1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64 
65 
66 #include "mpt3sas_base.h"
67 
68 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
69 
70 
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72 
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH	30000
75 #define MAX_CHAIN_DEPTH		100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79 
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83 
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87 
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91 
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95 	" max msix vectors");
96 
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100 	"irq poll weight (default= one fourth of HBA queue depth)");
101 
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104 	" enable detection of firmware fault and halt firmware - (default=0)");
105 
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109 	"Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 	"0 - balanced: high iops mode is enabled &\n\t\t"
111 	"interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 	"1 - iops: high iops mode is disabled &\n\t\t"
113 	"interrupt coalescing is enabled on all queues,\n\t\t"
114 	"2 - latency: high iops mode is disabled &\n\t\t"
115 	"interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 	"\t\tdefault - default perf_mode is 'balanced'"
117 	);
118 
119 enum mpt3sas_perf_mode {
120 	MPT_PERF_MODE_DEFAULT	= -1,
121 	MPT_PERF_MODE_BALANCED	= 0,
122 	MPT_PERF_MODE_IOPS	= 1,
123 	MPT_PERF_MODE_LATENCY	= 2,
124 };
125 
126 static int
127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
128 		u32 ioc_state, int timeout);
129 static int
130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
131 static void
132 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
133 
134 /**
135  * mpt3sas_base_check_cmd_timeout - Function
136  *		to check timeout and command termination due
137  *		to Host reset.
138  *
139  * @ioc:	per adapter object.
140  * @status:	Status of issued command.
141  * @mpi_request:mf request pointer.
142  * @sz:		size of buffer.
143  *
144  * @Returns - 1/0 Reset to be done or Not
145  */
146 u8
147 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
148 		u8 status, void *mpi_request, int sz)
149 {
150 	u8 issue_reset = 0;
151 
152 	if (!(status & MPT3_CMD_RESET))
153 		issue_reset = 1;
154 
155 	ioc_err(ioc, "Command %s\n",
156 		issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
157 	_debug_dump_mf(mpi_request, sz);
158 
159 	return issue_reset;
160 }
161 
162 /**
163  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
164  * @val: ?
165  * @kp: ?
166  *
167  * Return: ?
168  */
169 static int
170 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
171 {
172 	int ret = param_set_int(val, kp);
173 	struct MPT3SAS_ADAPTER *ioc;
174 
175 	if (ret)
176 		return ret;
177 
178 	/* global ioc spinlock to protect controller list on list operations */
179 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
180 	spin_lock(&gioc_lock);
181 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
182 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
183 	spin_unlock(&gioc_lock);
184 	return 0;
185 }
186 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
187 	param_get_int, &mpt3sas_fwfault_debug, 0644);
188 
189 /**
190  * _base_readl_aero - retry readl for max three times.
191  * @addr: MPT Fusion system interface register address
192  *
193  * Retry the readl() for max three times if it gets zero value
194  * while reading the system interface register.
195  */
196 static inline u32
197 _base_readl_aero(const volatile void __iomem *addr)
198 {
199 	u32 i = 0, ret_val;
200 
201 	do {
202 		ret_val = readl(addr);
203 		i++;
204 	} while (ret_val == 0 && i < 3);
205 
206 	return ret_val;
207 }
208 
209 static inline u32
210 _base_readl(const volatile void __iomem *addr)
211 {
212 	return readl(addr);
213 }
214 
215 /**
216  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
217  *				  in BAR0 space.
218  *
219  * @ioc: per adapter object
220  * @reply: reply message frame(lower 32bit addr)
221  * @index: System request message index.
222  */
223 static void
224 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
225 		u32 index)
226 {
227 	/*
228 	 * 256 is offset within sys register.
229 	 * 256 offset MPI frame starts. Max MPI frame supported is 32.
230 	 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
231 	 */
232 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
233 	void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
234 			MPI_FRAME_START_OFFSET +
235 			(cmd_credit * ioc->request_sz) + (index * sizeof(u32));
236 
237 	writel(reply, reply_free_iomem);
238 }
239 
240 /**
241  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
242  *				to system/BAR0 region.
243  *
244  * @dst_iomem: Pointer to the destination location in BAR0 space.
245  * @src: Pointer to the Source data.
246  * @size: Size of data to be copied.
247  */
248 static void
249 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
250 {
251 	int i;
252 	u32 *src_virt_mem = (u32 *)src;
253 
254 	for (i = 0; i < size/4; i++)
255 		writel((u32)src_virt_mem[i],
256 				(void __iomem *)dst_iomem + (i * 4));
257 }
258 
259 /**
260  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
261  *
262  * @dst_iomem: Pointer to the destination location in BAR0 space.
263  * @src: Pointer to the Source data.
264  * @size: Size of data to be copied.
265  */
266 static void
267 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
268 {
269 	int i;
270 	u32 *src_virt_mem = (u32 *)(src);
271 
272 	for (i = 0; i < size/4; i++)
273 		writel((u32)src_virt_mem[i],
274 			(void __iomem *)dst_iomem + (i * 4));
275 }
276 
277 /**
278  * _base_get_chain - Calculates and Returns virtual chain address
279  *			 for the provided smid in BAR0 space.
280  *
281  * @ioc: per adapter object
282  * @smid: system request message index
283  * @sge_chain_count: Scatter gather chain count.
284  *
285  * Return: the chain address.
286  */
287 static inline void __iomem*
288 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
289 		u8 sge_chain_count)
290 {
291 	void __iomem *base_chain, *chain_virt;
292 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
293 
294 	base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
295 		(cmd_credit * ioc->request_sz) +
296 		REPLY_FREE_POOL_SIZE;
297 	chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
298 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
299 	return chain_virt;
300 }
301 
302 /**
303  * _base_get_chain_phys - Calculates and Returns physical address
304  *			in BAR0 for scatter gather chains, for
305  *			the provided smid.
306  *
307  * @ioc: per adapter object
308  * @smid: system request message index
309  * @sge_chain_count: Scatter gather chain count.
310  *
311  * Return: Physical chain address.
312  */
313 static inline phys_addr_t
314 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
315 		u8 sge_chain_count)
316 {
317 	phys_addr_t base_chain_phys, chain_phys;
318 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
319 
320 	base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
321 		(cmd_credit * ioc->request_sz) +
322 		REPLY_FREE_POOL_SIZE;
323 	chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
324 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
325 	return chain_phys;
326 }
327 
328 /**
329  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
330  *			buffer address for the provided smid.
331  *			(Each smid can have 64K starts from 17024)
332  *
333  * @ioc: per adapter object
334  * @smid: system request message index
335  *
336  * Return: Pointer to buffer location in BAR0.
337  */
338 
339 static void __iomem *
340 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
341 {
342 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
343 	// Added extra 1 to reach end of chain.
344 	void __iomem *chain_end = _base_get_chain(ioc,
345 			cmd_credit + 1,
346 			ioc->facts.MaxChainDepth);
347 	return chain_end + (smid * 64 * 1024);
348 }
349 
350 /**
351  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
352  *		Host buffer Physical address for the provided smid.
353  *		(Each smid can have 64K starts from 17024)
354  *
355  * @ioc: per adapter object
356  * @smid: system request message index
357  *
358  * Return: Pointer to buffer location in BAR0.
359  */
360 static phys_addr_t
361 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
362 {
363 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
364 	phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
365 			cmd_credit + 1,
366 			ioc->facts.MaxChainDepth);
367 	return chain_end_phys + (smid * 64 * 1024);
368 }
369 
370 /**
371  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
372  *			lookup list and Provides chain_buffer
373  *			address for the matching dma address.
374  *			(Each smid can have 64K starts from 17024)
375  *
376  * @ioc: per adapter object
377  * @chain_buffer_dma: Chain buffer dma address.
378  *
379  * Return: Pointer to chain buffer. Or Null on Failure.
380  */
381 static void *
382 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
383 		dma_addr_t chain_buffer_dma)
384 {
385 	u16 index, j;
386 	struct chain_tracker *ct;
387 
388 	for (index = 0; index < ioc->scsiio_depth; index++) {
389 		for (j = 0; j < ioc->chains_needed_per_io; j++) {
390 			ct = &ioc->chain_lookup[index].chains_per_smid[j];
391 			if (ct && ct->chain_buffer_dma == chain_buffer_dma)
392 				return ct->chain_buffer;
393 		}
394 	}
395 	ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
396 	return NULL;
397 }
398 
399 /**
400  * _clone_sg_entries -	MPI EP's scsiio and config requests
401  *			are handled here. Base function for
402  *			double buffering, before submitting
403  *			the requests.
404  *
405  * @ioc: per adapter object.
406  * @mpi_request: mf request pointer.
407  * @smid: system request message index.
408  */
409 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
410 		void *mpi_request, u16 smid)
411 {
412 	Mpi2SGESimple32_t *sgel, *sgel_next;
413 	u32  sgl_flags, sge_chain_count = 0;
414 	bool is_write = false;
415 	u16 i = 0;
416 	void __iomem *buffer_iomem;
417 	phys_addr_t buffer_iomem_phys;
418 	void __iomem *buff_ptr;
419 	phys_addr_t buff_ptr_phys;
420 	void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
421 	void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
422 	phys_addr_t dst_addr_phys;
423 	MPI2RequestHeader_t *request_hdr;
424 	struct scsi_cmnd *scmd;
425 	struct scatterlist *sg_scmd = NULL;
426 	int is_scsiio_req = 0;
427 
428 	request_hdr = (MPI2RequestHeader_t *) mpi_request;
429 
430 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
431 		Mpi25SCSIIORequest_t *scsiio_request =
432 			(Mpi25SCSIIORequest_t *)mpi_request;
433 		sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
434 		is_scsiio_req = 1;
435 	} else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
436 		Mpi2ConfigRequest_t  *config_req =
437 			(Mpi2ConfigRequest_t *)mpi_request;
438 		sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
439 	} else
440 		return;
441 
442 	/* From smid we can get scsi_cmd, once we have sg_scmd,
443 	 * we just need to get sg_virt and sg_next to get virual
444 	 * address associated with sgel->Address.
445 	 */
446 
447 	if (is_scsiio_req) {
448 		/* Get scsi_cmd using smid */
449 		scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
450 		if (scmd == NULL) {
451 			ioc_err(ioc, "scmd is NULL\n");
452 			return;
453 		}
454 
455 		/* Get sg_scmd from scmd provided */
456 		sg_scmd = scsi_sglist(scmd);
457 	}
458 
459 	/*
460 	 * 0 - 255	System register
461 	 * 256 - 4352	MPI Frame. (This is based on maxCredit 32)
462 	 * 4352 - 4864	Reply_free pool (512 byte is reserved
463 	 *		considering maxCredit 32. Reply need extra
464 	 *		room, for mCPU case kept four times of
465 	 *		maxCredit).
466 	 * 4864 - 17152	SGE chain element. (32cmd * 3 chain of
467 	 *		128 byte size = 12288)
468 	 * 17152 - x	Host buffer mapped with smid.
469 	 *		(Each smid can have 64K Max IO.)
470 	 * BAR0+Last 1K MSIX Addr and Data
471 	 * Total size in use 2113664 bytes of 4MB BAR0
472 	 */
473 
474 	buffer_iomem = _base_get_buffer_bar0(ioc, smid);
475 	buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
476 
477 	buff_ptr = buffer_iomem;
478 	buff_ptr_phys = buffer_iomem_phys;
479 	WARN_ON(buff_ptr_phys > U32_MAX);
480 
481 	if (le32_to_cpu(sgel->FlagsLength) &
482 			(MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
483 		is_write = true;
484 
485 	for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
486 
487 		sgl_flags =
488 		    (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
489 
490 		switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
491 		case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
492 			/*
493 			 * Helper function which on passing
494 			 * chain_buffer_dma returns chain_buffer. Get
495 			 * the virtual address for sgel->Address
496 			 */
497 			sgel_next =
498 				_base_get_chain_buffer_dma_to_chain_buffer(ioc,
499 						le32_to_cpu(sgel->Address));
500 			if (sgel_next == NULL)
501 				return;
502 			/*
503 			 * This is coping 128 byte chain
504 			 * frame (not a host buffer)
505 			 */
506 			dst_chain_addr[sge_chain_count] =
507 				_base_get_chain(ioc,
508 					smid, sge_chain_count);
509 			src_chain_addr[sge_chain_count] =
510 						(void *) sgel_next;
511 			dst_addr_phys = _base_get_chain_phys(ioc,
512 						smid, sge_chain_count);
513 			WARN_ON(dst_addr_phys > U32_MAX);
514 			sgel->Address =
515 				cpu_to_le32(lower_32_bits(dst_addr_phys));
516 			sgel = sgel_next;
517 			sge_chain_count++;
518 			break;
519 		case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
520 			if (is_write) {
521 				if (is_scsiio_req) {
522 					_base_clone_to_sys_mem(buff_ptr,
523 					    sg_virt(sg_scmd),
524 					    (le32_to_cpu(sgel->FlagsLength) &
525 					    0x00ffffff));
526 					/*
527 					 * FIXME: this relies on a a zero
528 					 * PCI mem_offset.
529 					 */
530 					sgel->Address =
531 					    cpu_to_le32((u32)buff_ptr_phys);
532 				} else {
533 					_base_clone_to_sys_mem(buff_ptr,
534 					    ioc->config_vaddr,
535 					    (le32_to_cpu(sgel->FlagsLength) &
536 					    0x00ffffff));
537 					sgel->Address =
538 					    cpu_to_le32((u32)buff_ptr_phys);
539 				}
540 			}
541 			buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
542 			    0x00ffffff);
543 			buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
544 			    0x00ffffff);
545 			if ((le32_to_cpu(sgel->FlagsLength) &
546 			    (MPI2_SGE_FLAGS_END_OF_BUFFER
547 					<< MPI2_SGE_FLAGS_SHIFT)))
548 				goto eob_clone_chain;
549 			else {
550 				/*
551 				 * Every single element in MPT will have
552 				 * associated sg_next. Better to sanity that
553 				 * sg_next is not NULL, but it will be a bug
554 				 * if it is null.
555 				 */
556 				if (is_scsiio_req) {
557 					sg_scmd = sg_next(sg_scmd);
558 					if (sg_scmd)
559 						sgel++;
560 					else
561 						goto eob_clone_chain;
562 				}
563 			}
564 			break;
565 		}
566 	}
567 
568 eob_clone_chain:
569 	for (i = 0; i < sge_chain_count; i++) {
570 		if (is_scsiio_req)
571 			_base_clone_to_sys_mem(dst_chain_addr[i],
572 				src_chain_addr[i], ioc->request_sz);
573 	}
574 }
575 
576 /**
577  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
578  * @arg: input argument, used to derive ioc
579  *
580  * Return:
581  * 0 if controller is removed from pci subsystem.
582  * -1 for other case.
583  */
584 static int mpt3sas_remove_dead_ioc_func(void *arg)
585 {
586 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
587 	struct pci_dev *pdev;
588 
589 	if (!ioc)
590 		return -1;
591 
592 	pdev = ioc->pdev;
593 	if (!pdev)
594 		return -1;
595 	pci_stop_and_remove_bus_device_locked(pdev);
596 	return 0;
597 }
598 
599 /**
600  * _base_fault_reset_work - workq handling ioc fault conditions
601  * @work: input argument, used to derive ioc
602  *
603  * Context: sleep.
604  */
605 static void
606 _base_fault_reset_work(struct work_struct *work)
607 {
608 	struct MPT3SAS_ADAPTER *ioc =
609 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
610 	unsigned long	 flags;
611 	u32 doorbell;
612 	int rc;
613 	struct task_struct *p;
614 
615 
616 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
617 	if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
618 			ioc->pci_error_recovery)
619 		goto rearm_timer;
620 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
621 
622 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
623 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
624 		ioc_err(ioc, "SAS host is non-operational !!!!\n");
625 
626 		/* It may be possible that EEH recovery can resolve some of
627 		 * pci bus failure issues rather removing the dead ioc function
628 		 * by considering controller is in a non-operational state. So
629 		 * here priority is given to the EEH recovery. If it doesn't
630 		 * not resolve this issue, mpt3sas driver will consider this
631 		 * controller to non-operational state and remove the dead ioc
632 		 * function.
633 		 */
634 		if (ioc->non_operational_loop++ < 5) {
635 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
636 							 flags);
637 			goto rearm_timer;
638 		}
639 
640 		/*
641 		 * Call _scsih_flush_pending_cmds callback so that we flush all
642 		 * pending commands back to OS. This call is required to aovid
643 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
644 		 * and this call is safe since dead ioc will never return any
645 		 * command back from HW.
646 		 */
647 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
648 		/*
649 		 * Set remove_host flag early since kernel thread will
650 		 * take some time to execute.
651 		 */
652 		ioc->remove_host = 1;
653 		/*Remove the Dead Host */
654 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
655 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
656 		if (IS_ERR(p))
657 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
658 				__func__);
659 		else
660 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
661 				__func__);
662 		return; /* don't rearm timer */
663 	}
664 
665 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
666 		u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
667 		    ioc->manu_pg11.CoreDumpTOSec :
668 		    MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
669 
670 		timeout /= (FAULT_POLLING_INTERVAL/1000);
671 
672 		if (ioc->ioc_coredump_loop == 0) {
673 			mpt3sas_print_coredump_info(ioc,
674 			    doorbell & MPI2_DOORBELL_DATA_MASK);
675 			/* do not accept any IOs and disable the interrupts */
676 			spin_lock_irqsave(
677 			    &ioc->ioc_reset_in_progress_lock, flags);
678 			ioc->shost_recovery = 1;
679 			spin_unlock_irqrestore(
680 			    &ioc->ioc_reset_in_progress_lock, flags);
681 			mpt3sas_base_mask_interrupts(ioc);
682 			_base_clear_outstanding_commands(ioc);
683 		}
684 
685 		ioc_info(ioc, "%s: CoreDump loop %d.",
686 		    __func__, ioc->ioc_coredump_loop);
687 
688 		/* Wait until CoreDump completes or times out */
689 		if (ioc->ioc_coredump_loop++ < timeout) {
690 			spin_lock_irqsave(
691 			    &ioc->ioc_reset_in_progress_lock, flags);
692 			goto rearm_timer;
693 		}
694 	}
695 
696 	if (ioc->ioc_coredump_loop) {
697 		if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
698 			ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
699 			    __func__, ioc->ioc_coredump_loop);
700 		else
701 			ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
702 			    __func__, ioc->ioc_coredump_loop);
703 		ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
704 	}
705 	ioc->non_operational_loop = 0;
706 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
707 		rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
708 		ioc_warn(ioc, "%s: hard reset: %s\n",
709 			 __func__, rc == 0 ? "success" : "failed");
710 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
711 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
712 			mpt3sas_print_fault_code(ioc, doorbell &
713 			    MPI2_DOORBELL_DATA_MASK);
714 		} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
715 		    MPI2_IOC_STATE_COREDUMP)
716 			mpt3sas_print_coredump_info(ioc, doorbell &
717 			    MPI2_DOORBELL_DATA_MASK);
718 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
719 		    MPI2_IOC_STATE_OPERATIONAL)
720 			return; /* don't rearm timer */
721 	}
722 	ioc->ioc_coredump_loop = 0;
723 
724 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
725  rearm_timer:
726 	if (ioc->fault_reset_work_q)
727 		queue_delayed_work(ioc->fault_reset_work_q,
728 		    &ioc->fault_reset_work,
729 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
730 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
731 }
732 
733 /**
734  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
735  * @ioc: per adapter object
736  *
737  * Context: sleep.
738  */
739 void
740 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
741 {
742 	unsigned long	 flags;
743 
744 	if (ioc->fault_reset_work_q)
745 		return;
746 
747 	/* initialize fault polling */
748 
749 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
750 	snprintf(ioc->fault_reset_work_q_name,
751 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
752 	    ioc->driver_name, ioc->id);
753 	ioc->fault_reset_work_q =
754 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
755 	if (!ioc->fault_reset_work_q) {
756 		ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
757 		return;
758 	}
759 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
760 	if (ioc->fault_reset_work_q)
761 		queue_delayed_work(ioc->fault_reset_work_q,
762 		    &ioc->fault_reset_work,
763 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
764 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
765 }
766 
767 /**
768  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
769  * @ioc: per adapter object
770  *
771  * Context: sleep.
772  */
773 void
774 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
775 {
776 	unsigned long flags;
777 	struct workqueue_struct *wq;
778 
779 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
780 	wq = ioc->fault_reset_work_q;
781 	ioc->fault_reset_work_q = NULL;
782 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
783 	if (wq) {
784 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
785 			flush_workqueue(wq);
786 		destroy_workqueue(wq);
787 	}
788 }
789 
790 /**
791  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
792  * @ioc: per adapter object
793  * @fault_code: fault code
794  */
795 void
796 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
797 {
798 	ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
799 }
800 
801 /**
802  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
803  * @ioc: per adapter object
804  * @fault_code: fault code
805  *
806  * Return nothing.
807  */
808 void
809 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
810 {
811 	ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
812 }
813 
814 /**
815  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
816  * completes or times out
817  * @ioc: per adapter object
818  * @caller: caller function name
819  *
820  * Returns 0 for success, non-zero for failure.
821  */
822 int
823 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
824 		const char *caller)
825 {
826 	u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
827 			ioc->manu_pg11.CoreDumpTOSec :
828 			MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
829 
830 	int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
831 					timeout);
832 
833 	if (ioc_state)
834 		ioc_err(ioc,
835 		    "%s: CoreDump timed out. (ioc_state=0x%x)\n",
836 		    caller, ioc_state);
837 	else
838 		ioc_info(ioc,
839 		    "%s: CoreDump completed. (ioc_state=0x%x)\n",
840 		    caller, ioc_state);
841 
842 	return ioc_state;
843 }
844 
845 /**
846  * mpt3sas_halt_firmware - halt's mpt controller firmware
847  * @ioc: per adapter object
848  *
849  * For debugging timeout related issues.  Writing 0xCOFFEE00
850  * to the doorbell register will halt controller firmware. With
851  * the purpose to stop both driver and firmware, the enduser can
852  * obtain a ring buffer from controller UART.
853  */
854 void
855 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
856 {
857 	u32 doorbell;
858 
859 	if (!ioc->fwfault_debug)
860 		return;
861 
862 	dump_stack();
863 
864 	doorbell = ioc->base_readl(&ioc->chip->Doorbell);
865 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
866 		mpt3sas_print_fault_code(ioc, doorbell &
867 		    MPI2_DOORBELL_DATA_MASK);
868 	} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
869 	    MPI2_IOC_STATE_COREDUMP) {
870 		mpt3sas_print_coredump_info(ioc, doorbell &
871 		    MPI2_DOORBELL_DATA_MASK);
872 	} else {
873 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
874 		ioc_err(ioc, "Firmware is halted due to command timeout\n");
875 	}
876 
877 	if (ioc->fwfault_debug == 2)
878 		for (;;)
879 			;
880 	else
881 		panic("panic in %s\n", __func__);
882 }
883 
884 /**
885  * _base_sas_ioc_info - verbose translation of the ioc status
886  * @ioc: per adapter object
887  * @mpi_reply: reply mf payload returned from firmware
888  * @request_hdr: request mf
889  */
890 static void
891 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
892 	MPI2RequestHeader_t *request_hdr)
893 {
894 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
895 	    MPI2_IOCSTATUS_MASK;
896 	char *desc = NULL;
897 	u16 frame_sz;
898 	char *func_str = NULL;
899 
900 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
901 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
902 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
903 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
904 		return;
905 
906 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
907 		return;
908 
909 	switch (ioc_status) {
910 
911 /****************************************************************************
912 *  Common IOCStatus values for all replies
913 ****************************************************************************/
914 
915 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
916 		desc = "invalid function";
917 		break;
918 	case MPI2_IOCSTATUS_BUSY:
919 		desc = "busy";
920 		break;
921 	case MPI2_IOCSTATUS_INVALID_SGL:
922 		desc = "invalid sgl";
923 		break;
924 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
925 		desc = "internal error";
926 		break;
927 	case MPI2_IOCSTATUS_INVALID_VPID:
928 		desc = "invalid vpid";
929 		break;
930 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
931 		desc = "insufficient resources";
932 		break;
933 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
934 		desc = "insufficient power";
935 		break;
936 	case MPI2_IOCSTATUS_INVALID_FIELD:
937 		desc = "invalid field";
938 		break;
939 	case MPI2_IOCSTATUS_INVALID_STATE:
940 		desc = "invalid state";
941 		break;
942 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
943 		desc = "op state not supported";
944 		break;
945 
946 /****************************************************************************
947 *  Config IOCStatus values
948 ****************************************************************************/
949 
950 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
951 		desc = "config invalid action";
952 		break;
953 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
954 		desc = "config invalid type";
955 		break;
956 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
957 		desc = "config invalid page";
958 		break;
959 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
960 		desc = "config invalid data";
961 		break;
962 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
963 		desc = "config no defaults";
964 		break;
965 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
966 		desc = "config cant commit";
967 		break;
968 
969 /****************************************************************************
970 *  SCSI IO Reply
971 ****************************************************************************/
972 
973 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
974 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
975 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
976 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
977 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
978 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
979 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
980 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
981 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
982 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
983 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
984 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
985 		break;
986 
987 /****************************************************************************
988 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
989 ****************************************************************************/
990 
991 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
992 		desc = "eedp guard error";
993 		break;
994 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
995 		desc = "eedp ref tag error";
996 		break;
997 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
998 		desc = "eedp app tag error";
999 		break;
1000 
1001 /****************************************************************************
1002 *  SCSI Target values
1003 ****************************************************************************/
1004 
1005 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1006 		desc = "target invalid io index";
1007 		break;
1008 	case MPI2_IOCSTATUS_TARGET_ABORTED:
1009 		desc = "target aborted";
1010 		break;
1011 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1012 		desc = "target no conn retryable";
1013 		break;
1014 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1015 		desc = "target no connection";
1016 		break;
1017 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1018 		desc = "target xfer count mismatch";
1019 		break;
1020 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1021 		desc = "target data offset error";
1022 		break;
1023 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1024 		desc = "target too much write data";
1025 		break;
1026 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1027 		desc = "target iu too short";
1028 		break;
1029 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1030 		desc = "target ack nak timeout";
1031 		break;
1032 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1033 		desc = "target nak received";
1034 		break;
1035 
1036 /****************************************************************************
1037 *  Serial Attached SCSI values
1038 ****************************************************************************/
1039 
1040 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1041 		desc = "smp request failed";
1042 		break;
1043 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1044 		desc = "smp data overrun";
1045 		break;
1046 
1047 /****************************************************************************
1048 *  Diagnostic Buffer Post / Diagnostic Release values
1049 ****************************************************************************/
1050 
1051 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1052 		desc = "diagnostic released";
1053 		break;
1054 	default:
1055 		break;
1056 	}
1057 
1058 	if (!desc)
1059 		return;
1060 
1061 	switch (request_hdr->Function) {
1062 	case MPI2_FUNCTION_CONFIG:
1063 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1064 		func_str = "config_page";
1065 		break;
1066 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
1067 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1068 		func_str = "task_mgmt";
1069 		break;
1070 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1071 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1072 		func_str = "sas_iounit_ctl";
1073 		break;
1074 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1075 		frame_sz = sizeof(Mpi2SepRequest_t);
1076 		func_str = "enclosure";
1077 		break;
1078 	case MPI2_FUNCTION_IOC_INIT:
1079 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
1080 		func_str = "ioc_init";
1081 		break;
1082 	case MPI2_FUNCTION_PORT_ENABLE:
1083 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
1084 		func_str = "port_enable";
1085 		break;
1086 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
1087 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1088 		func_str = "smp_passthru";
1089 		break;
1090 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
1091 		frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1092 		    ioc->sge_size;
1093 		func_str = "nvme_encapsulated";
1094 		break;
1095 	default:
1096 		frame_sz = 32;
1097 		func_str = "unknown";
1098 		break;
1099 	}
1100 
1101 	ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1102 		 desc, ioc_status, request_hdr, func_str);
1103 
1104 	_debug_dump_mf(request_hdr, frame_sz/4);
1105 }
1106 
1107 /**
1108  * _base_display_event_data - verbose translation of firmware asyn events
1109  * @ioc: per adapter object
1110  * @mpi_reply: reply mf payload returned from firmware
1111  */
1112 static void
1113 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1114 	Mpi2EventNotificationReply_t *mpi_reply)
1115 {
1116 	char *desc = NULL;
1117 	u16 event;
1118 
1119 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1120 		return;
1121 
1122 	event = le16_to_cpu(mpi_reply->Event);
1123 
1124 	switch (event) {
1125 	case MPI2_EVENT_LOG_DATA:
1126 		desc = "Log Data";
1127 		break;
1128 	case MPI2_EVENT_STATE_CHANGE:
1129 		desc = "Status Change";
1130 		break;
1131 	case MPI2_EVENT_HARD_RESET_RECEIVED:
1132 		desc = "Hard Reset Received";
1133 		break;
1134 	case MPI2_EVENT_EVENT_CHANGE:
1135 		desc = "Event Change";
1136 		break;
1137 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1138 		desc = "Device Status Change";
1139 		break;
1140 	case MPI2_EVENT_IR_OPERATION_STATUS:
1141 		if (!ioc->hide_ir_msg)
1142 			desc = "IR Operation Status";
1143 		break;
1144 	case MPI2_EVENT_SAS_DISCOVERY:
1145 	{
1146 		Mpi2EventDataSasDiscovery_t *event_data =
1147 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1148 		ioc_info(ioc, "Discovery: (%s)",
1149 			 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1150 			 "start" : "stop");
1151 		if (event_data->DiscoveryStatus)
1152 			pr_cont(" discovery_status(0x%08x)",
1153 			    le32_to_cpu(event_data->DiscoveryStatus));
1154 		pr_cont("\n");
1155 		return;
1156 	}
1157 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1158 		desc = "SAS Broadcast Primitive";
1159 		break;
1160 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1161 		desc = "SAS Init Device Status Change";
1162 		break;
1163 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1164 		desc = "SAS Init Table Overflow";
1165 		break;
1166 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1167 		desc = "SAS Topology Change List";
1168 		break;
1169 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1170 		desc = "SAS Enclosure Device Status Change";
1171 		break;
1172 	case MPI2_EVENT_IR_VOLUME:
1173 		if (!ioc->hide_ir_msg)
1174 			desc = "IR Volume";
1175 		break;
1176 	case MPI2_EVENT_IR_PHYSICAL_DISK:
1177 		if (!ioc->hide_ir_msg)
1178 			desc = "IR Physical Disk";
1179 		break;
1180 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1181 		if (!ioc->hide_ir_msg)
1182 			desc = "IR Configuration Change List";
1183 		break;
1184 	case MPI2_EVENT_LOG_ENTRY_ADDED:
1185 		if (!ioc->hide_ir_msg)
1186 			desc = "Log Entry Added";
1187 		break;
1188 	case MPI2_EVENT_TEMP_THRESHOLD:
1189 		desc = "Temperature Threshold";
1190 		break;
1191 	case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1192 		desc = "Cable Event";
1193 		break;
1194 	case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1195 		desc = "SAS Device Discovery Error";
1196 		break;
1197 	case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1198 		desc = "PCIE Device Status Change";
1199 		break;
1200 	case MPI2_EVENT_PCIE_ENUMERATION:
1201 	{
1202 		Mpi26EventDataPCIeEnumeration_t *event_data =
1203 			(Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1204 		ioc_info(ioc, "PCIE Enumeration: (%s)",
1205 			 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1206 			 "start" : "stop");
1207 		if (event_data->EnumerationStatus)
1208 			pr_cont("enumeration_status(0x%08x)",
1209 				le32_to_cpu(event_data->EnumerationStatus));
1210 		pr_cont("\n");
1211 		return;
1212 	}
1213 	case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1214 		desc = "PCIE Topology Change List";
1215 		break;
1216 	}
1217 
1218 	if (!desc)
1219 		return;
1220 
1221 	ioc_info(ioc, "%s\n", desc);
1222 }
1223 
1224 /**
1225  * _base_sas_log_info - verbose translation of firmware log info
1226  * @ioc: per adapter object
1227  * @log_info: log info
1228  */
1229 static void
1230 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1231 {
1232 	union loginfo_type {
1233 		u32	loginfo;
1234 		struct {
1235 			u32	subcode:16;
1236 			u32	code:8;
1237 			u32	originator:4;
1238 			u32	bus_type:4;
1239 		} dw;
1240 	};
1241 	union loginfo_type sas_loginfo;
1242 	char *originator_str = NULL;
1243 
1244 	sas_loginfo.loginfo = log_info;
1245 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1246 		return;
1247 
1248 	/* each nexus loss loginfo */
1249 	if (log_info == 0x31170000)
1250 		return;
1251 
1252 	/* eat the loginfos associated with task aborts */
1253 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1254 	    0x31140000 || log_info == 0x31130000))
1255 		return;
1256 
1257 	switch (sas_loginfo.dw.originator) {
1258 	case 0:
1259 		originator_str = "IOP";
1260 		break;
1261 	case 1:
1262 		originator_str = "PL";
1263 		break;
1264 	case 2:
1265 		if (!ioc->hide_ir_msg)
1266 			originator_str = "IR";
1267 		else
1268 			originator_str = "WarpDrive";
1269 		break;
1270 	}
1271 
1272 	ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1273 		 log_info,
1274 		 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1275 }
1276 
1277 /**
1278  * _base_display_reply_info -
1279  * @ioc: per adapter object
1280  * @smid: system request message index
1281  * @msix_index: MSIX table index supplied by the OS
1282  * @reply: reply message frame(lower 32bit addr)
1283  */
1284 static void
1285 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1286 	u32 reply)
1287 {
1288 	MPI2DefaultReply_t *mpi_reply;
1289 	u16 ioc_status;
1290 	u32 loginfo = 0;
1291 
1292 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1293 	if (unlikely(!mpi_reply)) {
1294 		ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1295 			__FILE__, __LINE__, __func__);
1296 		return;
1297 	}
1298 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1299 
1300 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1301 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
1302 		_base_sas_ioc_info(ioc , mpi_reply,
1303 		   mpt3sas_base_get_msg_frame(ioc, smid));
1304 	}
1305 
1306 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1307 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1308 		_base_sas_log_info(ioc, loginfo);
1309 	}
1310 
1311 	if (ioc_status || loginfo) {
1312 		ioc_status &= MPI2_IOCSTATUS_MASK;
1313 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1314 	}
1315 }
1316 
1317 /**
1318  * mpt3sas_base_done - base internal command completion routine
1319  * @ioc: per adapter object
1320  * @smid: system request message index
1321  * @msix_index: MSIX table index supplied by the OS
1322  * @reply: reply message frame(lower 32bit addr)
1323  *
1324  * Return:
1325  * 1 meaning mf should be freed from _base_interrupt
1326  * 0 means the mf is freed from this function.
