xref: /openbmc/linux/drivers/scsi/mpi3mr/mpi3mr_app.c (revision a266ef69)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Broadcom MPI3 Storage Controllers
4  *
5  * Copyright (C) 2017-2022 Broadcom Inc.
6  *  (mailto: mpi3mr-linuxdrv.pdl@broadcom.com)
7  *
8  */
9 
10 #include "mpi3mr.h"
11 #include <linux/bsg-lib.h>
12 #include <uapi/scsi/scsi_bsg_mpi3mr.h>
13 
14 /**
15  * mpi3mr_bsg_pel_abort - sends PEL abort request
16  * @mrioc: Adapter instance reference
17  *
18  * This function sends PEL abort request to the firmware through
19  * admin request queue.
20  *
21  * Return: 0 on success, -1 on failure
22  */
23 static int mpi3mr_bsg_pel_abort(struct mpi3mr_ioc *mrioc)
24 {
25 	struct mpi3_pel_req_action_abort pel_abort_req;
26 	struct mpi3_pel_reply *pel_reply;
27 	int retval = 0;
28 	u16 pe_log_status;
29 
30 	if (mrioc->reset_in_progress) {
31 		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
32 		return -1;
33 	}
34 	if (mrioc->stop_bsgs) {
35 		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
36 		return -1;
37 	}
38 
39 	memset(&pel_abort_req, 0, sizeof(pel_abort_req));
40 	mutex_lock(&mrioc->pel_abort_cmd.mutex);
41 	if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_PENDING) {
42 		dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
43 		mutex_unlock(&mrioc->pel_abort_cmd.mutex);
44 		return -1;
45 	}
46 	mrioc->pel_abort_cmd.state = MPI3MR_CMD_PENDING;
47 	mrioc->pel_abort_cmd.is_waiting = 1;
48 	mrioc->pel_abort_cmd.callback = NULL;
49 	pel_abort_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_ABORT);
50 	pel_abort_req.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG;
51 	pel_abort_req.action = MPI3_PEL_ACTION_ABORT;
52 	pel_abort_req.abort_host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT);
53 
54 	mrioc->pel_abort_requested = 1;
55 	init_completion(&mrioc->pel_abort_cmd.done);
56 	retval = mpi3mr_admin_request_post(mrioc, &pel_abort_req,
57 	    sizeof(pel_abort_req), 0);
58 	if (retval) {
59 		retval = -1;
60 		dprint_bsg_err(mrioc, "%s: admin request post failed\n",
61 		    __func__);
62 		mrioc->pel_abort_requested = 0;
63 		goto out_unlock;
64 	}
65 
66 	wait_for_completion_timeout(&mrioc->pel_abort_cmd.done,
67 	    (MPI3MR_INTADMCMD_TIMEOUT * HZ));
68 	if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_COMPLETE)) {
69 		mrioc->pel_abort_cmd.is_waiting = 0;
70 		dprint_bsg_err(mrioc, "%s: command timedout\n", __func__);
71 		if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_RESET))
72 			mpi3mr_soft_reset_handler(mrioc,
73 			    MPI3MR_RESET_FROM_PELABORT_TIMEOUT, 1);
74 		retval = -1;
75 		goto out_unlock;
76 	}
77 	if ((mrioc->pel_abort_cmd.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
78 	     != MPI3_IOCSTATUS_SUCCESS) {
79 		dprint_bsg_err(mrioc,
80 		    "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
81 		    __func__, (mrioc->pel_abort_cmd.ioc_status &
82 		    MPI3_IOCSTATUS_STATUS_MASK),
83 		    mrioc->pel_abort_cmd.ioc_loginfo);
84 		retval = -1;
85 		goto out_unlock;
86 	}
87 	if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_REPLY_VALID) {
88 		pel_reply = (struct mpi3_pel_reply *)mrioc->pel_abort_cmd.reply;
89 		pe_log_status = le16_to_cpu(pel_reply->pe_log_status);
90 		if (pe_log_status != MPI3_PEL_STATUS_SUCCESS) {
91 			dprint_bsg_err(mrioc,
92 			    "%s: command failed, pel_status(0x%04x)\n",
93 			    __func__, pe_log_status);
94 			retval = -1;
95 		}
96 	}
97 
98 out_unlock:
99 	mrioc->pel_abort_cmd.state = MPI3MR_CMD_NOTUSED;
100 	mutex_unlock(&mrioc->pel_abort_cmd.mutex);
101 	return retval;
102 }
103 /**
104  * mpi3mr_bsg_verify_adapter - verify adapter number is valid
105  * @ioc_number: Adapter number
106  *
107  * This function returns the adapter instance pointer of given
108  * adapter number. If adapter number does not match with the
109  * driver's adapter list, driver returns NULL.
110  *
111  * Return: adapter instance reference
112  */
113 static struct mpi3mr_ioc *mpi3mr_bsg_verify_adapter(int ioc_number)
114 {
115 	struct mpi3mr_ioc *mrioc = NULL;
116 
117 	spin_lock(&mrioc_list_lock);
118 	list_for_each_entry(mrioc, &mrioc_list, list) {
119 		if (mrioc->id == ioc_number) {
120 			spin_unlock(&mrioc_list_lock);
121 			return mrioc;
122 		}
123 	}
124 	spin_unlock(&mrioc_list_lock);
125 	return NULL;
126 }
127 
128 /**
129  * mpi3mr_enable_logdata - Handler for log data enable
130  * @mrioc: Adapter instance reference
131  * @job: BSG job reference
132  *
133  * This function enables log data caching in the driver if not
134  * already enabled and return the maximum number of log data
135  * entries that can be cached in the driver.
136  *
137  * Return: 0 on success and proper error codes on failure
138  */
139 static long mpi3mr_enable_logdata(struct mpi3mr_ioc *mrioc,
140 	struct bsg_job *job)
141 {
142 	struct mpi3mr_logdata_enable logdata_enable;
143 
144 	if (!mrioc->logdata_buf) {
145 		mrioc->logdata_entry_sz =
146 		    (mrioc->reply_sz - (sizeof(struct mpi3_event_notification_reply) - 4))
147 		    + MPI3MR_BSG_LOGDATA_ENTRY_HEADER_SZ;
148 		mrioc->logdata_buf_idx = 0;
149 		mrioc->logdata_buf = kcalloc(MPI3MR_BSG_LOGDATA_MAX_ENTRIES,
150 		    mrioc->logdata_entry_sz, GFP_KERNEL);
151 
152 		if (!mrioc->logdata_buf)
153 			return -ENOMEM;
154 	}
155 
156 	memset(&logdata_enable, 0, sizeof(logdata_enable));
157 	logdata_enable.max_entries =
158 	    MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
159 	if (job->request_payload.payload_len >= sizeof(logdata_enable)) {
160 		sg_copy_from_buffer(job->request_payload.sg_list,
161 				    job->request_payload.sg_cnt,
162 				    &logdata_enable, sizeof(logdata_enable));
163 		return 0;
164 	}
165 
166 	return -EINVAL;
167 }
168 /**
169  * mpi3mr_get_logdata - Handler for get log data
170  * @mrioc: Adapter instance reference
171  * @job: BSG job pointer
172  * This function copies the log data entries to the user buffer
173  * when log caching is enabled in the driver.
174  *
175  * Return: 0 on success and proper error codes on failure
176  */
177 static long mpi3mr_get_logdata(struct mpi3mr_ioc *mrioc,
178 	struct bsg_job *job)
179 {
180 	u16 num_entries, sz, entry_sz = mrioc->logdata_entry_sz;
181 
182 	if ((!mrioc->logdata_buf) || (job->request_payload.payload_len < entry_sz))
183 		return -EINVAL;
184 
185 	num_entries = job->request_payload.payload_len / entry_sz;
186 	if (num_entries > MPI3MR_BSG_LOGDATA_MAX_ENTRIES)
187 		num_entries = MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
188 	sz = num_entries * entry_sz;
189 
190 	if (job->request_payload.payload_len >= sz) {
191 		sg_copy_from_buffer(job->request_payload.sg_list,
192 				    job->request_payload.sg_cnt,
193 				    mrioc->logdata_buf, sz);
194 		return 0;
195 	}
196 	return -EINVAL;
197 }
198 
199 /**
200  * mpi3mr_bsg_pel_enable - Handler for PEL enable driver
201  * @mrioc: Adapter instance reference
202  * @job: BSG job pointer
203  *
204  * This function is the handler for PEL enable driver.
205  * Validates the application given class and locale and if
206  * requires aborts the existing PEL wait request and/or issues
207  * new PEL wait request to the firmware and returns.
208  *
209  * Return: 0 on success and proper error codes on failure.
