1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for Broadcom MPI3 Storage Controllers 4 * 5 * Copyright (C) 2017-2022 Broadcom Inc. 6 * (mailto: mpi3mr-linuxdrv.pdl@broadcom.com) 7 * 8 */ 9 10 #include "mpi3mr.h" 11 #include <linux/bsg-lib.h> 12 #include <uapi/scsi/scsi_bsg_mpi3mr.h> 13 14 /** 15 * mpi3mr_bsg_pel_abort - sends PEL abort request 16 * @mrioc: Adapter instance reference 17 * 18 * This function sends PEL abort request to the firmware through 19 * admin request queue. 20 * 21 * Return: 0 on success, -1 on failure 22 */ 23 static int mpi3mr_bsg_pel_abort(struct mpi3mr_ioc *mrioc) 24 { 25 struct mpi3_pel_req_action_abort pel_abort_req; 26 struct mpi3_pel_reply *pel_reply; 27 int retval = 0; 28 u16 pe_log_status; 29 30 if (mrioc->reset_in_progress) { 31 dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__); 32 return -1; 33 } 34 if (mrioc->stop_bsgs) { 35 dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__); 36 return -1; 37 } 38 39 memset(&pel_abort_req, 0, sizeof(pel_abort_req)); 40 mutex_lock(&mrioc->pel_abort_cmd.mutex); 41 if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_PENDING) { 42 dprint_bsg_err(mrioc, "%s: command is in use\n", __func__); 43 mutex_unlock(&mrioc->pel_abort_cmd.mutex); 44 return -1; 45 } 46 mrioc->pel_abort_cmd.state = MPI3MR_CMD_PENDING; 47 mrioc->pel_abort_cmd.is_waiting = 1; 48 mrioc->pel_abort_cmd.callback = NULL; 49 pel_abort_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_ABORT); 50 pel_abort_req.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG; 51 pel_abort_req.action = MPI3_PEL_ACTION_ABORT; 52 pel_abort_req.abort_host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT); 53 54 mrioc->pel_abort_requested = 1; 55 init_completion(&mrioc->pel_abort_cmd.done); 56 retval = mpi3mr_admin_request_post(mrioc, &pel_abort_req, 57 sizeof(pel_abort_req), 0); 58 if (retval) { 59 retval = -1; 60 dprint_bsg_err(mrioc, "%s: admin request post failed\n", 61 __func__); 62 mrioc->pel_abort_requested = 0; 63 goto out_unlock; 64 } 65 66 wait_for_completion_timeout(&mrioc->pel_abort_cmd.done, 67 (MPI3MR_INTADMCMD_TIMEOUT * HZ)); 68 if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_COMPLETE)) { 69 mrioc->pel_abort_cmd.is_waiting = 0; 70 dprint_bsg_err(mrioc, "%s: command timedout\n", __func__); 71 if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_RESET)) 72 mpi3mr_soft_reset_handler(mrioc, 73 MPI3MR_RESET_FROM_PELABORT_TIMEOUT, 1); 74 retval = -1; 75 goto out_unlock; 76 } 77 if ((mrioc->pel_abort_cmd.ioc_status & MPI3_IOCSTATUS_STATUS_MASK) 78 != MPI3_IOCSTATUS_SUCCESS) { 79 dprint_bsg_err(mrioc, 80 "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n", 81 __func__, (mrioc->pel_abort_cmd.ioc_status & 82 MPI3_IOCSTATUS_STATUS_MASK), 83 mrioc->pel_abort_cmd.ioc_loginfo); 84 retval = -1; 85 goto out_unlock; 86 } 87 if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_REPLY_VALID) { 88 pel_reply = (struct mpi3_pel_reply *)mrioc->pel_abort_cmd.reply; 89 pe_log_status = le16_to_cpu(pel_reply->pe_log_status); 90 if (pe_log_status != MPI3_PEL_STATUS_SUCCESS) { 91 dprint_bsg_err(mrioc, 92 "%s: command failed, pel_status(0x%04x)\n", 93 __func__, pe_log_status); 94 retval = -1; 95 } 96 } 97 98 out_unlock: 99 mrioc->pel_abort_cmd.state = MPI3MR_CMD_NOTUSED; 100 mutex_unlock(&mrioc->pel_abort_cmd.mutex); 101 return retval; 102 } 103 /** 104 * mpi3mr_bsg_verify_adapter - verify adapter number is valid 105 * @ioc_number: Adapter number 106 * 107 * This function returns the adapter instance pointer of given 108 * adapter number. If adapter number does not match with the 109 * driver's adapter list, driver returns NULL. 110 * 111 * Return: adapter instance reference 112 */ 113 static struct mpi3mr_ioc *mpi3mr_bsg_verify_adapter(int ioc_number) 114 { 115 struct mpi3mr_ioc *mrioc = NULL; 116 117 spin_lock(&mrioc_list_lock); 118 list_for_each_entry(mrioc, &mrioc_list, list) { 119 if (mrioc->id == ioc_number) { 120 spin_unlock(&mrioc_list_lock); 121 return mrioc; 122 } 123 } 124 spin_unlock(&mrioc_list_lock); 125 return NULL; 126 } 127 128 /** 129 * mpi3mr_enable_logdata - Handler for log data enable 130 * @mrioc: Adapter instance reference 131 * @job: BSG job reference 132 * 133 * This function enables log data caching in the driver if not 134 * already enabled and return the maximum number of log data 135 * entries that can be cached in the driver. 136 * 137 * Return: 0 on success and proper error codes on failure 138 */ 139 static long mpi3mr_enable_logdata(struct mpi3mr_ioc *mrioc, 140 struct bsg_job *job) 141 { 142 struct mpi3mr_logdata_enable logdata_enable; 143 144 if (!mrioc->logdata_buf) { 145 mrioc->logdata_entry_sz = 146 (mrioc->reply_sz - (sizeof(struct mpi3_event_notification_reply) - 4)) 147 + MPI3MR_BSG_LOGDATA_ENTRY_HEADER_SZ; 148 mrioc->logdata_buf_idx = 0; 149 mrioc->logdata_buf = kcalloc(MPI3MR_BSG_LOGDATA_MAX_ENTRIES, 150 mrioc->logdata_entry_sz, GFP_KERNEL); 151 152 if (!mrioc->logdata_buf) 153 return -ENOMEM; 154 } 155 156 memset(&logdata_enable, 0, sizeof(logdata_enable)); 157 logdata_enable.max_entries = 158 MPI3MR_BSG_LOGDATA_MAX_ENTRIES; 159 if (job->request_payload.payload_len >= sizeof(logdata_enable)) { 160 sg_copy_from_buffer(job->request_payload.sg_list, 161 job->request_payload.sg_cnt, 162 &logdata_enable, sizeof(logdata_enable)); 163 return 0; 164 } 165 166 return -EINVAL; 167 } 168 /** 169 * mpi3mr_get_logdata - Handler for get log data 170 * @mrioc: Adapter instance reference 171 * @job: BSG job pointer 172 * This function copies the log data entries to the user buffer 173 * when log caching is enabled in the driver. 174 * 175 * Return: 0 on success and proper error codes on failure 176 */ 177 static long mpi3mr_get_logdata(struct mpi3mr_ioc *mrioc, 178 struct bsg_job *job) 179 { 180 u16 num_entries, sz, entry_sz = mrioc->logdata_entry_sz; 181 182 if ((!mrioc->logdata_buf) || (job->request_payload.payload_len < entry_sz)) 183 return -EINVAL; 184 185 num_entries = job->request_payload.payload_len / entry_sz; 186 if (num_entries > MPI3MR_BSG_LOGDATA_MAX_ENTRIES) 187 num_entries = MPI3MR_BSG_LOGDATA_MAX_ENTRIES; 188 sz = num_entries * entry_sz; 189 190 if (job->request_payload.payload_len >= sz) { 191 sg_copy_from_buffer(job->request_payload.sg_list, 192 job->request_payload.sg_cnt, 193 mrioc->logdata_buf, sz); 194 return 0; 195 } 196 return -EINVAL; 197 } 198 199 /** 200 * mpi3mr_bsg_pel_enable - Handler for PEL enable driver 201 * @mrioc: Adapter instance reference 202 * @job: BSG job pointer 203 * 204 * This function is the handler for PEL enable driver. 205 * Validates the application given class and locale and if 206 * requires aborts the existing PEL wait request and/or issues 207 * new PEL wait request to the firmware and returns. 208 * 209 * Return: 0 on success and proper error codes on failure. 210 */ 211 static long mpi3mr_bsg_pel_enable(struct mpi3mr_ioc *mrioc, 212 struct bsg_job *job) 213 { 214 long rval = -EINVAL; 215 struct mpi3mr_bsg_out_pel_enable pel_enable; 216 u8 issue_pel_wait; 217 u8 tmp_class; 218 u16 tmp_locale; 219 220 if (job->request_payload.payload_len != sizeof(pel_enable)) { 221 dprint_bsg_err(mrioc, "%s: invalid size argument\n", 222 __func__); 223 return rval; 224 } 225 226 sg_copy_to_buffer(job->request_payload.sg_list, 227 job->request_payload.sg_cnt, 228 &pel_enable, sizeof(pel_enable)); 229 230 if (pel_enable.pel_class > MPI3_PEL_CLASS_FAULT) { 231 dprint_bsg_err(mrioc, "%s: out of range class %d sent\n", 232 __func__, pel_enable.pel_class); 233 rval = 0; 234 goto out; 235 } 236 if (!mrioc->pel_enabled) 237 issue_pel_wait = 1; 238 else { 239 if ((mrioc->pel_class <= pel_enable.pel_class) && 240 !