936 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
7937 		/*
7938 		 * if host reset is invoked while watch dog thread is waiting
7939 		 * for IOC state to be changed to Fault state then driver has
7940 		 * to wait here for CoreDump state to clear otherwise reset
7941 		 * will be issued to the FW and FW move the IOC state to
7942 		 * reset state without copying the FW logs to coredump region.
7943 		 */
7944 		if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
7945 			mpt3sas_print_coredump_info(ioc, ioc_state &
7946 			    MPI2_DOORBELL_DATA_MASK);
7947 			mpt3sas_base_wait_for_coredump_completion(ioc,
7948 			    __func__);
7949 		}
7950 		goto issue_diag_reset;
7951 	}
7952 
7953 	if (type == FORCE_BIG_HAMMER)
7954 		goto issue_diag_reset;
7955 
7956 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7957 		if (!(_base_send_ioc_reset(ioc,
7958 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
7959 			return 0;
7960 	}
7961 
7962  issue_diag_reset:
7963 	rc = _base_diag_reset(ioc);
7964 	return rc;
7965 }
7966 
7967 /**
7968  * _base_make_ioc_operational - put controller in OPERATIONAL state
7969  * @ioc: per adapter object
7970  *
7971  * Return: 0 for success, non-zero for failure.
7972  */
7973 static int
7974 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
7975 {
7976 	int r, i, index, rc;
7977 	unsigned long	flags;
7978 	u32 reply_address;
7979 	u16 smid;
7980 	struct _tr_list *delayed_tr, *delayed_tr_next;
7981 	struct _sc_list *delayed_sc, *delayed_sc_next;
7982 	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7983 	u8 hide_flag;
7984 	struct adapter_reply_queue *reply_q;
7985 	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7986 
7987 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7988 
7989 	/* clean the delayed target reset list */
7990 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7991 	    &ioc->delayed_tr_list, list) {
7992 		list_del(&delayed_tr->list);
7993 		kfree(delayed_tr);
7994 	}
7995 
7996 
7997 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7998 	    &ioc->delayed_tr_volume_list, list) {
7999 		list_del(&delayed_tr->list);
8000 		kfree(delayed_tr);
8001 	}
8002 
8003 	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
8004 	    &ioc->delayed_sc_list, list) {
8005 		list_del(&delayed_sc->list);
8006 		kfree(delayed_sc);
8007 	}
8008 
8009 	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
8010 	    &ioc->delayed_event_ack_list, list) {
8011 		list_del(&delayed_event_ack->list);
8012 		kfree(delayed_event_ack);
8013 	}
8014 
8015 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8016 
8017 	/* hi-priority queue */
8018 	INIT_LIST_HEAD(&ioc->hpr_free_list);
8019 	smid = ioc->hi_priority_smid;
8020 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8021 		ioc->hpr_lookup[i].cb_idx = 0xFF;
8022 		ioc->hpr_lookup[i].smid = smid;
8023 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8024 		    &ioc->hpr_free_list);
8025 	}
8026 
8027 	/* internal queue */
8028 	INIT_LIST_HEAD(&ioc->internal_free_list);
8029 	smid = ioc->internal_smid;
8030 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
8031 		ioc->internal_lookup[i].cb_idx = 0xFF;
8032 		ioc->internal_lookup[i].smid = smid;
8033 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
8034 		    &ioc->internal_free_list);
8035 	}
8036 
8037 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8038 
8039 	/* initialize Reply Free Queue */
8040 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
8041 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
8042 	    ioc->reply_sz) {
8043 		ioc->reply_free[i] = cpu_to_le32(reply_address);
8044 		if (ioc->is_mcpu_endpoint)
8045 			_base_clone_reply_to_sys_mem(ioc,
8046 					reply_address, i);
8047 	}
8048 
8049 	/* initialize reply queues */
8050 	if (ioc->is_driver_loading)
8051 		_base_assign_reply_queues(ioc);
8052 
8053 	/* initialize Reply Post Free Queue */
8054 	index = 0;
8055 	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8056 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8057 		/*
8058 		 * If RDPQ is enabled, switch to the next allocation.
