1 /*
2  *  Linux MegaRAID driver for SAS based RAID controllers
3  *
4  *  Copyright (c) 2003-2012  LSI Corporation.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version 2
9  *  of the License, or (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *  FILE: megaraid_sas_base.c
21  *  Version : 06.600.18.00-rc1
22  *
23  *  Authors: LSI Corporation
24  *           Sreenivas Bagalkote
25  *           Sumant Patro
26  *           Bo Yang
27  *           Adam Radford <linuxraid@lsi.com>
28  *
29  *  Send feedback to: <megaraidlinux@lsi.com>
30  *
31  *  Mail to: LSI Corporation, 1621 Barber Lane, Milpitas, CA 95035
32  *     ATTN: Linuxraid
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/pci.h>
38 #include <linux/list.h>
39 #include <linux/moduleparam.h>
40 #include <linux/module.h>
41 #include <linux/spinlock.h>
42 #include <linux/interrupt.h>
43 #include <linux/delay.h>
44 #include <linux/uio.h>
45 #include <linux/slab.h>
46 #include <asm/uaccess.h>
47 #include <linux/fs.h>
48 #include <linux/compat.h>
49 #include <linux/blkdev.h>
50 #include <linux/mutex.h>
51 #include <linux/poll.h>
52 
53 #include <scsi/scsi.h>
54 #include <scsi/scsi_cmnd.h>
55 #include <scsi/scsi_device.h>
56 #include <scsi/scsi_host.h>
57 #include <scsi/scsi_tcq.h>
58 #include "megaraid_sas_fusion.h"
59 #include "megaraid_sas.h"
60 
61 /*
62  * Number of sectors per IO command
63  * Will be set in megasas_init_mfi if user does not provide
64  */
65 static unsigned int max_sectors;
66 module_param_named(max_sectors, max_sectors, int, 0);
67 MODULE_PARM_DESC(max_sectors,
68 	"Maximum number of sectors per IO command");
69 
70 static int msix_disable;
71 module_param(msix_disable, int, S_IRUGO);
72 MODULE_PARM_DESC(msix_disable, "Disable MSI-X interrupt handling. Default: 0");
73 
74 static unsigned int msix_vectors;
75 module_param(msix_vectors, int, S_IRUGO);
76 MODULE_PARM_DESC(msix_vectors, "MSI-X max vector count. Default: Set by FW");
77 
78 static int throttlequeuedepth = MEGASAS_THROTTLE_QUEUE_DEPTH;
79 module_param(throttlequeuedepth, int, S_IRUGO);
80 MODULE_PARM_DESC(throttlequeuedepth,
81 	"Adapter queue depth when throttled due to I/O timeout. Default: 16");
82 
83 int resetwaittime = MEGASAS_RESET_WAIT_TIME;
84 module_param(resetwaittime, int, S_IRUGO);
85 MODULE_PARM_DESC(resetwaittime, "Wait time in seconds after I/O timeout "
86 		 "before resetting adapter. Default: 180");
87 
88 MODULE_LICENSE("GPL");
89 MODULE_VERSION(MEGASAS_VERSION);
90 MODULE_AUTHOR("megaraidlinux@lsi.com");
91 MODULE_DESCRIPTION("LSI MegaRAID SAS Driver");
92 
93 int megasas_transition_to_ready(struct megasas_instance *instance, int ocr);
94 static int megasas_get_pd_list(struct megasas_instance *instance);
95 static int megasas_issue_init_mfi(struct megasas_instance *instance);
96 static int megasas_register_aen(struct megasas_instance *instance,
97 				u32 seq_num, u32 class_locale_word);
98 /*
99  * PCI ID table for all supported controllers
100  */
101 static struct pci_device_id megasas_pci_table[] = {
102 
103 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
104 	/* xscale IOP */
105 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
106 	/* ppc IOP */
107 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)},
108 	/* ppc IOP */
109 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078GEN2)},
110 	/* gen2*/
111 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0079GEN2)},
112 	/* gen2*/
113 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0073SKINNY)},
114 	/* skinny*/
115 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0071SKINNY)},
116 	/* skinny*/
117 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
118 	/* xscale IOP, vega */
119 	{PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
120 	/* xscale IOP */
121 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FUSION)},
122 	/* Fusion */
123 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_INVADER)},
124 	/* Invader */
125 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FURY)},
126 	/* Fury */
127 	{}
128 };
129 
130 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
131 
132 static int megasas_mgmt_majorno;
133 static struct megasas_mgmt_info megasas_mgmt_info;
134 static struct fasync_struct *megasas_async_queue;
135 static DEFINE_MUTEX(megasas_async_queue_mutex);
136 
137 static int megasas_poll_wait_aen;
138 static DECLARE_WAIT_QUEUE_HEAD(megasas_poll_wait);
139 static u32 support_poll_for_event;
140 u32 megasas_dbg_lvl;
141 static u32 support_device_change;
142 
143 /* define lock for aen poll */
144 spinlock_t poll_aen_lock;
145 
146 void
147 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
148 		     u8 alt_status);
149 static u32
150 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs);
151 static int
152 megasas_adp_reset_gen2(struct megasas_instance *instance,
153 		       struct megasas_register_set __iomem *reg_set);
154 static irqreturn_t megasas_isr(int irq, void *devp);
155 static u32
156 megasas_init_adapter_mfi(struct megasas_instance *instance);
157 u32
158 megasas_build_and_issue_cmd(struct megasas_instance *instance,
159 			    struct scsi_cmnd *scmd);
160 static void megasas_complete_cmd_dpc(unsigned long instance_addr);
161 void
162 megasas_release_fusion(struct megasas_instance *instance);
163 int
164 megasas_ioc_init_fusion(struct megasas_instance *instance);
165 void
166 megasas_free_cmds_fusion(struct megasas_instance *instance);
167 u8
168 megasas_get_map_info(struct megasas_instance *instance);
169 int
170 megasas_sync_map_info(struct megasas_instance *instance);
171 int
172 wait_and_poll(struct megasas_instance *instance, struct megasas_cmd *cmd);
173 void megasas_reset_reply_desc(struct megasas_instance *instance);
174 int megasas_reset_fusion(struct Scsi_Host *shost);
175 void megasas_fusion_ocr_wq(struct work_struct *work);
176 
177 void
178 megasas_issue_dcmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
179 {
180 	instance->instancet->fire_cmd(instance,
181 		cmd->frame_phys_addr, 0, instance->reg_set);
182 }
183 
184 /**
185  * megasas_get_cmd -	Get a command from the free pool
186  * @instance:		Adapter soft state
187  *
188  * Returns a free command from the pool
189  */
190 struct megasas_cmd *megasas_get_cmd(struct megasas_instance
191 						  *instance)
192 {
193 	unsigned long flags;
194 	struct megasas_cmd *cmd = NULL;
195 
196 	spin_lock_irqsave(&instance->cmd_pool_lock, flags);
197 
198 	if (!list_empty(&instance->cmd_pool)) {
199 		cmd = list_entry((&instance->cmd_pool)->next,
200 				 struct megasas_cmd, list);
201 		list_del_init(&cmd->list);
202 	} else {
203 		printk(KERN_ERR "megasas: Command pool empty!\n");
204 	}
205 
206 	spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
207 	return cmd;
208 }
209 
210 /**
211  * megasas_return_cmd -	Return a cmd to free command pool
212  * @instance:		Adapter soft state
213  * @cmd:		Command packet to be returned to free command pool
214  */
215 inline void
216 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
217 {
218 	unsigned long flags;
219 
220 	spin_lock_irqsave(&instance->cmd_pool_lock, flags);
221 
222 	cmd->scmd = NULL;
223 	cmd->frame_count = 0;
224 	if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) &&
225 	    (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) &&
226 	    (instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) &&
227 	    (reset_devices))
228 		cmd->frame->hdr.cmd = MFI_CMD_INVALID;
229 	list_add_tail(&cmd->list, &instance->cmd_pool);
230 
231 	spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
232 }
233 
234 
235 /**
236 *	The following functions are defined for xscale
237 *	(deviceid : 1064R, PERC5) controllers
238 */
239 
240 /**
241  * megasas_enable_intr_xscale -	Enables interrupts
242  * @regs:			MFI register set
243  */
244 static inline void
245 megasas_enable_intr_xscale(struct megasas_instance *instance)
246 {
247 	struct megasas_register_set __iomem *regs;
248 	regs = instance->reg_set;
249 	writel(0, &(regs)->outbound_intr_mask);
250 
251 	/* Dummy readl to force pci flush */
252 	readl(&regs->outbound_intr_mask);
253 }
254 
255 /**
256  * megasas_disable_intr_xscale -Disables interrupt
257  * @regs:			MFI register set
258  */
259 static inline void
260 megasas_disable_intr_xscale(struct megasas_instance *instance)
261 {
262 	struct megasas_register_set __iomem *regs;
263 	u32 mask = 0x1f;
264 	regs = instance->reg_set;
265 	writel(mask, &regs->outbound_intr_mask);
266 	/* Dummy readl to force pci flush */
267 	readl(&regs->outbound_intr_mask);
268 }
269 
270 /**
271  * megasas_read_fw_status_reg_xscale - returns the current FW status value
272  * @regs:			MFI register set
273  */
274 static u32
275 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
276 {
277 	return readl(&(regs)->outbound_msg_0);
278 }
279 /**
280  * megasas_clear_interrupt_xscale -	Check & clear interrupt
281  * @regs:				MFI register set
282  */
283 static int
284 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
285 {
286 	u32 status;
287 	u32 mfiStatus = 0;
288 	/*
289 	 * Check if it is our interrupt
290 	 */
291 	status = readl(&regs->outbound_intr_status);
292 
293 	if (status & MFI_OB_INTR_STATUS_MASK)
294 		mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
295 	if (status & MFI_XSCALE_OMR0_CHANGE_INTERRUPT)
296 		mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
297 
298 	/*
299 	 * Clear the interrupt by writing back the same value
300 	 */
301 	if (mfiStatus)
302 		writel(status, &regs->outbound_intr_status);
303 
304 	/* Dummy readl to force pci flush */
305 	readl(&regs->outbound_intr_status);
306 
307 	return mfiStatus;
308 }
309 
310 /**
311  * megasas_fire_cmd_xscale -	Sends command to the FW
312  * @frame_phys_addr :		Physical address of cmd
313  * @frame_count :		Number of frames for the command
314  * @regs :			MFI register set
315  */
316 static inline void
317 megasas_fire_cmd_xscale(struct megasas_instance *instance,
318 		dma_addr_t frame_phys_addr,
319 		u32 frame_count,
320 		struct megasas_register_set __iomem *regs)
321 {
322 	unsigned long flags;
323 	spin_lock_irqsave(&instance->hba_lock, flags);
324 	writel((frame_phys_addr >> 3)|(frame_count),
325 	       &(regs)->inbound_queue_port);
326 	spin_unlock_irqrestore(&instance->hba_lock, flags);
327 }
328 
329 /**
330  * megasas_adp_reset_xscale -  For controller reset
331  * @regs:                              MFI register set
332  */
333 static int
334 megasas_adp_reset_xscale(struct megasas_instance *instance,
335 	struct megasas_register_set __iomem *regs)
336 {
337 	u32 i;
338 	u32 pcidata;
339 	writel(MFI_ADP_RESET, &regs->inbound_doorbell);
340 
341 	for (i = 0; i < 3; i++)
342 		msleep(1000); /* sleep for 3 secs */
343 	pcidata  = 0;
344 	pci_read_config_dword(instance->pdev, MFI_1068_PCSR_OFFSET, &pcidata);
345 	printk(KERN_NOTICE "pcidata = %x\n", pcidata);
346 	if (pcidata & 0x2) {
347 		printk(KERN_NOTICE "mfi 1068 offset read=%x\n", pcidata);
348 		pcidata &= ~0x2;
349 		pci_write_config_dword(instance->pdev,
350 				MFI_1068_PCSR_OFFSET, pcidata);
351 
352 		for (i = 0; i < 2; i++)
353 			msleep(1000); /* need to wait 2 secs again */
354 
355 		pcidata  = 0;
356 		pci_read_config_dword(instance->pdev,
357 				MFI_1068_FW_HANDSHAKE_OFFSET, &pcidata);
358 		printk(KERN_NOTICE "1068 offset handshake read=%x\n", pcidata);
359 		if ((pcidata & 0xffff0000) == MFI_1068_FW_READY) {
360 			printk(KERN_NOTICE "1068 offset pcidt=%x\n", pcidata);
361 			pcidata = 0;
362 			pci_write_config_dword(instance->pdev,
363 				MFI_1068_FW_HANDSHAKE_OFFSET, pcidata);
364 		}
365 	}
366 	return 0;
367 }
368 
369 /**
370  * megasas_check_reset_xscale -	For controller reset check
371  * @regs:				MFI register set
372  */
373 static int
374 megasas_check_reset_xscale(struct megasas_instance *instance,
375 		struct megasas_register_set __iomem *regs)
376 {
377 	u32 consumer;
378 	consumer = *instance->consumer;
379 
380 	if ((instance->adprecovery != MEGASAS_HBA_OPERATIONAL) &&
381 		(*instance->consumer == MEGASAS_ADPRESET_INPROG_SIGN)) {
382 		return 1;
383 	}
384 	return 0;
385 }
386 
387 static struct megasas_instance_template megasas_instance_template_xscale = {
388 
389 	.fire_cmd = megasas_fire_cmd_xscale,
390 	.enable_intr = megasas_enable_intr_xscale,
391 	.disable_intr = megasas_disable_intr_xscale,
392 	.clear_intr = megasas_clear_intr_xscale,
393 	.read_fw_status_reg = megasas_read_fw_status_reg_xscale,
394 	.adp_reset = megasas_adp_reset_xscale,
395 	.check_reset = megasas_check_reset_xscale,
396 	.service_isr = megasas_isr,
397 	.tasklet = megasas_complete_cmd_dpc,
398 	.init_adapter = megasas_init_adapter_mfi,
399 	.build_and_issue_cmd = megasas_build_and_issue_cmd,
400 	.issue_dcmd = megasas_issue_dcmd,
401 };
402 
403 /**
404 *	This is the end of set of functions & definitions specific
405 *	to xscale (deviceid : 1064R, PERC5) controllers
406 */
407 
408 /**
409 *	The following functions are defined for ppc (deviceid : 0x60)
410 * 	controllers
411 */
412 
413 /**
414  * megasas_enable_intr_ppc -	Enables interrupts
415  * @regs:			MFI register set
416  */
417 static inline void
418 megasas_enable_intr_ppc(struct megasas_instance *instance)
419 {
420 	struct megasas_register_set __iomem *regs;
421 	regs = instance->reg_set;
422 	writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
423 
424 	writel(~0x80000000, &(regs)->outbound_intr_mask);
425 
426 	/* Dummy readl to force pci flush */
427 	readl(&regs->outbound_intr_mask);
428 }
429 
430 /**
431  * megasas_disable_intr_ppc -	Disable interrupt
432  * @regs:			MFI register set
433  */
434 static inline void
435 megasas_disable_intr_ppc(struct megasas_instance *instance)
436 {
437 	struct megasas_register_set __iomem *regs;
438 	u32 mask = 0xFFFFFFFF;
439 	regs = instance->reg_set;
440 	writel(mask, &regs->outbound_intr_mask);
441 	/* Dummy readl to force pci flush */
442 	readl(&regs->outbound_intr_mask);
443 }
444 
445 /**
446  * megasas_read_fw_status_reg_ppc - returns the current FW status value
447  * @regs:			MFI register set
448  */
449 static u32
450 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
451 {
452 	return readl(&(regs)->outbound_scratch_pad);
453 }
454 
455 /**
456  * megasas_clear_interrupt_ppc -	Check & clear interrupt
457  * @regs:				MFI register set
458  */
459 static int
460 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
461 {
462 	u32 status, mfiStatus = 0;
463 
464 	/*
465 	 * Check if it is our interrupt
466 	 */
467 	status = readl(&regs->outbound_intr_status);
468 
469 	if (status & MFI_REPLY_1078_MESSAGE_INTERRUPT)
470 		mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
471 
472 	if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT)
473 		mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
474 
475 	/*
476 	 * Clear the interrupt by writing back the same value
477 	 */
478 	writel(status, &regs->outbound_doorbell_clear);
479 
480 	/* Dummy readl to force pci flush */
481 	readl(&regs->outbound_doorbell_clear);
482 
483 	return mfiStatus;
484 }
485 
486 /**
487  * megasas_fire_cmd_ppc -	Sends command to the FW
488  * @frame_phys_addr :		Physical address of cmd
489  * @frame_count :		Number of frames for the command
490  * @regs :			MFI register set
491  */
492 static inline void
493 megasas_fire_cmd_ppc(struct megasas_instance *instance,
494 		dma_addr_t frame_phys_addr,
495 		u32 frame_count,
496 		struct megasas_register_set __iomem *regs)
497 {
498 	unsigned long flags;
499 	spin_lock_irqsave(&instance->hba_lock, flags);
500 	writel((frame_phys_addr | (frame_count<<1))|1,
501 			&(regs)->inbound_queue_port);
502 	spin_unlock_irqrestore(&instance->hba_lock, flags);
503 }
504 
505 /**
506  * megasas_check_reset_ppc -	For controller reset check
507  * @regs:				MFI register set
508  */
509 static int
510 megasas_check_reset_ppc(struct megasas_instance *instance,
511 			struct megasas_register_set __iomem *regs)
512 {
513 	if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL)
514 		return 1;
515 
516 	return 0;
517 }
518 
519 static struct megasas_instance_template megasas_instance_template_ppc = {
520 
521 	.fire_cmd = megasas_fire_cmd_ppc,
522 	.enable_intr = megasas_enable_intr_ppc,
523 	.disable_intr = megasas_disable_intr_ppc,
524 	.clear_intr = megasas_clear_intr_ppc,
525 	.read_fw_status_reg = megasas_read_fw_status_reg_ppc,
526 	.adp_reset = megasas_adp_reset_xscale,
527 	.check_reset = megasas_check_reset_ppc,
528 	.service_isr = megasas_isr,
529 	.tasklet = megasas_complete_cmd_dpc,
530 	.init_adapter = megasas_init_adapter_mfi,
531 	.build_and_issue_cmd = megasas_build_and_issue_cmd,
532 	.issue_dcmd = megasas_issue_dcmd,
533 };
534 
535 /**
536  * megasas_enable_intr_skinny -	Enables interrupts
537  * @regs:			MFI register set
538  */
539 static inline void
540 megasas_enable_intr_skinny(struct megasas_instance *instance)
541 {
542 	struct megasas_register_set __iomem *regs;
543 	regs = instance->reg_set;
544 	writel(0xFFFFFFFF, &(regs)->outbound_intr_mask);
545 
546 	writel(~MFI_SKINNY_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask);
547 
548 	/* Dummy readl to force pci flush */
549 	readl(&regs->outbound_intr_mask);
550 }
551 
552 /**
553  * megasas_disable_intr_skinny -	Disables interrupt
554  * @regs:			MFI register set
555  */
556 static inline void
557 megasas_disable_intr_skinny(struct megasas_instance *instance)
558 {
559 	struct megasas_register_set __iomem *regs;
560 	u32 mask = 0xFFFFFFFF;
561 	regs = instance->reg_set;
562 	writel(mask, &regs->outbound_intr_mask);
563 	/* Dummy readl to force pci flush */
564 	readl(&regs->outbound_intr_mask);
565 }
566 
567 /**
568  * megasas_read_fw_status_reg_skinny - returns the current FW status value
569  * @regs:			MFI register set
570  */
571 static u32
572 megasas_read_fw_status_reg_skinny(struct megasas_register_set __iomem *regs)
573 {
574 	return readl(&(regs)->outbound_scratch_pad);
575 }
576 
577 /**
578  * megasas_clear_interrupt_skinny -	Check & clear interrupt
579  * @regs:				MFI register set
580  */
581 static int
582 megasas_clear_intr_skinny(struct megasas_register_set __iomem *regs)
583 {
584 	u32 status;
585 	u32 mfiStatus = 0;
586 
587 	/*
588 	 * Check if it is our interrupt
589 	 */
590 	status = readl(&regs->outbound_intr_status);
591 
592 	if (!(status & MFI_SKINNY_ENABLE_INTERRUPT_MASK)) {
593 		return 0;
594 	}
595 
596 	/*
597 	 * Check if it is our interrupt
598 	 */
599 	if ((megasas_read_fw_status_reg_skinny(regs) & MFI_STATE_MASK) ==
600 	    MFI_STATE_FAULT) {
601 		mfiStatus = MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
602 	} else
603 		mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
604 
605 	/*
606 	 * Clear the interrupt by writing back the same value
607 	 */
608 	writel(status, &regs->outbound_intr_status);
609 
610 	/*
611 	* dummy read to flush PCI
612 	*/
613 	readl(&regs->outbound_intr_status);
614 
615 	return mfiStatus;
616 }
617 
618 /**
619  * megasas_fire_cmd_skinny -	Sends command to the FW
620  * @frame_phys_addr :		Physical address of cmd
621  * @frame_count :		Number of frames for the command
622  * @regs :			MFI register set
623  */
624 static inline void
625 megasas_fire_cmd_skinny(struct megasas_instance *instance,
626 			dma_addr_t frame_phys_addr,
627 			u32 frame_count,
628 			struct megasas_register_set __iomem *regs)
629 {
630 	unsigned long flags;
631 	spin_lock_irqsave(&instance->hba_lock, flags);
632 	writel(0, &(regs)->inbound_high_queue_port);
633 	writel((frame_phys_addr | (frame_count<<1))|1,
634 		&(regs)->inbound_low_queue_port);
635 	spin_unlock_irqrestore(&instance->hba_lock, flags);
636 }
637 
638 /**
639  * megasas_check_reset_skinny -	For controller reset check
640  * @regs:				MFI register set
641  */
642 static int
643 megasas_check_reset_skinny(struct megasas_instance *instance,
644 				struct megasas_register_set __iomem *regs)
645 {
646 	if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL)
647 		return 1;
648 
649 	return 0;
650 }
651 
652 static struct megasas_instance_template megasas_instance_template_skinny = {
653 
654 	.fire_cmd = megasas_fire_cmd_skinny,
655 	.enable_intr = megasas_enable_intr_skinny,
656 	.disable_intr = megasas_disable_intr_skinny,
657 	.clear_intr = megasas_clear_intr_skinny,
658 	.read_fw_status_reg = megasas_read_fw_status_reg_skinny,
659 	.adp_reset = megasas_adp_reset_gen2,
660 	.check_reset = megasas_check_reset_skinny,
661 	.service_isr = megasas_isr,
662 	.tasklet = megasas_complete_cmd_dpc,
663 	.init_adapter = megasas_init_adapter_mfi,
664 	.build_and_issue_cmd = megasas_build_and_issue_cmd,
665 	.issue_dcmd = megasas_issue_dcmd,
666 };
667 
668 
669 /**
670 *	The following functions are defined for gen2 (deviceid : 0x78 0x79)
671 *	controllers
672 */
673 
674 /**
675  * megasas_enable_intr_gen2 -  Enables interrupts
676  * @regs:                      MFI register set
677  */
678 static inline void
679 megasas_enable_intr_gen2(struct megasas_instance *instance)
680 {
681 	struct megasas_register_set __iomem *regs;
682 	regs = instance->reg_set;
683 	writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
684 
685 	/* write ~0x00000005 (4 & 1) to the intr mask*/
686 	writel(~MFI_GEN2_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask);
687 
688 	/* Dummy readl to force pci flush */
689 	readl(&regs->outbound_intr_mask);
690 }
691 
692 /**
693  * megasas_disable_intr_gen2 - Disables interrupt
694  * @regs:                      MFI register set
695  */
696 static inline void
697 megasas_disable_intr_gen2(struct megasas_instance *instance)
698 {
699 	struct megasas_register_set __iomem *regs;
700 	u32 mask = 0xFFFFFFFF;
701 	regs = instance->reg_set;
702 	writel(mask, &regs->outbound_intr_mask);
703 	/* Dummy readl to force pci flush */
704 	readl(&regs->outbound_intr_mask);
705 }
706 
707 /**
708  * megasas_read_fw_status_reg_gen2 - returns the current FW status value
709  * @regs:                      MFI register set
710  */
711 static u32
712 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs)
713 {
714 	return readl(&(regs)->outbound_scratch_pad);
715 }
716 
717 /**
718  * megasas_clear_interrupt_gen2 -      Check & clear interrupt
719  * @regs:                              MFI register set
720  */
721 static int
722 megasas_clear_intr_gen2(struct megasas_register_set __iomem *regs)
723 {
724 	u32 status;
725 	u32 mfiStatus = 0;
726 	/*
727 	 * Check if it is our interrupt
728 	 */
729 	status = readl(&regs->outbound_intr_status);
730 
731 	if (status & MFI_INTR_FLAG_REPLY_MESSAGE) {
732 		mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
733 	}
734 	if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) {
735 		mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
736 	}
737 
738 	/*
739 	 * Clear the interrupt by writing back the same value
740 	 */
741 	if (mfiStatus)
742 		writel(status, &regs->outbound_doorbell_clear);
743 
744 	/* Dummy readl to force pci flush */
745 	readl(&regs->outbound_intr_status);
746 
747 	return mfiStatus;
748 }
749 /**
750  * megasas_fire_cmd_gen2 -     Sends command to the FW
751  * @frame_phys_addr :          Physical address of cmd
752  * @frame_count :              Number of frames for the command
753  * @regs :                     MFI register set
754  */
755 static inline void
756 megasas_fire_cmd_gen2(struct megasas_instance *instance,
757 			dma_addr_t frame_phys_addr,
758 			u32 frame_count,
759 			struct megasas_register_set __iomem *regs)
760 {
761 	unsigned long flags;
762 	spin_lock_irqsave(&instance->hba_lock, flags);
763 	writel((frame_phys_addr | (frame_count<<1))|1,
764 			&(regs)->inbound_queue_port);
765 	spin_unlock_irqrestore(&instance->hba_lock, flags);
766 }
767 
768 /**
769  * megasas_adp_reset_gen2 -	For controller reset
770  * @regs:				MFI register set
771  */
772 static int
773 megasas_adp_reset_gen2(struct megasas_instance *instance,
774 			struct megasas_register_set __iomem *reg_set)
775 {
776 	u32			retry = 0 ;
777 	u32			HostDiag;
778 	u32			*seq_offset = &reg_set->seq_offset;
779 	u32			*hostdiag_offset = &reg_set->host_diag;
780 
781 	if (instance->instancet == &megasas_instance_template_skinny) {
782 		seq_offset = &reg_set->fusion_seq_offset;
783 		hostdiag_offset = &reg_set->fusion_host_diag;
784 	}
785 
786 	writel(0, seq_offset);
787 	writel(4, seq_offset);
788 	writel(0xb, seq_offset);
789 	writel(2, seq_offset);
790 	writel(7, seq_offset);
791 	writel(0xd, seq_offset);
792 
793 	msleep(1000);
794 
795 	HostDiag = (u32)readl(hostdiag_offset);
796 
797 	while ( !( HostDiag & DIAG_WRITE_ENABLE) ) {
798 		msleep(100);
799 		HostDiag = (u32)readl(hostdiag_offset);
800 		printk(KERN_NOTICE "RESETGEN2: retry=%x, hostdiag=%x\n",
801 					retry, HostDiag);
802 
803 		if (retry++ >= 100)
804 			return 1;
805 
806 	}
807 
808 	printk(KERN_NOTICE "ADP_RESET_GEN2: HostDiag=%x\n", HostDiag);
809 
810 	writel((HostDiag | DIAG_RESET_ADAPTER), hostdiag_offset);
811 
812 	ssleep(10);
813 
814 	HostDiag = (u32)readl(hostdiag_offset);
815 	while ( ( HostDiag & DIAG_RESET_ADAPTER) ) {
816 		msleep(100);
817 		HostDiag = (u32)readl(hostdiag_offset);
818 		printk(KERN_NOTICE "RESET_GEN2: retry=%x, hostdiag=%x\n",
819 				retry, HostDiag);
820 
821 		if (retry++ >= 1000)
822 			return 1;
823 
824 	}
825 	return 0;
826 }
827 
828 /**
829  * megasas_check_reset_gen2 -	For controller reset check
830  * @regs:				MFI register set
831  */
832 static int
833 megasas_check_reset_gen2(struct megasas_instance *instance,
834 		struct megasas_register_set __iomem *regs)
835 {
836 	if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
837 		return 1;
838 	}
839 
840 	return 0;
841 }
842 
843 static struct megasas_instance_template megasas_instance_template_gen2 = {
844 
845 	.fire_cmd = megasas_fire_cmd_gen2,
846 	.enable_intr = megasas_enable_intr_gen2,
847 	.disable_intr = megasas_disable_intr_gen2,
848 	.clear_intr = megasas_clear_intr_gen2,
849 	.read_fw_status_reg = megasas_read_fw_status_reg_gen2,
850 	.adp_reset = megasas_adp_reset_gen2,
851 	.check_reset = megasas_check_reset_gen2,
852 	.service_isr = megasas_isr,
853 	.tasklet = megasas_complete_cmd_dpc,
854 	.init_adapter = megasas_init_adapter_mfi,
855 	.build_and_issue_cmd = megasas_build_and_issue_cmd,
856 	.issue_dcmd = megasas_issue_dcmd,
857 };
858 
859 /**
860 *	This is the end of set of functions & definitions
861 *       specific to gen2 (deviceid : 0x78, 0x79) controllers
862 */
863 
864 /*
865  * Template added for TB (Fusion)
866  */
867 extern struct megasas_instance_template megasas_instance_template_fusion;
868 
869 /**
870  * megasas_issue_polled -	Issues a polling command
871  * @instance:			Adapter soft state
872  * @cmd:			Command packet to be issued
873  *
874  * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
875  */
876 int
877 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
878 {
879 
880 	struct megasas_header *frame_hdr = &cmd->frame->hdr;
881 
882 	frame_hdr->cmd_status = 0xFF;
883 	frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
884 
885 	/*
886 	 * Issue the frame using inbound queue port
887 	 */
888 	instance->instancet->issue_dcmd(instance, cmd);
889 
890 	/*
891 	 * Wait for cmd_status to change
892 	 */
893 	return wait_and_poll(instance, cmd);
894 }
895 
896 /**
897  * megasas_issue_blocked_cmd -	Synchronous wrapper around regular FW cmds
898  * @instance:			Adapter soft state
899  * @cmd:			Command to be issued
900  *
901  * This function waits on an event for the command to be returned from ISR.