((mrioc->pel_locale & pel_enable.pel_locale) ^ 241 pel_enable.pel_locale)) { 242 issue_pel_wait = 0; 243 rval = 0; 244 } else { 245 pel_enable.pel_locale |= mrioc->pel_locale; 246 247 if (mrioc->pel_class < pel_enable.pel_class) 248 pel_enable.pel_class = mrioc->pel_class; 249 250 rval = mpi3mr_bsg_pel_abort(mrioc); 251 if (rval) { 252 dprint_bsg_err(mrioc, 253 "%s: pel_abort failed, status(%ld)\n", 254 __func__, rval); 255 goto out; 256 } 257 issue_pel_wait = 1; 258 } 259 } 260 if (issue_pel_wait) { 261 tmp_class = mrioc->pel_class; 262 tmp_locale = mrioc->pel_locale; 263 mrioc->pel_class = pel_enable.pel_class; 264 mrioc->pel_locale = pel_enable.pel_locale; 265 mrioc->pel_enabled = 1; 266 rval = mpi3mr_pel_get_seqnum_post(mrioc, NULL); 267 if (rval) { 268 mrioc->pel_class = tmp_class; 269 mrioc->pel_locale = tmp_locale; 270 mrioc->pel_enabled = 0; 271 dprint_bsg_err(mrioc, 272 "%s: pel get sequence number failed, status(%ld)\n", 273 __func__, rval); 274 } 275 } 276 277 out: 278 return rval; 279 } 280 /** 281 * mpi3mr_get_all_tgt_info - Get all target information 282 * @mrioc: Adapter instance reference 283 * @job: BSG job reference 284 * 285 * This function copies the driver managed target devices device 286 * handle, persistent ID, bus ID and taret ID to the user 287 * provided buffer for the specific controller. This function 288 * also provides the number of devices managed by the driver for 289 * the specific controller. 290 * 291 * Return: 0 on success and proper error codes on failure 292 */ 293 static long mpi3mr_get_all_tgt_info(struct mpi3mr_ioc *mrioc, 294 struct bsg_job *job) 295 { 296 u16 num_devices = 0, i = 0, size; 297 unsigned long flags; 298 struct mpi3mr_tgt_dev *tgtdev; 299 struct mpi3mr_device_map_info *devmap_info = NULL; 300 struct mpi3mr_all_tgt_info *alltgt_info = NULL; 301 uint32_t min_entrylen = 0, kern_entrylen = 0, usr_entrylen = 0; 302 303 if (job->request_payload.payload_len < sizeof(u32)) { 304 dprint_bsg_err(mrioc, "%s: invalid size argument\n", 305 __func__); 306 return -EINVAL; 307 } 308 309 spin_lock_irqsave(&mrioc->tgtdev_lock, flags); 310 list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list) 311 num_devices++; 312 spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags); 313 314 if ((job->request_payload.payload_len <= sizeof(u64)) || 315 list_empty(&mrioc->tgtdev_list)) { 316 sg_copy_from_buffer(job->request_payload.sg_list, 317 job->request_payload.sg_cnt, 318 &num_devices, sizeof(num_devices)); 319 return 0; 320 } 321 322 kern_entrylen = num_devices * sizeof(*devmap_info); 323 size = sizeof(u64) + kern_entrylen; 324 alltgt_info = kzalloc(size, GFP_KERNEL); 325 if (!alltgt_info) 326 return -ENOMEM; 327 328 devmap_info = alltgt_info->dmi; 329 memset((u8 *)devmap_info, 0xFF, kern_entrylen); 330 spin_lock_irqsave(&mrioc->tgtdev_lock, flags); 331 list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list) { 332 if (i < num_devices) { 333 devmap_info[i].handle = tgtdev->dev_handle; 334 devmap_info[i].perst_id = tgtdev->perst_id; 335 if (tgtdev->host_exposed && tgtdev->starget) { 336 devmap_info[i].target_id = tgtdev->starget->id; 337 devmap_info[i].bus_id = 338 tgtdev->starget->channel; 339 } 340 i++; 341 } 342 } 343 num_devices = i; 344 spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags); 345 346 alltgt_info->num_devices = num_devices; 347 348 usr_entrylen = (job->request_payload.payload_len - sizeof(u64)) / 349 sizeof(*devmap_info); 350 usr_entrylen *= sizeof(*devmap_info); 351 min_entrylen = min(usr_entrylen, kern_entrylen); 352 353 sg_copy_from_buffer(job->request_payload.sg_list, 354 job->request_payload.sg_cnt, 355 alltgt_info, (min_entrylen + sizeof(u64))); 356 kfree(alltgt_info); 357 return 0; 358 } 359 /** 360 * mpi3mr_get_change_count - Get topology change count 361 * @mrioc: Adapter instance reference 362 * @job: BSG job reference 363 * 364 * This function copies the toplogy change count provided by the 365 * driver in events and cached in the driver to the user 366 * provided buffer for the specific controller. 367 * 368 * Return: 0 on success and proper error codes on failure 369 */ 370 static long mpi3mr_get_change_count(struct mpi3mr_ioc *mrioc, 371 struct bsg_job *job) 372 { 373 struct mpi3mr_change_count chgcnt; 374 375 memset(&chgcnt, 0, sizeof(chgcnt)); 376 chgcnt.change_count = mrioc->change_count; 377 if (job->request_payload.payload_len >= sizeof(chgcnt)) { 378 sg_copy_from_buffer(job->request_payload.sg_list, 379 job->request_payload.sg_cnt, 380 &chgcnt, sizeof(chgcnt)); 381 return 0; 382 } 383 return -EINVAL; 384 } 385 386 /** 387 * mpi3mr_bsg_adp_reset - Issue controller reset 388 * @mrioc: Adapter instance reference 389 * @job: BSG job reference 390 * 391 * This function identifies the user provided reset type and 392 * issues approporiate reset to the controller and wait for that 393 * to complete and reinitialize the controller and then returns 394 * 395 * Return: 0 on success and proper error codes on failure 396 */ 397 static long mpi3mr_bsg_adp_reset(struct mpi3mr_ioc *mrioc, 398 struct bsg_job *job) 399 { 400 long rval = -EINVAL; 401 u8 save_snapdump; 402 struct mpi3mr_bsg_adp_reset adpreset; 403 404 if (job->request_payload.payload_len != 405 sizeof(adpreset)) { 406 dprint_bsg_err(mrioc, "%s: invalid size argument\n", 407 __func__); 408 goto out; 409 } 410 411 sg_copy_to_buffer(job->request_payload.sg_list, 412 job->request_payload.sg_cnt, 413 &adpreset, sizeof(adpreset)); 414 415 switch (adpreset.reset_type) { 416 case MPI3MR_BSG_ADPRESET_SOFT: 417 save_snapdump = 0; 418 break; 419 case MPI3MR_BSG_ADPRESET_DIAG_FAULT: 420 save_snapdump = 1; 421 break; 422 default: 423 dprint_bsg_err(mrioc, "%s: unknown reset_type(%d)\n", 424 __func__, adpreset.reset_type); 425 goto out; 426 } 427 428 rval = mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_APP, 429 save_snapdump); 430 431 if (rval) 432 dprint_bsg_err(mrioc, 433 "%s: reset handler returned error(%ld) for reset type %d\n", 434 __func__, rval, adpreset.reset_type); 435 out: 436 return rval; 437 } 438 439 /** 440 * mpi3mr_bsg_populate_adpinfo - Get adapter info command handler 441 * @mrioc: Adapter instance reference 442 * @job: BSG job reference 443 * 444 * This function provides adapter information for the given 445 * controller 446 * 447 * Return: 0 on success and proper error codes on failure 448 */ 449 static long mpi3mr_bsg_populate_adpinfo(struct mpi3mr_ioc *mrioc, 450 struct bsg_job *job) 451 { 452 enum mpi3mr_iocstate ioc_state; 453 struct mpi3mr_bsg_in_adpinfo adpinfo; 454 455 memset(&adpinfo, 0, sizeof(adpinfo)); 456 adpinfo.adp_type = MPI3MR_BSG_ADPTYPE_AVGFAMILY; 457 adpinfo.pci_dev_id = mrioc->pdev->device; 458 adpinfo.pci_dev_hw_rev = mrioc->pdev->revision; 459 adpinfo.pci_subsys_dev_id = mrioc->pdev->subsystem_device; 460 adpinfo.pci_subsys_ven_id = mrioc->pdev->subsystem_vendor; 461 