1 /*
2  *  Linux MegaRAID driver for SAS based RAID controllers
3  *
4  *  Copyright (c) 2003-2012  LSI Corporation.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version 2
9  *  of the License, or (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *  FILE: megaraid_sas_base.c
21  *  Version : 06.700.06.00-rc1
22  *
23  *  Authors: LSI Corporation
24  *           Sreenivas Bagalkote
25  *           Sumant Patro
26  *           Bo Yang
27  *           Adam Radford <linuxraid@lsi.com>
28  *
29  *  Send feedback to: <megaraidlinux@lsi.com>
30  *
31  *  Mail to: LSI Corporation, 1621 Barber Lane, Milpitas, CA 95035
32  *     ATTN: Linuxraid
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/pci.h>
38 #include <linux/list.h>
39 #include <linux/moduleparam.h>
40 #include <linux/module.h>
41 #include <linux/spinlock.h>
42 #include <linux/interrupt.h>
43 #include <linux/delay.h>
44 #include <linux/uio.h>
45 #include <linux/slab.h>
46 #include <asm/uaccess.h>
47 #include <linux/fs.h>
48 #include <linux/compat.h>
49 #include <linux/blkdev.h>
50 #include <linux/mutex.h>
51 #include <linux/poll.h>
52 
53 #include <scsi/scsi.h>
54 #include <scsi/scsi_cmnd.h>
55 #include <scsi/scsi_device.h>
56 #include <scsi/scsi_host.h>
57 #include <scsi/scsi_tcq.h>
58 #include "megaraid_sas_fusion.h"
59 #include "megaraid_sas.h"
60 
61 /*
62  * Number of sectors per IO command
63  * Will be set in megasas_init_mfi if user does not provide
64  */
65 static unsigned int max_sectors;
66 module_param_named(max_sectors, max_sectors, int, 0);
67 MODULE_PARM_DESC(max_sectors,
68 	"Maximum number of sectors per IO command");
69 
70 static int msix_disable;
71 module_param(msix_disable, int, S_IRUGO);
72 MODULE_PARM_DESC(msix_disable, "Disable MSI-X interrupt handling. Default: 0");
73 
74 static unsigned int msix_vectors;
75 module_param(msix_vectors, int, S_IRUGO);
76 MODULE_PARM_DESC(msix_vectors, "MSI-X max vector count. Default: Set by FW");
77 
78 static int throttlequeuedepth = MEGASAS_THROTTLE_QUEUE_DEPTH;
79 module_param(throttlequeuedepth, int, S_IRUGO);
80 MODULE_PARM_DESC(throttlequeuedepth,
81 	"Adapter queue depth when throttled due to I/O timeout. Default: 16");
82 
83 int resetwaittime = MEGASAS_RESET_WAIT_TIME;
84 module_param(resetwaittime, int, S_IRUGO);
85 MODULE_PARM_DESC(resetwaittime, "Wait time in seconds after I/O timeout "
86 		 "before resetting adapter. Default: 180");
87 
88 MODULE_LICENSE("GPL");
89 MODULE_VERSION(MEGASAS_VERSION);
90 MODULE_AUTHOR("megaraidlinux@lsi.com");
91 MODULE_DESCRIPTION("LSI MegaRAID SAS Driver");
92 
93 int megasas_transition_to_ready(struct megasas_instance *instance, int ocr);
94 static int megasas_get_pd_list(struct megasas_instance *instance);
95 static int megasas_ld_list_query(struct megasas_instance *instance,
96 				 u8 query_type);
97 static int megasas_issue_init_mfi(struct megasas_instance *instance);
98 static int megasas_register_aen(struct megasas_instance *instance,
99 				u32 seq_num, u32 class_locale_word);
100 /*
101  * PCI ID table for all supported controllers
102  */
103 static struct pci_device_id megasas_pci_table[] = {
104 
105 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
106 	/* xscale IOP */
107 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
108 	/* ppc IOP */
109 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)},
110 	/* ppc IOP */
111 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078GEN2)},
112 	/* gen2*/
113 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0079GEN2)},
114 	/* gen2*/
115 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0073SKINNY)},
116 	/* skinny*/
117 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0071SKINNY)},
118 	/* skinny*/
119 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
120 	/* xscale IOP, vega */
121 	{PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
122 	/* xscale IOP */
123 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FUSION)},
124 	/* Fusion */
125 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_INVADER)},
126 	/* Invader */
127 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FURY)},
128 	/* Fury */
129 	{}
130 };
131 
132 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
133 
134 static int megasas_mgmt_majorno;
135 static struct megasas_mgmt_info megasas_mgmt_info;
136 static struct fasync_struct *megasas_async_queue;
137 static DEFINE_MUTEX(megasas_async_queue_mutex);
138 
139 static int megasas_poll_wait_aen;
140 static DECLARE_WAIT_QUEUE_HEAD(megasas_poll_wait);
141 static u32 support_poll_for_event;
142 u32 megasas_dbg_lvl;
143 static u32 support_device_change;
144 
145 /* define lock for aen poll */
146 spinlock_t poll_aen_lock;
147 
148 void
149 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
150 		     u8 alt_status);
151 static u32
152 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs);
153 static int
154 megasas_adp_reset_gen2(struct megasas_instance *instance,
155 		       struct megasas_register_set __iomem *reg_set);
156 static irqreturn_t megasas_isr(int irq, void *devp);
157 static u32
158 megasas_init_adapter_mfi(struct megasas_instance *instance);
159 u32
160 megasas_build_and_issue_cmd(struct megasas_instance *instance,
161 			    struct scsi_cmnd *scmd);
162 static void megasas_complete_cmd_dpc(unsigned long instance_addr);
163 void
164 megasas_release_fusion(struct megasas_instance *instance);
165 int
166 megasas_ioc_init_fusion(struct megasas_instance *instance);
167 void
168 megasas_free_cmds_fusion(struct megasas_instance *instance);
169 u8
170 megasas_get_map_info(struct megasas_instance *instance);
171 int
172 megasas_sync_map_info(struct megasas_instance *instance);
173 int
174 wait_and_poll(struct megasas_instance *instance, struct megasas_cmd *cmd);
175 void megasas_reset_reply_desc(struct megasas_instance *instance);
176 int megasas_reset_fusion(struct Scsi_Host *shost);
177 void megasas_fusion_ocr_wq(struct work_struct *work);
178 
179 void
180 megasas_issue_dcmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
181 {
182 	instance->instancet->fire_cmd(instance,
183 		cmd->frame_phys_addr, 0, instance->reg_set);
184 }
185 
186 /**
187  * megasas_get_cmd -	Get a command from the free pool
188  * @instance:		Adapter soft state
189  *
190  * Returns a free command from the pool
191  */
192 struct megasas_cmd *megasas_get_cmd(struct megasas_instance
193 						  *instance)
194 {
195 	unsigned long flags;
196 	struct megasas_cmd *cmd = NULL;
197 
198 	spin_lock_irqsave(&instance->cmd_pool_lock, flags);
199 
200 	if (!list_empty(&instance->cmd_pool)) {
201 		cmd = list_entry((&instance->cmd_pool)->next,
202 				 struct megasas_cmd, list);
203 		list_del_init(&cmd->list);
204 	} else {
205 		printk(KERN_ERR "megasas: Command pool empty!\n");
206 	}
207 
208 	spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
209 	return cmd;
210 }
211 
212 /**
213  * megasas_return_cmd -	Return a cmd to free command pool
214  * @instance:		Adapter soft state
215  * @cmd:		Command packet to be returned to free command pool
216  */
217 inline void
218 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
219 {
220 	unsigned long flags;
221 
222 	spin_lock_irqsave(&instance->cmd_pool_lock, flags);
223 
224 	cmd->scmd = NULL;
225 	cmd->frame_count = 0;
226 	if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) &&
227 	    (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) &&
228 	    (instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) &&
229 	    (reset_devices))
230 		cmd->frame->hdr.cmd = MFI_CMD_INVALID;
231 	list_add_tail(&cmd->list, &instance->cmd_pool);
232 
233 	spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
234 }
235 
236 
237 /**
238 *	The following functions are defined for xscale
239 *	(deviceid : 1064R, PERC5) controllers
240 */
241 
242 /**
243  * megasas_enable_intr_xscale -	Enables interrupts
244  * @regs:			MFI register set
245  */
246 static inline void
247 megasas_enable_intr_xscale(struct megasas_instance *instance)
248 {
249 	struct megasas_register_set __iomem *regs;
250 	regs = instance->reg_set;
251 	writel(0, &(regs)->outbound_intr_mask);
252 
253 	/* Dummy readl to force pci flush */
254 	readl(&regs->outbound_intr_mask);
255 }
256 
257 /**
258  * megasas_disable_intr_xscale -Disables interrupt
259  * @regs:			MFI register set
260  */
261 static inline void
262 megasas_disable_intr_xscale(struct megasas_instance *instance)
263 {
264 	struct megasas_register_set __iomem *regs;
265 	u32 mask = 0x1f;
266 	regs = instance->reg_set;
267 	writel(mask, &regs->outbound_intr_mask);
268 	/* Dummy readl to force pci flush */
269 	readl(&regs->outbound_intr_mask);
270 }
271 
272 /**
273  * megasas_read_fw_status_reg_xscale - returns the current FW status value
274  * @regs:			MFI register set
275  */
276 static u32
277 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
278 {
279 	return readl(&(regs)->outbound_msg_0);
280 }
281 /**
282  * megasas_clear_interrupt_xscale -	Check & clear interrupt
283  * @regs:				MFI register set
284  */
285 static int
286 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
287 {
288 	u32 status;
289 	u32 mfiStatus = 0;
290 	/*
291 	 * Check if it is our interrupt
292 	 */
293 	status = readl(&regs->outbound_intr_status);
294 
295 	if (status & MFI_OB_INTR_STATUS_MASK)
296 		mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
297 	if (status & MFI_XSCALE_OMR0_CHANGE_INTERRUPT)
298 		mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
299 
300 	/*
301 	 * Clear the interrupt by writing back the same value
302 	 */
303 	if (mfiStatus)
304 		writel(status, &regs->outbound_intr_status);
305 
306 	/* Dummy readl to force pci flush */
307 	readl(&regs->outbound_intr_status);
308 
309 	return mfiStatus;
310 }
311 
312 /**
313  * megasas_fire_cmd_xscale -	Sends command to the FW
314  * @frame_phys_addr :		Physical address of cmd
315  * @frame_count :		Number of frames for the command
316  * @regs :			MFI register set
317  */
318 static inline void
319 megasas_fire_cmd_xscale(struct megasas_instance *instance,
320 		dma_addr_t frame_phys_addr,
321 		u32 frame_count,
322 		struct megasas_register_set __iomem *regs)
323 {
324 	unsigned long flags;
325 	spin_lock_irqsave(&instance->hba_lock, flags);
326 	writel((frame_phys_addr >> 3)|(frame_count),
327 	       &(regs)->inbound_queue_port);
328 	spin_unlock_irqrestore(&instance->hba_lock, flags);
329 }
330 
331 /**
332  * megasas_adp_reset_xscale -  For controller reset
333  * @regs:                              MFI register set
334  */
335 static int
336 megasas_adp_reset_xscale(struct megasas_instance *instance,
337 	struct megasas_register_set __iomem *regs)
338 {
339 	u32 i;
340 	u32 pcidata;
341 	writel(MFI_ADP_RESET, &regs->inbound_doorbell);
342 
343 	for (i = 0; i < 3; i++)
344 		msleep(1000); /* sleep for 3 secs */
345 	pcidata  = 0;
346 	pci_read_config_dword(instance->pdev, MFI_1068_PCSR_OFFSET, &pcidata);
347 	printk(KERN_NOTICE "pcidata = %x\n", pcidata);
348 	if (pcidata & 0x2) {
349 		printk(KERN_NOTICE "mfi 1068 offset read=%x\n", pcidata);
350 		pcidata &= ~0x2;
351 		pci_write_config_dword(instance->pdev,
352 				MFI_1068_PCSR_OFFSET, pcidata);
353 
354 		for (i = 0; i < 2; i++)
355 			msleep(1000); /* need to wait 2 secs again */
356 
357 		pcidata  = 0;
358 		pci_read_config_dword(instance->pdev,
359 				MFI_1068_FW_HANDSHAKE_OFFSET, &pcidata);
360 		printk(KERN_NOTICE "1068 offset handshake read=%x\n", pcidata);
361 		if ((pcidata & 0xffff0000) == MFI_1068_FW_READY) {
362 			printk(KERN_NOTICE "1068 offset pcidt=%x\n", pcidata);
363 			pcidata = 0;
364 			pci_write_config_dword(instance->pdev,
365 				MFI_1068_FW_HANDSHAKE_OFFSET, pcidata);
366 		}
367 	}
368 	return 0;
369 }
370 
371 /**
372  * megasas_check_reset_xscale -	For controller reset check
373  * @regs:				MFI register set
374  */
375 static int
376 megasas_check_reset_xscale(struct megasas_instance *instance,
377 		struct megasas_register_set __iomem *regs)
378 {
379 
380 	if ((instance->adprecovery != MEGASAS_HBA_OPERATIONAL) &&
381 	    (le32_to_cpu(*instance->consumer) ==
382 		MEGASAS_ADPRESET_INPROG_SIGN))
383 		return 1;
384 	return 0;
385 }
386 
387 static struct megasas_instance_template megasas_instance_template_xscale = {
388 
389 	.fire_cmd = megasas_fire_cmd_xscale,
390 	.enable_intr = megasas_enable_intr_xscale,
391 	.disable_intr = megasas_disable_intr_xscale,
392 	.clear_intr = megasas_clear_intr_xscale,
393 	.read_fw_status_reg = megasas_read_fw_status_reg_xscale,
394 	.adp_reset = megasas_adp_reset_xscale,
395 	.check_reset = megasas_check_reset_xscale,
396 	.service_isr = megasas_isr,
397 	.tasklet = megasas_complete_cmd_dpc,
398 	.init_adapter = megasas_init_adapter_mfi,
399 	.build_and_issue_cmd = megasas_build_and_issue_cmd,
400 	.issue_dcmd = megasas_issue_dcmd,
401 };
402 
403 /**
404 *	This is the end of set of functions & definitions specific
405 *	to xscale (deviceid : 1064R, PERC5) controllers
406 */
407 
408 /**
409 *	The following functions are defined for ppc (deviceid : 0x60)
410 * 	controllers
411 */
412 
413 /**
414  * megasas_enable_intr_ppc -	Enables interrupts
415  * @regs:			MFI register set
416  */
417 static inline void
418 megasas_enable_intr_ppc(struct megasas_instance *instance)
419 {
420 	struct megasas_register_set __iomem *regs;
421 	regs = instance->reg_set;
422 	writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
423 
424 	writel(~0x80000000, &(regs)->outbound_intr_mask);
425 
426 	/* Dummy readl to force pci flush */
427 	readl(&regs->outbound_intr_mask);
428 }
429 
430 /**
431  * megasas_disable_intr_ppc -	Disable interrupt
432  * @regs:			MFI register set
433  */
434 static inline void
435 megasas_disable_intr_ppc(struct megasas_instance *instance)
436 {
437 	struct megasas_register_set __iomem *regs;
438 	u32 mask = 0xFFFFFFFF;
439 	regs = instance->reg_set;
440 	writel(mask, &regs->outbound_intr_mask);
441 	/* Dummy readl to force pci flush */
442 	readl(&regs->outbound_intr_mask);
443 }
444 
445 /**
446  * megasas_read_fw_status_reg_ppc - returns the current FW status value
447  * @regs:			MFI register set
448  */
449 static u32
450 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
451 {
452 	return readl(&(regs)->outbound_scratch_pad);
453 }
454 
455 /**
456  * megasas_clear_interrupt_ppc -	Check & clear interrupt
457  * @regs:				MFI register set
458  */
459 static int
460 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
461 {
462 	u32 status, mfiStatus = 0;
463 
464 	/*
465 	 * Check if it is our interrupt
466 	 */
467 	status = readl(&regs->outbound_intr_status);
468 
469 	if (status & MFI_REPLY_1078_MESSAGE_INTERRUPT)
470 		mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
471 
472 	if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT)
473 		mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
474 
475 	/*
476 	 * Clear the interrupt by writing back the same value
477 	 */
478 	writel(status, &regs->outbound_doorbell_clear);
479 
480 	/* Dummy readl to force pci flush */
481 	readl(&regs->outbound_doorbell_clear);
482 
483 	return mfiStatus;
484 }
485 
486 /**
487  * megasas_fire_cmd_ppc -	Sends command to the FW
488  * @frame_phys_addr :		Physical address of cmd
489  * @frame_count :		Number of frames for the command
490  * @regs :			MFI register set
491  */
492 static inline void
493 megasas_fire_cmd_ppc(struct megasas_instance *instance,
494 		dma_addr_t frame_phys_addr,
495 		u32 frame_count,
496 		struct megasas_register_set __iomem *regs)
497 {
498 	unsigned long flags;
499 	spin_lock_irqsave(&instance->hba_lock, flags);
500 	writel((frame_phys_addr | (frame_count<<1))|1,
501 			&(regs)->inbound_queue_port);
502 	spin_unlock_irqrestore(&instance->hba_lock, flags);
503 }
504 
505 /**
506  * megasas_check_reset_ppc -	For controller reset check
507  * @regs:				MFI register set
508  */
509 static int
510 megasas_check_reset_ppc(struct megasas_instance *instance,
511 			struct megasas_register_set __iomem *regs)
512 {
513 	if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL)
514 		return 1;
515 
516 	return 0;
517 }
518 
519 static struct megasas_instance_template megasas_instance_template_ppc = {
520 
521 	.fire_cmd = megasas_fire_cmd_ppc,
522 	.enable_intr = megasas_enable_intr_ppc,
523 	.disable_intr = megasas_disable_intr_ppc,
524 	.clear_intr = megasas_clear_intr_ppc,
525 	.read_fw_status_reg = megasas_read_fw_status_reg_ppc,
526 	.adp_reset = megasas_adp_reset_xscale,
527 	.check_reset = megasas_check_reset_ppc,
528 	.service_isr = megasas_isr,
529 	.tasklet = megasas_complete_cmd_dpc,
530 	.init_adapter = megasas_init_adapter_mfi,
531 	.build_and_issue_cmd = megasas_build_and_issue_cmd,
532 	.issue_dcmd = megasas_issue_dcmd,
533 };
534 
535 /**
536  * megasas_enable_intr_skinny -	Enables interrupts
537  * @regs:			MFI register set
538  */
539 static inline void
540 megasas_enable_intr_skinny(struct megasas_instance *instance)
541 {
542 	struct megasas_register_set __iomem *regs;
543 	regs = instance->reg_set;
544 	writel(0xFFFFFFFF, &(regs)->outbound_intr_mask);
545 
546 	writel(~MFI_SKINNY_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask);
547 
548 	/* Dummy readl to force pci flush */
549 	readl(&regs->outbound_intr_mask);
550 }
551 
552 /**
553  * megasas_disable_intr_skinny -	Disables interrupt
554  * @regs:			MFI register set
555  */
556 static inline void
557 megasas_disable_intr_skinny(struct megasas_instance *instance)
558 {
559 	struct megasas_register_set __iomem *regs;
560 	u32 mask = 0xFFFFFFFF;
561 	regs = instance->reg_set;
562 	writel(mask, &regs->outbound_intr_mask);
563 	/* Dummy readl to force pci flush */
564 	readl(&regs->outbound_intr_mask);
565 }
566 
567 /**
568  * megasas_read_fw_status_reg_skinny - returns the current FW status value
569  * @regs:			MFI register set
570  */
571 static u32
572 megasas_read_fw_status_reg_skinny(struct megasas_register_set __iomem *regs)
573 {
574 	return readl(&(regs)->outbound_scratch_pad);
575 }
576 
577 /**
578  * megasas_clear_interrupt_skinny -	Check & clear interrupt
579  * @regs:				MFI register set
580  */
581 static int
582 megasas_clear_intr_skinny(struct megasas_register_set __iomem *regs)
583 {
584 	u32 status;
585 	u32 mfiStatus = 0;
586 
587 	/*
588 	 * Check if it is our interrupt
589 	 */
590 	status = readl(&regs->outbound_intr_status);
591 
592 	if (!(status & MFI_SKINNY_ENABLE_INTERRUPT_MASK)) {
593 		return 0;
594 	}
595 
596 	/*
597 	 * Check if it is our interrupt
598 	 */
599 	if ((megasas_read_fw_status_reg_skinny(regs) & MFI_STATE_MASK) ==
600 	    MFI_STATE_FAULT) {
601 		mfiStatus = MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
602 	} else
603 		mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
604 
605 	/*
606 	 * Clear the interrupt by writing back the same value
607 	 */
608 	writel(status, &regs->outbound_intr_status);
609 
610 	/*
611 	* dummy read to flush PCI
612 	*/
613 	readl(&regs->outbound_intr_status);
614 
615 	return mfiStatus;
616 }
617 
618 /**
619  * megasas_fire_cmd_skinny -	Sends command to the FW
620  * @frame_phys_addr :		Physical address of cmd
621  * @frame_count :		Number of frames for the command
622  * @regs :			MFI register set
623  */
624 static inline void
625 megasas_fire_cmd_skinny(struct megasas_instance *instance,
626 			dma_addr_t frame_phys_addr,
627 			u32 frame_count,
628 			struct megasas_register_set __iomem *regs)
629 {
630 	unsigned long flags;
631 	spin_lock_irqsave(&instance->hba_lock, flags);
632 	writel(upper_32_bits(frame_phys_addr),
633 	       &(regs)->inbound_high_queue_port);
634 	writel((lower_32_bits(frame_phys_addr) | (frame_count<<1))|1,
635 	       &(regs)->inbound_low_queue_port);
636 	spin_unlock_irqrestore(&instance->hba_lock, flags);
637 }
638 
639 /**
640  * megasas_check_reset_skinny -	For controller reset check
641  * @regs:				MFI register set
642  */
643 static int
644 megasas_check_reset_skinny(struct megasas_instance *instance,
645 				struct megasas_register_set __iomem *regs)
646 {
647 	if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL)
648 		return 1;
649 
650 	return 0;
651 }
652 
653 static struct megasas_instance_template megasas_instance_template_skinny = {
654 
655 	.fire_cmd = megasas_fire_cmd_skinny,
656 	.enable_intr = megasas_enable_intr_skinny,
657 	.disable_intr = megasas_disable_intr_skinny,
658 	.clear_intr = megasas_clear_intr_skinny,
659 	.read_fw_status_reg = megasas_read_fw_status_reg_skinny,
660 	.adp_reset = megasas_adp_reset_gen2,
661 	.check_reset = megasas_check_reset_skinny,
662 	.service_isr = megasas_isr,
663 	.tasklet = megasas_complete_cmd_dpc,
664 	.init_adapter = megasas_init_adapter_mfi,
665 	.build_and_issue_cmd = megasas_build_and_issue_cmd,
666 	.issue_dcmd = megasas_issue_dcmd,
667 };
668 
669 
670 /**
671 *	The following functions are defined for gen2 (deviceid : 0x78 0x79)
672 *	controllers
673 */
674 
675 /**
676  * megasas_enable_intr_gen2 -  Enables interrupts
677  * @regs:                      MFI register set
678  */
679 static inline void
680 megasas_enable_intr_gen2(struct megasas_instance *instance)
681 {
682 	struct megasas_register_set __iomem *regs;
683 	regs = instance->reg_set;
684 	writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
685 
686 	/* write ~0x00000005 (4 & 1) to the intr mask*/
687 	writel(~MFI_GEN2_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask);
688 
689 	/* Dummy readl to force pci flush */
690 	readl(&regs->outbound_intr_mask);
691 }
692 
693 /**
694  * megasas_disable_intr_gen2 - Disables interrupt
695  * @regs:                      MFI register set
696  */
697 static inline void
698 megasas_disable_intr_gen2(struct megasas_instance *instance)
699 {
700 	struct megasas_register_set __iomem *regs;
701 	u32 mask = 0xFFFFFFFF;
702 	regs = instance->reg_set;
703 	writel(mask, &regs->outbound_intr_mask);
704 	/* Dummy readl to force pci flush */
705 	readl(&regs->outbound_intr_mask);
706 }
707 
708 /**
709  * megasas_read_fw_status_reg_gen2 - returns the current FW status value
710  * @regs:                      MFI register set
711  */
712 static u32
713 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs)
714 {
715 	return readl(&(regs)->outbound_scratch_pad);
716 }
717 
718 /**
719  * megasas_clear_interrupt_gen2 -      Check & clear interrupt
720  * @regs:                              MFI register set
721  */
722 static int
723 megasas_clear_intr_gen2(struct megasas_register_set __iomem *regs)
724 {
725 	u32 status;
726 	u32 mfiStatus = 0;
727 	/*
728 	 * Check if it is our interrupt
729 	 */
730 	status = readl(&regs->outbound_intr_status);
731 
732 	if (status & MFI_INTR_FLAG_REPLY_MESSAGE) {
733 		mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
734 	}
735 	if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) {
736 		mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
737 	}
738 
739 	/*
740 	 * Clear the interrupt by writing back the same value
741 	 */
742 	if (mfiStatus)
743 		writel(status, &regs->outbound_doorbell_clear);
744 
745 	/* Dummy readl to force pci flush */
746 	readl(&regs->outbound_intr_status);
747 
748 	return mfiStatus;
749 }
750 /**
751  * megasas_fire_cmd_gen2 -     Sends command to the FW
752  * @frame_phys_addr :          Physical address of cmd
753  * @frame_count :              Number of frames for the command
754  * @regs :                     MFI register set
755  */
756 static inline void
757 megasas_fire_cmd_gen2(struct megasas_instance *instance,
758 			dma_addr_t frame_phys_addr,
759 			u32 frame_count,
760 			struct megasas_register_set __iomem *regs)
761 {
762 	unsigned long flags;
763 	spin_lock_irqsave(&instance->hba_lock, flags);
764 	writel((frame_phys_addr | (frame_count<<1))|1,
765 			&(regs)->inbound_queue_port);
766 	spin_unlock_irqrestore(&instance->hba_lock, flags);
767 }
768 
769 /**
770  * megasas_adp_reset_gen2 -	For controller reset
771  * @regs:				MFI register set
772  */
773 static int
774 megasas_adp_reset_gen2(struct megasas_instance *instance,
775 			struct megasas_register_set __iomem *reg_set)
776 {
777 	u32			retry = 0 ;
778 	u32			HostDiag;
779 	u32			*seq_offset = &reg_set->seq_offset;
780 	u32			*hostdiag_offset = &reg_set->host_diag;
781 
782 	if (instance->instancet == &megasas_instance_template_skinny) {
783 		seq_offset = &reg_set->fusion_seq_offset;
784 		hostdiag_offset = &reg_set->fusion_host_diag;
785 	}
786 
787 	writel(0, seq_offset);
788 	writel(4, seq_offset);
789 	writel(0xb, seq_offset);
790 	writel(2, seq_offset);
791 	writel(7, seq_offset);
792 	writel(0xd, seq_offset);
793 
794 	msleep(1000);
795 
796 	HostDiag = (u32)readl(hostdiag_offset);
797 
798 	while ( !( HostDiag & DIAG_WRITE_ENABLE) ) {
799 		msleep(100);
800 		HostDiag = (u32)readl(hostdiag_offset);
801 		printk(KERN_NOTICE "RESETGEN2: retry=%x, hostdiag=%x\n",
802 					retry, HostDiag);
803 
804 		if (retry++ >= 100)
805 			return 1;
806 
807 	}
808 
809 	printk(KERN_NOTICE "ADP_RESET_GEN2: HostDiag=%x\n", HostDiag);
810 
811 	writel((HostDiag | DIAG_RESET_ADAPTER), hostdiag_offset);
812 
813 	ssleep(10);
814 
815 	HostDiag = (u32)readl(hostdiag_offset);
816 	while ( ( HostDiag & DIAG_RESET_ADAPTER) ) {
817 		msleep(100);
818 		HostDiag = (u32)readl(hostdiag_offset);
819 		printk(KERN_NOTICE "RESET_GEN2: retry=%x, hostdiag=%x\n",
820 				retry, HostDiag);
821 
822 		if (retry++ >= 1000)
823 			return 1;
824 
825 	}
826 	return 0;
827 }
828 
829 /**
830  * megasas_check_reset_gen2 -	For controller reset check
831  * @regs:				MFI register set
832  */
833 static int
834 megasas_check_reset_gen2(struct megasas_instance *instance,
835 		struct megasas_register_set __iomem *regs)
836 {
837 	if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
838 		return 1;
839 	}
840 
841 	return 0;
842 }
843 
844 static struct megasas_instance_template megasas_instance_template_gen2 = {
845 
846 	.fire_cmd = megasas_fire_cmd_gen2,
847 	.enable_intr = megasas_enable_intr_gen2,
848 	.disable_intr = megasas_disable_intr_gen2,
849 	.clear_intr = megasas_clear_intr_gen2,
850 	.read_fw_status_reg = megasas_read_fw_status_reg_gen2,
851 	.adp_reset = megasas_adp_reset_gen2,
852 	.check_reset = megasas_check_reset_gen2,
853 	.service_isr = megasas_isr,
854 	.tasklet = megasas_complete_cmd_dpc,
855 	.init_adapter = megasas_init_adapter_mfi,
856 	.build_and_issue_cmd = megasas_build_and_issue_cmd,
857 	.issue_dcmd = megasas_issue_dcmd,
858 };
859 
860 /**
861 *	This is the end of set of functions & definitions
862 *       specific to gen2 (deviceid : 0x78, 0x79) controllers
863 */
864 
865 /*
866  * Template added for TB (Fusion)
867  */
868 extern struct megasas_instance_template megasas_instance_template_fusion;
869 
870 /**
871  * megasas_issue_polled -	Issues a polling command
872  * @instance:			Adapter soft state
873  * @cmd:			Command packet to be issued
874  *
875  * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
876  */
877 int
878 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
879 {
880 
881 	struct megasas_header *frame_hdr = &cmd->frame->hdr;
882 
883 	frame_hdr->cmd_status = MFI_CMD_STATUS_POLL_MODE;
884 	frame_hdr->flags |= cpu_to_le16(MFI_FRAME_DONT_POST_IN_REPLY_QUEUE);
885 
886 	/*
887 	 * Issue the frame using inbound queue port
888 	 */
889 	instance->instancet->issue_dcmd(instance, cmd);
890 
891 	/*
892 	 * Wait for cmd_status to change
893 	 */
894 	return wait_and_poll(instance, cmd);
895 }
896 
897 /**
898  * megasas_issue_blocked_cmd -	Synchronous wrapper around regular FW cmds
899  * @instance:			Adapter soft state
900  * @cmd:			Command to be issued
901  *
902  * This function waits on an event for the command to be returned from ISR.