210  */
211 static long mpi3mr_bsg_pel_enable(struct mpi3mr_ioc *mrioc,
212 				  struct bsg_job *job)
213 {
214 	long rval = -EINVAL;
215 	struct mpi3mr_bsg_out_pel_enable pel_enable;
216 	u8 issue_pel_wait;
217 	u8 tmp_class;
218 	u16 tmp_locale;
219 
220 	if (job->request_payload.payload_len != sizeof(pel_enable)) {
221 		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
222 		    __func__);
223 		return rval;
224 	}
225 
226 	sg_copy_to_buffer(job->request_payload.sg_list,
227 			  job->request_payload.sg_cnt,
228 			  &pel_enable, sizeof(pel_enable));
229 
230 	if (pel_enable.pel_class > MPI3_PEL_CLASS_FAULT) {
231 		dprint_bsg_err(mrioc, "%s: out of range class %d sent\n",
232 			__func__, pel_enable.pel_class);
233 		rval = 0;
234 		goto out;
235 	}
236 	if (!mrioc->pel_enabled)
237 		issue_pel_wait = 1;
238 	else {
239 		if ((mrioc->pel_class <= pel_enable.pel_class) &&
240 		    !((mrioc->pel_locale & pel_enable.pel_locale) ^
241 		      pel_enable.pel_locale)) {
242 			issue_pel_wait = 0;
243 			rval = 0;
244 		} else {
245 			pel_enable.pel_locale |= mrioc->pel_locale;
246 
247 			if (mrioc->pel_class < pel_enable.pel_class)
248 				pel_enable.pel_class = mrioc->pel_class;
249 
250 			rval = mpi3mr_bsg_pel_abort(mrioc);
251 			if (rval) {
252 				dprint_bsg_err(mrioc,
253 				    "%s: pel_abort failed, status(%ld)\n",
254 				    __func__, rval);
255 				goto out;
256 			}
257 			issue_pel_wait = 1;
258 		}
259 	}
260 	if (issue_pel_wait) {
261 		tmp_class = mrioc->pel_class;
262 		tmp_locale = mrioc->pel_locale;
263 		mrioc->pel_class = pel_enable.pel_class;
264 		mrioc->pel_locale = pel_enable.pel_locale;
265 		mrioc->pel_enabled = 1;
266 		rval = mpi3mr_pel_get_seqnum_post(mrioc, NULL);
267 		if (rval) {
268 			mrioc->pel_class = tmp_class;
269 			mrioc->pel_locale = tmp_locale;
270 			mrioc->pel_enabled = 0;
271 			dprint_bsg_err(mrioc,
272 			    "%s: pel get sequence number failed, status(%ld)\n",
273 			    __func__, rval);
274 		}
275 	}
276 
277 out:
278 	return rval;
279 }
280 /**
281  * mpi3mr_get_all_tgt_info - Get all target information
282  * @mrioc: Adapter instance reference
283  * @job: BSG job reference
284  *
285  * This function copies the driver managed target devices device
286  * handle, persistent ID, bus ID and taret ID to the user
287  * provided buffer for the specific controller. This function
288  * also provides the number of devices managed by the driver for
289  * the specific controller.
290  *
291  * Return: 0 on success and proper error codes on failure
292  */
293 static long mpi3mr_get_all_tgt_info(struct mpi3mr_ioc *mrioc,
294 	struct bsg_job *job)
295 {
296 	long rval = -EINVAL;
297 	u16 num_devices = 0, i = 0, size;
298 	unsigned long flags;
299 	struct mpi3mr_tgt_dev *tgtdev;
300 	struct mpi3mr_device_map_info *devmap_info = NULL;
301 	struct mpi3mr_all_tgt_info *alltgt_info = NULL;
302 	uint32_t min_entrylen = 0, kern_entrylen = 0, usr_entrylen = 0;
303 
304 	if (job->request_payload.payload_len < sizeof(u32)) {
305 		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
306 		    __func__);
307 		return rval;
308 	}
309 
310 	spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
311 	list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list)
312 		num_devices++;
313 	spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
314 
315 	if ((job->request_payload.payload_len == sizeof(u32)) ||
316 		list_empty(&mrioc->tgtdev_list)) {
317 		sg_copy_from_buffer(job->request_payload.sg_list,
318 				    job->request_payload.sg_cnt,
319 				    &num_devices, sizeof(num_devices));
320 		return 0;
321 	}
322 
323 	kern_entrylen = (num_devices - 1) * sizeof(*devmap_info);
324 	size = sizeof(*alltgt_info) + kern_entrylen;
325 	alltgt_info = kzalloc(size, GFP_KERNEL);
326 	if (!alltgt_info)
327 		return -ENOMEM;
328 
329 	devmap_info = alltgt_info->dmi;
330 	memset((u8 *)devmap_info, 0xFF, (kern_entrylen + sizeof(*devmap_info)));
331 	spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
332 	list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list) {
333 		if (i < num_devices) {
334 			devmap_info[i].handle = tgtdev->dev_handle;
335 			devmap_info[i].perst_id = tgtdev->perst_id;
336 			if (tgtdev->host_exposed && tgtdev->starget) {
337 				devmap_info[i].target_id = tgtdev->starget->id;
338 				devmap_info[i].bus_id =
339 				    tgtdev->starget->channel;
340 			}
341 			i++;
342 		}
343 	}
344 	num_devices = i;
345 	spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
346 
347 	memcpy(&alltgt_info->num_devices, &num_devices, sizeof(num_devices));
348 
349 	usr_entrylen = (job->request_payload.payload_len - sizeof(u32)) / sizeof(*devmap_info);
350 	usr_entrylen *= sizeof(*devmap_info);
351 	min_entrylen = min(usr_entrylen, kern_entrylen);
352 	if (min_entrylen && (!memcpy(&alltgt_info->dmi, devmap_info, min_entrylen))) {
353 		dprint_bsg_err(mrioc, "%s:%d: device map info copy failed\n",
354 		    __func__, __LINE__);
355 		rval = -EFAULT;
356 		goto out;
357 	}
358 
359 	sg_copy_from_buffer(job->request_payload.sg_list,
360 			    job->request_payload.sg_cnt,
361 			    alltgt_info, job->request_payload.payload_len);
362 	rval = 0;
363 out:
364 	kfree(alltgt_info);
365 	return rval;
366 }
367 /**
368  * mpi3mr_get_change_count - Get topology change count
369  * @mrioc: Adapter instance reference
370  * @job: BSG job reference
371  *
372  * This function copies the toplogy change count provided by the
373  * driver in events and cached in the driver to the user
374  * provided buffer for the specific controller.
375  *
376  * Return: 0 on success and proper error codes on failure
377  */
378 static long mpi3mr_get_change_count(struct mpi3mr_ioc *mrioc,
379 	struct bsg_job *job)
380 {
381 	struct mpi3mr_change_count chgcnt;
382 
383 	memset(&chgcnt, 0, sizeof(chgcnt));
384 	chgcnt.change_count = mrioc->change_count;
385 	if (job->request_payload.payload_len >= sizeof(chgcnt)) {
386 		sg_copy_from_buffer(job->request_payload.sg_list,
387 				    job->request_payload.sg_cnt,
388 				    &chgcnt, sizeof(chgcnt));
389 		return 0;
390 	}
391 	return -EINVAL;
392 }
393 
394 /**
395  * mpi3mr_bsg_adp_reset - Issue controller reset
396  * @mrioc: Adapter instance reference
397  * @job: BSG job reference
398  *
399  * This function identifies the user provided reset type and
400  * issues approporiate reset to the controller and wait for that
401  * to complete and reinitialize the controller and then returns
402  *
403  * Return: 0 on success and proper error codes on failure
404  */
405 static long mpi3mr_bsg_adp_reset(struct mpi3mr_ioc *mrioc,
406 	struct bsg_job *job)
407 {
408 	long rval = -EINVAL;
409 	u8 save_snapdump;
410 	struct mpi3mr_bsg_adp_reset adpreset;
411 
412 	if (job->request_payload.payload_len !=
413 			sizeof(adpreset)) {
414 		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
415 		    __func__);
416 		goto out;
417 	}
418 
419 	sg_copy_to_buffer(job->request_payload.sg_list,
420 			  job->request_payload.sg_cnt,
421 			  &adpreset, sizeof(adpreset));
422 
423 	switch (adpreset.reset_type) {
424 	case MPI3MR_BSG_ADPRESET_SOFT:
425 		save_snapdump = 0;
426 		break;
427 	case MPI3MR_BSG_ADPRESET_DIAG_FAULT:
428 		save_snapdump = 1;
429 		break;
430 	default:
431 		dprint_bsg_err(mrioc, "%s: unknown reset_type(%d)\n",
432 		    __func__, adpreset.reset_type);
433 		goto out;
434 	}
435 
436 	rval = mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_APP,
437 	    save_snapdump);
438 
439 	if (rval)
440 		dprint_bsg_err(mrioc,
441 		    "%s: reset handler returned error(%ld) for reset type %d\n",
442 		    __func__, rval, adpreset.reset_type);
443 out:
444 	return rval;
445 }
446 
447 /**
448  * mpi3mr_bsg_populate_adpinfo - Get adapter info command handler
449  * @mrioc: Adapter instance reference
450  * @job: BSG job reference
451  *
452  * This function provides adapter information for the given
453  * controller
454  *
455  * Return: 0 on success and proper error codes on failure
456  */
457 static long mpi3mr_bsg_populate_adpinfo(struct mpi3mr_ioc *mrioc,
458 	struct bsg_job *job)
459 {
460 	enum mpi3mr_iocstate ioc_state;
461 	struct mpi3mr_bsg_in_adpinfo adpinfo;
462 
463 	memset(&adpinfo, 0, sizeof(adpinfo));
464 	adpinfo.adp_type = MPI3MR_BSG_ADPTYPE_AVGFAMILY;
465 	adpinfo.pci_dev_id = mrioc->pdev->device;
466 	adpinfo.pci_dev_hw_rev = mrioc->pdev->revision;
467 	adpinfo.pci_subsys_dev_id = mrioc->pdev->subsystem_device;
468 	adpinfo.pci_subsys_ven_id = mrioc->pdev->subsystem_vendor;
469 	adpinfo.pci_bus = mrioc->pdev->bus->number;
470 	adpinfo.pci_dev = PCI_SLOT(mrioc->pdev->devfn);
471 	adpinfo.pci_func = PCI_FUNC(mrioc->pdev->devfn);
472 	adpinfo.pci_seg_id = pci_domain_nr(mrioc->pdev->bus);
473 	adpinfo.app_intfc_ver = MPI3MR_IOCTL_VERSION;
474 
475 	ioc_state = mpi3mr_get_iocstate(mrioc);
476 	if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
477 		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
478 	else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
479 		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
480 	else if (ioc_state == MRIOC_STATE_FAULT)
481 		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
482 	else
483 		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
484 
485 	memcpy((u8 *)&adpinfo.driver_info, (u8 *)&mrioc->driver_info,
486 	    sizeof(adpinfo.driver_info));
487 
488 	if (job->request_payload.payload_len >= sizeof(adpinfo)) {
489 		sg_copy_from_buffer(job->request_payload.sg_list,
490 				    job->request_payload.sg_cnt,
491 				    &adpinfo, sizeof(adpinfo));
492 		return 0;
493 	}
494 	return -EINVAL;
495 }
496 
497 /**
498  * mpi3mr_bsg_process_drv_cmds - Driver Command handler
499  * @job: BSG job reference
500  *
501  * This function is the top level handler for driver commands,
502  * this does basic validation of the buffer and identifies the
503  * opcode and switches to correct sub handler.
