1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <linux/aer.h>
63 
64 
65 #include "mpt3sas_base.h"
66 
67 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
68 
69 
70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71 
72  /* maximum controller queue depth */
73 #define MAX_HBA_QUEUE_DEPTH	30000
74 #define MAX_CHAIN_DEPTH		100000
75 static int max_queue_depth = -1;
76 module_param(max_queue_depth, int, 0);
77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78 
79 static int max_sgl_entries = -1;
80 module_param(max_sgl_entries, int, 0);
81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82 
83 static int msix_disable = -1;
84 module_param(msix_disable, int, 0);
85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86 
87 static int smp_affinity_enable = 1;
88 module_param(smp_affinity_enable, int, S_IRUGO);
89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
90 
91 static int max_msix_vectors = -1;
92 module_param(max_msix_vectors, int, 0);
93 MODULE_PARM_DESC(max_msix_vectors,
94 	" max msix vectors");
95 
96 static int mpt3sas_fwfault_debug;
97 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
98 	" enable detection of firmware fault and halt firmware - (default=0)");
99 
100 static int
101 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
102 
103 /**
104  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
105  *
106  */
107 static int
108 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
109 {
110 	int ret = param_set_int(val, kp);
111 	struct MPT3SAS_ADAPTER *ioc;
112 
113 	if (ret)
114 		return ret;
115 
116 	/* global ioc spinlock to protect controller list on list operations */
117 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
118 	spin_lock(&gioc_lock);
119 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
120 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
121 	spin_unlock(&gioc_lock);
122 	return 0;
123 }
124 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
125 	param_get_int, &mpt3sas_fwfault_debug, 0644);
126 
127 /**
128  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
129  * @arg: input argument, used to derive ioc
130  *
131  * Return 0 if controller is removed from pci subsystem.
132  * Return -1 for other case.
133  */
134 static int mpt3sas_remove_dead_ioc_func(void *arg)
135 {
136 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
137 	struct pci_dev *pdev;
138 
139 	if ((ioc == NULL))
140 		return -1;
141 
142 	pdev = ioc->pdev;
143 	if ((pdev == NULL))
144 		return -1;
145 	pci_stop_and_remove_bus_device_locked(pdev);
146 	return 0;
147 }
148 
149 /**
150  * _base_fault_reset_work - workq handling ioc fault conditions
151  * @work: input argument, used to derive ioc
152  * Context: sleep.
153  *
154  * Return nothing.
155  */
156 static void
157 _base_fault_reset_work(struct work_struct *work)
158 {
159 	struct MPT3SAS_ADAPTER *ioc =
160 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
161 	unsigned long	 flags;
162 	u32 doorbell;
163 	int rc;
164 	struct task_struct *p;
165 
166 
167 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
168 	if (ioc->shost_recovery || ioc->pci_error_recovery)
169 		goto rearm_timer;
170 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
171 
172 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
173 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
174 		pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
175 		    ioc->name);
176 
177 		/* It may be possible that EEH recovery can resolve some of
178 		 * pci bus failure issues rather removing the dead ioc function
179 		 * by considering controller is in a non-operational state. So
180 		 * here priority is given to the EEH recovery. If it doesn't
181 		 * not resolve this issue, mpt3sas driver will consider this
182 		 * controller to non-operational state and remove the dead ioc
183 		 * function.
184 		 */
185 		if (ioc->non_operational_loop++ < 5) {
186 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
187 							 flags);
188 			goto rearm_timer;
189 		}
190 
191 		/*
192 		 * Call _scsih_flush_pending_cmds callback so that we flush all
193 		 * pending commands back to OS. This call is required to aovid
194 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
195 		 * and this call is safe since dead ioc will never return any
196 		 * command back from HW.
197 		 */
198 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
199 		/*
200 		 * Set remove_host flag early since kernel thread will
201 		 * take some time to execute.
202 		 */
203 		ioc->remove_host = 1;
204 		/*Remove the Dead Host */
205 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
206 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
207 		if (IS_ERR(p))
208 			pr_err(MPT3SAS_FMT
209 			"%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
210 			ioc->name, __func__);
211 		else
212 			pr_err(MPT3SAS_FMT
213 			"%s: Running mpt3sas_dead_ioc thread success !!!!\n",
214 			ioc->name, __func__);
215 		return; /* don't rearm timer */
216 	}
217 
218 	ioc->non_operational_loop = 0;
219 
220 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
221 		rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
222 		pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
223 		    __func__, (rc == 0) ? "success" : "failed");
224 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
225 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
226 			mpt3sas_base_fault_info(ioc, doorbell &
227 			    MPI2_DOORBELL_DATA_MASK);
228 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
229 		    MPI2_IOC_STATE_OPERATIONAL)
230 			return; /* don't rearm timer */
231 	}
232 
233 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
234  rearm_timer:
235 	if (ioc->fault_reset_work_q)
236 		queue_delayed_work(ioc->fault_reset_work_q,
237 		    &ioc->fault_reset_work,
238 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
239 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
240 }
241 
242 /**
243  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
244  * @ioc: per adapter object
245  * Context: sleep.
246  *
247  * Return nothing.
248  */
249 void
250 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
251 {
252 	unsigned long	 flags;
253 
254 	if (ioc->fault_reset_work_q)
255 		return;
256 
257 	/* initialize fault polling */
258 
259 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
260 	snprintf(ioc->fault_reset_work_q_name,
261 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
262 	    ioc->driver_name, ioc->id);
263 	ioc->fault_reset_work_q =
264 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
265 	if (!ioc->fault_reset_work_q) {
266 		pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
267 		    ioc->name, __func__, __LINE__);
268 			return;
269 	}
270 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
271 	if (ioc->fault_reset_work_q)
272 		queue_delayed_work(ioc->fault_reset_work_q,
273 		    &ioc->fault_reset_work,
274 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
275 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
276 }
277 
278 /**
279  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
280  * @ioc: per adapter object
281  * Context: sleep.
282  *
283  * Return nothing.
284  */
285 void
286 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
287 {
288 	unsigned long flags;
289 	struct workqueue_struct *wq;
290 
291 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
292 	wq = ioc->fault_reset_work_q;
293 	ioc->fault_reset_work_q = NULL;
294 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
295 	if (wq) {
296 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
297 			flush_workqueue(wq);
298 		destroy_workqueue(wq);
299 	}
300 }
301 
302 /**
303  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
304  * @ioc: per adapter object
305  * @fault_code: fault code
306  *
307  * Return nothing.
308  */
309 void
310 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
311 {
312 	pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
313 	    ioc->name, fault_code);
314 }
315 
316 /**
317  * mpt3sas_halt_firmware - halt's mpt controller firmware
318  * @ioc: per adapter object
319  *
320  * For debugging timeout related issues.  Writing 0xCOFFEE00
321  * to the doorbell register will halt controller firmware. With
322  * the purpose to stop both driver and firmware, the enduser can
323  * obtain a ring buffer from controller UART.
324  */
325 void
326 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
327 {
328 	u32 doorbell;
329 
330 	if (!ioc->fwfault_debug)
331 		return;
332 
333 	dump_stack();
334 
335 	doorbell = readl(&ioc->chip->Doorbell);
336 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
337 		mpt3sas_base_fault_info(ioc , doorbell);
338 	else {
339 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
340 		pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
341 			ioc->name);
342 	}
343 
344 	if (ioc->fwfault_debug == 2)
345 		for (;;)
346 			;
347 	else
348 		panic("panic in %s\n", __func__);
349 }
350 
351 /**
352  * _base_sas_ioc_info - verbose translation of the ioc status
353  * @ioc: per adapter object
354  * @mpi_reply: reply mf payload returned from firmware
355  * @request_hdr: request mf
356  *
357  * Return nothing.
358  */
359 static void
360 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
361 	MPI2RequestHeader_t *request_hdr)
362 {
363 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
364 	    MPI2_IOCSTATUS_MASK;
365 	char *desc = NULL;
366 	u16 frame_sz;
367 	char *func_str = NULL;
368 
369 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
370 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
371 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
372 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
373 		return;
374 
375 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
376 		return;
377 
378 	switch (ioc_status) {
379 
380 /****************************************************************************
381 *  Common IOCStatus values for all replies
382 ****************************************************************************/
383 
384 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
385 		desc = "invalid function";
386 		break;
387 	case MPI2_IOCSTATUS_BUSY:
388 		desc = "busy";
389 		break;
390 	case MPI2_IOCSTATUS_INVALID_SGL:
391 		desc = "invalid sgl";
392 		break;
393 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
394 		desc = "internal error";
395 		break;
396 	case MPI2_IOCSTATUS_INVALID_VPID:
397 		desc = "invalid vpid";
398 		break;
399 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
400 		desc = "insufficient resources";
401 		break;
402 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
403 		desc = "insufficient power";
404 		break;
405 	case MPI2_IOCSTATUS_INVALID_FIELD:
406 		desc = "invalid field";
407 		break;
408 	case MPI2_IOCSTATUS_INVALID_STATE:
409 		desc = "invalid state";
410 		break;
411 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
412 		desc = "op state not supported";
413 		break;
414 
415 /****************************************************************************
416 *  Config IOCStatus values
417 ****************************************************************************/
418 
419 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
420 		desc = "config invalid action";
421 		break;
422 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
423 		desc = "config invalid type";
424 		break;
425 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
426 		desc = "config invalid page";
427 		break;
428 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
429 		desc = "config invalid data";
430 		break;
431 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
432 		desc = "config no defaults";
433 		break;
434 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
435 		desc = "config cant commit";
436 		break;
437 
438 /****************************************************************************
439 *  SCSI IO Reply
440 ****************************************************************************/
441 
442 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
443 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
444 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
445 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
446 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
447 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
448 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
449 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
450 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
451 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
452 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
453 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
454 		break;
455 
456 /****************************************************************************
457 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
458 ****************************************************************************/
459 
460 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
461 		desc = "eedp guard error";
462 		break;
463 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
464 		desc = "eedp ref tag error";
465 		break;
466 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
467 		desc = "eedp app tag error";
468 		break;
469 
470 /****************************************************************************
471 *  SCSI Target values
472 ****************************************************************************/
473 
474 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
475 		desc = "target invalid io index";
476 		break;
477 	case MPI2_IOCSTATUS_TARGET_ABORTED:
478 		desc = "target aborted";
479 		break;
480 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
481 		desc = "target no conn retryable";
482 		break;
483 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
484 		desc = "target no connection";
485 		break;
486 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
487 		desc = "target xfer count mismatch";
488 		break;
489 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
490 		desc = "target data offset error";
491 		break;
492 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
493 		desc = "target too much write data";
494 		break;
495 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
496 		desc = "target iu too short";
497 		break;
498 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
499 		desc = "target ack nak timeout";
500 		break;
501 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
502 		desc = "target nak received";
503 		break;
504 
505 /****************************************************************************
506 *  Serial Attached SCSI values
507 ****************************************************************************/
508 
509 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
510 		desc = "smp request failed";
511 		break;
512 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
513 		desc = "smp data overrun";
514 		break;
515 
516 /****************************************************************************
517 *  Diagnostic Buffer Post / Diagnostic Release values
518 ****************************************************************************/
519 
520 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
521 		desc = "diagnostic released";
522 		break;
523 	default:
524 		break;
525 	}
526 
527 	if (!desc)
528 		return;
529 
530 	switch (request_hdr->Function) {
531 	case MPI2_FUNCTION_CONFIG:
532 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
533 		func_str = "config_page";
534 		break;
535 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
536 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
537 		func_str = "task_mgmt";
538 		break;
539 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
540 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
541 		func_str = "sas_iounit_ctl";
542 		break;
543 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
544 		frame_sz = sizeof(Mpi2SepRequest_t);
545 		func_str = "enclosure";
546 		break;
547 	case MPI2_FUNCTION_IOC_INIT:
548 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
549 		func_str = "ioc_init";
550 		break;
551 	case MPI2_FUNCTION_PORT_ENABLE:
552 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
553 		func_str = "port_enable";
554 		break;
555 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
556 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
557 		func_str = "smp_passthru";
558 		break;
559 	default:
560 		frame_sz = 32;
561 		func_str = "unknown";
562 		break;
563 	}
564 
565 	pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
566 		ioc->name, desc, ioc_status, request_hdr, func_str);
567 
568 	_debug_dump_mf(request_hdr, frame_sz/4);
569 }
570 
571 /**
572  * _base_display_event_data - verbose translation of firmware asyn events
573  * @ioc: per adapter object
574  * @mpi_reply: reply mf payload returned from firmware
575  *
576  * Return nothing.
577  */
578 static void
579 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
580 	Mpi2EventNotificationReply_t *mpi_reply)
581 {
582 	char *desc = NULL;
583 	u16 event;
584 
585 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
586 		return;
587 
588 	event = le16_to_cpu(mpi_reply->Event);
589 
590 	switch (event) {
591 	case MPI2_EVENT_LOG_DATA:
592 		desc = "Log Data";
593 		break;
594 	case MPI2_EVENT_STATE_CHANGE:
595 		desc = "Status Change";
596 		break;
597 	case MPI2_EVENT_HARD_RESET_RECEIVED:
598 		desc = "Hard Reset Received";
599 		break;
600 	case MPI2_EVENT_EVENT_CHANGE:
601 		desc = "Event Change";
602 		break;
603 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
604 		desc = "Device Status Change";
605 		break;
606 	case MPI2_EVENT_IR_OPERATION_STATUS:
607 		if (!ioc->hide_ir_msg)
608 			desc = "IR Operation Status";
609 		break;
610 	case MPI2_EVENT_SAS_DISCOVERY:
611 	{
612 		Mpi2EventDataSasDiscovery_t *event_data =
613 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
614 		pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
615 		    (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
616 		    "start" : "stop");
617 		if (event_data->DiscoveryStatus)
618 			pr_info("discovery_status(0x%08x)",
619 			    le32_to_cpu(event_data->DiscoveryStatus));
620 			pr_info("\n");
621 		return;
622 	}
623 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
624 		desc = "SAS Broadcast Primitive";
625 		break;
626 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
627 		desc = "SAS Init Device Status Change";
628 		break;
629 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
630 		desc = "SAS Init Table Overflow";
631 		break;
632 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
633 		desc = "SAS Topology Change List";
634 		break;
635 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
636 		desc = "SAS Enclosure Device Status Change";
637 		break;
638 	case MPI2_EVENT_IR_VOLUME:
639 		if (!ioc->hide_ir_msg)
640 			desc = "IR Volume";
641 		break;
642 	case MPI2_EVENT_IR_PHYSICAL_DISK:
643 		if (!ioc->hide_ir_msg)
644 			desc = "IR Physical Disk";
645 		break;
646 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
647 		if (!ioc->hide_ir_msg)
648 			desc = "IR Configuration Change List";
649 		break;
650 	case MPI2_EVENT_LOG_ENTRY_ADDED:
651 		if (!ioc->hide_ir_msg)
652 			desc = "Log Entry Added";
653 		break;
654 	case MPI2_EVENT_TEMP_THRESHOLD:
655 		desc = "Temperature Threshold";
656 		break;
657 	case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
658 		desc = "Active cable exception";
659 		break;
660 	}
661 
662 	if (!desc)
663 		return;
664 
665 	pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
666 }
667 
668 /**
669  * _base_sas_log_info - verbose translation of firmware log info
670  * @ioc: per adapter object
671  * @log_info: log info
672  *
673  * Return nothing.
674  */
675 static void
676 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
677 {
678 	union loginfo_type {
679 		u32	loginfo;
680 		struct {
681 			u32	subcode:16;
682 			u32	code:8;
683 			u32	originator:4;
684 			u32	bus_type:4;
685 		} dw;
686 	};
687 	union loginfo_type sas_loginfo;
688 	char *originator_str = NULL;
689 
690 	sas_loginfo.loginfo = log_info;
691 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
692 		return;
693 
694 	/* each nexus loss loginfo */
695 	if (log_info == 0x31170000)
696 		return;
697 
698 	/* eat the loginfos associated with task aborts */
699 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
700 	    0x31140000 || log_info == 0x31130000))
701 		return;
702 
703 	switch (sas_loginfo.dw.originator) {
704 	case 0:
705 		originator_str = "IOP";
706 		break;
707 	case 1:
708 		originator_str = "PL";
709 		break;
710 	case 2:
711 		if (!ioc->hide_ir_msg)
712 			originator_str = "IR";
713 		else
714 			originator_str = "WarpDrive";
715 		break;
716 	}
717 
718 	pr_warn(MPT3SAS_FMT
719 		"log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
720 		ioc->name, log_info,
721 	     originator_str, sas_loginfo.dw.code,
722 	     sas_loginfo.dw.subcode);
723 }
724 
725 /**
726  * _base_display_reply_info -
727  * @ioc: per adapter object
728  * @smid: system request message index
729  * @msix_index: MSIX table index supplied by the OS
730  * @reply: reply message frame(lower 32bit addr)
731  *
732  * Return nothing.
733  */
734 static void
735 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
736 	u32 reply)
737 {
738 	MPI2DefaultReply_t *mpi_reply;
739 	u16 ioc_status;
740 	u32 loginfo = 0;
741 
742 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
743 	if (unlikely(!mpi_reply)) {
744 		pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
745 		    ioc->name, __FILE__, __LINE__, __func__);
746 		return;
747 	}
748 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
749 
750 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
751 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
752 		_base_sas_ioc_info(ioc , mpi_reply,
753 		   mpt3sas_base_get_msg_frame(ioc, smid));
754 	}
755 
756 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
757 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
758 		_base_sas_log_info(ioc, loginfo);
759 	}
760 
761 	if (ioc_status || loginfo) {
762 		ioc_status &= MPI2_IOCSTATUS_MASK;
763 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
764 	}
765 }
766 
767 /**
768  * mpt3sas_base_done - base internal command completion routine
769  * @ioc: per adapter object
770  * @smid: system request message index
771  * @msix_index: MSIX table index supplied by the OS
772  * @reply: reply message frame(lower 32bit addr)
773  *
774  * Return 1 meaning mf should be freed from _base_interrupt
775  *        0 means the mf is freed from this function.
776  */
777 u8
778 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
779 	u32 reply)
780 {
781 	MPI2DefaultReply_t *mpi_reply;
782 
783 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
784 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
785 		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
786 
787 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
788 		return 1;
789 
790 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
791 	if (mpi_reply) {
792 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
793 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
794 	}
795 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
796 
797 	complete(&ioc->base_cmds.done);
798 	return 1;
799 }
800 
801 /**
802  * _base_async_event - main callback handler for firmware asyn events
803  * @ioc: per adapter object
804  * @msix_index: MSIX table index supplied by the OS
805  * @reply: reply message frame(lower 32bit addr)
806  *
807  * Return 1 meaning mf should be freed from _base_interrupt
808  *        0 means the mf is freed from this function.
809  */
810 static u8
811 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
812 {
813 	Mpi2EventNotificationReply_t *mpi_reply;
814 	Mpi2EventAckRequest_t *ack_request;
815 	u16 smid;
816 	struct _event_ack_list *delayed_event_ack;
817 
818 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
819 	if (!mpi_reply)
820 		return 1;
821 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
822 		return 1;
823 
824 	_base_display_event_data(ioc, mpi_reply);
825 
826 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
827 		goto out;
828 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
829 	if (!smid) {
830 		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
831 					GFP_ATOMIC);
832 		if (!delayed_event_ack)
833 			goto out;
834 		INIT_LIST_HEAD(&delayed_event_ack->list);
835 		delayed_event_ack->Event = mpi_reply->Event;
836 		delayed_event_ack->EventContext = mpi_reply->EventContext;
837 		list_add_tail(&delayed_event_ack->list,
838 				&ioc->delayed_event_ack_list);
839 		dewtprintk(ioc, pr_info(MPT3SAS_FMT
840 				"DELAYED: EVENT ACK: event (0x%04x)\n",
841 				ioc->name, le16_to_cpu(mpi_reply->Event)));
842 		goto out;
843 	}
844 
845 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
846 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
847 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
848 	ack_request->Event = mpi_reply->Event;
849 	ack_request->EventContext = mpi_reply->EventContext;
850 	ack_request->VF_ID = 0;  /* TODO */
851 	ack_request->VP_ID = 0;
852 	ioc->put_smid_default(ioc, smid);
853 
854  out:
855 
856 	/* scsih callback handler */
857 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
858 
859 	/* ctl callback handler */
860 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
861 
862 	return 1;
863 }
864 
865 /**
866  * _base_get_cb_idx - obtain the callback index
867  * @ioc: per adapter object
868  * @smid: system request message index
869  *
870  * Return callback index.
871  */
872 static u8
873 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
874 {
875 	int i;
876 	u8 cb_idx;
877 
878 	if (smid < ioc->hi_priority_smid) {
879 		i = smid - 1;
880 		cb_idx = ioc->scsi_lookup[i].cb_idx;
881 	} else if (smid < ioc->internal_smid) {
882 		i = smid - ioc->hi_priority_smid;
883 		cb_idx = ioc->hpr_lookup[i].cb_idx;
884 	} else if (smid <= ioc->hba_queue_depth) {
885 		i = smid - ioc->internal_smid;
886 		cb_idx = ioc->internal_lookup[i].cb_idx;
887 	} else
888 		cb_idx = 0xFF;
889 	return cb_idx;
890 }
891 
892 /**
893  * _base_mask_interrupts - disable interrupts
894  * @ioc: per adapter object
895  *
896  * Disabling ResetIRQ, Reply and Doorbell Interrupts
897  *
898  * Return nothing.
