1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 #include <linux/aer.h> 64 65 66 #include "mpt3sas_base.h" 67 68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 69 70 71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 72 73 /* maximum controller queue depth */ 74 #define MAX_HBA_QUEUE_DEPTH 30000 75 #define MAX_CHAIN_DEPTH 100000 76 static int max_queue_depth = -1; 77 module_param(max_queue_depth, int, 0444); 78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 79 80 static int max_sgl_entries = -1; 81 module_param(max_sgl_entries, int, 0444); 82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 83 84 static int msix_disable = -1; 85 module_param(msix_disable, int, 0444); 86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 87 88 static int smp_affinity_enable = 1; 89 module_param(smp_affinity_enable, int, 0444); 90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 91 92 static int max_msix_vectors = -1; 93 module_param(max_msix_vectors, int, 0444); 94 MODULE_PARM_DESC(max_msix_vectors, 95 " max msix vectors"); 96 97 static int irqpoll_weight = -1; 98 module_param(irqpoll_weight, int, 0444); 99 MODULE_PARM_DESC(irqpoll_weight, 100 "irq poll weight (default= one fourth of HBA queue depth)"); 101 102 static int mpt3sas_fwfault_debug; 103 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 104 " enable detection of firmware fault and halt firmware - (default=0)"); 105 106 static int perf_mode = -1; 107 module_param(perf_mode, int, 0444); 108 MODULE_PARM_DESC(perf_mode, 109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t" 110 "0 - balanced: high iops mode is enabled &\n\t\t" 111 "interrupt coalescing is enabled only on high iops queues,\n\t\t" 112 "1 - iops: high iops mode is disabled &\n\t\t" 113 "interrupt coalescing is enabled on all queues,\n\t\t" 114 "2 - latency: high iops mode is disabled &\n\t\t" 115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n" 116 "\t\tdefault - default perf_mode is 'balanced'" 117 ); 118 119 enum mpt3sas_perf_mode { 120 MPT_PERF_MODE_DEFAULT = -1, 121 MPT_PERF_MODE_BALANCED = 0, 122 MPT_PERF_MODE_IOPS = 1, 123 MPT_PERF_MODE_LATENCY = 2, 124 }; 125 126 static int 127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, 128 u32 ioc_state, int timeout); 129 static int 130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 131 static void 132 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc); 133 134 /** 135 * mpt3sas_base_check_cmd_timeout - Function 136 * to check timeout and command termination due 137 * to Host reset. 138 * 139 * @ioc: per adapter object. 140 * @status: Status of issued command. 141 * @mpi_request:mf request pointer. 142 * @sz: size of buffer. 143 * 144 * @Returns - 1/0 Reset to be done or Not 145 */ 146 u8 147 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 148 u8 status, void *mpi_request, int sz) 149 { 150 u8 issue_reset = 0; 151 152 if (!(status & MPT3_CMD_RESET)) 153 issue_reset = 1; 154 155 ioc_err(ioc, "Command %s\n", 156 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 157 _debug_dump_mf(mpi_request, sz); 158 159 return issue_reset; 160 } 161 162 /** 163 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 164 * @val: ? 165 * @kp: ? 166 * 167 * Return: ? 168 */ 169 static int 170 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 171 { 172 int ret = param_set_int(val, kp); 173 struct MPT3SAS_ADAPTER *ioc; 174 175 if (ret) 176 return ret; 177 178 /* global ioc spinlock to protect controller list on list operations */ 179 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 180 spin_lock(&gioc_lock); 181 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 182 ioc->fwfault_debug = mpt3sas_fwfault_debug; 183 spin_unlock(&gioc_lock); 184 return 0; 185 } 186 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 187 param_get_int, &mpt3sas_fwfault_debug, 0644); 188 189 /** 190 * _base_readl_aero - retry readl for max three times. 191 * @addr: MPT Fusion system interface register address 192 * 193 * Retry the readl() for max three times if it gets zero value 194 * while reading the system interface register. 195 */ 196 static inline u32 197 _base_readl_aero(const volatile void __iomem *addr) 198 { 199 u32 i = 0, ret_val; 200 201 do { 202 ret_val = readl(addr); 203 i++; 204 } while (ret_val == 0 && i < 3); 205 206 return ret_val; 207 } 208 209 static inline u32 210 _base_readl(const volatile void __iomem *addr) 211 { 212 return readl(addr); 213 } 214 215 /** 216 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 217 * in BAR0 space. 218 * 219 * @ioc: per adapter object 220 * @reply: reply message frame(lower 32bit addr) 221 * @index: System request message index. 222 */ 223 static void 224 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 225 u32 index) 226 { 227 /* 228 * 256 is offset within sys register. 229 * 256 offset MPI frame starts. Max MPI frame supported is 32. 230 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 231 */ 232 u16 cmd_credit = ioc->facts.RequestCredit + 1; 233 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 234 MPI_FRAME_START_OFFSET + 235 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 236 237 writel(reply, reply_free_iomem); 238 } 239 240 /** 241 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 242 * to system/BAR0 region. 243 * 244 * @dst_iomem: Pointer to the destination location in BAR0 space. 245 * @src: Pointer to the Source data. 246 * @size: Size of data to be copied. 247 */ 248 static void 249 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 250 { 251 int i; 252 u32 *src_virt_mem = (u32 *)src; 253 254 for (i = 0; i < size/4; i++) 255 writel((u32)src_virt_mem[i], 256 (void __iomem *)dst_iomem + (i * 4)); 257 } 258 259 /** 260 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 261 * 262 * @dst_iomem: Pointer to the destination location in BAR0 space. 263 * @src: Pointer to the Source data. 264 * @size: Size of data to be copied. 265 */ 266 static void 267 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 268 { 269 int i; 270 u32 *src_virt_mem = (u32 *)(src); 271 272 for (i = 0; i < size/4; i++) 273 writel((u32)src_virt_mem[i], 274 (void __iomem *)dst_iomem + (i * 4)); 275 } 276 277 /** 278 * _base_get_chain - Calculates and Returns virtual chain address 279 * for the provided smid in BAR0 space. 280 * 281 * @ioc: per adapter object 282 * @smid: system request message index 283 * @sge_chain_count: Scatter gather chain count. 284 * 285 * Return: the chain address. 286 */ 287 static inline void __iomem* 288 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 289 u8 sge_chain_count) 290 { 291 void __iomem *base_chain, *chain_virt; 292 u16 cmd_credit = ioc->facts.RequestCredit + 1; 293 294 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 295 (cmd_credit * ioc->request_sz) + 296 REPLY_FREE_POOL_SIZE; 297 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 298 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 299 return chain_virt; 300 } 301 302 /** 303 * _base_get_chain_phys - Calculates and Returns physical address 304 * in BAR0 for scatter gather chains, for 305 * the provided smid. 306 * 307 * @ioc: per adapter object 308 * @smid: system request message index 309 * @sge_chain_count: Scatter gather chain count. 310 * 311 * Return: Physical chain address. 312 */ 313 static inline phys_addr_t 314 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 315 u8 sge_chain_count) 316 { 317 phys_addr_t base_chain_phys, chain_phys; 318 u16 cmd_credit = ioc->facts.RequestCredit + 1; 319 320 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 321 (cmd_credit * ioc->request_sz) + 322 REPLY_FREE_POOL_SIZE; 323 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 324 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 325 return chain_phys; 326 } 327 328 /** 329 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 330 * buffer address for the provided smid. 331 * (Each smid can have 64K starts from 17024) 332 * 333 * @ioc: per adapter object 334 * @smid: system request message index 335 * 336 * Return: Pointer to buffer location in BAR0. 337 */ 338 339 static void __iomem * 340 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 341 { 342 u16 cmd_credit = ioc->facts.RequestCredit + 1; 343 // Added extra 1 to reach end of chain. 344 void __iomem *chain_end = _base_get_chain(ioc, 345 cmd_credit + 1, 346 ioc->facts.MaxChainDepth); 347 return chain_end + (smid * 64 * 1024); 348 } 349 350 /** 351 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 352 * Host buffer Physical address for the provided smid. 353 * (Each smid can have 64K starts from 17024) 354 * 355 * @ioc: per adapter object 356 * @smid: system request message index 357 * 358 * Return: Pointer to buffer location in BAR0. 359 */ 360 static phys_addr_t 361 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 362 { 363 u16 cmd_credit = ioc->facts.RequestCredit + 1; 364 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 365 cmd_credit + 1, 366 ioc->facts.MaxChainDepth); 367 return chain_end_phys + (smid * 64 * 1024); 368 } 369 370 /** 371 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 372 * lookup list and Provides chain_buffer 373 * address for the matching dma address. 374 * (Each smid can have 64K starts from 17024) 375 * 376 * @ioc: per adapter object 377 * @chain_buffer_dma: Chain buffer dma address. 378 * 379 * Return: Pointer to chain buffer. Or Null on Failure. 380 */ 381 static void * 382 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 383 dma_addr_t chain_buffer_dma) 384 { 385 u16 index, j; 386 struct chain_tracker *ct; 387 388 for (index = 0; index < ioc->scsiio_depth; index++) { 389 for (j = 0; j < ioc->chains_needed_per_io; j++) { 390 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 391 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 392 return ct->chain_buffer; 393 } 394 } 395 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 396 return NULL; 397 } 398 399 /** 400 * _clone_sg_entries - MPI EP's scsiio and config requests 401 * are handled here. Base function for 402 * double buffering, before submitting 403 * the requests. 404 * 405 * @ioc: per adapter object. 406 * @mpi_request: mf request pointer. 407 * @smid: system request message index. 408 */ 409 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 410 void *mpi_request, u16 smid) 411 { 412 Mpi2SGESimple32_t *sgel, *sgel_next; 413 u32 sgl_flags, sge_chain_count = 0; 414 bool is_write = false; 415 u16 i = 0; 416 void __iomem *buffer_iomem; 417 phys_addr_t buffer_iomem_phys; 418 void __iomem *buff_ptr; 419 phys_addr_t buff_ptr_phys; 420 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 421 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 422 phys_addr_t dst_addr_phys; 423 MPI2RequestHeader_t *request_hdr; 424 struct scsi_cmnd *scmd; 425 struct scatterlist *sg_scmd = NULL; 426 int is_scsiio_req = 0; 427 428 request_hdr = (MPI2RequestHeader_t *) mpi_request; 429 430 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 431 Mpi25SCSIIORequest_t *scsiio_request = 432 (Mpi25SCSIIORequest_t *)mpi_request; 433 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 434 is_scsiio_req = 1; 435 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 436 Mpi2ConfigRequest_t *config_req = 437 (Mpi2ConfigRequest_t *)mpi_request; 438 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 439 } else 440 return; 441 442 /* From smid we can get scsi_cmd, once we have sg_scmd, 443 * we just need to get sg_virt and sg_next to get virual 444 * address associated with sgel->Address. 445 */ 446 447 if (is_scsiio_req) { 448 /* Get scsi_cmd using smid */ 449 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 450 if (scmd == NULL) { 451 ioc_err(ioc, "scmd is NULL\n"); 452 return; 453 } 454 455 /* Get sg_scmd from scmd provided */ 456 sg_scmd = scsi_sglist(scmd); 457 } 458 459 /* 460 * 0 - 255 System register 461 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 462 * 4352 - 4864 Reply_free pool (512 byte is reserved 463 * considering maxCredit 32. Reply need extra 464 * room, for mCPU case kept four times of 465 * maxCredit). 466 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 467 * 128 byte size = 12288) 468 * 17152 - x Host buffer mapped with smid. 469 * (Each smid can have 64K Max IO.) 470 * BAR0+Last 1K MSIX Addr and Data 471 * Total size in use 2113664 bytes of 4MB BAR0 472 */ 473 474 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 475 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 476 477 buff_ptr = buffer_iomem; 478 buff_ptr_phys = buffer_iomem_phys; 479 WARN_ON(buff_ptr_phys > U32_MAX); 480 481 if (le32_to_cpu(sgel->FlagsLength) & 482 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 483 is_write = true; 484 485 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 486 487 sgl_flags = 488 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 489 490 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 491 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 492 /* 493 * Helper function which on passing 494 * chain_buffer_dma returns chain_buffer. Get 495 * the virtual address for sgel->Address 496 */ 497 sgel_next = 498 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 499 le32_to_cpu(sgel->Address)); 500 if (sgel_next == NULL) 501 return; 502 /* 503 * This is coping 128 byte chain 504 * frame (not a host buffer) 505 */ 506 dst_chain_addr[sge_chain_count] = 507 _base_get_chain(ioc, 508 smid, sge_chain_count); 509 src_chain_addr[sge_chain_count] = 510 (void *) sgel_next; 511 dst_addr_phys = _base_get_chain_phys(ioc, 512 smid, sge_chain_count); 513 WARN_ON(dst_addr_phys > U32_MAX); 514 sgel->Address = 515 cpu_to_le32(lower_32_bits(dst_addr_phys)); 516 sgel = sgel_next; 517 sge_chain_count++; 518 break; 519 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 520 if (is_write) { 521 if (is_scsiio_req) { 522 _base_clone_to_sys_mem(buff_ptr, 523 sg_virt(sg_scmd), 524 (le32_to_cpu(sgel->FlagsLength) & 525 0x00ffffff)); 526 /* 527 * FIXME: this relies on a a zero 528 * PCI mem_offset. 529 */ 530 sgel->Address = 531 cpu_to_le32((u32)buff_ptr_phys); 532 } else { 533 _base_clone_to_sys_mem(buff_ptr, 534 ioc->config_vaddr, 535 (le32_to_cpu(sgel->FlagsLength) & 536 0x00ffffff)); 537 sgel->Address = 538 cpu_to_le32((u32)buff_ptr_phys); 539 } 540 } 541 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 542 0x00ffffff); 543 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 544 0x00ffffff); 545 if ((le32_to_cpu(sgel->FlagsLength) & 546 (MPI2_SGE_FLAGS_END_OF_BUFFER 547 << MPI2_SGE_FLAGS_SHIFT))) 548 goto eob_clone_chain; 549 else { 550 /* 551 * Every single element in MPT will have 552 * associated sg_next. Better to sanity that 553 * sg_next is not NULL, but it will be a bug 554 * if it is null. 555 */ 556 if (is_scsiio_req) { 557 sg_scmd = sg_next(sg_scmd); 558 if (sg_scmd) 559 sgel++; 560 else 561 goto eob_clone_chain; 562 } 563 } 564 break; 565 } 566 } 567 568 eob_clone_chain: 569 for (i = 0; i < sge_chain_count; i++) { 570 if (is_scsiio_req) 571 _base_clone_to_sys_mem(dst_chain_addr[i], 572 src_chain_addr[i], ioc->request_sz); 573 } 574 } 575 576 /** 577 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 578 * @arg: input argument, used to derive ioc 579 * 580 * Return: 581 * 0 if controller is removed from pci subsystem. 582 * -1 for other case. 583 */ 584 static int mpt3sas_remove_dead_ioc_func(void *arg) 585 { 586 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 587 struct pci_dev *pdev; 588 589 if (!ioc) 590 return -1; 591 592 pdev = ioc->pdev; 593 if (!pdev) 594 return -1; 595 pci_stop_and_remove_bus_device_locked(pdev); 596 return 0; 597 } 598 599 /** 600 * _base_fault_reset_work - workq handling ioc fault conditions 601 * @work: input argument, used to derive ioc 602 * 603 * Context: sleep. 604 */ 605 static void 606 _base_fault_reset_work(struct work_struct *work) 607 { 608 struct MPT3SAS_ADAPTER *ioc = 609 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 610 unsigned long flags; 611 u32 doorbell; 612 int rc; 613 struct task_struct *p; 614 615 616 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 617 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) || 618 ioc->pci_error_recovery) 619 goto rearm_timer; 620 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 621 622 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 623 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 624 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 625 626 /* It may be possible that EEH recovery can resolve some of 627 * pci bus failure issues rather removing the dead ioc function 628 * by considering controller is in a non-operational state. So 629 * here priority is given to the EEH recovery. If it doesn't 630 * not resolve this issue, mpt3sas driver will consider this 631 * controller to non-operational state and remove the dead ioc 632 * function. 633 */ 634 if (ioc->non_operational_loop++ < 5) { 635 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 636 flags); 637 goto rearm_timer; 638 } 639 640 /* 641 * Call _scsih_flush_pending_cmds callback so that we flush all 642 * pending commands back to OS. This call is required to aovid 643 * deadlock at block layer. Dead IOC will fail to do diag reset, 644 * and this call is safe since dead ioc will never return any 645 * command back from HW. 646 */ 647 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 648 /* 649 * Set remove_host flag early since kernel thread will 650 * take some time to execute. 651 */ 652 ioc->remove_host = 1; 653 /*Remove the Dead Host */ 654 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 655 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 656 if (IS_ERR(p)) 657 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 658 __func__); 659 else 660 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 661 __func__); 662 return; /* don't rearm timer */ 663 } 664 665 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 666 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 667 ioc->manu_pg11.CoreDumpTOSec : 668 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 669 670 timeout /= (FAULT_POLLING_INTERVAL/1000); 671 672 if (ioc->ioc_coredump_loop == 0) { 673 mpt3sas_print_coredump_info(ioc, 674 doorbell & MPI2_DOORBELL_DATA_MASK); 675 /* do not accept any IOs and disable the interrupts */ 676 spin_lock_irqsave( 677 &ioc->ioc_reset_in_progress_lock, flags); 678 ioc->shost_recovery = 1; 679 spin_unlock_irqrestore( 680 &ioc->ioc_reset_in_progress_lock, flags); 681 mpt3sas_base_mask_interrupts(ioc); 682 _base_clear_outstanding_commands(ioc); 683 } 684 685 ioc_info(ioc, "%s: CoreDump loop %d.", 686 __func__, ioc->ioc_coredump_loop); 687 688 /* Wait until CoreDump completes or times out */ 689 if (ioc->ioc_coredump_loop++ < timeout) { 690 spin_lock_irqsave( 691 &ioc->ioc_reset_in_progress_lock, flags); 692 goto rearm_timer; 693 } 694 } 695 696 if (ioc->ioc_coredump_loop) { 697 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP) 698 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d", 699 __func__, ioc->ioc_coredump_loop); 700 else 701 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d", 702 __func__, ioc->ioc_coredump_loop); 703 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE; 704 } 705 ioc->non_operational_loop = 0; 706 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 707 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 708 ioc_warn(ioc, "%s: hard reset: %s\n", 709 __func__, rc == 0 ? "success" : "failed"); 710 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 711 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 712 mpt3sas_print_fault_code(ioc, doorbell & 713 MPI2_DOORBELL_DATA_MASK); 714 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 715 MPI2_IOC_STATE_COREDUMP) 716 mpt3sas_print_coredump_info(ioc, doorbell & 717 MPI2_DOORBELL_DATA_MASK); 718 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 719 MPI2_IOC_STATE_OPERATIONAL) 720 return; /* don't rearm timer */ 721 } 722 ioc->ioc_coredump_loop = 0; 723 724 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 725 rearm_timer: 726 if (ioc->fault_reset_work_q) 727 queue_delayed_work(ioc->fault_reset_work_q, 728 &ioc->fault_reset_work, 729 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 730 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 731 } 732 733 /** 734 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 735 * @ioc: per adapter object 736 * 737 * Context: sleep. 738 */ 739 void 740 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 741 { 742 unsigned long flags; 743 744 if (ioc->fault_reset_work_q) 745 return; 746 747 /* initialize fault polling */ 748 749 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 750 snprintf(ioc->fault_reset_work_q_name, 751 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 752 ioc->driver_name, ioc->id); 753 ioc->fault_reset_work_q = 754 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 755 if (!ioc->fault_reset_work_q) { 756 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 757 return; 758 } 759 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 760 if (ioc->fault_reset_work_q) 761 queue_delayed_work(ioc->fault_reset_work_q, 762 &ioc->fault_reset_work, 763 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 764 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 765 } 766 767 /** 768 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 769 * @ioc: per adapter object 770 * 771 * Context: sleep. 772 */ 773 void 774 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 775 { 776 unsigned long flags; 777 struct workqueue_struct *wq; 778 779 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 780 wq = ioc->fault_reset_work_q; 781 ioc->fault_reset_work_q = NULL; 782 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 783 if (wq) { 784 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 785 flush_workqueue(wq); 786 destroy_workqueue(wq); 787 } 788 } 789 790 /** 791 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 792 * @ioc: per adapter object 793 * @fault_code: fault code 794 */ 795 void 796 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) 797 { 798 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 799 } 800 801 /** 802 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state 803 * @ioc: per adapter object 804 * @fault_code: fault code 805 * 806 * Return nothing. 807 */ 808 void 809 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 810 { 811 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code); 812 } 813 814 /** 815 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump 816 * completes or times out 817 * @ioc: per adapter object 818 * @caller: caller function name 819 * 820 * Returns 0 for success, non-zero for failure. 821 */ 822 int 823 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc, 824 const char *caller) 825 { 826 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 827 ioc->manu_pg11.CoreDumpTOSec : 828 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 829 830 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT, 831 timeout); 832 833 if (ioc_state) 834 ioc_err(ioc, 835 "%s: CoreDump timed out. (ioc_state=0x%x)\n", 836 caller, ioc_state); 837 else 838 ioc_info(ioc, 839 "%s: CoreDump completed. (ioc_state=0x%x)\n", 840 caller, ioc_state); 841 842 return ioc_state; 843 } 844 845 /** 846 * mpt3sas_halt_firmware - halt's mpt controller firmware 847 * @ioc: per adapter object 848 * 849 * For debugging timeout related issues. Writing 0xCOFFEE00 850 * to the doorbell register will halt controller firmware. With 851 * the purpose to stop both driver and firmware, the enduser can 852 * obtain a ring buffer from controller UART. 853 */ 854 void 855 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 856 { 857 u32 doorbell; 858 859 if (!ioc->fwfault_debug) 860 return; 861 862 dump_stack(); 863 864 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 865 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 866 mpt3sas_print_fault_code(ioc, doorbell & 867 MPI2_DOORBELL_DATA_MASK); 868 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 869 MPI2_IOC_STATE_COREDUMP) { 870 mpt3sas_print_coredump_info(ioc, doorbell & 871 MPI2_DOORBELL_DATA_MASK); 872 } else { 873 writel(0xC0FFEE00, &ioc->chip->Doorbell); 874 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 875 } 876 877 if (ioc->fwfault_debug == 2) 878 for (;;) 879 ; 880 else 881 panic("panic in %s\n", __func__); 882 } 883 884 /** 885 * _base_sas_ioc_info - verbose translation of the ioc status 886 * @ioc: per adapter object 887 * @mpi_reply: reply mf payload returned from firmware 888 * @request_hdr: request mf 889 */ 890 static void 891 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 892 MPI2RequestHeader_t *request_hdr) 893 { 894 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 895 MPI2_IOCSTATUS_MASK; 896 char *desc = NULL; 897 u16 frame_sz; 898 char *func_str = NULL; 899 900 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 901 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 902 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 903 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 904 return; 905 906 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 907 return; 908 909 switch (ioc_status) { 910 911 /**************************************************************************** 912 * Common IOCStatus values for all replies 913 ****************************************************************************/ 914 915 case MPI2_IOCSTATUS_INVALID_FUNCTION: 916 desc = "invalid function"; 917 break; 918 case MPI2_IOCSTATUS_BUSY: 919 desc = "busy"; 920 break; 921 case MPI2_IOCSTATUS_INVALID_SGL: 922 desc = "invalid sgl"; 923 break; 924 case MPI2_IOCSTATUS_INTERNAL_ERROR: 925 desc = "internal error"; 926 break; 927 case MPI2_IOCSTATUS_INVALID_VPID: 928 desc = "invalid vpid"; 929 break; 930 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 931 desc = "insufficient resources"; 932 break; 933 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 934 desc = "insufficient power"; 935 break; 936 case MPI2_IOCSTATUS_INVALID_FIELD: 937 desc = "invalid field"; 938 break; 939 case MPI2_IOCSTATUS_INVALID_STATE: 940 desc = "invalid state"; 941 break; 942 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 943 desc = "op state not supported"; 944 break; 945 946 /**************************************************************************** 947 * Config IOCStatus values 948 ****************************************************************************/ 949 950 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 951 desc = "config invalid action"; 952 break; 953 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 954 desc = "config invalid type"; 955 break; 956 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 957 desc = "config invalid page"; 958 break; 959 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 960 desc = "config invalid data"; 961 break; 962 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 963 desc = "config no defaults"; 964 break; 965 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 966 desc = "config cant commit"; 967 break; 968 969 /**************************************************************************** 970 * SCSI IO Reply 971 ****************************************************************************/ 972 973 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 974 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 975 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 976 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 977 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 978 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 979 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 980 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 981 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 982 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 983 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 984 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 985 break; 986 987 /**************************************************************************** 988 * For use by SCSI Initiator and SCSI Target end-to-end data protection 989 ****************************************************************************/ 990 991 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 992 desc = "eedp guard error"; 993 break; 994 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 995 desc = "eedp ref tag error"; 996 break; 997 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 998 desc = "eedp app tag error"; 999 break; 1000 1001 /**************************************************************************** 1002 * SCSI Target values 1003 ****************************************************************************/ 1004 1005 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 1006 desc = "target invalid io index"; 1007 break; 1008 case MPI2_IOCSTATUS_TARGET_ABORTED: 1009 desc = "target aborted"; 1010 break; 1011 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 1012 desc = "target no conn retryable"; 1013 break; 1014 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 1015 desc = "target no connection"; 1016 break; 1017 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 1018 desc = "target xfer count mismatch"; 1019 break; 1020 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 1021 desc = "target data offset error"; 1022 break; 1023 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 1024 desc = "target too much write data"; 1025 break; 1026 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 1027 desc = "target iu too short"; 1028 break; 1029 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 1030 desc = "target ack nak timeout"; 1031 break; 1032 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 1033 desc = "target nak received"; 1034 break; 1035 1036 /**************************************************************************** 1037 * Serial Attached SCSI values 1038 ****************************************************************************/ 1039 1040 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 1041 desc = "smp request failed"; 1042 break; 1043 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 1044 desc = "smp data overrun"; 1045 break; 1046 1047 /**************************************************************************** 1048 * Diagnostic Buffer Post / Diagnostic Release values 1049 ****************************************************************************/ 1050 