902  * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
903  * Used to issue ioctl commands.
904  */
905 static int
906 megasas_issue_blocked_cmd(struct megasas_instance *instance,
907 			  struct megasas_cmd *cmd)
908 {
909 	cmd->cmd_status = ENODATA;
910 
911 	instance->instancet->issue_dcmd(instance, cmd);
912 
913 	wait_event(instance->int_cmd_wait_q, cmd->cmd_status != ENODATA);
914 
915 	return 0;
916 }
917 
918 /**
919  * megasas_issue_blocked_abort_cmd -	Aborts previously issued cmd
920  * @instance:				Adapter soft state
921  * @cmd_to_abort:			Previously issued cmd to be aborted
922  *
923  * MFI firmware can abort previously issued AEN command (automatic event
924  * notification). The megasas_issue_blocked_abort_cmd() issues such abort
925  * cmd and waits for return status.
926  * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
927  */
928 static int
929 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
930 				struct megasas_cmd *cmd_to_abort)
931 {
932 	struct megasas_cmd *cmd;
933 	struct megasas_abort_frame *abort_fr;
934 
935 	cmd = megasas_get_cmd(instance);
936 
937 	if (!cmd)
938 		return -1;
939 
940 	abort_fr = &cmd->frame->abort;
941 
942 	/*
943 	 * Prepare and issue the abort frame
944 	 */
945 	abort_fr->cmd = MFI_CMD_ABORT;
946 	abort_fr->cmd_status = 0xFF;
947 	abort_fr->flags = 0;
948 	abort_fr->abort_context = cmd_to_abort->index;
949 	abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
950 	abort_fr->abort_mfi_phys_addr_hi = 0;
951 
952 	cmd->sync_cmd = 1;
953 	cmd->cmd_status = 0xFF;
954 
955 	instance->instancet->issue_dcmd(instance, cmd);
956 
957 	/*
958 	 * Wait for this cmd to complete
959 	 */
960 	wait_event(instance->abort_cmd_wait_q, cmd->cmd_status != 0xFF);
961 	cmd->sync_cmd = 0;
962 
963 	megasas_return_cmd(instance, cmd);
964 	return 0;
965 }
966 
967 /**
968  * megasas_make_sgl32 -	Prepares 32-bit SGL
969  * @instance:		Adapter soft state
970  * @scp:		SCSI command from the mid-layer
971  * @mfi_sgl:		SGL to be filled in
972  *
973  * If successful, this function returns the number of SG elements. Otherwise,
974  * it returnes -1.
975  */
976 static int
977 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
978 		   union megasas_sgl *mfi_sgl)
979 {
980 	int i;
981 	int sge_count;
982 	struct scatterlist *os_sgl;
983 
984 	sge_count = scsi_dma_map(scp);
985 	BUG_ON(sge_count < 0);
986 
987 	if (sge_count) {
988 		scsi_for_each_sg(scp, os_sgl, sge_count, i) {
989 			mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
990 			mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
991 		}
992 	}
993 	return sge_count;
994 }
995 
996 /**
997  * megasas_make_sgl64 -	Prepares 64-bit SGL
998  * @instance:		Adapter soft state
999  * @scp:		SCSI command from the mid-layer
1000  * @mfi_sgl:		SGL to be filled in
1001  *
1002  * If successful, this function returns the number of SG elements. Otherwise,
1003  * it returnes -1.
1004  */
1005 static int
1006 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
1007 		   union megasas_sgl *mfi_sgl)
1008 {
1009 	int i;
1010 	int sge_count;
1011 	struct scatterlist *os_sgl;
1012 
1013 	sge_count = scsi_dma_map(scp);
1014 	BUG_ON(sge_count < 0);
1015 
1016 	if (sge_count) {
1017 		scsi_for_each_sg(scp, os_sgl, sge_count, i) {
1018 			mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
1019 			mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
1020 		}
1021 	}
1022 	return sge_count;
1023 }
1024 
1025 /**
1026  * megasas_make_sgl_skinny - Prepares IEEE SGL
1027  * @instance:           Adapter soft state
1028  * @scp:                SCSI command from the mid-layer
1029  * @mfi_sgl:            SGL to be filled in
1030  *
1031  * If successful, this function returns the number of SG elements. Otherwise,
1032  * it returnes -1.
1033  */
1034 static int
1035 megasas_make_sgl_skinny(struct megasas_instance *instance,
1036 		struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl)
1037 {
1038 	int i;
1039 	int sge_count;
1040 	struct scatterlist *os_sgl;
1041 
1042 	sge_count = scsi_dma_map(scp);
1043 
1044 	if (sge_count) {
1045 		scsi_for_each_sg(scp, os_sgl, sge_count, i) {
1046 			mfi_sgl->sge_skinny[i].length = sg_dma_len(os_sgl);
1047 			mfi_sgl->sge_skinny[i].phys_addr =
1048 						sg_dma_address(os_sgl);
1049 			mfi_sgl->sge_skinny[i].flag = 0;
1050 		}
1051 	}
1052 	return sge_count;
1053 }
1054 
1055  /**
1056  * megasas_get_frame_count - Computes the number of frames
1057  * @frame_type		: type of frame- io or pthru frame
1058  * @sge_count		: number of sg elements
1059  *
1060  * Returns the number of frames required for numnber of sge's (sge_count)
1061  */
1062 
1063 static u32 megasas_get_frame_count(struct megasas_instance *instance,
1064 			u8 sge_count, u8 frame_type)
1065 {
1066 	int num_cnt;
1067 	int sge_bytes;
1068 	u32 sge_sz;
1069 	u32 frame_count=0;
1070 
1071 	sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1072 	    sizeof(struct megasas_sge32);
1073 
1074 	if (instance->flag_ieee) {
1075 		sge_sz = sizeof(struct megasas_sge_skinny);
1076 	}
1077 
1078 	/*
1079 	 * Main frame can contain 2 SGEs for 64-bit SGLs and
1080 	 * 3 SGEs for 32-bit SGLs for ldio &
1081 	 * 1 SGEs for 64-bit SGLs and
1082 	 * 2 SGEs for 32-bit SGLs for pthru frame
1083 	 */
1084 	if (unlikely(frame_type == PTHRU_FRAME)) {
1085 		if (instance->flag_ieee == 1) {
1086 			num_cnt = sge_count - 1;
1087 		} else if (IS_DMA64)
1088 			num_cnt = sge_count - 1;
1089 		else
1090 			num_cnt = sge_count - 2;
1091 	} else {
1092 		if (instance->flag_ieee == 1) {
1093 			num_cnt = sge_count - 1;
1094 		} else if (IS_DMA64)
1095 			num_cnt = sge_count - 2;
1096 		else
1097 			num_cnt = sge_count - 3;
1098 	}
1099 
1100 	if(num_cnt>0){
1101 		sge_bytes = sge_sz * num_cnt;
1102 
1103 		frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
1104 		    ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
1105 	}
1106 	/* Main frame */
1107 	frame_count +=1;
1108 
1109 	if (frame_count > 7)
1110 		frame_count = 8;
1111 	return frame_count;
1112 }
1113 
1114 /**
1115  * megasas_build_dcdb -	Prepares a direct cdb (DCDB) command
1116  * @instance:		Adapter soft state
1117  * @scp:		SCSI command
1118  * @cmd:		Command to be prepared in
1119  *
1120  * This function prepares CDB commands. These are typcially pass-through
1121  * commands to the devices.
1122  */
1123 static int
1124 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
1125 		   struct megasas_cmd *cmd)
1126 {
1127 	u32 is_logical;
1128 	u32 device_id;
1129 	u16 flags = 0;
1130 	struct megasas_pthru_frame *pthru;
1131 
1132 	is_logical = MEGASAS_IS_LOGICAL(scp);
1133 	device_id = MEGASAS_DEV_INDEX(instance, scp);
1134 	pthru = (struct megasas_pthru_frame *)cmd->frame;
1135 
1136 	if (scp->sc_data_direction == PCI_DMA_TODEVICE)
1137 		flags = MFI_FRAME_DIR_WRITE;
1138 	else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
1139 		flags = MFI_FRAME_DIR_READ;
1140 	else if (scp->sc_data_direction == PCI_DMA_NONE)
1141 		flags = MFI_FRAME_DIR_NONE;
1142 
1143 	if (instance->flag_ieee == 1) {
1144 		flags |= MFI_FRAME_IEEE;
1145 	}
1146 
1147 	/*
1148 	 * Prepare the DCDB frame
1149 	 */
1150 	pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
1151 	pthru->cmd_status = 0x0;
1152 	pthru->scsi_status = 0x0;
1153 	pthru->target_id = device_id;
1154 	pthru->lun = scp->device->lun;
1155 	pthru->cdb_len = scp->cmd_len;
1156 	pthru->timeout = 0;
1157 	pthru->pad_0 = 0;
1158 	pthru->flags = flags;
1159 	pthru->data_xfer_len = scsi_bufflen(scp);
1160 
1161 	memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
1162 
1163 	/*
1164 	* If the command is for the tape device, set the
1165 	* pthru timeout to the os layer timeout value.
1166 	*/
1167 	if (scp->device->type == TYPE_TAPE) {
1168 		if ((scp->request->timeout / HZ) > 0xFFFF)
1169 			pthru->timeout = 0xFFFF;
1170 		else
1171 			pthru->timeout = scp->request->timeout / HZ;
1172 	}
1173 
1174 	/*
1175 	 * Construct SGL
1176 	 */
1177 	if (instance->flag_ieee == 1) {
1178 		pthru->flags |= MFI_FRAME_SGL64;
1179 		pthru->sge_count = megasas_make_sgl_skinny(instance, scp,
1180 						      &pthru->sgl);
1181 	} else if (IS_DMA64) {
1182 		pthru->flags |= MFI_FRAME_SGL64;
1183 		pthru->sge_count = megasas_make_sgl64(instance, scp,
1184 						      &pthru->sgl);
1185 	} else
1186 		pthru->sge_count = megasas_make_sgl32(instance, scp,
1187 						      &pthru->sgl);
1188 
1189 	if (pthru->sge_count > instance->max_num_sge) {
1190 		printk(KERN_ERR "megasas: DCDB two many SGE NUM=%x\n",
1191 			pthru->sge_count);
1192 		return 0;
1193 	}
1194 
1195 	/*
1196 	 * Sense info specific
1197 	 */
1198 	pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
1199 	pthru->sense_buf_phys_addr_hi = 0;
1200 	pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
1201 
1202 	/*
1203 	 * Compute the total number of frames this command consumes. FW uses
1204 	 * this number to pull sufficient number of frames from host memory.
1205 	 */
1206 	cmd->frame_count = megasas_get_frame_count(instance, pthru->sge_count,
1207 							PTHRU_FRAME);
1208 
1209 	return cmd->frame_count;
1210 }
1211 
1212 /**
1213  * megasas_build_ldio -	Prepares IOs to logical devices
1214  * @instance:		Adapter soft state
1215  * @scp:		SCSI command
1216  * @cmd:		Command to be prepared
1217  *
1218  * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
1219  */
1220 static int
1221 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
1222 		   struct megasas_cmd *cmd)
1223 {
1224 	u32 device_id;
1225 	u8 sc = scp->cmnd[0];
1226 	u16 flags = 0;
1227 	struct megasas_io_frame *ldio;
1228 
1229 	device_id = MEGASAS_DEV_INDEX(instance, scp);
1230 	ldio = (struct megasas_io_frame *)cmd->frame;
1231 
1232 	if (scp->sc_data_direction == PCI_DMA_TODEVICE)
1233 		flags = MFI_FRAME_DIR_WRITE;
1234 	else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
1235 		flags = MFI_FRAME_DIR_READ;
1236 
1237 	if (instance->flag_ieee == 1) {
1238 		flags |= MFI_FRAME_IEEE;
1239 	}
1240 
1241 	/*
1242 	 * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
1243 	 */
1244 	ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
1245 	ldio->cmd_status = 0x0;
1246 	ldio->scsi_status = 0x0;
1247 	ldio->target_id = device_id;
1248 	ldio->timeout = 0;
1249 	ldio->reserved_0 = 0;
1250 	ldio->pad_0 = 0;
1251 	ldio->flags = flags;
1252 	ldio->start_lba_hi = 0;
1253 	ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
1254 
1255 	/*
1256 	 * 6-byte READ(0x08) or WRITE(0x0A) cdb
1257 	 */
1258 	if (scp->cmd_len == 6) {
1259 		ldio->lba_count = (u32) scp->cmnd[4];
1260 		ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
1261 		    ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
1262 
1263 		ldio->start_lba_lo &= 0x1FFFFF;
1264 	}
1265 
1266 	/*
1267 	 * 10-byte READ(0x28) or WRITE(0x2A) cdb
1268 	 */
1269 	else if (scp->cmd_len == 10) {
1270 		ldio->lba_count = (u32) scp->cmnd[8] |
1271 		    ((u32) scp->cmnd[7] << 8);
1272 		ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
1273 		    ((u32) scp->cmnd[3] << 16) |
1274 		    ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
1275 	}
1276 
1277 	/*
1278 	 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
1279 	 */
1280 	else if (scp->cmd_len == 12) {
1281 		ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
1282 		    ((u32) scp->cmnd[7] << 16) |
1283 		    ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
1284 
1285 		ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
1286 		    ((u32) scp->cmnd[3] << 16) |
1287 		    ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
1288 	}
1289 
1290 	/*
1291 	 * 16-byte READ(0x88) or WRITE(0x8A) cdb
1292 	 */
1293 	else if (scp->cmd_len == 16) {
1294 		ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
1295 		    ((u32) scp->cmnd[11] << 16) |
1296 		    ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
1297 
1298 		ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
1299 		    ((u32) scp->cmnd[7] << 16) |
1300 		    ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
1301 
1302 		ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
1303 		    ((u32) scp->cmnd[3] << 16) |
1304 		    ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
1305 
1306 	}
1307 
1308 	/*
1309 	 * Construct SGL
1310 	 */
1311 	if (instance->flag_ieee) {
1312 		ldio->flags |= MFI_FRAME_SGL64;
1313 		ldio->sge_count = megasas_make_sgl_skinny(instance, scp,
1314 					      &ldio->sgl);
1315 	} else if (IS_DMA64) {
1316 		ldio->flags |= MFI_FRAME_SGL64;
1317 		ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
1318 	} else
1319 		ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
1320 
1321 	if (ldio->sge_count > instance->max_num_sge) {
1322 		printk(KERN_ERR "megasas: build_ld_io: sge_count = %x\n",
1323 			ldio->sge_count);
1324 		return 0;
1325 	}
1326 
1327 	/*
1328 	 * Sense info specific
1329 	 */
1330 	ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
1331 	ldio->sense_buf_phys_addr_hi = 0;
1332 	ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
1333 
1334 	/*
1335 	 * Compute the total number of frames this command consumes. FW uses
1336 	 * this number to pull sufficient number of frames from host memory.
1337 	 */
1338 	cmd->frame_count = megasas_get_frame_count(instance,
1339 			ldio->sge_count, IO_FRAME);
1340 
1341 	return cmd->frame_count;
1342 }
1343 
1344 /**
1345  * megasas_is_ldio -		Checks if the cmd is for logical drive
1346  * @scmd:			SCSI command
1347  *
1348  * Called by megasas_queue_command to find out if the command to be queued
1349  * is a logical drive command
1350  */
1351 inline int megasas_is_ldio(struct scsi_cmnd *cmd)
1352 {
1353 	if (!MEGASAS_IS_LOGICAL(cmd))
1354 		return 0;
1355 	switch (cmd->cmnd[0]) {
1356 	case READ_10:
1357 	case WRITE_10:
1358 	case READ_12:
1359 	case WRITE_12:
1360 	case READ_6:
1361 	case WRITE_6:
1362 	case READ_16:
1363 	case WRITE_16:
1364 		return 1;
1365 	default:
1366 		return 0;
1367 	}
1368 }
1369 
1370  /**
1371  * megasas_dump_pending_frames -	Dumps the frame address of all pending cmds
1372  *                              	in FW
1373  * @instance:				Adapter soft state
1374  */
1375 static inline void
1376 megasas_dump_pending_frames(struct megasas_instance *instance)
1377 {
1378 	struct megasas_cmd *cmd;
1379 	int i,n;
1380 	union megasas_sgl *mfi_sgl;
1381 	struct megasas_io_frame *ldio;
1382 	struct megasas_pthru_frame *pthru;
1383 	u32 sgcount;
1384 	u32 max_cmd = instance->max_fw_cmds;
1385 
1386 	printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
1387 	printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
1388 	if (IS_DMA64)
1389 		printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
1390 	else
1391 		printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
1392 
1393 	printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
1394 	for (i = 0; i < max_cmd; i++) {
1395 		cmd = instance->cmd_list[i];
1396 		if(!cmd->scmd)
1397 			continue;
1398 		printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
1399 		if (megasas_is_ldio(cmd->scmd)){
1400 			ldio = (struct megasas_io_frame *)cmd->frame;
1401 			mfi_sgl = &ldio->sgl;
1402 			sgcount = ldio->sge_count;
1403 			printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount);
1404 		}
1405 		else {
1406 			pthru = (struct megasas_pthru_frame *) cmd->frame;
1407 			mfi_sgl = &pthru->sgl;
1408 			sgcount = pthru->sge_count;
1409 			printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount);
1410 		}
1411 	if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
1412 		for (n = 0; n < sgcount; n++){
1413 			if (IS_DMA64)
1414 				printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ;
1415 			else
1416 				printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ;
1417 			}
1418 		}
1419 		printk(KERN_ERR "\n");
1420 	} /*for max_cmd*/
1421 	printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
1422 	for (i = 0; i < max_cmd; i++) {
1423 
1424 		cmd = instance->cmd_list[i];
1425 
1426 		if(cmd->sync_cmd == 1){
1427 			printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
1428 		}
1429 	}
1430 	printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
1431 }
1432 
1433 u32
1434 megasas_build_and_issue_cmd(struct megasas_instance *instance,
1435 			    struct scsi_cmnd *scmd)
1436 {
1437 	struct megasas_cmd *cmd;
1438 	u32 frame_count;
1439 
1440 	cmd = megasas_get_cmd(instance);
1441 	if (!cmd)
1442 		return SCSI_MLQUEUE_HOST_BUSY;
1443 
1444 	/*
1445 	 * Logical drive command
1446 	 */
1447 	if (megasas_is_ldio(scmd))
1448 		frame_count = megasas_build_ldio(instance, scmd, cmd);
1449 	else
1450 		frame_count = megasas_build_dcdb(instance, scmd, cmd);
1451 
1452 	if (!frame_count)
1453 		goto out_return_cmd;
1454 
1455 	cmd->scmd = scmd;
1456 	scmd->SCp.ptr = (char *)cmd;
1457 
1458 	/*
1459 	 * Issue the command to the FW
1460 	 */
1461 	atomic_inc(&instance->fw_outstanding);
1462 
1463 	instance->instancet->fire_cmd(instance, cmd->frame_phys_addr,
1464 				cmd->frame_count-1, instance->reg_set);
1465 
1466 	return 0;
1467 out_return_cmd:
1468 	megasas_return_cmd(instance, cmd);
1469 	return 1;
1470 }
1471 
1472 
1473 /**
1474  * megasas_queue_command -	Queue entry point
1475  * @scmd:			SCSI command to be queued
1476  * @done:			Callback entry point
1477  */
1478 static int
1479 megasas_queue_command_lck(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
1480 {
1481 	struct megasas_instance *instance;
1482 	unsigned long flags;
1483 
1484 	instance = (struct megasas_instance *)
1485 	    scmd->device->host->hostdata;
1486 
1487 	if (instance->issuepend_done == 0)
1488 		return SCSI_MLQUEUE_HOST_BUSY;
1489 
1490 	spin_lock_irqsave(&instance->hba_lock, flags);
1491 
1492 	if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
1493 		spin_unlock_irqrestore(&instance->hba_lock, flags);
1494 		scmd->result = DID_ERROR << 16;
1495 		done(scmd);
1496 		return 0;
1497 	}
1498 
1499 	if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
1500 		spin_unlock_irqrestore(&instance->hba_lock, flags);
1501 		return SCSI_MLQUEUE_HOST_BUSY;
1502 	}
1503 
1504 	spin_unlock_irqrestore(&instance->hba_lock, flags);
1505 
1506 	scmd->scsi_done = done;
1507 	scmd->result = 0;
1508 
1509 	if (MEGASAS_IS_LOGICAL(scmd) &&
1510 	    (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
1511 		scmd->result = DID_BAD_TARGET << 16;
1512 		goto out_done;
1513 	}
1514 
1515 	switch (scmd->cmnd[0]) {
1516 	case SYNCHRONIZE_CACHE:
1517 		/*
1518 		 * FW takes care of flush cache on its own
1519 		 * No need to send it down
1520 		 */
1521 		scmd->result = DID_OK << 16;
1522 		goto out_done;
1523 	default:
1524 		break;
1525 	}
1526 
1527 	if (instance->instancet->build_and_issue_cmd(instance, scmd)) {
1528 		printk(KERN_ERR "megasas: Err returned from build_and_issue_cmd\n");
1529 		return SCSI_MLQUEUE_HOST_BUSY;
1530 	}
1531 
1532 	return 0;
1533 
1534  out_done:
1535 	done(scmd);
1536 	return 0;
1537 }
1538 
1539 static DEF_SCSI_QCMD(megasas_queue_command)
1540 
1541 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
1542 {
1543 	int i;
1544 
1545 	for (i = 0; i < megasas_mgmt_info.max_index; i++) {
1546 
1547 		if ((megasas_mgmt_info.instance[i]) &&
1548 		    (megasas_mgmt_info.instance[i]->host->host_no == host_no))
1549 			return megasas_mgmt_info.instance[i];
1550 	}
1551 
1552 	return NULL;
1553 }
1554 
1555 static int megasas_slave_configure(struct scsi_device *sdev)
1556 {
1557 	u16             pd_index = 0;
1558 	struct  megasas_instance *instance ;
1559 
1560 	instance = megasas_lookup_instance(sdev->host->host_no);
1561 
1562 	/*
1563 	* Don't export physical disk devices to the disk driver.
