1 /* 2 * Linux MegaRAID driver for SAS based RAID controllers 3 * 4 * Copyright (c) 2003-2012 LSI Corporation. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * FILE: megaraid_sas_base.c 21 * Version : 06.600.18.00-rc1 22 * 23 * Authors: LSI Corporation 24 * Sreenivas Bagalkote 25 * Sumant Patro 26 * Bo Yang 27 * Adam Radford <linuxraid@lsi.com> 28 * 29 * Send feedback to: <megaraidlinux@lsi.com> 30 * 31 * Mail to: LSI Corporation, 1621 Barber Lane, Milpitas, CA 95035 32 * ATTN: Linuxraid 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/types.h> 37 #include <linux/pci.h> 38 #include <linux/list.h> 39 #include <linux/moduleparam.h> 40 #include <linux/module.h> 41 #include <linux/spinlock.h> 42 #include <linux/interrupt.h> 43 #include <linux/delay.h> 44 #include <linux/uio.h> 45 #include <linux/slab.h> 46 #include <asm/uaccess.h> 47 #include <linux/fs.h> 48 #include <linux/compat.h> 49 #include <linux/blkdev.h> 50 #include <linux/mutex.h> 51 #include <linux/poll.h> 52 53 #include <scsi/scsi.h> 54 #include <scsi/scsi_cmnd.h> 55 #include <scsi/scsi_device.h> 56 #include <scsi/scsi_host.h> 57 #include <scsi/scsi_tcq.h> 58 #include "megaraid_sas_fusion.h" 59 #include "megaraid_sas.h" 60 61 /* 62 * Number of sectors per IO command 63 * Will be set in megasas_init_mfi if user does not provide 64 */ 65 static unsigned int max_sectors; 66 module_param_named(max_sectors, max_sectors, int, 0); 67 MODULE_PARM_DESC(max_sectors, 68 "Maximum number of sectors per IO command"); 69 70 static int msix_disable; 71 module_param(msix_disable, int, S_IRUGO); 72 MODULE_PARM_DESC(msix_disable, "Disable MSI-X interrupt handling. Default: 0"); 73 74 static unsigned int msix_vectors; 75 module_param(msix_vectors, int, S_IRUGO); 76 MODULE_PARM_DESC(msix_vectors, "MSI-X max vector count. Default: Set by FW"); 77 78 static int throttlequeuedepth = MEGASAS_THROTTLE_QUEUE_DEPTH; 79 module_param(throttlequeuedepth, int, S_IRUGO); 80 MODULE_PARM_DESC(throttlequeuedepth, 81 "Adapter queue depth when throttled due to I/O timeout. Default: 16"); 82 83 int resetwaittime = MEGASAS_RESET_WAIT_TIME; 84 module_param(resetwaittime, int, S_IRUGO); 85 MODULE_PARM_DESC(resetwaittime, "Wait time in seconds after I/O timeout " 86 "before resetting adapter. Default: 180"); 87 88 MODULE_LICENSE("GPL"); 89 MODULE_VERSION(MEGASAS_VERSION); 90 MODULE_AUTHOR("megaraidlinux@lsi.com"); 91 MODULE_DESCRIPTION("LSI MegaRAID SAS Driver"); 92 93 int megasas_transition_to_ready(struct megasas_instance *instance, int ocr); 94 static int megasas_get_pd_list(struct megasas_instance *instance); 95 static int megasas_issue_init_mfi(struct megasas_instance *instance); 96 static int megasas_register_aen(struct megasas_instance *instance, 97 u32 seq_num, u32 class_locale_word); 98 /* 99 * PCI ID table for all supported controllers 100 */ 101 static struct pci_device_id megasas_pci_table[] = { 102 103 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)}, 104 /* xscale IOP */ 105 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)}, 106 /* ppc IOP */ 107 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)}, 108 /* ppc IOP */ 109 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078GEN2)}, 110 /* gen2*/ 111 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0079GEN2)}, 112 /* gen2*/ 113 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0073SKINNY)}, 114 /* skinny*/ 115 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0071SKINNY)}, 116 /* skinny*/ 117 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)}, 118 /* xscale IOP, vega */ 119 {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)}, 120 /* xscale IOP */ 121 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FUSION)}, 122 /* Fusion */ 123 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_INVADER)}, 124 /* Invader */ 125 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FURY)}, 126 /* Fury */ 127 {} 128 }; 129 130 MODULE_DEVICE_TABLE(pci, megasas_pci_table); 131 132 static int megasas_mgmt_majorno; 133 static struct megasas_mgmt_info megasas_mgmt_info; 134 static struct fasync_struct *megasas_async_queue; 135 static DEFINE_MUTEX(megasas_async_queue_mutex); 136 137 static int megasas_poll_wait_aen; 138 static DECLARE_WAIT_QUEUE_HEAD(megasas_poll_wait); 139 static u32 support_poll_for_event; 140 u32 megasas_dbg_lvl; 141 static u32 support_device_change; 142 143 /* define lock for aen poll */ 144 spinlock_t poll_aen_lock; 145 146 void 147 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd, 148 u8 alt_status); 149 static u32 150 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs); 151 static int 152 megasas_adp_reset_gen2(struct megasas_instance *instance, 153 struct megasas_register_set __iomem *reg_set); 154 static irqreturn_t megasas_isr(int irq, void *devp); 155 static u32 156 megasas_init_adapter_mfi(struct megasas_instance *instance); 157 u32 158 megasas_build_and_issue_cmd(struct megasas_instance *instance, 159 struct scsi_cmnd *scmd); 160 static void megasas_complete_cmd_dpc(unsigned long instance_addr); 161 void 162 megasas_release_fusion(struct megasas_instance *instance); 163 int 164 megasas_ioc_init_fusion(struct megasas_instance *instance); 165 void 166 megasas_free_cmds_fusion(struct megasas_instance *instance); 167 u8 168 megasas_get_map_info(struct megasas_instance *instance); 169 int 170 megasas_sync_map_info(struct megasas_instance *instance); 171 int 172 wait_and_poll(struct megasas_instance *instance, struct megasas_cmd *cmd); 173 void megasas_reset_reply_desc(struct megasas_instance *instance); 174 int megasas_reset_fusion(struct Scsi_Host *shost); 175 void megasas_fusion_ocr_wq(struct work_struct *work); 176 177 void 178 megasas_issue_dcmd(struct megasas_instance *instance, struct megasas_cmd *cmd) 179 { 180 instance->instancet->fire_cmd(instance, 181 cmd->frame_phys_addr, 0, instance->reg_set); 182 } 183 184 /** 185 * megasas_get_cmd - Get a command from the free pool 186 * @instance: Adapter soft state 187 * 188 * Returns a free command from the pool 189 */ 190 struct megasas_cmd *megasas_get_cmd(struct megasas_instance 191 *instance) 192 { 193 unsigned long flags; 194 struct megasas_cmd *cmd = NULL; 195 196 spin_lock_irqsave(&instance->cmd_pool_lock, flags); 197 198 if (!list_empty(&instance->cmd_pool)) { 199 cmd = list_entry((&instance->cmd_pool)->next, 200 struct megasas_cmd, list); 201 list_del_init(&cmd->list); 202 } else { 203 printk(KERN_ERR "megasas: Command pool empty!\n"); 204 } 205 206 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags); 207 return cmd; 208 } 209 210 /** 211 * megasas_return_cmd - Return a cmd to free command pool 212 * @instance: Adapter soft state 213 * @cmd: Command packet to be returned to free command pool 214 */ 215 inline void 216 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd) 217 { 218 unsigned long flags; 219 220 spin_lock_irqsave(&instance->cmd_pool_lock, flags); 221 222 cmd->scmd = NULL; 223 cmd->frame_count = 0; 224 if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) && 225 (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) && 226 (instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) && 227 (reset_devices)) 228 cmd->frame->hdr.cmd = MFI_CMD_INVALID; 229 list_add_tail(&cmd->list, &instance->cmd_pool); 230 231 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags); 232 } 233 234 235 /** 236 * The following functions are defined for xscale 237 * (deviceid : 1064R, PERC5) controllers 238 */ 239 240 /** 241 * megasas_enable_intr_xscale - Enables interrupts 242 * @regs: MFI register set 243 */ 244 static inline void 245 megasas_enable_intr_xscale(struct megasas_instance *instance) 246 { 247 struct megasas_register_set __iomem *regs; 248 regs = instance->reg_set; 249 writel(0, &(regs)->outbound_intr_mask); 250 251 /* Dummy readl to force pci flush */ 252 readl(®s->outbound_intr_mask); 253 } 254 255 /** 256 * megasas_disable_intr_xscale -Disables interrupt 257 * @regs: MFI register set 258 */ 259 static inline void 260 megasas_disable_intr_xscale(struct megasas_instance *instance) 261 { 262 struct megasas_register_set __iomem *regs; 263 u32 mask = 0x1f; 264 regs = instance->reg_set; 265 writel(mask, ®s->outbound_intr_mask); 266 /* Dummy readl to force pci flush */ 267 readl(®s->outbound_intr_mask); 268 } 269 270 /** 271 * megasas_read_fw_status_reg_xscale - returns the current FW status value 272 * @regs: MFI register set 273 */ 274 static u32 275 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs) 276 { 277 return readl(&(regs)->outbound_msg_0); 278 } 279 /** 280 * megasas_clear_interrupt_xscale - Check & clear interrupt 281 * @regs: MFI register set 282 */ 283 static int 284 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs) 285 { 286 u32 status; 287 u32 mfiStatus = 0; 288 /* 289 * Check if it is our interrupt 290 */ 291 status = readl(®s->outbound_intr_status); 292 293 if (status & MFI_OB_INTR_STATUS_MASK) 294 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; 295 if (status & MFI_XSCALE_OMR0_CHANGE_INTERRUPT) 296 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; 297 298 /* 299 * Clear the interrupt by writing back the same value 300 */ 301 if (mfiStatus) 302 writel(status, ®s->outbound_intr_status); 303 304 /* Dummy readl to force pci flush */ 305 readl(®s->outbound_intr_status); 306 307 return mfiStatus; 308 } 309 310 /** 311 * megasas_fire_cmd_xscale - Sends command to the FW 312 * @frame_phys_addr : Physical address of cmd 313 * @frame_count : Number of frames for the command 314 * @regs : MFI register set 315 */ 316 static inline void 317 megasas_fire_cmd_xscale(struct megasas_instance *instance, 318 dma_addr_t frame_phys_addr, 319 u32 frame_count, 320 struct megasas_register_set __iomem *regs) 321 { 322 unsigned long flags; 323 spin_lock_irqsave(&instance->hba_lock, flags); 324 writel((frame_phys_addr >> 3)|(frame_count), 325 &(regs)->inbound_queue_port); 326 spin_unlock_irqrestore(&instance->hba_lock, flags); 327 } 328 329 /** 330 * megasas_adp_reset_xscale - For controller reset 331 * @regs: MFI register set 332 */ 333 static int 334 megasas_adp_reset_xscale(struct megasas_instance *instance, 335 struct megasas_register_set __iomem *regs) 336 { 337 u32 i; 338 u32 pcidata; 339 writel(MFI_ADP_RESET, ®s->inbound_doorbell); 340 341 for (i = 0; i < 3; i++) 342 msleep(1000); /* sleep for 3 secs */ 343 pcidata = 0; 344 pci_read_config_dword(instance->pdev, MFI_1068_PCSR_OFFSET, &pcidata); 345 printk(KERN_NOTICE "pcidata = %x\n", pcidata); 346 if (pcidata & 0x2) { 347 printk(KERN_NOTICE "mfi 1068 offset read=%x\n", pcidata); 348 pcidata &= ~0x2; 349 pci_write_config_dword(instance->pdev, 350 MFI_1068_PCSR_OFFSET, pcidata); 351 352 for (i = 0; i < 2; i++) 353 msleep(1000); /* need to wait 2 secs again */ 354 355 pcidata = 0; 356 pci_read_config_dword(instance->pdev, 357 MFI_1068_FW_HANDSHAKE_OFFSET, &pcidata); 358 printk(KERN_NOTICE "1068 offset handshake read=%x\n", pcidata); 359 if ((pcidata & 0xffff0000) == MFI_1068_FW_READY) { 360 printk(KERN_NOTICE "1068 offset pcidt=%x\n", pcidata); 361 pcidata = 0; 362 pci_write_config_dword(instance->pdev, 363 MFI_1068_FW_HANDSHAKE_OFFSET, pcidata); 364 } 365 } 366 return 0; 367 } 368 369 /** 370 * megasas_check_reset_xscale - For controller reset check 371 * @regs: MFI register set 372 */ 373 static int 374 megasas_check_reset_xscale(struct megasas_instance *instance, 375 struct megasas_register_set __iomem *regs) 376 { 377 u32 consumer; 378 consumer = *instance->consumer; 379 380 if ((instance->adprecovery != MEGASAS_HBA_OPERATIONAL) && 381 (*instance->consumer == MEGASAS_ADPRESET_INPROG_SIGN)) { 382 return 1; 383 } 384 return 0; 385 } 386 387 static struct megasas_instance_template megasas_instance_template_xscale = { 388 389 .fire_cmd = megasas_fire_cmd_xscale, 390 .enable_intr = megasas_enable_intr_xscale, 391 .disable_intr = megasas_disable_intr_xscale, 392 .clear_intr = megasas_clear_intr_xscale, 393 .read_fw_status_reg = megasas_read_fw_status_reg_xscale, 394 .adp_reset = megasas_adp_reset_xscale, 395 .check_reset = megasas_check_reset_xscale, 396 .service_isr = megasas_isr, 397 .tasklet = megasas_complete_cmd_dpc, 398 .init_adapter = megasas_init_adapter_mfi, 399 .build_and_issue_cmd = megasas_build_and_issue_cmd, 400 .issue_dcmd = megasas_issue_dcmd, 401 }; 402 403 /** 404 * This is the end of set of functions & definitions specific 405 * to xscale (deviceid : 1064R, PERC5) controllers 406 */ 407 408 /** 409 * The following functions are defined for ppc (deviceid : 0x60) 410 * controllers 411 */ 412 413 /** 414 * megasas_enable_intr_ppc - Enables interrupts 415 * @regs: MFI register set 416 */ 417 static inline void 418 megasas_enable_intr_ppc(struct megasas_instance *instance) 419 { 420 struct megasas_register_set __iomem *regs; 421 regs = instance->reg_set; 422 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear); 423 424 writel(~0x80000000, &(regs)->outbound_intr_mask); 425 426 /* Dummy readl to force pci flush */ 427 readl(®s->outbound_intr_mask); 428 } 429 430 /** 431 * megasas_disable_intr_ppc - Disable interrupt 432 * @regs: MFI register set 433 */ 434 static inline void 435 megasas_disable_intr_ppc(struct megasas_instance *instance) 436 { 437 struct megasas_register_set __iomem *regs; 438 u32 mask = 0xFFFFFFFF; 439 regs = instance->reg_set; 440 writel(mask, ®s->outbound_intr_mask); 441 /* Dummy readl to force pci flush */ 442 readl(®s->outbound_intr_mask); 443 } 444 445 /** 446 * megasas_read_fw_status_reg_ppc - returns the current FW status value 447 * @regs: MFI register set 448 */ 449 static u32 450 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs) 451 { 452 return readl(&(regs)->outbound_scratch_pad); 453 } 454 455 /** 456 * megasas_clear_interrupt_ppc - Check & clear interrupt 457 * @regs: MFI register set 458 */ 459 static int 460 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs) 461 { 462 u32 status, mfiStatus = 0; 463 464 /* 465 * Check if it is our interrupt 466 */ 467 status = readl(®s->outbound_intr_status); 468 469 if (status & MFI_REPLY_1078_MESSAGE_INTERRUPT) 470 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; 471 472 if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) 473 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; 474 475 /* 476 * Clear the interrupt by writing back the same value 477 */ 478 writel(status, ®s->outbound_doorbell_clear); 479 480 /* Dummy readl to force pci flush */ 481 readl(®s->outbound_doorbell_clear); 482 483 return mfiStatus; 484 } 485 486 /** 487 * megasas_fire_cmd_ppc - Sends command to the FW 488 * @frame_phys_addr : Physical address of cmd 489 * @frame_count : Number of frames for the command 490 * @regs : MFI register set 491 */ 492 static inline void 493 megasas_fire_cmd_ppc(struct megasas_instance *instance, 494 dma_addr_t frame_phys_addr, 495 u32 frame_count, 496 struct megasas_register_set __iomem *regs) 497 { 498 unsigned long flags; 499 spin_lock_irqsave(&instance->hba_lock, flags); 500 writel((frame_phys_addr | (frame_count<<1))|1, 501 &(regs)->inbound_queue_port); 502 spin_unlock_irqrestore(&instance->hba_lock, flags); 503 } 504 505 /** 506 * megasas_check_reset_ppc - For controller reset check 507 * @regs: MFI register set 508 */ 509 static int 510 megasas_check_reset_ppc(struct megasas_instance *instance, 511 struct megasas_register_set __iomem *regs) 512 { 513 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) 514 return 1; 515 516 return 0; 517 } 518 519 static struct megasas_instance_template megasas_instance_template_ppc = { 520 521 .fire_cmd = megasas_fire_cmd_ppc, 522 .enable_intr = megasas_enable_intr_ppc, 523 .disable_intr = megasas_disable_intr_ppc, 524 .clear_intr = megasas_clear_intr_ppc, 525 .read_fw_status_reg = megasas_read_fw_status_reg_ppc, 526 .adp_reset = megasas_adp_reset_xscale, 527 .check_reset = megasas_check_reset_ppc, 528 .service_isr = megasas_isr, 529 .tasklet = megasas_complete_cmd_dpc, 530 .init_adapter = megasas_init_adapter_mfi, 531 .build_and_issue_cmd = megasas_build_and_issue_cmd, 532 .issue_dcmd = megasas_issue_dcmd, 533 }; 534 535 /** 536 * megasas_enable_intr_skinny - Enables interrupts 537 * @regs: MFI register set 538 */ 539 static inline void 540 megasas_enable_intr_skinny(struct megasas_instance *instance) 541 { 542 struct megasas_register_set __iomem *regs; 543 regs = instance->reg_set; 544 writel(0xFFFFFFFF, &(regs)->outbound_intr_mask); 545 546 writel(~MFI_SKINNY_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask); 547 548 /* Dummy readl to force pci flush */ 549 readl(®s->outbound_intr_mask); 550 } 551 552 /** 553 * megasas_disable_intr_skinny - Disables interrupt 554 * @regs: MFI register set 555 */ 556 static inline void 557 megasas_disable_intr_skinny(struct megasas_instance *instance) 558 { 559 struct megasas_register_set __iomem *regs; 560 u32 mask = 0xFFFFFFFF; 561 regs = instance->reg_set; 562 writel(mask, ®s->outbound_intr_mask); 563 /* Dummy readl to force pci flush */ 564 readl(®s->outbound_intr_mask); 565 } 566 567 /** 568 * megasas_read_fw_status_reg_skinny - returns the current FW status value 569 * @regs: MFI register set 570 */ 571 static u32 572 megasas_read_fw_status_reg_skinny(struct megasas_register_set __iomem *regs) 573 { 574 return readl(&(regs)->outbound_scratch_pad); 575 } 576 577 /** 578 * megasas_clear_interrupt_skinny - Check & clear interrupt 579 * @regs: MFI register set 580 */ 581 static int 582 megasas_clear_intr_skinny(struct megasas_register_set __iomem *regs) 583 { 584 u32 status; 585 u32 mfiStatus = 0; 586 587 /* 588 * Check if it is our interrupt 589 */ 590 status = readl(®s->outbound_intr_status); 591 592 if (!(status & MFI_SKINNY_ENABLE_INTERRUPT_MASK)) { 593 return 0; 594 } 595 596 /* 597 * Check if it is our interrupt 598 */ 599 if ((megasas_read_fw_status_reg_skinny(regs) & MFI_STATE_MASK) == 600 MFI_STATE_FAULT) { 601 mfiStatus = MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; 602 } else 603 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; 604 605 /* 606 * Clear the interrupt by writing back the same value 607 */ 608 writel(status, ®s->outbound_intr_status); 609 610 /* 611 * dummy read to flush PCI 612 */ 613 readl(®s->outbound_intr_status); 614 615 return mfiStatus; 616 } 617 618 /** 619 * megasas_fire_cmd_skinny - Sends command to the FW 620 * @frame_phys_addr : Physical address of cmd 621 * @frame_count : Number of frames for the command 622 * @regs : MFI register set 623 */ 624 static inline void 625 megasas_fire_cmd_skinny(struct megasas_instance *instance, 626 dma_addr_t frame_phys_addr, 627 u32 frame_count, 628 struct megasas_register_set __iomem *regs) 629 { 630 unsigned long flags; 631 spin_lock_irqsave(&instance->hba_lock, flags); 632 writel(0, &(regs)->inbound_high_queue_port); 633 writel((frame_phys_addr | (frame_count<<1))|1, 634 &(regs)->inbound_low_queue_port); 635 spin_unlock_irqrestore(&instance->hba_lock, flags); 636 } 637 638 /** 639 * megasas_check_reset_skinny - For controller reset check 640 * @regs: MFI register set 641 */ 642 static int 643 megasas_check_reset_skinny(struct megasas_instance *instance, 644 struct megasas_register_set __iomem *regs) 645 { 646 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) 647 return 1; 648 649 return 0; 650 } 651 652 static struct megasas_instance_template megasas_instance_template_skinny = { 653 654 .fire_cmd = megasas_fire_cmd_skinny, 655 .enable_intr = megasas_enable_intr_skinny, 656 .disable_intr = megasas_disable_intr_skinny, 657 .clear_intr = megasas_clear_intr_skinny, 658 .read_fw_status_reg = megasas_read_fw_status_reg_skinny, 659 .adp_reset = megasas_adp_reset_gen2, 660 .check_reset = megasas_check_reset_skinny, 661 .service_isr = megasas_isr, 662 .tasklet = megasas_complete_cmd_dpc, 663 .init_adapter = megasas_init_adapter_mfi, 664 .build_and_issue_cmd = megasas_build_and_issue_cmd, 665 .issue_dcmd = megasas_issue_dcmd, 666 }; 667 668 669 /** 670 * The following functions are defined for gen2 (deviceid : 0x78 0x79) 671 * controllers 672 */ 673 674 /** 675 * megasas_enable_intr_gen2 - Enables interrupts 676 * @regs: MFI register set 677 */ 678 static inline void 679 megasas_enable_intr_gen2(struct megasas_instance *instance) 680 { 681 struct megasas_register_set __iomem *regs; 682 regs = instance->reg_set; 683 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear); 684 685 /* write ~0x00000005 (4 & 1) to the intr mask*/ 686 writel(~MFI_GEN2_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask); 687 688 /* Dummy readl to force pci flush */ 689 readl(®s->outbound_intr_mask); 690 } 691 692 /** 693 * megasas_disable_intr_gen2 - Disables interrupt 694 * @regs: MFI register set 695 */ 696 static inline void 697 megasas_disable_intr_gen2(struct megasas_instance *instance) 698 { 699 struct megasas_register_set __iomem *regs; 700 u32 mask = 0xFFFFFFFF; 701 regs = instance->reg_set; 702 writel(mask, ®s->outbound_intr_mask); 703 /* Dummy readl to force pci flush */ 704 readl(®s->outbound_intr_mask); 705 } 706 707 /** 708 * megasas_read_fw_status_reg_gen2 - returns the current FW status value 709 * @regs: MFI register set 710 */ 711 static u32 712 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs) 713 { 714 return readl(&(regs)->outbound_scratch_pad); 715 } 716 717 /** 718 * megasas_clear_interrupt_gen2 - Check & clear interrupt 719 * @regs: MFI register set 720 */ 721 static int 722 megasas_clear_intr_gen2(struct megasas_register_set __iomem *regs) 723 { 724 u32 status; 725 u32 mfiStatus = 0; 726 /* 727 * Check if it is our interrupt 728 */ 729 status = readl(®s->outbound_intr_status); 730 731 if (status & MFI_INTR_FLAG_REPLY_MESSAGE) { 732 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; 733 } 734 if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) { 735 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; 736 } 737 738 /* 739 * Clear the interrupt by writing back the same value 740 */ 741 if (mfiStatus) 742 writel(status, ®s->outbound_doorbell_clear); 743 744 /* Dummy readl to force pci flush */ 745 readl(®s->outbound_intr_status); 746 747 return mfiStatus; 748 } 749 /** 750 * megasas_fire_cmd_gen2 - Sends command to the FW 751 * @frame_phys_addr : Physical address of cmd 752 * @frame_count : Number of frames for the command 753 * @regs : MFI register set 754 */ 755 static inline void 756 megasas_fire_cmd_gen2(struct megasas_instance *instance, 757 dma_addr_t frame_phys_addr, 758 u32 frame_count, 759 struct megasas_register_set __iomem *regs) 760 { 761 unsigned long flags; 762 spin_lock_irqsave(&instance->hba_lock, flags); 763 writel((frame_phys_addr | (frame_count<<1))|1, 764 &(regs)->inbound_queue_port); 765 spin_unlock_irqrestore(&instance->hba_lock, flags); 766 } 767 768 /** 769 * megasas_adp_reset_gen2 - For controller reset 770 * @regs: MFI register set 771 */ 772 static int 773 megasas_adp_reset_gen2(struct megasas_instance *instance, 774 struct megasas_register_set __iomem *reg_set) 775 { 776 u32 retry = 0 ; 777 u32 HostDiag; 778 u32 *seq_offset = ®_set->seq_offset; 779 u32 *hostdiag_offset = ®_set->host_diag; 780 781 if (instance->instancet == &megasas_instance_template_skinny) { 782 seq_offset = ®_set->fusion_seq_offset; 783 hostdiag_offset = ®_set->fusion_host_diag; 784 } 785 786 writel(0, seq_offset); 787 writel(4, seq_offset); 788 writel(0xb, seq_offset); 789 writel(2, seq_offset); 790 writel(7, seq_offset); 791 writel(0xd, seq_offset); 792 793 msleep(1000); 794 795 HostDiag = (u32)readl(hostdiag_offset); 796 797 while ( !