504  *
505  * Return: 0 on success and proper error codes on failure
506  */
507 static long mpi3mr_bsg_process_drv_cmds(struct bsg_job *job)
508 {
509 	long rval = -EINVAL;
510 	struct mpi3mr_ioc *mrioc = NULL;
511 	struct mpi3mr_bsg_packet *bsg_req = NULL;
512 	struct mpi3mr_bsg_drv_cmd *drvrcmd = NULL;
513 
514 	bsg_req = job->request;
515 	drvrcmd = &bsg_req->cmd.drvrcmd;
516 
517 	mrioc = mpi3mr_bsg_verify_adapter(drvrcmd->mrioc_id);
518 	if (!mrioc)
519 		return -ENODEV;
520 
521 	if (drvrcmd->opcode == MPI3MR_DRVBSG_OPCODE_ADPINFO) {
522 		rval = mpi3mr_bsg_populate_adpinfo(mrioc, job);
523 		return rval;
524 	}
525 
526 	if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex))
527 		return -ERESTARTSYS;
528 
529 	switch (drvrcmd->opcode) {
530 	case MPI3MR_DRVBSG_OPCODE_ADPRESET:
531 		rval = mpi3mr_bsg_adp_reset(mrioc, job);
532 		break;
533 	case MPI3MR_DRVBSG_OPCODE_ALLTGTDEVINFO:
534 		rval = mpi3mr_get_all_tgt_info(mrioc, job);
535 		break;
536 	case MPI3MR_DRVBSG_OPCODE_GETCHGCNT:
537 		rval = mpi3mr_get_change_count(mrioc, job);
538 		break;
539 	case MPI3MR_DRVBSG_OPCODE_LOGDATAENABLE:
540 		rval = mpi3mr_enable_logdata(mrioc, job);
541 		break;
542 	case MPI3MR_DRVBSG_OPCODE_GETLOGDATA:
543 		rval = mpi3mr_get_logdata(mrioc, job);
544 		break;
545 	case MPI3MR_DRVBSG_OPCODE_PELENABLE:
546 		rval = mpi3mr_bsg_pel_enable(mrioc, job);
547 		break;
548 	case MPI3MR_DRVBSG_OPCODE_UNKNOWN:
549 	default:
550 		pr_err("%s: unsupported driver command opcode %d\n",
551 		    MPI3MR_DRIVER_NAME, drvrcmd->opcode);
552 		break;
553 	}
554 	mutex_unlock(&mrioc->bsg_cmds.mutex);
555 	return rval;
556 }
557 
558 /**
559  * mpi3mr_bsg_build_sgl - SGL construction for MPI commands
560  * @mpi_req: MPI request
561  * @sgl_offset: offset to start sgl in the MPI request
562  * @drv_bufs: DMA address of the buffers to be placed in sgl
563  * @bufcnt: Number of DMA buffers
564  * @is_rmc: Does the buffer list has management command buffer
565  * @is_rmr: Does the buffer list has management response buffer
566  * @num_datasges: Number of data buffers in the list
567  *
568  * This function places the DMA address of the given buffers in
569  * proper format as SGEs in the given MPI request.
570  *
571  * Return: Nothing
572  */
573 static void mpi3mr_bsg_build_sgl(u8 *mpi_req, uint32_t sgl_offset,
574 	struct mpi3mr_buf_map *drv_bufs, u8 bufcnt, u8 is_rmc,
575 	u8 is_rmr, u8 num_datasges)
576 {
577 	u8 *sgl = (mpi_req + sgl_offset), count = 0;
578 	struct mpi3_mgmt_passthrough_request *rmgmt_req =
579 	    (struct mpi3_mgmt_passthrough_request *)mpi_req;
580 	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
581 	u8 sgl_flags, sgl_flags_last;
582 
583 	sgl_flags = MPI3_SGE_FLAGS_ELEMENT_TYPE_SIMPLE |
584 		MPI3_SGE_FLAGS_DLAS_SYSTEM | MPI3_SGE_FLAGS_END_OF_BUFFER;
585 	sgl_flags_last = sgl_flags | MPI3_SGE_FLAGS_END_OF_LIST;
586 
587 	if (is_rmc) {
588 		mpi3mr_add_sg_single(&rmgmt_req->command_sgl,
589 		    sgl_flags_last, drv_buf_iter->kern_buf_len,
590 		    drv_buf_iter->kern_buf_dma);
591 		sgl = (u8 *)drv_buf_iter->kern_buf + drv_buf_iter->bsg_buf_len;
592 		drv_buf_iter++;
593 		count++;
594 		if (is_rmr) {
595 			mpi3mr_add_sg_single(&rmgmt_req->response_sgl,
596 			    sgl_flags_last, drv_buf_iter->kern_buf_len,
597 			    drv_buf_iter->kern_buf_dma);
598 			drv_buf_iter++;
599 			count++;
600 		} else
601 			mpi3mr_build_zero_len_sge(
602 			    &rmgmt_req->response_sgl);
603 	}
604 	if (!num_datasges) {
605 		mpi3mr_build_zero_len_sge(sgl);
606 		return;
607 	}
608 	for (; count < bufcnt; count++, drv_buf_iter++) {
609 		if (drv_buf_iter->data_dir == DMA_NONE)
610 			continue;
611 		if (num_datasges == 1 || !is_rmc)
612 			mpi3mr_add_sg_single(sgl, sgl_flags_last,
613 			    drv_buf_iter->kern_buf_len, drv_buf_iter->kern_buf_dma);
614 		else
615 			mpi3mr_add_sg_single(sgl, sgl_flags,
616 			    drv_buf_iter->kern_buf_len, drv_buf_iter->kern_buf_dma);
617 		sgl += sizeof(struct mpi3_sge_common);
618 		num_datasges--;
619 	}
620 }
621 
622 /**
623  * mpi3mr_get_nvme_data_fmt - returns the NVMe data format
624  * @nvme_encap_request: NVMe encapsulated MPI request
625  *
626  * This function returns the type of the data format specified
627  * in user provided NVMe command in NVMe encapsulated request.
628  *
629  * Return: Data format of the NVMe command (PRP/SGL etc)
630  */
631 static unsigned int mpi3mr_get_nvme_data_fmt(
632 	struct mpi3_nvme_encapsulated_request *nvme_encap_request)
633 {
634 	u8 format = 0;
635 
636 	format = ((nvme_encap_request->command[0] & 0xc000) >> 14);
637 	return format;
638 
639 }
640 
641 /**
642  * mpi3mr_build_nvme_sgl - SGL constructor for NVME
643  *				   encapsulated request
644  * @mrioc: Adapter instance reference
645  * @nvme_encap_request: NVMe encapsulated MPI request
646  * @drv_bufs: DMA address of the buffers to be placed in sgl
647  * @bufcnt: Number of DMA buffers
648  *
649  * This function places the DMA address of the given buffers in
650  * proper format as SGEs in the given NVMe encapsulated request.
651  *
652  * Return: 0 on success, -1 on failure
653  */
654 static int mpi3mr_build_nvme_sgl(struct mpi3mr_ioc *mrioc,
655 	struct mpi3_nvme_encapsulated_request *nvme_encap_request,
656 	struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
657 {
658 	struct mpi3mr_nvme_pt_sge *nvme_sgl;
659 	u64 sgl_ptr;
660 	u8 count;
661 	size_t length = 0;
662 	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
663 	u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
664 			    mrioc->facts.sge_mod_shift) << 32);
665 	u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
666 			  mrioc->facts.sge_mod_shift) << 32;
667 
668 	/*
669 	 * Not all commands require a data transfer. If no data, just return
670 	 * without constructing any sgl.
671 	 */
672 	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
673 		if (drv_buf_iter->data_dir == DMA_NONE)
674 			continue;
675 		sgl_ptr = (u64)drv_buf_iter->kern_buf_dma;
676 		length = drv_buf_iter->kern_buf_len;
677 		break;
678 	}
679 	if (!length)
680 		return 0;
681 
682 	if (sgl_ptr & sgemod_mask) {
683 		dprint_bsg_err(mrioc,
684 		    "%s: SGL address collides with SGE modifier\n",
685 		    __func__);
686 		return -1;
687 	}
688 
689 	sgl_ptr &= ~sgemod_mask;
690 	sgl_ptr |= sgemod_val;
691 	nvme_sgl = (struct mpi3mr_nvme_pt_sge *)
692 	    ((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_SGL_OFFSET);
693 	memset(nvme_sgl, 0, sizeof(struct mpi3mr_nvme_pt_sge));
694 	nvme_sgl->base_addr = sgl_ptr;
695 	nvme_sgl->length = length;
696 	return 0;
697 }
698 
699 /**
700  * mpi3mr_build_nvme_prp - PRP constructor for NVME
701  *			       encapsulated request
702  * @mrioc: Adapter instance reference
703  * @nvme_encap_request: NVMe encapsulated MPI request
704  * @drv_bufs: DMA address of the buffers to be placed in SGL
705  * @bufcnt: Number of DMA buffers
706  *
707  * This function places the DMA address of the given buffers in
708  * proper format as PRP entries in the given NVMe encapsulated
709  * request.