899  */
900 static void
901 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
902 {
903 	u32 him_register;
904 
905 	ioc->mask_interrupts = 1;
906 	him_register = readl(&ioc->chip->HostInterruptMask);
907 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
908 	writel(him_register, &ioc->chip->HostInterruptMask);
909 	readl(&ioc->chip->HostInterruptMask);
910 }
911 
912 /**
913  * _base_unmask_interrupts - enable interrupts
914  * @ioc: per adapter object
915  *
916  * Enabling only Reply Interrupts
917  *
918  * Return nothing.
919  */
920 static void
921 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
922 {
923 	u32 him_register;
924 
925 	him_register = readl(&ioc->chip->HostInterruptMask);
926 	him_register &= ~MPI2_HIM_RIM;
927 	writel(him_register, &ioc->chip->HostInterruptMask);
928 	ioc->mask_interrupts = 0;
929 }
930 
931 union reply_descriptor {
932 	u64 word;
933 	struct {
934 		u32 low;
935 		u32 high;
936 	} u;
937 };
938 
939 /**
940  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
941  * @irq: irq number (not used)
942  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
943  * @r: pt_regs pointer (not used)
944  *
945  * Return IRQ_HANDLE if processed, else IRQ_NONE.
946  */
947 static irqreturn_t
948 _base_interrupt(int irq, void *bus_id)
949 {
950 	struct adapter_reply_queue *reply_q = bus_id;
951 	union reply_descriptor rd;
952 	u32 completed_cmds;
953 	u8 request_desript_type;
954 	u16 smid;
955 	u8 cb_idx;
956 	u32 reply;
957 	u8 msix_index = reply_q->msix_index;
958 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
959 	Mpi2ReplyDescriptorsUnion_t *rpf;
960 	u8 rc;
961 
962 	if (ioc->mask_interrupts)
963 		return IRQ_NONE;
964 
965 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
966 		return IRQ_NONE;
967 
968 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
969 	request_desript_type = rpf->Default.ReplyFlags
970 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
971 	if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
972 		atomic_dec(&reply_q->busy);
973 		return IRQ_NONE;
974 	}
975 
976 	completed_cmds = 0;
977 	cb_idx = 0xFF;
978 	do {
979 		rd.word = le64_to_cpu(rpf->Words);
980 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
981 			goto out;
982 		reply = 0;
983 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
984 		if (request_desript_type ==
985 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
986 		    request_desript_type ==
987 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
988 			cb_idx = _base_get_cb_idx(ioc, smid);
989 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
990 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
991 				rc = mpt_callbacks[cb_idx](ioc, smid,
992 				    msix_index, 0);
993 				if (rc)
994 					mpt3sas_base_free_smid(ioc, smid);
995 			}
996 		} else if (request_desript_type ==
997 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
998 			reply = le32_to_cpu(
999 			    rpf->AddressReply.ReplyFrameAddress);
1000 			if (reply > ioc->reply_dma_max_address ||
1001 			    reply < ioc->reply_dma_min_address)
1002 				reply = 0;
1003 			if (smid) {
1004 				cb_idx = _base_get_cb_idx(ioc, smid);
1005 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1006 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1007 					rc = mpt_callbacks[cb_idx](ioc, smid,
1008 					    msix_index, reply);
1009 					if (reply)
1010 						_base_display_reply_info(ioc,
1011 						    smid, msix_index, reply);
1012 					if (rc)
1013 						mpt3sas_base_free_smid(ioc,
1014 						    smid);
1015 				}
1016 			} else {
1017 				_base_async_event(ioc, msix_index, reply);
1018 			}
1019 
1020 			/* reply free queue handling */
1021 			if (reply) {
1022 				ioc->reply_free_host_index =
1023 				    (ioc->reply_free_host_index ==
1024 				    (ioc->reply_free_queue_depth - 1)) ?
1025 				    0 : ioc->reply_free_host_index + 1;
1026 				ioc->reply_free[ioc->reply_free_host_index] =
1027 				    cpu_to_le32(reply);
1028 				wmb();
1029 				writel(ioc->reply_free_host_index,
1030 				    &ioc->chip->ReplyFreeHostIndex);
1031 			}
1032 		}
1033 
1034 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1035 		reply_q->reply_post_host_index =
1036 		    (reply_q->reply_post_host_index ==
1037 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1038 		    reply_q->reply_post_host_index + 1;
1039 		request_desript_type =
1040 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1041 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1042 		completed_cmds++;
1043 		/* Update the reply post host index after continuously
1044 		 * processing the threshold number of Reply Descriptors.
1045 		 * So that FW can find enough entries to post the Reply
1046 		 * Descriptors in the reply descriptor post queue.
1047 		 */
1048 		if (completed_cmds > ioc->hba_queue_depth/3) {
1049 			if (ioc->combined_reply_queue) {
1050 				writel(reply_q->reply_post_host_index |
1051 						((msix_index  & 7) <<
1052 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1053 				    ioc->replyPostRegisterIndex[msix_index/8]);
1054 			} else {
1055 				writel(reply_q->reply_post_host_index |
1056 						(msix_index <<
1057 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1058 						&ioc->chip->ReplyPostHostIndex);
1059 			}
1060 			completed_cmds = 1;
1061 		}
1062 		if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1063 			goto out;
1064 		if (!reply_q->reply_post_host_index)
1065 			rpf = reply_q->reply_post_free;
1066 		else
1067 			rpf++;
1068 	} while (1);
1069 
1070  out:
1071 
1072 	if (!completed_cmds) {
1073 		atomic_dec(&reply_q->busy);
1074 		return IRQ_NONE;
1075 	}
1076 
1077 	wmb();
1078 	if (ioc->is_warpdrive) {
1079 		writel(reply_q->reply_post_host_index,
1080 		ioc->reply_post_host_index[msix_index]);
1081 		atomic_dec(&reply_q->busy);
1082 		return IRQ_HANDLED;
1083 	}
1084 
1085 	/* Update Reply Post Host Index.
1086 	 * For those HBA's which support combined reply queue feature
1087 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1088 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1089 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1090 	 * 2. Then update this register with new reply host index value
1091 	 *    in ReplyPostIndex field and the MSIxIndex field with
1092 	 *    msix_index value reduced to a value between 0 and 7,
1093 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1094 	 *    Host Index Register supports 8 MSI-X vectors.
1095 	 *
1096 	 * For other HBA's just update the Reply Post Host Index register with
1097 	 * new reply host index value in ReplyPostIndex Field and msix_index
1098 	 * value in MSIxIndex field.
1099 	 */
1100 	if (ioc->combined_reply_queue)
1101 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1102 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1103 			ioc->replyPostRegisterIndex[msix_index/8]);
1104 	else
1105 		writel(reply_q->reply_post_host_index | (msix_index <<
1106 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1107 			&ioc->chip->ReplyPostHostIndex);
1108 	atomic_dec(&reply_q->busy);
1109 	return IRQ_HANDLED;
1110 }
1111 
1112 /**
1113  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1114  * @ioc: per adapter object
1115  *
1116  */
1117 static inline int
1118 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1119 {
1120 	return (ioc->facts.IOCCapabilities &
1121 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1122 }
1123 
1124 /**
1125  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1126  * @ioc: per adapter object
1127  * Context: non ISR conext
1128  *
1129  * Called when a Task Management request has completed.
1130  *
1131  * Return nothing.
1132  */
1133 void
1134 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1135 {
1136 	struct adapter_reply_queue *reply_q;
1137 
1138 	/* If MSIX capability is turned off
1139 	 * then multi-queues are not enabled
1140 	 */
1141 	if (!_base_is_controller_msix_enabled(ioc))
1142 		return;
1143 
1144 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1145 		if (ioc->shost_recovery || ioc->remove_host ||
1146 				ioc->pci_error_recovery)
1147 			return;
1148 		/* TMs are on msix_index == 0 */
1149 		if (reply_q->msix_index == 0)
1150 			continue;
1151 		synchronize_irq(reply_q->vector);
1152 	}
1153 }
1154 
1155 /**
1156  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1157  * @cb_idx: callback index
1158  *
1159  * Return nothing.
1160  */
1161 void
1162 mpt3sas_base_release_callback_handler(u8 cb_idx)
1163 {
1164 	mpt_callbacks[cb_idx] = NULL;
1165 }
1166 
1167 /**
1168  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1169  * @cb_func: callback function
1170  *
1171  * Returns cb_func.
1172  */
1173 u8
1174 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1175 {
1176 	u8 cb_idx;
1177 
1178 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1179 		if (mpt_callbacks[cb_idx] == NULL)
1180 			break;
1181 
1182 	mpt_callbacks[cb_idx] = cb_func;
1183 	return cb_idx;
1184 }
1185 
1186 /**
1187  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1188  *
1189  * Return nothing.
1190  */
1191 void
1192 mpt3sas_base_initialize_callback_handler(void)
1193 {
1194 	u8 cb_idx;
1195 
1196 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1197 		mpt3sas_base_release_callback_handler(cb_idx);
1198 }
1199 
1200 
1201 /**
1202  * _base_build_zero_len_sge - build zero length sg entry
1203  * @ioc: per adapter object
1204  * @paddr: virtual address for SGE
1205  *
1206  * Create a zero length scatter gather entry to insure the IOCs hardware has
1207  * something to use if the target device goes brain dead and tries
1208  * to send data even when none is asked for.
1209  *
1210  * Return nothing.
1211  */
1212 static void
1213 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1214 {
1215 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1216 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1217 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1218 	    MPI2_SGE_FLAGS_SHIFT);
1219 	ioc->base_add_sg_single(paddr, flags_length, -1);
1220 }
1221 
1222 /**
1223  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1224  * @paddr: virtual address for SGE
1225  * @flags_length: SGE flags and data transfer length
1226  * @dma_addr: Physical address
1227  *
1228  * Return nothing.
1229  */
1230 static void
1231 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1232 {
1233 	Mpi2SGESimple32_t *sgel = paddr;
1234 
1235 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1236 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1237 	sgel->FlagsLength = cpu_to_le32(flags_length);
1238 	sgel->Address = cpu_to_le32(dma_addr);
1239 }
1240 
1241 
1242 /**
1243  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1244  * @paddr: virtual address for SGE
1245  * @flags_length: SGE flags and data transfer length
1246  * @dma_addr: Physical address
1247  *
1248  * Return nothing.
1249  */
1250 static void
1251 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1252 {
1253 	Mpi2SGESimple64_t *sgel = paddr;
1254 
1255 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1256 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1257 	sgel->FlagsLength = cpu_to_le32(flags_length);
1258 	sgel->Address = cpu_to_le64(dma_addr);
1259 }
1260 
1261 /**
1262  * _base_get_chain_buffer_tracker - obtain chain tracker
1263  * @ioc: per adapter object
1264  * @smid: smid associated to an IO request
1265  *
1266  * Returns chain tracker(from ioc->free_chain_list)
1267  */
1268 static struct chain_tracker *
1269 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1270 {
1271 	struct chain_tracker *chain_req;
1272 	unsigned long flags;
1273 
1274 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1275 	if (list_empty(&ioc->free_chain_list)) {
1276 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1277 		dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1278 			"chain buffers not available\n", ioc->name));
1279 		return NULL;
1280 	}
1281 	chain_req = list_entry(ioc->free_chain_list.next,
1282 	    struct chain_tracker, tracker_list);
1283 	list_del_init(&chain_req->tracker_list);
1284 	list_add_tail(&chain_req->tracker_list,
1285 	    &ioc->scsi_lookup[smid - 1].chain_list);
1286 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1287 	return chain_req;
1288 }
1289 
1290 
1291 /**
1292  * _base_build_sg - build generic sg
1293  * @ioc: per adapter object
1294  * @psge: virtual address for SGE
1295  * @data_out_dma: physical address for WRITES
1296  * @data_out_sz: data xfer size for WRITES
1297  * @data_in_dma: physical address for READS
1298  * @data_in_sz: data xfer size for READS
1299  *
1300  * Return nothing.
1301  */
1302 static void
1303 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1304 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1305 	size_t data_in_sz)
1306 {
1307 	u32 sgl_flags;
1308 
1309 	if (!data_out_sz && !data_in_sz) {
1310 		_base_build_zero_len_sge(ioc, psge);
1311 		return;
1312 	}
1313 
1314 	if (data_out_sz && data_in_sz) {
1315 		/* WRITE sgel first */
1316 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1317 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1318 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1319 		ioc->base_add_sg_single(psge, sgl_flags |
1320 		    data_out_sz, data_out_dma);
1321 
1322 		/* incr sgel */
1323 		psge += ioc->sge_size;
1324 
1325 		/* READ sgel last */
1326 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1327 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1328 		    MPI2_SGE_FLAGS_END_OF_LIST);
1329 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1330 		ioc->base_add_sg_single(psge, sgl_flags |
1331 		    data_in_sz, data_in_dma);
1332 	} else if (data_out_sz) /* WRITE */ {
1333 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1334 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1335 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1336 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1337 		ioc->base_add_sg_single(psge, sgl_flags |
1338 		    data_out_sz, data_out_dma);
1339 	} else if (data_in_sz) /* READ */ {
1340 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1341 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1342 		    MPI2_SGE_FLAGS_END_OF_LIST);
1343 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1344 		ioc->base_add_sg_single(psge, sgl_flags |
1345 		    data_in_sz, data_in_dma);
1346 	}
1347 }
1348 
1349 /* IEEE format sgls */
1350 
1351 /**
1352  * _base_add_sg_single_ieee - add sg element for IEEE format
1353  * @paddr: virtual address for SGE
1354  * @flags: SGE flags
1355  * @chain_offset: number of 128 byte elements from start of segment
1356  * @length: data transfer length
1357  * @dma_addr: Physical address
1358  *
1359  * Return nothing.
1360  */
1361 static void
1362 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1363 	dma_addr_t dma_addr)
1364 {
1365 	Mpi25IeeeSgeChain64_t *sgel = paddr;
1366 
1367 	sgel->Flags = flags;
1368 	sgel->NextChainOffset = chain_offset;
1369 	sgel->Length = cpu_to_le32(length);
1370 	sgel->Address = cpu_to_le64(dma_addr);
1371 }
1372 
1373 /**
1374  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1375  * @ioc: per adapter object
1376  * @paddr: virtual address for SGE
1377  *
1378  * Create a zero length scatter gather entry to insure the IOCs hardware has
1379  * something to use if the target device goes brain dead and tries
1380  * to send data even when none is asked for.
1381  *
1382  * Return nothing.
1383  */
1384 static void
1385 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1386 {
1387 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1388 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1389 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1390 
1391 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1392 }
1393 
1394 /**
1395  * _base_build_sg_scmd - main sg creation routine
1396  * @ioc: per adapter object
1397  * @scmd: scsi command
1398  * @smid: system request message index
1399  * Context: none.
1400  *
1401  * The main routine that builds scatter gather table from a given
1402  * scsi request sent via the .queuecommand main handler.
1403  *
1404  * Returns 0 success, anything else error
1405  */
1406 static int
1407 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1408 		struct scsi_cmnd *scmd, u16 smid)
1409 {
1410 	Mpi2SCSIIORequest_t *mpi_request;
1411 	dma_addr_t chain_dma;
1412 	struct scatterlist *sg_scmd;
1413 	void *sg_local, *chain;
1414 	u32 chain_offset;
1415 	u32 chain_length;
1416 	u32 chain_flags;
1417 	int sges_left;
1418 	u32 sges_in_segment;
1419 	u32 sgl_flags;
1420 	u32 sgl_flags_last_element;
1421 	u32 sgl_flags_end_buffer;
1422 	struct chain_tracker *chain_req;
1423 
1424 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1425 
1426 	/* init scatter gather flags */
1427 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1428 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
1429 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1430 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1431 	    << MPI2_SGE_FLAGS_SHIFT;
1432 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1433 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1434 	    << MPI2_SGE_FLAGS_SHIFT;
1435 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1436 
1437 	sg_scmd = scsi_sglist(scmd);
1438 	sges_left = scsi_dma_map(scmd);
1439 	if (sges_left < 0) {
1440 		sdev_printk(KERN_ERR, scmd->device,
1441 		 "pci_map_sg failed: request for %d bytes!\n",
1442 		 scsi_bufflen(scmd));
1443 		return -ENOMEM;
1444 	}
1445 
1446 	sg_local = &mpi_request->SGL;
1447 	sges_in_segment = ioc->max_sges_in_main_message;
1448 	if (sges_left <= sges_in_segment)
1449 		goto fill_in_last_segment;
1450 
1451 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1452 	    (sges_in_segment * ioc->sge_size))/4;
1453 
1454 	/* fill in main message segment when there is a chain following */
1455 	while (sges_in_segment) {
1456 		if (sges_in_segment == 1)
1457 			ioc->base_add_sg_single(sg_local,
1458 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
1459 			    sg_dma_address(sg_scmd));
1460 		else
1461 			ioc->base_add_sg_single(sg_local, sgl_flags |
1462 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1463 		sg_scmd = sg_next(sg_scmd);
1464 		sg_local += ioc->sge_size;
1465 		sges_left--;
1466 		sges_in_segment--;
1467 	}
1468 
1469 	/* initializing the chain flags and pointers */
1470 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1471 	chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1472 	if (!chain_req)
1473 		return -1;
1474 	chain = chain_req->chain_buffer;
1475 	chain_dma = chain_req->chain_buffer_dma;
1476 	do {
1477 		sges_in_segment = (sges_left <=
1478 		    ioc->max_sges_in_chain_message) ? sges_left :
1479 		    ioc->max_sges_in_chain_message;
1480 		chain_offset = (sges_left == sges_in_segment) ?
1481 		    0 : (sges_in_segment * ioc->sge_size)/4;
1482 		chain_length = sges_in_segment * ioc->sge_size;
1483 		if (chain_offset) {
1484 			chain_offset = chain_offset <<
1485 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
1486 			chain_length += ioc->sge_size;
1487 		}
1488 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1489 		    chain_length, chain_dma);
1490 		sg_local = chain;
1491 		if (!chain_offset)
1492 			goto fill_in_last_segment;
1493 
1494 		/* fill in chain segments */
1495 		while (sges_in_segment) {
1496 			if (sges_in_segment == 1)
1497 				ioc->base_add_sg_single(sg_local,
1498 				    sgl_flags_last_element |
1499 				    sg_dma_len(sg_scmd),
1500 				    sg_dma_address(sg_scmd));
1501 			else
1502 				ioc->base_add_sg_single(sg_local, sgl_flags |
1503 				    sg_dma_len(sg_scmd),
1504 				    sg_dma_address(sg_scmd));
1505 			sg_scmd = sg_next(sg_scmd);
1506 			sg_local += ioc->sge_size;
1507 			sges_left--;
1508 			sges_in_segment--;
1509 		}
1510 
1511 		chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1512 		if (!chain_req)
1513 			return -1;
1514 		chain = chain_req->chain_buffer;
1515 		chain_dma = chain_req->chain_buffer_dma;
1516 	} while (1);
1517 
1518 
1519  fill_in_last_segment:
1520 
1521 	/* fill the last segment */
1522 	while (sges_left) {
1523 		if (sges_left == 1)
1524 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1525 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1526 		else
1527 			ioc->base_add_sg_single(sg_local, sgl_flags |
1528 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1529 		sg_scmd = sg_next(sg_scmd);
1530 		sg_local += ioc->sge_size;
1531 		sges_left--;
1532 	}
1533 
1534 	return 0;
1535 }
1536 
1537 /**
1538  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1539  * @ioc: per adapter object
1540  * @scmd: scsi command
1541  * @smid: system request message index
1542  * Context: none.
1543  *
1544  * The main routine that builds scatter gather table from a given
1545  * scsi request sent via the .queuecommand main handler.