903  * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
904  * Used to issue ioctl commands.
905  */
906 static int
907 megasas_issue_blocked_cmd(struct megasas_instance *instance,
908 			  struct megasas_cmd *cmd)
909 {
910 	cmd->cmd_status = ENODATA;
911 
912 	instance->instancet->issue_dcmd(instance, cmd);
913 
914 	wait_event(instance->int_cmd_wait_q, cmd->cmd_status != ENODATA);
915 
916 	return 0;
917 }
918 
919 /**
920  * megasas_issue_blocked_abort_cmd -	Aborts previously issued cmd
921  * @instance:				Adapter soft state
922  * @cmd_to_abort:			Previously issued cmd to be aborted
923  *
924  * MFI firmware can abort previously issued AEN command (automatic event
925  * notification). The megasas_issue_blocked_abort_cmd() issues such abort
926  * cmd and waits for return status.
927  * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
928  */
929 static int
930 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
931 				struct megasas_cmd *cmd_to_abort)
932 {
933 	struct megasas_cmd *cmd;
934 	struct megasas_abort_frame *abort_fr;
935 
936 	cmd = megasas_get_cmd(instance);
937 
938 	if (!cmd)
939 		return -1;
940 
941 	abort_fr = &cmd->frame->abort;
942 
943 	/*
944 	 * Prepare and issue the abort frame
945 	 */
946 	abort_fr->cmd = MFI_CMD_ABORT;
947 	abort_fr->cmd_status = 0xFF;
948 	abort_fr->flags = cpu_to_le16(0);
949 	abort_fr->abort_context = cpu_to_le32(cmd_to_abort->index);
950 	abort_fr->abort_mfi_phys_addr_lo =
951 		cpu_to_le32(lower_32_bits(cmd_to_abort->frame_phys_addr));
952 	abort_fr->abort_mfi_phys_addr_hi =
953 		cpu_to_le32(upper_32_bits(cmd_to_abort->frame_phys_addr));
954 
955 	cmd->sync_cmd = 1;
956 	cmd->cmd_status = 0xFF;
957 
958 	instance->instancet->issue_dcmd(instance, cmd);
959 
960 	/*
961 	 * Wait for this cmd to complete
962 	 */
963 	wait_event(instance->abort_cmd_wait_q, cmd->cmd_status != 0xFF);
964 	cmd->sync_cmd = 0;
965 
966 	megasas_return_cmd(instance, cmd);
967 	return 0;
968 }
969 
970 /**
971  * megasas_make_sgl32 -	Prepares 32-bit SGL
972  * @instance:		Adapter soft state
973  * @scp:		SCSI command from the mid-layer
974  * @mfi_sgl:		SGL to be filled in
975  *
976  * If successful, this function returns the number of SG elements. Otherwise,
977  * it returnes -1.
978  */
979 static int
980 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
981 		   union megasas_sgl *mfi_sgl)
982 {
983 	int i;
984 	int sge_count;
985 	struct scatterlist *os_sgl;
986 
987 	sge_count = scsi_dma_map(scp);
988 	BUG_ON(sge_count < 0);
989 
990 	if (sge_count) {
991 		scsi_for_each_sg(scp, os_sgl, sge_count, i) {
992 			mfi_sgl->sge32[i].length = cpu_to_le32(sg_dma_len(os_sgl));
993 			mfi_sgl->sge32[i].phys_addr = cpu_to_le32(sg_dma_address(os_sgl));
994 		}
995 	}
996 	return sge_count;
997 }
998 
999 /**
1000  * megasas_make_sgl64 -	Prepares 64-bit SGL
1001  * @instance:		Adapter soft state
1002  * @scp:		SCSI command from the mid-layer
1003  * @mfi_sgl:		SGL to be filled in
1004  *
1005  * If successful, this function returns the number of SG elements. Otherwise,
1006  * it returnes -1.
1007  */
1008 static int
1009 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
1010 		   union megasas_sgl *mfi_sgl)
1011 {
1012 	int i;
1013 	int sge_count;
1014 	struct scatterlist *os_sgl;
1015 
1016 	sge_count = scsi_dma_map(scp);
1017 	BUG_ON(sge_count < 0);
1018 
1019 	if (sge_count) {
1020 		scsi_for_each_sg(scp, os_sgl, sge_count, i) {
1021 			mfi_sgl->sge64[i].length = cpu_to_le32(sg_dma_len(os_sgl));
1022 			mfi_sgl->sge64[i].phys_addr = cpu_to_le64(sg_dma_address(os_sgl));
1023 		}
1024 	}
1025 	return sge_count;
1026 }
1027 
1028 /**
1029  * megasas_make_sgl_skinny - Prepares IEEE SGL
1030  * @instance:           Adapter soft state
1031  * @scp:                SCSI command from the mid-layer
1032  * @mfi_sgl:            SGL to be filled in
1033  *
1034  * If successful, this function returns the number of SG elements. Otherwise,
1035  * it returnes -1.
1036  */
1037 static int
1038 megasas_make_sgl_skinny(struct megasas_instance *instance,
1039 		struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl)
1040 {
1041 	int i;
1042 	int sge_count;
1043 	struct scatterlist *os_sgl;
1044 
1045 	sge_count = scsi_dma_map(scp);
1046 
1047 	if (sge_count) {
1048 		scsi_for_each_sg(scp, os_sgl, sge_count, i) {
1049 			mfi_sgl->sge_skinny[i].length =
1050 				cpu_to_le32(sg_dma_len(os_sgl));
1051 			mfi_sgl->sge_skinny[i].phys_addr =
1052 				cpu_to_le64(sg_dma_address(os_sgl));
1053 			mfi_sgl->sge_skinny[i].flag = cpu_to_le32(0);
1054 		}
1055 	}
1056 	return sge_count;
1057 }
1058 
1059  /**
1060  * megasas_get_frame_count - Computes the number of frames
1061  * @frame_type		: type of frame- io or pthru frame
1062  * @sge_count		: number of sg elements
1063  *
1064  * Returns the number of frames required for numnber of sge's (sge_count)
1065  */
1066 
1067 static u32 megasas_get_frame_count(struct megasas_instance *instance,
1068 			u8 sge_count, u8 frame_type)
1069 {
1070 	int num_cnt;
1071 	int sge_bytes;
1072 	u32 sge_sz;
1073 	u32 frame_count=0;
1074 
1075 	sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1076 	    sizeof(struct megasas_sge32);
1077 
1078 	if (instance->flag_ieee) {
1079 		sge_sz = sizeof(struct megasas_sge_skinny);
1080 	}
1081 
1082 	/*
1083 	 * Main frame can contain 2 SGEs for 64-bit SGLs and
1084 	 * 3 SGEs for 32-bit SGLs for ldio &
1085 	 * 1 SGEs for 64-bit SGLs and
1086 	 * 2 SGEs for 32-bit SGLs for pthru frame
1087 	 */
1088 	if (unlikely(frame_type == PTHRU_FRAME)) {
1089 		if (instance->flag_ieee == 1) {
1090 			num_cnt = sge_count - 1;
1091 		} else if (IS_DMA64)
1092 			num_cnt = sge_count - 1;
1093 		else
1094 			num_cnt = sge_count - 2;
1095 	} else {
1096 		if (instance->flag_ieee == 1) {
1097 			num_cnt = sge_count - 1;
1098 		} else if (IS_DMA64)
1099 			num_cnt = sge_count - 2;
1100 		else
1101 			num_cnt = sge_count - 3;
1102 	}
1103 
1104 	if(num_cnt>0){
1105 		sge_bytes = sge_sz * num_cnt;
1106 
1107 		frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
1108 		    ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
1109 	}
1110 	/* Main frame */
1111 	frame_count +=1;
1112 
1113 	if (frame_count > 7)
1114 		frame_count = 8;
1115 	return frame_count;
1116 }
1117 
1118 /**
1119  * megasas_build_dcdb -	Prepares a direct cdb (DCDB) command
1120  * @instance:		Adapter soft state
1121  * @scp:		SCSI command
1122  * @cmd:		Command to be prepared in
1123  *
1124  * This function prepares CDB commands. These are typcially pass-through
1125  * commands to the devices.
1126  */
1127 static int
1128 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
1129 		   struct megasas_cmd *cmd)
1130 {
1131 	u32 is_logical;
1132 	u32 device_id;
1133 	u16 flags = 0;
1134 	struct megasas_pthru_frame *pthru;
1135 
1136 	is_logical = MEGASAS_IS_LOGICAL(scp);
1137 	device_id = MEGASAS_DEV_INDEX(instance, scp);
1138 	pthru = (struct megasas_pthru_frame *)cmd->frame;
1139 
1140 	if (scp->sc_data_direction == PCI_DMA_TODEVICE)
1141 		flags = MFI_FRAME_DIR_WRITE;
1142 	else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
1143 		flags = MFI_FRAME_DIR_READ;
1144 	else if (scp->sc_data_direction == PCI_DMA_NONE)
1145 		flags = MFI_FRAME_DIR_NONE;
1146 
1147 	if (instance->flag_ieee == 1) {
1148 		flags |= MFI_FRAME_IEEE;
1149 	}
1150 
1151 	/*
1152 	 * Prepare the DCDB frame
1153 	 */
1154 	pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
1155 	pthru->cmd_status = 0x0;
1156 	pthru->scsi_status = 0x0;
1157 	pthru->target_id = device_id;
1158 	pthru->lun = scp->device->lun;
1159 	pthru->cdb_len = scp->cmd_len;
1160 	pthru->timeout = 0;
1161 	pthru->pad_0 = 0;
1162 	pthru->flags = cpu_to_le16(flags);
1163 	pthru->data_xfer_len = cpu_to_le32(scsi_bufflen(scp));
1164 
1165 	memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
1166 
1167 	/*
1168 	* If the command is for the tape device, set the
1169 	* pthru timeout to the os layer timeout value.
1170 	*/
1171 	if (scp->device->type == TYPE_TAPE) {
1172 		if ((scp->request->timeout / HZ) > 0xFFFF)
1173 			pthru->timeout = 0xFFFF;
1174 		else
1175 			pthru->timeout = cpu_to_le16(scp->request->timeout / HZ);
1176 	}
1177 
1178 	/*
1179 	 * Construct SGL
1180 	 */
1181 	if (instance->flag_ieee == 1) {
1182 		pthru->flags |= cpu_to_le16(MFI_FRAME_SGL64);
1183 		pthru->sge_count = megasas_make_sgl_skinny(instance, scp,
1184 						      &pthru->sgl);
1185 	} else if (IS_DMA64) {
1186 		pthru->flags |= cpu_to_le16(MFI_FRAME_SGL64);
1187 		pthru->sge_count = megasas_make_sgl64(instance, scp,
1188 						      &pthru->sgl);
1189 	} else
1190 		pthru->sge_count = megasas_make_sgl32(instance, scp,
1191 						      &pthru->sgl);
1192 
1193 	if (pthru->sge_count > instance->max_num_sge) {
1194 		printk(KERN_ERR "megasas: DCDB two many SGE NUM=%x\n",
1195 			pthru->sge_count);
1196 		return 0;
1197 	}
1198 
1199 	/*
1200 	 * Sense info specific
1201 	 */
1202 	pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
1203 	pthru->sense_buf_phys_addr_hi =
1204 		cpu_to_le32(upper_32_bits(cmd->sense_phys_addr));
1205 	pthru->sense_buf_phys_addr_lo =
1206 		cpu_to_le32(lower_32_bits(cmd->sense_phys_addr));
1207 
1208 	/*
1209 	 * Compute the total number of frames this command consumes. FW uses
1210 	 * this number to pull sufficient number of frames from host memory.
1211 	 */
1212 	cmd->frame_count = megasas_get_frame_count(instance, pthru->sge_count,
1213 							PTHRU_FRAME);
1214 
1215 	return cmd->frame_count;
1216 }
1217 
1218 /**
1219  * megasas_build_ldio -	Prepares IOs to logical devices
1220  * @instance:		Adapter soft state
1221  * @scp:		SCSI command
1222  * @cmd:		Command to be prepared
1223  *
1224  * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
1225  */
1226 static int
1227 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
1228 		   struct megasas_cmd *cmd)
1229 {
1230 	u32 device_id;
1231 	u8 sc = scp->cmnd[0];
1232 	u16 flags = 0;
1233 	struct megasas_io_frame *ldio;
1234 
1235 	device_id = MEGASAS_DEV_INDEX(instance, scp);
1236 	ldio = (struct megasas_io_frame *)cmd->frame;
1237 
1238 	if (scp->sc_data_direction == PCI_DMA_TODEVICE)
1239 		flags = MFI_FRAME_DIR_WRITE;
1240 	else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
1241 		flags = MFI_FRAME_DIR_READ;
1242 
1243 	if (instance->flag_ieee == 1) {
1244 		flags |= MFI_FRAME_IEEE;
1245 	}
1246 
1247 	/*
1248 	 * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
1249 	 */
1250 	ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
1251 	ldio->cmd_status = 0x0;
1252 	ldio->scsi_status = 0x0;
1253 	ldio->target_id = device_id;
1254 	ldio->timeout = 0;
1255 	ldio->reserved_0 = 0;
1256 	ldio->pad_0 = 0;
1257 	ldio->flags = cpu_to_le16(flags);
1258 	ldio->start_lba_hi = 0;
1259 	ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
1260 
1261 	/*
1262 	 * 6-byte READ(0x08) or WRITE(0x0A) cdb
1263 	 */
1264 	if (scp->cmd_len == 6) {
1265 		ldio->lba_count = cpu_to_le32((u32) scp->cmnd[4]);
1266 		ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[1] << 16) |
1267 						 ((u32) scp->cmnd[2] << 8) |
1268 						 (u32) scp->cmnd[3]);
1269 
1270 		ldio->start_lba_lo &= cpu_to_le32(0x1FFFFF);
1271 	}
1272 
1273 	/*
1274 	 * 10-byte READ(0x28) or WRITE(0x2A) cdb
1275 	 */
1276 	else if (scp->cmd_len == 10) {
1277 		ldio->lba_count = cpu_to_le32((u32) scp->cmnd[8] |
1278 					      ((u32) scp->cmnd[7] << 8));
1279 		ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[2] << 24) |
1280 						 ((u32) scp->cmnd[3] << 16) |
1281 						 ((u32) scp->cmnd[4] << 8) |
1282 						 (u32) scp->cmnd[5]);
1283 	}
1284 
1285 	/*
1286 	 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
1287 	 */
1288 	else if (scp->cmd_len == 12) {
1289 		ldio->lba_count = cpu_to_le32(((u32) scp->cmnd[6] << 24) |
1290 					      ((u32) scp->cmnd[7] << 16) |
1291 					      ((u32) scp->cmnd[8] << 8) |
1292 					      (u32) scp->cmnd[9]);
1293 
1294 		ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[2] << 24) |
1295 						 ((u32) scp->cmnd[3] << 16) |
1296 						 ((u32) scp->cmnd[4] << 8) |
1297 						 (u32) scp->cmnd[5]);
1298 	}
1299 
1300 	/*
1301 	 * 16-byte READ(0x88) or WRITE(0x8A) cdb
1302 	 */
1303 	else if (scp->cmd_len == 16) {
1304 		ldio->lba_count = cpu_to_le32(((u32) scp->cmnd[10] << 24) |
1305 					      ((u32) scp->cmnd[11] << 16) |
1306 					      ((u32) scp->cmnd[12] << 8) |
1307 					      (u32) scp->cmnd[13]);
1308 
1309 		ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[6] << 24) |
1310 						 ((u32) scp->cmnd[7] << 16) |
1311 						 ((u32) scp->cmnd[8] << 8) |
1312 						 (u32) scp->cmnd[9]);
1313 
1314 		ldio->start_lba_hi = cpu_to_le32(((u32) scp->cmnd[2] << 24) |
1315 						 ((u32) scp->cmnd[3] << 16) |
1316 						 ((u32) scp->cmnd[4] << 8) |
1317 						 (u32) scp->cmnd[5]);
1318 
1319 	}
1320 
1321 	/*
1322 	 * Construct SGL
1323 	 */
1324 	if (instance->flag_ieee) {
1325 		ldio->flags |= cpu_to_le16(MFI_FRAME_SGL64);
1326 		ldio->sge_count = megasas_make_sgl_skinny(instance, scp,
1327 					      &ldio->sgl);
1328 	} else if (IS_DMA64) {
1329 		ldio->flags |= cpu_to_le16(MFI_FRAME_SGL64);
1330 		ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
1331 	} else
1332 		ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
1333 
1334 	if (ldio->sge_count > instance->max_num_sge) {
1335 		printk(KERN_ERR "megasas: build_ld_io: sge_count = %x\n",
1336 			ldio->sge_count);
1337 		return 0;
1338 	}
1339 
1340 	/*
1341 	 * Sense info specific
1342 	 */
1343 	ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
1344 	ldio->sense_buf_phys_addr_hi = 0;
1345 	ldio->sense_buf_phys_addr_lo = cpu_to_le32(cmd->sense_phys_addr);
1346 
1347 	/*
1348 	 * Compute the total number of frames this command consumes. FW uses
1349 	 * this number to pull sufficient number of frames from host memory.
1350 	 */
1351 	cmd->frame_count = megasas_get_frame_count(instance,
1352 			ldio->sge_count, IO_FRAME);
1353 
1354 	return cmd->frame_count;
1355 }
1356 
1357 /**
1358  * megasas_is_ldio -		Checks if the cmd is for logical drive
1359  * @scmd:			SCSI command
1360  *
1361  * Called by megasas_queue_command to find out if the command to be queued
1362  * is a logical drive command
1363  */
1364 inline int megasas_is_ldio(struct scsi_cmnd *cmd)
1365 {
1366 	if (!MEGASAS_IS_LOGICAL(cmd))
1367 		return 0;
1368 	switch (cmd->cmnd[0]) {
1369 	case READ_10:
1370 	case WRITE_10:
1371 	case READ_12:
1372 	case WRITE_12:
1373 	case READ_6:
1374 	case WRITE_6:
1375 	case READ_16:
1376 	case WRITE_16:
1377 		return 1;
1378 	default:
1379 		return 0;
1380 	}
1381 }
1382 
1383  /**
1384  * megasas_dump_pending_frames -	Dumps the frame address of all pending cmds
1385  *                              	in FW
1386  * @instance:				Adapter soft state
1387  */
1388 static inline void
1389 megasas_dump_pending_frames(struct megasas_instance *instance)
1390 {
1391 	struct megasas_cmd *cmd;
1392 	int i,n;
1393 	union megasas_sgl *mfi_sgl;
1394 	struct megasas_io_frame *ldio;
1395 	struct megasas_pthru_frame *pthru;
1396 	u32 sgcount;
1397 	u32 max_cmd = instance->max_fw_cmds;
1398 
1399 	printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
1400 	printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
1401 	if (IS_DMA64)
1402 		printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
1403 	else
1404 		printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
1405 
1406 	printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
1407 	for (i = 0; i < max_cmd; i++) {
1408 		cmd = instance->cmd_list[i];
1409 		if(!cmd->scmd)
1410 			continue;
1411 		printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
1412 		if (megasas_is_ldio(cmd->scmd)){
1413 			ldio = (struct megasas_io_frame *)cmd->frame;
1414 			mfi_sgl = &ldio->sgl;
1415 			sgcount = ldio->sge_count;
1416 			printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x,"
1417 			" lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",
1418 			instance->host->host_no, cmd->frame_count, ldio->cmd, ldio->target_id,
1419 			le32_to_cpu(ldio->start_lba_lo), le32_to_cpu(ldio->start_lba_hi),
1420 			le32_to_cpu(ldio->sense_buf_phys_addr_lo), sgcount);
1421 		}
1422 		else {
1423 			pthru = (struct megasas_pthru_frame *) cmd->frame;
1424 			mfi_sgl = &pthru->sgl;
1425 			sgcount = pthru->sge_count;
1426 			printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, "
1427 			"lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",
1428 			instance->host->host_no, cmd->frame_count, pthru->cmd, pthru->target_id,
1429 			pthru->lun, pthru->cdb_len, le32_to_cpu(pthru->data_xfer_len),
1430 			le32_to_cpu(pthru->sense_buf_phys_addr_lo), sgcount);
1431 		}
1432 	if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
1433 		for (n = 0; n < sgcount; n++){
1434 			if (IS_DMA64)
1435 				printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%llx ",
1436 					le32_to_cpu(mfi_sgl->sge64[n].length),
1437 					le64_to_cpu(mfi_sgl->sge64[n].phys_addr));
1438 			else
1439 				printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",
1440 					le32_to_cpu(mfi_sgl->sge32[n].length),
1441 					le32_to_cpu(mfi_sgl->sge32[n].phys_addr));
1442 			}
1443 		}
1444 		printk(KERN_ERR "\n");
1445 	} /*for max_cmd*/
1446 	printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
1447 	for (i = 0; i < max_cmd; i++) {
1448 
1449 		cmd = instance->cmd_list[i];
1450 
1451 		if(cmd->sync_cmd == 1){
1452 			printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
1453 		}
1454 	}
1455 	printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
1456 }
1457 
1458 u32
1459 megasas_build_and_issue_cmd(struct megasas_instance *instance,
1460 			    struct scsi_cmnd *scmd)
1461 {
1462 	struct megasas_cmd *cmd;
1463 	u32 frame_count;
1464 
1465 	cmd = megasas_get_cmd(instance);
1466 	if (!cmd)
1467 		return SCSI_MLQUEUE_HOST_BUSY;
1468 
1469 	/*
1470 	 * Logical drive command
1471 	 */
1472 	if (megasas_is_ldio(scmd))
1473 		frame_count = megasas_build_ldio(instance, scmd, cmd);
1474 	else
1475 		frame_count = megasas_build_dcdb(instance, scmd, cmd);
1476 
1477 	if (!frame_count)
1478 		goto out_return_cmd;
1479 
1480 	cmd->scmd = scmd;
1481 	scmd->SCp.ptr = (char *)cmd;
1482 
1483 	/*
1484 	 * Issue the command to the FW
1485 	 */
1486 	atomic_inc(&instance->fw_outstanding);
1487 
1488 	instance->instancet->fire_cmd(instance, cmd->frame_phys_addr,
1489 				cmd->frame_count-1, instance->reg_set);
1490 
1491 	return 0;
1492 out_return_cmd:
1493 	megasas_return_cmd(instance, cmd);
1494 	return 1;
1495 }
1496 
1497 
1498 /**
1499  * megasas_queue_command -	Queue entry point
1500  * @scmd:			SCSI command to be queued
1501  * @done:			Callback entry point
1502  */
1503 static int
1504 megasas_queue_command_lck(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
1505 {
1506 	struct megasas_instance *instance;
1507 	unsigned long flags;
1508 
1509 	instance = (struct megasas_instance *)
1510 	    scmd->device->host->hostdata;
1511 
1512 	if (instance->issuepend_done == 0)
1513 		return SCSI_MLQUEUE_HOST_BUSY;
1514 
1515 	spin_lock_irqsave(&instance->hba_lock, flags);
1516 
1517 	if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
1518 		spin_unlock_irqrestore(&instance->hba_lock, flags);
1519 		scmd->result = DID_ERROR << 16;
1520 		done(scmd);
1521 		return 0;
1522 	}
1523 
1524 	if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
1525 		spin_unlock_irqrestore(&instance->hba_lock, flags);
1526 		return SCSI_MLQUEUE_HOST_BUSY;
1527 	}
1528 
1529 	spin_unlock_irqrestore(&instance->hba_lock, flags);
1530 
1531 	scmd->scsi_done = done;
1532 	scmd->result = 0;
1533 
1534 	if (MEGASAS_IS_LOGICAL(scmd) &&
1535 	    (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
1536 		scmd->result = DID_BAD_TARGET << 16;
1537 		goto out_done;
1538 	}
1539 
1540 	switch (scmd->cmnd[0]) {
1541 	case SYNCHRONIZE_CACHE:
1542 		/*
1543 		 * FW takes care of flush cache on its own
1544 		 * No need to send it down
1545 		 */
1546 		scmd->result = DID_OK << 16;
1547 		goto out_done;
1548 	default:
1549 		break;
1550 	}
1551 
1552 	if (instance->instancet->build_and_issue_cmd(instance, scmd)) {
1553 		printk(KERN_ERR "megasas: Err returned from build_and_issue_cmd\n");
1554 		return SCSI_MLQUEUE_HOST_BUSY;
1555 	}
1556 
1557 	return 0;
1558 
1559  out_done:
1560 	done(scmd);
1561 	return 0;
1562 }
1563 
1564 static DEF_SCSI_QCMD(megasas_queue_command)
1565 
1566 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
1567 {
1568 	int i;
1569 
1570 	for (i = 0; i < megasas_mgmt_info.max_index; i++) {
1571 
1572 		if ((megasas_mgmt_info.instance[i]) &&
1573 		    (megasas_mgmt_info.instance[i]->host->host_no == host_no))
1574 			return megasas_mgmt_info.instance[i];
1575 	}
1576 
1577 	return NULL;
1578 }
1579 
1580 static int megasas_slave_configure(struct scsi_device *sdev)
1581 {
1582 	u16             pd_index = 0;
1583 	struct  megasas_instance *instance ;
1584 
1585 	instance = megasas_lookup_instance(sdev->host->host_no);
1586 
1587 	/*
1588 	* Don't export physical disk devices to the disk driver.