( HostDiag & DIAG_WRITE_ENABLE) ) { 798 msleep(100); 799 HostDiag = (u32)readl(hostdiag_offset); 800 printk(KERN_NOTICE "RESETGEN2: retry=%x, hostdiag=%x\n", 801 retry, HostDiag); 802 803 if (retry++ >= 100) 804 return 1; 805 806 } 807 808 printk(KERN_NOTICE "ADP_RESET_GEN2: HostDiag=%x\n", HostDiag); 809 810 writel((HostDiag | DIAG_RESET_ADAPTER), hostdiag_offset); 811 812 ssleep(10); 813 814 HostDiag = (u32)readl(hostdiag_offset); 815 while ( ( HostDiag & DIAG_RESET_ADAPTER) ) { 816 msleep(100); 817 HostDiag = (u32)readl(hostdiag_offset); 818 printk(KERN_NOTICE "RESET_GEN2: retry=%x, hostdiag=%x\n", 819 retry, HostDiag); 820 821 if (retry++ >= 1000) 822 return 1; 823 824 } 825 return 0; 826 } 827 828 /** 829 * megasas_check_reset_gen2 - For controller reset check 830 * @regs: MFI register set 831 */ 832 static int 833 megasas_check_reset_gen2(struct megasas_instance *instance, 834 struct megasas_register_set __iomem *regs) 835 { 836 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { 837 return 1; 838 } 839 840 return 0; 841 } 842 843 static struct megasas_instance_template megasas_instance_template_gen2 = { 844 845 .fire_cmd = megasas_fire_cmd_gen2, 846 .enable_intr = megasas_enable_intr_gen2, 847 .disable_intr = megasas_disable_intr_gen2, 848 .clear_intr = megasas_clear_intr_gen2, 849 .read_fw_status_reg = megasas_read_fw_status_reg_gen2, 850 .adp_reset = megasas_adp_reset_gen2, 851 .check_reset = megasas_check_reset_gen2, 852 .service_isr = megasas_isr, 853 .tasklet = megasas_complete_cmd_dpc, 854 .init_adapter = megasas_init_adapter_mfi, 855 .build_and_issue_cmd = megasas_build_and_issue_cmd, 856 .issue_dcmd = megasas_issue_dcmd, 857 }; 858 859 /** 860 * This is the end of set of functions & definitions 861 * specific to gen2 (deviceid : 0x78, 0x79) controllers 862 */ 863 864 /* 865 * Template added for TB (Fusion) 866 */ 867 extern struct megasas_instance_template megasas_instance_template_fusion; 868 869 /** 870 * megasas_issue_polled - Issues a polling command 871 * @instance: Adapter soft state 872 * @cmd: Command packet to be issued 873 * 874 * For polling, MFI requires the cmd_status to be set to 0xFF before posting. 875 */ 876 int 877 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd) 878 { 879 880 struct megasas_header *frame_hdr = &cmd->frame->hdr; 881 882 frame_hdr->cmd_status = 0xFF; 883 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE; 884 885 /* 886 * Issue the frame using inbound queue port 887 */ 888 instance->instancet->issue_dcmd(instance, cmd); 889 890 /* 891 * Wait for cmd_status to change 892 */ 893 return wait_and_poll(instance, cmd); 894 } 895 896 /** 897 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds 898 * @instance: Adapter soft state 899 * @cmd: Command to be issued 900 * 901 * This function waits on an event for the command to be returned from ISR. 902 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs 903 * Used to issue ioctl commands. 904 */ 905 static int 906 megasas_issue_blocked_cmd(struct megasas_instance *instance, 907 struct megasas_cmd *cmd) 908 { 909 cmd->cmd_status = ENODATA; 910 911 instance->instancet->issue_dcmd(instance, cmd); 912 913 wait_event(instance->int_cmd_wait_q, cmd->cmd_status != ENODATA); 914 915 return 0; 916 } 917 918 /** 919 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd 920 * @instance: Adapter soft state 921 * @cmd_to_abort: Previously issued cmd to be aborted 922 * 923 * MFI firmware can abort previously issued AEN command (automatic event 924 * notification). The megasas_issue_blocked_abort_cmd() issues such abort 925 * cmd and waits for return status. 926 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs 927 */ 928 static int 929 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance, 930 struct megasas_cmd *cmd_to_abort) 931 { 932 struct megasas_cmd *cmd; 933 struct megasas_abort_frame *abort_fr; 934 935 cmd = megasas_get_cmd(instance); 936 937 if (!cmd) 938 return -1; 939 940 abort_fr = &cmd->frame->abort; 941 942 /* 943 * Prepare and issue the abort frame 944 */ 945 abort_fr->cmd = MFI_CMD_ABORT; 946 abort_fr->cmd_status = 0xFF; 947 abort_fr->flags = 0; 948 abort_fr->abort_context = cmd_to_abort->index; 949 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr; 950 abort_fr->abort_mfi_phys_addr_hi = 0; 951 952 cmd->sync_cmd = 1; 953 cmd->cmd_status = 0xFF; 954 955 instance->instancet->issue_dcmd(instance, cmd); 956 957 /* 958 * Wait for this cmd to complete 959 */ 960 wait_event(instance->abort_cmd_wait_q, cmd->cmd_status != 0xFF); 961 cmd->sync_cmd = 0; 962 963 megasas_return_cmd(instance, cmd); 964 return 0; 965 } 966 967 /** 968 * megasas_make_sgl32 - Prepares 32-bit SGL 969 * @instance: Adapter soft state 970 * @scp: SCSI command from the mid-layer 971 * @mfi_sgl: SGL to be filled in 972 * 973 * If successful, this function returns the number of SG elements. Otherwise, 974 * it returnes -1. 975 */ 976 static int 977 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp, 978 union megasas_sgl *mfi_sgl) 979 { 980 int i; 981 int sge_count; 982 struct scatterlist *os_sgl; 983 984 sge_count = scsi_dma_map(scp); 985 BUG_ON(sge_count < 0); 986 987 if (sge_count) { 988 scsi_for_each_sg(scp, os_sgl, sge_count, i) { 989 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl); 990 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl); 991 } 992 } 993 return sge_count; 994 } 995 996 /** 997 * megasas_make_sgl64 - Prepares 64-bit SGL 998 * @instance: Adapter soft state 999 * @scp: SCSI command from the mid-layer 1000 * @mfi_sgl: SGL to be filled in 1001 * 1002 * If successful, this function returns the number of SG elements. Otherwise, 1003 * it returnes -1. 1004 */ 1005 static int 1006 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp, 1007 union megasas_sgl *mfi_sgl) 1008 { 1009 int i; 1010 int sge_count; 1011 struct scatterlist *os_sgl; 1012 1013 sge_count = scsi_dma_map(scp); 1014 BUG_ON(sge_count < 0); 1015 1016 if (sge_count) { 1017 scsi_for_each_sg(scp, os_sgl, sge_count, i) { 1018 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl); 1019 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl); 1020 } 1021 } 1022 return sge_count; 1023 } 1024 1025 /** 1026 * megasas_make_sgl_skinny - Prepares IEEE SGL 1027 * @instance: Adapter soft state 1028 * @scp: SCSI command from the mid-layer 1029 * @mfi_sgl: SGL to be filled in 1030 * 1031 * If successful, this function returns the number of SG elements. Otherwise, 1032 * it returnes -1. 1033 */ 1034 static int 1035 megasas_make_sgl_skinny(struct megasas_instance *instance, 1036 struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl) 1037 { 1038 int i; 1039 int sge_count; 1040 struct scatterlist *os_sgl; 1041 1042 sge_count = scsi_dma_map(scp); 1043 1044 if (sge_count) { 1045 scsi_for_each_sg(scp, os_sgl, sge_count, i) { 1046 mfi_sgl->sge_skinny[i].length = sg_dma_len(os_sgl); 1047 mfi_sgl->sge_skinny[i].phys_addr = 1048 sg_dma_address(os_sgl); 1049 mfi_sgl->sge_skinny[i].flag = 0; 1050 } 1051 } 1052 return sge_count; 1053 } 1054 1055 /** 1056 * megasas_get_frame_count - Computes the number of frames 1057 * @frame_type : type of frame- io or pthru frame 1058 * @sge_count : number of sg elements 1059 * 1060 * Returns the number of frames required for numnber of sge's (sge_count) 1061 */ 1062 1063 static u32 megasas_get_frame_count(struct megasas_instance *instance, 1064 u8 sge_count, u8 frame_type) 1065 { 1066 int num_cnt; 1067 int sge_bytes; 1068 u32 sge_sz; 1069 u32 frame_count=0; 1070 1071 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) : 1072 sizeof(struct megasas_sge32); 1073 1074 if (instance->flag_ieee) { 1075 sge_sz = sizeof(struct megasas_sge_skinny); 1076 } 1077 1078 /* 1079 * Main frame can contain 2 SGEs for 64-bit SGLs and 1080 * 3 SGEs for 32-bit SGLs for ldio & 1081 * 1 SGEs for 64-bit SGLs and 1082 * 2 SGEs for 32-bit SGLs for pthru frame 1083 */ 1084 if (unlikely(frame_type == PTHRU_FRAME)) { 1085 if (instance->flag_ieee == 1) { 1086 num_cnt = sge_count - 1; 1087 } else if (IS_DMA64) 1088 num_cnt = sge_count - 1; 1089 else 1090 num_cnt = sge_count - 2; 1091 } else { 1092 if (instance->flag_ieee == 1) { 1093 num_cnt = sge_count - 1; 1094 } else if (IS_DMA64) 1095 num_cnt = sge_count - 2; 1096 else 1097 num_cnt = sge_count - 3; 1098 } 1099 1100 if(num_cnt>0){ 1101 sge_bytes = sge_sz * num_cnt; 1102 1103 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) + 1104 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ; 1105 } 1106 /* Main frame */ 1107 frame_count +=1; 1108 1109 if (frame_count > 7) 1110 frame_count = 8; 1111 return frame_count; 1112 } 1113 1114 /** 1115 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command 1116 * @instance: Adapter soft state 1117 * @scp: SCSI command 1118 * @cmd: Command to be prepared in 1119 * 1120 * This function prepares CDB commands. These are typcially pass-through 1121 * commands to the devices. 1122 */ 1123 static int 1124 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp, 1125 struct megasas_cmd *cmd) 1126 { 1127 u32 is_logical; 1128 u32 device_id; 1129 u16 flags = 0; 1130 struct megasas_pthru_frame *pthru; 1131 1132 is_logical = MEGASAS_IS_LOGICAL(scp); 1133 device_id = MEGASAS_DEV_INDEX(instance, scp); 1134 pthru = (struct megasas_pthru_frame *)cmd->frame; 1135 1136 if (scp->sc_data_direction == PCI_DMA_TODEVICE) 1137 flags = MFI_FRAME_DIR_WRITE; 1138 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE) 1139 flags = MFI_FRAME_DIR_READ; 1140 else if (scp->sc_data_direction == PCI_DMA_NONE) 1141 flags = MFI_FRAME_DIR_NONE; 1142 1143 if (instance->flag_ieee == 1) { 1144 flags |= MFI_FRAME_IEEE; 1145 } 1146 1147 /* 1148 * Prepare the DCDB frame 1149 */ 1150 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO; 1151 pthru->cmd_status = 0x0; 1152 pthru->scsi_status = 0x0; 1153 pthru->target_id = device_id; 1154 pthru->lun = scp->device->lun; 1155 pthru->cdb_len = scp->cmd_len; 1156 pthru->timeout = 0; 1157 pthru->pad_0 = 0; 1158 pthru->flags = flags; 1159 pthru->data_xfer_len = scsi_bufflen(scp); 1160 1161 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len); 1162 1163 /* 1164 * If the command is for the tape device, set the 1165 * pthru timeout to the os layer timeout value. 1166 */ 1167 if (scp->device->type == TYPE_TAPE) { 1168 if ((scp->request->timeout / HZ) > 0xFFFF) 1169 pthru->timeout = 0xFFFF; 1170 else 1171 pthru->timeout = scp->request->timeout / HZ; 1172 } 1173 1174 /* 1175 * Construct SGL 1176 */ 1177 if (instance->flag_ieee == 1) { 1178 pthru->flags |= MFI_FRAME_SGL64; 1179 pthru->sge_count = megasas_make_sgl_skinny(instance, scp, 1180 &pthru->sgl); 1181 } else if (IS_DMA64) { 1182 pthru->flags |= MFI_FRAME_SGL64; 1183 pthru->sge_count = megasas_make_sgl64(instance, scp, 1184 &pthru->sgl); 1185 } else 1186 pthru->sge_count = megasas_make_sgl32(instance, scp, 1187 &pthru->sgl); 1188 1189 if (pthru->sge_count > instance->max_num_sge) { 1190 printk(KERN_ERR "megasas: DCDB two many SGE NUM=%x\n", 1191 pthru->sge_count); 1192 return 0; 1193 } 1194 1195 /* 1196 * Sense info specific 1197 */ 1198 pthru->sense_len = SCSI_SENSE_BUFFERSIZE; 1199 pthru->sense_buf_phys_addr_hi = 0; 1200 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr; 1201 1202 /* 1203 * Compute the total number of frames this command consumes. FW uses 1204 * this number to pull sufficient number of frames from host memory. 