1 /* 2 * Linux MegaRAID driver for SAS based RAID controllers 3 * 4 * Copyright (c) 2003-2012 LSI Corporation. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * FILE: megaraid_sas_base.c 21 * Version : 06.700.06.00-rc1 22 * 23 * Authors: LSI Corporation 24 * Sreenivas Bagalkote 25 * Sumant Patro 26 * Bo Yang 27 * Adam Radford <linuxraid@lsi.com> 28 * 29 * Send feedback to: <megaraidlinux@lsi.com> 30 * 31 * Mail to: LSI Corporation, 1621 Barber Lane, Milpitas, CA 95035 32 * ATTN: Linuxraid 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/types.h> 37 #include <linux/pci.h> 38 #include <linux/list.h> 39 #include <linux/moduleparam.h> 40 #include <linux/module.h> 41 #include <linux/spinlock.h> 42 #include <linux/interrupt.h> 43 #include <linux/delay.h> 44 #include <linux/uio.h> 45 #include <linux/slab.h> 46 #include <asm/uaccess.h> 47 #include <linux/fs.h> 48 #include <linux/compat.h> 49 #include <linux/blkdev.h> 50 #include <linux/mutex.h> 51 #include <linux/poll.h> 52 53 #include <scsi/scsi.h> 54 #include <scsi/scsi_cmnd.h> 55 #include <scsi/scsi_device.h> 56 #include <scsi/scsi_host.h> 57 #include <scsi/scsi_tcq.h> 58 #include "megaraid_sas_fusion.h" 59 #include "megaraid_sas.h" 60 61 /* 62 * Number of sectors per IO command 63 * Will be set in megasas_init_mfi if user does not provide 64 */ 65 static unsigned int max_sectors; 66 module_param_named(max_sectors, max_sectors, int, 0); 67 MODULE_PARM_DESC(max_sectors, 68 "Maximum number of sectors per IO command"); 69 70 static int msix_disable; 71 module_param(msix_disable, int, S_IRUGO); 72 MODULE_PARM_DESC(msix_disable, "Disable MSI-X interrupt handling. Default: 0"); 73 74 static unsigned int msix_vectors; 75 module_param(msix_vectors, int, S_IRUGO); 76 MODULE_PARM_DESC(msix_vectors, "MSI-X max vector count. Default: Set by FW"); 77 78 static int throttlequeuedepth = MEGASAS_THROTTLE_QUEUE_DEPTH; 79 module_param(throttlequeuedepth, int, S_IRUGO); 80 MODULE_PARM_DESC(throttlequeuedepth, 81 "Adapter queue depth when throttled due to I/O timeout. Default: 16"); 82 83 int resetwaittime = MEGASAS_RESET_WAIT_TIME; 84 module_param(resetwaittime, int, S_IRUGO); 85 MODULE_PARM_DESC(resetwaittime, "Wait time in seconds after I/O timeout " 86 "before resetting adapter. Default: 180"); 87 88 MODULE_LICENSE("GPL"); 89 MODULE_VERSION(MEGASAS_VERSION); 90 MODULE_AUTHOR("megaraidlinux@lsi.com"); 91 MODULE_DESCRIPTION("LSI MegaRAID SAS Driver"); 92 93 int megasas_transition_to_ready(struct megasas_instance *instance, int ocr); 94 static int megasas_get_pd_list(struct megasas_instance *instance); 95 static int megasas_ld_list_query(struct megasas_instance *instance, 96 u8 query_type); 97 static int megasas_issue_init_mfi(struct megasas_instance *instance); 98 static int megasas_register_aen(struct megasas_instance *instance, 99 u32 seq_num, u32 class_locale_word); 100 /* 101 * PCI ID table for all supported controllers 102 */ 103 static struct pci_device_id megasas_pci_table[] = { 104 105 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)}, 106 /* xscale IOP */ 107 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)}, 108 /* ppc IOP */ 109 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)}, 110 /* ppc IOP */ 111 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078GEN2)}, 112 /* gen2*/ 113 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0079GEN2)}, 114 /* gen2*/ 115 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0073SKINNY)}, 116 /* skinny*/ 117 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0071SKINNY)}, 118 /* skinny*/ 119 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)}, 120 /* xscale IOP, vega */ 121 {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)}, 122 /* xscale IOP */ 123 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FUSION)}, 124 /* Fusion */ 125 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_INVADER)}, 126 /* Invader */ 127 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FURY)}, 128 /* Fury */ 129 {} 130 }; 131 132 MODULE_DEVICE_TABLE(pci, megasas_pci_table); 133 134 static int megasas_mgmt_majorno; 135 static struct megasas_mgmt_info megasas_mgmt_info; 136 static struct fasync_struct *megasas_async_queue; 137 static DEFINE_MUTEX(megasas_async_queue_mutex); 138 139 static int megasas_poll_wait_aen; 140 static DECLARE_WAIT_QUEUE_HEAD(megasas_poll_wait); 141 static u32 support_poll_for_event; 142 u32 megasas_dbg_lvl; 143 static u32 support_device_change; 144 145 /* define lock for aen poll */ 146 spinlock_t poll_aen_lock; 147 148 void 149 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd, 150 u8 alt_status); 151 static u32 152 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs); 153 static int 154 megasas_adp_reset_gen2(struct megasas_instance *instance, 155 struct megasas_register_set __iomem *reg_set); 156 static irqreturn_t megasas_isr(int irq, void *devp); 157 static u32 158 megasas_init_adapter_mfi(struct megasas_instance *instance); 159 u32 160 megasas_build_and_issue_cmd(struct megasas_instance *instance, 161 struct scsi_cmnd *scmd); 162 static void megasas_complete_cmd_dpc(unsigned long instance_addr); 163 void 164 megasas_release_fusion(struct megasas_instance *instance); 165 int 166 megasas_ioc_init_fusion(struct megasas_instance *instance); 167 void 168 megasas_free_cmds_fusion(struct megasas_instance *instance); 169 u8 170 megasas_get_map_info(struct megasas_instance *instance); 171 int 172 megasas_sync_map_info(struct megasas_instance *instance); 173 int 174 wait_and_poll(struct megasas_instance *instance, struct megasas_cmd *cmd); 175 void megasas_reset_reply_desc(struct megasas_instance *instance); 176 int megasas_reset_fusion(struct Scsi_Host *shost); 177 void megasas_fusion_ocr_wq(struct work_struct *work); 178 179 void 180 megasas_issue_dcmd(struct megasas_instance *instance, struct megasas_cmd *cmd) 181 { 182 instance->instancet->fire_cmd(instance, 183 cmd->frame_phys_addr, 0, instance->reg_set); 184 } 185 186 /** 187 * megasas_get_cmd - Get a command from the free pool 188 * @instance: Adapter soft state 189 * 190 * Returns a free command from the pool 191 */ 192 struct megasas_cmd *megasas_get_cmd(struct megasas_instance 193 *instance) 194 { 195 unsigned long flags; 196 struct megasas_cmd *cmd = NULL; 197 198 spin_lock_irqsave(&instance->cmd_pool_lock, flags); 199 200 if (!list_empty(&instance->cmd_pool)) { 201 cmd = list_entry((&instance->cmd_pool)->next, 202 struct megasas_cmd, list); 203 list_del_init(&cmd->list); 204 } else { 205 printk(KERN_ERR "megasas: Command pool empty!\n"); 206 } 207 208 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags); 209 return cmd; 210 } 211 212 /** 213 * megasas_return_cmd - Return a cmd to free command pool 214 * @instance: Adapter soft state 215 * @cmd: Command packet to be returned to free command pool 216 */ 217 inline void 218 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd) 219 { 220 unsigned long flags; 221 222 spin_lock_irqsave(&instance->cmd_pool_lock, flags); 223 224 cmd->scmd = NULL; 225 cmd->frame_count = 0; 226 if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) && 227 (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) && 228 (instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) && 229 (reset_devices)) 230 cmd->frame->hdr.cmd = MFI_CMD_INVALID; 231 list_add_tail(&cmd->list, &instance->cmd_pool); 232 233 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags); 234 } 235 236 237 /** 238 * The following functions are defined for xscale 239 * (deviceid : 1064R, PERC5) controllers 240 */ 241 242 /** 243 * megasas_enable_intr_xscale - Enables interrupts 244 * @regs: MFI register set 245 */ 246 static inline void 247 megasas_enable_intr_xscale(struct megasas_instance *instance) 248 { 249 struct megasas_register_set __iomem *regs; 250 regs = instance->reg_set; 251 writel(0, &(regs)->outbound_intr_mask); 252 253 /* Dummy readl to force pci flush */ 254 readl(®s->outbound_intr_mask); 255 } 256 257 /** 258 * megasas_disable_intr_xscale -Disables interrupt 259 * @regs: MFI register set 260 */ 261 static inline void 262 megasas_disable_intr_xscale(struct megasas_instance *instance) 263 { 264 struct megasas_register_set __iomem *regs; 265 u32 mask = 0x1f; 266 regs = instance->reg_set; 267 writel(mask, ®s->outbound_intr_mask); 268 /* Dummy readl to force pci flush */ 269 readl(®s->outbound_intr_mask); 270 } 271 272 /** 273 * megasas_read_fw_status_reg_xscale - returns the current FW status value 274 * @regs: MFI register set 275 */ 276 static u32 277 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs) 278 { 279 return readl(&(regs)->outbound_msg_0); 280 } 281 /** 282 * megasas_clear_interrupt_xscale - Check & clear interrupt 283 * @regs: MFI register set 284 */ 285 static int 286 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs) 287 { 288 u32 status; 289 u32 mfiStatus = 0; 290 /* 291 * Check if it is our interrupt 292 */ 293 status = readl(®s->outbound_intr_status); 294 295 if (status & MFI_OB_INTR_STATUS_MASK) 296 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; 297 if (status & MFI_XSCALE_OMR0_CHANGE_INTERRUPT) 298 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; 299 300 /* 301 * Clear the interrupt by writing back the same value 302 */ 303 if (mfiStatus) 304 writel(status, ®s->outbound_intr_status); 305 306 /* Dummy readl to force pci flush */ 307 readl(®s->outbound_intr_status); 308 309 return mfiStatus; 310 } 311 312 /** 313 * megasas_fire_cmd_xscale - Sends command to the FW 314 * @frame_phys_addr : Physical address of cmd 315 * @frame_count : Number of frames for the command 316 * @regs : MFI register set 317 */ 318 static inline void 319 megasas_fire_cmd_xscale(struct megasas_instance *instance, 320 dma_addr_t frame_phys_addr, 321 u32 frame_count, 322 struct megasas_register_set __iomem *regs) 323 { 324 unsigned long flags; 325 spin_lock_irqsave(&instance->hba_lock, flags); 326 writel((frame_phys_addr >> 3)|(frame_count), 327 &(regs)->inbound_queue_port); 328 spin_unlock_irqrestore(&instance->hba_lock, flags); 329 } 330 331 /** 332 * megasas_adp_reset_xscale - For controller reset 333 * @regs: MFI register set 334 */ 335 static int 336 megasas_adp_reset_xscale(struct megasas_instance *instance, 337 struct megasas_register_set __iomem *regs) 338 { 339 u32 i; 340 u32 pcidata; 341 writel(MFI_ADP_RESET, ®s->inbound_doorbell); 342 343 for (i = 0; i < 3; i++) 344 msleep(1000); /* sleep for 3 secs */ 345 pcidata = 0; 346 pci_read_config_dword(instance->pdev, MFI_1068_PCSR_OFFSET, &pcidata); 347 printk(KERN_NOTICE "pcidata = %x\n", pcidata); 348 if (pcidata & 0x2) { 349 printk(KERN_NOTICE "mfi 1068 offset read=%x\n", pcidata); 350 pcidata &= ~0x2; 351 pci_write_config_dword(instance->pdev, 352 MFI_1068_PCSR_OFFSET, pcidata); 353 354 for (i = 0; i < 2; i++) 355 msleep(1000); /* need to wait 2 secs again */ 356 357 pcidata = 0; 358 pci_read_config_dword(instance->pdev, 359 MFI_1068_FW_HANDSHAKE_OFFSET, &pcidata); 360 printk(KERN_NOTICE "1068 offset handshake read=%x\n", pcidata); 361 if ((pcidata & 0xffff0000) == MFI_1068_FW_READY) { 362 printk(KERN_NOTICE "1068 offset pcidt=%x\n", pcidata); 363 pcidata = 0; 364 pci_write_config_dword(instance->pdev, 365 MFI_1068_FW_HANDSHAKE_OFFSET, pcidata); 366 } 367 } 368 return 0; 369 } 370 371 /** 372 * megasas_check_reset_xscale - For controller reset check 373 * @regs: MFI register set 374 */ 375 static int 376 megasas_check_reset_xscale(struct megasas_instance *instance, 377 struct megasas_register_set __iomem *regs) 378 { 379 380 if ((instance->adprecovery != MEGASAS_HBA_OPERATIONAL) && 381 (le32_to_cpu(*instance->consumer) == 382 MEGASAS_ADPRESET_INPROG_SIGN)) 383 return 1; 384 return 0; 385 } 386 387 static struct megasas_instance_template megasas_instance_template_xscale = { 388 389 .fire_cmd = megasas_fire_cmd_xscale, 390 .enable_intr = megasas_enable_intr_xscale, 391 .disable_intr = megasas_disable_intr_xscale, 392 .clear_intr = megasas_clear_intr_xscale, 393 .read_fw_status_reg = megasas_read_fw_status_reg_xscale, 394 .adp_reset = megasas_adp_reset_xscale, 395 .check_reset = megasas_check_reset_xscale, 396 .service_isr = megasas_isr, 397 .tasklet = megasas_complete_cmd_dpc, 398 .init_adapter = megasas_init_adapter_mfi, 399 .build_and_issue_cmd = megasas_build_and_issue_cmd, 400 .issue_dcmd = megasas_issue_dcmd, 401 }; 402 403 /** 404 * This is the end of set of functions & definitions specific 405 * to xscale (deviceid : 1064R, PERC5) controllers 406 */ 407 408 /** 409 * The following functions are defined for ppc (deviceid : 0x60) 410 * controllers 411 */ 412 413 /** 414 * megasas_enable_intr_ppc - Enables interrupts 415 * @regs: MFI register set 416 */ 417 static inline void 418 megasas_enable_intr_ppc(struct megasas_instance *instance) 419 { 420 struct megasas_register_set __iomem *regs; 421 regs = instance->reg_set; 422 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear); 423 424 writel(~0x80000000, &(regs)->outbound_intr_mask); 425 426 /* Dummy readl to force pci flush */ 427 readl(®s->outbound_intr_mask); 428 } 429 430 /** 431 * megasas_disable_intr_ppc - Disable interrupt 432 * @regs: MFI register set 433 */ 434 static inline void 435 megasas_disable_intr_ppc(struct megasas_instance *instance) 436 { 437 struct megasas_register_set __iomem *regs; 438 u32 mask = 0xFFFFFFFF; 439 regs = instance->reg_set; 440 writel(mask, ®s->outbound_intr_mask); 441 /* Dummy readl to force pci flush */ 442 readl(®s->outbound_intr_mask); 443 } 444 445 /** 446 * megasas_read_fw_status_reg_ppc - returns the current FW status value 447 * @regs: MFI register set 448 */ 449 static u32 450 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs) 451 { 452 return readl(&(regs)->outbound_scratch_pad); 453 } 454 455 /** 456 * megasas_clear_interrupt_ppc - Check & clear interrupt 457 * @regs: MFI register set 458 */ 459 static int 460 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs) 461 { 462 u32 status, mfiStatus = 0; 463 464 /* 465 * Check if it is our interrupt 466 */ 467 status = readl(®s->outbound_intr_status); 468 469 if (status & MFI_REPLY_1078_MESSAGE_INTERRUPT) 470 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; 471 472 if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) 473 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; 474 475 /* 476 * Clear the interrupt by writing back the same value 477 */ 478 writel(status, ®s->outbound_doorbell_clear); 479 480 /* Dummy readl to force pci flush */ 481 readl(®s->outbound_doorbell_clear); 482 483 return mfiStatus; 484 } 485 486 /** 487 * megasas_fire_cmd_ppc - Sends command to the FW 488 * @frame_phys_addr : Physical address of cmd 489 * @frame_count : Number of frames for the command 490 * @regs : MFI register set 491 */ 492 static inline void 493 megasas_fire_cmd_ppc(struct megasas_instance *instance, 494 dma_addr_t frame_phys_addr, 495 u32 frame_count, 496 struct megasas_register_set __iomem *regs) 497 { 498 unsigned long flags; 499 spin_lock_irqsave(&instance->hba_lock, flags); 500 writel((frame_phys_addr | (frame_count<<1))|1, 501 &(regs)->inbound_queue_port); 502 spin_unlock_irqrestore(&instance->hba_lock, flags); 503 } 504 505 /** 506 * megasas_check_reset_ppc - For controller reset check 507 * @regs: MFI register set 508 */ 509 static int 510 megasas_check_reset_ppc(struct megasas_instance *instance, 511 struct megasas_register_set __iomem *regs) 512 { 513 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) 514 return 1; 515 516 return 0; 517 } 518 519 static struct megasas_instance_template megasas_instance_template_ppc = { 520 521 .fire_cmd = megasas_fire_cmd_ppc, 522 .enable_intr = megasas_enable_intr_ppc, 523 .disable_intr = megasas_disable_intr_ppc, 524 .clear_intr = megasas_clear_intr_ppc, 525 .read_fw_status_reg = megasas_read_fw_status_reg_ppc, 526 .adp_reset = megasas_adp_reset_xscale, 527 .check_reset = megasas_check_reset_ppc, 528 .service_isr = megasas_isr, 529 .tasklet = megasas_complete_cmd_dpc, 530 .init_adapter = megasas_init_adapter_mfi, 531 .build_and_issue_cmd = megasas_build_and_issue_cmd, 532 .issue_dcmd = megasas_issue_dcmd, 533 }; 534 535 /** 536 * megasas_enable_intr_skinny - Enables interrupts 537 * @regs: MFI register set 538 */ 539 static inline void 540 megasas_enable_intr_skinny(struct megasas_instance *instance) 541 { 542 struct megasas_register_set __iomem *regs; 543 regs = instance->reg_set; 544 writel(0xFFFFFFFF, &(regs)->outbound_intr_mask); 545 546 writel(~MFI_SKINNY_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask); 547 548 /* Dummy readl to force pci flush */ 549 readl(®s->outbound_intr_mask); 550 } 551 552 /** 553 * megasas_disable_intr_skinny - Disables interrupt 554 * @regs: MFI register set 555 */ 556 static inline void 557 megasas_disable_intr_skinny(struct megasas_instance *instance) 558 { 559 struct megasas_register_set __iomem *regs; 560 u32 mask = 0xFFFFFFFF; 561 regs = instance->reg_set; 562 writel(mask, ®s->outbound_intr_mask); 563 /* Dummy readl to force pci flush */ 564 readl(®s->outbound_intr_mask); 565 } 566 567 /** 568 * megasas_read_fw_status_reg_skinny - returns the current FW status value 569 * @regs: MFI register set 570 */ 571 static u32 572 megasas_read_fw_status_reg_skinny(struct megasas_register_set __iomem *regs) 573 { 574 return readl(&(regs)->outbound_scratch_pad); 575 } 576 577 /** 578 * megasas_clear_interrupt_skinny - Check & clear interrupt 579 * @regs: MFI register set 580 */ 581 static int 582 megasas_clear_intr_skinny(struct megasas_register_set __iomem *regs) 583 { 584 u32 status; 585 u32 mfiStatus = 0; 586 587 /* 588 * Check if it is our interrupt 589 */ 590 status = readl(®s->outbound_intr_status); 591 592 if (!(status & MFI_SKINNY_ENABLE_INTERRUPT_MASK)) { 593 return 0; 594 } 595 596 /* 597 * Check if it is our interrupt 598 */ 599 if ((megasas_read_fw_status_reg_skinny(regs) & MFI_STATE_MASK) == 600 MFI_STATE_FAULT) { 601 mfiStatus = MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; 602 } else 603 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; 604 605 /* 606 * Clear the interrupt by writing back the same value 607 */ 608 writel(status, ®s->outbound_intr_status); 609 610 /* 611 * dummy read to flush PCI 612 */ 613 readl(®s->outbound_intr_status); 614 615 return mfiStatus; 616 } 617 618 /** 619 * megasas_fire_cmd_skinny - Sends command to the FW 620 * @frame_phys_addr : Physical address of cmd 621 * @frame_count : Number of frames for the command 622 * @regs : MFI register set 623 */ 624 static inline void 625 megasas_fire_cmd_skinny(struct megasas_instance *instance, 626 dma_addr_t frame_phys_addr, 627 u32 frame_count, 628 struct megasas_register_set __iomem *regs) 629 { 630 unsigned long flags; 631 spin_lock_irqsave(&instance->hba_lock, flags); 632 writel(upper_32_bits(frame_phys_addr), 633 &(regs)->inbound_high_queue_port); 634 writel((lower_32_bits(frame_phys_addr) | (frame_count<<1))|1, 635 &(regs)->inbound_low_queue_port); 636 spin_unlock_irqrestore(&instance->hba_lock, flags); 637 } 638 639 /** 640 * megasas_check_reset_skinny - For controller reset check 641 * @regs: MFI register set 642 */ 643 static int 644 megasas_check_reset_skinny(struct megasas_instance *instance, 645 struct megasas_register_set __iomem *regs) 646 { 647 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) 648 return 1; 649 650 return 0; 651 } 652 653 static struct megasas_instance_template megasas_instance_template_skinny = { 654 655 .fire_cmd = megasas_fire_cmd_skinny, 656 .enable_intr = megasas_enable_intr_skinny, 657 .disable_intr = megasas_disable_intr_skinny, 658 .clear_intr = megasas_clear_intr_skinny, 659 .read_fw_status_reg = megasas_read_fw_status_reg_skinny, 660 .adp_reset = megasas_adp_reset_gen2, 661 .check_reset = megasas_check_reset_skinny, 662 .service_isr = megasas_isr, 663 .tasklet = megasas_complete_cmd_dpc, 664 .init_adapter = megasas_init_adapter_mfi, 665 .build_and_issue_cmd = megasas_build_and_issue_cmd, 666 .issue_dcmd = megasas_issue_dcmd, 667 }; 668 669 670 /** 671 * The following functions are defined for gen2 (deviceid : 0x78 0x79) 672 * controllers 673 */ 674 675 /** 676 * megasas_enable_intr_gen2 - Enables interrupts 677 * @regs: MFI register set 678 */ 679 static inline void 680 megasas_enable_intr_gen2(struct megasas_instance *instance) 681 { 682 struct megasas_register_set __iomem *regs; 683 regs = instance->reg_set; 684 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear); 685 686 /* write ~0x00000005 (4 & 1) to the intr mask*/ 687 writel(~MFI_GEN2_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask); 688 689 /* Dummy readl to force pci flush */ 690 readl(®s->outbound_intr_mask); 691 } 692 693 /** 694 * megasas_disable_intr_gen2 - Disables interrupt 695 * @regs: MFI register set 696 */ 697 static inline void 698 megasas_disable_intr_gen2(struct megasas_instance *instance) 699 { 700 struct megasas_register_set __iomem *regs; 701 u32 mask = 0xFFFFFFFF; 702 regs = instance->reg_set; 703 writel(mask, ®s->outbound_intr_mask); 704 /* Dummy readl to force pci flush */ 705 readl(®s->outbound_intr_mask); 706 } 707 708 /** 709 * megasas_read_fw_status_reg_gen2 - returns the current FW status value 710 * @regs: MFI register set 711 */ 712 static u32 713 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs) 714 { 715 return readl(&(regs)->outbound_scratch_pad); 716 } 717 718 /** 719 * megasas_clear_interrupt_gen2 - Check & clear interrupt 720 * @regs: MFI register set 721 */ 722 static int 723 megasas_clear_intr_gen2(struct megasas_register_set __iomem *regs) 724 { 725 u32 status; 726 u32 mfiStatus = 0; 727 /* 728 * Check if it is our interrupt 729 */ 730 status = readl(®s->outbound_intr_status); 731 732 if (status & MFI_INTR_FLAG_REPLY_MESSAGE) { 733 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; 734 } 735 if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) { 736 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; 737 } 738 739 /* 740 * Clear the interrupt by writing back the same value 741 */ 742 if (mfiStatus) 743 writel(status, ®s->outbound_doorbell_clear); 744 745 /* Dummy readl to force pci flush */ 746 readl(®s->outbound_intr_status); 747 748 return mfiStatus; 749 } 750 /** 751 * megasas_fire_cmd_gen2 - Sends command to the FW 752 * @frame_phys_addr : Physical address of cmd 753 * @frame_count : Number of frames for the command 754 * @regs : MFI register set 755 */ 756 static inline void 757 megasas_fire_cmd_gen2(struct megasas_instance *instance, 758 dma_addr_t frame_phys_addr, 759 u32 frame_count, 760 struct megasas_register_set __iomem *regs) 761 { 762 unsigned long flags; 763 spin_lock_irqsave(&instance->hba_lock, flags); 764 writel((frame_phys_addr | (frame_count<<1))|1, 765 &(regs)->inbound_queue_port); 766 spin_unlock_irqrestore(&instance->hba_lock, flags); 767 } 768 769 /** 770 * megasas_adp_reset_gen2 - For controller reset 771 * @regs: MFI register set 772 */ 773 static int 774 megasas_adp_reset_gen2(struct megasas_instance *instance, 775 struct megasas_register_set __iomem *reg_set) 776 { 777 u32 retry = 0 ; 778 u32 HostDiag; 779 u32 *seq_offset = ®_set->seq_offset; 780 u32 *hostdiag_offset = ®_set->host_diag; 781 782 if (instance->instancet == &megasas_instance_template_skinny) { 783 seq_offset = ®_set->fusion_seq_offset; 784 hostdiag_offset = ®_set->fusion_host_diag; 785 } 786 787 writel(0, seq_offset); 788 writel(4, seq_offset); 789 writel(0xb, seq_offset); 790 writel(2, seq_offset); 791 writel(7, seq_offset); 792 writel(0xd, seq_offset); 793 794 msleep(1000); 795 796 HostDiag = (u32)readl(hostdiag_offset); 797 798 while ( !