1589 	*
1590 	* FIXME: Currently we don't export them to the midlayer at all.
1591 	*        That will be fixed once LSI engineers have audited the
1592 	*        firmware for possible issues.
1593 	*/
1594 	if (sdev->channel < MEGASAS_MAX_PD_CHANNELS &&
1595 				sdev->type == TYPE_DISK) {
1596 		pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) +
1597 								sdev->id;
1598 		if (instance->pd_list[pd_index].driveState ==
1599 						MR_PD_STATE_SYSTEM) {
1600 			blk_queue_rq_timeout(sdev->request_queue,
1601 				MEGASAS_DEFAULT_CMD_TIMEOUT * HZ);
1602 			return 0;
1603 		}
1604 		return -ENXIO;
1605 	}
1606 
1607 	/*
1608 	* The RAID firmware may require extended timeouts.
1609 	*/
1610 	blk_queue_rq_timeout(sdev->request_queue,
1611 		MEGASAS_DEFAULT_CMD_TIMEOUT * HZ);
1612 	return 0;
1613 }
1614 
1615 static int megasas_slave_alloc(struct scsi_device *sdev)
1616 {
1617 	u16             pd_index = 0;
1618 	struct megasas_instance *instance ;
1619 	instance = megasas_lookup_instance(sdev->host->host_no);
1620 	if ((sdev->channel < MEGASAS_MAX_PD_CHANNELS) &&
1621 				(sdev->type == TYPE_DISK)) {
1622 		/*
1623 		 * Open the OS scan to the SYSTEM PD
1624 		 */
1625 		pd_index =
1626 			(sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) +
1627 			sdev->id;
1628 		if ((instance->pd_list[pd_index].driveState ==
1629 					MR_PD_STATE_SYSTEM) &&
1630 			(instance->pd_list[pd_index].driveType ==
1631 						TYPE_DISK)) {
1632 			return 0;
1633 		}
1634 		return -ENXIO;
1635 	}
1636 	return 0;
1637 }
1638 
1639 void megaraid_sas_kill_hba(struct megasas_instance *instance)
1640 {
1641 	if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
1642 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
1643 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
1644 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
1645 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) {
1646 		writel(MFI_STOP_ADP, &instance->reg_set->doorbell);
1647 	} else {
1648 		writel(MFI_STOP_ADP, &instance->reg_set->inbound_doorbell);
1649 	}
1650 }
1651 
1652  /**
1653   * megasas_check_and_restore_queue_depth - Check if queue depth needs to be
1654   *					restored to max value
1655   * @instance:			Adapter soft state
1656   *
1657   */
1658 void
1659 megasas_check_and_restore_queue_depth(struct megasas_instance *instance)
1660 {
1661 	unsigned long flags;
1662 	if (instance->flag & MEGASAS_FW_BUSY
1663 	    && time_after(jiffies, instance->last_time + 5 * HZ)
1664 	    && atomic_read(&instance->fw_outstanding) <
1665 	    instance->throttlequeuedepth + 1) {
1666 
1667 		spin_lock_irqsave(instance->host->host_lock, flags);
1668 		instance->flag &= ~MEGASAS_FW_BUSY;
1669 		if (instance->is_imr) {
1670 			instance->host->can_queue =
1671 				instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS;
1672 		} else
1673 			instance->host->can_queue =
1674 				instance->max_fw_cmds - MEGASAS_INT_CMDS;
1675 
1676 		spin_unlock_irqrestore(instance->host->host_lock, flags);
1677 	}
1678 }
1679 
1680 /**
1681  * megasas_complete_cmd_dpc	 -	Returns FW's controller structure
1682  * @instance_addr:			Address of adapter soft state
1683  *
1684  * Tasklet to complete cmds
1685  */
1686 static void megasas_complete_cmd_dpc(unsigned long instance_addr)
1687 {
1688 	u32 producer;
1689 	u32 consumer;
1690 	u32 context;
1691 	struct megasas_cmd *cmd;
1692 	struct megasas_instance *instance =
1693 				(struct megasas_instance *)instance_addr;
1694 	unsigned long flags;
1695 
1696 	/* If we have already declared adapter dead, donot complete cmds */
1697 	if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR )
1698 		return;
1699 
1700 	spin_lock_irqsave(&instance->completion_lock, flags);
1701 
1702 	producer = le32_to_cpu(*instance->producer);
1703 	consumer = le32_to_cpu(*instance->consumer);
1704 
1705 	while (consumer != producer) {
1706 		context = le32_to_cpu(instance->reply_queue[consumer]);
1707 		if (context >= instance->max_fw_cmds) {
1708 			printk(KERN_ERR "Unexpected context value %x\n",
1709 				context);
1710 			BUG();
1711 		}
1712 
1713 		cmd = instance->cmd_list[context];
1714 
1715 		megasas_complete_cmd(instance, cmd, DID_OK);
1716 
1717 		consumer++;
1718 		if (consumer == (instance->max_fw_cmds + 1)) {
1719 			consumer = 0;
1720 		}
1721 	}
1722 
1723 	*instance->consumer = cpu_to_le32(producer);
1724 
1725 	spin_unlock_irqrestore(&instance->completion_lock, flags);
1726 
1727 	/*
1728 	 * Check if we can restore can_queue
1729 	 */
1730 	megasas_check_and_restore_queue_depth(instance);
1731 }
1732 
1733 static void
1734 megasas_internal_reset_defer_cmds(struct megasas_instance *instance);
1735 
1736 static void
1737 process_fw_state_change_wq(struct work_struct *work);
1738 
1739 void megasas_do_ocr(struct megasas_instance *instance)
1740 {
1741 	if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) ||
1742 	(instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) ||
1743 	(instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)) {
1744 		*instance->consumer = cpu_to_le32(MEGASAS_ADPRESET_INPROG_SIGN);
1745 	}
1746 	instance->instancet->disable_intr(instance);
1747 	instance->adprecovery   = MEGASAS_ADPRESET_SM_INFAULT;
1748 	instance->issuepend_done = 0;
1749 
1750 	atomic_set(&instance->fw_outstanding, 0);
1751 	megasas_internal_reset_defer_cmds(instance);
1752 	process_fw_state_change_wq(&instance->work_init);
1753 }
1754 
1755 /**
1756  * megasas_wait_for_outstanding -	Wait for all outstanding cmds
1757  * @instance:				Adapter soft state
1758  *
1759  * This function waits for up to MEGASAS_RESET_WAIT_TIME seconds for FW to
1760  * complete all its outstanding commands. Returns error if one or more IOs
1761  * are pending after this time period. It also marks the controller dead.
1762  */
1763 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
1764 {
1765 	int i;
1766 	u32 reset_index;
1767 	u32 wait_time = MEGASAS_RESET_WAIT_TIME;
1768 	u8 adprecovery;
1769 	unsigned long flags;
1770 	struct list_head clist_local;
1771 	struct megasas_cmd *reset_cmd;
1772 	u32 fw_state;
1773 	u8 kill_adapter_flag;
1774 
1775 	spin_lock_irqsave(&instance->hba_lock, flags);
1776 	adprecovery = instance->adprecovery;
1777 	spin_unlock_irqrestore(&instance->hba_lock, flags);
1778 
1779 	if (adprecovery != MEGASAS_HBA_OPERATIONAL) {
1780 
1781 		INIT_LIST_HEAD(&clist_local);
1782 		spin_lock_irqsave(&instance->hba_lock, flags);
1783 		list_splice_init(&instance->internal_reset_pending_q,
1784 				&clist_local);
1785 		spin_unlock_irqrestore(&instance->hba_lock, flags);
1786 
1787 		printk(KERN_NOTICE "megasas: HBA reset wait ...\n");
1788 		for (i = 0; i < wait_time; i++) {
1789 			msleep(1000);
1790 			spin_lock_irqsave(&instance->hba_lock, flags);
1791 			adprecovery = instance->adprecovery;
1792 			spin_unlock_irqrestore(&instance->hba_lock, flags);
1793 			if (adprecovery == MEGASAS_HBA_OPERATIONAL)
1794 				break;
1795 		}
1796 
1797 		if (adprecovery != MEGASAS_HBA_OPERATIONAL) {
1798 			printk(KERN_NOTICE "megasas: reset: Stopping HBA.\n");
1799 			spin_lock_irqsave(&instance->hba_lock, flags);
1800 			instance->adprecovery	= MEGASAS_HW_CRITICAL_ERROR;
1801 			spin_unlock_irqrestore(&instance->hba_lock, flags);
1802 			return FAILED;
1803 		}
1804 
1805 		reset_index	= 0;
1806 		while (!list_empty(&clist_local)) {
1807 			reset_cmd	= list_entry((&clist_local)->next,
1808 						struct megasas_cmd, list);
1809 			list_del_init(&reset_cmd->list);
1810 			if (reset_cmd->scmd) {
1811 				reset_cmd->scmd->result = DID_RESET << 16;
1812 				printk(KERN_NOTICE "%d:%p reset [%02x]\n",
1813 					reset_index, reset_cmd,
1814 					reset_cmd->scmd->cmnd[0]);
1815 
1816 				reset_cmd->scmd->scsi_done(reset_cmd->scmd);
1817 				megasas_return_cmd(instance, reset_cmd);
1818 			} else if (reset_cmd->sync_cmd) {
1819 				printk(KERN_NOTICE "megasas:%p synch cmds"
1820 						"reset queue\n",
1821 						reset_cmd);
1822 
1823 				reset_cmd->cmd_status = ENODATA;
1824 				instance->instancet->fire_cmd(instance,
1825 						reset_cmd->frame_phys_addr,
1826 						0, instance->reg_set);
1827 			} else {
1828 				printk(KERN_NOTICE "megasas: %p unexpected"
1829 					"cmds lst\n",
1830 					reset_cmd);
1831 			}
1832 			reset_index++;
1833 		}
1834 
1835 		return SUCCESS;
1836 	}
1837 
1838 	for (i = 0; i < resetwaittime; i++) {
1839 
1840 		int outstanding = atomic_read(&instance->fw_outstanding);
1841 
1842 		if (!outstanding)
1843 			break;
1844 
1845 		if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
1846 			printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
1847 			       "commands to complete\n",i,outstanding);
1848 			/*
1849 			 * Call cmd completion routine. Cmd to be
1850 			 * be completed directly without depending on isr.
1851 			 */
1852 			megasas_complete_cmd_dpc((unsigned long)instance);
1853 		}
1854 
1855 		msleep(1000);
1856 	}
1857 
1858 	i = 0;
1859 	kill_adapter_flag = 0;
1860 	do {
1861 		fw_state = instance->instancet->read_fw_status_reg(
1862 					instance->reg_set) & MFI_STATE_MASK;
1863 		if ((fw_state == MFI_STATE_FAULT) &&
1864 			(instance->disableOnlineCtrlReset == 0)) {
1865 			if (i == 3) {
1866 				kill_adapter_flag = 2;
1867 				break;
1868 			}
1869 			megasas_do_ocr(instance);
1870 			kill_adapter_flag = 1;
1871 
1872 			/* wait for 1 secs to let FW finish the pending cmds */
1873 			msleep(1000);
1874 		}
1875 		i++;
1876 	} while (i <= 3);
1877 
1878 	if (atomic_read(&instance->fw_outstanding) &&
1879 					!kill_adapter_flag) {
1880 		if (instance->disableOnlineCtrlReset == 0) {
1881 
1882 			megasas_do_ocr(instance);
1883 
1884 			/* wait for 5 secs to let FW finish the pending cmds */
1885 			for (i = 0; i < wait_time; i++) {
1886 				int outstanding =
1887 					atomic_read(&instance->fw_outstanding);
1888 				if (!outstanding)
1889 					return SUCCESS;
1890 				msleep(1000);
1891 			}
1892 		}
1893 	}
1894 
1895 	if (atomic_read(&instance->fw_outstanding) ||
1896 					(kill_adapter_flag == 2)) {
1897 		printk(KERN_NOTICE "megaraid_sas: pending cmds after reset\n");
1898 		/*
1899 		* Send signal to FW to stop processing any pending cmds.
1900 		* The controller will be taken offline by the OS now.
1901 		*/
1902 		if ((instance->pdev->device ==
1903 			PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
1904 			(instance->pdev->device ==
1905 			PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
1906 			writel(MFI_STOP_ADP,
1907 				&instance->reg_set->doorbell);
1908 		} else {
1909 			writel(MFI_STOP_ADP,
1910 				&instance->reg_set->inbound_doorbell);
1911 		}
1912 		megasas_dump_pending_frames(instance);
1913 		spin_lock_irqsave(&instance->hba_lock, flags);
1914 		instance->adprecovery	= MEGASAS_HW_CRITICAL_ERROR;
1915 		spin_unlock_irqrestore(&instance->hba_lock, flags);
1916 		return FAILED;
1917 	}
1918 
1919 	printk(KERN_NOTICE "megaraid_sas: no pending cmds after reset\n");
1920 
1921 	return SUCCESS;
1922 }
1923 
1924 /**
1925  * megasas_generic_reset -	Generic reset routine
1926  * @scmd:			Mid-layer SCSI command
1927  *
1928  * This routine implements a generic reset handler for device, bus and host
1929  * reset requests. Device, bus and host specific reset handlers can use this
1930  * function after they do their specific tasks.
1931  */
1932 static int megasas_generic_reset(struct scsi_cmnd *scmd)
1933 {
1934 	int ret_val;
1935 	struct megasas_instance *instance;
1936 
1937 	instance = (struct megasas_instance *)scmd->device->host->hostdata;
1938 
1939 	scmd_printk(KERN_NOTICE, scmd, "megasas: RESET cmd=%x retries=%x\n",
1940 		 scmd->cmnd[0], scmd->retries);
1941 
1942 	if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
1943 		printk(KERN_ERR "megasas: cannot recover from previous reset "
1944 		       "failures\n");
1945 		return FAILED;
1946 	}
1947 
1948 	ret_val = megasas_wait_for_outstanding(instance);
1949 	if (ret_val == SUCCESS)
1950 		printk(KERN_NOTICE "megasas: reset successful \n");
1951 	else
1952 		printk(KERN_ERR "megasas: failed to do reset\n");
1953 
1954 	return ret_val;
1955 }
1956 
1957 /**
1958  * megasas_reset_timer - quiesce the adapter if required
1959  * @scmd:		scsi cmnd
1960  *
1961  * Sets the FW busy flag and reduces the host->can_queue if the
1962  * cmd has not been completed within the timeout period.
1963  */
1964 static enum
1965 blk_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
1966 {
1967 	struct megasas_instance *instance;
1968 	unsigned long flags;
1969 
1970 	if (time_after(jiffies, scmd->jiffies_at_alloc +
1971 				(MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) {
1972 		return BLK_EH_NOT_HANDLED;
1973 	}
1974 
1975 	instance = (struct megasas_instance *)scmd->device->host->hostdata;
1976 	if (!(instance->flag & MEGASAS_FW_BUSY)) {
1977 		/* FW is busy, throttle IO */
1978 		spin_lock_irqsave(instance->host->host_lock, flags);
1979 
1980 		instance->host->can_queue = instance->throttlequeuedepth;
1981 		instance->last_time = jiffies;
1982 		instance->flag |= MEGASAS_FW_BUSY;
1983 
1984 		spin_unlock_irqrestore(instance->host->host_lock, flags);
1985 	}
1986 	return BLK_EH_RESET_TIMER;
1987 }
1988 
1989 /**
1990  * megasas_reset_device -	Device reset handler entry point
1991  */
1992 static int megasas_reset_device(struct scsi_cmnd *scmd)
1993 {
1994 	int ret;
1995 
1996 	/*
1997 	 * First wait for all commands to complete
1998 	 */
1999 	ret = megasas_generic_reset(scmd);
2000 
2001 	return ret;
2002 }
2003 
2004 /**
2005  * megasas_reset_bus_host -	Bus & host reset handler entry point
2006  */
2007 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
2008 {
2009 	int ret;
2010 	struct megasas_instance *instance;
2011 	instance = (struct megasas_instance *)scmd->device->host->hostdata;
2012 
2013 	/*
2014 	 * First wait for all commands to complete
2015 	 */
2016 	if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
2017 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
2018 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY))
2019 		ret = megasas_reset_fusion(scmd->device->host);
2020 	else
2021 		ret = megasas_generic_reset(scmd);
2022 
2023 	return ret;
2024 }
2025 
2026 /**
2027  * megasas_bios_param - Returns disk geometry for a disk
2028  * @sdev: 		device handle
2029  * @bdev:		block device
2030  * @capacity:		drive capacity
2031  * @geom:		geometry parameters
2032  */
2033 static int
2034 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
2035 		 sector_t capacity, int geom[])
2036 {
2037 	int heads;
2038 	int sectors;
2039 	sector_t cylinders;
2040 	unsigned long tmp;
2041 	/* Default heads (64) & sectors (32) */
2042 	heads = 64;
2043 	sectors = 32;
2044 
2045 	tmp = heads * sectors;
2046 	cylinders = capacity;
2047 
2048 	sector_div(cylinders, tmp);
2049 
2050 	/*
2051 	 * Handle extended translation size for logical drives > 1Gb
2052 	 */
2053 
2054 	if (capacity >= 0x200000) {
2055 		heads = 255;
2056 		sectors = 63;
2057 		tmp = heads*sectors;
2058 		cylinders = capacity;
2059 		sector_div(cylinders, tmp);
2060 	}
2061 
2062 	geom[0] = heads;
2063 	geom[1] = sectors;
2064 	geom[2] = cylinders;
2065 
2066 	return 0;
2067 }
2068 
2069 static void megasas_aen_polling(struct work_struct *work);
2070 
2071 /**
2072  * megasas_service_aen -	Processes an event notification
2073  * @instance:			Adapter soft state
2074  * @cmd:			AEN command completed by the ISR
2075  *
2076  * For AEN, driver sends a command down to FW that is held by the FW till an
2077  * event occurs. When an event of interest occurs, FW completes the command
2078  * that it was previously holding.
2079  *
2080  * This routines sends SIGIO signal to processes that have registered with the
2081  * driver for AEN.
2082  */
2083 static void
2084 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
2085 {
2086 	unsigned long flags;
2087 	/*
2088 	 * Don't signal app if it is just an aborted previously registered aen
2089 	 */
2090 	if ((!cmd->abort_aen) && (instance->unload == 0)) {
2091 		spin_lock_irqsave(&poll_aen_lock, flags);
2092 		megasas_poll_wait_aen = 1;
2093 		spin_unlock_irqrestore(&poll_aen_lock, flags);
2094 		wake_up(&megasas_poll_wait);
2095 		kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
2096 	}
2097 	else
2098 		cmd->abort_aen = 0;
2099 
2100 	instance->aen_cmd = NULL;
2101 	megasas_return_cmd(instance, cmd);
2102 
2103 	if ((instance->unload == 0) &&
2104 		((instance->issuepend_done == 1))) {
2105 		struct megasas_aen_event *ev;
2106 		ev = kzalloc(sizeof(*ev), GFP_ATOMIC);
2107 		if (!ev) {
2108 			printk(KERN_ERR "megasas_service_aen: out of memory\n");
2109 		} else {
2110 			ev->instance = instance;
2111 			instance->ev = ev;
2112 			INIT_DELAYED_WORK(&ev->hotplug_work,
2113 					  megasas_aen_polling);
2114 			schedule_delayed_work(&ev->hotplug_work, 0);
2115 		}
2116 	}
2117 }
2118 
2119 static int megasas_change_queue_depth(struct scsi_device *sdev,
2120 				      int queue_depth, int reason)
2121 {
2122 	if (reason != SCSI_QDEPTH_DEFAULT)
2123 		return -EOPNOTSUPP;
2124 
2125 	if (queue_depth > sdev->host->can_queue)
2126 		queue_depth = sdev->host->can_queue;
2127 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev),
2128 				queue_depth);
2129 
2130 	return queue_depth;
2131 }
2132 
2133 /*
2134  * Scsi host template for megaraid_sas driver
2135  */
2136 static struct scsi_host_template megasas_template = {
2137 
2138 	.module = THIS_MODULE,
2139 	.name = "LSI SAS based MegaRAID driver",
2140 	.proc_name = "megaraid_sas",
2141 	.slave_configure = megasas_slave_configure,
2142 	.slave_alloc = megasas_slave_alloc,
2143 	.queuecommand = megasas_queue_command,
2144 	.eh_device_reset_handler = megasas_reset_device,
2145 	.eh_bus_reset_handler = megasas_reset_bus_host,
2146 	.eh_host_reset_handler = megasas_reset_bus_host,
2147 	.eh_timed_out = megasas_reset_timer,
2148 	.bios_param = megasas_bios_param,
2149 	.use_clustering = ENABLE_CLUSTERING,
2150 	.change_queue_depth = megasas_change_queue_depth,
2151 	.no_write_same = 1,
2152 };
2153 
2154 /**
2155  * megasas_complete_int_cmd -	Completes an internal command
2156  * @instance:			Adapter soft state
2157  * @cmd:			Command to be completed
2158  *
2159  * The megasas_issue_blocked_cmd() function waits for a command to complete
2160  * after it issues a command. This function wakes up that waiting routine by
2161  * calling wake_up() on the wait queue.
2162  */
2163 static void
2164 megasas_complete_int_cmd(struct megasas_instance *instance,
2165 			 struct megasas_cmd *cmd)
2166 {
2167 	cmd->cmd_status = cmd->frame->io.cmd_status;
2168 
2169 	if (cmd->cmd_status == ENODATA) {
2170 		cmd->cmd_status = 0;
2171 	}
2172 	wake_up(&instance->int_cmd_wait_q);
2173 }
2174 
2175 /**
2176  * megasas_complete_abort -	Completes aborting a command
2177  * @instance:			Adapter soft state
2178  * @cmd:			Cmd that was issued to abort another cmd
2179  *
2180  * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
2181  * after it issues an abort on a previously issued command. This function
2182  * wakes up all functions waiting on the same wait queue.