1051 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 1052 desc = "diagnostic released"; 1053 break; 1054 default: 1055 break; 1056 } 1057 1058 if (!desc) 1059 return; 1060 1061 switch (request_hdr->Function) { 1062 case MPI2_FUNCTION_CONFIG: 1063 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 1064 func_str = "config_page"; 1065 break; 1066 case MPI2_FUNCTION_SCSI_TASK_MGMT: 1067 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 1068 func_str = "task_mgmt"; 1069 break; 1070 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 1071 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 1072 func_str = "sas_iounit_ctl"; 1073 break; 1074 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 1075 frame_sz = sizeof(Mpi2SepRequest_t); 1076 func_str = "enclosure"; 1077 break; 1078 case MPI2_FUNCTION_IOC_INIT: 1079 frame_sz = sizeof(Mpi2IOCInitRequest_t); 1080 func_str = "ioc_init"; 1081 break; 1082 case MPI2_FUNCTION_PORT_ENABLE: 1083 frame_sz = sizeof(Mpi2PortEnableRequest_t); 1084 func_str = "port_enable"; 1085 break; 1086 case MPI2_FUNCTION_SMP_PASSTHROUGH: 1087 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 1088 func_str = "smp_passthru"; 1089 break; 1090 case MPI2_FUNCTION_NVME_ENCAPSULATED: 1091 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 1092 ioc->sge_size; 1093 func_str = "nvme_encapsulated"; 1094 break; 1095 default: 1096 frame_sz = 32; 1097 func_str = "unknown"; 1098 break; 1099 } 1100 1101 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 1102 desc, ioc_status, request_hdr, func_str); 1103 1104 _debug_dump_mf(request_hdr, frame_sz/4); 1105 } 1106 1107 /** 1108 * _base_display_event_data - verbose translation of firmware asyn events 1109 * @ioc: per adapter object 1110 * @mpi_reply: reply mf payload returned from firmware 1111 */ 1112 static void 1113 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 1114 Mpi2EventNotificationReply_t *mpi_reply) 1115 { 1116 char *desc = NULL; 1117 u16 event; 1118 1119 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 1120 return; 1121 1122 event = le16_to_cpu(mpi_reply->Event); 1123 1124 switch (event) { 1125 case MPI2_EVENT_LOG_DATA: 1126 desc = "Log Data"; 1127 break; 1128 case MPI2_EVENT_STATE_CHANGE: 1129 desc = "Status Change"; 1130 break; 1131 case MPI2_EVENT_HARD_RESET_RECEIVED: 1132 desc = "Hard Reset Received"; 1133 break; 1134 case MPI2_EVENT_EVENT_CHANGE: 1135 desc = "Event Change"; 1136 break; 1137 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1138 desc = "Device Status Change"; 1139 break; 1140 case MPI2_EVENT_IR_OPERATION_STATUS: 1141 if (!ioc->hide_ir_msg) 1142 desc = "IR Operation Status"; 1143 break; 1144 case MPI2_EVENT_SAS_DISCOVERY: 1145 { 1146 Mpi2EventDataSasDiscovery_t *event_data = 1147 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1148 ioc_info(ioc, "Discovery: (%s)", 1149 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1150 "start" : "stop"); 1151 if (event_data->DiscoveryStatus) 1152 pr_cont(" discovery_status(0x%08x)", 1153 le32_to_cpu(event_data->DiscoveryStatus)); 1154 pr_cont("\n"); 1155 return; 1156 } 1157 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1158 desc = "SAS Broadcast Primitive"; 1159 break; 1160 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1161 desc = "SAS Init Device Status Change"; 1162 break; 1163 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1164 desc = "SAS Init Table Overflow"; 1165 break; 1166 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1167 desc = "SAS Topology Change List"; 1168 break; 1169 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1170 desc = "SAS Enclosure Device Status Change"; 1171 break; 1172 case MPI2_EVENT_IR_VOLUME: 1173 if (!ioc->hide_ir_msg) 1174 desc = "IR Volume"; 1175 break; 1176 case MPI2_EVENT_IR_PHYSICAL_DISK: 1177 if (!ioc->hide_ir_msg) 1178 desc = "IR Physical Disk"; 1179 break; 1180 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1181 if (!ioc->hide_ir_msg) 1182 desc = "IR Configuration Change List"; 1183 break; 1184 case MPI2_EVENT_LOG_ENTRY_ADDED: 1185 if (!ioc->hide_ir_msg) 1186 desc = "Log Entry Added"; 1187 break; 1188 case MPI2_EVENT_TEMP_THRESHOLD: 1189 desc = "Temperature Threshold"; 1190 break; 1191 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1192 desc = "Cable Event"; 1193 break; 1194 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1195 desc = "SAS Device Discovery Error"; 1196 break; 1197 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1198 desc = "PCIE Device Status Change"; 1199 break; 1200 case MPI2_EVENT_PCIE_ENUMERATION: 1201 { 1202 Mpi26EventDataPCIeEnumeration_t *event_data = 1203 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1204 ioc_info(ioc, "PCIE Enumeration: (%s)", 1205 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1206 "start" : "stop"); 1207 if (event_data->EnumerationStatus) 1208 pr_cont("enumeration_status(0x%08x)", 1209 le32_to_cpu(event_data->EnumerationStatus)); 1210 pr_cont("\n"); 1211 return; 1212 } 1213 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1214 desc = "PCIE Topology Change List"; 1215 break; 1216 } 1217 1218 if (!desc) 1219 return; 1220 1221 ioc_info(ioc, "%s\n", desc); 1222 } 1223 1224 /** 1225 * _base_sas_log_info - verbose translation of firmware log info 1226 * @ioc: per adapter object 1227 * @log_info: log info 1228 */ 1229 static void 1230 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) 1231 { 1232 union loginfo_type { 1233 u32 loginfo; 1234 struct { 1235 u32 subcode:16; 1236 u32 code:8; 1237 u32 originator:4; 1238 u32 bus_type:4; 1239 } dw; 1240 }; 1241 union loginfo_type sas_loginfo; 1242 char *originator_str = NULL; 1243 1244 sas_loginfo.loginfo = log_info; 1245 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1246 return; 1247 1248 /* each nexus loss loginfo */ 1249 if (log_info == 0x31170000) 1250 return; 1251 1252 /* eat the loginfos associated with task aborts */ 1253 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1254 0x31140000 || log_info == 0x31130000)) 1255 return; 1256 1257 switch (sas_loginfo.dw.originator) { 1258 case 0: 1259 originator_str = "IOP"; 1260 break; 1261 case 1: 1262 originator_str = "PL"; 1263 break; 1264 case 2: 1265 if (!ioc->hide_ir_msg) 1266 originator_str = "IR"; 1267 else 1268 originator_str = "WarpDrive"; 1269 break; 1270 } 1271 1272 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1273 log_info, 1274 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1275 } 1276 1277 /** 1278 * _base_display_reply_info - 1279 * @ioc: per adapter object 1280 * @smid: system request message index 1281 * @msix_index: MSIX table index supplied by the OS 1282 * @reply: reply message frame(lower 32bit addr) 1283 */ 1284 static void 1285 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1286 u32 reply) 1287 { 1288 MPI2DefaultReply_t *mpi_reply; 1289 u16 ioc_status; 1290 u32 loginfo = 0; 1291 1292 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1293 if (unlikely(!mpi_reply)) { 1294 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1295 __FILE__, __LINE__, __func__); 1296 return; 1297 } 1298 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1299 1300 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1301 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1302 _base_sas_ioc_info(ioc , mpi_reply, 1303 mpt3sas_base_get_msg_frame(ioc, smid)); 1304 } 1305 1306 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1307 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1308 _base_sas_log_info(ioc, loginfo); 1309 } 1310 1311 if (ioc_status || loginfo) { 1312 ioc_status &= MPI2_IOCSTATUS_MASK; 1313 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1314 } 1315 } 1316 1317 /** 1318 * mpt3sas_base_done - base internal command completion routine 1319 * @ioc: per adapter object 1320 * @smid: system request message index 1321 * @msix_index: MSIX table index supplied by the OS 1322 * @reply: reply message frame(lower 32bit addr) 1323 * 1324 * Return: 1325 * 1 meaning mf should be freed from _base_interrupt 1326 * 0 means the mf is freed from this function. 1327 */ 1328 u8 1329 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1330 u32 reply) 1331 { 1332 MPI2DefaultReply_t *mpi_reply; 1333 1334 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1335 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1336 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1337 1338 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1339 return 1; 1340 1341 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1342 if (mpi_reply) { 1343 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1344 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1345 } 1346 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1347 1348 complete(&ioc->base_cmds.done); 1349 return 1; 1350 } 1351 1352 /** 1353 * _base_async_event - main callback handler for firmware asyn events 1354 * @ioc: per adapter object 1355 * @msix_index: MSIX table index supplied by the OS 1356 * @reply: reply message frame(lower 32bit addr) 1357 * 1358 * Return: 1359 * 1 meaning mf should be freed from _base_interrupt 1360 * 0 means the mf is freed from this function. 1361 */ 1362 static u8 1363 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1364 { 1365 Mpi2EventNotificationReply_t *mpi_reply; 1366 Mpi2EventAckRequest_t *ack_request; 1367 u16 smid; 1368 struct _event_ack_list *delayed_event_ack; 1369 1370 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1371 if (!mpi_reply) 1372 return 1; 1373 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1374 return 1; 1375 1376 _base_display_event_data(ioc, mpi_reply); 1377 1378 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1379 goto out; 1380 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1381 if (!smid) { 1382 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1383 GFP_ATOMIC); 1384 if (!delayed_event_ack) 1385 goto out; 1386 INIT_LIST_HEAD(&delayed_event_ack->list); 1387 delayed_event_ack->Event = mpi_reply->Event; 1388 delayed_event_ack->EventContext = mpi_reply->EventContext; 1389 list_add_tail(&delayed_event_ack->list, 1390 &ioc->delayed_event_ack_list); 1391 dewtprintk(ioc, 1392 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1393 le16_to_cpu(mpi_reply->Event))); 1394 goto out; 1395 } 1396 1397 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1398 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1399 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1400 ack_request->Event = mpi_reply->Event; 1401 ack_request->EventContext = mpi_reply->EventContext; 1402 ack_request->VF_ID = 0; /* TODO */ 1403 ack_request->VP_ID = 0; 1404 ioc->put_smid_default(ioc, smid); 1405 1406 out: 1407 1408 /* scsih callback handler */ 1409 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1410 1411 /* ctl callback handler */ 1412 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1413 1414 return 1; 1415 } 1416 1417 static struct scsiio_tracker * 1418 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1419 { 1420 struct scsi_cmnd *cmd; 1421 1422 if (WARN_ON(!smid) || 1423 WARN_ON(smid >= ioc->hi_priority_smid)) 1424 return NULL; 1425 1426 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1427 if (cmd) 1428 return scsi_cmd_priv(cmd); 1429 1430 return NULL; 1431 } 1432 1433 /** 1434 * _base_get_cb_idx - obtain the callback index 1435 * @ioc: per adapter object 1436 * @smid: system request message index 1437 * 1438 * Return: callback index. 1439 */ 1440 static u8 1441 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1442 { 1443 int i; 1444 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1445 u8 cb_idx = 0xFF; 1446 1447 if (smid < ioc->hi_priority_smid) { 1448 struct scsiio_tracker *st; 1449 1450 if (smid < ctl_smid) { 1451 st = _get_st_from_smid(ioc, smid); 1452 if (st) 1453 cb_idx = st->cb_idx; 1454 } else if (smid == ctl_smid) 1455 cb_idx = ioc->ctl_cb_idx; 1456 } else if (smid < ioc->internal_smid) { 1457 i = smid - ioc->hi_priority_smid; 1458 cb_idx = ioc->hpr_lookup[i].cb_idx; 1459 } else if (smid <= ioc->hba_queue_depth) { 1460 i = smid - ioc->internal_smid; 1461 cb_idx = ioc->internal_lookup[i].cb_idx; 1462 } 1463 return cb_idx; 1464 } 1465 1466 /** 1467 * mpt3sas_base_mask_interrupts - disable interrupts 1468 * @ioc: per adapter object 1469 * 1470 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1471 */ 1472 void 1473 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1474 { 1475 u32 him_register; 1476 1477 ioc->mask_interrupts = 1; 1478 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1479 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1480 writel(him_register, &ioc->chip->HostInterruptMask); 1481 ioc->base_readl(&ioc->chip->HostInterruptMask); 1482 } 1483 1484 /** 1485 * mpt3sas_base_unmask_interrupts - enable interrupts 1486 * @ioc: per adapter object 1487 * 1488 * Enabling only Reply Interrupts 1489 */ 1490 void 1491 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1492 { 1493 u32 him_register; 1494 1495 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1496 him_register &= ~MPI2_HIM_RIM; 1497 writel(him_register, &ioc->chip->HostInterruptMask); 1498 ioc->mask_interrupts = 0; 1499 } 1500 1501 union reply_descriptor { 1502 u64 word; 1503 struct { 1504 u32 low; 1505 u32 high; 1506 } u; 1507 }; 1508 1509 static u32 base_mod64(u64 dividend, u32 divisor) 1510 { 1511 u32 remainder; 1512 1513 if (!divisor) 1514 pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); 1515 remainder = do_div(dividend, divisor); 1516 return remainder; 1517 } 1518 1519 /** 1520 * _base_process_reply_queue - Process reply descriptors from reply 1521 * descriptor post queue. 1522 * @reply_q: per IRQ's reply queue object. 1523 * 1524 * Return: number of reply descriptors processed from reply 1525 * descriptor queue. 1526 */ 1527 static int 1528 _base_process_reply_queue(struct adapter_reply_queue *reply_q) 1529 { 1530 union reply_descriptor rd; 1531 u64 completed_cmds; 1532 u8 request_descript_type; 1533 u16 smid; 1534 u8 cb_idx; 1535 u32 reply; 1536 u8 msix_index = reply_q->msix_index; 1537 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1538 Mpi2ReplyDescriptorsUnion_t *rpf; 1539 u8 rc; 1540 1541 completed_cmds = 0; 1542 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1543 return completed_cmds; 1544 1545 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1546 request_descript_type = rpf->Default.ReplyFlags 1547 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1548 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1549 atomic_dec(&reply_q->busy); 1550 return completed_cmds; 1551 } 1552 1553 cb_idx = 0xFF; 1554 do { 1555 rd.word = le64_to_cpu(rpf->Words); 1556 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1557 goto out; 1558 reply = 0; 1559 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1560 if (request_descript_type == 1561 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1562 request_descript_type == 1563 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1564 request_descript_type == 1565 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1566 cb_idx = _base_get_cb_idx(ioc, smid); 1567 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1568 (likely(mpt_callbacks[cb_idx] != NULL))) { 1569 rc = mpt_callbacks[cb_idx](ioc, smid, 1570 msix_index, 0); 1571 if (rc) 1572 mpt3sas_base_free_smid(ioc, smid); 1573 } 1574 } else if (request_descript_type == 1575 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1576 reply = le32_to_cpu( 1577 rpf->AddressReply.ReplyFrameAddress); 1578 if (reply > ioc->reply_dma_max_address || 1579 reply < ioc->reply_dma_min_address) 1580 reply = 0; 1581 if (smid) { 1582 cb_idx = _base_get_cb_idx(ioc, smid); 1583 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1584 (likely(mpt_callbacks[cb_idx] != NULL))) { 1585 rc = mpt_callbacks[cb_idx](ioc, smid, 1586 msix_index, reply); 1587 if (reply) 1588 _base_display_reply_info(ioc, 1589 smid, msix_index, reply); 1590 if (rc) 1591 mpt3sas_base_free_smid(ioc, 1592 smid); 1593 } 1594 } else { 1595 _base_async_event(ioc, msix_index, reply); 1596 } 1597 1598 /* reply free queue handling */ 1599 if (reply) { 1600 ioc->reply_free_host_index = 1601 (ioc->reply_free_host_index == 1602 (ioc->reply_free_queue_depth - 1)) ? 1603 0 : ioc->reply_free_host_index + 1; 1604 ioc->reply_free[ioc->reply_free_host_index] = 1605 cpu_to_le32(reply); 1606 if (ioc->is_mcpu_endpoint) 1607 _base_clone_reply_to_sys_mem(ioc, 1608 reply, 1609 ioc->reply_free_host_index); 1610 writel(ioc->reply_free_host_index, 1611 &ioc->chip->ReplyFreeHostIndex); 1612 } 1613 } 1614 1615 rpf->Words = cpu_to_le64(ULLONG_MAX); 1616 reply_q->reply_post_host_index = 1617 (reply_q->reply_post_host_index == 1618 (ioc->reply_post_queue_depth - 1)) ? 0 : 1619 reply_q->reply_post_host_index + 1; 1620 request_descript_type = 1621 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1622 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1623 completed_cmds++; 1624 /* Update the reply post host index after continuously 1625 * processing the threshold number of Reply Descriptors. 1626 * So that FW can find enough entries to post the Reply 1627 * Descriptors in the reply descriptor post queue. 1628 */ 1629 if (completed_cmds >= ioc->thresh_hold) { 1630 if (ioc->combined_reply_queue) { 1631 writel(reply_q->reply_post_host_index | 1632 ((msix_index & 7) << 1633 MPI2_RPHI_MSIX_INDEX_SHIFT), 1634 ioc->replyPostRegisterIndex[msix_index/8]); 1635 } else { 1636 writel(reply_q->reply_post_host_index | 1637 (msix_index << 1638 MPI2_RPHI_MSIX_INDEX_SHIFT), 1639 &ioc->chip->ReplyPostHostIndex); 1640 } 1641 if (!reply_q->irq_poll_scheduled) { 1642 reply_q->irq_poll_scheduled = true; 1643 irq_poll_sched(&reply_q->irqpoll); 1644 } 1645 atomic_dec(&reply_q->busy); 1646 return completed_cmds; 1647 } 1648 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1649 goto out; 1650 if (!reply_q->reply_post_host_index) 1651 rpf = reply_q->reply_post_free; 1652 else 1653 rpf++; 1654 } while (1); 1655 1656 out: 1657 1658 if (!completed_cmds) { 1659 atomic_dec(&reply_q->busy); 1660 return completed_cmds; 1661 } 1662 1663 if (ioc->is_warpdrive) { 1664 writel(reply_q->reply_post_host_index, 1665 ioc->reply_post_host_index[msix_index]); 1666 atomic_dec(&reply_q->busy); 1667 return completed_cmds; 1668 } 1669 1670 /* Update Reply Post Host Index. 1671 * For those HBA's which support combined reply queue feature 1672 * 1. Get the correct Supplemental Reply Post Host Index Register. 1673 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1674 * Index Register address bank i.e replyPostRegisterIndex[], 1675 * 2. Then update this register with new reply host index value 1676 * in ReplyPostIndex field and the MSIxIndex field with 1677 * msix_index value reduced to a value between 0 and 7, 1678 * using a modulo 8 operation. Since each Supplemental Reply Post 1679 * Host Index Register supports 8 MSI-X vectors. 1680 * 1681 * For other HBA's just update the Reply Post Host Index register with 1682 * new reply host index value in ReplyPostIndex Field and msix_index 1683 * value in MSIxIndex field. 1684 */ 1685 if (ioc->combined_reply_queue) 1686 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1687 MPI2_RPHI_MSIX_INDEX_SHIFT), 1688 ioc->replyPostRegisterIndex[msix_index/8]); 1689 else 1690 writel(reply_q->reply_post_host_index | (msix_index << 1691 MPI2_RPHI_MSIX_INDEX_SHIFT), 1692 &ioc->chip->ReplyPostHostIndex); 1693 atomic_dec(&reply_q->busy); 1694 return completed_cmds; 1695 } 1696 1697 /** 1698 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1699 * @irq: irq number (not used) 1700 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1701 * 1702 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1703 */ 1704 static irqreturn_t 1705 _base_interrupt(int irq, void *bus_id) 1706 { 1707 struct adapter_reply_queue *reply_q = bus_id; 1708 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1709 1710 if (ioc->mask_interrupts) 1711 return IRQ_NONE; 1712 if (reply_q->irq_poll_scheduled) 1713 return IRQ_HANDLED; 1714 return ((_base_process_reply_queue(reply_q) > 0) ? 1715 IRQ_HANDLED : IRQ_NONE); 1716 } 1717 1718 /** 1719 * _base_irqpoll - IRQ poll callback handler 1720 * @irqpoll: irq_poll object 1721 * @budget: irq poll weight 1722 * 1723 * returns number of reply descriptors processed 1724 */ 1725 static int 1726 _base_irqpoll(struct irq_poll *irqpoll, int budget) 1727 { 1728 struct adapter_reply_queue *reply_q; 1729 int num_entries = 0; 1730 1731 reply_q = container_of(irqpoll, struct adapter_reply_queue, 1732 irqpoll); 1733 if (reply_q->irq_line_enable) { 1734 disable_irq_nosync(reply_q->os_irq); 1735 reply_q->irq_line_enable = false; 1736 } 1737 num_entries = _base_process_reply_queue(reply_q); 1738 if (num_entries < budget) { 1739 irq_poll_complete(irqpoll); 1740 reply_q->irq_poll_scheduled = false; 1741 reply_q->irq_line_enable = true; 1742 enable_irq(reply_q->os_irq); 1743 } 1744 1745 return num_entries; 1746 } 1747 1748 /** 1749 * _base_init_irqpolls - initliaze IRQ polls 1750 * @ioc: per adapter object 1751 * 1752 * returns nothing 1753 */ 1754 static void 1755 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) 1756 { 1757 struct adapter_reply_queue *reply_q, *next; 1758 1759 if (list_empty(&ioc->reply_queue_list)) 1760 return; 1761 1762 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1763 irq_poll_init(&reply_q->irqpoll, 1764 ioc->hba_queue_depth/4, _base_irqpoll); 1765 reply_q->irq_poll_scheduled = false; 1766 reply_q->irq_line_enable = true; 1767 reply_q->os_irq = pci_irq_vector(ioc->pdev, 1768 reply_q->msix_index); 1769 } 1770 } 1771 1772 /** 1773 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1774 * @ioc: per adapter object 1775 * 1776 * Return: Whether or not MSI/X is enabled. 1777 */ 1778 static inline int 1779 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1780 { 1781 return (ioc->facts.IOCCapabilities & 1782 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1783 } 1784 1785 /** 1786 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1787 * @ioc: per adapter object 1788 * @poll: poll over reply descriptor pools incase interrupt for 1789 * timed-out SCSI command got delayed 1790 * Context: non ISR conext 1791 * 1792 * Called when a Task Management request has completed. 1793 */ 1794 void 1795 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll) 1796 { 1797 struct adapter_reply_queue *reply_q; 1798 1799 /* If MSIX capability is turned off 1800 * then multi-queues are not enabled 1801 */ 1802 if (!_base_is_controller_msix_enabled(ioc)) 1803 return; 1804 1805 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1806 if (ioc->shost_recovery || ioc->remove_host || 1807 ioc->pci_error_recovery) 1808 return; 1809 /* TMs are on msix_index == 0 */ 1810 if (reply_q->msix_index == 0) 1811 continue; 1812 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 1813 if (reply_q->irq_poll_scheduled) { 1814 /* Calling irq_poll_disable will wait for any pending 1815 * callbacks to have completed. 1816 */ 1817 irq_poll_disable(&reply_q->irqpoll); 1818 irq_poll_enable(&reply_q->irqpoll); 1819 /* check how the scheduled poll has ended, 1820 * clean up only if necessary 1821 */ 1822 if (reply_q->irq_poll_scheduled) { 1823 reply_q->irq_poll_scheduled = false; 1824 reply_q->irq_line_enable = true; 1825 enable_irq(reply_q->os_irq); 1826 } 1827 } 1828 } 1829 if (poll) 1830 _base_process_reply_queue(reply_q); 1831 } 1832 1833 /** 1834 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 1835 * @cb_idx: callback index 1836 */ 1837 void 1838 mpt3sas_base_release_callback_handler(u8 cb_idx) 1839 { 1840 mpt_callbacks[cb_idx] = NULL; 1841 } 1842 1843 /** 1844 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 1845 * @cb_func: callback function 1846 * 1847 * Return: Index of @cb_func. 1848 */ 1849 u8 1850 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 1851 { 1852 u8 cb_idx; 1853 1854 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 1855 if (mpt_callbacks[cb_idx] == NULL) 1856 break; 1857 1858 mpt_callbacks[cb_idx] = cb_func; 1859 return cb_idx; 1860 } 1861 1862 /** 1863 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 1864 */ 1865 void 1866 mpt3sas_base_initialize_callback_handler(void) 1867 { 1868 u8 cb_idx; 1869 1870 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 1871 mpt3sas_base_release_callback_handler(cb_idx); 1872 } 1873 1874 1875 /** 1876 * _base_build_zero_len_sge - build zero length sg entry 1877 * @ioc: per adapter object 1878 * @paddr: virtual address for SGE 1879 * 1880 * Create a zero length scatter gather entry to insure the IOCs hardware has 1881 * something to use if the target device goes brain dead and tries 1882 * to send data even when none is asked for. 1883 */ 1884 static void 1885 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 1886 { 1887 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 1888 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 1889 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 1890 MPI2_SGE_FLAGS_SHIFT); 1891 ioc->base_add_sg_single(paddr, flags_length, -1); 1892 } 1893 1894 /** 1895 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 1896 * @paddr: virtual address for SGE 1897 * @flags_length: SGE flags and data transfer length 1898 * @dma_addr: Physical address 1899 */ 1900 static void 1901 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1902 { 1903 Mpi2SGESimple32_t *sgel = paddr; 1904 1905 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 1906 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1907 sgel->FlagsLength = cpu_to_le32(flags_length); 1908 sgel->Address = cpu_to_le32(dma_addr); 1909 } 1910 1911 1912 /** 1913 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 1914 * @paddr: virtual address for SGE 1915 * @flags_length: SGE flags and data transfer length 1916 * @dma_addr: Physical address 1917 */ 1918 static void 1919 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1920 { 1921 Mpi2SGESimple64_t *sgel = paddr; 1922 1923 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 1924 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1925 sgel->FlagsLength = cpu_to_le32(flags_length); 1926 sgel->Address = cpu_to_le64(dma_addr); 1927 } 1928 1929 /** 1930 * _base_get_chain_buffer_tracker - obtain chain tracker 1931 * @ioc: per adapter object 1932 * @scmd: SCSI commands of the IO request 1933 * 1934 * Return: chain tracker from chain_lookup table using key as 1935 * smid and smid's chain_offset. 1936 */ 1937 static struct chain_tracker * 1938 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 1939 struct scsi_cmnd *scmd) 1940 { 1941 struct chain_tracker *chain_req; 1942 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 1943 u16 smid = st->smid; 1944 u8 chain_offset = 1945 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 1946 1947 if (chain_offset == ioc->chains_needed_per_io) 1948 return NULL; 1949 1950 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 1951 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 1952 return chain_req; 1953 } 1954 1955 1956 /** 1957 * _base_build_sg - build generic sg 1958 * @ioc: per adapter object 1959 * @psge: virtual address for SGE 1960 * @data_out_dma: physical address for WRITES 1961 * @data_out_sz: data xfer size for WRITES 1962 * @data_in_dma: physical address for READS 1963 * @data_in_sz: data xfer size for READS 1964 */ 1965 static void 1966 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 1967 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1968 size_t data_in_sz) 1969 { 1970 u32 sgl_flags; 1971 1972 if (!data_out_sz && !data_in_sz) { 1973 _base_build_zero_len_sge(ioc, psge); 1974 return; 1975 } 1976 1977 if (data_out_sz && data_in_sz) { 1978 /* WRITE sgel first */ 1979 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1980 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 1981 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1982 ioc->base_add_sg_single(psge, sgl_flags | 1983 data_out_sz, data_out_dma); 1984 1985 /* incr sgel */ 1986 psge += ioc->sge_size; 1987 1988 /* READ sgel last */ 1989 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1990 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1991 MPI2_SGE_FLAGS_END_OF_LIST); 1992 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1993 ioc->base_add_sg_single(psge, sgl_flags | 1994 data_in_sz, data_in_dma); 1995 } else if (data_out_sz) /* WRITE */ { 1996 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1997 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1998 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 1999 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2000 ioc->base_add_sg_single(psge, sgl_flags | 2001 data_out_sz, data_out_dma); 2002 } else if (data_in_sz) /* READ */ { 2003 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2004 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2005 MPI2_SGE_FLAGS_END_OF_LIST); 2006 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2007 ioc->base_add_sg_single(psge, sgl_flags | 2008 data_in_sz, data_in_dma); 2009 } 2010 } 2011 2012 /* IEEE format sgls */ 2013 2014 /** 2015 * _base_build_nvme_prp - This function is called for NVMe end devices to build 2016 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP 2017 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 2018 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 2019 * used to describe a larger data buffer. If the data buffer is too large to 2020 * describe using the two PRP entriess inside the NVMe message, then PRP1 2021 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 2022 * list located elsewhere in memory to describe the remaining data memory 2023 * segments. The PRP list will be contiguous. 2024 * 2025 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 2026 * consists of a list of PRP entries to describe a number of noncontigous 2027 * physical memory segments as a single memory buffer, just as a SGL does. Note 2028 * however, that this function is only used by the IOCTL call, so the memory 2029 * given will be guaranteed to be contiguous. There is no need to translate 2030 * non-contiguous SGL into a PRP in this case. All PRPs will describe 2031 * contiguous space that is one page size each. 2032 * 2033 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 2034 * a PRP list pointer or a PRP element, depending upon the command. PRP2 2035 * contains the second PRP element if the memory being described fits within 2 2036 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 2037 * 2038 * A PRP list pointer contains the address of a PRP list, structured as a linear 2039 * array of PRP entries. Each PRP entry in this list describes a segment of 2040 * physical memory. 