( HostDiag & DIAG_WRITE_ENABLE) ) { 799 msleep(100); 800 HostDiag = (u32)readl(hostdiag_offset); 801 printk(KERN_NOTICE "RESETGEN2: retry=%x, hostdiag=%x\n", 802 retry, HostDiag); 803 804 if (retry++ >= 100) 805 return 1; 806 807 } 808 809 printk(KERN_NOTICE "ADP_RESET_GEN2: HostDiag=%x\n", HostDiag); 810 811 writel((HostDiag | DIAG_RESET_ADAPTER), hostdiag_offset); 812 813 ssleep(10); 814 815 HostDiag = (u32)readl(hostdiag_offset); 816 while ( ( HostDiag & DIAG_RESET_ADAPTER) ) { 817 msleep(100); 818 HostDiag = (u32)readl(hostdiag_offset); 819 printk(KERN_NOTICE "RESET_GEN2: retry=%x, hostdiag=%x\n", 820 retry, HostDiag); 821 822 if (retry++ >= 1000) 823 return 1; 824 825 } 826 return 0; 827 } 828 829 /** 830 * megasas_check_reset_gen2 - For controller reset check 831 * @regs: MFI register set 832 */ 833 static int 834 megasas_check_reset_gen2(struct megasas_instance *instance, 835 struct megasas_register_set __iomem *regs) 836 { 837 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { 838 return 1; 839 } 840 841 return 0; 842 } 843 844 static struct megasas_instance_template megasas_instance_template_gen2 = { 845 846 .fire_cmd = megasas_fire_cmd_gen2, 847 .enable_intr = megasas_enable_intr_gen2, 848 .disable_intr = megasas_disable_intr_gen2, 849 .clear_intr = megasas_clear_intr_gen2, 850 .read_fw_status_reg = megasas_read_fw_status_reg_gen2, 851 .adp_reset = megasas_adp_reset_gen2, 852 .check_reset = megasas_check_reset_gen2, 853 .service_isr = megasas_isr, 854 .tasklet = megasas_complete_cmd_dpc, 855 .init_adapter = megasas_init_adapter_mfi, 856 .build_and_issue_cmd = megasas_build_and_issue_cmd, 857 .issue_dcmd = megasas_issue_dcmd, 858 }; 859 860 /** 861 * This is the end of set of functions & definitions 862 * specific to gen2 (deviceid : 0x78, 0x79) controllers 863 */ 864 865 /* 866 * Template added for TB (Fusion) 867 */ 868 extern struct megasas_instance_template megasas_instance_template_fusion; 869 870 /** 871 * megasas_issue_polled - Issues a polling command 872 * @instance: Adapter soft state 873 * @cmd: Command packet to be issued 874 * 875 * For polling, MFI requires the cmd_status to be set to 0xFF before posting. 876 */ 877 int 878 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd) 879 { 880 881 struct megasas_header *frame_hdr = &cmd->frame->hdr; 882 883 frame_hdr->cmd_status = MFI_CMD_STATUS_POLL_MODE; 884 frame_hdr->flags |= cpu_to_le16(MFI_FRAME_DONT_POST_IN_REPLY_QUEUE); 885 886 /* 887 * Issue the frame using inbound queue port 888 */ 889 instance->instancet->issue_dcmd(instance, cmd); 890 891 /* 892 * Wait for cmd_status to change 893 */ 894 return wait_and_poll(instance, cmd); 895 } 896 897 /** 898 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds 899 * @instance: Adapter soft state 900 * @cmd: Command to be issued 901 * 902 * This function waits on an event for the command to be returned from ISR. 903 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs 904 * Used to issue ioctl commands. 905 */ 906 static int 907 megasas_issue_blocked_cmd(struct megasas_instance *instance, 908 struct megasas_cmd *cmd) 909 { 910 cmd->cmd_status = ENODATA; 911 912 instance->instancet->issue_dcmd(instance, cmd); 913 914 wait_event(instance->int_cmd_wait_q, cmd->cmd_status != ENODATA); 915 916 return 0; 917 } 918 919 /** 920 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd 921 * @instance: Adapter soft state 922 * @cmd_to_abort: Previously issued cmd to be aborted 923 * 924 * MFI firmware can abort previously issued AEN command (automatic event 925 * notification). The megasas_issue_blocked_abort_cmd() issues such abort 926 * cmd and waits for return status. 927 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs 928 */ 929 static int 930 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance, 931 struct megasas_cmd *cmd_to_abort) 932 { 933 struct megasas_cmd *cmd; 934 struct megasas_abort_frame *abort_fr; 935 936 cmd = megasas_get_cmd(instance); 937 938 if (!cmd) 939 return -1; 940 941 abort_fr = &cmd->frame->abort; 942 943 /* 944 * Prepare and issue the abort frame 945 */ 946 abort_fr->cmd = MFI_CMD_ABORT; 947 abort_fr->cmd_status = 0xFF; 948 abort_fr->flags = cpu_to_le16(0); 949 abort_fr->abort_context = cpu_to_le32(cmd_to_abort->index); 950 abort_fr->abort_mfi_phys_addr_lo = 951 cpu_to_le32(lower_32_bits(cmd_to_abort->frame_phys_addr)); 952 abort_fr->abort_mfi_phys_addr_hi = 953 cpu_to_le32(upper_32_bits(cmd_to_abort->frame_phys_addr)); 954 955 cmd->sync_cmd = 1; 956 cmd->cmd_status = 0xFF; 957 958 instance->instancet->issue_dcmd(instance, cmd); 959 960 /* 961 * Wait for this cmd to complete 962 */ 963 wait_event(instance->abort_cmd_wait_q, cmd->cmd_status != 0xFF); 964 cmd->sync_cmd = 0; 965 966 megasas_return_cmd(instance, cmd); 967 return 0; 968 } 969 970 /** 971 * megasas_make_sgl32 - Prepares 32-bit SGL 972 * @instance: Adapter soft state 973 * @scp: SCSI command from the mid-layer 974 * @mfi_sgl: SGL to be filled in 975 * 976 * If successful, this function returns the number of SG elements. Otherwise, 977 * it returnes -1. 978 */ 979 static int 980 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp, 981 union megasas_sgl *mfi_sgl) 982 { 983 int i; 984 int sge_count; 985 struct scatterlist *os_sgl; 986 987 sge_count = scsi_dma_map(scp); 988 BUG_ON(sge_count < 0); 989 990 if (sge_count) { 991 scsi_for_each_sg(scp, os_sgl, sge_count, i) { 992 mfi_sgl->sge32[i].length = cpu_to_le32(sg_dma_len(os_sgl)); 993 mfi_sgl->sge32[i].phys_addr = cpu_to_le32(sg_dma_address(os_sgl)); 994 } 995 } 996 return sge_count; 997 } 998 999 /** 1000 * megasas_make_sgl64 - Prepares 64-bit SGL 1001 * @instance: Adapter soft state 1002 * @scp: SCSI command from the mid-layer 1003 * @mfi_sgl: SGL to be filled in 1004 * 1005 * If successful, this function returns the number of SG elements. Otherwise, 1006 * it returnes -1. 1007 */ 1008 static int 1009 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp, 1010 union megasas_sgl *mfi_sgl) 1011 { 1012 int i; 1013 int sge_count; 1014 struct scatterlist *os_sgl; 1015 1016 sge_count = scsi_dma_map(scp); 1017 BUG_ON(sge_count < 0); 1018 1019 if (sge_count) { 1020 scsi_for_each_sg(scp, os_sgl, sge_count, i) { 1021 mfi_sgl->sge64[i].length = cpu_to_le32(sg_dma_len(os_sgl)); 1022 mfi_sgl->sge64[i].phys_addr = cpu_to_le64(sg_dma_address(os_sgl)); 1023 } 1024 } 1025 return sge_count; 1026 } 1027 1028 /** 1029 * megasas_make_sgl_skinny - Prepares IEEE SGL 1030 * @instance: Adapter soft state 1031 * @scp: SCSI command from the mid-layer 1032 * @mfi_sgl: SGL to be filled in 1033 * 1034 * If successful, this function returns the number of SG elements. Otherwise, 1035 * it returnes -1. 1036 */ 1037 static int 1038 megasas_make_sgl_skinny(struct megasas_instance *instance, 1039 struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl) 1040 { 1041 int i; 1042 int sge_count; 1043 struct scatterlist *os_sgl; 1044 1045 sge_count = scsi_dma_map(scp); 1046 1047 if (sge_count) { 1048 scsi_for_each_sg(scp, os_sgl, sge_count, i) { 1049 mfi_sgl->sge_skinny[i].length = 1050 cpu_to_le32(sg_dma_len(os_sgl)); 1051 mfi_sgl->sge_skinny[i].phys_addr = 1052 cpu_to_le64(sg_dma_address(os_sgl)); 1053 mfi_sgl->sge_skinny[i].flag = cpu_to_le32(0); 1054 } 1055 } 1056 return sge_count; 1057 } 1058 1059 /** 1060 * megasas_get_frame_count - Computes the number of frames 1061 * @frame_type : type of frame- io or pthru frame 1062 * @sge_count : number of sg elements 1063 * 1064 * Returns the number of frames required for numnber of sge's (sge_count) 1065 */ 1066 1067 static u32 megasas_get_frame_count(struct megasas_instance *instance, 1068 u8 sge_count, u8 frame_type) 1069 { 1070 int num_cnt; 1071 int sge_bytes; 1072 u32 sge_sz; 1073 u32 frame_count=0; 1074 1075 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) : 1076 sizeof(struct megasas_sge32); 1077 1078 if (instance->flag_ieee) { 1079 sge_sz = sizeof(struct megasas_sge_skinny); 1080 } 1081 1082 /* 1083 * Main frame can contain 2 SGEs for 64-bit SGLs and 1084 * 3 SGEs for 32-bit SGLs for ldio & 1085 * 1 SGEs for 64-bit SGLs and 1086 * 2 SGEs for 32-bit SGLs for pthru frame 1087 */ 1088 if (unlikely(frame_type == PTHRU_FRAME)) { 1089 if (instance->flag_ieee == 1) { 1090 num_cnt = sge_count - 1; 1091 } else if (IS_DMA64) 1092 num_cnt = sge_count - 1; 1093 else 1094 num_cnt = sge_count - 2; 1095 } else { 1096 if (instance->flag_ieee == 1) { 1097 num_cnt = sge_count - 1; 1098 } else if (IS_DMA64) 1099 num_cnt = sge_count - 2; 1100 else 1101 num_cnt = sge_count - 3; 1102 } 1103 1104 if(num_cnt>0){ 1105 sge_bytes = sge_sz * num_cnt; 1106 1107 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) + 1108 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ; 1109 } 1110 /* Main frame */ 1111 frame_count +=1; 1112 1113 if (frame_count > 7) 1114 frame_count = 8; 1115 return frame_count; 1116 } 1117 1118 /** 1119 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command 1120 * @instance: Adapter soft state 1121 * @scp: SCSI command 1122 * @cmd: Command to be prepared in 1123 * 1124 * This function prepares CDB commands. These are typcially pass-through 1125 * commands to the devices. 1126 */ 1127 static int 1128 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp, 1129 struct megasas_cmd *cmd) 1130 { 1131 u32 is_logical; 1132 u32 device_id; 1133 u16 flags = 0; 1134 struct megasas_pthru_frame *pthru; 1135 1136 is_logical = MEGASAS_IS_LOGICAL(scp); 1137 device_id = MEGASAS_DEV_INDEX(instance, scp); 1138 pthru = (struct megasas_pthru_frame *)cmd->frame; 1139 1140 if (scp->sc_data_direction == PCI_DMA_TODEVICE) 1141 flags = MFI_FRAME_DIR_WRITE; 1142 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE) 1143 flags = MFI_FRAME_DIR_READ; 1144 else if (scp->sc_data_direction == PCI_DMA_NONE) 1145 flags = MFI_FRAME_DIR_NONE; 1146 1147 if (instance->flag_ieee == 1) { 1148 flags |= MFI_FRAME_IEEE; 1149 } 1150 1151 /* 1152 * Prepare the DCDB frame 1153 */ 1154 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO; 1155 pthru->cmd_status = 0x0; 1156 pthru->scsi_status = 0x0; 1157 pthru->target_id = device_id; 1158 pthru->lun = scp->device->lun; 1159 pthru->cdb_len = scp->cmd_len; 1160 pthru->timeout = 0; 1161 pthru->pad_0 = 0; 1162 pthru->flags = cpu_to_le16(flags); 1163 pthru->data_xfer_len = cpu_to_le32(scsi_bufflen(scp)); 1164 1165 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len); 1166 1167 /* 1168 * If the command is for the tape device, set the 1169 * pthru timeout to the os layer timeout value. 1170 */ 1171 if (scp->device->type == TYPE_TAPE) { 1172 if ((scp->request->timeout / HZ) > 0xFFFF) 1173 pthru->timeout = 0xFFFF; 1174 else 1175 pthru->timeout = cpu_to_le16(scp->request->timeout / HZ); 1176 } 1177 1178 /* 1179 * Construct SGL 1180 */ 1181 if (instance->flag_ieee == 1) { 1182 pthru->flags |= cpu_to_le16(MFI_FRAME_SGL64); 1183 pthru->sge_count = megasas_make_sgl_skinny(instance, scp, 1184 &pthru->sgl); 1185 } else if (IS_DMA64) { 1186 pthru->flags |= cpu_to_le16(MFI_FRAME_SGL64); 1187 pthru->sge_count = megasas_make_sgl64(instance, scp, 1188 &pthru->sgl); 1189 } else 1190 pthru->sge_count = megasas_make_sgl32(instance, scp, 1191 &pthru->sgl); 1192 1193 if (pthru->sge_count > instance->max_num_sge) { 1194 printk(KERN_ERR "megasas: DCDB two many SGE NUM=%x\n", 1195 pthru->sge_count); 1196 return 0; 1197 } 1198 1199 /* 1200 * Sense info specific 1201 */ 1202 pthru->sense_len = SCSI_SENSE_BUFFERSIZE; 1203 pthru->sense_buf_phys_addr_hi = 1204 cpu_to_le32(upper_32_bits(cmd->sense_phys_addr)); 1205 pthru->sense_buf_phys_addr_lo = 1206 cpu_to_le32(lower_32_bits(cmd->sense_phys_addr)); 1207 1208 /* 1209 * Compute the total number of frames this command consumes. FW uses 1210 * this number to pull sufficient number of frames from host memory. 1211 */ 1212 cmd->frame_count = megasas_get_frame_count(instance, pthru->sge_count, 1213 PTHRU_FRAME); 1214 1215 return cmd->frame_count; 1216 } 1217 1218 /** 1219 * megasas_build_ldio - Prepares IOs to logical devices 1220 * @instance: Adapter soft state 1221 * @scp: SCSI command 1222 * @cmd: Command to be prepared 1223 * 1224 * Frames (and accompanying SGLs) for regular SCSI IOs use this function. 1225 */ 1226 static int 1227 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp, 1228 struct megasas_cmd *cmd) 1229 { 1230 u32 device_id; 1231 u8 sc = scp->cmnd[0]; 1232 u16 flags = 0; 1233 struct megasas_io_frame *ldio; 1234 1235 device_id = MEGASAS_DEV_INDEX(instance, scp); 1236 ldio = (struct megasas_io_frame *)cmd->frame; 1237 1238 if (scp->sc_data_direction == PCI_DMA_TODEVICE) 1239 flags = MFI_FRAME_DIR_WRITE; 1240 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE) 1241 flags = MFI_FRAME_DIR_READ; 1242 1243 if (instance->flag_ieee == 1) { 1244 flags |= MFI_FRAME_IEEE; 1245 } 1246 1247 /* 1248 * Prepare the Logical IO frame: 2nd bit is zero for all read cmds 1249 */ 1250 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ; 1251 ldio->cmd_status = 0x0; 1252 ldio->scsi_status = 0x0; 1253 ldio->target_id = device_id; 1254 ldio->timeout = 0; 1255 ldio->reserved_0 = 0; 1256 ldio->pad_0 = 0; 1257 ldio->flags = cpu_to_le16(flags); 1258 ldio->start_lba_hi = 0; 1259 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0; 1260 1261 /* 1262 * 6-byte READ(0x08) or WRITE(0x0A) cdb 1263 */ 1264 if (scp->cmd_len == 6) { 1265 ldio->lba_count = cpu_to_le32((u32) scp->cmnd[4]); 1266 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[1] << 16) | 1267 ((u32) scp->cmnd[2] << 8) | 1268 (u32) scp->cmnd[3]); 1269 1270 ldio->start_lba_lo &= cpu_to_le32(0x1FFFFF); 1271 } 1272 1273 /* 1274 * 10-byte READ(0x28) or WRITE(0x2A) cdb 1275 */ 1276 else if (scp->cmd_len == 10) { 1277 ldio->lba_count = cpu_to_le32((u32) scp->cmnd[8] | 1278 ((u32) scp->cmnd[7] << 8)); 1279 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[2] << 24) | 1280 ((u32) scp->cmnd[3] << 16) | 1281 ((u32) scp->cmnd[4] << 8) | 1282 (u32) scp->cmnd[5]); 1283 } 1284 1285 /* 1286 * 12-byte READ(0xA8) or WRITE(0xAA) cdb 1287 */ 1288 else if (scp->cmd_len == 12) { 1289 ldio->lba_count = cpu_to_le32(((u32) scp->cmnd[6] << 24) | 1290 ((u32) scp->cmnd[7] << 16) | 1291 ((u32) scp->cmnd[8] << 8) | 1292 (u32) scp->cmnd[9]); 1293 1294 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[2] << 24) | 1295 ((u32) scp->cmnd[3] << 16) | 1296 ((u32) scp->cmnd[4] << 8) | 1297 (u32) scp->cmnd[5]); 1298 } 1299 1300 /* 1301 * 16-byte READ(0x88) or WRITE(0x8A) cdb 1302 */ 1303 else if (scp->cmd_len == 16) { 1304 ldio->lba_count = cpu_to_le32(((u32) scp->cmnd[10] << 24) | 1305 ((u32) scp->cmnd[11] << 16) | 1306 ((u32) scp->cmnd[12] << 8) | 1307 (u32) scp->cmnd[13]); 1308 1309 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[6] << 24) | 1310 ((u32) scp->cmnd[7] << 16) | 1311 ((u32) scp->cmnd[8] << 8) | 1312 (u32) scp->cmnd[9]); 1313 1314 ldio->start_lba_hi = cpu_to_le32(((u32) scp->cmnd[2] << 24) | 1315 ((u32) scp->cmnd[3] << 16) | 1316 ((u32) scp->cmnd[4] << 8) | 1317 (u32) scp->cmnd[5]); 1318 1319 } 1320 1321 /* 1322 * Construct SGL 1323 */ 1324 if (instance->flag_ieee) { 1325 ldio->flags |= cpu_to_le16(MFI_FRAME_SGL64); 1326 ldio->sge_count = megasas_make_sgl_skinny(instance, scp, 1327 &ldio->sgl); 1328 } else if (IS_DMA64) { 1329 ldio->flags |= cpu_to_le16(MFI_FRAME_SGL64); 1330 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl); 1331 } else 1332 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl); 1333 1334 if (ldio->sge_count > instance->max_num_sge) { 1335 printk(KERN_ERR "megasas: build_ld_io: sge_count = %x\n", 1336 ldio->sge_count); 1337 return 0; 1338 } 1339 1340 /* 1341 * Sense info specific 1342 */ 1343 ldio->sense_len = SCSI_SENSE_BUFFERSIZE; 1344 ldio->sense_buf_phys_addr_hi = 0; 1345 ldio->sense_buf_phys_addr_lo = cpu_to_le32(cmd->sense_phys_addr); 1346 1347 /* 1348 * Compute the total number of frames this command consumes. FW uses 1349 * this number to pull sufficient number of frames from host memory. 