8059 		 * Otherwise advance within the contiguous region.
8060 		 */
8061 		if (ioc->rdpq_array_enable) {
8062 			reply_q->reply_post_free =
8063 				ioc->reply_post[index++].reply_post_free;
8064 		} else {
8065 			reply_q->reply_post_free = reply_post_free_contig;
8066 			reply_post_free_contig += ioc->reply_post_queue_depth;
8067 		}
8068 
8069 		reply_q->reply_post_host_index = 0;
8070 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
8071 			reply_q->reply_post_free[i].Words =
8072 			    cpu_to_le64(ULLONG_MAX);
8073 		if (!_base_is_controller_msix_enabled(ioc))
8074 			goto skip_init_reply_post_free_queue;
8075 	}
8076  skip_init_reply_post_free_queue:
8077 
8078 	r = _base_send_ioc_init(ioc);
8079 	if (r) {
8080 		/*
8081 		 * No need to check IOC state for fault state & issue
8082 		 * diag reset during host reset. This check is need
8083 		 * only during driver load time.
8084 		 */
8085 		if (!ioc->is_driver_loading)
8086 			return r;
8087 
8088 		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8089 		if (rc || (_base_send_ioc_init(ioc)))
8090 			return r;
8091 	}
8092 
8093 	/* initialize reply free host index */
8094 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8095 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8096 
8097 	/* initialize reply post host index */
8098 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8099 		if (ioc->combined_reply_queue)
8100 			writel((reply_q->msix_index & 7)<<
8101 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
8102 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8103 		else
8104 			writel(reply_q->msix_index <<
8105 				MPI2_RPHI_MSIX_INDEX_SHIFT,
8106 				&ioc->chip->ReplyPostHostIndex);
8107 
8108 		if (!_base_is_controller_msix_enabled(ioc))
8109 			goto skip_init_reply_post_host_index;
8110 	}
8111 
8112  skip_init_reply_post_host_index:
8113 
8114 	mpt3sas_base_unmask_interrupts(ioc);
8115 
8116 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8117 		r = _base_display_fwpkg_version(ioc);
8118 		if (r)
8119 			return r;
8120 	}
8121 
8122 	r = _base_static_config_pages(ioc);
8123 	if (r)
8124 		return r;
8125 
8126 	r = _base_event_notification(ioc);
8127 	if (r)
8128 		return r;
8129 
8130 	if (!ioc->shost_recovery) {
8131 
8132 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8133 		    == 0x80) {
8134 			hide_flag = (u8) (
8135 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8136 			    MFG_PAGE10_HIDE_SSDS_MASK);
8137 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8138 				ioc->mfg_pg10_hide_flag = hide_flag;
8139 		}
8140 
8141 		ioc->wait_for_discovery_to_complete =
8142 		    _base_determine_wait_on_discovery(ioc);
8143 
8144 		return r; /* scan_start and scan_finished support */
8145 	}
8146 
8147 	r = _base_send_port_enable(ioc);
8148 	if (r)
8149 		return r;
8150 
8151 	return r;
8152 }
8153 
8154 /**
8155  * mpt3sas_base_free_resources - free resources controller resources
8156  * @ioc: per adapter object
8157  */
8158 void
8159 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8160 {
8161 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8162 
8163 	/* synchronizing freeing resource with pci_access_mutex lock */
8164 	mutex_lock(&ioc->pci_access_mutex);
8165 	if (ioc->chip_phys && ioc->chip) {
8166 		mpt3sas_base_mask_interrupts(ioc);
8167 		ioc->shost_recovery = 1;
8168 		mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8169 		ioc->shost_recovery = 0;
8170 	}
8171 
8172 	mpt3sas_base_unmap_resources(ioc);
8173 	mutex_unlock(&ioc->pci_access_mutex);
8174 	return;
8175 }
8176 
8177 /**
8178  * mpt3sas_base_attach - attach controller instance
8179  * @ioc: per adapter object
8180  *
8181  * Return: 0 for success, non-zero for failure.