2041 * 2042 * Each 64-bit PRP entry comprises an address and an offset field. The address 2043 * always points at the beginning of a 4KB physical memory page, and the offset 2044 * describes where within that 4KB page the memory segment begins. Only the 2045 * first element in a PRP list may contain a non-zero offest, implying that all 2046 * memory segments following the first begin at the start of a 4KB page. 2047 * 2048 * Each PRP element normally describes 4KB of physical memory, with exceptions 2049 * for the first and last elements in the list. If the memory being described 2050 * by the list begins at a non-zero offset within the first 4KB page, then the 2051 * first PRP element will contain a non-zero offset indicating where the region 2052 * begins within the 4KB page. The last memory segment may end before the end 2053 * of the 4KB segment, depending upon the overall size of the memory being 2054 * described by the PRP list. 2055 * 2056 * Since PRP entries lack any indication of size, the overall data buffer length 2057 * is used to determine where the end of the data memory buffer is located, and 2058 * how many PRP entries are required to describe it. 2059 * 2060 * @ioc: per adapter object 2061 * @smid: system request message index for getting asscociated SGL 2062 * @nvme_encap_request: the NVMe request msg frame pointer 2063 * @data_out_dma: physical address for WRITES 2064 * @data_out_sz: data xfer size for WRITES 2065 * @data_in_dma: physical address for READS 2066 * @data_in_sz: data xfer size for READS 2067 */ 2068 static void 2069 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 2070 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 2071 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2072 size_t data_in_sz) 2073 { 2074 int prp_size = NVME_PRP_SIZE; 2075 __le64 *prp_entry, *prp1_entry, *prp2_entry; 2076 __le64 *prp_page; 2077 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 2078 u32 offset, entry_len; 2079 u32 page_mask_result, page_mask; 2080 size_t length; 2081 struct mpt3sas_nvme_cmd *nvme_cmd = 2082 (void *)nvme_encap_request->NVMe_Command; 2083 2084 /* 2085 * Not all commands require a data transfer. If no data, just return 2086 * without constructing any PRP. 2087 */ 2088 if (!data_in_sz && !data_out_sz) 2089 return; 2090 prp1_entry = &nvme_cmd->prp1; 2091 prp2_entry = &nvme_cmd->prp2; 2092 prp_entry = prp1_entry; 2093 /* 2094 * For the PRP entries, use the specially allocated buffer of 2095 * contiguous memory. 2096 */ 2097 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 2098 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2099 2100 /* 2101 * Check if we are within 1 entry of a page boundary we don't 2102 * want our first entry to be a PRP List entry. 2103 */ 2104 page_mask = ioc->page_size - 1; 2105 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 2106 if (!page_mask_result) { 2107 /* Bump up to next page boundary. */ 2108 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 2109 prp_page_dma = prp_page_dma + prp_size; 2110 } 2111 2112 /* 2113 * Set PRP physical pointer, which initially points to the current PRP 2114 * DMA memory page. 2115 */ 2116 prp_entry_dma = prp_page_dma; 2117 2118 /* Get physical address and length of the data buffer. */ 2119 if (data_in_sz) { 2120 dma_addr = data_in_dma; 2121 length = data_in_sz; 2122 } else { 2123 dma_addr = data_out_dma; 2124 length = data_out_sz; 2125 } 2126 2127 /* Loop while the length is not zero. */ 2128 while (length) { 2129 /* 2130 * Check if we need to put a list pointer here if we are at 2131 * page boundary - prp_size (8 bytes). 2132 */ 2133 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 2134 if (!page_mask_result) { 2135 /* 2136 * This is the last entry in a PRP List, so we need to 2137 * put a PRP list pointer here. What this does is: 2138 * - bump the current memory pointer to the next 2139 * address, which will be the next full page. 2140 * - set the PRP Entry to point to that page. This 2141 * is now the PRP List pointer. 2142 * - bump the PRP Entry pointer the start of the 2143 * next page. Since all of this PRP memory is 2144 * contiguous, no need to get a new page - it's 2145 * just the next address. 2146 */ 2147 prp_entry_dma++; 2148 *prp_entry = cpu_to_le64(prp_entry_dma); 2149 prp_entry++; 2150 } 2151 2152 /* Need to handle if entry will be part of a page. */ 2153 offset = dma_addr & page_mask; 2154 entry_len = ioc->page_size - offset; 2155 2156 if (prp_entry == prp1_entry) { 2157 /* 2158 * Must fill in the first PRP pointer (PRP1) before 2159 * moving on. 2160 */ 2161 *prp1_entry = cpu_to_le64(dma_addr); 2162 2163 /* 2164 * Now point to the second PRP entry within the 2165 * command (PRP2). 2166 */ 2167 prp_entry = prp2_entry; 2168 } else if (prp_entry == prp2_entry) { 2169 /* 2170 * Should the PRP2 entry be a PRP List pointer or just 2171 * a regular PRP pointer? If there is more than one 2172 * more page of data, must use a PRP List pointer. 2173 */ 2174 if (length > ioc->page_size) { 2175 /* 2176 * PRP2 will contain a PRP List pointer because 2177 * more PRP's are needed with this command. The 2178 * list will start at the beginning of the 2179 * contiguous buffer. 2180 */ 2181 *prp2_entry = cpu_to_le64(prp_entry_dma); 2182 2183 /* 2184 * The next PRP Entry will be the start of the 2185 * first PRP List. 2186 */ 2187 prp_entry = prp_page; 2188 } else { 2189 /* 2190 * After this, the PRP Entries are complete. 2191 * This command uses 2 PRP's and no PRP list. 2192 */ 2193 *prp2_entry = cpu_to_le64(dma_addr); 2194 } 2195 } else { 2196 /* 2197 * Put entry in list and bump the addresses. 2198 * 2199 * After PRP1 and PRP2 are filled in, this will fill in 2200 * all remaining PRP entries in a PRP List, one per 2201 * each time through the loop. 2202 */ 2203 *prp_entry = cpu_to_le64(dma_addr); 2204 prp_entry++; 2205 prp_entry_dma++; 2206 } 2207 2208 /* 2209 * Bump the phys address of the command's data buffer by the 2210 * entry_len. 2211 */ 2212 dma_addr += entry_len; 2213 2214 /* Decrement length accounting for last partial page. */ 2215 if (entry_len > length) 2216 length = 0; 2217 else 2218 length -= entry_len; 2219 } 2220 } 2221 2222 /** 2223 * base_make_prp_nvme - 2224 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only 2225 * 2226 * @ioc: per adapter object 2227 * @scmd: SCSI command from the mid-layer 2228 * @mpi_request: mpi request 2229 * @smid: msg Index 2230 * @sge_count: scatter gather element count. 2231 * 2232 * Return: true: PRPs are built 2233 * false: IEEE SGLs needs to be built 2234 */ 2235 static void 2236 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2237 struct scsi_cmnd *scmd, 2238 Mpi25SCSIIORequest_t *mpi_request, 2239 u16 smid, int sge_count) 2240 { 2241 int sge_len, num_prp_in_chain = 0; 2242 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2243 __le64 *curr_buff; 2244 dma_addr_t msg_dma, sge_addr, offset; 2245 u32 page_mask, page_mask_result; 2246 struct scatterlist *sg_scmd; 2247 u32 first_prp_len; 2248 int data_len = scsi_bufflen(scmd); 2249 u32 nvme_pg_size; 2250 2251 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2252 /* 2253 * Nvme has a very convoluted prp format. One prp is required 2254 * for each page or partial page. Driver need to split up OS sg_list 2255 * entries if it is longer than one page or cross a page 2256 * boundary. Driver also have to insert a PRP list pointer entry as 2257 * the last entry in each physical page of the PRP list. 2258 * 2259 * NOTE: The first PRP "entry" is actually placed in the first 2260 * SGL entry in the main message as IEEE 64 format. The 2nd 2261 * entry in the main message is the chain element, and the rest 2262 * of the PRP entries are built in the contiguous pcie buffer. 2263 */ 2264 page_mask = nvme_pg_size - 1; 2265 2266 /* 2267 * Native SGL is needed. 2268 * Put a chain element in main message frame that points to the first 2269 * chain buffer. 2270 * 2271 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2272 * a native SGL. 2273 */ 2274 2275 /* Set main message chain element pointer */ 2276 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2277 /* 2278 * For NVMe the chain element needs to be the 2nd SG entry in the main 2279 * message. 2280 */ 2281 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2282 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2283 2284 /* 2285 * For the PRP entries, use the specially allocated buffer of 2286 * contiguous memory. Normal chain buffers can't be used 2287 * because each chain buffer would need to be the size of an OS 2288 * page (4k). 2289 */ 2290 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2291 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2292 2293 main_chain_element->Address = cpu_to_le64(msg_dma); 2294 main_chain_element->NextChainOffset = 0; 2295 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2296 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2297 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2298 2299 /* Build first prp, sge need not to be page aligned*/ 2300 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2301 sg_scmd = scsi_sglist(scmd); 2302 sge_addr = sg_dma_address(sg_scmd); 2303 sge_len = sg_dma_len(sg_scmd); 2304 2305 offset = sge_addr & page_mask; 2306 first_prp_len = nvme_pg_size - offset; 2307 2308 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2309 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2310 2311 data_len -= first_prp_len; 2312 2313 if (sge_len > first_prp_len) { 2314 sge_addr += first_prp_len; 2315 sge_len -= first_prp_len; 2316 } else if (data_len && (sge_len == first_prp_len)) { 2317 sg_scmd = sg_next(sg_scmd); 2318 sge_addr = sg_dma_address(sg_scmd); 2319 sge_len = sg_dma_len(sg_scmd); 2320 } 2321 2322 for (;;) { 2323 offset = sge_addr & page_mask; 2324 2325 /* Put PRP pointer due to page boundary*/ 2326 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2327 if (unlikely(!page_mask_result)) { 2328 scmd_printk(KERN_NOTICE, 2329 scmd, "page boundary curr_buff: 0x%p\n", 2330 curr_buff); 2331 msg_dma += 8; 2332 *curr_buff = cpu_to_le64(msg_dma); 2333 curr_buff++; 2334 num_prp_in_chain++; 2335 } 2336 2337 *curr_buff = cpu_to_le64(sge_addr); 2338 curr_buff++; 2339 msg_dma += 8; 2340 num_prp_in_chain++; 2341 2342 sge_addr += nvme_pg_size; 2343 sge_len -= nvme_pg_size; 2344 data_len -= nvme_pg_size; 2345 2346 if (data_len <= 0) 2347 break; 2348 2349 if (sge_len > 0) 2350 continue; 2351 2352 sg_scmd = sg_next(sg_scmd); 2353 sge_addr = sg_dma_address(sg_scmd); 2354 sge_len = sg_dma_len(sg_scmd); 2355 } 2356 2357 main_chain_element->Length = 2358 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2359 return; 2360 } 2361 2362 static bool 2363 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2364 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2365 { 2366 u32 data_length = 0; 2367 bool build_prp = true; 2368 2369 data_length = scsi_bufflen(scmd); 2370 if (pcie_device && 2371 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) { 2372 build_prp = false; 2373 return build_prp; 2374 } 2375 2376 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2377 * we built IEEE SGL 2378 */ 2379 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2380 build_prp = false; 2381 2382 return build_prp; 2383 } 2384 2385 /** 2386 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2387 * determine if the driver needs to build a native SGL. If so, that native 2388 * SGL is built in the special contiguous buffers allocated especially for 2389 * PCIe SGL creation. If the driver will not build a native SGL, return 2390 * TRUE and a normal IEEE SGL will be built. Currently this routine 2391 * supports NVMe. 2392 * @ioc: per adapter object 2393 * @mpi_request: mf request pointer 2394 * @smid: system request message index 2395 * @scmd: scsi command 2396 * @pcie_device: points to the PCIe device's info 2397 * 2398 * Return: 0 if native SGL was built, 1 if no SGL was built 2399 */ 2400 static int 2401 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2402 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2403 struct _pcie_device *pcie_device) 2404 { 2405 int sges_left; 2406 2407 /* Get the SG list pointer and info. */ 2408 sges_left = scsi_dma_map(scmd); 2409 if (sges_left < 0) { 2410 sdev_printk(KERN_ERR, scmd->device, 2411 "scsi_dma_map failed: request for %d bytes!\n", 2412 scsi_bufflen(scmd)); 2413 return 1; 2414 } 2415 2416 /* Check if we need to build a native SG list. */ 2417 if (base_is_prp_possible(ioc, pcie_device, 2418 scmd, sges_left) == 0) { 2419 /* We built a native SG list, just return. */ 2420 goto out; 2421 } 2422 2423 /* 2424 * Build native NVMe PRP. 2425 */ 2426 base_make_prp_nvme(ioc, scmd, mpi_request, 2427 smid, sges_left); 2428 2429 return 0; 2430 out: 2431 scsi_dma_unmap(scmd); 2432 return 1; 2433 } 2434 2435 /** 2436 * _base_add_sg_single_ieee - add sg element for IEEE format 2437 * @paddr: virtual address for SGE 2438 * @flags: SGE flags 2439 * @chain_offset: number of 128 byte elements from start of segment 2440 * @length: data transfer length 2441 * @dma_addr: Physical address 2442 */ 2443 static void 2444 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2445 dma_addr_t dma_addr) 2446 { 2447 Mpi25IeeeSgeChain64_t *sgel = paddr; 2448 2449 sgel->Flags = flags; 2450 sgel->NextChainOffset = chain_offset; 2451 sgel->Length = cpu_to_le32(length); 2452 sgel->Address = cpu_to_le64(dma_addr); 2453 } 2454 2455 /** 2456 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2457 * @ioc: per adapter object 2458 * @paddr: virtual address for SGE 2459 * 2460 * Create a zero length scatter gather entry to insure the IOCs hardware has 2461 * something to use if the target device goes brain dead and tries 2462 * to send data even when none is asked for. 2463 */ 2464 static void 2465 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2466 { 2467 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2468 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2469 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2470 2471 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2472 } 2473 2474 /** 2475 * _base_build_sg_scmd - main sg creation routine 2476 * pcie_device is unused here! 2477 * @ioc: per adapter object 2478 * @scmd: scsi command 2479 * @smid: system request message index 2480 * @unused: unused pcie_device pointer 2481 * Context: none. 2482 * 2483 * The main routine that builds scatter gather table from a given 2484 * scsi request sent via the .queuecommand main handler. 2485 * 2486 * Return: 0 success, anything else error 2487 */ 2488 static int 2489 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2490 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2491 { 2492 Mpi2SCSIIORequest_t *mpi_request; 2493 dma_addr_t chain_dma; 2494 struct scatterlist *sg_scmd; 2495 void *sg_local, *chain; 2496 u32 chain_offset; 2497 u32 chain_length; 2498 u32 chain_flags; 2499 int sges_left; 2500 u32 sges_in_segment; 2501 u32 sgl_flags; 2502 u32 sgl_flags_last_element; 2503 u32 sgl_flags_end_buffer; 2504 struct chain_tracker *chain_req; 2505 2506 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2507 2508 /* init scatter gather flags */ 2509 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2510 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2511 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2512 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2513 << MPI2_SGE_FLAGS_SHIFT; 2514 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2515 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2516 << MPI2_SGE_FLAGS_SHIFT; 2517 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2518 2519 sg_scmd = scsi_sglist(scmd); 2520 sges_left = scsi_dma_map(scmd); 2521 if (sges_left < 0) { 2522 sdev_printk(KERN_ERR, scmd->device, 2523 "scsi_dma_map failed: request for %d bytes!\n", 2524 scsi_bufflen(scmd)); 2525 return -ENOMEM; 2526 } 2527 2528 sg_local = &mpi_request->SGL; 2529 sges_in_segment = ioc->max_sges_in_main_message; 2530 if (sges_left <= sges_in_segment) 2531 goto fill_in_last_segment; 2532 2533 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2534 (sges_in_segment * ioc->sge_size))/4; 2535 2536 /* fill in main message segment when there is a chain following */ 2537 while (sges_in_segment) { 2538 if (sges_in_segment == 1) 2539 ioc->base_add_sg_single(sg_local, 2540 sgl_flags_last_element | sg_dma_len(sg_scmd), 2541 sg_dma_address(sg_scmd)); 2542 else 2543 ioc->base_add_sg_single(sg_local, sgl_flags | 2544 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2545 sg_scmd = sg_next(sg_scmd); 2546 sg_local += ioc->sge_size; 2547 sges_left--; 2548 sges_in_segment--; 2549 } 2550 2551 /* initializing the chain flags and pointers */ 2552 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2553 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2554 if (!chain_req) 2555 return -1; 2556 chain = chain_req->chain_buffer; 2557 chain_dma = chain_req->chain_buffer_dma; 2558 do { 2559 sges_in_segment = (sges_left <= 2560 ioc->max_sges_in_chain_message) ? sges_left : 2561 ioc->max_sges_in_chain_message; 2562 chain_offset = (sges_left == sges_in_segment) ? 2563 0 : (sges_in_segment * ioc->sge_size)/4; 2564 chain_length = sges_in_segment * ioc->sge_size; 2565 if (chain_offset) { 2566 chain_offset = chain_offset << 2567 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2568 chain_length += ioc->sge_size; 2569 } 2570 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2571 chain_length, chain_dma); 2572 sg_local = chain; 2573 if (!chain_offset) 2574 goto fill_in_last_segment; 2575 2576 /* fill in chain segments */ 2577 while (sges_in_segment) { 2578 if (sges_in_segment == 1) 2579 ioc->base_add_sg_single(sg_local, 2580 sgl_flags_last_element | 2581 sg_dma_len(sg_scmd), 2582 sg_dma_address(sg_scmd)); 2583 else 2584 ioc->base_add_sg_single(sg_local, sgl_flags | 2585 sg_dma_len(sg_scmd), 2586 sg_dma_address(sg_scmd)); 2587 sg_scmd = sg_next(sg_scmd); 2588 sg_local += ioc->sge_size; 2589 sges_left--; 2590 sges_in_segment--; 2591 } 2592 2593 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2594 if (!chain_req) 2595 return -1; 2596 chain = chain_req->chain_buffer; 2597 chain_dma = chain_req->chain_buffer_dma; 2598 } while (1); 2599 2600 2601 fill_in_last_segment: 2602 2603 /* fill the last segment */ 2604 while (sges_left) { 2605 if (sges_left == 1) 2606 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2607 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2608 else 2609 ioc->base_add_sg_single(sg_local, sgl_flags | 2610 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2611 sg_scmd = sg_next(sg_scmd); 2612 sg_local += ioc->sge_size; 2613 sges_left--; 2614 } 2615 2616 return 0; 2617 } 2618 2619 /** 2620 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2621 * @ioc: per adapter object 2622 * @scmd: scsi command 2623 * @smid: system request message index 2624 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2625 * constructed on need. 2626 * Context: none. 2627 * 2628 * The main routine that builds scatter gather table from a given 2629 * scsi request sent via the .queuecommand main handler. 2630 * 2631 * Return: 0 success, anything else error 2632 */ 2633 static int 2634 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2635 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2636 { 2637 Mpi25SCSIIORequest_t *mpi_request; 2638 dma_addr_t chain_dma; 2639 struct scatterlist *sg_scmd; 2640 void *sg_local, *chain; 2641 u32 chain_offset; 2642 u32 chain_length; 2643 int sges_left; 2644 u32 sges_in_segment; 2645 u8 simple_sgl_flags; 2646 u8 simple_sgl_flags_last; 2647 u8 chain_sgl_flags; 2648 struct chain_tracker *chain_req; 2649 2650 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2651 2652 /* init scatter gather flags */ 2653 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2654 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2655 simple_sgl_flags_last = simple_sgl_flags | 2656 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2657 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2658 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2659 2660 /* Check if we need to build a native SG list. */ 2661 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2662 smid, scmd, pcie_device) == 0)) { 2663 /* We built a native SG list, just return. */ 2664 return 0; 2665 } 2666 2667 sg_scmd = scsi_sglist(scmd); 2668 sges_left = scsi_dma_map(scmd); 2669 if (sges_left < 0) { 2670 sdev_printk(KERN_ERR, scmd->device, 2671 "scsi_dma_map failed: request for %d bytes!\n", 2672 scsi_bufflen(scmd)); 2673 return -ENOMEM; 2674 } 2675 2676 sg_local = &mpi_request->SGL; 2677 sges_in_segment = (ioc->request_sz - 2678 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2679 if (sges_left <= sges_in_segment) 2680 goto fill_in_last_segment; 2681 2682 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2683 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2684 2685 /* fill in main message segment when there is a chain following */ 2686 while (sges_in_segment > 1) { 2687 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2688 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2689 sg_scmd = sg_next(sg_scmd); 2690 sg_local += ioc->sge_size_ieee; 2691 sges_left--; 2692 sges_in_segment--; 2693 } 2694 2695 /* initializing the pointers */ 2696 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2697 if (!chain_req) 2698 return -1; 2699 chain = chain_req->chain_buffer; 2700 chain_dma = chain_req->chain_buffer_dma; 2701 do { 2702 sges_in_segment = (sges_left <= 2703 ioc->max_sges_in_chain_message) ? sges_left : 2704 ioc->max_sges_in_chain_message; 2705 chain_offset = (sges_left == sges_in_segment) ? 2706 0 : sges_in_segment; 2707 chain_length = sges_in_segment * ioc->sge_size_ieee; 2708 if (chain_offset) 2709 chain_length += ioc->sge_size_ieee; 2710 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2711 chain_offset, chain_length, chain_dma); 2712 2713 sg_local = chain; 2714 if (!chain_offset) 2715 goto fill_in_last_segment; 2716 2717 /* fill in chain segments */ 2718 while (sges_in_segment) { 2719 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2720 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2721 sg_scmd = sg_next(sg_scmd); 2722 sg_local += ioc->sge_size_ieee; 2723 sges_left--; 2724 sges_in_segment--; 2725 } 2726 2727 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2728 if (!chain_req) 2729 return -1; 2730 chain = chain_req->chain_buffer; 2731 chain_dma = chain_req->chain_buffer_dma; 2732 } while (1); 2733 2734 2735 fill_in_last_segment: 2736 2737 /* fill the last segment */ 2738 while (sges_left > 0) { 2739 if (sges_left == 1) 2740 _base_add_sg_single_ieee(sg_local, 2741 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2742 sg_dma_address(sg_scmd)); 2743 else 2744 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2745 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2746 sg_scmd = sg_next(sg_scmd); 2747 sg_local += ioc->sge_size_ieee; 2748 sges_left--; 2749 } 2750 2751 return 0; 2752 } 2753 2754 /** 2755 * _base_build_sg_ieee - build generic sg for IEEE format 2756 * @ioc: per adapter object 2757 * @psge: virtual address for SGE 2758 * @data_out_dma: physical address for WRITES 2759 * @data_out_sz: data xfer size for WRITES 2760 * @data_in_dma: physical address for READS 2761 * @data_in_sz: data xfer size for READS 2762 */ 2763 static void 2764 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2765 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2766 size_t data_in_sz) 2767 { 2768 u8 sgl_flags; 2769 2770 if (!data_out_sz && !data_in_sz) { 2771 _base_build_zero_len_sge_ieee(ioc, psge); 2772 return; 2773 } 2774 2775 if (data_out_sz && data_in_sz) { 2776 /* WRITE sgel first */ 2777 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2778 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2779 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2780 data_out_dma); 2781 2782 /* incr sgel */ 2783 psge += ioc->sge_size_ieee; 2784 2785 /* READ sgel last */ 2786 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2787 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2788 data_in_dma); 2789 } else if (data_out_sz) /* WRITE */ { 2790 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2791 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2792 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2793 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2794 data_out_dma); 2795 } else if (data_in_sz) /* READ */ { 2796 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2797 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2798 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2799 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2800 data_in_dma); 2801 } 2802 } 2803 2804 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 2805 2806 /** 2807 * _base_config_dma_addressing - set dma addressing 2808 * @ioc: per adapter object 2809 * @pdev: PCI device struct 2810 * 2811 * Return: 0 for success, non-zero for failure. 2812 */ 2813 static int 2814 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 2815 { 2816 struct sysinfo s; 2817 int dma_mask; 2818 2819 if (ioc->is_mcpu_endpoint || 2820 sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma || 2821 dma_get_required_mask(&pdev->dev) <= 32) 2822 dma_mask = 32; 2823 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */ 2824 else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) 2825 dma_mask = 63; 2826 else 2827 dma_mask = 64; 2828 2829 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) || 2830 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(dma_mask))) 2831 return -ENODEV; 2832 2833 if (dma_mask > 32) { 2834 ioc->base_add_sg_single = &_base_add_sg_single_64; 2835 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 2836 } else { 2837 ioc->base_add_sg_single = &_base_add_sg_single_32; 2838 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 2839 } 2840 2841 si_meminfo(&s); 2842 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 2843 dma_mask, convert_to_kb(s.totalram)); 2844 2845 return 0; 2846 } 2847 2848 /** 2849 * _base_check_enable_msix - checks MSIX capabable. 2850 * @ioc: per adapter object 2851 * 2852 * Check to see if card is capable of MSIX, and set number 2853 * of available msix vectors 2854 */ 2855 static int 2856 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2857 { 2858 int base; 2859 u16 message_control; 2860 2861 /* Check whether controller SAS2008 B0 controller, 2862 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 2863 */ 2864 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 2865 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 2866 return -EINVAL; 2867 } 2868 2869 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 2870 if (!base) { 2871 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 2872 return -EINVAL; 2873 } 2874 2875 /* get msix vector count */ 2876 /* NUMA_IO not supported for older controllers */ 2877 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 2878 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 2879 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 2880 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 2881 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 2882 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 2883 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 2884 ioc->msix_vector_count = 1; 2885 else { 2886 pci_read_config_word(ioc->pdev, base + 2, &message_control); 2887 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 2888 } 2889 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 2890 ioc->msix_vector_count)); 2891 return 0; 2892 } 2893 2894 /** 2895 * _base_free_irq - free irq 2896 * @ioc: per adapter object 2897 * 2898 * Freeing respective reply_queue from the list. 2899 */ 2900 static void 2901 _base_free_irq(struct MPT3SAS_ADAPTER *ioc) 2902 { 2903 struct adapter_reply_queue *reply_q, *next; 2904 2905 if (list_empty(&ioc->reply_queue_list)) 2906 return; 2907 2908 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 2909 list_del(&reply_q->list); 2910 if (ioc->smp_affinity_enable) 2911 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 2912 reply_q->msix_index), NULL); 2913 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 2914 reply_q); 2915 kfree(reply_q); 2916 } 2917 } 2918 2919 /** 2920 * _base_request_irq - request irq 2921 * @ioc: per adapter object 2922 * @index: msix index into vector table 2923 * 2924 * Inserting respective reply_queue into the list. 2925 */ 2926 static int 2927 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 2928 { 2929 struct pci_dev *pdev = ioc->pdev; 2930 struct adapter_reply_queue *reply_q; 2931 int r; 2932 2933 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 2934 if (!reply_q) { 2935 ioc_err(ioc, "unable to allocate memory %zu!\n", 2936 sizeof(struct adapter_reply_queue)); 2937 return -ENOMEM; 2938 } 2939 reply_q->ioc = ioc; 2940 reply_q->msix_index = index; 2941 2942 atomic_set(&reply_q->busy, 0); 2943 if (ioc->msix_enable) 2944 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 2945 ioc->driver_name, ioc->id, index); 2946 else 2947 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 2948 ioc->driver_name, ioc->id); 2949 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 2950 IRQF_SHARED, reply_q->name, reply_q); 2951 if (r) { 2952 pr_err("%s: unable to allocate interrupt %d!\n", 2953 reply_q->name, pci_irq_vector(pdev, index)); 2954 kfree(reply_q); 2955 return -EBUSY; 2956 } 2957 2958 INIT_LIST_HEAD(&reply_q->list); 2959 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 2960 return 0; 2961 } 2962 2963 /** 2964 * _base_assign_reply_queues - assigning msix index for each cpu 2965 * @ioc: per adapter object 2966 * 2967 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 2968 * 2969 * It would nice if we could call irq_set_affinity, however it is not 2970 * an exported symbol 2971 */ 2972 static void 2973 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 2974 { 2975 unsigned int cpu, nr_cpus, nr_msix, index = 0; 2976 struct adapter_reply_queue *reply_q; 2977 int local_numa_node; 2978 2979 if (!