adpinfo.pci_bus = mrioc->pdev->bus->number; 462 adpinfo.pci_dev = PCI_SLOT(mrioc->pdev->devfn); 463 adpinfo.pci_func = PCI_FUNC(mrioc->pdev->devfn); 464 adpinfo.pci_seg_id = pci_domain_nr(mrioc->pdev->bus); 465 adpinfo.app_intfc_ver = MPI3MR_IOCTL_VERSION; 466 467 ioc_state = mpi3mr_get_iocstate(mrioc); 468 if (ioc_state == MRIOC_STATE_UNRECOVERABLE) 469 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE; 470 else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs)) 471 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET; 472 else if (ioc_state == MRIOC_STATE_FAULT) 473 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_FAULT; 474 else 475 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL; 476 477 memcpy((u8 *)&adpinfo.driver_info, (u8 *)&mrioc->driver_info, 478 sizeof(adpinfo.driver_info)); 479 480 if (job->request_payload.payload_len >= sizeof(adpinfo)) { 481 sg_copy_from_buffer(job->request_payload.sg_list, 482 job->request_payload.sg_cnt, 483 &adpinfo, sizeof(adpinfo)); 484 return 0; 485 } 486 return -EINVAL; 487 } 488 489 /** 490 * mpi3mr_bsg_process_drv_cmds - Driver Command handler 491 * @job: BSG job reference 492 * 493 * This function is the top level handler for driver commands, 494 * this does basic validation of the buffer and identifies the 495 * opcode and switches to correct sub handler. 496 * 497 * Return: 0 on success and proper error codes on failure 498 */ 499 static long mpi3mr_bsg_process_drv_cmds(struct bsg_job *job) 500 { 501 long rval = -EINVAL; 502 struct mpi3mr_ioc *mrioc = NULL; 503 struct mpi3mr_bsg_packet *bsg_req = NULL; 504 struct mpi3mr_bsg_drv_cmd *drvrcmd = NULL; 505 506 bsg_req = job->request; 507 drvrcmd = &bsg_req->cmd.drvrcmd; 508 509 mrioc = mpi3mr_bsg_verify_adapter(drvrcmd->mrioc_id); 510 if (!mrioc) 511 return -ENODEV; 512 513 if (drvrcmd->opcode == MPI3MR_DRVBSG_OPCODE_ADPINFO) { 514 rval = mpi3mr_bsg_populate_adpinfo(mrioc, job); 515 return rval; 516 } 517 518 if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex)) 519 return -ERESTARTSYS; 520 521 switch (drvrcmd->opcode) { 522 case MPI3MR_DRVBSG_OPCODE_ADPRESET: 523 rval = mpi3mr_bsg_adp_reset(mrioc, job); 524 break; 525 case MPI3MR_DRVBSG_OPCODE_ALLTGTDEVINFO: 526 rval = mpi3mr_get_all_tgt_info(mrioc, job); 527 break; 528 case MPI3MR_DRVBSG_OPCODE_GETCHGCNT: 529 rval = mpi3mr_get_change_count(mrioc, job); 530 break; 531 case MPI3MR_DRVBSG_OPCODE_LOGDATAENABLE: 532 rval = mpi3mr_enable_logdata(mrioc, job); 533 break; 534 case MPI3MR_DRVBSG_OPCODE_GETLOGDATA: 535 rval = mpi3mr_get_logdata(mrioc, job); 536 break; 537 case MPI3MR_DRVBSG_OPCODE_PELENABLE: 538 rval = mpi3mr_bsg_pel_enable(mrioc, job); 539 break; 540 case MPI3MR_DRVBSG_OPCODE_UNKNOWN: 541 default: 542 pr_err("%s: unsupported driver command opcode %d\n", 543 MPI3MR_DRIVER_NAME, drvrcmd->opcode); 544 break; 545 } 546 mutex_unlock(&mrioc->bsg_cmds.mutex); 547 return rval; 548 } 549 550 /** 551 * mpi3mr_bsg_build_sgl - SGL construction for MPI commands 552 * @mpi_req: MPI request 553 * @sgl_offset: offset to start sgl in the MPI request 554 * @drv_bufs: DMA address of the buffers to be placed in sgl 555 * @bufcnt: Number of DMA buffers 556 * @is_rmc: Does the buffer list has management command buffer 557 * @is_rmr: Does the buffer list has management response buffer 558 * @num_datasges: Number of data buffers in the list 559 * 560 * This function places the DMA address of the given buffers in 561 * proper format as SGEs in the given MPI request. 562 * 563 * Return: Nothing 564 */ 565 static void mpi3mr_bsg_build_sgl(u8 *mpi_req, uint32_t sgl_offset, 566 struct mpi3mr_buf_map *drv_bufs, u8 bufcnt, u8 is_rmc, 567 u8 is_rmr, u8 num_datasges) 568 { 569 u8 *sgl = (mpi_req + sgl_offset), count = 0; 570 struct mpi3_mgmt_passthrough_request *rmgmt_req = 571 (struct mpi3_mgmt_passthrough_request *)mpi_req; 572 struct mpi3mr_buf_map *drv_buf_iter = drv_bufs; 573 u8 sgl_flags, sgl_flags_last; 574 575 sgl_flags = MPI3_SGE_FLAGS_ELEMENT_TYPE_SIMPLE | 576 MPI3_SGE_FLAGS_DLAS_SYSTEM | MPI3_SGE_FLAGS_END_OF_BUFFER; 577 sgl_flags_last = sgl_flags | MPI3_SGE_FLAGS_END_OF_LIST; 578 579 if (is_rmc) { 580 mpi3mr_add_sg_single(&rmgmt_req->command_sgl, 581 sgl_flags_last, drv_buf_iter->kern_buf_len, 582 drv_buf_iter->kern_buf_dma); 583 sgl = (u8 *)drv_buf_iter->kern_buf + drv_buf_iter->bsg_buf_len; 584 drv_buf_iter++; 585 count++; 586 if (is_rmr) { 587 mpi3mr_add_sg_single(&rmgmt_req->response_sgl, 588 sgl_flags_last, drv_buf_iter->kern_buf_len, 589 drv_buf_iter->kern_buf_dma); 590 drv_buf_iter++; 591 count++; 592 } else 593 mpi3mr_build_zero_len_sge( 594 &rmgmt_req->response_sgl); 595 } 596 if (!num_datasges) { 597 mpi3mr_build_zero_len_sge(sgl); 598 return; 599 } 600 for (; count < bufcnt; count++, drv_buf_iter++) { 601 if (drv_buf_iter->data_dir == DMA_NONE) 602 continue; 603 if (num_datasges == 1 || !is_rmc) 604 mpi3mr_add_sg_single(sgl, sgl_flags_last, 605 drv_buf_iter->kern_buf_len, drv_buf_iter->kern_buf_dma); 606 else 607 mpi3mr_add_sg_single(sgl, sgl_flags, 608 drv_buf_iter->kern_buf_len, drv_buf_iter->kern_buf_dma); 609 sgl += sizeof(struct mpi3_sge_common); 610 num_datasges--; 611 } 612 } 613 614 /** 615 * mpi3mr_get_nvme_data_fmt - returns the NVMe data format 616 * @nvme_encap_request: NVMe encapsulated MPI request 617 * 618 * This function returns the type of the data format specified 619 * in user provided NVMe command in NVMe encapsulated request. 620 * 621 * Return: Data format of the NVMe command (PRP/SGL etc) 622 */ 623 static unsigned int mpi3mr_get_nvme_data_fmt( 624 struct mpi3_nvme_encapsulated_request *nvme_encap_request) 625 { 626 u8 format = 0; 627 628 format = ((nvme_encap_request->command[0] & 0xc000) >> 14); 629 return format; 630 631 } 632 633 /** 634 * mpi3mr_build_nvme_sgl - SGL constructor for NVME 635 * encapsulated request 636 * @mrioc: Adapter instance reference 637 * @nvme_encap_request: NVMe encapsulated MPI request 638 * @drv_bufs: DMA address of the buffers to be placed in sgl 639 * @bufcnt: Number of DMA buffers 640 * 641 * This function places the DMA address of the given buffers in 642 * proper format as SGEs in the given NVMe encapsulated request. 643 * 644 * Return: 0 on success, -1 on failure 645 */ 646 static int mpi3mr_build_nvme_sgl(struct mpi3mr_ioc *mrioc, 647 struct mpi3_nvme_encapsulated_request *nvme_encap_request, 648 struct mpi3mr_buf_map *drv_bufs, u8 bufcnt) 649 { 650 struct mpi3mr_nvme_pt_sge *nvme_sgl; 651 u64 sgl_ptr; 652 u8 count; 653 size_t length = 0; 654 struct mpi3mr_buf_map *drv_buf_iter = drv_bufs; 655 u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) << 656 mrioc->facts.sge_mod_shift) << 32); 657 u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) << 658 mrioc->facts.sge_mod_shift) << 32; 659 660 /* 661 * Not all commands require a data transfer. If no data, just return 662 * without constructing any sgl. 663 */ 664 for (count = 0; count < bufcnt; count++, drv_buf_iter++) { 665 if (drv_buf_iter->data_dir == DMA_NONE) 666 continue; 667 sgl_ptr = (u64)drv_buf_iter->kern_buf_dma; 668 length = drv_buf_iter->kern_buf_len; 669 break; 670 } 671 if (!length) 672 return 0; 673 674 if (sgl_ptr & sgemod_mask) { 675 dprint_bsg_err(mrioc, 676 "%s: SGL address collides with SGE modifier\n", 677 __func__); 678 return -1; 679 } 680 681 sgl_ptr &= ~sgemod_mask; 682 sgl_ptr |= sgemod_val; 683 nvme_sgl = (struct mpi3mr_nvme_pt_sge *) 684 ((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_SGL_OFFSET); 685 memset(nvme_sgl, 0, sizeof(struct mpi3mr_nvme_pt_sge)); 686 nvme_sgl->base_addr = sgl_ptr; 687 nvme_sgl->length = length; 688 return 0; 689 } 690 691 /** 692 * mpi3mr_build_nvme_prp - PRP constructor for NVME 693 * encapsulated request 694 * @mrioc: Adapter instance reference 695 * @nvme_encap_request: NVMe encapsulated MPI request 696 * @drv_bufs: DMA address of the buffers to be placed in SGL 697 * @bufcnt: Number of DMA buffers 698 * 699 * This function places the DMA address of the given buffers in 700 * proper format as PRP entries in the given NVMe encapsulated 701 * request. 