8182  */
8183 int
8184 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8185 {
8186 	int r, i, rc;
8187 	int cpu_id, last_cpu_id = 0;
8188 
8189 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8190 
8191 	/* setup cpu_msix_table */
8192 	ioc->cpu_count = num_online_cpus();
8193 	for_each_online_cpu(cpu_id)
8194 		last_cpu_id = cpu_id;
8195 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
8196 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8197 	ioc->reply_queue_count = 1;
8198 	if (!ioc->cpu_msix_table) {
8199 		ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8200 		r = -ENOMEM;
8201 		goto out_free_resources;
8202 	}
8203 
8204 	if (ioc->is_warpdrive) {
8205 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8206 		    sizeof(resource_size_t *), GFP_KERNEL);
8207 		if (!ioc->reply_post_host_index) {
8208 			ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8209 			r = -ENOMEM;
8210 			goto out_free_resources;
8211 		}
8212 	}
8213 
8214 	ioc->smp_affinity_enable = smp_affinity_enable;
8215 
8216 	ioc->rdpq_array_enable_assigned = 0;
8217 	ioc->use_32bit_dma = false;
8218 	ioc->dma_mask = 64;
8219 	if (ioc->is_aero_ioc)
8220 		ioc->base_readl = &_base_readl_aero;
8221 	else
8222 		ioc->base_readl = &_base_readl;
8223 	r = mpt3sas_base_map_resources(ioc);
8224 	if (r)
8225 		goto out_free_resources;
8226 
8227 	pci_set_drvdata(ioc->pdev, ioc->shost);
8228 	r = _base_get_ioc_facts(ioc);
8229 	if (r) {
8230 		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8231 		if (rc || (_base_get_ioc_facts(ioc)))
8232 			goto out_free_resources;
8233 	}
8234 
8235 	switch (ioc->hba_mpi_version_belonged) {
8236 	case MPI2_VERSION:
8237 		ioc->build_sg_scmd = &_base_build_sg_scmd;
8238 		ioc->build_sg = &_base_build_sg;
8239 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8240 		ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8241 		break;
8242 	case MPI25_VERSION:
8243 	case MPI26_VERSION:
8244 		/*
8245 		 * In SAS3.0,
8246 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8247 		 * Target Status - all require the IEEE formatted scatter gather
8248 		 * elements.
8249 		 */
8250 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8251 		ioc->build_sg = &_base_build_sg_ieee;
8252 		ioc->build_nvme_prp = &_base_build_nvme_prp;
8253 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8254 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8255 		if (ioc->high_iops_queues)
8256 			ioc->get_msix_index_for_smlio =
8257 					&_base_get_high_iops_msix_index;
8258 		else
8259 			ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8260 		break;
8261 	}
8262 	if (ioc->atomic_desc_capable) {
8263 		ioc->put_smid_default = &_base_put_smid_default_atomic;
8264 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8265 		ioc->put_smid_fast_path =
8266 				&_base_put_smid_fast_path_atomic;
8267 		ioc->put_smid_hi_priority =
8268 				&_base_put_smid_hi_priority_atomic;
8269 	} else {
8270 		ioc->put_smid_default = &_base_put_smid_default;
8271 		ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8272 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8273 		if (ioc->is_mcpu_endpoint)
8274 			ioc->put_smid_scsi_io =
8275 				&_base_put_smid_mpi_ep_scsi_io;
8276 		else
8277 			ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8278 	}
8279 	/*
8280 	 * These function pointers for other requests that don't
8281 	 * the require IEEE scatter gather elements.
8282 	 *
8283 	 * For example Configuration Pages and SAS IOUNIT Control don't.