2183  */
2184 static void
2185 megasas_complete_abort(struct megasas_instance *instance,
2186 		       struct megasas_cmd *cmd)
2187 {
2188 	if (cmd->sync_cmd) {
2189 		cmd->sync_cmd = 0;
2190 		cmd->cmd_status = 0;
2191 		wake_up(&instance->abort_cmd_wait_q);
2192 	}
2193 
2194 	return;
2195 }
2196 
2197 /**
2198  * megasas_complete_cmd -	Completes a command
2199  * @instance:			Adapter soft state
2200  * @cmd:			Command to be completed
2201  * @alt_status:			If non-zero, use this value as status to
2202  * 				SCSI mid-layer instead of the value returned
2203  * 				by the FW. This should be used if caller wants
2204  * 				an alternate status (as in the case of aborted
2205  * 				commands)
2206  */
2207 void
2208 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
2209 		     u8 alt_status)
2210 {
2211 	int exception = 0;
2212 	struct megasas_header *hdr = &cmd->frame->hdr;
2213 	unsigned long flags;
2214 	struct fusion_context *fusion = instance->ctrl_context;
2215 	u32 opcode;
2216 
2217 	/* flag for the retry reset */
2218 	cmd->retry_for_fw_reset = 0;
2219 
2220 	if (cmd->scmd)
2221 		cmd->scmd->SCp.ptr = NULL;
2222 
2223 	switch (hdr->cmd) {
2224 	case MFI_CMD_INVALID:
2225 		/* Some older 1068 controller FW may keep a pended
2226 		   MR_DCMD_CTRL_EVENT_GET_INFO left over from the main kernel
2227 		   when booting the kdump kernel.  Ignore this command to
2228 		   prevent a kernel panic on shutdown of the kdump kernel. */
2229 		printk(KERN_WARNING "megaraid_sas: MFI_CMD_INVALID command "
2230 		       "completed.\n");
2231 		printk(KERN_WARNING "megaraid_sas: If you have a controller "
2232 		       "other than PERC5, please upgrade your firmware.\n");
2233 		break;
2234 	case MFI_CMD_PD_SCSI_IO:
2235 	case MFI_CMD_LD_SCSI_IO:
2236 
2237 		/*
2238 		 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
2239 		 * issued either through an IO path or an IOCTL path. If it
2240 		 * was via IOCTL, we will send it to internal completion.
2241 		 */
2242 		if (cmd->sync_cmd) {
2243 			cmd->sync_cmd = 0;
2244 			megasas_complete_int_cmd(instance, cmd);
2245 			break;
2246 		}
2247 
2248 	case MFI_CMD_LD_READ:
2249 	case MFI_CMD_LD_WRITE:
2250 
2251 		if (alt_status) {
2252 			cmd->scmd->result = alt_status << 16;
2253 			exception = 1;
2254 		}
2255 
2256 		if (exception) {
2257 
2258 			atomic_dec(&instance->fw_outstanding);
2259 
2260 			scsi_dma_unmap(cmd->scmd);
2261 			cmd->scmd->scsi_done(cmd->scmd);
2262 			megasas_return_cmd(instance, cmd);
2263 
2264 			break;
2265 		}
2266 
2267 		switch (hdr->cmd_status) {
2268 
2269 		case MFI_STAT_OK:
2270 			cmd->scmd->result = DID_OK << 16;
2271 			break;
2272 
2273 		case MFI_STAT_SCSI_IO_FAILED:
2274 		case MFI_STAT_LD_INIT_IN_PROGRESS:
2275 			cmd->scmd->result =
2276 			    (DID_ERROR << 16) | hdr->scsi_status;
2277 			break;
2278 
2279 		case MFI_STAT_SCSI_DONE_WITH_ERROR:
2280 
2281 			cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
2282 
2283 			if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
2284 				memset(cmd->scmd->sense_buffer, 0,
2285 				       SCSI_SENSE_BUFFERSIZE);
2286 				memcpy(cmd->scmd->sense_buffer, cmd->sense,
2287 				       hdr->sense_len);
2288 
2289 				cmd->scmd->result |= DRIVER_SENSE << 24;
2290 			}
2291 
2292 			break;
2293 
2294 		case MFI_STAT_LD_OFFLINE:
2295 		case MFI_STAT_DEVICE_NOT_FOUND:
2296 			cmd->scmd->result = DID_BAD_TARGET << 16;
2297 			break;
2298 
2299 		default:
2300 			printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
2301 			       hdr->cmd_status);
2302 			cmd->scmd->result = DID_ERROR << 16;
2303 			break;
2304 		}
2305 
2306 		atomic_dec(&instance->fw_outstanding);
2307 
2308 		scsi_dma_unmap(cmd->scmd);
2309 		cmd->scmd->scsi_done(cmd->scmd);
2310 		megasas_return_cmd(instance, cmd);
2311 
2312 		break;
2313 
2314 	case MFI_CMD_SMP:
2315 	case MFI_CMD_STP:
2316 	case MFI_CMD_DCMD:
2317 		opcode = le32_to_cpu(cmd->frame->dcmd.opcode);
2318 		/* Check for LD map update */
2319 		if ((opcode == MR_DCMD_LD_MAP_GET_INFO)
2320 			&& (cmd->frame->dcmd.mbox.b[1] == 1)) {
2321 			fusion->fast_path_io = 0;
2322 			spin_lock_irqsave(instance->host->host_lock, flags);
2323 			if (cmd->frame->hdr.cmd_status != 0) {
2324 				if (cmd->frame->hdr.cmd_status !=
2325 				    MFI_STAT_NOT_FOUND)
2326 					printk(KERN_WARNING "megasas: map sync"
2327 					       "failed, status = 0x%x.\n",
2328 					       cmd->frame->hdr.cmd_status);
2329 				else {
2330 					megasas_return_cmd(instance, cmd);
2331 					spin_unlock_irqrestore(
2332 						instance->host->host_lock,
2333 						flags);
2334 					break;
2335 				}
2336 			} else
2337 				instance->map_id++;
2338 			megasas_return_cmd(instance, cmd);
2339 
2340 			/*
2341 			 * Set fast path IO to ZERO.
2342 			 * Validate Map will set proper value.
2343 			 * Meanwhile all IOs will go as LD IO.
2344 			 */
2345 			if (MR_ValidateMapInfo(instance))
2346 				fusion->fast_path_io = 1;
2347 			else
2348 				fusion->fast_path_io = 0;
2349 			megasas_sync_map_info(instance);
2350 			spin_unlock_irqrestore(instance->host->host_lock,
2351 					       flags);
2352 			break;
2353 		}
2354 		if (opcode == MR_DCMD_CTRL_EVENT_GET_INFO ||
2355 		    opcode == MR_DCMD_CTRL_EVENT_GET) {
2356 			spin_lock_irqsave(&poll_aen_lock, flags);
2357 			megasas_poll_wait_aen = 0;
2358 			spin_unlock_irqrestore(&poll_aen_lock, flags);
2359 		}
2360 
2361 		/*
2362 		 * See if got an event notification
2363 		 */
2364 		if (opcode == MR_DCMD_CTRL_EVENT_WAIT)
2365 			megasas_service_aen(instance, cmd);
2366 		else
2367 			megasas_complete_int_cmd(instance, cmd);
2368 
2369 		break;
2370 
2371 	case MFI_CMD_ABORT:
2372 		/*
2373 		 * Cmd issued to abort another cmd returned
2374 		 */
2375 		megasas_complete_abort(instance, cmd);
2376 		break;
2377 
2378 	default:
2379 		printk("megasas: Unknown command completed! [0x%X]\n",
2380 		       hdr->cmd);
2381 		break;
2382 	}
2383 }
2384 
2385 /**
2386  * megasas_issue_pending_cmds_again -	issue all pending cmds
2387  *                              	in FW again because of the fw reset
2388  * @instance:				Adapter soft state
2389  */
2390 static inline void
2391 megasas_issue_pending_cmds_again(struct megasas_instance *instance)
2392 {
2393 	struct megasas_cmd *cmd;
2394 	struct list_head clist_local;
2395 	union megasas_evt_class_locale class_locale;
2396 	unsigned long flags;
2397 	u32 seq_num;
2398 
2399 	INIT_LIST_HEAD(&clist_local);
2400 	spin_lock_irqsave(&instance->hba_lock, flags);
2401 	list_splice_init(&instance->internal_reset_pending_q, &clist_local);
2402 	spin_unlock_irqrestore(&instance->hba_lock, flags);
2403 
2404 	while (!list_empty(&clist_local)) {
2405 		cmd	= list_entry((&clist_local)->next,
2406 					struct megasas_cmd, list);
2407 		list_del_init(&cmd->list);
2408 
2409 		if (cmd->sync_cmd || cmd->scmd) {
2410 			printk(KERN_NOTICE "megaraid_sas: command %p, %p:%d"
2411 				"detected to be pending while HBA reset.\n",
2412 					cmd, cmd->scmd, cmd->sync_cmd);
2413 
2414 			cmd->retry_for_fw_reset++;
2415 
2416 			if (cmd->retry_for_fw_reset == 3) {
2417 				printk(KERN_NOTICE "megaraid_sas: cmd %p, %p:%d"
2418 					"was tried multiple times during reset."
2419 					"Shutting down the HBA\n",
2420 					cmd, cmd->scmd, cmd->sync_cmd);
2421 				megaraid_sas_kill_hba(instance);
2422 
2423 				instance->adprecovery =
2424 						MEGASAS_HW_CRITICAL_ERROR;
2425 				return;
2426 			}
2427 		}
2428 
2429 		if (cmd->sync_cmd == 1) {
2430 			if (cmd->scmd) {
2431 				printk(KERN_NOTICE "megaraid_sas: unexpected"
2432 					"cmd attached to internal command!\n");
2433 			}
2434 			printk(KERN_NOTICE "megasas: %p synchronous cmd"
2435 						"on the internal reset queue,"
2436 						"issue it again.\n", cmd);
2437 			cmd->cmd_status = ENODATA;
2438 			instance->instancet->fire_cmd(instance,
2439 							cmd->frame_phys_addr ,
2440 							0, instance->reg_set);
2441 		} else if (cmd->scmd) {
2442 			printk(KERN_NOTICE "megasas: %p scsi cmd [%02x]"
2443 			"detected on the internal queue, issue again.\n",
2444 			cmd, cmd->scmd->cmnd[0]);
2445 
2446 			atomic_inc(&instance->fw_outstanding);
2447 			instance->instancet->fire_cmd(instance,
2448 					cmd->frame_phys_addr,
2449 					cmd->frame_count-1, instance->reg_set);
2450 		} else {
2451 			printk(KERN_NOTICE "megasas: %p unexpected cmd on the"
2452 				"internal reset defer list while re-issue!!\n",
2453 				cmd);
2454 		}
2455 	}
2456 
2457 	if (instance->aen_cmd) {
2458 		printk(KERN_NOTICE "megaraid_sas: aen_cmd in def process\n");
2459 		megasas_return_cmd(instance, instance->aen_cmd);
2460 
2461 		instance->aen_cmd	= NULL;
2462 	}
2463 
2464 	/*
2465 	* Initiate AEN (Asynchronous Event Notification)
2466 	*/
2467 	seq_num = instance->last_seq_num;
2468 	class_locale.members.reserved = 0;
2469 	class_locale.members.locale = MR_EVT_LOCALE_ALL;
2470 	class_locale.members.class = MR_EVT_CLASS_DEBUG;
2471 
2472 	megasas_register_aen(instance, seq_num, class_locale.word);
2473 }
2474 
2475 /**
2476  * Move the internal reset pending commands to a deferred queue.
2477  *
2478  * We move the commands pending at internal reset time to a
2479  * pending queue. This queue would be flushed after successful
2480  * completion of the internal reset sequence. if the internal reset
2481  * did not complete in time, the kernel reset handler would flush
2482  * these commands.
2483  **/
2484 static void
2485 megasas_internal_reset_defer_cmds(struct megasas_instance *instance)
2486 {
2487 	struct megasas_cmd *cmd;
2488 	int i;
2489 	u32 max_cmd = instance->max_fw_cmds;
2490 	u32 defer_index;
2491 	unsigned long flags;
2492 
2493 	defer_index     = 0;
2494 	spin_lock_irqsave(&instance->cmd_pool_lock, flags);
2495 	for (i = 0; i < max_cmd; i++) {
2496 		cmd = instance->cmd_list[i];
2497 		if (cmd->sync_cmd == 1 || cmd->scmd) {
2498 			printk(KERN_NOTICE "megasas: moving cmd[%d]:%p:%d:%p"
2499 					"on the defer queue as internal\n",
2500 				defer_index, cmd, cmd->sync_cmd, cmd->scmd);
2501 
2502 			if (!list_empty(&cmd->list)) {
2503 				printk(KERN_NOTICE "megaraid_sas: ERROR while"
2504 					" moving this cmd:%p, %d %p, it was"
2505 					"discovered on some list?\n",
2506 					cmd, cmd->sync_cmd, cmd->scmd);
2507 
2508 				list_del_init(&cmd->list);
2509 			}
2510 			defer_index++;
2511 			list_add_tail(&cmd->list,
2512 				&instance->internal_reset_pending_q);
2513 		}
2514 	}
2515 	spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
2516 }
2517 
2518 
2519 static void
2520 process_fw_state_change_wq(struct work_struct *work)
2521 {
2522 	struct megasas_instance *instance =
2523 		container_of(work, struct megasas_instance, work_init);
2524 	u32 wait;
2525 	unsigned long flags;
2526 
2527 	if (instance->adprecovery != MEGASAS_ADPRESET_SM_INFAULT) {
2528 		printk(KERN_NOTICE "megaraid_sas: error, recovery st %x \n",
2529 				instance->adprecovery);
2530 		return ;
2531 	}
2532 
2533 	if (instance->adprecovery == MEGASAS_ADPRESET_SM_INFAULT) {
2534 		printk(KERN_NOTICE "megaraid_sas: FW detected to be in fault"
2535 					"state, restarting it...\n");
2536 
2537 		instance->instancet->disable_intr(instance);
2538 		atomic_set(&instance->fw_outstanding, 0);
2539 
2540 		atomic_set(&instance->fw_reset_no_pci_access, 1);
2541 		instance->instancet->adp_reset(instance, instance->reg_set);
2542 		atomic_set(&instance->fw_reset_no_pci_access, 0 );
2543 
2544 		printk(KERN_NOTICE "megaraid_sas: FW restarted successfully,"
2545 					"initiating next stage...\n");
2546 
2547 		printk(KERN_NOTICE "megaraid_sas: HBA recovery state machine,"
2548 					"state 2 starting...\n");
2549 
2550 		/*waitting for about 20 second before start the second init*/
2551 		for (wait = 0; wait < 30; wait++) {
2552 			msleep(1000);
2553 		}
2554 
2555 		if (megasas_transition_to_ready(instance, 1)) {
2556 			printk(KERN_NOTICE "megaraid_sas:adapter not ready\n");
2557 
2558 			megaraid_sas_kill_hba(instance);
2559 			instance->adprecovery	= MEGASAS_HW_CRITICAL_ERROR;
2560 			return ;
2561 		}
2562 
2563 		if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) ||
2564 			(instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) ||
2565 			(instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)
2566 			) {
2567 			*instance->consumer = *instance->producer;
2568 		} else {
2569 			*instance->consumer = 0;
2570 			*instance->producer = 0;
2571 		}
2572 
2573 		megasas_issue_init_mfi(instance);
2574 
2575 		spin_lock_irqsave(&instance->hba_lock, flags);
2576 		instance->adprecovery	= MEGASAS_HBA_OPERATIONAL;
2577 		spin_unlock_irqrestore(&instance->hba_lock, flags);
2578 		instance->instancet->enable_intr(instance);
2579 
2580 		megasas_issue_pending_cmds_again(instance);
2581 		instance->issuepend_done = 1;
2582 	}
2583 	return ;
2584 }
2585 
2586 /**
2587  * megasas_deplete_reply_queue -	Processes all completed commands
2588  * @instance:				Adapter soft state
2589  * @alt_status:				Alternate status to be returned to
2590  * 					SCSI mid-layer instead of the status
2591  * 					returned by the FW
2592  * Note: this must be called with hba lock held
2593  */
2594 static int
2595 megasas_deplete_reply_queue(struct megasas_instance *instance,
2596 					u8 alt_status)
2597 {
2598 	u32 mfiStatus;
2599 	u32 fw_state;
2600 
2601 	if ((mfiStatus = instance->instancet->check_reset(instance,
2602 					instance->reg_set)) == 1) {
2603 		return IRQ_HANDLED;
2604 	}
2605 
2606 	if ((mfiStatus = instance->instancet->clear_intr(
2607 						instance->reg_set)
2608 						) == 0) {
2609 		/* Hardware may not set outbound_intr_status in MSI-X mode */
2610 		if (!instance->msix_vectors)
2611 			return IRQ_NONE;
2612 	}
2613 
2614 	instance->mfiStatus = mfiStatus;
2615 
2616 	if ((mfiStatus & MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE)) {
2617 		fw_state = instance->instancet->read_fw_status_reg(
2618 				instance->reg_set) & MFI_STATE_MASK;
2619 
2620 		if (fw_state != MFI_STATE_FAULT) {
2621 			printk(KERN_NOTICE "megaraid_sas: fw state:%x\n",
2622 						fw_state);
2623 		}
2624 
2625 		if ((fw_state == MFI_STATE_FAULT) &&
2626 				(instance->disableOnlineCtrlReset == 0)) {
2627 			printk(KERN_NOTICE "megaraid_sas: wait adp restart\n");
2628 
2629 			if ((instance->pdev->device ==
2630 					PCI_DEVICE_ID_LSI_SAS1064R) ||
2631 				(instance->pdev->device ==
2632 					PCI_DEVICE_ID_DELL_PERC5) ||
2633 				(instance->pdev->device ==
2634 					PCI_DEVICE_ID_LSI_VERDE_ZCR)) {
2635 
2636 				*instance->consumer =
2637 					cpu_to_le32(MEGASAS_ADPRESET_INPROG_SIGN);
2638 			}
2639 
2640 
2641 			instance->instancet->disable_intr(instance);
2642 			instance->adprecovery	= MEGASAS_ADPRESET_SM_INFAULT;
2643 			instance->issuepend_done = 0;
2644 
2645 			atomic_set(&instance->fw_outstanding, 0);
2646 			megasas_internal_reset_defer_cmds(instance);
2647 
2648 			printk(KERN_NOTICE "megasas: fwState=%x, stage:%d\n",
2649 					fw_state, instance->adprecovery);
2650 
2651 			schedule_work(&instance->work_init);
2652 			return IRQ_HANDLED;
2653 
2654 		} else {
2655 			printk(KERN_NOTICE "megasas: fwstate:%x, dis_OCR=%x\n",
2656 				fw_state, instance->disableOnlineCtrlReset);
2657 		}
2658 	}
2659 
2660 	tasklet_schedule(&instance->isr_tasklet);
2661 	return IRQ_HANDLED;
2662 }
2663 /**
2664  * megasas_isr - isr entry point
2665  */
2666 static irqreturn_t megasas_isr(int irq, void *devp)
2667 {
2668 	struct megasas_irq_context *irq_context = devp;
2669 	struct megasas_instance *instance = irq_context->instance;
2670 	unsigned long flags;
2671 	irqreturn_t	rc;
2672 
2673 	if (atomic_read(&instance->fw_reset_no_pci_access))
2674 		return IRQ_HANDLED;
2675 
2676 	spin_lock_irqsave(&instance->hba_lock, flags);
2677 	rc =  megasas_deplete_reply_queue(instance, DID_OK);
2678 	spin_unlock_irqrestore(&instance->hba_lock, flags);
2679 
2680 	return rc;
2681 }
2682 
2683 /**
2684  * megasas_transition_to_ready -	Move the FW to READY state
2685  * @instance:				Adapter soft state
2686  *
2687  * During the initialization, FW passes can potentially be in any one of
2688  * several possible states. If the FW in operational, waiting-for-handshake
2689  * states, driver must take steps to bring it to ready state. Otherwise, it
2690  * has to wait for the ready state.
2691  */
2692 int
2693 megasas_transition_to_ready(struct megasas_instance *instance, int ocr)
2694 {
2695 	int i;
2696 	u8 max_wait;
2697 	u32 fw_state;
2698 	u32 cur_state;
2699 	u32 abs_state, curr_abs_state;
2700 
2701 	fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
2702 
2703 	if (fw_state != MFI_STATE_READY)
2704 		printk(KERN_INFO "megasas: Waiting for FW to come to ready"
2705 		       " state\n");
2706 
2707 	while (fw_state != MFI_STATE_READY) {
2708 
2709 		abs_state =
2710 		instance->instancet->read_fw_status_reg(instance->reg_set);
2711 
2712 		switch (fw_state) {
2713 
2714 		case MFI_STATE_FAULT:
2715 			printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
2716 			if (ocr) {
2717 				max_wait = MEGASAS_RESET_WAIT_TIME;
2718 				cur_state = MFI_STATE_FAULT;
2719 				break;
2720 			} else
2721 				return -ENODEV;
2722 
2723 		case MFI_STATE_WAIT_HANDSHAKE:
2724 			/*
2725 			 * Set the CLR bit in inbound doorbell
2726 			 */
2727 			if ((instance->pdev->device ==
2728 				PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
2729 				(instance->pdev->device ==
2730 				 PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
2731 				(instance->pdev->device ==
2732 				PCI_DEVICE_ID_LSI_FUSION) ||
2733 				(instance->pdev->device ==
2734 				PCI_DEVICE_ID_LSI_INVADER) ||
2735 				(instance->pdev->device ==
2736 				PCI_DEVICE_ID_LSI_FURY)) {
2737 				writel(
2738 				  MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
2739 				  &instance->reg_set->doorbell);
2740 			} else {
2741 				writel(
2742 				    MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
2743 					&instance->reg_set->inbound_doorbell);
2744 			}
2745 
2746 			max_wait = MEGASAS_RESET_WAIT_TIME;
2747 			cur_state = MFI_STATE_WAIT_HANDSHAKE;
2748 			break;
2749 
2750 		case MFI_STATE_BOOT_MESSAGE_PENDING:
2751 			if ((instance->pdev->device ==
2752 			     PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
2753 				(instance->pdev->device ==
2754 				 PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
2755 			    (instance->pdev->device ==
2756 			     PCI_DEVICE_ID_LSI_FUSION) ||
2757 			    (instance->pdev->device ==
2758 			     PCI_DEVICE_ID_LSI_INVADER) ||
2759 			    (instance->pdev->device ==
2760 			     PCI_DEVICE_ID_LSI_FURY)) {
2761 				writel(MFI_INIT_HOTPLUG,
2762 				       &instance->reg_set->doorbell);
2763 			} else
2764 				writel(MFI_INIT_HOTPLUG,
2765 					&instance->reg_set->inbound_doorbell);
2766 
2767 			max_wait = MEGASAS_RESET_WAIT_TIME;
2768 			cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
2769 			break;
2770 
2771 		case MFI_STATE_OPERATIONAL:
2772 			/*
2773 			 * Bring it to READY state; assuming max wait 10 secs
2774 			 */
2775 			instance->instancet->disable_intr(instance);
2776 			if ((instance->pdev->device ==
2777 				PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
2778 				(instance->pdev->device ==
2779 				PCI_DEVICE_ID_LSI_SAS0071SKINNY)  ||
2780 				(instance->pdev->device
2781 					== PCI_DEVICE_ID_LSI_FUSION) ||
2782 				(instance->pdev->device
2783 					== PCI_DEVICE_ID_LSI_INVADER) ||
2784 				(instance->pdev->device
2785 					== PCI_DEVICE_ID_LSI_FURY)) {
2786 				writel(MFI_RESET_FLAGS,
2787 					&instance->reg_set->doorbell);
2788 				if ((instance->pdev->device ==
2789 					PCI_DEVICE_ID_LSI_FUSION) ||
2790 					(instance->pdev->device ==
2791 					PCI_DEVICE_ID_LSI_INVADER) ||
2792 					(instance->pdev->device ==
2793 					PCI_DEVICE_ID_LSI_FURY)) {
2794 					for (i = 0; i < (10 * 1000); i += 20) {
2795 						if (readl(
2796 							    &instance->
2797 							    reg_set->
2798 							    doorbell) & 1)
2799 							msleep(20);
2800 						else
2801 							break;
2802 					}
2803 				}
2804 			} else
2805 				writel(MFI_RESET_FLAGS,
2806 					&instance->reg_set->inbound_doorbell);
2807 
2808 			max_wait = MEGASAS_RESET_WAIT_TIME;
2809 			cur_state = MFI_STATE_OPERATIONAL;
2810 			break;
2811 
2812 		case MFI_STATE_UNDEFINED:
2813 			/*
2814 			 * This state should not last for more than 2 seconds
2815 			 */
2816 			max_wait = MEGASAS_RESET_WAIT_TIME;
2817 			cur_state = MFI_STATE_UNDEFINED;
2818 			break;
2819 
2820 		case MFI_STATE_BB_INIT:
2821 			max_wait = MEGASAS_RESET_WAIT_TIME;
2822 			cur_state = MFI_STATE_BB_INIT;
2823 			break;
2824 
2825 		case MFI_STATE_FW_INIT:
2826 			max_wait = MEGASAS_RESET_WAIT_TIME;
2827 			cur_state = MFI_STATE_FW_INIT;
2828 			break;
2829 
2830 		case MFI_STATE_FW_INIT_2:
2831 			max_wait = MEGASAS_RESET_WAIT_TIME;
2832 			cur_state = MFI_STATE_FW_INIT_2;
2833 			break;
2834 
2835 		case MFI_STATE_DEVICE_SCAN:
2836 			max_wait = MEGASAS_RESET_WAIT_TIME;
2837 			cur_state = MFI_STATE_DEVICE_SCAN;
2838 			break;
2839 
2840 		case MFI_STATE_FLUSH_CACHE:
2841 			max_wait = MEGASAS_RESET_WAIT_TIME;
2842 			cur_state = MFI_STATE_FLUSH_CACHE;
2843 			break;
2844 
2845 		default:
2846 			printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
2847 			       fw_state);
2848 			return -ENODEV;
2849 		}
2850 
2851 		/*
2852 		 * The cur_state should not last for more than max_wait secs
2853 		 */
2854 		for (i = 0; i < (max_wait * 1000); i++) {
2855 			fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &
2856 					MFI_STATE_MASK ;
2857 		curr_abs_state =
2858 		instance->instancet->read_fw_status_reg(instance->reg_set);
2859 
2860 			if (abs_state == curr_abs_state) {
2861 				msleep(1);
2862 			} else
2863 				break;
2864 		}
2865 
2866 		/*
2867 		 * Return error if fw_state hasn't changed after max_wait
2868 		 */
2869 		if (curr_abs_state == abs_state) {
2870 			printk(KERN_DEBUG "FW state [%d] hasn't changed "
2871 			       "in %d secs\n", fw_state, max_wait);
2872 			return -ENODEV;
2873 		}
2874 	}
2875 	printk(KERN_INFO "megasas: FW now in Ready state\n");
2876 
2877 	return 0;
2878 }
2879 
2880 /**
2881  * megasas_teardown_frame_pool -	Destroy the cmd frame DMA pool
2882  * @instance:				Adapter soft state
2883  */
2884 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
2885 {
2886 	int i;
2887 	u32 max_cmd = instance->max_mfi_cmds;
2888 	struct megasas_cmd *cmd;
2889 
2890 	if (!instance->frame_dma_pool)
2891 		return;
2892 
2893 	/*
2894 	 * Return all frames to pool
2895 	 */
2896 	for (i = 0; i < max_cmd; i++) {
2897 
2898 		cmd = instance->cmd_list[i];
2899 
2900 		if (cmd->frame)
2901 			pci_pool_free(instance->frame_dma_pool, cmd->frame,
2902 				      cmd->frame_phys_addr);
2903 
2904 		if (cmd->sense)
2905 			pci_pool_free(instance->sense_dma_pool, cmd->sense,
2906 				      cmd->sense_phys_addr);
2907 	}
2908 
2909 	/*
2910 	 * Now destroy the pool itself
2911 	 */
2912 	pci_pool_destroy(instance->frame_dma_pool);
2913 	pci_pool_destroy(instance->sense_dma_pool);
2914 
2915 	instance->frame_dma_pool = NULL;
2916 	instance->sense_dma_pool = NULL;
2917 }
2918 
2919 /**
2920  * megasas_create_frame_pool -	Creates DMA pool for cmd frames
2921  * @instance:			Adapter soft state
2922  *
2923  * Each command packet has an embedded DMA memory buffer that is used for
2924  * filling MFI frame and the SG list that immediately follows the frame. This
2925  * function creates those DMA memory buffers for each command packet by using
2926  * PCI pool facility.