1205 */ 1206 cmd->frame_count = megasas_get_frame_count(instance, pthru->sge_count, 1207 PTHRU_FRAME); 1208 1209 return cmd->frame_count; 1210 } 1211 1212 /** 1213 * megasas_build_ldio - Prepares IOs to logical devices 1214 * @instance: Adapter soft state 1215 * @scp: SCSI command 1216 * @cmd: Command to be prepared 1217 * 1218 * Frames (and accompanying SGLs) for regular SCSI IOs use this function. 1219 */ 1220 static int 1221 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp, 1222 struct megasas_cmd *cmd) 1223 { 1224 u32 device_id; 1225 u8 sc = scp->cmnd[0]; 1226 u16 flags = 0; 1227 struct megasas_io_frame *ldio; 1228 1229 device_id = MEGASAS_DEV_INDEX(instance, scp); 1230 ldio = (struct megasas_io_frame *)cmd->frame; 1231 1232 if (scp->sc_data_direction == PCI_DMA_TODEVICE) 1233 flags = MFI_FRAME_DIR_WRITE; 1234 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE) 1235 flags = MFI_FRAME_DIR_READ; 1236 1237 if (instance->flag_ieee == 1) { 1238 flags |= MFI_FRAME_IEEE; 1239 } 1240 1241 /* 1242 * Prepare the Logical IO frame: 2nd bit is zero for all read cmds 1243 */ 1244 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ; 1245 ldio->cmd_status = 0x0; 1246 ldio->scsi_status = 0x0; 1247 ldio->target_id = device_id; 1248 ldio->timeout = 0; 1249 ldio->reserved_0 = 0; 1250 ldio->pad_0 = 0; 1251 ldio->flags = flags; 1252 ldio->start_lba_hi = 0; 1253 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0; 1254 1255 /* 1256 * 6-byte READ(0x08) or WRITE(0x0A) cdb 1257 */ 1258 if (scp->cmd_len == 6) { 1259 ldio->lba_count = (u32) scp->cmnd[4]; 1260 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) | 1261 ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3]; 1262 1263 ldio->start_lba_lo &= 0x1FFFFF; 1264 } 1265 1266 /* 1267 * 10-byte READ(0x28) or WRITE(0x2A) cdb 1268 */ 1269 else if (scp->cmd_len == 10) { 1270 ldio->lba_count = (u32) scp->cmnd[8] | 1271 ((u32) scp->cmnd[7] << 8); 1272 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) | 1273 ((u32) scp->cmnd[3] << 16) | 1274 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5]; 1275 } 1276 1277 /* 1278 * 12-byte READ(0xA8) or WRITE(0xAA) cdb 1279 */ 1280 else if (scp->cmd_len == 12) { 1281 ldio->lba_count = ((u32) scp->cmnd[6] << 24) | 1282 ((u32) scp->cmnd[7] << 16) | 1283 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9]; 1284 1285 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) | 1286 ((u32) scp->cmnd[3] << 16) | 1287 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5]; 1288 } 1289 1290 /* 1291 * 16-byte READ(0x88) or WRITE(0x8A) cdb 1292 */ 1293 else if (scp->cmd_len == 16) { 1294 ldio->lba_count = ((u32) scp->cmnd[10] << 24) | 1295 ((u32) scp->cmnd[11] << 16) | 1296 ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13]; 1297 1298 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) | 1299 ((u32) scp->cmnd[7] << 16) | 1300 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9]; 1301 1302 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) | 1303 ((u32) scp->cmnd[3] << 16) | 1304 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5]; 1305 1306 } 1307 1308 /* 1309 * Construct SGL 1310 */ 1311 if (instance->flag_ieee) { 1312 ldio->flags |= MFI_FRAME_SGL64; 1313 ldio->sge_count = megasas_make_sgl_skinny(instance, scp, 1314 &ldio->sgl); 1315 } else if (IS_DMA64) { 1316 ldio->flags |= MFI_FRAME_SGL64; 1317 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl); 1318 } else 1319 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl); 1320 1321 if (ldio->sge_count > instance->max_num_sge) { 1322 printk(KERN_ERR "megasas: build_ld_io: sge_count = %x\n", 1323 ldio->sge_count); 1324 return 0; 1325 } 1326 1327 /* 1328 * Sense info specific 1329 */ 1330 ldio->sense_len = SCSI_SENSE_BUFFERSIZE; 1331 ldio->sense_buf_phys_addr_hi = 0; 1332 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr; 1333 1334 /* 1335 * Compute the total number of frames this command consumes. FW uses 1336 * this number to pull sufficient number of frames from host memory. 1337 */ 1338 cmd->frame_count = megasas_get_frame_count(instance, 1339 ldio->sge_count, IO_FRAME); 1340 1341 return cmd->frame_count; 1342 } 1343 1344 /** 1345 * megasas_is_ldio - Checks if the cmd is for logical drive 1346 * @scmd: SCSI command 1347 * 1348 * Called by megasas_queue_command to find out if the command to be queued 1349 * is a logical drive command 1350 */ 1351 inline int megasas_is_ldio(struct scsi_cmnd *cmd) 1352 { 1353 if (!MEGASAS_IS_LOGICAL(cmd)) 1354 return 0; 1355 switch (cmd->cmnd[0]) { 1356 case READ_10: 1357 case WRITE_10: 1358 case READ_12: 1359 case WRITE_12: 1360 case READ_6: 1361 case WRITE_6: 1362 case READ_16: 1363 case WRITE_16: 1364 return 1; 1365 default: 1366 return 0; 1367 } 1368 } 1369 1370 /** 1371 * megasas_dump_pending_frames - Dumps the frame address of all pending cmds 1372 * in FW 1373 * @instance: Adapter soft state 1374 */ 1375 static inline void 1376 megasas_dump_pending_frames(struct megasas_instance *instance) 1377 { 1378 struct megasas_cmd *cmd; 1379 int i,n; 1380 union megasas_sgl *mfi_sgl; 1381 struct megasas_io_frame *ldio; 1382 struct megasas_pthru_frame *pthru; 1383 u32 sgcount; 1384 u32 max_cmd = instance->max_fw_cmds; 1385 1386 printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no); 1387 printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding)); 1388 if (IS_DMA64) 1389 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no); 1390 else 1391 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no); 1392 1393 printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no); 1394 for (i = 0; i < max_cmd; i++) { 1395 cmd = instance->cmd_list[i]; 1396 if(!cmd->scmd) 1397 continue; 1398 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr); 1399 if (megasas_is_ldio(cmd->scmd)){ 1400 ldio = (struct megasas_io_frame *)cmd->frame; 1401 mfi_sgl = &ldio->sgl; 1402 sgcount = ldio->sge_count; 1403 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount); 1404 } 1405 else { 1406 pthru = (struct megasas_pthru_frame *) cmd->frame; 1407 mfi_sgl = &pthru->sgl; 1408 sgcount = pthru->sge_count; 1409 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount); 1410 } 1411 if(megasas_dbg_lvl & MEGASAS_DBG_LVL){ 1412 for (n = 0; n < sgcount; n++){ 1413 if (IS_DMA64) 1414 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ; 1415 else 1416 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ; 1417 } 1418 } 1419 printk(KERN_ERR "\n"); 1420 } /*for max_cmd*/ 1421 printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no); 1422 for (i = 0; i < max_cmd; i++) { 1423 1424 cmd = instance->cmd_list[i]; 1425 1426 if(cmd->sync_cmd == 1){ 1427 printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr); 1428 } 1429 } 1430 printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no); 1431 } 1432 1433 u32 1434 megasas_build_and_issue_cmd(struct megasas_instance *instance, 1435 struct scsi_cmnd *scmd) 1436 { 1437 struct megasas_cmd *cmd; 1438 u32 frame_count; 1439 1440 cmd = megasas_get_cmd(instance); 1441 if (!cmd) 1442 return SCSI_MLQUEUE_HOST_BUSY; 1443 1444 /* 1445 * Logical drive command 1446 */ 1447 if (megasas_is_ldio(scmd)) 1448 frame_count = megasas_build_ldio(instance, scmd, cmd); 1449 else 1450 frame_count = megasas_build_dcdb(instance, scmd, cmd); 1451 1452 if (!frame_count) 1453 goto out_return_cmd; 1454 1455 cmd->scmd = scmd; 1456 scmd->SCp.ptr = (char *)cmd; 1457 1458 /* 1459 * Issue the command to the FW 1460 */ 1461 atomic_inc(&instance->fw_outstanding); 1462 1463 instance->instancet->fire_cmd(instance, cmd->frame_phys_addr, 1464 cmd->frame_count-1, instance->reg_set); 1465 1466 return 0; 1467 out_return_cmd: 1468 megasas_return_cmd(instance, cmd); 1469 return 1; 1470 } 1471 1472 1473 /** 1474 * megasas_queue_command - Queue entry point 1475 * @scmd: SCSI command to be queued 1476 * @done: Callback entry point 1477 */ 1478 static int 1479 megasas_queue_command_lck(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *)) 1480 { 1481 struct megasas_instance *instance; 1482 unsigned long flags; 1483 1484 instance = (struct megasas_instance *) 1485 scmd->device->host->hostdata; 1486 1487 if (instance->issuepend_done == 0) 1488 return SCSI_MLQUEUE_HOST_BUSY; 1489 1490 spin_lock_irqsave(&instance->hba_lock, flags); 1491 1492 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { 1493 spin_unlock_irqrestore(&instance->hba_lock, flags); 1494 scmd->result = DID_ERROR << 16; 1495 done(scmd); 1496 return 0; 1497 } 1498 1499 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { 1500 spin_unlock_irqrestore(&instance->hba_lock, flags); 1501 return SCSI_MLQUEUE_HOST_BUSY; 1502 } 1503 1504 spin_unlock_irqrestore(&instance->hba_lock, flags); 1505 1506 scmd->scsi_done = done; 1507 scmd->result = 0; 1508 1509 if (MEGASAS_IS_LOGICAL(scmd) && 1510 (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) { 1511 scmd->result = DID_BAD_TARGET << 16; 1512 goto out_done; 1513 } 1514 1515 switch (scmd->cmnd[0]) { 1516 case SYNCHRONIZE_CACHE: 1517 /* 1518 * FW takes care of flush cache on its own 1519 * No need to send it down 1520 */ 1521 scmd->result = DID_OK << 16; 1522 goto out_done; 1523 default: 1524 break; 1525 } 1526 1527 if (instance->instancet->build_and_issue_cmd(instance, scmd)) { 1528 printk(KERN_ERR "megasas: Err returned from build_and_issue_cmd\n"); 1529 return SCSI_MLQUEUE_HOST_BUSY; 1530 } 1531 1532 return 0; 1533 1534 out_done: 1535 done(scmd); 1536 return 0; 1537 } 1538 1539 static DEF_SCSI_QCMD(megasas_queue_command) 1540 1541 static struct megasas_instance *megasas_lookup_instance(u16 host_no) 1542 { 1543 int i; 1544 1545 for (i = 0; i < megasas_mgmt_info.max_index; i++) { 1546 1547 if ((megasas_mgmt_info.instance[i]) && 1548 (megasas_mgmt_info.instance[i]->host->host_no == host_no)) 1549 return megasas_mgmt_info.instance[i]; 1550 } 1551 1552 return NULL; 1553 } 1554 1555 static int megasas_slave_configure(struct scsi_device *sdev) 1556 { 1557 u16 pd_index = 0; 1558 struct megasas_instance *instance ; 1559 1560 instance = megasas_lookup_instance(sdev->host->host_no); 1561 1562 /* 1563 * Don't export physical disk devices to the disk driver. 1564 * 1565 * FIXME: Currently we don't export them to the midlayer at all. 1566 * That will be fixed once LSI engineers have audited the 1567 * firmware for possible issues. 1568 */ 1569 if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && 1570 sdev->type == TYPE_DISK) { 1571 pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) + 1572 sdev->id; 1573 if (instance->pd_list[pd_index].driveState == 1574 MR_PD_STATE_SYSTEM) { 1575 blk_queue_rq_timeout(sdev->request_queue, 1576 MEGASAS_DEFAULT_CMD_TIMEOUT * HZ); 1577 return 0; 1578 } 1579 return -ENXIO; 1580 } 1581 1582 /* 1583 * The RAID firmware may require extended timeouts. 