702 * 703 * Return: 0 on success, -1 on failure 704 */ 705 static int mpi3mr_build_nvme_prp(struct mpi3mr_ioc *mrioc, 706 struct mpi3_nvme_encapsulated_request *nvme_encap_request, 707 struct mpi3mr_buf_map *drv_bufs, u8 bufcnt) 708 { 709 int prp_size = MPI3MR_NVME_PRP_SIZE; 710 __le64 *prp_entry, *prp1_entry, *prp2_entry; 711 __le64 *prp_page; 712 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 713 u32 offset, entry_len, dev_pgsz; 714 u32 page_mask_result, page_mask; 715 size_t length = 0; 716 u8 count; 717 struct mpi3mr_buf_map *drv_buf_iter = drv_bufs; 718 u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) << 719 mrioc->facts.sge_mod_shift) << 32); 720 u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) << 721 mrioc->facts.sge_mod_shift) << 32; 722 u16 dev_handle = nvme_encap_request->dev_handle; 723 struct mpi3mr_tgt_dev *tgtdev; 724 725 tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle); 726 if (!tgtdev) { 727 dprint_bsg_err(mrioc, "%s: invalid device handle 0x%04x\n", 728 __func__, dev_handle); 729 return -1; 730 } 731 732 if (tgtdev->dev_spec.pcie_inf.pgsz == 0) { 733 dprint_bsg_err(mrioc, 734 "%s: NVMe device page size is zero for handle 0x%04x\n", 735 __func__, dev_handle); 736 mpi3mr_tgtdev_put(tgtdev); 737 return -1; 738 } 739 740 dev_pgsz = 1 << (tgtdev->dev_spec.pcie_inf.pgsz); 741 mpi3mr_tgtdev_put(tgtdev); 742 743 /* 744 * Not all commands require a data transfer. If no data, just return 745 * without constructing any PRP. 746 */ 747 for (count = 0; count < bufcnt; count++, drv_buf_iter++) { 748 if (drv_buf_iter->data_dir == DMA_NONE) 749 continue; 750 dma_addr = drv_buf_iter->kern_buf_dma; 751 length = drv_buf_iter->kern_buf_len; 752 break; 753 } 754 755 if (!length) 756 return 0; 757 758 mrioc->prp_sz = 0; 759 mrioc->prp_list_virt = dma_alloc_coherent(&mrioc->pdev->dev, 760 dev_pgsz, &mrioc->prp_list_dma, GFP_KERNEL); 761 762 if (!mrioc->prp_list_virt) 763 return -1; 764 mrioc->prp_sz = dev_pgsz; 765 766 /* 767 * Set pointers to PRP1 and PRP2, which are in the NVMe command. 768 * PRP1 is located at a 24 byte offset from the start of the NVMe 769 * command. Then set the current PRP entry pointer to PRP1. 770 */ 771 prp1_entry = (__le64 *)((u8 *)(nvme_encap_request->command) + 772 MPI3MR_NVME_CMD_PRP1_OFFSET); 773 prp2_entry = (__le64 *)((u8 *)(nvme_encap_request->command) + 774 MPI3MR_NVME_CMD_PRP2_OFFSET); 775 prp_entry = prp1_entry; 776 /* 777 * For the PRP entries, use the specially allocated buffer of 778 * contiguous memory. 779 */ 780 prp_page = (__le64 *)mrioc->prp_list_virt; 781 prp_page_dma = mrioc->prp_list_dma; 782 783 /* 784 * Check if we are within 1 entry of a page boundary we don't 785 * want our first entry to be a PRP List entry. 786 */ 787 page_mask = dev_pgsz - 1; 788 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 789 if (!page_mask_result) { 790 dprint_bsg_err(mrioc, "%s: PRP page is not page aligned\n", 791 __func__); 792 goto err_out; 793 } 794 795 /* 796 * Set PRP physical pointer, which initially points to the current PRP 797 * DMA memory page. 798 */ 799 prp_entry_dma = prp_page_dma; 800 801 802 /* Loop while the length is not zero. */ 803 while (length) { 804 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 805 if (!page_mask_result && (length > dev_pgsz)) { 806 dprint_bsg_err(mrioc, 807 "%s: single PRP page is not sufficient\n", 808 __func__); 809 goto err_out; 810 } 811 812 /* Need to handle if entry will be part of a page. */ 813 offset = dma_addr & page_mask; 814 entry_len = dev_pgsz - offset; 815 816 if (prp_entry == prp1_entry) { 817 /* 818 * Must fill in the first PRP pointer (PRP1) before 819 * moving on. 820 */ 821 *prp1_entry = cpu_to_le64(dma_addr); 822 if (*prp1_entry & sgemod_mask) { 823 dprint_bsg_err(mrioc, 824 "%s: PRP1 address collides with SGE modifier\n", 825 __func__); 826 goto err_out; 827 } 828 *prp1_entry &= ~sgemod_mask; 829 *prp1_entry |= sgemod_val; 830 831 /* 832 * Now point to the second PRP entry within the 833 * command (PRP2). 834 */ 835 prp_entry = prp2_entry; 836 } else if (prp_entry == prp2_entry) { 837 /* 838 * Should the PRP2 entry be a PRP List pointer or just 839 * a regular PRP pointer? If there is more than one 840 * more page of data, must use a PRP List pointer. 841 */ 842 if (length > dev_pgsz) { 843 /* 844 * PRP2 will contain a PRP List pointer because 845 * more PRP's are needed with this command. The 846 * list will start at the beginning of the 847 * contiguous buffer. 848 */ 849 *prp2_entry = cpu_to_le64(prp_entry_dma); 850 if (*prp2_entry & sgemod_mask) { 851 dprint_bsg_err(mrioc, 852 "%s: PRP list address collides with SGE modifier\n", 853 __func__); 854 goto err_out; 855 } 856 *prp2_entry &= ~sgemod_mask; 857 *prp2_entry |= sgemod_val; 858 859 /* 860 * The next PRP Entry will be the start of the 861 * first PRP List. 862 */ 863 prp_entry = prp_page; 864 continue; 865 } else { 866 /* 867 * After this, the PRP Entries are complete. 868 * This command uses 2 PRP's and no PRP list. 869 */ 870 *prp2_entry = cpu_to_le64(dma_addr); 871 if (*prp2_entry & sgemod_mask) { 872 dprint_bsg_err(mrioc, 873 "%s: PRP2 collides with SGE modifier\n", 874 __func__); 875 goto err_out; 876 } 877 *prp2_entry &= ~sgemod_mask; 878 *prp2_entry |= sgemod_val; 879 } 880 } else { 881 /* 882 * Put entry in list and bump the addresses. 883 * 884 * After PRP1 and PRP2 are filled in, this will fill in 885 * all remaining PRP entries in a PRP List, one per 886 * each time through the loop. 887 */ 888 *prp_entry = cpu_to_le64(dma_addr); 889 if (*prp1_entry & sgemod_mask) { 890 dprint_bsg_err(mrioc, 891 "%s: PRP address collides with SGE modifier\n", 892 __func__); 893 goto err_out; 894 } 895 *prp_entry &= ~sgemod_mask; 896 *prp_entry |= sgemod_val; 897 prp_entry++; 898 prp_entry_dma++; 899 } 900 901 /* 902 * Bump the phys address of the command's data buffer by the 903 * entry_len. 904 */ 905 dma_addr += entry_len; 906 907 /* decrement length accounting for last partial page. */ 908 if (entry_len > length) 909 length = 0; 910 else 911 length -= entry_len; 912 } 913 return 0; 914 err_out: 915 if (mrioc->prp_list_virt) { 916 dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz, 917 mrioc->prp_list_virt, mrioc->prp_list_dma); 918 mrioc->prp_list_virt = NULL; 919 } 920 return -1; 921 } 922 /** 923 * mpi3mr_bsg_process_mpt_cmds - MPI Pass through BSG handler 924 * @job: BSG job reference 925 * 926 * This function is the top level handler for MPI Pass through 927 * command, this does basic validation of the input data buffers, 928 * identifies the given buffer types and MPI command, allocates 929 * DMAable memory for user given buffers, construstcs SGL 930 * properly and passes the command to the firmware. 