_base_is_controller_msix_enabled(ioc)) 2980 return; 2981 2982 if (ioc->msix_load_balance) 2983 return; 2984 2985 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 2986 2987 nr_cpus = num_online_cpus(); 2988 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 2989 ioc->facts.MaxMSIxVectors); 2990 if (!nr_msix) 2991 return; 2992 2993 if (ioc->smp_affinity_enable) { 2994 2995 /* 2996 * set irq affinity to local numa node for those irqs 2997 * corresponding to high iops queues. 2998 */ 2999 if (ioc->high_iops_queues) { 3000 local_numa_node = dev_to_node(&ioc->pdev->dev); 3001 for (index = 0; index < ioc->high_iops_queues; 3002 index++) { 3003 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 3004 index), cpumask_of_node(local_numa_node)); 3005 } 3006 } 3007 3008 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3009 const cpumask_t *mask; 3010 3011 if (reply_q->msix_index < ioc->high_iops_queues) 3012 continue; 3013 3014 mask = pci_irq_get_affinity(ioc->pdev, 3015 reply_q->msix_index); 3016 if (!mask) { 3017 ioc_warn(ioc, "no affinity for msi %x\n", 3018 reply_q->msix_index); 3019 goto fall_back; 3020 } 3021 3022 for_each_cpu_and(cpu, mask, cpu_online_mask) { 3023 if (cpu >= ioc->cpu_msix_table_sz) 3024 break; 3025 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3026 } 3027 } 3028 return; 3029 } 3030 3031 fall_back: 3032 cpu = cpumask_first(cpu_online_mask); 3033 nr_msix -= ioc->high_iops_queues; 3034 index = 0; 3035 3036 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3037 unsigned int i, group = nr_cpus / nr_msix; 3038 3039 if (reply_q->msix_index < ioc->high_iops_queues) 3040 continue; 3041 3042 if (cpu >= nr_cpus) 3043 break; 3044 3045 if (index < nr_cpus % nr_msix) 3046 group++; 3047 3048 for (i = 0 ; i < group ; i++) { 3049 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3050 cpu = cpumask_next(cpu, cpu_online_mask); 3051 } 3052 index++; 3053 } 3054 } 3055 3056 /** 3057 * _base_check_and_enable_high_iops_queues - enable high iops mode 3058 * @ioc: per adapter object 3059 * @hba_msix_vector_count: msix vectors supported by HBA 3060 * 3061 * Enable high iops queues only if 3062 * - HBA is a SEA/AERO controller and 3063 * - MSI-Xs vector supported by the HBA is 128 and 3064 * - total CPU count in the system >=16 and 3065 * - loaded driver with default max_msix_vectors module parameter and 3066 * - system booted in non kdump mode 3067 * 3068 * returns nothing. 3069 */ 3070 static void 3071 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc, 3072 int hba_msix_vector_count) 3073 { 3074 u16 lnksta, speed; 3075 3076 if (perf_mode == MPT_PERF_MODE_IOPS || 3077 perf_mode == MPT_PERF_MODE_LATENCY) { 3078 ioc->high_iops_queues = 0; 3079 return; 3080 } 3081 3082 if (perf_mode == MPT_PERF_MODE_DEFAULT) { 3083 3084 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta); 3085 speed = lnksta & PCI_EXP_LNKSTA_CLS; 3086 3087 if (speed < 0x4) { 3088 ioc->high_iops_queues = 0; 3089 return; 3090 } 3091 } 3092 3093 if (!reset_devices && ioc->is_aero_ioc && 3094 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES && 3095 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES && 3096 max_msix_vectors == -1) 3097 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES; 3098 else 3099 ioc->high_iops_queues = 0; 3100 } 3101 3102 /** 3103 * _base_disable_msix - disables msix 3104 * @ioc: per adapter object 3105 * 3106 */ 3107 static void 3108 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 3109 { 3110 if (!ioc->msix_enable) 3111 return; 3112 pci_free_irq_vectors(ioc->pdev); 3113 ioc->msix_enable = 0; 3114 } 3115 3116 /** 3117 * _base_alloc_irq_vectors - allocate msix vectors 3118 * @ioc: per adapter object 3119 * 3120 */ 3121 static int 3122 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc) 3123 { 3124 int i, irq_flags = PCI_IRQ_MSIX; 3125 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues }; 3126 struct irq_affinity *descp = &desc; 3127 3128 if (ioc->smp_affinity_enable) 3129 irq_flags |= PCI_IRQ_AFFINITY; 3130 else 3131 descp = NULL; 3132 3133 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues, 3134 ioc->reply_queue_count); 3135 3136 i = pci_alloc_irq_vectors_affinity(ioc->pdev, 3137 ioc->high_iops_queues, 3138 ioc->reply_queue_count, irq_flags, descp); 3139 3140 return i; 3141 } 3142 3143 /** 3144 * _base_enable_msix - enables msix, failback to io_apic 3145 * @ioc: per adapter object 3146 * 3147 */ 3148 static int 3149 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3150 { 3151 int r; 3152 int i, local_max_msix_vectors; 3153 u8 try_msix = 0; 3154 3155 ioc->msix_load_balance = false; 3156 3157 if (msix_disable == -1 || msix_disable == 0) 3158 try_msix = 1; 3159 3160 if (!try_msix) 3161 goto try_ioapic; 3162 3163 if (_base_check_enable_msix(ioc) != 0) 3164 goto try_ioapic; 3165 3166 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count); 3167 pr_info("\t no of cores: %d, max_msix_vectors: %d\n", 3168 ioc->cpu_count, max_msix_vectors); 3169 if (ioc->is_aero_ioc) 3170 _base_check_and_enable_high_iops_queues(ioc, 3171 ioc->msix_vector_count); 3172 ioc->reply_queue_count = 3173 min_t(int, ioc->cpu_count + ioc->high_iops_queues, 3174 ioc->msix_vector_count); 3175 3176 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 3177 local_max_msix_vectors = (reset_devices) ? 1 : 8; 3178 else 3179 local_max_msix_vectors = max_msix_vectors; 3180 3181 if (local_max_msix_vectors > 0) 3182 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 3183 ioc->reply_queue_count); 3184 else if (local_max_msix_vectors == 0) 3185 goto try_ioapic; 3186 3187 /* 3188 * Enable msix_load_balance only if combined reply queue mode is 3189 * disabled on SAS3 & above generation HBA devices. 3190 */ 3191 if (!ioc->combined_reply_queue && 3192 ioc->hba_mpi_version_belonged != MPI2_VERSION) { 3193 ioc_info(ioc, 3194 "combined ReplyQueue is off, Enabling msix load balance\n"); 3195 ioc->msix_load_balance = true; 3196 } 3197 3198 /* 3199 * smp affinity setting is not need when msix load balance 3200 * is enabled. 3201 */ 3202 if (ioc->msix_load_balance) 3203 ioc->smp_affinity_enable = 0; 3204 3205 r = _base_alloc_irq_vectors(ioc); 3206 if (r < 0) { 3207 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r); 3208 goto try_ioapic; 3209 } 3210 3211 ioc->msix_enable = 1; 3212 ioc->reply_queue_count = r; 3213 for (i = 0; i < ioc->reply_queue_count; i++) { 3214 r = _base_request_irq(ioc, i); 3215 if (r) { 3216 _base_free_irq(ioc); 3217 _base_disable_msix(ioc); 3218 goto try_ioapic; 3219 } 3220 } 3221 3222 ioc_info(ioc, "High IOPs queues : %s\n", 3223 ioc->high_iops_queues ? "enabled" : "disabled"); 3224 3225 return 0; 3226 3227 /* failback to io_apic interrupt routing */ 3228 try_ioapic: 3229 ioc->high_iops_queues = 0; 3230 ioc_info(ioc, "High IOPs queues : disabled\n"); 3231 ioc->reply_queue_count = 1; 3232 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 3233 if (r < 0) { 3234 dfailprintk(ioc, 3235 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 3236 r)); 3237 } else 3238 r = _base_request_irq(ioc, 0); 3239 3240 return r; 3241 } 3242 3243 /** 3244 * mpt3sas_base_unmap_resources - free controller resources 3245 * @ioc: per adapter object 3246 */ 3247 static void 3248 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 3249 { 3250 struct pci_dev *pdev = ioc->pdev; 3251 3252 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3253 3254 _base_free_irq(ioc); 3255 _base_disable_msix(ioc); 3256 3257 kfree(ioc->replyPostRegisterIndex); 3258 ioc->replyPostRegisterIndex = NULL; 3259 3260 3261 if (ioc->chip_phys) { 3262 iounmap(ioc->chip); 3263 ioc->chip_phys = 0; 3264 } 3265 3266 if (pci_is_enabled(pdev)) { 3267 pci_release_selected_regions(ioc->pdev, ioc->bars); 3268 pci_disable_pcie_error_reporting(pdev); 3269 pci_disable_device(pdev); 3270 } 3271 } 3272 3273 static int 3274 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 3275 3276 /** 3277 * _base_check_for_fault_and_issue_reset - check if IOC is in fault state 3278 * and if it is in fault state then issue diag reset. 3279 * @ioc: per adapter object 3280 * 3281 * Returns: 0 for success, non-zero for failure. 3282 */ 3283 static int 3284 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc) 3285 { 3286 u32 ioc_state; 3287 int rc = -EFAULT; 3288 3289 dinitprintk(ioc, pr_info("%s\n", __func__)); 3290 if (ioc->pci_error_recovery) 3291 return 0; 3292 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 3293 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state)); 3294 3295 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 3296 mpt3sas_print_fault_code(ioc, ioc_state & 3297 MPI2_DOORBELL_DATA_MASK); 3298 rc = _base_diag_reset(ioc); 3299 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 3300 MPI2_IOC_STATE_COREDUMP) { 3301 mpt3sas_print_coredump_info(ioc, ioc_state & 3302 MPI2_DOORBELL_DATA_MASK); 3303 mpt3sas_base_wait_for_coredump_completion(ioc, __func__); 3304 rc = _base_diag_reset(ioc); 3305 } 3306 3307 return rc; 3308 } 3309 3310 /** 3311 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 3312 * @ioc: per adapter object 3313 * 3314 * Return: 0 for success, non-zero for failure. 3315 */ 3316 int 3317 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 3318 { 3319 struct pci_dev *pdev = ioc->pdev; 3320 u32 memap_sz; 3321 u32 pio_sz; 3322 int i, r = 0, rc; 3323 u64 pio_chip = 0; 3324 phys_addr_t chip_phys = 0; 3325 struct adapter_reply_queue *reply_q; 3326 3327 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3328 3329 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 3330 if (pci_enable_device_mem(pdev)) { 3331 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 3332 ioc->bars = 0; 3333 return -ENODEV; 3334 } 3335 3336 3337 if (pci_request_selected_regions(pdev, ioc->bars, 3338 ioc->driver_name)) { 3339 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 3340 ioc->bars = 0; 3341 r = -ENODEV; 3342 goto out_fail; 3343 } 3344 3345 /* AER (Advanced Error Reporting) hooks */ 3346 pci_enable_pcie_error_reporting(pdev); 3347 3348 pci_set_master(pdev); 3349 3350 3351 if (_base_config_dma_addressing(ioc, pdev) != 0) { 3352 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 3353 r = -ENODEV; 3354 goto out_fail; 3355 } 3356 3357 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 3358 (!memap_sz || !pio_sz); i++) { 3359 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 3360 if (pio_sz) 3361 continue; 3362 pio_chip = (u64)pci_resource_start(pdev, i); 3363 pio_sz = pci_resource_len(pdev, i); 3364 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3365 if (memap_sz) 3366 continue; 3367 ioc->chip_phys = pci_resource_start(pdev, i); 3368 chip_phys = ioc->chip_phys; 3369 memap_sz = pci_resource_len(pdev, i); 3370 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 3371 } 3372 } 3373 3374 if (ioc->chip == NULL) { 3375 ioc_err(ioc, 3376 "unable to map adapter memory! or resource not found\n"); 3377 r = -EINVAL; 3378 goto out_fail; 3379 } 3380 3381 mpt3sas_base_mask_interrupts(ioc); 3382 3383 r = _base_get_ioc_facts(ioc); 3384 if (r) { 3385 rc = _base_check_for_fault_and_issue_reset(ioc); 3386 if (rc || (_base_get_ioc_facts(ioc))) 3387 goto out_fail; 3388 } 3389 3390 if (!ioc->rdpq_array_enable_assigned) { 3391 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3392 ioc->rdpq_array_enable_assigned = 1; 3393 } 3394 3395 r = _base_enable_msix(ioc); 3396 if (r) 3397 goto out_fail; 3398 3399 if (!ioc->is_driver_loading) 3400 _base_init_irqpolls(ioc); 3401 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3402 * revision HBAs and also only when reply queue count is greater than 8 3403 */ 3404 if (ioc->combined_reply_queue) { 3405 /* Determine the Supplemental Reply Post Host Index Registers 3406 * Addresse. Supplemental Reply Post Host Index Registers 3407 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3408 * each register is at offset bytes of 3409 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3410 */ 3411 ioc->replyPostRegisterIndex = kcalloc( 3412 ioc->combined_reply_index_count, 3413 sizeof(resource_size_t *), GFP_KERNEL); 3414 if (!ioc->replyPostRegisterIndex) { 3415 ioc_err(ioc, 3416 "allocation for replyPostRegisterIndex failed!\n"); 3417 r = -ENOMEM; 3418 goto out_fail; 3419 } 3420 3421 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3422 ioc->replyPostRegisterIndex[i] = (resource_size_t *) 3423 ((u8 __force *)&ioc->chip->Doorbell + 3424 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3425 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3426 } 3427 } 3428 3429 if (ioc->is_warpdrive) { 3430 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3431 &ioc->chip->ReplyPostHostIndex; 3432 3433 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3434 ioc->reply_post_host_index[i] = 3435 (resource_size_t __iomem *) 3436 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3437 * 4))); 3438 } 3439 3440 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) 3441 pr_info("%s: %s enabled: IRQ %d\n", 3442 reply_q->name, 3443 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3444 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3445 3446 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3447 &chip_phys, ioc->chip, memap_sz); 3448 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3449 (unsigned long long)pio_chip, pio_sz); 3450 3451 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3452 pci_save_state(pdev); 3453 return 0; 3454 3455 out_fail: 3456 mpt3sas_base_unmap_resources(ioc); 3457 return r; 3458 } 3459 3460 /** 3461 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3462 * @ioc: per adapter object 3463 * @smid: system request message index(smid zero is invalid) 3464 * 3465 * Return: virt pointer to message frame. 3466 */ 3467 void * 3468 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3469 { 3470 return (void *)(ioc->request + (smid * ioc->request_sz)); 3471 } 3472 3473 /** 3474 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3475 * @ioc: per adapter object 3476 * @smid: system request message index 3477 * 3478 * Return: virt pointer to sense buffer. 3479 */ 3480 void * 3481 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3482 { 3483 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3484 } 3485 3486 /** 3487 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3488 * @ioc: per adapter object 3489 * @smid: system request message index 3490 * 3491 * Return: phys pointer to the low 32bit address of the sense buffer. 3492 */ 3493 __le32 3494 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3495 { 3496 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3497 SCSI_SENSE_BUFFERSIZE)); 3498 } 3499 3500 /** 3501 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3502 * @ioc: per adapter object 3503 * @smid: system request message index 3504 * 3505 * Return: virt pointer to a PCIe SGL. 3506 */ 3507 void * 3508 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3509 { 3510 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3511 } 3512 3513 /** 3514 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3515 * @ioc: per adapter object 3516 * @smid: system request message index 3517 * 3518 * Return: phys pointer to the address of the PCIe buffer. 3519 */ 3520 dma_addr_t 3521 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3522 { 3523 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3524 } 3525 3526 /** 3527 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3528 * @ioc: per adapter object 3529 * @phys_addr: lower 32 physical addr of the reply 3530 * 3531 * Converts 32bit lower physical addr into a virt address. 3532 */ 3533 void * 3534 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3535 { 3536 if (!phys_addr) 3537 return NULL; 3538 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3539 } 3540 3541 /** 3542 * _base_get_msix_index - get the msix index 3543 * @ioc: per adapter object 3544 * @scmd: scsi_cmnd object 3545 * 3546 * returns msix index of general reply queues, 3547 * i.e. reply queue on which IO request's reply 3548 * should be posted by the HBA firmware. 3549 */ 3550 static inline u8 3551 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc, 3552 struct scsi_cmnd *scmd) 3553 { 3554 /* Enables reply_queue load balancing */ 3555 if (ioc->msix_load_balance) 3556 return ioc->reply_queue_count ? 3557 base_mod64(atomic64_add_return(1, 3558 &ioc->total_io_cnt), ioc->reply_queue_count) : 0; 3559 3560 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3561 } 3562 3563 /** 3564 * _base_sdev_nr_inflight_request -get number of inflight requests 3565 * of a request queue. 3566 * @q: request_queue object 3567 * 3568 * returns number of inflight request of a request queue. 3569 */ 3570 inline unsigned long 3571 _base_sdev_nr_inflight_request(struct request_queue *q) 3572 { 3573 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0]; 3574 3575 return atomic_read(&hctx->nr_active); 3576 } 3577 3578 3579 /** 3580 * _base_get_high_iops_msix_index - get the msix index of 3581 * high iops queues 3582 * @ioc: per adapter object 3583 * @scmd: scsi_cmnd object 3584 * 3585 * Returns: msix index of high iops reply queues. 3586 * i.e. high iops reply queue on which IO request's 3587 * reply should be posted by the HBA firmware. 3588 */ 3589 static inline u8 3590 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc, 3591 struct scsi_cmnd *scmd) 3592 { 3593 /** 3594 * Round robin the IO interrupts among the high iops 3595 * reply queues in terms of batch count 16 when outstanding 3596 * IOs on the target device is >=8. 3597 */ 3598 if (_base_sdev_nr_inflight_request(scmd->device->request_queue) > 3599 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH) 3600 return base_mod64(( 3601 atomic64_add_return(1, &ioc->high_iops_outstanding) / 3602 MPT3SAS_HIGH_IOPS_BATCH_COUNT), 3603 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 3604 3605 return _base_get_msix_index(ioc, scmd); 3606 } 3607 3608 /** 3609 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3610 * @ioc: per adapter object 3611 * @cb_idx: callback index 3612 * 3613 * Return: smid (zero is invalid) 3614 */ 3615 u16 3616 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3617 { 3618 unsigned long flags; 3619 struct request_tracker *request; 3620 u16 smid; 3621 3622 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3623 if (list_empty(&ioc->internal_free_list)) { 3624 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3625 ioc_err(ioc, "%s: smid not available\n", __func__); 3626 return 0; 3627 } 3628 3629 request = list_entry(ioc->internal_free_list.next, 3630 struct request_tracker, tracker_list); 3631 request->cb_idx = cb_idx; 3632 smid = request->smid; 3633 list_del(&request->tracker_list); 3634 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3635 return smid; 3636 } 3637 3638 /** 3639 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3640 * @ioc: per adapter object 3641 * @cb_idx: callback index 3642 * @scmd: pointer to scsi command object 3643 * 3644 * Return: smid (zero is invalid) 3645 */ 3646 u16 3647 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3648 struct scsi_cmnd *scmd) 3649 { 3650 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3651 unsigned int tag = scmd->request->tag; 3652 u16 smid; 3653 3654 smid = tag + 1; 3655 request->cb_idx = cb_idx; 3656 request->smid = smid; 3657 request->scmd = scmd; 3658 INIT_LIST_HEAD(&request->chain_list); 3659 return smid; 3660 } 3661 3662 /** 3663 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3664 * @ioc: per adapter object 3665 * @cb_idx: callback index 3666 * 3667 * Return: smid (zero is invalid) 3668 */ 3669 u16 3670 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3671 { 3672 unsigned long flags; 3673 struct request_tracker *request; 3674 u16 smid; 3675 3676 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3677 if (list_empty(&ioc->hpr_free_list)) { 3678 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3679 return 0; 3680 } 3681 3682 request = list_entry(ioc->hpr_free_list.next, 3683 struct request_tracker, tracker_list); 3684 request->cb_idx = cb_idx; 3685 smid = request->smid; 3686 list_del(&request->tracker_list); 3687 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3688 return smid; 3689 } 3690 3691 static void 3692 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 3693 { 3694 /* 3695 * See _wait_for_commands_to_complete() call with regards to this code. 3696 */ 3697 if (ioc->shost_recovery && ioc->pending_io_count) { 3698 ioc->pending_io_count = scsi_host_busy(ioc->shost); 3699 if (ioc->pending_io_count == 0) 3700 wake_up(&ioc->reset_wq); 3701 } 3702 } 3703 3704 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 3705 struct scsiio_tracker *st) 3706 { 3707 if (WARN_ON(st->smid == 0)) 3708 return; 3709 st->cb_idx = 0xFF; 3710 st->direct_io = 0; 3711 st->scmd = NULL; 3712 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 3713 st->smid = 0; 3714 } 3715 3716 /** 3717 * mpt3sas_base_free_smid - put smid back on free_list 3718 * @ioc: per adapter object 3719 * @smid: system request message index 3720 */ 3721 void 3722 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3723 { 3724 unsigned long flags; 3725 int i; 3726 3727 if (smid < ioc->hi_priority_smid) { 3728 struct scsiio_tracker *st; 3729 void *request; 3730 3731 st = _get_st_from_smid(ioc, smid); 3732 if (!st) { 3733 _base_recovery_check(ioc); 3734 return; 3735 } 3736 3737 /* Clear MPI request frame */ 3738 request = mpt3sas_base_get_msg_frame(ioc, smid); 3739 memset(request, 0, ioc->request_sz); 3740 3741 mpt3sas_base_clear_st(ioc, st); 3742 _base_recovery_check(ioc); 3743 return; 3744 } 3745 3746 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3747 if (smid < ioc->internal_smid) { 3748 /* hi-priority */ 3749 i = smid - ioc->hi_priority_smid; 3750 ioc->hpr_lookup[i].cb_idx = 0xFF; 3751 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 3752 } else if (smid <= ioc->hba_queue_depth) { 3753 /* internal queue */ 3754 i = smid - ioc->internal_smid; 3755 ioc->internal_lookup[i].cb_idx = 0xFF; 3756 list_add(&ioc->internal_lookup[i].tracker_list, 3757 &ioc->internal_free_list); 3758 } 3759 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3760 } 3761 3762 /** 3763 * _base_mpi_ep_writeq - 32 bit write to MMIO 3764 * @b: data payload 3765 * @addr: address in MMIO space 3766 * @writeq_lock: spin lock 3767 * 3768 * This special handling for MPI EP to take care of 32 bit 3769 * environment where its not quarenteed to send the entire word 3770 * in one transfer. 3771 */ 3772 static inline void 3773 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 3774 spinlock_t *writeq_lock) 3775 { 3776 unsigned long flags; 3777 3778 spin_lock_irqsave(writeq_lock, flags); 3779 __raw_writel((u32)(b), addr); 3780 __raw_writel((u32)(b >> 32), (addr + 4)); 3781 spin_unlock_irqrestore(writeq_lock, flags); 3782 } 3783 3784 /** 3785 * _base_writeq - 64 bit write to MMIO 3786 * @b: data payload 3787 * @addr: address in MMIO space 3788 * @writeq_lock: spin lock 3789 * 3790 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 3791 * care of 32 bit environment where its not quarenteed to send the entire word 3792 * in one transfer. 3793 */ 3794 #if defined(writeq) && defined(CONFIG_64BIT) 3795 static inline void 3796 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3797 { 3798 wmb(); 3799 __raw_writeq(b, addr); 3800 barrier(); 3801 } 3802 #else 3803 static inline void 3804 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3805 { 3806 _base_mpi_ep_writeq(b, addr, writeq_lock); 3807 } 3808 #endif 3809 3810 /** 3811 * _base_set_and_get_msix_index - get the msix index and assign to msix_io 3812 * variable of scsi tracker 3813 * @ioc: per adapter object 3814 * @smid: system request message index 3815 * 3816 * returns msix index. 3817 */ 3818 static u8 3819 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3820 { 3821 struct scsiio_tracker *st = NULL; 3822 3823 if (smid < ioc->hi_priority_smid) 3824 st = _get_st_from_smid(ioc, smid); 3825 3826 if (st == NULL) 3827 return _base_get_msix_index(ioc, NULL); 3828 3829 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd); 3830 return st->msix_io; 3831 } 3832 3833 /** 3834 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 3835 * @ioc: per adapter object 3836 * @smid: system request message index 3837 * @handle: device handle 3838 */ 3839 static void 3840 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, 3841 u16 smid, u16 handle) 3842 { 3843 Mpi2RequestDescriptorUnion_t descriptor; 3844 u64 *request = (u64 *)&descriptor; 3845 void *mpi_req_iomem; 3846 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3847 3848 _clone_sg_entries(ioc, (void *) mfp, smid); 3849 mpi_req_iomem = (void __force *)ioc->chip + 3850 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3851 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3852 ioc->request_sz); 3853 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3854 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3855 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3856 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3857 descriptor.SCSIIO.LMID = 0; 3858 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3859 &ioc->scsi_lookup_lock); 3860 } 3861 3862 /** 3863 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 3864 * @ioc: per adapter object 3865 * @smid: system request message index 3866 * @handle: device handle 3867 */ 3868 static void 3869 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3870 { 3871 Mpi2RequestDescriptorUnion_t descriptor; 3872 u64 *request = (u64 *)&descriptor; 3873 3874 3875 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3876 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3877 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3878 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3879 descriptor.SCSIIO.LMID = 0; 3880 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3881 &ioc->scsi_lookup_lock); 3882 } 3883 3884 /** 3885 * _base_put_smid_fast_path - send fast path request to firmware 3886 * @ioc: per adapter object 3887 * @smid: system request message index 3888 * @handle: device handle 3889 */ 3890 static void 3891 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3892 u16 handle) 3893 { 3894 Mpi2RequestDescriptorUnion_t descriptor; 3895 u64 *request = (u64 *)&descriptor; 3896 3897 descriptor.SCSIIO.RequestFlags = 3898 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 3899 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3900 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3901 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3902 descriptor.SCSIIO.LMID = 0; 3903 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3904 &ioc->scsi_lookup_lock); 3905 } 3906 3907 /** 3908 * _base_put_smid_hi_priority - send Task Management request to firmware 3909 * @ioc: per adapter object 3910 * @smid: system request message index 3911 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0. 3912 */ 3913 static void 3914 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3915 u16 msix_task) 3916 { 3917 Mpi2RequestDescriptorUnion_t descriptor; 3918 void *mpi_req_iomem; 3919 u64 *request; 3920 3921 if (ioc->is_mcpu_endpoint) { 3922 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3923 3924 /* TBD 256 is offset within sys register. */ 3925 mpi_req_iomem = (void __force *)ioc->chip 3926 + MPI_FRAME_START_OFFSET 3927 + (smid * ioc->request_sz); 3928 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3929 ioc->request_sz); 3930 } 3931 3932 request = (u64 *)&descriptor; 3933 3934 descriptor.HighPriority.RequestFlags = 3935 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 3936 descriptor.HighPriority.MSIxIndex = msix_task; 3937 descriptor.HighPriority.SMID = cpu_to_le16(smid); 3938 descriptor.HighPriority.LMID = 0; 3939 descriptor.HighPriority.Reserved1 = 0; 3940 if (ioc->is_mcpu_endpoint) 3941 _base_mpi_ep_writeq(*request, 3942 &ioc->chip->RequestDescriptorPostLow, 3943 &ioc->scsi_lookup_lock); 3944 else 3945 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3946 &ioc->scsi_lookup_lock); 3947 } 3948 3949 /** 3950 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 3951 * firmware 3952 * @ioc: per adapter object 3953 * @smid: system request message index 3954 */ 3955 void 3956 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3957 { 3958 Mpi2RequestDescriptorUnion_t descriptor; 3959 u64 *request = (u64 *)&descriptor; 3960 3961 descriptor.Default.RequestFlags = 3962 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 3963 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3964 descriptor.Default.SMID = cpu_to_le16(smid); 3965 descriptor.Default.LMID = 0; 3966 descriptor.Default.DescriptorTypeDependent = 0; 3967 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3968 &ioc->scsi_lookup_lock); 3969 } 3970 3971 /** 3972 * _base_put_smid_default - Default, primarily used for config pages 3973 * @ioc: per adapter object 3974 * @smid: system request message index 3975 */ 3976 static void 3977 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3978 { 3979 Mpi2RequestDescriptorUnion_t descriptor; 3980 void *mpi_req_iomem; 3981 u64 *request; 3982 3983 if (ioc->is_mcpu_endpoint) { 3984 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3985 3986 _clone_sg_entries(ioc, (void *) mfp, smid); 3987 /* TBD 256 is offset within sys register */ 3988 mpi_req_iomem = (void __force *)ioc->chip + 3989 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3990 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3991 ioc->request_sz); 3992 } 3993 request = (u64 *)&descriptor; 3994 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3995 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3996 descriptor.Default.SMID = cpu_to_le16(smid); 3997 descriptor.Default.LMID = 0; 3998 descriptor.Default.DescriptorTypeDependent = 0; 3999 if (ioc->is_mcpu_endpoint) 4000 _base_mpi_ep_writeq(*request, 4001 &ioc->chip->RequestDescriptorPostLow, 4002 &ioc->scsi_lookup_lock); 4003 else 4004 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4005 &ioc->scsi_lookup_lock); 4006 } 4007 4008 /** 4009 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using 4010 * Atomic Request Descriptor 4011 * @ioc: per adapter object 4012 * @smid: system request message index 4013 * @handle: device handle, unused in this function, for function type match 4014 * 4015 * Return nothing. 