1327  */
1328 u8
1329 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1330 	u32 reply)
1331 {
1332 	MPI2DefaultReply_t *mpi_reply;
1333 
1334 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1335 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1336 		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1337 
1338 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1339 		return 1;
1340 
1341 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1342 	if (mpi_reply) {
1343 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1344 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1345 	}
1346 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1347 
1348 	complete(&ioc->base_cmds.done);
1349 	return 1;
1350 }
1351 
1352 /**
1353  * _base_async_event - main callback handler for firmware asyn events
1354  * @ioc: per adapter object
1355  * @msix_index: MSIX table index supplied by the OS
1356  * @reply: reply message frame(lower 32bit addr)
1357  *
1358  * Return:
1359  * 1 meaning mf should be freed from _base_interrupt
1360  * 0 means the mf is freed from this function.
1361  */
1362 static u8
1363 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1364 {
1365 	Mpi2EventNotificationReply_t *mpi_reply;
1366 	Mpi2EventAckRequest_t *ack_request;
1367 	u16 smid;
1368 	struct _event_ack_list *delayed_event_ack;
1369 
1370 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1371 	if (!mpi_reply)
1372 		return 1;
1373 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1374 		return 1;
1375 
1376 	_base_display_event_data(ioc, mpi_reply);
1377 
1378 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1379 		goto out;
1380 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1381 	if (!smid) {
1382 		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1383 					GFP_ATOMIC);
1384 		if (!delayed_event_ack)
1385 			goto out;
1386 		INIT_LIST_HEAD(&delayed_event_ack->list);
1387 		delayed_event_ack->Event = mpi_reply->Event;
1388 		delayed_event_ack->EventContext = mpi_reply->EventContext;
1389 		list_add_tail(&delayed_event_ack->list,
1390 				&ioc->delayed_event_ack_list);
1391 		dewtprintk(ioc,
1392 			   ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1393 				    le16_to_cpu(mpi_reply->Event)));
1394 		goto out;
1395 	}
1396 
1397 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1398 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1399 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1400 	ack_request->Event = mpi_reply->Event;
1401 	ack_request->EventContext = mpi_reply->EventContext;
1402 	ack_request->VF_ID = 0;  /* TODO */
1403 	ack_request->VP_ID = 0;
1404 	ioc->put_smid_default(ioc, smid);
1405 
1406  out:
1407 
1408 	/* scsih callback handler */
1409 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1410 
1411 	/* ctl callback handler */
1412 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1413 
1414 	return 1;
1415 }
1416 
1417 static struct scsiio_tracker *
1418 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1419 {
1420 	struct scsi_cmnd *cmd;
1421 
1422 	if (WARN_ON(!smid) ||
1423 	    WARN_ON(smid >= ioc->hi_priority_smid))
1424 		return NULL;
1425 
1426 	cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1427 	if (cmd)
1428 		return scsi_cmd_priv(cmd);
1429 
1430 	return NULL;
1431 }
1432 
1433 /**
1434  * _base_get_cb_idx - obtain the callback index
1435  * @ioc: per adapter object
1436  * @smid: system request message index
1437  *
1438  * Return: callback index.
1439  */
1440 static u8
1441 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1442 {
1443 	int i;
1444 	u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1445 	u8 cb_idx = 0xFF;
1446 
1447 	if (smid < ioc->hi_priority_smid) {
1448 		struct scsiio_tracker *st;
1449 
1450 		if (smid < ctl_smid) {
1451 			st = _get_st_from_smid(ioc, smid);
1452 			if (st)
1453 				cb_idx = st->cb_idx;
1454 		} else if (smid == ctl_smid)
1455 			cb_idx = ioc->ctl_cb_idx;
1456 	} else if (smid < ioc->internal_smid) {
1457 		i = smid - ioc->hi_priority_smid;
1458 		cb_idx = ioc->hpr_lookup[i].cb_idx;
1459 	} else if (smid <= ioc->hba_queue_depth) {
1460 		i = smid - ioc->internal_smid;
1461 		cb_idx = ioc->internal_lookup[i].cb_idx;
1462 	}
1463 	return cb_idx;
1464 }
1465 
1466 /**
1467  * mpt3sas_base_mask_interrupts - disable interrupts
1468  * @ioc: per adapter object
1469  *
1470  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1471  */
1472 void
1473 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1474 {
1475 	u32 him_register;
1476 
1477 	ioc->mask_interrupts = 1;
1478 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1479 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1480 	writel(him_register, &ioc->chip->HostInterruptMask);
1481 	ioc->base_readl(&ioc->chip->HostInterruptMask);
1482 }
1483 
1484 /**
1485  * mpt3sas_base_unmask_interrupts - enable interrupts
1486  * @ioc: per adapter object
1487  *
1488  * Enabling only Reply Interrupts
1489  */
1490 void
1491 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1492 {
1493 	u32 him_register;
1494 
1495 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1496 	him_register &= ~MPI2_HIM_RIM;
1497 	writel(him_register, &ioc->chip->HostInterruptMask);
1498 	ioc->mask_interrupts = 0;
1499 }
1500 
1501 union reply_descriptor {
1502 	u64 word;
1503 	struct {
1504 		u32 low;
1505 		u32 high;
1506 	} u;
1507 };
1508 
1509 static u32 base_mod64(u64 dividend, u32 divisor)
1510 {
1511 	u32 remainder;
1512 
1513 	if (!divisor)
1514 		pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1515 	remainder = do_div(dividend, divisor);
1516 	return remainder;
1517 }
1518 
1519 /**
1520  * _base_process_reply_queue - Process reply descriptors from reply
1521  *		descriptor post queue.
1522  * @reply_q: per IRQ's reply queue object.
1523  *
1524  * Return: number of reply descriptors processed from reply
1525  *		descriptor queue.
1526  */
1527 static int
1528 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1529 {
1530 	union reply_descriptor rd;
1531 	u64 completed_cmds;
1532 	u8 request_descript_type;
1533 	u16 smid;
1534 	u8 cb_idx;
1535 	u32 reply;
1536 	u8 msix_index = reply_q->msix_index;
1537 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1538 	Mpi2ReplyDescriptorsUnion_t *rpf;
1539 	u8 rc;
1540 
1541 	completed_cmds = 0;
1542 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
1543 		return completed_cmds;
1544 
1545 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1546 	request_descript_type = rpf->Default.ReplyFlags
1547 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1548 	if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1549 		atomic_dec(&reply_q->busy);
1550 		return completed_cmds;
1551 	}
1552 
1553 	cb_idx = 0xFF;
1554 	do {
1555 		rd.word = le64_to_cpu(rpf->Words);
1556 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1557 			goto out;
1558 		reply = 0;
1559 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1560 		if (request_descript_type ==
1561 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1562 		    request_descript_type ==
1563 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1564 		    request_descript_type ==
1565 		    MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1566 			cb_idx = _base_get_cb_idx(ioc, smid);
1567 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1568 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
1569 				rc = mpt_callbacks[cb_idx](ioc, smid,
1570 				    msix_index, 0);
1571 				if (rc)
1572 					mpt3sas_base_free_smid(ioc, smid);
1573 			}
1574 		} else if (request_descript_type ==
1575 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1576 			reply = le32_to_cpu(
1577 			    rpf->AddressReply.ReplyFrameAddress);
1578 			if (reply > ioc->reply_dma_max_address ||
1579 			    reply < ioc->reply_dma_min_address)
1580 				reply = 0;
1581 			if (smid) {
1582 				cb_idx = _base_get_cb_idx(ioc, smid);
1583 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1584 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1585 					rc = mpt_callbacks[cb_idx](ioc, smid,
1586 					    msix_index, reply);
1587 					if (reply)
1588 						_base_display_reply_info(ioc,
1589 						    smid, msix_index, reply);
1590 					if (rc)
1591 						mpt3sas_base_free_smid(ioc,
1592 						    smid);
1593 				}
1594 			} else {
1595 				_base_async_event(ioc, msix_index, reply);
1596 			}
1597 
1598 			/* reply free queue handling */
1599 			if (reply) {
1600 				ioc->reply_free_host_index =
1601 				    (ioc->reply_free_host_index ==
1602 				    (ioc->reply_free_queue_depth - 1)) ?
1603 				    0 : ioc->reply_free_host_index + 1;
1604 				ioc->reply_free[ioc->reply_free_host_index] =
1605 				    cpu_to_le32(reply);
1606 				if (ioc->is_mcpu_endpoint)
1607 					_base_clone_reply_to_sys_mem(ioc,
1608 						reply,
1609 						ioc->reply_free_host_index);
1610 				writel(ioc->reply_free_host_index,
1611 				    &ioc->chip->ReplyFreeHostIndex);
1612 			}
1613 		}
1614 
1615 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1616 		reply_q->reply_post_host_index =
1617 		    (reply_q->reply_post_host_index ==
1618 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1619 		    reply_q->reply_post_host_index + 1;
1620 		request_descript_type =
1621 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1622 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1623 		completed_cmds++;
1624 		/* Update the reply post host index after continuously
1625 		 * processing the threshold number of Reply Descriptors.
1626 		 * So that FW can find enough entries to post the Reply
1627 		 * Descriptors in the reply descriptor post queue.
1628 		 */
1629 		if (completed_cmds >= ioc->thresh_hold) {
1630 			if (ioc->combined_reply_queue) {
1631 				writel(reply_q->reply_post_host_index |
1632 						((msix_index  & 7) <<
1633 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1634 				    ioc->replyPostRegisterIndex[msix_index/8]);
1635 			} else {
1636 				writel(reply_q->reply_post_host_index |
1637 						(msix_index <<
1638 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1639 						&ioc->chip->ReplyPostHostIndex);
1640 			}
1641 			if (!reply_q->irq_poll_scheduled) {
1642 				reply_q->irq_poll_scheduled = true;
1643 				irq_poll_sched(&reply_q->irqpoll);
1644 			}
1645 			atomic_dec(&reply_q->busy);
1646 			return completed_cmds;
1647 		}
1648 		if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1649 			goto out;
1650 		if (!reply_q->reply_post_host_index)
1651 			rpf = reply_q->reply_post_free;
1652 		else
1653 			rpf++;
1654 	} while (1);
1655 
1656  out:
1657 
1658 	if (!completed_cmds) {
1659 		atomic_dec(&reply_q->busy);
1660 		return completed_cmds;
1661 	}
1662 
1663 	if (ioc->is_warpdrive) {
1664 		writel(reply_q->reply_post_host_index,
1665 		ioc->reply_post_host_index[msix_index]);
1666 		atomic_dec(&reply_q->busy);
1667 		return completed_cmds;
1668 	}
1669 
1670 	/* Update Reply Post Host Index.
1671 	 * For those HBA's which support combined reply queue feature
1672 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1673 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1674 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1675 	 * 2. Then update this register with new reply host index value
1676 	 *    in ReplyPostIndex field and the MSIxIndex field with
1677 	 *    msix_index value reduced to a value between 0 and 7,
1678 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1679 	 *    Host Index Register supports 8 MSI-X vectors.
1680 	 *
1681 	 * For other HBA's just update the Reply Post Host Index register with
1682 	 * new reply host index value in ReplyPostIndex Field and msix_index
1683 	 * value in MSIxIndex field.
1684 	 */
1685 	if (ioc->combined_reply_queue)
1686 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1687 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1688 			ioc->replyPostRegisterIndex[msix_index/8]);
1689 	else
1690 		writel(reply_q->reply_post_host_index | (msix_index <<
1691 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1692 			&ioc->chip->ReplyPostHostIndex);
1693 	atomic_dec(&reply_q->busy);
1694 	return completed_cmds;
1695 }
1696 
1697 /**
1698  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1699  * @irq: irq number (not used)
1700  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1701  *
1702  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1703  */
1704 static irqreturn_t
1705 _base_interrupt(int irq, void *bus_id)
1706 {
1707 	struct adapter_reply_queue *reply_q = bus_id;
1708 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1709 
1710 	if (ioc->mask_interrupts)
1711 		return IRQ_NONE;
1712 	if (reply_q->irq_poll_scheduled)
1713 		return IRQ_HANDLED;
1714 	return ((_base_process_reply_queue(reply_q) > 0) ?
1715 			IRQ_HANDLED : IRQ_NONE);
1716 }
1717 
1718 /**
1719  * _base_irqpoll - IRQ poll callback handler
1720  * @irqpoll: irq_poll object
1721  * @budget: irq poll weight
1722  *
1723  * returns number of reply descriptors processed
1724  */
1725 static int
1726 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1727 {
1728 	struct adapter_reply_queue *reply_q;
1729 	int num_entries = 0;
1730 
1731 	reply_q = container_of(irqpoll, struct adapter_reply_queue,
1732 			irqpoll);
1733 	if (reply_q->irq_line_enable) {
1734 		disable_irq_nosync(reply_q->os_irq);
1735 		reply_q->irq_line_enable = false;
1736 	}
1737 	num_entries = _base_process_reply_queue(reply_q);
1738 	if (num_entries < budget) {
1739 		irq_poll_complete(irqpoll);
1740 		reply_q->irq_poll_scheduled = false;
1741 		reply_q->irq_line_enable = true;
1742 		enable_irq(reply_q->os_irq);
1743 	}
1744 
1745 	return num_entries;
1746 }
1747 
1748 /**
1749  * _base_init_irqpolls - initliaze IRQ polls
1750  * @ioc: per adapter object
1751  *
1752  * returns nothing
1753  */
1754 static void
1755 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1756 {
1757 	struct adapter_reply_queue *reply_q, *next;
1758 
1759 	if (list_empty(&ioc->reply_queue_list))
1760 		return;
1761 
1762 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1763 		irq_poll_init(&reply_q->irqpoll,
1764 			ioc->hba_queue_depth/4, _base_irqpoll);
1765 		reply_q->irq_poll_scheduled = false;
1766 		reply_q->irq_line_enable = true;
1767 		reply_q->os_irq = pci_irq_vector(ioc->pdev,
1768 		    reply_q->msix_index);
1769 	}
1770 }
1771 
1772 /**
1773  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1774  * @ioc: per adapter object
1775  *
1776  * Return: Whether or not MSI/X is enabled.
1777  */
1778 static inline int
1779 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1780 {
1781 	return (ioc->facts.IOCCapabilities &
1782 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1783 }
1784 
1785 /**
1786  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1787  * @ioc: per adapter object
1788  * @poll: poll over reply descriptor pools incase interrupt for
1789  *		timed-out SCSI command got delayed
1790  * Context: non ISR conext
1791  *
1792  * Called when a Task Management request has completed.
1793  */
1794 void
1795 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1796 {
1797 	struct adapter_reply_queue *reply_q;
1798 
1799 	/* If MSIX capability is turned off
1800 	 * then multi-queues are not enabled
1801 	 */
1802 	if (!_base_is_controller_msix_enabled(ioc))
1803 		return;
1804 
1805 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1806 		if (ioc->shost_recovery || ioc->remove_host ||
1807 				ioc->pci_error_recovery)
1808 			return;
1809 		/* TMs are on msix_index == 0 */
1810 		if (reply_q->msix_index == 0)
1811 			continue;
1812 		synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1813 		if (reply_q->irq_poll_scheduled) {
1814 			/* Calling irq_poll_disable will wait for any pending
1815 			 * callbacks to have completed.
1816 			 */
1817 			irq_poll_disable(&reply_q->irqpoll);
1818 			irq_poll_enable(&reply_q->irqpoll);
1819 			/* check how the scheduled poll has ended,
1820 			 * clean up only if necessary
1821 			 */
1822 			if (reply_q->irq_poll_scheduled) {
1823 				reply_q->irq_poll_scheduled = false;
1824 				reply_q->irq_line_enable = true;
1825 				enable_irq(reply_q->os_irq);
1826 			}
1827 		}
1828 	}
1829 	if (poll)
1830 		_base_process_reply_queue(reply_q);
1831 }
1832 
1833 /**
1834  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1835  * @cb_idx: callback index
1836  */
1837 void
1838 mpt3sas_base_release_callback_handler(u8 cb_idx)
1839 {
1840 	mpt_callbacks[cb_idx] = NULL;
1841 }
1842 
1843 /**
1844  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1845  * @cb_func: callback function
1846  *
1847  * Return: Index of @cb_func.
1848  */
1849 u8
1850 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1851 {
1852 	u8 cb_idx;
1853 
1854 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1855 		if (mpt_callbacks[cb_idx] == NULL)
1856 			break;
1857 
1858 	mpt_callbacks[cb_idx] = cb_func;
1859 	return cb_idx;
1860 }
1861 
1862 /**
1863  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1864  */
1865 void
1866 mpt3sas_base_initialize_callback_handler(void)
1867 {
1868 	u8 cb_idx;
1869 
1870 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1871 		mpt3sas_base_release_callback_handler(cb_idx);
1872 }
1873 
1874 
1875 /**
1876  * _base_build_zero_len_sge - build zero length sg entry
1877  * @ioc: per adapter object
1878  * @paddr: virtual address for SGE
1879  *
1880  * Create a zero length scatter gather entry to insure the IOCs hardware has
1881  * something to use if the target device goes brain dead and tries
1882  * to send data even when none is asked for.
1883  */
1884 static void
1885 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1886 {
1887 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1888 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1889 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1890 	    MPI2_SGE_FLAGS_SHIFT);
1891 	ioc->base_add_sg_single(paddr, flags_length, -1);
1892 }
1893 
1894 /**
1895  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1896  * @paddr: virtual address for SGE
1897  * @flags_length: SGE flags and data transfer length
1898  * @dma_addr: Physical address
1899  */
1900 static void
1901 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1902 {
1903 	Mpi2SGESimple32_t *sgel = paddr;
1904 
1905 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1906 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1907 	sgel->FlagsLength = cpu_to_le32(flags_length);
1908 	sgel->Address = cpu_to_le32(dma_addr);
1909 }
1910 
1911 
1912 /**
1913  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1914  * @paddr: virtual address for SGE
1915  * @flags_length: SGE flags and data transfer length
1916  * @dma_addr: Physical address
1917  */
1918 static void
1919 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1920 {
1921 	Mpi2SGESimple64_t *sgel = paddr;
1922 
1923 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1924 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1925 	sgel->FlagsLength = cpu_to_le32(flags_length);
1926 	sgel->Address = cpu_to_le64(dma_addr);
1927 }
1928 
1929 /**
1930  * _base_get_chain_buffer_tracker - obtain chain tracker
1931  * @ioc: per adapter object
1932  * @scmd: SCSI commands of the IO request
1933  *
1934  * Return: chain tracker from chain_lookup table using key as
1935  * smid and smid's chain_offset.
1936  */
1937 static struct chain_tracker *
1938 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1939 			       struct scsi_cmnd *scmd)
1940 {
1941 	struct chain_tracker *chain_req;
1942 	struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1943 	u16 smid = st->smid;
1944 	u8 chain_offset =
1945 	   atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1946 
1947 	if (chain_offset == ioc->chains_needed_per_io)
1948 		return NULL;
1949 
1950 	chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1951 	atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1952 	return chain_req;
1953 }
1954 
1955 
1956 /**
1957  * _base_build_sg - build generic sg
1958  * @ioc: per adapter object
1959  * @psge: virtual address for SGE
1960  * @data_out_dma: physical address for WRITES
1961  * @data_out_sz: data xfer size for WRITES
1962  * @data_in_dma: physical address for READS
1963  * @data_in_sz: data xfer size for READS
1964  */
1965 static void
1966 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1967 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1968 	size_t data_in_sz)
1969 {
1970 	u32 sgl_flags;
1971 
1972 	if (!data_out_sz && !data_in_sz) {
1973 		_base_build_zero_len_sge(ioc, psge);
1974 		return;
1975 	}
1976 
1977 	if (data_out_sz && data_in_sz) {
1978 		/* WRITE sgel first */
1979 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1980 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1981 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1982 		ioc->base_add_sg_single(psge, sgl_flags |
1983 		    data_out_sz, data_out_dma);
1984 
1985 		/* incr sgel */
1986 		psge += ioc->sge_size;
1987 
1988 		/* READ sgel last */
1989 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1990 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1991 		    MPI2_SGE_FLAGS_END_OF_LIST);
1992 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1993 		ioc->base_add_sg_single(psge, sgl_flags |
1994 		    data_in_sz, data_in_dma);
1995 	} else if (data_out_sz) /* WRITE */ {
1996 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1997 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1998 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1999 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2000 		ioc->base_add_sg_single(psge, sgl_flags |
2001 		    data_out_sz, data_out_dma);
2002 	} else if (data_in_sz) /* READ */ {
2003 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2004 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2005 		    MPI2_SGE_FLAGS_END_OF_LIST);
2006 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2007 		ioc->base_add_sg_single(psge, sgl_flags |
2008 		    data_in_sz, data_in_dma);
2009 	}
2010 }
2011 
2012 /* IEEE format sgls */
2013 
2014 /**
2015  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2016  * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
2017  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2018  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2019  * used to describe a larger data buffer.  If the data buffer is too large to
2020  * describe using the two PRP entriess inside the NVMe message, then PRP1
2021  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2022  * list located elsewhere in memory to describe the remaining data memory
2023  * segments.  The PRP list will be contiguous.
2024  *
2025  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2026  * consists of a list of PRP entries to describe a number of noncontigous
2027  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2028  * however, that this function is only used by the IOCTL call, so the memory
2029  * given will be guaranteed to be contiguous.  There is no need to translate
2030  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2031  * contiguous space that is one page size each.
2032  *
2033  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2034  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2035  * contains the second PRP element if the memory being described fits within 2
2036  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2037  *
2038  * A PRP list pointer contains the address of a PRP list, structured as a linear
2039  * array of PRP entries.  Each PRP entry in this list describes a segment of
2040  * physical memory.
2041  *
2042  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2043  * always points at the beginning of a 4KB physical memory page, and the offset
2044  * describes where within that 4KB page the memory segment begins.  Only the
2045  * first element in a PRP list may contain a non-zero offest, implying that all
2046  * memory segments following the first begin at the start of a 4KB page.
2047  *
2048  * Each PRP element normally describes 4KB of physical memory, with exceptions
2049  * for the first and last elements in the list.  If the memory being described
2050  * by the list begins at a non-zero offset within the first 4KB page, then the
2051  * first PRP element will contain a non-zero offset indicating where the region
2052  * begins within the 4KB page.  The last memory segment may end before the end
2053  * of the 4KB segment, depending upon the overall size of the memory being
2054  * described by the PRP list.
2055  *
2056  * Since PRP entries lack any indication of size, the overall data buffer length
2057  * is used to determine where the end of the data memory buffer is located, and
2058  * how many PRP entries are required to describe it.
2059  *
2060  * @ioc: per adapter object
2061  * @smid: system request message index for getting asscociated SGL
2062  * @nvme_encap_request: the NVMe request msg frame pointer
2063  * @data_out_dma: physical address for WRITES
2064  * @data_out_sz: data xfer size for WRITES
2065  * @data_in_dma: physical address for READS
2066  * @data_in_sz: data xfer size for READS
2067  */
2068 static void
2069 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2070 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2071 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2072 	size_t data_in_sz)
2073 {
2074 	int		prp_size = NVME_PRP_SIZE;
2075 	__le64		*prp_entry, *prp1_entry, *prp2_entry;
2076 	__le64		*prp_page;
2077 	dma_addr_t	prp_entry_dma, prp_page_dma, dma_addr;
2078 	u32		offset, entry_len;
2079 	u32		page_mask_result, page_mask;
2080 	size_t		length;
2081 	struct mpt3sas_nvme_cmd *nvme_cmd =
2082 		(void *)nvme_encap_request->NVMe_Command;
2083 
2084 	/*
2085 	 * Not all commands require a data transfer. If no data, just return
2086 	 * without constructing any PRP.