710  *
711  * Return: 0 on success, -1 on failure
712  */
713 static int mpi3mr_build_nvme_prp(struct mpi3mr_ioc *mrioc,
714 	struct mpi3_nvme_encapsulated_request *nvme_encap_request,
715 	struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
716 {
717 	int prp_size = MPI3MR_NVME_PRP_SIZE;
718 	__le64 *prp_entry, *prp1_entry, *prp2_entry;
719 	__le64 *prp_page;
720 	dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
721 	u32 offset, entry_len, dev_pgsz;
722 	u32 page_mask_result, page_mask;
723 	size_t length = 0;
724 	u8 count;
725 	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
726 	u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
727 			    mrioc->facts.sge_mod_shift) << 32);
728 	u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
729 			  mrioc->facts.sge_mod_shift) << 32;
730 	u16 dev_handle = nvme_encap_request->dev_handle;
731 	struct mpi3mr_tgt_dev *tgtdev;
732 
733 	tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
734 	if (!tgtdev) {
735 		dprint_bsg_err(mrioc, "%s: invalid device handle 0x%04x\n",
736 			__func__, dev_handle);
737 		return -1;
738 	}
739 
740 	if (tgtdev->dev_spec.pcie_inf.pgsz == 0) {
741 		dprint_bsg_err(mrioc,
742 		    "%s: NVMe device page size is zero for handle 0x%04x\n",
743 		    __func__, dev_handle);
744 		mpi3mr_tgtdev_put(tgtdev);
745 		return -1;
746 	}
747 
748 	dev_pgsz = 1 << (tgtdev->dev_spec.pcie_inf.pgsz);
749 	mpi3mr_tgtdev_put(tgtdev);
750 
751 	/*
752 	 * Not all commands require a data transfer. If no data, just return
753 	 * without constructing any PRP.
754 	 */
755 	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
756 		if (drv_buf_iter->data_dir == DMA_NONE)
757 			continue;
758 		dma_addr = drv_buf_iter->kern_buf_dma;
759 		length = drv_buf_iter->kern_buf_len;
760 		break;
761 	}
762 
763 	if (!length)
764 		return 0;
765 
766 	mrioc->prp_sz = 0;
767 	mrioc->prp_list_virt = dma_alloc_coherent(&mrioc->pdev->dev,
768 	    dev_pgsz, &mrioc->prp_list_dma, GFP_KERNEL);
769 
770 	if (!mrioc->prp_list_virt)
771 		return -1;
772 	mrioc->prp_sz = dev_pgsz;
773 
774 	/*
775 	 * Set pointers to PRP1 and PRP2, which are in the NVMe command.
776 	 * PRP1 is located at a 24 byte offset from the start of the NVMe
777 	 * command.  Then set the current PRP entry pointer to PRP1.
778 	 */
779 	prp1_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
780 	    MPI3MR_NVME_CMD_PRP1_OFFSET);
781 	prp2_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
782 	    MPI3MR_NVME_CMD_PRP2_OFFSET);
783 	prp_entry = prp1_entry;
784 	/*
785 	 * For the PRP entries, use the specially allocated buffer of
786 	 * contiguous memory.
787 	 */
788 	prp_page = (__le64 *)mrioc->prp_list_virt;
789 	prp_page_dma = mrioc->prp_list_dma;
790 
791 	/*
792 	 * Check if we are within 1 entry of a page boundary we don't
793 	 * want our first entry to be a PRP List entry.
794 	 */
795 	page_mask = dev_pgsz - 1;
796 	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
797 	if (!page_mask_result) {
798 		dprint_bsg_err(mrioc, "%s: PRP page is not page aligned\n",
799 		    __func__);
800 		goto err_out;
801 	}
802 
803 	/*
804 	 * Set PRP physical pointer, which initially points to the current PRP
805 	 * DMA memory page.
806 	 */
807 	prp_entry_dma = prp_page_dma;
808 
809 
810 	/* Loop while the length is not zero. */
811 	while (length) {
812 		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
813 		if (!page_mask_result && (length >  dev_pgsz)) {
814 			dprint_bsg_err(mrioc,
815 			    "%s: single PRP page is not sufficient\n",
816 			    __func__);
817 			goto err_out;
818 		}
819 
820 		/* Need to handle if entry will be part of a page. */
821 		offset = dma_addr & page_mask;
822 		entry_len = dev_pgsz - offset;
823 
824 		if (prp_entry == prp1_entry) {
825 			/*
826 			 * Must fill in the first PRP pointer (PRP1) before
827 			 * moving on.
828 			 */
829 			*prp1_entry = cpu_to_le64(dma_addr);
830 			if (*prp1_entry & sgemod_mask) {
831 				dprint_bsg_err(mrioc,
832 				    "%s: PRP1 address collides with SGE modifier\n",
833 				    __func__);
834 				goto err_out;
835 			}
836 			*prp1_entry &= ~sgemod_mask;
837 			*prp1_entry |= sgemod_val;
838 
839 			/*
840 			 * Now point to the second PRP entry within the
841 			 * command (PRP2).
842 			 */
843 			prp_entry = prp2_entry;
844 		} else if (prp_entry == prp2_entry) {
845 			/*
846 			 * Should the PRP2 entry be a PRP List pointer or just
847 			 * a regular PRP pointer?  If there is more than one
848 			 * more page of data, must use a PRP List pointer.
849 			 */
850 			if (length > dev_pgsz) {
851 				/*
852 				 * PRP2 will contain a PRP List pointer because
853 				 * more PRP's are needed with this command. The
854 				 * list will start at the beginning of the
855 				 * contiguous buffer.
856 				 */
857 				*prp2_entry = cpu_to_le64(prp_entry_dma);
858 				if (*prp2_entry & sgemod_mask) {
859 					dprint_bsg_err(mrioc,
860 					    "%s: PRP list address collides with SGE modifier\n",
861 					    __func__);
862 					goto err_out;
863 				}
864 				*prp2_entry &= ~sgemod_mask;
865 				*prp2_entry |= sgemod_val;
866 
867 				/*
868 				 * The next PRP Entry will be the start of the
869 				 * first PRP List.
870 				 */
871 				prp_entry = prp_page;
872 				continue;
873 			} else {
874 				/*
875 				 * After this, the PRP Entries are complete.
876 				 * This command uses 2 PRP's and no PRP list.
877 				 */
878 				*prp2_entry = cpu_to_le64(dma_addr);
879 				if (*prp2_entry & sgemod_mask) {
880 					dprint_bsg_err(mrioc,
881 					    "%s: PRP2 collides with SGE modifier\n",
882 					    __func__);
883 					goto err_out;
884 				}
885 				*prp2_entry &= ~sgemod_mask;
886 				*prp2_entry |= sgemod_val;
887 			}
888 		} else {
889 			/*
890 			 * Put entry in list and bump the addresses.
891 			 *
892 			 * After PRP1 and PRP2 are filled in, this will fill in
893 			 * all remaining PRP entries in a PRP List, one per
894 			 * each time through the loop.
895 			 */
896 			*prp_entry = cpu_to_le64(dma_addr);
897 			if (*prp1_entry & sgemod_mask) {
898 				dprint_bsg_err(mrioc,
899 				    "%s: PRP address collides with SGE modifier\n",
900 				    __func__);
901 				goto err_out;
902 			}
903 			*prp_entry &= ~sgemod_mask;
904 			*prp_entry |= sgemod_val;
905 			prp_entry++;
906 			prp_entry_dma++;
907 		}
908 
909 		/*
910 		 * Bump the phys address of the command's data buffer by the
911 		 * entry_len.
912 		 */
913 		dma_addr += entry_len;
914 
915 		/* decrement length accounting for last partial page. */
916 		if (entry_len > length)
917 			length = 0;
918 		else
919 			length -= entry_len;
920 	}
921 	return 0;
922 err_out:
923 	if (mrioc->prp_list_virt) {
924 		dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
925 		    mrioc->prp_list_virt, mrioc->prp_list_dma);
926 		mrioc->prp_list_virt = NULL;
927 	}
928 	return -1;
929 }
930 /**
931  * mpi3mr_bsg_process_mpt_cmds - MPI Pass through BSG handler
932  * @job: BSG job reference
933  *
934  * This function is the top level handler for MPI Pass through
935  * command, this does basic validation of the input data buffers,
936  * identifies the given buffer types and MPI command, allocates
937  * DMAable memory for user given buffers, construstcs SGL
938  * properly and passes the command to the firmware.
939  *
940  * Once the MPI command is completed the driver copies the data
941  * if any and reply, sense information to user provided buffers.
942  * If the command is timed out then issues controller reset
943  * prior to returning.