8284 	 */
8285 	ioc->build_sg_mpi = &_base_build_sg;
8286 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8287 
8288 	r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8289 	if (r)
8290 		goto out_free_resources;
8291 
8292 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8293 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8294 	if (!ioc->pfacts) {
8295 		r = -ENOMEM;
8296 		goto out_free_resources;
8297 	}
8298 
8299 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8300 		r = _base_get_port_facts(ioc, i);
8301 		if (r) {
8302 			rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8303 			if (rc || (_base_get_port_facts(ioc, i)))
8304 				goto out_free_resources;
8305 		}
8306 	}
8307 
8308 	r = _base_allocate_memory_pools(ioc);
8309 	if (r)
8310 		goto out_free_resources;
8311 
8312 	if (irqpoll_weight > 0)
8313 		ioc->thresh_hold = irqpoll_weight;
8314 	else
8315 		ioc->thresh_hold = ioc->hba_queue_depth/4;
8316 
8317 	_base_init_irqpolls(ioc);
8318 	init_waitqueue_head(&ioc->reset_wq);
8319 
8320 	/* allocate memory pd handle bitmask list */
8321 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8322 	if (ioc->facts.MaxDevHandle % 8)
8323 		ioc->pd_handles_sz++;
8324 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8325 	    GFP_KERNEL);
8326 	if (!ioc->pd_handles) {
8327 		r = -ENOMEM;
8328 		goto out_free_resources;
8329 	}
8330 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8331 	    GFP_KERNEL);
8332 	if (!ioc->blocking_handles) {
8333 		r = -ENOMEM;
8334 		goto out_free_resources;
8335 	}
8336 
8337 	/* allocate memory for pending OS device add list */
8338 	ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8339 	if (ioc->facts.MaxDevHandle % 8)
8340 		ioc->pend_os_device_add_sz++;
8341 	ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8342 	    GFP_KERNEL);
8343 	if (!ioc->pend_os_device_add) {
8344 		r = -ENOMEM;
8345 		goto out_free_resources;
8346 	}
8347 
8348 	ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8349 	ioc->device_remove_in_progress =
8350 		kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8351 	if (!ioc->device_remove_in_progress) {
8352 		r = -ENOMEM;
8353 		goto out_free_resources;
8354 	}
8355 
8356 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
8357 
8358 	/* base internal command bits */
8359 	mutex_init(&ioc->base_cmds.mutex);
8360 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8361 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8362 
8363 	/* port_enable command bits */
8364 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8365 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8366 
8367 	/* transport internal command bits */
8368 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8369 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8370 	mutex_init(&ioc->transport_cmds.mutex);
8371 
8372 	/* scsih internal command bits */
8373 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8374 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8375 	mutex_init(&ioc->scsih_cmds.mutex);
8376 
8377 	/* task management internal command bits */
8378 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8379 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8380 	mutex_init(&ioc->tm_cmds.mutex);
8381 
8382 	/* config page internal command bits */
8383 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8384 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8385 	mutex_init(&ioc->config_cmds.mutex);
8386 
8387 	/* ctl module internal command bits */
8388 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8389 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8390 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8391 	mutex_init(&ioc->ctl_cmds.mutex);
8392 
8393 	if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8394 	    !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8395 	    !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8396 	    !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8397 		r = -ENOMEM;
8398 		goto out_free_resources;
8399 	}
8400 
8401 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8402 		ioc->event_masks[i] = -1;
8403 
8404 	/* here we enable the events we care about */
8405 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8406 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8407 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8408 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8409 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8410 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8411 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8412 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8413 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8414 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8415 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8416 	_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8417 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8418 	if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8419 		if (ioc->is_gen35_ioc) {
8420 			_base_unmask_events(ioc,
8421 				MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8422 			_base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8423 			_base_unmask_events(ioc,
8424 				MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8425 		}
8426 	}
8427 	r = _base_make_ioc_operational(ioc);
8428 	if (r == -EAGAIN) {
8429 		r = _base_make_ioc_operational(ioc);
8430 		if (r)
8431 			goto out_free_resources;
8432 	}
8433 
8434 	/*
8435 	 * Copy current copy of IOCFacts in prev_fw_facts
8436 	 * and it will be used during online firmware upgrade.