931 * 932 * Once the MPI command is completed the driver copies the data 933 * if any and reply, sense information to user provided buffers. 934 * If the command is timed out then issues controller reset 935 * prior to returning. 936 * 937 * Return: 0 on success and proper error codes on failure 938 */ 939 940 static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job, unsigned int *reply_payload_rcv_len) 941 { 942 long rval = -EINVAL; 943 944 struct mpi3mr_ioc *mrioc = NULL; 945 u8 *mpi_req = NULL, *sense_buff_k = NULL; 946 u8 mpi_msg_size = 0; 947 struct mpi3mr_bsg_packet *bsg_req = NULL; 948 struct mpi3mr_bsg_mptcmd *karg; 949 struct mpi3mr_buf_entry *buf_entries = NULL; 950 struct mpi3mr_buf_map *drv_bufs = NULL, *drv_buf_iter = NULL; 951 u8 count, bufcnt = 0, is_rmcb = 0, is_rmrb = 0, din_cnt = 0, dout_cnt = 0; 952 u8 invalid_be = 0, erb_offset = 0xFF, mpirep_offset = 0xFF, sg_entries = 0; 953 u8 block_io = 0, resp_code = 0, nvme_fmt = 0; 954 struct mpi3_request_header *mpi_header = NULL; 955 struct mpi3_status_reply_descriptor *status_desc; 956 struct mpi3_scsi_task_mgmt_request *tm_req; 957 u32 erbsz = MPI3MR_SENSE_BUF_SZ, tmplen; 958 u16 dev_handle; 959 struct mpi3mr_tgt_dev *tgtdev; 960 struct mpi3mr_stgt_priv_data *stgt_priv = NULL; 961 struct mpi3mr_bsg_in_reply_buf *bsg_reply_buf = NULL; 962 u32 din_size = 0, dout_size = 0; 963 u8 *din_buf = NULL, *dout_buf = NULL; 964 u8 *sgl_iter = NULL, *sgl_din_iter = NULL, *sgl_dout_iter = NULL; 965 966 bsg_req = job->request; 967 karg = (struct mpi3mr_bsg_mptcmd *)&bsg_req->cmd.mptcmd; 968 969 mrioc = mpi3mr_bsg_verify_adapter(karg->mrioc_id); 970 if (!mrioc) 971 return -ENODEV; 972 973 if (karg->timeout < MPI3MR_APP_DEFAULT_TIMEOUT) 974 karg->timeout = MPI3MR_APP_DEFAULT_TIMEOUT; 975 976 mpi_req = kzalloc(MPI3MR_ADMIN_REQ_FRAME_SZ, GFP_KERNEL); 977 if (!mpi_req) 978 return -ENOMEM; 979 mpi_header = (struct mpi3_request_header *)mpi_req; 980 981 bufcnt = karg->buf_entry_list.num_of_entries; 982 drv_bufs = kzalloc((sizeof(*drv_bufs) * bufcnt), GFP_KERNEL); 983 if (!drv_bufs) { 984 rval = -ENOMEM; 985 goto out; 986 } 987 988 dout_buf = kzalloc(job->request_payload.payload_len, 989 GFP_KERNEL); 990 if (!dout_buf) { 991 rval = -ENOMEM; 992 goto out; 993 } 994 995 din_buf = kzalloc(job->reply_payload.payload_len, 996 GFP_KERNEL); 997 if (!din_buf) { 998 rval = -ENOMEM; 999 goto out; 1000 } 1001 1002 sg_copy_to_buffer(job->request_payload.sg_list, 1003 job->request_payload.sg_cnt, 1004 dout_buf, job->request_payload.payload_len); 1005 1006 buf_entries = karg->buf_entry_list.buf_entry; 1007 sgl_din_iter = din_buf; 1008 sgl_dout_iter = dout_buf; 1009 drv_buf_iter = drv_bufs; 1010 1011 for (count = 0; count < bufcnt; count++, buf_entries++, drv_buf_iter++) { 1012 1013 if (sgl_dout_iter > (dout_buf + job->request_payload.payload_len)) { 1014 dprint_bsg_err(mrioc, "%s: data_out buffer length mismatch\n", 1015 __func__); 1016 rval = -EINVAL; 1017 goto out; 1018 } 1019 if (sgl_din_iter > (din_buf + job->reply_payload.payload_len)) { 1020 dprint_bsg_err(mrioc, "%s: data_in buffer length mismatch\n", 1021 __func__); 1022 rval = -EINVAL; 1023 goto out; 1024 } 1025 1026 switch (buf_entries->buf_type) { 1027 case MPI3MR_BSG_BUFTYPE_RAIDMGMT_CMD: 1028 sgl_iter = sgl_dout_iter; 1029 sgl_dout_iter += buf_entries->buf_len; 1030 drv_buf_iter->data_dir = DMA_TO_DEVICE; 1031 is_rmcb = 1; 1032 if (count != 0) 1033 invalid_be = 1; 1034 break; 1035 case MPI3MR_BSG_BUFTYPE_RAIDMGMT_RESP: 1036 sgl_iter = sgl_din_iter; 1037 sgl_din_iter += buf_entries->buf_len; 1038 drv_buf_iter->data_dir = DMA_FROM_DEVICE; 1039 is_rmrb = 1; 1040 if (count != 1 || !is_rmcb) 1041 invalid_be = 1; 1042 break; 1043 case MPI3MR_BSG_BUFTYPE_DATA_IN: 1044 sgl_iter = sgl_din_iter; 1045 sgl_din_iter += buf_entries->buf_len; 1046 drv_buf_iter->data_dir = DMA_FROM_DEVICE; 1047 din_cnt++; 1048 din_size += drv_buf_iter->bsg_buf_len; 1049 if ((din_cnt > 1) && !is_rmcb) 1050 invalid_be = 1; 1051 break; 1052 case MPI3MR_BSG_BUFTYPE_DATA_OUT: 1053 sgl_iter = sgl_dout_iter; 1054 sgl_dout_iter += buf_entries->buf_len; 1055 drv_buf_iter->data_dir = DMA_TO_DEVICE; 1056 dout_cnt++; 1057 dout_size += drv_buf_iter->bsg_buf_len; 1058 if ((dout_cnt > 1) && !is_rmcb) 1059 invalid_be = 1; 1060 break; 1061 case MPI3MR_BSG_BUFTYPE_MPI_REPLY: 1062 sgl_iter = sgl_din_iter; 1063 sgl_din_iter += buf_entries->buf_len; 1064 drv_buf_iter->data_dir = DMA_NONE; 1065 mpirep_offset = count; 1066 break; 1067 case MPI3MR_BSG_BUFTYPE_ERR_RESPONSE: 1068 sgl_iter = sgl_din_iter; 1069 sgl_din_iter += buf_entries->buf_len; 1070 drv_buf_iter->data_dir = DMA_NONE; 1071 erb_offset = count; 1072 break; 1073 case MPI3MR_BSG_BUFTYPE_MPI_REQUEST: 1074 sgl_iter = sgl_dout_iter; 1075 sgl_dout_iter += buf_entries->buf_len; 1076 drv_buf_iter->data_dir = DMA_NONE; 1077 mpi_msg_size = buf_entries->buf_len; 1078 if ((!mpi_msg_size || (mpi_msg_size % 4)) || 1079 (mpi_msg_size > MPI3MR_ADMIN_REQ_FRAME_SZ)) { 1080 dprint_bsg_err(mrioc, "%s: invalid MPI message size\n", 1081 __func__); 1082 rval = -EINVAL; 1083 goto out; 1084 } 1085 memcpy(mpi_req, sgl_iter, buf_entries->buf_len); 1086 break; 1087 default: 1088 invalid_be = 1; 1089 break; 1090 } 1091 if (invalid_be) { 1092 dprint_bsg_err(mrioc, "%s: invalid buffer entries passed\n", 1093 __func__); 1094 rval = -EINVAL; 1095 goto out; 1096 } 1097 1098 drv_buf_iter->bsg_buf = sgl_iter; 1099 drv_buf_iter->bsg_buf_len = buf_entries->buf_len; 1100 1101 } 1102 if (!is_rmcb && (dout_cnt || din_cnt)) { 1103 sg_entries = dout_cnt + din_cnt; 1104 if (((mpi_msg_size) + (sg_entries * 1105 sizeof(struct mpi3_sge_common))) > MPI3MR_ADMIN_REQ_FRAME_SZ) { 1106 dprint_bsg_err(mrioc, 1107 "%s:%d: invalid message size passed\n", 1108 __func__, __LINE__); 1109 rval = -EINVAL; 1110 goto out; 1111 } 1112 } 1113 if (din_size > MPI3MR_MAX_APP_XFER_SIZE) { 1114 dprint_bsg_err(mrioc, 1115 "%s:%d: invalid data transfer size passed for function 0x%x din_size=%d\n", 1116 __func__, __LINE__, mpi_header->function, din_size); 1117 rval = -EINVAL; 1118 goto out; 1119 } 1120 if (dout_size > MPI3MR_MAX_APP_XFER_SIZE) { 1121 dprint_bsg_err(mrioc, 1122 "%s:%d: invalid data transfer size passed for function 0x%x dout_size = %d\n", 1123 __func__, __LINE__, mpi_header->function, dout_size); 1124 rval = -EINVAL; 1125 goto out; 1126 } 1127 1128 drv_buf_iter = drv_bufs; 1129 for (count = 0; count < bufcnt; count++, drv_buf_iter++) { 1130 if (drv_buf_iter->data_dir == DMA_NONE) 1131 continue; 1132 1133 drv_buf_iter->kern_buf_len = drv_buf_iter->bsg_buf_len; 1134 if (is_rmcb && !count) 1135 drv_buf_iter->kern_buf_len += ((dout_cnt + din_cnt) * 1136 sizeof(struct mpi3_sge_common)); 1137 1138 if (!drv_buf_iter->kern_buf_len) 1139 continue; 1140 1141 drv_buf_iter->kern_buf = dma_alloc_coherent(&mrioc->pdev->dev, 1142 drv_buf_iter->kern_buf_len, &drv_buf_iter->kern_buf_dma, 1143 GFP_KERNEL); 1144 if (!drv_buf_iter->kern_buf) { 1145 rval = -ENOMEM; 1146 goto out; 1147 } 1148 if (drv_buf_iter->data_dir == DMA_TO_DEVICE) { 1149 tmplen = min(drv_buf_iter->kern_buf_len, 