1546  *
1547  * Returns 0 success, anything else error
1548  */
1549 static int
1550 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1551 	struct scsi_cmnd *scmd, u16 smid)
1552 {
1553 	Mpi2SCSIIORequest_t *mpi_request;
1554 	dma_addr_t chain_dma;
1555 	struct scatterlist *sg_scmd;
1556 	void *sg_local, *chain;
1557 	u32 chain_offset;
1558 	u32 chain_length;
1559 	int sges_left;
1560 	u32 sges_in_segment;
1561 	u8 simple_sgl_flags;
1562 	u8 simple_sgl_flags_last;
1563 	u8 chain_sgl_flags;
1564 	struct chain_tracker *chain_req;
1565 
1566 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1567 
1568 	/* init scatter gather flags */
1569 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1570 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1571 	simple_sgl_flags_last = simple_sgl_flags |
1572 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1573 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1574 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1575 
1576 	sg_scmd = scsi_sglist(scmd);
1577 	sges_left = scsi_dma_map(scmd);
1578 	if (sges_left < 0) {
1579 		sdev_printk(KERN_ERR, scmd->device,
1580 			"pci_map_sg failed: request for %d bytes!\n",
1581 			scsi_bufflen(scmd));
1582 		return -ENOMEM;
1583 	}
1584 
1585 	sg_local = &mpi_request->SGL;
1586 	sges_in_segment = (ioc->request_sz -
1587 	    offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1588 	if (sges_left <= sges_in_segment)
1589 		goto fill_in_last_segment;
1590 
1591 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1592 	    (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1593 
1594 	/* fill in main message segment when there is a chain following */
1595 	while (sges_in_segment > 1) {
1596 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1597 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1598 		sg_scmd = sg_next(sg_scmd);
1599 		sg_local += ioc->sge_size_ieee;
1600 		sges_left--;
1601 		sges_in_segment--;
1602 	}
1603 
1604 	/* initializing the pointers */
1605 	chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1606 	if (!chain_req)
1607 		return -1;
1608 	chain = chain_req->chain_buffer;
1609 	chain_dma = chain_req->chain_buffer_dma;
1610 	do {
1611 		sges_in_segment = (sges_left <=
1612 		    ioc->max_sges_in_chain_message) ? sges_left :
1613 		    ioc->max_sges_in_chain_message;
1614 		chain_offset = (sges_left == sges_in_segment) ?
1615 		    0 : sges_in_segment;
1616 		chain_length = sges_in_segment * ioc->sge_size_ieee;
1617 		if (chain_offset)
1618 			chain_length += ioc->sge_size_ieee;
1619 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1620 		    chain_offset, chain_length, chain_dma);
1621 
1622 		sg_local = chain;
1623 		if (!chain_offset)
1624 			goto fill_in_last_segment;
1625 
1626 		/* fill in chain segments */
1627 		while (sges_in_segment) {
1628 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1629 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1630 			sg_scmd = sg_next(sg_scmd);
1631 			sg_local += ioc->sge_size_ieee;
1632 			sges_left--;
1633 			sges_in_segment--;
1634 		}
1635 
1636 		chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1637 		if (!chain_req)
1638 			return -1;
1639 		chain = chain_req->chain_buffer;
1640 		chain_dma = chain_req->chain_buffer_dma;
1641 	} while (1);
1642 
1643 
1644  fill_in_last_segment:
1645 
1646 	/* fill the last segment */
1647 	while (sges_left > 0) {
1648 		if (sges_left == 1)
1649 			_base_add_sg_single_ieee(sg_local,
1650 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1651 			    sg_dma_address(sg_scmd));
1652 		else
1653 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1654 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1655 		sg_scmd = sg_next(sg_scmd);
1656 		sg_local += ioc->sge_size_ieee;
1657 		sges_left--;
1658 	}
1659 
1660 	return 0;
1661 }
1662 
1663 /**
1664  * _base_build_sg_ieee - build generic sg for IEEE format
1665  * @ioc: per adapter object
1666  * @psge: virtual address for SGE
1667  * @data_out_dma: physical address for WRITES
1668  * @data_out_sz: data xfer size for WRITES
1669  * @data_in_dma: physical address for READS
1670  * @data_in_sz: data xfer size for READS
1671  *
1672  * Return nothing.
1673  */
1674 static void
1675 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1676 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1677 	size_t data_in_sz)
1678 {
1679 	u8 sgl_flags;
1680 
1681 	if (!data_out_sz && !data_in_sz) {
1682 		_base_build_zero_len_sge_ieee(ioc, psge);
1683 		return;
1684 	}
1685 
1686 	if (data_out_sz && data_in_sz) {
1687 		/* WRITE sgel first */
1688 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1689 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1690 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1691 		    data_out_dma);
1692 
1693 		/* incr sgel */
1694 		psge += ioc->sge_size_ieee;
1695 
1696 		/* READ sgel last */
1697 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1698 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1699 		    data_in_dma);
1700 	} else if (data_out_sz) /* WRITE */ {
1701 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1702 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1703 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1704 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1705 		    data_out_dma);
1706 	} else if (data_in_sz) /* READ */ {
1707 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1708 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1709 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1710 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1711 		    data_in_dma);
1712 	}
1713 }
1714 
1715 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1716 
1717 /**
1718  * _base_config_dma_addressing - set dma addressing
1719  * @ioc: per adapter object
1720  * @pdev: PCI device struct
1721  *
1722  * Returns 0 for success, non-zero for failure.
1723  */
1724 static int
1725 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1726 {
1727 	struct sysinfo s;
1728 	u64 consistent_dma_mask;
1729 
1730 	if (ioc->dma_mask)
1731 		consistent_dma_mask = DMA_BIT_MASK(64);
1732 	else
1733 		consistent_dma_mask = DMA_BIT_MASK(32);
1734 
1735 	if (sizeof(dma_addr_t) > 4) {
1736 		const uint64_t required_mask =
1737 		    dma_get_required_mask(&pdev->dev);
1738 		if ((required_mask > DMA_BIT_MASK(32)) &&
1739 		    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1740 		    !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1741 			ioc->base_add_sg_single = &_base_add_sg_single_64;
1742 			ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1743 			ioc->dma_mask = 64;
1744 			goto out;
1745 		}
1746 	}
1747 
1748 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1749 	    && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1750 		ioc->base_add_sg_single = &_base_add_sg_single_32;
1751 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1752 		ioc->dma_mask = 32;
1753 	} else
1754 		return -ENODEV;
1755 
1756  out:
1757 	si_meminfo(&s);
1758 	pr_info(MPT3SAS_FMT
1759 		"%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1760 		ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1761 
1762 	return 0;
1763 }
1764 
1765 static int
1766 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1767 				      struct pci_dev *pdev)
1768 {
1769 	if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1770 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1771 			return -ENODEV;
1772 	}
1773 	return 0;
1774 }
1775 
1776 /**
1777  * _base_check_enable_msix - checks MSIX capabable.
1778  * @ioc: per adapter object
1779  *
1780  * Check to see if card is capable of MSIX, and set number
1781  * of available msix vectors
1782  */
1783 static int
1784 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1785 {
1786 	int base;
1787 	u16 message_control;
1788 
1789 	/* Check whether controller SAS2008 B0 controller,
1790 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
1791 	 */
1792 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1793 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
1794 		return -EINVAL;
1795 	}
1796 
1797 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1798 	if (!base) {
1799 		dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1800 			ioc->name));
1801 		return -EINVAL;
1802 	}
1803 
1804 	/* get msix vector count */
1805 	/* NUMA_IO not supported for older controllers */
1806 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1807 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1808 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1809 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1810 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1811 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1812 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1813 		ioc->msix_vector_count = 1;
1814 	else {
1815 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
1816 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1817 	}
1818 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
1819 		"msix is supported, vector_count(%d)\n",
1820 		ioc->name, ioc->msix_vector_count));
1821 	return 0;
1822 }
1823 
1824 /**
1825  * _base_free_irq - free irq
1826  * @ioc: per adapter object
1827  *
1828  * Freeing respective reply_queue from the list.
1829  */
1830 static void
1831 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1832 {
1833 	struct adapter_reply_queue *reply_q, *next;
1834 
1835 	if (list_empty(&ioc->reply_queue_list))
1836 		return;
1837 
1838 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1839 		list_del(&reply_q->list);
1840 		if (smp_affinity_enable) {
1841 			irq_set_affinity_hint(reply_q->vector, NULL);
1842 			free_cpumask_var(reply_q->affinity_hint);
1843 		}
1844 		free_irq(reply_q->vector, reply_q);
1845 		kfree(reply_q);
1846 	}
1847 }
1848 
1849 /**
1850  * _base_request_irq - request irq
1851  * @ioc: per adapter object
1852  * @index: msix index into vector table
1853  * @vector: irq vector
1854  *
1855  * Inserting respective reply_queue into the list.
1856  */
1857 static int
1858 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1859 {
1860 	struct adapter_reply_queue *reply_q;
1861 	int r;
1862 
1863 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1864 	if (!reply_q) {
1865 		pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1866 		    ioc->name, (int)sizeof(struct adapter_reply_queue));
1867 		return -ENOMEM;
1868 	}
1869 	reply_q->ioc = ioc;
1870 	reply_q->msix_index = index;
1871 	reply_q->vector = vector;
1872 
1873 	if (smp_affinity_enable) {
1874 		if (!zalloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL)) {
1875 			kfree(reply_q);
1876 			return -ENOMEM;
1877 		}
1878 	}
1879 
1880 	atomic_set(&reply_q->busy, 0);
1881 	if (ioc->msix_enable)
1882 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1883 		    ioc->driver_name, ioc->id, index);
1884 	else
1885 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1886 		    ioc->driver_name, ioc->id);
1887 	r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1888 	    reply_q);
1889 	if (r) {
1890 		pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1891 		    reply_q->name, vector);
1892 		free_cpumask_var(reply_q->affinity_hint);
1893 		kfree(reply_q);
1894 		return -EBUSY;
1895 	}
1896 
1897 	INIT_LIST_HEAD(&reply_q->list);
1898 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1899 	return 0;
1900 }
1901 
1902 /**
1903  * _base_assign_reply_queues - assigning msix index for each cpu
1904  * @ioc: per adapter object
1905  *
1906  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1907  *
1908  * It would nice if we could call irq_set_affinity, however it is not
1909  * an exported symbol
1910  */
1911 static void
1912 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1913 {
1914 	unsigned int cpu, nr_cpus, nr_msix, index = 0;
1915 	struct adapter_reply_queue *reply_q;
1916 
1917 	if (!_base_is_controller_msix_enabled(ioc))
1918 		return;
1919 
1920 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1921 
1922 	nr_cpus = num_online_cpus();
1923 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1924 					       ioc->facts.MaxMSIxVectors);
1925 	if (!nr_msix)
1926 		return;
1927 
1928 	cpu = cpumask_first(cpu_online_mask);
1929 
1930 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1931 
1932 		unsigned int i, group = nr_cpus / nr_msix;
1933 
1934 		if (cpu >= nr_cpus)
1935 			break;
1936 
1937 		if (index < nr_cpus % nr_msix)
1938 			group++;
1939 
1940 		for (i = 0 ; i < group ; i++) {
1941 			ioc->cpu_msix_table[cpu] = index;
1942 			if (smp_affinity_enable)
1943 				cpumask_or(reply_q->affinity_hint,
1944 				   reply_q->affinity_hint, get_cpu_mask(cpu));
1945 			cpu = cpumask_next(cpu, cpu_online_mask);
1946 		}
1947 		if (smp_affinity_enable)
1948 			if (irq_set_affinity_hint(reply_q->vector,
1949 					   reply_q->affinity_hint))
1950 				dinitprintk(ioc, pr_info(MPT3SAS_FMT
1951 				 "Err setting affinity hint to irq vector %d\n",
1952 				 ioc->name, reply_q->vector));
1953 		index++;
1954 	}
1955 }
1956 
1957 /**
1958  * _base_disable_msix - disables msix
1959  * @ioc: per adapter object
1960  *
1961  */
1962 static void
1963 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1964 {
1965 	if (!ioc->msix_enable)
1966 		return;
1967 	pci_disable_msix(ioc->pdev);
1968 	ioc->msix_enable = 0;
1969 }
1970 
1971 /**
1972  * _base_enable_msix - enables msix, failback to io_apic
1973  * @ioc: per adapter object
1974  *
1975  */
1976 static int
1977 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1978 {
1979 	struct msix_entry *entries, *a;
1980 	int r;
1981 	int i, local_max_msix_vectors;
1982 	u8 try_msix = 0;
1983 
1984 	if (msix_disable == -1 || msix_disable == 0)
1985 		try_msix = 1;
1986 
1987 	if (!try_msix)
1988 		goto try_ioapic;
1989 
1990 	if (_base_check_enable_msix(ioc) != 0)
1991 		goto try_ioapic;
1992 
1993 	ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1994 	    ioc->msix_vector_count);
1995 
1996 	printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1997 	  ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1998 	  ioc->cpu_count, max_msix_vectors);
1999 
2000 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
2001 		local_max_msix_vectors = 8;
2002 	else
2003 		local_max_msix_vectors = max_msix_vectors;
2004 
2005 	if (local_max_msix_vectors > 0) {
2006 		ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
2007 			ioc->reply_queue_count);
2008 		ioc->msix_vector_count = ioc->reply_queue_count;
2009 	} else if (local_max_msix_vectors == 0)
2010 		goto try_ioapic;
2011 
2012 	if (ioc->msix_vector_count < ioc->cpu_count)
2013 		smp_affinity_enable = 0;
2014 
2015 	entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
2016 	    GFP_KERNEL);
2017 	if (!entries) {
2018 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
2019 			"kcalloc failed @ at %s:%d/%s() !!!\n",
2020 			ioc->name, __FILE__, __LINE__, __func__));
2021 		goto try_ioapic;
2022 	}
2023 
2024 	for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
2025 		a->entry = i;
2026 
2027 	r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
2028 	if (r) {
2029 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
2030 			"pci_enable_msix_exact failed (r=%d) !!!\n",
2031 			ioc->name, r));
2032 		kfree(entries);
2033 		goto try_ioapic;
2034 	}
2035 
2036 	ioc->msix_enable = 1;
2037 	for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
2038 		r = _base_request_irq(ioc, i, a->vector);
2039 		if (r) {
2040 			_base_free_irq(ioc);
2041 			_base_disable_msix(ioc);
2042 			kfree(entries);
2043 			goto try_ioapic;
2044 		}
2045 	}
2046 
2047 	kfree(entries);
2048 	return 0;
2049 
2050 /* failback to io_apic interrupt routing */
2051  try_ioapic:
2052 
2053 	ioc->reply_queue_count = 1;
2054 	r = _base_request_irq(ioc, 0, ioc->pdev->irq);
2055 
2056 	return r;
2057 }
2058 
2059 /**
2060  * mpt3sas_base_unmap_resources - free controller resources
2061  * @ioc: per adapter object
2062  */
2063 static void
2064 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2065 {
2066 	struct pci_dev *pdev = ioc->pdev;
2067 
2068 	dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2069 		ioc->name, __func__));
2070 
2071 	_base_free_irq(ioc);
2072 	_base_disable_msix(ioc);
2073 
2074 	if (ioc->combined_reply_queue) {
2075 		kfree(ioc->replyPostRegisterIndex);
2076 		ioc->replyPostRegisterIndex = NULL;
2077 	}
2078 
2079 	if (ioc->chip_phys) {
2080 		iounmap(ioc->chip);
2081 		ioc->chip_phys = 0;
2082 	}
2083 
2084 	if (pci_is_enabled(pdev)) {
2085 		pci_release_selected_regions(ioc->pdev, ioc->bars);
2086 		pci_disable_pcie_error_reporting(pdev);
2087 		pci_disable_device(pdev);
2088 	}
2089 }
2090 
2091 /**
2092  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2093  * @ioc: per adapter object
2094  *
2095  * Returns 0 for success, non-zero for failure.
2096  */
2097 int
2098 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2099 {
2100 	struct pci_dev *pdev = ioc->pdev;
2101 	u32 memap_sz;
2102 	u32 pio_sz;
2103 	int i, r = 0;
2104 	u64 pio_chip = 0;
2105 	u64 chip_phys = 0;
2106 	struct adapter_reply_queue *reply_q;
2107 
2108 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2109 	    ioc->name, __func__));
2110 
2111 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2112 	if (pci_enable_device_mem(pdev)) {
2113 		pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2114 			ioc->name);
2115 		ioc->bars = 0;
2116 		return -ENODEV;
2117 	}
2118 
2119 
2120 	if (pci_request_selected_regions(pdev, ioc->bars,
2121 	    ioc->driver_name)) {
2122 		pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2123 			ioc->name);
2124 		ioc->bars = 0;
2125 		r = -ENODEV;
2126 		goto out_fail;
2127 	}
2128 
2129 /* AER (Advanced Error Reporting) hooks */
2130 	pci_enable_pcie_error_reporting(pdev);
2131 
2132 	pci_set_master(pdev);
2133 
2134 
2135 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
2136 		pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2137 		    ioc->name, pci_name(pdev));
2138 		r = -ENODEV;
2139 		goto out_fail;
2140 	}
2141 
2142 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2143 	     (!memap_sz || !pio_sz); i++) {
2144 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2145 			if (pio_sz)
2146 				continue;
2147 			pio_chip = (u64)pci_resource_start(pdev, i);
2148 			pio_sz = pci_resource_len(pdev, i);
2149 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2150 			if (memap_sz)
2151 				continue;
2152 			ioc->chip_phys = pci_resource_start(pdev, i);
2153 			chip_phys = (u64)ioc->chip_phys;
2154 			memap_sz = pci_resource_len(pdev, i);
2155 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2156 		}
2157 	}
2158 
2159 	if (ioc->chip == NULL) {
2160 		pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2161 			" or resource not found\n", ioc->name);
2162 		r = -EINVAL;
2163 		goto out_fail;
2164 	}
2165 
2166 	_base_mask_interrupts(ioc);
2167 
2168 	r = _base_get_ioc_facts(ioc);
2169 	if (r)
2170 		goto out_fail;
2171 
2172 	if (!ioc->rdpq_array_enable_assigned) {
2173 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2174 		ioc->rdpq_array_enable_assigned = 1;
2175 	}
2176 
2177 	r = _base_enable_msix(ioc);
2178 	if (r)
2179 		goto out_fail;
2180 
2181 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
2182 	 * revision HBAs and also only when reply queue count is greater than 8
2183 	 */
2184 	if (ioc->combined_reply_queue && ioc->reply_queue_count > 8) {
2185 		/* Determine the Supplemental Reply Post Host Index Registers
2186 		 * Addresse. Supplemental Reply Post Host Index Registers
2187 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2188 		 * each register is at offset bytes of
2189 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2190 		 */
2191 		ioc->replyPostRegisterIndex = kcalloc(
2192 		     ioc->combined_reply_index_count,
2193 		     sizeof(resource_size_t *), GFP_KERNEL);
2194 		if (!ioc->replyPostRegisterIndex) {
2195 			dfailprintk(ioc, printk(MPT3SAS_FMT
2196 			"allocation for reply Post Register Index failed!!!\n",
2197 								   ioc->name));
2198 			r = -ENOMEM;
2199 			goto out_fail;
2200 		}
2201 
2202 		for (i = 0; i < ioc->combined_reply_index_count; i++) {
2203 			ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2204 			     ((u8 *)&ioc->chip->Doorbell +
2205 			     MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2206 			     (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2207 		}
2208 	} else
2209 		ioc->combined_reply_queue = 0;
2210 
2211 	if (ioc->is_warpdrive) {
2212 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
2213 		    &ioc->chip->ReplyPostHostIndex;
2214 
2215 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
2216 			ioc->reply_post_host_index[i] =
2217 			(resource_size_t __iomem *)
2218 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
2219 			* 4)));
2220 	}
2221 
2222 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2223 		pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2224 		    reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2225 		    "IO-APIC enabled"), reply_q->vector);
2226 
2227 	pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2228 	    ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2229 	pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2230 	    ioc->name, (unsigned long long)pio_chip, pio_sz);
2231 
2232 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
2233 	pci_save_state(pdev);
2234 	return 0;
2235 
2236  out_fail:
2237 	mpt3sas_base_unmap_resources(ioc);
2238 	return r;
2239 }
2240 
2241 /**
2242  * mpt3sas_base_get_msg_frame - obtain request mf pointer
2243  * @ioc: per adapter object
2244  * @smid: system request message index(smid zero is invalid)
2245  *
2246  * Returns virt pointer to message frame.
2247  */
2248 void *
2249 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2250 {
2251 	return (void *)(ioc->request + (smid * ioc->request_sz));
2252 }
2253 
2254 /**
2255  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2256  * @ioc: per adapter object
2257  * @smid: system request message index
2258  *
2259  * Returns virt pointer to sense buffer.
2260  */
2261 void *
2262 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2263 {
2264 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2265 }
2266 
2267 /**
2268  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2269  * @ioc: per adapter object
2270  * @smid: system request message index
2271  *
2272  * Returns phys pointer to the low 32bit address of the sense buffer.
2273  */
2274 __le32
2275 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2276 {
2277 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2278 	    SCSI_SENSE_BUFFERSIZE));
2279 }
2280 
2281 /**
2282  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2283  * @ioc: per adapter object
2284  * @phys_addr: lower 32 physical addr of the reply
2285  *
2286  * Converts 32bit lower physical addr into a virt address.