1350 */ 1351 cmd->frame_count = megasas_get_frame_count(instance, 1352 ldio->sge_count, IO_FRAME); 1353 1354 return cmd->frame_count; 1355 } 1356 1357 /** 1358 * megasas_is_ldio - Checks if the cmd is for logical drive 1359 * @scmd: SCSI command 1360 * 1361 * Called by megasas_queue_command to find out if the command to be queued 1362 * is a logical drive command 1363 */ 1364 inline int megasas_is_ldio(struct scsi_cmnd *cmd) 1365 { 1366 if (!MEGASAS_IS_LOGICAL(cmd)) 1367 return 0; 1368 switch (cmd->cmnd[0]) { 1369 case READ_10: 1370 case WRITE_10: 1371 case READ_12: 1372 case WRITE_12: 1373 case READ_6: 1374 case WRITE_6: 1375 case READ_16: 1376 case WRITE_16: 1377 return 1; 1378 default: 1379 return 0; 1380 } 1381 } 1382 1383 /** 1384 * megasas_dump_pending_frames - Dumps the frame address of all pending cmds 1385 * in FW 1386 * @instance: Adapter soft state 1387 */ 1388 static inline void 1389 megasas_dump_pending_frames(struct megasas_instance *instance) 1390 { 1391 struct megasas_cmd *cmd; 1392 int i,n; 1393 union megasas_sgl *mfi_sgl; 1394 struct megasas_io_frame *ldio; 1395 struct megasas_pthru_frame *pthru; 1396 u32 sgcount; 1397 u32 max_cmd = instance->max_fw_cmds; 1398 1399 printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no); 1400 printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding)); 1401 if (IS_DMA64) 1402 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no); 1403 else 1404 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no); 1405 1406 printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no); 1407 for (i = 0; i < max_cmd; i++) { 1408 cmd = instance->cmd_list[i]; 1409 if(!cmd->scmd) 1410 continue; 1411 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr); 1412 if (megasas_is_ldio(cmd->scmd)){ 1413 ldio = (struct megasas_io_frame *)cmd->frame; 1414 mfi_sgl = &ldio->sgl; 1415 sgcount = ldio->sge_count; 1416 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x," 1417 " lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n", 1418 instance->host->host_no, cmd->frame_count, ldio->cmd, ldio->target_id, 1419 le32_to_cpu(ldio->start_lba_lo), le32_to_cpu(ldio->start_lba_hi), 1420 le32_to_cpu(ldio->sense_buf_phys_addr_lo), sgcount); 1421 } 1422 else { 1423 pthru = (struct megasas_pthru_frame *) cmd->frame; 1424 mfi_sgl = &pthru->sgl; 1425 sgcount = pthru->sge_count; 1426 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, " 1427 "lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n", 1428 instance->host->host_no, cmd->frame_count, pthru->cmd, pthru->target_id, 1429 pthru->lun, pthru->cdb_len, le32_to_cpu(pthru->data_xfer_len), 1430 le32_to_cpu(pthru->sense_buf_phys_addr_lo), sgcount); 1431 } 1432 if(megasas_dbg_lvl & MEGASAS_DBG_LVL){ 1433 for (n = 0; n < sgcount; n++){ 1434 if (IS_DMA64) 1435 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%llx ", 1436 le32_to_cpu(mfi_sgl->sge64[n].length), 1437 le64_to_cpu(mfi_sgl->sge64[n].phys_addr)); 1438 else 1439 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ", 1440 le32_to_cpu(mfi_sgl->sge32[n].length), 1441 le32_to_cpu(mfi_sgl->sge32[n].phys_addr)); 1442 } 1443 } 1444 printk(KERN_ERR "\n"); 1445 } /*for max_cmd*/ 1446 printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no); 1447 for (i = 0; i < max_cmd; i++) { 1448 1449 cmd = instance->cmd_list[i]; 1450 1451 if(cmd->sync_cmd == 1){ 1452 printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr); 1453 } 1454 } 1455 printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no); 1456 } 1457 1458 u32 1459 megasas_build_and_issue_cmd(struct megasas_instance *instance, 1460 struct scsi_cmnd *scmd) 1461 { 1462 struct megasas_cmd *cmd; 1463 u32 frame_count; 1464 1465 cmd = megasas_get_cmd(instance); 1466 if (!cmd) 1467 return SCSI_MLQUEUE_HOST_BUSY; 1468 1469 /* 1470 * Logical drive command 1471 */ 1472 if (megasas_is_ldio(scmd)) 1473 frame_count = megasas_build_ldio(instance, scmd, cmd); 1474 else 1475 frame_count = megasas_build_dcdb(instance, scmd, cmd); 1476 1477 if (!frame_count) 1478 goto out_return_cmd; 1479 1480 cmd->scmd = scmd; 1481 scmd->SCp.ptr = (char *)cmd; 1482 1483 /* 1484 * Issue the command to the FW 1485 */ 1486 atomic_inc(&instance->fw_outstanding); 1487 1488 instance->instancet->fire_cmd(instance, cmd->frame_phys_addr, 1489 cmd->frame_count-1, instance->reg_set); 1490 1491 return 0; 1492 out_return_cmd: 1493 megasas_return_cmd(instance, cmd); 1494 return 1; 1495 } 1496 1497 1498 /** 1499 * megasas_queue_command - Queue entry point 1500 * @scmd: SCSI command to be queued 1501 * @done: Callback entry point 1502 */ 1503 static int 1504 megasas_queue_command_lck(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *)) 1505 { 1506 struct megasas_instance *instance; 1507 unsigned long flags; 1508 1509 instance = (struct megasas_instance *) 1510 scmd->device->host->hostdata; 1511 1512 if (instance->issuepend_done == 0) 1513 return SCSI_MLQUEUE_HOST_BUSY; 1514 1515 spin_lock_irqsave(&instance->hba_lock, flags); 1516 1517 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { 1518 spin_unlock_irqrestore(&instance->hba_lock, flags); 1519 scmd->result = DID_ERROR << 16; 1520 done(scmd); 1521 return 0; 1522 } 1523 1524 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { 1525 spin_unlock_irqrestore(&instance->hba_lock, flags); 1526 return SCSI_MLQUEUE_HOST_BUSY; 1527 } 1528 1529 spin_unlock_irqrestore(&instance->hba_lock, flags); 1530 1531 scmd->scsi_done = done; 1532 scmd->result = 0; 1533 1534 if (MEGASAS_IS_LOGICAL(scmd) && 1535 (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) { 1536 scmd->result = DID_BAD_TARGET << 16; 1537 goto out_done; 1538 } 1539 1540 switch (scmd->cmnd[0]) { 1541 case SYNCHRONIZE_CACHE: 1542 /* 1543 * FW takes care of flush cache on its own 1544 * No need to send it down 1545 */ 1546 scmd->result = DID_OK << 16; 1547 goto out_done; 1548 default: 1549 break; 1550 } 1551 1552 if (instance->instancet->build_and_issue_cmd(instance, scmd)) { 1553 printk(KERN_ERR "megasas: Err returned from build_and_issue_cmd\n"); 1554 return SCSI_MLQUEUE_HOST_BUSY; 1555 } 1556 1557 return 0; 1558 1559 out_done: 1560 done(scmd); 1561 return 0; 1562 } 1563 1564 static DEF_SCSI_QCMD(megasas_queue_command) 1565 1566 static struct megasas_instance *megasas_lookup_instance(u16 host_no) 1567 { 1568 int i; 1569 1570 for (i = 0; i < megasas_mgmt_info.max_index; i++) { 1571 1572 if ((megasas_mgmt_info.instance[i]) && 1573 (megasas_mgmt_info.instance[i]->host->host_no == host_no)) 1574 return megasas_mgmt_info.instance[i]; 1575 } 1576 1577 return NULL; 1578 } 1579 1580 static int megasas_slave_configure(struct scsi_device *sdev) 1581 { 1582 u16 pd_index = 0; 1583 struct megasas_instance *instance ; 1584 1585 instance = megasas_lookup_instance(sdev->host->host_no); 1586 1587 /* 1588 * Don't export physical disk devices to the disk driver. 1589 * 1590 * FIXME: Currently we don't export them to the midlayer at all. 1591 * That will be fixed once LSI engineers have audited the 1592 * firmware for possible issues. 1593 */ 1594 if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && 1595 sdev->type == TYPE_DISK) { 1596 pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) + 1597 sdev->id; 1598 if (instance->pd_list[pd_index].driveState == 1599 MR_PD_STATE_SYSTEM) { 1600 blk_queue_rq_timeout(sdev->request_queue, 1601 MEGASAS_DEFAULT_CMD_TIMEOUT * HZ); 1602 return 0; 1603 } 1604 return -ENXIO; 1605 } 1606 1607 /* 1608 * The RAID firmware may require extended timeouts. 1609 */ 1610 blk_queue_rq_timeout(sdev->request_queue, 1611 MEGASAS_DEFAULT_CMD_TIMEOUT * HZ); 1612 return 0; 1613 } 1614 1615 static int megasas_slave_alloc(struct scsi_device *sdev) 1616 { 1617 u16 pd_index = 0; 1618 struct megasas_instance *instance ; 1619 instance = megasas_lookup_instance(sdev->host->host_no); 1620 if ((sdev->channel < MEGASAS_MAX_PD_CHANNELS) && 1621 (sdev->type == TYPE_DISK)) { 1622 /* 1623 * Open the OS scan to the SYSTEM PD 1624 */ 1625 pd_index = 1626 (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) + 1627 sdev->id; 1628 if ((instance->pd_list[pd_index].driveState == 1629 MR_PD_STATE_SYSTEM) && 1630 (instance->pd_list[pd_index].driveType == 1631 TYPE_DISK)) { 1632 return 0; 1633 } 1634 return -ENXIO; 1635 } 1636 return 0; 1637 } 1638 1639 void megaraid_sas_kill_hba(struct megasas_instance *instance) 1640 { 1641 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 1642 (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) || 1643 (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 1644 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 1645 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { 1646 writel(MFI_STOP_ADP, &instance->reg_set->doorbell); 1647 } else { 1648 writel(MFI_STOP_ADP, &instance->reg_set->inbound_doorbell); 1649 } 1650 } 1651 1652 /** 1653 * megasas_check_and_restore_queue_depth - Check if queue depth needs to be 1654 * restored to max value 1655 * @instance: Adapter soft state 1656 * 1657 */ 1658 void 1659 megasas_check_and_restore_queue_depth(struct megasas_instance *instance) 1660 { 1661 unsigned long flags; 1662 if (instance->flag & MEGASAS_FW_BUSY 1663 && time_after(jiffies, instance->last_time + 5 * HZ) 1664 && atomic_read(&instance->fw_outstanding) < 1665 instance->throttlequeuedepth + 1) { 1666 1667 spin_lock_irqsave(instance->host->host_lock, flags); 1668 instance->flag &= ~MEGASAS_FW_BUSY; 1669 if (instance->is_imr) { 1670 instance->host->can_queue = 1671 instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS; 1672 } else 1673 instance->host->can_queue = 1674 instance->max_fw_cmds - MEGASAS_INT_CMDS; 1675 1676 spin_unlock_irqrestore(instance->host->host_lock, flags); 1677 } 1678 } 1679 1680 /** 1681 * megasas_complete_cmd_dpc - Returns FW's controller structure 1682 * @instance_addr: Address of adapter soft state 1683 * 1684 * Tasklet to complete cmds 1685 */ 1686 static void megasas_complete_cmd_dpc(unsigned long instance_addr) 1687 { 1688 u32 producer; 1689 u32 consumer; 1690 u32 context; 1691 struct megasas_cmd *cmd; 1692 struct megasas_instance *instance = 1693 (struct megasas_instance *)instance_addr; 1694 unsigned long flags; 1695 1696 /* If we have already declared adapter dead, donot complete cmds */ 1697 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR ) 1698 return; 1699 1700 spin_lock_irqsave(&instance->completion_lock, flags); 1701 1702 producer = le32_to_cpu(*instance->producer); 1703 consumer = le32_to_cpu(*instance->consumer); 1704 1705 while (consumer != producer) { 1706 context = le32_to_cpu(instance->reply_queue[consumer]); 1707 if (context >= instance->max_fw_cmds) { 1708 printk(KERN_ERR "Unexpected context value %x\n", 1709 context); 1710 BUG(); 1711 } 1712 1713 cmd = instance->cmd_list[context]; 1714 1715 megasas_complete_cmd(instance, cmd, DID_OK); 1716 1717 consumer++; 1718 if (consumer == (instance->max_fw_cmds + 1)) { 1719 consumer = 0; 1720 } 1721 } 1722 1723 *instance->consumer = cpu_to_le32(producer); 1724 1725 spin_unlock_irqrestore(&instance->completion_lock, flags); 1726 1727 /* 1728 * Check if we can restore can_queue 1729 */ 1730 megasas_check_and_restore_queue_depth(instance); 1731 } 1732 1733 static void 1734 megasas_internal_reset_defer_cmds(struct megasas_instance *instance); 1735 1736 static void 1737 process_fw_state_change_wq(struct work_struct *work); 1738 1739 void megasas_do_ocr(struct megasas_instance *instance) 1740 { 1741 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) || 1742 (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) || 1743 (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)) { 1744 *instance->consumer = cpu_to_le32(MEGASAS_ADPRESET_INPROG_SIGN); 1745 } 1746 instance->instancet->disable_intr(instance); 1747 instance->adprecovery = MEGASAS_ADPRESET_SM_INFAULT; 1748 instance->issuepend_done = 0; 1749 1750 atomic_set(&instance->fw_outstanding, 0); 1751 megasas_internal_reset_defer_cmds(instance); 1752 process_fw_state_change_wq(&instance->work_init); 1753 } 1754 1755 /** 1756 * megasas_wait_for_outstanding - Wait for all outstanding cmds 1757 * @instance: Adapter soft state 1758 * 1759 * This function waits for up to MEGASAS_RESET_WAIT_TIME seconds for FW to 1760 * complete all its outstanding commands. Returns error if one or more IOs 1761 * are pending after this time period. It also marks the controller dead. 1762 */ 1763 static int megasas_wait_for_outstanding(struct megasas_instance *instance) 1764 { 1765 int i; 1766 u32 reset_index; 1767 u32 wait_time = MEGASAS_RESET_WAIT_TIME; 1768 u8 adprecovery; 1769 unsigned long flags; 1770 struct list_head clist_local; 1771 struct megasas_cmd *reset_cmd; 1772 u32 fw_state; 1773 u8 kill_adapter_flag; 1774 1775 spin_lock_irqsave(&instance->hba_lock, flags); 1776 adprecovery = instance->adprecovery; 1777 spin_unlock_irqrestore(&instance->hba_lock, flags); 1778 1779 if (adprecovery != MEGASAS_HBA_OPERATIONAL) { 1780 1781 INIT_LIST_HEAD(&clist_local); 1782 spin_lock_irqsave(&instance->hba_lock, flags); 1783 list_splice_init(&instance->internal_reset_pending_q, 1784 &clist_local); 1785 spin_unlock_irqrestore(&instance->hba_lock, flags); 1786 1787 printk(KERN_NOTICE "megasas: HBA reset wait ...\n"); 1788 for (i = 0; i < wait_time; i++) { 1789 msleep(1000); 1790 spin_lock_irqsave(&instance->hba_lock, flags); 1791 adprecovery = instance->adprecovery; 1792 spin_unlock_irqrestore(&instance->hba_lock, flags); 1793 if (adprecovery == MEGASAS_HBA_OPERATIONAL) 1794 break; 1795 } 1796 1797 if (adprecovery != MEGASAS_HBA_OPERATIONAL) { 1798 printk(KERN_NOTICE "megasas: reset: Stopping HBA.\n"); 1799 spin_lock_irqsave(&instance->hba_lock, flags); 1800 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; 1801 spin_unlock_irqrestore(&instance->hba_lock, flags); 1802 return FAILED; 1803 } 1804 1805 reset_index = 0; 1806 while (!list_empty(&clist_local)) { 1807 reset_cmd = list_entry((&clist_local)->next, 1808 struct megasas_cmd, list); 1809 list_del_init(&reset_cmd->list); 1810 if (reset_cmd->scmd) { 1811 reset_cmd->scmd->result = DID_RESET << 16; 1812 printk(KERN_NOTICE "%d:%p reset [%02x]\n", 1813 reset_index, reset_cmd, 1814 reset_cmd->scmd->cmnd[0]); 1815 1816 reset_cmd->scmd->scsi_done(reset_cmd->scmd); 1817 megasas_return_cmd(instance, reset_cmd); 1818 } else if (reset_cmd->sync_cmd) { 1819 printk(KERN_NOTICE "megasas:%p synch cmds" 1820 "reset queue\n", 1821 reset_cmd); 1822 1823 reset_cmd->cmd_status = ENODATA; 1824 instance->instancet->fire_cmd(instance, 1825 reset_cmd->frame_phys_addr, 1826 0, instance->reg_set); 1827 } else { 1828 printk(KERN_NOTICE "megasas: %p unexpected" 1829 "cmds lst\n", 1830 reset_cmd); 1831 } 1832 reset_index++; 1833 } 1834 1835 return SUCCESS; 1836 } 1837 1838 for (i = 0; i < resetwaittime; i++) { 1839 1840 int outstanding = atomic_read(&instance->fw_outstanding); 1841 1842 if (!outstanding) 1843 break; 1844 1845 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { 1846 printk(KERN_NOTICE "megasas: [%2d]waiting for %d " 1847 "commands to complete\n",i,outstanding); 1848 /* 1849 * Call cmd completion routine. Cmd to be 1850 * be completed directly without depending on isr. 1851 */ 1852 megasas_complete_cmd_dpc((unsigned long)instance); 1853 } 1854 1855 msleep(1000); 1856 } 1857 1858 i = 0; 1859 kill_adapter_flag = 0; 1860 do { 1861 fw_state = instance->instancet->read_fw_status_reg( 1862 instance->reg_set) & MFI_STATE_MASK; 1863 if ((fw_state == MFI_STATE_FAULT) && 1864 (instance->disableOnlineCtrlReset == 0)) { 1865 if (i == 3) { 1866 kill_adapter_flag = 2; 1867 break; 1868 } 1869 megasas_do_ocr(instance); 1870 kill_adapter_flag = 1; 1871 1872 /* wait for 1 secs to let FW finish the pending cmds */ 1873 msleep(1000); 1874 } 1875 i++; 1876 } while (i <= 3); 1877 1878 if (atomic_read(&instance->fw_outstanding) && 1879 !kill_adapter_flag) { 1880 if (instance->disableOnlineCtrlReset == 0) { 1881 1882 megasas_do_ocr(instance); 1883 1884 /* wait for 5 secs to let FW finish the pending cmds */ 1885 for (i = 0; i < wait_time; i++) { 1886 int outstanding = 1887 atomic_read(&instance->fw_outstanding); 1888 if (!outstanding) 1889 return SUCCESS; 1890 msleep(1000); 1891 } 1892 } 1893 } 1894 1895 if (atomic_read(&instance->fw_outstanding) || 1896 (kill_adapter_flag == 2)) { 1897 printk(KERN_NOTICE "megaraid_sas: pending cmds after reset\n"); 1898 /* 1899 * Send signal to FW to stop processing any pending cmds. 1900 * The controller will be taken offline by the OS now. 1901 */ 1902 if ((instance->pdev->device == 1903 PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 1904 (instance->pdev->device == 1905 PCI_DEVICE_ID_LSI_SAS0071SKINNY)) { 1906 writel(MFI_STOP_ADP, 1907 &instance->reg_set->doorbell); 1908 } else { 1909 writel(MFI_STOP_ADP, 1910 &instance->reg_set->inbound_doorbell); 1911 } 1912 megasas_dump_pending_frames(instance); 1913 spin_lock_irqsave(&instance->hba_lock, flags); 1914 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; 1915 spin_unlock_irqrestore(&instance->hba_lock, flags); 1916 return FAILED; 1917 } 1918 1919 printk(KERN_NOTICE "megaraid_sas: no pending cmds after reset\n"); 1920 1921 return SUCCESS; 1922 } 1923 1924 /** 1925 * megasas_generic_reset - Generic reset routine 1926 * @scmd: Mid-layer SCSI command 1927 * 1928 * This routine implements a generic reset handler for device, bus and host 1929 * reset requests. Device, bus and host specific reset handlers can use this 1930 * function after they do their specific tasks. 1931 */ 1932 static int megasas_generic_reset(struct scsi_cmnd *scmd) 1933 { 1934 int ret_val; 1935 struct megasas_instance *instance; 1936 1937 instance = (struct megasas_instance *)scmd->device->host->hostdata; 1938 1939 scmd_printk(KERN_NOTICE, scmd, "megasas: RESET cmd=%x retries=%x\n", 1940 scmd->cmnd[0], scmd->retries); 1941 1942 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { 1943 printk(KERN_ERR "megasas: cannot recover from previous reset " 1944 "failures\n"); 1945 return FAILED; 1946 } 1947 1948 ret_val = megasas_wait_for_outstanding(instance); 1949 if (ret_val == SUCCESS) 1950 printk(KERN_NOTICE "megasas: reset successful \n"); 1951 else 1952 printk(KERN_ERR "megasas: failed to do reset\n"); 1953 1954 return ret_val; 1955 } 1956 1957 /** 1958 * megasas_reset_timer - quiesce the adapter if required 1959 * @scmd: scsi cmnd 1960 * 1961 * Sets the FW busy flag and reduces the host->can_queue if the 1962 * cmd has not been completed within the timeout period. 1963 */ 1964 static enum 1965 blk_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd) 1966 { 1967 struct megasas_instance *instance; 1968 unsigned long flags; 1969 1970 if (time_after(jiffies, scmd->jiffies_at_alloc + 1971 (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) { 1972 return BLK_EH_NOT_HANDLED; 1973 } 1974 1975 instance = (struct megasas_instance *)scmd->device->host->hostdata; 1976 if (!(instance->flag & MEGASAS_FW_BUSY)) { 1977 /* FW is busy, throttle IO */ 1978 spin_lock_irqsave(instance->host->host_lock, flags); 1979 1980 instance->host->can_queue = instance->throttlequeuedepth; 1981 instance->last_time = jiffies; 1982 instance->flag |= MEGASAS_FW_BUSY; 1983 1984 spin_unlock_irqrestore(instance->host->host_lock, flags); 1985 } 1986 return BLK_EH_RESET_TIMER; 1987 } 1988 1989 /** 1990 * megasas_reset_device - Device reset handler entry point 1991 */ 1992 static int megasas_reset_device(struct scsi_cmnd *scmd) 1993 { 1994 int ret; 1995 1996 /* 1997 * First wait for all commands to complete 1998 */ 1999 ret = megasas_generic_reset(scmd); 2000 2001 return ret; 2002 } 2003 2004 /** 2005 * megasas_reset_bus_host - Bus & host reset handler entry point 2006 */ 2007 static int megasas_reset_bus_host(struct scsi_cmnd *scmd) 2008 { 2009 int ret; 2010 struct megasas_instance *instance; 2011 instance = (struct megasas_instance *)scmd->device->host->hostdata; 2012 2013 /* 2014 * First wait for all commands to complete 2015 */ 2016 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 2017 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 2018 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) 2019 ret = megasas_reset_fusion(scmd->device->host); 2020 else 2021 ret = megasas_generic_reset(scmd); 2022 2023 return ret; 2024 } 2025 2026 /** 2027 * megasas_bios_param - Returns disk geometry for a disk 2028 * @sdev: device handle 2029 * @bdev: block device 2030 * @capacity: drive capacity 2031 * @geom: geometry parameters 2032 */ 2033 static int 2034 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev, 2035 sector_t capacity, int geom[]) 2036 { 2037 int heads; 2038 int sectors; 2039 sector_t cylinders; 2040 unsigned long tmp; 2041 /* Default heads (64) & sectors (32) */ 2042 heads = 64; 2043 sectors = 32; 2044 2045 tmp = heads * sectors; 2046 cylinders = capacity; 2047 2048 sector_div(cylinders, tmp); 2049 2050 /* 2051 * Handle extended translation size for logical drives > 1Gb 2052 */ 2053 2054 if (capacity >= 0x200000) { 2055 heads = 255; 2056 sectors = 63; 2057 tmp = heads*sectors; 2058 cylinders = capacity; 2059 sector_div(cylinders, tmp); 2060 } 2061 2062 geom[0] = heads; 2063 geom[1] = sectors; 2064 geom[2] = cylinders; 2065 2066 return 0; 2067 } 2068 2069 static void megasas_aen_polling(struct work_struct *work); 2070 2071 /** 2072 * megasas_service_aen - Processes an event notification 2073 * @instance: Adapter soft state 2074 * @cmd: AEN command completed by the ISR 2075 * 2076 * For AEN, driver sends a command down to FW that is held by the FW till an 2077 * event occurs. When an event of interest occurs, FW completes the command 2078 * that it was previously holding. 2079 * 2080 * This routines sends SIGIO signal to processes that have registered with the 2081 * driver for AEN. 2082 */ 2083 static void 2084 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd) 2085 { 2086 unsigned long flags; 2087 /* 2088 * Don't signal app if it is just an aborted previously registered aen 2089 */ 2090 if ((!cmd->abort_aen) && (instance->unload == 0)) { 2091 spin_lock_irqsave(&poll_aen_lock, flags); 2092 megasas_poll_wait_aen = 1; 2093 spin_unlock_irqrestore(&poll_aen_lock, flags); 2094 wake_up(&megasas_poll_wait); 2095 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN); 2096 } 2097 else 2098 cmd->abort_aen = 0; 2099 2100 instance->aen_cmd = NULL; 2101 megasas_return_cmd(instance, cmd); 2102 2103 if ((instance->unload == 0) && 2104 ((instance->issuepend_done == 1))) { 2105 struct megasas_aen_event *ev; 2106 ev = kzalloc(sizeof(*ev), GFP_ATOMIC); 2107 if (!ev) { 2108 printk(KERN_ERR "megasas_service_aen: out of memory\n"); 2109 } else { 2110 ev->instance = instance; 2111 instance->ev = ev; 2112 INIT_DELAYED_WORK(&ev->hotplug_work, 2113 megasas_aen_polling); 2114 schedule_delayed_work(&ev->hotplug_work, 0); 2115 } 2116 } 2117 } 2118 2119 static int megasas_change_queue_depth(struct scsi_device *sdev, 2120 int queue_depth, int reason) 2121 { 2122 if (reason != SCSI_QDEPTH_DEFAULT) 2123 return -EOPNOTSUPP; 2124 2125 if (queue_depth > sdev->host->can_queue) 2126 queue_depth = sdev->host->can_queue; 2127 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), 2128 queue_depth); 2129 2130 return queue_depth; 2131 } 2132 2133 /* 2134 * Scsi host template for megaraid_sas driver 2135 */ 2136 static struct scsi_host_template megasas_template = { 2137 2138 .module = THIS_MODULE, 2139 .name = "LSI SAS based MegaRAID driver", 2140 .proc_name = "megaraid_sas", 2141 .slave_configure = megasas_slave_configure, 2142 .slave_alloc = megasas_slave_alloc, 2143 .queuecommand = megasas_queue_command, 2144 .eh_device_reset_handler = megasas_reset_device, 2145 .eh_bus_reset_handler = megasas_reset_bus_host, 2146 .eh_host_reset_handler = megasas_reset_bus_host, 2147 .eh_timed_out = megasas_reset_timer, 2148 .bios_param = megasas_bios_param, 2149 .use_clustering = ENABLE_CLUSTERING, 2150 .change_queue_depth = megasas_change_queue_depth, 2151 .no_write_same = 1, 2152 }; 2153 2154 /** 2155 * megasas_complete_int_cmd - Completes an internal command 2156 * @instance: Adapter soft state 2157 * @cmd: Command to be completed 2158 * 2159 * The megasas_issue_blocked_cmd() function waits for a command to complete 2160 * after it issues a command. This function wakes up that waiting routine by 2161 * calling wake_up() on the wait queue. 