1150 drv_buf_iter->bsg_buf_len); 1151 memcpy(drv_buf_iter->kern_buf, drv_buf_iter->bsg_buf, tmplen); 1152 } 1153 } 1154 1155 if (erb_offset != 0xFF) { 1156 sense_buff_k = kzalloc(erbsz, GFP_KERNEL); 1157 if (!sense_buff_k) { 1158 rval = -ENOMEM; 1159 goto out; 1160 } 1161 } 1162 1163 if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex)) { 1164 rval = -ERESTARTSYS; 1165 goto out; 1166 } 1167 if (mrioc->bsg_cmds.state & MPI3MR_CMD_PENDING) { 1168 rval = -EAGAIN; 1169 dprint_bsg_err(mrioc, "%s: command is in use\n", __func__); 1170 mutex_unlock(&mrioc->bsg_cmds.mutex); 1171 goto out; 1172 } 1173 if (mrioc->unrecoverable) { 1174 dprint_bsg_err(mrioc, "%s: unrecoverable controller\n", 1175 __func__); 1176 rval = -EFAULT; 1177 mutex_unlock(&mrioc->bsg_cmds.mutex); 1178 goto out; 1179 } 1180 if (mrioc->reset_in_progress) { 1181 dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__); 1182 rval = -EAGAIN; 1183 mutex_unlock(&mrioc->bsg_cmds.mutex); 1184 goto out; 1185 } 1186 if (mrioc->stop_bsgs) { 1187 dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__); 1188 rval = -EAGAIN; 1189 mutex_unlock(&mrioc->bsg_cmds.mutex); 1190 goto out; 1191 } 1192 1193 if (mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) { 1194 nvme_fmt = mpi3mr_get_nvme_data_fmt( 1195 (struct mpi3_nvme_encapsulated_request *)mpi_req); 1196 if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_PRP) { 1197 if (mpi3mr_build_nvme_prp(mrioc, 1198 (struct mpi3_nvme_encapsulated_request *)mpi_req, 1199 drv_bufs, bufcnt)) { 1200 rval = -ENOMEM; 1201 mutex_unlock(&mrioc->bsg_cmds.mutex); 1202 goto out; 1203 } 1204 } else if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL1 || 1205 nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL2) { 1206 if (mpi3mr_build_nvme_sgl(mrioc, 1207 (struct mpi3_nvme_encapsulated_request *)mpi_req, 1208 drv_bufs, bufcnt)) { 1209 rval = -EINVAL; 1210 mutex_unlock(&mrioc->bsg_cmds.mutex); 1211 goto out; 1212 } 1213 } else { 1214 dprint_bsg_err(mrioc, 1215 "%s:invalid NVMe command format\n", __func__); 1216 rval = -EINVAL; 1217 mutex_unlock(&mrioc->bsg_cmds.mutex); 1218 goto out; 1219 } 1220 } else { 1221 mpi3mr_bsg_build_sgl(mpi_req, (mpi_msg_size), 1222 drv_bufs, bufcnt, is_rmcb, is_rmrb, 1223 (dout_cnt + din_cnt)); 1224 } 1225 1226 if (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_TASK_MGMT) { 1227 tm_req = (struct mpi3_scsi_task_mgmt_request *)mpi_req; 1228 if (tm_req->task_type != 1229 MPI3_SCSITASKMGMT_TASKTYPE_ABORT_TASK) { 1230 dev_handle = tm_req->dev_handle; 1231 block_io = 1; 1232 } 1233 } 1234 if (block_io) { 1235 tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle); 1236 if (tgtdev && tgtdev->starget && tgtdev->starget->hostdata) { 1237 stgt_priv = (struct mpi3mr_stgt_priv_data *) 1238 tgtdev->starget->hostdata; 1239 atomic_inc(&stgt_priv->block_io); 1240 mpi3mr_tgtdev_put(tgtdev); 1241 } 1242 } 1243 1244 mrioc->bsg_cmds.state = MPI3MR_CMD_PENDING; 1245 mrioc->bsg_cmds.is_waiting = 1; 1246 mrioc->bsg_cmds.callback = NULL; 1247 mrioc->bsg_cmds.is_sense = 0; 1248 mrioc->bsg_cmds.sensebuf = sense_buff_k; 1249 memset(mrioc->bsg_cmds.reply, 0, mrioc->reply_sz); 1250 mpi_header->host_tag = cpu_to_le16(MPI3MR_HOSTTAG_BSG_CMDS); 1251 if (mrioc->logging_level & MPI3_DEBUG_BSG_INFO) { 1252 dprint_bsg_info(mrioc, 1253 "%s: posting bsg request to the controller\n", __func__); 1254 dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ, 1255 "bsg_mpi3_req"); 1256 if (mpi_header->function == MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) { 1257 drv_buf_iter = &drv_bufs[0]; 1258 dprint_dump(drv_buf_iter->kern_buf, 1259 drv_buf_iter->kern_buf_len, "mpi3_mgmt_req"); 1260 } 1261 } 1262 1263 init_completion(&mrioc->bsg_cmds.done); 1264 rval = mpi3mr_admin_request_post(mrioc, mpi_req, 1265 MPI3MR_ADMIN_REQ_FRAME_SZ, 0); 1266 1267 1268 if (rval) { 1269 mrioc->bsg_cmds.is_waiting = 0; 1270 dprint_bsg_err(mrioc, 1271 "%s: posting bsg request is failed\n", __func__); 1272 rval = -EAGAIN; 1273 goto out_unlock; 1274 } 1275 wait_for_completion_timeout(&mrioc->bsg_cmds.done, 1276 (karg->timeout * HZ)); 1277 if (block_io && stgt_priv) 1278 atomic_dec(&stgt_priv->block_io); 1279 if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE)) { 1280 mrioc->bsg_cmds.is_waiting = 0; 1281 rval = -EAGAIN; 1282 if (mrioc->bsg_cmds.state & MPI3MR_CMD_RESET) 1283 goto out_unlock; 1284 dprint_bsg_err(mrioc, 1285 "%s: bsg request timedout after %d seconds\n", __func__, 1286 karg->timeout); 1287 if (mrioc->logging_level & MPI3_DEBUG_BSG_ERROR) { 1288 dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ, 1289 "bsg_mpi3_req"); 1290 if (mpi_header->function == 1291 MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) { 1292 drv_buf_iter = &drv_bufs[0]; 1293 dprint_dump(drv_buf_iter->kern_buf, 1294 drv_buf_iter->kern_buf_len, "mpi3_mgmt_req"); 1295 } 1296 } 1297 1298 if ((mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) || 1299 (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_IO)) 1300 mpi3mr_issue_tm(mrioc, 1301 MPI3_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 1302 mpi_header->function_dependent, 0, 1303 MPI3MR_HOSTTAG_BLK_TMS, MPI3MR_RESETTM_TIMEOUT, 1304 &mrioc->host_tm_cmds, &resp_code, NULL); 1305 if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE) && 1306 !(mrioc->bsg_cmds.state & MPI3MR_CMD_RESET)) 1307 mpi3mr_soft_reset_handler(mrioc, 1308 MPI3MR_RESET_FROM_APP_TIMEOUT, 1); 1309 goto out_unlock; 1310 } 1311 dprint_bsg_info(mrioc, "%s: bsg request is completed\n", __func__); 1312 1313 if (mrioc->prp_list_virt) { 1314 dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz, 1315 mrioc->prp_list_virt, mrioc->prp_list_dma); 1316 mrioc->prp_list_virt = NULL; 1317 } 1318 1319 if ((mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK) 1320 != MPI3_IOCSTATUS_SUCCESS) { 1321 dprint_bsg_info(mrioc, 1322 "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n", 1323 __func__, 1324 (mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK), 1325 mrioc->bsg_cmds.ioc_loginfo); 1326 } 1327 1328 if ((mpirep_offset != 0xFF) && 1329 drv_bufs[mpirep_offset].bsg_buf_len) { 1330 drv_buf_iter = &drv_bufs[mpirep_offset]; 1331 drv_buf_iter->kern_buf_len = (sizeof(*bsg_reply_buf) - 1 + 1332 mrioc->reply_sz); 1333 bsg_reply_buf = kzalloc(drv_buf_iter->kern_buf_len, GFP_KERNEL); 1334 1335 if (!bsg_reply_buf) { 1336 rval = -ENOMEM; 1337 goto out_unlock; 1338 } 1339 if (mrioc->bsg_cmds.state & MPI3MR_CMD_REPLY_VALID) { 1340 bsg_reply_buf->mpi_reply_type = 1341 MPI3MR_BSG_MPI_REPLY_BUFTYPE_ADDRESS; 1342 memcpy(bsg_reply_buf->reply_buf, 1343 mrioc->bsg_cmds.reply, mrioc->reply_sz); 1344 } else { 1345 bsg_reply_buf->mpi_reply_type = 1346 MPI3MR_BSG_MPI_REPLY_BUFTYPE_STATUS; 1347 status_desc = (struct mpi3_status_reply_descriptor *) 1348 bsg_reply_buf->reply_buf; 1349 status_desc->ioc_status = mrioc->bsg_cmds.ioc_status; 1350 status_desc->ioc_log_info = mrioc->bsg_cmds.ioc_loginfo; 1351 } 1352 tmplen = min(drv_buf_iter->kern_buf_len, 1353 drv_buf_iter->bsg_buf_len); 1354 memcpy(drv_buf_iter->bsg_buf, bsg_reply_buf, tmplen); 1355 } 1356 1357 if (erb_offset != 0xFF && mrioc->bsg_cmds.sensebuf && 1358 mrioc->bsg_cmds.is_sense) { 1359 drv_buf_iter = &drv_bufs[erb_offset]; 1360 tmplen = min(erbsz, drv_buf_iter->bsg_buf_len); 