2927  */
2928 static int megasas_create_frame_pool(struct megasas_instance *instance)
2929 {
2930 	int i;
2931 	u32 max_cmd;
2932 	u32 sge_sz;
2933 	u32 sgl_sz;
2934 	u32 total_sz;
2935 	u32 frame_count;
2936 	struct megasas_cmd *cmd;
2937 
2938 	max_cmd = instance->max_mfi_cmds;
2939 
2940 	/*
2941 	 * Size of our frame is 64 bytes for MFI frame, followed by max SG
2942 	 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
2943 	 */
2944 	sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
2945 	    sizeof(struct megasas_sge32);
2946 
2947 	if (instance->flag_ieee) {
2948 		sge_sz = sizeof(struct megasas_sge_skinny);
2949 	}
2950 
2951 	/*
2952 	 * Calculated the number of 64byte frames required for SGL
2953 	 */
2954 	sgl_sz = sge_sz * instance->max_num_sge;
2955 	frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
2956 	frame_count = 15;
2957 
2958 	/*
2959 	 * We need one extra frame for the MFI command
2960 	 */
2961 	frame_count++;
2962 
2963 	total_sz = MEGAMFI_FRAME_SIZE * frame_count;
2964 	/*
2965 	 * Use DMA pool facility provided by PCI layer
2966 	 */
2967 	instance->frame_dma_pool = pci_pool_create("megasas frame pool",
2968 						   instance->pdev, total_sz, 64,
2969 						   0);
2970 
2971 	if (!instance->frame_dma_pool) {
2972 		printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
2973 		return -ENOMEM;
2974 	}
2975 
2976 	instance->sense_dma_pool = pci_pool_create("megasas sense pool",
2977 						   instance->pdev, 128, 4, 0);
2978 
2979 	if (!instance->sense_dma_pool) {
2980 		printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
2981 
2982 		pci_pool_destroy(instance->frame_dma_pool);
2983 		instance->frame_dma_pool = NULL;
2984 
2985 		return -ENOMEM;
2986 	}
2987 
2988 	/*
2989 	 * Allocate and attach a frame to each of the commands in cmd_list.
2990 	 * By making cmd->index as the context instead of the &cmd, we can
2991 	 * always use 32bit context regardless of the architecture
2992 	 */
2993 	for (i = 0; i < max_cmd; i++) {
2994 
2995 		cmd = instance->cmd_list[i];
2996 
2997 		cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
2998 					    GFP_KERNEL, &cmd->frame_phys_addr);
2999 
3000 		cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
3001 					    GFP_KERNEL, &cmd->sense_phys_addr);
3002 
3003 		/*
3004 		 * megasas_teardown_frame_pool() takes care of freeing
3005 		 * whatever has been allocated
3006 		 */
3007 		if (!cmd->frame || !cmd->sense) {
3008 			printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
3009 			megasas_teardown_frame_pool(instance);
3010 			return -ENOMEM;
3011 		}
3012 
3013 		memset(cmd->frame, 0, total_sz);
3014 		cmd->frame->io.context = cpu_to_le32(cmd->index);
3015 		cmd->frame->io.pad_0 = 0;
3016 		if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) &&
3017 		    (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) &&
3018 			(instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) &&
3019 		    (reset_devices))
3020 			cmd->frame->hdr.cmd = MFI_CMD_INVALID;
3021 	}
3022 
3023 	return 0;
3024 }
3025 
3026 /**
3027  * megasas_free_cmds -	Free all the cmds in the free cmd pool
3028  * @instance:		Adapter soft state
3029  */
3030 void megasas_free_cmds(struct megasas_instance *instance)
3031 {
3032 	int i;
3033 	/* First free the MFI frame pool */
3034 	megasas_teardown_frame_pool(instance);
3035 
3036 	/* Free all the commands in the cmd_list */
3037 	for (i = 0; i < instance->max_mfi_cmds; i++)
3038 
3039 		kfree(instance->cmd_list[i]);
3040 
3041 	/* Free the cmd_list buffer itself */
3042 	kfree(instance->cmd_list);
3043 	instance->cmd_list = NULL;
3044 
3045 	INIT_LIST_HEAD(&instance->cmd_pool);
3046 }
3047 
3048 /**
3049  * megasas_alloc_cmds -	Allocates the command packets
3050  * @instance:		Adapter soft state
3051  *
3052  * Each command that is issued to the FW, whether IO commands from the OS or
3053  * internal commands like IOCTLs, are wrapped in local data structure called
3054  * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
3055  * the FW.
3056  *
3057  * Each frame has a 32-bit field called context (tag). This context is used
3058  * to get back the megasas_cmd from the frame when a frame gets completed in
3059  * the ISR. Typically the address of the megasas_cmd itself would be used as
3060  * the context. But we wanted to keep the differences between 32 and 64 bit
3061  * systems to the mininum. We always use 32 bit integers for the context. In
3062  * this driver, the 32 bit values are the indices into an array cmd_list.
3063  * This array is used only to look up the megasas_cmd given the context. The
3064  * free commands themselves are maintained in a linked list called cmd_pool.
3065  */
3066 int megasas_alloc_cmds(struct megasas_instance *instance)
3067 {
3068 	int i;
3069 	int j;
3070 	u32 max_cmd;
3071 	struct megasas_cmd *cmd;
3072 
3073 	max_cmd = instance->max_mfi_cmds;
3074 
3075 	/*
3076 	 * instance->cmd_list is an array of struct megasas_cmd pointers.
3077 	 * Allocate the dynamic array first and then allocate individual
3078 	 * commands.
3079 	 */
3080 	instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL);
3081 
3082 	if (!instance->cmd_list) {
3083 		printk(KERN_DEBUG "megasas: out of memory\n");
3084 		return -ENOMEM;
3085 	}
3086 
3087 	memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) *max_cmd);
3088 
3089 	for (i = 0; i < max_cmd; i++) {
3090 		instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
3091 						GFP_KERNEL);
3092 
3093 		if (!instance->cmd_list[i]) {
3094 
3095 			for (j = 0; j < i; j++)
3096 				kfree(instance->cmd_list[j]);
3097 
3098 			kfree(instance->cmd_list);
3099 			instance->cmd_list = NULL;
3100 
3101 			return -ENOMEM;
3102 		}
3103 	}
3104 
3105 	/*
3106 	 * Add all the commands to command pool (instance->cmd_pool)
3107 	 */
3108 	for (i = 0; i < max_cmd; i++) {
3109 		cmd = instance->cmd_list[i];
3110 		memset(cmd, 0, sizeof(struct megasas_cmd));
3111 		cmd->index = i;
3112 		cmd->scmd = NULL;
3113 		cmd->instance = instance;
3114 
3115 		list_add_tail(&cmd->list, &instance->cmd_pool);
3116 	}
3117 
3118 	/*
3119 	 * Create a frame pool and assign one frame to each cmd
3120 	 */
3121 	if (megasas_create_frame_pool(instance)) {
3122 		printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
3123 		megasas_free_cmds(instance);
3124 	}
3125 
3126 	return 0;
3127 }
3128 
3129 /*
3130  * megasas_get_pd_list_info -	Returns FW's pd_list structure
3131  * @instance:				Adapter soft state
3132  * @pd_list:				pd_list structure
3133  *
3134  * Issues an internal command (DCMD) to get the FW's controller PD
3135  * list structure.  This information is mainly used to find out SYSTEM
3136  * supported by the FW.
3137  */
3138 static int
3139 megasas_get_pd_list(struct megasas_instance *instance)
3140 {
3141 	int ret = 0, pd_index = 0;
3142 	struct megasas_cmd *cmd;
3143 	struct megasas_dcmd_frame *dcmd;
3144 	struct MR_PD_LIST *ci;
3145 	struct MR_PD_ADDRESS *pd_addr;
3146 	dma_addr_t ci_h = 0;
3147 
3148 	cmd = megasas_get_cmd(instance);
3149 
3150 	if (!cmd) {
3151 		printk(KERN_DEBUG "megasas (get_pd_list): Failed to get cmd\n");
3152 		return -ENOMEM;
3153 	}
3154 
3155 	dcmd = &cmd->frame->dcmd;
3156 
3157 	ci = pci_alloc_consistent(instance->pdev,
3158 		  MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), &ci_h);
3159 
3160 	if (!ci) {
3161 		printk(KERN_DEBUG "Failed to alloc mem for pd_list\n");
3162 		megasas_return_cmd(instance, cmd);
3163 		return -ENOMEM;
3164 	}
3165 
3166 	memset(ci, 0, sizeof(*ci));
3167 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3168 
3169 	dcmd->mbox.b[0] = MR_PD_QUERY_TYPE_EXPOSED_TO_HOST;
3170 	dcmd->mbox.b[1] = 0;
3171 	dcmd->cmd = MFI_CMD_DCMD;
3172 	dcmd->cmd_status = 0xFF;
3173 	dcmd->sge_count = 1;
3174 	dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ);
3175 	dcmd->timeout = 0;
3176 	dcmd->pad_0 = 0;
3177 	dcmd->data_xfer_len = cpu_to_le32(MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST));
3178 	dcmd->opcode = cpu_to_le32(MR_DCMD_PD_LIST_QUERY);
3179 	dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h);
3180 	dcmd->sgl.sge32[0].length = cpu_to_le32(MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST));
3181 
3182 	if (!megasas_issue_polled(instance, cmd)) {
3183 		ret = 0;
3184 	} else {
3185 		ret = -1;
3186 	}
3187 
3188 	/*
3189 	* the following function will get the instance PD LIST.
3190 	*/
3191 
3192 	pd_addr = ci->addr;
3193 
3194 	if ( ret == 0 &&
3195 	     (le32_to_cpu(ci->count) <
3196 		  (MEGASAS_MAX_PD_CHANNELS * MEGASAS_MAX_DEV_PER_CHANNEL))) {
3197 
3198 		memset(instance->local_pd_list, 0,
3199 			MEGASAS_MAX_PD * sizeof(struct megasas_pd_list));
3200 
3201 		for (pd_index = 0; pd_index < le32_to_cpu(ci->count); pd_index++) {
3202 
3203 			instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].tid	=
3204 				le16_to_cpu(pd_addr->deviceId);
3205 			instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].driveType	=
3206 							pd_addr->scsiDevType;
3207 			instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].driveState	=
3208 							MR_PD_STATE_SYSTEM;
3209 			pd_addr++;
3210 		}
3211 		memcpy(instance->pd_list, instance->local_pd_list,
3212 			sizeof(instance->pd_list));
3213 	}
3214 
3215 	pci_free_consistent(instance->pdev,
3216 				MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST),
3217 				ci, ci_h);
3218 	megasas_return_cmd(instance, cmd);
3219 
3220 	return ret;
3221 }
3222 
3223 /*
3224  * megasas_get_ld_list_info -	Returns FW's ld_list structure
3225  * @instance:				Adapter soft state
3226  * @ld_list:				ld_list structure
3227  *
3228  * Issues an internal command (DCMD) to get the FW's controller PD
3229  * list structure.  This information is mainly used to find out SYSTEM
3230  * supported by the FW.
3231  */
3232 static int
3233 megasas_get_ld_list(struct megasas_instance *instance)
3234 {
3235 	int ret = 0, ld_index = 0, ids = 0;
3236 	struct megasas_cmd *cmd;
3237 	struct megasas_dcmd_frame *dcmd;
3238 	struct MR_LD_LIST *ci;
3239 	dma_addr_t ci_h = 0;
3240 	u32 ld_count;
3241 
3242 	cmd = megasas_get_cmd(instance);
3243 
3244 	if (!cmd) {
3245 		printk(KERN_DEBUG "megasas_get_ld_list: Failed to get cmd\n");
3246 		return -ENOMEM;
3247 	}
3248 
3249 	dcmd = &cmd->frame->dcmd;
3250 
3251 	ci = pci_alloc_consistent(instance->pdev,
3252 				sizeof(struct MR_LD_LIST),
3253 				&ci_h);
3254 
3255 	if (!ci) {
3256 		printk(KERN_DEBUG "Failed to alloc mem in get_ld_list\n");
3257 		megasas_return_cmd(instance, cmd);
3258 		return -ENOMEM;
3259 	}
3260 
3261 	memset(ci, 0, sizeof(*ci));
3262 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3263 
3264 	dcmd->cmd = MFI_CMD_DCMD;
3265 	dcmd->cmd_status = 0xFF;
3266 	dcmd->sge_count = 1;
3267 	dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ);
3268 	dcmd->timeout = 0;
3269 	dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_LD_LIST));
3270 	dcmd->opcode = cpu_to_le32(MR_DCMD_LD_GET_LIST);
3271 	dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h);
3272 	dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct MR_LD_LIST));
3273 	dcmd->pad_0  = 0;
3274 
3275 	if (!megasas_issue_polled(instance, cmd)) {
3276 		ret = 0;
3277 	} else {
3278 		ret = -1;
3279 	}
3280 
3281 	ld_count = le32_to_cpu(ci->ldCount);
3282 
3283 	/* the following function will get the instance PD LIST */
3284 
3285 	if ((ret == 0) && (ld_count <= MAX_LOGICAL_DRIVES)) {
3286 		memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS);
3287 
3288 		for (ld_index = 0; ld_index < ld_count; ld_index++) {
3289 			if (ci->ldList[ld_index].state != 0) {
3290 				ids = ci->ldList[ld_index].ref.targetId;
3291 				instance->ld_ids[ids] =
3292 					ci->ldList[ld_index].ref.targetId;
3293 			}
3294 		}
3295 	}
3296 
3297 	pci_free_consistent(instance->pdev,
3298 				sizeof(struct MR_LD_LIST),
3299 				ci,
3300 				ci_h);
3301 
3302 	megasas_return_cmd(instance, cmd);
3303 	return ret;
3304 }
3305 
3306 /**
3307  * megasas_ld_list_query -	Returns FW's ld_list structure
3308  * @instance:				Adapter soft state
3309  * @ld_list:				ld_list structure
3310  *
3311  * Issues an internal command (DCMD) to get the FW's controller PD
3312  * list structure.  This information is mainly used to find out SYSTEM
3313  * supported by the FW.
3314  */
3315 static int
3316 megasas_ld_list_query(struct megasas_instance *instance, u8 query_type)
3317 {
3318 	int ret = 0, ld_index = 0, ids = 0;
3319 	struct megasas_cmd *cmd;
3320 	struct megasas_dcmd_frame *dcmd;
3321 	struct MR_LD_TARGETID_LIST *ci;
3322 	dma_addr_t ci_h = 0;
3323 	u32 tgtid_count;
3324 
3325 	cmd = megasas_get_cmd(instance);
3326 
3327 	if (!cmd) {
3328 		printk(KERN_WARNING
3329 		       "megasas:(megasas_ld_list_query): Failed to get cmd\n");
3330 		return -ENOMEM;
3331 	}
3332 
3333 	dcmd = &cmd->frame->dcmd;
3334 
3335 	ci = pci_alloc_consistent(instance->pdev,
3336 				  sizeof(struct MR_LD_TARGETID_LIST), &ci_h);
3337 
3338 	if (!ci) {
3339 		printk(KERN_WARNING
3340 		       "megasas: Failed to alloc mem for ld_list_query\n");
3341 		megasas_return_cmd(instance, cmd);
3342 		return -ENOMEM;
3343 	}
3344 
3345 	memset(ci, 0, sizeof(*ci));
3346 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3347 
3348 	dcmd->mbox.b[0] = query_type;
3349 
3350 	dcmd->cmd = MFI_CMD_DCMD;
3351 	dcmd->cmd_status = 0xFF;
3352 	dcmd->sge_count = 1;
3353 	dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ);
3354 	dcmd->timeout = 0;
3355 	dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_LD_TARGETID_LIST));
3356 	dcmd->opcode = cpu_to_le32(MR_DCMD_LD_LIST_QUERY);
3357 	dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h);
3358 	dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct MR_LD_TARGETID_LIST));
3359 	dcmd->pad_0  = 0;
3360 
3361 	if (!megasas_issue_polled(instance, cmd) && !dcmd->cmd_status) {
3362 		ret = 0;
3363 	} else {
3364 		/* On failure, call older LD list DCMD */
3365 		ret = 1;
3366 	}
3367 
3368 	tgtid_count = le32_to_cpu(ci->count);
3369 
3370 	if ((ret == 0) && (tgtid_count <= (MAX_LOGICAL_DRIVES))) {
3371 		memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS);
3372 		for (ld_index = 0; ld_index < tgtid_count; ld_index++) {
3373 			ids = ci->targetId[ld_index];
3374 			instance->ld_ids[ids] = ci->targetId[ld_index];
3375 		}
3376 
3377 	}
3378 
3379 	pci_free_consistent(instance->pdev, sizeof(struct MR_LD_TARGETID_LIST),
3380 			    ci, ci_h);
3381 
3382 	megasas_return_cmd(instance, cmd);
3383 
3384 	return ret;
3385 }
3386 
3387 /**
3388  * megasas_get_controller_info -	Returns FW's controller structure
3389  * @instance:				Adapter soft state
3390  * @ctrl_info:				Controller information structure
3391  *
3392  * Issues an internal command (DCMD) to get the FW's controller structure.
3393  * This information is mainly used to find out the maximum IO transfer per
3394  * command supported by the FW.
3395  */
3396 static int
3397 megasas_get_ctrl_info(struct megasas_instance *instance,
3398 		      struct megasas_ctrl_info *ctrl_info)
3399 {
3400 	int ret = 0;
3401 	struct megasas_cmd *cmd;
3402 	struct megasas_dcmd_frame *dcmd;
3403 	struct megasas_ctrl_info *ci;
3404 	dma_addr_t ci_h = 0;
3405 
3406 	cmd = megasas_get_cmd(instance);
3407 
3408 	if (!cmd) {
3409 		printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
3410 		return -ENOMEM;
3411 	}
3412 
3413 	dcmd = &cmd->frame->dcmd;
3414 
3415 	ci = pci_alloc_consistent(instance->pdev,
3416 				  sizeof(struct megasas_ctrl_info), &ci_h);
3417 
3418 	if (!ci) {
3419 		printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
3420 		megasas_return_cmd(instance, cmd);
3421 		return -ENOMEM;
3422 	}
3423 
3424 	memset(ci, 0, sizeof(*ci));
3425 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3426 
3427 	dcmd->cmd = MFI_CMD_DCMD;
3428 	dcmd->cmd_status = 0xFF;
3429 	dcmd->sge_count = 1;
3430 	dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ);
3431 	dcmd->timeout = 0;
3432 	dcmd->pad_0 = 0;
3433 	dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_ctrl_info));
3434 	dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_GET_INFO);
3435 	dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h);
3436 	dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_ctrl_info));
3437 
3438 	if (!megasas_issue_polled(instance, cmd)) {
3439 		ret = 0;
3440 		memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
3441 	} else {
3442 		ret = -1;
3443 	}
3444 
3445 	pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
3446 			    ci, ci_h);
3447 
3448 	megasas_return_cmd(instance, cmd);
3449 	return ret;
3450 }
3451 
3452 /**
3453  * megasas_issue_init_mfi -	Initializes the FW
3454  * @instance:		Adapter soft state
3455  *
3456  * Issues the INIT MFI cmd
3457  */
3458 static int
3459 megasas_issue_init_mfi(struct megasas_instance *instance)
3460 {
3461 	u32 context;
3462 
3463 	struct megasas_cmd *cmd;
3464 
3465 	struct megasas_init_frame *init_frame;
3466 	struct megasas_init_queue_info *initq_info;
3467 	dma_addr_t init_frame_h;
3468 	dma_addr_t initq_info_h;
3469 
3470 	/*
3471 	 * Prepare a init frame. Note the init frame points to queue info
3472 	 * structure. Each frame has SGL allocated after first 64 bytes. For
3473 	 * this frame - since we don't need any SGL - we use SGL's space as
3474 	 * queue info structure
3475 	 *
3476 	 * We will not get a NULL command below. We just created the pool.
3477 	 */
3478 	cmd = megasas_get_cmd(instance);
3479 
3480 	init_frame = (struct megasas_init_frame *)cmd->frame;
3481 	initq_info = (struct megasas_init_queue_info *)
3482 		((unsigned long)init_frame + 64);
3483 
3484 	init_frame_h = cmd->frame_phys_addr;
3485 	initq_info_h = init_frame_h + 64;
3486 
3487 	context = init_frame->context;
3488 	memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
3489 	memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
3490 	init_frame->context = context;
3491 
3492 	initq_info->reply_queue_entries = cpu_to_le32(instance->max_fw_cmds + 1);
3493 	initq_info->reply_queue_start_phys_addr_lo = cpu_to_le32(instance->reply_queue_h);
3494 
3495 	initq_info->producer_index_phys_addr_lo = cpu_to_le32(instance->producer_h);
3496 	initq_info->consumer_index_phys_addr_lo = cpu_to_le32(instance->consumer_h);
3497 
3498 	init_frame->cmd = MFI_CMD_INIT;
3499 	init_frame->cmd_status = 0xFF;
3500 	init_frame->queue_info_new_phys_addr_lo =
3501 		cpu_to_le32(lower_32_bits(initq_info_h));
3502 	init_frame->queue_info_new_phys_addr_hi =
3503 		cpu_to_le32(upper_32_bits(initq_info_h));
3504 
3505 	init_frame->data_xfer_len = cpu_to_le32(sizeof(struct megasas_init_queue_info));
3506 
3507 	/*
3508 	 * disable the intr before firing the init frame to FW
3509 	 */
3510 	instance->instancet->disable_intr(instance);
3511 
3512 	/*
3513 	 * Issue the init frame in polled mode
3514 	 */
3515 
3516 	if (megasas_issue_polled(instance, cmd)) {
3517 		printk(KERN_ERR "megasas: Failed to init firmware\n");
3518 		megasas_return_cmd(instance, cmd);
3519 		goto fail_fw_init;
3520 	}
3521 
3522 	megasas_return_cmd(instance, cmd);
3523 
3524 	return 0;
3525 
3526 fail_fw_init:
3527 	return -EINVAL;
3528 }
3529 
3530 static u32
3531 megasas_init_adapter_mfi(struct megasas_instance *instance)
3532 {
3533 	struct megasas_register_set __iomem *reg_set;
3534 	u32 context_sz;
3535 	u32 reply_q_sz;
3536 
3537 	reg_set = instance->reg_set;
3538 
3539 	/*
3540 	 * Get various operational parameters from status register
3541 	 */
3542 	instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
3543 	/*
3544 	 * Reduce the max supported cmds by 1. This is to ensure that the
3545 	 * reply_q_sz (1 more than the max cmd that driver may send)
3546 	 * does not exceed max cmds that the FW can support
3547 	 */
3548 	instance->max_fw_cmds = instance->max_fw_cmds-1;
3549 	instance->max_mfi_cmds = instance->max_fw_cmds;
3550 	instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
3551 					0x10;
3552 	/*
3553 	 * Create a pool of commands
3554 	 */
3555 	if (megasas_alloc_cmds(instance))
3556 		goto fail_alloc_cmds;
3557 
3558 	/*
3559 	 * Allocate memory for reply queue. Length of reply queue should
3560 	 * be _one_ more than the maximum commands handled by the firmware.
3561 	 *
3562 	 * Note: When FW completes commands, it places corresponding contex
3563 	 * values in this circular reply queue. This circular queue is a fairly
3564 	 * typical producer-consumer queue. FW is the producer (of completed
3565 	 * commands) and the driver is the consumer.