1584 */ 1585 blk_queue_rq_timeout(sdev->request_queue, 1586 MEGASAS_DEFAULT_CMD_TIMEOUT * HZ); 1587 return 0; 1588 } 1589 1590 static int megasas_slave_alloc(struct scsi_device *sdev) 1591 { 1592 u16 pd_index = 0; 1593 struct megasas_instance *instance ; 1594 instance = megasas_lookup_instance(sdev->host->host_no); 1595 if ((sdev->channel < MEGASAS_MAX_PD_CHANNELS) && 1596 (sdev->type == TYPE_DISK)) { 1597 /* 1598 * Open the OS scan to the SYSTEM PD 1599 */ 1600 pd_index = 1601 (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) + 1602 sdev->id; 1603 if ((instance->pd_list[pd_index].driveState == 1604 MR_PD_STATE_SYSTEM) && 1605 (instance->pd_list[pd_index].driveType == 1606 TYPE_DISK)) { 1607 return 0; 1608 } 1609 return -ENXIO; 1610 } 1611 return 0; 1612 } 1613 1614 void megaraid_sas_kill_hba(struct megasas_instance *instance) 1615 { 1616 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 1617 (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) || 1618 (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 1619 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 1620 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { 1621 writel(MFI_STOP_ADP, &instance->reg_set->doorbell); 1622 } else { 1623 writel(MFI_STOP_ADP, &instance->reg_set->inbound_doorbell); 1624 } 1625 } 1626 1627 /** 1628 * megasas_check_and_restore_queue_depth - Check if queue depth needs to be 1629 * restored to max value 1630 * @instance: Adapter soft state 1631 * 1632 */ 1633 void 1634 megasas_check_and_restore_queue_depth(struct megasas_instance *instance) 1635 { 1636 unsigned long flags; 1637 if (instance->flag & MEGASAS_FW_BUSY 1638 && time_after(jiffies, instance->last_time + 5 * HZ) 1639 && atomic_read(&instance->fw_outstanding) < 1640 instance->throttlequeuedepth + 1) { 1641 1642 spin_lock_irqsave(instance->host->host_lock, flags); 1643 instance->flag &= ~MEGASAS_FW_BUSY; 1644 if (instance->is_imr) { 1645 instance->host->can_queue = 1646 instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS; 1647 } else 1648 instance->host->can_queue = 1649 instance->max_fw_cmds - MEGASAS_INT_CMDS; 1650 1651 spin_unlock_irqrestore(instance->host->host_lock, flags); 1652 } 1653 } 1654 1655 /** 1656 * megasas_complete_cmd_dpc - Returns FW's controller structure 1657 * @instance_addr: Address of adapter soft state 1658 * 1659 * Tasklet to complete cmds 1660 */ 1661 static void megasas_complete_cmd_dpc(unsigned long instance_addr) 1662 { 1663 u32 producer; 1664 u32 consumer; 1665 u32 context; 1666 struct megasas_cmd *cmd; 1667 struct megasas_instance *instance = 1668 (struct megasas_instance *)instance_addr; 1669 unsigned long flags; 1670 1671 /* If we have already declared adapter dead, donot complete cmds */ 1672 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR ) 1673 return; 1674 1675 spin_lock_irqsave(&instance->completion_lock, flags); 1676 1677 producer = *instance->producer; 1678 consumer = *instance->consumer; 1679 1680 while (consumer != producer) { 1681 context = instance->reply_queue[consumer]; 1682 if (context >= instance->max_fw_cmds) { 1683 printk(KERN_ERR "Unexpected context value %x\n", 1684 context); 1685 BUG(); 1686 } 1687 1688 cmd = instance->cmd_list[context]; 1689 1690 megasas_complete_cmd(instance, cmd, DID_OK); 1691 1692 consumer++; 1693 if (consumer == (instance->max_fw_cmds + 1)) { 1694 consumer = 0; 1695 } 1696 } 1697 1698 *instance->consumer = producer; 1699 1700 spin_unlock_irqrestore(&instance->completion_lock, flags); 1701 1702 /* 1703 * Check if we can restore can_queue 1704 */ 1705 megasas_check_and_restore_queue_depth(instance); 1706 } 1707 1708 static void 1709 megasas_internal_reset_defer_cmds(struct megasas_instance *instance); 1710 1711 static void 1712 process_fw_state_change_wq(struct work_struct *work); 1713 1714 void megasas_do_ocr(struct megasas_instance *instance) 1715 { 1716 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) || 1717 (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) || 1718 (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)) { 1719 *instance->consumer = MEGASAS_ADPRESET_INPROG_SIGN; 1720 } 1721 instance->instancet->disable_intr(instance); 1722 instance->adprecovery = MEGASAS_ADPRESET_SM_INFAULT; 1723 instance->issuepend_done = 0; 1724 1725 atomic_set(&instance->fw_outstanding, 0); 1726 megasas_internal_reset_defer_cmds(instance); 1727 process_fw_state_change_wq(&instance->work_init); 1728 } 1729 1730 /** 1731 * megasas_wait_for_outstanding - Wait for all outstanding cmds 1732 * @instance: Adapter soft state 1733 * 1734 * This function waits for up to MEGASAS_RESET_WAIT_TIME seconds for FW to 1735 * complete all its outstanding commands. Returns error if one or more IOs 1736 * are pending after this time period. It also marks the controller dead. 1737 */ 1738 static int megasas_wait_for_outstanding(struct megasas_instance *instance) 1739 { 1740 int i; 1741 u32 reset_index; 1742 u32 wait_time = MEGASAS_RESET_WAIT_TIME; 1743 u8 adprecovery; 1744 unsigned long flags; 1745 struct list_head clist_local; 1746 struct megasas_cmd *reset_cmd; 1747 u32 fw_state; 1748 u8 kill_adapter_flag; 1749 1750 spin_lock_irqsave(&instance->hba_lock, flags); 1751 adprecovery = instance->adprecovery; 1752 spin_unlock_irqrestore(&instance->hba_lock, flags); 1753 1754 if (adprecovery != MEGASAS_HBA_OPERATIONAL) { 1755 1756 INIT_LIST_HEAD(&clist_local); 1757 spin_lock_irqsave(&instance->hba_lock, flags); 1758 list_splice_init(&instance->internal_reset_pending_q, 1759 &clist_local); 1760 spin_unlock_irqrestore(&instance->hba_lock, flags); 1761 1762 printk(KERN_NOTICE "megasas: HBA reset wait ...\n"); 1763 for (i = 0; i < wait_time; i++) { 1764 msleep(1000); 1765 spin_lock_irqsave(&instance->hba_lock, flags); 1766 adprecovery = instance->adprecovery; 1767 spin_unlock_irqrestore(&instance->hba_lock, flags); 1768 if (adprecovery == MEGASAS_HBA_OPERATIONAL) 1769 break; 1770 } 1771 1772 if (adprecovery != MEGASAS_HBA_OPERATIONAL) { 1773 printk(KERN_NOTICE "megasas: reset: Stopping HBA.\n"); 1774 spin_lock_irqsave(&instance->hba_lock, flags); 1775 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; 1776 spin_unlock_irqrestore(&instance->hba_lock, flags); 1777 return FAILED; 1778 } 1779 1780 reset_index = 0; 1781 while (!list_empty(&clist_local)) { 1782 reset_cmd = list_entry((&clist_local)->next, 1783 struct megasas_cmd, list); 1784 list_del_init(&reset_cmd->list); 1785 if (reset_cmd->scmd) { 1786 reset_cmd->scmd->result = DID_RESET << 16; 1787 printk(KERN_NOTICE "%d:%p reset [%02x]\n", 1788 reset_index, reset_cmd, 1789 reset_cmd->scmd->cmnd[0]); 1790 1791 reset_cmd->scmd->scsi_done(reset_cmd->scmd); 1792 megasas_return_cmd(instance, reset_cmd); 1793 } else if (reset_cmd->sync_cmd) { 1794 printk(KERN_NOTICE "megasas:%p synch cmds" 1795 "reset queue\n", 1796 reset_cmd); 1797 1798 reset_cmd->cmd_status = ENODATA; 1799 instance->instancet->fire_cmd(instance, 1800 reset_cmd->frame_phys_addr, 1801 0, instance->reg_set); 1802 } else { 1803 printk(KERN_NOTICE "megasas: %p unexpected" 1804 "cmds lst\n", 1805 reset_cmd); 1806 } 1807 reset_index++; 1808 } 1809 1810 return SUCCESS; 1811 } 1812 1813 for (i = 0; i < resetwaittime; i++) { 1814 1815 int outstanding = atomic_read(&instance->fw_outstanding); 1816 1817 if (!outstanding) 1818 break; 1819 1820 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { 1821 printk(KERN_NOTICE "megasas: [%2d]waiting for %d " 1822 "commands to complete\n",i,outstanding); 1823 /* 1824 * Call cmd completion routine. Cmd to be 1825 * be completed directly without depending on isr. 1826 */ 1827 megasas_complete_cmd_dpc((unsigned long)instance); 1828 } 1829 1830 msleep(1000); 1831 } 1832 1833 i = 0; 1834 kill_adapter_flag = 0; 1835 do { 1836 fw_state = instance->instancet->read_fw_status_reg( 1837 instance->reg_set) & MFI_STATE_MASK; 1838 if ((fw_state == MFI_STATE_FAULT) && 1839 (instance->disableOnlineCtrlReset == 0)) { 1840 if (i == 3) { 1841 kill_adapter_flag = 2; 1842 break; 1843 } 1844 megasas_do_ocr(instance); 1845 kill_adapter_flag = 1; 1846 1847 /* wait for 1 secs to let FW finish the pending cmds */ 1848 msleep(1000); 1849 } 1850 i++; 1851 } while (i <= 3); 1852 1853 if (atomic_read(&instance->fw_outstanding) && 1854 !kill_adapter_flag) { 1855 if (instance->disableOnlineCtrlReset == 0) { 1856 1857 megasas_do_ocr(instance); 1858 1859 /* wait for 5 secs to let FW finish the pending cmds */ 1860 for (i = 0; i < wait_time; i++) { 1861 int outstanding = 1862 atomic_read(&instance->fw_outstanding); 1863 if (!outstanding) 1864 return SUCCESS; 1865 msleep(1000); 1866 } 1867 } 1868 } 1869 1870 if (atomic_read(&instance->fw_outstanding) || 1871 (kill_adapter_flag == 2)) { 1872 printk(KERN_NOTICE "megaraid_sas: pending cmds after reset\n"); 1873 /* 1874 * Send signal to FW to stop processing any pending cmds. 1875 * The controller will be taken offline by the OS now. 1876 */ 1877 if ((instance->pdev->device == 1878 PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 1879 (instance->pdev->device == 1880 PCI_DEVICE_ID_LSI_SAS0071SKINNY)) { 1881 writel(MFI_STOP_ADP, 1882 &instance->reg_set->doorbell); 1883 } else { 1884 writel(MFI_STOP_ADP, 1885 &instance->reg_set->inbound_doorbell); 1886 } 1887 megasas_dump_pending_frames(instance); 1888 spin_lock_irqsave(&instance->hba_lock, flags); 1889 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; 1890 spin_unlock_irqrestore(&instance->hba_lock, flags); 1891 return FAILED; 1892 } 1893 1894 printk(KERN_NOTICE "megaraid_sas: no pending cmds after reset\n"); 1895 1896 return SUCCESS; 1897 } 1898 1899 /** 1900 * megasas_generic_reset - Generic reset routine 1901 * @scmd: Mid-layer SCSI command 1902 * 1903 * This routine implements a generic reset handler for device, bus and host 1904 * reset requests. Device, bus and host specific reset handlers can use this 1905 * function after they do their specific tasks. 1906 */ 1907 static int megasas_generic_reset(struct scsi_cmnd *scmd) 1908 { 1909 int ret_val; 1910 struct megasas_instance *instance; 1911 1912 instance = (struct megasas_instance *)scmd->device->host->hostdata; 1913 1914 scmd_printk(KERN_NOTICE, scmd, "megasas: RESET cmd=%x retries=%x\n", 1915 scmd->cmnd[0], scmd->retries); 1916 1917 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { 1918 printk(KERN_ERR "megasas: cannot recover from previous reset " 1919 "failures\n"); 1920 return FAILED; 1921 } 1922 1923 ret_val = megasas_wait_for_outstanding(instance); 1924 if (ret_val == SUCCESS) 1925 printk(KERN_NOTICE "megasas: reset successful \n"); 1926 else 1927 printk(KERN_ERR "megasas: failed to do reset\n"); 1928 1929 return ret_val; 1930 } 1931 1932 /** 1933 * megasas_reset_timer - quiesce the adapter if required 1934 * @scmd: scsi cmnd 1935 * 1936 * Sets the FW busy flag and reduces the host->can_queue if the 1937 * cmd has not been completed within the timeout period. 1938 */ 1939 static enum 1940 blk_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd) 1941 { 1942 struct megasas_instance *instance; 1943 unsigned long flags; 1944 1945 if (time_after(jiffies, scmd->jiffies_at_alloc + 1946 (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) { 1947 return BLK_EH_NOT_HANDLED; 1948 } 1949 1950 instance = (struct megasas_instance *)scmd->device->host->hostdata; 1951 if (!