1564 	*
1565 	* FIXME: Currently we don't export them to the midlayer at all.
1566 	*        That will be fixed once LSI engineers have audited the
1567 	*        firmware for possible issues.
1568 	*/
1569 	if (sdev->channel < MEGASAS_MAX_PD_CHANNELS &&
1570 				sdev->type == TYPE_DISK) {
1571 		pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) +
1572 								sdev->id;
1573 		if (instance->pd_list[pd_index].driveState ==
1574 						MR_PD_STATE_SYSTEM) {
1575 			blk_queue_rq_timeout(sdev->request_queue,
1576 				MEGASAS_DEFAULT_CMD_TIMEOUT * HZ);
1577 			return 0;
1578 		}
1579 		return -ENXIO;
1580 	}
1581 
1582 	/*
1583 	* The RAID firmware may require extended timeouts.
1584 	*/
1585 	blk_queue_rq_timeout(sdev->request_queue,
1586 		MEGASAS_DEFAULT_CMD_TIMEOUT * HZ);
1587 	return 0;
1588 }
1589 
1590 static int megasas_slave_alloc(struct scsi_device *sdev)
1591 {
1592 	u16             pd_index = 0;
1593 	struct megasas_instance *instance ;
1594 	instance = megasas_lookup_instance(sdev->host->host_no);
1595 	if ((sdev->channel < MEGASAS_MAX_PD_CHANNELS) &&
1596 				(sdev->type == TYPE_DISK)) {
1597 		/*
1598 		 * Open the OS scan to the SYSTEM PD
1599 		 */
1600 		pd_index =
1601 			(sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) +
1602 			sdev->id;
1603 		if ((instance->pd_list[pd_index].driveState ==
1604 					MR_PD_STATE_SYSTEM) &&
1605 			(instance->pd_list[pd_index].driveType ==
1606 						TYPE_DISK)) {
1607 			return 0;
1608 		}
1609 		return -ENXIO;
1610 	}
1611 	return 0;
1612 }
1613 
1614 void megaraid_sas_kill_hba(struct megasas_instance *instance)
1615 {
1616 	if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
1617 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
1618 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
1619 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
1620 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) {
1621 		writel(MFI_STOP_ADP, &instance->reg_set->doorbell);
1622 	} else {
1623 		writel(MFI_STOP_ADP, &instance->reg_set->inbound_doorbell);
1624 	}
1625 }
1626 
1627  /**
1628   * megasas_check_and_restore_queue_depth - Check if queue depth needs to be
1629   *					restored to max value
1630   * @instance:			Adapter soft state
1631   *
1632   */
1633 void
1634 megasas_check_and_restore_queue_depth(struct megasas_instance *instance)
1635 {
1636 	unsigned long flags;
1637 	if (instance->flag & MEGASAS_FW_BUSY
1638 	    && time_after(jiffies, instance->last_time + 5 * HZ)
1639 	    && atomic_read(&instance->fw_outstanding) <
1640 	    instance->throttlequeuedepth + 1) {
1641 
1642 		spin_lock_irqsave(instance->host->host_lock, flags);
1643 		instance->flag &= ~MEGASAS_FW_BUSY;
1644 		if (instance->is_imr) {
1645 			instance->host->can_queue =
1646 				instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS;
1647 		} else
1648 			instance->host->can_queue =
1649 				instance->max_fw_cmds - MEGASAS_INT_CMDS;
1650 
1651 		spin_unlock_irqrestore(instance->host->host_lock, flags);
1652 	}
1653 }
1654 
1655 /**
1656  * megasas_complete_cmd_dpc	 -	Returns FW's controller structure
1657  * @instance_addr:			Address of adapter soft state
1658  *
1659  * Tasklet to complete cmds
1660  */
1661 static void megasas_complete_cmd_dpc(unsigned long instance_addr)
1662 {
1663 	u32 producer;
1664 	u32 consumer;
1665 	u32 context;
1666 	struct megasas_cmd *cmd;
1667 	struct megasas_instance *instance =
1668 				(struct megasas_instance *)instance_addr;
1669 	unsigned long flags;
1670 
1671 	/* If we have already declared adapter dead, donot complete cmds */
1672 	if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR )
1673 		return;
1674 
1675 	spin_lock_irqsave(&instance->completion_lock, flags);
1676 
1677 	producer = *instance->producer;
1678 	consumer = *instance->consumer;
1679 
1680 	while (consumer != producer) {
1681 		context = instance->reply_queue[consumer];
1682 		if (context >= instance->max_fw_cmds) {
1683 			printk(KERN_ERR "Unexpected context value %x\n",
1684 				context);
1685 			BUG();
1686 		}
1687 
1688 		cmd = instance->cmd_list[context];
1689 
1690 		megasas_complete_cmd(instance, cmd, DID_OK);
1691 
1692 		consumer++;
1693 		if (consumer == (instance->max_fw_cmds + 1)) {
1694 			consumer = 0;
1695 		}
1696 	}
1697 
1698 	*instance->consumer = producer;
1699 
1700 	spin_unlock_irqrestore(&instance->completion_lock, flags);
1701 
1702 	/*
1703 	 * Check if we can restore can_queue
1704 	 */
1705 	megasas_check_and_restore_queue_depth(instance);
1706 }
1707 
1708 static void
1709 megasas_internal_reset_defer_cmds(struct megasas_instance *instance);
1710 
1711 static void
1712 process_fw_state_change_wq(struct work_struct *work);
1713 
1714 void megasas_do_ocr(struct megasas_instance *instance)
1715 {
1716 	if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) ||
1717 	(instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) ||
1718 	(instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)) {
1719 		*instance->consumer     = MEGASAS_ADPRESET_INPROG_SIGN;
1720 	}
1721 	instance->instancet->disable_intr(instance);
1722 	instance->adprecovery   = MEGASAS_ADPRESET_SM_INFAULT;
1723 	instance->issuepend_done = 0;
1724 
1725 	atomic_set(&instance->fw_outstanding, 0);
1726 	megasas_internal_reset_defer_cmds(instance);
1727 	process_fw_state_change_wq(&instance->work_init);
1728 }
1729 
1730 /**
1731  * megasas_wait_for_outstanding -	Wait for all outstanding cmds
1732  * @instance:				Adapter soft state
1733  *
1734  * This function waits for up to MEGASAS_RESET_WAIT_TIME seconds for FW to
1735  * complete all its outstanding commands. Returns error if one or more IOs
1736  * are pending after this time period. It also marks the controller dead.
1737  */
1738 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
1739 {
1740 	int i;
1741 	u32 reset_index;
1742 	u32 wait_time = MEGASAS_RESET_WAIT_TIME;
1743 	u8 adprecovery;
1744 	unsigned long flags;
1745 	struct list_head clist_local;
1746 	struct megasas_cmd *reset_cmd;
1747 	u32 fw_state;
1748 	u8 kill_adapter_flag;
1749 
1750 	spin_lock_irqsave(&instance->hba_lock, flags);
1751 	adprecovery = instance->adprecovery;
1752 	spin_unlock_irqrestore(&instance->hba_lock, flags);
1753 
1754 	if (adprecovery != MEGASAS_HBA_OPERATIONAL) {
1755 
1756 		INIT_LIST_HEAD(&clist_local);
1757 		spin_lock_irqsave(&instance->hba_lock, flags);
1758 		list_splice_init(&instance->internal_reset_pending_q,
1759 				&clist_local);
1760 		spin_unlock_irqrestore(&instance->hba_lock, flags);
1761 
1762 		printk(KERN_NOTICE "megasas: HBA reset wait ...\n");
1763 		for (i = 0; i < wait_time; i++) {
1764 			msleep(1000);
1765 			spin_lock_irqsave(&instance->hba_lock, flags);
1766 			adprecovery = instance->adprecovery;
1767 			spin_unlock_irqrestore(&instance->hba_lock, flags);
1768 			if (adprecovery == MEGASAS_HBA_OPERATIONAL)
1769 				break;
1770 		}
1771 
1772 		if (adprecovery != MEGASAS_HBA_OPERATIONAL) {
1773 			printk(KERN_NOTICE "megasas: reset: Stopping HBA.\n");
1774 			spin_lock_irqsave(&instance->hba_lock, flags);
1775 			instance->adprecovery	= MEGASAS_HW_CRITICAL_ERROR;
1776 			spin_unlock_irqrestore(&instance->hba_lock, flags);
1777 			return FAILED;
1778 		}
1779 
1780 		reset_index	= 0;
1781 		while (!list_empty(&clist_local)) {
1782 			reset_cmd	= list_entry((&clist_local)->next,
1783 						struct megasas_cmd, list);
1784 			list_del_init(&reset_cmd->list);
1785 			if (reset_cmd->scmd) {
1786 				reset_cmd->scmd->result = DID_RESET << 16;
1787 				printk(KERN_NOTICE "%d:%p reset [%02x]\n",
1788 					reset_index, reset_cmd,
1789 					reset_cmd->scmd->cmnd[0]);
1790 
1791 				reset_cmd->scmd->scsi_done(reset_cmd->scmd);
1792 				megasas_return_cmd(instance, reset_cmd);
1793 			} else if (reset_cmd->sync_cmd) {
1794 				printk(KERN_NOTICE "megasas:%p synch cmds"
1795 						"reset queue\n",
1796 						reset_cmd);
1797 
1798 				reset_cmd->cmd_status = ENODATA;
1799 				instance->instancet->fire_cmd(instance,
1800 						reset_cmd->frame_phys_addr,
1801 						0, instance->reg_set);
1802 			} else {
1803 				printk(KERN_NOTICE "megasas: %p unexpected"
1804 					"cmds lst\n",
1805 					reset_cmd);
1806 			}
1807 			reset_index++;
1808 		}
1809 
1810 		return SUCCESS;
1811 	}
1812 
1813 	for (i = 0; i < resetwaittime; i++) {
1814 
1815 		int outstanding = atomic_read(&instance->fw_outstanding);
1816 
1817 		if (!outstanding)
1818 			break;
1819 
1820 		if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
1821 			printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
1822 			       "commands to complete\n",i,outstanding);
1823 			/*
1824 			 * Call cmd completion routine. Cmd to be
1825 			 * be completed directly without depending on isr.
1826 			 */
1827 			megasas_complete_cmd_dpc((unsigned long)instance);
1828 		}
1829 
1830 		msleep(1000);
1831 	}
1832 
1833 	i = 0;
1834 	kill_adapter_flag = 0;
1835 	do {
1836 		fw_state = instance->instancet->read_fw_status_reg(
1837 					instance->reg_set) & MFI_STATE_MASK;
1838 		if ((fw_state == MFI_STATE_FAULT) &&
1839 			(instance->disableOnlineCtrlReset == 0)) {
1840 			if (i == 3) {
1841 				kill_adapter_flag = 2;
1842 				break;
1843 			}
1844 			megasas_do_ocr(instance);
1845 			kill_adapter_flag = 1;
1846 
1847 			/* wait for 1 secs to let FW finish the pending cmds */
1848 			msleep(1000);
1849 		}
1850 		i++;
1851 	} while (i <= 3);
1852 
1853 	if (atomic_read(&instance->fw_outstanding) &&
1854 					!kill_adapter_flag) {
1855 		if (instance->disableOnlineCtrlReset == 0) {
1856 
1857 			megasas_do_ocr(instance);
1858 
1859 			/* wait for 5 secs to let FW finish the pending cmds */
1860 			for (i = 0; i < wait_time; i++) {
1861 				int outstanding =
1862 					atomic_read(&instance->fw_outstanding);
1863 				if (!outstanding)
1864 					return SUCCESS;
1865 				msleep(1000);
1866 			}
1867 		}
1868 	}
1869 
1870 	if (atomic_read(&instance->fw_outstanding) ||
1871 					(kill_adapter_flag == 2)) {
1872 		printk(KERN_NOTICE "megaraid_sas: pending cmds after reset\n");
1873 		/*
1874 		* Send signal to FW to stop processing any pending cmds.
1875 		* The controller will be taken offline by the OS now.
1876 		*/
1877 		if ((instance->pdev->device ==
1878 			PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
1879 			(instance->pdev->device ==
1880 			PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
1881 			writel(MFI_STOP_ADP,
1882 				&instance->reg_set->doorbell);
1883 		} else {
1884 			writel(MFI_STOP_ADP,
1885 				&instance->reg_set->inbound_doorbell);
1886 		}
1887 		megasas_dump_pending_frames(instance);
1888 		spin_lock_irqsave(&instance->hba_lock, flags);
1889 		instance->adprecovery	= MEGASAS_HW_CRITICAL_ERROR;
1890 		spin_unlock_irqrestore(&instance->hba_lock, flags);
1891 		return FAILED;
1892 	}
1893 
1894 	printk(KERN_NOTICE "megaraid_sas: no pending cmds after reset\n");
1895 
1896 	return SUCCESS;
1897 }
1898 
1899 /**
1900  * megasas_generic_reset -	Generic reset routine
1901  * @scmd:			Mid-layer SCSI command
1902  *
1903  * This routine implements a generic reset handler for device, bus and host
1904  * reset requests. Device, bus and host specific reset handlers can use this
1905  * function after they do their specific tasks.
1906  */
1907 static int megasas_generic_reset(struct scsi_cmnd *scmd)
1908 {
1909 	int ret_val;
1910 	struct megasas_instance *instance;
1911 
1912 	instance = (struct megasas_instance *)scmd->device->host->hostdata;
1913 
1914 	scmd_printk(KERN_NOTICE, scmd, "megasas: RESET cmd=%x retries=%x\n",
1915 		 scmd->cmnd[0], scmd->retries);
1916 
1917 	if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
1918 		printk(KERN_ERR "megasas: cannot recover from previous reset "
1919 		       "failures\n");
1920 		return FAILED;
1921 	}
1922 
1923 	ret_val = megasas_wait_for_outstanding(instance);
1924 	if (ret_val == SUCCESS)
1925 		printk(KERN_NOTICE "megasas: reset successful \n");
1926 	else
1927 		printk(KERN_ERR "megasas: failed to do reset\n");
1928 
1929 	return ret_val;
1930 }
1931 
1932 /**
1933  * megasas_reset_timer - quiesce the adapter if required
1934  * @scmd:		scsi cmnd
1935  *
1936  * Sets the FW busy flag and reduces the host->can_queue if the
1937  * cmd has not been completed within the timeout period.
1938  */
1939 static enum
1940 blk_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
1941 {
1942 	struct megasas_instance *instance;
1943 	unsigned long flags;
1944 
1945 	if (time_after(jiffies, scmd->jiffies_at_alloc +
1946 				(MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) {
1947 		return BLK_EH_NOT_HANDLED;
1948 	}
1949 
1950 	instance = (struct megasas_instance *)scmd->device->host->hostdata;
1951 	if (!(instance->flag & MEGASAS_FW_BUSY)) {
1952 		/* FW is busy, throttle IO */
1953 		spin_lock_irqsave(instance->host->host_lock, flags);
1954 
1955 		instance->host->can_queue = instance->throttlequeuedepth;
1956 		instance->last_time = jiffies;
1957 		instance->flag |= MEGASAS_FW_BUSY;
1958 
1959 		spin_unlock_irqrestore(instance->host->host_lock, flags);
1960 	}
1961 	return BLK_EH_RESET_TIMER;
1962 }
1963 
1964 /**
1965  * megasas_reset_device -	Device reset handler entry point
1966  */
1967 static int megasas_reset_device(struct scsi_cmnd *scmd)
1968 {
1969 	int ret;
1970 
1971 	/*
1972 	 * First wait for all commands to complete
1973 	 */
1974 	ret = megasas_generic_reset(scmd);
1975 
1976 	return ret;
1977 }
1978 
1979 /**
1980  * megasas_reset_bus_host -	Bus & host reset handler entry point
1981  */
1982 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
1983 {
1984 	int ret;
1985 	struct megasas_instance *instance;
1986 	instance = (struct megasas_instance *)scmd->device->host->hostdata;
1987 
1988 	/*
1989 	 * First wait for all commands to complete
1990 	 */
1991 	if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
1992 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
1993 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY))
1994 		ret = megasas_reset_fusion(scmd->device->host);
1995 	else
1996 		ret = megasas_generic_reset(scmd);
1997 
1998 	return ret;
1999 }
2000 
2001 /**
2002  * megasas_bios_param - Returns disk geometry for a disk
2003  * @sdev: 		device handle
2004  * @bdev:		block device
2005  * @capacity:		drive capacity
2006  * @geom:		geometry parameters
2007  */
2008 static int
2009 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
2010 		 sector_t capacity, int geom[])
2011 {
2012 	int heads;
2013 	int sectors;
2014 	sector_t cylinders;
2015 	unsigned long tmp;
2016 	/* Default heads (64) & sectors (32) */
2017 	heads = 64;
2018 	sectors = 32;
2019 
2020 	tmp = heads * sectors;
2021 	cylinders = capacity;
2022 
2023 	sector_div(cylinders, tmp);
2024 
2025 	/*
2026 	 * Handle extended translation size for logical drives > 1Gb
2027 	 */
2028 
2029 	if (capacity >= 0x200000) {
2030 		heads = 255;
2031 		sectors = 63;
2032 		tmp = heads*sectors;
2033 		cylinders = capacity;
2034 		sector_div(cylinders, tmp);
2035 	}
2036 
2037 	geom[0] = heads;
2038 	geom[1] = sectors;
2039 	geom[2] = cylinders;
2040 
2041 	return 0;
2042 }
2043 
2044 static void megasas_aen_polling(struct work_struct *work);
2045 
2046 /**
2047  * megasas_service_aen -	Processes an event notification
2048  * @instance:			Adapter soft state
2049  * @cmd:			AEN command completed by the ISR
2050  *
2051  * For AEN, driver sends a command down to FW that is held by the FW till an
2052  * event occurs. When an event of interest occurs, FW completes the command
2053  * that it was previously holding.
2054  *
2055  * This routines sends SIGIO signal to processes that have registered with the
2056  * driver for AEN.
2057  */
2058 static void
2059 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
2060 {
2061 	unsigned long flags;
2062 	/*
2063 	 * Don't signal app if it is just an aborted previously registered aen
2064 	 */
2065 	if ((!cmd->abort_aen) && (instance->unload == 0)) {
2066 		spin_lock_irqsave(&poll_aen_lock, flags);
2067 		megasas_poll_wait_aen = 1;
2068 		spin_unlock_irqrestore(&poll_aen_lock, flags);
2069 		wake_up(&megasas_poll_wait);
2070 		kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
2071 	}
2072 	else
2073 		cmd->abort_aen = 0;
2074 
2075 	instance->aen_cmd = NULL;
2076 	megasas_return_cmd(instance, cmd);
2077 
2078 	if ((instance->unload == 0) &&
2079 		((instance->issuepend_done == 1))) {
2080 		struct megasas_aen_event *ev;
2081 		ev = kzalloc(sizeof(*ev), GFP_ATOMIC);
2082 		if (!ev) {
2083 			printk(KERN_ERR "megasas_service_aen: out of memory\n");
2084 		} else {
2085 			ev->instance = instance;
2086 			instance->ev = ev;
2087 			INIT_DELAYED_WORK(&ev->hotplug_work,
2088 					  megasas_aen_polling);
2089 			schedule_delayed_work(&ev->hotplug_work, 0);
2090 		}
2091 	}
2092 }
2093 
2094 static int megasas_change_queue_depth(struct scsi_device *sdev,
2095 				      int queue_depth, int reason)
2096 {
2097 	if (reason != SCSI_QDEPTH_DEFAULT)
2098 		return -EOPNOTSUPP;
2099 
2100 	if (queue_depth > sdev->host->can_queue)
2101 		queue_depth = sdev->host->can_queue;
2102 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev),
2103 				queue_depth);
2104 
2105 	return queue_depth;
2106 }
2107 
2108 /*
2109  * Scsi host template for megaraid_sas driver
2110  */
2111 static struct scsi_host_template megasas_template = {
2112 
2113 	.module = THIS_MODULE,
2114 	.name = "LSI SAS based MegaRAID driver",
2115 	.proc_name = "megaraid_sas",
2116 	.slave_configure = megasas_slave_configure,
2117 	.slave_alloc = megasas_slave_alloc,
2118 	.queuecommand = megasas_queue_command,
2119 	.eh_device_reset_handler = megasas_reset_device,
2120 	.eh_bus_reset_handler = megasas_reset_bus_host,
2121 	.eh_host_reset_handler = megasas_reset_bus_host,
2122 	.eh_timed_out = megasas_reset_timer,
2123 	.bios_param = megasas_bios_param,
2124 	.use_clustering = ENABLE_CLUSTERING,
2125 	.change_queue_depth = megasas_change_queue_depth,
2126 };
2127 
2128 /**
2129  * megasas_complete_int_cmd -	Completes an internal command
2130  * @instance:			Adapter soft state
2131  * @cmd:			Command to be completed
2132  *
2133  * The megasas_issue_blocked_cmd() function waits for a command to complete
2134  * after it issues a command. This function wakes up that waiting routine by
2135  * calling wake_up() on the wait queue.
2136  */
2137 static void
2138 megasas_complete_int_cmd(struct megasas_instance *instance,
2139 			 struct megasas_cmd *cmd)
2140 {
2141 	cmd->cmd_status = cmd->frame->io.cmd_status;
2142 
2143 	if (cmd->cmd_status == ENODATA) {
2144 		cmd->cmd_status = 0;
2145 	}
2146 	wake_up(&instance->int_cmd_wait_q);
2147 }
2148 
2149 /**
2150  * megasas_complete_abort -	Completes aborting a command
2151  * @instance:			Adapter soft state
2152  * @cmd:			Cmd that was issued to abort another cmd
2153  *
2154  * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
2155  * after it issues an abort on a previously issued command. This function
2156  * wakes up all functions waiting on the same wait queue.