2087 	 */
2088 	if (!data_in_sz && !data_out_sz)
2089 		return;
2090 	prp1_entry = &nvme_cmd->prp1;
2091 	prp2_entry = &nvme_cmd->prp2;
2092 	prp_entry = prp1_entry;
2093 	/*
2094 	 * For the PRP entries, use the specially allocated buffer of
2095 	 * contiguous memory.
2096 	 */
2097 	prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2098 	prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2099 
2100 	/*
2101 	 * Check if we are within 1 entry of a page boundary we don't
2102 	 * want our first entry to be a PRP List entry.
2103 	 */
2104 	page_mask = ioc->page_size - 1;
2105 	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2106 	if (!page_mask_result) {
2107 		/* Bump up to next page boundary. */
2108 		prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2109 		prp_page_dma = prp_page_dma + prp_size;
2110 	}
2111 
2112 	/*
2113 	 * Set PRP physical pointer, which initially points to the current PRP
2114 	 * DMA memory page.
2115 	 */
2116 	prp_entry_dma = prp_page_dma;
2117 
2118 	/* Get physical address and length of the data buffer. */
2119 	if (data_in_sz) {
2120 		dma_addr = data_in_dma;
2121 		length = data_in_sz;
2122 	} else {
2123 		dma_addr = data_out_dma;
2124 		length = data_out_sz;
2125 	}
2126 
2127 	/* Loop while the length is not zero. */
2128 	while (length) {
2129 		/*
2130 		 * Check if we need to put a list pointer here if we are at
2131 		 * page boundary - prp_size (8 bytes).
2132 		 */
2133 		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2134 		if (!page_mask_result) {
2135 			/*
2136 			 * This is the last entry in a PRP List, so we need to
2137 			 * put a PRP list pointer here.  What this does is:
2138 			 *   - bump the current memory pointer to the next
2139 			 *     address, which will be the next full page.
2140 			 *   - set the PRP Entry to point to that page.  This
2141 			 *     is now the PRP List pointer.
2142 			 *   - bump the PRP Entry pointer the start of the
2143 			 *     next page.  Since all of this PRP memory is
2144 			 *     contiguous, no need to get a new page - it's
2145 			 *     just the next address.
2146 			 */
2147 			prp_entry_dma++;
2148 			*prp_entry = cpu_to_le64(prp_entry_dma);
2149 			prp_entry++;
2150 		}
2151 
2152 		/* Need to handle if entry will be part of a page. */
2153 		offset = dma_addr & page_mask;
2154 		entry_len = ioc->page_size - offset;
2155 
2156 		if (prp_entry == prp1_entry) {
2157 			/*
2158 			 * Must fill in the first PRP pointer (PRP1) before
2159 			 * moving on.
2160 			 */
2161 			*prp1_entry = cpu_to_le64(dma_addr);
2162 
2163 			/*
2164 			 * Now point to the second PRP entry within the
2165 			 * command (PRP2).
2166 			 */
2167 			prp_entry = prp2_entry;
2168 		} else if (prp_entry == prp2_entry) {
2169 			/*
2170 			 * Should the PRP2 entry be a PRP List pointer or just
2171 			 * a regular PRP pointer?  If there is more than one
2172 			 * more page of data, must use a PRP List pointer.
2173 			 */
2174 			if (length > ioc->page_size) {
2175 				/*
2176 				 * PRP2 will contain a PRP List pointer because
2177 				 * more PRP's are needed with this command. The
2178 				 * list will start at the beginning of the
2179 				 * contiguous buffer.
2180 				 */
2181 				*prp2_entry = cpu_to_le64(prp_entry_dma);
2182 
2183 				/*
2184 				 * The next PRP Entry will be the start of the
2185 				 * first PRP List.
2186 				 */
2187 				prp_entry = prp_page;
2188 			} else {
2189 				/*
2190 				 * After this, the PRP Entries are complete.
2191 				 * This command uses 2 PRP's and no PRP list.
2192 				 */
2193 				*prp2_entry = cpu_to_le64(dma_addr);
2194 			}
2195 		} else {
2196 			/*
2197 			 * Put entry in list and bump the addresses.
2198 			 *
2199 			 * After PRP1 and PRP2 are filled in, this will fill in
2200 			 * all remaining PRP entries in a PRP List, one per
2201 			 * each time through the loop.
2202 			 */
2203 			*prp_entry = cpu_to_le64(dma_addr);
2204 			prp_entry++;
2205 			prp_entry_dma++;
2206 		}
2207 
2208 		/*
2209 		 * Bump the phys address of the command's data buffer by the
2210 		 * entry_len.
2211 		 */
2212 		dma_addr += entry_len;
2213 
2214 		/* Decrement length accounting for last partial page. */
2215 		if (entry_len > length)
2216 			length = 0;
2217 		else
2218 			length -= entry_len;
2219 	}
2220 }
2221 
2222 /**
2223  * base_make_prp_nvme -
2224  * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
2225  *
2226  * @ioc:		per adapter object
2227  * @scmd:		SCSI command from the mid-layer
2228  * @mpi_request:	mpi request
2229  * @smid:		msg Index
2230  * @sge_count:		scatter gather element count.
2231  *
2232  * Return:		true: PRPs are built
2233  *			false: IEEE SGLs needs to be built
2234  */
2235 static void
2236 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2237 		struct scsi_cmnd *scmd,
2238 		Mpi25SCSIIORequest_t *mpi_request,
2239 		u16 smid, int sge_count)
2240 {
2241 	int sge_len, num_prp_in_chain = 0;
2242 	Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2243 	__le64 *curr_buff;
2244 	dma_addr_t msg_dma, sge_addr, offset;
2245 	u32 page_mask, page_mask_result;
2246 	struct scatterlist *sg_scmd;
2247 	u32 first_prp_len;
2248 	int data_len = scsi_bufflen(scmd);
2249 	u32 nvme_pg_size;
2250 
2251 	nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2252 	/*
2253 	 * Nvme has a very convoluted prp format.  One prp is required
2254 	 * for each page or partial page. Driver need to split up OS sg_list
2255 	 * entries if it is longer than one page or cross a page
2256 	 * boundary.  Driver also have to insert a PRP list pointer entry as
2257 	 * the last entry in each physical page of the PRP list.
2258 	 *
2259 	 * NOTE: The first PRP "entry" is actually placed in the first
2260 	 * SGL entry in the main message as IEEE 64 format.  The 2nd
2261 	 * entry in the main message is the chain element, and the rest
2262 	 * of the PRP entries are built in the contiguous pcie buffer.
2263 	 */
2264 	page_mask = nvme_pg_size - 1;
2265 
2266 	/*
2267 	 * Native SGL is needed.
2268 	 * Put a chain element in main message frame that points to the first
2269 	 * chain buffer.
2270 	 *
2271 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2272 	 *        a native SGL.
2273 	 */
2274 
2275 	/* Set main message chain element pointer */
2276 	main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2277 	/*
2278 	 * For NVMe the chain element needs to be the 2nd SG entry in the main
2279 	 * message.
2280 	 */
2281 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2282 		((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2283 
2284 	/*
2285 	 * For the PRP entries, use the specially allocated buffer of
2286 	 * contiguous memory.  Normal chain buffers can't be used
2287 	 * because each chain buffer would need to be the size of an OS
2288 	 * page (4k).
2289 	 */
2290 	curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2291 	msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2292 
2293 	main_chain_element->Address = cpu_to_le64(msg_dma);
2294 	main_chain_element->NextChainOffset = 0;
2295 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2296 			MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2297 			MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2298 
2299 	/* Build first prp, sge need not to be page aligned*/
2300 	ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2301 	sg_scmd = scsi_sglist(scmd);
2302 	sge_addr = sg_dma_address(sg_scmd);
2303 	sge_len = sg_dma_len(sg_scmd);
2304 
2305 	offset = sge_addr & page_mask;
2306 	first_prp_len = nvme_pg_size - offset;
2307 
2308 	ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2309 	ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2310 
2311 	data_len -= first_prp_len;
2312 
2313 	if (sge_len > first_prp_len) {
2314 		sge_addr += first_prp_len;
2315 		sge_len -= first_prp_len;
2316 	} else if (data_len && (sge_len == first_prp_len)) {
2317 		sg_scmd = sg_next(sg_scmd);
2318 		sge_addr = sg_dma_address(sg_scmd);
2319 		sge_len = sg_dma_len(sg_scmd);
2320 	}
2321 
2322 	for (;;) {
2323 		offset = sge_addr & page_mask;
2324 
2325 		/* Put PRP pointer due to page boundary*/
2326 		page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2327 		if (unlikely(!page_mask_result)) {
2328 			scmd_printk(KERN_NOTICE,
2329 				scmd, "page boundary curr_buff: 0x%p\n",
2330 				curr_buff);
2331 			msg_dma += 8;
2332 			*curr_buff = cpu_to_le64(msg_dma);
2333 			curr_buff++;
2334 			num_prp_in_chain++;
2335 		}
2336 
2337 		*curr_buff = cpu_to_le64(sge_addr);
2338 		curr_buff++;
2339 		msg_dma += 8;
2340 		num_prp_in_chain++;
2341 
2342 		sge_addr += nvme_pg_size;
2343 		sge_len -= nvme_pg_size;
2344 		data_len -= nvme_pg_size;
2345 
2346 		if (data_len <= 0)
2347 			break;
2348 
2349 		if (sge_len > 0)
2350 			continue;
2351 
2352 		sg_scmd = sg_next(sg_scmd);
2353 		sge_addr = sg_dma_address(sg_scmd);
2354 		sge_len = sg_dma_len(sg_scmd);
2355 	}
2356 
2357 	main_chain_element->Length =
2358 		cpu_to_le32(num_prp_in_chain * sizeof(u64));
2359 	return;
2360 }
2361 
2362 static bool
2363 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2364 	struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2365 {
2366 	u32 data_length = 0;
2367 	bool build_prp = true;
2368 
2369 	data_length = scsi_bufflen(scmd);
2370 	if (pcie_device &&
2371 	    (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2372 		build_prp = false;
2373 		return build_prp;
2374 	}
2375 
2376 	/* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2377 	 * we built IEEE SGL
2378 	 */
2379 	if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2380 		build_prp = false;
2381 
2382 	return build_prp;
2383 }
2384 
2385 /**
2386  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2387  * determine if the driver needs to build a native SGL.  If so, that native
2388  * SGL is built in the special contiguous buffers allocated especially for
2389  * PCIe SGL creation.  If the driver will not build a native SGL, return
2390  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2391  * supports NVMe.
2392  * @ioc: per adapter object
2393  * @mpi_request: mf request pointer
2394  * @smid: system request message index
2395  * @scmd: scsi command
2396  * @pcie_device: points to the PCIe device's info
2397  *
2398  * Return: 0 if native SGL was built, 1 if no SGL was built
2399  */
2400 static int
2401 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2402 	Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2403 	struct _pcie_device *pcie_device)
2404 {
2405 	int sges_left;
2406 
2407 	/* Get the SG list pointer and info. */
2408 	sges_left = scsi_dma_map(scmd);
2409 	if (sges_left < 0) {
2410 		sdev_printk(KERN_ERR, scmd->device,
2411 			"scsi_dma_map failed: request for %d bytes!\n",
2412 			scsi_bufflen(scmd));
2413 		return 1;
2414 	}
2415 
2416 	/* Check if we need to build a native SG list. */
2417 	if (base_is_prp_possible(ioc, pcie_device,
2418 				scmd, sges_left) == 0) {
2419 		/* We built a native SG list, just return. */
2420 		goto out;
2421 	}
2422 
2423 	/*
2424 	 * Build native NVMe PRP.
2425 	 */
2426 	base_make_prp_nvme(ioc, scmd, mpi_request,
2427 			smid, sges_left);
2428 
2429 	return 0;
2430 out:
2431 	scsi_dma_unmap(scmd);
2432 	return 1;
2433 }
2434 
2435 /**
2436  * _base_add_sg_single_ieee - add sg element for IEEE format
2437  * @paddr: virtual address for SGE
2438  * @flags: SGE flags
2439  * @chain_offset: number of 128 byte elements from start of segment
2440  * @length: data transfer length
2441  * @dma_addr: Physical address
2442  */
2443 static void
2444 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2445 	dma_addr_t dma_addr)
2446 {
2447 	Mpi25IeeeSgeChain64_t *sgel = paddr;
2448 
2449 	sgel->Flags = flags;
2450 	sgel->NextChainOffset = chain_offset;
2451 	sgel->Length = cpu_to_le32(length);
2452 	sgel->Address = cpu_to_le64(dma_addr);
2453 }
2454 
2455 /**
2456  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2457  * @ioc: per adapter object
2458  * @paddr: virtual address for SGE
2459  *
2460  * Create a zero length scatter gather entry to insure the IOCs hardware has
2461  * something to use if the target device goes brain dead and tries
2462  * to send data even when none is asked for.
2463  */
2464 static void
2465 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2466 {
2467 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2468 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2469 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2470 
2471 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2472 }
2473 
2474 /**
2475  * _base_build_sg_scmd - main sg creation routine
2476  *		pcie_device is unused here!
2477  * @ioc: per adapter object
2478  * @scmd: scsi command
2479  * @smid: system request message index
2480  * @unused: unused pcie_device pointer
2481  * Context: none.
2482  *
2483  * The main routine that builds scatter gather table from a given
2484  * scsi request sent via the .queuecommand main handler.
2485  *
2486  * Return: 0 success, anything else error
2487  */
2488 static int
2489 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2490 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2491 {
2492 	Mpi2SCSIIORequest_t *mpi_request;
2493 	dma_addr_t chain_dma;
2494 	struct scatterlist *sg_scmd;
2495 	void *sg_local, *chain;
2496 	u32 chain_offset;
2497 	u32 chain_length;
2498 	u32 chain_flags;
2499 	int sges_left;
2500 	u32 sges_in_segment;
2501 	u32 sgl_flags;
2502 	u32 sgl_flags_last_element;
2503 	u32 sgl_flags_end_buffer;
2504 	struct chain_tracker *chain_req;
2505 
2506 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2507 
2508 	/* init scatter gather flags */
2509 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2510 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
2511 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2512 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2513 	    << MPI2_SGE_FLAGS_SHIFT;
2514 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2515 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2516 	    << MPI2_SGE_FLAGS_SHIFT;
2517 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2518 
2519 	sg_scmd = scsi_sglist(scmd);
2520 	sges_left = scsi_dma_map(scmd);
2521 	if (sges_left < 0) {
2522 		sdev_printk(KERN_ERR, scmd->device,
2523 		 "scsi_dma_map failed: request for %d bytes!\n",
2524 		 scsi_bufflen(scmd));
2525 		return -ENOMEM;
2526 	}
2527 
2528 	sg_local = &mpi_request->SGL;
2529 	sges_in_segment = ioc->max_sges_in_main_message;
2530 	if (sges_left <= sges_in_segment)
2531 		goto fill_in_last_segment;
2532 
2533 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2534 	    (sges_in_segment * ioc->sge_size))/4;
2535 
2536 	/* fill in main message segment when there is a chain following */
2537 	while (sges_in_segment) {
2538 		if (sges_in_segment == 1)
2539 			ioc->base_add_sg_single(sg_local,
2540 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
2541 			    sg_dma_address(sg_scmd));
2542 		else
2543 			ioc->base_add_sg_single(sg_local, sgl_flags |
2544 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2545 		sg_scmd = sg_next(sg_scmd);
2546 		sg_local += ioc->sge_size;
2547 		sges_left--;
2548 		sges_in_segment--;
2549 	}
2550 
2551 	/* initializing the chain flags and pointers */
2552 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2553 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2554 	if (!chain_req)
2555 		return -1;
2556 	chain = chain_req->chain_buffer;
2557 	chain_dma = chain_req->chain_buffer_dma;
2558 	do {
2559 		sges_in_segment = (sges_left <=
2560 		    ioc->max_sges_in_chain_message) ? sges_left :
2561 		    ioc->max_sges_in_chain_message;
2562 		chain_offset = (sges_left == sges_in_segment) ?
2563 		    0 : (sges_in_segment * ioc->sge_size)/4;
2564 		chain_length = sges_in_segment * ioc->sge_size;
2565 		if (chain_offset) {
2566 			chain_offset = chain_offset <<
2567 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
2568 			chain_length += ioc->sge_size;
2569 		}
2570 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2571 		    chain_length, chain_dma);
2572 		sg_local = chain;
2573 		if (!chain_offset)
2574 			goto fill_in_last_segment;
2575 
2576 		/* fill in chain segments */
2577 		while (sges_in_segment) {
2578 			if (sges_in_segment == 1)
2579 				ioc->base_add_sg_single(sg_local,
2580 				    sgl_flags_last_element |
2581 				    sg_dma_len(sg_scmd),
2582 				    sg_dma_address(sg_scmd));
2583 			else
2584 				ioc->base_add_sg_single(sg_local, sgl_flags |
2585 				    sg_dma_len(sg_scmd),
2586 				    sg_dma_address(sg_scmd));
2587 			sg_scmd = sg_next(sg_scmd);
2588 			sg_local += ioc->sge_size;
2589 			sges_left--;
2590 			sges_in_segment--;
2591 		}
2592 
2593 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2594 		if (!chain_req)
2595 			return -1;
2596 		chain = chain_req->chain_buffer;
2597 		chain_dma = chain_req->chain_buffer_dma;
2598 	} while (1);
2599 
2600 
2601  fill_in_last_segment:
2602 
2603 	/* fill the last segment */
2604 	while (sges_left) {
2605 		if (sges_left == 1)
2606 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2607 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2608 		else
2609 			ioc->base_add_sg_single(sg_local, sgl_flags |
2610 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2611 		sg_scmd = sg_next(sg_scmd);
2612 		sg_local += ioc->sge_size;
2613 		sges_left--;
2614 	}
2615 
2616 	return 0;
2617 }
2618 
2619 /**
2620  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2621  * @ioc: per adapter object
2622  * @scmd: scsi command
2623  * @smid: system request message index
2624  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2625  * constructed on need.
2626  * Context: none.
2627  *
2628  * The main routine that builds scatter gather table from a given
2629  * scsi request sent via the .queuecommand main handler.
2630  *
2631  * Return: 0 success, anything else error
2632  */
2633 static int
2634 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2635 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2636 {
2637 	Mpi25SCSIIORequest_t *mpi_request;
2638 	dma_addr_t chain_dma;
2639 	struct scatterlist *sg_scmd;
2640 	void *sg_local, *chain;
2641 	u32 chain_offset;
2642 	u32 chain_length;
2643 	int sges_left;
2644 	u32 sges_in_segment;
2645 	u8 simple_sgl_flags;
2646 	u8 simple_sgl_flags_last;
2647 	u8 chain_sgl_flags;
2648 	struct chain_tracker *chain_req;
2649 
2650 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2651 
2652 	/* init scatter gather flags */
2653 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2654 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2655 	simple_sgl_flags_last = simple_sgl_flags |
2656 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2657 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2658 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2659 
2660 	/* Check if we need to build a native SG list. */
2661 	if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2662 			smid, scmd, pcie_device) == 0)) {
2663 		/* We built a native SG list, just return. */
2664 		return 0;
2665 	}
2666 
2667 	sg_scmd = scsi_sglist(scmd);
2668 	sges_left = scsi_dma_map(scmd);
2669 	if (sges_left < 0) {
2670 		sdev_printk(KERN_ERR, scmd->device,
2671 			"scsi_dma_map failed: request for %d bytes!\n",
2672 			scsi_bufflen(scmd));
2673 		return -ENOMEM;
2674 	}
2675 
2676 	sg_local = &mpi_request->SGL;
2677 	sges_in_segment = (ioc->request_sz -
2678 		   offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2679 	if (sges_left <= sges_in_segment)
2680 		goto fill_in_last_segment;
2681 
2682 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2683 	    (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2684 
2685 	/* fill in main message segment when there is a chain following */
2686 	while (sges_in_segment > 1) {
2687 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2688 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2689 		sg_scmd = sg_next(sg_scmd);
2690 		sg_local += ioc->sge_size_ieee;
2691 		sges_left--;
2692 		sges_in_segment--;
2693 	}
2694 
2695 	/* initializing the pointers */
2696 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2697 	if (!chain_req)
2698 		return -1;
2699 	chain = chain_req->chain_buffer;
2700 	chain_dma = chain_req->chain_buffer_dma;
2701 	do {
2702 		sges_in_segment = (sges_left <=
2703 		    ioc->max_sges_in_chain_message) ? sges_left :
2704 		    ioc->max_sges_in_chain_message;
2705 		chain_offset = (sges_left == sges_in_segment) ?
2706 		    0 : sges_in_segment;
2707 		chain_length = sges_in_segment * ioc->sge_size_ieee;
2708 		if (chain_offset)
2709 			chain_length += ioc->sge_size_ieee;
2710 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2711 		    chain_offset, chain_length, chain_dma);
2712 
2713 		sg_local = chain;
2714 		if (!chain_offset)
2715 			goto fill_in_last_segment;
2716 
2717 		/* fill in chain segments */
2718 		while (sges_in_segment) {
2719 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2720 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2721 			sg_scmd = sg_next(sg_scmd);
2722 			sg_local += ioc->sge_size_ieee;
2723 			sges_left--;
2724 			sges_in_segment--;
2725 		}
2726 
2727 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2728 		if (!chain_req)
2729 			return -1;
2730 		chain = chain_req->chain_buffer;
2731 		chain_dma = chain_req->chain_buffer_dma;
2732 	} while (1);
2733 
2734 
2735  fill_in_last_segment:
2736 
2737 	/* fill the last segment */
2738 	while (sges_left > 0) {
2739 		if (sges_left == 1)
2740 			_base_add_sg_single_ieee(sg_local,
2741 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2742 			    sg_dma_address(sg_scmd));
2743 		else
2744 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2745 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2746 		sg_scmd = sg_next(sg_scmd);
2747 		sg_local += ioc->sge_size_ieee;
2748 		sges_left--;
2749 	}
2750 
2751 	return 0;
2752 }
2753 
2754 /**
2755  * _base_build_sg_ieee - build generic sg for IEEE format
2756  * @ioc: per adapter object
2757  * @psge: virtual address for SGE
2758  * @data_out_dma: physical address for WRITES
2759  * @data_out_sz: data xfer size for WRITES
2760  * @data_in_dma: physical address for READS
2761  * @data_in_sz: data xfer size for READS
2762  */
2763 static void
2764 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2765 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2766 	size_t data_in_sz)
2767 {
2768 	u8 sgl_flags;
2769 
2770 	if (!data_out_sz && !data_in_sz) {
2771 		_base_build_zero_len_sge_ieee(ioc, psge);
2772 		return;
2773 	}
2774 
2775 	if (data_out_sz && data_in_sz) {
2776 		/* WRITE sgel first */
2777 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2778 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2779 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2780 		    data_out_dma);
2781 
2782 		/* incr sgel */
2783 		psge += ioc->sge_size_ieee;
2784 
2785 		/* READ sgel last */
2786 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2787 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2788 		    data_in_dma);
2789 	} else if (data_out_sz) /* WRITE */ {
2790 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2791 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2792 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2793 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2794 		    data_out_dma);
2795 	} else if (data_in_sz) /* READ */ {
2796 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2797 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2798 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2799 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2800 		    data_in_dma);
2801 	}
2802 }
2803 
2804 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2805 
2806 /**
2807  * _base_config_dma_addressing - set dma addressing
2808  * @ioc: per adapter object
2809  * @pdev: PCI device struct
2810  *
2811  * Return: 0 for success, non-zero for failure.
2812  */
2813 static int
2814 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2815 {
2816 	struct sysinfo s;
2817 	int dma_mask;
2818 
2819 	if (ioc->is_mcpu_endpoint ||
2820 	    sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
2821 	    dma_get_required_mask(&pdev->dev) <= 32)
2822 		dma_mask = 32;
2823 	/* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2824 	else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
2825 		dma_mask = 63;
2826 	else
2827 		dma_mask = 64;
2828 
2829 	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) ||
2830 	    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)))
2831 		return -ENODEV;
2832 
2833 	if (dma_mask > 32) {
2834 		ioc->base_add_sg_single = &_base_add_sg_single_64;
2835 		ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2836 	} else {
2837 		ioc->base_add_sg_single = &_base_add_sg_single_32;
2838 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2839 	}
2840 
2841 	si_meminfo(&s);
2842 	ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2843 		dma_mask, convert_to_kb(s.totalram));
2844 
2845 	return 0;
2846 }
2847 
2848 /**
2849  * _base_check_enable_msix - checks MSIX capabable.
2850  * @ioc: per adapter object
2851  *
2852  * Check to see if card is capable of MSIX, and set number
2853  * of available msix vectors
2854  */
2855 static int
2856 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2857 {
2858 	int base;
2859 	u16 message_control;
2860 
2861 	/* Check whether controller SAS2008 B0 controller,
2862 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2863 	 */
2864 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2865 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2866 		return -EINVAL;
2867 	}
2868 
2869 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2870 	if (!base) {
2871 		dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2872 		return -EINVAL;
2873 	}
2874 
2875 	/* get msix vector count */
2876 	/* NUMA_IO not supported for older controllers */
2877 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2878 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2879 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2880 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2881 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2882 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2883 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2884 		ioc->msix_vector_count = 1;
2885 	else {
2886 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
2887 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2888 	}
2889 	dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2890 				  ioc->msix_vector_count));
2891 	return 0;
2892 }
2893 
2894 /**
2895  * _base_free_irq - free irq
2896  * @ioc: per adapter object
2897  *
2898  * Freeing respective reply_queue from the list.
2899  */
2900 static void
2901 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2902 {
2903 	struct adapter_reply_queue *reply_q, *next;
2904 
2905 	if (list_empty(&ioc->reply_queue_list))
2906 		return;
2907 
2908 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2909 		list_del(&reply_q->list);
2910 		if (ioc->smp_affinity_enable)
2911 			irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2912 			    reply_q->msix_index), NULL);
2913 		free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2914 			 reply_q);
2915 		kfree(reply_q);
2916 	}
2917 }
2918 
2919 /**
2920  * _base_request_irq - request irq
2921  * @ioc: per adapter object
2922  * @index: msix index into vector table
2923  *
2924  * Inserting respective reply_queue into the list.
2925  */
2926 static int
2927 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2928 {
2929 	struct pci_dev *pdev = ioc->pdev;
2930 	struct adapter_reply_queue *reply_q;
2931 	int r;
2932 
2933 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2934 	if (!reply_q) {
2935 		ioc_err(ioc, "unable to allocate memory %zu!\n",
2936 			sizeof(struct adapter_reply_queue));
2937 		return -ENOMEM;
2938 	}
2939 	reply_q->ioc = ioc;
2940 	reply_q->msix_index = index;
2941 
2942 	atomic_set(&reply_q->busy, 0);
2943 	if (ioc->msix_enable)
2944 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2945 		    ioc->driver_name, ioc->id, index);
2946 	else
2947 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2948 		    ioc->driver_name, ioc->id);
2949 	r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2950 			IRQF_SHARED, reply_q->name, reply_q);
2951 	if (r) {
2952 		pr_err("%s: unable to allocate interrupt %d!\n",
2953 		       reply_q->name, pci_irq_vector(pdev, index));
2954 		kfree(reply_q);
2955 		return -EBUSY;
2956 	}
2957 
2958 	INIT_LIST_HEAD(&reply_q->list);
2959 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2960 	return 0;
2961 }
2962 
2963 /**
2964  * _base_assign_reply_queues - assigning msix index for each cpu
2965  * @ioc: per adapter object
2966  *
2967  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2968  *
2969  * It would nice if we could call irq_set_affinity, however it is not
2970  * an exported symbol
2971  */
2972 static void
2973 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2974 {
2975 	unsigned int cpu, nr_cpus, nr_msix, index = 0;
2976 	struct adapter_reply_queue *reply_q;
2977 	int local_numa_node;
2978 
2979 	if (!_base_is_controller_msix_enabled(ioc))
2980 		return;
2981 
2982 	if (ioc->msix_load_balance)
2983 		return;
2984 
2985 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2986 
2987 	nr_cpus = num_online_cpus();
2988 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2989 					       ioc->facts.MaxMSIxVectors);
2990 	if (!nr_msix)
2991 		return;
2992 
2993 	if (ioc->smp_affinity_enable) {
2994 
2995 		/*
2996 		 * set irq affinity to local numa node for those irqs
2997 		 * corresponding to high iops queues.