4016 */ 4017 static void 4018 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4019 u16 handle) 4020 { 4021 Mpi26AtomicRequestDescriptor_t descriptor; 4022 u32 *request = (u32 *)&descriptor; 4023 4024 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4025 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4026 descriptor.SMID = cpu_to_le16(smid); 4027 4028 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4029 } 4030 4031 /** 4032 * _base_put_smid_fast_path_atomic - send fast path request to firmware 4033 * using Atomic Request Descriptor 4034 * @ioc: per adapter object 4035 * @smid: system request message index 4036 * @handle: device handle, unused in this function, for function type match 4037 * Return nothing 4038 */ 4039 static void 4040 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4041 u16 handle) 4042 { 4043 Mpi26AtomicRequestDescriptor_t descriptor; 4044 u32 *request = (u32 *)&descriptor; 4045 4046 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4047 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4048 descriptor.SMID = cpu_to_le16(smid); 4049 4050 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4051 } 4052 4053 /** 4054 * _base_put_smid_hi_priority_atomic - send Task Management request to 4055 * firmware using Atomic Request Descriptor 4056 * @ioc: per adapter object 4057 * @smid: system request message index 4058 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0 4059 * 4060 * Return nothing. 4061 */ 4062 static void 4063 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4064 u16 msix_task) 4065 { 4066 Mpi26AtomicRequestDescriptor_t descriptor; 4067 u32 *request = (u32 *)&descriptor; 4068 4069 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4070 descriptor.MSIxIndex = msix_task; 4071 descriptor.SMID = cpu_to_le16(smid); 4072 4073 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4074 } 4075 4076 /** 4077 * _base_put_smid_default - Default, primarily used for config pages 4078 * use Atomic Request Descriptor 4079 * @ioc: per adapter object 4080 * @smid: system request message index 4081 * 4082 * Return nothing. 4083 */ 4084 static void 4085 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4086 { 4087 Mpi26AtomicRequestDescriptor_t descriptor; 4088 u32 *request = (u32 *)&descriptor; 4089 4090 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4091 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4092 descriptor.SMID = cpu_to_le16(smid); 4093 4094 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4095 } 4096 4097 /** 4098 * _base_display_OEMs_branding - Display branding string 4099 * @ioc: per adapter object 4100 */ 4101 static void 4102 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 4103 { 4104 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 4105 return; 4106 4107 switch (ioc->pdev->subsystem_vendor) { 4108 case PCI_VENDOR_ID_INTEL: 4109 switch (ioc->pdev->device) { 4110 case MPI2_MFGPAGE_DEVID_SAS2008: 4111 switch (ioc->pdev->subsystem_device) { 4112 case MPT2SAS_INTEL_RMS2LL080_SSDID: 4113 ioc_info(ioc, "%s\n", 4114 MPT2SAS_INTEL_RMS2LL080_BRANDING); 4115 break; 4116 case MPT2SAS_INTEL_RMS2LL040_SSDID: 4117 ioc_info(ioc, "%s\n", 4118 MPT2SAS_INTEL_RMS2LL040_BRANDING); 4119 break; 4120 case MPT2SAS_INTEL_SSD910_SSDID: 4121 ioc_info(ioc, "%s\n", 4122 MPT2SAS_INTEL_SSD910_BRANDING); 4123 break; 4124 default: 4125 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4126 ioc->pdev->subsystem_device); 4127 break; 4128 } 4129 break; 4130 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4131 switch (ioc->pdev->subsystem_device) { 4132 case MPT2SAS_INTEL_RS25GB008_SSDID: 4133 ioc_info(ioc, "%s\n", 4134 MPT2SAS_INTEL_RS25GB008_BRANDING); 4135 break; 4136 case MPT2SAS_INTEL_RMS25JB080_SSDID: 4137 ioc_info(ioc, "%s\n", 4138 MPT2SAS_INTEL_RMS25JB080_BRANDING); 4139 break; 4140 case MPT2SAS_INTEL_RMS25JB040_SSDID: 4141 ioc_info(ioc, "%s\n", 4142 MPT2SAS_INTEL_RMS25JB040_BRANDING); 4143 break; 4144 case MPT2SAS_INTEL_RMS25KB080_SSDID: 4145 ioc_info(ioc, "%s\n", 4146 MPT2SAS_INTEL_RMS25KB080_BRANDING); 4147 break; 4148 case MPT2SAS_INTEL_RMS25KB040_SSDID: 4149 ioc_info(ioc, "%s\n", 4150 MPT2SAS_INTEL_RMS25KB040_BRANDING); 4151 break; 4152 case MPT2SAS_INTEL_RMS25LB040_SSDID: 4153 ioc_info(ioc, "%s\n", 4154 MPT2SAS_INTEL_RMS25LB040_BRANDING); 4155 break; 4156 case MPT2SAS_INTEL_RMS25LB080_SSDID: 4157 ioc_info(ioc, "%s\n", 4158 MPT2SAS_INTEL_RMS25LB080_BRANDING); 4159 break; 4160 default: 4161 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4162 ioc->pdev->subsystem_device); 4163 break; 4164 } 4165 break; 4166 case MPI25_MFGPAGE_DEVID_SAS3008: 4167 switch (ioc->pdev->subsystem_device) { 4168 case MPT3SAS_INTEL_RMS3JC080_SSDID: 4169 ioc_info(ioc, "%s\n", 4170 MPT3SAS_INTEL_RMS3JC080_BRANDING); 4171 break; 4172 4173 case MPT3SAS_INTEL_RS3GC008_SSDID: 4174 ioc_info(ioc, "%s\n", 4175 MPT3SAS_INTEL_RS3GC008_BRANDING); 4176 break; 4177 case MPT3SAS_INTEL_RS3FC044_SSDID: 4178 ioc_info(ioc, "%s\n", 4179 MPT3SAS_INTEL_RS3FC044_BRANDING); 4180 break; 4181 case MPT3SAS_INTEL_RS3UC080_SSDID: 4182 ioc_info(ioc, "%s\n", 4183 MPT3SAS_INTEL_RS3UC080_BRANDING); 4184 break; 4185 default: 4186 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4187 ioc->pdev->subsystem_device); 4188 break; 4189 } 4190 break; 4191 default: 4192 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4193 ioc->pdev->subsystem_device); 4194 break; 4195 } 4196 break; 4197 case PCI_VENDOR_ID_DELL: 4198 switch (ioc->pdev->device) { 4199 case MPI2_MFGPAGE_DEVID_SAS2008: 4200 switch (ioc->pdev->subsystem_device) { 4201 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 4202 ioc_info(ioc, "%s\n", 4203 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 4204 break; 4205 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 4206 ioc_info(ioc, "%s\n", 4207 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 4208 break; 4209 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 4210 ioc_info(ioc, "%s\n", 4211 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 4212 break; 4213 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 4214 ioc_info(ioc, "%s\n", 4215 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 4216 break; 4217 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 4218 ioc_info(ioc, "%s\n", 4219 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 4220 break; 4221 case MPT2SAS_DELL_PERC_H200_SSDID: 4222 ioc_info(ioc, "%s\n", 4223 MPT2SAS_DELL_PERC_H200_BRANDING); 4224 break; 4225 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 4226 ioc_info(ioc, "%s\n", 4227 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 4228 break; 4229 default: 4230 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 4231 ioc->pdev->subsystem_device); 4232 break; 4233 } 4234 break; 4235 case MPI25_MFGPAGE_DEVID_SAS3008: 4236 switch (ioc->pdev->subsystem_device) { 4237 case MPT3SAS_DELL_12G_HBA_SSDID: 4238 ioc_info(ioc, "%s\n", 4239 MPT3SAS_DELL_12G_HBA_BRANDING); 4240 break; 4241 default: 4242 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 4243 ioc->pdev->subsystem_device); 4244 break; 4245 } 4246 break; 4247 default: 4248 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 4249 ioc->pdev->subsystem_device); 4250 break; 4251 } 4252 break; 4253 case PCI_VENDOR_ID_CISCO: 4254 switch (ioc->pdev->device) { 4255 case MPI25_MFGPAGE_DEVID_SAS3008: 4256 switch (ioc->pdev->subsystem_device) { 4257 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 4258 ioc_info(ioc, "%s\n", 4259 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 4260 break; 4261 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 4262 ioc_info(ioc, "%s\n", 4263 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 4264 break; 4265 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4266 ioc_info(ioc, "%s\n", 4267 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4268 break; 4269 default: 4270 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4271 ioc->pdev->subsystem_device); 4272 break; 4273 } 4274 break; 4275 case MPI25_MFGPAGE_DEVID_SAS3108_1: 4276 switch (ioc->pdev->subsystem_device) { 4277 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4278 ioc_info(ioc, "%s\n", 4279 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4280 break; 4281 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 4282 ioc_info(ioc, "%s\n", 4283 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 4284 break; 4285 default: 4286 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4287 ioc->pdev->subsystem_device); 4288 break; 4289 } 4290 break; 4291 default: 4292 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 4293 ioc->pdev->subsystem_device); 4294 break; 4295 } 4296 break; 4297 case MPT2SAS_HP_3PAR_SSVID: 4298 switch (ioc->pdev->device) { 4299 case MPI2_MFGPAGE_DEVID_SAS2004: 4300 switch (ioc->pdev->subsystem_device) { 4301 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 4302 ioc_info(ioc, "%s\n", 4303 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 4304 break; 4305 default: 4306 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4307 ioc->pdev->subsystem_device); 4308 break; 4309 } 4310 break; 4311 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4312 switch (ioc->pdev->subsystem_device) { 4313 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 4314 ioc_info(ioc, "%s\n", 4315 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 4316 break; 4317 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 4318 ioc_info(ioc, "%s\n", 4319 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 4320 break; 4321 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 4322 ioc_info(ioc, "%s\n", 4323 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 4324 break; 4325 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 4326 ioc_info(ioc, "%s\n", 4327 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 4328 break; 4329 default: 4330 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4331 ioc->pdev->subsystem_device); 4332 break; 4333 } 4334 break; 4335 default: 4336 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 4337 ioc->pdev->subsystem_device); 4338 break; 4339 } 4340 default: 4341 break; 4342 } 4343 } 4344 4345 /** 4346 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 4347 * version from FW Image Header. 4348 * @ioc: per adapter object 4349 * 4350 * Return: 0 for success, non-zero for failure. 4351 */ 4352 static int 4353 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 4354 { 4355 Mpi2FWImageHeader_t *fw_img_hdr; 4356 Mpi26ComponentImageHeader_t *cmp_img_hdr; 4357 Mpi25FWUploadRequest_t *mpi_request; 4358 Mpi2FWUploadReply_t mpi_reply; 4359 int r = 0; 4360 u32 package_version = 0; 4361 void *fwpkg_data = NULL; 4362 dma_addr_t fwpkg_data_dma; 4363 u16 smid, ioc_status; 4364 size_t data_length; 4365 4366 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4367 4368 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 4369 ioc_err(ioc, "%s: internal command already in use\n", __func__); 4370 return -EAGAIN; 4371 } 4372 4373 data_length = sizeof(Mpi2FWImageHeader_t); 4374 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 4375 &fwpkg_data_dma, GFP_KERNEL); 4376 if (!fwpkg_data) { 4377 ioc_err(ioc, 4378 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n", 4379 __FILE__, __LINE__, __func__); 4380 return -ENOMEM; 4381 } 4382 4383 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4384 if (!smid) { 4385 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 4386 r = -EAGAIN; 4387 goto out; 4388 } 4389 4390 ioc->base_cmds.status = MPT3_CMD_PENDING; 4391 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4392 ioc->base_cmds.smid = smid; 4393 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 4394 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 4395 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 4396 mpi_request->ImageSize = cpu_to_le32(data_length); 4397 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 4398 data_length); 4399 init_completion(&ioc->base_cmds.done); 4400 ioc->put_smid_default(ioc, smid); 4401 /* Wait for 15 seconds */ 4402 wait_for_completion_timeout(&ioc->base_cmds.done, 4403 FW_IMG_HDR_READ_TIMEOUT*HZ); 4404 ioc_info(ioc, "%s: complete\n", __func__); 4405 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4406 ioc_err(ioc, "%s: timeout\n", __func__); 4407 _debug_dump_mf(mpi_request, 4408 sizeof(Mpi25FWUploadRequest_t)/4); 4409 r = -ETIME; 4410 } else { 4411 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 4412 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 4413 memcpy(&mpi_reply, ioc->base_cmds.reply, 4414 sizeof(Mpi2FWUploadReply_t)); 4415 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4416 MPI2_IOCSTATUS_MASK; 4417 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 4418 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data; 4419 if (le32_to_cpu(fw_img_hdr->Signature) == 4420 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) { 4421 cmp_img_hdr = 4422 (Mpi26ComponentImageHeader_t *) 4423 (fwpkg_data); 4424 package_version = 4425 le32_to_cpu( 4426 cmp_img_hdr->ApplicationSpecific); 4427 } else 4428 package_version = 4429 le32_to_cpu( 4430 fw_img_hdr->PackageVersion.Word); 4431 if (package_version) 4432 ioc_info(ioc, 4433 "FW Package Ver(%02d.%02d.%02d.%02d)\n", 4434 ((package_version) & 0xFF000000) >> 24, 4435 ((package_version) & 0x00FF0000) >> 16, 4436 ((package_version) & 0x0000FF00) >> 8, 4437 (package_version) & 0x000000FF); 4438 } else { 4439 _debug_dump_mf(&mpi_reply, 4440 sizeof(Mpi2FWUploadReply_t)/4); 4441 } 4442 } 4443 } 4444 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4445 out: 4446 if (fwpkg_data) 4447 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 4448 fwpkg_data_dma); 4449 return r; 4450 } 4451 4452 /** 4453 * _base_display_ioc_capabilities - Disply IOC's capabilities. 4454 * @ioc: per adapter object 4455 */ 4456 static void 4457 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 4458 { 4459 int i = 0; 4460 char desc[16]; 4461 u32 iounit_pg1_flags; 4462 u32 bios_version; 4463 4464 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 4465 strncpy(desc, ioc->manu_pg0.ChipName, 16); 4466 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", 4467 desc, 4468 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 4469 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 4470 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 4471 ioc->facts.FWVersion.Word & 0x000000FF, 4472 ioc->pdev->revision, 4473 (bios_version & 0xFF000000) >> 24, 4474 (bios_version & 0x00FF0000) >> 16, 4475 (bios_version & 0x0000FF00) >> 8, 4476 bios_version & 0x000000FF); 4477 4478 _base_display_OEMs_branding(ioc); 4479 4480 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4481 pr_info("%sNVMe", i ? "," : ""); 4482 i++; 4483 } 4484 4485 ioc_info(ioc, "Protocol=("); 4486 4487 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 4488 pr_cont("Initiator"); 4489 i++; 4490 } 4491 4492 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 4493 pr_cont("%sTarget", i ? "," : ""); 4494 i++; 4495 } 4496 4497 i = 0; 4498 pr_cont("), Capabilities=("); 4499 4500 if (!ioc->hide_ir_msg) { 4501 if (ioc->facts.IOCCapabilities & 4502 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 4503 pr_cont("Raid"); 4504 i++; 4505 } 4506 } 4507 4508 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 4509 pr_cont("%sTLR", i ? "," : ""); 4510 i++; 4511 } 4512 4513 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 4514 pr_cont("%sMulticast", i ? "," : ""); 4515 i++; 4516 } 4517 4518 if (ioc->facts.IOCCapabilities & 4519 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 4520 pr_cont("%sBIDI Target", i ? "," : ""); 4521 i++; 4522 } 4523 4524 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 4525 pr_cont("%sEEDP", i ? "," : ""); 4526 i++; 4527 } 4528 4529 if (ioc->facts.IOCCapabilities & 4530 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 4531 pr_cont("%sSnapshot Buffer", i ? "," : ""); 4532 i++; 4533 } 4534 4535 if (ioc->facts.IOCCapabilities & 4536 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 4537 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 4538 i++; 4539 } 4540 4541 if (ioc->facts.IOCCapabilities & 4542 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 4543 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 4544 i++; 4545 } 4546 4547 if (ioc->facts.IOCCapabilities & 4548 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 4549 pr_cont("%sTask Set Full", i ? "," : ""); 4550 i++; 4551 } 4552 4553 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4554 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 4555 pr_cont("%sNCQ", i ? "," : ""); 4556 i++; 4557 } 4558 4559 pr_cont(")\n"); 4560 } 4561 4562 /** 4563 * mpt3sas_base_update_missing_delay - change the missing delay timers 4564 * @ioc: per adapter object 4565 * @device_missing_delay: amount of time till device is reported missing 4566 * @io_missing_delay: interval IO is returned when there is a missing device 4567 * 4568 * Passed on the command line, this function will modify the device missing 4569 * delay, as well as the io missing delay. This should be called at driver 4570 * load time. 4571 */ 4572 void 4573 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4574 u16 device_missing_delay, u8 io_missing_delay) 4575 { 4576 u16 dmd, dmd_new, dmd_orignal; 4577 u8 io_missing_delay_original; 4578 u16 sz; 4579 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4580 Mpi2ConfigReply_t mpi_reply; 4581 u8 num_phys = 0; 4582 u16 ioc_status; 4583 4584 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4585 if (!num_phys) 4586 return; 4587 4588 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 4589 sizeof(Mpi2SasIOUnit1PhyData_t)); 4590 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4591 if (!sas_iounit_pg1) { 4592 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4593 __FILE__, __LINE__, __func__); 4594 goto out; 4595 } 4596 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4597 sas_iounit_pg1, sz))) { 4598 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4599 __FILE__, __LINE__, __func__); 4600 goto out; 4601 } 4602 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4603 MPI2_IOCSTATUS_MASK; 4604 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4605 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4606 __FILE__, __LINE__, __func__); 4607 goto out; 4608 } 4609 4610 /* device missing delay */ 4611 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4612 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4613 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4614 else 4615 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4616 dmd_orignal = dmd; 4617 if (device_missing_delay > 0x7F) { 4618 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4619 device_missing_delay; 4620 dmd = dmd / 16; 4621 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4622 } else 4623 dmd = device_missing_delay; 4624 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4625 4626 /* io missing delay */ 4627 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4628 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4629 4630 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4631 sz)) { 4632 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4633 dmd_new = (dmd & 4634 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4635 else 4636 dmd_new = 4637 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4638 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4639 dmd_orignal, dmd_new); 4640 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4641 io_missing_delay_original, 4642 io_missing_delay); 4643 ioc->device_missing_delay = dmd_new; 4644 ioc->io_missing_delay = io_missing_delay; 4645 } 4646 4647 out: 4648 kfree(sas_iounit_pg1); 4649 } 4650 4651 /** 4652 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields 4653 * according to performance mode. 4654 * @ioc : per adapter object 4655 * 4656 * Return nothing. 4657 */ 4658 static void 4659 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc) 4660 { 4661 Mpi2IOCPage1_t ioc_pg1; 4662 Mpi2ConfigReply_t mpi_reply; 4663 4664 mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy); 4665 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t)); 4666 4667 switch (perf_mode) { 4668 case MPT_PERF_MODE_DEFAULT: 4669 case MPT_PERF_MODE_BALANCED: 4670 if (ioc->high_iops_queues) { 4671 ioc_info(ioc, 4672 "Enable interrupt coalescing only for first\t" 4673 "%d reply queues\n", 4674 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 4675 /* 4676 * If 31st bit is zero then interrupt coalescing is 4677 * enabled for all reply descriptor post queues. 4678 * If 31st bit is set to one then user can 4679 * enable/disable interrupt coalescing on per reply 4680 * descriptor post queue group(8) basis. So to enable 4681 * interrupt coalescing only on first reply descriptor 4682 * post queue group 31st bit and zero th bit is enabled. 4683 */ 4684 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 | 4685 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1)); 4686 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4687 ioc_info(ioc, "performance mode: balanced\n"); 4688 return; 4689 } 4690 fallthrough; 4691 case MPT_PERF_MODE_LATENCY: 4692 /* 4693 * Enable interrupt coalescing on all reply queues 4694 * with timeout value 0xA 4695 */ 4696 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa); 4697 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4698 ioc_pg1.ProductSpecific = 0; 4699 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4700 ioc_info(ioc, "performance mode: latency\n"); 4701 break; 4702 case MPT_PERF_MODE_IOPS: 4703 /* 4704 * Enable interrupt coalescing on all reply queues. 4705 */ 4706 ioc_info(ioc, 4707 "performance mode: iops with coalescing timeout: 0x%x\n", 4708 le32_to_cpu(ioc_pg1.CoalescingTimeout)); 4709 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4710 ioc_pg1.ProductSpecific = 0; 4711 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4712 break; 4713 } 4714 } 4715 4716 /** 4717 * _base_static_config_pages - static start of day config pages 4718 * @ioc: per adapter object 4719 */ 4720 static void 4721 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 4722 { 4723 Mpi2ConfigReply_t mpi_reply; 4724 u32 iounit_pg1_flags; 4725 4726 ioc->nvme_abort_timeout = 30; 4727 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0); 4728 if (ioc->ir_firmware) 4729 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 4730 &ioc->manu_pg10); 4731 4732 /* 4733 * Ensure correct T10 PI operation if vendor left EEDPTagMode 4734 * flag unset in NVDATA. 4735 */ 4736 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); 4737 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 4738 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 4739 ioc->name); 4740 ioc->manu_pg11.EEDPTagMode &= ~0x3; 4741 ioc->manu_pg11.EEDPTagMode |= 0x1; 4742 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 4743 &ioc->manu_pg11); 4744 } 4745 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 4746 ioc->tm_custom_handling = 1; 4747 else { 4748 ioc->tm_custom_handling = 0; 4749 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 4750 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 4751 else if (ioc->manu_pg11.NVMeAbortTO > 4752 NVME_TASK_ABORT_MAX_TIMEOUT) 4753 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 4754 else 4755 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 4756 } 4757 4758 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 4759 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 4760 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 4761 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 4762 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4763 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 4764 _base_display_ioc_capabilities(ioc); 4765 4766 /* 4767 * Enable task_set_full handling in iounit_pg1 when the 4768 * facts capabilities indicate that its supported. 4769 */ 4770 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4771 if ((ioc->facts.IOCCapabilities & 4772 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 4773 iounit_pg1_flags &= 4774 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4775 else 4776 iounit_pg1_flags |= 4777 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4778 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 4779 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4780 4781 if (ioc->iounit_pg8.NumSensors) 4782 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 4783 if (ioc->is_aero_ioc) 4784 _base_update_ioc_page1_inlinewith_perf_mode(ioc); 4785 } 4786 4787 /** 4788 * mpt3sas_free_enclosure_list - release memory 4789 * @ioc: per adapter object 4790 * 4791 * Free memory allocated during encloure add. 4792 */ 4793 void 4794 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 4795 { 4796 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 4797 4798 /* Free enclosure list */ 4799 list_for_each_entry_safe(enclosure_dev, 4800 enclosure_dev_next, &ioc->enclosure_list, list) { 4801 list_del(&enclosure_dev->list); 4802 kfree(enclosure_dev); 4803 } 4804 } 4805 4806 /** 4807 * _base_release_memory_pools - release memory 4808 * @ioc: per adapter object 4809 * 4810 * Free memory allocated from _base_allocate_memory_pools. 4811 */ 4812 static void 4813 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4814 { 4815 int i = 0; 4816 int j = 0; 4817 int dma_alloc_count = 0; 4818 struct chain_tracker *ct; 4819 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 4820 4821 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4822 4823 if (ioc->request) { 4824 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 4825 ioc->request, ioc->request_dma); 4826 dexitprintk(ioc, 4827 ioc_info(ioc, "request_pool(0x%p): free\n", 4828 ioc->request)); 4829 ioc->request = NULL; 4830 } 4831 4832 if (ioc->sense) { 4833 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 4834 dma_pool_destroy(ioc->sense_dma_pool); 4835 dexitprintk(ioc, 4836 ioc_info(ioc, "sense_pool(0x%p): free\n", 4837 ioc->sense)); 4838 ioc->sense = NULL; 4839 } 4840 4841 if (ioc->reply) { 4842 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 4843 dma_pool_destroy(ioc->reply_dma_pool); 4844 dexitprintk(ioc, 4845 ioc_info(ioc, "reply_pool(0x%p): free\n", 4846 ioc->reply)); 4847 ioc->reply = NULL; 4848 } 4849 4850 if (ioc->reply_free) { 4851 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 4852 ioc->reply_free_dma); 4853 dma_pool_destroy(ioc->reply_free_dma_pool); 4854 dexitprintk(ioc, 4855 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 4856 ioc->reply_free)); 4857 ioc->reply_free = NULL; 4858 } 4859 4860 if (ioc->reply_post) { 4861 dma_alloc_count = DIV_ROUND_UP(count, 4862 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 4863 for (i = 0; i < count; i++) { 4864 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0 4865 && dma_alloc_count) { 4866 if (ioc->reply_post[i].reply_post_free) { 4867 dma_pool_free( 4868 ioc->reply_post_free_dma_pool, 4869 ioc->reply_post[i].reply_post_free, 4870 ioc->reply_post[i].reply_post_free_dma); 4871 dexitprintk(ioc, ioc_info(ioc, 4872 "reply_post_free_pool(0x%p): free\n", 4873 ioc->reply_post[i].reply_post_free)); 4874 ioc->reply_post[i].reply_post_free = 4875 NULL; 4876 } 4877 --dma_alloc_count; 4878 } 4879 } 4880 dma_pool_destroy(ioc->reply_post_free_dma_pool); 4881 if (ioc->reply_post_free_array && 4882 ioc->rdpq_array_enable) { 4883 dma_pool_free(ioc->reply_post_free_array_dma_pool, 4884 ioc->reply_post_free_array, 4885 ioc->reply_post_free_array_dma); 4886 ioc->reply_post_free_array = NULL; 4887 } 4888 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 4889 kfree(ioc->reply_post); 4890 } 4891 4892 if (ioc->pcie_sgl_dma_pool) { 4893 for (i = 0; i < ioc->scsiio_depth; i++) { 4894 dma_pool_free(ioc->pcie_sgl_dma_pool, 4895 ioc->pcie_sg_lookup[i].pcie_sgl, 4896 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 4897 } 4898 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 4899 } 4900 4901 if (ioc->config_page) { 4902 dexitprintk(ioc, 4903 ioc_info(ioc, "config_page(0x%p): free\n", 4904 ioc->config_page)); 4905 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 4906 ioc->config_page, ioc->config_page_dma); 4907 } 4908 4909 kfree(ioc->hpr_lookup); 4910 ioc->hpr_lookup = NULL; 4911 kfree(ioc->internal_lookup); 4912 ioc->internal_lookup = NULL; 4913 if (ioc->chain_lookup) { 4914 for (i = 0; i < ioc->scsiio_depth; i++) { 4915 for (j = ioc->chains_per_prp_buffer; 4916 j < ioc->chains_needed_per_io; j++) { 4917 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4918 if (ct && ct->chain_buffer) 4919 dma_pool_free(ioc->chain_dma_pool, 4920 ct->chain_buffer, 4921 ct->chain_buffer_dma); 4922 } 4923 kfree(ioc->chain_lookup[i].chains_per_smid); 4924 } 4925 dma_pool_destroy(ioc->chain_dma_pool); 4926 kfree(ioc->chain_lookup); 4927 ioc->chain_lookup = NULL; 4928 } 4929 } 4930 4931 /** 4932 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are 4933 * having same upper 32bits in their base memory address. 4934 * @reply_pool_start_address: Base address of a reply queue set 4935 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 4936 * 4937 * Return: 1 if reply queues in a set have a same upper 32bits in their base 4938 * memory address, else 0. 4939 */ 4940 4941 static int 4942 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz) 4943 { 4944 long reply_pool_end_address; 4945 4946 reply_pool_end_address = reply_pool_start_address + pool_sz; 4947 4948 if (upper_32_bits(reply_pool_start_address) == 4949 upper_32_bits(reply_pool_end_address)) 4950 return 1; 4951 else 4952 return 0; 4953 } 4954 4955 /** 4956 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory 4957 * for reply queues. 4958 * @ioc: per adapter object 4959 * @sz: DMA Pool size 4960 * Return: 0 for success, non-zero for failure. 4961 */ 4962 static int 4963 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz) 4964 { 4965 int i = 0; 4966 u32 dma_alloc_count = 0; 4967 int reply_post_free_sz = ioc->reply_post_queue_depth * 4968 sizeof(Mpi2DefaultReplyDescriptor_t); 4969 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 4970 4971 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct), 4972 GFP_KERNEL); 4973 if (!ioc->reply_post) 4974 return -ENOMEM; 4975 /* 4976 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and 4977 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should 4978 * be within 4GB boundary i.e reply queues in a set must have same 4979 * upper 32-bits in their memory address. so here driver is allocating 4980 * the DMA'able memory for reply queues according. 