1361 memcpy(drv_buf_iter->bsg_buf, sense_buff_k, tmplen); 1362 } 1363 1364 drv_buf_iter = drv_bufs; 1365 for (count = 0; count < bufcnt; count++, drv_buf_iter++) { 1366 if (drv_buf_iter->data_dir == DMA_NONE) 1367 continue; 1368 if (drv_buf_iter->data_dir == DMA_FROM_DEVICE) { 1369 tmplen = min(drv_buf_iter->kern_buf_len, 1370 drv_buf_iter->bsg_buf_len); 1371 memcpy(drv_buf_iter->bsg_buf, 1372 drv_buf_iter->kern_buf, tmplen); 1373 } 1374 } 1375 1376 out_unlock: 1377 if (din_buf) { 1378 *reply_payload_rcv_len = 1379 sg_copy_from_buffer(job->reply_payload.sg_list, 1380 job->reply_payload.sg_cnt, 1381 din_buf, job->reply_payload.payload_len); 1382 } 1383 mrioc->bsg_cmds.is_sense = 0; 1384 mrioc->bsg_cmds.sensebuf = NULL; 1385 mrioc->bsg_cmds.state = MPI3MR_CMD_NOTUSED; 1386 mutex_unlock(&mrioc->bsg_cmds.mutex); 1387 out: 1388 kfree(sense_buff_k); 1389 kfree(dout_buf); 1390 kfree(din_buf); 1391 kfree(mpi_req); 1392 if (drv_bufs) { 1393 drv_buf_iter = drv_bufs; 1394 for (count = 0; count < bufcnt; count++, drv_buf_iter++) { 1395 if (drv_buf_iter->kern_buf && drv_buf_iter->kern_buf_dma) 1396 dma_free_coherent(&mrioc->pdev->dev, 1397 drv_buf_iter->kern_buf_len, 1398 drv_buf_iter->kern_buf, 1399 drv_buf_iter->kern_buf_dma); 1400 } 1401 kfree(drv_bufs); 1402 } 1403 kfree(bsg_reply_buf); 1404 return rval; 1405 } 1406 1407 /** 1408 * mpi3mr_app_save_logdata - Save Log Data events 1409 * @mrioc: Adapter instance reference 1410 * @event_data: event data associated with log data event 1411 * @event_data_size: event data size to copy 1412 * 1413 * If log data event caching is enabled by the applicatiobns, 1414 * then this function saves the log data in the circular queue 1415 * and Sends async signal SIGIO to indicate there is an async 1416 * event from the firmware to the event monitoring applications. 1417 * 1418 * Return:Nothing 1419 */ 1420 void mpi3mr_app_save_logdata(struct mpi3mr_ioc *mrioc, char *event_data, 1421 u16 event_data_size) 1422 { 1423 u32 index = mrioc->logdata_buf_idx, sz; 1424 struct mpi3mr_logdata_entry *entry; 1425 1426 if (!(mrioc->logdata_buf)) 1427 return; 1428 1429 entry = (struct mpi3mr_logdata_entry *) 1430 (mrioc->logdata_buf + (index * mrioc->logdata_entry_sz)); 1431 entry->valid_entry = 1; 1432 sz = min(mrioc->logdata_entry_sz, event_data_size); 1433 memcpy(entry->data, event_data, sz); 1434 mrioc->logdata_buf_idx = 1435 ((++index) % MPI3MR_BSG_LOGDATA_MAX_ENTRIES); 1436 atomic64_inc(&event_counter); 1437 } 1438 1439 /** 1440 * mpi3mr_bsg_request - bsg request entry point 1441 * @job: BSG job reference 1442 * 1443 * This is driver's entry point for bsg requests 1444 * 1445 * Return: 0 on success and proper error codes on failure 1446 */ 1447 static int mpi3mr_bsg_request(struct bsg_job *job) 1448 { 1449 long rval = -EINVAL; 1450 unsigned int reply_payload_rcv_len = 0; 1451 1452 struct mpi3mr_bsg_packet *bsg_req = job->request; 1453 1454 switch (bsg_req->cmd_type) { 1455 case MPI3MR_DRV_CMD: 1456 rval = mpi3mr_bsg_process_drv_cmds(job); 1457 break; 1458 case MPI3MR_MPT_CMD: 1459 rval = mpi3mr_bsg_process_mpt_cmds(job, &reply_payload_rcv_len); 1460 break; 1461 default: 1462 pr_err("%s: unsupported BSG command(0x%08x)\n", 1463 MPI3MR_DRIVER_NAME, bsg_req->cmd_type); 1464 break; 1465 } 1466 1467 bsg_job_done(job, rval, reply_payload_rcv_len); 1468 1469 return 0; 1470 } 1471 1472 /** 1473 * mpi3mr_bsg_exit - de-registration from bsg layer 1474 * 1475 * This will be called during driver unload and all 1476 * bsg resources allocated during load will be freed. 1477 * 1478 * Return:Nothing 1479 */ 1480 void mpi3mr_bsg_exit(struct mpi3mr_ioc *mrioc) 1481 { 1482 struct device *bsg_dev = &mrioc->bsg_dev; 1483 if (!mrioc->bsg_queue) 1484 return; 1485 1486 bsg_remove_queue(mrioc->bsg_queue); 1487 mrioc->bsg_queue = NULL; 1488 1489 device_del(bsg_dev); 1490 put_device(bsg_dev); 1491 } 1492 1493 /** 1494 * mpi3mr_bsg_node_release -release bsg device node 1495 * @dev: bsg device node 1496 * 1497 * decrements bsg dev parent reference count 1498 * 1499 * Return:Nothing 1500 */ 1501 static void mpi3mr_bsg_node_release(struct device *dev) 1502 { 1503 put_device(dev->parent); 1504 } 1505 1506 /** 1507 * mpi3mr_bsg_init - registration with bsg layer 1508 * 1509 * This will be called during driver load and it will 1510 * register driver with bsg layer 1511 * 1512 * Return:Nothing 1513 */ 1514 void mpi3mr_bsg_init(struct mpi3mr_ioc *mrioc) 1515 { 1516 struct device *bsg_dev = &mrioc->bsg_dev; 1517 struct device *parent = &mrioc->shost->shost_gendev; 1518 1519 device_initialize(bsg_dev); 1520 1521 bsg_dev->parent = get_device(parent); 1522 bsg_dev->release = mpi3mr_bsg_node_release; 1523 1524 dev_set_name(bsg_dev, "mpi3mrctl%u", mrioc->id); 1525 1526 if (device_add(bsg_dev)) { 1527 ioc_err(mrioc, "%s: bsg device add failed\n", 1528 dev_name(bsg_dev)); 1529 put_device(bsg_dev); 1530 return; 1531 } 1532 1533 mrioc->bsg_queue = bsg_setup_queue(bsg_dev, dev_name(bsg_dev), 1534 mpi3mr_bsg_request, NULL, 0); 1535 if (IS_ERR(mrioc->bsg_queue)) { 1536 ioc_err(mrioc, "%s: bsg registration failed\n", 1537 dev_name(bsg_dev)); 1538 device_del(bsg_dev); 1539 put_device(bsg_dev); 1540 return; 1541 } 1542 1543 blk_queue_max_segments(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SEGMENTS); 1544 blk_queue_max_hw_sectors(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SECTORS); 1545 1546 return; 1547 } 1548 1549 /** 1550 * version_fw_show - SysFS callback for firmware version read 1551 * @dev: class device 1552 * @attr: Device attributes 1553 * @buf: Buffer to copy 1554 * 1555 * Return: sysfs_emit() return after copying firmware version 1556 */ 1557 static ssize_t 1558 version_fw_show(struct device *dev, struct device_attribute *attr, 1559 char *buf) 1560 { 1561 struct Scsi_Host *shost = class_to_shost(dev); 1562 struct mpi3mr_ioc *mrioc = shost_priv(shost); 1563 struct mpi3mr_compimg_ver *fwver = &mrioc->facts.fw_ver; 1564 1565 return sysfs_emit(buf, "%d.%d.%d.%d.%05d-%05d\n", 1566 fwver->gen_major, fwver->gen_minor, fwver->ph_major, 1567 fwver->ph_minor, fwver->cust_id, fwver->build_num); 1568 } 1569 static DEVICE_ATTR_RO(version_fw); 1570 1571 /** 1572 * fw_queue_depth_show - SysFS callback for firmware max cmds 1573 * @dev: class device 1574 * @attr: Device attributes 1575 * @buf: Buffer to copy 1576 * 1577 * Return: sysfs_emit() return after copying firmware max commands 1578 */ 1579 static ssize_t 1580 fw_queue_depth_show(struct device *dev, struct device_attribute *attr, 1581 char *buf) 1582 { 1583 struct Scsi_Host *shost = class_to_shost(dev); 1584 struct mpi3mr_ioc *mrioc = shost_priv(shost); 1585 1586 return sysfs_emit(buf, "%d\n", mrioc->facts.max_reqs); 1587 } 1588 static DEVICE_ATTR_RO(fw_queue_depth); 1589 1590 /** 1591 * op_req_q_count_show - SysFS callback for request queue count 1592 * @dev: class device 1593 * @attr: Device attributes 1594 * @buf: Buffer to copy 1595 * 1596 * Return: sysfs_emit() return after copying request queue count 1597 */ 1598 static ssize_t 1599 op_req_q_count_show(struct device *dev, struct device_attribute *attr, 1600 char *buf) 1601 { 1602 struct Scsi_Host *shost = class_to_shost(dev); 1603 struct mpi3mr_ioc *mrioc = shost_priv(shost); 1604 1605 return sysfs_emit(buf, "%d\n", mrioc->num_op_req_q); 1606 } 1607 static DEVICE_ATTR_RO(op_req_q_count); 1608 1609 /** 1610 * reply_queue_count_show - SysFS callback for reply queue count 1611 * @dev: class device 1612 * @attr: Device attributes 1613 * @buf: Buffer to copy 1614 * 1615 * Return: sysfs_emit() return after copying reply queue count 1616 */ 1617 static ssize_t 1618 reply_queue_count_show(struct device *dev, struct device_attribute *attr, 1619 char *buf) 1620 { 1621 struct Scsi_Host *shost = class_to_shost(dev); 1622 struct mpi3mr_ioc *mrioc = shost_priv(shost); 1623 1624 return sysfs_emit(buf, "%d\n", mrioc->num_op_reply_q); 1625 } 1626 1627 static DEVICE_ATTR_RO(reply_queue_count); 1628 1629 /** 1630 * logging_level_show - Show controller debug level 1631 * @dev: class device 1632 * @attr: Device attributes 1633 * @buf: Buffer to copy 1634 * 1635 * A sysfs 'read/write' shost attribute, to show the current 1636 * debug log level used by the driver for the specific 1637 * controller. 