2998 		 */
2999 		if (ioc->high_iops_queues) {
3000 			local_numa_node = dev_to_node(&ioc->pdev->dev);
3001 			for (index = 0; index < ioc->high_iops_queues;
3002 			    index++) {
3003 				irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3004 				    index), cpumask_of_node(local_numa_node));
3005 			}
3006 		}
3007 
3008 		list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3009 			const cpumask_t *mask;
3010 
3011 			if (reply_q->msix_index < ioc->high_iops_queues)
3012 				continue;
3013 
3014 			mask = pci_irq_get_affinity(ioc->pdev,
3015 			    reply_q->msix_index);
3016 			if (!mask) {
3017 				ioc_warn(ioc, "no affinity for msi %x\n",
3018 					 reply_q->msix_index);
3019 				goto fall_back;
3020 			}
3021 
3022 			for_each_cpu_and(cpu, mask, cpu_online_mask) {
3023 				if (cpu >= ioc->cpu_msix_table_sz)
3024 					break;
3025 				ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3026 			}
3027 		}
3028 		return;
3029 	}
3030 
3031 fall_back:
3032 	cpu = cpumask_first(cpu_online_mask);
3033 	nr_msix -= ioc->high_iops_queues;
3034 	index = 0;
3035 
3036 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3037 		unsigned int i, group = nr_cpus / nr_msix;
3038 
3039 		if (reply_q->msix_index < ioc->high_iops_queues)
3040 			continue;
3041 
3042 		if (cpu >= nr_cpus)
3043 			break;
3044 
3045 		if (index < nr_cpus % nr_msix)
3046 			group++;
3047 
3048 		for (i = 0 ; i < group ; i++) {
3049 			ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3050 			cpu = cpumask_next(cpu, cpu_online_mask);
3051 		}
3052 		index++;
3053 	}
3054 }
3055 
3056 /**
3057  * _base_check_and_enable_high_iops_queues - enable high iops mode
3058  * @ioc: per adapter object
3059  * @hba_msix_vector_count: msix vectors supported by HBA
3060  *
3061  * Enable high iops queues only if
3062  *  - HBA is a SEA/AERO controller and
3063  *  - MSI-Xs vector supported by the HBA is 128 and
3064  *  - total CPU count in the system >=16 and
3065  *  - loaded driver with default max_msix_vectors module parameter and
3066  *  - system booted in non kdump mode
3067  *
3068  * returns nothing.
3069  */
3070 static void
3071 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3072 		int hba_msix_vector_count)
3073 {
3074 	u16 lnksta, speed;
3075 
3076 	if (perf_mode == MPT_PERF_MODE_IOPS ||
3077 	    perf_mode == MPT_PERF_MODE_LATENCY) {
3078 		ioc->high_iops_queues = 0;
3079 		return;
3080 	}
3081 
3082 	if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3083 
3084 		pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3085 		speed = lnksta & PCI_EXP_LNKSTA_CLS;
3086 
3087 		if (speed < 0x4) {
3088 			ioc->high_iops_queues = 0;
3089 			return;
3090 		}
3091 	}
3092 
3093 	if (!reset_devices && ioc->is_aero_ioc &&
3094 	    hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3095 	    num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3096 	    max_msix_vectors == -1)
3097 		ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3098 	else
3099 		ioc->high_iops_queues = 0;
3100 }
3101 
3102 /**
3103  * _base_disable_msix - disables msix
3104  * @ioc: per adapter object
3105  *
3106  */
3107 static void
3108 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3109 {
3110 	if (!ioc->msix_enable)
3111 		return;
3112 	pci_free_irq_vectors(ioc->pdev);
3113 	ioc->msix_enable = 0;
3114 }
3115 
3116 /**
3117  * _base_alloc_irq_vectors - allocate msix vectors
3118  * @ioc: per adapter object
3119  *
3120  */
3121 static int
3122 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3123 {
3124 	int i, irq_flags = PCI_IRQ_MSIX;
3125 	struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3126 	struct irq_affinity *descp = &desc;
3127 
3128 	if (ioc->smp_affinity_enable)
3129 		irq_flags |= PCI_IRQ_AFFINITY;
3130 	else
3131 		descp = NULL;
3132 
3133 	ioc_info(ioc, " %d %d\n", ioc->high_iops_queues,
3134 	    ioc->reply_queue_count);
3135 
3136 	i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3137 	    ioc->high_iops_queues,
3138 	    ioc->reply_queue_count, irq_flags, descp);
3139 
3140 	return i;
3141 }
3142 
3143 /**
3144  * _base_enable_msix - enables msix, failback to io_apic
3145  * @ioc: per adapter object
3146  *
3147  */
3148 static int
3149 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3150 {
3151 	int r;
3152 	int i, local_max_msix_vectors;
3153 	u8 try_msix = 0;
3154 
3155 	ioc->msix_load_balance = false;
3156 
3157 	if (msix_disable == -1 || msix_disable == 0)
3158 		try_msix = 1;
3159 
3160 	if (!try_msix)
3161 		goto try_ioapic;
3162 
3163 	if (_base_check_enable_msix(ioc) != 0)
3164 		goto try_ioapic;
3165 
3166 	ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3167 	pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3168 		ioc->cpu_count, max_msix_vectors);
3169 	if (ioc->is_aero_ioc)
3170 		_base_check_and_enable_high_iops_queues(ioc,
3171 			ioc->msix_vector_count);
3172 	ioc->reply_queue_count =
3173 		min_t(int, ioc->cpu_count + ioc->high_iops_queues,
3174 		ioc->msix_vector_count);
3175 
3176 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3177 		local_max_msix_vectors = (reset_devices) ? 1 : 8;
3178 	else
3179 		local_max_msix_vectors = max_msix_vectors;
3180 
3181 	if (local_max_msix_vectors > 0)
3182 		ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3183 			ioc->reply_queue_count);
3184 	else if (local_max_msix_vectors == 0)
3185 		goto try_ioapic;
3186 
3187 	/*
3188 	 * Enable msix_load_balance only if combined reply queue mode is
3189 	 * disabled on SAS3 & above generation HBA devices.
3190 	 */
3191 	if (!ioc->combined_reply_queue &&
3192 	    ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3193 		ioc_info(ioc,
3194 		    "combined ReplyQueue is off, Enabling msix load balance\n");
3195 		ioc->msix_load_balance = true;
3196 	}
3197 
3198 	/*
3199 	 * smp affinity setting is not need when msix load balance
3200 	 * is enabled.
3201 	 */
3202 	if (ioc->msix_load_balance)
3203 		ioc->smp_affinity_enable = 0;
3204 
3205 	r = _base_alloc_irq_vectors(ioc);
3206 	if (r < 0) {
3207 		ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3208 		goto try_ioapic;
3209 	}
3210 
3211 	ioc->msix_enable = 1;
3212 	ioc->reply_queue_count = r;
3213 	for (i = 0; i < ioc->reply_queue_count; i++) {
3214 		r = _base_request_irq(ioc, i);
3215 		if (r) {
3216 			_base_free_irq(ioc);
3217 			_base_disable_msix(ioc);
3218 			goto try_ioapic;
3219 		}
3220 	}
3221 
3222 	ioc_info(ioc, "High IOPs queues : %s\n",
3223 			ioc->high_iops_queues ? "enabled" : "disabled");
3224 
3225 	return 0;
3226 
3227 /* failback to io_apic interrupt routing */
3228  try_ioapic:
3229 	ioc->high_iops_queues = 0;
3230 	ioc_info(ioc, "High IOPs queues : disabled\n");
3231 	ioc->reply_queue_count = 1;
3232 	r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3233 	if (r < 0) {
3234 		dfailprintk(ioc,
3235 			    ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3236 				     r));
3237 	} else
3238 		r = _base_request_irq(ioc, 0);
3239 
3240 	return r;
3241 }
3242 
3243 /**
3244  * mpt3sas_base_unmap_resources - free controller resources
3245  * @ioc: per adapter object
3246  */
3247 static void
3248 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3249 {
3250 	struct pci_dev *pdev = ioc->pdev;
3251 
3252 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3253 
3254 	_base_free_irq(ioc);
3255 	_base_disable_msix(ioc);
3256 
3257 	kfree(ioc->replyPostRegisterIndex);
3258 	ioc->replyPostRegisterIndex = NULL;
3259 
3260 
3261 	if (ioc->chip_phys) {
3262 		iounmap(ioc->chip);
3263 		ioc->chip_phys = 0;
3264 	}
3265 
3266 	if (pci_is_enabled(pdev)) {
3267 		pci_release_selected_regions(ioc->pdev, ioc->bars);
3268 		pci_disable_pcie_error_reporting(pdev);
3269 		pci_disable_device(pdev);
3270 	}
3271 }
3272 
3273 static int
3274 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3275 
3276 /**
3277  * _base_check_for_fault_and_issue_reset - check if IOC is in fault state
3278  *     and if it is in fault state then issue diag reset.
3279  * @ioc: per adapter object
3280  *
3281  * Returns: 0 for success, non-zero for failure.
3282  */
3283 static int
3284 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3285 {
3286 	u32 ioc_state;
3287 	int rc = -EFAULT;
3288 
3289 	dinitprintk(ioc, pr_info("%s\n", __func__));
3290 	if (ioc->pci_error_recovery)
3291 		return 0;
3292 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3293 	dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3294 
3295 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3296 		mpt3sas_print_fault_code(ioc, ioc_state &
3297 		    MPI2_DOORBELL_DATA_MASK);
3298 		rc = _base_diag_reset(ioc);
3299 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3300 	    MPI2_IOC_STATE_COREDUMP) {
3301 		mpt3sas_print_coredump_info(ioc, ioc_state &
3302 		     MPI2_DOORBELL_DATA_MASK);
3303 		mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3304 		rc = _base_diag_reset(ioc);
3305 	}
3306 
3307 	return rc;
3308 }
3309 
3310 /**
3311  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3312  * @ioc: per adapter object
3313  *
3314  * Return: 0 for success, non-zero for failure.
3315  */
3316 int
3317 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3318 {
3319 	struct pci_dev *pdev = ioc->pdev;
3320 	u32 memap_sz;
3321 	u32 pio_sz;
3322 	int i, r = 0, rc;
3323 	u64 pio_chip = 0;
3324 	phys_addr_t chip_phys = 0;
3325 	struct adapter_reply_queue *reply_q;
3326 
3327 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3328 
3329 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3330 	if (pci_enable_device_mem(pdev)) {
3331 		ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3332 		ioc->bars = 0;
3333 		return -ENODEV;
3334 	}
3335 
3336 
3337 	if (pci_request_selected_regions(pdev, ioc->bars,
3338 	    ioc->driver_name)) {
3339 		ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3340 		ioc->bars = 0;
3341 		r = -ENODEV;
3342 		goto out_fail;
3343 	}
3344 
3345 /* AER (Advanced Error Reporting) hooks */
3346 	pci_enable_pcie_error_reporting(pdev);
3347 
3348 	pci_set_master(pdev);
3349 
3350 
3351 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
3352 		ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3353 		r = -ENODEV;
3354 		goto out_fail;
3355 	}
3356 
3357 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3358 	     (!memap_sz || !pio_sz); i++) {
3359 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3360 			if (pio_sz)
3361 				continue;
3362 			pio_chip = (u64)pci_resource_start(pdev, i);
3363 			pio_sz = pci_resource_len(pdev, i);
3364 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3365 			if (memap_sz)
3366 				continue;
3367 			ioc->chip_phys = pci_resource_start(pdev, i);
3368 			chip_phys = ioc->chip_phys;
3369 			memap_sz = pci_resource_len(pdev, i);
3370 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3371 		}
3372 	}
3373 
3374 	if (ioc->chip == NULL) {
3375 		ioc_err(ioc,
3376 		    "unable to map adapter memory! or resource not found\n");
3377 		r = -EINVAL;
3378 		goto out_fail;
3379 	}
3380 
3381 	mpt3sas_base_mask_interrupts(ioc);
3382 
3383 	r = _base_get_ioc_facts(ioc);
3384 	if (r) {
3385 		rc = _base_check_for_fault_and_issue_reset(ioc);
3386 		if (rc || (_base_get_ioc_facts(ioc)))
3387 			goto out_fail;
3388 	}
3389 
3390 	if (!ioc->rdpq_array_enable_assigned) {
3391 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3392 		ioc->rdpq_array_enable_assigned = 1;
3393 	}
3394 
3395 	r = _base_enable_msix(ioc);
3396 	if (r)
3397 		goto out_fail;
3398 
3399 	if (!ioc->is_driver_loading)
3400 		_base_init_irqpolls(ioc);
3401 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
3402 	 * revision HBAs and also only when reply queue count is greater than 8
3403 	 */
3404 	if (ioc->combined_reply_queue) {
3405 		/* Determine the Supplemental Reply Post Host Index Registers
3406 		 * Addresse. Supplemental Reply Post Host Index Registers
3407 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3408 		 * each register is at offset bytes of
3409 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3410 		 */
3411 		ioc->replyPostRegisterIndex = kcalloc(
3412 		     ioc->combined_reply_index_count,
3413 		     sizeof(resource_size_t *), GFP_KERNEL);
3414 		if (!ioc->replyPostRegisterIndex) {
3415 			ioc_err(ioc,
3416 			    "allocation for replyPostRegisterIndex failed!\n");
3417 			r = -ENOMEM;
3418 			goto out_fail;
3419 		}
3420 
3421 		for (i = 0; i < ioc->combined_reply_index_count; i++) {
3422 			ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3423 			     ((u8 __force *)&ioc->chip->Doorbell +
3424 			     MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3425 			     (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3426 		}
3427 	}
3428 
3429 	if (ioc->is_warpdrive) {
3430 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3431 		    &ioc->chip->ReplyPostHostIndex;
3432 
3433 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3434 			ioc->reply_post_host_index[i] =
3435 			(resource_size_t __iomem *)
3436 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3437 			* 4)));
3438 	}
3439 
3440 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3441 		pr_info("%s: %s enabled: IRQ %d\n",
3442 			reply_q->name,
3443 			ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3444 			pci_irq_vector(ioc->pdev, reply_q->msix_index));
3445 
3446 	ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3447 		 &chip_phys, ioc->chip, memap_sz);
3448 	ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3449 		 (unsigned long long)pio_chip, pio_sz);
3450 
3451 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
3452 	pci_save_state(pdev);
3453 	return 0;
3454 
3455  out_fail:
3456 	mpt3sas_base_unmap_resources(ioc);
3457 	return r;
3458 }
3459 
3460 /**
3461  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3462  * @ioc: per adapter object
3463  * @smid: system request message index(smid zero is invalid)
3464  *
3465  * Return: virt pointer to message frame.
3466  */
3467 void *
3468 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3469 {
3470 	return (void *)(ioc->request + (smid * ioc->request_sz));
3471 }
3472 
3473 /**
3474  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3475  * @ioc: per adapter object
3476  * @smid: system request message index
3477  *
3478  * Return: virt pointer to sense buffer.
3479  */
3480 void *
3481 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3482 {
3483 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3484 }
3485 
3486 /**
3487  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3488  * @ioc: per adapter object
3489  * @smid: system request message index
3490  *
3491  * Return: phys pointer to the low 32bit address of the sense buffer.
3492  */
3493 __le32
3494 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3495 {
3496 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3497 	    SCSI_SENSE_BUFFERSIZE));
3498 }
3499 
3500 /**
3501  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3502  * @ioc: per adapter object
3503  * @smid: system request message index
3504  *
3505  * Return: virt pointer to a PCIe SGL.
3506  */
3507 void *
3508 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3509 {
3510 	return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3511 }
3512 
3513 /**
3514  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3515  * @ioc: per adapter object
3516  * @smid: system request message index
3517  *
3518  * Return: phys pointer to the address of the PCIe buffer.
3519  */
3520 dma_addr_t
3521 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3522 {
3523 	return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3524 }
3525 
3526 /**
3527  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3528  * @ioc: per adapter object
3529  * @phys_addr: lower 32 physical addr of the reply
3530  *
3531  * Converts 32bit lower physical addr into a virt address.
3532  */
3533 void *
3534 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3535 {
3536 	if (!phys_addr)
3537 		return NULL;
3538 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3539 }
3540 
3541 /**
3542  * _base_get_msix_index - get the msix index
3543  * @ioc: per adapter object
3544  * @scmd: scsi_cmnd object
3545  *
3546  * returns msix index of general reply queues,
3547  * i.e. reply queue on which IO request's reply
3548  * should be posted by the HBA firmware.
3549  */
3550 static inline u8
3551 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3552 	struct scsi_cmnd *scmd)
3553 {
3554 	/* Enables reply_queue load balancing */
3555 	if (ioc->msix_load_balance)
3556 		return ioc->reply_queue_count ?
3557 		    base_mod64(atomic64_add_return(1,
3558 		    &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3559 
3560 	return ioc->cpu_msix_table[raw_smp_processor_id()];
3561 }
3562 
3563 /**
3564  * _base_sdev_nr_inflight_request -get number of inflight requests
3565  *				   of a request queue.
3566  * @q: request_queue object
3567  *
3568  * returns number of inflight request of a request queue.
3569  */
3570 inline unsigned long
3571 _base_sdev_nr_inflight_request(struct request_queue *q)
3572 {
3573 	struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0];
3574 
3575 	return atomic_read(&hctx->nr_active);
3576 }
3577 
3578 
3579 /**
3580  * _base_get_high_iops_msix_index - get the msix index of
3581  *				high iops queues
3582  * @ioc: per adapter object
3583  * @scmd: scsi_cmnd object
3584  *
3585  * Returns: msix index of high iops reply queues.
3586  * i.e. high iops reply queue on which IO request's
3587  * reply should be posted by the HBA firmware.
3588  */
3589 static inline u8
3590 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3591 	struct scsi_cmnd *scmd)
3592 {
3593 	/**
3594 	 * Round robin the IO interrupts among the high iops
3595 	 * reply queues in terms of batch count 16 when outstanding
3596 	 * IOs on the target device is >=8.
3597 	 */
3598 	if (_base_sdev_nr_inflight_request(scmd->device->request_queue) >
3599 	    MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3600 		return base_mod64((
3601 		    atomic64_add_return(1, &ioc->high_iops_outstanding) /
3602 		    MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3603 		    MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3604 
3605 	return _base_get_msix_index(ioc, scmd);
3606 }
3607 
3608 /**
3609  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3610  * @ioc: per adapter object
3611  * @cb_idx: callback index
3612  *
3613  * Return: smid (zero is invalid)
3614  */
3615 u16
3616 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3617 {
3618 	unsigned long flags;
3619 	struct request_tracker *request;
3620 	u16 smid;
3621 
3622 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3623 	if (list_empty(&ioc->internal_free_list)) {
3624 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3625 		ioc_err(ioc, "%s: smid not available\n", __func__);
3626 		return 0;
3627 	}
3628 
3629 	request = list_entry(ioc->internal_free_list.next,
3630 	    struct request_tracker, tracker_list);
3631 	request->cb_idx = cb_idx;
3632 	smid = request->smid;
3633 	list_del(&request->tracker_list);
3634 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3635 	return smid;
3636 }
3637 
3638 /**
3639  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3640  * @ioc: per adapter object
3641  * @cb_idx: callback index
3642  * @scmd: pointer to scsi command object
3643  *
3644  * Return: smid (zero is invalid)
3645  */
3646 u16
3647 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3648 	struct scsi_cmnd *scmd)
3649 {
3650 	struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3651 	unsigned int tag = scmd->request->tag;
3652 	u16 smid;
3653 
3654 	smid = tag + 1;
3655 	request->cb_idx = cb_idx;
3656 	request->smid = smid;
3657 	request->scmd = scmd;
3658 	INIT_LIST_HEAD(&request->chain_list);
3659 	return smid;
3660 }
3661 
3662 /**
3663  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3664  * @ioc: per adapter object
3665  * @cb_idx: callback index
3666  *
3667  * Return: smid (zero is invalid)
3668  */
3669 u16
3670 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3671 {
3672 	unsigned long flags;
3673 	struct request_tracker *request;
3674 	u16 smid;
3675 
3676 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3677 	if (list_empty(&ioc->hpr_free_list)) {
3678 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3679 		return 0;
3680 	}
3681 
3682 	request = list_entry(ioc->hpr_free_list.next,
3683 	    struct request_tracker, tracker_list);
3684 	request->cb_idx = cb_idx;
3685 	smid = request->smid;
3686 	list_del(&request->tracker_list);
3687 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3688 	return smid;
3689 }
3690 
3691 static void
3692 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3693 {
3694 	/*
3695 	 * See _wait_for_commands_to_complete() call with regards to this code.
3696 	 */
3697 	if (ioc->shost_recovery && ioc->pending_io_count) {
3698 		ioc->pending_io_count = scsi_host_busy(ioc->shost);
3699 		if (ioc->pending_io_count == 0)
3700 			wake_up(&ioc->reset_wq);
3701 	}
3702 }
3703 
3704 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3705 			   struct scsiio_tracker *st)
3706 {
3707 	if (WARN_ON(st->smid == 0))
3708 		return;
3709 	st->cb_idx = 0xFF;
3710 	st->direct_io = 0;
3711 	st->scmd = NULL;
3712 	atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3713 	st->smid = 0;
3714 }
3715 
3716 /**
3717  * mpt3sas_base_free_smid - put smid back on free_list
3718  * @ioc: per adapter object
3719  * @smid: system request message index
3720  */
3721 void
3722 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3723 {
3724 	unsigned long flags;
3725 	int i;
3726 
3727 	if (smid < ioc->hi_priority_smid) {
3728 		struct scsiio_tracker *st;
3729 		void *request;
3730 
3731 		st = _get_st_from_smid(ioc, smid);
3732 		if (!st) {
3733 			_base_recovery_check(ioc);
3734 			return;
3735 		}
3736 
3737 		/* Clear MPI request frame */
3738 		request = mpt3sas_base_get_msg_frame(ioc, smid);
3739 		memset(request, 0, ioc->request_sz);
3740 
3741 		mpt3sas_base_clear_st(ioc, st);
3742 		_base_recovery_check(ioc);
3743 		return;
3744 	}
3745 
3746 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3747 	if (smid < ioc->internal_smid) {
3748 		/* hi-priority */
3749 		i = smid - ioc->hi_priority_smid;
3750 		ioc->hpr_lookup[i].cb_idx = 0xFF;
3751 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3752 	} else if (smid <= ioc->hba_queue_depth) {
3753 		/* internal queue */
3754 		i = smid - ioc->internal_smid;
3755 		ioc->internal_lookup[i].cb_idx = 0xFF;
3756 		list_add(&ioc->internal_lookup[i].tracker_list,
3757 		    &ioc->internal_free_list);
3758 	}
3759 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3760 }
3761 
3762 /**
3763  * _base_mpi_ep_writeq - 32 bit write to MMIO
3764  * @b: data payload
3765  * @addr: address in MMIO space
3766  * @writeq_lock: spin lock
3767  *
3768  * This special handling for MPI EP to take care of 32 bit
3769  * environment where its not quarenteed to send the entire word
3770  * in one transfer.
3771  */
3772 static inline void
3773 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3774 					spinlock_t *writeq_lock)
3775 {
3776 	unsigned long flags;
3777 
3778 	spin_lock_irqsave(writeq_lock, flags);
3779 	__raw_writel((u32)(b), addr);
3780 	__raw_writel((u32)(b >> 32), (addr + 4));
3781 	spin_unlock_irqrestore(writeq_lock, flags);
3782 }
3783 
3784 /**
3785  * _base_writeq - 64 bit write to MMIO
3786  * @b: data payload
3787  * @addr: address in MMIO space
3788  * @writeq_lock: spin lock
3789  *
3790  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3791  * care of 32 bit environment where its not quarenteed to send the entire word
3792  * in one transfer.
3793  */
3794 #if defined(writeq) && defined(CONFIG_64BIT)
3795 static inline void
3796 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3797 {
3798 	wmb();
3799 	__raw_writeq(b, addr);
3800 	barrier();
3801 }
3802 #else
3803 static inline void
3804 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3805 {
3806 	_base_mpi_ep_writeq(b, addr, writeq_lock);
3807 }
3808 #endif
3809 
3810 /**
3811  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3812  *                                variable of scsi tracker
3813  * @ioc: per adapter object
3814  * @smid: system request message index
3815  *
3816  * returns msix index.
3817  */
3818 static u8
3819 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3820 {
3821 	struct scsiio_tracker *st = NULL;
3822 
3823 	if (smid < ioc->hi_priority_smid)
3824 		st = _get_st_from_smid(ioc, smid);
3825 
3826 	if (st == NULL)
3827 		return  _base_get_msix_index(ioc, NULL);
3828 
3829 	st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
3830 	return st->msix_io;
3831 }
3832 
3833 /**
3834  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3835  * @ioc: per adapter object
3836  * @smid: system request message index
3837  * @handle: device handle
3838  */
3839 static void
3840 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
3841 	u16 smid, u16 handle)
3842 {
3843 	Mpi2RequestDescriptorUnion_t descriptor;
3844 	u64 *request = (u64 *)&descriptor;
3845 	void *mpi_req_iomem;
3846 	__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3847 
3848 	_clone_sg_entries(ioc, (void *) mfp, smid);
3849 	mpi_req_iomem = (void __force *)ioc->chip +
3850 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3851 	_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3852 					ioc->request_sz);
3853 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3854 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3855 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3856 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3857 	descriptor.SCSIIO.LMID = 0;
3858 	_base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3859 	    &ioc->scsi_lookup_lock);
3860 }
3861 
3862 /**
3863  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3864  * @ioc: per adapter object
3865  * @smid: system request message index
3866  * @handle: device handle
3867  */
3868 static void
3869 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3870 {
3871 	Mpi2RequestDescriptorUnion_t descriptor;
3872 	u64 *request = (u64 *)&descriptor;
3873 
3874 
3875 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3876 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3877 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3878 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3879 	descriptor.SCSIIO.LMID = 0;
3880 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3881 	    &ioc->scsi_lookup_lock);
3882 }
3883 
3884 /**
3885  * _base_put_smid_fast_path - send fast path request to firmware
3886  * @ioc: per adapter object
3887  * @smid: system request message index
3888  * @handle: device handle
3889  */
3890 static void
3891 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3892 	u16 handle)
3893 {
3894 	Mpi2RequestDescriptorUnion_t descriptor;
3895 	u64 *request = (u64 *)&descriptor;
3896 
3897 	descriptor.SCSIIO.RequestFlags =
3898 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3899 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3900 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3901 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3902 	descriptor.SCSIIO.LMID = 0;
3903 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3904 	    &ioc->scsi_lookup_lock);
3905 }
3906 
3907 /**
3908  * _base_put_smid_hi_priority - send Task Management request to firmware
3909  * @ioc: per adapter object
3910  * @smid: system request message index
3911  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3912  */
3913 static void
3914 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3915 	u16 msix_task)
3916 {
3917 	Mpi2RequestDescriptorUnion_t descriptor;
3918 	void *mpi_req_iomem;
3919 	u64 *request;
3920 
3921 	if (ioc->is_mcpu_endpoint) {
3922 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3923 
3924 		/* TBD 256 is offset within sys register. */
3925 		mpi_req_iomem = (void __force *)ioc->chip
3926 					+ MPI_FRAME_START_OFFSET
3927 					+ (smid * ioc->request_sz);
3928 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3929 							ioc->request_sz);
3930 	}
3931 
3932 	request = (u64 *)&descriptor;
3933 
3934 	descriptor.HighPriority.RequestFlags =
3935 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3936 	descriptor.HighPriority.MSIxIndex =  msix_task;
3937 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
3938 	descriptor.HighPriority.LMID = 0;
3939 	descriptor.HighPriority.Reserved1 = 0;
3940 	if (ioc->is_mcpu_endpoint)
3941 		_base_mpi_ep_writeq(*request,
3942 				&ioc->chip->RequestDescriptorPostLow,
3943 				&ioc->scsi_lookup_lock);
3944 	else
3945 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3946 		    &ioc->scsi_lookup_lock);
3947 }
3948 
3949 /**
3950  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3951  *  firmware
3952  * @ioc: per adapter object
3953  * @smid: system request message index
3954  */
3955 void
3956 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3957 {
3958 	Mpi2RequestDescriptorUnion_t descriptor;
3959 	u64 *request = (u64 *)&descriptor;
3960 
3961 	descriptor.Default.RequestFlags =
3962 		MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3963 	descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
3964 	descriptor.Default.SMID = cpu_to_le16(smid);
3965 	descriptor.Default.LMID = 0;
3966 	descriptor.Default.DescriptorTypeDependent = 0;
3967 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3968 	    &ioc->scsi_lookup_lock);
3969 }
3970 
3971 /**
3972  * _base_put_smid_default - Default, primarily used for config pages
3973  * @ioc: per adapter object
3974  * @smid: system request message index
3975  */
3976 static void
3977 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3978 {
3979 	Mpi2RequestDescriptorUnion_t descriptor;
3980 	void *mpi_req_iomem;
3981 	u64 *request;
3982 
3983 	if (ioc->is_mcpu_endpoint) {
3984 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3985 
3986 		_clone_sg_entries(ioc, (void *) mfp, smid);
3987 		/* TBD 256 is offset within sys register */
3988 		mpi_req_iomem = (void __force *)ioc->chip +
3989 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3990 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3991 							ioc->request_sz);
3992 	}
3993 	request = (u64 *)&descriptor;
3994 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3995 	descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3996 	descriptor.Default.SMID = cpu_to_le16(smid);
3997 	descriptor.Default.LMID = 0;
3998 	descriptor.Default.DescriptorTypeDependent = 0;
3999 	if (ioc->is_mcpu_endpoint)
4000 		_base_mpi_ep_writeq(*request,
4001 				&ioc->chip->RequestDescriptorPostLow,
4002 				&ioc->scsi_lookup_lock);
4003 	else
4004 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4005 				&ioc->scsi_lookup_lock);
4006 }
4007 
4008 /**
4009  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4010  *   Atomic Request Descriptor
4011  * @ioc: per adapter object
4012  * @smid: system request message index
4013  * @handle: device handle, unused in this function, for function type match
4014  *
4015  * Return nothing.