8437 	 */
8438 	memcpy(&ioc->prev_fw_facts, &ioc->facts,
8439 	    sizeof(struct mpt3sas_facts));
8440 
8441 	ioc->non_operational_loop = 0;
8442 	ioc->ioc_coredump_loop = 0;
8443 	ioc->got_task_abort_from_ioctl = 0;
8444 	return 0;
8445 
8446  out_free_resources:
8447 
8448 	ioc->remove_host = 1;
8449 
8450 	mpt3sas_base_free_resources(ioc);
8451 	_base_release_memory_pools(ioc);
8452 	pci_set_drvdata(ioc->pdev, NULL);
8453 	kfree(ioc->cpu_msix_table);
8454 	if (ioc->is_warpdrive)
8455 		kfree(ioc->reply_post_host_index);
8456 	kfree(ioc->pd_handles);
8457 	kfree(ioc->blocking_handles);
8458 	kfree(ioc->device_remove_in_progress);
8459 	kfree(ioc->pend_os_device_add);
8460 	kfree(ioc->tm_cmds.reply);
8461 	kfree(ioc->transport_cmds.reply);
8462 	kfree(ioc->scsih_cmds.reply);
8463 	kfree(ioc->config_cmds.reply);
8464 	kfree(ioc->base_cmds.reply);
8465 	kfree(ioc->port_enable_cmds.reply);
8466 	kfree(ioc->ctl_cmds.reply);
8467 	kfree(ioc->ctl_cmds.sense);
8468 	kfree(ioc->pfacts);
8469 	ioc->ctl_cmds.reply = NULL;
8470 	ioc->base_cmds.reply = NULL;
8471 	ioc->tm_cmds.reply = NULL;
8472 	ioc->scsih_cmds.reply = NULL;
8473 	ioc->transport_cmds.reply = NULL;
8474 	ioc->config_cmds.reply = NULL;
8475 	ioc->pfacts = NULL;
8476 	return r;
8477 }
8478 
8479 
8480 /**
8481  * mpt3sas_base_detach - remove controller instance
8482  * @ioc: per adapter object
8483  */
8484 void
8485 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8486 {
8487 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8488 
8489 	mpt3sas_base_stop_watchdog(ioc);
8490 	mpt3sas_base_free_resources(ioc);
8491 	_base_release_memory_pools(ioc);
8492 	mpt3sas_free_enclosure_list(ioc);
8493 	pci_set_drvdata(ioc->pdev, NULL);
8494 	kfree(ioc->cpu_msix_table);
8495 	if (ioc->is_warpdrive)
8496 		kfree(ioc->reply_post_host_index);
8497 	kfree(ioc->pd_handles);
8498 	kfree(ioc->blocking_handles);
8499 	kfree(ioc->device_remove_in_progress);
8500 	kfree(ioc->pend_os_device_add);
8501 	kfree(ioc->pfacts);
8502 	kfree(ioc->ctl_cmds.reply);
8503 	kfree(ioc->ctl_cmds.sense);
8504 	kfree(ioc->base_cmds.reply);
8505 	kfree(ioc->port_enable_cmds.reply);
8506 	kfree(ioc->tm_cmds.reply);
8507 	kfree(ioc->transport_cmds.reply);
8508 	kfree(ioc->scsih_cmds.reply);
8509 	kfree(ioc->config_cmds.reply);
8510 }
8511 
8512 /**
8513  * _base_pre_reset_handler - pre reset handler
8514  * @ioc: per adapter object
8515  */
8516 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8517 {
8518 	mpt3sas_scsih_pre_reset_handler(ioc);
8519 	mpt3sas_ctl_pre_reset_handler(ioc);
8520 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8521 }
8522 
8523 /**
8524  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8525  * @ioc: per adapter object
8526  */
8527 static void
8528 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8529 {
8530 	dtmprintk(ioc,
8531 	    ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8532 	if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8533 		ioc->transport_cmds.status |= MPT3_CMD_RESET;
8534 		mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8535 		complete(&ioc->transport_cmds.done);
8536 	}
8537 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8538 		ioc->base_cmds.status |= MPT3_CMD_RESET;
8539 		mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8540 		complete(&ioc->base_cmds.done);
8541 	}
8542 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8543 		ioc->port_enable_failed = 1;
8544 		ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8545 		mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8546 		if (ioc->is_driver_loading) {
8547 			ioc->start_scan_failed =
8548 				MPI2_IOCSTATUS_INTERNAL_ERROR;
8549 			ioc->start_scan = 0;
8550 		} else {
8551 			complete(&ioc->port_enable_cmds.done);
8552 		}
8553 	}
8554 	if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8555 		ioc->config_cmds.status |= MPT3_CMD_RESET;
8556 		mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8557 		ioc->config_cmds.smid = USHRT_MAX;
8558 		complete(&ioc->config_cmds.done);
8559 	}
8560 }
8561 
8562 /**
8563  * _base_clear_outstanding_commands - clear all outstanding commands
8564  * @ioc: per adapter object
8565  */
8566 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8567 {
8568 	mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8569 	mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8570 	_base_clear_outstanding_mpt_commands(ioc);
8571 }
8572 
8573 /**
8574  * _base_reset_done_handler - reset done handler
8575  * @ioc: per adapter object
8576  */
8577 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8578 {
8579 	mpt3sas_scsih_reset_done_handler(ioc);
8580 	mpt3sas_ctl_reset_done_handler(ioc);
8581 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8582 }
8583 
8584 /**
8585  * mpt3sas_wait_for_commands_to_complete - reset controller
8586  * @ioc: Pointer to MPT_ADAPTER structure
8587  *
8588  * This function is waiting 10s for all pending commands to complete
8589  * prior to putting controller in reset.