2287  */
2288 void *
2289 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2290 {
2291 	if (!phys_addr)
2292 		return NULL;
2293 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2294 }
2295 
2296 static inline u8
2297 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2298 {
2299 	return ioc->cpu_msix_table[raw_smp_processor_id()];
2300 }
2301 
2302 /**
2303  * mpt3sas_base_get_smid - obtain a free smid from internal queue
2304  * @ioc: per adapter object
2305  * @cb_idx: callback index
2306  *
2307  * Returns smid (zero is invalid)
2308  */
2309 u16
2310 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2311 {
2312 	unsigned long flags;
2313 	struct request_tracker *request;
2314 	u16 smid;
2315 
2316 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2317 	if (list_empty(&ioc->internal_free_list)) {
2318 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2319 		pr_err(MPT3SAS_FMT "%s: smid not available\n",
2320 		    ioc->name, __func__);
2321 		return 0;
2322 	}
2323 
2324 	request = list_entry(ioc->internal_free_list.next,
2325 	    struct request_tracker, tracker_list);
2326 	request->cb_idx = cb_idx;
2327 	smid = request->smid;
2328 	list_del(&request->tracker_list);
2329 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2330 	return smid;
2331 }
2332 
2333 /**
2334  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2335  * @ioc: per adapter object
2336  * @cb_idx: callback index
2337  * @scmd: pointer to scsi command object
2338  *
2339  * Returns smid (zero is invalid)
2340  */
2341 u16
2342 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2343 	struct scsi_cmnd *scmd)
2344 {
2345 	unsigned long flags;
2346 	struct scsiio_tracker *request;
2347 	u16 smid;
2348 
2349 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2350 	if (list_empty(&ioc->free_list)) {
2351 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2352 		pr_err(MPT3SAS_FMT "%s: smid not available\n",
2353 		    ioc->name, __func__);
2354 		return 0;
2355 	}
2356 
2357 	request = list_entry(ioc->free_list.next,
2358 	    struct scsiio_tracker, tracker_list);
2359 	request->scmd = scmd;
2360 	request->cb_idx = cb_idx;
2361 	smid = request->smid;
2362 	request->msix_io = _base_get_msix_index(ioc);
2363 	list_del(&request->tracker_list);
2364 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2365 	return smid;
2366 }
2367 
2368 /**
2369  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2370  * @ioc: per adapter object
2371  * @cb_idx: callback index
2372  *
2373  * Returns smid (zero is invalid)
2374  */
2375 u16
2376 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2377 {
2378 	unsigned long flags;
2379 	struct request_tracker *request;
2380 	u16 smid;
2381 
2382 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2383 	if (list_empty(&ioc->hpr_free_list)) {
2384 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2385 		return 0;
2386 	}
2387 
2388 	request = list_entry(ioc->hpr_free_list.next,
2389 	    struct request_tracker, tracker_list);
2390 	request->cb_idx = cb_idx;
2391 	smid = request->smid;
2392 	list_del(&request->tracker_list);
2393 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2394 	return smid;
2395 }
2396 
2397 /**
2398  * mpt3sas_base_free_smid - put smid back on free_list
2399  * @ioc: per adapter object
2400  * @smid: system request message index
2401  *
2402  * Return nothing.
2403  */
2404 void
2405 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2406 {
2407 	unsigned long flags;
2408 	int i;
2409 	struct chain_tracker *chain_req, *next;
2410 
2411 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2412 	if (smid < ioc->hi_priority_smid) {
2413 		/* scsiio queue */
2414 		i = smid - 1;
2415 		if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2416 			list_for_each_entry_safe(chain_req, next,
2417 			    &ioc->scsi_lookup[i].chain_list, tracker_list) {
2418 				list_del_init(&chain_req->tracker_list);
2419 				list_add(&chain_req->tracker_list,
2420 				    &ioc->free_chain_list);
2421 			}
2422 		}
2423 		ioc->scsi_lookup[i].cb_idx = 0xFF;
2424 		ioc->scsi_lookup[i].scmd = NULL;
2425 		ioc->scsi_lookup[i].direct_io = 0;
2426 		list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2427 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2428 
2429 		/*
2430 		 * See _wait_for_commands_to_complete() call with regards
2431 		 * to this code.
2432 		 */
2433 		if (ioc->shost_recovery && ioc->pending_io_count) {
2434 			if (ioc->pending_io_count == 1)
2435 				wake_up(&ioc->reset_wq);
2436 			ioc->pending_io_count--;
2437 		}
2438 		return;
2439 	} else if (smid < ioc->internal_smid) {
2440 		/* hi-priority */
2441 		i = smid - ioc->hi_priority_smid;
2442 		ioc->hpr_lookup[i].cb_idx = 0xFF;
2443 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2444 	} else if (smid <= ioc->hba_queue_depth) {
2445 		/* internal queue */
2446 		i = smid - ioc->internal_smid;
2447 		ioc->internal_lookup[i].cb_idx = 0xFF;
2448 		list_add(&ioc->internal_lookup[i].tracker_list,
2449 		    &ioc->internal_free_list);
2450 	}
2451 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2452 }
2453 
2454 /**
2455  * _base_writeq - 64 bit write to MMIO
2456  * @ioc: per adapter object
2457  * @b: data payload
2458  * @addr: address in MMIO space
2459  * @writeq_lock: spin lock
2460  *
2461  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2462  * care of 32 bit environment where its not quarenteed to send the entire word
2463  * in one transfer.
2464  */
2465 #if defined(writeq) && defined(CONFIG_64BIT)
2466 static inline void
2467 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2468 {
2469 	writeq(cpu_to_le64(b), addr);
2470 }
2471 #else
2472 static inline void
2473 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2474 {
2475 	unsigned long flags;
2476 	__u64 data_out = cpu_to_le64(b);
2477 
2478 	spin_lock_irqsave(writeq_lock, flags);
2479 	writel((u32)(data_out), addr);
2480 	writel((u32)(data_out >> 32), (addr + 4));
2481 	spin_unlock_irqrestore(writeq_lock, flags);
2482 }
2483 #endif
2484 
2485 /**
2486  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
2487  * @ioc: per adapter object
2488  * @smid: system request message index
2489  * @handle: device handle
2490  *
2491  * Return nothing.
2492  */
2493 static void
2494 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2495 {
2496 	Mpi2RequestDescriptorUnion_t descriptor;
2497 	u64 *request = (u64 *)&descriptor;
2498 
2499 
2500 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2501 	descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
2502 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2503 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2504 	descriptor.SCSIIO.LMID = 0;
2505 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2506 	    &ioc->scsi_lookup_lock);
2507 }
2508 
2509 /**
2510  * _base_put_smid_fast_path - send fast path request to firmware
2511  * @ioc: per adapter object
2512  * @smid: system request message index
2513  * @handle: device handle
2514  *
2515  * Return nothing.
2516  */
2517 static void
2518 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2519 	u16 handle)
2520 {
2521 	Mpi2RequestDescriptorUnion_t descriptor;
2522 	u64 *request = (u64 *)&descriptor;
2523 
2524 	descriptor.SCSIIO.RequestFlags =
2525 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2526 	descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2527 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2528 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2529 	descriptor.SCSIIO.LMID = 0;
2530 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2531 	    &ioc->scsi_lookup_lock);
2532 }
2533 
2534 /**
2535  * _base_put_smid_hi_priority - send Task Management request to firmware
2536  * @ioc: per adapter object
2537  * @smid: system request message index
2538  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
2539  * Return nothing.
2540  */
2541 static void
2542 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2543 	u16 msix_task)
2544 {
2545 	Mpi2RequestDescriptorUnion_t descriptor;
2546 	u64 *request = (u64 *)&descriptor;
2547 
2548 	descriptor.HighPriority.RequestFlags =
2549 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2550 	descriptor.HighPriority.MSIxIndex =  msix_task;
2551 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
2552 	descriptor.HighPriority.LMID = 0;
2553 	descriptor.HighPriority.Reserved1 = 0;
2554 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2555 	    &ioc->scsi_lookup_lock);
2556 }
2557 
2558 /**
2559  * _base_put_smid_default - Default, primarily used for config pages
2560  * @ioc: per adapter object
2561  * @smid: system request message index
2562  *
2563  * Return nothing.
2564  */
2565 static void
2566 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2567 {
2568 	Mpi2RequestDescriptorUnion_t descriptor;
2569 	u64 *request = (u64 *)&descriptor;
2570 
2571 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2572 	descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
2573 	descriptor.Default.SMID = cpu_to_le16(smid);
2574 	descriptor.Default.LMID = 0;
2575 	descriptor.Default.DescriptorTypeDependent = 0;
2576 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2577 	    &ioc->scsi_lookup_lock);
2578 }
2579 
2580 /**
2581 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
2582 *   Atomic Request Descriptor
2583 * @ioc: per adapter object
2584 * @smid: system request message index
2585 * @handle: device handle, unused in this function, for function type match
2586 *
2587 * Return nothing.
2588 */
2589 static void
2590 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2591 	u16 handle)
2592 {
2593 	Mpi26AtomicRequestDescriptor_t descriptor;
2594 	u32 *request = (u32 *)&descriptor;
2595 
2596 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2597 	descriptor.MSIxIndex = _base_get_msix_index(ioc);
2598 	descriptor.SMID = cpu_to_le16(smid);
2599 
2600 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2601 }
2602 
2603 /**
2604  * _base_put_smid_fast_path_atomic - send fast path request to firmware
2605  * using Atomic Request Descriptor
2606  * @ioc: per adapter object
2607  * @smid: system request message index
2608  * @handle: device handle, unused in this function, for function type match
2609  * Return nothing
2610  */
2611 static void
2612 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2613 	u16 handle)
2614 {
2615 	Mpi26AtomicRequestDescriptor_t descriptor;
2616 	u32 *request = (u32 *)&descriptor;
2617 
2618 	descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2619 	descriptor.MSIxIndex = _base_get_msix_index(ioc);
2620 	descriptor.SMID = cpu_to_le16(smid);
2621 
2622 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2623 }
2624 
2625 /**
2626  * _base_put_smid_hi_priority_atomic - send Task Management request to
2627  * firmware using Atomic Request Descriptor
2628  * @ioc: per adapter object
2629  * @smid: system request message index
2630  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
2631  *
2632  * Return nothing.
2633  */
2634 static void
2635 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2636 	u16 msix_task)
2637 {
2638 	Mpi26AtomicRequestDescriptor_t descriptor;
2639 	u32 *request = (u32 *)&descriptor;
2640 
2641 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2642 	descriptor.MSIxIndex = msix_task;
2643 	descriptor.SMID = cpu_to_le16(smid);
2644 
2645 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2646 }
2647 
2648 /**
2649  * _base_put_smid_default - Default, primarily used for config pages
2650  * use Atomic Request Descriptor
2651  * @ioc: per adapter object
2652  * @smid: system request message index
2653  *
2654  * Return nothing.
2655  */
2656 static void
2657 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2658 {
2659 	Mpi26AtomicRequestDescriptor_t descriptor;
2660 	u32 *request = (u32 *)&descriptor;
2661 
2662 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2663 	descriptor.MSIxIndex = _base_get_msix_index(ioc);
2664 	descriptor.SMID = cpu_to_le16(smid);
2665 
2666 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2667 }
2668 
2669 /**
2670  * _base_display_OEMs_branding - Display branding string
2671  * @ioc: per adapter object
2672  *
2673  * Return nothing.
2674  */
2675 static void
2676 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
2677 {
2678 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2679 		return;
2680 
2681 	switch (ioc->pdev->subsystem_vendor) {
2682 	case PCI_VENDOR_ID_INTEL:
2683 		switch (ioc->pdev->device) {
2684 		case MPI2_MFGPAGE_DEVID_SAS2008:
2685 			switch (ioc->pdev->subsystem_device) {
2686 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
2687 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2688 				    MPT2SAS_INTEL_RMS2LL080_BRANDING);
2689 				break;
2690 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
2691 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2692 				    MPT2SAS_INTEL_RMS2LL040_BRANDING);
2693 				break;
2694 			case MPT2SAS_INTEL_SSD910_SSDID:
2695 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2696 				    MPT2SAS_INTEL_SSD910_BRANDING);
2697 				break;
2698 			default:
2699 				pr_info(MPT3SAS_FMT
2700 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2701 				 ioc->name, ioc->pdev->subsystem_device);
2702 				break;
2703 			}
2704 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
2705 			switch (ioc->pdev->subsystem_device) {
2706 			case MPT2SAS_INTEL_RS25GB008_SSDID:
2707 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2708 				    MPT2SAS_INTEL_RS25GB008_BRANDING);
2709 				break;
2710 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
2711 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2712 				    MPT2SAS_INTEL_RMS25JB080_BRANDING);
2713 				break;
2714 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
2715 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2716 				    MPT2SAS_INTEL_RMS25JB040_BRANDING);
2717 				break;
2718 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
2719 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2720 				    MPT2SAS_INTEL_RMS25KB080_BRANDING);
2721 				break;
2722 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
2723 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2724 				    MPT2SAS_INTEL_RMS25KB040_BRANDING);
2725 				break;
2726 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
2727 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2728 				    MPT2SAS_INTEL_RMS25LB040_BRANDING);
2729 				break;
2730 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
2731 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2732 				    MPT2SAS_INTEL_RMS25LB080_BRANDING);
2733 				break;
2734 			default:
2735 				pr_info(MPT3SAS_FMT
2736 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2737 				 ioc->name, ioc->pdev->subsystem_device);
2738 				break;
2739 			}
2740 		case MPI25_MFGPAGE_DEVID_SAS3008:
2741 			switch (ioc->pdev->subsystem_device) {
2742 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
2743 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2744 					MPT3SAS_INTEL_RMS3JC080_BRANDING);
2745 				break;
2746 
2747 			case MPT3SAS_INTEL_RS3GC008_SSDID:
2748 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2749 					MPT3SAS_INTEL_RS3GC008_BRANDING);
2750 				break;
2751 			case MPT3SAS_INTEL_RS3FC044_SSDID:
2752 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2753 					MPT3SAS_INTEL_RS3FC044_BRANDING);
2754 				break;
2755 			case MPT3SAS_INTEL_RS3UC080_SSDID:
2756 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2757 					MPT3SAS_INTEL_RS3UC080_BRANDING);
2758 				break;
2759 			default:
2760 				pr_info(MPT3SAS_FMT
2761 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2762 				 ioc->name, ioc->pdev->subsystem_device);
2763 				break;
2764 			}
2765 			break;
2766 		default:
2767 			pr_info(MPT3SAS_FMT
2768 			 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2769 			 ioc->name, ioc->pdev->subsystem_device);
2770 			break;
2771 		}
2772 		break;
2773 	case PCI_VENDOR_ID_DELL:
2774 		switch (ioc->pdev->device) {
2775 		case MPI2_MFGPAGE_DEVID_SAS2008:
2776 			switch (ioc->pdev->subsystem_device) {
2777 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
2778 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2779 				 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
2780 				break;
2781 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
2782 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2783 				 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
2784 				break;
2785 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
2786 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2787 				 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
2788 				break;
2789 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
2790 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2791 				 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
2792 				break;
2793 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
2794 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2795 				 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
2796 				break;
2797 			case MPT2SAS_DELL_PERC_H200_SSDID:
2798 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2799 				 MPT2SAS_DELL_PERC_H200_BRANDING);
2800 				break;
2801 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
2802 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2803 				 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
2804 				break;
2805 			default:
2806 				pr_info(MPT3SAS_FMT
2807 				   "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
2808 				   ioc->name, ioc->pdev->subsystem_device);
2809 				break;
2810 			}
2811 			break;
2812 		case MPI25_MFGPAGE_DEVID_SAS3008:
2813 			switch (ioc->pdev->subsystem_device) {
2814 			case MPT3SAS_DELL_12G_HBA_SSDID:
2815 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2816 					MPT3SAS_DELL_12G_HBA_BRANDING);
2817 				break;
2818 			default:
2819 				pr_info(MPT3SAS_FMT
2820 				   "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
2821 				   ioc->name, ioc->pdev->subsystem_device);
2822 				break;
2823 			}
2824 			break;
2825 		default:
2826 			pr_info(MPT3SAS_FMT
2827 			   "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
2828 			   ioc->pdev->subsystem_device);
2829 			break;
2830 		}
2831 		break;
2832 	case PCI_VENDOR_ID_CISCO:
2833 		switch (ioc->pdev->device) {
2834 		case MPI25_MFGPAGE_DEVID_SAS3008:
2835 			switch (ioc->pdev->subsystem_device) {
2836 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2837 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2838 					MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2839 				break;
2840 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2841 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2842 					MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2843 				break;
2844 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2845 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2846 					MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2847 				break;
2848 			default:
2849 				pr_info(MPT3SAS_FMT
2850 				  "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2851 				  ioc->name, ioc->pdev->subsystem_device);
2852 				break;
2853 			}
2854 			break;
2855 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
2856 			switch (ioc->pdev->subsystem_device) {
2857 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2858 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2859 				MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2860 				break;
2861 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2862 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2863 				MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
2864 				);
2865 				break;
2866 			default:
2867 				pr_info(MPT3SAS_FMT
2868 				 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2869 				 ioc->name, ioc->pdev->subsystem_device);
2870 				break;
2871 			}
2872 			break;
2873 		default:
2874 			pr_info(MPT3SAS_FMT
2875 			   "Cisco SAS HBA: Subsystem ID: 0x%X\n",
2876 			   ioc->name, ioc->pdev->subsystem_device);
2877 			break;
2878 		}
2879 		break;
2880 	case MPT2SAS_HP_3PAR_SSVID:
2881 		switch (ioc->pdev->device) {
2882 		case MPI2_MFGPAGE_DEVID_SAS2004:
2883 			switch (ioc->pdev->subsystem_device) {
2884 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2885 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2886 				    MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2887 				break;
2888 			default:
2889 				pr_info(MPT3SAS_FMT
2890 				   "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2891 				   ioc->name, ioc->pdev->subsystem_device);
2892 				break;
2893 			}
2894 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
2895 			switch (ioc->pdev->subsystem_device) {
2896 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2897 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2898 				    MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2899 				break;
2900 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2901 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2902 				    MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2903 				break;
2904 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2905 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2906 				 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2907 				break;
2908 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2909 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2910 				    MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2911 				break;
2912 			default:
2913 				pr_info(MPT3SAS_FMT
2914 				   "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2915 				   ioc->name, ioc->pdev->subsystem_device);
2916 				break;
2917 			}
2918 		default:
2919 			pr_info(MPT3SAS_FMT
2920 			   "HP SAS HBA: Subsystem ID: 0x%X\n",
2921 			   ioc->name, ioc->pdev->subsystem_device);
2922 			break;
2923 		}
2924 	default:
2925 		break;
2926 	}
2927 }
2928 
2929 /**
2930  * _base_display_ioc_capabilities - Disply IOC's capabilities.
2931  * @ioc: per adapter object
2932  *
2933  * Return nothing.
2934  */
2935 static void
2936 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2937 {
2938 	int i = 0;
2939 	char desc[16];
2940 	u32 iounit_pg1_flags;
2941 	u32 bios_version;
2942 
2943 	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2944 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
2945 	pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2946 	   "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2947 	    ioc->name, desc,
2948 	   (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2949 	   (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2950 	   (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2951 	   ioc->facts.FWVersion.Word & 0x000000FF,
2952 	   ioc->pdev->revision,
2953 	   (bios_version & 0xFF000000) >> 24,
2954 	   (bios_version & 0x00FF0000) >> 16,
2955 	   (bios_version & 0x0000FF00) >> 8,
2956 	    bios_version & 0x000000FF);
2957 
2958 	_base_display_OEMs_branding(ioc);
2959 
2960 	pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2961 
2962 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2963 		pr_info("Initiator");
2964 		i++;
2965 	}
2966 
2967 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2968 		pr_info("%sTarget", i ? "," : "");
2969 		i++;
2970 	}
2971 
2972 	i = 0;
2973 	pr_info("), ");
2974 	pr_info("Capabilities=(");
2975 
2976 	if (!ioc->hide_ir_msg) {
2977 		if (ioc->facts.IOCCapabilities &
2978 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2979 			pr_info("Raid");
2980 			i++;
2981 		}
2982 	}
2983 
2984 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2985 		pr_info("%sTLR", i ? "," : "");
2986 		i++;
2987 	}
2988 
2989 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2990 		pr_info("%sMulticast", i ? "," : "");
2991 		i++;
2992 	}
2993 
2994 	if (ioc->facts.IOCCapabilities &
2995 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2996 		pr_info("%sBIDI Target", i ? "," : "");
2997 		i++;
2998 	}
2999 
3000 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
3001 		pr_info("%sEEDP", i ? "," : "");
3002 		i++;
3003 	}
3004 
3005 	if (ioc->facts.IOCCapabilities &
3006 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
3007 		pr_info("%sSnapshot Buffer", i ? "," : "");
3008 		i++;
3009 	}
3010 
3011 	if (ioc->facts.IOCCapabilities &
3012 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
3013 		pr_info("%sDiag Trace Buffer", i ? "," : "");
3014 		i++;
3015 	}
3016 
3017 	if (ioc->facts.IOCCapabilities &
3018 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
3019 		pr_info("%sDiag Extended Buffer", i ? "," : "");
3020 		i++;
3021 	}
3022 
3023 	if (ioc->facts.IOCCapabilities &
3024 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
3025 		pr_info("%sTask Set Full", i ? "," : "");
3026 		i++;
3027 	}
3028 
3029 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3030 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
3031 		pr_info("%sNCQ", i ? "," : "");
3032 		i++;
3033 	}
3034 
3035 	pr_info(")\n");
3036 }
3037 
3038 /**
3039  * mpt3sas_base_update_missing_delay - change the missing delay timers
3040  * @ioc: per adapter object
3041  * @device_missing_delay: amount of time till device is reported missing
3042  * @io_missing_delay: interval IO is returned when there is a missing device
3043  *
3044  * Return nothing.