1638 * 1639 * Return: sysfs_emit() return 1640 */ 1641 static ssize_t 1642 logging_level_show(struct device *dev, 1643 struct device_attribute *attr, char *buf) 1644 1645 { 1646 struct Scsi_Host *shost = class_to_shost(dev); 1647 struct mpi3mr_ioc *mrioc = shost_priv(shost); 1648 1649 return sysfs_emit(buf, "%08xh\n", mrioc->logging_level); 1650 } 1651 1652 /** 1653 * logging_level_store- Change controller debug level 1654 * @dev: class device 1655 * @attr: Device attributes 1656 * @buf: Buffer to copy 1657 * @count: size of the buffer 1658 * 1659 * A sysfs 'read/write' shost attribute, to change the current 1660 * debug log level used by the driver for the specific 1661 * controller. 1662 * 1663 * Return: strlen() return 1664 */ 1665 static ssize_t 1666 logging_level_store(struct device *dev, 1667 struct device_attribute *attr, 1668 const char *buf, size_t count) 1669 { 1670 struct Scsi_Host *shost = class_to_shost(dev); 1671 struct mpi3mr_ioc *mrioc = shost_priv(shost); 1672 int val = 0; 1673 1674 if (kstrtoint(buf, 0, &val) != 0) 1675 return -EINVAL; 1676 1677 mrioc->logging_level = val; 1678 ioc_info(mrioc, "logging_level=%08xh\n", mrioc->logging_level); 1679 return strlen(buf); 1680 } 1681 static DEVICE_ATTR_RW(logging_level); 1682 1683 /** 1684 * adp_state_show() - SysFS callback for adapter state show 1685 * @dev: class device 1686 * @attr: Device attributes 1687 * @buf: Buffer to copy 1688 * 1689 * Return: sysfs_emit() return after copying adapter state 1690 */ 1691 static ssize_t 1692 adp_state_show(struct device *dev, struct device_attribute *attr, 1693 char *buf) 1694 { 1695 struct Scsi_Host *shost = class_to_shost(dev); 1696 struct mpi3mr_ioc *mrioc = shost_priv(shost); 1697 enum mpi3mr_iocstate ioc_state; 1698 uint8_t adp_state; 1699 1700 ioc_state = mpi3mr_get_iocstate(mrioc); 1701 if (ioc_state == MRIOC_STATE_UNRECOVERABLE) 1702 adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE; 1703 else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs)) 1704 adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET; 1705 else if (ioc_state == MRIOC_STATE_FAULT) 1706 adp_state = MPI3MR_BSG_ADPSTATE_FAULT; 1707 else 1708 adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL; 1709 1710 return sysfs_emit(buf, "%u\n", adp_state); 1711 } 1712 1713 static DEVICE_ATTR_RO(adp_state); 1714 1715 static struct attribute *mpi3mr_host_attrs[] = { 1716 &dev_attr_version_fw.attr, 1717 &dev_attr_fw_queue_depth.attr, 1718 &dev_attr_op_req_q_count.attr, 1719 &dev_attr_reply_queue_count.attr, 1720 &dev_attr_logging_level.attr, 1721 &dev_attr_adp_state.attr, 1722 NULL, 1723 }; 1724 1725 static const struct attribute_group mpi3mr_host_attr_group = { 1726 .attrs = mpi3mr_host_attrs 1727 }; 1728 1729 const struct attribute_group *mpi3mr_host_groups[] = { 1730 &mpi3mr_host_attr_group, 1731 NULL, 1732 }; 1733 1734 1735 /* 1736 * SCSI Device attributes under sysfs 1737 */ 1738 1739 /** 1740 * sas_address_show - SysFS callback for dev SASaddress display 1741 * @dev: class device 1742 * @attr: Device attributes 1743 * @buf: Buffer to copy 1744 * 1745 * Return: sysfs_emit() return after copying SAS address of the 1746 * specific SAS/SATA end device. 1747 */ 1748 static ssize_t 1749 sas_address_show(struct device *dev, struct device_attribute *attr, 1750 char *buf) 1751 { 1752 struct scsi_device *sdev = to_scsi_device(dev); 1753 struct mpi3mr_sdev_priv_data *sdev_priv_data; 1754 struct mpi3mr_stgt_priv_data *tgt_priv_data; 1755 struct mpi3mr_tgt_dev *tgtdev; 1756 1757 sdev_priv_data = sdev->hostdata; 1758 if (!sdev_priv_data) 1759 return 0; 1760 1761 tgt_priv_data = sdev_priv_data->tgt_priv_data; 1762 if (!tgt_priv_data) 1763 return 0; 1764 tgtdev = tgt_priv_data->tgt_dev; 1765 if (!tgtdev || tgtdev->dev_type != MPI3_DEVICE_DEVFORM_SAS_SATA) 1766 return 0; 1767 return sysfs_emit(buf, "0x%016llx\n", 1768 (unsigned long long)tgtdev->dev_spec.sas_sata_inf.sas_address); 1769 } 1770 1771 static DEVICE_ATTR_RO(sas_address); 1772 1773 /** 1774 * device_handle_show - SysFS callback for device handle display 1775 * @dev: class device 1776 * @attr: Device attributes 1777 * @buf: Buffer to copy 1778 * 1779 * Return: sysfs_emit() return after copying firmware internal 1780 * device handle of the specific device. 1781 */ 1782 static ssize_t 1783 device_handle_show(struct device *dev, struct device_attribute *attr, 1784 char *buf) 1785 { 1786 struct scsi_device *sdev = to_scsi_device(dev); 1787 struct mpi3mr_sdev_priv_data *sdev_priv_data; 1788 struct mpi3mr_stgt_priv_data *tgt_priv_data; 1789 struct mpi3mr_tgt_dev *tgtdev; 1790 1791 sdev_priv_data = sdev->hostdata; 1792 if (!sdev_priv_data) 1793 return 0; 1794 1795 tgt_priv_data = sdev_priv_data->tgt_priv_data; 1796 if (!tgt_priv_data) 1797 return 0; 1798 tgtdev = tgt_priv_data->tgt_dev; 1799 if (!tgtdev) 1800 return 0; 1801 return sysfs_emit(buf, "0x%04x\n", tgtdev->dev_handle); 1802 } 1803 1804 static DEVICE_ATTR_RO(device_handle); 1805 1806 /** 1807 * persistent_id_show - SysFS callback for persisten ID display 1808 * @dev: class device 1809 * @attr: Device attributes 1810 * @buf: Buffer to copy 1811 * 1812 * Return: sysfs_emit() return after copying persistent ID of the 1813 * of the specific device. 1814 */ 1815 static ssize_t 1816 persistent_id_show(struct device *dev, struct device_attribute *attr, 1817 char *buf) 1818 { 1819 struct scsi_device *sdev = to_scsi_device(dev); 1820 struct mpi3mr_sdev_priv_data *sdev_priv_data; 1821 struct mpi3mr_stgt_priv_data *tgt_priv_data; 1822 struct mpi3mr_tgt_dev *tgtdev; 1823 1824 sdev_priv_data = sdev->hostdata; 1825 if (!sdev_priv_data) 1826 return 0; 1827 1828 tgt_priv_data = sdev_priv_data->tgt_priv_data; 1829 if (!tgt_priv_data) 1830 return 0; 1831 tgtdev = tgt_priv_data->tgt_dev; 1832 if (!tgtdev) 1833 return 0; 1834 return sysfs_emit(buf, "%d\n", tgtdev->perst_id); 1835 } 1836 static DEVICE_ATTR_RO(persistent_id); 1837 1838 static struct attribute *mpi3mr_dev_attrs[] = { 1839 &dev_attr_sas_address.attr, 1840 &dev_attr_device_handle.attr, 1841 &dev_attr_persistent_id.attr, 1842 NULL, 1843 }; 1844 1845 static const struct attribute_group mpi3mr_dev_attr_group = { 1846 .attrs = mpi3mr_dev_attrs 1847 }; 1848 1849 const struct attribute_group *mpi3mr_dev_groups[] = { 1850 &mpi3mr_dev_attr_group, 1851 NULL, 1852 }; 1853