4981 * Driver uses limitation of 4982 * VENTURA_SERIES to manage INVADER_SERIES as well. 4983 */ 4984 dma_alloc_count = DIV_ROUND_UP(count, 4985 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 4986 ioc->reply_post_free_dma_pool = 4987 dma_pool_create("reply_post_free pool", 4988 &ioc->pdev->dev, sz, 16, 0); 4989 if (!ioc->reply_post_free_dma_pool) 4990 return -ENOMEM; 4991 for (i = 0; i < count; i++) { 4992 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) { 4993 ioc->reply_post[i].reply_post_free = 4994 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 4995 GFP_KERNEL, 4996 &ioc->reply_post[i].reply_post_free_dma); 4997 if (!ioc->reply_post[i].reply_post_free) 4998 return -ENOMEM; 4999 /* 5000 * Each set of RDPQ pool must satisfy 4gb boundary 5001 * restriction. 5002 * 1) Check if allocated resources for RDPQ pool are in 5003 * the same 4GB range. 5004 * 2) If #1 is true, continue with 64 bit DMA. 5005 * 3) If #1 is false, return 1. which means free all the 5006 * resources and set DMA mask to 32 and allocate. 5007 */ 5008 if (!mpt3sas_check_same_4gb_region( 5009 (long)ioc->reply_post[i].reply_post_free, sz)) { 5010 dinitprintk(ioc, 5011 ioc_err(ioc, "bad Replypost free pool(0x%p)" 5012 "reply_post_free_dma = (0x%llx)\n", 5013 ioc->reply_post[i].reply_post_free, 5014 (unsigned long long) 5015 ioc->reply_post[i].reply_post_free_dma)); 5016 return -EAGAIN; 5017 } 5018 dma_alloc_count--; 5019 5020 } else { 5021 ioc->reply_post[i].reply_post_free = 5022 (Mpi2ReplyDescriptorsUnion_t *) 5023 ((long)ioc->reply_post[i-1].reply_post_free 5024 + reply_post_free_sz); 5025 ioc->reply_post[i].reply_post_free_dma = 5026 (dma_addr_t) 5027 (ioc->reply_post[i-1].reply_post_free_dma + 5028 reply_post_free_sz); 5029 } 5030 } 5031 return 0; 5032 } 5033 5034 /** 5035 * _base_allocate_memory_pools - allocate start of day memory pools 5036 * @ioc: per adapter object 5037 * 5038 * Return: 0 success, anything else error. 5039 */ 5040 static int 5041 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 5042 { 5043 struct mpt3sas_facts *facts; 5044 u16 max_sge_elements; 5045 u16 chains_needed_per_io; 5046 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 5047 u32 retry_sz; 5048 u32 rdpq_sz = 0; 5049 u16 max_request_credit, nvme_blocks_needed; 5050 unsigned short sg_tablesize; 5051 u16 sge_size; 5052 int i, j; 5053 int ret = 0; 5054 struct chain_tracker *ct; 5055 5056 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5057 5058 5059 retry_sz = 0; 5060 facts = &ioc->facts; 5061 5062 /* command line tunables for max sgl entries */ 5063 if (max_sgl_entries != -1) 5064 sg_tablesize = max_sgl_entries; 5065 else { 5066 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 5067 sg_tablesize = MPT2SAS_SG_DEPTH; 5068 else 5069 sg_tablesize = MPT3SAS_SG_DEPTH; 5070 } 5071 5072 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 5073 if (reset_devices) 5074 sg_tablesize = min_t(unsigned short, sg_tablesize, 5075 MPT_KDUMP_MIN_PHYS_SEGMENTS); 5076 5077 if (ioc->is_mcpu_endpoint) 5078 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 5079 else { 5080 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 5081 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 5082 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 5083 sg_tablesize = min_t(unsigned short, sg_tablesize, 5084 SG_MAX_SEGMENTS); 5085 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 5086 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 5087 } 5088 ioc->shost->sg_tablesize = sg_tablesize; 5089 } 5090 5091 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 5092 (facts->RequestCredit / 4)); 5093 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 5094 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 5095 INTERNAL_SCSIIO_CMDS_COUNT)) { 5096 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 5097 facts->RequestCredit); 5098 return -ENOMEM; 5099 } 5100 ioc->internal_depth = 10; 5101 } 5102 5103 ioc->hi_priority_depth = ioc->internal_depth - (5); 5104 /* command line tunables for max controller queue depth */ 5105 if (max_queue_depth != -1 && max_queue_depth != 0) { 5106 max_request_credit = min_t(u16, max_queue_depth + 5107 ioc->internal_depth, facts->RequestCredit); 5108 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 5109 max_request_credit = MAX_HBA_QUEUE_DEPTH; 5110 } else if (reset_devices) 5111 max_request_credit = min_t(u16, facts->RequestCredit, 5112 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 5113 else 5114 max_request_credit = min_t(u16, facts->RequestCredit, 5115 MAX_HBA_QUEUE_DEPTH); 5116 5117 /* Firmware maintains additional facts->HighPriorityCredit number of 5118 * credits for HiPriprity Request messages, so hba queue depth will be 5119 * sum of max_request_credit and high priority queue depth. 5120 */ 5121 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 5122 5123 /* request frame size */ 5124 ioc->request_sz = facts->IOCRequestFrameSize * 4; 5125 5126 /* reply frame size */ 5127 ioc->reply_sz = facts->ReplyFrameSize * 4; 5128 5129 /* chain segment size */ 5130 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 5131 if (facts->IOCMaxChainSegmentSize) 5132 ioc->chain_segment_sz = 5133 facts->IOCMaxChainSegmentSize * 5134 MAX_CHAIN_ELEMT_SZ; 5135 else 5136 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 5137 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 5138 MAX_CHAIN_ELEMT_SZ; 5139 } else 5140 ioc->chain_segment_sz = ioc->request_sz; 5141 5142 /* calculate the max scatter element size */ 5143 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 5144 5145 retry_allocation: 5146 total_sz = 0; 5147 /* calculate number of sg elements left over in the 1st frame */ 5148 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 5149 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 5150 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 5151 5152 /* now do the same for a chain buffer */ 5153 max_sge_elements = ioc->chain_segment_sz - sge_size; 5154 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 5155 5156 /* 5157 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 5158 */ 5159 chains_needed_per_io = ((ioc->shost->sg_tablesize - 5160 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 5161 + 1; 5162 if (chains_needed_per_io > facts->MaxChainDepth) { 5163 chains_needed_per_io = facts->MaxChainDepth; 5164 ioc->shost->sg_tablesize = min_t(u16, 5165 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 5166 * chains_needed_per_io), ioc->shost->sg_tablesize); 5167 } 5168 ioc->chains_needed_per_io = chains_needed_per_io; 5169 5170 /* reply free queue sizing - taking into account for 64 FW events */ 5171 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 5172 5173 /* mCPU manage single counters for simplicity */ 5174 if (ioc->is_mcpu_endpoint) 5175 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 5176 else { 5177 /* calculate reply descriptor post queue depth */ 5178 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 5179 ioc->reply_free_queue_depth + 1; 5180 /* align the reply post queue on the next 16 count boundary */ 5181 if (ioc->reply_post_queue_depth % 16) 5182 ioc->reply_post_queue_depth += 16 - 5183 (ioc->reply_post_queue_depth % 16); 5184 } 5185 5186 if (ioc->reply_post_queue_depth > 5187 facts->MaxReplyDescriptorPostQueueDepth) { 5188 ioc->reply_post_queue_depth = 5189 facts->MaxReplyDescriptorPostQueueDepth - 5190 (facts->MaxReplyDescriptorPostQueueDepth % 16); 5191 ioc->hba_queue_depth = 5192 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 5193 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 5194 } 5195 5196 ioc_info(ioc, 5197 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), " 5198 "sge_per_io(%d), chains_per_io(%d)\n", 5199 ioc->max_sges_in_main_message, 5200 ioc->max_sges_in_chain_message, 5201 ioc->shost->sg_tablesize, 5202 ioc->chains_needed_per_io); 5203 5204 /* reply post queue, 16 byte align */ 5205 reply_post_free_sz = ioc->reply_post_queue_depth * 5206 sizeof(Mpi2DefaultReplyDescriptor_t); 5207 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK; 5208 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 5209 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count; 5210 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz); 5211 if (ret == -EAGAIN) { 5212 /* 5213 * Free allocated bad RDPQ memory pools. 5214 * Change dma coherent mask to 32 bit and reallocate RDPQ 5215 */ 5216 _base_release_memory_pools(ioc); 5217 ioc->use_32bit_dma = true; 5218 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 5219 ioc_err(ioc, 5220 "32 DMA mask failed %s\n", pci_name(ioc->pdev)); 5221 return -ENODEV; 5222 } 5223 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz)) 5224 return -ENOMEM; 5225 } else if (ret == -ENOMEM) 5226 return -ENOMEM; 5227 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 : 5228 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK)); 5229 ioc->scsiio_depth = ioc->hba_queue_depth - 5230 ioc->hi_priority_depth - ioc->internal_depth; 5231 5232 /* set the scsi host can_queue depth 5233 * with some internal commands that could be outstanding 5234 */ 5235 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 5236 dinitprintk(ioc, 5237 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 5238 ioc->shost->can_queue)); 5239 5240 /* contiguous pool for request and chains, 16 byte align, one extra " 5241 * "frame for smid=0 5242 */ 5243 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 5244 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 5245 5246 /* hi-priority queue */ 5247 sz += (ioc->hi_priority_depth * ioc->request_sz); 5248 5249 /* internal queue */ 5250 sz += (ioc->internal_depth * ioc->request_sz); 5251 5252 ioc->request_dma_sz = sz; 5253 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 5254 &ioc->request_dma, GFP_KERNEL); 5255 if (!ioc->request) { 5256 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 5257 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5258 ioc->request_sz, sz / 1024); 5259 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 5260 goto out; 5261 retry_sz = 64; 5262 ioc->hba_queue_depth -= retry_sz; 5263 _base_release_memory_pools(ioc); 5264 goto retry_allocation; 5265 } 5266 5267 if (retry_sz) 5268 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 5269 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5270 ioc->request_sz, sz / 1024); 5271 5272 /* hi-priority queue */ 5273 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 5274 ioc->request_sz); 5275 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 5276 ioc->request_sz); 5277 5278 /* internal queue */ 5279 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 5280 ioc->request_sz); 5281 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 5282 ioc->request_sz); 5283 5284 ioc_info(ioc, 5285 "request pool(0x%p) - dma(0x%llx): " 5286 "depth(%d), frame_size(%d), pool_size(%d kB)\n", 5287 ioc->request, (unsigned long long) ioc->request_dma, 5288 ioc->hba_queue_depth, ioc->request_sz, 5289 (ioc->hba_queue_depth * ioc->request_sz) / 1024); 5290 5291 total_sz += sz; 5292 5293 dinitprintk(ioc, 5294 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 5295 ioc->request, ioc->scsiio_depth)); 5296 5297 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 5298 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 5299 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 5300 if (!ioc->chain_lookup) { 5301 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 5302 goto out; 5303 } 5304 5305 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 5306 for (i = 0; i < ioc->scsiio_depth; i++) { 5307 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 5308 if (!ioc->chain_lookup[i].chains_per_smid) { 5309 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 5310 goto out; 5311 } 5312 } 5313 5314 /* initialize hi-priority queue smid's */ 5315 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 5316 sizeof(struct request_tracker), GFP_KERNEL); 5317 if (!ioc->hpr_lookup) { 5318 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 5319 goto out; 5320 } 5321 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 5322 dinitprintk(ioc, 5323 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 5324 ioc->hi_priority, 5325 ioc->hi_priority_depth, ioc->hi_priority_smid)); 5326 5327 /* initialize internal queue smid's */ 5328 ioc->internal_lookup = kcalloc(ioc->internal_depth, 5329 sizeof(struct request_tracker), GFP_KERNEL); 5330 if (!ioc->internal_lookup) { 5331 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 5332 goto out; 5333 } 5334 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 5335 dinitprintk(ioc, 5336 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 5337 ioc->internal, 5338 ioc->internal_depth, ioc->internal_smid)); 5339 /* 5340 * The number of NVMe page sized blocks needed is: 5341 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 5342 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 5343 * that is placed in the main message frame. 8 is the size of each PRP 5344 * entry or PRP list pointer entry. 8 is subtracted from page_size 5345 * because of the PRP list pointer entry at the end of a page, so this 5346 * is not counted as a PRP entry. The 1 added page is a round up. 5347 * 5348 * To avoid allocation failures due to the amount of memory that could 5349 * be required for NVMe PRP's, only each set of NVMe blocks will be 5350 * contiguous, so a new set is allocated for each possible I/O. 5351 */ 5352 ioc->chains_per_prp_buffer = 0; 5353 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 5354 nvme_blocks_needed = 5355 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 5356 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 5357 nvme_blocks_needed++; 5358 5359 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 5360 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 5361 if (!ioc->pcie_sg_lookup) { 5362 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 5363 goto out; 5364 } 5365 sz = nvme_blocks_needed * ioc->page_size; 5366 ioc->pcie_sgl_dma_pool = 5367 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0); 5368 if (!ioc->pcie_sgl_dma_pool) { 5369 ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 5370 goto out; 5371 } 5372 5373 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 5374 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer, 5375 ioc->chains_needed_per_io); 5376 5377 for (i = 0; i < ioc->scsiio_depth; i++) { 5378 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc( 5379 ioc->pcie_sgl_dma_pool, GFP_KERNEL, 5380 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5381 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 5382 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 5383 goto out; 5384 } 5385 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 5386 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5387 ct->chain_buffer = 5388 ioc->pcie_sg_lookup[i].pcie_sgl + 5389 (j * ioc->chain_segment_sz); 5390 ct->chain_buffer_dma = 5391 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 5392 (j * ioc->chain_segment_sz); 5393 } 5394 } 5395 5396 dinitprintk(ioc, 5397 ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 5398 ioc->scsiio_depth, sz, 5399 (sz * ioc->scsiio_depth) / 1024)); 5400 dinitprintk(ioc, 5401 ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n", 5402 ioc->chains_per_prp_buffer)); 5403 total_sz += sz * ioc->scsiio_depth; 5404 } 5405 5406 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 5407 ioc->chain_segment_sz, 16, 0); 5408 if (!ioc->chain_dma_pool) { 5409 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n"); 5410 goto out; 5411 } 5412 for (i = 0; i < ioc->scsiio_depth; i++) { 5413 for (j = ioc->chains_per_prp_buffer; 5414 j < ioc->chains_needed_per_io; j++) { 5415 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5416 ct->chain_buffer = dma_pool_alloc( 5417 ioc->chain_dma_pool, GFP_KERNEL, 5418 &ct->chain_buffer_dma); 5419 if (!ct->chain_buffer) { 5420 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n"); 5421 goto out; 5422 } 5423 } 5424 total_sz += ioc->chain_segment_sz; 5425 } 5426 5427 dinitprintk(ioc, 5428 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 5429 ioc->chain_depth, ioc->chain_segment_sz, 5430 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 5431 5432 /* sense buffers, 4 byte align */ 5433 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 5434 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5435 4, 0); 5436 if (!ioc->sense_dma_pool) { 5437 ioc_err(ioc, "sense pool: dma_pool_create failed\n"); 5438 goto out; 5439 } 5440 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5441 &ioc->sense_dma); 5442 if (!ioc->sense) { 5443 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n"); 5444 goto out; 5445 } 5446 /* sense buffer requires to be in same 4 gb region. 5447 * Below function will check the same. 5448 * In case of failure, new pci pool will be created with updated 5449 * alignment. Older allocation and pool will be destroyed. 5450 * Alignment will be used such a way that next allocation if 5451 * success, will always meet same 4gb region requirement. 5452 * Actual requirement is not alignment, but we need start and end of 5453 * DMA address must have same upper 32 bit address. 5454 */ 5455 if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) { 5456 //Release Sense pool & Reallocate 5457 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5458 dma_pool_destroy(ioc->sense_dma_pool); 5459 ioc->sense = NULL; 5460 5461 ioc->sense_dma_pool = 5462 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5463 roundup_pow_of_two(sz), 0); 5464 if (!ioc->sense_dma_pool) { 5465 ioc_err(ioc, "sense pool: pci_pool_create failed\n"); 5466 goto out; 5467 } 5468 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5469 &ioc->sense_dma); 5470 if (!ioc->sense) { 5471 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n"); 5472 goto out; 5473 } 5474 } 5475 ioc_info(ioc, 5476 "sense pool(0x%p)- dma(0x%llx): depth(%d)," 5477 "element_size(%d), pool_size(%d kB)\n", 5478 ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth, 5479 SCSI_SENSE_BUFFERSIZE, sz / 1024); 5480 5481 total_sz += sz; 5482 5483 /* reply pool, 4 byte align */ 5484 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 5485 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz, 5486 4, 0); 5487 if (!ioc->reply_dma_pool) { 5488 ioc_err(ioc, "reply pool: dma_pool_create failed\n"); 5489 goto out; 5490 } 5491 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 5492 &ioc->reply_dma); 5493 if (!ioc->reply) { 5494 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n"); 5495 goto out; 5496 } 5497 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 5498 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 5499 dinitprintk(ioc, 5500 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 5501 ioc->reply, ioc->reply_free_queue_depth, 5502 ioc->reply_sz, sz / 1024)); 5503 dinitprintk(ioc, 5504 ioc_info(ioc, "reply_dma(0x%llx)\n", 5505 (unsigned long long)ioc->reply_dma)); 5506 total_sz += sz; 5507 5508 /* reply free queue, 16 byte align */ 5509 sz = ioc->reply_free_queue_depth * 4; 5510 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool", 5511 &ioc->pdev->dev, sz, 16, 0); 5512 if (!ioc->reply_free_dma_pool) { 5513 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n"); 5514 goto out; 5515 } 5516 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL, 5517 &ioc->reply_free_dma); 5518 if (!ioc->reply_free) { 5519 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n"); 5520 goto out; 5521 } 5522 dinitprintk(ioc, 5523 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 5524 ioc->reply_free, ioc->reply_free_queue_depth, 5525 4, sz / 1024)); 5526 dinitprintk(ioc, 5527 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 5528 (unsigned long long)ioc->reply_free_dma)); 5529 total_sz += sz; 5530 5531 if (ioc->rdpq_array_enable) { 5532 reply_post_free_array_sz = ioc->reply_queue_count * 5533 sizeof(Mpi2IOCInitRDPQArrayEntry); 5534 ioc->reply_post_free_array_dma_pool = 5535 dma_pool_create("reply_post_free_array pool", 5536 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 5537 if (!ioc->reply_post_free_array_dma_pool) { 5538 dinitprintk(ioc, 5539 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n")); 5540 goto out; 5541 } 5542 ioc->reply_post_free_array = 5543 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 5544 GFP_KERNEL, &ioc->reply_post_free_array_dma); 5545 if (!ioc->reply_post_free_array) { 5546 dinitprintk(ioc, 5547 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n")); 5548 goto out; 5549 } 5550 } 5551 ioc->config_page_sz = 512; 5552 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 5553 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 5554 if (!ioc->config_page) { 5555 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 5556 goto out; 5557 } 5558 5559 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n", 5560 ioc->config_page, (unsigned long long)ioc->config_page_dma, 5561 ioc->config_page_sz); 5562 total_sz += ioc->config_page_sz; 5563 5564 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 5565 total_sz / 1024); 5566 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 5567 ioc->shost->can_queue, facts->RequestCredit); 5568 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 5569 ioc->shost->sg_tablesize); 5570 return 0; 5571 5572 out: 5573 return -ENOMEM; 5574 } 5575 5576 /** 5577 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 5578 * @ioc: Pointer to MPT_ADAPTER structure 5579 * @cooked: Request raw or cooked IOC state 5580 * 5581 * Return: all IOC Doorbell register bits if cooked==0, else just the 5582 * Doorbell bits in MPI_IOC_STATE_MASK. 5583 */ 5584 u32 5585 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 5586 { 5587 u32 s, sc; 5588 5589 s = ioc->base_readl(&ioc->chip->Doorbell); 5590 sc = s & MPI2_IOC_STATE_MASK; 5591 return cooked ? sc : s; 5592 } 5593 5594 /** 5595 * _base_wait_on_iocstate - waiting on a particular ioc state 5596 * @ioc: ? 5597 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 5598 * @timeout: timeout in second 5599 * 5600 * Return: 0 for success, non-zero for failure. 5601 */ 5602 static int 5603 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 5604 { 5605 u32 count, cntdn; 5606 u32 current_state; 5607 5608 count = 0; 5609 cntdn = 1000 * timeout; 5610 do { 5611 current_state = mpt3sas_base_get_iocstate(ioc, 1); 5612 if (current_state == ioc_state) 5613 return 0; 5614 if (count && current_state == MPI2_IOC_STATE_FAULT) 5615 break; 5616 if (count && current_state == MPI2_IOC_STATE_COREDUMP) 5617 break; 5618 5619 usleep_range(1000, 1500); 5620 count++; 5621 } while (--cntdn); 5622 5623 return current_state; 5624 } 5625 5626 /** 5627 * _base_dump_reg_set - This function will print hexdump of register set. 5628 * @ioc: per adapter object 5629 * 5630 * Returns nothing. 5631 */ 5632 static inline void 5633 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc) 5634 { 5635 unsigned int i, sz = 256; 5636 u32 __iomem *reg = (u32 __iomem *)ioc->chip; 5637 5638 ioc_info(ioc, "System Register set:\n"); 5639 for (i = 0; i < (sz / sizeof(u32)); i++) 5640 pr_info("%08x: %08x\n", (i * 4), readl(®[i])); 5641 } 5642 5643 /** 5644 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 5645 * a write to the doorbell) 5646 * @ioc: per adapter object 5647 * @timeout: timeout in seconds 5648 * 5649 * Return: 0 for success, non-zero for failure. 5650 * 5651 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 5652 */ 5653 5654 static int 5655 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 5656 { 5657 u32 cntdn, count; 5658 u32 int_status; 5659 5660 count = 0; 5661 cntdn = 1000 * timeout; 5662 do { 5663 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5664 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5665 dhsprintk(ioc, 5666 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5667 __func__, count, timeout)); 5668 return 0; 5669 } 5670 5671 usleep_range(1000, 1500); 5672 count++; 5673 } while (--cntdn); 5674 5675 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5676 __func__, count, int_status); 5677 return -EFAULT; 5678 } 5679 5680 static int 5681 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 5682 { 5683 u32 cntdn, count; 5684 u32 int_status; 5685 5686 count = 0; 5687 cntdn = 2000 * timeout; 5688 do { 5689 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5690 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5691 dhsprintk(ioc, 5692 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5693 __func__, count, timeout)); 5694 return 0; 5695 } 5696 5697 udelay(500); 5698 count++; 5699 } while (--cntdn); 5700 5701 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5702 __func__, count, int_status); 5703 return -EFAULT; 5704 5705 } 5706 5707 /** 5708 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 5709 * @ioc: per adapter object 5710 * @timeout: timeout in second 5711 * 5712 * Return: 0 for success, non-zero for failure. 5713 * 5714 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 5715 * doorbell. 5716 */ 5717 static int 5718 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 5719 { 5720 u32 cntdn, count; 5721 u32 int_status; 5722 u32 doorbell; 5723 5724 count = 0; 5725 cntdn = 1000 * timeout; 5726 do { 5727 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5728 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 5729 dhsprintk(ioc, 5730 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5731 __func__, count, timeout)); 5732 return 0; 5733 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5734 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 5735 if ((doorbell & MPI2_IOC_STATE_MASK) == 5736 MPI2_IOC_STATE_FAULT) { 5737 mpt3sas_print_fault_code(ioc, doorbell); 5738 return -EFAULT; 5739 } 5740 if ((doorbell & MPI2_IOC_STATE_MASK) == 5741 MPI2_IOC_STATE_COREDUMP) { 5742 mpt3sas_print_coredump_info(ioc, doorbell); 5743 return -EFAULT; 5744 } 5745 } else if (int_status == 0xFFFFFFFF) 5746 goto out; 5747 5748 usleep_range(1000, 1500); 5749 count++; 5750 } while (--cntdn); 5751 5752 out: 5753 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5754 __func__, count, int_status); 5755 return -EFAULT; 5756 } 5757 5758 /** 5759 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 5760 * @ioc: per adapter object 5761 * @timeout: timeout in second 5762 * 5763 * Return: 0 for success, non-zero for failure. 5764 */ 5765 static int 5766 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 5767 { 5768 u32 cntdn, count; 5769 u32 doorbell_reg; 5770 5771 count = 0; 5772 cntdn = 1000 * timeout; 5773 do { 5774 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell); 5775 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 5776 dhsprintk(ioc, 5777 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5778 __func__, count, timeout)); 5779 return 0; 5780 } 5781 5782 usleep_range(1000, 1500); 5783 count++; 5784 } while (--cntdn); 5785 5786 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 5787 __func__, count, doorbell_reg); 5788 return -EFAULT; 5789 } 5790 5791 /** 5792 * _base_send_ioc_reset - send doorbell reset 5793 * @ioc: per adapter object 5794 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 5795 * @timeout: timeout in second 5796 * 5797 * Return: 0 for success, non-zero for failure. 5798 */ 5799 static int 5800 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 5801 { 5802 u32 ioc_state; 5803 int r = 0; 5804 unsigned long flags; 5805 5806 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 5807 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 5808 return -EFAULT; 5809 } 5810 5811 if (!(ioc->facts.IOCCapabilities & 5812 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 5813 return -EFAULT; 5814 5815 ioc_info(ioc, "sending message unit reset !!\n"); 5816 5817 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 5818 &ioc->chip->Doorbell); 5819 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 5820 r = -EFAULT; 5821 goto out; 5822 } 5823 5824 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 5825 if (ioc_state) { 5826 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 5827 __func__, ioc_state); 5828 r = -EFAULT; 5829 goto out; 5830 } 5831 out: 5832 if (r != 0) { 5833 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 5834 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 5835 /* 5836 * Wait for IOC state CoreDump to clear only during 5837 * HBA initialization & release time. 5838 */ 5839 if ((ioc_state & MPI2_IOC_STATE_MASK) == 5840 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 || 5841 ioc->fault_reset_work_q == NULL)) { 5842 spin_unlock_irqrestore( 5843 &ioc->ioc_reset_in_progress_lock, flags); 5844 mpt3sas_print_coredump_info(ioc, ioc_state); 5845 mpt3sas_base_wait_for_coredump_completion(ioc, 5846 __func__); 5847 spin_lock_irqsave( 5848 &ioc->ioc_reset_in_progress_lock, flags); 5849 } 5850 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 5851 } 5852 ioc_info(ioc, "message unit reset: %s\n", 5853 r == 0 ? "SUCCESS" : "FAILED"); 5854 return r; 5855 } 5856 5857 /** 5858 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 5859 * @ioc: per adapter object 5860 * @timeout: timeout in seconds 5861 * 5862 * Return: Waits up to timeout seconds for the IOC to 5863 * become operational. Returns 0 if IOC is present 5864 * and operational; otherwise returns -EFAULT. 5865 */ 5866 5867 int 5868 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 5869 { 5870 int wait_state_count = 0; 5871 u32 ioc_state; 5872 5873 do { 5874 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 5875 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 5876 break; 5877 ssleep(1); 5878 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 5879 __func__, ++wait_state_count); 5880 } while (--timeout); 5881 if (!timeout) { 5882 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 5883 return -EFAULT; 5884 } 5885 if (wait_state_count) 5886 ioc_info(ioc, "ioc is operational\n"); 5887 return 0; 5888 } 5889 5890 /** 5891 * _base_handshake_req_reply_wait - send request thru doorbell interface 5892 * @ioc: per adapter object 5893 * @request_bytes: request length 5894 * @request: pointer having request payload 5895 * @reply_bytes: reply length 5896 * @reply: pointer to reply payload 5897 * @timeout: timeout in second 5898 * 5899 * Return: 0 for success, non-zero for failure. 