3045  *
3046  * Passed on the command line, this function will modify the device missing
3047  * delay, as well as the io missing delay. This should be called at driver
3048  * load time.
3049  */
3050 void
3051 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
3052 	u16 device_missing_delay, u8 io_missing_delay)
3053 {
3054 	u16 dmd, dmd_new, dmd_orignal;
3055 	u8 io_missing_delay_original;
3056 	u16 sz;
3057 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
3058 	Mpi2ConfigReply_t mpi_reply;
3059 	u8 num_phys = 0;
3060 	u16 ioc_status;
3061 
3062 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
3063 	if (!num_phys)
3064 		return;
3065 
3066 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
3067 	    sizeof(Mpi2SasIOUnit1PhyData_t));
3068 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
3069 	if (!sas_iounit_pg1) {
3070 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3071 		    ioc->name, __FILE__, __LINE__, __func__);
3072 		goto out;
3073 	}
3074 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
3075 	    sas_iounit_pg1, sz))) {
3076 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3077 		    ioc->name, __FILE__, __LINE__, __func__);
3078 		goto out;
3079 	}
3080 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
3081 	    MPI2_IOCSTATUS_MASK;
3082 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3083 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3084 		    ioc->name, __FILE__, __LINE__, __func__);
3085 		goto out;
3086 	}
3087 
3088 	/* device missing delay */
3089 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
3090 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3091 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3092 	else
3093 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3094 	dmd_orignal = dmd;
3095 	if (device_missing_delay > 0x7F) {
3096 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
3097 		    device_missing_delay;
3098 		dmd = dmd / 16;
3099 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
3100 	} else
3101 		dmd = device_missing_delay;
3102 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
3103 
3104 	/* io missing delay */
3105 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
3106 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
3107 
3108 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
3109 	    sz)) {
3110 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3111 			dmd_new = (dmd &
3112 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3113 		else
3114 			dmd_new =
3115 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3116 		pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
3117 			ioc->name, dmd_orignal, dmd_new);
3118 		pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
3119 			ioc->name, io_missing_delay_original,
3120 		    io_missing_delay);
3121 		ioc->device_missing_delay = dmd_new;
3122 		ioc->io_missing_delay = io_missing_delay;
3123 	}
3124 
3125 out:
3126 	kfree(sas_iounit_pg1);
3127 }
3128 /**
3129  * _base_static_config_pages - static start of day config pages
3130  * @ioc: per adapter object
3131  *
3132  * Return nothing.
3133  */
3134 static void
3135 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
3136 {
3137 	Mpi2ConfigReply_t mpi_reply;
3138 	u32 iounit_pg1_flags;
3139 
3140 	mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
3141 	if (ioc->ir_firmware)
3142 		mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
3143 		    &ioc->manu_pg10);
3144 
3145 	/*
3146 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
3147 	 * flag unset in NVDATA.
3148 	 */
3149 	mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
3150 	if (ioc->manu_pg11.EEDPTagMode == 0) {
3151 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
3152 		    ioc->name);
3153 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
3154 		ioc->manu_pg11.EEDPTagMode |= 0x1;
3155 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3156 		    &ioc->manu_pg11);
3157 	}
3158 
3159 	mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3160 	mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3161 	mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3162 	mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3163 	mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3164 	mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3165 	_base_display_ioc_capabilities(ioc);
3166 
3167 	/*
3168 	 * Enable task_set_full handling in iounit_pg1 when the
3169 	 * facts capabilities indicate that its supported.
3170 	 */
3171 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3172 	if ((ioc->facts.IOCCapabilities &
3173 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3174 		iounit_pg1_flags &=
3175 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3176 	else
3177 		iounit_pg1_flags |=
3178 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3179 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3180 	mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3181 
3182 	if (ioc->iounit_pg8.NumSensors)
3183 		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3184 }
3185 
3186 /**
3187  * _base_release_memory_pools - release memory
3188  * @ioc: per adapter object
3189  *
3190  * Free memory allocated from _base_allocate_memory_pools.
3191  *
3192  * Return nothing.
3193  */
3194 static void
3195 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3196 {
3197 	int i = 0;
3198 	struct reply_post_struct *rps;
3199 
3200 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3201 	    __func__));
3202 
3203 	if (ioc->request) {
3204 		pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3205 		    ioc->request,  ioc->request_dma);
3206 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3207 			"request_pool(0x%p): free\n",
3208 			ioc->name, ioc->request));
3209 		ioc->request = NULL;
3210 	}
3211 
3212 	if (ioc->sense) {
3213 		pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3214 		if (ioc->sense_dma_pool)
3215 			pci_pool_destroy(ioc->sense_dma_pool);
3216 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3217 			"sense_pool(0x%p): free\n",
3218 			ioc->name, ioc->sense));
3219 		ioc->sense = NULL;
3220 	}
3221 
3222 	if (ioc->reply) {
3223 		pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3224 		if (ioc->reply_dma_pool)
3225 			pci_pool_destroy(ioc->reply_dma_pool);
3226 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3227 			"reply_pool(0x%p): free\n",
3228 			ioc->name, ioc->reply));
3229 		ioc->reply = NULL;
3230 	}
3231 
3232 	if (ioc->reply_free) {
3233 		pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3234 		    ioc->reply_free_dma);
3235 		if (ioc->reply_free_dma_pool)
3236 			pci_pool_destroy(ioc->reply_free_dma_pool);
3237 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3238 			"reply_free_pool(0x%p): free\n",
3239 			ioc->name, ioc->reply_free));
3240 		ioc->reply_free = NULL;
3241 	}
3242 
3243 	if (ioc->reply_post) {
3244 		do {
3245 			rps = &ioc->reply_post[i];
3246 			if (rps->reply_post_free) {
3247 				pci_pool_free(
3248 				    ioc->reply_post_free_dma_pool,
3249 				    rps->reply_post_free,
3250 				    rps->reply_post_free_dma);
3251 				dexitprintk(ioc, pr_info(MPT3SAS_FMT
3252 				    "reply_post_free_pool(0x%p): free\n",
3253 				    ioc->name, rps->reply_post_free));
3254 				rps->reply_post_free = NULL;
3255 			}
3256 		} while (ioc->rdpq_array_enable &&
3257 			   (++i < ioc->reply_queue_count));
3258 
3259 		if (ioc->reply_post_free_dma_pool)
3260 			pci_pool_destroy(ioc->reply_post_free_dma_pool);
3261 		kfree(ioc->reply_post);
3262 	}
3263 
3264 	if (ioc->config_page) {
3265 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3266 		    "config_page(0x%p): free\n", ioc->name,
3267 		    ioc->config_page));
3268 		pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3269 		    ioc->config_page, ioc->config_page_dma);
3270 	}
3271 
3272 	if (ioc->scsi_lookup) {
3273 		free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3274 		ioc->scsi_lookup = NULL;
3275 	}
3276 	kfree(ioc->hpr_lookup);
3277 	kfree(ioc->internal_lookup);
3278 	if (ioc->chain_lookup) {
3279 		for (i = 0; i < ioc->chain_depth; i++) {
3280 			if (ioc->chain_lookup[i].chain_buffer)
3281 				pci_pool_free(ioc->chain_dma_pool,
3282 				    ioc->chain_lookup[i].chain_buffer,
3283 				    ioc->chain_lookup[i].chain_buffer_dma);
3284 		}
3285 		if (ioc->chain_dma_pool)
3286 			pci_pool_destroy(ioc->chain_dma_pool);
3287 		free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3288 		ioc->chain_lookup = NULL;
3289 	}
3290 }
3291 
3292 /**
3293  * _base_allocate_memory_pools - allocate start of day memory pools
3294  * @ioc: per adapter object
3295  *
3296  * Returns 0 success, anything else error
3297  */
3298 static int
3299 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3300 {
3301 	struct mpt3sas_facts *facts;
3302 	u16 max_sge_elements;
3303 	u16 chains_needed_per_io;
3304 	u32 sz, total_sz, reply_post_free_sz;
3305 	u32 retry_sz;
3306 	u16 max_request_credit;
3307 	unsigned short sg_tablesize;
3308 	u16 sge_size;
3309 	int i;
3310 
3311 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3312 	    __func__));
3313 
3314 
3315 	retry_sz = 0;
3316 	facts = &ioc->facts;
3317 
3318 	/* command line tunables for max sgl entries */
3319 	if (max_sgl_entries != -1)
3320 		sg_tablesize = max_sgl_entries;
3321 	else {
3322 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3323 			sg_tablesize = MPT2SAS_SG_DEPTH;
3324 		else
3325 			sg_tablesize = MPT3SAS_SG_DEPTH;
3326 	}
3327 
3328 	if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3329 		sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3330 	else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3331 		sg_tablesize = min_t(unsigned short, sg_tablesize,
3332 				      SG_MAX_SEGMENTS);
3333 		pr_warn(MPT3SAS_FMT
3334 		 "sg_tablesize(%u) is bigger than kernel"
3335 		 " defined SG_CHUNK_SIZE(%u)\n", ioc->name,
3336 		 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3337 	}
3338 	ioc->shost->sg_tablesize = sg_tablesize;
3339 
3340 	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
3341 		(facts->RequestCredit / 4));
3342 	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
3343 		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
3344 				INTERNAL_SCSIIO_CMDS_COUNT)) {
3345 			pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
3346 			    Credits, it has just %d number of credits\n",
3347 			    ioc->name, facts->RequestCredit);
3348 			return -ENOMEM;
3349 		}
3350 		ioc->internal_depth = 10;
3351 	}
3352 
3353 	ioc->hi_priority_depth = ioc->internal_depth - (5);
3354 	/* command line tunables  for max controller queue depth */
3355 	if (max_queue_depth != -1 && max_queue_depth != 0) {
3356 		max_request_credit = min_t(u16, max_queue_depth +
3357 			ioc->internal_depth, facts->RequestCredit);
3358 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3359 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
3360 	} else
3361 		max_request_credit = min_t(u16, facts->RequestCredit,
3362 		    MAX_HBA_QUEUE_DEPTH);
3363 
3364 	/* Firmware maintains additional facts->HighPriorityCredit number of
3365 	 * credits for HiPriprity Request messages, so hba queue depth will be
3366 	 * sum of max_request_credit and high priority queue depth.
3367 	 */
3368 	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
3369 
3370 	/* request frame size */
3371 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
3372 
3373 	/* reply frame size */
3374 	ioc->reply_sz = facts->ReplyFrameSize * 4;
3375 
3376 	/* chain segment size */
3377 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3378 		if (facts->IOCMaxChainSegmentSize)
3379 			ioc->chain_segment_sz =
3380 					facts->IOCMaxChainSegmentSize *
3381 					MAX_CHAIN_ELEMT_SZ;
3382 		else
3383 		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
3384 			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
3385 						    MAX_CHAIN_ELEMT_SZ;
3386 	} else
3387 		ioc->chain_segment_sz = ioc->request_sz;
3388 
3389 	/* calculate the max scatter element size */
3390 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3391 
3392  retry_allocation:
3393 	total_sz = 0;
3394 	/* calculate number of sg elements left over in the 1st frame */
3395 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3396 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3397 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3398 
3399 	/* now do the same for a chain buffer */
3400 	max_sge_elements = ioc->chain_segment_sz - sge_size;
3401 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3402 
3403 	/*
3404 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3405 	 */
3406 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
3407 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3408 	    + 1;
3409 	if (chains_needed_per_io > facts->MaxChainDepth) {
3410 		chains_needed_per_io = facts->MaxChainDepth;
3411 		ioc->shost->sg_tablesize = min_t(u16,
3412 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3413 		* chains_needed_per_io), ioc->shost->sg_tablesize);
3414 	}
3415 	ioc->chains_needed_per_io = chains_needed_per_io;
3416 
3417 	/* reply free queue sizing - taking into account for 64 FW events */
3418 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3419 
3420 	/* calculate reply descriptor post queue depth */
3421 	ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3422 				ioc->reply_free_queue_depth +  1 ;
3423 	/* align the reply post queue on the next 16 count boundary */
3424 	if (ioc->reply_post_queue_depth % 16)
3425 		ioc->reply_post_queue_depth += 16 -
3426 		(ioc->reply_post_queue_depth % 16);
3427 
3428 	if (ioc->reply_post_queue_depth >
3429 	    facts->MaxReplyDescriptorPostQueueDepth) {
3430 		ioc->reply_post_queue_depth =
3431 				facts->MaxReplyDescriptorPostQueueDepth -
3432 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
3433 		ioc->hba_queue_depth =
3434 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
3435 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3436 	}
3437 
3438 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3439 	    "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3440 	    "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3441 	    ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3442 	    ioc->chains_needed_per_io));
3443 
3444 	/* reply post queue, 16 byte align */
3445 	reply_post_free_sz = ioc->reply_post_queue_depth *
3446 	    sizeof(Mpi2DefaultReplyDescriptor_t);
3447 
3448 	sz = reply_post_free_sz;
3449 	if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3450 		sz *= ioc->reply_queue_count;
3451 
3452 	ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3453 	    (ioc->reply_queue_count):1,
3454 	    sizeof(struct reply_post_struct), GFP_KERNEL);
3455 
3456 	if (!ioc->reply_post) {
3457 		pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3458 			ioc->name);
3459 		goto out;
3460 	}
3461 	ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
3462 	    ioc->pdev, sz, 16, 0);
3463 	if (!ioc->reply_post_free_dma_pool) {
3464 		pr_err(MPT3SAS_FMT
3465 		 "reply_post_free pool: pci_pool_create failed\n",
3466 		 ioc->name);
3467 		goto out;
3468 	}
3469 	i = 0;
3470 	do {
3471 		ioc->reply_post[i].reply_post_free =
3472 		    pci_pool_alloc(ioc->reply_post_free_dma_pool,
3473 		    GFP_KERNEL,
3474 		    &ioc->reply_post[i].reply_post_free_dma);
3475 		if (!ioc->reply_post[i].reply_post_free) {
3476 			pr_err(MPT3SAS_FMT
3477 			"reply_post_free pool: pci_pool_alloc failed\n",
3478 			ioc->name);
3479 			goto out;
3480 		}
3481 		memset(ioc->reply_post[i].reply_post_free, 0, sz);
3482 		dinitprintk(ioc, pr_info(MPT3SAS_FMT
3483 		    "reply post free pool (0x%p): depth(%d),"
3484 		    "element_size(%d), pool_size(%d kB)\n", ioc->name,
3485 		    ioc->reply_post[i].reply_post_free,
3486 		    ioc->reply_post_queue_depth, 8, sz/1024));
3487 		dinitprintk(ioc, pr_info(MPT3SAS_FMT
3488 		    "reply_post_free_dma = (0x%llx)\n", ioc->name,
3489 		    (unsigned long long)
3490 		    ioc->reply_post[i].reply_post_free_dma));
3491 		total_sz += sz;
3492 	} while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3493 
3494 	if (ioc->dma_mask == 64) {
3495 		if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3496 			pr_warn(MPT3SAS_FMT
3497 			    "no suitable consistent DMA mask for %s\n",
3498 			    ioc->name, pci_name(ioc->pdev));
3499 			goto out;
3500 		}
3501 	}
3502 
3503 	ioc->scsiio_depth = ioc->hba_queue_depth -
3504 	    ioc->hi_priority_depth - ioc->internal_depth;
3505 
3506 	/* set the scsi host can_queue depth
3507 	 * with some internal commands that could be outstanding
3508 	 */
3509 	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
3510 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3511 		"scsi host: can_queue depth (%d)\n",
3512 		ioc->name, ioc->shost->can_queue));
3513 
3514 
3515 	/* contiguous pool for request and chains, 16 byte align, one extra "
3516 	 * "frame for smid=0
3517 	 */
3518 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3519 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3520 
3521 	/* hi-priority queue */
3522 	sz += (ioc->hi_priority_depth * ioc->request_sz);
3523 
3524 	/* internal queue */
3525 	sz += (ioc->internal_depth * ioc->request_sz);
3526 
3527 	ioc->request_dma_sz = sz;
3528 	ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3529 	if (!ioc->request) {
3530 		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3531 		    "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3532 		    "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3533 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3534 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3535 			goto out;
3536 		retry_sz = 64;
3537 		ioc->hba_queue_depth -= retry_sz;
3538 		_base_release_memory_pools(ioc);
3539 		goto retry_allocation;
3540 	}
3541 
3542 	if (retry_sz)
3543 		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3544 		    "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3545 		    "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3546 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3547 
3548 	/* hi-priority queue */
3549 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3550 	    ioc->request_sz);
3551 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3552 	    ioc->request_sz);
3553 
3554 	/* internal queue */
3555 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3556 	    ioc->request_sz);
3557 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3558 	    ioc->request_sz);
3559 
3560 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3561 		"request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3562 		ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3563 	    (ioc->hba_queue_depth * ioc->request_sz)/1024));
3564 
3565 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3566 	    ioc->name, (unsigned long long) ioc->request_dma));
3567 	total_sz += sz;
3568 
3569 	sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3570 	ioc->scsi_lookup_pages = get_order(sz);
3571 	ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3572 	    GFP_KERNEL, ioc->scsi_lookup_pages);
3573 	if (!ioc->scsi_lookup) {
3574 		pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3575 			ioc->name, (int)sz);
3576 		goto out;
3577 	}
3578 
3579 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3580 		ioc->name, ioc->request, ioc->scsiio_depth));
3581 
3582 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3583 	sz = ioc->chain_depth * sizeof(struct chain_tracker);
3584 	ioc->chain_pages = get_order(sz);
3585 	ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3586 	    GFP_KERNEL, ioc->chain_pages);
3587 	if (!ioc->chain_lookup) {
3588 		pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3589 			ioc->name);
3590 		goto out;
3591 	}
3592 	ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
3593 	    ioc->chain_segment_sz, 16, 0);
3594 	if (!ioc->chain_dma_pool) {
3595 		pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
3596 			ioc->name);
3597 		goto out;
3598 	}
3599 	for (i = 0; i < ioc->chain_depth; i++) {
3600 		ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
3601 		    ioc->chain_dma_pool , GFP_KERNEL,
3602 		    &ioc->chain_lookup[i].chain_buffer_dma);
3603 		if (!ioc->chain_lookup[i].chain_buffer) {
3604 			ioc->chain_depth = i;
3605 			goto chain_done;
3606 		}
3607 		total_sz += ioc->chain_segment_sz;
3608 	}
3609  chain_done:
3610 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3611 		"chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3612 		ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
3613 		((ioc->chain_depth *  ioc->chain_segment_sz))/1024));
3614 
3615 	/* initialize hi-priority queue smid's */
3616 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3617 	    sizeof(struct request_tracker), GFP_KERNEL);
3618 	if (!ioc->hpr_lookup) {
3619 		pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3620 		    ioc->name);
3621 		goto out;
3622 	}
3623 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3624 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3625 		"hi_priority(0x%p): depth(%d), start smid(%d)\n",
3626 		ioc->name, ioc->hi_priority,
3627 	    ioc->hi_priority_depth, ioc->hi_priority_smid));
3628 
3629 	/* initialize internal queue smid's */
3630 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
3631 	    sizeof(struct request_tracker), GFP_KERNEL);
3632 	if (!ioc->internal_lookup) {
3633 		pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3634 		    ioc->name);
3635 		goto out;
3636 	}
3637 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3638 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3639 		"internal(0x%p): depth(%d), start smid(%d)\n",
3640 		ioc->name, ioc->internal,
3641 	    ioc->internal_depth, ioc->internal_smid));
3642 
3643 	/* sense buffers, 4 byte align */
3644 	sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3645 	ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
3646 	    0);
3647 	if (!ioc->sense_dma_pool) {
3648 		pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
3649 		    ioc->name);
3650 		goto out;
3651 	}
3652 	ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
3653 	    &ioc->sense_dma);
3654 	if (!ioc->sense) {
3655 		pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
3656 		    ioc->name);
3657 		goto out;
3658 	}
3659 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3660 	    "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3661 	    "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3662 	    SCSI_SENSE_BUFFERSIZE, sz/1024));
3663 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3664 	    ioc->name, (unsigned long long)ioc->sense_dma));
3665 	total_sz += sz;
3666 
3667 	/* reply pool, 4 byte align */
3668 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3669 	ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3670 	    0);
3671 	if (!ioc->reply_dma_pool) {
3672 		pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3673 		    ioc->name);
3674 		goto out;
3675 	}
3676 	ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3677 	    &ioc->reply_dma);
3678 	if (!ioc->reply) {
3679 		pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3680 		    ioc->name);
3681 		goto out;
3682 	}
3683 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3684 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3685 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3686 		"reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3687 		ioc->name, ioc->reply,
3688 	    ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3689 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3690 	    ioc->name, (unsigned long long)ioc->reply_dma));
3691 	total_sz += sz;
3692 
3693 	/* reply free queue, 16 byte align */
3694 	sz = ioc->reply_free_queue_depth * 4;
3695 	ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3696 	    ioc->pdev, sz, 16, 0);
3697 	if (!ioc->reply_free_dma_pool) {
3698 		pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3699 			ioc->name);
3700 		goto out;
3701 	}
3702 	ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3703 	    &ioc->reply_free_dma);
3704 	if (!ioc->reply_free) {
3705 		pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3706 			ioc->name);
3707 		goto out;
3708 	}
3709 	memset(ioc->reply_free, 0, sz);
3710 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3711 	    "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3712 	    ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3713 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3714 		"reply_free_dma (0x%llx)\n",
3715 		ioc->name, (unsigned long long)ioc->reply_free_dma));
3716 	total_sz += sz;
3717 
3718 	ioc->config_page_sz = 512;
3719 	ioc->config_page = pci_alloc_consistent(ioc->pdev,
3720 	    ioc->config_page_sz, &ioc->config_page_dma);
3721 	if (!ioc->config_page) {
3722 		pr_err(MPT3SAS_FMT
3723 			"config page: pci_pool_alloc failed\n",
3724 			ioc->name);
3725 		goto out;
3726 	}
3727 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3728 		"config page(0x%p): size(%d)\n",
3729 		ioc->name, ioc->config_page, ioc->config_page_sz));
3730 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3731 		ioc->name, (unsigned long long)ioc->config_page_dma));
3732 	total_sz += ioc->config_page_sz;
3733 
3734 	pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3735 	    ioc->name, total_sz/1024);
3736 	pr_info(MPT3SAS_FMT
3737 		"Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3738 	    ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3739 	pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3740 	    ioc->name, ioc->shost->sg_tablesize);
3741 	return 0;
3742 
3743  out:
3744 	return -ENOMEM;
3745 }
3746 
3747 /**
3748  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3749  * @ioc: Pointer to MPT_ADAPTER structure
3750  * @cooked: Request raw or cooked IOC state
3751  *
3752  * Returns all IOC Doorbell register bits if cooked==0, else just the
3753  * Doorbell bits in MPI_IOC_STATE_MASK.