4016  */
4017 static void
4018 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4019 	u16 handle)
4020 {
4021 	Mpi26AtomicRequestDescriptor_t descriptor;
4022 	u32 *request = (u32 *)&descriptor;
4023 
4024 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4025 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4026 	descriptor.SMID = cpu_to_le16(smid);
4027 
4028 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4029 }
4030 
4031 /**
4032  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4033  * using Atomic Request Descriptor
4034  * @ioc: per adapter object
4035  * @smid: system request message index
4036  * @handle: device handle, unused in this function, for function type match
4037  * Return nothing
4038  */
4039 static void
4040 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4041 	u16 handle)
4042 {
4043 	Mpi26AtomicRequestDescriptor_t descriptor;
4044 	u32 *request = (u32 *)&descriptor;
4045 
4046 	descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4047 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4048 	descriptor.SMID = cpu_to_le16(smid);
4049 
4050 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4051 }
4052 
4053 /**
4054  * _base_put_smid_hi_priority_atomic - send Task Management request to
4055  * firmware using Atomic Request Descriptor
4056  * @ioc: per adapter object
4057  * @smid: system request message index
4058  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
4059  *
4060  * Return nothing.
4061  */
4062 static void
4063 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4064 	u16 msix_task)
4065 {
4066 	Mpi26AtomicRequestDescriptor_t descriptor;
4067 	u32 *request = (u32 *)&descriptor;
4068 
4069 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4070 	descriptor.MSIxIndex = msix_task;
4071 	descriptor.SMID = cpu_to_le16(smid);
4072 
4073 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4074 }
4075 
4076 /**
4077  * _base_put_smid_default - Default, primarily used for config pages
4078  * use Atomic Request Descriptor
4079  * @ioc: per adapter object
4080  * @smid: system request message index
4081  *
4082  * Return nothing.
4083  */
4084 static void
4085 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4086 {
4087 	Mpi26AtomicRequestDescriptor_t descriptor;
4088 	u32 *request = (u32 *)&descriptor;
4089 
4090 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4091 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4092 	descriptor.SMID = cpu_to_le16(smid);
4093 
4094 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4095 }
4096 
4097 /**
4098  * _base_display_OEMs_branding - Display branding string
4099  * @ioc: per adapter object
4100  */
4101 static void
4102 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4103 {
4104 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4105 		return;
4106 
4107 	switch (ioc->pdev->subsystem_vendor) {
4108 	case PCI_VENDOR_ID_INTEL:
4109 		switch (ioc->pdev->device) {
4110 		case MPI2_MFGPAGE_DEVID_SAS2008:
4111 			switch (ioc->pdev->subsystem_device) {
4112 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
4113 				ioc_info(ioc, "%s\n",
4114 					 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4115 				break;
4116 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
4117 				ioc_info(ioc, "%s\n",
4118 					 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4119 				break;
4120 			case MPT2SAS_INTEL_SSD910_SSDID:
4121 				ioc_info(ioc, "%s\n",
4122 					 MPT2SAS_INTEL_SSD910_BRANDING);
4123 				break;
4124 			default:
4125 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4126 					 ioc->pdev->subsystem_device);
4127 				break;
4128 			}
4129 			break;
4130 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4131 			switch (ioc->pdev->subsystem_device) {
4132 			case MPT2SAS_INTEL_RS25GB008_SSDID:
4133 				ioc_info(ioc, "%s\n",
4134 					 MPT2SAS_INTEL_RS25GB008_BRANDING);
4135 				break;
4136 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
4137 				ioc_info(ioc, "%s\n",
4138 					 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4139 				break;
4140 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
4141 				ioc_info(ioc, "%s\n",
4142 					 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4143 				break;
4144 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
4145 				ioc_info(ioc, "%s\n",
4146 					 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4147 				break;
4148 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
4149 				ioc_info(ioc, "%s\n",
4150 					 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4151 				break;
4152 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
4153 				ioc_info(ioc, "%s\n",
4154 					 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4155 				break;
4156 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
4157 				ioc_info(ioc, "%s\n",
4158 					 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4159 				break;
4160 			default:
4161 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4162 					 ioc->pdev->subsystem_device);
4163 				break;
4164 			}
4165 			break;
4166 		case MPI25_MFGPAGE_DEVID_SAS3008:
4167 			switch (ioc->pdev->subsystem_device) {
4168 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
4169 				ioc_info(ioc, "%s\n",
4170 					 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4171 				break;
4172 
4173 			case MPT3SAS_INTEL_RS3GC008_SSDID:
4174 				ioc_info(ioc, "%s\n",
4175 					 MPT3SAS_INTEL_RS3GC008_BRANDING);
4176 				break;
4177 			case MPT3SAS_INTEL_RS3FC044_SSDID:
4178 				ioc_info(ioc, "%s\n",
4179 					 MPT3SAS_INTEL_RS3FC044_BRANDING);
4180 				break;
4181 			case MPT3SAS_INTEL_RS3UC080_SSDID:
4182 				ioc_info(ioc, "%s\n",
4183 					 MPT3SAS_INTEL_RS3UC080_BRANDING);
4184 				break;
4185 			default:
4186 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4187 					 ioc->pdev->subsystem_device);
4188 				break;
4189 			}
4190 			break;
4191 		default:
4192 			ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4193 				 ioc->pdev->subsystem_device);
4194 			break;
4195 		}
4196 		break;
4197 	case PCI_VENDOR_ID_DELL:
4198 		switch (ioc->pdev->device) {
4199 		case MPI2_MFGPAGE_DEVID_SAS2008:
4200 			switch (ioc->pdev->subsystem_device) {
4201 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4202 				ioc_info(ioc, "%s\n",
4203 					 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4204 				break;
4205 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4206 				ioc_info(ioc, "%s\n",
4207 					 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4208 				break;
4209 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4210 				ioc_info(ioc, "%s\n",
4211 					 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4212 				break;
4213 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4214 				ioc_info(ioc, "%s\n",
4215 					 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4216 				break;
4217 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4218 				ioc_info(ioc, "%s\n",
4219 					 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4220 				break;
4221 			case MPT2SAS_DELL_PERC_H200_SSDID:
4222 				ioc_info(ioc, "%s\n",
4223 					 MPT2SAS_DELL_PERC_H200_BRANDING);
4224 				break;
4225 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4226 				ioc_info(ioc, "%s\n",
4227 					 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4228 				break;
4229 			default:
4230 				ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4231 					 ioc->pdev->subsystem_device);
4232 				break;
4233 			}
4234 			break;
4235 		case MPI25_MFGPAGE_DEVID_SAS3008:
4236 			switch (ioc->pdev->subsystem_device) {
4237 			case MPT3SAS_DELL_12G_HBA_SSDID:
4238 				ioc_info(ioc, "%s\n",
4239 					 MPT3SAS_DELL_12G_HBA_BRANDING);
4240 				break;
4241 			default:
4242 				ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4243 					 ioc->pdev->subsystem_device);
4244 				break;
4245 			}
4246 			break;
4247 		default:
4248 			ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4249 				 ioc->pdev->subsystem_device);
4250 			break;
4251 		}
4252 		break;
4253 	case PCI_VENDOR_ID_CISCO:
4254 		switch (ioc->pdev->device) {
4255 		case MPI25_MFGPAGE_DEVID_SAS3008:
4256 			switch (ioc->pdev->subsystem_device) {
4257 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4258 				ioc_info(ioc, "%s\n",
4259 					 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4260 				break;
4261 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4262 				ioc_info(ioc, "%s\n",
4263 					 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4264 				break;
4265 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4266 				ioc_info(ioc, "%s\n",
4267 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4268 				break;
4269 			default:
4270 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4271 					 ioc->pdev->subsystem_device);
4272 				break;
4273 			}
4274 			break;
4275 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
4276 			switch (ioc->pdev->subsystem_device) {
4277 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4278 				ioc_info(ioc, "%s\n",
4279 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4280 				break;
4281 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4282 				ioc_info(ioc, "%s\n",
4283 					 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4284 				break;
4285 			default:
4286 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4287 					 ioc->pdev->subsystem_device);
4288 				break;
4289 			}
4290 			break;
4291 		default:
4292 			ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4293 				 ioc->pdev->subsystem_device);
4294 			break;
4295 		}
4296 		break;
4297 	case MPT2SAS_HP_3PAR_SSVID:
4298 		switch (ioc->pdev->device) {
4299 		case MPI2_MFGPAGE_DEVID_SAS2004:
4300 			switch (ioc->pdev->subsystem_device) {
4301 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4302 				ioc_info(ioc, "%s\n",
4303 					 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4304 				break;
4305 			default:
4306 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4307 					 ioc->pdev->subsystem_device);
4308 				break;
4309 			}
4310 			break;
4311 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4312 			switch (ioc->pdev->subsystem_device) {
4313 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4314 				ioc_info(ioc, "%s\n",
4315 					 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4316 				break;
4317 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4318 				ioc_info(ioc, "%s\n",
4319 					 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4320 				break;
4321 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4322 				ioc_info(ioc, "%s\n",
4323 					 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4324 				break;
4325 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4326 				ioc_info(ioc, "%s\n",
4327 					 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4328 				break;
4329 			default:
4330 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4331 					 ioc->pdev->subsystem_device);
4332 				break;
4333 			}
4334 			break;
4335 		default:
4336 			ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4337 				 ioc->pdev->subsystem_device);
4338 			break;
4339 		}
4340 	default:
4341 		break;
4342 	}
4343 }
4344 
4345 /**
4346  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4347  *				version from FW Image Header.
4348  * @ioc: per adapter object
4349  *
4350  * Return: 0 for success, non-zero for failure.
4351  */
4352 	static int
4353 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4354 {
4355 	Mpi2FWImageHeader_t *fw_img_hdr;
4356 	Mpi26ComponentImageHeader_t *cmp_img_hdr;
4357 	Mpi25FWUploadRequest_t *mpi_request;
4358 	Mpi2FWUploadReply_t mpi_reply;
4359 	int r = 0;
4360 	u32  package_version = 0;
4361 	void *fwpkg_data = NULL;
4362 	dma_addr_t fwpkg_data_dma;
4363 	u16 smid, ioc_status;
4364 	size_t data_length;
4365 
4366 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4367 
4368 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4369 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
4370 		return -EAGAIN;
4371 	}
4372 
4373 	data_length = sizeof(Mpi2FWImageHeader_t);
4374 	fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4375 			&fwpkg_data_dma, GFP_KERNEL);
4376 	if (!fwpkg_data) {
4377 		ioc_err(ioc,
4378 		    "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4379 			__FILE__, __LINE__, __func__);
4380 		return -ENOMEM;
4381 	}
4382 
4383 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4384 	if (!smid) {
4385 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4386 		r = -EAGAIN;
4387 		goto out;
4388 	}
4389 
4390 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4391 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4392 	ioc->base_cmds.smid = smid;
4393 	memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4394 	mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4395 	mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4396 	mpi_request->ImageSize = cpu_to_le32(data_length);
4397 	ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4398 			data_length);
4399 	init_completion(&ioc->base_cmds.done);
4400 	ioc->put_smid_default(ioc, smid);
4401 	/* Wait for 15 seconds */
4402 	wait_for_completion_timeout(&ioc->base_cmds.done,
4403 			FW_IMG_HDR_READ_TIMEOUT*HZ);
4404 	ioc_info(ioc, "%s: complete\n", __func__);
4405 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4406 		ioc_err(ioc, "%s: timeout\n", __func__);
4407 		_debug_dump_mf(mpi_request,
4408 				sizeof(Mpi25FWUploadRequest_t)/4);
4409 		r = -ETIME;
4410 	} else {
4411 		memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4412 		if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4413 			memcpy(&mpi_reply, ioc->base_cmds.reply,
4414 					sizeof(Mpi2FWUploadReply_t));
4415 			ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4416 						MPI2_IOCSTATUS_MASK;
4417 			if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4418 				fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4419 				if (le32_to_cpu(fw_img_hdr->Signature) ==
4420 				    MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4421 					cmp_img_hdr =
4422 					    (Mpi26ComponentImageHeader_t *)
4423 					    (fwpkg_data);
4424 					package_version =
4425 					    le32_to_cpu(
4426 					    cmp_img_hdr->ApplicationSpecific);
4427 				} else
4428 					package_version =
4429 					    le32_to_cpu(
4430 					    fw_img_hdr->PackageVersion.Word);
4431 				if (package_version)
4432 					ioc_info(ioc,
4433 					"FW Package Ver(%02d.%02d.%02d.%02d)\n",
4434 					((package_version) & 0xFF000000) >> 24,
4435 					((package_version) & 0x00FF0000) >> 16,
4436 					((package_version) & 0x0000FF00) >> 8,
4437 					(package_version) & 0x000000FF);
4438 			} else {
4439 				_debug_dump_mf(&mpi_reply,
4440 						sizeof(Mpi2FWUploadReply_t)/4);
4441 			}
4442 		}
4443 	}
4444 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4445 out:
4446 	if (fwpkg_data)
4447 		dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4448 				fwpkg_data_dma);
4449 	return r;
4450 }
4451 
4452 /**
4453  * _base_display_ioc_capabilities - Disply IOC's capabilities.
4454  * @ioc: per adapter object
4455  */
4456 static void
4457 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4458 {
4459 	int i = 0;
4460 	char desc[16];
4461 	u32 iounit_pg1_flags;
4462 	u32 bios_version;
4463 
4464 	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4465 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
4466 	ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4467 		 desc,
4468 		 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4469 		 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4470 		 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4471 		 ioc->facts.FWVersion.Word & 0x000000FF,
4472 		 ioc->pdev->revision,
4473 		 (bios_version & 0xFF000000) >> 24,
4474 		 (bios_version & 0x00FF0000) >> 16,
4475 		 (bios_version & 0x0000FF00) >> 8,
4476 		 bios_version & 0x000000FF);
4477 
4478 	_base_display_OEMs_branding(ioc);
4479 
4480 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4481 		pr_info("%sNVMe", i ? "," : "");
4482 		i++;
4483 	}
4484 
4485 	ioc_info(ioc, "Protocol=(");
4486 
4487 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4488 		pr_cont("Initiator");
4489 		i++;
4490 	}
4491 
4492 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4493 		pr_cont("%sTarget", i ? "," : "");
4494 		i++;
4495 	}
4496 
4497 	i = 0;
4498 	pr_cont("), Capabilities=(");
4499 
4500 	if (!ioc->hide_ir_msg) {
4501 		if (ioc->facts.IOCCapabilities &
4502 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4503 			pr_cont("Raid");
4504 			i++;
4505 		}
4506 	}
4507 
4508 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4509 		pr_cont("%sTLR", i ? "," : "");
4510 		i++;
4511 	}
4512 
4513 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4514 		pr_cont("%sMulticast", i ? "," : "");
4515 		i++;
4516 	}
4517 
4518 	if (ioc->facts.IOCCapabilities &
4519 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4520 		pr_cont("%sBIDI Target", i ? "," : "");
4521 		i++;
4522 	}
4523 
4524 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4525 		pr_cont("%sEEDP", i ? "," : "");
4526 		i++;
4527 	}
4528 
4529 	if (ioc->facts.IOCCapabilities &
4530 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4531 		pr_cont("%sSnapshot Buffer", i ? "," : "");
4532 		i++;
4533 	}
4534 
4535 	if (ioc->facts.IOCCapabilities &
4536 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4537 		pr_cont("%sDiag Trace Buffer", i ? "," : "");
4538 		i++;
4539 	}
4540 
4541 	if (ioc->facts.IOCCapabilities &
4542 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4543 		pr_cont("%sDiag Extended Buffer", i ? "," : "");
4544 		i++;
4545 	}
4546 
4547 	if (ioc->facts.IOCCapabilities &
4548 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4549 		pr_cont("%sTask Set Full", i ? "," : "");
4550 		i++;
4551 	}
4552 
4553 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4554 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4555 		pr_cont("%sNCQ", i ? "," : "");
4556 		i++;
4557 	}
4558 
4559 	pr_cont(")\n");
4560 }
4561 
4562 /**
4563  * mpt3sas_base_update_missing_delay - change the missing delay timers
4564  * @ioc: per adapter object
4565  * @device_missing_delay: amount of time till device is reported missing
4566  * @io_missing_delay: interval IO is returned when there is a missing device
4567  *
4568  * Passed on the command line, this function will modify the device missing
4569  * delay, as well as the io missing delay. This should be called at driver
4570  * load time.
4571  */
4572 void
4573 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4574 	u16 device_missing_delay, u8 io_missing_delay)
4575 {
4576 	u16 dmd, dmd_new, dmd_orignal;
4577 	u8 io_missing_delay_original;
4578 	u16 sz;
4579 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4580 	Mpi2ConfigReply_t mpi_reply;
4581 	u8 num_phys = 0;
4582 	u16 ioc_status;
4583 
4584 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4585 	if (!num_phys)
4586 		return;
4587 
4588 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4589 	    sizeof(Mpi2SasIOUnit1PhyData_t));
4590 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4591 	if (!sas_iounit_pg1) {
4592 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4593 			__FILE__, __LINE__, __func__);
4594 		goto out;
4595 	}
4596 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4597 	    sas_iounit_pg1, sz))) {
4598 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4599 			__FILE__, __LINE__, __func__);
4600 		goto out;
4601 	}
4602 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4603 	    MPI2_IOCSTATUS_MASK;
4604 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4605 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4606 			__FILE__, __LINE__, __func__);
4607 		goto out;
4608 	}
4609 
4610 	/* device missing delay */
4611 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4612 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4613 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4614 	else
4615 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4616 	dmd_orignal = dmd;
4617 	if (device_missing_delay > 0x7F) {
4618 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4619 		    device_missing_delay;
4620 		dmd = dmd / 16;
4621 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4622 	} else
4623 		dmd = device_missing_delay;
4624 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4625 
4626 	/* io missing delay */
4627 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4628 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4629 
4630 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4631 	    sz)) {
4632 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4633 			dmd_new = (dmd &
4634 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4635 		else
4636 			dmd_new =
4637 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4638 		ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4639 			 dmd_orignal, dmd_new);
4640 		ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4641 			 io_missing_delay_original,
4642 			 io_missing_delay);
4643 		ioc->device_missing_delay = dmd_new;
4644 		ioc->io_missing_delay = io_missing_delay;
4645 	}
4646 
4647 out:
4648 	kfree(sas_iounit_pg1);
4649 }
4650 
4651 /**
4652  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4653  *    according to performance mode.
4654  * @ioc : per adapter object
4655  *
4656  * Return nothing.
4657  */
4658 static void
4659 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4660 {
4661 	Mpi2IOCPage1_t ioc_pg1;
4662 	Mpi2ConfigReply_t mpi_reply;
4663 
4664 	mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4665 	memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4666 
4667 	switch (perf_mode) {
4668 	case MPT_PERF_MODE_DEFAULT:
4669 	case MPT_PERF_MODE_BALANCED:
4670 		if (ioc->high_iops_queues) {
4671 			ioc_info(ioc,
4672 				"Enable interrupt coalescing only for first\t"
4673 				"%d reply queues\n",
4674 				MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4675 			/*
4676 			 * If 31st bit is zero then interrupt coalescing is
4677 			 * enabled for all reply descriptor post queues.
4678 			 * If 31st bit is set to one then user can
4679 			 * enable/disable interrupt coalescing on per reply
4680 			 * descriptor post queue group(8) basis. So to enable
4681 			 * interrupt coalescing only on first reply descriptor
4682 			 * post queue group 31st bit and zero th bit is enabled.
4683 			 */
4684 			ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4685 			    ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4686 			mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4687 			ioc_info(ioc, "performance mode: balanced\n");
4688 			return;
4689 		}
4690 		fallthrough;
4691 	case MPT_PERF_MODE_LATENCY:
4692 		/*
4693 		 * Enable interrupt coalescing on all reply queues
4694 		 * with timeout value 0xA
4695 		 */
4696 		ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4697 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4698 		ioc_pg1.ProductSpecific = 0;
4699 		mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4700 		ioc_info(ioc, "performance mode: latency\n");
4701 		break;
4702 	case MPT_PERF_MODE_IOPS:
4703 		/*
4704 		 * Enable interrupt coalescing on all reply queues.
4705 		 */
4706 		ioc_info(ioc,
4707 		    "performance mode: iops with coalescing timeout: 0x%x\n",
4708 		    le32_to_cpu(ioc_pg1.CoalescingTimeout));
4709 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4710 		ioc_pg1.ProductSpecific = 0;
4711 		mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4712 		break;
4713 	}
4714 }
4715 
4716 /**
4717  * _base_static_config_pages - static start of day config pages
4718  * @ioc: per adapter object
4719  */
4720 static void
4721 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4722 {
4723 	Mpi2ConfigReply_t mpi_reply;
4724 	u32 iounit_pg1_flags;
4725 
4726 	ioc->nvme_abort_timeout = 30;
4727 	mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4728 	if (ioc->ir_firmware)
4729 		mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4730 		    &ioc->manu_pg10);
4731 
4732 	/*
4733 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
4734 	 * flag unset in NVDATA.
4735 	 */
4736 	mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4737 	if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
4738 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4739 		    ioc->name);
4740 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
4741 		ioc->manu_pg11.EEDPTagMode |= 0x1;
4742 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4743 		    &ioc->manu_pg11);
4744 	}
4745 	if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4746 		ioc->tm_custom_handling = 1;
4747 	else {
4748 		ioc->tm_custom_handling = 0;
4749 		if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4750 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4751 		else if (ioc->manu_pg11.NVMeAbortTO >
4752 					NVME_TASK_ABORT_MAX_TIMEOUT)
4753 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4754 		else
4755 			ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4756 	}
4757 
4758 	mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4759 	mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4760 	mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4761 	mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4762 	mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4763 	mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4764 	_base_display_ioc_capabilities(ioc);
4765 
4766 	/*
4767 	 * Enable task_set_full handling in iounit_pg1 when the
4768 	 * facts capabilities indicate that its supported.
4769 	 */
4770 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4771 	if ((ioc->facts.IOCCapabilities &
4772 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4773 		iounit_pg1_flags &=
4774 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4775 	else
4776 		iounit_pg1_flags |=
4777 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4778 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4779 	mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4780 
4781 	if (ioc->iounit_pg8.NumSensors)
4782 		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4783 	if (ioc->is_aero_ioc)
4784 		_base_update_ioc_page1_inlinewith_perf_mode(ioc);
4785 }
4786 
4787 /**
4788  * mpt3sas_free_enclosure_list - release memory
4789  * @ioc: per adapter object
4790  *
4791  * Free memory allocated during encloure add.
4792  */
4793 void
4794 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4795 {
4796 	struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4797 
4798 	/* Free enclosure list */
4799 	list_for_each_entry_safe(enclosure_dev,
4800 			enclosure_dev_next, &ioc->enclosure_list, list) {
4801 		list_del(&enclosure_dev->list);
4802 		kfree(enclosure_dev);
4803 	}
4804 }
4805 
4806 /**
4807  * _base_release_memory_pools - release memory
4808  * @ioc: per adapter object
4809  *
4810  * Free memory allocated from _base_allocate_memory_pools.
4811  */
4812 static void
4813 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4814 {
4815 	int i = 0;
4816 	int j = 0;
4817 	int dma_alloc_count = 0;
4818 	struct chain_tracker *ct;
4819 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
4820 
4821 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4822 
4823 	if (ioc->request) {
4824 		dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
4825 		    ioc->request,  ioc->request_dma);
4826 		dexitprintk(ioc,
4827 			    ioc_info(ioc, "request_pool(0x%p): free\n",
4828 				     ioc->request));
4829 		ioc->request = NULL;
4830 	}
4831 
4832 	if (ioc->sense) {
4833 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4834 		dma_pool_destroy(ioc->sense_dma_pool);
4835 		dexitprintk(ioc,
4836 			    ioc_info(ioc, "sense_pool(0x%p): free\n",
4837 				     ioc->sense));
4838 		ioc->sense = NULL;
4839 	}
4840 
4841 	if (ioc->reply) {
4842 		dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4843 		dma_pool_destroy(ioc->reply_dma_pool);
4844 		dexitprintk(ioc,
4845 			    ioc_info(ioc, "reply_pool(0x%p): free\n",
4846 				     ioc->reply));
4847 		ioc->reply = NULL;
4848 	}
4849 
4850 	if (ioc->reply_free) {
4851 		dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4852 		    ioc->reply_free_dma);
4853 		dma_pool_destroy(ioc->reply_free_dma_pool);
4854 		dexitprintk(ioc,
4855 			    ioc_info(ioc, "reply_free_pool(0x%p): free\n",
4856 				     ioc->reply_free));
4857 		ioc->reply_free = NULL;
4858 	}
4859 
4860 	if (ioc->reply_post) {
4861 		dma_alloc_count = DIV_ROUND_UP(count,
4862 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
4863 		for (i = 0; i < count; i++) {
4864 			if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
4865 			    && dma_alloc_count) {
4866 				if (ioc->reply_post[i].reply_post_free) {
4867 					dma_pool_free(
4868 					    ioc->reply_post_free_dma_pool,
4869 					    ioc->reply_post[i].reply_post_free,
4870 					ioc->reply_post[i].reply_post_free_dma);
4871 					dexitprintk(ioc, ioc_info(ioc,
4872 					   "reply_post_free_pool(0x%p): free\n",
4873 					   ioc->reply_post[i].reply_post_free));
4874 					ioc->reply_post[i].reply_post_free =
4875 									NULL;
4876 				}
4877 				--dma_alloc_count;
4878 			}
4879 		}
4880 		dma_pool_destroy(ioc->reply_post_free_dma_pool);
4881 		if (ioc->reply_post_free_array &&
4882 			ioc->rdpq_array_enable) {
4883 			dma_pool_free(ioc->reply_post_free_array_dma_pool,
4884 			    ioc->reply_post_free_array,
4885 			    ioc->reply_post_free_array_dma);
4886 			ioc->reply_post_free_array = NULL;
4887 		}
4888 		dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4889 		kfree(ioc->reply_post);
4890 	}
4891 
4892 	if (ioc->pcie_sgl_dma_pool) {
4893 		for (i = 0; i < ioc->scsiio_depth; i++) {
4894 			dma_pool_free(ioc->pcie_sgl_dma_pool,
4895 					ioc->pcie_sg_lookup[i].pcie_sgl,
4896 					ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4897 		}
4898 		dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4899 	}
4900 
4901 	if (ioc->config_page) {
4902 		dexitprintk(ioc,
4903 			    ioc_info(ioc, "config_page(0x%p): free\n",
4904 				     ioc->config_page));
4905 		dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
4906 		    ioc->config_page, ioc->config_page_dma);
4907 	}
4908 
4909 	kfree(ioc->hpr_lookup);
4910 	ioc->hpr_lookup = NULL;
4911 	kfree(ioc->internal_lookup);
4912 	ioc->internal_lookup = NULL;
4913 	if (ioc->chain_lookup) {
4914 		for (i = 0; i < ioc->scsiio_depth; i++) {
4915 			for (j = ioc->chains_per_prp_buffer;
4916 			    j < ioc->chains_needed_per_io; j++) {
4917 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
4918 				if (ct && ct->chain_buffer)
4919 					dma_pool_free(ioc->chain_dma_pool,
4920 						ct->chain_buffer,
4921 						ct->chain_buffer_dma);
4922 			}
4923 			kfree(ioc->chain_lookup[i].chains_per_smid);
4924 		}
4925 		dma_pool_destroy(ioc->chain_dma_pool);
4926 		kfree(ioc->chain_lookup);
4927 		ioc->chain_lookup = NULL;
4928 	}
4929 }
4930 
4931 /**
4932  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
4933  *	having same upper 32bits in their base memory address.
4934  * @reply_pool_start_address: Base address of a reply queue set
4935  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4936  *
4937  * Return: 1 if reply queues in a set have a same upper 32bits in their base
4938  * memory address, else 0.
4939  */
4940 
4941 static int
4942 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
4943 {
4944 	long reply_pool_end_address;
4945 
4946 	reply_pool_end_address = reply_pool_start_address + pool_sz;
4947 
4948 	if (upper_32_bits(reply_pool_start_address) ==
4949 		upper_32_bits(reply_pool_end_address))
4950 		return 1;
4951 	else
4952 		return 0;
4953 }
4954 
4955 /**
4956  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
4957  *                     for reply queues.
4958  * @ioc: per adapter object
4959  * @sz: DMA Pool size
4960  * Return: 0 for success, non-zero for failure.
4961  */
4962 static int
4963 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
4964 {
4965 	int i = 0;
4966 	u32 dma_alloc_count = 0;
4967 	int reply_post_free_sz = ioc->reply_post_queue_depth *
4968 		sizeof(Mpi2DefaultReplyDescriptor_t);
4969 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
4970 
4971 	ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
4972 			GFP_KERNEL);
4973 	if (!ioc->reply_post)
4974 		return -ENOMEM;
4975 	/*
4976 	 *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
4977 	 *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
4978 	 *  be within 4GB boundary i.e reply queues in a set must have same
4979 	 *  upper 32-bits in their memory address. so here driver is allocating
4980 	 *  the DMA'able memory for reply queues according.
4981 	 *  Driver uses limitation of
4982 	 *  VENTURA_SERIES to manage INVADER_SERIES as well.