2162 */ 2163 static void 2164 megasas_complete_int_cmd(struct megasas_instance *instance, 2165 struct megasas_cmd *cmd) 2166 { 2167 cmd->cmd_status = cmd->frame->io.cmd_status; 2168 2169 if (cmd->cmd_status == ENODATA) { 2170 cmd->cmd_status = 0; 2171 } 2172 wake_up(&instance->int_cmd_wait_q); 2173 } 2174 2175 /** 2176 * megasas_complete_abort - Completes aborting a command 2177 * @instance: Adapter soft state 2178 * @cmd: Cmd that was issued to abort another cmd 2179 * 2180 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q 2181 * after it issues an abort on a previously issued command. This function 2182 * wakes up all functions waiting on the same wait queue. 2183 */ 2184 static void 2185 megasas_complete_abort(struct megasas_instance *instance, 2186 struct megasas_cmd *cmd) 2187 { 2188 if (cmd->sync_cmd) { 2189 cmd->sync_cmd = 0; 2190 cmd->cmd_status = 0; 2191 wake_up(&instance->abort_cmd_wait_q); 2192 } 2193 2194 return; 2195 } 2196 2197 /** 2198 * megasas_complete_cmd - Completes a command 2199 * @instance: Adapter soft state 2200 * @cmd: Command to be completed 2201 * @alt_status: If non-zero, use this value as status to 2202 * SCSI mid-layer instead of the value returned 2203 * by the FW. This should be used if caller wants 2204 * an alternate status (as in the case of aborted 2205 * commands) 2206 */ 2207 void 2208 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd, 2209 u8 alt_status) 2210 { 2211 int exception = 0; 2212 struct megasas_header *hdr = &cmd->frame->hdr; 2213 unsigned long flags; 2214 struct fusion_context *fusion = instance->ctrl_context; 2215 u32 opcode; 2216 2217 /* flag for the retry reset */ 2218 cmd->retry_for_fw_reset = 0; 2219 2220 if (cmd->scmd) 2221 cmd->scmd->SCp.ptr = NULL; 2222 2223 switch (hdr->cmd) { 2224 case MFI_CMD_INVALID: 2225 /* Some older 1068 controller FW may keep a pended 2226 MR_DCMD_CTRL_EVENT_GET_INFO left over from the main kernel 2227 when booting the kdump kernel. Ignore this command to 2228 prevent a kernel panic on shutdown of the kdump kernel. */ 2229 printk(KERN_WARNING "megaraid_sas: MFI_CMD_INVALID command " 2230 "completed.\n"); 2231 printk(KERN_WARNING "megaraid_sas: If you have a controller " 2232 "other than PERC5, please upgrade your firmware.\n"); 2233 break; 2234 case MFI_CMD_PD_SCSI_IO: 2235 case MFI_CMD_LD_SCSI_IO: 2236 2237 /* 2238 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been 2239 * issued either through an IO path or an IOCTL path. If it 2240 * was via IOCTL, we will send it to internal completion. 2241 */ 2242 if (cmd->sync_cmd) { 2243 cmd->sync_cmd = 0; 2244 megasas_complete_int_cmd(instance, cmd); 2245 break; 2246 } 2247 2248 case MFI_CMD_LD_READ: 2249 case MFI_CMD_LD_WRITE: 2250 2251 if (alt_status) { 2252 cmd->scmd->result = alt_status << 16; 2253 exception = 1; 2254 } 2255 2256 if (exception) { 2257 2258 atomic_dec(&instance->fw_outstanding); 2259 2260 scsi_dma_unmap(cmd->scmd); 2261 cmd->scmd->scsi_done(cmd->scmd); 2262 megasas_return_cmd(instance, cmd); 2263 2264 break; 2265 } 2266 2267 switch (hdr->cmd_status) { 2268 2269 case MFI_STAT_OK: 2270 cmd->scmd->result = DID_OK << 16; 2271 break; 2272 2273 case MFI_STAT_SCSI_IO_FAILED: 2274 case MFI_STAT_LD_INIT_IN_PROGRESS: 2275 cmd->scmd->result = 2276 (DID_ERROR << 16) | hdr->scsi_status; 2277 break; 2278 2279 case MFI_STAT_SCSI_DONE_WITH_ERROR: 2280 2281 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status; 2282 2283 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) { 2284 memset(cmd->scmd->sense_buffer, 0, 2285 SCSI_SENSE_BUFFERSIZE); 2286 memcpy(cmd->scmd->sense_buffer, cmd->sense, 2287 hdr->sense_len); 2288 2289 cmd->scmd->result |= DRIVER_SENSE << 24; 2290 } 2291 2292 break; 2293 2294 case MFI_STAT_LD_OFFLINE: 2295 case MFI_STAT_DEVICE_NOT_FOUND: 2296 cmd->scmd->result = DID_BAD_TARGET << 16; 2297 break; 2298 2299 default: 2300 printk(KERN_DEBUG "megasas: MFI FW status %#x\n", 2301 hdr->cmd_status); 2302 cmd->scmd->result = DID_ERROR << 16; 2303 break; 2304 } 2305 2306 atomic_dec(&instance->fw_outstanding); 2307 2308 scsi_dma_unmap(cmd->scmd); 2309 cmd->scmd->scsi_done(cmd->scmd); 2310 megasas_return_cmd(instance, cmd); 2311 2312 break; 2313 2314 case MFI_CMD_SMP: 2315 case MFI_CMD_STP: 2316 case MFI_CMD_DCMD: 2317 opcode = le32_to_cpu(cmd->frame->dcmd.opcode); 2318 /* Check for LD map update */ 2319 if ((opcode == MR_DCMD_LD_MAP_GET_INFO) 2320 && (cmd->frame->dcmd.mbox.b[1] == 1)) { 2321 fusion->fast_path_io = 0; 2322 spin_lock_irqsave(instance->host->host_lock, flags); 2323 if (cmd->frame->hdr.cmd_status != 0) { 2324 if (cmd->frame->hdr.cmd_status != 2325 MFI_STAT_NOT_FOUND) 2326 printk(KERN_WARNING "megasas: map sync" 2327 "failed, status = 0x%x.\n", 2328 cmd->frame->hdr.cmd_status); 2329 else { 2330 megasas_return_cmd(instance, cmd); 2331 spin_unlock_irqrestore( 2332 instance->host->host_lock, 2333 flags); 2334 break; 2335 } 2336 } else 2337 instance->map_id++; 2338 megasas_return_cmd(instance, cmd); 2339 2340 /* 2341 * Set fast path IO to ZERO. 2342 * Validate Map will set proper value. 2343 * Meanwhile all IOs will go as LD IO. 2344 */ 2345 if (MR_ValidateMapInfo(instance)) 2346 fusion->fast_path_io = 1; 2347 else 2348 fusion->fast_path_io = 0; 2349 megasas_sync_map_info(instance); 2350 spin_unlock_irqrestore(instance->host->host_lock, 2351 flags); 2352 break; 2353 } 2354 if (opcode == MR_DCMD_CTRL_EVENT_GET_INFO || 2355 opcode == MR_DCMD_CTRL_EVENT_GET) { 2356 spin_lock_irqsave(&poll_aen_lock, flags); 2357 megasas_poll_wait_aen = 0; 2358 spin_unlock_irqrestore(&poll_aen_lock, flags); 2359 } 2360 2361 /* 2362 * See if got an event notification 2363 */ 2364 if (opcode == MR_DCMD_CTRL_EVENT_WAIT) 2365 megasas_service_aen(instance, cmd); 2366 else 2367 megasas_complete_int_cmd(instance, cmd); 2368 2369 break; 2370 2371 case MFI_CMD_ABORT: 2372 /* 2373 * Cmd issued to abort another cmd returned 2374 */ 2375 megasas_complete_abort(instance, cmd); 2376 break; 2377 2378 default: 2379 printk("megasas: Unknown command completed! [0x%X]\n", 2380 hdr->cmd); 2381 break; 2382 } 2383 } 2384 2385 /** 2386 * megasas_issue_pending_cmds_again - issue all pending cmds 2387 * in FW again because of the fw reset 2388 * @instance: Adapter soft state 2389 */ 2390 static inline void 2391 megasas_issue_pending_cmds_again(struct megasas_instance *instance) 2392 { 2393 struct megasas_cmd *cmd; 2394 struct list_head clist_local; 2395 union megasas_evt_class_locale class_locale; 2396 unsigned long flags; 2397 u32 seq_num; 2398 2399 INIT_LIST_HEAD(&clist_local); 2400 spin_lock_irqsave(&instance->hba_lock, flags); 2401 list_splice_init(&instance->internal_reset_pending_q, &clist_local); 2402 spin_unlock_irqrestore(&instance->hba_lock, flags); 2403 2404 while (!list_empty(&clist_local)) { 2405 cmd = list_entry((&clist_local)->next, 2406 struct megasas_cmd, list); 2407 list_del_init(&cmd->list); 2408 2409 if (cmd->sync_cmd || cmd->scmd) { 2410 printk(KERN_NOTICE "megaraid_sas: command %p, %p:%d" 2411 "detected to be pending while HBA reset.\n", 2412 cmd, cmd->scmd, cmd->sync_cmd); 2413 2414 cmd->retry_for_fw_reset++; 2415 2416 if (cmd->retry_for_fw_reset == 3) { 2417 printk(KERN_NOTICE "megaraid_sas: cmd %p, %p:%d" 2418 "was tried multiple times during reset." 2419 "Shutting down the HBA\n", 2420 cmd, cmd->scmd, cmd->sync_cmd); 2421 megaraid_sas_kill_hba(instance); 2422 2423 instance->adprecovery = 2424 MEGASAS_HW_CRITICAL_ERROR; 2425 return; 2426 } 2427 } 2428 2429 if (cmd->sync_cmd == 1) { 2430 if (cmd->scmd) { 2431 printk(KERN_NOTICE "megaraid_sas: unexpected" 2432 "cmd attached to internal command!\n"); 2433 } 2434 printk(KERN_NOTICE "megasas: %p synchronous cmd" 2435 "on the internal reset queue," 2436 "issue it again.\n", cmd); 2437 cmd->cmd_status = ENODATA; 2438 instance->instancet->fire_cmd(instance, 2439 cmd->frame_phys_addr , 2440 0, instance->reg_set); 2441 } else if (cmd->scmd) { 2442 printk(KERN_NOTICE "megasas: %p scsi cmd [%02x]" 2443 "detected on the internal queue, issue again.\n", 2444 cmd, cmd->scmd->cmnd[0]); 2445 2446 atomic_inc(&instance->fw_outstanding); 2447 instance->instancet->fire_cmd(instance, 2448 cmd->frame_phys_addr, 2449 cmd->frame_count-1, instance->reg_set); 2450 } else { 2451 printk(KERN_NOTICE "megasas: %p unexpected cmd on the" 2452 "internal reset defer list while re-issue!!\n", 2453 cmd); 2454 } 2455 } 2456 2457 if (instance->aen_cmd) { 2458 printk(KERN_NOTICE "megaraid_sas: aen_cmd in def process\n"); 2459 megasas_return_cmd(instance, instance->aen_cmd); 2460 2461 instance->aen_cmd = NULL; 2462 } 2463 2464 /* 2465 * Initiate AEN (Asynchronous Event Notification) 2466 */ 2467 seq_num = instance->last_seq_num; 2468 class_locale.members.reserved = 0; 2469 class_locale.members.locale = MR_EVT_LOCALE_ALL; 2470 class_locale.members.class = MR_EVT_CLASS_DEBUG; 2471 2472 megasas_register_aen(instance, seq_num, class_locale.word); 2473 } 2474 2475 /** 2476 * Move the internal reset pending commands to a deferred queue. 2477 * 2478 * We move the commands pending at internal reset time to a 2479 * pending queue. This queue would be flushed after successful 2480 * completion of the internal reset sequence. if the internal reset 2481 * did not complete in time, the kernel reset handler would flush 2482 * these commands. 2483 **/ 2484 static void 2485 megasas_internal_reset_defer_cmds(struct megasas_instance *instance) 2486 { 2487 struct megasas_cmd *cmd; 2488 int i; 2489 u32 max_cmd = instance->max_fw_cmds; 2490 u32 defer_index; 2491 unsigned long flags; 2492 2493 defer_index = 0; 2494 spin_lock_irqsave(&instance->cmd_pool_lock, flags); 2495 for (i = 0; i < max_cmd; i++) { 2496 cmd = instance->cmd_list[i]; 2497 if (cmd->sync_cmd == 1 || cmd->scmd) { 2498 printk(KERN_NOTICE "megasas: moving cmd[%d]:%p:%d:%p" 2499 "on the defer queue as internal\n", 2500 defer_index, cmd, cmd->sync_cmd, cmd->scmd); 2501 2502 if (!list_empty(&cmd->list)) { 2503 printk(KERN_NOTICE "megaraid_sas: ERROR while" 2504 " moving this cmd:%p, %d %p, it was" 2505 "discovered on some list?\n", 2506 cmd, cmd->sync_cmd, cmd->scmd); 2507 2508 list_del_init(&cmd->list); 2509 } 2510 defer_index++; 2511 list_add_tail(&cmd->list, 2512 &instance->internal_reset_pending_q); 2513 } 2514 } 2515 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags); 2516 } 2517 2518 2519 static void 2520 process_fw_state_change_wq(struct work_struct *work) 2521 { 2522 struct megasas_instance *instance = 2523 container_of(work, struct megasas_instance, work_init); 2524 u32 wait; 2525 unsigned long flags; 2526 2527 if (instance->adprecovery != MEGASAS_ADPRESET_SM_INFAULT) { 2528 printk(KERN_NOTICE "megaraid_sas: error, recovery st %x \n", 2529 instance->adprecovery); 2530 return ; 2531 } 2532 2533 if (instance->adprecovery == MEGASAS_ADPRESET_SM_INFAULT) { 2534 printk(KERN_NOTICE "megaraid_sas: FW detected to be in fault" 2535 "state, restarting it...\n"); 2536 2537 instance->instancet->disable_intr(instance); 2538 atomic_set(&instance->fw_outstanding, 0); 2539 2540 atomic_set(&instance->fw_reset_no_pci_access, 1); 2541 instance->instancet->adp_reset(instance, instance->reg_set); 2542 atomic_set(&instance->fw_reset_no_pci_access, 0 ); 2543 2544 printk(KERN_NOTICE "megaraid_sas: FW restarted successfully," 2545 "initiating next stage...\n"); 2546 2547 printk(KERN_NOTICE "megaraid_sas: HBA recovery state machine," 2548 "state 2 starting...\n"); 2549 2550 /*waitting for about 20 second before start the second init*/ 2551 for (wait = 0; wait < 30; wait++) { 2552 msleep(1000); 2553 } 2554 2555 if (megasas_transition_to_ready(instance, 1)) { 2556 printk(KERN_NOTICE "megaraid_sas:adapter not ready\n"); 2557 2558 megaraid_sas_kill_hba(instance); 2559 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; 2560 return ; 2561 } 2562 2563 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) || 2564 (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) || 2565 (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR) 2566 ) { 2567 *instance->consumer = *instance->producer; 2568 } else { 2569 *instance->consumer = 0; 2570 *instance->producer = 0; 2571 } 2572 2573 megasas_issue_init_mfi(instance); 2574 2575 spin_lock_irqsave(&instance->hba_lock, flags); 2576 instance->adprecovery = MEGASAS_HBA_OPERATIONAL; 2577 spin_unlock_irqrestore(&instance->hba_lock, flags); 2578 instance->instancet->enable_intr(instance); 2579 2580 megasas_issue_pending_cmds_again(instance); 2581 instance->issuepend_done = 1; 2582 } 2583 return ; 2584 } 2585 2586 /** 2587 * megasas_deplete_reply_queue - Processes all completed commands 2588 * @instance: Adapter soft state 2589 * @alt_status: Alternate status to be returned to 2590 * SCSI mid-layer instead of the status 2591 * returned by the FW 2592 * Note: this must be called with hba lock held 2593 */ 2594 static int 2595 megasas_deplete_reply_queue(struct megasas_instance *instance, 2596 u8 alt_status) 2597 { 2598 u32 mfiStatus; 2599 u32 fw_state; 2600 2601 if ((mfiStatus = instance->instancet->check_reset(instance, 2602 instance->reg_set)) == 1) { 2603 return IRQ_HANDLED; 2604 } 2605 2606 if ((mfiStatus = instance->instancet->clear_intr( 2607 instance->reg_set) 2608 ) == 0) { 2609 /* Hardware may not set outbound_intr_status in MSI-X mode */ 2610 if (!instance->msix_vectors) 2611 return IRQ_NONE; 2612 } 2613 2614 instance->mfiStatus = mfiStatus; 2615 2616 if ((mfiStatus & MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE)) { 2617 fw_state = instance->instancet->read_fw_status_reg( 2618 instance->reg_set) & MFI_STATE_MASK; 2619 2620 if (fw_state != MFI_STATE_FAULT) { 2621 printk(KERN_NOTICE "megaraid_sas: fw state:%x\n", 2622 fw_state); 2623 } 2624 2625 if ((fw_state == MFI_STATE_FAULT) && 2626 (instance->disableOnlineCtrlReset == 0)) { 2627 printk(KERN_NOTICE "megaraid_sas: wait adp restart\n"); 2628 2629 if ((instance->pdev->device == 2630 PCI_DEVICE_ID_LSI_SAS1064R) || 2631 (instance->pdev->device == 2632 PCI_DEVICE_ID_DELL_PERC5) || 2633 (instance->pdev->device == 2634 PCI_DEVICE_ID_LSI_VERDE_ZCR)) { 2635 2636 *instance->consumer = 2637 cpu_to_le32(MEGASAS_ADPRESET_INPROG_SIGN); 2638 } 2639 2640 2641 instance->instancet->disable_intr(instance); 2642 instance->adprecovery = MEGASAS_ADPRESET_SM_INFAULT; 2643 instance->issuepend_done = 0; 2644 2645 atomic_set(&instance->fw_outstanding, 0); 2646 megasas_internal_reset_defer_cmds(instance); 2647 2648 printk(KERN_NOTICE "megasas: fwState=%x, stage:%d\n", 2649 fw_state, instance->adprecovery); 2650 2651 schedule_work(&instance->work_init); 2652 return IRQ_HANDLED; 2653 2654 } else { 2655 printk(KERN_NOTICE "megasas: fwstate:%x, dis_OCR=%x\n", 2656 fw_state, instance->disableOnlineCtrlReset); 2657 } 2658 } 2659 2660 tasklet_schedule(&instance->isr_tasklet); 2661 return IRQ_HANDLED; 2662 } 2663 /** 2664 * megasas_isr - isr entry point 2665 */ 2666 static irqreturn_t megasas_isr(int irq, void *devp) 2667 { 2668 struct megasas_irq_context *irq_context = devp; 2669 struct megasas_instance *instance = irq_context->instance; 2670 unsigned long flags; 2671 irqreturn_t rc; 2672 2673 if (atomic_read(&instance->fw_reset_no_pci_access)) 2674 return IRQ_HANDLED; 2675 2676 spin_lock_irqsave(&instance->hba_lock, flags); 2677 rc = megasas_deplete_reply_queue(instance, DID_OK); 2678 spin_unlock_irqrestore(&instance->hba_lock, flags); 2679 2680 return rc; 2681 } 2682 2683 /** 2684 * megasas_transition_to_ready - Move the FW to READY state 2685 * @instance: Adapter soft state 2686 * 2687 * During the initialization, FW passes can potentially be in any one of 2688 * several possible states. If the FW in operational, waiting-for-handshake 2689 * states, driver must take steps to bring it to ready state. Otherwise, it 2690 * has to wait for the ready state. 2691 */ 2692 int 2693 megasas_transition_to_ready(struct megasas_instance *instance, int ocr) 2694 { 2695 int i; 2696 u8 max_wait; 2697 u32 fw_state; 2698 u32 cur_state; 2699 u32 abs_state, curr_abs_state; 2700 2701 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK; 2702 2703 if (fw_state != MFI_STATE_READY) 2704 printk(KERN_INFO "megasas: Waiting for FW to come to ready" 2705 " state\n"); 2706 2707 while (fw_state != MFI_STATE_READY) { 2708 2709 abs_state = 2710 instance->instancet->read_fw_status_reg(instance->reg_set); 2711 2712 switch (fw_state) { 2713 2714 case MFI_STATE_FAULT: 2715 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n"); 2716 if (ocr) { 2717 max_wait = MEGASAS_RESET_WAIT_TIME; 2718 cur_state = MFI_STATE_FAULT; 2719 break; 2720 } else 2721 return -ENODEV; 2722 2723 case MFI_STATE_WAIT_HANDSHAKE: 2724 /* 2725 * Set the CLR bit in inbound doorbell 2726 */ 2727 if ((instance->pdev->device == 2728 PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 2729 (instance->pdev->device == 2730 PCI_DEVICE_ID_LSI_SAS0071SKINNY) || 2731 (instance->pdev->device == 2732 PCI_DEVICE_ID_LSI_FUSION) || 2733 (instance->pdev->device == 2734 PCI_DEVICE_ID_LSI_INVADER) || 2735 (instance->pdev->device == 2736 PCI_DEVICE_ID_LSI_FURY)) { 2737 writel( 2738 MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG, 2739 &instance->reg_set->doorbell); 2740 } else { 2741 writel( 2742 MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG, 2743 &instance->reg_set->inbound_doorbell); 2744 } 2745 2746 max_wait = MEGASAS_RESET_WAIT_TIME; 2747 cur_state = MFI_STATE_WAIT_HANDSHAKE; 2748 break; 2749 2750 case MFI_STATE_BOOT_MESSAGE_PENDING: 2751 if ((instance->pdev->device == 2752 PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 2753 (instance->pdev->device == 2754 PCI_DEVICE_ID_LSI_SAS0071SKINNY) || 2755 (instance->pdev->device == 2756 PCI_DEVICE_ID_LSI_FUSION) || 2757 (instance->pdev->device == 2758 PCI_DEVICE_ID_LSI_INVADER) || 2759 (instance->pdev->device == 2760 PCI_DEVICE_ID_LSI_FURY)) { 2761 writel(MFI_INIT_HOTPLUG, 2762 &instance->reg_set->doorbell); 2763 } else 2764 writel(MFI_INIT_HOTPLUG, 2765 &instance->reg_set->inbound_doorbell); 2766 2767 max_wait = MEGASAS_RESET_WAIT_TIME; 2768 cur_state = MFI_STATE_BOOT_MESSAGE_PENDING; 2769 break; 2770 2771 case MFI_STATE_OPERATIONAL: 2772 /* 2773 * Bring it to READY state; assuming max wait 10 secs 2774 */ 2775 instance->instancet->disable_intr(instance); 2776 if ((instance->pdev->device == 2777 PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 2778 (instance->pdev->device == 2779 PCI_DEVICE_ID_LSI_SAS0071SKINNY) || 2780 (instance->pdev->device 2781 == PCI_DEVICE_ID_LSI_FUSION) || 2782 (instance->pdev->device 2783 == PCI_DEVICE_ID_LSI_INVADER) || 2784 (instance->pdev->device 2785 == PCI_DEVICE_ID_LSI_FURY)) { 2786 writel(MFI_RESET_FLAGS, 2787 &instance->reg_set->doorbell); 2788 if ((instance->pdev->device == 2789 PCI_DEVICE_ID_LSI_FUSION) || 2790 (instance->pdev->device == 2791 PCI_DEVICE_ID_LSI_INVADER) || 2792 (instance->pdev->device == 2793 PCI_DEVICE_ID_LSI_FURY)) { 2794 for (i = 0; i < (10 * 1000); i += 20) { 2795 if (readl( 2796 &instance-> 2797 reg_set-> 2798 doorbell) & 1) 2799 msleep(20); 2800 else 2801 break; 2802 } 2803 } 2804 } else 2805 writel(MFI_RESET_FLAGS, 2806 &instance->reg_set->inbound_doorbell); 2807 2808 max_wait = MEGASAS_RESET_WAIT_TIME; 2809 cur_state = MFI_STATE_OPERATIONAL; 2810 break; 2811 2812 case MFI_STATE_UNDEFINED: 2813 /* 2814 * This state should not last for more than 2 seconds 2815 */ 2816 max_wait = MEGASAS_RESET_WAIT_TIME; 2817 cur_state = MFI_STATE_UNDEFINED; 2818 break; 2819 2820 case MFI_STATE_BB_INIT: 2821 max_wait = MEGASAS_RESET_WAIT_TIME; 2822 cur_state = MFI_STATE_BB_INIT; 2823 break; 2824 2825 case MFI_STATE_FW_INIT: 2826 max_wait = MEGASAS_RESET_WAIT_TIME; 2827 cur_state = MFI_STATE_FW_INIT; 2828 break; 2829 2830 case MFI_STATE_FW_INIT_2: 2831 max_wait = MEGASAS_RESET_WAIT_TIME; 2832 cur_state = MFI_STATE_FW_INIT_2; 2833 break; 2834 2835 case MFI_STATE_DEVICE_SCAN: 2836 max_wait = MEGASAS_RESET_WAIT_TIME; 2837 cur_state = MFI_STATE_DEVICE_SCAN; 2838 break; 2839 2840 case MFI_STATE_FLUSH_CACHE: 2841 max_wait = MEGASAS_RESET_WAIT_TIME; 2842 cur_state = MFI_STATE_FLUSH_CACHE; 2843 break; 2844 2845 default: 2846 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n", 2847 fw_state); 2848 return -ENODEV; 2849 } 2850 2851 /* 2852 * The cur_state should not last for more than max_wait secs 2853 */ 2854 for (i = 0; i < (max_wait * 1000); i++) { 2855 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & 2856 MFI_STATE_MASK ; 2857 curr_abs_state = 2858 instance->instancet->read_fw_status_reg(instance->reg_set); 2859 2860 if (abs_state == curr_abs_state) { 2861 msleep(1); 2862 } else 2863 break; 2864 } 2865 2866 /* 2867 * Return error if fw_state hasn't changed after max_wait 2868 */ 2869 if (curr_abs_state == abs_state) { 2870 printk(KERN_DEBUG "FW state [%d] hasn't changed " 2871 "in %d secs\n", fw_state, max_wait); 2872 return -ENODEV; 2873 } 2874 } 2875 printk(KERN_INFO "megasas: FW now in Ready state\n"); 2876 2877 return 0; 2878 } 2879 2880 /** 2881 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool 2882 * @instance: Adapter soft state 2883 */ 2884 static void megasas_teardown_frame_pool(struct megasas_instance *instance) 2885 { 2886 int i; 2887 u32 max_cmd = instance->max_mfi_cmds; 2888 struct megasas_cmd *cmd; 2889 2890 if (!instance->frame_dma_pool) 2891 return; 2892 2893 /* 2894 * Return all frames to pool 2895 */ 2896 for (i = 0; i < max_cmd; i++) { 2897 2898 cmd = instance->cmd_list[i]; 2899 2900 if (cmd->frame) 2901 pci_pool_free(instance->frame_dma_pool, cmd->frame, 2902 cmd->frame_phys_addr); 2903 2904 if (cmd->sense) 2905 pci_pool_free(instance->sense_dma_pool, cmd->sense, 2906 cmd->sense_phys_addr); 2907 } 2908 2909 /* 2910 * Now destroy the pool itself 2911 */ 2912 pci_pool_destroy(instance->frame_dma_pool); 2913 pci_pool_destroy(instance->sense_dma_pool); 2914 2915 instance->frame_dma_pool = NULL; 2916 instance->sense_dma_pool = NULL; 2917 } 2918 2919 /** 2920 * megasas_create_frame_pool - Creates DMA pool for cmd frames 2921 * @instance: Adapter soft state 2922 * 2923 * Each command packet has an embedded DMA memory buffer that is used for 2924 * filling MFI frame and the SG list that immediately follows the frame. This 2925 * function creates those DMA memory buffers for each command packet by using 2926 * PCI pool facility. 