8590  */
8591 void
8592 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8593 {
8594 	u32 ioc_state;
8595 
8596 	ioc->pending_io_count = 0;
8597 
8598 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8599 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8600 		return;
8601 
8602 	/* pending command count */
8603 	ioc->pending_io_count = scsi_host_busy(ioc->shost);
8604 
8605 	if (!ioc->pending_io_count)
8606 		return;
8607 
8608 	/* wait for pending commands to complete */
8609 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8610 }
8611 
8612 /**
8613  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8614  *     attributes during online firmware upgrade and update the corresponding
8615  *     IOC variables accordingly.
8616  *
8617  * @ioc: Pointer to MPT_ADAPTER structure
8618  */
8619 static int
8620 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8621 {
8622 	u16 pd_handles_sz;
8623 	void *pd_handles = NULL, *blocking_handles = NULL;
8624 	void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8625 	struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8626 
8627 	if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8628 		pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8629 		if (ioc->facts.MaxDevHandle % 8)
8630 			pd_handles_sz++;
8631 
8632 		pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8633 		    GFP_KERNEL);
8634 		if (!pd_handles) {
8635 			ioc_info(ioc,
8636 			    "Unable to allocate the memory for pd_handles of sz: %d\n",
8637 			    pd_handles_sz);
8638 			return -ENOMEM;
8639 		}
8640 		memset(pd_handles + ioc->pd_handles_sz, 0,
8641 		    (pd_handles_sz - ioc->pd_handles_sz));
8642 		ioc->pd_handles = pd_handles;
8643 
8644 		blocking_handles = krealloc(ioc->blocking_handles,
8645 		    pd_handles_sz, GFP_KERNEL);
8646 		if (!blocking_handles) {
8647 			ioc_info(ioc,
8648 			    "Unable to allocate the memory for "
8649 			    "blocking_handles of sz: %d\n",
8650 			    pd_handles_sz);
8651 			return -ENOMEM;
8652 		}
8653 		memset(blocking_handles + ioc->pd_handles_sz, 0,
8654 		    (pd_handles_sz - ioc->pd_handles_sz));
8655 		ioc->blocking_handles = blocking_handles;
8656 		ioc->pd_handles_sz = pd_handles_sz;
8657 
8658 		pend_os_device_add = krealloc(ioc->pend_os_device_add,
8659 		    pd_handles_sz, GFP_KERNEL);
8660 		if (!pend_os_device_add) {
8661 			ioc_info(ioc,
8662 			    "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8663 			    pd_handles_sz);
8664 			return -ENOMEM;
8665 		}
8666 		memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8667 		    (pd_handles_sz - ioc->pend_os_device_add_sz));
8668 		ioc->pend_os_device_add = pend_os_device_add;
8669 		ioc->pend_os_device_add_sz = pd_handles_sz;
8670 
8671 		device_remove_in_progress = krealloc(
8672 		    ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8673 		if (!device_remove_in_progress) {
8674 			ioc_info(ioc,
8675 			    "Unable to allocate the memory for "
8676 			    "device_remove_in_progress of sz: %d\n "
8677 			    , pd_handles_sz);
8678 			return -ENOMEM;
8679 		}
8680 		memset(device_remove_in_progress +
8681 		    ioc->device_remove_in_progress_sz, 0,
8682 		    (pd_handles_sz - ioc->device_remove_in_progress_sz));
8683 		ioc->device_remove_in_progress = device_remove_in_progress;
8684 		ioc->device_remove_in_progress_sz = pd_handles_sz;
8685 	}
8686 
8687 	memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8688 	return 0;
8689 }
8690 
8691 /**
8692  * mpt3sas_base_hard_reset_handler - reset controller
8693  * @ioc: Pointer to MPT_ADAPTER structure
8694  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8695  *
8696  * Return: 0 for success, non-zero for failure.