4983 	 */
4984 	dma_alloc_count = DIV_ROUND_UP(count,
4985 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
4986 	ioc->reply_post_free_dma_pool =
4987 		dma_pool_create("reply_post_free pool",
4988 		    &ioc->pdev->dev, sz, 16, 0);
4989 	if (!ioc->reply_post_free_dma_pool)
4990 		return -ENOMEM;
4991 	for (i = 0; i < count; i++) {
4992 		if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
4993 			ioc->reply_post[i].reply_post_free =
4994 			    dma_pool_zalloc(ioc->reply_post_free_dma_pool,
4995 				GFP_KERNEL,
4996 				&ioc->reply_post[i].reply_post_free_dma);
4997 			if (!ioc->reply_post[i].reply_post_free)
4998 				return -ENOMEM;
4999 			/*
5000 			 * Each set of RDPQ pool must satisfy 4gb boundary
5001 			 * restriction.
5002 			 * 1) Check if allocated resources for RDPQ pool are in
5003 			 *	the same 4GB range.
5004 			 * 2) If #1 is true, continue with 64 bit DMA.
5005 			 * 3) If #1 is false, return 1. which means free all the
5006 			 * resources and set DMA mask to 32 and allocate.
5007 			 */
5008 			if (!mpt3sas_check_same_4gb_region(
5009 				(long)ioc->reply_post[i].reply_post_free, sz)) {
5010 				dinitprintk(ioc,
5011 				    ioc_err(ioc, "bad Replypost free pool(0x%p)"
5012 				    "reply_post_free_dma = (0x%llx)\n",
5013 				    ioc->reply_post[i].reply_post_free,
5014 				    (unsigned long long)
5015 				    ioc->reply_post[i].reply_post_free_dma));
5016 				return -EAGAIN;
5017 			}
5018 			dma_alloc_count--;
5019 
5020 		} else {
5021 			ioc->reply_post[i].reply_post_free =
5022 			    (Mpi2ReplyDescriptorsUnion_t *)
5023 			    ((long)ioc->reply_post[i-1].reply_post_free
5024 			    + reply_post_free_sz);
5025 			ioc->reply_post[i].reply_post_free_dma =
5026 			    (dma_addr_t)
5027 			    (ioc->reply_post[i-1].reply_post_free_dma +
5028 			    reply_post_free_sz);
5029 		}
5030 	}
5031 	return 0;
5032 }
5033 
5034 /**
5035  * _base_allocate_memory_pools - allocate start of day memory pools
5036  * @ioc: per adapter object
5037  *
5038  * Return: 0 success, anything else error.
5039  */
5040 static int
5041 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5042 {
5043 	struct mpt3sas_facts *facts;
5044 	u16 max_sge_elements;
5045 	u16 chains_needed_per_io;
5046 	u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
5047 	u32 retry_sz;
5048 	u32 rdpq_sz = 0;
5049 	u16 max_request_credit, nvme_blocks_needed;
5050 	unsigned short sg_tablesize;
5051 	u16 sge_size;
5052 	int i, j;
5053 	int ret = 0;
5054 	struct chain_tracker *ct;
5055 
5056 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5057 
5058 
5059 	retry_sz = 0;
5060 	facts = &ioc->facts;
5061 
5062 	/* command line tunables for max sgl entries */
5063 	if (max_sgl_entries != -1)
5064 		sg_tablesize = max_sgl_entries;
5065 	else {
5066 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
5067 			sg_tablesize = MPT2SAS_SG_DEPTH;
5068 		else
5069 			sg_tablesize = MPT3SAS_SG_DEPTH;
5070 	}
5071 
5072 	/* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
5073 	if (reset_devices)
5074 		sg_tablesize = min_t(unsigned short, sg_tablesize,
5075 		   MPT_KDUMP_MIN_PHYS_SEGMENTS);
5076 
5077 	if (ioc->is_mcpu_endpoint)
5078 		ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5079 	else {
5080 		if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
5081 			sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5082 		else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
5083 			sg_tablesize = min_t(unsigned short, sg_tablesize,
5084 					SG_MAX_SEGMENTS);
5085 			ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
5086 				 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
5087 		}
5088 		ioc->shost->sg_tablesize = sg_tablesize;
5089 	}
5090 
5091 	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
5092 		(facts->RequestCredit / 4));
5093 	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
5094 		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
5095 				INTERNAL_SCSIIO_CMDS_COUNT)) {
5096 			ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
5097 				facts->RequestCredit);
5098 			return -ENOMEM;
5099 		}
5100 		ioc->internal_depth = 10;
5101 	}
5102 
5103 	ioc->hi_priority_depth = ioc->internal_depth - (5);
5104 	/* command line tunables  for max controller queue depth */
5105 	if (max_queue_depth != -1 && max_queue_depth != 0) {
5106 		max_request_credit = min_t(u16, max_queue_depth +
5107 			ioc->internal_depth, facts->RequestCredit);
5108 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
5109 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
5110 	} else if (reset_devices)
5111 		max_request_credit = min_t(u16, facts->RequestCredit,
5112 		    (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
5113 	else
5114 		max_request_credit = min_t(u16, facts->RequestCredit,
5115 		    MAX_HBA_QUEUE_DEPTH);
5116 
5117 	/* Firmware maintains additional facts->HighPriorityCredit number of
5118 	 * credits for HiPriprity Request messages, so hba queue depth will be
5119 	 * sum of max_request_credit and high priority queue depth.
5120 	 */
5121 	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
5122 
5123 	/* request frame size */
5124 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
5125 
5126 	/* reply frame size */
5127 	ioc->reply_sz = facts->ReplyFrameSize * 4;
5128 
5129 	/* chain segment size */
5130 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5131 		if (facts->IOCMaxChainSegmentSize)
5132 			ioc->chain_segment_sz =
5133 					facts->IOCMaxChainSegmentSize *
5134 					MAX_CHAIN_ELEMT_SZ;
5135 		else
5136 		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
5137 			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
5138 						    MAX_CHAIN_ELEMT_SZ;
5139 	} else
5140 		ioc->chain_segment_sz = ioc->request_sz;
5141 
5142 	/* calculate the max scatter element size */
5143 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
5144 
5145  retry_allocation:
5146 	total_sz = 0;
5147 	/* calculate number of sg elements left over in the 1st frame */
5148 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
5149 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
5150 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
5151 
5152 	/* now do the same for a chain buffer */
5153 	max_sge_elements = ioc->chain_segment_sz - sge_size;
5154 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
5155 
5156 	/*
5157 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
5158 	 */
5159 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
5160 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
5161 	    + 1;
5162 	if (chains_needed_per_io > facts->MaxChainDepth) {
5163 		chains_needed_per_io = facts->MaxChainDepth;
5164 		ioc->shost->sg_tablesize = min_t(u16,
5165 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
5166 		* chains_needed_per_io), ioc->shost->sg_tablesize);
5167 	}
5168 	ioc->chains_needed_per_io = chains_needed_per_io;
5169 
5170 	/* reply free queue sizing - taking into account for 64 FW events */
5171 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5172 
5173 	/* mCPU manage single counters for simplicity */
5174 	if (ioc->is_mcpu_endpoint)
5175 		ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
5176 	else {
5177 		/* calculate reply descriptor post queue depth */
5178 		ioc->reply_post_queue_depth = ioc->hba_queue_depth +
5179 			ioc->reply_free_queue_depth +  1;
5180 		/* align the reply post queue on the next 16 count boundary */
5181 		if (ioc->reply_post_queue_depth % 16)
5182 			ioc->reply_post_queue_depth += 16 -
5183 				(ioc->reply_post_queue_depth % 16);
5184 	}
5185 
5186 	if (ioc->reply_post_queue_depth >
5187 	    facts->MaxReplyDescriptorPostQueueDepth) {
5188 		ioc->reply_post_queue_depth =
5189 				facts->MaxReplyDescriptorPostQueueDepth -
5190 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
5191 		ioc->hba_queue_depth =
5192 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
5193 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5194 	}
5195 
5196 	ioc_info(ioc,
5197 	    "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
5198 	    "sge_per_io(%d), chains_per_io(%d)\n",
5199 	    ioc->max_sges_in_main_message,
5200 	    ioc->max_sges_in_chain_message,
5201 	    ioc->shost->sg_tablesize,
5202 	    ioc->chains_needed_per_io);
5203 
5204 	/* reply post queue, 16 byte align */
5205 	reply_post_free_sz = ioc->reply_post_queue_depth *
5206 	    sizeof(Mpi2DefaultReplyDescriptor_t);
5207 	rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
5208 	if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
5209 		rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
5210 	ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
5211 	if (ret == -EAGAIN) {
5212 		/*
5213 		 * Free allocated bad RDPQ memory pools.
5214 		 * Change dma coherent mask to 32 bit and reallocate RDPQ
5215 		 */
5216 		_base_release_memory_pools(ioc);
5217 		ioc->use_32bit_dma = true;
5218 		if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
5219 			ioc_err(ioc,
5220 			    "32 DMA mask failed %s\n", pci_name(ioc->pdev));
5221 			return -ENODEV;
5222 		}
5223 		if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
5224 			return -ENOMEM;
5225 	} else if (ret == -ENOMEM)
5226 		return -ENOMEM;
5227 	total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
5228 	    DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
5229 	ioc->scsiio_depth = ioc->hba_queue_depth -
5230 	    ioc->hi_priority_depth - ioc->internal_depth;
5231 
5232 	/* set the scsi host can_queue depth
5233 	 * with some internal commands that could be outstanding
5234 	 */
5235 	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
5236 	dinitprintk(ioc,
5237 		    ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
5238 			     ioc->shost->can_queue));
5239 
5240 	/* contiguous pool for request and chains, 16 byte align, one extra "
5241 	 * "frame for smid=0
5242 	 */
5243 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
5244 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
5245 
5246 	/* hi-priority queue */
5247 	sz += (ioc->hi_priority_depth * ioc->request_sz);
5248 
5249 	/* internal queue */
5250 	sz += (ioc->internal_depth * ioc->request_sz);
5251 
5252 	ioc->request_dma_sz = sz;
5253 	ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
5254 			&ioc->request_dma, GFP_KERNEL);
5255 	if (!ioc->request) {
5256 		ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
5257 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
5258 			ioc->request_sz, sz / 1024);
5259 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
5260 			goto out;
5261 		retry_sz = 64;
5262 		ioc->hba_queue_depth -= retry_sz;
5263 		_base_release_memory_pools(ioc);
5264 		goto retry_allocation;
5265 	}
5266 
5267 	if (retry_sz)
5268 		ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
5269 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
5270 			ioc->request_sz, sz / 1024);
5271 
5272 	/* hi-priority queue */
5273 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
5274 	    ioc->request_sz);
5275 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
5276 	    ioc->request_sz);
5277 
5278 	/* internal queue */
5279 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
5280 	    ioc->request_sz);
5281 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
5282 	    ioc->request_sz);
5283 
5284 	ioc_info(ioc,
5285 	    "request pool(0x%p) - dma(0x%llx): "
5286 	    "depth(%d), frame_size(%d), pool_size(%d kB)\n",
5287 	    ioc->request, (unsigned long long) ioc->request_dma,
5288 	    ioc->hba_queue_depth, ioc->request_sz,
5289 	    (ioc->hba_queue_depth * ioc->request_sz) / 1024);
5290 
5291 	total_sz += sz;
5292 
5293 	dinitprintk(ioc,
5294 		    ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
5295 			     ioc->request, ioc->scsiio_depth));
5296 
5297 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
5298 	sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
5299 	ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
5300 	if (!ioc->chain_lookup) {
5301 		ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
5302 		goto out;
5303 	}
5304 
5305 	sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
5306 	for (i = 0; i < ioc->scsiio_depth; i++) {
5307 		ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
5308 		if (!ioc->chain_lookup[i].chains_per_smid) {
5309 			ioc_err(ioc, "chain_lookup: kzalloc failed\n");
5310 			goto out;
5311 		}
5312 	}
5313 
5314 	/* initialize hi-priority queue smid's */
5315 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
5316 	    sizeof(struct request_tracker), GFP_KERNEL);
5317 	if (!ioc->hpr_lookup) {
5318 		ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
5319 		goto out;
5320 	}
5321 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
5322 	dinitprintk(ioc,
5323 		    ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
5324 			     ioc->hi_priority,
5325 			     ioc->hi_priority_depth, ioc->hi_priority_smid));
5326 
5327 	/* initialize internal queue smid's */
5328 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
5329 	    sizeof(struct request_tracker), GFP_KERNEL);
5330 	if (!ioc->internal_lookup) {
5331 		ioc_err(ioc, "internal_lookup: kcalloc failed\n");
5332 		goto out;
5333 	}
5334 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
5335 	dinitprintk(ioc,
5336 		    ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
5337 			     ioc->internal,
5338 			     ioc->internal_depth, ioc->internal_smid));
5339 	/*
5340 	 * The number of NVMe page sized blocks needed is:
5341 	 *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
5342 	 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
5343 	 * that is placed in the main message frame.  8 is the size of each PRP
5344 	 * entry or PRP list pointer entry.  8 is subtracted from page_size
5345 	 * because of the PRP list pointer entry at the end of a page, so this
5346 	 * is not counted as a PRP entry.  The 1 added page is a round up.
5347 	 *
5348 	 * To avoid allocation failures due to the amount of memory that could
5349 	 * be required for NVMe PRP's, only each set of NVMe blocks will be
5350 	 * contiguous, so a new set is allocated for each possible I/O.
5351 	 */
5352 	ioc->chains_per_prp_buffer = 0;
5353 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
5354 		nvme_blocks_needed =
5355 			(ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
5356 		nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
5357 		nvme_blocks_needed++;
5358 
5359 		sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
5360 		ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
5361 		if (!ioc->pcie_sg_lookup) {
5362 			ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
5363 			goto out;
5364 		}
5365 		sz = nvme_blocks_needed * ioc->page_size;
5366 		ioc->pcie_sgl_dma_pool =
5367 			dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
5368 		if (!ioc->pcie_sgl_dma_pool) {
5369 			ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5370 			goto out;
5371 		}
5372 
5373 		ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5374 		ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
5375 						ioc->chains_needed_per_io);
5376 
5377 		for (i = 0; i < ioc->scsiio_depth; i++) {
5378 			ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
5379 				ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5380 				&ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5381 			if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5382 				ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5383 				goto out;
5384 			}
5385 			for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5386 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
5387 				ct->chain_buffer =
5388 				    ioc->pcie_sg_lookup[i].pcie_sgl +
5389 				    (j * ioc->chain_segment_sz);
5390 				ct->chain_buffer_dma =
5391 				    ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5392 				    (j * ioc->chain_segment_sz);
5393 			}
5394 		}
5395 
5396 		dinitprintk(ioc,
5397 			    ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5398 				     ioc->scsiio_depth, sz,
5399 				     (sz * ioc->scsiio_depth) / 1024));
5400 		dinitprintk(ioc,
5401 			    ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n",
5402 				     ioc->chains_per_prp_buffer));
5403 		total_sz += sz * ioc->scsiio_depth;
5404 	}
5405 
5406 	ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5407 	    ioc->chain_segment_sz, 16, 0);
5408 	if (!ioc->chain_dma_pool) {
5409 		ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n");
5410 		goto out;
5411 	}
5412 	for (i = 0; i < ioc->scsiio_depth; i++) {
5413 		for (j = ioc->chains_per_prp_buffer;
5414 				j < ioc->chains_needed_per_io; j++) {
5415 			ct = &ioc->chain_lookup[i].chains_per_smid[j];
5416 			ct->chain_buffer = dma_pool_alloc(
5417 					ioc->chain_dma_pool, GFP_KERNEL,
5418 					&ct->chain_buffer_dma);
5419 			if (!ct->chain_buffer) {
5420 				ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n");
5421 				goto out;
5422 			}
5423 		}
5424 		total_sz += ioc->chain_segment_sz;
5425 	}
5426 
5427 	dinitprintk(ioc,
5428 		    ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
5429 			     ioc->chain_depth, ioc->chain_segment_sz,
5430 			     (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
5431 
5432 	/* sense buffers, 4 byte align */
5433 	sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
5434 	ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5435 					      4, 0);
5436 	if (!ioc->sense_dma_pool) {
5437 		ioc_err(ioc, "sense pool: dma_pool_create failed\n");
5438 		goto out;
5439 	}
5440 	ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5441 	    &ioc->sense_dma);
5442 	if (!ioc->sense) {
5443 		ioc_err(ioc, "sense pool: dma_pool_alloc failed\n");
5444 		goto out;
5445 	}
5446 	/* sense buffer requires to be in same 4 gb region.
5447 	 * Below function will check the same.
5448 	 * In case of failure, new pci pool will be created with updated
5449 	 * alignment. Older allocation and pool will be destroyed.
5450 	 * Alignment will be used such a way that next allocation if
5451 	 * success, will always meet same 4gb region requirement.
5452 	 * Actual requirement is not alignment, but we need start and end of
5453 	 * DMA address must have same upper 32 bit address.
5454 	 */
5455 	if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5456 		//Release Sense pool & Reallocate
5457 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5458 		dma_pool_destroy(ioc->sense_dma_pool);
5459 		ioc->sense = NULL;
5460 
5461 		ioc->sense_dma_pool =
5462 			dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5463 						roundup_pow_of_two(sz), 0);
5464 		if (!ioc->sense_dma_pool) {
5465 			ioc_err(ioc, "sense pool: pci_pool_create failed\n");
5466 			goto out;
5467 		}
5468 		ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5469 				&ioc->sense_dma);
5470 		if (!ioc->sense) {
5471 			ioc_err(ioc, "sense pool: pci_pool_alloc failed\n");
5472 			goto out;
5473 		}
5474 	}
5475 	ioc_info(ioc,
5476 	    "sense pool(0x%p)- dma(0x%llx): depth(%d),"
5477 	    "element_size(%d), pool_size(%d kB)\n",
5478 	    ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
5479 	    SCSI_SENSE_BUFFERSIZE, sz / 1024);
5480 
5481 	total_sz += sz;
5482 
5483 	/* reply pool, 4 byte align */
5484 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
5485 	ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
5486 					      4, 0);
5487 	if (!ioc->reply_dma_pool) {
5488 		ioc_err(ioc, "reply pool: dma_pool_create failed\n");
5489 		goto out;
5490 	}
5491 	ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5492 	    &ioc->reply_dma);
5493 	if (!ioc->reply) {
5494 		ioc_err(ioc, "reply pool: dma_pool_alloc failed\n");
5495 		goto out;
5496 	}
5497 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5498 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5499 	dinitprintk(ioc,
5500 		    ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5501 			     ioc->reply, ioc->reply_free_queue_depth,
5502 			     ioc->reply_sz, sz / 1024));
5503 	dinitprintk(ioc,
5504 		    ioc_info(ioc, "reply_dma(0x%llx)\n",
5505 			     (unsigned long long)ioc->reply_dma));
5506 	total_sz += sz;
5507 
5508 	/* reply free queue, 16 byte align */
5509 	sz = ioc->reply_free_queue_depth * 4;
5510 	ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
5511 	    &ioc->pdev->dev, sz, 16, 0);
5512 	if (!ioc->reply_free_dma_pool) {
5513 		ioc_err(ioc, "reply_free pool: dma_pool_create failed\n");
5514 		goto out;
5515 	}
5516 	ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL,
5517 	    &ioc->reply_free_dma);
5518 	if (!ioc->reply_free) {
5519 		ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n");
5520 		goto out;
5521 	}
5522 	dinitprintk(ioc,
5523 		    ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5524 			     ioc->reply_free, ioc->reply_free_queue_depth,
5525 			     4, sz / 1024));
5526 	dinitprintk(ioc,
5527 		    ioc_info(ioc, "reply_free_dma (0x%llx)\n",
5528 			     (unsigned long long)ioc->reply_free_dma));
5529 	total_sz += sz;
5530 
5531 	if (ioc->rdpq_array_enable) {
5532 		reply_post_free_array_sz = ioc->reply_queue_count *
5533 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
5534 		ioc->reply_post_free_array_dma_pool =
5535 		    dma_pool_create("reply_post_free_array pool",
5536 		    &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5537 		if (!ioc->reply_post_free_array_dma_pool) {
5538 			dinitprintk(ioc,
5539 				    ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n"));
5540 			goto out;
5541 		}
5542 		ioc->reply_post_free_array =
5543 		    dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5544 		    GFP_KERNEL, &ioc->reply_post_free_array_dma);
5545 		if (!ioc->reply_post_free_array) {
5546 			dinitprintk(ioc,
5547 				    ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n"));
5548 			goto out;
5549 		}
5550 	}
5551 	ioc->config_page_sz = 512;
5552 	ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
5553 			ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
5554 	if (!ioc->config_page) {
5555 		ioc_err(ioc, "config page: dma_pool_alloc failed\n");
5556 		goto out;
5557 	}
5558 
5559 	ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
5560 	    ioc->config_page, (unsigned long long)ioc->config_page_dma,
5561 	    ioc->config_page_sz);
5562 	total_sz += ioc->config_page_sz;
5563 
5564 	ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
5565 		 total_sz / 1024);
5566 	ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
5567 		 ioc->shost->can_queue, facts->RequestCredit);
5568 	ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
5569 		 ioc->shost->sg_tablesize);
5570 	return 0;
5571 
5572  out:
5573 	return -ENOMEM;
5574 }
5575 
5576 /**
5577  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
5578  * @ioc: Pointer to MPT_ADAPTER structure
5579  * @cooked: Request raw or cooked IOC state
5580  *
5581  * Return: all IOC Doorbell register bits if cooked==0, else just the
5582  * Doorbell bits in MPI_IOC_STATE_MASK.
5583  */
5584 u32
5585 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
5586 {
5587 	u32 s, sc;
5588 
5589 	s = ioc->base_readl(&ioc->chip->Doorbell);
5590 	sc = s & MPI2_IOC_STATE_MASK;
5591 	return cooked ? sc : s;
5592 }
5593 
5594 /**
5595  * _base_wait_on_iocstate - waiting on a particular ioc state
5596  * @ioc: ?
5597  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
5598  * @timeout: timeout in second
5599  *
5600  * Return: 0 for success, non-zero for failure.
5601  */
5602 static int
5603 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
5604 {
5605 	u32 count, cntdn;
5606 	u32 current_state;
5607 
5608 	count = 0;
5609 	cntdn = 1000 * timeout;
5610 	do {
5611 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
5612 		if (current_state == ioc_state)
5613 			return 0;
5614 		if (count && current_state == MPI2_IOC_STATE_FAULT)
5615 			break;
5616 		if (count && current_state == MPI2_IOC_STATE_COREDUMP)
5617 			break;
5618 
5619 		usleep_range(1000, 1500);
5620 		count++;
5621 	} while (--cntdn);
5622 
5623 	return current_state;
5624 }
5625 
5626 /**
5627  * _base_dump_reg_set -	This function will print hexdump of register set.
5628  * @ioc: per adapter object
5629  *
5630  * Returns nothing.
5631  */
5632 static inline void
5633 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
5634 {
5635 	unsigned int i, sz = 256;
5636 	u32 __iomem *reg = (u32 __iomem *)ioc->chip;
5637 
5638 	ioc_info(ioc, "System Register set:\n");
5639 	for (i = 0; i < (sz / sizeof(u32)); i++)
5640 		pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
5641 }
5642 
5643 /**
5644  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
5645  * a write to the doorbell)
5646  * @ioc: per adapter object
5647  * @timeout: timeout in seconds
5648  *
5649  * Return: 0 for success, non-zero for failure.
5650  *
5651  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
5652  */
5653 
5654 static int
5655 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5656 {
5657 	u32 cntdn, count;
5658 	u32 int_status;
5659 
5660 	count = 0;
5661 	cntdn = 1000 * timeout;
5662 	do {
5663 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5664 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5665 			dhsprintk(ioc,
5666 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5667 					   __func__, count, timeout));
5668 			return 0;
5669 		}
5670 
5671 		usleep_range(1000, 1500);
5672 		count++;
5673 	} while (--cntdn);
5674 
5675 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5676 		__func__, count, int_status);
5677 	return -EFAULT;
5678 }
5679 
5680 static int
5681 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5682 {
5683 	u32 cntdn, count;
5684 	u32 int_status;
5685 
5686 	count = 0;
5687 	cntdn = 2000 * timeout;
5688 	do {
5689 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5690 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5691 			dhsprintk(ioc,
5692 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5693 					   __func__, count, timeout));
5694 			return 0;
5695 		}
5696 
5697 		udelay(500);
5698 		count++;
5699 	} while (--cntdn);
5700 
5701 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5702 		__func__, count, int_status);
5703 	return -EFAULT;
5704 
5705 }
5706 
5707 /**
5708  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5709  * @ioc: per adapter object
5710  * @timeout: timeout in second
5711  *
5712  * Return: 0 for success, non-zero for failure.
5713  *
5714  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5715  * doorbell.
5716  */
5717 static int
5718 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5719 {
5720 	u32 cntdn, count;
5721 	u32 int_status;
5722 	u32 doorbell;
5723 
5724 	count = 0;
5725 	cntdn = 1000 * timeout;
5726 	do {
5727 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5728 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5729 			dhsprintk(ioc,
5730 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5731 					   __func__, count, timeout));
5732 			return 0;
5733 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5734 			doorbell = ioc->base_readl(&ioc->chip->Doorbell);
5735 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
5736 			    MPI2_IOC_STATE_FAULT) {
5737 				mpt3sas_print_fault_code(ioc, doorbell);
5738 				return -EFAULT;
5739 			}
5740 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
5741 			    MPI2_IOC_STATE_COREDUMP) {
5742 				mpt3sas_print_coredump_info(ioc, doorbell);
5743 				return -EFAULT;
5744 			}
5745 		} else if (int_status == 0xFFFFFFFF)
5746 			goto out;
5747 
5748 		usleep_range(1000, 1500);
5749 		count++;
5750 	} while (--cntdn);
5751 
5752  out:
5753 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5754 		__func__, count, int_status);
5755 	return -EFAULT;
5756 }
5757 
5758 /**
5759  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5760  * @ioc: per adapter object
5761  * @timeout: timeout in second
5762  *
5763  * Return: 0 for success, non-zero for failure.
5764  */
5765 static int
5766 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5767 {
5768 	u32 cntdn, count;
5769 	u32 doorbell_reg;
5770 
5771 	count = 0;
5772 	cntdn = 1000 * timeout;
5773 	do {
5774 		doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
5775 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5776 			dhsprintk(ioc,
5777 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5778 					   __func__, count, timeout));
5779 			return 0;
5780 		}
5781 
5782 		usleep_range(1000, 1500);
5783 		count++;
5784 	} while (--cntdn);
5785 
5786 	ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5787 		__func__, count, doorbell_reg);
5788 	return -EFAULT;
5789 }
5790 
5791 /**
5792  * _base_send_ioc_reset - send doorbell reset
5793  * @ioc: per adapter object
5794  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5795  * @timeout: timeout in second
5796  *
5797  * Return: 0 for success, non-zero for failure.
5798  */
5799 static int
5800 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5801 {
5802 	u32 ioc_state;
5803 	int r = 0;
5804 	unsigned long flags;
5805 
5806 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5807 		ioc_err(ioc, "%s: unknown reset_type\n", __func__);
5808 		return -EFAULT;
5809 	}
5810 
5811 	if (!(ioc->facts.IOCCapabilities &
5812 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5813 		return -EFAULT;
5814 
5815 	ioc_info(ioc, "sending message unit reset !!\n");
5816 
5817 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5818 	    &ioc->chip->Doorbell);
5819 	if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5820 		r = -EFAULT;
5821 		goto out;
5822 	}
5823 
5824 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5825 	if (ioc_state) {
5826 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
5827 			__func__, ioc_state);
5828 		r = -EFAULT;
5829 		goto out;
5830 	}
5831  out:
5832 	if (r != 0) {
5833 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5834 		spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5835 		/*
5836 		 * Wait for IOC state CoreDump to clear only during
5837 		 * HBA initialization & release time.
5838 		 */
5839 		if ((ioc_state & MPI2_IOC_STATE_MASK) ==
5840 		    MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
5841 		    ioc->fault_reset_work_q == NULL)) {
5842 			spin_unlock_irqrestore(
5843 			    &ioc->ioc_reset_in_progress_lock, flags);
5844 			mpt3sas_print_coredump_info(ioc, ioc_state);
5845 			mpt3sas_base_wait_for_coredump_completion(ioc,
5846 			    __func__);
5847 			spin_lock_irqsave(
5848 			    &ioc->ioc_reset_in_progress_lock, flags);
5849 		}
5850 		spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5851 	}
5852 	ioc_info(ioc, "message unit reset: %s\n",
5853 		 r == 0 ? "SUCCESS" : "FAILED");
5854 	return r;
5855 }
5856 
5857 /**
5858  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
5859  * @ioc: per adapter object
5860  * @timeout: timeout in seconds
5861  *
5862  * Return: Waits up to timeout seconds for the IOC to
5863  * become operational. Returns 0 if IOC is present
5864  * and operational; otherwise returns -EFAULT.