2157  */
2158 static void
2159 megasas_complete_abort(struct megasas_instance *instance,
2160 		       struct megasas_cmd *cmd)
2161 {
2162 	if (cmd->sync_cmd) {
2163 		cmd->sync_cmd = 0;
2164 		cmd->cmd_status = 0;
2165 		wake_up(&instance->abort_cmd_wait_q);
2166 	}
2167 
2168 	return;
2169 }
2170 
2171 /**
2172  * megasas_complete_cmd -	Completes a command
2173  * @instance:			Adapter soft state
2174  * @cmd:			Command to be completed
2175  * @alt_status:			If non-zero, use this value as status to
2176  * 				SCSI mid-layer instead of the value returned
2177  * 				by the FW. This should be used if caller wants
2178  * 				an alternate status (as in the case of aborted
2179  * 				commands)
2180  */
2181 void
2182 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
2183 		     u8 alt_status)
2184 {
2185 	int exception = 0;
2186 	struct megasas_header *hdr = &cmd->frame->hdr;
2187 	unsigned long flags;
2188 	struct fusion_context *fusion = instance->ctrl_context;
2189 
2190 	/* flag for the retry reset */
2191 	cmd->retry_for_fw_reset = 0;
2192 
2193 	if (cmd->scmd)
2194 		cmd->scmd->SCp.ptr = NULL;
2195 
2196 	switch (hdr->cmd) {
2197 	case MFI_CMD_INVALID:
2198 		/* Some older 1068 controller FW may keep a pended
2199 		   MR_DCMD_CTRL_EVENT_GET_INFO left over from the main kernel
2200 		   when booting the kdump kernel.  Ignore this command to
2201 		   prevent a kernel panic on shutdown of the kdump kernel. */
2202 		printk(KERN_WARNING "megaraid_sas: MFI_CMD_INVALID command "
2203 		       "completed.\n");
2204 		printk(KERN_WARNING "megaraid_sas: If you have a controller "
2205 		       "other than PERC5, please upgrade your firmware.\n");
2206 		break;
2207 	case MFI_CMD_PD_SCSI_IO:
2208 	case MFI_CMD_LD_SCSI_IO:
2209 
2210 		/*
2211 		 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
2212 		 * issued either through an IO path or an IOCTL path. If it
2213 		 * was via IOCTL, we will send it to internal completion.
2214 		 */
2215 		if (cmd->sync_cmd) {
2216 			cmd->sync_cmd = 0;
2217 			megasas_complete_int_cmd(instance, cmd);
2218 			break;
2219 		}
2220 
2221 	case MFI_CMD_LD_READ:
2222 	case MFI_CMD_LD_WRITE:
2223 
2224 		if (alt_status) {
2225 			cmd->scmd->result = alt_status << 16;
2226 			exception = 1;
2227 		}
2228 
2229 		if (exception) {
2230 
2231 			atomic_dec(&instance->fw_outstanding);
2232 
2233 			scsi_dma_unmap(cmd->scmd);
2234 			cmd->scmd->scsi_done(cmd->scmd);
2235 			megasas_return_cmd(instance, cmd);
2236 
2237 			break;
2238 		}
2239 
2240 		switch (hdr->cmd_status) {
2241 
2242 		case MFI_STAT_OK:
2243 			cmd->scmd->result = DID_OK << 16;
2244 			break;
2245 
2246 		case MFI_STAT_SCSI_IO_FAILED:
2247 		case MFI_STAT_LD_INIT_IN_PROGRESS:
2248 			cmd->scmd->result =
2249 			    (DID_ERROR << 16) | hdr->scsi_status;
2250 			break;
2251 
2252 		case MFI_STAT_SCSI_DONE_WITH_ERROR:
2253 
2254 			cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
2255 
2256 			if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
2257 				memset(cmd->scmd->sense_buffer, 0,
2258 				       SCSI_SENSE_BUFFERSIZE);
2259 				memcpy(cmd->scmd->sense_buffer, cmd->sense,
2260 				       hdr->sense_len);
2261 
2262 				cmd->scmd->result |= DRIVER_SENSE << 24;
2263 			}
2264 
2265 			break;
2266 
2267 		case MFI_STAT_LD_OFFLINE:
2268 		case MFI_STAT_DEVICE_NOT_FOUND:
2269 			cmd->scmd->result = DID_BAD_TARGET << 16;
2270 			break;
2271 
2272 		default:
2273 			printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
2274 			       hdr->cmd_status);
2275 			cmd->scmd->result = DID_ERROR << 16;
2276 			break;
2277 		}
2278 
2279 		atomic_dec(&instance->fw_outstanding);
2280 
2281 		scsi_dma_unmap(cmd->scmd);
2282 		cmd->scmd->scsi_done(cmd->scmd);
2283 		megasas_return_cmd(instance, cmd);
2284 
2285 		break;
2286 
2287 	case MFI_CMD_SMP:
2288 	case MFI_CMD_STP:
2289 	case MFI_CMD_DCMD:
2290 		/* Check for LD map update */
2291 		if ((cmd->frame->dcmd.opcode == MR_DCMD_LD_MAP_GET_INFO) &&
2292 		    (cmd->frame->dcmd.mbox.b[1] == 1)) {
2293 			fusion->fast_path_io = 0;
2294 			spin_lock_irqsave(instance->host->host_lock, flags);
2295 			if (cmd->frame->hdr.cmd_status != 0) {
2296 				if (cmd->frame->hdr.cmd_status !=
2297 				    MFI_STAT_NOT_FOUND)
2298 					printk(KERN_WARNING "megasas: map sync"
2299 					       "failed, status = 0x%x.\n",
2300 					       cmd->frame->hdr.cmd_status);
2301 				else {
2302 					megasas_return_cmd(instance, cmd);
2303 					spin_unlock_irqrestore(
2304 						instance->host->host_lock,
2305 						flags);
2306 					break;
2307 				}
2308 			} else
2309 				instance->map_id++;
2310 			megasas_return_cmd(instance, cmd);
2311 
2312 			/*
2313 			 * Set fast path IO to ZERO.
2314 			 * Validate Map will set proper value.
2315 			 * Meanwhile all IOs will go as LD IO.
2316 			 */
2317 			if (MR_ValidateMapInfo(instance))
2318 				fusion->fast_path_io = 1;
2319 			else
2320 				fusion->fast_path_io = 0;
2321 			megasas_sync_map_info(instance);
2322 			spin_unlock_irqrestore(instance->host->host_lock,
2323 					       flags);
2324 			break;
2325 		}
2326 		if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_GET_INFO ||
2327 			cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_GET) {
2328 			spin_lock_irqsave(&poll_aen_lock, flags);
2329 			megasas_poll_wait_aen = 0;
2330 			spin_unlock_irqrestore(&poll_aen_lock, flags);
2331 		}
2332 
2333 		/*
2334 		 * See if got an event notification
2335 		 */
2336 		if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
2337 			megasas_service_aen(instance, cmd);
2338 		else
2339 			megasas_complete_int_cmd(instance, cmd);
2340 
2341 		break;
2342 
2343 	case MFI_CMD_ABORT:
2344 		/*
2345 		 * Cmd issued to abort another cmd returned
2346 		 */
2347 		megasas_complete_abort(instance, cmd);
2348 		break;
2349 
2350 	default:
2351 		printk("megasas: Unknown command completed! [0x%X]\n",
2352 		       hdr->cmd);
2353 		break;
2354 	}
2355 }
2356 
2357 /**
2358  * megasas_issue_pending_cmds_again -	issue all pending cmds
2359  *                              	in FW again because of the fw reset
2360  * @instance:				Adapter soft state
2361  */
2362 static inline void
2363 megasas_issue_pending_cmds_again(struct megasas_instance *instance)
2364 {
2365 	struct megasas_cmd *cmd;
2366 	struct list_head clist_local;
2367 	union megasas_evt_class_locale class_locale;
2368 	unsigned long flags;
2369 	u32 seq_num;
2370 
2371 	INIT_LIST_HEAD(&clist_local);
2372 	spin_lock_irqsave(&instance->hba_lock, flags);
2373 	list_splice_init(&instance->internal_reset_pending_q, &clist_local);
2374 	spin_unlock_irqrestore(&instance->hba_lock, flags);
2375 
2376 	while (!list_empty(&clist_local)) {
2377 		cmd	= list_entry((&clist_local)->next,
2378 					struct megasas_cmd, list);
2379 		list_del_init(&cmd->list);
2380 
2381 		if (cmd->sync_cmd || cmd->scmd) {
2382 			printk(KERN_NOTICE "megaraid_sas: command %p, %p:%d"
2383 				"detected to be pending while HBA reset.\n",
2384 					cmd, cmd->scmd, cmd->sync_cmd);
2385 
2386 			cmd->retry_for_fw_reset++;
2387 
2388 			if (cmd->retry_for_fw_reset == 3) {
2389 				printk(KERN_NOTICE "megaraid_sas: cmd %p, %p:%d"
2390 					"was tried multiple times during reset."
2391 					"Shutting down the HBA\n",
2392 					cmd, cmd->scmd, cmd->sync_cmd);
2393 				megaraid_sas_kill_hba(instance);
2394 
2395 				instance->adprecovery =
2396 						MEGASAS_HW_CRITICAL_ERROR;
2397 				return;
2398 			}
2399 		}
2400 
2401 		if (cmd->sync_cmd == 1) {
2402 			if (cmd->scmd) {
2403 				printk(KERN_NOTICE "megaraid_sas: unexpected"
2404 					"cmd attached to internal command!\n");
2405 			}
2406 			printk(KERN_NOTICE "megasas: %p synchronous cmd"
2407 						"on the internal reset queue,"
2408 						"issue it again.\n", cmd);
2409 			cmd->cmd_status = ENODATA;
2410 			instance->instancet->fire_cmd(instance,
2411 							cmd->frame_phys_addr ,
2412 							0, instance->reg_set);
2413 		} else if (cmd->scmd) {
2414 			printk(KERN_NOTICE "megasas: %p scsi cmd [%02x]"
2415 			"detected on the internal queue, issue again.\n",
2416 			cmd, cmd->scmd->cmnd[0]);
2417 
2418 			atomic_inc(&instance->fw_outstanding);
2419 			instance->instancet->fire_cmd(instance,
2420 					cmd->frame_phys_addr,
2421 					cmd->frame_count-1, instance->reg_set);
2422 		} else {
2423 			printk(KERN_NOTICE "megasas: %p unexpected cmd on the"
2424 				"internal reset defer list while re-issue!!\n",
2425 				cmd);
2426 		}
2427 	}
2428 
2429 	if (instance->aen_cmd) {
2430 		printk(KERN_NOTICE "megaraid_sas: aen_cmd in def process\n");
2431 		megasas_return_cmd(instance, instance->aen_cmd);
2432 
2433 		instance->aen_cmd	= NULL;
2434 	}
2435 
2436 	/*
2437 	* Initiate AEN (Asynchronous Event Notification)
2438 	*/
2439 	seq_num = instance->last_seq_num;
2440 	class_locale.members.reserved = 0;
2441 	class_locale.members.locale = MR_EVT_LOCALE_ALL;
2442 	class_locale.members.class = MR_EVT_CLASS_DEBUG;
2443 
2444 	megasas_register_aen(instance, seq_num, class_locale.word);
2445 }
2446 
2447 /**
2448  * Move the internal reset pending commands to a deferred queue.
2449  *
2450  * We move the commands pending at internal reset time to a
2451  * pending queue. This queue would be flushed after successful
2452  * completion of the internal reset sequence. if the internal reset
2453  * did not complete in time, the kernel reset handler would flush
2454  * these commands.
2455  **/
2456 static void
2457 megasas_internal_reset_defer_cmds(struct megasas_instance *instance)
2458 {
2459 	struct megasas_cmd *cmd;
2460 	int i;
2461 	u32 max_cmd = instance->max_fw_cmds;
2462 	u32 defer_index;
2463 	unsigned long flags;
2464 
2465 	defer_index     = 0;
2466 	spin_lock_irqsave(&instance->cmd_pool_lock, flags);
2467 	for (i = 0; i < max_cmd; i++) {
2468 		cmd = instance->cmd_list[i];
2469 		if (cmd->sync_cmd == 1 || cmd->scmd) {
2470 			printk(KERN_NOTICE "megasas: moving cmd[%d]:%p:%d:%p"
2471 					"on the defer queue as internal\n",
2472 				defer_index, cmd, cmd->sync_cmd, cmd->scmd);
2473 
2474 			if (!list_empty(&cmd->list)) {
2475 				printk(KERN_NOTICE "megaraid_sas: ERROR while"
2476 					" moving this cmd:%p, %d %p, it was"
2477 					"discovered on some list?\n",
2478 					cmd, cmd->sync_cmd, cmd->scmd);
2479 
2480 				list_del_init(&cmd->list);
2481 			}
2482 			defer_index++;
2483 			list_add_tail(&cmd->list,
2484 				&instance->internal_reset_pending_q);
2485 		}
2486 	}
2487 	spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
2488 }
2489 
2490 
2491 static void
2492 process_fw_state_change_wq(struct work_struct *work)
2493 {
2494 	struct megasas_instance *instance =
2495 		container_of(work, struct megasas_instance, work_init);
2496 	u32 wait;
2497 	unsigned long flags;
2498 
2499 	if (instance->adprecovery != MEGASAS_ADPRESET_SM_INFAULT) {
2500 		printk(KERN_NOTICE "megaraid_sas: error, recovery st %x \n",
2501 				instance->adprecovery);
2502 		return ;
2503 	}
2504 
2505 	if (instance->adprecovery == MEGASAS_ADPRESET_SM_INFAULT) {
2506 		printk(KERN_NOTICE "megaraid_sas: FW detected to be in fault"
2507 					"state, restarting it...\n");
2508 
2509 		instance->instancet->disable_intr(instance);
2510 		atomic_set(&instance->fw_outstanding, 0);
2511 
2512 		atomic_set(&instance->fw_reset_no_pci_access, 1);
2513 		instance->instancet->adp_reset(instance, instance->reg_set);
2514 		atomic_set(&instance->fw_reset_no_pci_access, 0 );
2515 
2516 		printk(KERN_NOTICE "megaraid_sas: FW restarted successfully,"
2517 					"initiating next stage...\n");
2518 
2519 		printk(KERN_NOTICE "megaraid_sas: HBA recovery state machine,"
2520 					"state 2 starting...\n");
2521 
2522 		/*waitting for about 20 second before start the second init*/
2523 		for (wait = 0; wait < 30; wait++) {
2524 			msleep(1000);
2525 		}
2526 
2527 		if (megasas_transition_to_ready(instance, 1)) {
2528 			printk(KERN_NOTICE "megaraid_sas:adapter not ready\n");
2529 
2530 			megaraid_sas_kill_hba(instance);
2531 			instance->adprecovery	= MEGASAS_HW_CRITICAL_ERROR;
2532 			return ;
2533 		}
2534 
2535 		if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) ||
2536 			(instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) ||
2537 			(instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)
2538 			) {
2539 			*instance->consumer = *instance->producer;
2540 		} else {
2541 			*instance->consumer = 0;
2542 			*instance->producer = 0;
2543 		}
2544 
2545 		megasas_issue_init_mfi(instance);
2546 
2547 		spin_lock_irqsave(&instance->hba_lock, flags);
2548 		instance->adprecovery	= MEGASAS_HBA_OPERATIONAL;
2549 		spin_unlock_irqrestore(&instance->hba_lock, flags);
2550 		instance->instancet->enable_intr(instance);
2551 
2552 		megasas_issue_pending_cmds_again(instance);
2553 		instance->issuepend_done = 1;
2554 	}
2555 	return ;
2556 }
2557 
2558 /**
2559  * megasas_deplete_reply_queue -	Processes all completed commands
2560  * @instance:				Adapter soft state
2561  * @alt_status:				Alternate status to be returned to
2562  * 					SCSI mid-layer instead of the status
2563  * 					returned by the FW
2564  * Note: this must be called with hba lock held
2565  */
2566 static int
2567 megasas_deplete_reply_queue(struct megasas_instance *instance,
2568 					u8 alt_status)
2569 {
2570 	u32 mfiStatus;
2571 	u32 fw_state;
2572 
2573 	if ((mfiStatus = instance->instancet->check_reset(instance,
2574 					instance->reg_set)) == 1) {
2575 		return IRQ_HANDLED;
2576 	}
2577 
2578 	if ((mfiStatus = instance->instancet->clear_intr(
2579 						instance->reg_set)
2580 						) == 0) {
2581 		/* Hardware may not set outbound_intr_status in MSI-X mode */
2582 		if (!instance->msix_vectors)
2583 			return IRQ_NONE;
2584 	}
2585 
2586 	instance->mfiStatus = mfiStatus;
2587 
2588 	if ((mfiStatus & MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE)) {
2589 		fw_state = instance->instancet->read_fw_status_reg(
2590 				instance->reg_set) & MFI_STATE_MASK;
2591 
2592 		if (fw_state != MFI_STATE_FAULT) {
2593 			printk(KERN_NOTICE "megaraid_sas: fw state:%x\n",
2594 						fw_state);
2595 		}
2596 
2597 		if ((fw_state == MFI_STATE_FAULT) &&
2598 				(instance->disableOnlineCtrlReset == 0)) {
2599 			printk(KERN_NOTICE "megaraid_sas: wait adp restart\n");
2600 
2601 			if ((instance->pdev->device ==
2602 					PCI_DEVICE_ID_LSI_SAS1064R) ||
2603 				(instance->pdev->device ==
2604 					PCI_DEVICE_ID_DELL_PERC5) ||
2605 				(instance->pdev->device ==
2606 					PCI_DEVICE_ID_LSI_VERDE_ZCR)) {
2607 
2608 				*instance->consumer =
2609 					MEGASAS_ADPRESET_INPROG_SIGN;
2610 			}
2611 
2612 
2613 			instance->instancet->disable_intr(instance);
2614 			instance->adprecovery	= MEGASAS_ADPRESET_SM_INFAULT;
2615 			instance->issuepend_done = 0;
2616 
2617 			atomic_set(&instance->fw_outstanding, 0);
2618 			megasas_internal_reset_defer_cmds(instance);
2619 
2620 			printk(KERN_NOTICE "megasas: fwState=%x, stage:%d\n",
2621 					fw_state, instance->adprecovery);
2622 
2623 			schedule_work(&instance->work_init);
2624 			return IRQ_HANDLED;
2625 
2626 		} else {
2627 			printk(KERN_NOTICE "megasas: fwstate:%x, dis_OCR=%x\n",
2628 				fw_state, instance->disableOnlineCtrlReset);
2629 		}
2630 	}
2631 
2632 	tasklet_schedule(&instance->isr_tasklet);
2633 	return IRQ_HANDLED;
2634 }
2635 /**
2636  * megasas_isr - isr entry point
2637  */
2638 static irqreturn_t megasas_isr(int irq, void *devp)
2639 {
2640 	struct megasas_irq_context *irq_context = devp;
2641 	struct megasas_instance *instance = irq_context->instance;
2642 	unsigned long flags;
2643 	irqreturn_t	rc;
2644 
2645 	if (atomic_read(&instance->fw_reset_no_pci_access))
2646 		return IRQ_HANDLED;
2647 
2648 	spin_lock_irqsave(&instance->hba_lock, flags);
2649 	rc =  megasas_deplete_reply_queue(instance, DID_OK);
2650 	spin_unlock_irqrestore(&instance->hba_lock, flags);
2651 
2652 	return rc;
2653 }
2654 
2655 /**
2656  * megasas_transition_to_ready -	Move the FW to READY state
2657  * @instance:				Adapter soft state
2658  *
2659  * During the initialization, FW passes can potentially be in any one of
2660  * several possible states. If the FW in operational, waiting-for-handshake
2661  * states, driver must take steps to bring it to ready state. Otherwise, it
2662  * has to wait for the ready state.
2663  */
2664 int
2665 megasas_transition_to_ready(struct megasas_instance *instance, int ocr)
2666 {
2667 	int i;
2668 	u8 max_wait;
2669 	u32 fw_state;
2670 	u32 cur_state;
2671 	u32 abs_state, curr_abs_state;
2672 
2673 	fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
2674 
2675 	if (fw_state != MFI_STATE_READY)
2676 		printk(KERN_INFO "megasas: Waiting for FW to come to ready"
2677 		       " state\n");
2678 
2679 	while (fw_state != MFI_STATE_READY) {
2680 
2681 		abs_state =
2682 		instance->instancet->read_fw_status_reg(instance->reg_set);
2683 
2684 		switch (fw_state) {
2685 
2686 		case MFI_STATE_FAULT:
2687 			printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
2688 			if (ocr) {
2689 				max_wait = MEGASAS_RESET_WAIT_TIME;
2690 				cur_state = MFI_STATE_FAULT;
2691 				break;
2692 			} else
2693 				return -ENODEV;
2694 
2695 		case MFI_STATE_WAIT_HANDSHAKE:
2696 			/*
2697 			 * Set the CLR bit in inbound doorbell
2698 			 */
2699 			if ((instance->pdev->device ==
2700 				PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
2701 				(instance->pdev->device ==
2702 				 PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
2703 				(instance->pdev->device ==
2704 				PCI_DEVICE_ID_LSI_FUSION) ||
2705 				(instance->pdev->device ==
2706 				PCI_DEVICE_ID_LSI_INVADER) ||
2707 				(instance->pdev->device ==
2708 				PCI_DEVICE_ID_LSI_FURY)) {
2709 				writel(
2710 				  MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
2711 				  &instance->reg_set->doorbell);
2712 			} else {
2713 				writel(
2714 				    MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
2715 					&instance->reg_set->inbound_doorbell);
2716 			}
2717 
2718 			max_wait = MEGASAS_RESET_WAIT_TIME;
2719 			cur_state = MFI_STATE_WAIT_HANDSHAKE;
2720 			break;
2721 
2722 		case MFI_STATE_BOOT_MESSAGE_PENDING:
2723 			if ((instance->pdev->device ==
2724 			     PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
2725 				(instance->pdev->device ==
2726 				 PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
2727 			    (instance->pdev->device ==
2728 			     PCI_DEVICE_ID_LSI_FUSION) ||
2729 			    (instance->pdev->device ==
2730 			     PCI_DEVICE_ID_LSI_INVADER) ||
2731 			    (instance->pdev->device ==
2732 			     PCI_DEVICE_ID_LSI_FURY)) {
2733 				writel(MFI_INIT_HOTPLUG,
2734 				       &instance->reg_set->doorbell);
2735 			} else
2736 				writel(MFI_INIT_HOTPLUG,
2737 					&instance->reg_set->inbound_doorbell);
2738 
2739 			max_wait = MEGASAS_RESET_WAIT_TIME;
2740 			cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
2741 			break;
2742 
2743 		case MFI_STATE_OPERATIONAL:
2744 			/*
2745 			 * Bring it to READY state; assuming max wait 10 secs
2746 			 */
2747 			instance->instancet->disable_intr(instance);
2748 			if ((instance->pdev->device ==
2749 				PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
2750 				(instance->pdev->device ==
2751 				PCI_DEVICE_ID_LSI_SAS0071SKINNY)  ||
2752 				(instance->pdev->device
2753 					== PCI_DEVICE_ID_LSI_FUSION) ||
2754 				(instance->pdev->device
2755 					== PCI_DEVICE_ID_LSI_INVADER) ||
2756 				(instance->pdev->device
2757 					== PCI_DEVICE_ID_LSI_FURY)) {
2758 				writel(MFI_RESET_FLAGS,
2759 					&instance->reg_set->doorbell);
2760 				if ((instance->pdev->device ==
2761 					PCI_DEVICE_ID_LSI_FUSION) ||
2762 					(instance->pdev->device ==
2763 					PCI_DEVICE_ID_LSI_INVADER) ||
2764 					(instance->pdev->device ==
2765 					PCI_DEVICE_ID_LSI_FURY)) {
2766 					for (i = 0; i < (10 * 1000); i += 20) {
2767 						if (readl(
2768 							    &instance->
2769 							    reg_set->
2770 							    doorbell) & 1)
2771 							msleep(20);
2772 						else
2773 							break;
2774 					}
2775 				}
2776 			} else
2777 				writel(MFI_RESET_FLAGS,
2778 					&instance->reg_set->inbound_doorbell);
2779 
2780 			max_wait = MEGASAS_RESET_WAIT_TIME;
2781 			cur_state = MFI_STATE_OPERATIONAL;
2782 			break;
2783 
2784 		case MFI_STATE_UNDEFINED:
2785 			/*
2786 			 * This state should not last for more than 2 seconds
2787 			 */
2788 			max_wait = MEGASAS_RESET_WAIT_TIME;
2789 			cur_state = MFI_STATE_UNDEFINED;
2790 			break;
2791 
2792 		case MFI_STATE_BB_INIT:
2793 			max_wait = MEGASAS_RESET_WAIT_TIME;
2794 			cur_state = MFI_STATE_BB_INIT;
2795 			break;
2796 
2797 		case MFI_STATE_FW_INIT:
2798 			max_wait = MEGASAS_RESET_WAIT_TIME;
2799 			cur_state = MFI_STATE_FW_INIT;
2800 			break;
2801 
2802 		case MFI_STATE_FW_INIT_2:
2803 			max_wait = MEGASAS_RESET_WAIT_TIME;
2804 			cur_state = MFI_STATE_FW_INIT_2;
2805 			break;
2806 
2807 		case MFI_STATE_DEVICE_SCAN:
2808 			max_wait = MEGASAS_RESET_WAIT_TIME;
2809 			cur_state = MFI_STATE_DEVICE_SCAN;
2810 			break;
2811 
2812 		case MFI_STATE_FLUSH_CACHE:
2813 			max_wait = MEGASAS_RESET_WAIT_TIME;
2814 			cur_state = MFI_STATE_FLUSH_CACHE;
2815 			break;
2816 
2817 		default:
2818 			printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
2819 			       fw_state);
2820 			return -ENODEV;
2821 		}
2822 
2823 		/*
2824 		 * The cur_state should not last for more than max_wait secs
2825 		 */
2826 		for (i = 0; i < (max_wait * 1000); i++) {
2827 			fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &
2828 					MFI_STATE_MASK ;
2829 		curr_abs_state =
2830 		instance->instancet->read_fw_status_reg(instance->reg_set);
2831 
2832 			if (abs_state == curr_abs_state) {
2833 				msleep(1);
2834 			} else
2835 				break;
2836 		}
2837 
2838 		/*
2839 		 * Return error if fw_state hasn't changed after max_wait
2840 		 */
2841 		if (curr_abs_state == abs_state) {
2842 			printk(KERN_DEBUG "FW state [%d] hasn't changed "
2843 			       "in %d secs\n", fw_state, max_wait);
2844 			return -ENODEV;
2845 		}
2846 	}
2847 	printk(KERN_INFO "megasas: FW now in Ready state\n");
2848 
2849 	return 0;
2850 }
2851 
2852 /**
2853  * megasas_teardown_frame_pool -	Destroy the cmd frame DMA pool
2854  * @instance:				Adapter soft state
2855  */
2856 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
2857 {
2858 	int i;
2859 	u32 max_cmd = instance->max_mfi_cmds;
2860 	struct megasas_cmd *cmd;
2861 
2862 	if (!instance->frame_dma_pool)
2863 		return;
2864 
2865 	/*
2866 	 * Return all frames to pool
2867 	 */
2868 	for (i = 0; i < max_cmd; i++) {
2869 
2870 		cmd = instance->cmd_list[i];
2871 
2872 		if (cmd->frame)
2873 			pci_pool_free(instance->frame_dma_pool, cmd->frame,
2874 				      cmd->frame_phys_addr);
2875 
2876 		if (cmd->sense)
2877 			pci_pool_free(instance->sense_dma_pool, cmd->sense,
2878 				      cmd->sense_phys_addr);
2879 	}
2880 
2881 	/*
2882 	 * Now destroy the pool itself
2883 	 */
2884 	pci_pool_destroy(instance->frame_dma_pool);
2885 	pci_pool_destroy(instance->sense_dma_pool);
2886 
2887 	instance->frame_dma_pool = NULL;
2888 	instance->sense_dma_pool = NULL;
2889 }
2890 
2891 /**
2892  * megasas_create_frame_pool -	Creates DMA pool for cmd frames
2893  * @instance:			Adapter soft state
2894  *
2895  * Each command packet has an embedded DMA memory buffer that is used for
2896  * filling MFI frame and the SG list that immediately follows the frame. This
2897  * function creates those DMA memory buffers for each command packet by using
2898  * PCI pool facility.