8697  */
8698 int
8699 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8700 	enum reset_type type)
8701 {
8702 	int r;
8703 	unsigned long flags;
8704 	u32 ioc_state;
8705 	u8 is_fault = 0, is_trigger = 0;
8706 
8707 	dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8708 
8709 	if (ioc->pci_error_recovery) {
8710 		ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8711 		r = 0;
8712 		goto out_unlocked;
8713 	}
8714 
8715 	if (mpt3sas_fwfault_debug)
8716 		mpt3sas_halt_firmware(ioc);
8717 
8718 	/* wait for an active reset in progress to complete */
8719 	mutex_lock(&ioc->reset_in_progress_mutex);
8720 
8721 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8722 	ioc->shost_recovery = 1;
8723 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8724 
8725 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8726 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8727 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8728 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
8729 		is_trigger = 1;
8730 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8731 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8732 		    (ioc_state & MPI2_IOC_STATE_MASK) ==
8733 		    MPI2_IOC_STATE_COREDUMP) {
8734 			is_fault = 1;
8735 			ioc->htb_rel.trigger_info_dwords[1] =
8736 			    (ioc_state & MPI2_DOORBELL_DATA_MASK);
8737 		}
8738 	}
8739 	_base_pre_reset_handler(ioc);
8740 	mpt3sas_wait_for_commands_to_complete(ioc);
8741 	mpt3sas_base_mask_interrupts(ioc);
8742 	mpt3sas_base_pause_mq_polling(ioc);
8743 	r = mpt3sas_base_make_ioc_ready(ioc, type);
8744 	if (r)
8745 		goto out;
8746 	_base_clear_outstanding_commands(ioc);
8747 
8748 	/* If this hard reset is called while port enable is active, then
8749 	 * there is no reason to call make_ioc_operational
8750 	 */
8751 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
8752 		ioc->remove_host = 1;
8753 		r = -EFAULT;
8754 		goto out;
8755 	}
8756 	r = _base_get_ioc_facts(ioc);
8757 	if (r)
8758 		goto out;
8759 
8760 	r = _base_check_ioc_facts_changes(ioc);
8761 	if (r) {
8762 		ioc_info(ioc,
8763 		    "Some of the parameters got changed in this new firmware"
8764 		    " image and it requires system reboot\n");
8765 		goto out;
8766 	}
8767 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8768 		panic("%s: Issue occurred with flashing controller firmware."
8769 		      "Please reboot the system and ensure that the correct"
8770 		      " firmware version is running\n", ioc->name);
8771 
8772 	r = _base_make_ioc_operational(ioc);
8773 	if (!r)
8774 		_base_reset_done_handler(ioc);
8775 
8776  out:
8777 	ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8778 
8779 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8780 	ioc->shost_recovery = 0;
8781 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8782 	ioc->ioc_reset_count++;
8783 	mutex_unlock(&ioc->reset_in_progress_mutex);
8784 	mpt3sas_base_resume_mq_polling(ioc);
8785 
8786  out_unlocked:
8787 	if ((r == 0) && is_trigger) {
8788 		if (is_fault)
8789 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8790 		else
8791 			mpt3sas_trigger_master(ioc,
8792 			    MASTER_TRIGGER_ADAPTER_RESET);
8793 	}
8794 	dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8795 	return r;
8796 }
8797