(instance->flag & MEGASAS_FW_BUSY)) { 1952 /* FW is busy, throttle IO */ 1953 spin_lock_irqsave(instance->host->host_lock, flags); 1954 1955 instance->host->can_queue = instance->throttlequeuedepth; 1956 instance->last_time = jiffies; 1957 instance->flag |= MEGASAS_FW_BUSY; 1958 1959 spin_unlock_irqrestore(instance->host->host_lock, flags); 1960 } 1961 return BLK_EH_RESET_TIMER; 1962 } 1963 1964 /** 1965 * megasas_reset_device - Device reset handler entry point 1966 */ 1967 static int megasas_reset_device(struct scsi_cmnd *scmd) 1968 { 1969 int ret; 1970 1971 /* 1972 * First wait for all commands to complete 1973 */ 1974 ret = megasas_generic_reset(scmd); 1975 1976 return ret; 1977 } 1978 1979 /** 1980 * megasas_reset_bus_host - Bus & host reset handler entry point 1981 */ 1982 static int megasas_reset_bus_host(struct scsi_cmnd *scmd) 1983 { 1984 int ret; 1985 struct megasas_instance *instance; 1986 instance = (struct megasas_instance *)scmd->device->host->hostdata; 1987 1988 /* 1989 * First wait for all commands to complete 1990 */ 1991 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 1992 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 1993 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) 1994 ret = megasas_reset_fusion(scmd->device->host); 1995 else 1996 ret = megasas_generic_reset(scmd); 1997 1998 return ret; 1999 } 2000 2001 /** 2002 * megasas_bios_param - Returns disk geometry for a disk 2003 * @sdev: device handle 2004 * @bdev: block device 2005 * @capacity: drive capacity 2006 * @geom: geometry parameters 2007 */ 2008 static int 2009 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev, 2010 sector_t capacity, int geom[]) 2011 { 2012 int heads; 2013 int sectors; 2014 sector_t cylinders; 2015 unsigned long tmp; 2016 /* Default heads (64) & sectors (32) */ 2017 heads = 64; 2018 sectors = 32; 2019 2020 tmp = heads * sectors; 2021 cylinders = capacity; 2022 2023 sector_div(cylinders, tmp); 2024 2025 /* 2026 * Handle extended translation size for logical drives > 1Gb 2027 */ 2028 2029 if (capacity >= 0x200000) { 2030 heads = 255; 2031 sectors = 63; 2032 tmp = heads*sectors; 2033 cylinders = capacity; 2034 sector_div(cylinders, tmp); 2035 } 2036 2037 geom[0] = heads; 2038 geom[1] = sectors; 2039 geom[2] = cylinders; 2040 2041 return 0; 2042 } 2043 2044 static void megasas_aen_polling(struct work_struct *work); 2045 2046 /** 2047 * megasas_service_aen - Processes an event notification 2048 * @instance: Adapter soft state 2049 * @cmd: AEN command completed by the ISR 2050 * 2051 * For AEN, driver sends a command down to FW that is held by the FW till an 2052 * event occurs. When an event of interest occurs, FW completes the command 2053 * that it was previously holding. 2054 * 2055 * This routines sends SIGIO signal to processes that have registered with the 2056 * driver for AEN. 2057 */ 2058 static void 2059 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd) 2060 { 2061 unsigned long flags; 2062 /* 2063 * Don't signal app if it is just an aborted previously registered aen 2064 */ 2065 if ((!cmd->abort_aen) && (instance->unload == 0)) { 2066 spin_lock_irqsave(&poll_aen_lock, flags); 2067 megasas_poll_wait_aen = 1; 2068 spin_unlock_irqrestore(&poll_aen_lock, flags); 2069 wake_up(&megasas_poll_wait); 2070 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN); 2071 } 2072 else 2073 cmd->abort_aen = 0; 2074 2075 instance->aen_cmd = NULL; 2076 megasas_return_cmd(instance, cmd); 2077 2078 if ((instance->unload == 0) && 2079 ((instance->issuepend_done == 1))) { 2080 struct megasas_aen_event *ev; 2081 ev = kzalloc(sizeof(*ev), GFP_ATOMIC); 2082 if (!ev) { 2083 printk(KERN_ERR "megasas_service_aen: out of memory\n"); 2084 } else { 2085 ev->instance = instance; 2086 instance->ev = ev; 2087 INIT_DELAYED_WORK(&ev->hotplug_work, 2088 megasas_aen_polling); 2089 schedule_delayed_work(&ev->hotplug_work, 0); 2090 } 2091 } 2092 } 2093 2094 static int megasas_change_queue_depth(struct scsi_device *sdev, 2095 int queue_depth, int reason) 2096 { 2097 if (reason != SCSI_QDEPTH_DEFAULT) 2098 return -EOPNOTSUPP; 2099 2100 if (queue_depth > sdev->host->can_queue) 2101 queue_depth = sdev->host->can_queue; 2102 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), 2103 queue_depth); 2104 2105 return queue_depth; 2106 } 2107 2108 /* 2109 * Scsi host template for megaraid_sas driver 2110 */ 2111 static struct scsi_host_template megasas_template = { 2112 2113 .module = THIS_MODULE, 2114 .name = "LSI SAS based MegaRAID driver", 2115 .proc_name = "megaraid_sas", 2116 .slave_configure = megasas_slave_configure, 2117 .slave_alloc = megasas_slave_alloc, 2118 .queuecommand = megasas_queue_command, 2119 .eh_device_reset_handler = megasas_reset_device, 2120 .eh_bus_reset_handler = megasas_reset_bus_host, 2121 .eh_host_reset_handler = megasas_reset_bus_host, 2122 .eh_timed_out = megasas_reset_timer, 2123 .bios_param = megasas_bios_param, 2124 .use_clustering = ENABLE_CLUSTERING, 2125 .change_queue_depth = megasas_change_queue_depth, 2126 }; 2127 2128 /** 2129 * megasas_complete_int_cmd - Completes an internal command 2130 * @instance: Adapter soft state 2131 * @cmd: Command to be completed 2132 * 2133 * The megasas_issue_blocked_cmd() function waits for a command to complete 2134 * after it issues a command. This function wakes up that waiting routine by 2135 * calling wake_up() on the wait queue. 2136 */ 2137 static void 2138 megasas_complete_int_cmd(struct megasas_instance *instance, 2139 struct megasas_cmd *cmd) 2140 { 2141 cmd->cmd_status = cmd->frame->io.cmd_status; 2142 2143 if (cmd->cmd_status == ENODATA) { 2144 cmd->cmd_status = 0; 2145 } 2146 wake_up(&instance->int_cmd_wait_q); 2147 } 2148 2149 /** 2150 * megasas_complete_abort - Completes aborting a command 2151 * @instance: Adapter soft state 2152 * @cmd: Cmd that was issued to abort another cmd 2153 * 2154 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q 2155 * after it issues an abort on a previously issued command. This function 2156 * wakes up all functions waiting on the same wait queue. 2157 */ 2158 static void 2159 megasas_complete_abort(struct megasas_instance *instance, 2160 struct megasas_cmd *cmd) 2161 { 2162 if (cmd->sync_cmd) { 2163 cmd->sync_cmd = 0; 2164 cmd->cmd_status = 0; 2165 wake_up(&instance->abort_cmd_wait_q); 2166 } 2167 2168 return; 2169 } 2170 2171 /** 2172 * megasas_complete_cmd - Completes a command 2173 * @instance: Adapter soft state 2174 * @cmd: Command to be completed 2175 * @alt_status: If non-zero, use this value as status to 2176 * SCSI mid-layer instead of the value returned 2177 * by the FW. This should be used if caller wants 2178 * an alternate status (as in the case of aborted 2179 * commands) 2180 */ 2181 void 2182 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd, 2183 u8 alt_status) 2184 { 2185 int exception = 0; 2186 struct megasas_header *hdr = &cmd->frame->hdr; 2187 unsigned long flags; 2188 struct fusion_context *fusion = instance->ctrl_context; 2189 2190 /* flag for the retry reset */ 2191 cmd->retry_for_fw_reset = 0; 2192 2193 if (cmd->scmd) 2194 cmd->scmd->SCp.ptr = NULL; 2195 2196 switch (hdr->cmd) { 2197 case MFI_CMD_INVALID: 2198 /* Some older 1068 controller FW may keep a pended 2199 MR_DCMD_CTRL_EVENT_GET_INFO left over from the main kernel 2200 when booting the kdump kernel. Ignore this command to 2201 prevent a kernel panic on shutdown of the kdump kernel. */ 2202 printk(KERN_WARNING "megaraid_sas: MFI_CMD_INVALID command " 2203 "completed.\n"); 2204 printk(KERN_WARNING "megaraid_sas: If you have a controller " 2205 "other than PERC5, please upgrade your firmware.\n"); 2206 break; 2207 case MFI_CMD_PD_SCSI_IO: 2208 case MFI_CMD_LD_SCSI_IO: 2209 2210 /* 2211 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been 2212 * issued either through an IO path or an IOCTL path. If it 2213 * was via IOCTL, we will send it to internal completion. 2214 */ 2215 if (cmd->sync_cmd) { 2216 cmd->sync_cmd = 0; 2217 megasas_complete_int_cmd(instance, cmd); 2218 break; 2219 } 2220 2221 case MFI_CMD_LD_READ: 2222 case MFI_CMD_LD_WRITE: 2223 2224 if (alt_status) { 2225 cmd->scmd->result = alt_status << 16; 2226 exception = 1; 2227 } 2228 2229 if (exception) { 2230 2231 atomic_dec(&instance->fw_outstanding); 2232 2233 scsi_dma_unmap(cmd->scmd); 2234 cmd->scmd->scsi_done(cmd->scmd); 2235 megasas_return_cmd(instance, cmd); 2236 2237 break; 2238 } 2239 2240 switch (hdr->cmd_status) { 2241 2242 case MFI_STAT_OK: 2243 cmd->scmd->result = DID_OK << 16; 2244 break; 2245 2246 case MFI_STAT_SCSI_IO_FAILED: 2247 case MFI_STAT_LD_INIT_IN_PROGRESS: 2248 cmd->scmd->result = 2249 (DID_ERROR << 16) | hdr->scsi_status; 2250 break; 2251 2252 case MFI_STAT_SCSI_DONE_WITH_ERROR: 2253 2254 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status; 2255 2256 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) { 2257 memset(cmd->scmd->sense_buffer, 0, 2258 SCSI_SENSE_BUFFERSIZE); 2259 memcpy(cmd->scmd->sense_buffer, cmd->sense, 2260 hdr->sense_len); 2261 2262 cmd->scmd->result |= DRIVER_SENSE << 24; 2263 } 2264 2265 break; 2266 2267 case MFI_STAT_LD_OFFLINE: 2268 case MFI_STAT_DEVICE_NOT_FOUND: 2269 cmd->scmd->result = DID_BAD_TARGET << 16; 2270 break; 2271 2272 default: 2273 printk(KERN_DEBUG "megasas: MFI FW status %#x\n", 2274 hdr->cmd_status); 2275 cmd->scmd->result = DID_ERROR << 16; 2276 break; 2277 } 2278 2279 atomic_dec(&instance->fw_outstanding); 2280 2281 scsi_dma_unmap(cmd->scmd); 2282 cmd->scmd->scsi_done(cmd->scmd); 2283 megasas_return_cmd(instance, cmd); 2284 2285 break; 2286 2287 case MFI_CMD_SMP: 2288 case MFI_CMD_STP: 2289 case MFI_CMD_DCMD: 2290 /* Check for LD map update */ 2291 if ((cmd->frame->dcmd.opcode == MR_DCMD_LD_MAP_GET_INFO) && 2292 (cmd->frame->dcmd.mbox.b[1] == 1)) { 2293 fusion->fast_path_io = 0; 2294 spin_lock_irqsave(instance->host->host_lock, flags); 2295 if (cmd->frame->hdr.cmd_status != 0) { 2296 if (cmd->frame->hdr.cmd_status != 2297 MFI_STAT_NOT_FOUND) 2298 printk(KERN_WARNING "megasas: map sync" 2299 "failed, status = 0x%x.\n", 2300 cmd->frame->hdr.cmd_status); 2301 else { 2302 megasas_return_cmd(instance, cmd); 2303 spin_unlock_irqrestore( 2304 instance->host->host_lock, 2305 flags); 2306 break; 2307 } 2308 } else 2309 instance->map_id++; 2310 megasas_return_cmd(instance, cmd); 2311 2312 /* 2313 * Set fast path IO to ZERO. 2314 * Validate Map will set proper value. 2315 * Meanwhile all IOs will go as LD IO. 2316 */ 2317 if (MR_ValidateMapInfo(instance)) 2318 fusion->fast_path_io = 1; 2319 else 2320 fusion->fast_path_io = 0; 2321 megasas_sync_map_info(instance); 2322 spin_unlock_irqrestore(instance->host->host_lock, 2323 flags); 2324 break; 2325 } 2326 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_GET_INFO || 2327 cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_GET) { 2328 spin_lock_irqsave(&poll_aen_lock, flags); 2329 megasas_poll_wait_aen = 0; 2330 spin_unlock_irqrestore(&poll_aen_lock, flags); 2331 } 2332 2333 /* 2334 * See if got an event notification 2335 */ 2336 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT) 2337 megasas_service_aen(instance, cmd); 2338 else 2339 megasas_complete_int_cmd(instance, cmd); 2340 2341 break; 2342 2343 case MFI_CMD_ABORT: 2344 /* 2345 * Cmd issued to abort another cmd returned 2346 */ 2347 megasas_complete_abort(instance, cmd); 2348 break; 2349 2350 default: 2351 printk("megasas: Unknown command completed! [0x%X]\n", 2352 hdr->cmd); 2353 break; 2354 } 2355 } 2356 2357 /** 2358 * megasas_issue_pending_cmds_again - issue all pending cmds 2359 * in FW again because of the fw reset 2360 * @instance: Adapter soft state 2361 */ 2362 static inline void 2363 megasas_issue_pending_cmds_again(struct megasas_instance *instance) 2364 { 2365 struct megasas_cmd *cmd; 2366 struct list_head clist_local; 2367 union megasas_evt_class_locale class_locale; 2368 unsigned long flags; 2369 u32 seq_num; 2370 2371 INIT_LIST_HEAD(&clist_local); 2372 spin_lock_irqsave(&instance->hba_lock, flags); 2373 list_splice_init(&instance->internal_reset_pending_q, &clist_local); 2374 spin_unlock_irqrestore(&instance->hba_lock, flags); 2375 2376 while (!list_empty(&clist_local)) { 2377 cmd = list_entry((&clist_local)->next, 2378 struct megasas_cmd, list); 2379 list_del_init(&cmd->list); 2380 2381 if (cmd->sync_cmd || cmd->scmd) { 2382 printk(KERN_NOTICE "megaraid_sas: command %p, %p:%d" 2383 "detected to be pending while HBA reset.