2899  */
2900 static int megasas_create_frame_pool(struct megasas_instance *instance)
2901 {
2902 	int i;
2903 	u32 max_cmd;
2904 	u32 sge_sz;
2905 	u32 sgl_sz;
2906 	u32 total_sz;
2907 	u32 frame_count;
2908 	struct megasas_cmd *cmd;
2909 
2910 	max_cmd = instance->max_mfi_cmds;
2911 
2912 	/*
2913 	 * Size of our frame is 64 bytes for MFI frame, followed by max SG
2914 	 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
2915 	 */
2916 	sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
2917 	    sizeof(struct megasas_sge32);
2918 
2919 	if (instance->flag_ieee) {
2920 		sge_sz = sizeof(struct megasas_sge_skinny);
2921 	}
2922 
2923 	/*
2924 	 * Calculated the number of 64byte frames required for SGL
2925 	 */
2926 	sgl_sz = sge_sz * instance->max_num_sge;
2927 	frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
2928 	frame_count = 15;
2929 
2930 	/*
2931 	 * We need one extra frame for the MFI command
2932 	 */
2933 	frame_count++;
2934 
2935 	total_sz = MEGAMFI_FRAME_SIZE * frame_count;
2936 	/*
2937 	 * Use DMA pool facility provided by PCI layer
2938 	 */
2939 	instance->frame_dma_pool = pci_pool_create("megasas frame pool",
2940 						   instance->pdev, total_sz, 64,
2941 						   0);
2942 
2943 	if (!instance->frame_dma_pool) {
2944 		printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
2945 		return -ENOMEM;
2946 	}
2947 
2948 	instance->sense_dma_pool = pci_pool_create("megasas sense pool",
2949 						   instance->pdev, 128, 4, 0);
2950 
2951 	if (!instance->sense_dma_pool) {
2952 		printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
2953 
2954 		pci_pool_destroy(instance->frame_dma_pool);
2955 		instance->frame_dma_pool = NULL;
2956 
2957 		return -ENOMEM;
2958 	}
2959 
2960 	/*
2961 	 * Allocate and attach a frame to each of the commands in cmd_list.
2962 	 * By making cmd->index as the context instead of the &cmd, we can
2963 	 * always use 32bit context regardless of the architecture
2964 	 */
2965 	for (i = 0; i < max_cmd; i++) {
2966 
2967 		cmd = instance->cmd_list[i];
2968 
2969 		cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
2970 					    GFP_KERNEL, &cmd->frame_phys_addr);
2971 
2972 		cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
2973 					    GFP_KERNEL, &cmd->sense_phys_addr);
2974 
2975 		/*
2976 		 * megasas_teardown_frame_pool() takes care of freeing
2977 		 * whatever has been allocated
2978 		 */
2979 		if (!cmd->frame || !cmd->sense) {
2980 			printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
2981 			megasas_teardown_frame_pool(instance);
2982 			return -ENOMEM;
2983 		}
2984 
2985 		memset(cmd->frame, 0, total_sz);
2986 		cmd->frame->io.context = cmd->index;
2987 		cmd->frame->io.pad_0 = 0;
2988 		if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) &&
2989 		    (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) &&
2990 			(instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) &&
2991 		    (reset_devices))
2992 			cmd->frame->hdr.cmd = MFI_CMD_INVALID;
2993 	}
2994 
2995 	return 0;
2996 }
2997 
2998 /**
2999  * megasas_free_cmds -	Free all the cmds in the free cmd pool
3000  * @instance:		Adapter soft state
3001  */
3002 void megasas_free_cmds(struct megasas_instance *instance)
3003 {
3004 	int i;
3005 	/* First free the MFI frame pool */
3006 	megasas_teardown_frame_pool(instance);
3007 
3008 	/* Free all the commands in the cmd_list */
3009 	for (i = 0; i < instance->max_mfi_cmds; i++)
3010 
3011 		kfree(instance->cmd_list[i]);
3012 
3013 	/* Free the cmd_list buffer itself */
3014 	kfree(instance->cmd_list);
3015 	instance->cmd_list = NULL;
3016 
3017 	INIT_LIST_HEAD(&instance->cmd_pool);
3018 }
3019 
3020 /**
3021  * megasas_alloc_cmds -	Allocates the command packets
3022  * @instance:		Adapter soft state
3023  *
3024  * Each command that is issued to the FW, whether IO commands from the OS or
3025  * internal commands like IOCTLs, are wrapped in local data structure called
3026  * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
3027  * the FW.
3028  *
3029  * Each frame has a 32-bit field called context (tag). This context is used
3030  * to get back the megasas_cmd from the frame when a frame gets completed in
3031  * the ISR. Typically the address of the megasas_cmd itself would be used as
3032  * the context. But we wanted to keep the differences between 32 and 64 bit
3033  * systems to the mininum. We always use 32 bit integers for the context. In
3034  * this driver, the 32 bit values are the indices into an array cmd_list.
3035  * This array is used only to look up the megasas_cmd given the context. The
3036  * free commands themselves are maintained in a linked list called cmd_pool.
3037  */
3038 int megasas_alloc_cmds(struct megasas_instance *instance)
3039 {
3040 	int i;
3041 	int j;
3042 	u32 max_cmd;
3043 	struct megasas_cmd *cmd;
3044 
3045 	max_cmd = instance->max_mfi_cmds;
3046 
3047 	/*
3048 	 * instance->cmd_list is an array of struct megasas_cmd pointers.
3049 	 * Allocate the dynamic array first and then allocate individual
3050 	 * commands.
3051 	 */
3052 	instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL);
3053 
3054 	if (!instance->cmd_list) {
3055 		printk(KERN_DEBUG "megasas: out of memory\n");
3056 		return -ENOMEM;
3057 	}
3058 
3059 	memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) *max_cmd);
3060 
3061 	for (i = 0; i < max_cmd; i++) {
3062 		instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
3063 						GFP_KERNEL);
3064 
3065 		if (!instance->cmd_list[i]) {
3066 
3067 			for (j = 0; j < i; j++)
3068 				kfree(instance->cmd_list[j]);
3069 
3070 			kfree(instance->cmd_list);
3071 			instance->cmd_list = NULL;
3072 
3073 			return -ENOMEM;
3074 		}
3075 	}
3076 
3077 	/*
3078 	 * Add all the commands to command pool (instance->cmd_pool)
3079 	 */
3080 	for (i = 0; i < max_cmd; i++) {
3081 		cmd = instance->cmd_list[i];
3082 		memset(cmd, 0, sizeof(struct megasas_cmd));
3083 		cmd->index = i;
3084 		cmd->scmd = NULL;
3085 		cmd->instance = instance;
3086 
3087 		list_add_tail(&cmd->list, &instance->cmd_pool);
3088 	}
3089 
3090 	/*
3091 	 * Create a frame pool and assign one frame to each cmd
3092 	 */
3093 	if (megasas_create_frame_pool(instance)) {
3094 		printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
3095 		megasas_free_cmds(instance);
3096 	}
3097 
3098 	return 0;
3099 }
3100 
3101 /*
3102  * megasas_get_pd_list_info -	Returns FW's pd_list structure
3103  * @instance:				Adapter soft state
3104  * @pd_list:				pd_list structure
3105  *
3106  * Issues an internal command (DCMD) to get the FW's controller PD
3107  * list structure.  This information is mainly used to find out SYSTEM
3108  * supported by the FW.
3109  */
3110 static int
3111 megasas_get_pd_list(struct megasas_instance *instance)
3112 {
3113 	int ret = 0, pd_index = 0;
3114 	struct megasas_cmd *cmd;
3115 	struct megasas_dcmd_frame *dcmd;
3116 	struct MR_PD_LIST *ci;
3117 	struct MR_PD_ADDRESS *pd_addr;
3118 	dma_addr_t ci_h = 0;
3119 
3120 	cmd = megasas_get_cmd(instance);
3121 
3122 	if (!cmd) {
3123 		printk(KERN_DEBUG "megasas (get_pd_list): Failed to get cmd\n");
3124 		return -ENOMEM;
3125 	}
3126 
3127 	dcmd = &cmd->frame->dcmd;
3128 
3129 	ci = pci_alloc_consistent(instance->pdev,
3130 		  MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), &ci_h);
3131 
3132 	if (!ci) {
3133 		printk(KERN_DEBUG "Failed to alloc mem for pd_list\n");
3134 		megasas_return_cmd(instance, cmd);
3135 		return -ENOMEM;
3136 	}
3137 
3138 	memset(ci, 0, sizeof(*ci));
3139 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3140 
3141 	dcmd->mbox.b[0] = MR_PD_QUERY_TYPE_EXPOSED_TO_HOST;
3142 	dcmd->mbox.b[1] = 0;
3143 	dcmd->cmd = MFI_CMD_DCMD;
3144 	dcmd->cmd_status = 0xFF;
3145 	dcmd->sge_count = 1;
3146 	dcmd->flags = MFI_FRAME_DIR_READ;
3147 	dcmd->timeout = 0;
3148 	dcmd->pad_0 = 0;
3149 	dcmd->data_xfer_len = MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST);
3150 	dcmd->opcode = MR_DCMD_PD_LIST_QUERY;
3151 	dcmd->sgl.sge32[0].phys_addr = ci_h;
3152 	dcmd->sgl.sge32[0].length = MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST);
3153 
3154 	if (!megasas_issue_polled(instance, cmd)) {
3155 		ret = 0;
3156 	} else {
3157 		ret = -1;
3158 	}
3159 
3160 	/*
3161 	* the following function will get the instance PD LIST.
3162 	*/
3163 
3164 	pd_addr = ci->addr;
3165 
3166 	if ( ret == 0 &&
3167 		(ci->count <
3168 		  (MEGASAS_MAX_PD_CHANNELS * MEGASAS_MAX_DEV_PER_CHANNEL))) {
3169 
3170 		memset(instance->pd_list, 0,
3171 			MEGASAS_MAX_PD * sizeof(struct megasas_pd_list));
3172 
3173 		for (pd_index = 0; pd_index < ci->count; pd_index++) {
3174 
3175 			instance->pd_list[pd_addr->deviceId].tid	=
3176 							pd_addr->deviceId;
3177 			instance->pd_list[pd_addr->deviceId].driveType	=
3178 							pd_addr->scsiDevType;
3179 			instance->pd_list[pd_addr->deviceId].driveState	=
3180 							MR_PD_STATE_SYSTEM;
3181 			pd_addr++;
3182 		}
3183 	}
3184 
3185 	pci_free_consistent(instance->pdev,
3186 				MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST),
3187 				ci, ci_h);
3188 	megasas_return_cmd(instance, cmd);
3189 
3190 	return ret;
3191 }
3192 
3193 /*
3194  * megasas_get_ld_list_info -	Returns FW's ld_list structure
3195  * @instance:				Adapter soft state
3196  * @ld_list:				ld_list structure
3197  *
3198  * Issues an internal command (DCMD) to get the FW's controller PD
3199  * list structure.  This information is mainly used to find out SYSTEM
3200  * supported by the FW.
3201  */
3202 static int
3203 megasas_get_ld_list(struct megasas_instance *instance)
3204 {
3205 	int ret = 0, ld_index = 0, ids = 0;
3206 	struct megasas_cmd *cmd;
3207 	struct megasas_dcmd_frame *dcmd;
3208 	struct MR_LD_LIST *ci;
3209 	dma_addr_t ci_h = 0;
3210 
3211 	cmd = megasas_get_cmd(instance);
3212 
3213 	if (!cmd) {
3214 		printk(KERN_DEBUG "megasas_get_ld_list: Failed to get cmd\n");
3215 		return -ENOMEM;
3216 	}
3217 
3218 	dcmd = &cmd->frame->dcmd;
3219 
3220 	ci = pci_alloc_consistent(instance->pdev,
3221 				sizeof(struct MR_LD_LIST),
3222 				&ci_h);
3223 
3224 	if (!ci) {
3225 		printk(KERN_DEBUG "Failed to alloc mem in get_ld_list\n");
3226 		megasas_return_cmd(instance, cmd);
3227 		return -ENOMEM;
3228 	}
3229 
3230 	memset(ci, 0, sizeof(*ci));
3231 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3232 
3233 	dcmd->cmd = MFI_CMD_DCMD;
3234 	dcmd->cmd_status = 0xFF;
3235 	dcmd->sge_count = 1;
3236 	dcmd->flags = MFI_FRAME_DIR_READ;
3237 	dcmd->timeout = 0;
3238 	dcmd->data_xfer_len = sizeof(struct MR_LD_LIST);
3239 	dcmd->opcode = MR_DCMD_LD_GET_LIST;
3240 	dcmd->sgl.sge32[0].phys_addr = ci_h;
3241 	dcmd->sgl.sge32[0].length = sizeof(struct MR_LD_LIST);
3242 	dcmd->pad_0  = 0;
3243 
3244 	if (!megasas_issue_polled(instance, cmd)) {
3245 		ret = 0;
3246 	} else {
3247 		ret = -1;
3248 	}
3249 
3250 	/* the following function will get the instance PD LIST */
3251 
3252 	if ((ret == 0) && (ci->ldCount <= MAX_LOGICAL_DRIVES)) {
3253 		memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS);
3254 
3255 		for (ld_index = 0; ld_index < ci->ldCount; ld_index++) {
3256 			if (ci->ldList[ld_index].state != 0) {
3257 				ids = ci->ldList[ld_index].ref.targetId;
3258 				instance->ld_ids[ids] =
3259 					ci->ldList[ld_index].ref.targetId;
3260 			}
3261 		}
3262 	}
3263 
3264 	pci_free_consistent(instance->pdev,
3265 				sizeof(struct MR_LD_LIST),
3266 				ci,
3267 				ci_h);
3268 
3269 	megasas_return_cmd(instance, cmd);
3270 	return ret;
3271 }
3272 
3273 /**
3274  * megasas_get_controller_info -	Returns FW's controller structure
3275  * @instance:				Adapter soft state
3276  * @ctrl_info:				Controller information structure
3277  *
3278  * Issues an internal command (DCMD) to get the FW's controller structure.
3279  * This information is mainly used to find out the maximum IO transfer per
3280  * command supported by the FW.
3281  */
3282 static int
3283 megasas_get_ctrl_info(struct megasas_instance *instance,
3284 		      struct megasas_ctrl_info *ctrl_info)
3285 {
3286 	int ret = 0;
3287 	struct megasas_cmd *cmd;
3288 	struct megasas_dcmd_frame *dcmd;
3289 	struct megasas_ctrl_info *ci;
3290 	dma_addr_t ci_h = 0;
3291 
3292 	cmd = megasas_get_cmd(instance);
3293 
3294 	if (!cmd) {
3295 		printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
3296 		return -ENOMEM;
3297 	}
3298 
3299 	dcmd = &cmd->frame->dcmd;
3300 
3301 	ci = pci_alloc_consistent(instance->pdev,
3302 				  sizeof(struct megasas_ctrl_info), &ci_h);
3303 
3304 	if (!ci) {
3305 		printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
3306 		megasas_return_cmd(instance, cmd);
3307 		return -ENOMEM;
3308 	}
3309 
3310 	memset(ci, 0, sizeof(*ci));
3311 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3312 
3313 	dcmd->cmd = MFI_CMD_DCMD;
3314 	dcmd->cmd_status = 0xFF;
3315 	dcmd->sge_count = 1;
3316 	dcmd->flags = MFI_FRAME_DIR_READ;
3317 	dcmd->timeout = 0;
3318 	dcmd->pad_0 = 0;
3319 	dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
3320 	dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
3321 	dcmd->sgl.sge32[0].phys_addr = ci_h;
3322 	dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
3323 
3324 	if (!megasas_issue_polled(instance, cmd)) {
3325 		ret = 0;
3326 		memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
3327 	} else {
3328 		ret = -1;
3329 	}
3330 
3331 	pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
3332 			    ci, ci_h);
3333 
3334 	megasas_return_cmd(instance, cmd);
3335 	return ret;
3336 }
3337 
3338 /**
3339  * megasas_issue_init_mfi -	Initializes the FW
3340  * @instance:		Adapter soft state
3341  *
3342  * Issues the INIT MFI cmd
3343  */
3344 static int
3345 megasas_issue_init_mfi(struct megasas_instance *instance)
3346 {
3347 	u32 context;
3348 
3349 	struct megasas_cmd *cmd;
3350 
3351 	struct megasas_init_frame *init_frame;
3352 	struct megasas_init_queue_info *initq_info;
3353 	dma_addr_t init_frame_h;
3354 	dma_addr_t initq_info_h;
3355 
3356 	/*
3357 	 * Prepare a init frame. Note the init frame points to queue info
3358 	 * structure. Each frame has SGL allocated after first 64 bytes. For
3359 	 * this frame - since we don't need any SGL - we use SGL's space as
3360 	 * queue info structure
3361 	 *
3362 	 * We will not get a NULL command below. We just created the pool.
3363 	 */
3364 	cmd = megasas_get_cmd(instance);
3365 
3366 	init_frame = (struct megasas_init_frame *)cmd->frame;
3367 	initq_info = (struct megasas_init_queue_info *)
3368 		((unsigned long)init_frame + 64);
3369 
3370 	init_frame_h = cmd->frame_phys_addr;
3371 	initq_info_h = init_frame_h + 64;
3372 
3373 	context = init_frame->context;
3374 	memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
3375 	memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
3376 	init_frame->context = context;
3377 
3378 	initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
3379 	initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
3380 
3381 	initq_info->producer_index_phys_addr_lo = instance->producer_h;
3382 	initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
3383 
3384 	init_frame->cmd = MFI_CMD_INIT;
3385 	init_frame->cmd_status = 0xFF;
3386 	init_frame->queue_info_new_phys_addr_lo = initq_info_h;
3387 
3388 	init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
3389 
3390 	/*
3391 	 * disable the intr before firing the init frame to FW
3392 	 */
3393 	instance->instancet->disable_intr(instance);
3394 
3395 	/*
3396 	 * Issue the init frame in polled mode
3397 	 */
3398 
3399 	if (megasas_issue_polled(instance, cmd)) {
3400 		printk(KERN_ERR "megasas: Failed to init firmware\n");
3401 		megasas_return_cmd(instance, cmd);
3402 		goto fail_fw_init;
3403 	}
3404 
3405 	megasas_return_cmd(instance, cmd);
3406 
3407 	return 0;
3408 
3409 fail_fw_init:
3410 	return -EINVAL;
3411 }
3412 
3413 static u32
3414 megasas_init_adapter_mfi(struct megasas_instance *instance)
3415 {
3416 	struct megasas_register_set __iomem *reg_set;
3417 	u32 context_sz;
3418 	u32 reply_q_sz;
3419 
3420 	reg_set = instance->reg_set;
3421 
3422 	/*
3423 	 * Get various operational parameters from status register
3424 	 */
3425 	instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
3426 	/*
3427 	 * Reduce the max supported cmds by 1. This is to ensure that the
3428 	 * reply_q_sz (1 more than the max cmd that driver may send)
3429 	 * does not exceed max cmds that the FW can support
3430 	 */
3431 	instance->max_fw_cmds = instance->max_fw_cmds-1;
3432 	instance->max_mfi_cmds = instance->max_fw_cmds;
3433 	instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
3434 					0x10;
3435 	/*
3436 	 * Create a pool of commands
3437 	 */
3438 	if (megasas_alloc_cmds(instance))
3439 		goto fail_alloc_cmds;
3440 
3441 	/*
3442 	 * Allocate memory for reply queue. Length of reply queue should
3443 	 * be _one_ more than the maximum commands handled by the firmware.
3444 	 *
3445 	 * Note: When FW completes commands, it places corresponding contex
3446 	 * values in this circular reply queue. This circular queue is a fairly
3447 	 * typical producer-consumer queue. FW is the producer (of completed
3448 	 * commands) and the driver is the consumer.