944  *
945  * Return: 0 on success and proper error codes on failure
946  */
947 
948 static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job, unsigned int *reply_payload_rcv_len)
949 {
950 	long rval = -EINVAL;
951 
952 	struct mpi3mr_ioc *mrioc = NULL;
953 	u8 *mpi_req = NULL, *sense_buff_k = NULL;
954 	u8 mpi_msg_size = 0;
955 	struct mpi3mr_bsg_packet *bsg_req = NULL;
956 	struct mpi3mr_bsg_mptcmd *karg;
957 	struct mpi3mr_buf_entry *buf_entries = NULL;
958 	struct mpi3mr_buf_map *drv_bufs = NULL, *drv_buf_iter = NULL;
959 	u8 count, bufcnt = 0, is_rmcb = 0, is_rmrb = 0, din_cnt = 0, dout_cnt = 0;
960 	u8 invalid_be = 0, erb_offset = 0xFF, mpirep_offset = 0xFF, sg_entries = 0;
961 	u8 block_io = 0, resp_code = 0, nvme_fmt = 0;
962 	struct mpi3_request_header *mpi_header = NULL;
963 	struct mpi3_status_reply_descriptor *status_desc;
964 	struct mpi3_scsi_task_mgmt_request *tm_req;
965 	u32 erbsz = MPI3MR_SENSE_BUF_SZ, tmplen;
966 	u16 dev_handle;
967 	struct mpi3mr_tgt_dev *tgtdev;
968 	struct mpi3mr_stgt_priv_data *stgt_priv = NULL;
969 	struct mpi3mr_bsg_in_reply_buf *bsg_reply_buf = NULL;
970 	u32 din_size = 0, dout_size = 0;
971 	u8 *din_buf = NULL, *dout_buf = NULL;
972 	u8 *sgl_iter = NULL, *sgl_din_iter = NULL, *sgl_dout_iter = NULL;
973 
974 	bsg_req = job->request;
975 	karg = (struct mpi3mr_bsg_mptcmd *)&bsg_req->cmd.mptcmd;
976 
977 	mrioc = mpi3mr_bsg_verify_adapter(karg->mrioc_id);
978 	if (!mrioc)
979 		return -ENODEV;
980 
981 	if (karg->timeout < MPI3MR_APP_DEFAULT_TIMEOUT)
982 		karg->timeout = MPI3MR_APP_DEFAULT_TIMEOUT;
983 
984 	mpi_req = kzalloc(MPI3MR_ADMIN_REQ_FRAME_SZ, GFP_KERNEL);
985 	if (!mpi_req)
986 		return -ENOMEM;
987 	mpi_header = (struct mpi3_request_header *)mpi_req;
988 
989 	bufcnt = karg->buf_entry_list.num_of_entries;
990 	drv_bufs = kzalloc((sizeof(*drv_bufs) * bufcnt), GFP_KERNEL);
991 	if (!drv_bufs) {
992 		rval = -ENOMEM;
993 		goto out;
994 	}
995 
996 	dout_buf = kzalloc(job->request_payload.payload_len,
997 				      GFP_KERNEL);
998 	if (!dout_buf) {
999 		rval = -ENOMEM;
1000 		goto out;
1001 	}
1002 
1003 	din_buf = kzalloc(job->reply_payload.payload_len,
1004 				     GFP_KERNEL);
1005 	if (!din_buf) {
1006 		rval = -ENOMEM;
1007 		goto out;
1008 	}
1009 
1010 	sg_copy_to_buffer(job->request_payload.sg_list,
1011 			  job->request_payload.sg_cnt,
1012 			  dout_buf, job->request_payload.payload_len);
1013 
1014 	buf_entries = karg->buf_entry_list.buf_entry;
1015 	sgl_din_iter = din_buf;
1016 	sgl_dout_iter = dout_buf;
1017 	drv_buf_iter = drv_bufs;
1018 
1019 	for (count = 0; count < bufcnt; count++, buf_entries++, drv_buf_iter++) {
1020 
1021 		if (sgl_dout_iter > (dout_buf + job->request_payload.payload_len)) {
1022 			dprint_bsg_err(mrioc, "%s: data_out buffer length mismatch\n",
1023 				__func__);
1024 			rval = -EINVAL;
1025 			goto out;
1026 		}
1027 		if (sgl_din_iter > (din_buf + job->reply_payload.payload_len)) {
1028 			dprint_bsg_err(mrioc, "%s: data_in buffer length mismatch\n",
1029 				__func__);
1030 			rval = -EINVAL;
1031 			goto out;
1032 		}
1033 
1034 		switch (buf_entries->buf_type) {
1035 		case MPI3MR_BSG_BUFTYPE_RAIDMGMT_CMD:
1036 			sgl_iter = sgl_dout_iter;
1037 			sgl_dout_iter += buf_entries->buf_len;
1038 			drv_buf_iter->data_dir = DMA_TO_DEVICE;
1039 			is_rmcb = 1;
1040 			if (count != 0)
1041 				invalid_be = 1;
1042 			break;
1043 		case MPI3MR_BSG_BUFTYPE_RAIDMGMT_RESP:
1044 			sgl_iter = sgl_din_iter;
1045 			sgl_din_iter += buf_entries->buf_len;
1046 			drv_buf_iter->data_dir = DMA_FROM_DEVICE;
1047 			is_rmrb = 1;
1048 			if (count != 1 || !is_rmcb)
1049 				invalid_be = 1;
1050 			break;
1051 		case MPI3MR_BSG_BUFTYPE_DATA_IN:
1052 			sgl_iter = sgl_din_iter;
1053 			sgl_din_iter += buf_entries->buf_len;
1054 			drv_buf_iter->data_dir = DMA_FROM_DEVICE;
1055 			din_cnt++;
1056 			din_size += drv_buf_iter->bsg_buf_len;
1057 			if ((din_cnt > 1) && !is_rmcb)
1058 				invalid_be = 1;
1059 			break;
1060 		case MPI3MR_BSG_BUFTYPE_DATA_OUT:
1061 			sgl_iter = sgl_dout_iter;
1062 			sgl_dout_iter += buf_entries->buf_len;
1063 			drv_buf_iter->data_dir = DMA_TO_DEVICE;
1064 			dout_cnt++;
1065 			dout_size += drv_buf_iter->bsg_buf_len;
1066 			if ((dout_cnt > 1) && !is_rmcb)
1067 				invalid_be = 1;
1068 			break;
1069 		case MPI3MR_BSG_BUFTYPE_MPI_REPLY:
1070 			sgl_iter = sgl_din_iter;
1071 			sgl_din_iter += buf_entries->buf_len;
1072 			drv_buf_iter->data_dir = DMA_NONE;
1073 			mpirep_offset = count;
1074 			break;
1075 		case MPI3MR_BSG_BUFTYPE_ERR_RESPONSE:
1076 			sgl_iter = sgl_din_iter;
1077 			sgl_din_iter += buf_entries->buf_len;
1078 			drv_buf_iter->data_dir = DMA_NONE;
1079 			erb_offset = count;
1080 			break;
1081 		case MPI3MR_BSG_BUFTYPE_MPI_REQUEST:
1082 			sgl_iter = sgl_dout_iter;
1083 			sgl_dout_iter += buf_entries->buf_len;
1084 			drv_buf_iter->data_dir = DMA_NONE;
1085 			mpi_msg_size = buf_entries->buf_len;
1086 			if ((!mpi_msg_size || (mpi_msg_size % 4)) ||
1087 					(mpi_msg_size > MPI3MR_ADMIN_REQ_FRAME_SZ)) {
1088 				dprint_bsg_err(mrioc, "%s: invalid MPI message size\n",
1089 					__func__);
1090 				rval = -EINVAL;
1091 				goto out;
1092 			}
1093 			memcpy(mpi_req, sgl_iter, buf_entries->buf_len);
1094 			break;
1095 		default:
1096 			invalid_be = 1;
1097 			break;
1098 		}
1099 		if (invalid_be) {
1100 			dprint_bsg_err(mrioc, "%s: invalid buffer entries passed\n",
1101 				__func__);
1102 			rval = -EINVAL;
1103 			goto out;
1104 		}
1105 
1106 		drv_buf_iter->bsg_buf = sgl_iter;
1107 		drv_buf_iter->bsg_buf_len = buf_entries->buf_len;
1108 
1109 	}
1110 	if (!is_rmcb && (dout_cnt || din_cnt)) {
1111 		sg_entries = dout_cnt + din_cnt;
1112 		if (((mpi_msg_size) + (sg_entries *
1113 		      sizeof(struct mpi3_sge_common))) > MPI3MR_ADMIN_REQ_FRAME_SZ) {
1114 			dprint_bsg_err(mrioc,
1115 			    "%s:%d: invalid message size passed\n",
1116 			    __func__, __LINE__);
1117 			rval = -EINVAL;
1118 			goto out;
1119 		}
1120 	}
1121 	if (din_size > MPI3MR_MAX_APP_XFER_SIZE) {
1122 		dprint_bsg_err(mrioc,
1123 		    "%s:%d: invalid data transfer size passed for function 0x%x din_size=%d\n",
1124 		    __func__, __LINE__, mpi_header->function, din_size);
1125 		rval = -EINVAL;
1126 		goto out;
1127 	}
1128 	if (dout_size > MPI3MR_MAX_APP_XFER_SIZE) {
1129 		dprint_bsg_err(mrioc,
1130 		    "%s:%d: invalid data transfer size passed for function 0x%x dout_size = %d\n",
1131 		    __func__, __LINE__, mpi_header->function, dout_size);
1132 		rval = -EINVAL;
1133 		goto out;
1134 	}
1135 
1136 	drv_buf_iter = drv_bufs;
1137 	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1138 		if (drv_buf_iter->data_dir == DMA_NONE)
1139 			continue;
1140 
1141 		drv_buf_iter->kern_buf_len = drv_buf_iter->bsg_buf_len;
1142 		if (is_rmcb && !count)
1143 			drv_buf_iter->kern_buf_len += ((dout_cnt + din_cnt) *
1144 			    sizeof(struct mpi3_sge_common));
1145 
1146 		if (!drv_buf_iter->kern_buf_len)
1147 			continue;
1148 
1149 		drv_buf_iter->kern_buf = dma_alloc_coherent(&mrioc->pdev->dev,
1150 		    drv_buf_iter->kern_buf_len, &drv_buf_iter->kern_buf_dma,
1151 		    GFP_KERNEL);
1152 		if (!drv_buf_iter->kern_buf) {
1153 			rval = -ENOMEM;
1154 			goto out;
1155 		}
1156 		if (drv_buf_iter->data_dir == DMA_TO_DEVICE) {
1157 			tmplen = min(drv_buf_iter->kern_buf_len,
1158 			    drv_buf_iter->bsg_buf_len);
1159 			memcpy(drv_buf_iter->kern_buf, drv_buf_iter->bsg_buf, tmplen);
1160 		}
1161 	}
1162 
1163 	if (erb_offset != 0xFF) {
1164 		sense_buff_k = kzalloc(erbsz, GFP_KERNEL);
1165 		if (!sense_buff_k) {
1166 			rval = -ENOMEM;
1167 			goto out;
1168 		}
1169 	}
1170 
1171 	if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex)) {
1172 		rval = -ERESTARTSYS;
1173 		goto out;
1174 	}
1175 	if (mrioc->bsg_cmds.state & MPI3MR_CMD_PENDING) {
1176 		rval = -EAGAIN;
1177 		dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