3566 	 */
3567 	context_sz = sizeof(u32);
3568 	reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
3569 
3570 	instance->reply_queue = pci_alloc_consistent(instance->pdev,
3571 						     reply_q_sz,
3572 						     &instance->reply_queue_h);
3573 
3574 	if (!instance->reply_queue) {
3575 		printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
3576 		goto fail_reply_queue;
3577 	}
3578 
3579 	if (megasas_issue_init_mfi(instance))
3580 		goto fail_fw_init;
3581 
3582 	instance->fw_support_ieee = 0;
3583 	instance->fw_support_ieee =
3584 		(instance->instancet->read_fw_status_reg(reg_set) &
3585 		0x04000000);
3586 
3587 	printk(KERN_NOTICE "megasas_init_mfi: fw_support_ieee=%d",
3588 			instance->fw_support_ieee);
3589 
3590 	if (instance->fw_support_ieee)
3591 		instance->flag_ieee = 1;
3592 
3593 	return 0;
3594 
3595 fail_fw_init:
3596 
3597 	pci_free_consistent(instance->pdev, reply_q_sz,
3598 			    instance->reply_queue, instance->reply_queue_h);
3599 fail_reply_queue:
3600 	megasas_free_cmds(instance);
3601 
3602 fail_alloc_cmds:
3603 	return 1;
3604 }
3605 
3606 /**
3607  * megasas_init_fw -	Initializes the FW
3608  * @instance:		Adapter soft state
3609  *
3610  * This is the main function for initializing firmware
3611  */
3612 
3613 static int megasas_init_fw(struct megasas_instance *instance)
3614 {
3615 	u32 max_sectors_1;
3616 	u32 max_sectors_2;
3617 	u32 tmp_sectors, msix_enable, scratch_pad_2;
3618 	resource_size_t base_addr;
3619 	struct megasas_register_set __iomem *reg_set;
3620 	struct megasas_ctrl_info *ctrl_info;
3621 	unsigned long bar_list;
3622 	int i, loop, fw_msix_count = 0;
3623 
3624 	/* Find first memory bar */
3625 	bar_list = pci_select_bars(instance->pdev, IORESOURCE_MEM);
3626 	instance->bar = find_first_bit(&bar_list, sizeof(unsigned long));
3627 	if (pci_request_selected_regions(instance->pdev, instance->bar,
3628 					 "megasas: LSI")) {
3629 		printk(KERN_DEBUG "megasas: IO memory region busy!\n");
3630 		return -EBUSY;
3631 	}
3632 
3633 	base_addr = pci_resource_start(instance->pdev, instance->bar);
3634 	instance->reg_set = ioremap_nocache(base_addr, 8192);
3635 
3636 	if (!instance->reg_set) {
3637 		printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
3638 		goto fail_ioremap;
3639 	}
3640 
3641 	reg_set = instance->reg_set;
3642 
3643 	switch (instance->pdev->device) {
3644 	case PCI_DEVICE_ID_LSI_FUSION:
3645 	case PCI_DEVICE_ID_LSI_INVADER:
3646 	case PCI_DEVICE_ID_LSI_FURY:
3647 		instance->instancet = &megasas_instance_template_fusion;
3648 		break;
3649 	case PCI_DEVICE_ID_LSI_SAS1078R:
3650 	case PCI_DEVICE_ID_LSI_SAS1078DE:
3651 		instance->instancet = &megasas_instance_template_ppc;
3652 		break;
3653 	case PCI_DEVICE_ID_LSI_SAS1078GEN2:
3654 	case PCI_DEVICE_ID_LSI_SAS0079GEN2:
3655 		instance->instancet = &megasas_instance_template_gen2;
3656 		break;
3657 	case PCI_DEVICE_ID_LSI_SAS0073SKINNY:
3658 	case PCI_DEVICE_ID_LSI_SAS0071SKINNY:
3659 		instance->instancet = &megasas_instance_template_skinny;
3660 		break;
3661 	case PCI_DEVICE_ID_LSI_SAS1064R:
3662 	case PCI_DEVICE_ID_DELL_PERC5:
3663 	default:
3664 		instance->instancet = &megasas_instance_template_xscale;
3665 		break;
3666 	}
3667 
3668 	if (megasas_transition_to_ready(instance, 0)) {
3669 		atomic_set(&instance->fw_reset_no_pci_access, 1);
3670 		instance->instancet->adp_reset
3671 			(instance, instance->reg_set);
3672 		atomic_set(&instance->fw_reset_no_pci_access, 0);
3673 		dev_info(&instance->pdev->dev,
3674 			"megasas: FW restarted successfully from %s!\n",
3675 			__func__);
3676 
3677 		/*waitting for about 30 second before retry*/
3678 		ssleep(30);
3679 
3680 		if (megasas_transition_to_ready(instance, 0))
3681 			goto fail_ready_state;
3682 	}
3683 
3684 	/*
3685 	 * MSI-X host index 0 is common for all adapter.
3686 	 * It is used for all MPT based Adapters.
3687 	 */
3688 	instance->reply_post_host_index_addr[0] =
3689 		(u32 *)((u8 *)instance->reg_set +
3690 		MPI2_REPLY_POST_HOST_INDEX_OFFSET);
3691 
3692 	/* Check if MSI-X is supported while in ready state */
3693 	msix_enable = (instance->instancet->read_fw_status_reg(reg_set) &
3694 		       0x4000000) >> 0x1a;
3695 	if (msix_enable && !msix_disable) {
3696 		scratch_pad_2 = readl
3697 			(&instance->reg_set->outbound_scratch_pad_2);
3698 		/* Check max MSI-X vectors */
3699 		if (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) {
3700 			instance->msix_vectors = (scratch_pad_2
3701 				& MR_MAX_REPLY_QUEUES_OFFSET) + 1;
3702 			fw_msix_count = instance->msix_vectors;
3703 			if (msix_vectors)
3704 				instance->msix_vectors =
3705 					min(msix_vectors,
3706 					    instance->msix_vectors);
3707 		} else if ((instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER)
3708 			|| (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) {
3709 			/* Invader/Fury supports more than 8 MSI-X */
3710 			instance->msix_vectors = ((scratch_pad_2
3711 				& MR_MAX_REPLY_QUEUES_EXT_OFFSET)
3712 				>> MR_MAX_REPLY_QUEUES_EXT_OFFSET_SHIFT) + 1;
3713 			fw_msix_count = instance->msix_vectors;
3714 			/* Save 1-15 reply post index address to local memory
3715 			 * Index 0 is already saved from reg offset
3716 			 * MPI2_REPLY_POST_HOST_INDEX_OFFSET
3717 			 */
3718 			for (loop = 1; loop < MR_MAX_MSIX_REG_ARRAY; loop++) {
3719 				instance->reply_post_host_index_addr[loop] =
3720 					(u32 *)((u8 *)instance->reg_set +
3721 					MPI2_SUP_REPLY_POST_HOST_INDEX_OFFSET
3722 					+ (loop * 0x10));
3723 			}
3724 			if (msix_vectors)
3725 				instance->msix_vectors = min(msix_vectors,
3726 					instance->msix_vectors);
3727 		} else
3728 			instance->msix_vectors = 1;
3729 		/* Don't bother allocating more MSI-X vectors than cpus */
3730 		instance->msix_vectors = min(instance->msix_vectors,
3731 					     (unsigned int)num_online_cpus());
3732 		for (i = 0; i < instance->msix_vectors; i++)
3733 			instance->msixentry[i].entry = i;
3734 		i = pci_enable_msix(instance->pdev, instance->msixentry,
3735 				    instance->msix_vectors);
3736 		if (i >= 0) {
3737 			if (i) {
3738 				if (!pci_enable_msix(instance->pdev,
3739 						     instance->msixentry, i))
3740 					instance->msix_vectors = i;
3741 				else
3742 					instance->msix_vectors = 0;
3743 			}
3744 		} else
3745 			instance->msix_vectors = 0;
3746 
3747 		dev_info(&instance->pdev->dev, "[scsi%d]: FW supports"
3748 			"<%d> MSIX vector,Online CPUs: <%d>,"
3749 			"Current MSIX <%d>\n", instance->host->host_no,
3750 			fw_msix_count, (unsigned int)num_online_cpus(),
3751 			instance->msix_vectors);
3752 	}
3753 
3754 	/* Get operational params, sge flags, send init cmd to controller */
3755 	if (instance->instancet->init_adapter(instance))
3756 		goto fail_init_adapter;
3757 
3758 	printk(KERN_ERR "megasas: INIT adapter done\n");
3759 
3760 	/** for passthrough
3761 	* the following function will get the PD LIST.
3762 	*/
3763 
3764 	memset(instance->pd_list, 0 ,
3765 		(MEGASAS_MAX_PD * sizeof(struct megasas_pd_list)));
3766 	megasas_get_pd_list(instance);
3767 
3768 	memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS);
3769 	if (megasas_ld_list_query(instance,
3770 				  MR_LD_QUERY_TYPE_EXPOSED_TO_HOST))
3771 		megasas_get_ld_list(instance);
3772 
3773 	ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
3774 
3775 	/*
3776 	 * Compute the max allowed sectors per IO: The controller info has two
3777 	 * limits on max sectors. Driver should use the minimum of these two.
3778 	 *
3779 	 * 1 << stripe_sz_ops.min = max sectors per strip
3780 	 *
3781 	 * Note that older firmwares ( < FW ver 30) didn't report information
3782 	 * to calculate max_sectors_1. So the number ended up as zero always.
3783 	 */
3784 	tmp_sectors = 0;
3785 	if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
3786 
3787 		max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
3788 			le16_to_cpu(ctrl_info->max_strips_per_io);
3789 		max_sectors_2 = le32_to_cpu(ctrl_info->max_request_size);
3790 
3791 		tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2);
3792 
3793 		/*Check whether controller is iMR or MR */
3794 		if (ctrl_info->memory_size) {
3795 			instance->is_imr = 0;
3796 			dev_info(&instance->pdev->dev, "Controller type: MR,"
3797 				"Memory size is: %dMB\n",
3798 				le16_to_cpu(ctrl_info->memory_size));
3799 		} else {
3800 			instance->is_imr = 1;
3801 			dev_info(&instance->pdev->dev,
3802 				"Controller type: iMR\n");
3803 		}
3804 		/* OnOffProperties are converted into CPU arch*/
3805 		le32_to_cpus((u32 *)&ctrl_info->properties.OnOffProperties);
3806 		instance->disableOnlineCtrlReset =
3807 		ctrl_info->properties.OnOffProperties.disableOnlineCtrlReset;
3808 		/* adapterOperations2 are converted into CPU arch*/
3809 		le32_to_cpus((u32 *)&ctrl_info->adapterOperations2);
3810 		instance->UnevenSpanSupport =
3811 			ctrl_info->adapterOperations2.supportUnevenSpans;
3812 		if (instance->UnevenSpanSupport) {
3813 			struct fusion_context *fusion = instance->ctrl_context;
3814 			dev_info(&instance->pdev->dev, "FW supports: "
3815 			"UnevenSpanSupport=%x\n", instance->UnevenSpanSupport);
3816 			if (MR_ValidateMapInfo(instance))
3817 				fusion->fast_path_io = 1;
3818 			else
3819 				fusion->fast_path_io = 0;
3820 
3821 		}
3822 	}
3823 	instance->max_sectors_per_req = instance->max_num_sge *
3824 						PAGE_SIZE / 512;
3825 	if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors))
3826 		instance->max_sectors_per_req = tmp_sectors;
3827 
3828 	kfree(ctrl_info);
3829 
3830 	/* Check for valid throttlequeuedepth module parameter */
3831 	if (instance->is_imr) {
3832 		if (throttlequeuedepth > (instance->max_fw_cmds -
3833 					  MEGASAS_SKINNY_INT_CMDS))
3834 			instance->throttlequeuedepth =
3835 				MEGASAS_THROTTLE_QUEUE_DEPTH;
3836 		else
3837 			instance->throttlequeuedepth = throttlequeuedepth;
3838 	} else {
3839 		if (throttlequeuedepth > (instance->max_fw_cmds -
3840 					  MEGASAS_INT_CMDS))
3841 			instance->throttlequeuedepth =
3842 				MEGASAS_THROTTLE_QUEUE_DEPTH;
3843 		else
3844 			instance->throttlequeuedepth = throttlequeuedepth;
3845 	}
3846 
3847         /*
3848 	* Setup tasklet for cmd completion
3849 	*/
3850 
3851 	tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet,
3852 		(unsigned long)instance);
3853 
3854 	return 0;
3855 
3856 fail_init_adapter:
3857 fail_ready_state:
3858 	iounmap(instance->reg_set);
3859 
3860       fail_ioremap:
3861 	pci_release_selected_regions(instance->pdev, instance->bar);
3862 
3863 	return -EINVAL;
3864 }
3865 
3866 /**
3867  * megasas_release_mfi -	Reverses the FW initialization
3868  * @intance:			Adapter soft state
3869  */
3870 static void megasas_release_mfi(struct megasas_instance *instance)
3871 {
3872 	u32 reply_q_sz = sizeof(u32) *(instance->max_mfi_cmds + 1);
3873 
3874 	if (instance->reply_queue)
3875 		pci_free_consistent(instance->pdev, reply_q_sz,
3876 			    instance->reply_queue, instance->reply_queue_h);
3877 
3878 	megasas_free_cmds(instance);
3879 
3880 	iounmap(instance->reg_set);
3881 
3882 	pci_release_selected_regions(instance->pdev, instance->bar);
3883 }
3884 
3885 /**
3886  * megasas_get_seq_num -	Gets latest event sequence numbers
3887  * @instance:			Adapter soft state
3888  * @eli:			FW event log sequence numbers information
3889  *
3890  * FW maintains a log of all events in a non-volatile area. Upper layers would
3891  * usually find out the latest sequence number of the events, the seq number at
3892  * the boot etc. They would "read" all the events below the latest seq number
3893  * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
3894  * number), they would subsribe to AEN (asynchronous event notification) and
3895  * wait for the events to happen.
3896  */
3897 static int
3898 megasas_get_seq_num(struct megasas_instance *instance,
3899 		    struct megasas_evt_log_info *eli)
3900 {
3901 	struct megasas_cmd *cmd;
3902 	struct megasas_dcmd_frame *dcmd;
3903 	struct megasas_evt_log_info *el_info;
3904 	dma_addr_t el_info_h = 0;
3905 
3906 	cmd = megasas_get_cmd(instance);
3907 
3908 	if (!cmd) {
3909 		return -ENOMEM;
3910 	}
3911 
3912 	dcmd = &cmd->frame->dcmd;
3913 	el_info = pci_alloc_consistent(instance->pdev,
3914 				       sizeof(struct megasas_evt_log_info),
3915 				       &el_info_h);
3916 
3917 	if (!el_info) {
3918 		megasas_return_cmd(instance, cmd);
3919 		return -ENOMEM;
3920 	}
3921 
3922 	memset(el_info, 0, sizeof(*el_info));
3923 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3924 
3925 	dcmd->cmd = MFI_CMD_DCMD;
3926 	dcmd->cmd_status = 0x0;
3927 	dcmd->sge_count = 1;
3928 	dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ);
3929 	dcmd->timeout = 0;
3930 	dcmd->pad_0 = 0;
3931 	dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_evt_log_info));
3932 	dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_EVENT_GET_INFO);
3933 	dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(el_info_h);
3934 	dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_evt_log_info));
3935 
3936 	megasas_issue_blocked_cmd(instance, cmd);
3937 
3938 	/*
3939 	 * Copy the data back into callers buffer
3940 	 */
3941 	eli->newest_seq_num = le32_to_cpu(el_info->newest_seq_num);
3942 	eli->oldest_seq_num = le32_to_cpu(el_info->oldest_seq_num);
3943 	eli->clear_seq_num = le32_to_cpu(el_info->clear_seq_num);
3944 	eli->shutdown_seq_num = le32_to_cpu(el_info->shutdown_seq_num);
3945 	eli->boot_seq_num = le32_to_cpu(el_info->boot_seq_num);
3946 
3947 	pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
3948 			    el_info, el_info_h);
3949 
3950 	megasas_return_cmd(instance, cmd);
3951 
3952 	return 0;
3953 }
3954 
3955 /**
3956  * megasas_register_aen -	Registers for asynchronous event notification
3957  * @instance:			Adapter soft state
3958  * @seq_num:			The starting sequence number
3959  * @class_locale:		Class of the event
3960  *
3961  * This function subscribes for AEN for events beyond the @seq_num. It requests
3962  * to be notified if and only if the event is of type @class_locale
3963  */
3964 static int
3965 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
3966 		     u32 class_locale_word)
3967 {
3968 	int ret_val;
3969 	struct megasas_cmd *cmd;
3970 	struct megasas_dcmd_frame *dcmd;
3971 	union megasas_evt_class_locale curr_aen;
3972 	union megasas_evt_class_locale prev_aen;
3973 
3974 	/*
3975 	 * If there an AEN pending already (aen_cmd), check if the
3976 	 * class_locale of that pending AEN is inclusive of the new
3977 	 * AEN request we currently have. If it is, then we don't have
3978 	 * to do anything. In other words, whichever events the current
3979 	 * AEN request is subscribing to, have already been subscribed
3980 	 * to.
3981 	 *
3982 	 * If the old_cmd is _not_ inclusive, then we have to abort
3983 	 * that command, form a class_locale that is superset of both
3984 	 * old and current and re-issue to the FW
3985 	 */
3986 
3987 	curr_aen.word = class_locale_word;
3988 
3989 	if (instance->aen_cmd) {
3990 
3991 		prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
3992 		prev_aen.members.locale = le16_to_cpu(prev_aen.members.locale);
3993 
3994 		/*
3995 		 * A class whose enum value is smaller is inclusive of all
3996 		 * higher values. If a PROGRESS (= -1) was previously
3997 		 * registered, then a new registration requests for higher
3998 		 * classes need not be sent to FW. They are automatically
3999 		 * included.
4000 		 *
4001 		 * Locale numbers don't have such hierarchy. They are bitmap
4002 		 * values
4003 		 */
4004 		if ((prev_aen.members.class <= curr_aen.members.class) &&
4005 		    !((prev_aen.members.locale & curr_aen.members.locale) ^
4006 		      curr_aen.members.locale)) {
4007 			/*
4008 			 * Previously issued event registration includes
4009 			 * current request. Nothing to do.
4010 			 */
4011 			return 0;
4012 		} else {
4013 			curr_aen.members.locale |= prev_aen.members.locale;
4014 
4015 			if (prev_aen.members.class < curr_aen.members.class)
4016 				curr_aen.members.class = prev_aen.members.class;
4017 
4018 			instance->aen_cmd->abort_aen = 1;
4019 			ret_val = megasas_issue_blocked_abort_cmd(instance,
4020 								  instance->
4021 								  aen_cmd);
4022 
4023 			if (ret_val) {
4024 				printk(KERN_DEBUG "megasas: Failed to abort "
4025 				       "previous AEN command\n");
4026 				return ret_val;
4027 			}
4028 		}
4029 	}
4030 
4031 	cmd = megasas_get_cmd(instance);
4032 
4033 	if (!cmd)
4034 		return -ENOMEM;
4035 
4036 	dcmd = &cmd->frame->dcmd;
4037 
4038 	memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
4039 
4040 	/*
4041 	 * Prepare DCMD for aen registration
4042 	 */
4043 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
4044 
4045 	dcmd->cmd = MFI_CMD_DCMD;
4046 	dcmd->cmd_status = 0x0;
4047 	dcmd->sge_count = 1;
4048 	dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ);
4049 	dcmd->timeout = 0;
4050 	dcmd->pad_0 = 0;
4051 	dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_evt_detail));
4052 	dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_EVENT_WAIT);
4053 	dcmd->mbox.w[0] = cpu_to_le32(seq_num);
4054 	instance->last_seq_num = seq_num;
4055 	dcmd->mbox.w[1] = cpu_to_le32(curr_aen.word);
4056 	dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(instance->evt_detail_h);
4057 	dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_evt_detail));
4058 
4059 	if (instance->aen_cmd != NULL) {
4060 		megasas_return_cmd(instance, cmd);
4061 		return 0;
4062 	}
4063 
4064 	/*
4065 	 * Store reference to the cmd used to register for AEN. When an
4066 	 * application wants us to register for AEN, we have to abort this
4067 	 * cmd and re-register with a new EVENT LOCALE supplied by that app
4068 	 */
4069 	instance->aen_cmd = cmd;
4070 
4071 	/*
4072 	 * Issue the aen registration frame
4073 	 */
4074 	instance->instancet->issue_dcmd(instance, cmd);
4075 
4076 	return 0;
4077 }
4078 
4079 /**
4080  * megasas_start_aen -	Subscribes to AEN during driver load time
4081  * @instance:		Adapter soft state
4082  */
4083 static int megasas_start_aen(struct megasas_instance *instance)
4084 {
4085 	struct megasas_evt_log_info eli;
4086 	union megasas_evt_class_locale class_locale;
4087 
4088 	/*
4089 	 * Get the latest sequence number from FW
4090 	 */
4091 	memset(&eli, 0, sizeof(eli));
4092 
4093 	if (megasas_get_seq_num(instance, &eli))
4094 		return -1;
4095 
4096 	/*
4097 	 * Register AEN with FW for latest sequence number plus 1
4098 	 */
4099 	class_locale.members.reserved = 0;
4100 	class_locale.members.locale = MR_EVT_LOCALE_ALL;
4101 	class_locale.members.class = MR_EVT_CLASS_DEBUG;
4102 
4103 	return megasas_register_aen(instance,
4104 			eli.newest_seq_num + 1,
4105 			class_locale.word);
4106 }
4107 
4108 /**
4109  * megasas_io_attach -	Attaches this driver to SCSI mid-layer
4110  * @instance:		Adapter soft state
4111  */
4112 static int megasas_io_attach(struct megasas_instance *instance)
4113 {
4114 	struct Scsi_Host *host = instance->host;
4115 
4116 	/*
4117 	 * Export parameters required by SCSI mid-layer
4118 	 */
4119 	host->irq = instance->pdev->irq;
4120 	host->unique_id = instance->unique_id;
4121 	if (instance->is_imr) {
4122 		host->can_queue =
4123 			instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS;
4124 	} else
4125 		host->can_queue =
4126 			instance->max_fw_cmds - MEGASAS_INT_CMDS;
4127 	host->this_id = instance->init_id;
4128 	host->sg_tablesize = instance->max_num_sge;
4129 
4130 	if (instance->fw_support_ieee)
4131 		instance->max_sectors_per_req = MEGASAS_MAX_SECTORS_IEEE;
4132 
4133 	/*
4134 	 * Check if the module parameter value for max_sectors can be used
4135 	 */
4136 	if (max_sectors && max_sectors < instance->max_sectors_per_req)
4137 		instance->max_sectors_per_req = max_sectors;
4138 	else {
4139 		if (max_sectors) {
4140 			if (((instance->pdev->device ==
4141 				PCI_DEVICE_ID_LSI_SAS1078GEN2) ||
4142 				(instance->pdev->device ==
4143 				PCI_DEVICE_ID_LSI_SAS0079GEN2)) &&
4144 				(max_sectors <= MEGASAS_MAX_SECTORS)) {
4145 				instance->max_sectors_per_req = max_sectors;
4146 			} else {
4147 			printk(KERN_INFO "megasas: max_sectors should be > 0"
4148 				"and <= %d (or < 1MB for GEN2 controller)\n",
4149 				instance->max_sectors_per_req);
4150 			}
4151 		}
4152 	}
4153 
4154 	host->max_sectors = instance->max_sectors_per_req;
4155 	host->cmd_per_lun = MEGASAS_DEFAULT_CMD_PER_LUN;
4156 	host->max_channel = MEGASAS_MAX_CHANNELS - 1;
4157 	host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
4158 	host->max_lun = MEGASAS_MAX_LUN;
4159 	host->max_cmd_len = 16;
4160 
4161 	/* Fusion only supports host reset */
4162 	if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
4163 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
4164 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) {
4165 		host->hostt->eh_device_reset_handler = NULL;
4166 		host->hostt->eh_bus_reset_handler = NULL;
4167 	}
4168 
4169 	/*
4170 	 * Notify the mid-layer about the new controller
4171 	 */
4172 	if (scsi_add_host(host, &instance->pdev->dev)) {
4173 		printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
4174 		return -ENODEV;
4175 	}
4176 
4177 	/*
4178 	 * Trigger SCSI to scan our drives
4179 	 */
4180 	scsi_scan_host(host);
4181 	return 0;
4182 }
4183 
4184 static int
4185 megasas_set_dma_mask(struct pci_dev *pdev)
4186 {
4187 	/*
4188 	 * All our contollers are capable of performing 64-bit DMA
4189 	 */
4190 	if (IS_DMA64) {
4191 		if (pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) != 0) {
4192 
4193 			if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)
4194 				goto fail_set_dma_mask;
4195 		}
4196 	} else {
4197 		if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)
4198 			goto fail_set_dma_mask;
4199 	}
4200 
4201 	return 0;
4202 
4203 fail_set_dma_mask:
4204 	return 1;
4205 }
4206 
4207 /**
4208  * megasas_probe_one -	PCI hotplug entry point
4209  * @pdev:		PCI device structure
4210  * @id:			PCI ids of supported hotplugged adapter
4211  */
4212 static int megasas_probe_one(struct pci_dev *pdev,
4213 			     const struct pci_device_id *id)
4214 {
4215 	int rval, pos, i, j;
4216 	struct Scsi_Host *host;
4217 	struct megasas_instance *instance;
4218 	u16 control = 0;
4219 
4220 	/* Reset MSI-X in the kdump kernel */
4221 	if (reset_devices) {
4222 		pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4223 		if (pos) {
4224 			pci_read_config_word(pdev, pos + PCI_MSIX_FLAGS,
4225 					     &control);
4226 			if (control & PCI_MSIX_FLAGS_ENABLE) {
4227 				dev_info(&pdev->dev, "resetting MSI-X\n");
4228 				pci_write_config_word(pdev,
4229 						      pos + PCI_MSIX_FLAGS,
4230 						      control &
4231 						      ~PCI_MSIX_FLAGS_ENABLE);
4232 			}
4233 		}
4234 	}
4235 
4236 	/*
4237 	 * Announce PCI information
4238 	 */
4239 	printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