2927 */ 2928 static int megasas_create_frame_pool(struct megasas_instance *instance) 2929 { 2930 int i; 2931 u32 max_cmd; 2932 u32 sge_sz; 2933 u32 sgl_sz; 2934 u32 total_sz; 2935 u32 frame_count; 2936 struct megasas_cmd *cmd; 2937 2938 max_cmd = instance->max_mfi_cmds; 2939 2940 /* 2941 * Size of our frame is 64 bytes for MFI frame, followed by max SG 2942 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer 2943 */ 2944 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) : 2945 sizeof(struct megasas_sge32); 2946 2947 if (instance->flag_ieee) { 2948 sge_sz = sizeof(struct megasas_sge_skinny); 2949 } 2950 2951 /* 2952 * Calculated the number of 64byte frames required for SGL 2953 */ 2954 sgl_sz = sge_sz * instance->max_num_sge; 2955 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE; 2956 frame_count = 15; 2957 2958 /* 2959 * We need one extra frame for the MFI command 2960 */ 2961 frame_count++; 2962 2963 total_sz = MEGAMFI_FRAME_SIZE * frame_count; 2964 /* 2965 * Use DMA pool facility provided by PCI layer 2966 */ 2967 instance->frame_dma_pool = pci_pool_create("megasas frame pool", 2968 instance->pdev, total_sz, 64, 2969 0); 2970 2971 if (!instance->frame_dma_pool) { 2972 printk(KERN_DEBUG "megasas: failed to setup frame pool\n"); 2973 return -ENOMEM; 2974 } 2975 2976 instance->sense_dma_pool = pci_pool_create("megasas sense pool", 2977 instance->pdev, 128, 4, 0); 2978 2979 if (!instance->sense_dma_pool) { 2980 printk(KERN_DEBUG "megasas: failed to setup sense pool\n"); 2981 2982 pci_pool_destroy(instance->frame_dma_pool); 2983 instance->frame_dma_pool = NULL; 2984 2985 return -ENOMEM; 2986 } 2987 2988 /* 2989 * Allocate and attach a frame to each of the commands in cmd_list. 2990 * By making cmd->index as the context instead of the &cmd, we can 2991 * always use 32bit context regardless of the architecture 2992 */ 2993 for (i = 0; i < max_cmd; i++) { 2994 2995 cmd = instance->cmd_list[i]; 2996 2997 cmd->frame = pci_pool_alloc(instance->frame_dma_pool, 2998 GFP_KERNEL, &cmd->frame_phys_addr); 2999 3000 cmd->sense = pci_pool_alloc(instance->sense_dma_pool, 3001 GFP_KERNEL, &cmd->sense_phys_addr); 3002 3003 /* 3004 * megasas_teardown_frame_pool() takes care of freeing 3005 * whatever has been allocated 3006 */ 3007 if (!cmd->frame || !cmd->sense) { 3008 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n"); 3009 megasas_teardown_frame_pool(instance); 3010 return -ENOMEM; 3011 } 3012 3013 memset(cmd->frame, 0, total_sz); 3014 cmd->frame->io.context = cpu_to_le32(cmd->index); 3015 cmd->frame->io.pad_0 = 0; 3016 if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) && 3017 (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) && 3018 (instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) && 3019 (reset_devices)) 3020 cmd->frame->hdr.cmd = MFI_CMD_INVALID; 3021 } 3022 3023 return 0; 3024 } 3025 3026 /** 3027 * megasas_free_cmds - Free all the cmds in the free cmd pool 3028 * @instance: Adapter soft state 3029 */ 3030 void megasas_free_cmds(struct megasas_instance *instance) 3031 { 3032 int i; 3033 /* First free the MFI frame pool */ 3034 megasas_teardown_frame_pool(instance); 3035 3036 /* Free all the commands in the cmd_list */ 3037 for (i = 0; i < instance->max_mfi_cmds; i++) 3038 3039 kfree(instance->cmd_list[i]); 3040 3041 /* Free the cmd_list buffer itself */ 3042 kfree(instance->cmd_list); 3043 instance->cmd_list = NULL; 3044 3045 INIT_LIST_HEAD(&instance->cmd_pool); 3046 } 3047 3048 /** 3049 * megasas_alloc_cmds - Allocates the command packets 3050 * @instance: Adapter soft state 3051 * 3052 * Each command that is issued to the FW, whether IO commands from the OS or 3053 * internal commands like IOCTLs, are wrapped in local data structure called 3054 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to 3055 * the FW. 3056 * 3057 * Each frame has a 32-bit field called context (tag). This context is used 3058 * to get back the megasas_cmd from the frame when a frame gets completed in 3059 * the ISR. Typically the address of the megasas_cmd itself would be used as 3060 * the context. But we wanted to keep the differences between 32 and 64 bit 3061 * systems to the mininum. We always use 32 bit integers for the context. In 3062 * this driver, the 32 bit values are the indices into an array cmd_list. 3063 * This array is used only to look up the megasas_cmd given the context. The 3064 * free commands themselves are maintained in a linked list called cmd_pool. 3065 */ 3066 int megasas_alloc_cmds(struct megasas_instance *instance) 3067 { 3068 int i; 3069 int j; 3070 u32 max_cmd; 3071 struct megasas_cmd *cmd; 3072 3073 max_cmd = instance->max_mfi_cmds; 3074 3075 /* 3076 * instance->cmd_list is an array of struct megasas_cmd pointers. 3077 * Allocate the dynamic array first and then allocate individual 3078 * commands. 3079 */ 3080 instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL); 3081 3082 if (!instance->cmd_list) { 3083 printk(KERN_DEBUG "megasas: out of memory\n"); 3084 return -ENOMEM; 3085 } 3086 3087 memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) *max_cmd); 3088 3089 for (i = 0; i < max_cmd; i++) { 3090 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd), 3091 GFP_KERNEL); 3092 3093 if (!instance->cmd_list[i]) { 3094 3095 for (j = 0; j < i; j++) 3096 kfree(instance->cmd_list[j]); 3097 3098 kfree(instance->cmd_list); 3099 instance->cmd_list = NULL; 3100 3101 return -ENOMEM; 3102 } 3103 } 3104 3105 /* 3106 * Add all the commands to command pool (instance->cmd_pool) 3107 */ 3108 for (i = 0; i < max_cmd; i++) { 3109 cmd = instance->cmd_list[i]; 3110 memset(cmd, 0, sizeof(struct megasas_cmd)); 3111 cmd->index = i; 3112 cmd->scmd = NULL; 3113 cmd->instance = instance; 3114 3115 list_add_tail(&cmd->list, &instance->cmd_pool); 3116 } 3117 3118 /* 3119 * Create a frame pool and assign one frame to each cmd 3120 */ 3121 if (megasas_create_frame_pool(instance)) { 3122 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n"); 3123 megasas_free_cmds(instance); 3124 } 3125 3126 return 0; 3127 } 3128 3129 /* 3130 * megasas_get_pd_list_info - Returns FW's pd_list structure 3131 * @instance: Adapter soft state 3132 * @pd_list: pd_list structure 3133 * 3134 * Issues an internal command (DCMD) to get the FW's controller PD 3135 * list structure. This information is mainly used to find out SYSTEM 3136 * supported by the FW. 3137 */ 3138 static int 3139 megasas_get_pd_list(struct megasas_instance *instance) 3140 { 3141 int ret = 0, pd_index = 0; 3142 struct megasas_cmd *cmd; 3143 struct megasas_dcmd_frame *dcmd; 3144 struct MR_PD_LIST *ci; 3145 struct MR_PD_ADDRESS *pd_addr; 3146 dma_addr_t ci_h = 0; 3147 3148 cmd = megasas_get_cmd(instance); 3149 3150 if (!cmd) { 3151 printk(KERN_DEBUG "megasas (get_pd_list): Failed to get cmd\n"); 3152 return -ENOMEM; 3153 } 3154 3155 dcmd = &cmd->frame->dcmd; 3156 3157 ci = pci_alloc_consistent(instance->pdev, 3158 MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), &ci_h); 3159 3160 if (!ci) { 3161 printk(KERN_DEBUG "Failed to alloc mem for pd_list\n"); 3162 megasas_return_cmd(instance, cmd); 3163 return -ENOMEM; 3164 } 3165 3166 memset(ci, 0, sizeof(*ci)); 3167 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3168 3169 dcmd->mbox.b[0] = MR_PD_QUERY_TYPE_EXPOSED_TO_HOST; 3170 dcmd->mbox.b[1] = 0; 3171 dcmd->cmd = MFI_CMD_DCMD; 3172 dcmd->cmd_status = 0xFF; 3173 dcmd->sge_count = 1; 3174 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); 3175 dcmd->timeout = 0; 3176 dcmd->pad_0 = 0; 3177 dcmd->data_xfer_len = cpu_to_le32(MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST)); 3178 dcmd->opcode = cpu_to_le32(MR_DCMD_PD_LIST_QUERY); 3179 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h); 3180 dcmd->sgl.sge32[0].length = cpu_to_le32(MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST)); 3181 3182 if (!megasas_issue_polled(instance, cmd)) { 3183 ret = 0; 3184 } else { 3185 ret = -1; 3186 } 3187 3188 /* 3189 * the following function will get the instance PD LIST. 3190 */ 3191 3192 pd_addr = ci->addr; 3193 3194 if ( ret == 0 && 3195 (le32_to_cpu(ci->count) < 3196 (MEGASAS_MAX_PD_CHANNELS * MEGASAS_MAX_DEV_PER_CHANNEL))) { 3197 3198 memset(instance->local_pd_list, 0, 3199 MEGASAS_MAX_PD * sizeof(struct megasas_pd_list)); 3200 3201 for (pd_index = 0; pd_index < le32_to_cpu(ci->count); pd_index++) { 3202 3203 instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].tid = 3204 le16_to_cpu(pd_addr->deviceId); 3205 instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].driveType = 3206 pd_addr->scsiDevType; 3207 instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].driveState = 3208 MR_PD_STATE_SYSTEM; 3209 pd_addr++; 3210 } 3211 memcpy(instance->pd_list, instance->local_pd_list, 3212 sizeof(instance->pd_list)); 3213 } 3214 3215 pci_free_consistent(instance->pdev, 3216 MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), 3217 ci, ci_h); 3218 megasas_return_cmd(instance, cmd); 3219 3220 return ret; 3221 } 3222 3223 /* 3224 * megasas_get_ld_list_info - Returns FW's ld_list structure 3225 * @instance: Adapter soft state 3226 * @ld_list: ld_list structure 3227 * 3228 * Issues an internal command (DCMD) to get the FW's controller PD 3229 * list structure. This information is mainly used to find out SYSTEM 3230 * supported by the FW. 3231 */ 3232 static int 3233 megasas_get_ld_list(struct megasas_instance *instance) 3234 { 3235 int ret = 0, ld_index = 0, ids = 0; 3236 struct megasas_cmd *cmd; 3237 struct megasas_dcmd_frame *dcmd; 3238 struct MR_LD_LIST *ci; 3239 dma_addr_t ci_h = 0; 3240 u32 ld_count; 3241 3242 cmd = megasas_get_cmd(instance); 3243 3244 if (!cmd) { 3245 printk(KERN_DEBUG "megasas_get_ld_list: Failed to get cmd\n"); 3246 return -ENOMEM; 3247 } 3248 3249 dcmd = &cmd->frame->dcmd; 3250 3251 ci = pci_alloc_consistent(instance->pdev, 3252 sizeof(struct MR_LD_LIST), 3253 &ci_h); 3254 3255 if (!ci) { 3256 printk(KERN_DEBUG "Failed to alloc mem in get_ld_list\n"); 3257 megasas_return_cmd(instance, cmd); 3258 return -ENOMEM; 3259 } 3260 3261 memset(ci, 0, sizeof(*ci)); 3262 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3263 3264 dcmd->cmd = MFI_CMD_DCMD; 3265 dcmd->cmd_status = 0xFF; 3266 dcmd->sge_count = 1; 3267 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); 3268 dcmd->timeout = 0; 3269 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_LD_LIST)); 3270 dcmd->opcode = cpu_to_le32(MR_DCMD_LD_GET_LIST); 3271 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h); 3272 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct MR_LD_LIST)); 3273 dcmd->pad_0 = 0; 3274 3275 if (!megasas_issue_polled(instance, cmd)) { 3276 ret = 0; 3277 } else { 3278 ret = -1; 3279 } 3280 3281 ld_count = le32_to_cpu(ci->ldCount); 3282 3283 /* the following function will get the instance PD LIST */ 3284 3285 if ((ret == 0) && (ld_count <= MAX_LOGICAL_DRIVES)) { 3286 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS); 3287 3288 for (ld_index = 0; ld_index < ld_count; ld_index++) { 3289 if (ci->ldList[ld_index].state != 0) { 3290 ids = ci->ldList[ld_index].ref.targetId; 3291 instance->ld_ids[ids] = 3292 ci->ldList[ld_index].ref.targetId; 3293 } 3294 } 3295 } 3296 3297 pci_free_consistent(instance->pdev, 3298 sizeof(struct MR_LD_LIST), 3299 ci, 3300 ci_h); 3301 3302 megasas_return_cmd(instance, cmd); 3303 return ret; 3304 } 3305 3306 /** 3307 * megasas_ld_list_query - Returns FW's ld_list structure 3308 * @instance: Adapter soft state 3309 * @ld_list: ld_list structure 3310 * 3311 * Issues an internal command (DCMD) to get the FW's controller PD 3312 * list structure. This information is mainly used to find out SYSTEM 3313 * supported by the FW. 3314 */ 3315 static int 3316 megasas_ld_list_query(struct megasas_instance *instance, u8 query_type) 3317 { 3318 int ret = 0, ld_index = 0, ids = 0; 3319 struct megasas_cmd *cmd; 3320 struct megasas_dcmd_frame *dcmd; 3321 struct MR_LD_TARGETID_LIST *ci; 3322 dma_addr_t ci_h = 0; 3323 u32 tgtid_count; 3324 3325 cmd = megasas_get_cmd(instance); 3326 3327 if (!cmd) { 3328 printk(KERN_WARNING 3329 "megasas:(megasas_ld_list_query): Failed to get cmd\n"); 3330 return -ENOMEM; 3331 } 3332 3333 dcmd = &cmd->frame->dcmd; 3334 3335 ci = pci_alloc_consistent(instance->pdev, 3336 sizeof(struct MR_LD_TARGETID_LIST), &ci_h); 3337 3338 if (!ci) { 3339 printk(KERN_WARNING 3340 "megasas: Failed to alloc mem for ld_list_query\n"); 3341 megasas_return_cmd(instance, cmd); 3342 return -ENOMEM; 3343 } 3344 3345 memset(ci, 0, sizeof(*ci)); 3346 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3347 3348 dcmd->mbox.b[0] = query_type; 3349 3350 dcmd->cmd = MFI_CMD_DCMD; 3351 dcmd->cmd_status = 0xFF; 3352 dcmd->sge_count = 1; 3353 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); 3354 dcmd->timeout = 0; 3355 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_LD_TARGETID_LIST)); 3356 dcmd->opcode = cpu_to_le32(MR_DCMD_LD_LIST_QUERY); 3357 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h); 3358 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct MR_LD_TARGETID_LIST)); 3359 dcmd->pad_0 = 0; 3360 3361 if (!megasas_issue_polled(instance, cmd) && !dcmd->cmd_status) { 3362 ret = 0; 3363 } else { 3364 /* On failure, call older LD list DCMD */ 3365 ret = 1; 3366 } 3367 3368 tgtid_count = le32_to_cpu(ci->count); 3369 3370 if ((ret == 0) && (tgtid_count <= (MAX_LOGICAL_DRIVES))) { 3371 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS); 3372 for (ld_index = 0; ld_index < tgtid_count; ld_index++) { 3373 ids = ci->targetId[ld_index]; 3374 instance->ld_ids[ids] = ci->targetId[ld_index]; 3375 } 3376 3377 } 3378 3379 pci_free_consistent(instance->pdev, sizeof(struct MR_LD_TARGETID_LIST), 3380 ci, ci_h); 3381 3382 megasas_return_cmd(instance, cmd); 3383 3384 return ret; 3385 } 3386 3387 /** 3388 * megasas_get_controller_info - Returns FW's controller structure 3389 * @instance: Adapter soft state 3390 * @ctrl_info: Controller information structure 3391 * 3392 * Issues an internal command (DCMD) to get the FW's controller structure. 3393 * This information is mainly used to find out the maximum IO transfer per 3394 * command supported by the FW. 3395 */ 3396 static int 3397 megasas_get_ctrl_info(struct megasas_instance *instance, 3398 struct megasas_ctrl_info *ctrl_info) 3399 { 3400 int ret = 0; 3401 struct megasas_cmd *cmd; 3402 struct megasas_dcmd_frame *dcmd; 3403 struct megasas_ctrl_info *ci; 3404 dma_addr_t ci_h = 0; 3405 3406 cmd = megasas_get_cmd(instance); 3407 3408 if (!cmd) { 3409 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n"); 3410 return -ENOMEM; 3411 } 3412 3413 dcmd = &cmd->frame->dcmd; 3414 3415 ci = pci_alloc_consistent(instance->pdev, 3416 sizeof(struct megasas_ctrl_info), &ci_h); 3417 3418 if (!ci) { 3419 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n"); 3420 megasas_return_cmd(instance, cmd); 3421 return -ENOMEM; 3422 } 3423 3424 memset(ci, 0, sizeof(*ci)); 3425 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3426 3427 dcmd->cmd = MFI_CMD_DCMD; 3428 dcmd->cmd_status = 0xFF; 3429 dcmd->sge_count = 1; 3430 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); 3431 dcmd->timeout = 0; 3432 dcmd->pad_0 = 0; 3433 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_ctrl_info)); 3434 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_GET_INFO); 3435 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h); 3436 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_ctrl_info)); 3437 3438 if (!megasas_issue_polled(instance, cmd)) { 3439 ret = 0; 3440 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info)); 3441 } else { 3442 ret = -1; 3443 } 3444 3445 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info), 3446 ci, ci_h); 3447 3448 megasas_return_cmd(instance, cmd); 3449 return ret; 3450 } 3451 3452 /** 3453 * megasas_issue_init_mfi - Initializes the FW 3454 * @instance: Adapter soft state 3455 * 3456 * Issues the INIT MFI cmd 3457 */ 3458 static int 3459 megasas_issue_init_mfi(struct megasas_instance *instance) 3460 { 3461 u32 context; 3462 3463 struct megasas_cmd *cmd; 3464 3465 struct megasas_init_frame *init_frame; 3466 struct megasas_init_queue_info *initq_info; 3467 dma_addr_t init_frame_h; 3468 dma_addr_t initq_info_h; 3469 3470 /* 3471 * Prepare a init frame. Note the init frame points to queue info 3472 * structure. Each frame has SGL allocated after first 64 bytes. For 3473 * this frame - since we don't need any SGL - we use SGL's space as 3474 * queue info structure 3475 * 3476 * We will not get a NULL command below. We just created the pool. 3477 */ 3478 cmd = megasas_get_cmd(instance); 3479 3480 init_frame = (struct megasas_init_frame *)cmd->frame; 3481 initq_info = (struct megasas_init_queue_info *) 3482 ((unsigned long)init_frame + 64); 3483 3484 init_frame_h = cmd->frame_phys_addr; 3485 initq_info_h = init_frame_h + 64; 3486 3487 context = init_frame->context; 3488 memset(init_frame, 0, MEGAMFI_FRAME_SIZE); 3489 memset(initq_info, 0, sizeof(struct megasas_init_queue_info)); 3490 init_frame->context = context; 3491 3492 initq_info->reply_queue_entries = cpu_to_le32(instance->max_fw_cmds + 1); 3493 initq_info->reply_queue_start_phys_addr_lo = cpu_to_le32(instance->reply_queue_h); 3494 3495 initq_info->producer_index_phys_addr_lo = cpu_to_le32(instance->producer_h); 3496 initq_info->consumer_index_phys_addr_lo = cpu_to_le32(instance->consumer_h); 3497 3498 init_frame->cmd = MFI_CMD_INIT; 3499 init_frame->cmd_status = 0xFF; 3500 init_frame->queue_info_new_phys_addr_lo = 3501 cpu_to_le32(lower_32_bits(initq_info_h)); 3502 init_frame->queue_info_new_phys_addr_hi = 3503 cpu_to_le32(upper_32_bits(initq_info_h)); 3504 3505 init_frame->data_xfer_len = cpu_to_le32(sizeof(struct megasas_init_queue_info)); 3506 3507 /* 3508 * disable the intr before firing the init frame to FW 3509 */ 3510 instance->instancet->disable_intr(instance); 3511 3512 /* 3513 * Issue the init frame in polled mode 3514 */ 3515 3516 if (megasas_issue_polled(instance, cmd)) { 3517 printk(KERN_ERR "megasas: Failed to init firmware\n"); 3518 megasas_return_cmd(instance, cmd); 3519 goto fail_fw_init; 3520 } 3521 3522 megasas_return_cmd(instance, cmd); 3523 3524 return 0; 3525 3526 fail_fw_init: 3527 return -EINVAL; 3528 } 3529 3530 static u32 3531 megasas_init_adapter_mfi(struct megasas_instance *instance) 3532 { 3533 struct megasas_register_set __iomem *reg_set; 3534 u32 context_sz; 3535 u32 reply_q_sz; 3536 3537 reg_set = instance->reg_set; 3538 3539 /* 3540 * Get various operational parameters from status register 3541 */ 3542 instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF; 3543 /* 3544 * Reduce the max supported cmds by 1. This is to ensure that the 3545 * reply_q_sz (1 more than the max cmd that driver may send) 3546 * does not exceed max cmds that the FW can support 3547 */ 3548 instance->max_fw_cmds = instance->max_fw_cmds-1; 3549 instance->max_mfi_cmds = instance->max_fw_cmds; 3550 instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >> 3551 0x10; 3552 /* 3553 * Create a pool of commands 3554 */ 3555 if (megasas_alloc_cmds(instance)) 3556 goto fail_alloc_cmds; 3557 3558 /* 3559 * Allocate memory for reply queue. Length of reply queue should 3560 * be _one_ more than the maximum commands handled by the firmware. 3561 * 3562 * Note: When FW completes commands, it places corresponding contex 3563 * values in this circular reply queue. This circular queue is a fairly 3564 * typical producer-consumer queue. FW is the producer (of completed 3565 * commands) and the driver is the consumer. 