1178 		mutex_unlock(&mrioc->bsg_cmds.mutex);
1179 		goto out;
1180 	}
1181 	if (mrioc->unrecoverable) {
1182 		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
1183 		    __func__);
1184 		rval = -EFAULT;
1185 		mutex_unlock(&mrioc->bsg_cmds.mutex);
1186 		goto out;
1187 	}
1188 	if (mrioc->reset_in_progress) {
1189 		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
1190 		rval = -EAGAIN;
1191 		mutex_unlock(&mrioc->bsg_cmds.mutex);
1192 		goto out;
1193 	}
1194 	if (mrioc->stop_bsgs) {
1195 		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
1196 		rval = -EAGAIN;
1197 		mutex_unlock(&mrioc->bsg_cmds.mutex);
1198 		goto out;
1199 	}
1200 
1201 	if (mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) {
1202 		nvme_fmt = mpi3mr_get_nvme_data_fmt(
1203 			(struct mpi3_nvme_encapsulated_request *)mpi_req);
1204 		if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_PRP) {
1205 			if (mpi3mr_build_nvme_prp(mrioc,
1206 			    (struct mpi3_nvme_encapsulated_request *)mpi_req,
1207 			    drv_bufs, bufcnt)) {
1208 				rval = -ENOMEM;
1209 				mutex_unlock(&mrioc->bsg_cmds.mutex);
1210 				goto out;
1211 			}
1212 		} else if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL1 ||
1213 			nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL2) {
1214 			if (mpi3mr_build_nvme_sgl(mrioc,
1215 			    (struct mpi3_nvme_encapsulated_request *)mpi_req,
1216 			    drv_bufs, bufcnt)) {
1217 				rval = -EINVAL;
1218 				mutex_unlock(&mrioc->bsg_cmds.mutex);
1219 				goto out;
1220 			}
1221 		} else {
1222 			dprint_bsg_err(mrioc,
1223 			    "%s:invalid NVMe command format\n", __func__);
1224 			rval = -EINVAL;
1225 			mutex_unlock(&mrioc->bsg_cmds.mutex);
1226 			goto out;
1227 		}
1228 	} else {
1229 		mpi3mr_bsg_build_sgl(mpi_req, (mpi_msg_size),
1230 		    drv_bufs, bufcnt, is_rmcb, is_rmrb,
1231 		    (dout_cnt + din_cnt));
1232 	}
1233 
1234 	if (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_TASK_MGMT) {
1235 		tm_req = (struct mpi3_scsi_task_mgmt_request *)mpi_req;
1236 		if (tm_req->task_type !=
1237 		    MPI3_SCSITASKMGMT_TASKTYPE_ABORT_TASK) {
1238 			dev_handle = tm_req->dev_handle;
1239 			block_io = 1;
1240 		}
1241 	}
1242 	if (block_io) {
1243 		tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
1244 		if (tgtdev && tgtdev->starget && tgtdev->starget->hostdata) {
1245 			stgt_priv = (struct mpi3mr_stgt_priv_data *)
1246 			    tgtdev->starget->hostdata;
1247 			atomic_inc(&stgt_priv->block_io);
1248 			mpi3mr_tgtdev_put(tgtdev);
1249 		}
1250 	}
1251 
1252 	mrioc->bsg_cmds.state = MPI3MR_CMD_PENDING;
1253 	mrioc->bsg_cmds.is_waiting = 1;
1254 	mrioc->bsg_cmds.callback = NULL;
1255 	mrioc->bsg_cmds.is_sense = 0;
1256 	mrioc->bsg_cmds.sensebuf = sense_buff_k;
1257 	memset(mrioc->bsg_cmds.reply, 0, mrioc->reply_sz);
1258 	mpi_header->host_tag = cpu_to_le16(MPI3MR_HOSTTAG_BSG_CMDS);
1259 	if (mrioc->logging_level & MPI3_DEBUG_BSG_INFO) {
1260 		dprint_bsg_info(mrioc,
1261 		    "%s: posting bsg request to the controller\n", __func__);
1262 		dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
1263 		    "bsg_mpi3_req");
1264 		if (mpi_header->function == MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
1265 			drv_buf_iter = &drv_bufs[0];
1266 			dprint_dump(drv_buf_iter->kern_buf,
1267 			    drv_buf_iter->kern_buf_len, "mpi3_mgmt_req");
1268 		}
1269 	}
1270 
1271 	init_completion(&mrioc->bsg_cmds.done);
1272 	rval = mpi3mr_admin_request_post(mrioc, mpi_req,
1273 	    MPI3MR_ADMIN_REQ_FRAME_SZ, 0);
1274 
1275 
1276 	if (rval) {
1277 		mrioc->bsg_cmds.is_waiting = 0;
1278 		dprint_bsg_err(mrioc,
1279 		    "%s: posting bsg request is failed\n", __func__);
1280 		rval = -EAGAIN;
1281 		goto out_unlock;
1282 	}
1283 	wait_for_completion_timeout(&mrioc->bsg_cmds.done,
1284 	    (karg->timeout * HZ));
1285 	if (block_io && stgt_priv)
1286 		atomic_dec(&stgt_priv->block_io);
1287 	if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE)) {
1288 		mrioc->bsg_cmds.is_waiting = 0;
1289 		rval = -EAGAIN;
1290 		if (mrioc->bsg_cmds.state & MPI3MR_CMD_RESET)
1291 			goto out_unlock;
1292 		dprint_bsg_err(mrioc,
1293 		    "%s: bsg request timedout after %d seconds\n", __func__,
1294 		    karg->timeout);
1295 		if (mrioc->logging_level & MPI3_DEBUG_BSG_ERROR) {
1296 			dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
1297 			    "bsg_mpi3_req");
1298 			if (mpi_header->function ==
1299 			    MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
1300 				drv_buf_iter = &drv_bufs[0];
1301 				dprint_dump(drv_buf_iter->kern_buf,
1302 				    drv_buf_iter->kern_buf_len, "mpi3_mgmt_req");
1303 			}
1304 		}
1305 
1306 		if ((mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) ||
1307 		    (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_IO))
1308 			mpi3mr_issue_tm(mrioc,
1309 			    MPI3_SCSITASKMGMT_TASKTYPE_TARGET_RESET,
1310 			    mpi_header->function_dependent, 0,
1311 			    MPI3MR_HOSTTAG_BLK_TMS, MPI3MR_RESETTM_TIMEOUT,
1312 			    &mrioc->host_tm_cmds, &resp_code, NULL);
1313 		if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE) &&
1314 		    !(mrioc->bsg_cmds.state & MPI3MR_CMD_RESET))
1315 			mpi3mr_soft_reset_handler(mrioc,
1316 			    MPI3MR_RESET_FROM_APP_TIMEOUT, 1);
1317 		goto out_unlock;
1318 	}
1319 	dprint_bsg_info(mrioc, "%s: bsg request is completed\n", __func__);
1320 
1321 	if (mrioc->prp_list_virt) {
1322 		dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
1323 		    mrioc->prp_list_virt, mrioc->prp_list_dma);
1324 		mrioc->prp_list_virt = NULL;
1325 	}
1326 
1327 	if ((mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
1328 	     != MPI3_IOCSTATUS_SUCCESS) {
1329 		dprint_bsg_info(mrioc,
1330 		    "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
1331 		    __func__,
1332 		    (mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
1333 		    mrioc->bsg_cmds.ioc_loginfo);
1334 	}
1335 
1336 	if ((mpirep_offset != 0xFF) &&
1337 	    drv_bufs[mpirep_offset].bsg_buf_len) {
1338 		drv_buf_iter = &drv_bufs[mpirep_offset];
1339 		drv_buf_iter->kern_buf_len = (sizeof(*bsg_reply_buf) - 1 +
1340 					   mrioc->reply_sz);
1341 		bsg_reply_buf = kzalloc(drv_buf_iter->kern_buf_len, GFP_KERNEL);
1342 
1343 		if (!bsg_reply_buf) {
1344 			rval = -ENOMEM;
1345 			goto out_unlock;
1346 		}
1347 		if (mrioc->bsg_cmds.state & MPI3MR_CMD_REPLY_VALID) {
1348 			bsg_reply_buf->mpi_reply_type =
1349 				MPI3MR_BSG_MPI_REPLY_BUFTYPE_ADDRESS;
1350 			memcpy(bsg_reply_buf->reply_buf,
1351 			    mrioc->bsg_cmds.reply, mrioc->reply_sz);
1352 		} else {
1353 			bsg_reply_buf->mpi_reply_type =
1354 				MPI3MR_BSG_MPI_REPLY_BUFTYPE_STATUS;
1355 			status_desc = (struct mpi3_status_reply_descriptor *)
1356 			    bsg_reply_buf->reply_buf;
1357 			status_desc->ioc_status = mrioc->bsg_cmds.ioc_status;
1358 			status_desc->ioc_log_info = mrioc->bsg_cmds.ioc_loginfo;
1359 		}
1360 		tmplen = min(drv_buf_iter->kern_buf_len,
1361 			drv_buf_iter->bsg_buf_len);
1362 		memcpy(drv_buf_iter->bsg_buf, bsg_reply_buf, tmplen);
1363 	}
1364 
1365 	if (erb_offset != 0xFF && mrioc->bsg_cmds.sensebuf &&
1366 	    mrioc->bsg_cmds.is_sense) {
1367 		drv_buf_iter = &drv_bufs[erb_offset];
1368 		tmplen = min(erbsz, drv_buf_iter->bsg_buf_len);
1369 		memcpy(drv_buf_iter->bsg_buf, sense_buff_k, tmplen);
1370 	}
1371 
1372 	drv_buf_iter = drv_bufs;
1373 	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1374 		if (drv_buf_iter->data_dir == DMA_NONE)
1375 			continue;
1376 		if (drv_buf_iter->data_dir == DMA_FROM_DEVICE) {
1377 			tmplen = min(drv_buf_iter->kern_buf_len,
1378 				     drv_buf_iter->bsg_buf_len);
1379 			memcpy(drv_buf_iter->bsg_buf,
1380 			       drv_buf_iter->kern_buf, tmplen);
1381 		}
1382 	}
1383 
1384 out_unlock:
1385 	if (din_buf) {
1386 		*reply_payload_rcv_len =
1387 			sg_copy_from_buffer(job->reply_payload.sg_list,
1388 					    job->reply_payload.sg_cnt,
1389 					    din_buf, job->reply_payload.payload_len);