5865  */
5866 
5867 int
5868 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
5869 {
5870 	int wait_state_count = 0;
5871 	u32 ioc_state;
5872 
5873 	do {
5874 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5875 		if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
5876 			break;
5877 		ssleep(1);
5878 		ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
5879 				__func__, ++wait_state_count);
5880 	} while (--timeout);
5881 	if (!timeout) {
5882 		ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
5883 		return -EFAULT;
5884 	}
5885 	if (wait_state_count)
5886 		ioc_info(ioc, "ioc is operational\n");
5887 	return 0;
5888 }
5889 
5890 /**
5891  * _base_handshake_req_reply_wait - send request thru doorbell interface
5892  * @ioc: per adapter object
5893  * @request_bytes: request length
5894  * @request: pointer having request payload
5895  * @reply_bytes: reply length
5896  * @reply: pointer to reply payload
5897  * @timeout: timeout in second
5898  *
5899  * Return: 0 for success, non-zero for failure.
5900  */
5901 static int
5902 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5903 	u32 *request, int reply_bytes, u16 *reply, int timeout)
5904 {
5905 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5906 	int i;
5907 	u8 failed;
5908 	__le32 *mfp;
5909 
5910 	/* make sure doorbell is not in use */
5911 	if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5912 		ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
5913 		return -EFAULT;
5914 	}
5915 
5916 	/* clear pending doorbell interrupts from previous state changes */
5917 	if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
5918 	    MPI2_HIS_IOC2SYS_DB_STATUS)
5919 		writel(0, &ioc->chip->HostInterruptStatus);
5920 
5921 	/* send message to ioc */
5922 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5923 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5924 	    &ioc->chip->Doorbell);
5925 
5926 	if ((_base_spin_on_doorbell_int(ioc, 5))) {
5927 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5928 			__LINE__);
5929 		return -EFAULT;
5930 	}
5931 	writel(0, &ioc->chip->HostInterruptStatus);
5932 
5933 	if ((_base_wait_for_doorbell_ack(ioc, 5))) {
5934 		ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
5935 			__LINE__);
5936 		return -EFAULT;
5937 	}
5938 
5939 	/* send message 32-bits at a time */
5940 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5941 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
5942 		if ((_base_wait_for_doorbell_ack(ioc, 5)))
5943 			failed = 1;
5944 	}
5945 
5946 	if (failed) {
5947 		ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
5948 			__LINE__);
5949 		return -EFAULT;
5950 	}
5951 
5952 	/* now wait for the reply */
5953 	if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5954 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5955 			__LINE__);
5956 		return -EFAULT;
5957 	}
5958 
5959 	/* read the first two 16-bits, it gives the total length of the reply */
5960 	reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5961 	    & MPI2_DOORBELL_DATA_MASK);
5962 	writel(0, &ioc->chip->HostInterruptStatus);
5963 	if ((_base_wait_for_doorbell_int(ioc, 5))) {
5964 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5965 			__LINE__);
5966 		return -EFAULT;
5967 	}
5968 	reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5969 	    & MPI2_DOORBELL_DATA_MASK);
5970 	writel(0, &ioc->chip->HostInterruptStatus);
5971 
5972 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
5973 		if ((_base_wait_for_doorbell_int(ioc, 5))) {
5974 			ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5975 				__LINE__);
5976 			return -EFAULT;
5977 		}
5978 		if (i >=  reply_bytes/2) /* overflow case */
5979 			ioc->base_readl(&ioc->chip->Doorbell);
5980 		else
5981 			reply[i] = le16_to_cpu(
5982 			    ioc->base_readl(&ioc->chip->Doorbell)
5983 			    & MPI2_DOORBELL_DATA_MASK);
5984 		writel(0, &ioc->chip->HostInterruptStatus);
5985 	}
5986 
5987 	_base_wait_for_doorbell_int(ioc, 5);
5988 	if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5989 		dhsprintk(ioc,
5990 			  ioc_info(ioc, "doorbell is in use (line=%d)\n",
5991 				   __LINE__));
5992 	}
5993 	writel(0, &ioc->chip->HostInterruptStatus);
5994 
5995 	if (ioc->logging_level & MPT_DEBUG_INIT) {
5996 		mfp = (__le32 *)reply;
5997 		pr_info("\toffset:data\n");
5998 		for (i = 0; i < reply_bytes/4; i++)
5999 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6000 			    le32_to_cpu(mfp[i]));
6001 	}
6002 	return 0;
6003 }
6004 
6005 /**
6006  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6007  * @ioc: per adapter object
6008  * @mpi_reply: the reply payload from FW
6009  * @mpi_request: the request payload sent to FW
6010  *
6011  * The SAS IO Unit Control Request message allows the host to perform low-level
6012  * operations, such as resets on the PHYs of the IO Unit, also allows the host
6013  * to obtain the IOC assigned device handles for a device if it has other
6014  * identifying information about the device, in addition allows the host to
6015  * remove IOC resources associated with the device.
6016  *
6017  * Return: 0 for success, non-zero for failure.
6018  */
6019 int
6020 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6021 	Mpi2SasIoUnitControlReply_t *mpi_reply,
6022 	Mpi2SasIoUnitControlRequest_t *mpi_request)
6023 {
6024 	u16 smid;
6025 	u8 issue_reset = 0;
6026 	int rc;
6027 	void *request;
6028 
6029 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6030 
6031 	mutex_lock(&ioc->base_cmds.mutex);
6032 
6033 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6034 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6035 		rc = -EAGAIN;
6036 		goto out;
6037 	}
6038 
6039 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6040 	if (rc)
6041 		goto out;
6042 
6043 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6044 	if (!smid) {
6045 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6046 		rc = -EAGAIN;
6047 		goto out;
6048 	}
6049 
6050 	rc = 0;
6051 	ioc->base_cmds.status = MPT3_CMD_PENDING;
6052 	request = mpt3sas_base_get_msg_frame(ioc, smid);
6053 	ioc->base_cmds.smid = smid;
6054 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
6055 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6056 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
6057 		ioc->ioc_link_reset_in_progress = 1;
6058 	init_completion(&ioc->base_cmds.done);
6059 	ioc->put_smid_default(ioc, smid);
6060 	wait_for_completion_timeout(&ioc->base_cmds.done,
6061 	    msecs_to_jiffies(10000));
6062 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6063 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
6064 	    ioc->ioc_link_reset_in_progress)
6065 		ioc->ioc_link_reset_in_progress = 0;
6066 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6067 		mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
6068 		    mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
6069 		    issue_reset);
6070 		goto issue_host_reset;
6071 	}
6072 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6073 		memcpy(mpi_reply, ioc->base_cmds.reply,
6074 		    sizeof(Mpi2SasIoUnitControlReply_t));
6075 	else
6076 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
6077 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6078 	goto out;
6079 
6080  issue_host_reset:
6081 	if (issue_reset)
6082 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6083 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6084 	rc = -EFAULT;
6085  out:
6086 	mutex_unlock(&ioc->base_cmds.mutex);
6087 	return rc;
6088 }
6089 
6090 /**
6091  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
6092  * @ioc: per adapter object
6093  * @mpi_reply: the reply payload from FW
6094  * @mpi_request: the request payload sent to FW
6095  *
6096  * The SCSI Enclosure Processor request message causes the IOC to
6097  * communicate with SES devices to control LED status signals.
6098  *
6099  * Return: 0 for success, non-zero for failure.
6100  */
6101 int
6102 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
6103 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
6104 {
6105 	u16 smid;
6106 	u8 issue_reset = 0;
6107 	int rc;
6108 	void *request;
6109 
6110 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6111 
6112 	mutex_lock(&ioc->base_cmds.mutex);
6113 
6114 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6115 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6116 		rc = -EAGAIN;
6117 		goto out;
6118 	}
6119 
6120 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6121 	if (rc)
6122 		goto out;
6123 
6124 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6125 	if (!smid) {
6126 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6127 		rc = -EAGAIN;
6128 		goto out;
6129 	}
6130 
6131 	rc = 0;
6132 	ioc->base_cmds.status = MPT3_CMD_PENDING;
6133 	request = mpt3sas_base_get_msg_frame(ioc, smid);
6134 	ioc->base_cmds.smid = smid;
6135 	memset(request, 0, ioc->request_sz);
6136 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
6137 	init_completion(&ioc->base_cmds.done);
6138 	ioc->put_smid_default(ioc, smid);
6139 	wait_for_completion_timeout(&ioc->base_cmds.done,
6140 	    msecs_to_jiffies(10000));
6141 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6142 		mpt3sas_check_cmd_timeout(ioc,
6143 		    ioc->base_cmds.status, mpi_request,
6144 		    sizeof(Mpi2SepRequest_t)/4, issue_reset);
6145 		goto issue_host_reset;
6146 	}
6147 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6148 		memcpy(mpi_reply, ioc->base_cmds.reply,
6149 		    sizeof(Mpi2SepReply_t));
6150 	else
6151 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
6152 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6153 	goto out;
6154 
6155  issue_host_reset:
6156 	if (issue_reset)
6157 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6158 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6159 	rc = -EFAULT;
6160  out:
6161 	mutex_unlock(&ioc->base_cmds.mutex);
6162 	return rc;
6163 }
6164 
6165 /**
6166  * _base_get_port_facts - obtain port facts reply and save in ioc
6167  * @ioc: per adapter object
6168  * @port: ?
6169  *
6170  * Return: 0 for success, non-zero for failure.
6171  */
6172 static int
6173 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
6174 {
6175 	Mpi2PortFactsRequest_t mpi_request;
6176 	Mpi2PortFactsReply_t mpi_reply;
6177 	struct mpt3sas_port_facts *pfacts;
6178 	int mpi_reply_sz, mpi_request_sz, r;
6179 
6180 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6181 
6182 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
6183 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
6184 	memset(&mpi_request, 0, mpi_request_sz);
6185 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
6186 	mpi_request.PortNumber = port;
6187 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6188 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6189 
6190 	if (r != 0) {
6191 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6192 		return r;
6193 	}
6194 
6195 	pfacts = &ioc->pfacts[port];
6196 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
6197 	pfacts->PortNumber = mpi_reply.PortNumber;
6198 	pfacts->VP_ID = mpi_reply.VP_ID;
6199 	pfacts->VF_ID = mpi_reply.VF_ID;
6200 	pfacts->MaxPostedCmdBuffers =
6201 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
6202 
6203 	return 0;
6204 }
6205 
6206 /**
6207  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
6208  * @ioc: per adapter object
6209  * @timeout:
6210  *
6211  * Return: 0 for success, non-zero for failure.
6212  */
6213 static int
6214 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
6215 {
6216 	u32 ioc_state;
6217 	int rc;
6218 
6219 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6220 
6221 	if (ioc->pci_error_recovery) {
6222 		dfailprintk(ioc,
6223 			    ioc_info(ioc, "%s: host in pci error recovery\n",
6224 				     __func__));
6225 		return -EFAULT;
6226 	}
6227 
6228 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6229 	dhsprintk(ioc,
6230 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6231 			   __func__, ioc_state));
6232 
6233 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
6234 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6235 		return 0;
6236 
6237 	if (ioc_state & MPI2_DOORBELL_USED) {
6238 		dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6239 		goto issue_diag_reset;
6240 	}
6241 
6242 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6243 		mpt3sas_print_fault_code(ioc, ioc_state &
6244 		    MPI2_DOORBELL_DATA_MASK);
6245 		goto issue_diag_reset;
6246 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6247 	    MPI2_IOC_STATE_COREDUMP) {
6248 		ioc_info(ioc,
6249 		    "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
6250 		    __func__, ioc_state);
6251 		return -EFAULT;
6252 	}
6253 
6254 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6255 	if (ioc_state) {
6256 		dfailprintk(ioc,
6257 			    ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6258 				     __func__, ioc_state));
6259 		return -EFAULT;
6260 	}
6261 
6262  issue_diag_reset:
6263 	rc = _base_diag_reset(ioc);
6264 	return rc;
6265 }
6266 
6267 /**
6268  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
6269  * @ioc: per adapter object
6270  *
6271  * Return: 0 for success, non-zero for failure.
6272  */
6273 static int
6274 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
6275 {
6276 	Mpi2IOCFactsRequest_t mpi_request;
6277 	Mpi2IOCFactsReply_t mpi_reply;
6278 	struct mpt3sas_facts *facts;
6279 	int mpi_reply_sz, mpi_request_sz, r;
6280 
6281 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6282 
6283 	r = _base_wait_for_iocstate(ioc, 10);
6284 	if (r) {
6285 		dfailprintk(ioc,
6286 			    ioc_info(ioc, "%s: failed getting to correct state\n",
6287 				     __func__));
6288 		return r;
6289 	}
6290 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
6291 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
6292 	memset(&mpi_request, 0, mpi_request_sz);
6293 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
6294 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6295 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6296 
6297 	if (r != 0) {
6298 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6299 		return r;
6300 	}
6301 
6302 	facts = &ioc->facts;
6303 	memset(facts, 0, sizeof(struct mpt3sas_facts));
6304 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
6305 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
6306 	facts->VP_ID = mpi_reply.VP_ID;
6307 	facts->VF_ID = mpi_reply.VF_ID;
6308 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
6309 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
6310 	facts->WhoInit = mpi_reply.WhoInit;
6311 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
6312 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
6313 	if (ioc->msix_enable && (facts->MaxMSIxVectors <=
6314 	    MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
6315 		ioc->combined_reply_queue = 0;
6316 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
6317 	facts->MaxReplyDescriptorPostQueueDepth =
6318 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
6319 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
6320 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
6321 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
6322 		ioc->ir_firmware = 1;
6323 	if ((facts->IOCCapabilities &
6324 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
6325 		ioc->rdpq_array_capable = 1;
6326 	if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
6327 	    && ioc->is_aero_ioc)
6328 		ioc->atomic_desc_capable = 1;
6329 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
6330 	facts->IOCRequestFrameSize =
6331 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
6332 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6333 		facts->IOCMaxChainSegmentSize =
6334 			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
6335 	}
6336 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
6337 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
6338 	ioc->shost->max_id = -1;
6339 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
6340 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
6341 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
6342 	facts->HighPriorityCredit =
6343 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
6344 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
6345 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
6346 	facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
6347 
6348 	/*
6349 	 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
6350 	 */
6351 	ioc->page_size = 1 << facts->CurrentHostPageSize;
6352 	if (ioc->page_size == 1) {
6353 		ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
6354 		ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
6355 	}
6356 	dinitprintk(ioc,
6357 		    ioc_info(ioc, "CurrentHostPageSize(%d)\n",
6358 			     facts->CurrentHostPageSize));
6359 
6360 	dinitprintk(ioc,
6361 		    ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
6362 			     facts->RequestCredit, facts->MaxChainDepth));
6363 	dinitprintk(ioc,
6364 		    ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
6365 			     facts->IOCRequestFrameSize * 4,
6366 			     facts->ReplyFrameSize * 4));
6367 	return 0;
6368 }
6369 
6370 /**
6371  * _base_send_ioc_init - send ioc_init to firmware
6372  * @ioc: per adapter object
6373  *
6374  * Return: 0 for success, non-zero for failure.
6375  */
6376 static int
6377 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
6378 {
6379 	Mpi2IOCInitRequest_t mpi_request;
6380 	Mpi2IOCInitReply_t mpi_reply;
6381 	int i, r = 0;
6382 	ktime_t current_time;
6383 	u16 ioc_status;
6384 	u32 reply_post_free_array_sz = 0;
6385 
6386 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6387 
6388 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
6389 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
6390 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
6391 	mpi_request.VF_ID = 0; /* TODO */
6392 	mpi_request.VP_ID = 0;
6393 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
6394 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
6395 	mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
6396 
6397 	if (_base_is_controller_msix_enabled(ioc))
6398 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
6399 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
6400 	mpi_request.ReplyDescriptorPostQueueDepth =
6401 	    cpu_to_le16(ioc->reply_post_queue_depth);
6402 	mpi_request.ReplyFreeQueueDepth =
6403 	    cpu_to_le16(ioc->reply_free_queue_depth);
6404 
6405 	mpi_request.SenseBufferAddressHigh =
6406 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
6407 	mpi_request.SystemReplyAddressHigh =
6408 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
6409 	mpi_request.SystemRequestFrameBaseAddress =
6410 	    cpu_to_le64((u64)ioc->request_dma);
6411 	mpi_request.ReplyFreeQueueAddress =
6412 	    cpu_to_le64((u64)ioc->reply_free_dma);
6413 
6414 	if (ioc->rdpq_array_enable) {
6415 		reply_post_free_array_sz = ioc->reply_queue_count *
6416 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
6417 		memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
6418 		for (i = 0; i < ioc->reply_queue_count; i++)
6419 			ioc->reply_post_free_array[i].RDPQBaseAddress =
6420 			    cpu_to_le64(
6421 				(u64)ioc->reply_post[i].reply_post_free_dma);
6422 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
6423 		mpi_request.ReplyDescriptorPostQueueAddress =
6424 		    cpu_to_le64((u64)ioc->reply_post_free_array_dma);
6425 	} else {
6426 		mpi_request.ReplyDescriptorPostQueueAddress =
6427 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
6428 	}
6429 
6430 	/*
6431 	 * Set the flag to enable CoreDump state feature in IOC firmware.
6432 	 */
6433 	mpi_request.ConfigurationFlags |=
6434 	    cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
6435 
6436 	/* This time stamp specifies number of milliseconds
6437 	 * since epoch ~ midnight January 1, 1970.
6438 	 */
6439 	current_time = ktime_get_real();
6440 	mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
6441 
6442 	if (ioc->logging_level & MPT_DEBUG_INIT) {
6443 		__le32 *mfp;
6444 		int i;
6445 
6446 		mfp = (__le32 *)&mpi_request;
6447 		ioc_info(ioc, "\toffset:data\n");
6448 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
6449 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6450 			    le32_to_cpu(mfp[i]));
6451 	}
6452 
6453 	r = _base_handshake_req_reply_wait(ioc,
6454 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
6455 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
6456 
6457 	if (r != 0) {
6458 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6459 		return r;
6460 	}
6461 
6462 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
6463 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
6464 	    mpi_reply.IOCLogInfo) {
6465 		ioc_err(ioc, "%s: failed\n", __func__);
6466 		r = -EIO;
6467 	}
6468 
6469 	return r;
6470 }
6471 
6472 /**
6473  * mpt3sas_port_enable_done - command completion routine for port enable
6474  * @ioc: per adapter object
6475  * @smid: system request message index
6476  * @msix_index: MSIX table index supplied by the OS
6477  * @reply: reply message frame(lower 32bit addr)
6478  *
6479  * Return: 1 meaning mf should be freed from _base_interrupt
6480  *          0 means the mf is freed from this function.
6481  */
6482 u8
6483 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
6484 	u32 reply)
6485 {
6486 	MPI2DefaultReply_t *mpi_reply;
6487 	u16 ioc_status;
6488 
6489 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
6490 		return 1;
6491 
6492 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
6493 	if (!mpi_reply)
6494 		return 1;
6495 
6496 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
6497 		return 1;
6498 
6499 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
6500 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
6501 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
6502 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
6503 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6504 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
6505 		ioc->port_enable_failed = 1;
6506 
6507 	if (ioc->is_driver_loading) {
6508 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
6509 			mpt3sas_port_enable_complete(ioc);
6510 			return 1;
6511 		} else {
6512 			ioc->start_scan_failed = ioc_status;
6513 			ioc->start_scan = 0;
6514 			return 1;
6515 		}
6516 	}
6517 	complete(&ioc->port_enable_cmds.done);
6518 	return 1;
6519 }
6520 
6521 /**
6522  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
6523  * @ioc: per adapter object
6524  *
6525  * Return: 0 for success, non-zero for failure.
6526  */
6527 static int
6528 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
6529 {
6530 	Mpi2PortEnableRequest_t *mpi_request;
6531 	Mpi2PortEnableReply_t *mpi_reply;
6532 	int r = 0;
6533 	u16 smid;
6534 	u16 ioc_status;
6535 
6536 	ioc_info(ioc, "sending port enable !!\n");
6537 
6538 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6539 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
6540 		return -EAGAIN;
6541 	}
6542 
6543 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6544 	if (!smid) {
6545 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6546 		return -EAGAIN;
6547 	}
6548 
6549 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6550 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6551 	ioc->port_enable_cmds.smid = smid;
6552 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6553 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6554 
6555 	init_completion(&ioc->port_enable_cmds.done);
6556 	ioc->put_smid_default(ioc, smid);
6557 	wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
6558 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
6559 		ioc_err(ioc, "%s: timeout\n", __func__);
6560 		_debug_dump_mf(mpi_request,
6561 		    sizeof(Mpi2PortEnableRequest_t)/4);
6562 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
6563 			r = -EFAULT;
6564 		else
6565 			r = -ETIME;
6566 		goto out;
6567 	}
6568 
6569 	mpi_reply = ioc->port_enable_cmds.reply;
6570 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6571 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
6572 		ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
6573 			__func__, ioc_status);
6574 		r = -EFAULT;
6575 		goto out;
6576 	}
6577 
6578  out:
6579 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6580 	ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
6581 	return r;
6582 }
6583 
6584 /**
6585  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
6586  * @ioc: per adapter object
6587  *
6588  * Return: 0 for success, non-zero for failure.
6589  */
6590 int
6591 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
6592 {
6593 	Mpi2PortEnableRequest_t *mpi_request;
6594 	u16 smid;
6595 
6596 	ioc_info(ioc, "sending port enable !!\n");
6597 
6598 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6599 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
6600 		return -EAGAIN;
6601 	}
6602 
6603 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6604 	if (!smid) {
6605 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6606 		return -EAGAIN;
6607 	}
6608 
6609 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6610 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6611 	ioc->port_enable_cmds.smid = smid;
6612 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6613 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6614 
6615 	ioc->put_smid_default(ioc, smid);
6616 	return 0;
6617 }
6618 
6619 /**
6620  * _base_determine_wait_on_discovery - desposition
6621  * @ioc: per adapter object
6622  *
6623  * Decide whether to wait on discovery to complete. Used to either
6624  * locate boot device, or report volumes ahead of physical devices.
6625  *
6626  * Return: 1 for wait, 0 for don't wait.
6627  */
6628 static int
6629 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
6630 {
6631 	/* We wait for discovery to complete if IR firmware is loaded.
6632 	 * The sas topology events arrive before PD events, so we need time to
6633 	 * turn on the bit in ioc->pd_handles to indicate PD
6634 	 * Also, it maybe required to report Volumes ahead of physical
6635 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
6636 	 */
6637 	if (ioc->ir_firmware)
6638 		return 1;
6639 
6640 	/* if no Bios, then we don't need to wait */
6641 	if (!ioc->bios_pg3.BiosVersion)
6642 		return 0;
6643 
6644 	/* Bios is present, then we drop down here.
6645 	 *
6646 	 * If there any entries in the Bios Page 2, then we wait
6647 	 * for discovery to complete.
6648 	 */
6649 
6650 	/* Current Boot Device */
6651 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
6652 	    MPI2_BIOSPAGE2_FORM_MASK) ==
6653 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6654 	/* Request Boot Device */
6655 	   (ioc->bios_pg2.ReqBootDeviceForm &
6656 	    MPI2_BIOSPAGE2_FORM_MASK) ==
6657 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6658 	/* Alternate Request Boot Device */
6659 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
6660 	    MPI2_BIOSPAGE2_FORM_MASK) ==
6661 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
6662 		return 0;
6663 
6664 	return 1;
6665 }
6666 
6667 /**
6668  * _base_unmask_events - turn on notification for this event
6669  * @ioc: per adapter object
6670  * @event: firmware event
6671  *
6672  * The mask is stored in ioc->event_masks.
6673  */
6674 static void
6675 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
6676 {
6677 	u32 desired_event;
6678 
6679 	if (event >= 128)
6680 		return;
6681 
6682 	desired_event = (1 << (event % 32));
6683 
6684 	if (event < 32)
6685 		ioc->event_masks[0] &= ~desired_event;
6686 	else if (event < 64)
6687 		ioc->event_masks[1] &= ~desired_event;
6688 	else if (event < 96)
6689 		ioc->event_masks[2] &= ~desired_event;
6690 	else if (event < 128)
6691 		ioc->event_masks[3] &= ~desired_event;
6692 }
6693 
6694 /**
6695  * _base_event_notification - send event notification
6696  * @ioc: per adapter object
6697  *
6698  * Return: 0 for success, non-zero for failure.
6699  */
6700 static int
6701 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6702 {
6703 	Mpi2EventNotificationRequest_t *mpi_request;
6704 	u16 smid;
6705 	int r = 0;
6706 	int i;
6707 
6708 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6709 
6710 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6711 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
6712 		return -EAGAIN;
6713 	}
6714 
6715 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6716 	if (!smid) {
6717 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6718 		return -EAGAIN;
6719 	}
6720 	ioc->base_cmds.status = MPT3_CMD_PENDING;
6721 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6722 	ioc->base_cmds.smid = smid;
6723 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6724 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6725 	mpi_request->VF_ID = 0; /* TODO */
6726 	mpi_request->VP_ID = 0;
6727 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6728 		mpi_request->EventMasks[i] =
6729 		    cpu_to_le32(ioc->event_masks[i]);
6730 	init_completion(&ioc->base_cmds.done);
6731 	ioc->put_smid_default(ioc, smid);
6732 	wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6733 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6734 		ioc_err(ioc, "%s: timeout\n", __func__);
6735 		_debug_dump_mf(mpi_request,
6736 		    sizeof(Mpi2EventNotificationRequest_t)/4);
6737 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
6738 			r = -EFAULT;
6739 		else
6740 			r = -ETIME;
6741 	} else
6742 		dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
6743 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6744 	return r;
6745 }
6746 
6747 /**
6748  * mpt3sas_base_validate_event_type - validating event types
6749  * @ioc: per adapter object
6750  * @event_type: firmware event
6751  *
6752  * This will turn on firmware event notification when application
6753  * ask for that event. We don't mask events that are already enabled.
6754  */
6755 void
6756 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6757 {
6758 	int i, j;
6759 	u32 event_mask, desired_event;
6760 	u8 send_update_to_fw;
6761 
6762 	for (i = 0, send_update_to_fw = 0; i <
6763 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6764 		event_mask = ~event_type[i];
6765 		desired_event = 1;
6766 		for (j = 0; j < 32; j++) {
6767 			if (!(event_mask & desired_event) &&
6768 			    (ioc->event_masks[i] & desired_event)) {
6769 				ioc->event_masks[i] &= ~desired_event;
6770 				send_update_to_fw = 1;
6771 			}
6772 			desired_event = (desired_event << 1);
6773 		}
6774 	}
6775 
6776 	if (!send_update_to_fw)
6777 		return;
6778 
6779 	mutex_lock(&ioc->base_cmds.mutex);
6780 	_base_event_notification(ioc);
6781 	mutex_unlock(&ioc->base_cmds.mutex);
6782 }
6783 
6784 /**
6785  * _base_diag_reset - the "big hammer" start of day reset
6786  * @ioc: per adapter object
6787  *
6788  * Return: 0 for success, non-zero for failure.
6789  */
6790 static int
6791 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6792 {
6793 	u32 host_diagnostic;
6794 	u32 ioc_state;
6795 	u32 count;
6796 	u32 hcb_size;
6797 
6798 	ioc_info(ioc, "sending diag reset !!\n");
6799 
6800 	drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
6801 
6802 	count = 0;
6803 	do {
6804 		/* Write magic sequence to WriteSequence register
6805 		 * Loop until in diagnostic mode
6806 		 */
6807 		drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
6808 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6809 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6810 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6811 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6812 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6813 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6814 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6815 
6816 		/* wait 100 msec */
6817 		msleep(100);
6818 
6819 		if (count++ > 20) {
6820 			ioc_info(ioc,
6821 			    "Stop writing magic sequence after 20 retries\n");
6822 			_base_dump_reg_set(ioc);
6823 			goto out;
6824 		}
6825 
6826 		host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6827 		drsprintk(ioc,
6828 			  ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6829 				   count, host_diagnostic));
6830 
6831 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6832 
6833 	hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
6834 
6835 	drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
6836 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6837 	     &ioc->chip->HostDiagnostic);
6838 
6839 	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
6840 	msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6841 
6842 	/* Approximately 300 second max wait */
6843 	for (count = 0; count < (300000000 /
6844 		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6845 
6846 		host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6847 
6848 		if (host_diagnostic == 0xFFFFFFFF) {
6849 			ioc_info(ioc,
6850 			    "Invalid host diagnostic register value\n");
6851 			_base_dump_reg_set(ioc);
6852 			goto out;
6853 		}
6854 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6855 			break;
6856 
6857 		msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6858 	}
6859 
6860 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6861 
6862 		drsprintk(ioc,
6863 			  ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
6864 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6865 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6866 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6867 
6868 		drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
6869 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6870 		    &ioc->chip->HCBSize);
6871 	}
6872 
6873 	drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
6874 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6875 	    &ioc->chip->HostDiagnostic);
6876 
6877 	drsprintk(ioc,
6878 		  ioc_info(ioc, "disable writes to the diagnostic register\n"));
6879 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6880 
6881 	drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
6882 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6883 	if (ioc_state) {
6884 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6885 			__func__, ioc_state);
6886 		_base_dump_reg_set(ioc);
6887 		goto out;
6888 	}
6889 
6890 	ioc_info(ioc, "diag reset: SUCCESS\n");
6891 	return 0;
6892 
6893  out:
6894 	ioc_err(ioc, "diag reset: FAILED\n");
6895 	return -EFAULT;
6896 }
6897 
6898 /**
6899  * _base_make_ioc_ready - put controller in READY state
6900  * @ioc: per adapter object
6901  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6902  *
6903  * Return: 0 for success, non-zero for failure.