4240 	       pdev->vendor, pdev->device, pdev->subsystem_vendor,
4241 	       pdev->subsystem_device);
4242 
4243 	printk("bus %d:slot %d:func %d\n",
4244 	       pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
4245 
4246 	/*
4247 	 * PCI prepping: enable device set bus mastering and dma mask
4248 	 */
4249 	rval = pci_enable_device_mem(pdev);
4250 
4251 	if (rval) {
4252 		return rval;
4253 	}
4254 
4255 	pci_set_master(pdev);
4256 
4257 	if (megasas_set_dma_mask(pdev))
4258 		goto fail_set_dma_mask;
4259 
4260 	host = scsi_host_alloc(&megasas_template,
4261 			       sizeof(struct megasas_instance));
4262 
4263 	if (!host) {
4264 		printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
4265 		goto fail_alloc_instance;
4266 	}
4267 
4268 	instance = (struct megasas_instance *)host->hostdata;
4269 	memset(instance, 0, sizeof(*instance));
4270 	atomic_set( &instance->fw_reset_no_pci_access, 0 );
4271 	instance->pdev = pdev;
4272 
4273 	switch (instance->pdev->device) {
4274 	case PCI_DEVICE_ID_LSI_FUSION:
4275 	case PCI_DEVICE_ID_LSI_INVADER:
4276 	case PCI_DEVICE_ID_LSI_FURY:
4277 	{
4278 		struct fusion_context *fusion;
4279 
4280 		instance->ctrl_context =
4281 			kzalloc(sizeof(struct fusion_context), GFP_KERNEL);
4282 		if (!instance->ctrl_context) {
4283 			printk(KERN_DEBUG "megasas: Failed to allocate "
4284 			       "memory for Fusion context info\n");
4285 			goto fail_alloc_dma_buf;
4286 		}
4287 		fusion = instance->ctrl_context;
4288 		INIT_LIST_HEAD(&fusion->cmd_pool);
4289 		spin_lock_init(&fusion->cmd_pool_lock);
4290 	}
4291 	break;
4292 	default: /* For all other supported controllers */
4293 
4294 		instance->producer =
4295 			pci_alloc_consistent(pdev, sizeof(u32),
4296 					     &instance->producer_h);
4297 		instance->consumer =
4298 			pci_alloc_consistent(pdev, sizeof(u32),
4299 					     &instance->consumer_h);
4300 
4301 		if (!instance->producer || !instance->consumer) {
4302 			printk(KERN_DEBUG "megasas: Failed to allocate"
4303 			       "memory for producer, consumer\n");
4304 			goto fail_alloc_dma_buf;
4305 		}
4306 
4307 		*instance->producer = 0;
4308 		*instance->consumer = 0;
4309 		break;
4310 	}
4311 
4312 	megasas_poll_wait_aen = 0;
4313 	instance->flag_ieee = 0;
4314 	instance->ev = NULL;
4315 	instance->issuepend_done = 1;
4316 	instance->adprecovery = MEGASAS_HBA_OPERATIONAL;
4317 	instance->is_imr = 0;
4318 	megasas_poll_wait_aen = 0;
4319 
4320 	instance->evt_detail = pci_alloc_consistent(pdev,
4321 						    sizeof(struct
4322 							   megasas_evt_detail),
4323 						    &instance->evt_detail_h);
4324 
4325 	if (!instance->evt_detail) {
4326 		printk(KERN_DEBUG "megasas: Failed to allocate memory for "
4327 		       "event detail structure\n");
4328 		goto fail_alloc_dma_buf;
4329 	}
4330 
4331 	/*
4332 	 * Initialize locks and queues
4333 	 */
4334 	INIT_LIST_HEAD(&instance->cmd_pool);
4335 	INIT_LIST_HEAD(&instance->internal_reset_pending_q);
4336 
4337 	atomic_set(&instance->fw_outstanding,0);
4338 
4339 	init_waitqueue_head(&instance->int_cmd_wait_q);
4340 	init_waitqueue_head(&instance->abort_cmd_wait_q);
4341 
4342 	spin_lock_init(&instance->cmd_pool_lock);
4343 	spin_lock_init(&instance->hba_lock);
4344 	spin_lock_init(&instance->completion_lock);
4345 
4346 	mutex_init(&instance->aen_mutex);
4347 	mutex_init(&instance->reset_mutex);
4348 
4349 	/*
4350 	 * Initialize PCI related and misc parameters
4351 	 */
4352 	instance->host = host;
4353 	instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
4354 	instance->init_id = MEGASAS_DEFAULT_INIT_ID;
4355 
4356 	if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
4357 		(instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
4358 		instance->flag_ieee = 1;
4359 		sema_init(&instance->ioctl_sem, MEGASAS_SKINNY_INT_CMDS);
4360 	} else
4361 		sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
4362 
4363 	megasas_dbg_lvl = 0;
4364 	instance->flag = 0;
4365 	instance->unload = 1;
4366 	instance->last_time = 0;
4367 	instance->disableOnlineCtrlReset = 1;
4368 	instance->UnevenSpanSupport = 0;
4369 
4370 	if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
4371 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
4372 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY))
4373 		INIT_WORK(&instance->work_init, megasas_fusion_ocr_wq);
4374 	else
4375 		INIT_WORK(&instance->work_init, process_fw_state_change_wq);
4376 
4377 	/*
4378 	 * Initialize MFI Firmware
4379 	 */
4380 	if (megasas_init_fw(instance))
4381 		goto fail_init_mfi;
4382 
4383 retry_irq_register:
4384 	/*
4385 	 * Register IRQ
4386 	 */
4387 	if (instance->msix_vectors) {
4388 		for (i = 0 ; i < instance->msix_vectors; i++) {
4389 			instance->irq_context[i].instance = instance;
4390 			instance->irq_context[i].MSIxIndex = i;
4391 			if (request_irq(instance->msixentry[i].vector,
4392 					instance->instancet->service_isr, 0,
4393 					"megasas",
4394 					&instance->irq_context[i])) {
4395 				printk(KERN_DEBUG "megasas: Failed to "
4396 				       "register IRQ for vector %d.\n", i);
4397 				for (j = 0 ; j < i ; j++)
4398 					free_irq(
4399 						instance->msixentry[j].vector,
4400 						&instance->irq_context[j]);
4401 				/* Retry irq register for IO_APIC */
4402 				instance->msix_vectors = 0;
4403 				goto retry_irq_register;
4404 			}
4405 		}
4406 	} else {
4407 		instance->irq_context[0].instance = instance;
4408 		instance->irq_context[0].MSIxIndex = 0;
4409 		if (request_irq(pdev->irq, instance->instancet->service_isr,
4410 				IRQF_SHARED, "megasas",
4411 				&instance->irq_context[0])) {
4412 			printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
4413 			goto fail_irq;
4414 		}
4415 	}
4416 
4417 	instance->instancet->enable_intr(instance);
4418 
4419 	/*
4420 	 * Store instance in PCI softstate
4421 	 */
4422 	pci_set_drvdata(pdev, instance);
4423 
4424 	/*
4425 	 * Add this controller to megasas_mgmt_info structure so that it
4426 	 * can be exported to management applications
4427 	 */
4428 	megasas_mgmt_info.count++;
4429 	megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
4430 	megasas_mgmt_info.max_index++;
4431 
4432 	/*
4433 	 * Register with SCSI mid-layer
4434 	 */
4435 	if (megasas_io_attach(instance))
4436 		goto fail_io_attach;
4437 
4438 	instance->unload = 0;
4439 
4440 	/*
4441 	 * Initiate AEN (Asynchronous Event Notification)
4442 	 */
4443 	if (megasas_start_aen(instance)) {
4444 		printk(KERN_DEBUG "megasas: start aen failed\n");
4445 		goto fail_start_aen;
4446 	}
4447 
4448 	return 0;
4449 
4450       fail_start_aen:
4451       fail_io_attach:
4452 	megasas_mgmt_info.count--;
4453 	megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
4454 	megasas_mgmt_info.max_index--;
4455 
4456 	instance->instancet->disable_intr(instance);
4457 	if (instance->msix_vectors)
4458 		for (i = 0 ; i < instance->msix_vectors; i++)
4459 			free_irq(instance->msixentry[i].vector,
4460 				 &instance->irq_context[i]);
4461 	else
4462 		free_irq(instance->pdev->irq, &instance->irq_context[0]);
4463 fail_irq:
4464 	if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
4465 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
4466 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY))
4467 		megasas_release_fusion(instance);
4468 	else
4469 		megasas_release_mfi(instance);
4470       fail_init_mfi:
4471 	if (instance->msix_vectors)
4472 		pci_disable_msix(instance->pdev);
4473       fail_alloc_dma_buf:
4474 	if (instance->evt_detail)
4475 		pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
4476 				    instance->evt_detail,
4477 				    instance->evt_detail_h);
4478 
4479 	if (instance->producer)
4480 		pci_free_consistent(pdev, sizeof(u32), instance->producer,
4481 				    instance->producer_h);
4482 	if (instance->consumer)
4483 		pci_free_consistent(pdev, sizeof(u32), instance->consumer,
4484 				    instance->consumer_h);
4485 	scsi_host_put(host);
4486 
4487       fail_alloc_instance:
4488       fail_set_dma_mask:
4489 	pci_disable_device(pdev);
4490 
4491 	return -ENODEV;
4492 }
4493 
4494 /**
4495  * megasas_flush_cache -	Requests FW to flush all its caches
4496  * @instance:			Adapter soft state
4497  */
4498 static void megasas_flush_cache(struct megasas_instance *instance)
4499 {
4500 	struct megasas_cmd *cmd;
4501 	struct megasas_dcmd_frame *dcmd;
4502 
4503 	if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR)
4504 		return;
4505 
4506 	cmd = megasas_get_cmd(instance);
4507 
4508 	if (!cmd)
4509 		return;
4510 
4511 	dcmd = &cmd->frame->dcmd;
4512 
4513 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
4514 
4515 	dcmd->cmd = MFI_CMD_DCMD;
4516 	dcmd->cmd_status = 0x0;
4517 	dcmd->sge_count = 0;
4518 	dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_NONE);
4519 	dcmd->timeout = 0;
4520 	dcmd->pad_0 = 0;
4521 	dcmd->data_xfer_len = 0;
4522 	dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_CACHE_FLUSH);
4523 	dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
4524 
4525 	megasas_issue_blocked_cmd(instance, cmd);
4526 
4527 	megasas_return_cmd(instance, cmd);
4528 
4529 	return;
4530 }
4531 
4532 /**
4533  * megasas_shutdown_controller -	Instructs FW to shutdown the controller
4534  * @instance:				Adapter soft state
4535  * @opcode:				Shutdown/Hibernate
4536  */
4537 static void megasas_shutdown_controller(struct megasas_instance *instance,
4538 					u32 opcode)
4539 {
4540 	struct megasas_cmd *cmd;
4541 	struct megasas_dcmd_frame *dcmd;
4542 
4543 	if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR)
4544 		return;
4545 
4546 	cmd = megasas_get_cmd(instance);
4547 
4548 	if (!cmd)
4549 		return;
4550 
4551 	if (instance->aen_cmd)
4552 		megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
4553 	if (instance->map_update_cmd)
4554 		megasas_issue_blocked_abort_cmd(instance,
4555 						instance->map_update_cmd);
4556 	dcmd = &cmd->frame->dcmd;
4557 
4558 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
4559 
4560 	dcmd->cmd = MFI_CMD_DCMD;
4561 	dcmd->cmd_status = 0x0;
4562 	dcmd->sge_count = 0;
4563 	dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_NONE);
4564 	dcmd->timeout = 0;
4565 	dcmd->pad_0 = 0;
4566 	dcmd->data_xfer_len = 0;
4567 	dcmd->opcode = cpu_to_le32(opcode);
4568 
4569 	megasas_issue_blocked_cmd(instance, cmd);
4570 
4571 	megasas_return_cmd(instance, cmd);
4572 
4573 	return;
4574 }
4575 
4576 #ifdef CONFIG_PM
4577 /**
4578  * megasas_suspend -	driver suspend entry point
4579  * @pdev:		PCI device structure
4580  * @state:		PCI power state to suspend routine
4581  */
4582 static int
4583 megasas_suspend(struct pci_dev *pdev, pm_message_t state)
4584 {
4585 	struct Scsi_Host *host;
4586 	struct megasas_instance *instance;
4587 	int i;
4588 
4589 	instance = pci_get_drvdata(pdev);
4590 	host = instance->host;
4591 	instance->unload = 1;
4592 
4593 	megasas_flush_cache(instance);
4594 	megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN);
4595 
4596 	/* cancel the delayed work if this work still in queue */
4597 	if (instance->ev != NULL) {
4598 		struct megasas_aen_event *ev = instance->ev;
4599 		cancel_delayed_work_sync(&ev->hotplug_work);
4600 		instance->ev = NULL;
4601 	}
4602 
4603 	tasklet_kill(&instance->isr_tasklet);
4604 
4605 	pci_set_drvdata(instance->pdev, instance);
4606 	instance->instancet->disable_intr(instance);
4607 
4608 	if (instance->msix_vectors)
4609 		for (i = 0 ; i < instance->msix_vectors; i++)
4610 			free_irq(instance->msixentry[i].vector,
4611 				 &instance->irq_context[i]);
4612 	else
4613 		free_irq(instance->pdev->irq, &instance->irq_context[0]);
4614 	if (instance->msix_vectors)
4615 		pci_disable_msix(instance->pdev);
4616 
4617 	pci_save_state(pdev);
4618 	pci_disable_device(pdev);
4619 
4620 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
4621 
4622 	return 0;
4623 }
4624 
4625 /**
4626  * megasas_resume-      driver resume entry point
4627  * @pdev:               PCI device structure
4628  */
4629 static int
4630 megasas_resume(struct pci_dev *pdev)
4631 {
4632 	int rval, i, j;
4633 	struct Scsi_Host *host;
4634 	struct megasas_instance *instance;
4635 
4636 	instance = pci_get_drvdata(pdev);
4637 	host = instance->host;
4638 	pci_set_power_state(pdev, PCI_D0);
4639 	pci_enable_wake(pdev, PCI_D0, 0);
4640 	pci_restore_state(pdev);
4641 
4642 	/*
4643 	 * PCI prepping: enable device set bus mastering and dma mask
4644 	 */
4645 	rval = pci_enable_device_mem(pdev);
4646 
4647 	if (rval) {
4648 		printk(KERN_ERR "megasas: Enable device failed\n");
4649 		return rval;
4650 	}
4651 
4652 	pci_set_master(pdev);
4653 
4654 	if (megasas_set_dma_mask(pdev))
4655 		goto fail_set_dma_mask;
4656 
4657 	/*
4658 	 * Initialize MFI Firmware
4659 	 */
4660 
4661 	atomic_set(&instance->fw_outstanding, 0);
4662 
4663 	/*
4664 	 * We expect the FW state to be READY
4665 	 */
4666 	if (megasas_transition_to_ready(instance, 0))
4667 		goto fail_ready_state;
4668 
4669 	/* Now re-enable MSI-X */
4670 	if (instance->msix_vectors)
4671 		pci_enable_msix(instance->pdev, instance->msixentry,
4672 				instance->msix_vectors);
4673 
4674 	switch (instance->pdev->device) {
4675 	case PCI_DEVICE_ID_LSI_FUSION:
4676 	case PCI_DEVICE_ID_LSI_INVADER:
4677 	case PCI_DEVICE_ID_LSI_FURY:
4678 	{
4679 		megasas_reset_reply_desc(instance);
4680 		if (megasas_ioc_init_fusion(instance)) {
4681 			megasas_free_cmds(instance);
4682 			megasas_free_cmds_fusion(instance);
4683 			goto fail_init_mfi;
4684 		}
4685 		if (!megasas_get_map_info(instance))
4686 			megasas_sync_map_info(instance);
4687 	}
4688 	break;
4689 	default:
4690 		*instance->producer = 0;
4691 		*instance->consumer = 0;
4692 		if (megasas_issue_init_mfi(instance))
4693 			goto fail_init_mfi;
4694 		break;
4695 	}
4696 
4697 	tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet,
4698 		     (unsigned long)instance);
4699 
4700 	/*
4701 	 * Register IRQ
4702 	 */
4703 	if (instance->msix_vectors) {
4704 		for (i = 0 ; i < instance->msix_vectors; i++) {
4705 			instance->irq_context[i].instance = instance;
4706 			instance->irq_context[i].MSIxIndex = i;
4707 			if (request_irq(instance->msixentry[i].vector,
4708 					instance->instancet->service_isr, 0,
4709 					"megasas",
4710 					&instance->irq_context[i])) {
4711 				printk(KERN_DEBUG "megasas: Failed to "
4712 				       "register IRQ for vector %d.\n", i);
4713 				for (j = 0 ; j < i ; j++)
4714 					free_irq(
4715 						instance->msixentry[j].vector,
4716 						&instance->irq_context[j]);
4717 				goto fail_irq;
4718 			}
4719 		}
4720 	} else {
4721 		instance->irq_context[0].instance = instance;
4722 		instance->irq_context[0].MSIxIndex = 0;
4723 		if (request_irq(pdev->irq, instance->instancet->service_isr,
4724 				IRQF_SHARED, "megasas",
4725 				&instance->irq_context[0])) {
4726 			printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
4727 			goto fail_irq;
4728 		}
4729 	}
4730 
4731 	instance->instancet->enable_intr(instance);
4732 	instance->unload = 0;
4733 
4734 	/*
4735 	 * Initiate AEN (Asynchronous Event Notification)
4736 	 */
4737 	if (megasas_start_aen(instance))
4738 		printk(KERN_ERR "megasas: Start AEN failed\n");
4739 
4740 	return 0;
4741 
4742 fail_irq:
4743 fail_init_mfi:
4744 	if (instance->evt_detail)
4745 		pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
4746 				instance->evt_detail,
4747 				instance->evt_detail_h);
4748 
4749 	if (instance->producer)
4750 		pci_free_consistent(pdev, sizeof(u32), instance->producer,
4751 				instance->producer_h);
4752 	if (instance->consumer)
4753 		pci_free_consistent(pdev, sizeof(u32), instance->consumer,
4754 				instance->consumer_h);
4755 	scsi_host_put(host);
4756 
4757 fail_set_dma_mask:
4758 fail_ready_state:
4759 
4760 	pci_disable_device(pdev);
4761 
4762 	return -ENODEV;
4763 }
4764 #else
4765 #define megasas_suspend	NULL
4766 #define megasas_resume	NULL
4767 #endif
4768 
4769 /**
4770  * megasas_detach_one -	PCI hot"un"plug entry point
4771  * @pdev:		PCI device structure
4772  */
4773 static void megasas_detach_one(struct pci_dev *pdev)
4774 {
4775 	int i;
4776 	struct Scsi_Host *host;
4777 	struct megasas_instance *instance;
4778 	struct fusion_context *fusion;
4779 
4780 	instance = pci_get_drvdata(pdev);
4781 	instance->unload = 1;
4782 	host = instance->host;
4783 	fusion = instance->ctrl_context;
4784 
4785 	scsi_remove_host(instance->host);
4786 	megasas_flush_cache(instance);
4787 	megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
4788 
4789 	/* cancel the delayed work if this work still in queue*/
4790 	if (instance->ev != NULL) {
4791 		struct megasas_aen_event *ev = instance->ev;
4792 		cancel_delayed_work_sync(&ev->hotplug_work);
4793 		instance->ev = NULL;
4794 	}
4795 
4796 	tasklet_kill(&instance->isr_tasklet);
4797 
4798 	/*
4799 	 * Take the instance off the instance array. Note that we will not
4800 	 * decrement the max_index. We let this array be sparse array
4801 	 */
4802 	for (i = 0; i < megasas_mgmt_info.max_index; i++) {
4803 		if (megasas_mgmt_info.instance[i] == instance) {
4804 			megasas_mgmt_info.count--;
4805 			megasas_mgmt_info.instance[i] = NULL;
4806 
4807 			break;
4808 		}
4809 	}
4810 
4811 	instance->instancet->disable_intr(instance);
4812 
4813 	if (instance->msix_vectors)
4814 		for (i = 0 ; i < instance->msix_vectors; i++)
4815 			free_irq(instance->msixentry[i].vector,
4816 				 &instance->irq_context[i]);
4817 	else
4818 		free_irq(instance->pdev->irq, &instance->irq_context[0]);
4819 	if (instance->msix_vectors)
4820 		pci_disable_msix(instance->pdev);
4821 
4822 	switch (instance->pdev->device) {
4823 	case PCI_DEVICE_ID_LSI_FUSION:
4824 	case PCI_DEVICE_ID_LSI_INVADER:
4825 	case PCI_DEVICE_ID_LSI_FURY:
4826 		megasas_release_fusion(instance);
4827 		for (i = 0; i < 2 ; i++)
4828 			if (fusion->ld_map[i])
4829 				dma_free_coherent(&instance->pdev->dev,
4830 						  fusion->map_sz,
4831 						  fusion->ld_map[i],
4832 						  fusion->
4833 						  ld_map_phys[i]);
4834 		kfree(instance->ctrl_context);
4835 		break;
4836 	default:
4837 		megasas_release_mfi(instance);
4838 		pci_free_consistent(pdev, sizeof(u32),
4839 				    instance->producer,
4840 				    instance->producer_h);
4841 		pci_free_consistent(pdev, sizeof(u32),
4842 				    instance->consumer,
4843 				    instance->consumer_h);
4844 		break;
4845 	}
4846 
4847 	if (instance->evt_detail)
4848 		pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
4849 				instance->evt_detail, instance->evt_detail_h);
4850 	scsi_host_put(host);
4851 
4852 	pci_disable_device(pdev);
4853 
4854 	return;
4855 }
4856 
4857 /**
4858  * megasas_shutdown -	Shutdown entry point
4859  * @device:		Generic device structure
4860  */
4861 static void megasas_shutdown(struct pci_dev *pdev)
4862 {
4863 	int i;
4864 	struct megasas_instance *instance = pci_get_drvdata(pdev);
4865 
4866 	instance->unload = 1;
4867 	megasas_flush_cache(instance);
4868 	megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
4869 	instance->instancet->disable_intr(instance);
4870 	if (instance->msix_vectors)
4871 		for (i = 0 ; i < instance->msix_vectors; i++)
4872 			free_irq(instance->msixentry[i].vector,
4873 				 &instance->irq_context[i]);
4874 	else
4875 		free_irq(instance->pdev->irq, &instance->irq_context[0]);
4876 	if (instance->msix_vectors)
4877 		pci_disable_msix(instance->pdev);
4878 }
4879 
4880 /**
4881  * megasas_mgmt_open -	char node "open" entry point
4882  */
4883 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
4884 {
4885 	/*
4886 	 * Allow only those users with admin rights
4887 	 */
4888 	if (!capable(CAP_SYS_ADMIN))
4889 		return -EACCES;
4890 
4891 	return 0;
4892 }
4893 
4894 /**
4895  * megasas_mgmt_fasync -	Async notifier registration from applications
4896  *
4897  * This function adds the calling process to a driver global queue. When an
4898  * event occurs, SIGIO will be sent to all processes in this queue.
4899  */
4900 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
4901 {
4902 	int rc;
4903 
4904 	mutex_lock(&megasas_async_queue_mutex);
4905 
4906 	rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
4907 
4908 	mutex_unlock(&megasas_async_queue_mutex);
4909 
4910 	if (rc >= 0) {
4911 		/* For sanity check when we get ioctl */
4912 		filep->private_data = filep;
4913 		return 0;
4914 	}
4915 
4916 	printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
4917 
4918 	return rc;
4919 }
4920 
4921 /**
4922  * megasas_mgmt_poll -  char node "poll" entry point
4923  * */
4924 static unsigned int megasas_mgmt_poll(struct file *file, poll_table *wait)
4925 {
4926 	unsigned int mask;
4927 	unsigned long flags;
4928 	poll_wait(file, &megasas_poll_wait, wait);
4929 	spin_lock_irqsave(&poll_aen_lock, flags);
4930 	if (megasas_poll_wait_aen)
4931 		mask =   (POLLIN | POLLRDNORM);
4932 	else
4933 		mask = 0;
4934 	spin_unlock_irqrestore(&poll_aen_lock, flags);
4935 	return mask;
4936 }
4937 
4938 /**
4939  * megasas_mgmt_fw_ioctl -	Issues management ioctls to FW
4940  * @instance:			Adapter soft state
4941  * @argp:			User's ioctl packet
4942  */
4943 static int
4944 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
4945 		      struct megasas_iocpacket __user * user_ioc,
4946 		      struct megasas_iocpacket *ioc)
4947 {
4948 	struct megasas_sge32 *kern_sge32;
4949 	struct megasas_cmd *cmd;
4950 	void *kbuff_arr[MAX_IOCTL_SGE];
4951 	dma_addr_t buf_handle = 0;
4952 	int error = 0, i;
4953 	void *sense = NULL;
4954 	dma_addr_t sense_handle;
4955 	unsigned long *sense_ptr;
4956 
4957 	memset(kbuff_arr, 0, sizeof(kbuff_arr));
4958 
4959 	if (ioc->sge_count > MAX_IOCTL_SGE) {
4960 		printk(KERN_DEBUG "megasas: SGE count [%d] >  max limit [%d]\n",
4961 		       ioc->sge_count, MAX_IOCTL_SGE);
4962 		return -EINVAL;
4963 	}
4964 
4965 	cmd = megasas_get_cmd(instance);
4966 	if (!cmd) {
4967 		printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
4968 		return -ENOMEM;
4969 	}
4970 
4971 	/*
4972 	 * User's IOCTL packet has 2 frames (maximum). Copy those two
4973 	 * frames into our cmd's frames. cmd->frame's context will get
4974 	 * overwritten when we copy from user's frames. So set that value
4975 	 * alone separately
4976 	 */
4977 	memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
4978 	cmd->frame->hdr.context = cpu_to_le32(cmd->index);
4979 	cmd->frame->hdr.pad_0 = 0;
4980 	cmd->frame->hdr.flags &= cpu_to_le16(~(MFI_FRAME_IEEE |
4981 					       MFI_FRAME_SGL64 |
4982 					       MFI_FRAME_SENSE64));
4983 
4984 	/*
4985 	 * The management interface between applications and the fw uses
4986 	 * MFI frames. E.g, RAID configuration changes, LD property changes
4987 	 * etc are accomplishes through different kinds of MFI frames. The
4988 	 * driver needs to care only about substituting user buffers with
4989 	 * kernel buffers in SGLs. The location of SGL is embedded in the
4990 	 * struct iocpacket itself.