1390 	}
1391 	mrioc->bsg_cmds.is_sense = 0;
1392 	mrioc->bsg_cmds.sensebuf = NULL;
1393 	mrioc->bsg_cmds.state = MPI3MR_CMD_NOTUSED;
1394 	mutex_unlock(&mrioc->bsg_cmds.mutex);
1395 out:
1396 	kfree(sense_buff_k);
1397 	kfree(dout_buf);
1398 	kfree(din_buf);
1399 	kfree(mpi_req);
1400 	if (drv_bufs) {
1401 		drv_buf_iter = drv_bufs;
1402 		for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1403 			if (drv_buf_iter->kern_buf && drv_buf_iter->kern_buf_dma)
1404 				dma_free_coherent(&mrioc->pdev->dev,
1405 				    drv_buf_iter->kern_buf_len,
1406 				    drv_buf_iter->kern_buf,
1407 				    drv_buf_iter->kern_buf_dma);
1408 		}
1409 		kfree(drv_bufs);
1410 	}
1411 	kfree(bsg_reply_buf);
1412 	return rval;
1413 }
1414 
1415 /**
1416  * mpi3mr_app_save_logdata - Save Log Data events
1417  * @mrioc: Adapter instance reference
1418  * @event_data: event data associated with log data event
1419  * @event_data_size: event data size to copy
1420  *
1421  * If log data event caching is enabled by the applicatiobns,
1422  * then this function saves the log data in the circular queue
1423  * and Sends async signal SIGIO to indicate there is an async
1424  * event from the firmware to the event monitoring applications.
1425  *
1426  * Return:Nothing
1427  */
1428 void mpi3mr_app_save_logdata(struct mpi3mr_ioc *mrioc, char *event_data,
1429 	u16 event_data_size)
1430 {
1431 	u32 index = mrioc->logdata_buf_idx, sz;
1432 	struct mpi3mr_logdata_entry *entry;
1433 
1434 	if (!(mrioc->logdata_buf))
1435 		return;
1436 
1437 	entry = (struct mpi3mr_logdata_entry *)
1438 		(mrioc->logdata_buf + (index * mrioc->logdata_entry_sz));
1439 	entry->valid_entry = 1;
1440 	sz = min(mrioc->logdata_entry_sz, event_data_size);
1441 	memcpy(entry->data, event_data, sz);
1442 	mrioc->logdata_buf_idx =
1443 		((++index) % MPI3MR_BSG_LOGDATA_MAX_ENTRIES);
1444 	atomic64_inc(&event_counter);
1445 }
1446 
1447 /**
1448  * mpi3mr_bsg_request - bsg request entry point
1449  * @job: BSG job reference
1450  *
1451  * This is driver's entry point for bsg requests
1452  *
1453  * Return: 0 on success and proper error codes on failure
1454  */
1455 static int mpi3mr_bsg_request(struct bsg_job *job)
1456 {
1457 	long rval = -EINVAL;
1458 	unsigned int reply_payload_rcv_len = 0;
1459 
1460 	struct mpi3mr_bsg_packet *bsg_req = job->request;
1461 
1462 	switch (bsg_req->cmd_type) {
1463 	case MPI3MR_DRV_CMD:
1464 		rval = mpi3mr_bsg_process_drv_cmds(job);
1465 		break;
1466 	case MPI3MR_MPT_CMD:
1467 		rval = mpi3mr_bsg_process_mpt_cmds(job, &reply_payload_rcv_len);
1468 		break;
1469 	default:
1470 		pr_err("%s: unsupported BSG command(0x%08x)\n",
1471 		    MPI3MR_DRIVER_NAME, bsg_req->cmd_type);
1472 		break;
1473 	}
1474 
1475 	bsg_job_done(job, rval, reply_payload_rcv_len);
1476 
1477 	return 0;
1478 }
1479 
1480 /**
1481  * mpi3mr_bsg_exit - de-registration from bsg layer
1482  *
1483  * This will be called during driver unload and all
1484  * bsg resources allocated during load will be freed.
1485  *
1486  * Return:Nothing
1487  */
1488 void mpi3mr_bsg_exit(struct mpi3mr_ioc *mrioc)
1489 {
1490 	struct device *bsg_dev = &mrioc->bsg_dev;
1491 	if (!mrioc->bsg_queue)
1492 		return;
1493 
1494 	bsg_remove_queue(mrioc->bsg_queue);
1495 	mrioc->bsg_queue = NULL;
1496 
1497 	device_del(bsg_dev);
1498 	put_device(bsg_dev);
1499 }
1500 
1501 /**
1502  * mpi3mr_bsg_node_release -release bsg device node
1503  * @dev: bsg device node
1504  *
1505  * decrements bsg dev parent reference count
1506  *
1507  * Return:Nothing
1508  */
1509 static void mpi3mr_bsg_node_release(struct device *dev)
1510 {
1511 	put_device(dev->parent);
1512 }
1513 
1514 /**
1515  * mpi3mr_bsg_init -  registration with bsg layer
1516  *
1517  * This will be called during driver load and it will
1518  * register driver with bsg layer
1519  *
1520  * Return:Nothing
1521  */
1522 void mpi3mr_bsg_init(struct mpi3mr_ioc *mrioc)
1523 {
1524 	struct device *bsg_dev = &mrioc->bsg_dev;
1525 	struct device *parent = &mrioc->shost->shost_gendev;
1526 
1527 	device_initialize(bsg_dev);
1528 
1529 	bsg_dev->parent = get_device(parent);
1530 	bsg_dev->release = mpi3mr_bsg_node_release;
1531 
1532 	dev_set_name(bsg_dev, "mpi3mrctl%u", mrioc->id);
1533 
1534 	if (device_add(bsg_dev)) {
1535 		ioc_err(mrioc, "%s: bsg device add failed\n",
1536 		    dev_name(bsg_dev));
1537 		put_device(bsg_dev);
1538 		return;
1539 	}
1540 
1541 	mrioc->bsg_queue = bsg_setup_queue(bsg_dev, dev_name(bsg_dev),
1542 			mpi3mr_bsg_request, NULL, 0);
1543 	if (IS_ERR(mrioc->bsg_queue)) {
1544 		ioc_err(mrioc, "%s: bsg registration failed\n",
1545 		    dev_name(bsg_dev));
1546 		device_del(bsg_dev);
1547 		put_device(bsg_dev);
1548 		return;
1549 	}
1550 
1551 	blk_queue_max_segments(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SEGMENTS);
1552 	blk_queue_max_hw_sectors(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SECTORS);
1553 
1554 	return;
1555 }
1556 
1557 /**
1558  * version_fw_show - SysFS callback for firmware version read
1559  * @dev: class device
1560  * @attr: Device attributes
1561  * @buf: Buffer to copy
1562  *
1563  * Return: sysfs_emit() return after copying firmware version
1564  */
1565 static ssize_t
1566 version_fw_show(struct device *dev, struct device_attribute *attr,
1567 	char *buf)
1568 {
1569 	struct Scsi_Host *shost = class_to_shost(dev);
1570 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1571 	struct mpi3mr_compimg_ver *fwver = &mrioc->facts.fw_ver;
1572 
1573 	return sysfs_emit(buf, "%d.%d.%d.%d.%05d-%05d\n",
1574 	    fwver->gen_major, fwver->gen_minor, fwver->ph_major,
1575 	    fwver->ph_minor, fwver->cust_id, fwver->build_num);
1576 }
1577 static DEVICE_ATTR_RO(version_fw);
1578 
1579 /**
1580  * fw_queue_depth_show - SysFS callback for firmware max cmds
1581  * @dev: class device
1582  * @attr: Device attributes
1583  * @buf: Buffer to copy
1584  *
1585  * Return: sysfs_emit() return after copying firmware max commands
1586  */
1587 static ssize_t
1588 fw_queue_depth_show(struct device *dev, struct device_attribute *attr,
1589 			char *buf)
1590 {
1591 	struct Scsi_Host *shost = class_to_shost(dev);
1592 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1593 
1594 	return sysfs_emit(buf, "%d\n", mrioc->facts.max_reqs);
1595 }
1596 static DEVICE_ATTR_RO(fw_queue_depth);
1597 
1598 /**
1599  * op_req_q_count_show - SysFS callback for request queue count
1600  * @dev: class device
1601  * @attr: Device attributes
1602  * @buf: Buffer to copy
1603  *
1604  * Return: sysfs_emit() return after copying request queue count
1605  */
1606 static ssize_t
1607 op_req_q_count_show(struct device *dev, struct device_attribute *attr,
1608 			char *buf)
1609 {
1610 	struct Scsi_Host *shost = class_to_shost(dev);
1611 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1612 
1613 	return sysfs_emit(buf, "%d\n", mrioc->num_op_req_q);
1614 }
1615 static DEVICE_ATTR_RO(op_req_q_count);
1616 
1617 /**
1618  * reply_queue_count_show - SysFS callback for reply queue count
1619  * @dev: class device
1620  * @attr: Device attributes
1621  * @buf: Buffer to copy
1622  *
1623  * Return: sysfs_emit() return after copying reply queue count
1624  */
1625 static ssize_t
1626 reply_queue_count_show(struct device *dev, struct device_attribute *attr,
1627 			char *buf)
1628 {
1629 	struct Scsi_Host *shost = class_to_shost(dev);
1630 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1631 
1632 	return sysfs_emit(buf, "%d\n", mrioc->num_op_reply_q);
1633 }
1634 
1635 static DEVICE_ATTR_RO(reply_queue_count);
1636 
1637 /**
1638  * logging_level_show - Show controller debug level
1639  * @dev: class device
1640  * @attr: Device attributes
1641  * @buf: Buffer to copy
1642  *
1643  * A sysfs 'read/write' shost attribute, to show the current
1644  * debug log level used by the driver for the specific
1645  * controller.