5900 */ 5901 static int 5902 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 5903 u32 *request, int reply_bytes, u16 *reply, int timeout) 5904 { 5905 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 5906 int i; 5907 u8 failed; 5908 __le32 *mfp; 5909 5910 /* make sure doorbell is not in use */ 5911 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 5912 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 5913 return -EFAULT; 5914 } 5915 5916 /* clear pending doorbell interrupts from previous state changes */ 5917 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 5918 MPI2_HIS_IOC2SYS_DB_STATUS) 5919 writel(0, &ioc->chip->HostInterruptStatus); 5920 5921 /* send message to ioc */ 5922 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 5923 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 5924 &ioc->chip->Doorbell); 5925 5926 if ((_base_spin_on_doorbell_int(ioc, 5))) { 5927 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5928 __LINE__); 5929 return -EFAULT; 5930 } 5931 writel(0, &ioc->chip->HostInterruptStatus); 5932 5933 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 5934 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 5935 __LINE__); 5936 return -EFAULT; 5937 } 5938 5939 /* send message 32-bits at a time */ 5940 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 5941 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 5942 if ((_base_wait_for_doorbell_ack(ioc, 5))) 5943 failed = 1; 5944 } 5945 5946 if (failed) { 5947 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 5948 __LINE__); 5949 return -EFAULT; 5950 } 5951 5952 /* now wait for the reply */ 5953 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 5954 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5955 __LINE__); 5956 return -EFAULT; 5957 } 5958 5959 /* read the first two 16-bits, it gives the total length of the reply */ 5960 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5961 & MPI2_DOORBELL_DATA_MASK); 5962 writel(0, &ioc->chip->HostInterruptStatus); 5963 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5964 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5965 __LINE__); 5966 return -EFAULT; 5967 } 5968 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5969 & MPI2_DOORBELL_DATA_MASK); 5970 writel(0, &ioc->chip->HostInterruptStatus); 5971 5972 for (i = 2; i < default_reply->MsgLength * 2; i++) { 5973 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5974 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5975 __LINE__); 5976 return -EFAULT; 5977 } 5978 if (i >= reply_bytes/2) /* overflow case */ 5979 ioc->base_readl(&ioc->chip->Doorbell); 5980 else 5981 reply[i] = le16_to_cpu( 5982 ioc->base_readl(&ioc->chip->Doorbell) 5983 & MPI2_DOORBELL_DATA_MASK); 5984 writel(0, &ioc->chip->HostInterruptStatus); 5985 } 5986 5987 _base_wait_for_doorbell_int(ioc, 5); 5988 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 5989 dhsprintk(ioc, 5990 ioc_info(ioc, "doorbell is in use (line=%d)\n", 5991 __LINE__)); 5992 } 5993 writel(0, &ioc->chip->HostInterruptStatus); 5994 5995 if (ioc->logging_level & MPT_DEBUG_INIT) { 5996 mfp = (__le32 *)reply; 5997 pr_info("\toffset:data\n"); 5998 for (i = 0; i < reply_bytes/4; i++) 5999 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 6000 le32_to_cpu(mfp[i])); 6001 } 6002 return 0; 6003 } 6004 6005 /** 6006 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 6007 * @ioc: per adapter object 6008 * @mpi_reply: the reply payload from FW 6009 * @mpi_request: the request payload sent to FW 6010 * 6011 * The SAS IO Unit Control Request message allows the host to perform low-level 6012 * operations, such as resets on the PHYs of the IO Unit, also allows the host 6013 * to obtain the IOC assigned device handles for a device if it has other 6014 * identifying information about the device, in addition allows the host to 6015 * remove IOC resources associated with the device. 6016 * 6017 * Return: 0 for success, non-zero for failure. 6018 */ 6019 int 6020 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 6021 Mpi2SasIoUnitControlReply_t *mpi_reply, 6022 Mpi2SasIoUnitControlRequest_t *mpi_request) 6023 { 6024 u16 smid; 6025 u8 issue_reset = 0; 6026 int rc; 6027 void *request; 6028 6029 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6030 6031 mutex_lock(&ioc->base_cmds.mutex); 6032 6033 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 6034 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 6035 rc = -EAGAIN; 6036 goto out; 6037 } 6038 6039 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 6040 if (rc) 6041 goto out; 6042 6043 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6044 if (!smid) { 6045 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6046 rc = -EAGAIN; 6047 goto out; 6048 } 6049 6050 rc = 0; 6051 ioc->base_cmds.status = MPT3_CMD_PENDING; 6052 request = mpt3sas_base_get_msg_frame(ioc, smid); 6053 ioc->base_cmds.smid = smid; 6054 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 6055 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 6056 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 6057 ioc->ioc_link_reset_in_progress = 1; 6058 init_completion(&ioc->base_cmds.done); 6059 ioc->put_smid_default(ioc, smid); 6060 wait_for_completion_timeout(&ioc->base_cmds.done, 6061 msecs_to_jiffies(10000)); 6062 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 6063 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 6064 ioc->ioc_link_reset_in_progress) 6065 ioc->ioc_link_reset_in_progress = 0; 6066 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6067 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status, 6068 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4, 6069 issue_reset); 6070 goto issue_host_reset; 6071 } 6072 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 6073 memcpy(mpi_reply, ioc->base_cmds.reply, 6074 sizeof(Mpi2SasIoUnitControlReply_t)); 6075 else 6076 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 6077 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6078 goto out; 6079 6080 issue_host_reset: 6081 if (issue_reset) 6082 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 6083 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6084 rc = -EFAULT; 6085 out: 6086 mutex_unlock(&ioc->base_cmds.mutex); 6087 return rc; 6088 } 6089 6090 /** 6091 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 6092 * @ioc: per adapter object 6093 * @mpi_reply: the reply payload from FW 6094 * @mpi_request: the request payload sent to FW 6095 * 6096 * The SCSI Enclosure Processor request message causes the IOC to 6097 * communicate with SES devices to control LED status signals. 6098 * 6099 * Return: 0 for success, non-zero for failure. 6100 */ 6101 int 6102 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 6103 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 6104 { 6105 u16 smid; 6106 u8 issue_reset = 0; 6107 int rc; 6108 void *request; 6109 6110 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6111 6112 mutex_lock(&ioc->base_cmds.mutex); 6113 6114 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 6115 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 6116 rc = -EAGAIN; 6117 goto out; 6118 } 6119 6120 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 6121 if (rc) 6122 goto out; 6123 6124 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6125 if (!smid) { 6126 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6127 rc = -EAGAIN; 6128 goto out; 6129 } 6130 6131 rc = 0; 6132 ioc->base_cmds.status = MPT3_CMD_PENDING; 6133 request = mpt3sas_base_get_msg_frame(ioc, smid); 6134 ioc->base_cmds.smid = smid; 6135 memset(request, 0, ioc->request_sz); 6136 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 6137 init_completion(&ioc->base_cmds.done); 6138 ioc->put_smid_default(ioc, smid); 6139 wait_for_completion_timeout(&ioc->base_cmds.done, 6140 msecs_to_jiffies(10000)); 6141 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6142 mpt3sas_check_cmd_timeout(ioc, 6143 ioc->base_cmds.status, mpi_request, 6144 sizeof(Mpi2SepRequest_t)/4, issue_reset); 6145 goto issue_host_reset; 6146 } 6147 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 6148 memcpy(mpi_reply, ioc->base_cmds.reply, 6149 sizeof(Mpi2SepReply_t)); 6150 else 6151 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 6152 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6153 goto out; 6154 6155 issue_host_reset: 6156 if (issue_reset) 6157 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 6158 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6159 rc = -EFAULT; 6160 out: 6161 mutex_unlock(&ioc->base_cmds.mutex); 6162 return rc; 6163 } 6164 6165 /** 6166 * _base_get_port_facts - obtain port facts reply and save in ioc 6167 * @ioc: per adapter object 6168 * @port: ? 6169 * 6170 * Return: 0 for success, non-zero for failure. 6171 */ 6172 static int 6173 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 6174 { 6175 Mpi2PortFactsRequest_t mpi_request; 6176 Mpi2PortFactsReply_t mpi_reply; 6177 struct mpt3sas_port_facts *pfacts; 6178 int mpi_reply_sz, mpi_request_sz, r; 6179 6180 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6181 6182 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 6183 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 6184 memset(&mpi_request, 0, mpi_request_sz); 6185 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 6186 mpi_request.PortNumber = port; 6187 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6188 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6189 6190 if (r != 0) { 6191 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6192 return r; 6193 } 6194 6195 pfacts = &ioc->pfacts[port]; 6196 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 6197 pfacts->PortNumber = mpi_reply.PortNumber; 6198 pfacts->VP_ID = mpi_reply.VP_ID; 6199 pfacts->VF_ID = mpi_reply.VF_ID; 6200 pfacts->MaxPostedCmdBuffers = 6201 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 6202 6203 return 0; 6204 } 6205 6206 /** 6207 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 6208 * @ioc: per adapter object 6209 * @timeout: 6210 * 6211 * Return: 0 for success, non-zero for failure. 6212 */ 6213 static int 6214 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 6215 { 6216 u32 ioc_state; 6217 int rc; 6218 6219 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6220 6221 if (ioc->pci_error_recovery) { 6222 dfailprintk(ioc, 6223 ioc_info(ioc, "%s: host in pci error recovery\n", 6224 __func__)); 6225 return -EFAULT; 6226 } 6227 6228 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6229 dhsprintk(ioc, 6230 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6231 __func__, ioc_state)); 6232 6233 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 6234 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6235 return 0; 6236 6237 if (ioc_state & MPI2_DOORBELL_USED) { 6238 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 6239 goto issue_diag_reset; 6240 } 6241 6242 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6243 mpt3sas_print_fault_code(ioc, ioc_state & 6244 MPI2_DOORBELL_DATA_MASK); 6245 goto issue_diag_reset; 6246 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 6247 MPI2_IOC_STATE_COREDUMP) { 6248 ioc_info(ioc, 6249 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n", 6250 __func__, ioc_state); 6251 return -EFAULT; 6252 } 6253 6254 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6255 if (ioc_state) { 6256 dfailprintk(ioc, 6257 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6258 __func__, ioc_state)); 6259 return -EFAULT; 6260 } 6261 6262 issue_diag_reset: 6263 rc = _base_diag_reset(ioc); 6264 return rc; 6265 } 6266 6267 /** 6268 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 6269 * @ioc: per adapter object 6270 * 6271 * Return: 0 for success, non-zero for failure. 6272 */ 6273 static int 6274 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 6275 { 6276 Mpi2IOCFactsRequest_t mpi_request; 6277 Mpi2IOCFactsReply_t mpi_reply; 6278 struct mpt3sas_facts *facts; 6279 int mpi_reply_sz, mpi_request_sz, r; 6280 6281 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6282 6283 r = _base_wait_for_iocstate(ioc, 10); 6284 if (r) { 6285 dfailprintk(ioc, 6286 ioc_info(ioc, "%s: failed getting to correct state\n", 6287 __func__)); 6288 return r; 6289 } 6290 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 6291 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 6292 memset(&mpi_request, 0, mpi_request_sz); 6293 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 6294 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6295 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6296 6297 if (r != 0) { 6298 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6299 return r; 6300 } 6301 6302 facts = &ioc->facts; 6303 memset(facts, 0, sizeof(struct mpt3sas_facts)); 6304 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 6305 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 6306 facts->VP_ID = mpi_reply.VP_ID; 6307 facts->VF_ID = mpi_reply.VF_ID; 6308 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 6309 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 6310 facts->WhoInit = mpi_reply.WhoInit; 6311 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 6312 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 6313 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 6314 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 6315 ioc->combined_reply_queue = 0; 6316 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 6317 facts->MaxReplyDescriptorPostQueueDepth = 6318 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 6319 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 6320 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 6321 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 6322 ioc->ir_firmware = 1; 6323 if ((facts->IOCCapabilities & 6324 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 6325 ioc->rdpq_array_capable = 1; 6326 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) 6327 && ioc->is_aero_ioc) 6328 ioc->atomic_desc_capable = 1; 6329 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 6330 facts->IOCRequestFrameSize = 6331 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 6332 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6333 facts->IOCMaxChainSegmentSize = 6334 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 6335 } 6336 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 6337 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 6338 ioc->shost->max_id = -1; 6339 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 6340 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 6341 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 6342 facts->HighPriorityCredit = 6343 le16_to_cpu(mpi_reply.HighPriorityCredit); 6344 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 6345 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 6346 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 6347 6348 /* 6349 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 6350 */ 6351 ioc->page_size = 1 << facts->CurrentHostPageSize; 6352 if (ioc->page_size == 1) { 6353 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 6354 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 6355 } 6356 dinitprintk(ioc, 6357 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 6358 facts->CurrentHostPageSize)); 6359 6360 dinitprintk(ioc, 6361 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 6362 facts->RequestCredit, facts->MaxChainDepth)); 6363 dinitprintk(ioc, 6364 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 6365 facts->IOCRequestFrameSize * 4, 6366 facts->ReplyFrameSize * 4)); 6367 return 0; 6368 } 6369 6370 /** 6371 * _base_send_ioc_init - send ioc_init to firmware 6372 * @ioc: per adapter object 6373 * 6374 * Return: 0 for success, non-zero for failure. 6375 */ 6376 static int 6377 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 6378 { 6379 Mpi2IOCInitRequest_t mpi_request; 6380 Mpi2IOCInitReply_t mpi_reply; 6381 int i, r = 0; 6382 ktime_t current_time; 6383 u16 ioc_status; 6384 u32 reply_post_free_array_sz = 0; 6385 6386 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6387 6388 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 6389 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 6390 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 6391 mpi_request.VF_ID = 0; /* TODO */ 6392 mpi_request.VP_ID = 0; 6393 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 6394 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 6395 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 6396 6397 if (_base_is_controller_msix_enabled(ioc)) 6398 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 6399 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 6400 mpi_request.ReplyDescriptorPostQueueDepth = 6401 cpu_to_le16(ioc->reply_post_queue_depth); 6402 mpi_request.ReplyFreeQueueDepth = 6403 cpu_to_le16(ioc->reply_free_queue_depth); 6404 6405 mpi_request.SenseBufferAddressHigh = 6406 cpu_to_le32((u64)ioc->sense_dma >> 32); 6407 mpi_request.SystemReplyAddressHigh = 6408 cpu_to_le32((u64)ioc->reply_dma >> 32); 6409 mpi_request.SystemRequestFrameBaseAddress = 6410 cpu_to_le64((u64)ioc->request_dma); 6411 mpi_request.ReplyFreeQueueAddress = 6412 cpu_to_le64((u64)ioc->reply_free_dma); 6413 6414 if (ioc->rdpq_array_enable) { 6415 reply_post_free_array_sz = ioc->reply_queue_count * 6416 sizeof(Mpi2IOCInitRDPQArrayEntry); 6417 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 6418 for (i = 0; i < ioc->reply_queue_count; i++) 6419 ioc->reply_post_free_array[i].RDPQBaseAddress = 6420 cpu_to_le64( 6421 (u64)ioc->reply_post[i].reply_post_free_dma); 6422 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 6423 mpi_request.ReplyDescriptorPostQueueAddress = 6424 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 6425 } else { 6426 mpi_request.ReplyDescriptorPostQueueAddress = 6427 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 6428 } 6429 6430 /* 6431 * Set the flag to enable CoreDump state feature in IOC firmware. 6432 */ 6433 mpi_request.ConfigurationFlags |= 6434 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE); 6435 6436 /* This time stamp specifies number of milliseconds 6437 * since epoch ~ midnight January 1, 1970. 6438 */ 6439 current_time = ktime_get_real(); 6440 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 6441 6442 if (ioc->logging_level & MPT_DEBUG_INIT) { 6443 __le32 *mfp; 6444 int i; 6445 6446 mfp = (__le32 *)&mpi_request; 6447 ioc_info(ioc, "\toffset:data\n"); 6448 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 6449 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 6450 le32_to_cpu(mfp[i])); 6451 } 6452 6453 r = _base_handshake_req_reply_wait(ioc, 6454 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 6455 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10); 6456 6457 if (r != 0) { 6458 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6459 return r; 6460 } 6461 6462 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 6463 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 6464 mpi_reply.IOCLogInfo) { 6465 ioc_err(ioc, "%s: failed\n", __func__); 6466 r = -EIO; 6467 } 6468 6469 return r; 6470 } 6471 6472 /** 6473 * mpt3sas_port_enable_done - command completion routine for port enable 6474 * @ioc: per adapter object 6475 * @smid: system request message index 6476 * @msix_index: MSIX table index supplied by the OS 6477 * @reply: reply message frame(lower 32bit addr) 6478 * 6479 * Return: 1 meaning mf should be freed from _base_interrupt 6480 * 0 means the mf is freed from this function. 6481 */ 6482 u8 6483 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 6484 u32 reply) 6485 { 6486 MPI2DefaultReply_t *mpi_reply; 6487 u16 ioc_status; 6488 6489 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 6490 return 1; 6491 6492 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 6493 if (!mpi_reply) 6494 return 1; 6495 6496 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 6497 return 1; 6498 6499 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 6500 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 6501 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 6502 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 6503 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 6504 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 6505 ioc->port_enable_failed = 1; 6506 6507 if (ioc->is_driver_loading) { 6508 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 6509 mpt3sas_port_enable_complete(ioc); 6510 return 1; 6511 } else { 6512 ioc->start_scan_failed = ioc_status; 6513 ioc->start_scan = 0; 6514 return 1; 6515 } 6516 } 6517 complete(&ioc->port_enable_cmds.done); 6518 return 1; 6519 } 6520 6521 /** 6522 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 6523 * @ioc: per adapter object 6524 * 6525 * Return: 0 for success, non-zero for failure. 6526 */ 6527 static int 6528 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 6529 { 6530 Mpi2PortEnableRequest_t *mpi_request; 6531 Mpi2PortEnableReply_t *mpi_reply; 6532 int r = 0; 6533 u16 smid; 6534 u16 ioc_status; 6535 6536 ioc_info(ioc, "sending port enable !!\n"); 6537 6538 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6539 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6540 return -EAGAIN; 6541 } 6542 6543 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 6544 if (!smid) { 6545 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6546 return -EAGAIN; 6547 } 6548 6549 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 6550 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6551 ioc->port_enable_cmds.smid = smid; 6552 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 6553 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 6554 6555 init_completion(&ioc->port_enable_cmds.done); 6556 ioc->put_smid_default(ioc, smid); 6557 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 6558 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 6559 ioc_err(ioc, "%s: timeout\n", __func__); 6560 _debug_dump_mf(mpi_request, 6561 sizeof(Mpi2PortEnableRequest_t)/4); 6562 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 6563 r = -EFAULT; 6564 else 6565 r = -ETIME; 6566 goto out; 6567 } 6568 6569 mpi_reply = ioc->port_enable_cmds.reply; 6570 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 6571 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 6572 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 6573 __func__, ioc_status); 6574 r = -EFAULT; 6575 goto out; 6576 } 6577 6578 out: 6579 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 6580 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 6581 return r; 6582 } 6583 6584 /** 6585 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 6586 * @ioc: per adapter object 6587 * 6588 * Return: 0 for success, non-zero for failure. 6589 */ 6590 int 6591 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 6592 { 6593 Mpi2PortEnableRequest_t *mpi_request; 6594 u16 smid; 6595 6596 ioc_info(ioc, "sending port enable !!\n"); 6597 6598 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6599 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6600 return -EAGAIN; 6601 } 6602 6603 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 6604 if (!smid) { 6605 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6606 return -EAGAIN; 6607 } 6608 6609 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 6610 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6611 ioc->port_enable_cmds.smid = smid; 6612 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 6613 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 6614 6615 ioc->put_smid_default(ioc, smid); 6616 return 0; 6617 } 6618 6619 /** 6620 * _base_determine_wait_on_discovery - desposition 6621 * @ioc: per adapter object 6622 * 6623 * Decide whether to wait on discovery to complete. Used to either 6624 * locate boot device, or report volumes ahead of physical devices. 6625 * 6626 * Return: 1 for wait, 0 for don't wait. 6627 */ 6628 static int 6629 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 6630 { 6631 /* We wait for discovery to complete if IR firmware is loaded. 6632 * The sas topology events arrive before PD events, so we need time to 6633 * turn on the bit in ioc->pd_handles to indicate PD 6634 * Also, it maybe required to report Volumes ahead of physical 6635 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 6636 */ 6637 if (ioc->ir_firmware) 6638 return 1; 6639 6640 /* if no Bios, then we don't need to wait */ 6641 if (!ioc->bios_pg3.BiosVersion) 6642 return 0; 6643 6644 /* Bios is present, then we drop down here. 6645 * 6646 * If there any entries in the Bios Page 2, then we wait 6647 * for discovery to complete. 6648 */ 6649 6650 /* Current Boot Device */ 6651 if ((ioc->bios_pg2.CurrentBootDeviceForm & 6652 MPI2_BIOSPAGE2_FORM_MASK) == 6653 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 6654 /* Request Boot Device */ 6655 (ioc->bios_pg2.ReqBootDeviceForm & 6656 MPI2_BIOSPAGE2_FORM_MASK) == 6657 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 6658 /* Alternate Request Boot Device */ 6659 (ioc->bios_pg2.ReqAltBootDeviceForm & 6660 MPI2_BIOSPAGE2_FORM_MASK) == 6661 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 6662 return 0; 6663 6664 return 1; 6665 } 6666 6667 /** 6668 * _base_unmask_events - turn on notification for this event 6669 * @ioc: per adapter object 6670 * @event: firmware event 6671 * 6672 * The mask is stored in ioc->event_masks. 6673 */ 6674 static void 6675 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 6676 { 6677 u32 desired_event; 6678 6679 if (event >= 128) 6680 return; 6681 6682 desired_event = (1 << (event % 32)); 6683 6684 if (event < 32) 6685 ioc->event_masks[0] &= ~desired_event; 6686 else if (event < 64) 6687 ioc->event_masks[1] &= ~desired_event; 6688 else if (event < 96) 6689 ioc->event_masks[2] &= ~desired_event; 6690 else if (event < 128) 6691 ioc->event_masks[3] &= ~desired_event; 6692 } 6693 6694 /** 6695 * _base_event_notification - send event notification 6696 * @ioc: per adapter object 6697 * 6698 * Return: 0 for success, non-zero for failure. 6699 */ 6700 static int 6701 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 6702 { 6703 Mpi2EventNotificationRequest_t *mpi_request; 6704 u16 smid; 6705 int r = 0; 6706 int i; 6707 6708 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6709 6710 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 6711 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6712 return -EAGAIN; 6713 } 6714 6715 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6716 if (!smid) { 6717 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6718 return -EAGAIN; 6719 } 6720 ioc->base_cmds.status = MPT3_CMD_PENDING; 6721 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6722 ioc->base_cmds.smid = smid; 6723 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 6724 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 6725 mpi_request->VF_ID = 0; /* TODO */ 6726 mpi_request->VP_ID = 0; 6727 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 6728 mpi_request->EventMasks[i] = 6729 cpu_to_le32(ioc->event_masks[i]); 6730 init_completion(&ioc->base_cmds.done); 6731 ioc->put_smid_default(ioc, smid); 6732 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 6733 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6734 ioc_err(ioc, "%s: timeout\n", __func__); 6735 _debug_dump_mf(mpi_request, 6736 sizeof(Mpi2EventNotificationRequest_t)/4); 6737 if (ioc->base_cmds.status & MPT3_CMD_RESET) 6738 r = -EFAULT; 6739 else 6740 r = -ETIME; 6741 } else 6742 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 6743 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6744 return r; 6745 } 6746 6747 /** 6748 * mpt3sas_base_validate_event_type - validating event types 6749 * @ioc: per adapter object 6750 * @event_type: firmware event 6751 * 6752 * This will turn on firmware event notification when application 6753 * ask for that event. We don't mask events that are already enabled. 6754 */ 6755 void 6756 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 6757 { 6758 int i, j; 6759 u32 event_mask, desired_event; 6760 u8 send_update_to_fw; 6761 6762 for (i = 0, send_update_to_fw = 0; i < 6763 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 6764 event_mask = ~event_type[i]; 6765 desired_event = 1; 6766 for (j = 0; j < 32; j++) { 6767 if (!(event_mask & desired_event) && 6768 (ioc->event_masks[i] & desired_event)) { 6769 ioc->event_masks[i] &= ~desired_event; 6770 send_update_to_fw = 1; 6771 } 6772 desired_event = (desired_event << 1); 6773 } 6774 } 6775 6776 if (!send_update_to_fw) 6777 return; 6778 6779 mutex_lock(&ioc->base_cmds.mutex); 6780 _base_event_notification(ioc); 6781 mutex_unlock(&ioc->base_cmds.mutex); 6782 } 6783 6784 /** 6785 * _base_diag_reset - the "big hammer" start of day reset 6786 * @ioc: per adapter object 6787 * 6788 * Return: 0 for success, non-zero for failure. 6789 */ 6790 static int 6791 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 6792 { 6793 u32 host_diagnostic; 6794 u32 ioc_state; 6795 u32 count; 6796 u32 hcb_size; 6797 6798 ioc_info(ioc, "sending diag reset !!