3754  */
3755 u32
3756 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3757 {
3758 	u32 s, sc;
3759 
3760 	s = readl(&ioc->chip->Doorbell);
3761 	sc = s & MPI2_IOC_STATE_MASK;
3762 	return cooked ? sc : s;
3763 }
3764 
3765 /**
3766  * _base_wait_on_iocstate - waiting on a particular ioc state
3767  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3768  * @timeout: timeout in second
3769  *
3770  * Returns 0 for success, non-zero for failure.
3771  */
3772 static int
3773 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
3774 {
3775 	u32 count, cntdn;
3776 	u32 current_state;
3777 
3778 	count = 0;
3779 	cntdn = 1000 * timeout;
3780 	do {
3781 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
3782 		if (current_state == ioc_state)
3783 			return 0;
3784 		if (count && current_state == MPI2_IOC_STATE_FAULT)
3785 			break;
3786 
3787 		usleep_range(1000, 1500);
3788 		count++;
3789 	} while (--cntdn);
3790 
3791 	return current_state;
3792 }
3793 
3794 /**
3795  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3796  * a write to the doorbell)
3797  * @ioc: per adapter object
3798  * @timeout: timeout in second
3799  *
3800  * Returns 0 for success, non-zero for failure.
3801  *
3802  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3803  */
3804 static int
3805 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3806 
3807 static int
3808 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
3809 {
3810 	u32 cntdn, count;
3811 	u32 int_status;
3812 
3813 	count = 0;
3814 	cntdn = 1000 * timeout;
3815 	do {
3816 		int_status = readl(&ioc->chip->HostInterruptStatus);
3817 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3818 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3819 				"%s: successful count(%d), timeout(%d)\n",
3820 				ioc->name, __func__, count, timeout));
3821 			return 0;
3822 		}
3823 
3824 		usleep_range(1000, 1500);
3825 		count++;
3826 	} while (--cntdn);
3827 
3828 	pr_err(MPT3SAS_FMT
3829 		"%s: failed due to timeout count(%d), int_status(%x)!\n",
3830 		ioc->name, __func__, count, int_status);
3831 	return -EFAULT;
3832 }
3833 
3834 static int
3835 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
3836 {
3837 	u32 cntdn, count;
3838 	u32 int_status;
3839 
3840 	count = 0;
3841 	cntdn = 2000 * timeout;
3842 	do {
3843 		int_status = readl(&ioc->chip->HostInterruptStatus);
3844 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3845 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3846 				"%s: successful count(%d), timeout(%d)\n",
3847 				ioc->name, __func__, count, timeout));
3848 			return 0;
3849 		}
3850 
3851 		udelay(500);
3852 		count++;
3853 	} while (--cntdn);
3854 
3855 	pr_err(MPT3SAS_FMT
3856 		"%s: failed due to timeout count(%d), int_status(%x)!\n",
3857 		ioc->name, __func__, count, int_status);
3858 	return -EFAULT;
3859 
3860 }
3861 
3862 /**
3863  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3864  * @ioc: per adapter object
3865  * @timeout: timeout in second
3866  *
3867  * Returns 0 for success, non-zero for failure.
3868  *
3869  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3870  * doorbell.
3871  */
3872 static int
3873 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
3874 {
3875 	u32 cntdn, count;
3876 	u32 int_status;
3877 	u32 doorbell;
3878 
3879 	count = 0;
3880 	cntdn = 1000 * timeout;
3881 	do {
3882 		int_status = readl(&ioc->chip->HostInterruptStatus);
3883 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3884 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3885 				"%s: successful count(%d), timeout(%d)\n",
3886 				ioc->name, __func__, count, timeout));
3887 			return 0;
3888 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3889 			doorbell = readl(&ioc->chip->Doorbell);
3890 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
3891 			    MPI2_IOC_STATE_FAULT) {
3892 				mpt3sas_base_fault_info(ioc , doorbell);
3893 				return -EFAULT;
3894 			}
3895 		} else if (int_status == 0xFFFFFFFF)
3896 			goto out;
3897 
3898 		usleep_range(1000, 1500);
3899 		count++;
3900 	} while (--cntdn);
3901 
3902  out:
3903 	pr_err(MPT3SAS_FMT
3904 	 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3905 	 ioc->name, __func__, count, int_status);
3906 	return -EFAULT;
3907 }
3908 
3909 /**
3910  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3911  * @ioc: per adapter object
3912  * @timeout: timeout in second
3913  *
3914  * Returns 0 for success, non-zero for failure.
3915  *
3916  */
3917 static int
3918 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
3919 {
3920 	u32 cntdn, count;
3921 	u32 doorbell_reg;
3922 
3923 	count = 0;
3924 	cntdn = 1000 * timeout;
3925 	do {
3926 		doorbell_reg = readl(&ioc->chip->Doorbell);
3927 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3928 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3929 				"%s: successful count(%d), timeout(%d)\n",
3930 				ioc->name, __func__, count, timeout));
3931 			return 0;
3932 		}
3933 
3934 		usleep_range(1000, 1500);
3935 		count++;
3936 	} while (--cntdn);
3937 
3938 	pr_err(MPT3SAS_FMT
3939 		"%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3940 		ioc->name, __func__, count, doorbell_reg);
3941 	return -EFAULT;
3942 }
3943 
3944 /**
3945  * _base_send_ioc_reset - send doorbell reset
3946  * @ioc: per adapter object
3947  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3948  * @timeout: timeout in second
3949  *
3950  * Returns 0 for success, non-zero for failure.
3951  */
3952 static int
3953 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
3954 {
3955 	u32 ioc_state;
3956 	int r = 0;
3957 
3958 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3959 		pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3960 		    ioc->name, __func__);
3961 		return -EFAULT;
3962 	}
3963 
3964 	if (!(ioc->facts.IOCCapabilities &
3965 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3966 		return -EFAULT;
3967 
3968 	pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3969 
3970 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3971 	    &ioc->chip->Doorbell);
3972 	if ((_base_wait_for_doorbell_ack(ioc, 15))) {
3973 		r = -EFAULT;
3974 		goto out;
3975 	}
3976 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
3977 	if (ioc_state) {
3978 		pr_err(MPT3SAS_FMT
3979 			"%s: failed going to ready state (ioc_state=0x%x)\n",
3980 			ioc->name, __func__, ioc_state);
3981 		r = -EFAULT;
3982 		goto out;
3983 	}
3984  out:
3985 	pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3986 	    ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3987 	return r;
3988 }
3989 
3990 /**
3991  * _base_handshake_req_reply_wait - send request thru doorbell interface
3992  * @ioc: per adapter object
3993  * @request_bytes: request length
3994  * @request: pointer having request payload
3995  * @reply_bytes: reply length
3996  * @reply: pointer to reply payload
3997  * @timeout: timeout in second
3998  *
3999  * Returns 0 for success, non-zero for failure.
4000  */
4001 static int
4002 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
4003 	u32 *request, int reply_bytes, u16 *reply, int timeout)
4004 {
4005 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
4006 	int i;
4007 	u8 failed;
4008 	__le32 *mfp;
4009 
4010 	/* make sure doorbell is not in use */
4011 	if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
4012 		pr_err(MPT3SAS_FMT
4013 			"doorbell is in use (line=%d)\n",
4014 			ioc->name, __LINE__);
4015 		return -EFAULT;
4016 	}
4017 
4018 	/* clear pending doorbell interrupts from previous state changes */
4019 	if (readl(&ioc->chip->HostInterruptStatus) &
4020 	    MPI2_HIS_IOC2SYS_DB_STATUS)
4021 		writel(0, &ioc->chip->HostInterruptStatus);
4022 
4023 	/* send message to ioc */
4024 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
4025 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
4026 	    &ioc->chip->Doorbell);
4027 
4028 	if ((_base_spin_on_doorbell_int(ioc, 5))) {
4029 		pr_err(MPT3SAS_FMT
4030 			"doorbell handshake int failed (line=%d)\n",
4031 			ioc->name, __LINE__);
4032 		return -EFAULT;
4033 	}
4034 	writel(0, &ioc->chip->HostInterruptStatus);
4035 
4036 	if ((_base_wait_for_doorbell_ack(ioc, 5))) {
4037 		pr_err(MPT3SAS_FMT
4038 			"doorbell handshake ack failed (line=%d)\n",
4039 			ioc->name, __LINE__);
4040 		return -EFAULT;
4041 	}
4042 
4043 	/* send message 32-bits at a time */
4044 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
4045 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
4046 		if ((_base_wait_for_doorbell_ack(ioc, 5)))
4047 			failed = 1;
4048 	}
4049 
4050 	if (failed) {
4051 		pr_err(MPT3SAS_FMT
4052 			"doorbell handshake sending request failed (line=%d)\n",
4053 			ioc->name, __LINE__);
4054 		return -EFAULT;
4055 	}
4056 
4057 	/* now wait for the reply */
4058 	if ((_base_wait_for_doorbell_int(ioc, timeout))) {
4059 		pr_err(MPT3SAS_FMT
4060 			"doorbell handshake int failed (line=%d)\n",
4061 			ioc->name, __LINE__);
4062 		return -EFAULT;
4063 	}
4064 
4065 	/* read the first two 16-bits, it gives the total length of the reply */
4066 	reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4067 	    & MPI2_DOORBELL_DATA_MASK);
4068 	writel(0, &ioc->chip->HostInterruptStatus);
4069 	if ((_base_wait_for_doorbell_int(ioc, 5))) {
4070 		pr_err(MPT3SAS_FMT
4071 			"doorbell handshake int failed (line=%d)\n",
4072 			ioc->name, __LINE__);
4073 		return -EFAULT;
4074 	}
4075 	reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4076 	    & MPI2_DOORBELL_DATA_MASK);
4077 	writel(0, &ioc->chip->HostInterruptStatus);
4078 
4079 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
4080 		if ((_base_wait_for_doorbell_int(ioc, 5))) {
4081 			pr_err(MPT3SAS_FMT
4082 				"doorbell handshake int failed (line=%d)\n",
4083 				ioc->name, __LINE__);
4084 			return -EFAULT;
4085 		}
4086 		if (i >=  reply_bytes/2) /* overflow case */
4087 			readl(&ioc->chip->Doorbell);
4088 		else
4089 			reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4090 			    & MPI2_DOORBELL_DATA_MASK);
4091 		writel(0, &ioc->chip->HostInterruptStatus);
4092 	}
4093 
4094 	_base_wait_for_doorbell_int(ioc, 5);
4095 	if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
4096 		dhsprintk(ioc, pr_info(MPT3SAS_FMT
4097 			"doorbell is in use (line=%d)\n", ioc->name, __LINE__));
4098 	}
4099 	writel(0, &ioc->chip->HostInterruptStatus);
4100 
4101 	if (ioc->logging_level & MPT_DEBUG_INIT) {
4102 		mfp = (__le32 *)reply;
4103 		pr_info("\toffset:data\n");
4104 		for (i = 0; i < reply_bytes/4; i++)
4105 			pr_info("\t[0x%02x]:%08x\n", i*4,
4106 			    le32_to_cpu(mfp[i]));
4107 	}
4108 	return 0;
4109 }
4110 
4111 /**
4112  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
4113  * @ioc: per adapter object
4114  * @mpi_reply: the reply payload from FW
4115  * @mpi_request: the request payload sent to FW
4116  *
4117  * The SAS IO Unit Control Request message allows the host to perform low-level
4118  * operations, such as resets on the PHYs of the IO Unit, also allows the host
4119  * to obtain the IOC assigned device handles for a device if it has other
4120  * identifying information about the device, in addition allows the host to
4121  * remove IOC resources associated with the device.
4122  *
4123  * Returns 0 for success, non-zero for failure.
4124  */
4125 int
4126 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
4127 	Mpi2SasIoUnitControlReply_t *mpi_reply,
4128 	Mpi2SasIoUnitControlRequest_t *mpi_request)
4129 {
4130 	u16 smid;
4131 	u32 ioc_state;
4132 	bool issue_reset = false;
4133 	int rc;
4134 	void *request;
4135 	u16 wait_state_count;
4136 
4137 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4138 	    __func__));
4139 
4140 	mutex_lock(&ioc->base_cmds.mutex);
4141 
4142 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4143 		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4144 		    ioc->name, __func__);
4145 		rc = -EAGAIN;
4146 		goto out;
4147 	}
4148 
4149 	wait_state_count = 0;
4150 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4151 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4152 		if (wait_state_count++ == 10) {
4153 			pr_err(MPT3SAS_FMT
4154 			    "%s: failed due to ioc not operational\n",
4155 			    ioc->name, __func__);
4156 			rc = -EFAULT;
4157 			goto out;
4158 		}
4159 		ssleep(1);
4160 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4161 		pr_info(MPT3SAS_FMT
4162 			"%s: waiting for operational state(count=%d)\n",
4163 			ioc->name, __func__, wait_state_count);
4164 	}
4165 
4166 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4167 	if (!smid) {
4168 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4169 		    ioc->name, __func__);
4170 		rc = -EAGAIN;
4171 		goto out;
4172 	}
4173 
4174 	rc = 0;
4175 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4176 	request = mpt3sas_base_get_msg_frame(ioc, smid);
4177 	ioc->base_cmds.smid = smid;
4178 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
4179 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4180 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
4181 		ioc->ioc_link_reset_in_progress = 1;
4182 	init_completion(&ioc->base_cmds.done);
4183 	ioc->put_smid_default(ioc, smid);
4184 	wait_for_completion_timeout(&ioc->base_cmds.done,
4185 	    msecs_to_jiffies(10000));
4186 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4187 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4188 	    ioc->ioc_link_reset_in_progress)
4189 		ioc->ioc_link_reset_in_progress = 0;
4190 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4191 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4192 		    ioc->name, __func__);
4193 		_debug_dump_mf(mpi_request,
4194 		    sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4195 		if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4196 			issue_reset = true;
4197 		goto issue_host_reset;
4198 	}
4199 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4200 		memcpy(mpi_reply, ioc->base_cmds.reply,
4201 		    sizeof(Mpi2SasIoUnitControlReply_t));
4202 	else
4203 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4204 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4205 	goto out;
4206 
4207  issue_host_reset:
4208 	if (issue_reset)
4209 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4210 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4211 	rc = -EFAULT;
4212  out:
4213 	mutex_unlock(&ioc->base_cmds.mutex);
4214 	return rc;
4215 }
4216 
4217 /**
4218  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4219  * @ioc: per adapter object
4220  * @mpi_reply: the reply payload from FW
4221  * @mpi_request: the request payload sent to FW
4222  *
4223  * The SCSI Enclosure Processor request message causes the IOC to
4224  * communicate with SES devices to control LED status signals.
4225  *
4226  * Returns 0 for success, non-zero for failure.
4227  */
4228 int
4229 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4230 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4231 {
4232 	u16 smid;
4233 	u32 ioc_state;
4234 	bool issue_reset = false;
4235 	int rc;
4236 	void *request;
4237 	u16 wait_state_count;
4238 
4239 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4240 	    __func__));
4241 
4242 	mutex_lock(&ioc->base_cmds.mutex);
4243 
4244 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4245 		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4246 		    ioc->name, __func__);
4247 		rc = -EAGAIN;
4248 		goto out;
4249 	}
4250 
4251 	wait_state_count = 0;
4252 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4253 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4254 		if (wait_state_count++ == 10) {
4255 			pr_err(MPT3SAS_FMT
4256 			    "%s: failed due to ioc not operational\n",
4257 			    ioc->name, __func__);
4258 			rc = -EFAULT;
4259 			goto out;
4260 		}
4261 		ssleep(1);
4262 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4263 		pr_info(MPT3SAS_FMT
4264 			"%s: waiting for operational state(count=%d)\n",
4265 			ioc->name,
4266 		    __func__, wait_state_count);
4267 	}
4268 
4269 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4270 	if (!smid) {
4271 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4272 		    ioc->name, __func__);
4273 		rc = -EAGAIN;
4274 		goto out;
4275 	}
4276 
4277 	rc = 0;
4278 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4279 	request = mpt3sas_base_get_msg_frame(ioc, smid);
4280 	ioc->base_cmds.smid = smid;
4281 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4282 	init_completion(&ioc->base_cmds.done);
4283 	ioc->put_smid_default(ioc, smid);
4284 	wait_for_completion_timeout(&ioc->base_cmds.done,
4285 	    msecs_to_jiffies(10000));
4286 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4287 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4288 		    ioc->name, __func__);
4289 		_debug_dump_mf(mpi_request,
4290 		    sizeof(Mpi2SepRequest_t)/4);
4291 		if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4292 			issue_reset = false;
4293 		goto issue_host_reset;
4294 	}
4295 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4296 		memcpy(mpi_reply, ioc->base_cmds.reply,
4297 		    sizeof(Mpi2SepReply_t));
4298 	else
4299 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4300 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4301 	goto out;
4302 
4303  issue_host_reset:
4304 	if (issue_reset)
4305 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4306 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4307 	rc = -EFAULT;
4308  out:
4309 	mutex_unlock(&ioc->base_cmds.mutex);
4310 	return rc;
4311 }
4312 
4313 /**
4314  * _base_get_port_facts - obtain port facts reply and save in ioc
4315  * @ioc: per adapter object
4316  *
4317  * Returns 0 for success, non-zero for failure.
4318  */
4319 static int
4320 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
4321 {
4322 	Mpi2PortFactsRequest_t mpi_request;
4323 	Mpi2PortFactsReply_t mpi_reply;
4324 	struct mpt3sas_port_facts *pfacts;
4325 	int mpi_reply_sz, mpi_request_sz, r;
4326 
4327 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4328 	    __func__));
4329 
4330 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4331 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4332 	memset(&mpi_request, 0, mpi_request_sz);
4333 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4334 	mpi_request.PortNumber = port;
4335 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4336 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4337 
4338 	if (r != 0) {
4339 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4340 		    ioc->name, __func__, r);
4341 		return r;
4342 	}
4343 
4344 	pfacts = &ioc->pfacts[port];
4345 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4346 	pfacts->PortNumber = mpi_reply.PortNumber;
4347 	pfacts->VP_ID = mpi_reply.VP_ID;
4348 	pfacts->VF_ID = mpi_reply.VF_ID;
4349 	pfacts->MaxPostedCmdBuffers =
4350 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4351 
4352 	return 0;
4353 }
4354 
4355 /**
4356  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4357  * @ioc: per adapter object
4358  * @timeout:
4359  *
4360  * Returns 0 for success, non-zero for failure.
4361  */
4362 static int
4363 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
4364 {
4365 	u32 ioc_state;
4366 	int rc;
4367 
4368 	dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4369 	    __func__));
4370 
4371 	if (ioc->pci_error_recovery) {
4372 		dfailprintk(ioc, printk(MPT3SAS_FMT
4373 		    "%s: host in pci error recovery\n", ioc->name, __func__));
4374 		return -EFAULT;
4375 	}
4376 
4377 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4378 	dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4379 	    ioc->name, __func__, ioc_state));
4380 
4381 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4382 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4383 		return 0;
4384 
4385 	if (ioc_state & MPI2_DOORBELL_USED) {
4386 		dhsprintk(ioc, printk(MPT3SAS_FMT
4387 		    "unexpected doorbell active!\n", ioc->name));
4388 		goto issue_diag_reset;
4389 	}
4390 
4391 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4392 		mpt3sas_base_fault_info(ioc, ioc_state &
4393 		    MPI2_DOORBELL_DATA_MASK);
4394 		goto issue_diag_reset;
4395 	}
4396 
4397 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
4398 	if (ioc_state) {
4399 		dfailprintk(ioc, printk(MPT3SAS_FMT
4400 		    "%s: failed going to ready state (ioc_state=0x%x)\n",
4401 		    ioc->name, __func__, ioc_state));
4402 		return -EFAULT;
4403 	}
4404 
4405  issue_diag_reset:
4406 	rc = _base_diag_reset(ioc);
4407 	return rc;
4408 }
4409 
4410 /**
4411  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4412  * @ioc: per adapter object
4413  *
4414  * Returns 0 for success, non-zero for failure.