\n", 2384 cmd, cmd->scmd, cmd->sync_cmd); 2385 2386 cmd->retry_for_fw_reset++; 2387 2388 if (cmd->retry_for_fw_reset == 3) { 2389 printk(KERN_NOTICE "megaraid_sas: cmd %p, %p:%d" 2390 "was tried multiple times during reset." 2391 "Shutting down the HBA\n", 2392 cmd, cmd->scmd, cmd->sync_cmd); 2393 megaraid_sas_kill_hba(instance); 2394 2395 instance->adprecovery = 2396 MEGASAS_HW_CRITICAL_ERROR; 2397 return; 2398 } 2399 } 2400 2401 if (cmd->sync_cmd == 1) { 2402 if (cmd->scmd) { 2403 printk(KERN_NOTICE "megaraid_sas: unexpected" 2404 "cmd attached to internal command!\n"); 2405 } 2406 printk(KERN_NOTICE "megasas: %p synchronous cmd" 2407 "on the internal reset queue," 2408 "issue it again.\n", cmd); 2409 cmd->cmd_status = ENODATA; 2410 instance->instancet->fire_cmd(instance, 2411 cmd->frame_phys_addr , 2412 0, instance->reg_set); 2413 } else if (cmd->scmd) { 2414 printk(KERN_NOTICE "megasas: %p scsi cmd [%02x]" 2415 "detected on the internal queue, issue again.\n", 2416 cmd, cmd->scmd->cmnd[0]); 2417 2418 atomic_inc(&instance->fw_outstanding); 2419 instance->instancet->fire_cmd(instance, 2420 cmd->frame_phys_addr, 2421 cmd->frame_count-1, instance->reg_set); 2422 } else { 2423 printk(KERN_NOTICE "megasas: %p unexpected cmd on the" 2424 "internal reset defer list while re-issue!!\n", 2425 cmd); 2426 } 2427 } 2428 2429 if (instance->aen_cmd) { 2430 printk(KERN_NOTICE "megaraid_sas: aen_cmd in def process\n"); 2431 megasas_return_cmd(instance, instance->aen_cmd); 2432 2433 instance->aen_cmd = NULL; 2434 } 2435 2436 /* 2437 * Initiate AEN (Asynchronous Event Notification) 2438 */ 2439 seq_num = instance->last_seq_num; 2440 class_locale.members.reserved = 0; 2441 class_locale.members.locale = MR_EVT_LOCALE_ALL; 2442 class_locale.members.class = MR_EVT_CLASS_DEBUG; 2443 2444 megasas_register_aen(instance, seq_num, class_locale.word); 2445 } 2446 2447 /** 2448 * Move the internal reset pending commands to a deferred queue. 2449 * 2450 * We move the commands pending at internal reset time to a 2451 * pending queue. This queue would be flushed after successful 2452 * completion of the internal reset sequence. if the internal reset 2453 * did not complete in time, the kernel reset handler would flush 2454 * these commands. 2455 **/ 2456 static void 2457 megasas_internal_reset_defer_cmds(struct megasas_instance *instance) 2458 { 2459 struct megasas_cmd *cmd; 2460 int i; 2461 u32 max_cmd = instance->max_fw_cmds; 2462 u32 defer_index; 2463 unsigned long flags; 2464 2465 defer_index = 0; 2466 spin_lock_irqsave(&instance->cmd_pool_lock, flags); 2467 for (i = 0; i < max_cmd; i++) { 2468 cmd = instance->cmd_list[i]; 2469 if (cmd->sync_cmd == 1 || cmd->scmd) { 2470 printk(KERN_NOTICE "megasas: moving cmd[%d]:%p:%d:%p" 2471 "on the defer queue as internal\n", 2472 defer_index, cmd, cmd->sync_cmd, cmd->scmd); 2473 2474 if (!list_empty(&cmd->list)) { 2475 printk(KERN_NOTICE "megaraid_sas: ERROR while" 2476 " moving this cmd:%p, %d %p, it was" 2477 "discovered on some list?\n", 2478 cmd, cmd->sync_cmd, cmd->scmd); 2479 2480 list_del_init(&cmd->list); 2481 } 2482 defer_index++; 2483 list_add_tail(&cmd->list, 2484 &instance->internal_reset_pending_q); 2485 } 2486 } 2487 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags); 2488 } 2489 2490 2491 static void 2492 process_fw_state_change_wq(struct work_struct *work) 2493 { 2494 struct megasas_instance *instance = 2495 container_of(work, struct megasas_instance, work_init); 2496 u32 wait; 2497 unsigned long flags; 2498 2499 if (instance->adprecovery != MEGASAS_ADPRESET_SM_INFAULT) { 2500 printk(KERN_NOTICE "megaraid_sas: error, recovery st %x \n", 2501 instance->adprecovery); 2502 return ; 2503 } 2504 2505 if (instance->adprecovery == MEGASAS_ADPRESET_SM_INFAULT) { 2506 printk(KERN_NOTICE "megaraid_sas: FW detected to be in fault" 2507 "state, restarting it...\n"); 2508 2509 instance->instancet->disable_intr(instance); 2510 atomic_set(&instance->fw_outstanding, 0); 2511 2512 atomic_set(&instance->fw_reset_no_pci_access, 1); 2513 instance->instancet->adp_reset(instance, instance->reg_set); 2514 atomic_set(&instance->fw_reset_no_pci_access, 0 ); 2515 2516 printk(KERN_NOTICE "megaraid_sas: FW restarted successfully," 2517 "initiating next stage...\n"); 2518 2519 printk(KERN_NOTICE "megaraid_sas: HBA recovery state machine," 2520 "state 2 starting...\n"); 2521 2522 /*waitting for about 20 second before start the second init*/ 2523 for (wait = 0; wait < 30; wait++) { 2524 msleep(1000); 2525 } 2526 2527 if (megasas_transition_to_ready(instance, 1)) { 2528 printk(KERN_NOTICE "megaraid_sas:adapter not ready\n"); 2529 2530 megaraid_sas_kill_hba(instance); 2531 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; 2532 return ; 2533 } 2534 2535 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) || 2536 (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) || 2537 (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR) 2538 ) { 2539 *instance->consumer = *instance->producer; 2540 } else { 2541 *instance->consumer = 0; 2542 *instance->producer = 0; 2543 } 2544 2545 megasas_issue_init_mfi(instance); 2546 2547 spin_lock_irqsave(&instance->hba_lock, flags); 2548 instance->adprecovery = MEGASAS_HBA_OPERATIONAL; 2549 spin_unlock_irqrestore(&instance->hba_lock, flags); 2550 instance->instancet->enable_intr(instance); 2551 2552 megasas_issue_pending_cmds_again(instance); 2553 instance->issuepend_done = 1; 2554 } 2555 return ; 2556 } 2557 2558 /** 2559 * megasas_deplete_reply_queue - Processes all completed commands 2560 * @instance: Adapter soft state 2561 * @alt_status: Alternate status to be returned to 2562 * SCSI mid-layer instead of the status 2563 * returned by the FW 2564 * Note: this must be called with hba lock held 2565 */ 2566 static int 2567 megasas_deplete_reply_queue(struct megasas_instance *instance, 2568 u8 alt_status) 2569 { 2570 u32 mfiStatus; 2571 u32 fw_state; 2572 2573 if ((mfiStatus = instance->instancet->check_reset(instance, 2574 instance->reg_set)) == 1) { 2575 return IRQ_HANDLED; 2576 } 2577 2578 if ((mfiStatus = instance->instancet->clear_intr( 2579 instance->reg_set) 2580 ) == 0) { 2581 /* Hardware may not set outbound_intr_status in MSI-X mode */ 2582 if (!instance->msix_vectors) 2583 return IRQ_NONE; 2584 } 2585 2586 instance->mfiStatus = mfiStatus; 2587 2588 if ((mfiStatus & MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE)) { 2589 fw_state = instance->instancet->read_fw_status_reg( 2590 instance->reg_set) & MFI_STATE_MASK; 2591 2592 if (fw_state != MFI_STATE_FAULT) { 2593 printk(KERN_NOTICE "megaraid_sas: fw state:%x\n", 2594 fw_state); 2595 } 2596 2597 if ((fw_state == MFI_STATE_FAULT) && 2598 (instance->disableOnlineCtrlReset == 0)) { 2599 printk(KERN_NOTICE "megaraid_sas: wait adp restart\n"); 2600 2601 if ((instance->pdev->device == 2602 PCI_DEVICE_ID_LSI_SAS1064R) || 2603 (instance->pdev->device == 2604 PCI_DEVICE_ID_DELL_PERC5) || 2605 (instance->pdev->device == 2606 PCI_DEVICE_ID_LSI_VERDE_ZCR)) { 2607 2608 *instance->consumer = 2609 MEGASAS_ADPRESET_INPROG_SIGN; 2610 } 2611 2612 2613 instance->instancet->disable_intr(instance); 2614 instance->adprecovery = MEGASAS_ADPRESET_SM_INFAULT; 2615 instance->issuepend_done = 0; 2616 2617 atomic_set(&instance->fw_outstanding, 0); 2618 megasas_internal_reset_defer_cmds(instance); 2619 2620 printk(KERN_NOTICE "megasas: fwState=%x, stage:%d\n", 2621 fw_state, instance->adprecovery); 2622 2623 schedule_work(&instance->work_init); 2624 return IRQ_HANDLED; 2625 2626 } else { 2627 printk(KERN_NOTICE "megasas: fwstate:%x, dis_OCR=%x\n", 2628 fw_state, instance->disableOnlineCtrlReset); 2629 } 2630 } 2631 2632 tasklet_schedule(&instance->isr_tasklet); 2633 return IRQ_HANDLED; 2634 } 2635 /** 2636 * megasas_isr - isr entry point 2637 */ 2638 static irqreturn_t megasas_isr(int irq, void *devp) 2639 { 2640 struct megasas_irq_context *irq_context = devp; 2641 struct megasas_instance *instance = irq_context->instance; 2642 unsigned long flags; 2643 irqreturn_t rc; 2644 2645 if (atomic_read(&instance->fw_reset_no_pci_access)) 2646 return IRQ_HANDLED; 2647 2648 spin_lock_irqsave(&instance->hba_lock, flags); 2649 rc = megasas_deplete_reply_queue(instance, DID_OK); 2650 spin_unlock_irqrestore(&instance->hba_lock, flags); 2651 2652 return rc; 2653 } 2654 2655 /** 2656 * megasas_transition_to_ready - Move the FW to READY state 2657 * @instance: Adapter soft state 2658 * 2659 * During the initialization, FW passes can potentially be in any one of 2660 * several possible states. If the FW in operational, waiting-for-handshake 2661 * states, driver must take steps to bring it to ready state. Otherwise, it 2662 * has to wait for the ready state. 2663 */ 2664 int 2665 megasas_transition_to_ready(struct megasas_instance *instance, int ocr) 2666 { 2667 int i; 2668 u8 max_wait; 2669 u32 fw_state; 2670 u32 cur_state; 2671 u32 abs_state, curr_abs_state; 2672 2673 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK; 2674 2675 if (fw_state != MFI_STATE_READY) 2676 printk(KERN_INFO "megasas: Waiting for FW to come to ready" 2677 " state\n"); 2678 2679 while (fw_state != MFI_STATE_READY) { 2680 2681 abs_state = 2682 instance->instancet->read_fw_status_reg(instance->reg_set); 2683 2684 switch (fw_state) { 2685 2686 case MFI_STATE_FAULT: 2687 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n"); 2688 if (ocr) { 2689 max_wait = MEGASAS_RESET_WAIT_TIME; 2690 cur_state = MFI_STATE_FAULT; 2691 break; 2692 } else 2693 return -ENODEV; 2694 2695 case MFI_STATE_WAIT_HANDSHAKE: 2696 /* 2697 * Set the CLR bit in inbound doorbell 2698 */ 2699 if ((instance->pdev->device == 2700 PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 2701 (instance->pdev->device == 2702 PCI_DEVICE_ID_LSI_SAS0071SKINNY) || 2703 (instance->pdev->device == 2704 PCI_DEVICE_ID_LSI_FUSION) || 2705 (instance->pdev->device == 2706 PCI_DEVICE_ID_LSI_INVADER) || 2707 (instance->pdev->device == 2708 PCI_DEVICE_ID_LSI_FURY)) { 2709 writel( 2710 MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG, 2711 &instance->reg_set->doorbell); 2712 } else { 2713 writel( 2714 MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG, 2715 &instance->reg_set->inbound_doorbell); 2716 } 2717 2718 max_wait = MEGASAS_RESET_WAIT_TIME; 2719 cur_state = MFI_STATE_WAIT_HANDSHAKE; 2720 break; 2721 2722 case MFI_STATE_BOOT_MESSAGE_PENDING: 2723 if ((instance->pdev->device == 2724 PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 2725 (instance->pdev->device == 2726 PCI_DEVICE_ID_LSI_SAS0071SKINNY) || 2727 (instance->pdev->device == 2728 PCI_DEVICE_ID_LSI_FUSION) || 2729 (instance->pdev->device == 2730 PCI_DEVICE_ID_LSI_INVADER) || 2731 (instance->pdev->device == 2732 PCI_DEVICE_ID_LSI_FURY)) { 2733 writel(MFI_INIT_HOTPLUG, 2734 &instance->reg_set->doorbell); 2735 } else 2736 writel(MFI_INIT_HOTPLUG, 2737 &instance->reg_set->inbound_doorbell); 2738 2739 max_wait = MEGASAS_RESET_WAIT_TIME; 2740 