1646  *
1647  * Return: sysfs_emit() return
1648  */
1649 static ssize_t
1650 logging_level_show(struct device *dev,
1651 	struct device_attribute *attr, char *buf)
1652 
1653 {
1654 	struct Scsi_Host *shost = class_to_shost(dev);
1655 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1656 
1657 	return sysfs_emit(buf, "%08xh\n", mrioc->logging_level);
1658 }
1659 
1660 /**
1661  * logging_level_store- Change controller debug level
1662  * @dev: class device
1663  * @attr: Device attributes
1664  * @buf: Buffer to copy
1665  * @count: size of the buffer
1666  *
1667  * A sysfs 'read/write' shost attribute, to change the current
1668  * debug log level used by the driver for the specific
1669  * controller.
1670  *
1671  * Return: strlen() return
1672  */
1673 static ssize_t
1674 logging_level_store(struct device *dev,
1675 	struct device_attribute *attr,
1676 	const char *buf, size_t count)
1677 {
1678 	struct Scsi_Host *shost = class_to_shost(dev);
1679 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1680 	int val = 0;
1681 
1682 	if (kstrtoint(buf, 0, &val) != 0)
1683 		return -EINVAL;
1684 
1685 	mrioc->logging_level = val;
1686 	ioc_info(mrioc, "logging_level=%08xh\n", mrioc->logging_level);
1687 	return strlen(buf);
1688 }
1689 static DEVICE_ATTR_RW(logging_level);
1690 
1691 /**
1692  * adp_state_show() - SysFS callback for adapter state show
1693  * @dev: class device
1694  * @attr: Device attributes
1695  * @buf: Buffer to copy
1696  *
1697  * Return: sysfs_emit() return after copying adapter state
1698  */
1699 static ssize_t
1700 adp_state_show(struct device *dev, struct device_attribute *attr,
1701 	char *buf)
1702 {
1703 	struct Scsi_Host *shost = class_to_shost(dev);
1704 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1705 	enum mpi3mr_iocstate ioc_state;
1706 	uint8_t adp_state;
1707 
1708 	ioc_state = mpi3mr_get_iocstate(mrioc);
1709 	if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
1710 		adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
1711 	else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
1712 		adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
1713 	else if (ioc_state == MRIOC_STATE_FAULT)
1714 		adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
1715 	else
1716 		adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
1717 
1718 	return sysfs_emit(buf, "%u\n", adp_state);
1719 }
1720 
1721 static DEVICE_ATTR_RO(adp_state);
1722 
1723 static struct attribute *mpi3mr_host_attrs[] = {
1724 	&dev_attr_version_fw.attr,
1725 	&dev_attr_fw_queue_depth.attr,
1726 	&dev_attr_op_req_q_count.attr,
1727 	&dev_attr_reply_queue_count.attr,
1728 	&dev_attr_logging_level.attr,
1729 	&dev_attr_adp_state.attr,
1730 	NULL,
1731 };
1732 
1733 static const struct attribute_group mpi3mr_host_attr_group = {
1734 	.attrs = mpi3mr_host_attrs
1735 };
1736 
1737 const struct attribute_group *mpi3mr_host_groups[] = {
1738 	&mpi3mr_host_attr_group,
1739 	NULL,
1740 };
1741 
1742 
1743 /*
1744  * SCSI Device attributes under sysfs
1745  */
1746 
1747 /**
1748  * sas_address_show - SysFS callback for dev SASaddress display
1749  * @dev: class device
1750  * @attr: Device attributes
1751  * @buf: Buffer to copy
1752  *
1753  * Return: sysfs_emit() return after copying SAS address of the
1754  * specific SAS/SATA end device.
1755  */
1756 static ssize_t
1757 sas_address_show(struct device *dev, struct device_attribute *attr,
1758 			char *buf)
1759 {
1760 	struct scsi_device *sdev = to_scsi_device(dev);
1761 	struct mpi3mr_sdev_priv_data *sdev_priv_data;
1762 	struct mpi3mr_stgt_priv_data *tgt_priv_data;
1763 	struct mpi3mr_tgt_dev *tgtdev;
1764 
1765 	sdev_priv_data = sdev->hostdata;
1766 	if (!sdev_priv_data)
1767 		return 0;
1768 
1769 	tgt_priv_data = sdev_priv_data->tgt_priv_data;
1770 	if (!tgt_priv_data)
1771 		return 0;
1772 	tgtdev = tgt_priv_data->tgt_dev;
1773 	if (!tgtdev || tgtdev->dev_type != MPI3_DEVICE_DEVFORM_SAS_SATA)
1774 		return 0;
1775 	return sysfs_emit(buf, "0x%016llx\n",
1776 	    (unsigned long long)tgtdev->dev_spec.sas_sata_inf.sas_address);
1777 }
1778 
1779 static DEVICE_ATTR_RO(sas_address);
1780 
1781 /**
1782  * device_handle_show - SysFS callback for device handle display
1783  * @dev: class device
1784  * @attr: Device attributes
1785  * @buf: Buffer to copy
1786  *
1787  * Return: sysfs_emit() return after copying firmware internal
1788  * device handle of the specific device.
1789  */
1790 static ssize_t
1791 device_handle_show(struct device *dev, struct device_attribute *attr,
1792 			char *buf)
1793 {
1794 	struct scsi_device *sdev = to_scsi_device(dev);
1795 	struct mpi3mr_sdev_priv_data *sdev_priv_data;
1796 	struct mpi3mr_stgt_priv_data *tgt_priv_data;
1797 	struct mpi3mr_tgt_dev *tgtdev;
1798 
1799 	sdev_priv_data = sdev->hostdata;
1800 	if (!sdev_priv_data)
1801 		return 0;
1802 
1803 	tgt_priv_data = sdev_priv_data->tgt_priv_data;
1804 	if (!tgt_priv_data)
1805 		return 0;
1806 	tgtdev = tgt_priv_data->tgt_dev;
1807 	if (!tgtdev)
1808 		return 0;
1809 	return sysfs_emit(buf, "0x%04x\n", tgtdev->dev_handle);
1810 }
1811 
1812 static DEVICE_ATTR_RO(device_handle);
1813 
1814 /**
1815  * persistent_id_show - SysFS callback for persisten ID display
1816  * @dev: class device
1817  * @attr: Device attributes
1818  * @buf: Buffer to copy
1819  *
1820  * Return: sysfs_emit() return after copying persistent ID of the
1821  * of the specific device.
1822  */
1823 static ssize_t
1824 persistent_id_show(struct device *dev, struct device_attribute *attr,
1825 			char *buf)
1826 {
1827 	struct scsi_device *sdev = to_scsi_device(dev);
1828 	struct mpi3mr_sdev_priv_data *sdev_priv_data;
1829 	struct mpi3mr_stgt_priv_data *tgt_priv_data;
1830 	struct mpi3mr_tgt_dev *tgtdev;
1831 
1832 	sdev_priv_data = sdev->hostdata;
1833 	if (!sdev_priv_data)
1834 		return 0;
1835 
1836 	tgt_priv_data = sdev_priv_data->tgt_priv_data;
1837 	if (!tgt_priv_data)
1838 		return 0;
1839 	tgtdev = tgt_priv_data->tgt_dev;
1840 	if (!tgtdev)
1841 		return 0;
1842 	return sysfs_emit(buf, "%d\n", tgtdev->perst_id);
1843 }
1844 static DEVICE_ATTR_RO(persistent_id);
1845 
1846 static struct attribute *mpi3mr_dev_attrs[] = {
1847 	&dev_attr_sas_address.attr,
1848 	&dev_attr_device_handle.attr,
1849 	&dev_attr_persistent_id.attr,
1850 	NULL,
1851 };
1852 
1853 static const struct attribute_group mpi3mr_dev_attr_group = {
1854 	.attrs = mpi3mr_dev_attrs
1855 };
1856 
1857 const struct attribute_group *mpi3mr_dev_groups[] = {
1858 	&mpi3mr_dev_attr_group,
1859 	NULL,
1860 };
1861