4415  */
4416 static int
4417 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
4418 {
4419 	Mpi2IOCFactsRequest_t mpi_request;
4420 	Mpi2IOCFactsReply_t mpi_reply;
4421 	struct mpt3sas_facts *facts;
4422 	int mpi_reply_sz, mpi_request_sz, r;
4423 
4424 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4425 	    __func__));
4426 
4427 	r = _base_wait_for_iocstate(ioc, 10);
4428 	if (r) {
4429 		dfailprintk(ioc, printk(MPT3SAS_FMT
4430 		    "%s: failed getting to correct state\n",
4431 		    ioc->name, __func__));
4432 		return r;
4433 	}
4434 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4435 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4436 	memset(&mpi_request, 0, mpi_request_sz);
4437 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4438 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4439 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4440 
4441 	if (r != 0) {
4442 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4443 		    ioc->name, __func__, r);
4444 		return r;
4445 	}
4446 
4447 	facts = &ioc->facts;
4448 	memset(facts, 0, sizeof(struct mpt3sas_facts));
4449 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4450 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4451 	facts->VP_ID = mpi_reply.VP_ID;
4452 	facts->VF_ID = mpi_reply.VF_ID;
4453 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4454 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4455 	facts->WhoInit = mpi_reply.WhoInit;
4456 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4457 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4458 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4459 	facts->MaxReplyDescriptorPostQueueDepth =
4460 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4461 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4462 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4463 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4464 		ioc->ir_firmware = 1;
4465 	if ((facts->IOCCapabilities &
4466 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4467 		ioc->rdpq_array_capable = 1;
4468 	if (facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
4469 		ioc->atomic_desc_capable = 1;
4470 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4471 	facts->IOCRequestFrameSize =
4472 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4473 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4474 		facts->IOCMaxChainSegmentSize =
4475 			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
4476 	}
4477 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4478 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4479 	ioc->shost->max_id = -1;
4480 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4481 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4482 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4483 	facts->HighPriorityCredit =
4484 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
4485 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4486 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4487 
4488 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4489 		"hba queue depth(%d), max chains per io(%d)\n",
4490 		ioc->name, facts->RequestCredit,
4491 	    facts->MaxChainDepth));
4492 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4493 		"request frame size(%d), reply frame size(%d)\n", ioc->name,
4494 	    facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4495 	return 0;
4496 }
4497 
4498 /**
4499  * _base_send_ioc_init - send ioc_init to firmware
4500  * @ioc: per adapter object
4501  *
4502  * Returns 0 for success, non-zero for failure.
4503  */
4504 static int
4505 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
4506 {
4507 	Mpi2IOCInitRequest_t mpi_request;
4508 	Mpi2IOCInitReply_t mpi_reply;
4509 	int i, r = 0;
4510 	ktime_t current_time;
4511 	u16 ioc_status;
4512 	u32 reply_post_free_array_sz = 0;
4513 	Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4514 	dma_addr_t reply_post_free_array_dma;
4515 
4516 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4517 	    __func__));
4518 
4519 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4520 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4521 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4522 	mpi_request.VF_ID = 0; /* TODO */
4523 	mpi_request.VP_ID = 0;
4524 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
4525 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4526 
4527 	if (_base_is_controller_msix_enabled(ioc))
4528 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4529 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4530 	mpi_request.ReplyDescriptorPostQueueDepth =
4531 	    cpu_to_le16(ioc->reply_post_queue_depth);
4532 	mpi_request.ReplyFreeQueueDepth =
4533 	    cpu_to_le16(ioc->reply_free_queue_depth);
4534 
4535 	mpi_request.SenseBufferAddressHigh =
4536 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
4537 	mpi_request.SystemReplyAddressHigh =
4538 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
4539 	mpi_request.SystemRequestFrameBaseAddress =
4540 	    cpu_to_le64((u64)ioc->request_dma);
4541 	mpi_request.ReplyFreeQueueAddress =
4542 	    cpu_to_le64((u64)ioc->reply_free_dma);
4543 
4544 	if (ioc->rdpq_array_enable) {
4545 		reply_post_free_array_sz = ioc->reply_queue_count *
4546 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
4547 		reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4548 			reply_post_free_array_sz, &reply_post_free_array_dma);
4549 		if (!reply_post_free_array) {
4550 			pr_err(MPT3SAS_FMT
4551 			"reply_post_free_array: pci_alloc_consistent failed\n",
4552 			ioc->name);
4553 			r = -ENOMEM;
4554 			goto out;
4555 		}
4556 		memset(reply_post_free_array, 0, reply_post_free_array_sz);
4557 		for (i = 0; i < ioc->reply_queue_count; i++)
4558 			reply_post_free_array[i].RDPQBaseAddress =
4559 			    cpu_to_le64(
4560 				(u64)ioc->reply_post[i].reply_post_free_dma);
4561 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4562 		mpi_request.ReplyDescriptorPostQueueAddress =
4563 		    cpu_to_le64((u64)reply_post_free_array_dma);
4564 	} else {
4565 		mpi_request.ReplyDescriptorPostQueueAddress =
4566 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4567 	}
4568 
4569 	/* This time stamp specifies number of milliseconds
4570 	 * since epoch ~ midnight January 1, 1970.
4571 	 */
4572 	current_time = ktime_get_real();
4573 	mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
4574 
4575 	if (ioc->logging_level & MPT_DEBUG_INIT) {
4576 		__le32 *mfp;
4577 		int i;
4578 
4579 		mfp = (__le32 *)&mpi_request;
4580 		pr_info("\toffset:data\n");
4581 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4582 			pr_info("\t[0x%02x]:%08x\n", i*4,
4583 			    le32_to_cpu(mfp[i]));
4584 	}
4585 
4586 	r = _base_handshake_req_reply_wait(ioc,
4587 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4588 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
4589 
4590 	if (r != 0) {
4591 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4592 		    ioc->name, __func__, r);
4593 		goto out;
4594 	}
4595 
4596 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4597 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4598 	    mpi_reply.IOCLogInfo) {
4599 		pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4600 		r = -EIO;
4601 	}
4602 
4603 out:
4604 	if (reply_post_free_array)
4605 		pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4606 				    reply_post_free_array,
4607 				    reply_post_free_array_dma);
4608 	return r;
4609 }
4610 
4611 /**
4612  * mpt3sas_port_enable_done - command completion routine for port enable
4613  * @ioc: per adapter object
4614  * @smid: system request message index
4615  * @msix_index: MSIX table index supplied by the OS
4616  * @reply: reply message frame(lower 32bit addr)
4617  *
4618  * Return 1 meaning mf should be freed from _base_interrupt
4619  *        0 means the mf is freed from this function.
4620  */
4621 u8
4622 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4623 	u32 reply)
4624 {
4625 	MPI2DefaultReply_t *mpi_reply;
4626 	u16 ioc_status;
4627 
4628 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4629 		return 1;
4630 
4631 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4632 	if (!mpi_reply)
4633 		return 1;
4634 
4635 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4636 		return 1;
4637 
4638 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4639 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4640 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4641 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4642 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4643 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4644 		ioc->port_enable_failed = 1;
4645 
4646 	if (ioc->is_driver_loading) {
4647 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4648 			mpt3sas_port_enable_complete(ioc);
4649 			return 1;
4650 		} else {
4651 			ioc->start_scan_failed = ioc_status;
4652 			ioc->start_scan = 0;
4653 			return 1;
4654 		}
4655 	}
4656 	complete(&ioc->port_enable_cmds.done);
4657 	return 1;
4658 }
4659 
4660 /**
4661  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4662  * @ioc: per adapter object
4663  *
4664  * Returns 0 for success, non-zero for failure.
4665  */
4666 static int
4667 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
4668 {
4669 	Mpi2PortEnableRequest_t *mpi_request;
4670 	Mpi2PortEnableReply_t *mpi_reply;
4671 	int r = 0;
4672 	u16 smid;
4673 	u16 ioc_status;
4674 
4675 	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4676 
4677 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4678 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4679 		    ioc->name, __func__);
4680 		return -EAGAIN;
4681 	}
4682 
4683 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4684 	if (!smid) {
4685 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4686 		    ioc->name, __func__);
4687 		return -EAGAIN;
4688 	}
4689 
4690 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4691 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4692 	ioc->port_enable_cmds.smid = smid;
4693 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4694 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4695 
4696 	init_completion(&ioc->port_enable_cmds.done);
4697 	ioc->put_smid_default(ioc, smid);
4698 	wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
4699 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4700 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4701 		    ioc->name, __func__);
4702 		_debug_dump_mf(mpi_request,
4703 		    sizeof(Mpi2PortEnableRequest_t)/4);
4704 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4705 			r = -EFAULT;
4706 		else
4707 			r = -ETIME;
4708 		goto out;
4709 	}
4710 
4711 	mpi_reply = ioc->port_enable_cmds.reply;
4712 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4713 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4714 		pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4715 		    ioc->name, __func__, ioc_status);
4716 		r = -EFAULT;
4717 		goto out;
4718 	}
4719 
4720  out:
4721 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4722 	pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4723 	    "SUCCESS" : "FAILED"));
4724 	return r;
4725 }
4726 
4727 /**
4728  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4729  * @ioc: per adapter object
4730  *
4731  * Returns 0 for success, non-zero for failure.
4732  */
4733 int
4734 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4735 {
4736 	Mpi2PortEnableRequest_t *mpi_request;
4737 	u16 smid;
4738 
4739 	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4740 
4741 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4742 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4743 		    ioc->name, __func__);
4744 		return -EAGAIN;
4745 	}
4746 
4747 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4748 	if (!smid) {
4749 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4750 		    ioc->name, __func__);
4751 		return -EAGAIN;
4752 	}
4753 
4754 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4755 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4756 	ioc->port_enable_cmds.smid = smid;
4757 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4758 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4759 
4760 	ioc->put_smid_default(ioc, smid);
4761 	return 0;
4762 }
4763 
4764 /**
4765  * _base_determine_wait_on_discovery - desposition
4766  * @ioc: per adapter object
4767  *
4768  * Decide whether to wait on discovery to complete. Used to either
4769  * locate boot device, or report volumes ahead of physical devices.
4770  *
4771  * Returns 1 for wait, 0 for don't wait
4772  */
4773 static int
4774 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4775 {
4776 	/* We wait for discovery to complete if IR firmware is loaded.
4777 	 * The sas topology events arrive before PD events, so we need time to
4778 	 * turn on the bit in ioc->pd_handles to indicate PD
4779 	 * Also, it maybe required to report Volumes ahead of physical
4780 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4781 	 */
4782 	if (ioc->ir_firmware)
4783 		return 1;
4784 
4785 	/* if no Bios, then we don't need to wait */
4786 	if (!ioc->bios_pg3.BiosVersion)
4787 		return 0;
4788 
4789 	/* Bios is present, then we drop down here.
4790 	 *
4791 	 * If there any entries in the Bios Page 2, then we wait
4792 	 * for discovery to complete.
4793 	 */
4794 
4795 	/* Current Boot Device */
4796 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
4797 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4798 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4799 	/* Request Boot Device */
4800 	   (ioc->bios_pg2.ReqBootDeviceForm &
4801 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4802 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4803 	/* Alternate Request Boot Device */
4804 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
4805 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4806 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4807 		return 0;
4808 
4809 	return 1;
4810 }
4811 
4812 /**
4813  * _base_unmask_events - turn on notification for this event
4814  * @ioc: per adapter object
4815  * @event: firmware event
4816  *
4817  * The mask is stored in ioc->event_masks.
4818  */
4819 static void
4820 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4821 {
4822 	u32 desired_event;
4823 
4824 	if (event >= 128)
4825 		return;
4826 
4827 	desired_event = (1 << (event % 32));
4828 
4829 	if (event < 32)
4830 		ioc->event_masks[0] &= ~desired_event;
4831 	else if (event < 64)
4832 		ioc->event_masks[1] &= ~desired_event;
4833 	else if (event < 96)
4834 		ioc->event_masks[2] &= ~desired_event;
4835 	else if (event < 128)
4836 		ioc->event_masks[3] &= ~desired_event;
4837 }
4838 
4839 /**
4840  * _base_event_notification - send event notification
4841  * @ioc: per adapter object
4842  *
4843  * Returns 0 for success, non-zero for failure.
4844  */
4845 static int
4846 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
4847 {
4848 	Mpi2EventNotificationRequest_t *mpi_request;
4849 	u16 smid;
4850 	int r = 0;
4851 	int i;
4852 
4853 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4854 	    __func__));
4855 
4856 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4857 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4858 		    ioc->name, __func__);
4859 		return -EAGAIN;
4860 	}
4861 
4862 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4863 	if (!smid) {
4864 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4865 		    ioc->name, __func__);
4866 		return -EAGAIN;
4867 	}
4868 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4869 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4870 	ioc->base_cmds.smid = smid;
4871 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4872 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4873 	mpi_request->VF_ID = 0; /* TODO */
4874 	mpi_request->VP_ID = 0;
4875 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4876 		mpi_request->EventMasks[i] =
4877 		    cpu_to_le32(ioc->event_masks[i]);
4878 	init_completion(&ioc->base_cmds.done);
4879 	ioc->put_smid_default(ioc, smid);
4880 	wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4881 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4882 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4883 		    ioc->name, __func__);
4884 		_debug_dump_mf(mpi_request,
4885 		    sizeof(Mpi2EventNotificationRequest_t)/4);
4886 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
4887 			r = -EFAULT;
4888 		else
4889 			r = -ETIME;
4890 	} else
4891 		dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4892 		    ioc->name, __func__));
4893 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4894 	return r;
4895 }
4896 
4897 /**
4898  * mpt3sas_base_validate_event_type - validating event types
4899  * @ioc: per adapter object
4900  * @event: firmware event
4901  *
4902  * This will turn on firmware event notification when application
4903  * ask for that event. We don't mask events that are already enabled.
4904  */
4905 void
4906 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4907 {
4908 	int i, j;
4909 	u32 event_mask, desired_event;
4910 	u8 send_update_to_fw;
4911 
4912 	for (i = 0, send_update_to_fw = 0; i <
4913 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4914 		event_mask = ~event_type[i];
4915 		desired_event = 1;
4916 		for (j = 0; j < 32; j++) {
4917 			if (!(event_mask & desired_event) &&
4918 			    (ioc->event_masks[i] & desired_event)) {
4919 				ioc->event_masks[i] &= ~desired_event;
4920 				send_update_to_fw = 1;
4921 			}
4922 			desired_event = (desired_event << 1);
4923 		}
4924 	}
4925 
4926 	if (!send_update_to_fw)
4927 		return;
4928 
4929 	mutex_lock(&ioc->base_cmds.mutex);
4930 	_base_event_notification(ioc);
4931 	mutex_unlock(&ioc->base_cmds.mutex);
4932 }
4933 
4934 /**
4935  * _base_diag_reset - the "big hammer" start of day reset
4936  * @ioc: per adapter object
4937  *
4938  * Returns 0 for success, non-zero for failure.
4939  */
4940 static int
4941 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
4942 {
4943 	u32 host_diagnostic;
4944 	u32 ioc_state;
4945 	u32 count;
4946 	u32 hcb_size;
4947 
4948 	pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4949 
4950 	drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4951 	    ioc->name));
4952 
4953 	count = 0;
4954 	do {
4955 		/* Write magic sequence to WriteSequence register
4956 		 * Loop until in diagnostic mode
4957 		 */
4958 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4959 			"write magic sequence\n", ioc->name));
4960 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4961 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4962 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4963 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4964 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4965 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4966 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4967 
4968 		/* wait 100 msec */
4969 		msleep(100);
4970 
4971 		if (count++ > 20)
4972 			goto out;
4973 
4974 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4975 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4976 			"wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4977 		    ioc->name, count, host_diagnostic));
4978 
4979 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4980 
4981 	hcb_size = readl(&ioc->chip->HCBSize);
4982 
4983 	drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4984 	    ioc->name));
4985 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4986 	     &ioc->chip->HostDiagnostic);
4987 
4988 	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
4989 	msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4990 
4991 	/* Approximately 300 second max wait */
4992 	for (count = 0; count < (300000000 /
4993 		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4994 
4995 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4996 
4997 		if (host_diagnostic == 0xFFFFFFFF)
4998 			goto out;
4999 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
5000 			break;
5001 
5002 		msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
5003 	}
5004 
5005 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
5006 
5007 		drsprintk(ioc, pr_info(MPT3SAS_FMT
5008 		"restart the adapter assuming the HCB Address points to good F/W\n",
5009 		    ioc->name));
5010 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
5011 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
5012 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
5013 
5014 		drsprintk(ioc, pr_info(MPT3SAS_FMT
5015 		    "re-enable the HCDW\n", ioc->name));
5016 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
5017 		    &ioc->chip->HCBSize);
5018 	}
5019 
5020 	drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
5021 	    ioc->name));
5022 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
5023 	    &ioc->chip->HostDiagnostic);
5024 
5025 	drsprintk(ioc, pr_info(MPT3SAS_FMT
5026 		"disable writes to the diagnostic register\n", ioc->name));
5027 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
5028 
5029 	drsprintk(ioc, pr_info(MPT3SAS_FMT
5030 		"Wait for FW to go to the READY state\n", ioc->name));
5031 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
5032 	if (ioc_state) {
5033 		pr_err(MPT3SAS_FMT
5034 			"%s: failed going to ready state (ioc_state=0x%x)\n",
5035 			ioc->name, __func__, ioc_state);
5036 		goto out;
5037 	}
5038 
5039 	pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
5040 	return 0;
5041 
5042  out:
5043 	pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
5044 	return -EFAULT;
5045 }
5046 
5047 /**
5048  * _base_make_ioc_ready - put controller in READY state
5049  * @ioc: per adapter object
5050  * @type: FORCE_BIG_HAMMER or SOFT_RESET
5051  *
5052  * Returns 0 for success, non-zero for failure.
5053  */
5054 static int
5055 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
5056 {
5057 	u32 ioc_state;
5058 	int rc;
5059 	int count;
5060 
5061 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5062 	    __func__));
5063 
5064 	if (ioc->pci_error_recovery)
5065 		return 0;
5066 
5067 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5068 	dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
5069 	    ioc->name, __func__, ioc_state));
5070 
5071 	/* if in RESET state, it should move to READY state shortly */
5072 	count = 0;
5073 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
5074 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
5075 		    MPI2_IOC_STATE_READY) {
5076 			if (count++ == 10) {
5077 				pr_err(MPT3SAS_FMT
5078 					"%s: failed going to ready state (ioc_state=0x%x)\n",
5079 				    ioc->name, __func__, ioc_state);
5080 				return -EFAULT;
5081 			}
5082 			ssleep(1);
5083 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5084 		}
5085 	}
5086 
5087 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
5088 		return 0;
5089 
5090 	if (ioc_state & MPI2_DOORBELL_USED) {
5091 		dhsprintk(ioc, pr_info(MPT3SAS_FMT
5092 			"unexpected doorbell active!\n",
5093 			ioc->name));
5094 		goto issue_diag_reset;
5095 	}
5096 
5097 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5098 		mpt3sas_base_fault_info(ioc, ioc_state &
5099 		    MPI2_DOORBELL_DATA_MASK);
5100 		goto issue_diag_reset;
5101 	}
5102 
5103 	if (type == FORCE_BIG_HAMMER)
5104 		goto issue_diag_reset;
5105 
5106 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5107 		if (!(_base_send_ioc_reset(ioc,
5108 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
5109 			return 0;
5110 	}
5111 
5112  issue_diag_reset:
5113 	rc = _base_diag_reset(ioc);
5114 	return rc;
5115 }
5116 
5117 /**
5118  * _base_make_ioc_operational - put controller in OPERATIONAL state
5119  * @ioc: per adapter object
5120  *
5121  * Returns 0 for success, non-zero for failure.