3449 	 */
3450 	context_sz = sizeof(u32);
3451 	reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
3452 
3453 	instance->reply_queue = pci_alloc_consistent(instance->pdev,
3454 						     reply_q_sz,
3455 						     &instance->reply_queue_h);
3456 
3457 	if (!instance->reply_queue) {
3458 		printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
3459 		goto fail_reply_queue;
3460 	}
3461 
3462 	if (megasas_issue_init_mfi(instance))
3463 		goto fail_fw_init;
3464 
3465 	instance->fw_support_ieee = 0;
3466 	instance->fw_support_ieee =
3467 		(instance->instancet->read_fw_status_reg(reg_set) &
3468 		0x04000000);
3469 
3470 	printk(KERN_NOTICE "megasas_init_mfi: fw_support_ieee=%d",
3471 			instance->fw_support_ieee);
3472 
3473 	if (instance->fw_support_ieee)
3474 		instance->flag_ieee = 1;
3475 
3476 	return 0;
3477 
3478 fail_fw_init:
3479 
3480 	pci_free_consistent(instance->pdev, reply_q_sz,
3481 			    instance->reply_queue, instance->reply_queue_h);
3482 fail_reply_queue:
3483 	megasas_free_cmds(instance);
3484 
3485 fail_alloc_cmds:
3486 	return 1;
3487 }
3488 
3489 /**
3490  * megasas_init_fw -	Initializes the FW
3491  * @instance:		Adapter soft state
3492  *
3493  * This is the main function for initializing firmware
3494  */
3495 
3496 static int megasas_init_fw(struct megasas_instance *instance)
3497 {
3498 	u32 max_sectors_1;
3499 	u32 max_sectors_2;
3500 	u32 tmp_sectors, msix_enable, scratch_pad_2;
3501 	struct megasas_register_set __iomem *reg_set;
3502 	struct megasas_ctrl_info *ctrl_info;
3503 	unsigned long bar_list;
3504 	int i, loop, fw_msix_count = 0;
3505 
3506 	/* Find first memory bar */
3507 	bar_list = pci_select_bars(instance->pdev, IORESOURCE_MEM);
3508 	instance->bar = find_first_bit(&bar_list, sizeof(unsigned long));
3509 	instance->base_addr = pci_resource_start(instance->pdev, instance->bar);
3510 	if (pci_request_selected_regions(instance->pdev, instance->bar,
3511 					 "megasas: LSI")) {
3512 		printk(KERN_DEBUG "megasas: IO memory region busy!\n");
3513 		return -EBUSY;
3514 	}
3515 
3516 	instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
3517 
3518 	if (!instance->reg_set) {
3519 		printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
3520 		goto fail_ioremap;
3521 	}
3522 
3523 	reg_set = instance->reg_set;
3524 
3525 	switch (instance->pdev->device) {
3526 	case PCI_DEVICE_ID_LSI_FUSION:
3527 	case PCI_DEVICE_ID_LSI_INVADER:
3528 	case PCI_DEVICE_ID_LSI_FURY:
3529 		instance->instancet = &megasas_instance_template_fusion;
3530 		break;
3531 	case PCI_DEVICE_ID_LSI_SAS1078R:
3532 	case PCI_DEVICE_ID_LSI_SAS1078DE:
3533 		instance->instancet = &megasas_instance_template_ppc;
3534 		break;
3535 	case PCI_DEVICE_ID_LSI_SAS1078GEN2:
3536 	case PCI_DEVICE_ID_LSI_SAS0079GEN2:
3537 		instance->instancet = &megasas_instance_template_gen2;
3538 		break;
3539 	case PCI_DEVICE_ID_LSI_SAS0073SKINNY:
3540 	case PCI_DEVICE_ID_LSI_SAS0071SKINNY:
3541 		instance->instancet = &megasas_instance_template_skinny;
3542 		break;
3543 	case PCI_DEVICE_ID_LSI_SAS1064R:
3544 	case PCI_DEVICE_ID_DELL_PERC5:
3545 	default:
3546 		instance->instancet = &megasas_instance_template_xscale;
3547 		break;
3548 	}
3549 
3550 	if (megasas_transition_to_ready(instance, 0)) {
3551 		atomic_set(&instance->fw_reset_no_pci_access, 1);
3552 		instance->instancet->adp_reset
3553 			(instance, instance->reg_set);
3554 		atomic_set(&instance->fw_reset_no_pci_access, 0);
3555 		dev_info(&instance->pdev->dev,
3556 			"megasas: FW restarted successfully from %s!\n",
3557 			__func__);
3558 
3559 		/*waitting for about 30 second before retry*/
3560 		ssleep(30);
3561 
3562 		if (megasas_transition_to_ready(instance, 0))
3563 			goto fail_ready_state;
3564 	}
3565 
3566 	/*
3567 	 * MSI-X host index 0 is common for all adapter.
3568 	 * It is used for all MPT based Adapters.
3569 	 */
3570 	instance->reply_post_host_index_addr[0] =
3571 		(u32 *)((u8 *)instance->reg_set +
3572 		MPI2_REPLY_POST_HOST_INDEX_OFFSET);
3573 
3574 	/* Check if MSI-X is supported while in ready state */
3575 	msix_enable = (instance->instancet->read_fw_status_reg(reg_set) &
3576 		       0x4000000) >> 0x1a;
3577 	if (msix_enable && !msix_disable) {
3578 		scratch_pad_2 = readl
3579 			(&instance->reg_set->outbound_scratch_pad_2);
3580 		/* Check max MSI-X vectors */
3581 		if (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) {
3582 			instance->msix_vectors = (scratch_pad_2
3583 				& MR_MAX_REPLY_QUEUES_OFFSET) + 1;
3584 			fw_msix_count = instance->msix_vectors;
3585 			if (msix_vectors)
3586 				instance->msix_vectors =
3587 					min(msix_vectors,
3588 					    instance->msix_vectors);
3589 		} else if ((instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER)
3590 			|| (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) {
3591 			/* Invader/Fury supports more than 8 MSI-X */
3592 			instance->msix_vectors = ((scratch_pad_2
3593 				& MR_MAX_REPLY_QUEUES_EXT_OFFSET)
3594 				>> MR_MAX_REPLY_QUEUES_EXT_OFFSET_SHIFT) + 1;
3595 			fw_msix_count = instance->msix_vectors;
3596 			/* Save 1-15 reply post index address to local memory
3597 			 * Index 0 is already saved from reg offset
3598 			 * MPI2_REPLY_POST_HOST_INDEX_OFFSET
3599 			 */
3600 			for (loop = 1; loop < MR_MAX_MSIX_REG_ARRAY; loop++) {
3601 				instance->reply_post_host_index_addr[loop] =
3602 					(u32 *)((u8 *)instance->reg_set +
3603 					MPI2_SUP_REPLY_POST_HOST_INDEX_OFFSET
3604 					+ (loop * 0x10));
3605 			}
3606 			if (msix_vectors)
3607 				instance->msix_vectors = min(msix_vectors,
3608 					instance->msix_vectors);
3609 		} else
3610 			instance->msix_vectors = 1;
3611 		/* Don't bother allocating more MSI-X vectors than cpus */
3612 		instance->msix_vectors = min(instance->msix_vectors,
3613 					     (unsigned int)num_online_cpus());
3614 		for (i = 0; i < instance->msix_vectors; i++)
3615 			instance->msixentry[i].entry = i;
3616 		i = pci_enable_msix(instance->pdev, instance->msixentry,
3617 				    instance->msix_vectors);
3618 		if (i >= 0) {
3619 			if (i) {
3620 				if (!pci_enable_msix(instance->pdev,
3621 						     instance->msixentry, i))
3622 					instance->msix_vectors = i;
3623 				else
3624 					instance->msix_vectors = 0;
3625 			}
3626 		} else
3627 			instance->msix_vectors = 0;
3628 
3629 		dev_info(&instance->pdev->dev, "[scsi%d]: FW supports"
3630 			"<%d> MSIX vector,Online CPUs: <%d>,"
3631 			"Current MSIX <%d>\n", instance->host->host_no,
3632 			fw_msix_count, (unsigned int)num_online_cpus(),
3633 			instance->msix_vectors);
3634 	}
3635 
3636 	/* Get operational params, sge flags, send init cmd to controller */
3637 	if (instance->instancet->init_adapter(instance))
3638 		goto fail_init_adapter;
3639 
3640 	printk(KERN_ERR "megasas: INIT adapter done\n");
3641 
3642 	/** for passthrough
3643 	* the following function will get the PD LIST.
3644 	*/
3645 
3646 	memset(instance->pd_list, 0 ,
3647 		(MEGASAS_MAX_PD * sizeof(struct megasas_pd_list)));
3648 	megasas_get_pd_list(instance);
3649 
3650 	memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS);
3651 	megasas_get_ld_list(instance);
3652 
3653 	ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
3654 
3655 	/*
3656 	 * Compute the max allowed sectors per IO: The controller info has two
3657 	 * limits on max sectors. Driver should use the minimum of these two.
3658 	 *
3659 	 * 1 << stripe_sz_ops.min = max sectors per strip
3660 	 *
3661 	 * Note that older firmwares ( < FW ver 30) didn't report information
3662 	 * to calculate max_sectors_1. So the number ended up as zero always.
3663 	 */
3664 	tmp_sectors = 0;
3665 	if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
3666 
3667 		max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
3668 		    ctrl_info->max_strips_per_io;
3669 		max_sectors_2 = ctrl_info->max_request_size;
3670 
3671 		tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2);
3672 
3673 		/*Check whether controller is iMR or MR */
3674 		if (ctrl_info->memory_size) {
3675 			instance->is_imr = 0;
3676 			dev_info(&instance->pdev->dev, "Controller type: MR,"
3677 				"Memory size is: %dMB\n",
3678 				ctrl_info->memory_size);
3679 		} else {
3680 			instance->is_imr = 1;
3681 			dev_info(&instance->pdev->dev,
3682 				"Controller type: iMR\n");
3683 		}
3684 		instance->disableOnlineCtrlReset =
3685 		ctrl_info->properties.OnOffProperties.disableOnlineCtrlReset;
3686 		instance->UnevenSpanSupport =
3687 			ctrl_info->adapterOperations2.supportUnevenSpans;
3688 		if (instance->UnevenSpanSupport) {
3689 			struct fusion_context *fusion = instance->ctrl_context;
3690 			dev_info(&instance->pdev->dev, "FW supports: "
3691 			"UnevenSpanSupport=%x\n", instance->UnevenSpanSupport);
3692 			if (MR_ValidateMapInfo(instance))
3693 				fusion->fast_path_io = 1;
3694 			else
3695 				fusion->fast_path_io = 0;
3696 
3697 		}
3698 	}
3699 
3700 	instance->max_sectors_per_req = instance->max_num_sge *
3701 						PAGE_SIZE / 512;
3702 	if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors))
3703 		instance->max_sectors_per_req = tmp_sectors;
3704 
3705 	kfree(ctrl_info);
3706 
3707 	/* Check for valid throttlequeuedepth module parameter */
3708 	if (instance->is_imr) {
3709 		if (throttlequeuedepth > (instance->max_fw_cmds -
3710 					  MEGASAS_SKINNY_INT_CMDS))
3711 			instance->throttlequeuedepth =
3712 				MEGASAS_THROTTLE_QUEUE_DEPTH;
3713 		else
3714 			instance->throttlequeuedepth = throttlequeuedepth;
3715 	} else {
3716 		if (throttlequeuedepth > (instance->max_fw_cmds -
3717 					  MEGASAS_INT_CMDS))
3718 			instance->throttlequeuedepth =
3719 				MEGASAS_THROTTLE_QUEUE_DEPTH;
3720 		else
3721 			instance->throttlequeuedepth = throttlequeuedepth;
3722 	}
3723 
3724         /*
3725 	* Setup tasklet for cmd completion
3726 	*/
3727 
3728 	tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet,
3729 		(unsigned long)instance);
3730 
3731 	return 0;
3732 
3733 fail_init_adapter:
3734 fail_ready_state:
3735 	iounmap(instance->reg_set);
3736 
3737       fail_ioremap:
3738 	pci_release_selected_regions(instance->pdev, instance->bar);
3739 
3740 	return -EINVAL;
3741 }
3742 
3743 /**
3744  * megasas_release_mfi -	Reverses the FW initialization
3745  * @intance:			Adapter soft state
3746  */
3747 static void megasas_release_mfi(struct megasas_instance *instance)
3748 {
3749 	u32 reply_q_sz = sizeof(u32) *(instance->max_mfi_cmds + 1);
3750 
3751 	if (instance->reply_queue)
3752 		pci_free_consistent(instance->pdev, reply_q_sz,
3753 			    instance->reply_queue, instance->reply_queue_h);
3754 
3755 	megasas_free_cmds(instance);
3756 
3757 	iounmap(instance->reg_set);
3758 
3759 	pci_release_selected_regions(instance->pdev, instance->bar);
3760 }
3761 
3762 /**
3763  * megasas_get_seq_num -	Gets latest event sequence numbers
3764  * @instance:			Adapter soft state
3765  * @eli:			FW event log sequence numbers information
3766  *
3767  * FW maintains a log of all events in a non-volatile area. Upper layers would
3768  * usually find out the latest sequence number of the events, the seq number at
3769  * the boot etc. They would "read" all the events below the latest seq number
3770  * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
3771  * number), they would subsribe to AEN (asynchronous event notification) and
3772  * wait for the events to happen.
3773  */
3774 static int
3775 megasas_get_seq_num(struct megasas_instance *instance,
3776 		    struct megasas_evt_log_info *eli)
3777 {
3778 	struct megasas_cmd *cmd;
3779 	struct megasas_dcmd_frame *dcmd;
3780 	struct megasas_evt_log_info *el_info;
3781 	dma_addr_t el_info_h = 0;
3782 
3783 	cmd = megasas_get_cmd(instance);
3784 
3785 	if (!cmd) {
3786 		return -ENOMEM;
3787 	}
3788 
3789 	dcmd = &cmd->frame->dcmd;
3790 	el_info = pci_alloc_consistent(instance->pdev,
3791 				       sizeof(struct megasas_evt_log_info),
3792 				       &el_info_h);
3793 
3794 	if (!el_info) {
3795 		megasas_return_cmd(instance, cmd);
3796 		return -ENOMEM;
3797 	}
3798 
3799 	memset(el_info, 0, sizeof(*el_info));
3800 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3801 
3802 	dcmd->cmd = MFI_CMD_DCMD;
3803 	dcmd->cmd_status = 0x0;
3804 	dcmd->sge_count = 1;
3805 	dcmd->flags = MFI_FRAME_DIR_READ;
3806 	dcmd->timeout = 0;
3807 	dcmd->pad_0 = 0;
3808 	dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
3809 	dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
3810 	dcmd->sgl.sge32[0].phys_addr = el_info_h;
3811 	dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
3812 
3813 	megasas_issue_blocked_cmd(instance, cmd);
3814 
3815 	/*
3816 	 * Copy the data back into callers buffer
3817 	 */
3818 	memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
3819 
3820 	pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
3821 			    el_info, el_info_h);
3822 
3823 	megasas_return_cmd(instance, cmd);
3824 
3825 	return 0;
3826 }
3827 
3828 /**
3829  * megasas_register_aen -	Registers for asynchronous event notification
3830  * @instance:			Adapter soft state
3831  * @seq_num:			The starting sequence number
3832  * @class_locale:		Class of the event
3833  *
3834  * This function subscribes for AEN for events beyond the @seq_num. It requests
3835  * to be notified if and only if the event is of type @class_locale
3836  */
3837 static int
3838 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
3839 		     u32 class_locale_word)
3840 {
3841 	int ret_val;
3842 	struct megasas_cmd *cmd;
3843 	struct megasas_dcmd_frame *dcmd;
3844 	union megasas_evt_class_locale curr_aen;
3845 	union megasas_evt_class_locale prev_aen;
3846 
3847 	/*
3848 	 * If there an AEN pending already (aen_cmd), check if the
3849 	 * class_locale of that pending AEN is inclusive of the new
3850 	 * AEN request we currently have. If it is, then we don't have
3851 	 * to do anything. In other words, whichever events the current
3852 	 * AEN request is subscribing to, have already been subscribed
3853 	 * to.
3854 	 *
3855 	 * If the old_cmd is _not_ inclusive, then we have to abort
3856 	 * that command, form a class_locale that is superset of both
3857 	 * old and current and re-issue to the FW
3858 	 */
3859 
3860 	curr_aen.word = class_locale_word;
3861 
3862 	if (instance->aen_cmd) {
3863 
3864 		prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
3865 
3866 		/*
3867 		 * A class whose enum value is smaller is inclusive of all
3868 		 * higher values. If a PROGRESS (= -1) was previously
3869 		 * registered, then a new registration requests for higher
3870 		 * classes need not be sent to FW. They are automatically
3871 		 * included.
3872 		 *
3873 		 * Locale numbers don't have such hierarchy. They are bitmap
3874 		 * values
3875 		 */
3876 		if ((prev_aen.members.class <= curr_aen.members.class) &&
3877 		    !((prev_aen.members.locale & curr_aen.members.locale) ^
3878 		      curr_aen.members.locale)) {
3879 			/*
3880 			 * Previously issued event registration includes
3881 			 * current request. Nothing to do.
3882 			 */
3883 			return 0;
3884 		} else {
3885 			curr_aen.members.locale |= prev_aen.members.locale;
3886 
3887 			if (prev_aen.members.class < curr_aen.members.class)
3888 				curr_aen.members.class = prev_aen.members.class;
3889 
3890 			instance->aen_cmd->abort_aen = 1;
3891 			ret_val = megasas_issue_blocked_abort_cmd(instance,
3892 								  instance->
3893 								  aen_cmd);
3894 
3895 			if (ret_val) {
3896 				printk(KERN_DEBUG "megasas: Failed to abort "
3897 				       "previous AEN command\n");
3898 				return ret_val;
3899 			}
3900 		}
3901 	}
3902 
3903 	cmd = megasas_get_cmd(instance);
3904 
3905 	if (!cmd)
3906 		return -ENOMEM;
3907 
3908 	dcmd = &cmd->frame->dcmd;
3909 
3910 	memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
3911 
3912 	/*
3913 	 * Prepare DCMD for aen registration
3914 	 */
3915 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3916 
3917 	dcmd->cmd = MFI_CMD_DCMD;
3918 	dcmd->cmd_status = 0x0;
3919 	dcmd->sge_count = 1;
3920 	dcmd->flags = MFI_FRAME_DIR_READ;
3921 	dcmd->timeout = 0;
3922 	dcmd->pad_0 = 0;
3923 	instance->last_seq_num = seq_num;
3924 	dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
3925 	dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
3926 	dcmd->mbox.w[0] = seq_num;
3927 	dcmd->mbox.w[1] = curr_aen.word;
3928 	dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
3929 	dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
3930 
3931 	if (instance->aen_cmd != NULL) {
3932 		megasas_return_cmd(instance, cmd);
3933 		return 0;
3934 	}
3935 
3936 	/*
3937 	 * Store reference to the cmd used to register for AEN. When an
3938 	 * application wants us to register for AEN, we have to abort this
3939 	 * cmd and re-register with a new EVENT LOCALE supplied by that app
3940 	 */
3941 	instance->aen_cmd = cmd;
3942 
3943 	/*
3944 	 * Issue the aen registration frame
3945 	 */
3946 	instance->instancet->issue_dcmd(instance, cmd);
3947 
3948 	return 0;
3949 }
3950 
3951 /**
3952  * megasas_start_aen -	Subscribes to AEN during driver load time
3953  * @instance:		Adapter soft state
3954  */
3955 static int megasas_start_aen(struct megasas_instance *instance)
3956 {
3957 	struct megasas_evt_log_info eli;
3958 	union megasas_evt_class_locale class_locale;
3959 
3960 	/*
3961 	 * Get the latest sequence number from FW
3962 	 */
3963 	memset(&eli, 0, sizeof(eli));
3964 
3965 	if (megasas_get_seq_num(instance, &eli))
3966 		return -1;
3967 
3968 	/*
3969 	 * Register AEN with FW for latest sequence number plus 1
3970 	 */
3971 	class_locale.members.reserved = 0;
3972 	class_locale.members.locale = MR_EVT_LOCALE_ALL;
3973 	class_locale.members.class = MR_EVT_CLASS_DEBUG;
3974 
3975 	return megasas_register_aen(instance, eli.newest_seq_num + 1,
3976 				    class_locale.word);
3977 }
3978 
3979 /**
3980  * megasas_io_attach -	Attaches this driver to SCSI mid-layer
3981  * @instance:		Adapter soft state
3982  */
3983 static int megasas_io_attach(struct megasas_instance *instance)
3984 {
3985 	struct Scsi_Host *host = instance->host;
3986 
3987 	/*
3988 	 * Export parameters required by SCSI mid-layer
3989 	 */
3990 	host->irq = instance->pdev->irq;
3991 	host->unique_id = instance->unique_id;
3992 	if (instance->is_imr) {
3993 		host->can_queue =
3994 			instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS;
3995 	} else
3996 		host->can_queue =
3997 			instance->max_fw_cmds - MEGASAS_INT_CMDS;
3998 	host->this_id = instance->init_id;
3999 	host->sg_tablesize = instance->max_num_sge;
4000 
4001 	if (instance->fw_support_ieee)
4002 		instance->max_sectors_per_req = MEGASAS_MAX_SECTORS_IEEE;
4003 
4004 	/*
4005 	 * Check if the module parameter value for max_sectors can be used
4006 	 */
4007 	if (max_sectors && max_sectors < instance->max_sectors_per_req)
4008 		instance->max_sectors_per_req = max_sectors;
4009 	else {
4010 		if (max_sectors) {
4011 			if (((instance->pdev->device ==
4012 				PCI_DEVICE_ID_LSI_SAS1078GEN2) ||
4013 				(instance->pdev->device ==
4014 				PCI_DEVICE_ID_LSI_SAS0079GEN2)) &&
4015 				(max_sectors <= MEGASAS_MAX_SECTORS)) {
4016 				instance->max_sectors_per_req = max_sectors;
4017 			} else {
4018 			printk(KERN_INFO "megasas: max_sectors should be > 0"
4019 				"and <= %d (or < 1MB for GEN2 controller)\n",
4020 				instance->max_sectors_per_req);
4021 			}
4022 		}
4023 	}
4024 
4025 	host->max_sectors = instance->max_sectors_per_req;
4026 	host->cmd_per_lun = MEGASAS_DEFAULT_CMD_PER_LUN;
4027 	host->max_channel = MEGASAS_MAX_CHANNELS - 1;
4028 	host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
4029 	host->max_lun = MEGASAS_MAX_LUN;
4030 	host->max_cmd_len = 16;
4031 
4032 	/* Fusion only supports host reset */
4033 	if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
4034 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
4035 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) {
4036 		host->hostt->eh_device_reset_handler = NULL;
4037 		host->hostt->eh_bus_reset_handler = NULL;
4038 	}
4039 
4040 	/*
4041 	 * Notify the mid-layer about the new controller
4042 	 */
4043 	if (scsi_add_host(host, &instance->pdev->dev)) {
4044 		printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
4045 		return -ENODEV;
4046 	}
4047 
4048 	/*
4049 	 * Trigger SCSI to scan our drives
4050 	 */
4051 	scsi_scan_host(host);
4052 	return 0;
4053 }
4054 
4055 static int
4056 megasas_set_dma_mask(struct pci_dev *pdev)
4057 {
4058 	/*
4059 	 * All our contollers are capable of performing 64-bit DMA
4060 	 */
4061 	if (IS_DMA64) {
4062 		if (pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) != 0) {
4063 
4064 			if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)
4065 				goto fail_set_dma_mask;
4066 		}
4067 	} else {
4068 		if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)
4069 			goto fail_set_dma_mask;
4070 	}
4071 	return 0;
4072 
4073 fail_set_dma_mask:
4074 	return 1;
4075 }
4076 
4077 /**
4078  * megasas_probe_one -	PCI hotplug entry point
4079  * @pdev:		PCI device structure
4080  * @id:			PCI ids of supported hotplugged adapter
4081  */
4082 static int megasas_probe_one(struct pci_dev *pdev,
4083 			     const struct pci_device_id *id)
4084 {
4085 	int rval, pos, i, j;
4086 	struct Scsi_Host *host;
4087 	struct megasas_instance *instance;
4088 	u16 control = 0;
4089 
4090 	/* Reset MSI-X in the kdump kernel */
4091 	if (reset_devices) {
4092 		pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4093 		if (pos) {
4094 			pci_read_config_word(pdev, pos + PCI_MSIX_FLAGS,
4095 					     &control);
4096 			if (control & PCI_MSIX_FLAGS_ENABLE) {
4097 				dev_info(&pdev->dev, "resetting MSI-X\n");
4098 				pci_write_config_word(pdev,
4099 						      pos + PCI_MSIX_FLAGS,
4100 						      control &
4101 						      ~PCI_MSIX_FLAGS_ENABLE);
4102 			}
4103 		}
4104 	}
4105 
4106 	/*
4107 	 * Announce PCI information
4108 	 */
4109 	printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
4110 	       pdev->vendor, pdev->device, pdev->subsystem_vendor,
4111 	       pdev->subsystem_device);
4112 
4113 	printk("bus %d:slot %d:func %d\n",
4114 	       pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
4115 
4116 	/*
4117 	 * PCI prepping: enable device set bus mastering and dma mask
4118 	 */
4119 	rval = pci_enable_device_mem(pdev);
4120 
4121 	if (rval) {
4122 		return rval;
4123 	}
4124 
4125 	pci_set_master(pdev);
4126 
4127 	if (megasas_set_dma_mask(pdev))