3566 */ 3567 context_sz = sizeof(u32); 3568 reply_q_sz = context_sz * (instance->max_fw_cmds + 1); 3569 3570 instance->reply_queue = pci_alloc_consistent(instance->pdev, 3571 reply_q_sz, 3572 &instance->reply_queue_h); 3573 3574 if (!instance->reply_queue) { 3575 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n"); 3576 goto fail_reply_queue; 3577 } 3578 3579 if (megasas_issue_init_mfi(instance)) 3580 goto fail_fw_init; 3581 3582 instance->fw_support_ieee = 0; 3583 instance->fw_support_ieee = 3584 (instance->instancet->read_fw_status_reg(reg_set) & 3585 0x04000000); 3586 3587 printk(KERN_NOTICE "megasas_init_mfi: fw_support_ieee=%d", 3588 instance->fw_support_ieee); 3589 3590 if (instance->fw_support_ieee) 3591 instance->flag_ieee = 1; 3592 3593 return 0; 3594 3595 fail_fw_init: 3596 3597 pci_free_consistent(instance->pdev, reply_q_sz, 3598 instance->reply_queue, instance->reply_queue_h); 3599 fail_reply_queue: 3600 megasas_free_cmds(instance); 3601 3602 fail_alloc_cmds: 3603 return 1; 3604 } 3605 3606 /** 3607 * megasas_init_fw - Initializes the FW 3608 * @instance: Adapter soft state 3609 * 3610 * This is the main function for initializing firmware 3611 */ 3612 3613 static int megasas_init_fw(struct megasas_instance *instance) 3614 { 3615 u32 max_sectors_1; 3616 u32 max_sectors_2; 3617 u32 tmp_sectors, msix_enable, scratch_pad_2; 3618 resource_size_t base_addr; 3619 struct megasas_register_set __iomem *reg_set; 3620 struct megasas_ctrl_info *ctrl_info; 3621 unsigned long bar_list; 3622 int i, loop, fw_msix_count = 0; 3623 3624 /* Find first memory bar */ 3625 bar_list = pci_select_bars(instance->pdev, IORESOURCE_MEM); 3626 instance->bar = find_first_bit(&bar_list, sizeof(unsigned long)); 3627 if (pci_request_selected_regions(instance->pdev, instance->bar, 3628 "megasas: LSI")) { 3629 printk(KERN_DEBUG "megasas: IO memory region busy!\n"); 3630 return -EBUSY; 3631 } 3632 3633 base_addr = pci_resource_start(instance->pdev, instance->bar); 3634 instance->reg_set = ioremap_nocache(base_addr, 8192); 3635 3636 if (!instance->reg_set) { 3637 printk(KERN_DEBUG "megasas: Failed to map IO mem\n"); 3638 goto fail_ioremap; 3639 } 3640 3641 reg_set = instance->reg_set; 3642 3643 switch (instance->pdev->device) { 3644 case PCI_DEVICE_ID_LSI_FUSION: 3645 case PCI_DEVICE_ID_LSI_INVADER: 3646 case PCI_DEVICE_ID_LSI_FURY: 3647 instance->instancet = &megasas_instance_template_fusion; 3648 break; 3649 case PCI_DEVICE_ID_LSI_SAS1078R: 3650 case PCI_DEVICE_ID_LSI_SAS1078DE: 3651 instance->instancet = &megasas_instance_template_ppc; 3652 break; 3653 case PCI_DEVICE_ID_LSI_SAS1078GEN2: 3654 case PCI_DEVICE_ID_LSI_SAS0079GEN2: 3655 instance->instancet = &megasas_instance_template_gen2; 3656 break; 3657 case PCI_DEVICE_ID_LSI_SAS0073SKINNY: 3658 case PCI_DEVICE_ID_LSI_SAS0071SKINNY: 3659 instance->instancet = &megasas_instance_template_skinny; 3660 break; 3661 case PCI_DEVICE_ID_LSI_SAS1064R: 3662 case PCI_DEVICE_ID_DELL_PERC5: 3663 default: 3664 instance->instancet = &megasas_instance_template_xscale; 3665 break; 3666 } 3667 3668 if (megasas_transition_to_ready(instance, 0)) { 3669 atomic_set(&instance->fw_reset_no_pci_access, 1); 3670 instance->instancet->adp_reset 3671 (instance, instance->reg_set); 3672 atomic_set(&instance->fw_reset_no_pci_access, 0); 3673 dev_info(&instance->pdev->dev, 3674 "megasas: FW restarted successfully from %s!\n", 3675 __func__); 3676 3677 /*waitting for about 30 second before retry*/ 3678 ssleep(30); 3679 3680 if (megasas_transition_to_ready(instance, 0)) 3681 goto fail_ready_state; 3682 } 3683 3684 /* 3685 * MSI-X host index 0 is common for all adapter. 3686 * It is used for all MPT based Adapters. 3687 */ 3688 instance->reply_post_host_index_addr[0] = 3689 (u32 *)((u8 *)instance->reg_set + 3690 MPI2_REPLY_POST_HOST_INDEX_OFFSET); 3691 3692 /* Check if MSI-X is supported while in ready state */ 3693 msix_enable = (instance->instancet->read_fw_status_reg(reg_set) & 3694 0x4000000) >> 0x1a; 3695 if (msix_enable && !msix_disable) { 3696 scratch_pad_2 = readl 3697 (&instance->reg_set->outbound_scratch_pad_2); 3698 /* Check max MSI-X vectors */ 3699 if (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) { 3700 instance->msix_vectors = (scratch_pad_2 3701 & MR_MAX_REPLY_QUEUES_OFFSET) + 1; 3702 fw_msix_count = instance->msix_vectors; 3703 if (msix_vectors) 3704 instance->msix_vectors = 3705 min(msix_vectors, 3706 instance->msix_vectors); 3707 } else if ((instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) 3708 || (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { 3709 /* Invader/Fury supports more than 8 MSI-X */ 3710 instance->msix_vectors = ((scratch_pad_2 3711 & MR_MAX_REPLY_QUEUES_EXT_OFFSET) 3712 >> MR_MAX_REPLY_QUEUES_EXT_OFFSET_SHIFT) + 1; 3713 fw_msix_count = instance->msix_vectors; 3714 /* Save 1-15 reply post index address to local memory 3715 * Index 0 is already saved from reg offset 3716 * MPI2_REPLY_POST_HOST_INDEX_OFFSET 3717 */ 3718 for (loop = 1; loop < MR_MAX_MSIX_REG_ARRAY; loop++) { 3719 instance->reply_post_host_index_addr[loop] = 3720 (u32 *)((u8 *)instance->reg_set + 3721 MPI2_SUP_REPLY_POST_HOST_INDEX_OFFSET 3722 + (loop * 0x10)); 3723 } 3724 if (msix_vectors) 3725 instance->msix_vectors = min(msix_vectors, 3726 instance->msix_vectors); 3727 } else 3728 instance->msix_vectors = 1; 3729 /* Don't bother allocating more MSI-X vectors than cpus */ 3730 instance->msix_vectors = min(instance->msix_vectors, 3731 (unsigned int)num_online_cpus()); 3732 for (i = 0; i < instance->msix_vectors; i++) 3733 instance->msixentry[i].entry = i; 3734 i = pci_enable_msix(instance->pdev, instance->msixentry, 3735 instance->msix_vectors); 3736 if (i >= 0) { 3737 if (i) { 3738 if (!pci_enable_msix(instance->pdev, 3739 instance->msixentry, i)) 3740 instance->msix_vectors = i; 3741 else 3742 instance->msix_vectors = 0; 3743 } 3744 } else 3745 instance->msix_vectors = 0; 3746 3747 dev_info(&instance->pdev->dev, "[scsi%d]: FW supports" 3748 "<%d> MSIX vector,Online CPUs: <%d>," 3749 "Current MSIX <%d>\n", instance->host->host_no, 3750 fw_msix_count, (unsigned int)num_online_cpus(), 3751 instance->msix_vectors); 3752 } 3753 3754 /* Get operational params, sge flags, send init cmd to controller */ 3755 if (instance->instancet->init_adapter(instance)) 3756 goto fail_init_adapter; 3757 3758 printk(KERN_ERR "megasas: INIT adapter done\n"); 3759 3760 /** for passthrough 3761 * the following function will get the PD LIST. 3762 */ 3763 3764 memset(instance->pd_list, 0 , 3765 (MEGASAS_MAX_PD * sizeof(struct megasas_pd_list))); 3766 megasas_get_pd_list(instance); 3767 3768 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS); 3769 if (megasas_ld_list_query(instance, 3770 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST)) 3771 megasas_get_ld_list(instance); 3772 3773 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL); 3774 3775 /* 3776 * Compute the max allowed sectors per IO: The controller info has two 3777 * limits on max sectors. Driver should use the minimum of these two. 3778 * 3779 * 1 << stripe_sz_ops.min = max sectors per strip 3780 * 3781 * Note that older firmwares ( < FW ver 30) didn't report information 3782 * to calculate max_sectors_1. So the number ended up as zero always. 3783 */ 3784 tmp_sectors = 0; 3785 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) { 3786 3787 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) * 3788 le16_to_cpu(ctrl_info->max_strips_per_io); 3789 max_sectors_2 = le32_to_cpu(ctrl_info->max_request_size); 3790 3791 tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2); 3792 3793 /*Check whether controller is iMR or MR */ 3794 if (ctrl_info->memory_size) { 3795 instance->is_imr = 0; 3796 dev_info(&instance->pdev->dev, "Controller type: MR," 3797 "Memory size is: %dMB\n", 3798 le16_to_cpu(ctrl_info->memory_size)); 3799 } else { 3800 instance->is_imr = 1; 3801 dev_info(&instance->pdev->dev, 3802 "Controller type: iMR\n"); 3803 } 3804 /* OnOffProperties are converted into CPU arch*/ 3805 le32_to_cpus((u32 *)&ctrl_info->properties.OnOffProperties); 3806 instance->disableOnlineCtrlReset = 3807 ctrl_info->properties.OnOffProperties.disableOnlineCtrlReset; 3808 /* adapterOperations2 are converted into CPU arch*/ 3809 le32_to_cpus((u32 *)&ctrl_info->adapterOperations2); 3810 instance->UnevenSpanSupport = 3811 ctrl_info->adapterOperations2.supportUnevenSpans; 3812 if (instance->UnevenSpanSupport) { 3813 struct fusion_context *fusion = instance->ctrl_context; 3814 dev_info(&instance->pdev->dev, "FW supports: " 3815 "UnevenSpanSupport=%x\n", instance->UnevenSpanSupport); 3816 if (MR_ValidateMapInfo(instance)) 3817 fusion->fast_path_io = 1; 3818 else 3819 fusion->fast_path_io = 0; 3820 3821 } 3822 } 3823 instance->max_sectors_per_req = instance->max_num_sge * 3824 PAGE_SIZE / 512; 3825 if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors)) 3826 instance->max_sectors_per_req = tmp_sectors; 3827 3828 kfree(ctrl_info); 3829 3830 /* Check for valid throttlequeuedepth module parameter */ 3831 if (instance->is_imr) { 3832 if (throttlequeuedepth > (instance->max_fw_cmds - 3833 MEGASAS_SKINNY_INT_CMDS)) 3834 instance->throttlequeuedepth = 3835 MEGASAS_THROTTLE_QUEUE_DEPTH; 3836 else 3837 instance->throttlequeuedepth = throttlequeuedepth; 3838 } else { 3839 if (throttlequeuedepth > (instance->max_fw_cmds - 3840 MEGASAS_INT_CMDS)) 3841 instance->throttlequeuedepth = 3842 MEGASAS_THROTTLE_QUEUE_DEPTH; 3843 else 3844 instance->throttlequeuedepth = throttlequeuedepth; 3845 } 3846 3847 /* 3848 * Setup tasklet for cmd completion 3849 */ 3850 3851 tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet, 3852 (unsigned long)instance); 3853 3854 return 0; 3855 3856 fail_init_adapter: 3857 fail_ready_state: 3858 iounmap(instance->reg_set); 3859 3860 fail_ioremap: 3861 pci_release_selected_regions(instance->pdev, instance->bar); 3862 3863 return -EINVAL; 3864 } 3865 3866 /** 3867 * megasas_release_mfi - Reverses the FW initialization 3868 * @intance: Adapter soft state 3869 */ 3870 static void megasas_release_mfi(struct megasas_instance *instance) 3871 { 3872 u32 reply_q_sz = sizeof(u32) *(instance->max_mfi_cmds + 1); 3873 3874 if (instance->reply_queue) 3875 pci_free_consistent(instance->pdev, reply_q_sz, 3876 instance->reply_queue, instance->reply_queue_h); 3877 3878 megasas_free_cmds(instance); 3879 3880 iounmap(instance->reg_set); 3881 3882 pci_release_selected_regions(instance->pdev, instance->bar); 3883 } 3884 3885 /** 3886 * megasas_get_seq_num - Gets latest event sequence numbers 3887 * @instance: Adapter soft state 3888 * @eli: FW event log sequence numbers information 3889 * 3890 * FW maintains a log of all events in a non-volatile area. Upper layers would 3891 * usually find out the latest sequence number of the events, the seq number at 3892 * the boot etc. They would "read" all the events below the latest seq number 3893 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq 3894 * number), they would subsribe to AEN (asynchronous event notification) and 3895 * wait for the events to happen. 3896 */ 3897 static int 3898 megasas_get_seq_num(struct megasas_instance *instance, 3899 struct megasas_evt_log_info *eli) 3900 { 3901 struct megasas_cmd *cmd; 3902 struct megasas_dcmd_frame *dcmd; 3903 struct megasas_evt_log_info *el_info; 3904 dma_addr_t el_info_h = 0; 3905 3906 cmd = megasas_get_cmd(instance); 3907 3908 if (!cmd) { 3909 return -ENOMEM; 3910 } 3911 3912 dcmd = &cmd->frame->dcmd; 3913 el_info = pci_alloc_consistent(instance->pdev, 3914 sizeof(struct megasas_evt_log_info), 3915 &el_info_h); 3916 3917 if (!el_info) { 3918 megasas_return_cmd(instance, cmd); 3919 return -ENOMEM; 3920 } 3921 3922 memset(el_info, 0, sizeof(*el_info)); 3923 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3924 3925 dcmd->cmd = MFI_CMD_DCMD; 3926 dcmd->cmd_status = 0x0; 3927 dcmd->sge_count = 1; 3928 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); 3929 dcmd->timeout = 0; 3930 dcmd->pad_0 = 0; 3931 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_evt_log_info)); 3932 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_EVENT_GET_INFO); 3933 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(el_info_h); 3934 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_evt_log_info)); 3935 3936 megasas_issue_blocked_cmd(instance, cmd); 3937 3938 /* 3939 * Copy the data back into callers buffer 3940 */ 3941 eli->newest_seq_num = le32_to_cpu(el_info->newest_seq_num); 3942 eli->oldest_seq_num = le32_to_cpu(el_info->oldest_seq_num); 3943 eli->clear_seq_num = le32_to_cpu(el_info->clear_seq_num); 3944 eli->shutdown_seq_num = le32_to_cpu(el_info->shutdown_seq_num); 3945 eli->boot_seq_num = le32_to_cpu(el_info->boot_seq_num); 3946 3947 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info), 3948 el_info, el_info_h); 3949 3950 megasas_return_cmd(instance, cmd); 3951 3952 return 0; 3953 } 3954 3955 /** 3956 * megasas_register_aen - Registers for asynchronous event notification 3957 * @instance: Adapter soft state 3958 * @seq_num: The starting sequence number 3959 * @class_locale: Class of the event 3960 * 3961 * This function subscribes for AEN for events beyond the @seq_num. It requests 3962 * to be notified if and only if the event is of type @class_locale 3963 */ 3964 static int 3965 megasas_register_aen(struct megasas_instance *instance, u32 seq_num, 3966 u32 class_locale_word) 3967 { 3968 int ret_val; 3969 struct megasas_cmd *cmd; 3970 struct megasas_dcmd_frame *dcmd; 3971 union megasas_evt_class_locale curr_aen; 3972 union megasas_evt_class_locale prev_aen; 3973 3974 /* 3975 * If there an AEN pending already (aen_cmd), check if the 3976 * class_locale of that pending AEN is inclusive of the new 3977 * AEN request we currently have. If it is, then we don't have 3978 * to do anything. In other words, whichever events the current 3979 * AEN request is subscribing to, have already been subscribed 3980 * to. 3981 * 3982 * If the old_cmd is _not_ inclusive, then we have to abort 3983 * that command, form a class_locale that is superset of both 3984 * old and current and re-issue to the FW 3985 */ 3986 3987 curr_aen.word = class_locale_word; 3988 3989 if (instance->aen_cmd) { 3990 3991 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1]; 3992 prev_aen.members.locale = le16_to_cpu(prev_aen.members.locale); 3993 3994 /* 3995 * A class whose enum value is smaller is inclusive of all 3996 * higher values. If a PROGRESS (= -1) was previously 3997 * registered, then a new registration requests for higher 3998 * classes need not be sent to FW. They are automatically 3999 * included. 4000 * 4001 * Locale numbers don't have such hierarchy. They are bitmap 4002 * values 4003 */ 4004 if ((prev_aen.members.class <= curr_aen.members.class) && 4005 !((prev_aen.members.locale & curr_aen.members.locale) ^ 4006 curr_aen.members.locale)) { 4007 /* 4008 * Previously issued event registration includes 4009 * current request. Nothing to do. 4010 */ 4011 return 0; 4012 } else { 4013 curr_aen.members.locale |= prev_aen.members.locale; 4014 4015 if (prev_aen.members.class < curr_aen.members.class) 4016 curr_aen.members.class = prev_aen.members.class; 4017 4018 instance->aen_cmd->abort_aen = 1; 4019 ret_val = megasas_issue_blocked_abort_cmd(instance, 4020 instance-> 4021 aen_cmd); 4022 4023 if (ret_val) { 4024 printk(KERN_DEBUG "megasas: Failed to abort " 4025 "previous AEN command\n"); 4026 return ret_val; 4027 } 4028 } 4029 } 4030 4031 cmd = megasas_get_cmd(instance); 4032 4033 if (!cmd) 4034 return -ENOMEM; 4035 4036 dcmd = &cmd->frame->dcmd; 4037 4038 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail)); 4039 4040 /* 4041 * Prepare DCMD for aen registration 4042 */ 4043 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 4044 4045 dcmd->cmd = MFI_CMD_DCMD; 4046 dcmd->cmd_status = 0x0; 4047 dcmd->sge_count = 1; 4048 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); 4049 dcmd->timeout = 0; 4050 dcmd->pad_0 = 0; 4051 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_evt_detail)); 4052 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_EVENT_WAIT); 4053 dcmd->mbox.w[0] = cpu_to_le32(seq_num); 4054 instance->last_seq_num = seq_num; 4055 dcmd->mbox.w[1] = cpu_to_le32(curr_aen.word); 4056 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(instance->evt_detail_h); 4057 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_evt_detail)); 4058 4059 if (instance->aen_cmd != NULL) { 4060 megasas_return_cmd(instance, cmd); 4061 return 0; 4062 } 4063 4064 /* 4065 * Store reference to the cmd used to register for AEN. When an 4066 * application wants us to register for AEN, we have to abort this 4067 * cmd and re-register with a new EVENT LOCALE supplied by that app 4068 */ 4069 instance->aen_cmd = cmd; 4070 4071 /* 4072 * Issue the aen registration frame 4073 */ 4074 instance->instancet->issue_dcmd(instance, cmd); 4075 4076 return 0; 4077 } 4078 4079 /** 4080 * megasas_start_aen - Subscribes to AEN during driver load time 4081 * @instance: Adapter soft state 4082 */ 4083 static int megasas_start_aen(struct megasas_instance *instance) 4084 { 4085 struct megasas_evt_log_info eli; 4086 union megasas_evt_class_locale class_locale; 4087 4088 /* 4089 * Get the latest sequence number from FW 4090 */ 4091 memset(&eli, 0, sizeof(eli)); 4092 4093 if (megasas_get_seq_num(instance, &eli)) 4094 return -1; 4095 4096 /* 4097 * Register AEN with FW for latest sequence number plus 1 4098 */ 4099 class_locale.members.reserved = 0; 4100 class_locale.members.locale = MR_EVT_LOCALE_ALL; 4101 class_locale.members.class = MR_EVT_CLASS_DEBUG; 4102 4103 return megasas_register_aen(instance, 4104 eli.newest_seq_num + 1, 4105 class_locale.word); 4106 } 4107 4108 /** 4109 * megasas_io_attach - Attaches this driver to SCSI mid-layer 4110 * @instance: Adapter soft state 4111 */ 4112 static int megasas_io_attach(struct megasas_instance *instance) 4113 { 4114 struct Scsi_Host *host = instance->host; 4115 4116 /* 4117 * Export parameters required by SCSI mid-layer 4118 */ 4119 host->irq = instance->pdev->irq; 4120 host->unique_id = instance->unique_id; 4121 if (instance->is_imr) { 4122 host->can_queue = 4123 instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS; 4124 } else 4125 host->can_queue = 4126 instance->max_fw_cmds - MEGASAS_INT_CMDS; 4127 host->this_id = instance->init_id; 4128 host->sg_tablesize = instance->max_num_sge; 4129 4130 if (instance->fw_support_ieee) 4131 instance->max_sectors_per_req = MEGASAS_MAX_SECTORS_IEEE; 4132 4133 /* 4134 * Check if the module parameter value for max_sectors can be used 4135 */ 4136 if (max_sectors && max_sectors < instance->max_sectors_per_req) 4137 instance->max_sectors_per_req = max_sectors; 4138 else { 4139 if (max_sectors) { 4140 if (((instance->pdev->device == 4141 PCI_DEVICE_ID_LSI_SAS1078GEN2) || 4142 (instance->pdev->device == 4143 PCI_DEVICE_ID_LSI_SAS0079GEN2)) && 4144 (max_sectors <= MEGASAS_MAX_SECTORS)) { 4145 instance->max_sectors_per_req = max_sectors; 4146 } else { 4147 printk(KERN_INFO "megasas: max_sectors should be > 0" 4148 "and <= %d (or < 1MB for GEN2 controller)\n", 4149 instance->max_sectors_per_req); 4150 } 4151 } 4152 } 4153 4154 host->max_sectors = instance->max_sectors_per_req; 4155 host->cmd_per_lun = MEGASAS_DEFAULT_CMD_PER_LUN; 4156 host->max_channel = MEGASAS_MAX_CHANNELS - 1; 4157 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL; 4158 host->max_lun = MEGASAS_MAX_LUN; 4159 host->max_cmd_len = 16; 4160 4161 /* Fusion only supports host reset */ 4162 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 4163 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 4164 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { 4165 host->hostt->eh_device_reset_handler = NULL; 4166 host->hostt->eh_bus_reset_handler = NULL; 4167 } 4168 4169 /* 4170 * Notify the mid-layer about the new controller 4171 */ 4172 if (scsi_add_host(host, &instance->pdev->dev)) { 4173 printk(KERN_DEBUG "megasas: scsi_add_host failed\n"); 4174 return -ENODEV; 4175 } 4176 4177 /* 4178 * Trigger SCSI to scan our drives 4179 */ 4180 scsi_scan_host(host); 4181 return 0; 4182 } 4183 4184 static int 4185 megasas_set_dma_mask(struct pci_dev *pdev) 4186 { 4187 /* 4188 * All our contollers are capable of performing 64-bit DMA 4189 */ 4190 if (IS_DMA64) { 4191 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) != 0) { 4192 4193 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) 4194 goto fail_set_dma_mask; 4195 } 4196 } else { 4197 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) 4198 goto fail_set_dma_mask; 4199 } 4200 4201 return 0; 4202 4203 fail_set_dma_mask: 4204 return 1; 4205 } 4206 4207 /** 4208 * megasas_probe_one - PCI hotplug entry point 4209 * @pdev: PCI device structure 4210 * @id: PCI ids of supported hotplugged adapter 4211 */ 4212 static int megasas_probe_one(struct pci_dev *pdev, 4213 const struct pci_device_id *id) 4214 { 4215 int rval, pos, i, j; 4216 struct Scsi_Host *host; 4217 struct megasas_instance *instance; 4218 u16 control = 0; 4219 4220 /* Reset MSI-X in the kdump kernel */ 4221 if (reset_devices) { 4222 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); 4223 if (pos) { 4224 pci_read_config_word(pdev, pos + PCI_MSIX_FLAGS, 4225 &control); 4226 if (control & PCI_MSIX_FLAGS_ENABLE) { 4227 dev_info(&pdev->dev, "resetting MSI-X\n"); 4228 pci_write_config_word(pdev, 4229 pos + PCI_MSIX_FLAGS, 4230 control & 4231 ~PCI_MSIX_FLAGS_ENABLE); 4232 } 4233 } 4234 } 4235 4236 /* 4237 * Announce PCI information 4238 */ 4239 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ", 4240 pdev->vendor, pdev->device, pdev->subsystem_vendor, 4241 pdev->subsystem_device); 4242 4243 printk("bus %d:slot %d:func %d\n", 4244 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 4245 4246 /* 4247 * PCI prepping: enable device set bus mastering and dma mask 4248 */ 