5122  */
5123 static int
5124 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
5125 {
5126 	int r, i, index;
5127 	unsigned long	flags;
5128 	u32 reply_address;
5129 	u16 smid;
5130 	struct _tr_list *delayed_tr, *delayed_tr_next;
5131 	struct _sc_list *delayed_sc, *delayed_sc_next;
5132 	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
5133 	u8 hide_flag;
5134 	struct adapter_reply_queue *reply_q;
5135 	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
5136 
5137 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5138 	    __func__));
5139 
5140 	/* clean the delayed target reset list */
5141 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5142 	    &ioc->delayed_tr_list, list) {
5143 		list_del(&delayed_tr->list);
5144 		kfree(delayed_tr);
5145 	}
5146 
5147 
5148 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5149 	    &ioc->delayed_tr_volume_list, list) {
5150 		list_del(&delayed_tr->list);
5151 		kfree(delayed_tr);
5152 	}
5153 
5154 	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
5155 	    &ioc->delayed_sc_list, list) {
5156 		list_del(&delayed_sc->list);
5157 		kfree(delayed_sc);
5158 	}
5159 
5160 	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
5161 	    &ioc->delayed_event_ack_list, list) {
5162 		list_del(&delayed_event_ack->list);
5163 		kfree(delayed_event_ack);
5164 	}
5165 
5166 	/* initialize the scsi lookup free list */
5167 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5168 	INIT_LIST_HEAD(&ioc->free_list);
5169 	smid = 1;
5170 	for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5171 		INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5172 		ioc->scsi_lookup[i].cb_idx = 0xFF;
5173 		ioc->scsi_lookup[i].smid = smid;
5174 		ioc->scsi_lookup[i].scmd = NULL;
5175 		ioc->scsi_lookup[i].direct_io = 0;
5176 		list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5177 		    &ioc->free_list);
5178 	}
5179 
5180 	/* hi-priority queue */
5181 	INIT_LIST_HEAD(&ioc->hpr_free_list);
5182 	smid = ioc->hi_priority_smid;
5183 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5184 		ioc->hpr_lookup[i].cb_idx = 0xFF;
5185 		ioc->hpr_lookup[i].smid = smid;
5186 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5187 		    &ioc->hpr_free_list);
5188 	}
5189 
5190 	/* internal queue */
5191 	INIT_LIST_HEAD(&ioc->internal_free_list);
5192 	smid = ioc->internal_smid;
5193 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
5194 		ioc->internal_lookup[i].cb_idx = 0xFF;
5195 		ioc->internal_lookup[i].smid = smid;
5196 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
5197 		    &ioc->internal_free_list);
5198 	}
5199 
5200 	/* chain pool */
5201 	INIT_LIST_HEAD(&ioc->free_chain_list);
5202 	for (i = 0; i < ioc->chain_depth; i++)
5203 		list_add_tail(&ioc->chain_lookup[i].tracker_list,
5204 		    &ioc->free_chain_list);
5205 
5206 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5207 
5208 	/* initialize Reply Free Queue */
5209 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
5210 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
5211 	    ioc->reply_sz)
5212 		ioc->reply_free[i] = cpu_to_le32(reply_address);
5213 
5214 	/* initialize reply queues */
5215 	if (ioc->is_driver_loading)
5216 		_base_assign_reply_queues(ioc);
5217 
5218 	/* initialize Reply Post Free Queue */
5219 	index = 0;
5220 	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
5221 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5222 		/*
5223 		 * If RDPQ is enabled, switch to the next allocation.
5224 		 * Otherwise advance within the contiguous region.
5225 		 */
5226 		if (ioc->rdpq_array_enable) {
5227 			reply_q->reply_post_free =
5228 				ioc->reply_post[index++].reply_post_free;
5229 		} else {
5230 			reply_q->reply_post_free = reply_post_free_contig;
5231 			reply_post_free_contig += ioc->reply_post_queue_depth;
5232 		}
5233 
5234 		reply_q->reply_post_host_index = 0;
5235 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
5236 			reply_q->reply_post_free[i].Words =
5237 			    cpu_to_le64(ULLONG_MAX);
5238 		if (!_base_is_controller_msix_enabled(ioc))
5239 			goto skip_init_reply_post_free_queue;
5240 	}
5241  skip_init_reply_post_free_queue:
5242 
5243 	r = _base_send_ioc_init(ioc);
5244 	if (r)
5245 		return r;
5246 
5247 	/* initialize reply free host index */
5248 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5249 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5250 
5251 	/* initialize reply post host index */
5252 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5253 		if (ioc->combined_reply_queue)
5254 			writel((reply_q->msix_index & 7)<<
5255 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
5256 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5257 		else
5258 			writel(reply_q->msix_index <<
5259 				MPI2_RPHI_MSIX_INDEX_SHIFT,
5260 				&ioc->chip->ReplyPostHostIndex);
5261 
5262 		if (!_base_is_controller_msix_enabled(ioc))
5263 			goto skip_init_reply_post_host_index;
5264 	}
5265 
5266  skip_init_reply_post_host_index:
5267 
5268 	_base_unmask_interrupts(ioc);
5269 	r = _base_event_notification(ioc);
5270 	if (r)
5271 		return r;
5272 
5273 	_base_static_config_pages(ioc);
5274 
5275 	if (ioc->is_driver_loading) {
5276 
5277 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5278 		    == 0x80) {
5279 			hide_flag = (u8) (
5280 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5281 			    MFG_PAGE10_HIDE_SSDS_MASK);
5282 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5283 				ioc->mfg_pg10_hide_flag = hide_flag;
5284 		}
5285 
5286 		ioc->wait_for_discovery_to_complete =
5287 		    _base_determine_wait_on_discovery(ioc);
5288 
5289 		return r; /* scan_start and scan_finished support */
5290 	}
5291 
5292 	r = _base_send_port_enable(ioc);
5293 	if (r)
5294 		return r;
5295 
5296 	return r;
5297 }
5298 
5299 /**
5300  * mpt3sas_base_free_resources - free resources controller resources
5301  * @ioc: per adapter object
5302  *
5303  * Return nothing.
5304  */
5305 void
5306 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5307 {
5308 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5309 	    __func__));
5310 
5311 	/* synchronizing freeing resource with pci_access_mutex lock */
5312 	mutex_lock(&ioc->pci_access_mutex);
5313 	if (ioc->chip_phys && ioc->chip) {
5314 		_base_mask_interrupts(ioc);
5315 		ioc->shost_recovery = 1;
5316 		_base_make_ioc_ready(ioc, SOFT_RESET);
5317 		ioc->shost_recovery = 0;
5318 	}
5319 
5320 	mpt3sas_base_unmap_resources(ioc);
5321 	mutex_unlock(&ioc->pci_access_mutex);
5322 	return;
5323 }
5324 
5325 /**
5326  * mpt3sas_base_attach - attach controller instance
5327  * @ioc: per adapter object
5328  *
5329  * Returns 0 for success, non-zero for failure.
5330  */
5331 int
5332 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5333 {
5334 	int r, i;
5335 	int cpu_id, last_cpu_id = 0;
5336 
5337 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5338 	    __func__));
5339 
5340 	/* setup cpu_msix_table */
5341 	ioc->cpu_count = num_online_cpus();
5342 	for_each_online_cpu(cpu_id)
5343 		last_cpu_id = cpu_id;
5344 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
5345 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5346 	ioc->reply_queue_count = 1;
5347 	if (!ioc->cpu_msix_table) {
5348 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
5349 			"allocation for cpu_msix_table failed!!!\n",
5350 			ioc->name));
5351 		r = -ENOMEM;
5352 		goto out_free_resources;
5353 	}
5354 
5355 	if (ioc->is_warpdrive) {
5356 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5357 		    sizeof(resource_size_t *), GFP_KERNEL);
5358 		if (!ioc->reply_post_host_index) {
5359 			dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5360 				"for cpu_msix_table failed!!!\n", ioc->name));
5361 			r = -ENOMEM;
5362 			goto out_free_resources;
5363 		}
5364 	}
5365 
5366 	ioc->rdpq_array_enable_assigned = 0;
5367 	ioc->dma_mask = 0;
5368 	r = mpt3sas_base_map_resources(ioc);
5369 	if (r)
5370 		goto out_free_resources;
5371 
5372 	pci_set_drvdata(ioc->pdev, ioc->shost);
5373 	r = _base_get_ioc_facts(ioc);
5374 	if (r)
5375 		goto out_free_resources;
5376 
5377 	switch (ioc->hba_mpi_version_belonged) {
5378 	case MPI2_VERSION:
5379 		ioc->build_sg_scmd = &_base_build_sg_scmd;
5380 		ioc->build_sg = &_base_build_sg;
5381 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5382 		break;
5383 	case MPI25_VERSION:
5384 	case MPI26_VERSION:
5385 		/*
5386 		 * In SAS3.0,
5387 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5388 		 * Target Status - all require the IEEE formated scatter gather
5389 		 * elements.
5390 		 */
5391 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5392 		ioc->build_sg = &_base_build_sg_ieee;
5393 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5394 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5395 
5396 		break;
5397 	}
5398 
5399 	if (ioc->atomic_desc_capable) {
5400 		ioc->put_smid_default = &_base_put_smid_default_atomic;
5401 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
5402 		ioc->put_smid_fast_path = &_base_put_smid_fast_path_atomic;
5403 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority_atomic;
5404 	} else {
5405 		ioc->put_smid_default = &_base_put_smid_default;
5406 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
5407 		ioc->put_smid_fast_path = &_base_put_smid_fast_path;
5408 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
5409 	}
5410 
5411 
5412 	/*
5413 	 * These function pointers for other requests that don't
5414 	 * the require IEEE scatter gather elements.
5415 	 *
5416 	 * For example Configuration Pages and SAS IOUNIT Control don't.
5417 	 */
5418 	ioc->build_sg_mpi = &_base_build_sg;
5419 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5420 
5421 	r = _base_make_ioc_ready(ioc, SOFT_RESET);
5422 	if (r)
5423 		goto out_free_resources;
5424 
5425 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5426 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5427 	if (!ioc->pfacts) {
5428 		r = -ENOMEM;
5429 		goto out_free_resources;
5430 	}
5431 
5432 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5433 		r = _base_get_port_facts(ioc, i);
5434 		if (r)
5435 			goto out_free_resources;
5436 	}
5437 
5438 	r = _base_allocate_memory_pools(ioc);
5439 	if (r)
5440 		goto out_free_resources;
5441 
5442 	init_waitqueue_head(&ioc->reset_wq);
5443 
5444 	/* allocate memory pd handle bitmask list */
5445 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5446 	if (ioc->facts.MaxDevHandle % 8)
5447 		ioc->pd_handles_sz++;
5448 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5449 	    GFP_KERNEL);
5450 	if (!ioc->pd_handles) {
5451 		r = -ENOMEM;
5452 		goto out_free_resources;
5453 	}
5454 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5455 	    GFP_KERNEL);
5456 	if (!ioc->blocking_handles) {
5457 		r = -ENOMEM;
5458 		goto out_free_resources;
5459 	}
5460 
5461 	/* allocate memory for pending OS device add list */
5462 	ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
5463 	if (ioc->facts.MaxDevHandle % 8)
5464 		ioc->pend_os_device_add_sz++;
5465 	ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
5466 	    GFP_KERNEL);
5467 	if (!ioc->pend_os_device_add)
5468 		goto out_free_resources;
5469 
5470 	ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
5471 	ioc->device_remove_in_progress =
5472 		kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
5473 	if (!ioc->device_remove_in_progress)
5474 		goto out_free_resources;
5475 
5476 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
5477 
5478 	/* base internal command bits */
5479 	mutex_init(&ioc->base_cmds.mutex);
5480 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5481 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5482 
5483 	/* port_enable command bits */
5484 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5485 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5486 
5487 	/* transport internal command bits */
5488 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5489 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5490 	mutex_init(&ioc->transport_cmds.mutex);
5491 
5492 	/* scsih internal command bits */
5493 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5494 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5495 	mutex_init(&ioc->scsih_cmds.mutex);
5496 
5497 	/* task management internal command bits */
5498 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5499 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5500 	mutex_init(&ioc->tm_cmds.mutex);
5501 
5502 	/* config page internal command bits */
5503 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5504 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5505 	mutex_init(&ioc->config_cmds.mutex);
5506 
5507 	/* ctl module internal command bits */
5508 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5509 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5510 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5511 	mutex_init(&ioc->ctl_cmds.mutex);
5512 
5513 	if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
5514 	    !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
5515 	    !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
5516 	    !ioc->ctl_cmds.sense) {
5517 		r = -ENOMEM;
5518 		goto out_free_resources;
5519 	}
5520 
5521 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5522 		ioc->event_masks[i] = -1;
5523 
5524 	/* here we enable the events we care about */
5525 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5526 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5527 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5528 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5529 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5530 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5531 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5532 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5533 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5534 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5535 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5536 	if (ioc->hba_mpi_version_belonged == MPI26_VERSION)
5537 		_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
5538 
5539 	r = _base_make_ioc_operational(ioc);
5540 	if (r)
5541 		goto out_free_resources;
5542 
5543 	ioc->non_operational_loop = 0;
5544 	ioc->got_task_abort_from_ioctl = 0;
5545 	return 0;
5546 
5547  out_free_resources:
5548 
5549 	ioc->remove_host = 1;
5550 
5551 	mpt3sas_base_free_resources(ioc);
5552 	_base_release_memory_pools(ioc);
5553 	pci_set_drvdata(ioc->pdev, NULL);
5554 	kfree(ioc->cpu_msix_table);
5555 	if (ioc->is_warpdrive)
5556 		kfree(ioc->reply_post_host_index);
5557 	kfree(ioc->pd_handles);
5558 	kfree(ioc->blocking_handles);
5559 	kfree(ioc->device_remove_in_progress);
5560 	kfree(ioc->pend_os_device_add);
5561 	kfree(ioc->tm_cmds.reply);
5562 	kfree(ioc->transport_cmds.reply);
5563 	kfree(ioc->scsih_cmds.reply);
5564 	kfree(ioc->config_cmds.reply);
5565 	kfree(ioc->base_cmds.reply);
5566 	kfree(ioc->port_enable_cmds.reply);
5567 	kfree(ioc->ctl_cmds.reply);
5568 	kfree(ioc->ctl_cmds.sense);
5569 	kfree(ioc->pfacts);
5570 	ioc->ctl_cmds.reply = NULL;
5571 	ioc->base_cmds.reply = NULL;
5572 	ioc->tm_cmds.reply = NULL;
5573 	ioc->scsih_cmds.reply = NULL;
5574 	ioc->transport_cmds.reply = NULL;
5575 	ioc->config_cmds.reply = NULL;
5576 	ioc->pfacts = NULL;
5577 	return r;
5578 }
5579 
5580 
5581 /**
5582  * mpt3sas_base_detach - remove controller instance
5583  * @ioc: per adapter object
5584  *
5585  * Return nothing.
5586  */
5587 void
5588 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5589 {
5590 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5591 	    __func__));
5592 
5593 	mpt3sas_base_stop_watchdog(ioc);
5594 	mpt3sas_base_free_resources(ioc);
5595 	_base_release_memory_pools(ioc);
5596 	pci_set_drvdata(ioc->pdev, NULL);
5597 	kfree(ioc->cpu_msix_table);
5598 	if (ioc->is_warpdrive)
5599 		kfree(ioc->reply_post_host_index);
5600 	kfree(ioc->pd_handles);
5601 	kfree(ioc->blocking_handles);
5602 	kfree(ioc->device_remove_in_progress);
5603 	kfree(ioc->pend_os_device_add);
5604 	kfree(ioc->pfacts);
5605 	kfree(ioc->ctl_cmds.reply);
5606 	kfree(ioc->ctl_cmds.sense);
5607 	kfree(ioc->base_cmds.reply);
5608 	kfree(ioc->port_enable_cmds.reply);
5609 	kfree(ioc->tm_cmds.reply);
5610 	kfree(ioc->transport_cmds.reply);
5611 	kfree(ioc->scsih_cmds.reply);
5612 	kfree(ioc->config_cmds.reply);
5613 }
5614 
5615 /**
5616  * _base_reset_handler - reset callback handler (for base)
5617  * @ioc: per adapter object
5618  * @reset_phase: phase
5619  *
5620  * The handler for doing any required cleanup or initialization.
5621  *
5622  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5623  * MPT3_IOC_DONE_RESET
5624  *
5625  * Return nothing.
5626  */
5627 static void
5628 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5629 {
5630 	mpt3sas_scsih_reset_handler(ioc, reset_phase);
5631 	mpt3sas_ctl_reset_handler(ioc, reset_phase);
5632 	switch (reset_phase) {
5633 	case MPT3_IOC_PRE_RESET:
5634 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
5635 		"%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5636 		break;
5637 	case MPT3_IOC_AFTER_RESET:
5638 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
5639 		"%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5640 		if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5641 			ioc->transport_cmds.status |= MPT3_CMD_RESET;
5642 			mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5643 			complete(&ioc->transport_cmds.done);
5644 		}
5645 		if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5646 			ioc->base_cmds.status |= MPT3_CMD_RESET;
5647 			mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5648 			complete(&ioc->base_cmds.done);
5649 		}
5650 		if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5651 			ioc->port_enable_failed = 1;
5652 			ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5653 			mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5654 			if (ioc->is_driver_loading) {
5655 				ioc->start_scan_failed =
5656 				    MPI2_IOCSTATUS_INTERNAL_ERROR;
5657 				ioc->start_scan = 0;
5658 				ioc->port_enable_cmds.status =
5659 				    MPT3_CMD_NOT_USED;
5660 			} else
5661 				complete(&ioc->port_enable_cmds.done);
5662 		}
5663 		if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5664 			ioc->config_cmds.status |= MPT3_CMD_RESET;
5665 			mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5666 			ioc->config_cmds.smid = USHRT_MAX;
5667 			complete(&ioc->config_cmds.done);
5668 		}
5669 		break;
5670 	case MPT3_IOC_DONE_RESET:
5671 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
5672 			"%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5673 		break;
5674 	}
5675 }
5676 
5677 /**
5678  * _wait_for_commands_to_complete - reset controller
5679  * @ioc: Pointer to MPT_ADAPTER structure
5680  *
5681  * This function waiting(3s) for all pending commands to complete
5682  * prior to putting controller in reset.
5683  */
5684 static void
5685 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
5686 {
5687 	u32 ioc_state;
5688 	unsigned long flags;
5689 	u16 i;
5690 
5691 	ioc->pending_io_count = 0;
5692 
5693 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5694 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5695 		return;
5696 
5697 	/* pending command count */
5698 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5699 	for (i = 0; i < ioc->scsiio_depth; i++)
5700 		if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5701 			ioc->pending_io_count++;
5702 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5703 
5704 	if (!ioc->pending_io_count)
5705 		return;
5706 
5707 	/* wait for pending commands to complete */
5708 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5709 }
5710 
5711 /**
5712  * mpt3sas_base_hard_reset_handler - reset controller
5713  * @ioc: Pointer to MPT_ADAPTER structure
5714  * @type: FORCE_BIG_HAMMER or SOFT_RESET
5715  *
5716  * Returns 0 for success, non-zero for failure.
5717  */
5718 int
5719 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
5720 	enum reset_type type)
5721 {
5722 	int r;
5723 	unsigned long flags;
5724 	u32 ioc_state;
5725 	u8 is_fault = 0, is_trigger = 0;
5726 
5727 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5728 	    __func__));
5729 
5730 	if (ioc->pci_error_recovery) {
5731 		pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5732 		    ioc->name, __func__);
5733 		r = 0;
5734 		goto out_unlocked;
5735 	}
5736 
5737 	if (mpt3sas_fwfault_debug)
5738 		mpt3sas_halt_firmware(ioc);
5739 
5740 	/* wait for an active reset in progress to complete */
5741 	if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5742 		do {
5743 			ssleep(1);
5744 		} while (ioc->shost_recovery == 1);
5745 		dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5746 		    __func__));
5747 		return ioc->ioc_reset_in_progress_status;
5748 	}
5749 
5750 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5751 	ioc->shost_recovery = 1;
5752 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5753 
5754 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5755 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5756 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5757 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
5758 		is_trigger = 1;
5759 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5760 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5761 			is_fault = 1;
5762 	}
5763 	_base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5764 	_wait_for_commands_to_complete(ioc);
5765 	_base_mask_interrupts(ioc);
5766 	r = _base_make_ioc_ready(ioc, type);
5767 	if (r)
5768 		goto out;
5769 	_base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5770 
5771 	/* If this hard reset is called while port enable is active, then
5772 	 * there is no reason to call make_ioc_operational
5773 	 */
5774 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
5775 		ioc->remove_host = 1;
5776 		r = -EFAULT;
5777 		goto out;
5778 	}
5779 	r = _base_get_ioc_facts(ioc);
5780 	if (r)
5781 		goto out;
5782 
5783 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5784 		panic("%s: Issue occurred with flashing controller firmware."
5785 		      "Please reboot the system and ensure that the correct"
5786 		      " firmware version is running\n", ioc->name);
5787 
5788 	r = _base_make_ioc_operational(ioc);
5789 	if (!r)
5790 		_base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5791 
5792  out:
5793 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5794 	    ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5795 
5796 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5797 	ioc->ioc_reset_in_progress_status = r;
5798 	ioc->shost_recovery = 0;
5799 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5800 	ioc->ioc_reset_count++;
5801 	mutex_unlock(&ioc->reset_in_progress_mutex);
5802 
5803  out_unlocked:
5804 	if ((r == 0) && is_trigger) {
5805 		if (is_fault)
5806 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5807 		else
5808 			mpt3sas_trigger_master(ioc,
5809 			    MASTER_TRIGGER_ADAPTER_RESET);
5810 	}
5811 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5812 	    __func__));
5813 	return r;
5814 }
5815