4128 		goto fail_set_dma_mask;
4129 
4130 	host = scsi_host_alloc(&megasas_template,
4131 			       sizeof(struct megasas_instance));
4132 
4133 	if (!host) {
4134 		printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
4135 		goto fail_alloc_instance;
4136 	}
4137 
4138 	instance = (struct megasas_instance *)host->hostdata;
4139 	memset(instance, 0, sizeof(*instance));
4140 	atomic_set( &instance->fw_reset_no_pci_access, 0 );
4141 	instance->pdev = pdev;
4142 
4143 	switch (instance->pdev->device) {
4144 	case PCI_DEVICE_ID_LSI_FUSION:
4145 	case PCI_DEVICE_ID_LSI_INVADER:
4146 	case PCI_DEVICE_ID_LSI_FURY:
4147 	{
4148 		struct fusion_context *fusion;
4149 
4150 		instance->ctrl_context =
4151 			kzalloc(sizeof(struct fusion_context), GFP_KERNEL);
4152 		if (!instance->ctrl_context) {
4153 			printk(KERN_DEBUG "megasas: Failed to allocate "
4154 			       "memory for Fusion context info\n");
4155 			goto fail_alloc_dma_buf;
4156 		}
4157 		fusion = instance->ctrl_context;
4158 		INIT_LIST_HEAD(&fusion->cmd_pool);
4159 		spin_lock_init(&fusion->cmd_pool_lock);
4160 	}
4161 	break;
4162 	default: /* For all other supported controllers */
4163 
4164 		instance->producer =
4165 			pci_alloc_consistent(pdev, sizeof(u32),
4166 					     &instance->producer_h);
4167 		instance->consumer =
4168 			pci_alloc_consistent(pdev, sizeof(u32),
4169 					     &instance->consumer_h);
4170 
4171 		if (!instance->producer || !instance->consumer) {
4172 			printk(KERN_DEBUG "megasas: Failed to allocate"
4173 			       "memory for producer, consumer\n");
4174 			goto fail_alloc_dma_buf;
4175 		}
4176 
4177 		*instance->producer = 0;
4178 		*instance->consumer = 0;
4179 		break;
4180 	}
4181 
4182 	megasas_poll_wait_aen = 0;
4183 	instance->flag_ieee = 0;
4184 	instance->ev = NULL;
4185 	instance->issuepend_done = 1;
4186 	instance->adprecovery = MEGASAS_HBA_OPERATIONAL;
4187 	instance->is_imr = 0;
4188 	megasas_poll_wait_aen = 0;
4189 
4190 	instance->evt_detail = pci_alloc_consistent(pdev,
4191 						    sizeof(struct
4192 							   megasas_evt_detail),
4193 						    &instance->evt_detail_h);
4194 
4195 	if (!instance->evt_detail) {
4196 		printk(KERN_DEBUG "megasas: Failed to allocate memory for "
4197 		       "event detail structure\n");
4198 		goto fail_alloc_dma_buf;
4199 	}
4200 
4201 	/*
4202 	 * Initialize locks and queues
4203 	 */
4204 	INIT_LIST_HEAD(&instance->cmd_pool);
4205 	INIT_LIST_HEAD(&instance->internal_reset_pending_q);
4206 
4207 	atomic_set(&instance->fw_outstanding,0);
4208 
4209 	init_waitqueue_head(&instance->int_cmd_wait_q);
4210 	init_waitqueue_head(&instance->abort_cmd_wait_q);
4211 
4212 	spin_lock_init(&instance->cmd_pool_lock);
4213 	spin_lock_init(&instance->hba_lock);
4214 	spin_lock_init(&instance->completion_lock);
4215 
4216 	mutex_init(&instance->aen_mutex);
4217 	mutex_init(&instance->reset_mutex);
4218 
4219 	/*
4220 	 * Initialize PCI related and misc parameters
4221 	 */
4222 	instance->host = host;
4223 	instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
4224 	instance->init_id = MEGASAS_DEFAULT_INIT_ID;
4225 
4226 	if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
4227 		(instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
4228 		instance->flag_ieee = 1;
4229 		sema_init(&instance->ioctl_sem, MEGASAS_SKINNY_INT_CMDS);
4230 	} else
4231 		sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
4232 
4233 	megasas_dbg_lvl = 0;
4234 	instance->flag = 0;
4235 	instance->unload = 1;
4236 	instance->last_time = 0;
4237 	instance->disableOnlineCtrlReset = 1;
4238 	instance->UnevenSpanSupport = 0;
4239 
4240 	if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
4241 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
4242 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY))
4243 		INIT_WORK(&instance->work_init, megasas_fusion_ocr_wq);
4244 	else
4245 		INIT_WORK(&instance->work_init, process_fw_state_change_wq);
4246 
4247 	/*
4248 	 * Initialize MFI Firmware
4249 	 */
4250 	if (megasas_init_fw(instance))
4251 		goto fail_init_mfi;
4252 
4253 retry_irq_register:
4254 	/*
4255 	 * Register IRQ
4256 	 */
4257 	if (instance->msix_vectors) {
4258 		for (i = 0 ; i < instance->msix_vectors; i++) {
4259 			instance->irq_context[i].instance = instance;
4260 			instance->irq_context[i].MSIxIndex = i;
4261 			if (request_irq(instance->msixentry[i].vector,
4262 					instance->instancet->service_isr, 0,
4263 					"megasas",
4264 					&instance->irq_context[i])) {
4265 				printk(KERN_DEBUG "megasas: Failed to "
4266 				       "register IRQ for vector %d.\n", i);
4267 				for (j = 0 ; j < i ; j++)
4268 					free_irq(
4269 						instance->msixentry[j].vector,
4270 						&instance->irq_context[j]);
4271 				/* Retry irq register for IO_APIC */
4272 				instance->msix_vectors = 0;
4273 				goto retry_irq_register;
4274 			}
4275 		}
4276 	} else {
4277 		instance->irq_context[0].instance = instance;
4278 		instance->irq_context[0].MSIxIndex = 0;
4279 		if (request_irq(pdev->irq, instance->instancet->service_isr,
4280 				IRQF_SHARED, "megasas",
4281 				&instance->irq_context[0])) {
4282 			printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
4283 			goto fail_irq;
4284 		}
4285 	}
4286 
4287 	instance->instancet->enable_intr(instance);
4288 
4289 	/*
4290 	 * Store instance in PCI softstate
4291 	 */
4292 	pci_set_drvdata(pdev, instance);
4293 
4294 	/*
4295 	 * Add this controller to megasas_mgmt_info structure so that it
4296 	 * can be exported to management applications
4297 	 */
4298 	megasas_mgmt_info.count++;
4299 	megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
4300 	megasas_mgmt_info.max_index++;
4301 
4302 	/*
4303 	 * Register with SCSI mid-layer
4304 	 */
4305 	if (megasas_io_attach(instance))
4306 		goto fail_io_attach;
4307 
4308 	instance->unload = 0;
4309 
4310 	/*
4311 	 * Initiate AEN (Asynchronous Event Notification)
4312 	 */
4313 	if (megasas_start_aen(instance)) {
4314 		printk(KERN_DEBUG "megasas: start aen failed\n");
4315 		goto fail_start_aen;
4316 	}
4317 
4318 	return 0;
4319 
4320       fail_start_aen:
4321       fail_io_attach:
4322 	megasas_mgmt_info.count--;
4323 	megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
4324 	megasas_mgmt_info.max_index--;
4325 
4326 	pci_set_drvdata(pdev, NULL);
4327 	instance->instancet->disable_intr(instance);
4328 	if (instance->msix_vectors)
4329 		for (i = 0 ; i < instance->msix_vectors; i++)
4330 			free_irq(instance->msixentry[i].vector,
4331 				 &instance->irq_context[i]);
4332 	else
4333 		free_irq(instance->pdev->irq, &instance->irq_context[0]);
4334 fail_irq:
4335 	if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
4336 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
4337 	    (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY))
4338 		megasas_release_fusion(instance);
4339 	else
4340 		megasas_release_mfi(instance);
4341       fail_init_mfi:
4342 	if (instance->msix_vectors)
4343 		pci_disable_msix(instance->pdev);
4344       fail_alloc_dma_buf:
4345 	if (instance->evt_detail)
4346 		pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
4347 				    instance->evt_detail,
4348 				    instance->evt_detail_h);
4349 
4350 	if (instance->producer)
4351 		pci_free_consistent(pdev, sizeof(u32), instance->producer,
4352 				    instance->producer_h);
4353 	if (instance->consumer)
4354 		pci_free_consistent(pdev, sizeof(u32), instance->consumer,
4355 				    instance->consumer_h);
4356 	scsi_host_put(host);
4357 
4358       fail_alloc_instance:
4359       fail_set_dma_mask:
4360 	pci_disable_device(pdev);
4361 
4362 	return -ENODEV;
4363 }
4364 
4365 /**
4366  * megasas_flush_cache -	Requests FW to flush all its caches
4367  * @instance:			Adapter soft state
4368  */
4369 static void megasas_flush_cache(struct megasas_instance *instance)
4370 {
4371 	struct megasas_cmd *cmd;
4372 	struct megasas_dcmd_frame *dcmd;
4373 
4374 	if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR)
4375 		return;
4376 
4377 	cmd = megasas_get_cmd(instance);
4378 
4379 	if (!cmd)
4380 		return;
4381 
4382 	dcmd = &cmd->frame->dcmd;
4383 
4384 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
4385 
4386 	dcmd->cmd = MFI_CMD_DCMD;
4387 	dcmd->cmd_status = 0x0;
4388 	dcmd->sge_count = 0;
4389 	dcmd->flags = MFI_FRAME_DIR_NONE;
4390 	dcmd->timeout = 0;
4391 	dcmd->pad_0 = 0;
4392 	dcmd->data_xfer_len = 0;
4393 	dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
4394 	dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
4395 
4396 	megasas_issue_blocked_cmd(instance, cmd);
4397 
4398 	megasas_return_cmd(instance, cmd);
4399 
4400 	return;
4401 }
4402 
4403 /**
4404  * megasas_shutdown_controller -	Instructs FW to shutdown the controller
4405  * @instance:				Adapter soft state
4406  * @opcode:				Shutdown/Hibernate
4407  */
4408 static void megasas_shutdown_controller(struct megasas_instance *instance,
4409 					u32 opcode)
4410 {
4411 	struct megasas_cmd *cmd;
4412 	struct megasas_dcmd_frame *dcmd;
4413 
4414 	if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR)
4415 		return;
4416 
4417 	cmd = megasas_get_cmd(instance);
4418 
4419 	if (!cmd)
4420 		return;
4421 
4422 	if (instance->aen_cmd)
4423 		megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
4424 	if (instance->map_update_cmd)
4425 		megasas_issue_blocked_abort_cmd(instance,
4426 						instance->map_update_cmd);
4427 	dcmd = &cmd->frame->dcmd;
4428 
4429 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
4430 
4431 	dcmd->cmd = MFI_CMD_DCMD;
4432 	dcmd->cmd_status = 0x0;
4433 	dcmd->sge_count = 0;
4434 	dcmd->flags = MFI_FRAME_DIR_NONE;
4435 	dcmd->timeout = 0;
4436 	dcmd->pad_0 = 0;
4437 	dcmd->data_xfer_len = 0;
4438 	dcmd->opcode = opcode;
4439 
4440 	megasas_issue_blocked_cmd(instance, cmd);
4441 
4442 	megasas_return_cmd(instance, cmd);
4443 
4444 	return;
4445 }
4446 
4447 #ifdef CONFIG_PM
4448 /**
4449  * megasas_suspend -	driver suspend entry point
4450  * @pdev:		PCI device structure
4451  * @state:		PCI power state to suspend routine
4452  */
4453 static int
4454 megasas_suspend(struct pci_dev *pdev, pm_message_t state)
4455 {
4456 	struct Scsi_Host *host;
4457 	struct megasas_instance *instance;
4458 	int i;
4459 
4460 	instance = pci_get_drvdata(pdev);
4461 	host = instance->host;
4462 	instance->unload = 1;
4463 
4464 	megasas_flush_cache(instance);
4465 	megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN);
4466 
4467 	/* cancel the delayed work if this work still in queue */
4468 	if (instance->ev != NULL) {
4469 		struct megasas_aen_event *ev = instance->ev;
4470 		cancel_delayed_work_sync(&ev->hotplug_work);
4471 		instance->ev = NULL;
4472 	}
4473 
4474 	tasklet_kill(&instance->isr_tasklet);
4475 
4476 	pci_set_drvdata(instance->pdev, instance);
4477 	instance->instancet->disable_intr(instance);
4478 
4479 	if (instance->msix_vectors)
4480 		for (i = 0 ; i < instance->msix_vectors; i++)
4481 			free_irq(instance->msixentry[i].vector,
4482 				 &instance->irq_context[i]);
4483 	else
4484 		free_irq(instance->pdev->irq, &instance->irq_context[0]);
4485 	if (instance->msix_vectors)
4486 		pci_disable_msix(instance->pdev);
4487 
4488 	pci_save_state(pdev);
4489 	pci_disable_device(pdev);
4490 
4491 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
4492 
4493 	return 0;
4494 }
4495 
4496 /**
4497  * megasas_resume-      driver resume entry point
4498  * @pdev:               PCI device structure
4499  */
4500 static int
4501 megasas_resume(struct pci_dev *pdev)
4502 {
4503 	int rval, i, j;
4504 	struct Scsi_Host *host;
4505 	struct megasas_instance *instance;
4506 
4507 	instance = pci_get_drvdata(pdev);
4508 	host = instance->host;
4509 	pci_set_power_state(pdev, PCI_D0);
4510 	pci_enable_wake(pdev, PCI_D0, 0);
4511 	pci_restore_state(pdev);
4512 
4513 	/*
4514 	 * PCI prepping: enable device set bus mastering and dma mask
4515 	 */
4516 	rval = pci_enable_device_mem(pdev);
4517 
4518 	if (rval) {
4519 		printk(KERN_ERR "megasas: Enable device failed\n");
4520 		return rval;
4521 	}
4522 
4523 	pci_set_master(pdev);
4524 
4525 	if (megasas_set_dma_mask(pdev))
4526 		goto fail_set_dma_mask;
4527 
4528 	/*
4529 	 * Initialize MFI Firmware
4530 	 */
4531 
4532 	atomic_set(&instance->fw_outstanding, 0);
4533 
4534 	/*
4535 	 * We expect the FW state to be READY
4536 	 */
4537 	if (megasas_transition_to_ready(instance, 0))
4538 		goto fail_ready_state;
4539 
4540 	/* Now re-enable MSI-X */
4541 	if (instance->msix_vectors)
4542 		pci_enable_msix(instance->pdev, instance->msixentry,
4543 				instance->msix_vectors);
4544 
4545 	switch (instance->pdev->device) {
4546 	case PCI_DEVICE_ID_LSI_FUSION:
4547 	case PCI_DEVICE_ID_LSI_INVADER:
4548 	case PCI_DEVICE_ID_LSI_FURY:
4549 	{
4550 		megasas_reset_reply_desc(instance);
4551 		if (megasas_ioc_init_fusion(instance)) {
4552 			megasas_free_cmds(instance);
4553 			megasas_free_cmds_fusion(instance);
4554 			goto fail_init_mfi;
4555 		}
4556 		if (!megasas_get_map_info(instance))
4557 			megasas_sync_map_info(instance);
4558 	}
4559 	break;
4560 	default:
4561 		*instance->producer = 0;
4562 		*instance->consumer = 0;
4563 		if (megasas_issue_init_mfi(instance))
4564 			goto fail_init_mfi;
4565 		break;
4566 	}
4567 
4568 	tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet,
4569 		     (unsigned long)instance);
4570 
4571 	/*
4572 	 * Register IRQ
4573 	 */
4574 	if (instance->msix_vectors) {
4575 		for (i = 0 ; i < instance->msix_vectors; i++) {
4576 			instance->irq_context[i].instance = instance;
4577 			instance->irq_context[i].MSIxIndex = i;
4578 			if (request_irq(instance->msixentry[i].vector,
4579 					instance->instancet->service_isr, 0,
4580 					"megasas",
4581 					&instance->irq_context[i])) {
4582 				printk(KERN_DEBUG "megasas: Failed to "
4583 				       "register IRQ for vector %d.\n", i);
4584 				for (j = 0 ; j < i ; j++)
4585 					free_irq(
4586 						instance->msixentry[j].vector,
4587 						&instance->irq_context[j]);
4588 				goto fail_irq;
4589 			}
4590 		}
4591 	} else {
4592 		instance->irq_context[0].instance = instance;
4593 		instance->irq_context[0].MSIxIndex = 0;
4594 		if (request_irq(pdev->irq, instance->instancet->service_isr,
4595 				IRQF_SHARED, "megasas",
4596 				&instance->irq_context[0])) {
4597 			printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
4598 			goto fail_irq;
4599 		}
4600 	}
4601 
4602 	instance->instancet->enable_intr(instance);
4603 	instance->unload = 0;
4604 
4605 	/*
4606 	 * Initiate AEN (Asynchronous Event Notification)
4607 	 */
4608 	if (megasas_start_aen(instance))
4609 		printk(KERN_ERR "megasas: Start AEN failed\n");
4610 
4611 	return 0;
4612 
4613 fail_irq:
4614 fail_init_mfi:
4615 	if (instance->evt_detail)
4616 		pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
4617 				instance->evt_detail,
4618 				instance->evt_detail_h);
4619 
4620 	if (instance->producer)
4621 		pci_free_consistent(pdev, sizeof(u32), instance->producer,
4622 				instance->producer_h);
4623 	if (instance->consumer)
4624 		pci_free_consistent(pdev, sizeof(u32), instance->consumer,
4625 				instance->consumer_h);
4626 	scsi_host_put(host);
4627 
4628 fail_set_dma_mask:
4629 fail_ready_state:
4630 
4631 	pci_disable_device(pdev);
4632 
4633 	return -ENODEV;
4634 }
4635 #else
4636 #define megasas_suspend	NULL
4637 #define megasas_resume	NULL
4638 #endif
4639 
4640 /**
4641  * megasas_detach_one -	PCI hot"un"plug entry point
4642  * @pdev:		PCI device structure
4643  */
4644 static void megasas_detach_one(struct pci_dev *pdev)
4645 {
4646 	int i;
4647 	struct Scsi_Host *host;
4648 	struct megasas_instance *instance;
4649 	struct fusion_context *fusion;
4650 
4651 	instance = pci_get_drvdata(pdev);
4652 	instance->unload = 1;
4653 	host = instance->host;
4654 	fusion = instance->ctrl_context;
4655 
4656 	scsi_remove_host(instance->host);
4657 	megasas_flush_cache(instance);
4658 	megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
4659 
4660 	/* cancel the delayed work if this work still in queue*/
4661 	if (instance->ev != NULL) {
4662 		struct megasas_aen_event *ev = instance->ev;
4663 		cancel_delayed_work_sync(&ev->hotplug_work);
4664 		instance->ev = NULL;
4665 	}
4666 
4667 	tasklet_kill(&instance->isr_tasklet);
4668 
4669 	/*
4670 	 * Take the instance off the instance array. Note that we will not
4671 	 * decrement the max_index. We let this array be sparse array
4672 	 */
4673 	for (i = 0; i < megasas_mgmt_info.max_index; i++) {
4674 		if (megasas_mgmt_info.instance[i] == instance) {
4675 			megasas_mgmt_info.count--;
4676 			megasas_mgmt_info.instance[i] = NULL;
4677 
4678 			break;
4679 		}
4680 	}
4681 
4682 	pci_set_drvdata(instance->pdev, NULL);
4683 
4684 	instance->instancet->disable_intr(instance);
4685 
4686 	if (instance->msix_vectors)
4687 		for (i = 0 ; i < instance->msix_vectors; i++)
4688 			free_irq(instance->msixentry[i].vector,
4689 				 &instance->irq_context[i]);
4690 	else
4691 		free_irq(instance->pdev->irq, &instance->irq_context[0]);
4692 	if (instance->msix_vectors)
4693 		pci_disable_msix(instance->pdev);
4694 
4695 	switch (instance->pdev->device) {
4696 	case PCI_DEVICE_ID_LSI_FUSION:
4697 	case PCI_DEVICE_ID_LSI_INVADER:
4698 	case PCI_DEVICE_ID_LSI_FURY:
4699 		megasas_release_fusion(instance);
4700 		for (i = 0; i < 2 ; i++)
4701 			if (fusion->ld_map[i])
4702 				dma_free_coherent(&instance->pdev->dev,
4703 						  fusion->map_sz,
4704 						  fusion->ld_map[i],
4705 						  fusion->
4706 						  ld_map_phys[i]);
4707 		kfree(instance->ctrl_context);
4708 		break;
4709 	default:
4710 		megasas_release_mfi(instance);
4711 		pci_free_consistent(pdev, sizeof(u32),
4712 				    instance->producer,
4713 				    instance->producer_h);
4714 		pci_free_consistent(pdev, sizeof(u32),
4715 				    instance->consumer,
4716 				    instance->consumer_h);
4717 		break;
4718 	}
4719 
4720 	if (instance->evt_detail)
4721 		pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
4722 				instance->evt_detail, instance->evt_detail_h);
4723 	scsi_host_put(host);
4724 
4725 	pci_set_drvdata(pdev, NULL);
4726 
4727 	pci_disable_device(pdev);
4728 
4729 	return;
4730 }
4731 
4732 /**
4733  * megasas_shutdown -	Shutdown entry point
4734  * @device:		Generic device structure
4735  */
4736 static void megasas_shutdown(struct pci_dev *pdev)
4737 {
4738 	int i;
4739 	struct megasas_instance *instance = pci_get_drvdata(pdev);
4740 
4741 	instance->unload = 1;
4742 	megasas_flush_cache(instance);
4743 	megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
4744 	instance->instancet->disable_intr(instance);
4745 	if (instance->msix_vectors)
4746 		for (i = 0 ; i < instance->msix_vectors; i++)
4747 			free_irq(instance->msixentry[i].vector,
4748 				 &instance->irq_context[i]);
4749 	else
4750 		free_irq(instance->pdev->irq, &instance->irq_context[0]);
4751 	if (instance->msix_vectors)
4752 		pci_disable_msix(instance->pdev);
4753 }
4754 
4755 /**
4756  * megasas_mgmt_open -	char node "open" entry point
4757  */
4758 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
4759 {
4760 	/*
4761 	 * Allow only those users with admin rights
4762 	 */
4763 	if (!capable(CAP_SYS_ADMIN))
4764 		return -EACCES;
4765 
4766 	return 0;
4767 }
4768 
4769 /**
4770  * megasas_mgmt_fasync -	Async notifier registration from applications
4771  *
4772  * This function adds the calling process to a driver global queue. When an
4773  * event occurs, SIGIO will be sent to all processes in this queue.
4774  */
4775 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
4776 {
4777 	int rc;
4778 
4779 	mutex_lock(&megasas_async_queue_mutex);
4780 
4781 	rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
4782 
4783 	mutex_unlock(&megasas_async_queue_mutex);
4784 
4785 	if (rc >= 0) {
4786 		/* For sanity check when we get ioctl */
4787 		filep->private_data = filep;
4788 		return 0;
4789 	}
4790 
4791 	printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
4792 
4793 	return rc;
4794 }
4795 
4796 /**
4797  * megasas_mgmt_poll -  char node "poll" entry point
4798  * */
4799 static unsigned int megasas_mgmt_poll(struct file *file, poll_table *wait)
4800 {
4801 	unsigned int mask;
4802 	unsigned long flags;
4803 	poll_wait(file, &megasas_poll_wait, wait);
4804 	spin_lock_irqsave(&poll_aen_lock, flags);
4805 	if (megasas_poll_wait_aen)
4806 		mask =   (POLLIN | POLLRDNORM);
4807 	else
4808 		mask = 0;
4809 	spin_unlock_irqrestore(&poll_aen_lock, flags);
4810 	return mask;
4811 }
4812 
4813 /**
4814  * megasas_mgmt_fw_ioctl -	Issues management ioctls to FW
4815  * @instance:			Adapter soft state
4816  * @argp:			User's ioctl packet
4817  */
4818 static int
4819 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
4820 		      struct megasas_iocpacket __user * user_ioc,
4821 		      struct megasas_iocpacket *ioc)
4822 {
4823 	struct megasas_sge32 *kern_sge32;
4824 	struct megasas_cmd *cmd;
4825 	void *kbuff_arr[MAX_IOCTL_SGE];
4826 	dma_addr_t buf_handle = 0;
4827 	int error = 0, i;
4828 	void *sense = NULL;
4829 	dma_addr_t sense_handle;
4830 	unsigned long *sense_ptr;
4831 
4832 	memset(kbuff_arr, 0, sizeof(kbuff_arr));
4833 
4834 	if (ioc->sge_count > MAX_IOCTL_SGE) {
4835 		printk(KERN_DEBUG "megasas: SGE count [%d] >  max limit [%d]\n",
4836 		       ioc->sge_count, MAX_IOCTL_SGE);
4837 		return -EINVAL;
4838 	}
4839 
4840 	cmd = megasas_get_cmd(instance);
4841 	if (!cmd) {
4842 		printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
4843 		return -ENOMEM;
4844 	}
4845 
4846 	/*
4847 	 * User's IOCTL packet has 2 frames (maximum). Copy those two
4848 	 * frames into our cmd's frames. cmd->frame's context will get
4849 	 * overwritten when we copy from user's frames. So set that value
4850 	 * alone separately
4851 	 */
4852 	memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
4853 	cmd->frame->hdr.context = cmd->index;
4854 	cmd->frame->hdr.pad_0 = 0;
4855 	cmd->frame->hdr.flags &= ~(MFI_FRAME_IEEE | MFI_FRAME_SGL64 |
4856 				   MFI_FRAME_SENSE64);
4857 
4858 	/*
4859 	 * The management interface between applications and the fw uses
4860 	 * MFI frames. E.g, RAID configuration changes, LD property changes
4861 	 * etc are accomplishes through different kinds of MFI frames. The
4862 	 * driver needs to care only about substituting user buffers with
4863 	 * kernel buffers in SGLs. The location of SGL is embedded in the
4864 	 * struct iocpacket itself.