4249 rval = pci_enable_device_mem(pdev); 4250 4251 if (rval) { 4252 return rval; 4253 } 4254 4255 pci_set_master(pdev); 4256 4257 if (megasas_set_dma_mask(pdev)) 4258 goto fail_set_dma_mask; 4259 4260 host = scsi_host_alloc(&megasas_template, 4261 sizeof(struct megasas_instance)); 4262 4263 if (!host) { 4264 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n"); 4265 goto fail_alloc_instance; 4266 } 4267 4268 instance = (struct megasas_instance *)host->hostdata; 4269 memset(instance, 0, sizeof(*instance)); 4270 atomic_set( &instance->fw_reset_no_pci_access, 0 ); 4271 instance->pdev = pdev; 4272 4273 switch (instance->pdev->device) { 4274 case PCI_DEVICE_ID_LSI_FUSION: 4275 case PCI_DEVICE_ID_LSI_INVADER: 4276 case PCI_DEVICE_ID_LSI_FURY: 4277 { 4278 struct fusion_context *fusion; 4279 4280 instance->ctrl_context = 4281 kzalloc(sizeof(struct fusion_context), GFP_KERNEL); 4282 if (!instance->ctrl_context) { 4283 printk(KERN_DEBUG "megasas: Failed to allocate " 4284 "memory for Fusion context info\n"); 4285 goto fail_alloc_dma_buf; 4286 } 4287 fusion = instance->ctrl_context; 4288 INIT_LIST_HEAD(&fusion->cmd_pool); 4289 spin_lock_init(&fusion->cmd_pool_lock); 4290 } 4291 break; 4292 default: /* For all other supported controllers */ 4293 4294 instance->producer = 4295 pci_alloc_consistent(pdev, sizeof(u32), 4296 &instance->producer_h); 4297 instance->consumer = 4298 pci_alloc_consistent(pdev, sizeof(u32), 4299 &instance->consumer_h); 4300 4301 if (!instance->producer || !instance->consumer) { 4302 printk(KERN_DEBUG "megasas: Failed to allocate" 4303 "memory for producer, consumer\n"); 4304 goto fail_alloc_dma_buf; 4305 } 4306 4307 *instance->producer = 0; 4308 *instance->consumer = 0; 4309 break; 4310 } 4311 4312 megasas_poll_wait_aen = 0; 4313 instance->flag_ieee = 0; 4314 instance->ev = NULL; 4315 instance->issuepend_done = 1; 4316 instance->adprecovery = MEGASAS_HBA_OPERATIONAL; 4317 instance->is_imr = 0; 4318 megasas_poll_wait_aen = 0; 4319 4320 instance->evt_detail = pci_alloc_consistent(pdev, 4321 sizeof(struct 4322 megasas_evt_detail), 4323 &instance->evt_detail_h); 4324 4325 if (!instance->evt_detail) { 4326 printk(KERN_DEBUG "megasas: Failed to allocate memory for " 4327 "event detail structure\n"); 4328 goto fail_alloc_dma_buf; 4329 } 4330 4331 /* 4332 * Initialize locks and queues 4333 */ 4334 INIT_LIST_HEAD(&instance->cmd_pool); 4335 INIT_LIST_HEAD(&instance->internal_reset_pending_q); 4336 4337 atomic_set(&instance->fw_outstanding,0); 4338 4339 init_waitqueue_head(&instance->int_cmd_wait_q); 4340 init_waitqueue_head(&instance->abort_cmd_wait_q); 4341 4342 spin_lock_init(&instance->cmd_pool_lock); 4343 spin_lock_init(&instance->hba_lock); 4344 spin_lock_init(&instance->completion_lock); 4345 4346 mutex_init(&instance->aen_mutex); 4347 mutex_init(&instance->reset_mutex); 4348 4349 /* 4350 * Initialize PCI related and misc parameters 4351 */ 4352 instance->host = host; 4353 instance->unique_id = pdev->bus->number << 8 | pdev->devfn; 4354 instance->init_id = MEGASAS_DEFAULT_INIT_ID; 4355 4356 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 4357 (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) { 4358 instance->flag_ieee = 1; 4359 sema_init(&instance->ioctl_sem, MEGASAS_SKINNY_INT_CMDS); 4360 } else 4361 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS); 4362 4363 megasas_dbg_lvl = 0; 4364 instance->flag = 0; 4365 instance->unload = 1; 4366 instance->last_time = 0; 4367 instance->disableOnlineCtrlReset = 1; 4368 instance->UnevenSpanSupport = 0; 4369 4370 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 4371 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 4372 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) 4373 INIT_WORK(&instance->work_init, megasas_fusion_ocr_wq); 4374 else 4375 INIT_WORK(&instance->work_init, process_fw_state_change_wq); 4376 4377 /* 4378 * Initialize MFI Firmware 4379 */ 4380 if (megasas_init_fw(instance)) 4381 goto fail_init_mfi; 4382 4383 retry_irq_register: 4384 /* 4385 * Register IRQ 4386 */ 4387 if (instance->msix_vectors) { 4388 for (i = 0 ; i < instance->msix_vectors; i++) { 4389 instance->irq_context[i].instance = instance; 4390 instance->irq_context[i].MSIxIndex = i; 4391 if (request_irq(instance->msixentry[i].vector, 4392 instance->instancet->service_isr, 0, 4393 "megasas", 4394 &instance->irq_context[i])) { 4395 printk(KERN_DEBUG "megasas: Failed to " 4396 "register IRQ for vector %d.\n", i); 4397 for (j = 0 ; j < i ; j++) 4398 free_irq( 4399 instance->msixentry[j].vector, 4400 &instance->irq_context[j]); 4401 /* Retry irq register for IO_APIC */ 4402 instance->msix_vectors = 0; 4403 goto retry_irq_register; 4404 } 4405 } 4406 } else { 4407 instance->irq_context[0].instance = instance; 4408 instance->irq_context[0].MSIxIndex = 0; 4409 if (request_irq(pdev->irq, instance->instancet->service_isr, 4410 IRQF_SHARED, "megasas", 4411 &instance->irq_context[0])) { 4412 printk(KERN_DEBUG "megasas: Failed to register IRQ\n"); 4413 goto fail_irq; 4414 } 4415 } 4416 4417 instance->instancet->enable_intr(instance); 4418 4419 /* 4420 * Store instance in PCI softstate 4421 */ 4422 pci_set_drvdata(pdev, instance); 4423 4424 /* 4425 * Add this controller to megasas_mgmt_info structure so that it 4426 * can be exported to management applications 4427 */ 4428 megasas_mgmt_info.count++; 4429 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance; 4430 megasas_mgmt_info.max_index++; 4431 4432 /* 4433 * Register with SCSI mid-layer 4434 */ 4435 if (megasas_io_attach(instance)) 4436 goto fail_io_attach; 4437 4438 instance->unload = 0; 4439 4440 /* 4441 * Initiate AEN (Asynchronous Event Notification) 4442 */ 4443 if (megasas_start_aen(instance)) { 4444 printk(KERN_DEBUG "megasas: start aen failed\n"); 4445 goto fail_start_aen; 4446 } 4447 4448 return 0; 4449 4450 fail_start_aen: 4451 fail_io_attach: 4452 megasas_mgmt_info.count--; 4453 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL; 4454 megasas_mgmt_info.max_index--; 4455 4456 instance->instancet->disable_intr(instance); 4457 if (instance->msix_vectors) 4458 for (i = 0 ; i < instance->msix_vectors; i++) 4459 free_irq(instance->msixentry[i].vector, 4460 &instance->irq_context[i]); 4461 else 4462 free_irq(instance->pdev->irq, &instance->irq_context[0]); 4463 fail_irq: 4464 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 4465 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 4466 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) 4467 megasas_release_fusion(instance); 4468 else 4469 megasas_release_mfi(instance); 4470 fail_init_mfi: 4471 if (instance->msix_vectors) 4472 pci_disable_msix(instance->pdev); 4473 fail_alloc_dma_buf: 4474 if (instance->evt_detail) 4475 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail), 4476 instance->evt_detail, 4477 instance->evt_detail_h); 4478 4479 if (instance->producer) 4480 pci_free_consistent(pdev, sizeof(u32), instance->producer, 4481 instance->producer_h); 4482 if (instance->consumer) 4483 pci_free_consistent(pdev, sizeof(u32), instance->consumer, 4484 instance->consumer_h); 4485 scsi_host_put(host); 4486 4487 fail_alloc_instance: 4488 fail_set_dma_mask: 4489 pci_disable_device(pdev); 4490 4491 return -ENODEV; 4492 } 4493 4494 /** 4495 * megasas_flush_cache - Requests FW to flush all its caches 4496 * @instance: Adapter soft state 4497 */ 4498 static void megasas_flush_cache(struct megasas_instance *instance) 4499 { 4500 struct megasas_cmd *cmd; 4501 struct megasas_dcmd_frame *dcmd; 4502 4503 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) 4504 return; 4505 4506 cmd = megasas_get_cmd(instance); 4507 4508 if (!cmd) 4509 return; 4510 4511 dcmd = &cmd->frame->dcmd; 4512 4513 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 4514 4515 dcmd->cmd = MFI_CMD_DCMD; 4516 dcmd->cmd_status = 0x0; 4517 dcmd->sge_count = 0; 4518 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_NONE); 4519 dcmd->timeout = 0; 4520 dcmd->pad_0 = 0; 4521 dcmd->data_xfer_len = 0; 4522 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_CACHE_FLUSH); 4523 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE; 4524 4525 megasas_issue_blocked_cmd(instance, cmd); 4526 4527 megasas_return_cmd(instance, cmd); 4528 4529 return; 4530 } 4531 4532 /** 4533 * megasas_shutdown_controller - Instructs FW to shutdown the controller 4534 * @instance: Adapter soft state 4535 * @opcode: Shutdown/Hibernate 4536 */ 4537 static void megasas_shutdown_controller(struct megasas_instance *instance, 4538 u32 opcode) 4539 { 4540 struct megasas_cmd *cmd; 4541 struct megasas_dcmd_frame *dcmd; 4542 4543 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) 4544 return; 4545 4546 cmd = megasas_get_cmd(instance); 4547 4548 if (!cmd) 4549 return; 4550 4551 if (instance->aen_cmd) 4552 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd); 4553 if (instance->map_update_cmd) 4554 megasas_issue_blocked_abort_cmd(instance, 4555 instance->map_update_cmd); 4556 dcmd = &cmd->frame->dcmd; 4557 4558 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 4559 4560 dcmd->cmd = MFI_CMD_DCMD; 4561 dcmd->cmd_status = 0x0; 4562 dcmd->sge_count = 0; 4563 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_NONE); 4564 dcmd->timeout = 0; 4565 dcmd->pad_0 = 0; 4566 dcmd->data_xfer_len = 0; 4567 dcmd->opcode = cpu_to_le32(opcode); 4568 4569 megasas_issue_blocked_cmd(instance, cmd); 4570 4571 megasas_return_cmd(instance, cmd); 4572 4573 return; 4574 } 4575 4576 #ifdef CONFIG_PM 4577 /** 4578 * megasas_suspend - driver suspend entry point 4579 * @pdev: PCI device structure 4580 * @state: PCI power state to suspend routine 4581 */ 4582 static int 4583 megasas_suspend(struct pci_dev *pdev, pm_message_t state) 4584 { 4585 struct Scsi_Host *host; 4586 struct megasas_instance *instance; 4587 int i; 4588 4589 instance = pci_get_drvdata(pdev); 4590 host = instance->host; 4591 instance->unload = 1; 4592 4593 megasas_flush_cache(instance); 4594 megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN); 4595 4596 /* cancel the delayed work if this work still in queue */ 4597 if (instance->ev != NULL) { 4598 struct megasas_aen_event *ev = instance->ev; 4599 cancel_delayed_work_sync(&ev->hotplug_work); 4600 instance->ev = NULL; 4601 } 4602 4603 tasklet_kill(&instance->isr_tasklet); 4604 4605 pci_set_drvdata(instance->pdev, instance); 4606 instance->instancet->disable_intr(instance); 4607 4608 if (instance->msix_vectors) 4609 for (i = 0 ; i < instance->msix_vectors; i++) 4610 free_irq(instance->msixentry[i].vector, 4611 &instance->irq_context[i]); 4612 else 4613 free_irq(instance->pdev->irq, &instance->irq_context[0]); 4614 if (instance->msix_vectors) 4615 pci_disable_msix(instance->pdev); 4616 4617 pci_save_state(pdev); 4618 pci_disable_device(pdev); 4619 4620 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 4621 4622 return 0; 4623 } 4624 4625 /** 4626 * megasas_resume- driver resume entry point 4627 * @pdev: PCI device structure 4628 */ 4629 static int 4630 megasas_resume(struct pci_dev *pdev) 4631 { 4632 int rval, i, j; 4633 struct Scsi_Host *host; 4634 struct megasas_instance *instance; 4635 4636 instance = pci_get_drvdata(pdev); 4637 host = instance->host; 4638 pci_set_power_state(pdev, PCI_D0); 4639 pci_enable_wake(pdev, PCI_D0, 0); 4640 pci_restore_state(pdev); 4641 4642 /* 4643 * PCI prepping: enable device set bus mastering and dma mask 4644 */ 4645 rval = pci_enable_device_mem(pdev); 4646 4647 if (rval) { 4648 printk(KERN_ERR "megasas: Enable device failed\n"); 4649 return rval; 4650 } 4651 4652 pci_set_master(pdev); 4653 4654 if (megasas_set_dma_mask(pdev)) 4655 goto fail_set_dma_mask; 4656 4657 /* 4658 * Initialize MFI Firmware 4659 */ 4660 4661 atomic_set(&instance->fw_outstanding, 0); 4662 4663 /* 4664 * We expect the FW state to be READY 4665 */ 4666 if (megasas_transition_to_ready(instance, 0)) 4667 goto fail_ready_state; 4668 4669 /* Now re-enable MSI-X */ 4670 if (instance->msix_vectors) 4671 pci_enable_msix(instance->pdev, instance->msixentry, 4672 instance->msix_vectors); 4673 4674 switch (instance->pdev->device) { 4675 case PCI_DEVICE_ID_LSI_FUSION: 4676 case PCI_DEVICE_ID_LSI_INVADER: 4677 case PCI_DEVICE_ID_LSI_FURY: 4678 { 4679 megasas_reset_reply_desc(instance); 4680 if (megasas_ioc_init_fusion(instance)) { 4681 megasas_free_cmds(instance); 4682 megasas_free_cmds_fusion(instance); 4683 goto fail_init_mfi; 4684 } 4685 if (!megasas_get_map_info(instance)) 4686 megasas_sync_map_info(instance); 4687 } 4688 break; 4689 default: 4690 *instance->producer = 0; 4691 *instance->consumer = 0; 4692 if (megasas_issue_init_mfi(instance)) 4693 goto fail_init_mfi; 4694 break; 4695 } 4696 4697 tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet, 4698 (unsigned long)instance); 4699 4700 /* 4701 * Register IRQ 4702 */ 4703 if (instance->msix_vectors) { 4704 for (i = 0 ; i < instance->msix_vectors; i++) { 4705 instance->irq_context[i].instance = instance; 4706 instance->irq_context[i].MSIxIndex = i; 4707 if (request_irq(instance->msixentry[i].vector, 4708 instance->instancet->service_isr, 0, 4709 "megasas", 4710 &instance->irq_context[i])) { 4711 printk(KERN_DEBUG "megasas: Failed to " 4712 "register IRQ for vector %d.\n", i); 4713 for (j = 0 ; j < i ; j++) 4714 free_irq( 4715 instance->msixentry[j].vector, 4716 &instance->irq_context[j]); 4717 goto fail_irq; 4718 } 4719 } 4720 } else { 4721 instance->irq_context[0].instance = instance; 4722 instance->irq_context[0].MSIxIndex = 0; 4723 if (request_irq(pdev->irq, instance->instancet->service_isr, 4724 IRQF_SHARED, "megasas", 4725 &instance->irq_context[0])) { 4726 printk(KERN_DEBUG "megasas: Failed to register IRQ\n"); 4727 goto fail_irq; 4728 } 4729 } 4730 4731 instance->instancet->enable_intr(instance); 4732 instance->unload = 0; 4733 4734 /* 4735 * Initiate AEN (Asynchronous Event Notification) 4736 */ 4737 if (megasas_start_aen(instance)) 4738 printk(KERN_ERR "megasas: Start AEN failed\n"); 4739 4740 return 0; 4741 4742 fail_irq: 4743 fail_init_mfi: 4744 if (instance->evt_detail) 4745 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail), 4746 instance->evt_detail, 4747 instance->evt_detail_h); 4748 4749 if (instance->producer) 4750 pci_free_consistent(pdev, sizeof(u32), instance->producer, 4751 instance->producer_h); 4752 if (instance->consumer) 4753 pci_free_consistent(pdev, sizeof(u32), instance->consumer, 4754 instance->consumer_h); 4755 scsi_host_put(host); 4756 4757 fail_set_dma_mask: 4758 fail_ready_state: 4759 4760 pci_disable_device(pdev); 4761 4762 return -ENODEV; 4763 } 4764 #else 4765 #define megasas_suspend NULL 4766 #define megasas_resume NULL 4767 #endif 4768 4769 /** 4770 * megasas_detach_one - PCI hot"un"plug entry point 4771 * @pdev: PCI device structure 4772 */ 4773 static void megasas_detach_one(struct pci_dev *pdev) 4774 { 4775 int i; 4776 struct Scsi_Host *host; 4777 struct megasas_instance *instance; 4778 struct fusion_context *fusion; 4779 4780 instance = pci_get_drvdata(pdev); 4781 instance->unload = 1; 4782 host = instance->host; 4783 fusion = instance->ctrl_context; 4784 4785 scsi_remove_host(instance->host); 4786 megasas_flush_cache(instance); 4787 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN); 4788 4789 /* cancel the delayed work if this work still in queue*/ 4790 if (instance->ev != NULL) { 4791 struct megasas_aen_event *ev = instance->ev; 4792 cancel_delayed_work_sync(&ev->hotplug_work); 4793 instance->ev = NULL; 4794 } 4795 4796 tasklet_kill(&instance->isr_tasklet); 4797 4798 /* 4799 * Take the instance off the instance array. Note that we will not 4800 * decrement the max_index. We let this array be sparse array 4801 */ 4802 for (i = 0; i < megasas_mgmt_info.max_index; i++) { 4803 if (megasas_mgmt_info.instance[i] == instance) { 4804 megasas_mgmt_info.count--; 4805 megasas_mgmt_info.instance[i] = NULL; 4806 4807 break; 4808 } 4809 } 4810 4811 instance->instancet->disable_intr(instance); 4812 4813 if (instance->msix_vectors) 4814 for (i = 0 ; i < instance->msix_vectors; i++) 4815 free_irq(instance->msixentry[i].vector, 4816 &instance->irq_context[i]); 4817 else 4818 free_irq(instance->pdev->irq, &instance->irq_context[0]); 4819 if (instance->msix_vectors) 4820 pci_disable_msix(instance->pdev); 4821 4822 switch (instance->pdev->device) { 4823 case PCI_DEVICE_ID_LSI_FUSION: 4824 case PCI_DEVICE_ID_LSI_INVADER: 4825 case PCI_DEVICE_ID_LSI_FURY: 4826 megasas_release_fusion(instance); 4827 for (i = 0; i < 2 ; i++) 4828 if (fusion->ld_map[i]) 4829 dma_free_coherent(&instance->pdev->dev, 4830 fusion->map_sz, 4831 fusion->ld_map[i], 4832 fusion-> 4833 ld_map_phys[i]); 4834 kfree(instance->ctrl_context); 4835 break; 4836 default: 4837 megasas_release_mfi(instance); 4838 pci_free_consistent(pdev, sizeof(u32), 4839 instance->producer, 4840 instance->producer_h); 4841 pci_free_consistent(pdev, sizeof(u32), 4842 instance->consumer, 4843 instance->consumer_h); 4844 break; 4845 } 4846 4847 if (instance->evt_detail) 4848 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail), 4849 instance->evt_detail, instance->evt_detail_h); 4850 scsi_host_put(host); 4851 4852 pci_disable_device(pdev); 4853 4854 return; 4855 } 4856 4857 /** 4858 * megasas_shutdown - Shutdown entry point 4859 * @device: Generic device structure 4860 */ 4861 static void megasas_shutdown(struct pci_dev *pdev) 4862 { 4863 int i; 4864 struct megasas_instance *instance = pci_get_drvdata(pdev); 4865 4866 instance->unload = 1; 4867 megasas_flush_cache(instance); 4868 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN); 4869 instance->instancet->disable_intr(instance); 4870 if (instance->msix_vectors) 4871 for (i = 0 ; i < instance->msix_vectors; i++) 4872 free_irq(instance->msixentry[i].vector, 4873 &instance->irq_context[i]); 4874 else 4875 free_irq(instance->pdev->irq, &instance->irq_context[0]); 4876 if (instance->msix_vectors) 4877 pci_disable_msix(instance->pdev); 4878 } 4879 4880 /** 4881 * megasas_mgmt_open - char node "open" entry point 4882 */ 4883 static int megasas_mgmt_open(struct inode *inode, struct file *filep) 4884 { 4885 /* 4886 * Allow only those users with admin rights 4887 */ 4888 if (!capable(CAP_SYS_ADMIN)) 4889 return -EACCES; 4890 4891 return 0; 4892 } 4893 4894 /** 4895 * megasas_mgmt_fasync - Async notifier registration from applications 4896 * 4897 * This function adds the calling process to a driver global queue. When an 4898 * event occurs, SIGIO will be sent to all processes in this queue. 4899 */ 4900 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode) 4901 { 4902 int rc; 4903 4904 mutex_lock(&megasas_async_queue_mutex); 4905 4906 rc = fasync_helper(fd, filep, mode, &megasas_async_queue); 4907 4908 mutex_unlock(&megasas_async_queue_mutex); 4909 4910 if (rc >= 0) { 4911 /* For sanity check when we get ioctl */ 4912 filep->private_data = filep; 4913 return 0; 4914 } 4915 4916 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc); 4917 4918 return rc; 4919 } 4920 4921 /** 4922 * megasas_mgmt_poll - char node "poll" entry point 4923 * */ 4924 static unsigned int megasas_mgmt_poll(struct file *file, poll_table *wait) 4925 { 4926 unsigned int mask; 4927 unsigned long flags; 4928 poll_wait(file, &megasas_poll_wait, wait); 4929 spin_lock_irqsave(&poll_aen_lock, flags); 4930 if (megasas_poll_wait_aen) 4931 mask = (POLLIN | POLLRDNORM); 4932 else 4933 mask = 0; 4934 spin_unlock_irqrestore(&poll_aen_lock, flags); 4935 return mask; 4936 } 4937 4938 /** 4939 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW 4940 * @instance: Adapter soft state 4941 * @argp: User's ioctl packet 4942 */ 4943 static int 4944 megasas_mgmt_fw_ioctl(struct megasas_instance *instance, 4945 struct megasas_iocpacket __user * user_ioc, 4946 struct megasas_iocpacket *ioc) 4947 { 4948 struct megasas_sge32 *kern_sge32; 4949 struct megasas_cmd *cmd; 4950 void *kbuff_arr[MAX_IOCTL_SGE]; 4951 dma_addr_t buf_handle = 0; 4952 int error = 0, i; 4953 void *sense = NULL; 4954 dma_addr_t sense_handle; 4955 unsigned long *sense_ptr; 4956 4957 memset(kbuff_arr, 0, sizeof(kbuff_arr)); 4958 4959 if (ioc->sge_count > MAX_IOCTL_SGE) { 4960 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n", 4961 ioc->sge_count, MAX_IOCTL_SGE); 4962 return -EINVAL; 4963 } 4964 4965 cmd = megasas_get_cmd(instance); 4966 if (!cmd) { 4967 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n"); 4968 return -ENOMEM; 4969 } 4970 4971 /* 4972 * User's IOCTL packet has 2 frames (maximum). Copy those two 4973 * frames into our cmd's frames. cmd->frame's context will get 4974 * overwritten when we copy from user's frames. So set that value 4975 * alone separately 4976 */ 4977 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE); 4978 cmd->frame->hdr.context = cpu_to_le32(cmd->index); 4979 cmd->frame->hdr.pad_0 = 0; 4980 cmd->frame->hdr.flags &= cpu_to_le16(~(MFI_FRAME_IEEE | 4981 MFI_FRAME_SGL64 | 4982 MFI_FRAME_SENSE64)); 4983 4984 /* 4985 * The management interface between applications and the fw uses 4986 * MFI frames. E.g, RAID configuration changes, LD property changes 4987 * etc are accomplishes through different kinds of MFI frames. The 4988 * driver needs to care only about substituting user buffers with 4989 * kernel buffers in SGLs. The location of SGL is embedded in the 4990 * struct iocpacket itself. 