\n"); 6799 6800 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 6801 6802 count = 0; 6803 do { 6804 /* Write magic sequence to WriteSequence register 6805 * Loop until in diagnostic mode 6806 */ 6807 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 6808 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6809 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 6810 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 6811 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 6812 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 6813 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 6814 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 6815 6816 /* wait 100 msec */ 6817 msleep(100); 6818 6819 if (count++ > 20) { 6820 ioc_info(ioc, 6821 "Stop writing magic sequence after 20 retries\n"); 6822 _base_dump_reg_set(ioc); 6823 goto out; 6824 } 6825 6826 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6827 drsprintk(ioc, 6828 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 6829 count, host_diagnostic)); 6830 6831 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 6832 6833 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 6834 6835 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 6836 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 6837 &ioc->chip->HostDiagnostic); 6838 6839 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 6840 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 6841 6842 /* Approximately 300 second max wait */ 6843 for (count = 0; count < (300000000 / 6844 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 6845 6846 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6847 6848 if (host_diagnostic == 0xFFFFFFFF) { 6849 ioc_info(ioc, 6850 "Invalid host diagnostic register value\n"); 6851 _base_dump_reg_set(ioc); 6852 goto out; 6853 } 6854 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 6855 break; 6856 6857 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 6858 } 6859 6860 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 6861 6862 drsprintk(ioc, 6863 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 6864 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 6865 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 6866 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 6867 6868 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 6869 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 6870 &ioc->chip->HCBSize); 6871 } 6872 6873 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 6874 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 6875 &ioc->chip->HostDiagnostic); 6876 6877 drsprintk(ioc, 6878 ioc_info(ioc, "disable writes to the diagnostic register\n")); 6879 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6880 6881 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 6882 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 6883 if (ioc_state) { 6884 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6885 __func__, ioc_state); 6886 _base_dump_reg_set(ioc); 6887 goto out; 6888 } 6889 6890 ioc_info(ioc, "diag reset: SUCCESS\n"); 6891 return 0; 6892 6893 out: 6894 ioc_err(ioc, "diag reset: FAILED\n"); 6895 return -EFAULT; 6896 } 6897 6898 /** 6899 * _base_make_ioc_ready - put controller in READY state 6900 * @ioc: per adapter object 6901 * @type: FORCE_BIG_HAMMER or SOFT_RESET 6902 * 6903 * Return: 0 for success, non-zero for failure. 6904 */ 6905 static int 6906 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 6907 { 6908 u32 ioc_state; 6909 int rc; 6910 int count; 6911 6912 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6913 6914 if (ioc->pci_error_recovery) 6915 return 0; 6916 6917 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6918 dhsprintk(ioc, 6919 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6920 __func__, ioc_state)); 6921 6922 /* if in RESET state, it should move to READY state shortly */ 6923 count = 0; 6924 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 6925 while ((ioc_state & MPI2_IOC_STATE_MASK) != 6926 MPI2_IOC_STATE_READY) { 6927 if (count++ == 10) { 6928 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6929 __func__, ioc_state); 6930 return -EFAULT; 6931 } 6932 ssleep(1); 6933 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6934 } 6935 } 6936 6937 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 6938 return 0; 6939 6940 if (ioc_state & MPI2_DOORBELL_USED) { 6941 ioc_info(ioc, "unexpected doorbell active!\n"); 6942 goto issue_diag_reset; 6943 } 6944 6945 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6946 mpt3sas_print_fault_code(ioc, ioc_state & 6947 MPI2_DOORBELL_DATA_MASK); 6948 goto issue_diag_reset; 6949 } 6950 6951 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 6952 /* 6953 * if host reset is invoked while watch dog thread is waiting 6954 * for IOC state to be changed to Fault state then driver has 6955 * to wait here for CoreDump state to clear otherwise reset 6956 * will be issued to the FW and FW move the IOC state to 6957 * reset state without copying the FW logs to coredump region. 6958 */ 6959 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) { 6960 mpt3sas_print_coredump_info(ioc, ioc_state & 6961 MPI2_DOORBELL_DATA_MASK); 6962 mpt3sas_base_wait_for_coredump_completion(ioc, 6963 __func__); 6964 } 6965 goto issue_diag_reset; 6966 } 6967 6968 if (type == FORCE_BIG_HAMMER) 6969 goto issue_diag_reset; 6970 6971 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6972 if (!(_base_send_ioc_reset(ioc, 6973 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 6974 return 0; 6975 } 6976 6977 issue_diag_reset: 6978 rc = _base_diag_reset(ioc); 6979 return rc; 6980 } 6981 6982 /** 6983 * _base_make_ioc_operational - put controller in OPERATIONAL state 6984 * @ioc: per adapter object 6985 * 6986 * Return: 0 for success, non-zero for failure. 6987 */ 6988 static int 6989 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 6990 { 6991 int r, i, index, rc; 6992 unsigned long flags; 6993 u32 reply_address; 6994 u16 smid; 6995 struct _tr_list *delayed_tr, *delayed_tr_next; 6996 struct _sc_list *delayed_sc, *delayed_sc_next; 6997 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 6998 u8 hide_flag; 6999 struct adapter_reply_queue *reply_q; 7000 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 7001 7002 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7003 7004 /* clean the delayed target reset list */ 7005 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 7006 &ioc->delayed_tr_list, list) { 7007 list_del(&delayed_tr->list); 7008 kfree(delayed_tr); 7009 } 7010 7011 7012 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 7013 &ioc->delayed_tr_volume_list, list) { 7014 list_del(&delayed_tr->list); 7015 kfree(delayed_tr); 7016 } 7017 7018 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 7019 &ioc->delayed_sc_list, list) { 7020 list_del(&delayed_sc->list); 7021 kfree(delayed_sc); 7022 } 7023 7024 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 7025 &ioc->delayed_event_ack_list, list) { 7026 list_del(&delayed_event_ack->list); 7027 kfree(delayed_event_ack); 7028 } 7029 7030 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 7031 7032 /* hi-priority queue */ 7033 INIT_LIST_HEAD(&ioc->hpr_free_list); 7034 smid = ioc->hi_priority_smid; 7035 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 7036 ioc->hpr_lookup[i].cb_idx = 0xFF; 7037 ioc->hpr_lookup[i].smid = smid; 7038 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 7039 &ioc->hpr_free_list); 7040 } 7041 7042 /* internal queue */ 7043 INIT_LIST_HEAD(&ioc->internal_free_list); 7044 smid = ioc->internal_smid; 7045 for (i = 0; i < ioc->internal_depth; i++, smid++) { 7046 ioc->internal_lookup[i].cb_idx = 0xFF; 7047 ioc->internal_lookup[i].smid = smid; 7048 list_add_tail(&ioc->internal_lookup[i].tracker_list, 7049 &ioc->internal_free_list); 7050 } 7051 7052 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 7053 7054 /* initialize Reply Free Queue */ 7055 for (i = 0, reply_address = (u32)ioc->reply_dma ; 7056 i < ioc->reply_free_queue_depth ; i++, reply_address += 7057 ioc->reply_sz) { 7058 ioc->reply_free[i] = cpu_to_le32(reply_address); 7059 if (ioc->is_mcpu_endpoint) 7060 _base_clone_reply_to_sys_mem(ioc, 7061 reply_address, i); 7062 } 7063 7064 /* initialize reply queues */ 7065 if (ioc->is_driver_loading) 7066 _base_assign_reply_queues(ioc); 7067 7068 /* initialize Reply Post Free Queue */ 7069 index = 0; 7070 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 7071 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 7072 /* 7073 * If RDPQ is enabled, switch to the next allocation. 7074 * Otherwise advance within the contiguous region. 7075 */ 7076 if (ioc->rdpq_array_enable) { 7077 reply_q->reply_post_free = 7078 ioc->reply_post[index++].reply_post_free; 7079 } else { 7080 reply_q->reply_post_free = reply_post_free_contig; 7081 reply_post_free_contig += ioc->reply_post_queue_depth; 7082 } 7083 7084 reply_q->reply_post_host_index = 0; 7085 for (i = 0; i < ioc->reply_post_queue_depth; i++) 7086 reply_q->reply_post_free[i].Words = 7087 cpu_to_le64(ULLONG_MAX); 7088 if (!_base_is_controller_msix_enabled(ioc)) 7089 goto skip_init_reply_post_free_queue; 7090 } 7091 skip_init_reply_post_free_queue: 7092 7093 r = _base_send_ioc_init(ioc); 7094 if (r) { 7095 /* 7096 * No need to check IOC state for fault state & issue 7097 * diag reset during host reset. This check is need 7098 * only during driver load time. 7099 */ 7100 if (!ioc->is_driver_loading) 7101 return r; 7102 7103 rc = _base_check_for_fault_and_issue_reset(ioc); 7104 if (rc || (_base_send_ioc_init(ioc))) 7105 return r; 7106 } 7107 7108 /* initialize reply free host index */ 7109 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 7110 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 7111 7112 /* initialize reply post host index */ 7113 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 7114 if (ioc->combined_reply_queue) 7115 writel((reply_q->msix_index & 7)<< 7116 MPI2_RPHI_MSIX_INDEX_SHIFT, 7117 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 7118 else 7119 writel(reply_q->msix_index << 7120 MPI2_RPHI_MSIX_INDEX_SHIFT, 7121 &ioc->chip->ReplyPostHostIndex); 7122 7123 if (!_base_is_controller_msix_enabled(ioc)) 7124 goto skip_init_reply_post_host_index; 7125 } 7126 7127 skip_init_reply_post_host_index: 7128 7129 mpt3sas_base_unmask_interrupts(ioc); 7130 7131 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 7132 r = _base_display_fwpkg_version(ioc); 7133 if (r) 7134 return r; 7135 } 7136 7137 _base_static_config_pages(ioc); 7138 r = _base_event_notification(ioc); 7139 if (r) 7140 return r; 7141 7142 if (ioc->is_driver_loading) { 7143 7144 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 7145 == 0x80) { 7146 hide_flag = (u8) ( 7147 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 7148 MFG_PAGE10_HIDE_SSDS_MASK); 7149 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 7150 ioc->mfg_pg10_hide_flag = hide_flag; 7151 } 7152 7153 ioc->wait_for_discovery_to_complete = 7154 _base_determine_wait_on_discovery(ioc); 7155 7156 return r; /* scan_start and scan_finished support */ 7157 } 7158 7159 r = _base_send_port_enable(ioc); 7160 if (r) 7161 return r; 7162 7163 return r; 7164 } 7165 7166 /** 7167 * mpt3sas_base_free_resources - free resources controller resources 7168 * @ioc: per adapter object 7169 */ 7170 void 7171 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 7172 { 7173 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7174 7175 /* synchronizing freeing resource with pci_access_mutex lock */ 7176 mutex_lock(&ioc->pci_access_mutex); 7177 if (ioc->chip_phys && ioc->chip) { 7178 mpt3sas_base_mask_interrupts(ioc); 7179 ioc->shost_recovery = 1; 7180 _base_make_ioc_ready(ioc, SOFT_RESET); 7181 ioc->shost_recovery = 0; 7182 } 7183 7184 mpt3sas_base_unmap_resources(ioc); 7185 mutex_unlock(&ioc->pci_access_mutex); 7186 return; 7187 } 7188 7189 /** 7190 * mpt3sas_base_attach - attach controller instance 7191 * @ioc: per adapter object 7192 * 7193 * Return: 0 for success, non-zero for failure. 7194 */ 7195 int 7196 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 7197 { 7198 int r, i, rc; 7199 int cpu_id, last_cpu_id = 0; 7200 7201 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7202 7203 /* setup cpu_msix_table */ 7204 ioc->cpu_count = num_online_cpus(); 7205 for_each_online_cpu(cpu_id) 7206 last_cpu_id = cpu_id; 7207 ioc->cpu_msix_table_sz = last_cpu_id + 1; 7208 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 7209 ioc->reply_queue_count = 1; 7210 if (!ioc->cpu_msix_table) { 7211 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n"); 7212 r = -ENOMEM; 7213 goto out_free_resources; 7214 } 7215 7216 if (ioc->is_warpdrive) { 7217 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 7218 sizeof(resource_size_t *), GFP_KERNEL); 7219 if (!ioc->reply_post_host_index) { 7220 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n"); 7221 r = -ENOMEM; 7222 goto out_free_resources; 7223 } 7224 } 7225 7226 ioc->smp_affinity_enable = smp_affinity_enable; 7227 7228 ioc->rdpq_array_enable_assigned = 0; 7229 ioc->use_32bit_dma = false; 7230 if (ioc->is_aero_ioc) 7231 ioc->base_readl = &_base_readl_aero; 7232 else 7233 ioc->base_readl = &_base_readl; 7234 r = mpt3sas_base_map_resources(ioc); 7235 if (r) 7236 goto out_free_resources; 7237 7238 pci_set_drvdata(ioc->pdev, ioc->shost); 7239 r = _base_get_ioc_facts(ioc); 7240 if (r) { 7241 rc = _base_check_for_fault_and_issue_reset(ioc); 7242 if (rc || (_base_get_ioc_facts(ioc))) 7243 goto out_free_resources; 7244 } 7245 7246 switch (ioc->hba_mpi_version_belonged) { 7247 case MPI2_VERSION: 7248 ioc->build_sg_scmd = &_base_build_sg_scmd; 7249 ioc->build_sg = &_base_build_sg; 7250 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 7251 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7252 break; 7253 case MPI25_VERSION: 7254 case MPI26_VERSION: 7255 /* 7256 * In SAS3.0, 7257 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 7258 * Target Status - all require the IEEE formated scatter gather 7259 * elements. 7260 */ 7261 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 7262 ioc->build_sg = &_base_build_sg_ieee; 7263 ioc->build_nvme_prp = &_base_build_nvme_prp; 7264 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 7265 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 7266 if (ioc->high_iops_queues) 7267 ioc->get_msix_index_for_smlio = 7268 &_base_get_high_iops_msix_index; 7269 else 7270 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7271 break; 7272 } 7273 if (ioc->atomic_desc_capable) { 7274 ioc->put_smid_default = &_base_put_smid_default_atomic; 7275 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; 7276 ioc->put_smid_fast_path = 7277 &_base_put_smid_fast_path_atomic; 7278 ioc->put_smid_hi_priority = 7279 &_base_put_smid_hi_priority_atomic; 7280 } else { 7281 ioc->put_smid_default = &_base_put_smid_default; 7282 ioc->put_smid_fast_path = &_base_put_smid_fast_path; 7283 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; 7284 if (ioc->is_mcpu_endpoint) 7285 ioc->put_smid_scsi_io = 7286 &_base_put_smid_mpi_ep_scsi_io; 7287 else 7288 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 7289 } 7290 /* 7291 * These function pointers for other requests that don't 7292 * the require IEEE scatter gather elements. 7293 * 7294 * For example Configuration Pages and SAS IOUNIT Control don't. 7295 */ 7296 ioc->build_sg_mpi = &_base_build_sg; 7297 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 7298 7299 r = _base_make_ioc_ready(ioc, SOFT_RESET); 7300 if (r) 7301 goto out_free_resources; 7302 7303 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 7304 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 7305 if (!ioc->pfacts) { 7306 r = -ENOMEM; 7307 goto out_free_resources; 7308 } 7309 7310 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 7311 r = _base_get_port_facts(ioc, i); 7312 if (r) { 7313 rc = _base_check_for_fault_and_issue_reset(ioc); 7314 if (rc || (_base_get_port_facts(ioc, i))) 7315 goto out_free_resources; 7316 } 7317 } 7318 7319 r = _base_allocate_memory_pools(ioc); 7320 if (r) 7321 goto out_free_resources; 7322 7323 if (irqpoll_weight > 0) 7324 ioc->thresh_hold = irqpoll_weight; 7325 else 7326 ioc->thresh_hold = ioc->hba_queue_depth/4; 7327 7328 _base_init_irqpolls(ioc); 7329 init_waitqueue_head(&ioc->reset_wq); 7330 7331 /* allocate memory pd handle bitmask list */ 7332 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 7333 if (ioc->facts.MaxDevHandle % 8) 7334 ioc->pd_handles_sz++; 7335 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 7336 GFP_KERNEL); 7337 if (!ioc->pd_handles) { 7338 r = -ENOMEM; 7339 goto out_free_resources; 7340 } 7341 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 7342 GFP_KERNEL); 7343 if (!ioc->blocking_handles) { 7344 r = -ENOMEM; 7345 goto out_free_resources; 7346 } 7347 7348 /* allocate memory for pending OS device add list */ 7349 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 7350 if (ioc->facts.MaxDevHandle % 8) 7351 ioc->pend_os_device_add_sz++; 7352 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 7353 GFP_KERNEL); 7354 if (!ioc->pend_os_device_add) 7355 goto out_free_resources; 7356 7357 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 7358 ioc->device_remove_in_progress = 7359 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 7360 if (!ioc->device_remove_in_progress) 7361 goto out_free_resources; 7362 7363 ioc->fwfault_debug = mpt3sas_fwfault_debug; 7364 7365 /* base internal command bits */ 7366 mutex_init(&ioc->base_cmds.mutex); 7367 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7368 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7369 7370 /* port_enable command bits */ 7371 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7372 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7373 7374 /* transport internal command bits */ 7375 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7376 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 7377 mutex_init(&ioc->transport_cmds.mutex); 7378 7379 /* scsih internal command bits */ 7380 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7381 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 7382 mutex_init(&ioc->scsih_cmds.mutex); 7383 7384 /* task management internal command bits */ 7385 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7386 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 7387 mutex_init(&ioc->tm_cmds.mutex); 7388 7389 /* config page internal command bits */ 7390 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7391 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 7392 mutex_init(&ioc->config_cmds.mutex); 7393 7394 /* ctl module internal command bits */ 7395 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7396 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 7397 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 7398 mutex_init(&ioc->ctl_cmds.mutex); 7399 7400 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 7401 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 7402 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 7403 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 7404 r = -ENOMEM; 7405 goto out_free_resources; 7406 } 7407 7408 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7409 ioc->event_masks[i] = -1; 7410 7411 /* here we enable the events we care about */ 7412 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 7413 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 7414 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 7415 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 7416 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 7417 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 7418 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 7419 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 7420 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 7421 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 7422 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 7423 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 7424 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 7425 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 7426 if (ioc->is_gen35_ioc) { 7427 _base_unmask_events(ioc, 7428 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 7429 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 7430 _base_unmask_events(ioc, 7431 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 7432 } 7433 } 7434 r = _base_make_ioc_operational(ioc); 7435 if (r) 7436 goto out_free_resources; 7437 7438 /* 7439 * Copy current copy of IOCFacts in prev_fw_facts 7440 * and it will be used during online firmware upgrade. 7441 */ 7442 memcpy(&ioc->prev_fw_facts, &ioc->facts, 7443 sizeof(struct mpt3sas_facts)); 7444 7445 ioc->non_operational_loop = 0; 7446 ioc->ioc_coredump_loop = 0; 7447 ioc->got_task_abort_from_ioctl = 0; 7448 return 0; 7449 7450 out_free_resources: 7451 7452 ioc->remove_host = 1; 7453 7454 mpt3sas_base_free_resources(ioc); 7455 _base_release_memory_pools(ioc); 7456 pci_set_drvdata(ioc->pdev, NULL); 7457 kfree(ioc->cpu_msix_table); 7458 if (ioc->is_warpdrive) 7459 kfree(ioc->reply_post_host_index); 7460 kfree(ioc->pd_handles); 7461 kfree(ioc->blocking_handles); 7462 kfree(ioc->device_remove_in_progress); 7463 kfree(ioc->pend_os_device_add); 7464 kfree(ioc->tm_cmds.reply); 7465 kfree(ioc->transport_cmds.reply); 7466 kfree(ioc->scsih_cmds.reply); 7467 kfree(ioc->config_cmds.reply); 7468 kfree(ioc->base_cmds.reply); 7469 kfree(ioc->port_enable_cmds.reply); 7470 kfree(ioc->ctl_cmds.reply); 7471 kfree(ioc->ctl_cmds.sense); 7472 kfree(ioc->pfacts); 7473 ioc->ctl_cmds.reply = NULL; 7474 ioc->base_cmds.reply = NULL; 7475 ioc->tm_cmds.reply = NULL; 7476 ioc->scsih_cmds.reply = NULL; 7477 ioc->transport_cmds.reply = NULL; 7478 ioc->config_cmds.reply = NULL; 7479 ioc->pfacts = NULL; 7480 return r; 7481 } 7482 7483 7484 /** 7485 * mpt3sas_base_detach - remove controller instance 7486 * @ioc: per adapter object 7487 */ 7488 void 7489 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 7490 { 7491 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7492 7493 mpt3sas_base_stop_watchdog(ioc); 7494 mpt3sas_base_free_resources(ioc); 7495 _base_release_memory_pools(ioc); 7496 mpt3sas_free_enclosure_list(ioc); 7497 pci_set_drvdata(ioc->pdev, NULL); 7498 kfree(ioc->cpu_msix_table); 7499 if (ioc->is_warpdrive) 7500 kfree(ioc->reply_post_host_index); 7501 kfree(ioc->pd_handles); 7502 kfree(ioc->blocking_handles); 7503 kfree(ioc->device_remove_in_progress); 7504 kfree(ioc->pend_os_device_add); 7505 kfree(ioc->pfacts); 7506 kfree(ioc->ctl_cmds.reply); 7507 kfree(ioc->ctl_cmds.sense); 7508 kfree(ioc->base_cmds.reply); 7509 kfree(ioc->port_enable_cmds.reply); 7510 kfree(ioc->tm_cmds.reply); 7511 kfree(ioc->transport_cmds.reply); 7512 kfree(ioc->scsih_cmds.reply); 7513 kfree(ioc->config_cmds.reply); 7514 } 7515 7516 /** 7517 * _base_pre_reset_handler - pre reset handler 7518 * @ioc: per adapter object 7519 */ 7520 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 7521 { 7522 mpt3sas_scsih_pre_reset_handler(ioc); 7523 mpt3sas_ctl_pre_reset_handler(ioc); 7524 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 7525 } 7526 7527 /** 7528 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands 7529 * @ioc: per adapter object 7530 */ 7531 static void 7532 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc) 7533 { 7534 dtmprintk(ioc, 7535 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__)); 7536 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 7537 ioc->transport_cmds.status |= MPT3_CMD_RESET; 7538 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 7539 complete(&ioc->transport_cmds.done); 7540 } 7541 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7542 ioc->base_cmds.status |= MPT3_CMD_RESET; 7543 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 7544 complete(&ioc->base_cmds.done); 7545 } 7546 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7547 ioc->port_enable_failed = 1; 7548 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 7549 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 7550 if (ioc->is_driver_loading) { 7551 ioc->start_scan_failed = 7552 MPI2_IOCSTATUS_INTERNAL_ERROR; 7553 ioc->start_scan = 0; 7554 ioc->port_enable_cmds.status = 7555 MPT3_CMD_NOT_USED; 7556 } else { 7557 complete(&ioc->port_enable_cmds.done); 7558 } 7559 } 7560 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 7561 ioc->config_cmds.status |= MPT3_CMD_RESET; 7562 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 7563 ioc->config_cmds.smid = USHRT_MAX; 7564 complete(&ioc->config_cmds.done); 7565 } 7566 } 7567 7568 /** 7569 * _base_clear_outstanding_commands - clear all outstanding commands 7570 * @ioc: per adapter object 7571 */ 7572 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc) 7573 { 7574 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc); 7575 mpt3sas_ctl_clear_outstanding_ioctls(ioc); 7576 _base_clear_outstanding_mpt_commands(ioc); 7577 } 7578 7579 /** 7580 * _base_reset_done_handler - reset done handler 7581 * @ioc: per adapter object 7582 */ 7583 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 7584 { 7585 mpt3sas_scsih_reset_done_handler(ioc); 7586 mpt3sas_ctl_reset_done_handler(ioc); 7587 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 7588 } 7589 7590 /** 7591 * mpt3sas_wait_for_commands_to_complete - reset controller 7592 * @ioc: Pointer to MPT_ADAPTER structure 7593 * 7594 * This function is waiting 10s for all pending commands to complete 7595 * prior to putting controller in reset. 7596 */ 7597 void 7598 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 7599 { 7600 u32 ioc_state; 7601 7602 ioc->pending_io_count = 0; 7603 7604 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7605 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 7606 return; 7607 7608 /* pending command count */ 7609 ioc->pending_io_count = scsi_host_busy(ioc->shost); 7610 7611 if (!ioc->pending_io_count) 7612 return; 7613 7614 /* wait for pending commands to complete */ 7615 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 7616 } 7617 7618 /** 7619 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts 7620 * attributes during online firmware upgrade and update the corresponding 7621 * IOC variables accordingly. 7622 * 7623 * @ioc: Pointer to MPT_ADAPTER structure 7624 */ 7625 static int 7626 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc) 7627 { 7628 u16 pd_handles_sz; 7629 void *pd_handles = NULL, *blocking_handles = NULL; 7630 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL; 7631 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts; 7632 7633 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) { 7634 pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 7635 if (ioc->facts.MaxDevHandle % 8) 7636 pd_handles_sz++; 7637 7638 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz, 7639 GFP_KERNEL); 7640 if (!pd_handles) { 7641 ioc_info(ioc, 7642 "Unable to allocate the memory for pd_handles of sz: %d\n", 7643 pd_handles_sz); 7644 return -ENOMEM; 7645 } 7646 memset(pd_handles + ioc->pd_handles_sz, 0, 7647 (pd_handles_sz - ioc->pd_handles_sz)); 7648 ioc->pd_handles = pd_handles; 7649 7650 blocking_handles = krealloc(ioc->blocking_handles, 7651 pd_handles_sz, GFP_KERNEL); 7652 if (!blocking_handles) { 7653 ioc_info(ioc, 7654 "Unable to allocate the memory for " 7655 "blocking_handles of sz: %d\n", 7656 pd_handles_sz); 7657 return -ENOMEM; 7658 } 7659 memset(blocking_handles + ioc->pd_handles_sz, 0, 7660 (pd_handles_sz - ioc->pd_handles_sz)); 7661 ioc->blocking_handles = blocking_handles; 7662 ioc->pd_handles_sz = pd_handles_sz; 7663 7664 pend_os_device_add = krealloc(ioc->pend_os_device_add, 7665 pd_handles_sz, GFP_KERNEL); 7666 if (!pend_os_device_add) { 7667 ioc_info(ioc, 7668 "Unable to allocate the memory for pend_os_device_add of sz: %d\n", 7669 pd_handles_sz); 7670 return -ENOMEM; 7671 } 7672 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0, 7673 (pd_handles_sz - ioc->pend_os_device_add_sz)); 7674 ioc->pend_os_device_add = pend_os_device_add; 7675 ioc->pend_os_device_add_sz = pd_handles_sz; 7676 7677 device_remove_in_progress = krealloc( 7678 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL); 7679 if (!device_remove_in_progress) { 7680 ioc_info(ioc, 7681 "Unable to allocate the memory for " 7682 "device_remove_in_progress of sz: %d\n " 7683 , pd_handles_sz); 7684 return -ENOMEM; 7685 } 7686 memset(device_remove_in_progress + 7687 ioc->device_remove_in_progress_sz, 0, 7688 (pd_handles_sz - ioc->device_remove_in_progress_sz)); 7689 ioc->device_remove_in_progress = device_remove_in_progress; 7690 ioc->device_remove_in_progress_sz = pd_handles_sz; 7691 } 7692 7693 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts)); 7694 return 0; 7695 } 7696 7697 /** 7698 * mpt3sas_base_hard_reset_handler - reset controller 7699 * @ioc: Pointer to MPT_ADAPTER structure 7700 * @type: FORCE_BIG_HAMMER or SOFT_RESET 7701 * 7702 * Return: 0 for success, non-zero for failure. 7703 */ 7704 int 7705 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 7706 enum reset_type type) 7707 { 7708 int r; 7709 unsigned long flags; 7710 u32 ioc_state; 7711 u8 is_fault = 0, is_trigger = 0; 7712 7713 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 7714 7715 if (ioc->pci_error_recovery) { 7716 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 7717 r = 0; 7718 goto out_unlocked; 7719 } 7720 7721 if (mpt3sas_fwfault_debug) 7722 mpt3sas_halt_firmware(ioc); 7723 7724 /* wait for an active reset in progress to complete */ 7725 mutex_lock(&ioc->reset_in_progress_mutex); 7726 7727 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 7728 ioc->shost_recovery = 1; 7729 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 7730 7731 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 7732 MPT3_DIAG_BUFFER_IS_REGISTERED) && 7733 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 7734 MPT3_DIAG_BUFFER_IS_RELEASED))) { 7735 is_trigger = 1; 7736 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7737 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT || 7738 (ioc_state & MPI2_IOC_STATE_MASK) == 7739 MPI2_IOC_STATE_COREDUMP) 7740 is_fault = 1; 7741 } 7742 _base_pre_reset_handler(ioc); 7743 mpt3sas_wait_for_commands_to_complete(ioc); 7744 mpt3sas_base_mask_interrupts(ioc); 7745 r = _base_make_ioc_ready(ioc, type); 7746 if (r) 7747 goto out; 7748 _base_clear_outstanding_commands(ioc); 7749 7750 /* If this hard reset is called while port enable is active, then 7751 * there is no reason to call make_ioc_operational 7752 */ 7753 if (ioc->is_driver_loading && ioc->port_enable_failed) { 7754 ioc->remove_host = 1; 7755 r = -EFAULT; 7756 goto out; 7757 } 7758 r = _base_get_ioc_facts(ioc); 7759 if (r) 7760 goto out; 7761 7762 r = _base_check_ioc_facts_changes(ioc); 7763 if (r) { 7764 ioc_info(ioc, 7765 "Some of the parameters got changed in this new firmware" 7766 " image and it requires system reboot\n"); 7767 goto out; 7768 } 7769 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 7770 panic("%s: Issue occurred with flashing controller firmware." 7771 "Please reboot the system and ensure that the correct" 7772 " firmware version is running\n", ioc->name); 7773 7774 r = _base_make_ioc_operational(ioc); 7775 if (!r) 7776 _base_reset_done_handler(ioc); 7777 7778 out: 7779 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED"); 7780 7781 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 7782 ioc->shost_recovery = 0; 7783 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 7784 ioc->ioc_reset_count++; 7785 mutex_unlock(&ioc->reset_in_progress_mutex); 7786 7787 out_unlocked: 7788 if ((r == 0) && is_trigger) { 7789 if (is_fault) 7790 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 7791 else 7792 mpt3sas_trigger_master(ioc, 7793 MASTER_TRIGGER_ADAPTER_RESET); 7794 } 7795 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 7796 return r; 7797 } 7798