4865 	 */
4866 	kern_sge32 = (struct megasas_sge32 *)
4867 	    ((unsigned long)cmd->frame + ioc->sgl_off);
4868 
4869 	/*
4870 	 * For each user buffer, create a mirror buffer and copy in
4871 	 */
4872 	for (i = 0; i < ioc->sge_count; i++) {
4873 		if (!ioc->sgl[i].iov_len)
4874 			continue;
4875 
4876 		kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
4877 						    ioc->sgl[i].iov_len,
4878 						    &buf_handle, GFP_KERNEL);
4879 		if (!kbuff_arr[i]) {
4880 			printk(KERN_DEBUG "megasas: Failed to alloc "
4881 			       "kernel SGL buffer for IOCTL \n");
4882 			error = -ENOMEM;
4883 			goto out;
4884 		}
4885 
4886 		/*
4887 		 * We don't change the dma_coherent_mask, so
4888 		 * pci_alloc_consistent only returns 32bit addresses
4889 		 */
4890 		kern_sge32[i].phys_addr = (u32) buf_handle;
4891 		kern_sge32[i].length = ioc->sgl[i].iov_len;
4892 
4893 		/*
4894 		 * We created a kernel buffer corresponding to the
4895 		 * user buffer. Now copy in from the user buffer
4896 		 */
4897 		if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
4898 				   (u32) (ioc->sgl[i].iov_len))) {
4899 			error = -EFAULT;
4900 			goto out;
4901 		}
4902 	}
4903 
4904 	if (ioc->sense_len) {
4905 		sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
4906 					     &sense_handle, GFP_KERNEL);
4907 		if (!sense) {
4908 			error = -ENOMEM;
4909 			goto out;
4910 		}
4911 
4912 		sense_ptr =
4913 		(unsigned long *) ((unsigned long)cmd->frame + ioc->sense_off);
4914 		*sense_ptr = sense_handle;
4915 	}
4916 
4917 	/*
4918 	 * Set the sync_cmd flag so that the ISR knows not to complete this
4919 	 * cmd to the SCSI mid-layer
4920 	 */
4921 	cmd->sync_cmd = 1;
4922 	megasas_issue_blocked_cmd(instance, cmd);
4923 	cmd->sync_cmd = 0;
4924 
4925 	/*
4926 	 * copy out the kernel buffers to user buffers
4927 	 */
4928 	for (i = 0; i < ioc->sge_count; i++) {
4929 		if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
4930 				 ioc->sgl[i].iov_len)) {
4931 			error = -EFAULT;
4932 			goto out;
4933 		}
4934 	}
4935 
4936 	/*
4937 	 * copy out the sense
4938 	 */
4939 	if (ioc->sense_len) {
4940 		/*
4941 		 * sense_ptr points to the location that has the user
4942 		 * sense buffer address
4943 		 */
4944 		sense_ptr = (unsigned long *) ((unsigned long)ioc->frame.raw +
4945 				ioc->sense_off);
4946 
4947 		if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
4948 				 sense, ioc->sense_len)) {
4949 			printk(KERN_ERR "megasas: Failed to copy out to user "
4950 					"sense data\n");
4951 			error = -EFAULT;
4952 			goto out;
4953 		}
4954 	}
4955 
4956 	/*
4957 	 * copy the status codes returned by the fw
4958 	 */
4959 	if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
4960 			 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
4961 		printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
4962 		error = -EFAULT;
4963 	}
4964 
4965       out:
4966 	if (sense) {
4967 		dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
4968 				    sense, sense_handle);
4969 	}
4970 
4971 	for (i = 0; i < ioc->sge_count; i++) {
4972 		if (kbuff_arr[i])
4973 			dma_free_coherent(&instance->pdev->dev,
4974 					  kern_sge32[i].length,
4975 					  kbuff_arr[i],
4976 					  kern_sge32[i].phys_addr);
4977 	}
4978 
4979 	megasas_return_cmd(instance, cmd);
4980 	return error;
4981 }
4982 
4983 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
4984 {
4985 	struct megasas_iocpacket __user *user_ioc =
4986 	    (struct megasas_iocpacket __user *)arg;
4987 	struct megasas_iocpacket *ioc;
4988 	struct megasas_instance *instance;
4989 	int error;
4990 	int i;
4991 	unsigned long flags;
4992 	u32 wait_time = MEGASAS_RESET_WAIT_TIME;
4993 
4994 	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
4995 	if (!ioc)
4996 		return -ENOMEM;
4997 
4998 	if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
4999 		error = -EFAULT;
5000 		goto out_kfree_ioc;
5001 	}
5002 
5003 	instance = megasas_lookup_instance(ioc->host_no);
5004 	if (!instance) {
5005 		error = -ENODEV;
5006 		goto out_kfree_ioc;
5007 	}
5008 
5009 	if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
5010 		printk(KERN_ERR "Controller in crit error\n");
5011 		error = -ENODEV;
5012 		goto out_kfree_ioc;
5013 	}
5014 
5015 	if (instance->unload == 1) {
5016 		error = -ENODEV;
5017 		goto out_kfree_ioc;
5018 	}
5019 
5020 	/*
5021 	 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
5022 	 */
5023 	if (down_interruptible(&instance->ioctl_sem)) {
5024 		error = -ERESTARTSYS;
5025 		goto out_kfree_ioc;
5026 	}
5027 
5028 	for (i = 0; i < wait_time; i++) {
5029 
5030 		spin_lock_irqsave(&instance->hba_lock, flags);
5031 		if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) {
5032 			spin_unlock_irqrestore(&instance->hba_lock, flags);
5033 			break;
5034 		}
5035 		spin_unlock_irqrestore(&instance->hba_lock, flags);
5036 
5037 		if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
5038 			printk(KERN_NOTICE "megasas: waiting"
5039 				"for controller reset to finish\n");
5040 		}
5041 
5042 		msleep(1000);
5043 	}
5044 
5045 	spin_lock_irqsave(&instance->hba_lock, flags);
5046 	if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
5047 		spin_unlock_irqrestore(&instance->hba_lock, flags);
5048 
5049 		printk(KERN_ERR "megaraid_sas: timed out while"
5050 			"waiting for HBA to recover\n");
5051 		error = -ENODEV;
5052 		goto out_up;
5053 	}
5054 	spin_unlock_irqrestore(&instance->hba_lock, flags);
5055 
5056 	error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
5057       out_up:
5058 	up(&instance->ioctl_sem);
5059 
5060       out_kfree_ioc:
5061 	kfree(ioc);
5062 	return error;
5063 }
5064 
5065 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
5066 {
5067 	struct megasas_instance *instance;
5068 	struct megasas_aen aen;
5069 	int error;
5070 	int i;
5071 	unsigned long flags;
5072 	u32 wait_time = MEGASAS_RESET_WAIT_TIME;
5073 
5074 	if (file->private_data != file) {
5075 		printk(KERN_DEBUG "megasas: fasync_helper was not "
5076 		       "called first\n");
5077 		return -EINVAL;
5078 	}
5079 
5080 	if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
5081 		return -EFAULT;
5082 
5083 	instance = megasas_lookup_instance(aen.host_no);
5084 
5085 	if (!instance)
5086 		return -ENODEV;
5087 
5088 	if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
5089 		return -ENODEV;
5090 	}
5091 
5092 	if (instance->unload == 1) {
5093 		return -ENODEV;
5094 	}
5095 
5096 	for (i = 0; i < wait_time; i++) {
5097 
5098 		spin_lock_irqsave(&instance->hba_lock, flags);
5099 		if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) {
5100 			spin_unlock_irqrestore(&instance->hba_lock,
5101 						flags);
5102 			break;
5103 		}
5104 
5105 		spin_unlock_irqrestore(&instance->hba_lock, flags);
5106 
5107 		if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
5108 			printk(KERN_NOTICE "megasas: waiting for"
5109 				"controller reset to finish\n");
5110 		}
5111 
5112 		msleep(1000);
5113 	}
5114 
5115 	spin_lock_irqsave(&instance->hba_lock, flags);
5116 	if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
5117 		spin_unlock_irqrestore(&instance->hba_lock, flags);
5118 		printk(KERN_ERR "megaraid_sas: timed out while waiting"
5119 				"for HBA to recover.\n");
5120 		return -ENODEV;
5121 	}
5122 	spin_unlock_irqrestore(&instance->hba_lock, flags);
5123 
5124 	mutex_lock(&instance->aen_mutex);
5125 	error = megasas_register_aen(instance, aen.seq_num,
5126 				     aen.class_locale_word);
5127 	mutex_unlock(&instance->aen_mutex);
5128 	return error;
5129 }
5130 
5131 /**
5132  * megasas_mgmt_ioctl -	char node ioctl entry point
5133  */
5134 static long
5135 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5136 {
5137 	switch (cmd) {
5138 	case MEGASAS_IOC_FIRMWARE:
5139 		return megasas_mgmt_ioctl_fw(file, arg);
5140 
5141 	case MEGASAS_IOC_GET_AEN:
5142 		return megasas_mgmt_ioctl_aen(file, arg);
5143 	}
5144 
5145 	return -ENOTTY;
5146 }
5147 
5148 #ifdef CONFIG_COMPAT
5149 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
5150 {
5151 	struct compat_megasas_iocpacket __user *cioc =
5152 	    (struct compat_megasas_iocpacket __user *)arg;
5153 	struct megasas_iocpacket __user *ioc =
5154 	    compat_alloc_user_space(sizeof(struct megasas_iocpacket));
5155 	int i;
5156 	int error = 0;
5157 	compat_uptr_t ptr;
5158 
5159 	if (clear_user(ioc, sizeof(*ioc)))
5160 		return -EFAULT;
5161 
5162 	if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
5163 	    copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
5164 	    copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
5165 	    copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
5166 	    copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
5167 	    copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
5168 		return -EFAULT;
5169 
5170 	/*
5171 	 * The sense_ptr is used in megasas_mgmt_fw_ioctl only when
5172 	 * sense_len is not null, so prepare the 64bit value under
5173 	 * the same condition.
5174 	 */
5175 	if (ioc->sense_len) {
5176 		void __user **sense_ioc_ptr =
5177 			(void __user **)(ioc->frame.raw + ioc->sense_off);
5178 		compat_uptr_t *sense_cioc_ptr =
5179 			(compat_uptr_t *)(cioc->frame.raw + cioc->sense_off);
5180 		if (get_user(ptr, sense_cioc_ptr) ||
5181 		    put_user(compat_ptr(ptr), sense_ioc_ptr))
5182 			return -EFAULT;
5183 	}
5184 
5185 	for (i = 0; i < MAX_IOCTL_SGE; i++) {
5186 		if (get_user(ptr, &cioc->sgl[i].iov_base) ||
5187 		    put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
5188 		    copy_in_user(&ioc->sgl[i].iov_len,
5189 				 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
5190 			return -EFAULT;
5191 	}
5192 
5193 	error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
5194 
5195 	if (copy_in_user(&cioc->frame.hdr.cmd_status,
5196 			 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
5197 		printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
5198 		return -EFAULT;
5199 	}
5200 	return error;
5201 }
5202 
5203 static long
5204 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
5205 			  unsigned long arg)
5206 {
5207 	switch (cmd) {
5208 	case MEGASAS_IOC_FIRMWARE32:
5209 		return megasas_mgmt_compat_ioctl_fw(file, arg);
5210 	case MEGASAS_IOC_GET_AEN:
5211 		return megasas_mgmt_ioctl_aen(file, arg);
5212 	}
5213 
5214 	return -ENOTTY;
5215 }
5216 #endif
5217 
5218 /*
5219  * File operations structure for management interface
5220  */
5221 static const struct file_operations megasas_mgmt_fops = {
5222 	.owner = THIS_MODULE,
5223 	.open = megasas_mgmt_open,
5224 	.fasync = megasas_mgmt_fasync,
5225 	.unlocked_ioctl = megasas_mgmt_ioctl,
5226 	.poll = megasas_mgmt_poll,
5227 #ifdef CONFIG_COMPAT
5228 	.compat_ioctl = megasas_mgmt_compat_ioctl,
5229 #endif
5230 	.llseek = noop_llseek,
5231 };
5232 
5233 /*
5234  * PCI hotplug support registration structure
5235  */
5236 static struct pci_driver megasas_pci_driver = {
5237 
5238 	.name = "megaraid_sas",
5239 	.id_table = megasas_pci_table,
5240 	.probe = megasas_probe_one,
5241 	.remove = megasas_detach_one,
5242 	.suspend = megasas_suspend,
5243 	.resume = megasas_resume,
5244 	.shutdown = megasas_shutdown,
5245 };
5246 
5247 /*
5248  * Sysfs driver attributes
5249  */
5250 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
5251 {
5252 	return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
5253 			MEGASAS_VERSION);
5254 }
5255 
5256 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
5257 
5258 static ssize_t
5259 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
5260 {
5261 	return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
5262 			MEGASAS_RELDATE);
5263 }
5264 
5265 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
5266 		   NULL);
5267 
5268 static ssize_t
5269 megasas_sysfs_show_support_poll_for_event(struct device_driver *dd, char *buf)
5270 {
5271 	return sprintf(buf, "%u\n", support_poll_for_event);
5272 }
5273 
5274 static DRIVER_ATTR(support_poll_for_event, S_IRUGO,
5275 			megasas_sysfs_show_support_poll_for_event, NULL);
5276 
5277  static ssize_t
5278 megasas_sysfs_show_support_device_change(struct device_driver *dd, char *buf)
5279 {
5280 	return sprintf(buf, "%u\n", support_device_change);
5281 }
5282 
5283 static DRIVER_ATTR(support_device_change, S_IRUGO,
5284 			megasas_sysfs_show_support_device_change, NULL);
5285 
5286 static ssize_t
5287 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
5288 {
5289 	return sprintf(buf, "%u\n", megasas_dbg_lvl);
5290 }
5291 
5292 static ssize_t
5293 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
5294 {
5295 	int retval = count;
5296 	if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
5297 		printk(KERN_ERR "megasas: could not set dbg_lvl\n");
5298 		retval = -EINVAL;
5299 	}
5300 	return retval;
5301 }
5302 
5303 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUSR, megasas_sysfs_show_dbg_lvl,
5304 		megasas_sysfs_set_dbg_lvl);
5305 
5306 static void
5307 megasas_aen_polling(struct work_struct *work)
5308 {
5309 	struct megasas_aen_event *ev =
5310 		container_of(work, struct megasas_aen_event, hotplug_work.work);
5311 	struct megasas_instance *instance = ev->instance;
5312 	union megasas_evt_class_locale class_locale;
5313 	struct  Scsi_Host *host;
5314 	struct  scsi_device *sdev1;
5315 	u16     pd_index = 0;
5316 	u16	ld_index = 0;
5317 	int     i, j, doscan = 0;
5318 	u32 seq_num;
5319 	int error;
5320 
5321 	if (!instance) {
5322 		printk(KERN_ERR "invalid instance!\n");
5323 		kfree(ev);
5324 		return;
5325 	}
5326 	instance->ev = NULL;
5327 	host = instance->host;
5328 	if (instance->evt_detail) {
5329 
5330 		switch (instance->evt_detail->code) {
5331 		case MR_EVT_PD_INSERTED:
5332 			if (megasas_get_pd_list(instance) == 0) {
5333 			for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) {
5334 				for (j = 0;
5335 				j < MEGASAS_MAX_DEV_PER_CHANNEL;
5336 				j++) {
5337 
5338 				pd_index =
5339 				(i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5340 
5341 				sdev1 =
5342 				scsi_device_lookup(host, i, j, 0);
5343 
5344 				if (instance->pd_list[pd_index].driveState
5345 						== MR_PD_STATE_SYSTEM) {
5346 						if (!sdev1) {
5347 						scsi_add_device(host, i, j, 0);
5348 						}
5349 
5350 					if (sdev1)
5351 						scsi_device_put(sdev1);
5352 					}
5353 				}
5354 			}
5355 			}
5356 			doscan = 0;
5357 			break;
5358 
5359 		case MR_EVT_PD_REMOVED:
5360 			if (megasas_get_pd_list(instance) == 0) {
5361 			for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) {
5362 				for (j = 0;
5363 				j < MEGASAS_MAX_DEV_PER_CHANNEL;
5364 				j++) {
5365 
5366 				pd_index =
5367 				(i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5368 
5369 				sdev1 =
5370 				scsi_device_lookup(host, i, j, 0);
5371 
5372 				if (instance->pd_list[pd_index].driveState
5373 					== MR_PD_STATE_SYSTEM) {
5374 					if (sdev1) {
5375 						scsi_device_put(sdev1);
5376 					}
5377 				} else {
5378 					if (sdev1) {
5379 						scsi_remove_device(sdev1);
5380 						scsi_device_put(sdev1);
5381 					}
5382 				}
5383 				}
5384 			}
5385 			}
5386 			doscan = 0;
5387 			break;
5388 
5389 		case MR_EVT_LD_OFFLINE:
5390 		case MR_EVT_CFG_CLEARED:
5391 		case MR_EVT_LD_DELETED:
5392 			megasas_get_ld_list(instance);
5393 			for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) {
5394 				for (j = 0;
5395 				j < MEGASAS_MAX_DEV_PER_CHANNEL;
5396 				j++) {
5397 
5398 				ld_index =
5399 				(i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5400 
5401 				sdev1 = scsi_device_lookup(host,
5402 					i + MEGASAS_MAX_LD_CHANNELS,
5403 					j,
5404 					0);
5405 
5406 				if (instance->ld_ids[ld_index] != 0xff) {
5407 					if (sdev1) {
5408 						scsi_device_put(sdev1);
5409 					}
5410 				} else {
5411 					if (sdev1) {
5412 						scsi_remove_device(sdev1);
5413 						scsi_device_put(sdev1);
5414 					}
5415 				}
5416 				}
5417 			}
5418 			doscan = 0;
5419 			break;
5420 		case MR_EVT_LD_CREATED:
5421 			megasas_get_ld_list(instance);
5422 			for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) {
5423 				for (j = 0;
5424 					j < MEGASAS_MAX_DEV_PER_CHANNEL;
5425 					j++) {
5426 					ld_index =
5427 					(i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5428 
5429 					sdev1 = scsi_device_lookup(host,
5430 						i+MEGASAS_MAX_LD_CHANNELS,
5431 						j, 0);
5432 
5433 					if (instance->ld_ids[ld_index] !=
5434 								0xff) {
5435 						if (!sdev1) {
5436 							scsi_add_device(host,
5437 								i + 2,
5438 								j, 0);
5439 						}
5440 					}
5441 					if (sdev1) {
5442 						scsi_device_put(sdev1);
5443 					}
5444 				}
5445 			}
5446 			doscan = 0;
5447 			break;
5448 		case MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED:
5449 		case MR_EVT_FOREIGN_CFG_IMPORTED:
5450 		case MR_EVT_LD_STATE_CHANGE:
5451 			doscan = 1;
5452 			break;
5453 		default:
5454 			doscan = 0;
5455 			break;
5456 		}
5457 	} else {
5458 		printk(KERN_ERR "invalid evt_detail!\n");
5459 		kfree(ev);
5460 		return;
5461 	}
5462 
5463 	if (doscan) {
5464 		printk(KERN_INFO "scanning ...\n");
5465 		megasas_get_pd_list(instance);
5466 		for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) {
5467 			for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) {
5468 				pd_index = i*MEGASAS_MAX_DEV_PER_CHANNEL + j;
5469 				sdev1 = scsi_device_lookup(host, i, j, 0);
5470 				if (instance->pd_list[pd_index].driveState ==
5471 							MR_PD_STATE_SYSTEM) {
5472 					if (!sdev1) {
5473 						scsi_add_device(host, i, j, 0);
5474 					}
5475 					if (sdev1)
5476 						scsi_device_put(sdev1);
5477 				} else {
5478 					if (sdev1) {
5479 						scsi_remove_device(sdev1);
5480 						scsi_device_put(sdev1);
5481 					}
5482 				}
5483 			}
5484 		}
5485 
5486 		megasas_get_ld_list(instance);
5487 		for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) {
5488 			for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) {
5489 				ld_index =
5490 				(i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5491 
5492 				sdev1 = scsi_device_lookup(host,
5493 					i+MEGASAS_MAX_LD_CHANNELS, j, 0);
5494 				if (instance->ld_ids[ld_index] != 0xff) {
5495 					if (!sdev1) {
5496 						scsi_add_device(host,
5497 								i+2,
5498 								j, 0);
5499 					} else {
5500 						scsi_device_put(sdev1);
5501 					}
5502 				} else {
5503 					if (sdev1) {
5504 						scsi_remove_device(sdev1);
5505 						scsi_device_put(sdev1);
5506 					}
5507 				}
5508 			}
5509 		}
5510 	}
5511 
5512 	if ( instance->aen_cmd != NULL ) {
5513 		kfree(ev);
5514 		return ;
5515 	}
5516 
5517 	seq_num = instance->evt_detail->seq_num + 1;
5518 
5519 	/* Register AEN with FW for latest sequence number plus 1 */
5520 	class_locale.members.reserved = 0;
5521 	class_locale.members.locale = MR_EVT_LOCALE_ALL;
5522 	class_locale.members.class = MR_EVT_CLASS_DEBUG;
5523 	mutex_lock(&instance->aen_mutex);
5524 	error = megasas_register_aen(instance, seq_num,
5525 					class_locale.word);
5526 	mutex_unlock(&instance->aen_mutex);
5527 
5528 	if (error)
5529 		printk(KERN_ERR "register aen failed error %x\n", error);
5530 
5531 	kfree(ev);
5532 }
5533 
5534 /**
5535  * megasas_init - Driver load entry point
5536  */
5537 static int __init megasas_init(void)
5538 {
5539 	int rval;
5540 
5541 	/*
5542 	 * Announce driver version and other information
5543 	 */
5544 	printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
5545 	       MEGASAS_EXT_VERSION);
5546 
5547 	spin_lock_init(&poll_aen_lock);
5548 
5549 	support_poll_for_event = 2;
5550 	support_device_change = 1;
5551 
5552 	memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
5553 
5554 	/*
5555 	 * Register character device node
5556 	 */
5557 	rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
5558 
5559 	if (rval < 0) {
5560 		printk(KERN_DEBUG "megasas: failed to open device node\n");
5561 		return rval;
5562 	}
5563 
5564 	megasas_mgmt_majorno = rval;
5565 
5566 	/*
5567 	 * Register ourselves as PCI hotplug module
5568 	 */
5569 	rval = pci_register_driver(&megasas_pci_driver);
5570 
5571 	if (rval) {
5572 		printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
5573 		goto err_pcidrv;
5574 	}
5575 
5576 	rval = driver_create_file(&megasas_pci_driver.driver,
5577 				  &driver_attr_version);
5578 	if (rval)
5579 		goto err_dcf_attr_ver;
5580 	rval = driver_create_file(&megasas_pci_driver.driver,
5581 				  &driver_attr_release_date);
5582 	if (rval)
5583 		goto err_dcf_rel_date;
5584 
5585 	rval = driver_create_file(&megasas_pci_driver.driver,
5586 				&driver_attr_support_poll_for_event);
5587 	if (rval)
5588 		goto err_dcf_support_poll_for_event;
5589 
5590 	rval = driver_create_file(&megasas_pci_driver.driver,
5591 				  &driver_attr_dbg_lvl);
5592 	if (rval)
5593 		goto err_dcf_dbg_lvl;
5594 	rval = driver_create_file(&megasas_pci_driver.driver,
5595 				&driver_attr_support_device_change);
5596 	if (rval)
5597 		goto err_dcf_support_device_change;
5598 
5599 	return rval;
5600 
5601 err_dcf_support_device_change:
5602 	driver_remove_file(&megasas_pci_driver.driver,
5603 			   &driver_attr_dbg_lvl);
5604 err_dcf_dbg_lvl:
5605 	driver_remove_file(&megasas_pci_driver.driver,
5606 			&driver_attr_support_poll_for_event);
5607 
5608 err_dcf_support_poll_for_event:
5609 	driver_remove_file(&megasas_pci_driver.driver,
5610 			   &driver_attr_release_date);
5611 
5612 err_dcf_rel_date:
5613 	driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
5614 err_dcf_attr_ver:
5615 	pci_unregister_driver(&megasas_pci_driver);
5616 err_pcidrv:
5617 	unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
5618 	return rval;
5619 }
5620 
5621 /**
5622  * megasas_exit - Driver unload entry point
5623  */
5624 static void __exit megasas_exit(void)
5625 {
5626 	driver_remove_file(&megasas_pci_driver.driver,
5627 			   &driver_attr_dbg_lvl);
5628 	driver_remove_file(&megasas_pci_driver.driver,
5629 			&driver_attr_support_poll_for_event);
5630 	driver_remove_file(&megasas_pci_driver.driver,
5631 			&driver_attr_support_device_change);
5632 	driver_remove_file(&megasas_pci_driver.driver,
5633 			   &driver_attr_release_date);
5634 	driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
5635 
5636 	pci_unregister_driver(&megasas_pci_driver);
5637 	unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
5638 }
5639 
5640 module_init(megasas_init);
5641 module_exit(megasas_exit);
5642