6904  */
6905 static int
6906 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6907 {
6908 	u32 ioc_state;
6909 	int rc;
6910 	int count;
6911 
6912 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6913 
6914 	if (ioc->pci_error_recovery)
6915 		return 0;
6916 
6917 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6918 	dhsprintk(ioc,
6919 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6920 			   __func__, ioc_state));
6921 
6922 	/* if in RESET state, it should move to READY state shortly */
6923 	count = 0;
6924 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6925 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6926 		    MPI2_IOC_STATE_READY) {
6927 			if (count++ == 10) {
6928 				ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6929 					__func__, ioc_state);
6930 				return -EFAULT;
6931 			}
6932 			ssleep(1);
6933 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6934 		}
6935 	}
6936 
6937 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6938 		return 0;
6939 
6940 	if (ioc_state & MPI2_DOORBELL_USED) {
6941 		ioc_info(ioc, "unexpected doorbell active!\n");
6942 		goto issue_diag_reset;
6943 	}
6944 
6945 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6946 		mpt3sas_print_fault_code(ioc, ioc_state &
6947 		    MPI2_DOORBELL_DATA_MASK);
6948 		goto issue_diag_reset;
6949 	}
6950 
6951 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
6952 		/*
6953 		 * if host reset is invoked while watch dog thread is waiting
6954 		 * for IOC state to be changed to Fault state then driver has
6955 		 * to wait here for CoreDump state to clear otherwise reset
6956 		 * will be issued to the FW and FW move the IOC state to
6957 		 * reset state without copying the FW logs to coredump region.
6958 		 */
6959 		if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
6960 			mpt3sas_print_coredump_info(ioc, ioc_state &
6961 			    MPI2_DOORBELL_DATA_MASK);
6962 			mpt3sas_base_wait_for_coredump_completion(ioc,
6963 			    __func__);
6964 		}
6965 		goto issue_diag_reset;
6966 	}
6967 
6968 	if (type == FORCE_BIG_HAMMER)
6969 		goto issue_diag_reset;
6970 
6971 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6972 		if (!(_base_send_ioc_reset(ioc,
6973 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6974 			return 0;
6975 	}
6976 
6977  issue_diag_reset:
6978 	rc = _base_diag_reset(ioc);
6979 	return rc;
6980 }
6981 
6982 /**
6983  * _base_make_ioc_operational - put controller in OPERATIONAL state
6984  * @ioc: per adapter object
6985  *
6986  * Return: 0 for success, non-zero for failure.
6987  */
6988 static int
6989 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6990 {
6991 	int r, i, index, rc;
6992 	unsigned long	flags;
6993 	u32 reply_address;
6994 	u16 smid;
6995 	struct _tr_list *delayed_tr, *delayed_tr_next;
6996 	struct _sc_list *delayed_sc, *delayed_sc_next;
6997 	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
6998 	u8 hide_flag;
6999 	struct adapter_reply_queue *reply_q;
7000 	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7001 
7002 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7003 
7004 	/* clean the delayed target reset list */
7005 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7006 	    &ioc->delayed_tr_list, list) {
7007 		list_del(&delayed_tr->list);
7008 		kfree(delayed_tr);
7009 	}
7010 
7011 
7012 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7013 	    &ioc->delayed_tr_volume_list, list) {
7014 		list_del(&delayed_tr->list);
7015 		kfree(delayed_tr);
7016 	}
7017 
7018 	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
7019 	    &ioc->delayed_sc_list, list) {
7020 		list_del(&delayed_sc->list);
7021 		kfree(delayed_sc);
7022 	}
7023 
7024 	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
7025 	    &ioc->delayed_event_ack_list, list) {
7026 		list_del(&delayed_event_ack->list);
7027 		kfree(delayed_event_ack);
7028 	}
7029 
7030 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
7031 
7032 	/* hi-priority queue */
7033 	INIT_LIST_HEAD(&ioc->hpr_free_list);
7034 	smid = ioc->hi_priority_smid;
7035 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
7036 		ioc->hpr_lookup[i].cb_idx = 0xFF;
7037 		ioc->hpr_lookup[i].smid = smid;
7038 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
7039 		    &ioc->hpr_free_list);
7040 	}
7041 
7042 	/* internal queue */
7043 	INIT_LIST_HEAD(&ioc->internal_free_list);
7044 	smid = ioc->internal_smid;
7045 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
7046 		ioc->internal_lookup[i].cb_idx = 0xFF;
7047 		ioc->internal_lookup[i].smid = smid;
7048 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
7049 		    &ioc->internal_free_list);
7050 	}
7051 
7052 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
7053 
7054 	/* initialize Reply Free Queue */
7055 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
7056 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
7057 	    ioc->reply_sz) {
7058 		ioc->reply_free[i] = cpu_to_le32(reply_address);
7059 		if (ioc->is_mcpu_endpoint)
7060 			_base_clone_reply_to_sys_mem(ioc,
7061 					reply_address, i);
7062 	}
7063 
7064 	/* initialize reply queues */
7065 	if (ioc->is_driver_loading)
7066 		_base_assign_reply_queues(ioc);
7067 
7068 	/* initialize Reply Post Free Queue */
7069 	index = 0;
7070 	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
7071 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7072 		/*
7073 		 * If RDPQ is enabled, switch to the next allocation.
7074 		 * Otherwise advance within the contiguous region.
7075 		 */
7076 		if (ioc->rdpq_array_enable) {
7077 			reply_q->reply_post_free =
7078 				ioc->reply_post[index++].reply_post_free;
7079 		} else {
7080 			reply_q->reply_post_free = reply_post_free_contig;
7081 			reply_post_free_contig += ioc->reply_post_queue_depth;
7082 		}
7083 
7084 		reply_q->reply_post_host_index = 0;
7085 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
7086 			reply_q->reply_post_free[i].Words =
7087 			    cpu_to_le64(ULLONG_MAX);
7088 		if (!_base_is_controller_msix_enabled(ioc))
7089 			goto skip_init_reply_post_free_queue;
7090 	}
7091  skip_init_reply_post_free_queue:
7092 
7093 	r = _base_send_ioc_init(ioc);
7094 	if (r) {
7095 		/*
7096 		 * No need to check IOC state for fault state & issue
7097 		 * diag reset during host reset. This check is need
7098 		 * only during driver load time.
7099 		 */
7100 		if (!ioc->is_driver_loading)
7101 			return r;
7102 
7103 		rc = _base_check_for_fault_and_issue_reset(ioc);
7104 		if (rc || (_base_send_ioc_init(ioc)))
7105 			return r;
7106 	}
7107 
7108 	/* initialize reply free host index */
7109 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
7110 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
7111 
7112 	/* initialize reply post host index */
7113 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7114 		if (ioc->combined_reply_queue)
7115 			writel((reply_q->msix_index & 7)<<
7116 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
7117 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
7118 		else
7119 			writel(reply_q->msix_index <<
7120 				MPI2_RPHI_MSIX_INDEX_SHIFT,
7121 				&ioc->chip->ReplyPostHostIndex);
7122 
7123 		if (!_base_is_controller_msix_enabled(ioc))
7124 			goto skip_init_reply_post_host_index;
7125 	}
7126 
7127  skip_init_reply_post_host_index:
7128 
7129 	mpt3sas_base_unmask_interrupts(ioc);
7130 
7131 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7132 		r = _base_display_fwpkg_version(ioc);
7133 		if (r)
7134 			return r;
7135 	}
7136 
7137 	_base_static_config_pages(ioc);
7138 	r = _base_event_notification(ioc);
7139 	if (r)
7140 		return r;
7141 
7142 	if (ioc->is_driver_loading) {
7143 
7144 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
7145 		    == 0x80) {
7146 			hide_flag = (u8) (
7147 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
7148 			    MFG_PAGE10_HIDE_SSDS_MASK);
7149 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
7150 				ioc->mfg_pg10_hide_flag = hide_flag;
7151 		}
7152 
7153 		ioc->wait_for_discovery_to_complete =
7154 		    _base_determine_wait_on_discovery(ioc);
7155 
7156 		return r; /* scan_start and scan_finished support */
7157 	}
7158 
7159 	r = _base_send_port_enable(ioc);
7160 	if (r)
7161 		return r;
7162 
7163 	return r;
7164 }
7165 
7166 /**
7167  * mpt3sas_base_free_resources - free resources controller resources
7168  * @ioc: per adapter object
7169  */
7170 void
7171 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
7172 {
7173 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7174 
7175 	/* synchronizing freeing resource with pci_access_mutex lock */
7176 	mutex_lock(&ioc->pci_access_mutex);
7177 	if (ioc->chip_phys && ioc->chip) {
7178 		mpt3sas_base_mask_interrupts(ioc);
7179 		ioc->shost_recovery = 1;
7180 		_base_make_ioc_ready(ioc, SOFT_RESET);
7181 		ioc->shost_recovery = 0;
7182 	}
7183 
7184 	mpt3sas_base_unmap_resources(ioc);
7185 	mutex_unlock(&ioc->pci_access_mutex);
7186 	return;
7187 }
7188 
7189 /**
7190  * mpt3sas_base_attach - attach controller instance
7191  * @ioc: per adapter object
7192  *
7193  * Return: 0 for success, non-zero for failure.
7194  */
7195 int
7196 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
7197 {
7198 	int r, i, rc;
7199 	int cpu_id, last_cpu_id = 0;
7200 
7201 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7202 
7203 	/* setup cpu_msix_table */
7204 	ioc->cpu_count = num_online_cpus();
7205 	for_each_online_cpu(cpu_id)
7206 		last_cpu_id = cpu_id;
7207 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
7208 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
7209 	ioc->reply_queue_count = 1;
7210 	if (!ioc->cpu_msix_table) {
7211 		ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
7212 		r = -ENOMEM;
7213 		goto out_free_resources;
7214 	}
7215 
7216 	if (ioc->is_warpdrive) {
7217 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
7218 		    sizeof(resource_size_t *), GFP_KERNEL);
7219 		if (!ioc->reply_post_host_index) {
7220 			ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
7221 			r = -ENOMEM;
7222 			goto out_free_resources;
7223 		}
7224 	}
7225 
7226 	ioc->smp_affinity_enable = smp_affinity_enable;
7227 
7228 	ioc->rdpq_array_enable_assigned = 0;
7229 	ioc->use_32bit_dma = false;
7230 	if (ioc->is_aero_ioc)
7231 		ioc->base_readl = &_base_readl_aero;
7232 	else
7233 		ioc->base_readl = &_base_readl;
7234 	r = mpt3sas_base_map_resources(ioc);
7235 	if (r)
7236 		goto out_free_resources;
7237 
7238 	pci_set_drvdata(ioc->pdev, ioc->shost);
7239 	r = _base_get_ioc_facts(ioc);
7240 	if (r) {
7241 		rc = _base_check_for_fault_and_issue_reset(ioc);
7242 		if (rc || (_base_get_ioc_facts(ioc)))
7243 			goto out_free_resources;
7244 	}
7245 
7246 	switch (ioc->hba_mpi_version_belonged) {
7247 	case MPI2_VERSION:
7248 		ioc->build_sg_scmd = &_base_build_sg_scmd;
7249 		ioc->build_sg = &_base_build_sg;
7250 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
7251 		ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7252 		break;
7253 	case MPI25_VERSION:
7254 	case MPI26_VERSION:
7255 		/*
7256 		 * In SAS3.0,
7257 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
7258 		 * Target Status - all require the IEEE formated scatter gather
7259 		 * elements.
7260 		 */
7261 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
7262 		ioc->build_sg = &_base_build_sg_ieee;
7263 		ioc->build_nvme_prp = &_base_build_nvme_prp;
7264 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
7265 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
7266 		if (ioc->high_iops_queues)
7267 			ioc->get_msix_index_for_smlio =
7268 					&_base_get_high_iops_msix_index;
7269 		else
7270 			ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7271 		break;
7272 	}
7273 	if (ioc->atomic_desc_capable) {
7274 		ioc->put_smid_default = &_base_put_smid_default_atomic;
7275 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
7276 		ioc->put_smid_fast_path =
7277 				&_base_put_smid_fast_path_atomic;
7278 		ioc->put_smid_hi_priority =
7279 				&_base_put_smid_hi_priority_atomic;
7280 	} else {
7281 		ioc->put_smid_default = &_base_put_smid_default;
7282 		ioc->put_smid_fast_path = &_base_put_smid_fast_path;
7283 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
7284 		if (ioc->is_mcpu_endpoint)
7285 			ioc->put_smid_scsi_io =
7286 				&_base_put_smid_mpi_ep_scsi_io;
7287 		else
7288 			ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
7289 	}
7290 	/*
7291 	 * These function pointers for other requests that don't
7292 	 * the require IEEE scatter gather elements.
7293 	 *
7294 	 * For example Configuration Pages and SAS IOUNIT Control don't.
7295 	 */
7296 	ioc->build_sg_mpi = &_base_build_sg;
7297 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
7298 
7299 	r = _base_make_ioc_ready(ioc, SOFT_RESET);
7300 	if (r)
7301 		goto out_free_resources;
7302 
7303 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
7304 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
7305 	if (!ioc->pfacts) {
7306 		r = -ENOMEM;
7307 		goto out_free_resources;
7308 	}
7309 
7310 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
7311 		r = _base_get_port_facts(ioc, i);
7312 		if (r) {
7313 			rc = _base_check_for_fault_and_issue_reset(ioc);
7314 			if (rc || (_base_get_port_facts(ioc, i)))
7315 				goto out_free_resources;
7316 		}
7317 	}
7318 
7319 	r = _base_allocate_memory_pools(ioc);
7320 	if (r)
7321 		goto out_free_resources;
7322 
7323 	if (irqpoll_weight > 0)
7324 		ioc->thresh_hold = irqpoll_weight;
7325 	else
7326 		ioc->thresh_hold = ioc->hba_queue_depth/4;
7327 
7328 	_base_init_irqpolls(ioc);
7329 	init_waitqueue_head(&ioc->reset_wq);
7330 
7331 	/* allocate memory pd handle bitmask list */
7332 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7333 	if (ioc->facts.MaxDevHandle % 8)
7334 		ioc->pd_handles_sz++;
7335 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
7336 	    GFP_KERNEL);
7337 	if (!ioc->pd_handles) {
7338 		r = -ENOMEM;
7339 		goto out_free_resources;
7340 	}
7341 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
7342 	    GFP_KERNEL);
7343 	if (!ioc->blocking_handles) {
7344 		r = -ENOMEM;
7345 		goto out_free_resources;
7346 	}
7347 
7348 	/* allocate memory for pending OS device add list */
7349 	ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
7350 	if (ioc->facts.MaxDevHandle % 8)
7351 		ioc->pend_os_device_add_sz++;
7352 	ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
7353 	    GFP_KERNEL);
7354 	if (!ioc->pend_os_device_add)
7355 		goto out_free_resources;
7356 
7357 	ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
7358 	ioc->device_remove_in_progress =
7359 		kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
7360 	if (!ioc->device_remove_in_progress)
7361 		goto out_free_resources;
7362 
7363 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
7364 
7365 	/* base internal command bits */
7366 	mutex_init(&ioc->base_cmds.mutex);
7367 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7368 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7369 
7370 	/* port_enable command bits */
7371 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7372 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7373 
7374 	/* transport internal command bits */
7375 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7376 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
7377 	mutex_init(&ioc->transport_cmds.mutex);
7378 
7379 	/* scsih internal command bits */
7380 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7381 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
7382 	mutex_init(&ioc->scsih_cmds.mutex);
7383 
7384 	/* task management internal command bits */
7385 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7386 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
7387 	mutex_init(&ioc->tm_cmds.mutex);
7388 
7389 	/* config page internal command bits */
7390 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7391 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
7392 	mutex_init(&ioc->config_cmds.mutex);
7393 
7394 	/* ctl module internal command bits */
7395 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7396 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
7397 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
7398 	mutex_init(&ioc->ctl_cmds.mutex);
7399 
7400 	if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
7401 	    !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
7402 	    !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
7403 	    !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
7404 		r = -ENOMEM;
7405 		goto out_free_resources;
7406 	}
7407 
7408 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7409 		ioc->event_masks[i] = -1;
7410 
7411 	/* here we enable the events we care about */
7412 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
7413 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
7414 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
7415 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
7416 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
7417 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
7418 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
7419 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
7420 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
7421 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
7422 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
7423 	_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
7424 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
7425 	if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
7426 		if (ioc->is_gen35_ioc) {
7427 			_base_unmask_events(ioc,
7428 				MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
7429 			_base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
7430 			_base_unmask_events(ioc,
7431 				MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
7432 		}
7433 	}
7434 	r = _base_make_ioc_operational(ioc);
7435 	if (r)
7436 		goto out_free_resources;
7437 
7438 	/*
7439 	 * Copy current copy of IOCFacts in prev_fw_facts
7440 	 * and it will be used during online firmware upgrade.
7441 	 */
7442 	memcpy(&ioc->prev_fw_facts, &ioc->facts,
7443 	    sizeof(struct mpt3sas_facts));
7444 
7445 	ioc->non_operational_loop = 0;
7446 	ioc->ioc_coredump_loop = 0;
7447 	ioc->got_task_abort_from_ioctl = 0;
7448 	return 0;
7449 
7450  out_free_resources:
7451 
7452 	ioc->remove_host = 1;
7453 
7454 	mpt3sas_base_free_resources(ioc);
7455 	_base_release_memory_pools(ioc);
7456 	pci_set_drvdata(ioc->pdev, NULL);
7457 	kfree(ioc->cpu_msix_table);
7458 	if (ioc->is_warpdrive)
7459 		kfree(ioc->reply_post_host_index);
7460 	kfree(ioc->pd_handles);
7461 	kfree(ioc->blocking_handles);
7462 	kfree(ioc->device_remove_in_progress);
7463 	kfree(ioc->pend_os_device_add);
7464 	kfree(ioc->tm_cmds.reply);
7465 	kfree(ioc->transport_cmds.reply);
7466 	kfree(ioc->scsih_cmds.reply);
7467 	kfree(ioc->config_cmds.reply);
7468 	kfree(ioc->base_cmds.reply);
7469 	kfree(ioc->port_enable_cmds.reply);
7470 	kfree(ioc->ctl_cmds.reply);
7471 	kfree(ioc->ctl_cmds.sense);
7472 	kfree(ioc->pfacts);
7473 	ioc->ctl_cmds.reply = NULL;
7474 	ioc->base_cmds.reply = NULL;
7475 	ioc->tm_cmds.reply = NULL;
7476 	ioc->scsih_cmds.reply = NULL;
7477 	ioc->transport_cmds.reply = NULL;
7478 	ioc->config_cmds.reply = NULL;
7479 	ioc->pfacts = NULL;
7480 	return r;
7481 }
7482 
7483 
7484 /**
7485  * mpt3sas_base_detach - remove controller instance
7486  * @ioc: per adapter object
7487  */
7488 void
7489 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
7490 {
7491 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7492 
7493 	mpt3sas_base_stop_watchdog(ioc);
7494 	mpt3sas_base_free_resources(ioc);
7495 	_base_release_memory_pools(ioc);
7496 	mpt3sas_free_enclosure_list(ioc);
7497 	pci_set_drvdata(ioc->pdev, NULL);
7498 	kfree(ioc->cpu_msix_table);
7499 	if (ioc->is_warpdrive)
7500 		kfree(ioc->reply_post_host_index);
7501 	kfree(ioc->pd_handles);
7502 	kfree(ioc->blocking_handles);
7503 	kfree(ioc->device_remove_in_progress);
7504 	kfree(ioc->pend_os_device_add);
7505 	kfree(ioc->pfacts);
7506 	kfree(ioc->ctl_cmds.reply);
7507 	kfree(ioc->ctl_cmds.sense);
7508 	kfree(ioc->base_cmds.reply);
7509 	kfree(ioc->port_enable_cmds.reply);
7510 	kfree(ioc->tm_cmds.reply);
7511 	kfree(ioc->transport_cmds.reply);
7512 	kfree(ioc->scsih_cmds.reply);
7513 	kfree(ioc->config_cmds.reply);
7514 }
7515 
7516 /**
7517  * _base_pre_reset_handler - pre reset handler
7518  * @ioc: per adapter object
7519  */
7520 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
7521 {
7522 	mpt3sas_scsih_pre_reset_handler(ioc);
7523 	mpt3sas_ctl_pre_reset_handler(ioc);
7524 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
7525 }
7526 
7527 /**
7528  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
7529  * @ioc: per adapter object
7530  */
7531 static void
7532 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
7533 {
7534 	dtmprintk(ioc,
7535 	    ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
7536 	if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
7537 		ioc->transport_cmds.status |= MPT3_CMD_RESET;
7538 		mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
7539 		complete(&ioc->transport_cmds.done);
7540 	}
7541 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7542 		ioc->base_cmds.status |= MPT3_CMD_RESET;
7543 		mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
7544 		complete(&ioc->base_cmds.done);
7545 	}
7546 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7547 		ioc->port_enable_failed = 1;
7548 		ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
7549 		mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
7550 		if (ioc->is_driver_loading) {
7551 			ioc->start_scan_failed =
7552 				MPI2_IOCSTATUS_INTERNAL_ERROR;
7553 			ioc->start_scan = 0;
7554 			ioc->port_enable_cmds.status =
7555 				MPT3_CMD_NOT_USED;
7556 		} else {
7557 			complete(&ioc->port_enable_cmds.done);
7558 		}
7559 	}
7560 	if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
7561 		ioc->config_cmds.status |= MPT3_CMD_RESET;
7562 		mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
7563 		ioc->config_cmds.smid = USHRT_MAX;
7564 		complete(&ioc->config_cmds.done);
7565 	}
7566 }
7567 
7568 /**
7569  * _base_clear_outstanding_commands - clear all outstanding commands
7570  * @ioc: per adapter object
7571  */
7572 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
7573 {
7574 	mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
7575 	mpt3sas_ctl_clear_outstanding_ioctls(ioc);
7576 	_base_clear_outstanding_mpt_commands(ioc);
7577 }
7578 
7579 /**
7580  * _base_reset_done_handler - reset done handler
7581  * @ioc: per adapter object
7582  */
7583 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
7584 {
7585 	mpt3sas_scsih_reset_done_handler(ioc);
7586 	mpt3sas_ctl_reset_done_handler(ioc);
7587 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
7588 }
7589 
7590 /**
7591  * mpt3sas_wait_for_commands_to_complete - reset controller
7592  * @ioc: Pointer to MPT_ADAPTER structure
7593  *
7594  * This function is waiting 10s for all pending commands to complete
7595  * prior to putting controller in reset.
7596  */
7597 void
7598 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
7599 {
7600 	u32 ioc_state;
7601 
7602 	ioc->pending_io_count = 0;
7603 
7604 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7605 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
7606 		return;
7607 
7608 	/* pending command count */
7609 	ioc->pending_io_count = scsi_host_busy(ioc->shost);
7610 
7611 	if (!ioc->pending_io_count)
7612 		return;
7613 
7614 	/* wait for pending commands to complete */
7615 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
7616 }
7617 
7618 /**
7619  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
7620  *     attributes during online firmware upgrade and update the corresponding
7621  *     IOC variables accordingly.
7622  *
7623  * @ioc: Pointer to MPT_ADAPTER structure
7624  */
7625 static int
7626 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
7627 {
7628 	u16 pd_handles_sz;
7629 	void *pd_handles = NULL, *blocking_handles = NULL;
7630 	void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
7631 	struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
7632 
7633 	if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
7634 		pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7635 		if (ioc->facts.MaxDevHandle % 8)
7636 			pd_handles_sz++;
7637 
7638 		pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
7639 		    GFP_KERNEL);
7640 		if (!pd_handles) {
7641 			ioc_info(ioc,
7642 			    "Unable to allocate the memory for pd_handles of sz: %d\n",
7643 			    pd_handles_sz);
7644 			return -ENOMEM;
7645 		}
7646 		memset(pd_handles + ioc->pd_handles_sz, 0,
7647 		    (pd_handles_sz - ioc->pd_handles_sz));
7648 		ioc->pd_handles = pd_handles;
7649 
7650 		blocking_handles = krealloc(ioc->blocking_handles,
7651 		    pd_handles_sz, GFP_KERNEL);
7652 		if (!blocking_handles) {
7653 			ioc_info(ioc,
7654 			    "Unable to allocate the memory for "
7655 			    "blocking_handles of sz: %d\n",
7656 			    pd_handles_sz);
7657 			return -ENOMEM;
7658 		}
7659 		memset(blocking_handles + ioc->pd_handles_sz, 0,
7660 		    (pd_handles_sz - ioc->pd_handles_sz));
7661 		ioc->blocking_handles = blocking_handles;
7662 		ioc->pd_handles_sz = pd_handles_sz;
7663 
7664 		pend_os_device_add = krealloc(ioc->pend_os_device_add,
7665 		    pd_handles_sz, GFP_KERNEL);
7666 		if (!pend_os_device_add) {
7667 			ioc_info(ioc,
7668 			    "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
7669 			    pd_handles_sz);
7670 			return -ENOMEM;
7671 		}
7672 		memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
7673 		    (pd_handles_sz - ioc->pend_os_device_add_sz));
7674 		ioc->pend_os_device_add = pend_os_device_add;
7675 		ioc->pend_os_device_add_sz = pd_handles_sz;
7676 
7677 		device_remove_in_progress = krealloc(
7678 		    ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
7679 		if (!device_remove_in_progress) {
7680 			ioc_info(ioc,
7681 			    "Unable to allocate the memory for "
7682 			    "device_remove_in_progress of sz: %d\n "
7683 			    , pd_handles_sz);
7684 			return -ENOMEM;
7685 		}
7686 		memset(device_remove_in_progress +
7687 		    ioc->device_remove_in_progress_sz, 0,
7688 		    (pd_handles_sz - ioc->device_remove_in_progress_sz));
7689 		ioc->device_remove_in_progress = device_remove_in_progress;
7690 		ioc->device_remove_in_progress_sz = pd_handles_sz;
7691 	}
7692 
7693 	memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
7694 	return 0;
7695 }
7696 
7697 /**
7698  * mpt3sas_base_hard_reset_handler - reset controller
7699  * @ioc: Pointer to MPT_ADAPTER structure
7700  * @type: FORCE_BIG_HAMMER or SOFT_RESET
7701  *
7702  * Return: 0 for success, non-zero for failure.
7703  */
7704 int
7705 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
7706 	enum reset_type type)
7707 {
7708 	int r;
7709 	unsigned long flags;
7710 	u32 ioc_state;
7711 	u8 is_fault = 0, is_trigger = 0;
7712 
7713 	dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
7714 
7715 	if (ioc->pci_error_recovery) {
7716 		ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
7717 		r = 0;
7718 		goto out_unlocked;
7719 	}
7720 
7721 	if (mpt3sas_fwfault_debug)
7722 		mpt3sas_halt_firmware(ioc);
7723 
7724 	/* wait for an active reset in progress to complete */
7725 	mutex_lock(&ioc->reset_in_progress_mutex);
7726 
7727 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7728 	ioc->shost_recovery = 1;
7729 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7730 
7731 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7732 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
7733 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7734 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
7735 		is_trigger = 1;
7736 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7737 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
7738 		    (ioc_state & MPI2_IOC_STATE_MASK) ==
7739 		    MPI2_IOC_STATE_COREDUMP)
7740 			is_fault = 1;
7741 	}
7742 	_base_pre_reset_handler(ioc);
7743 	mpt3sas_wait_for_commands_to_complete(ioc);
7744 	mpt3sas_base_mask_interrupts(ioc);
7745 	r = _base_make_ioc_ready(ioc, type);
7746 	if (r)
7747 		goto out;
7748 	_base_clear_outstanding_commands(ioc);
7749 
7750 	/* If this hard reset is called while port enable is active, then
7751 	 * there is no reason to call make_ioc_operational
7752 	 */
7753 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
7754 		ioc->remove_host = 1;
7755 		r = -EFAULT;
7756 		goto out;
7757 	}
7758 	r = _base_get_ioc_facts(ioc);
7759 	if (r)
7760 		goto out;
7761 
7762 	r = _base_check_ioc_facts_changes(ioc);
7763 	if (r) {
7764 		ioc_info(ioc,
7765 		    "Some of the parameters got changed in this new firmware"
7766 		    " image and it requires system reboot\n");
7767 		goto out;
7768 	}
7769 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
7770 		panic("%s: Issue occurred with flashing controller firmware."
7771 		      "Please reboot the system and ensure that the correct"
7772 		      " firmware version is running\n", ioc->name);
7773 
7774 	r = _base_make_ioc_operational(ioc);
7775 	if (!r)
7776 		_base_reset_done_handler(ioc);
7777 
7778  out:
7779 	ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
7780 
7781 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7782 	ioc->shost_recovery = 0;
7783 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7784 	ioc->ioc_reset_count++;
7785 	mutex_unlock(&ioc->reset_in_progress_mutex);
7786 
7787  out_unlocked:
7788 	if ((r == 0) && is_trigger) {
7789 		if (is_fault)
7790 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
7791 		else
7792 			mpt3sas_trigger_master(ioc,
7793 			    MASTER_TRIGGER_ADAPTER_RESET);
7794 	}
7795 	dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
7796 	return r;
7797 }
7798