4991 	 */
4992 	kern_sge32 = (struct megasas_sge32 *)
4993 	    ((unsigned long)cmd->frame + ioc->sgl_off);
4994 
4995 	/*
4996 	 * For each user buffer, create a mirror buffer and copy in
4997 	 */
4998 	for (i = 0; i < ioc->sge_count; i++) {
4999 		if (!ioc->sgl[i].iov_len)
5000 			continue;
5001 
5002 		kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
5003 						    ioc->sgl[i].iov_len,
5004 						    &buf_handle, GFP_KERNEL);
5005 		if (!kbuff_arr[i]) {
5006 			printk(KERN_DEBUG "megasas: Failed to alloc "
5007 			       "kernel SGL buffer for IOCTL \n");
5008 			error = -ENOMEM;
5009 			goto out;
5010 		}
5011 
5012 		/*
5013 		 * We don't change the dma_coherent_mask, so
5014 		 * pci_alloc_consistent only returns 32bit addresses
5015 		 */
5016 		kern_sge32[i].phys_addr = cpu_to_le32(buf_handle);
5017 		kern_sge32[i].length = cpu_to_le32(ioc->sgl[i].iov_len);
5018 
5019 		/*
5020 		 * We created a kernel buffer corresponding to the
5021 		 * user buffer. Now copy in from the user buffer
5022 		 */
5023 		if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
5024 				   (u32) (ioc->sgl[i].iov_len))) {
5025 			error = -EFAULT;
5026 			goto out;
5027 		}
5028 	}
5029 
5030 	if (ioc->sense_len) {
5031 		sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
5032 					     &sense_handle, GFP_KERNEL);
5033 		if (!sense) {
5034 			error = -ENOMEM;
5035 			goto out;
5036 		}
5037 
5038 		sense_ptr =
5039 		(unsigned long *) ((unsigned long)cmd->frame + ioc->sense_off);
5040 		*sense_ptr = cpu_to_le32(sense_handle);
5041 	}
5042 
5043 	/*
5044 	 * Set the sync_cmd flag so that the ISR knows not to complete this
5045 	 * cmd to the SCSI mid-layer
5046 	 */
5047 	cmd->sync_cmd = 1;
5048 	megasas_issue_blocked_cmd(instance, cmd);
5049 	cmd->sync_cmd = 0;
5050 
5051 	/*
5052 	 * copy out the kernel buffers to user buffers
5053 	 */
5054 	for (i = 0; i < ioc->sge_count; i++) {
5055 		if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
5056 				 ioc->sgl[i].iov_len)) {
5057 			error = -EFAULT;
5058 			goto out;
5059 		}
5060 	}
5061 
5062 	/*
5063 	 * copy out the sense
5064 	 */
5065 	if (ioc->sense_len) {
5066 		/*
5067 		 * sense_ptr points to the location that has the user
5068 		 * sense buffer address
5069 		 */
5070 		sense_ptr = (unsigned long *) ((unsigned long)ioc->frame.raw +
5071 				ioc->sense_off);
5072 
5073 		if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
5074 				 sense, ioc->sense_len)) {
5075 			printk(KERN_ERR "megasas: Failed to copy out to user "
5076 					"sense data\n");
5077 			error = -EFAULT;
5078 			goto out;
5079 		}
5080 	}
5081 
5082 	/*
5083 	 * copy the status codes returned by the fw
5084 	 */
5085 	if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
5086 			 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
5087 		printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
5088 		error = -EFAULT;
5089 	}
5090 
5091       out:
5092 	if (sense) {
5093 		dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
5094 				    sense, sense_handle);
5095 	}
5096 
5097 	for (i = 0; i < ioc->sge_count; i++) {
5098 		if (kbuff_arr[i])
5099 			dma_free_coherent(&instance->pdev->dev,
5100 					  le32_to_cpu(kern_sge32[i].length),
5101 					  kbuff_arr[i],
5102 					  le32_to_cpu(kern_sge32[i].phys_addr));
5103 	}
5104 
5105 	megasas_return_cmd(instance, cmd);
5106 	return error;
5107 }
5108 
5109 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
5110 {
5111 	struct megasas_iocpacket __user *user_ioc =
5112 	    (struct megasas_iocpacket __user *)arg;
5113 	struct megasas_iocpacket *ioc;
5114 	struct megasas_instance *instance;
5115 	int error;
5116 	int i;
5117 	unsigned long flags;
5118 	u32 wait_time = MEGASAS_RESET_WAIT_TIME;
5119 
5120 	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
5121 	if (!ioc)
5122 		return -ENOMEM;
5123 
5124 	if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
5125 		error = -EFAULT;
5126 		goto out_kfree_ioc;
5127 	}
5128 
5129 	instance = megasas_lookup_instance(ioc->host_no);
5130 	if (!instance) {
5131 		error = -ENODEV;
5132 		goto out_kfree_ioc;
5133 	}
5134 
5135 	if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
5136 		printk(KERN_ERR "Controller in crit error\n");
5137 		error = -ENODEV;
5138 		goto out_kfree_ioc;
5139 	}
5140 
5141 	if (instance->unload == 1) {
5142 		error = -ENODEV;
5143 		goto out_kfree_ioc;
5144 	}
5145 
5146 	/*
5147 	 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
5148 	 */
5149 	if (down_interruptible(&instance->ioctl_sem)) {
5150 		error = -ERESTARTSYS;
5151 		goto out_kfree_ioc;
5152 	}
5153 
5154 	for (i = 0; i < wait_time; i++) {
5155 
5156 		spin_lock_irqsave(&instance->hba_lock, flags);
5157 		if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) {
5158 			spin_unlock_irqrestore(&instance->hba_lock, flags);
5159 			break;
5160 		}
5161 		spin_unlock_irqrestore(&instance->hba_lock, flags);
5162 
5163 		if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
5164 			printk(KERN_NOTICE "megasas: waiting"
5165 				"for controller reset to finish\n");
5166 		}
5167 
5168 		msleep(1000);
5169 	}
5170 
5171 	spin_lock_irqsave(&instance->hba_lock, flags);
5172 	if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
5173 		spin_unlock_irqrestore(&instance->hba_lock, flags);
5174 
5175 		printk(KERN_ERR "megaraid_sas: timed out while"
5176 			"waiting for HBA to recover\n");
5177 		error = -ENODEV;
5178 		goto out_up;
5179 	}
5180 	spin_unlock_irqrestore(&instance->hba_lock, flags);
5181 
5182 	error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
5183       out_up:
5184 	up(&instance->ioctl_sem);
5185 
5186       out_kfree_ioc:
5187 	kfree(ioc);
5188 	return error;
5189 }
5190 
5191 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
5192 {
5193 	struct megasas_instance *instance;
5194 	struct megasas_aen aen;
5195 	int error;
5196 	int i;
5197 	unsigned long flags;
5198 	u32 wait_time = MEGASAS_RESET_WAIT_TIME;
5199 
5200 	if (file->private_data != file) {
5201 		printk(KERN_DEBUG "megasas: fasync_helper was not "
5202 		       "called first\n");
5203 		return -EINVAL;
5204 	}
5205 
5206 	if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
5207 		return -EFAULT;
5208 
5209 	instance = megasas_lookup_instance(aen.host_no);
5210 
5211 	if (!instance)
5212 		return -ENODEV;
5213 
5214 	if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
5215 		return -ENODEV;
5216 	}
5217 
5218 	if (instance->unload == 1) {
5219 		return -ENODEV;
5220 	}
5221 
5222 	for (i = 0; i < wait_time; i++) {
5223 
5224 		spin_lock_irqsave(&instance->hba_lock, flags);
5225 		if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) {
5226 			spin_unlock_irqrestore(&instance->hba_lock,
5227 						flags);
5228 			break;
5229 		}
5230 
5231 		spin_unlock_irqrestore(&instance->hba_lock, flags);
5232 
5233 		if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
5234 			printk(KERN_NOTICE "megasas: waiting for"
5235 				"controller reset to finish\n");
5236 		}
5237 
5238 		msleep(1000);
5239 	}
5240 
5241 	spin_lock_irqsave(&instance->hba_lock, flags);
5242 	if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
5243 		spin_unlock_irqrestore(&instance->hba_lock, flags);
5244 		printk(KERN_ERR "megaraid_sas: timed out while waiting"
5245 				"for HBA to recover.\n");
5246 		return -ENODEV;
5247 	}
5248 	spin_unlock_irqrestore(&instance->hba_lock, flags);
5249 
5250 	mutex_lock(&instance->aen_mutex);
5251 	error = megasas_register_aen(instance, aen.seq_num,
5252 				     aen.class_locale_word);
5253 	mutex_unlock(&instance->aen_mutex);
5254 	return error;
5255 }
5256 
5257 /**
5258  * megasas_mgmt_ioctl -	char node ioctl entry point
5259  */
5260 static long
5261 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5262 {
5263 	switch (cmd) {
5264 	case MEGASAS_IOC_FIRMWARE:
5265 		return megasas_mgmt_ioctl_fw(file, arg);
5266 
5267 	case MEGASAS_IOC_GET_AEN:
5268 		return megasas_mgmt_ioctl_aen(file, arg);
5269 	}
5270 
5271 	return -ENOTTY;
5272 }
5273 
5274 #ifdef CONFIG_COMPAT
5275 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
5276 {
5277 	struct compat_megasas_iocpacket __user *cioc =
5278 	    (struct compat_megasas_iocpacket __user *)arg;
5279 	struct megasas_iocpacket __user *ioc =
5280 	    compat_alloc_user_space(sizeof(struct megasas_iocpacket));
5281 	int i;
5282 	int error = 0;
5283 	compat_uptr_t ptr;
5284 
5285 	if (clear_user(ioc, sizeof(*ioc)))
5286 		return -EFAULT;
5287 
5288 	if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
5289 	    copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
5290 	    copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
5291 	    copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
5292 	    copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
5293 	    copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
5294 		return -EFAULT;
5295 
5296 	/*
5297 	 * The sense_ptr is used in megasas_mgmt_fw_ioctl only when
5298 	 * sense_len is not null, so prepare the 64bit value under
5299 	 * the same condition.
5300 	 */
5301 	if (ioc->sense_len) {
5302 		void __user **sense_ioc_ptr =
5303 			(void __user **)(ioc->frame.raw + ioc->sense_off);
5304 		compat_uptr_t *sense_cioc_ptr =
5305 			(compat_uptr_t *)(cioc->frame.raw + cioc->sense_off);
5306 		if (get_user(ptr, sense_cioc_ptr) ||
5307 		    put_user(compat_ptr(ptr), sense_ioc_ptr))
5308 			return -EFAULT;
5309 	}
5310 
5311 	for (i = 0; i < MAX_IOCTL_SGE; i++) {
5312 		if (get_user(ptr, &cioc->sgl[i].iov_base) ||
5313 		    put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
5314 		    copy_in_user(&ioc->sgl[i].iov_len,
5315 				 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
5316 			return -EFAULT;
5317 	}
5318 
5319 	error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
5320 
5321 	if (copy_in_user(&cioc->frame.hdr.cmd_status,
5322 			 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
5323 		printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
5324 		return -EFAULT;
5325 	}
5326 	return error;
5327 }
5328 
5329 static long
5330 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
5331 			  unsigned long arg)
5332 {
5333 	switch (cmd) {
5334 	case MEGASAS_IOC_FIRMWARE32:
5335 		return megasas_mgmt_compat_ioctl_fw(file, arg);
5336 	case MEGASAS_IOC_GET_AEN:
5337 		return megasas_mgmt_ioctl_aen(file, arg);
5338 	}
5339 
5340 	return -ENOTTY;
5341 }
5342 #endif
5343 
5344 /*
5345  * File operations structure for management interface
5346  */
5347 static const struct file_operations megasas_mgmt_fops = {
5348 	.owner = THIS_MODULE,
5349 	.open = megasas_mgmt_open,
5350 	.fasync = megasas_mgmt_fasync,
5351 	.unlocked_ioctl = megasas_mgmt_ioctl,
5352 	.poll = megasas_mgmt_poll,
5353 #ifdef CONFIG_COMPAT
5354 	.compat_ioctl = megasas_mgmt_compat_ioctl,
5355 #endif
5356 	.llseek = noop_llseek,
5357 };
5358 
5359 /*
5360  * PCI hotplug support registration structure
5361  */
5362 static struct pci_driver megasas_pci_driver = {
5363 
5364 	.name = "megaraid_sas",
5365 	.id_table = megasas_pci_table,
5366 	.probe = megasas_probe_one,
5367 	.remove = megasas_detach_one,
5368 	.suspend = megasas_suspend,
5369 	.resume = megasas_resume,
5370 	.shutdown = megasas_shutdown,
5371 };
5372 
5373 /*
5374  * Sysfs driver attributes
5375  */
5376 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
5377 {
5378 	return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
5379 			MEGASAS_VERSION);
5380 }
5381 
5382 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
5383 
5384 static ssize_t
5385 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
5386 {
5387 	return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
5388 			MEGASAS_RELDATE);
5389 }
5390 
5391 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
5392 		   NULL);
5393 
5394 static ssize_t
5395 megasas_sysfs_show_support_poll_for_event(struct device_driver *dd, char *buf)
5396 {
5397 	return sprintf(buf, "%u\n", support_poll_for_event);
5398 }
5399 
5400 static DRIVER_ATTR(support_poll_for_event, S_IRUGO,
5401 			megasas_sysfs_show_support_poll_for_event, NULL);
5402 
5403  static ssize_t
5404 megasas_sysfs_show_support_device_change(struct device_driver *dd, char *buf)
5405 {
5406 	return sprintf(buf, "%u\n", support_device_change);
5407 }
5408 
5409 static DRIVER_ATTR(support_device_change, S_IRUGO,
5410 			megasas_sysfs_show_support_device_change, NULL);
5411 
5412 static ssize_t
5413 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
5414 {
5415 	return sprintf(buf, "%u\n", megasas_dbg_lvl);
5416 }
5417 
5418 static ssize_t
5419 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
5420 {
5421 	int retval = count;
5422 	if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
5423 		printk(KERN_ERR "megasas: could not set dbg_lvl\n");
5424 		retval = -EINVAL;
5425 	}
5426 	return retval;
5427 }
5428 
5429 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUSR, megasas_sysfs_show_dbg_lvl,
5430 		megasas_sysfs_set_dbg_lvl);
5431 
5432 static void
5433 megasas_aen_polling(struct work_struct *work)
5434 {
5435 	struct megasas_aen_event *ev =
5436 		container_of(work, struct megasas_aen_event, hotplug_work.work);
5437 	struct megasas_instance *instance = ev->instance;
5438 	union megasas_evt_class_locale class_locale;
5439 	struct  Scsi_Host *host;
5440 	struct  scsi_device *sdev1;
5441 	u16     pd_index = 0;
5442 	u16	ld_index = 0;
5443 	int     i, j, doscan = 0;
5444 	u32 seq_num;
5445 	int error;
5446 
5447 	if (!instance) {
5448 		printk(KERN_ERR "invalid instance!\n");
5449 		kfree(ev);
5450 		return;
5451 	}
5452 	instance->ev = NULL;
5453 	host = instance->host;
5454 	if (instance->evt_detail) {
5455 
5456 		switch (le32_to_cpu(instance->evt_detail->code)) {
5457 		case MR_EVT_PD_INSERTED:
5458 			if (megasas_get_pd_list(instance) == 0) {
5459 			for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) {
5460 				for (j = 0;
5461 				j < MEGASAS_MAX_DEV_PER_CHANNEL;
5462 				j++) {
5463 
5464 				pd_index =
5465 				(i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5466 
5467 				sdev1 =
5468 				scsi_device_lookup(host, i, j, 0);
5469 
5470 				if (instance->pd_list[pd_index].driveState
5471 						== MR_PD_STATE_SYSTEM) {
5472 						if (!sdev1) {
5473 						scsi_add_device(host, i, j, 0);
5474 						}
5475 
5476 					if (sdev1)
5477 						scsi_device_put(sdev1);
5478 					}
5479 				}
5480 			}
5481 			}
5482 			doscan = 0;
5483 			break;
5484 
5485 		case MR_EVT_PD_REMOVED:
5486 			if (megasas_get_pd_list(instance) == 0) {
5487 			for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) {
5488 				for (j = 0;
5489 				j < MEGASAS_MAX_DEV_PER_CHANNEL;
5490 				j++) {
5491 
5492 				pd_index =
5493 				(i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5494 
5495 				sdev1 =
5496 				scsi_device_lookup(host, i, j, 0);
5497 
5498 				if (instance->pd_list[pd_index].driveState
5499 					== MR_PD_STATE_SYSTEM) {
5500 					if (sdev1) {
5501 						scsi_device_put(sdev1);
5502 					}
5503 				} else {
5504 					if (sdev1) {
5505 						scsi_remove_device(sdev1);
5506 						scsi_device_put(sdev1);
5507 					}
5508 				}
5509 				}
5510 			}
5511 			}
5512 			doscan = 0;
5513 			break;
5514 
5515 		case MR_EVT_LD_OFFLINE:
5516 		case MR_EVT_CFG_CLEARED:
5517 		case MR_EVT_LD_DELETED:
5518 			if (megasas_ld_list_query(instance,
5519 					MR_LD_QUERY_TYPE_EXPOSED_TO_HOST))
5520 				megasas_get_ld_list(instance);
5521 			for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) {
5522 				for (j = 0;
5523 				j < MEGASAS_MAX_DEV_PER_CHANNEL;
5524 				j++) {
5525 
5526 				ld_index =
5527 				(i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5528 
5529 				sdev1 = scsi_device_lookup(host,
5530 					MEGASAS_MAX_PD_CHANNELS + i,
5531 					j,
5532 					0);
5533 
5534 				if (instance->ld_ids[ld_index] != 0xff) {
5535 					if (sdev1) {
5536 						scsi_device_put(sdev1);
5537 					}
5538 				} else {
5539 					if (sdev1) {
5540 						scsi_remove_device(sdev1);
5541 						scsi_device_put(sdev1);
5542 					}
5543 				}
5544 				}
5545 			}
5546 			doscan = 0;
5547 			break;
5548 		case MR_EVT_LD_CREATED:
5549 			if (megasas_ld_list_query(instance,
5550 					MR_LD_QUERY_TYPE_EXPOSED_TO_HOST))
5551 				megasas_get_ld_list(instance);
5552 			for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) {
5553 				for (j = 0;
5554 					j < MEGASAS_MAX_DEV_PER_CHANNEL;
5555 					j++) {
5556 					ld_index =
5557 					(i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5558 
5559 					sdev1 = scsi_device_lookup(host,
5560 						MEGASAS_MAX_PD_CHANNELS + i,
5561 						j, 0);
5562 
5563 					if (instance->ld_ids[ld_index] !=
5564 								0xff) {
5565 						if (!sdev1) {
5566 							scsi_add_device(host,
5567 						MEGASAS_MAX_PD_CHANNELS + i,
5568 								j, 0);
5569 						}
5570 					}
5571 					if (sdev1) {
5572 						scsi_device_put(sdev1);
5573 					}
5574 				}
5575 			}
5576 			doscan = 0;
5577 			break;
5578 		case MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED:
5579 		case MR_EVT_FOREIGN_CFG_IMPORTED:
5580 		case MR_EVT_LD_STATE_CHANGE:
5581 			doscan = 1;
5582 			break;
5583 		default:
5584 			doscan = 0;
5585 			break;
5586 		}
5587 	} else {
5588 		printk(KERN_ERR "invalid evt_detail!\n");
5589 		kfree(ev);
5590 		return;
5591 	}
5592 
5593 	if (doscan) {
5594 		printk(KERN_INFO "scanning ...\n");
5595 		megasas_get_pd_list(instance);
5596 		for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) {
5597 			for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) {
5598 				pd_index = i*MEGASAS_MAX_DEV_PER_CHANNEL + j;
5599 				sdev1 = scsi_device_lookup(host, i, j, 0);
5600 				if (instance->pd_list[pd_index].driveState ==
5601 							MR_PD_STATE_SYSTEM) {
5602 					if (!sdev1) {
5603 						scsi_add_device(host, i, j, 0);
5604 					}
5605 					if (sdev1)
5606 						scsi_device_put(sdev1);
5607 				} else {
5608 					if (sdev1) {
5609 						scsi_remove_device(sdev1);
5610 						scsi_device_put(sdev1);
5611 					}
5612 				}
5613 			}
5614 		}
5615 
5616 		if (megasas_ld_list_query(instance,
5617 					  MR_LD_QUERY_TYPE_EXPOSED_TO_HOST))
5618 			megasas_get_ld_list(instance);
5619 		for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) {
5620 			for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) {
5621 				ld_index =
5622 				(i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5623 
5624 				sdev1 = scsi_device_lookup(host,
5625 					MEGASAS_MAX_PD_CHANNELS + i, j, 0);
5626 				if (instance->ld_ids[ld_index] != 0xff) {
5627 					if (!sdev1) {
5628 						scsi_add_device(host,
5629 						MEGASAS_MAX_PD_CHANNELS + i,
5630 								j, 0);
5631 					} else {
5632 						scsi_device_put(sdev1);
5633 					}
5634 				} else {
5635 					if (sdev1) {
5636 						scsi_remove_device(sdev1);
5637 						scsi_device_put(sdev1);
5638 					}
5639 				}
5640 			}
5641 		}
5642 	}
5643 
5644 	if ( instance->aen_cmd != NULL ) {
5645 		kfree(ev);
5646 		return ;
5647 	}
5648 
5649 	seq_num = le32_to_cpu(instance->evt_detail->seq_num) + 1;
5650 
5651 	/* Register AEN with FW for latest sequence number plus 1 */
5652 	class_locale.members.reserved = 0;
5653 	class_locale.members.locale = MR_EVT_LOCALE_ALL;
5654 	class_locale.members.class = MR_EVT_CLASS_DEBUG;
5655 	mutex_lock(&instance->aen_mutex);
5656 	error = megasas_register_aen(instance, seq_num,
5657 					class_locale.word);
5658 	mutex_unlock(&instance->aen_mutex);
5659 
5660 	if (error)
5661 		printk(KERN_ERR "register aen failed error %x\n", error);
5662 
5663 	kfree(ev);
5664 }
5665 
5666 /**
5667  * megasas_init - Driver load entry point
5668  */
5669 static int __init megasas_init(void)
5670 {
5671 	int rval;
5672 
5673 	/*
5674 	 * Announce driver version and other information
5675 	 */
5676 	printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
5677 	       MEGASAS_EXT_VERSION);
5678 
5679 	spin_lock_init(&poll_aen_lock);
5680 
5681 	support_poll_for_event = 2;
5682 	support_device_change = 1;
5683 
5684 	memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
5685 
5686 	/*
5687 	 * Register character device node
5688 	 */
5689 	rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
5690 
5691 	if (rval < 0) {
5692 		printk(KERN_DEBUG "megasas: failed to open device node\n");
5693 		return rval;
5694 	}
5695 
5696 	megasas_mgmt_majorno = rval;
5697 
5698 	/*
5699 	 * Register ourselves as PCI hotplug module
5700 	 */
5701 	rval = pci_register_driver(&megasas_pci_driver);
5702 
5703 	if (rval) {
5704 		printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
5705 		goto err_pcidrv;
5706 	}
5707 
5708 	rval = driver_create_file(&megasas_pci_driver.driver,
5709 				  &driver_attr_version);
5710 	if (rval)
5711 		goto err_dcf_attr_ver;
5712 	rval = driver_create_file(&megasas_pci_driver.driver,
5713 				  &driver_attr_release_date);
5714 	if (rval)
5715 		goto err_dcf_rel_date;
5716 
5717 	rval = driver_create_file(&megasas_pci_driver.driver,
5718 				&driver_attr_support_poll_for_event);
5719 	if (rval)
5720 		goto err_dcf_support_poll_for_event;
5721 
5722 	rval = driver_create_file(&megasas_pci_driver.driver,
5723 				  &driver_attr_dbg_lvl);
5724 	if (rval)
5725 		goto err_dcf_dbg_lvl;
5726 	rval = driver_create_file(&megasas_pci_driver.driver,
5727 				&driver_attr_support_device_change);
5728 	if (rval)
5729 		goto err_dcf_support_device_change;
5730 
5731 	return rval;
5732 
5733 err_dcf_support_device_change:
5734 	driver_remove_file(&megasas_pci_driver.driver,
5735 			   &driver_attr_dbg_lvl);
5736 err_dcf_dbg_lvl:
5737 	driver_remove_file(&megasas_pci_driver.driver,
5738 			&driver_attr_support_poll_for_event);
5739 
5740 err_dcf_support_poll_for_event:
5741 	driver_remove_file(&megasas_pci_driver.driver,
5742 			   &driver_attr_release_date);
5743 
5744 err_dcf_rel_date:
5745 	driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
5746 err_dcf_attr_ver:
5747 	pci_unregister_driver(&megasas_pci_driver);
5748 err_pcidrv:
5749 	unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
5750 	return rval;
5751 }
5752 
5753 /**
5754  * megasas_exit - Driver unload entry point
5755  */
5756 static void __exit megasas_exit(void)
5757 {
5758 	driver_remove_file(&megasas_pci_driver.driver,
5759 			   &driver_attr_dbg_lvl);
5760 	driver_remove_file(&megasas_pci_driver.driver,
5761 			&driver_attr_support_poll_for_event);
5762 	driver_remove_file(&megasas_pci_driver.driver,
5763 			&driver_attr_support_device_change);
5764 	driver_remove_file(&megasas_pci_driver.driver,
5765 			   &driver_attr_release_date);
5766 	driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
5767 
5768 	pci_unregister_driver(&megasas_pci_driver);
5769 	unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
5770 }
5771 
5772 module_init(megasas_init);
5773 module_exit(megasas_exit);
5774