4991 */ 4992 kern_sge32 = (struct megasas_sge32 *) 4993 ((unsigned long)cmd->frame + ioc->sgl_off); 4994 4995 /* 4996 * For each user buffer, create a mirror buffer and copy in 4997 */ 4998 for (i = 0; i < ioc->sge_count; i++) { 4999 if (!ioc->sgl[i].iov_len) 5000 continue; 5001 5002 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev, 5003 ioc->sgl[i].iov_len, 5004 &buf_handle, GFP_KERNEL); 5005 if (!kbuff_arr[i]) { 5006 printk(KERN_DEBUG "megasas: Failed to alloc " 5007 "kernel SGL buffer for IOCTL \n"); 5008 error = -ENOMEM; 5009 goto out; 5010 } 5011 5012 /* 5013 * We don't change the dma_coherent_mask, so 5014 * pci_alloc_consistent only returns 32bit addresses 5015 */ 5016 kern_sge32[i].phys_addr = cpu_to_le32(buf_handle); 5017 kern_sge32[i].length = cpu_to_le32(ioc->sgl[i].iov_len); 5018 5019 /* 5020 * We created a kernel buffer corresponding to the 5021 * user buffer. Now copy in from the user buffer 5022 */ 5023 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base, 5024 (u32) (ioc->sgl[i].iov_len))) { 5025 error = -EFAULT; 5026 goto out; 5027 } 5028 } 5029 5030 if (ioc->sense_len) { 5031 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len, 5032 &sense_handle, GFP_KERNEL); 5033 if (!sense) { 5034 error = -ENOMEM; 5035 goto out; 5036 } 5037 5038 sense_ptr = 5039 (unsigned long *) ((unsigned long)cmd->frame + ioc->sense_off); 5040 *sense_ptr = cpu_to_le32(sense_handle); 5041 } 5042 5043 /* 5044 * Set the sync_cmd flag so that the ISR knows not to complete this 5045 * cmd to the SCSI mid-layer 5046 */ 5047 cmd->sync_cmd = 1; 5048 megasas_issue_blocked_cmd(instance, cmd); 5049 cmd->sync_cmd = 0; 5050 5051 /* 5052 * copy out the kernel buffers to user buffers 5053 */ 5054 for (i = 0; i < ioc->sge_count; i++) { 5055 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i], 5056 ioc->sgl[i].iov_len)) { 5057 error = -EFAULT; 5058 goto out; 5059 } 5060 } 5061 5062 /* 5063 * copy out the sense 5064 */ 5065 if (ioc->sense_len) { 5066 /* 5067 * sense_ptr points to the location that has the user 5068 * sense buffer address 5069 */ 5070 sense_ptr = (unsigned long *) ((unsigned long)ioc->frame.raw + 5071 ioc->sense_off); 5072 5073 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)), 5074 sense, ioc->sense_len)) { 5075 printk(KERN_ERR "megasas: Failed to copy out to user " 5076 "sense data\n"); 5077 error = -EFAULT; 5078 goto out; 5079 } 5080 } 5081 5082 /* 5083 * copy the status codes returned by the fw 5084 */ 5085 if (copy_to_user(&user_ioc->frame.hdr.cmd_status, 5086 &cmd->frame->hdr.cmd_status, sizeof(u8))) { 5087 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n"); 5088 error = -EFAULT; 5089 } 5090 5091 out: 5092 if (sense) { 5093 dma_free_coherent(&instance->pdev->dev, ioc->sense_len, 5094 sense, sense_handle); 5095 } 5096 5097 for (i = 0; i < ioc->sge_count; i++) { 5098 if (kbuff_arr[i]) 5099 dma_free_coherent(&instance->pdev->dev, 5100 le32_to_cpu(kern_sge32[i].length), 5101 kbuff_arr[i], 5102 le32_to_cpu(kern_sge32[i].phys_addr)); 5103 } 5104 5105 megasas_return_cmd(instance, cmd); 5106 return error; 5107 } 5108 5109 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg) 5110 { 5111 struct megasas_iocpacket __user *user_ioc = 5112 (struct megasas_iocpacket __user *)arg; 5113 struct megasas_iocpacket *ioc; 5114 struct megasas_instance *instance; 5115 int error; 5116 int i; 5117 unsigned long flags; 5118 u32 wait_time = MEGASAS_RESET_WAIT_TIME; 5119 5120 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL); 5121 if (!ioc) 5122 return -ENOMEM; 5123 5124 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) { 5125 error = -EFAULT; 5126 goto out_kfree_ioc; 5127 } 5128 5129 instance = megasas_lookup_instance(ioc->host_no); 5130 if (!instance) { 5131 error = -ENODEV; 5132 goto out_kfree_ioc; 5133 } 5134 5135 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { 5136 printk(KERN_ERR "Controller in crit error\n"); 5137 error = -ENODEV; 5138 goto out_kfree_ioc; 5139 } 5140 5141 if (instance->unload == 1) { 5142 error = -ENODEV; 5143 goto out_kfree_ioc; 5144 } 5145 5146 /* 5147 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds 5148 */ 5149 if (down_interruptible(&instance->ioctl_sem)) { 5150 error = -ERESTARTSYS; 5151 goto out_kfree_ioc; 5152 } 5153 5154 for (i = 0; i < wait_time; i++) { 5155 5156 spin_lock_irqsave(&instance->hba_lock, flags); 5157 if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) { 5158 spin_unlock_irqrestore(&instance->hba_lock, flags); 5159 break; 5160 } 5161 spin_unlock_irqrestore(&instance->hba_lock, flags); 5162 5163 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { 5164 printk(KERN_NOTICE "megasas: waiting" 5165 "for controller reset to finish\n"); 5166 } 5167 5168 msleep(1000); 5169 } 5170 5171 spin_lock_irqsave(&instance->hba_lock, flags); 5172 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { 5173 spin_unlock_irqrestore(&instance->hba_lock, flags); 5174 5175 printk(KERN_ERR "megaraid_sas: timed out while" 5176 "waiting for HBA to recover\n"); 5177 error = -ENODEV; 5178 goto out_up; 5179 } 5180 spin_unlock_irqrestore(&instance->hba_lock, flags); 5181 5182 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc); 5183 out_up: 5184 up(&instance->ioctl_sem); 5185 5186 out_kfree_ioc: 5187 kfree(ioc); 5188 return error; 5189 } 5190 5191 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg) 5192 { 5193 struct megasas_instance *instance; 5194 struct megasas_aen aen; 5195 int error; 5196 int i; 5197 unsigned long flags; 5198 u32 wait_time = MEGASAS_RESET_WAIT_TIME; 5199 5200 if (file->private_data != file) { 5201 printk(KERN_DEBUG "megasas: fasync_helper was not " 5202 "called first\n"); 5203 return -EINVAL; 5204 } 5205 5206 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen))) 5207 return -EFAULT; 5208 5209 instance = megasas_lookup_instance(aen.host_no); 5210 5211 if (!instance) 5212 return -ENODEV; 5213 5214 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { 5215 return -ENODEV; 5216 } 5217 5218 if (instance->unload == 1) { 5219 return -ENODEV; 5220 } 5221 5222 for (i = 0; i < wait_time; i++) { 5223 5224 spin_lock_irqsave(&instance->hba_lock, flags); 5225 if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) { 5226 spin_unlock_irqrestore(&instance->hba_lock, 5227 flags); 5228 break; 5229 } 5230 5231 spin_unlock_irqrestore(&instance->hba_lock, flags); 5232 5233 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { 5234 printk(KERN_NOTICE "megasas: waiting for" 5235 "controller reset to finish\n"); 5236 } 5237 5238 msleep(1000); 5239 } 5240 5241 spin_lock_irqsave(&instance->hba_lock, flags); 5242 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { 5243 spin_unlock_irqrestore(&instance->hba_lock, flags); 5244 printk(KERN_ERR "megaraid_sas: timed out while waiting" 5245 "for HBA to recover.\n"); 5246 return -ENODEV; 5247 } 5248 spin_unlock_irqrestore(&instance->hba_lock, flags); 5249 5250 mutex_lock(&instance->aen_mutex); 5251 error = megasas_register_aen(instance, aen.seq_num, 5252 aen.class_locale_word); 5253 mutex_unlock(&instance->aen_mutex); 5254 return error; 5255 } 5256 5257 /** 5258 * megasas_mgmt_ioctl - char node ioctl entry point 5259 */ 5260 static long 5261 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5262 { 5263 switch (cmd) { 5264 case MEGASAS_IOC_FIRMWARE: 5265 return megasas_mgmt_ioctl_fw(file, arg); 5266 5267 case MEGASAS_IOC_GET_AEN: 5268 return megasas_mgmt_ioctl_aen(file, arg); 5269 } 5270 5271 return -ENOTTY; 5272 } 5273 5274 #ifdef CONFIG_COMPAT 5275 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg) 5276 { 5277 struct compat_megasas_iocpacket __user *cioc = 5278 (struct compat_megasas_iocpacket __user *)arg; 5279 struct megasas_iocpacket __user *ioc = 5280 compat_alloc_user_space(sizeof(struct megasas_iocpacket)); 5281 int i; 5282 int error = 0; 5283 compat_uptr_t ptr; 5284 5285 if (clear_user(ioc, sizeof(*ioc))) 5286 return -EFAULT; 5287 5288 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) || 5289 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) || 5290 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) || 5291 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) || 5292 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) || 5293 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32))) 5294 return -EFAULT; 5295 5296 /* 5297 * The sense_ptr is used in megasas_mgmt_fw_ioctl only when 5298 * sense_len is not null, so prepare the 64bit value under 5299 * the same condition. 5300 */ 5301 if (ioc->sense_len) { 5302 void __user **sense_ioc_ptr = 5303 (void __user **)(ioc->frame.raw + ioc->sense_off); 5304 compat_uptr_t *sense_cioc_ptr = 5305 (compat_uptr_t *)(cioc->frame.raw + cioc->sense_off); 5306 if (get_user(ptr, sense_cioc_ptr) || 5307 put_user(compat_ptr(ptr), sense_ioc_ptr)) 5308 return -EFAULT; 5309 } 5310 5311 for (i = 0; i < MAX_IOCTL_SGE; i++) { 5312 if (get_user(ptr, &cioc->sgl[i].iov_base) || 5313 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) || 5314 copy_in_user(&ioc->sgl[i].iov_len, 5315 &cioc->sgl[i].iov_len, sizeof(compat_size_t))) 5316 return -EFAULT; 5317 } 5318 5319 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc); 5320 5321 if (copy_in_user(&cioc->frame.hdr.cmd_status, 5322 &ioc->frame.hdr.cmd_status, sizeof(u8))) { 5323 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n"); 5324 return -EFAULT; 5325 } 5326 return error; 5327 } 5328 5329 static long 5330 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd, 5331 unsigned long arg) 5332 { 5333 switch (cmd) { 5334 case MEGASAS_IOC_FIRMWARE32: 5335 return megasas_mgmt_compat_ioctl_fw(file, arg); 5336 case MEGASAS_IOC_GET_AEN: 5337 return megasas_mgmt_ioctl_aen(file, arg); 5338 } 5339 5340 return -ENOTTY; 5341 } 5342 #endif 5343 5344 /* 5345 * File operations structure for management interface 5346 */ 5347 static const struct file_operations megasas_mgmt_fops = { 5348 .owner = THIS_MODULE, 5349 .open = megasas_mgmt_open, 5350 .fasync = megasas_mgmt_fasync, 5351 .unlocked_ioctl = megasas_mgmt_ioctl, 5352 .poll = megasas_mgmt_poll, 5353 #ifdef CONFIG_COMPAT 5354 .compat_ioctl = megasas_mgmt_compat_ioctl, 5355 #endif 5356 .llseek = noop_llseek, 5357 }; 5358 5359 /* 5360 * PCI hotplug support registration structure 5361 */ 5362 static struct pci_driver megasas_pci_driver = { 5363 5364 .name = "megaraid_sas", 5365 .id_table = megasas_pci_table, 5366 .probe = megasas_probe_one, 5367 .remove = megasas_detach_one, 5368 .suspend = megasas_suspend, 5369 .resume = megasas_resume, 5370 .shutdown = megasas_shutdown, 5371 }; 5372 5373 /* 5374 * Sysfs driver attributes 5375 */ 5376 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf) 5377 { 5378 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n", 5379 MEGASAS_VERSION); 5380 } 5381 5382 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL); 5383 5384 static ssize_t 5385 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf) 5386 { 5387 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n", 5388 MEGASAS_RELDATE); 5389 } 5390 5391 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date, 5392 NULL); 5393 5394 static ssize_t 5395 megasas_sysfs_show_support_poll_for_event(struct device_driver *dd, char *buf) 5396 { 5397 return sprintf(buf, "%u\n", support_poll_for_event); 5398 } 5399 5400 static DRIVER_ATTR(support_poll_for_event, S_IRUGO, 5401 megasas_sysfs_show_support_poll_for_event, NULL); 5402 5403 static ssize_t 5404 megasas_sysfs_show_support_device_change(struct device_driver *dd, char *buf) 5405 { 5406 return sprintf(buf, "%u\n", support_device_change); 5407 } 5408 5409 static DRIVER_ATTR(support_device_change, S_IRUGO, 5410 megasas_sysfs_show_support_device_change, NULL); 5411 5412 static ssize_t 5413 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf) 5414 { 5415 return sprintf(buf, "%u\n", megasas_dbg_lvl); 5416 } 5417 5418 static ssize_t 5419 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count) 5420 { 5421 int retval = count; 5422 if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){ 5423 printk(KERN_ERR "megasas: could not set dbg_lvl\n"); 5424 retval = -EINVAL; 5425 } 5426 return retval; 5427 } 5428 5429 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUSR, megasas_sysfs_show_dbg_lvl, 5430 megasas_sysfs_set_dbg_lvl); 5431 5432 static void 5433 megasas_aen_polling(struct work_struct *work) 5434 { 5435 struct megasas_aen_event *ev = 5436 container_of(work, struct megasas_aen_event, hotplug_work.work); 5437 struct megasas_instance *instance = ev->instance; 5438 union megasas_evt_class_locale class_locale; 5439 struct Scsi_Host *host; 5440 struct scsi_device *sdev1; 5441 u16 pd_index = 0; 5442 u16 ld_index = 0; 5443 int i, j, doscan = 0; 5444 u32 seq_num; 5445 int error; 5446 5447 if (!instance) { 5448 printk(KERN_ERR "invalid instance!\n"); 5449 kfree(ev); 5450 return; 5451 } 5452 instance->ev = NULL; 5453 host = instance->host; 5454 if (instance->evt_detail) { 5455 5456 switch (le32_to_cpu(instance->evt_detail->code)) { 5457 case MR_EVT_PD_INSERTED: 5458 if (megasas_get_pd_list(instance) == 0) { 5459 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) { 5460 for (j = 0; 5461 j < MEGASAS_MAX_DEV_PER_CHANNEL; 5462 j++) { 5463 5464 pd_index = 5465 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5466 5467 sdev1 = 5468 scsi_device_lookup(host, i, j, 0); 5469 5470 if (instance->pd_list[pd_index].driveState 5471 == MR_PD_STATE_SYSTEM) { 5472 if (!sdev1) { 5473 scsi_add_device(host, i, j, 0); 5474 } 5475 5476 if (sdev1) 5477 scsi_device_put(sdev1); 5478 } 5479 } 5480 } 5481 } 5482 doscan = 0; 5483 break; 5484 5485 case MR_EVT_PD_REMOVED: 5486 if (megasas_get_pd_list(instance) == 0) { 5487 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) { 5488 for (j = 0; 5489 j < MEGASAS_MAX_DEV_PER_CHANNEL; 5490 j++) { 5491 5492 pd_index = 5493 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5494 5495 sdev1 = 5496 scsi_device_lookup(host, i, j, 0); 5497 5498 if (instance->pd_list[pd_index].driveState 5499 == MR_PD_STATE_SYSTEM) { 5500 if (sdev1) { 5501 scsi_device_put(sdev1); 5502 } 5503 } else { 5504 if (sdev1) { 5505 scsi_remove_device(sdev1); 5506 scsi_device_put(sdev1); 5507 } 5508 } 5509 } 5510 } 5511 } 5512 doscan = 0; 5513 break; 5514 5515 case MR_EVT_LD_OFFLINE: 5516 case MR_EVT_CFG_CLEARED: 5517 case MR_EVT_LD_DELETED: 5518 if (megasas_ld_list_query(instance, 5519 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST)) 5520 megasas_get_ld_list(instance); 5521 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) { 5522 for (j = 0; 5523 j < MEGASAS_MAX_DEV_PER_CHANNEL; 5524 j++) { 5525 5526 ld_index = 5527 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5528 5529 sdev1 = scsi_device_lookup(host, 5530 MEGASAS_MAX_PD_CHANNELS + i, 5531 j, 5532 0); 5533 5534 if (instance->ld_ids[ld_index] != 0xff) { 5535 if (sdev1) { 5536 scsi_device_put(sdev1); 5537 } 5538 } else { 5539 if (sdev1) { 5540 scsi_remove_device(sdev1); 5541 scsi_device_put(sdev1); 5542 } 5543 } 5544 } 5545 } 5546 doscan = 0; 5547 break; 5548 case MR_EVT_LD_CREATED: 5549 if (megasas_ld_list_query(instance, 5550 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST)) 5551 megasas_get_ld_list(instance); 5552 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) { 5553 for (j = 0; 5554 j < MEGASAS_MAX_DEV_PER_CHANNEL; 5555 j++) { 5556 ld_index = 5557 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5558 5559 sdev1 = scsi_device_lookup(host, 5560 MEGASAS_MAX_PD_CHANNELS + i, 5561 j, 0); 5562 5563 if (instance->ld_ids[ld_index] != 5564 0xff) { 5565 if (!sdev1) { 5566 scsi_add_device(host, 5567 MEGASAS_MAX_PD_CHANNELS + i, 5568 j, 0); 5569 } 5570 } 5571 if (sdev1) { 5572 scsi_device_put(sdev1); 5573 } 5574 } 5575 } 5576 doscan = 0; 5577 break; 5578 case MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED: 5579 case MR_EVT_FOREIGN_CFG_IMPORTED: 5580 case MR_EVT_LD_STATE_CHANGE: 5581 doscan = 1; 5582 break; 5583 default: 5584 doscan = 0; 5585 break; 5586 } 5587 } else { 5588 printk(KERN_ERR "invalid evt_detail!\n"); 5589 kfree(ev); 5590 return; 5591 } 5592 5593 if (doscan) { 5594 printk(KERN_INFO "scanning ...\n"); 5595 megasas_get_pd_list(instance); 5596 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) { 5597 for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { 5598 pd_index = i*MEGASAS_MAX_DEV_PER_CHANNEL + j; 5599 sdev1 = scsi_device_lookup(host, i, j, 0); 5600 if (instance->pd_list[pd_index].driveState == 5601 MR_PD_STATE_SYSTEM) { 5602 if (!sdev1) { 5603 scsi_add_device(host, i, j, 0); 5604 } 5605 if (sdev1) 5606 scsi_device_put(sdev1); 5607 } else { 5608 if (sdev1) { 5609 scsi_remove_device(sdev1); 5610 scsi_device_put(sdev1); 5611 } 5612 } 5613 } 5614 } 5615 5616 if (megasas_ld_list_query(instance, 5617 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST)) 5618 megasas_get_ld_list(instance); 5619 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) { 5620 for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { 5621 ld_index = 5622 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5623 5624 sdev1 = scsi_device_lookup(host, 5625 MEGASAS_MAX_PD_CHANNELS + i, j, 0); 5626 if (instance->ld_ids[ld_index] != 0xff) { 5627 if (!sdev1) { 5628 scsi_add_device(host, 5629 MEGASAS_MAX_PD_CHANNELS + i, 5630 j, 0); 5631 } else { 5632 scsi_device_put(sdev1); 5633 } 5634 } else { 5635 if (sdev1) { 5636 scsi_remove_device(sdev1); 5637 scsi_device_put(sdev1); 5638 } 5639 } 5640 } 5641 } 5642 } 5643 5644 if ( instance->aen_cmd != NULL ) { 5645 kfree(ev); 5646 return ; 5647 } 5648 5649 seq_num = le32_to_cpu(instance->evt_detail->seq_num) + 1; 5650 5651 /* Register AEN with FW for latest sequence number plus 1 */ 5652 class_locale.members.reserved = 0; 5653 class_locale.members.locale = MR_EVT_LOCALE_ALL; 5654 class_locale.members.class = MR_EVT_CLASS_DEBUG; 5655 mutex_lock(&instance->aen_mutex); 5656 error = megasas_register_aen(instance, seq_num, 5657 class_locale.word); 5658 mutex_unlock(&instance->aen_mutex); 5659 5660 if (error) 5661 printk(KERN_ERR "register aen failed error %x\n", error); 5662 5663 kfree(ev); 5664 } 5665 5666 /** 5667 * megasas_init - Driver load entry point 5668 */ 5669 static int __init megasas_init(void) 5670 { 5671 int rval; 5672 5673 /* 5674 * Announce driver version and other information 5675 */ 5676 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION, 5677 MEGASAS_EXT_VERSION); 5678 5679 spin_lock_init(&poll_aen_lock); 5680 5681 support_poll_for_event = 2; 5682 support_device_change = 1; 5683 5684 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info)); 5685 5686 /* 5687 * Register character device node 5688 */ 5689 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops); 5690 5691 if (rval < 0) { 5692 printk(KERN_DEBUG "megasas: failed to open device node\n"); 5693 return rval; 5694 } 5695 5696 megasas_mgmt_majorno = rval; 5697 5698 /* 5699 * Register ourselves as PCI hotplug module 5700 */ 5701 rval = pci_register_driver(&megasas_pci_driver); 5702 5703 if (rval) { 5704 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n"); 5705 goto err_pcidrv; 5706 } 5707 5708 rval = driver_create_file(&megasas_pci_driver.driver, 5709 &driver_attr_version); 5710 if (rval) 5711 goto err_dcf_attr_ver; 5712 rval = driver_create_file(&megasas_pci_driver.driver, 5713 &driver_attr_release_date); 5714 if (rval) 5715 goto err_dcf_rel_date; 5716 5717 rval = driver_create_file(&megasas_pci_driver.driver, 5718 &driver_attr_support_poll_for_event); 5719 if (rval) 5720 goto err_dcf_support_poll_for_event; 5721 5722 rval = driver_create_file(&megasas_pci_driver.driver, 5723 &driver_attr_dbg_lvl); 5724 if (rval) 5725 goto err_dcf_dbg_lvl; 5726 rval = driver_create_file(&megasas_pci_driver.driver, 5727 &driver_attr_support_device_change); 5728 if (rval) 5729 goto err_dcf_support_device_change; 5730 5731 return rval; 5732 5733 err_dcf_support_device_change: 5734 driver_remove_file(&megasas_pci_driver.driver, 5735 &driver_attr_dbg_lvl); 5736 err_dcf_dbg_lvl: 5737 driver_remove_file(&megasas_pci_driver.driver, 5738 &driver_attr_support_poll_for_event); 5739 5740 err_dcf_support_poll_for_event: 5741 driver_remove_file(&megasas_pci_driver.driver, 5742 &driver_attr_release_date); 5743 5744 err_dcf_rel_date: 5745 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version); 5746 err_dcf_attr_ver: 5747 pci_unregister_driver(&megasas_pci_driver); 5748 err_pcidrv: 5749 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl"); 5750 return rval; 5751 } 5752 5753 /** 5754 * megasas_exit - Driver unload entry point 5755 */ 5756 static void __exit megasas_exit(void) 5757 { 5758 driver_remove_file(&megasas_pci_driver.driver, 5759 &driver_attr_dbg_lvl); 5760 driver_remove_file(&megasas_pci_driver.driver, 5761 &driver_attr_support_poll_for_event); 5762 driver_remove_file(&megasas_pci_driver.driver, 5763 &driver_attr_support_device_change); 5764 driver_remove_file(&megasas_pci_driver.driver, 5765 &driver_attr_release_date); 5766 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version); 5767 5768 pci_unregister_driver(&megasas_pci_driver); 5769 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl"); 5770 } 5771 5772 module_init(megasas_init); 5773 module_exit(megasas_exit); 5774