cur_state = MFI_STATE_BOOT_MESSAGE_PENDING; 2741 break; 2742 2743 case MFI_STATE_OPERATIONAL: 2744 /* 2745 * Bring it to READY state; assuming max wait 10 secs 2746 */ 2747 instance->instancet->disable_intr(instance); 2748 if ((instance->pdev->device == 2749 PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 2750 (instance->pdev->device == 2751 PCI_DEVICE_ID_LSI_SAS0071SKINNY) || 2752 (instance->pdev->device 2753 == PCI_DEVICE_ID_LSI_FUSION) || 2754 (instance->pdev->device 2755 == PCI_DEVICE_ID_LSI_INVADER) || 2756 (instance->pdev->device 2757 == PCI_DEVICE_ID_LSI_FURY)) { 2758 writel(MFI_RESET_FLAGS, 2759 &instance->reg_set->doorbell); 2760 if ((instance->pdev->device == 2761 PCI_DEVICE_ID_LSI_FUSION) || 2762 (instance->pdev->device == 2763 PCI_DEVICE_ID_LSI_INVADER) || 2764 (instance->pdev->device == 2765 PCI_DEVICE_ID_LSI_FURY)) { 2766 for (i = 0; i < (10 * 1000); i += 20) { 2767 if (readl( 2768 &instance-> 2769 reg_set-> 2770 doorbell) & 1) 2771 msleep(20); 2772 else 2773 break; 2774 } 2775 } 2776 } else 2777 writel(MFI_RESET_FLAGS, 2778 &instance->reg_set->inbound_doorbell); 2779 2780 max_wait = MEGASAS_RESET_WAIT_TIME; 2781 cur_state = MFI_STATE_OPERATIONAL; 2782 break; 2783 2784 case MFI_STATE_UNDEFINED: 2785 /* 2786 * This state should not last for more than 2 seconds 2787 */ 2788 max_wait = MEGASAS_RESET_WAIT_TIME; 2789 cur_state = MFI_STATE_UNDEFINED; 2790 break; 2791 2792 case MFI_STATE_BB_INIT: 2793 max_wait = MEGASAS_RESET_WAIT_TIME; 2794 cur_state = MFI_STATE_BB_INIT; 2795 break; 2796 2797 case MFI_STATE_FW_INIT: 2798 max_wait = MEGASAS_RESET_WAIT_TIME; 2799 cur_state = MFI_STATE_FW_INIT; 2800 break; 2801 2802 case MFI_STATE_FW_INIT_2: 2803 max_wait = MEGASAS_RESET_WAIT_TIME; 2804 cur_state = MFI_STATE_FW_INIT_2; 2805 break; 2806 2807 case MFI_STATE_DEVICE_SCAN: 2808 max_wait = MEGASAS_RESET_WAIT_TIME; 2809 cur_state = MFI_STATE_DEVICE_SCAN; 2810 break; 2811 2812 case MFI_STATE_FLUSH_CACHE: 2813 max_wait = MEGASAS_RESET_WAIT_TIME; 2814 cur_state = MFI_STATE_FLUSH_CACHE; 2815 break; 2816 2817 default: 2818 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n", 2819 fw_state); 2820 return -ENODEV; 2821 } 2822 2823 /* 2824 * The cur_state should not last for more than max_wait secs 2825 */ 2826 for (i = 0; i < (max_wait * 1000); i++) { 2827 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & 2828 MFI_STATE_MASK ; 2829 curr_abs_state = 2830 instance->instancet->read_fw_status_reg(instance->reg_set); 2831 2832 if (abs_state == curr_abs_state) { 2833 msleep(1); 2834 } else 2835 break; 2836 } 2837 2838 /* 2839 * Return error if fw_state hasn't changed after max_wait 2840 */ 2841 if (curr_abs_state == abs_state) { 2842 printk(KERN_DEBUG "FW state [%d] hasn't changed " 2843 "in %d secs\n", fw_state, max_wait); 2844 return -ENODEV; 2845 } 2846 } 2847 printk(KERN_INFO "megasas: FW now in Ready state\n"); 2848 2849 return 0; 2850 } 2851 2852 /** 2853 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool 2854 * @instance: Adapter soft state 2855 */ 2856 static void megasas_teardown_frame_pool(struct megasas_instance *instance) 2857 { 2858 int i; 2859 u32 max_cmd = instance->max_mfi_cmds; 2860 struct megasas_cmd *cmd; 2861 2862 if (!instance->frame_dma_pool) 2863 return; 2864 2865 /* 2866 * Return all frames to pool 2867 */ 2868 for (i = 0; i < max_cmd; i++) { 2869 2870 cmd = instance->cmd_list[i]; 2871 2872 if (cmd->frame) 2873 pci_pool_free(instance->frame_dma_pool, cmd->frame, 2874 cmd->frame_phys_addr); 2875 2876 if (cmd->sense) 2877 pci_pool_free(instance->sense_dma_pool, cmd->sense, 2878 cmd->sense_phys_addr); 2879 } 2880 2881 /* 2882 * Now destroy the pool itself 2883 */ 2884 pci_pool_destroy(instance->frame_dma_pool); 2885 pci_pool_destroy(instance->sense_dma_pool); 2886 2887 instance->frame_dma_pool = NULL; 2888 instance->sense_dma_pool = NULL; 2889 } 2890 2891 /** 2892 * megasas_create_frame_pool - Creates DMA pool for cmd frames 2893 * @instance: Adapter soft state 2894 * 2895 * Each command packet has an embedded DMA memory buffer that is used for 2896 * filling MFI frame and the SG list that immediately follows the frame. This 2897 * function creates those DMA memory buffers for each command packet by using 2898 * PCI pool facility. 2899 */ 2900 static int megasas_create_frame_pool(struct megasas_instance *instance) 2901 { 2902 int i; 2903 u32 max_cmd; 2904 u32 sge_sz; 2905 u32 sgl_sz; 2906 u32 total_sz; 2907 u32 frame_count; 2908 struct megasas_cmd *cmd; 2909 2910 max_cmd = instance->max_mfi_cmds; 2911 2912 /* 2913 * Size of our frame is 64 bytes for MFI frame, followed by max SG 2914 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer 2915 */ 2916 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) : 2917 sizeof(struct megasas_sge32); 2918 2919 if (instance->flag_ieee) { 2920 sge_sz = sizeof(struct megasas_sge_skinny); 2921 } 2922 2923 /* 2924 * Calculated the number of 64byte frames required for SGL 2925 */ 2926 sgl_sz = sge_sz * instance->max_num_sge; 2927 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE; 2928 frame_count = 15; 2929 2930 /* 2931 * We need one extra frame for the MFI command 2932 */ 2933 frame_count++; 2934 2935 total_sz = MEGAMFI_FRAME_SIZE * frame_count; 2936 /* 2937 * Use DMA pool facility provided by PCI layer 2938 */ 2939 instance->frame_dma_pool = pci_pool_create("megasas frame pool", 2940 instance->pdev, total_sz, 64, 2941 0); 2942 2943 if (!instance->frame_dma_pool) { 2944 printk(KERN_DEBUG "megasas: failed to setup frame pool\n"); 2945 return -ENOMEM; 2946 } 2947 2948 instance->sense_dma_pool = pci_pool_create("megasas sense pool", 2949 instance->pdev, 128, 4, 0); 2950 2951 if (!instance->sense_dma_pool) { 2952 printk(KERN_DEBUG "megasas: failed to setup sense pool\n"); 2953 2954 pci_pool_destroy(instance->frame_dma_pool); 2955 instance->frame_dma_pool = NULL; 2956 2957 return -ENOMEM; 2958 } 2959 2960 /* 2961 * Allocate and attach a frame to each of the commands in cmd_list. 2962 * By making cmd->index as the context instead of the &cmd, we can 2963 * always use 32bit context regardless of the architecture 2964 */ 2965 for (i = 0; i < max_cmd; i++) { 2966 2967 cmd = instance->cmd_list[i]; 2968 2969 cmd->frame = pci_pool_alloc(instance->frame_dma_pool, 2970 GFP_KERNEL, &cmd->frame_phys_addr); 2971 2972 cmd->sense = pci_pool_alloc(instance->sense_dma_pool, 2973 GFP_KERNEL, &cmd->sense_phys_addr); 2974 2975 /* 2976 * megasas_teardown_frame_pool() takes care of freeing 2977 * whatever has been allocated 2978 */ 2979 if (!cmd->frame || !cmd->sense) { 2980 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n"); 2981 megasas_teardown_frame_pool(instance); 2982 return -ENOMEM; 2983 } 2984 2985 memset(cmd->frame, 0, total_sz); 2986 cmd->frame->io.context = cmd->index; 2987 cmd->frame->io.pad_0 = 0; 2988 if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) && 2989 (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) && 2990 (instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) && 2991 (reset_devices)) 2992 cmd->frame->hdr.cmd = MFI_CMD_INVALID; 2993 } 2994 2995 return 0; 2996 } 2997 2998 /** 2999 * megasas_free_cmds - Free all the cmds in the free cmd pool 3000 * @instance: Adapter soft state 3001 */ 3002 void megasas_free_cmds(struct megasas_instance *instance) 3003 { 3004 int i; 3005 /* First free the MFI frame pool */ 3006 megasas_teardown_frame_pool(instance); 3007 3008 /* Free all the commands in the cmd_list */ 3009 for (i = 0; i < instance->max_mfi_cmds; i++) 3010 3011 kfree(instance->cmd_list[i]); 3012 3013 /* Free the cmd_list buffer itself */ 3014 kfree(instance->cmd_list); 3015 instance->cmd_list = NULL; 3016 3017 INIT_LIST_HEAD(&instance->cmd_pool); 3018 } 3019 3020 /** 3021 * megasas_alloc_cmds - Allocates the command packets 3022 * @instance: Adapter soft state 3023 * 3024 * Each command that is issued to the FW, whether IO commands from the OS or 3025 * internal commands like IOCTLs, are wrapped in local data structure called 3026 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to 3027 * the FW. 3028 * 3029 * Each frame has a 32-bit field called context (tag). This context is used 3030 * to get back the megasas_cmd from the frame when a frame gets completed in 3031 * the ISR. Typically the address of the megasas_cmd itself would be used as 3032 * the context. But we wanted to keep the differences between 32 and 64 bit 3033 * systems to the mininum. We always use 32 bit integers for the context. In 3034 * this driver, the 32 bit values are the indices into an array cmd_list. 3035 * This array is used only to look up the megasas_cmd given the context. The 3036 * free commands themselves are maintained in a linked list called cmd_pool. 3037 */ 3038 int megasas_alloc_cmds(struct megasas_instance *instance) 3039 { 3040 int i; 3041 int j; 3042 u32 max_cmd; 3043 struct megasas_cmd *cmd; 3044 3045 max_cmd = instance->max_mfi_cmds; 3046 3047 /* 3048 * instance->cmd_list is an array of struct megasas_cmd pointers. 3049 * Allocate the dynamic array first and then allocate individual 3050 * commands. 3051 */ 3052 instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL); 3053 3054 if (!instance->cmd_list) { 3055 printk(KERN_DEBUG "megasas: out of memory\n"); 3056 return -ENOMEM; 3057 } 3058 3059 memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) *max_cmd); 3060 3061 for (i = 0; i < max_cmd; i++) { 3062 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd), 3063 GFP_KERNEL); 3064 3065 if (!instance->cmd_list[i]) { 3066 3067 for (j = 0; j < i; j++) 3068 kfree(instance->cmd_list[j]); 3069 3070 kfree(instance->cmd_list); 3071 instance->cmd_list = NULL; 3072 3073 return -ENOMEM; 3074 } 3075 } 3076 3077 /* 3078 * Add all the commands to command pool (instance->cmd_pool) 3079 */ 3080 for (i = 0; i < max_cmd; i++) { 3081 cmd = instance->cmd_list[i]; 3082 memset(cmd, 0, sizeof(struct megasas_cmd)); 3083 cmd->index = i; 3084 cmd->scmd = NULL; 3085 cmd->instance = instance; 3086 3087 list_add_tail(&cmd->list, &instance->cmd_pool); 3088 } 3089 3090 /* 3091 * Create a frame pool and assign one frame to each cmd 3092 */ 3093 if (megasas_create_frame_pool(instance)) { 3094 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n"); 3095 megasas_free_cmds(instance); 3096 } 3097 3098 return 0; 3099 } 3100 3101 /* 3102 * megasas_get_pd_list_info - Returns FW's pd_list structure 3103 * @instance: Adapter soft state 3104 * @pd_list: pd_list structure 3105 * 3106 * Issues an internal command (DCMD) to get the FW's controller PD 3107 * list structure. This information is mainly used to find out SYSTEM 3108 * supported by the FW. 3109 */ 3110 static int 3111 megasas_get_pd_list(struct megasas_instance *instance) 3112 { 3113 int ret = 0, pd_index = 0; 3114 struct megasas_cmd *cmd; 3115 struct megasas_dcmd_frame *dcmd; 3116 struct MR_PD_LIST *ci; 3117 struct MR_PD_ADDRESS *pd_addr; 3118 dma_addr_t ci_h = 0; 3119 3120 cmd = megasas_get_cmd(instance); 3121 3122 if (!cmd) { 3123 printk(KERN_DEBUG "megasas (get_pd_list): Failed to get cmd\n"); 3124 return -ENOMEM; 3125 } 3126 3127 dcmd = &cmd->frame->dcmd; 3128 3129 ci = pci_alloc_consistent(instance->pdev, 3130 MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), &ci_h); 3131 3132 if (!ci) { 3133 printk(KERN_DEBUG "Failed to alloc mem for pd_list\n"); 3134 megasas_return_cmd(instance, cmd); 3135 return -ENOMEM; 3136 } 3137 3138 memset(ci, 0, sizeof(*ci)); 3139 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3140 3141 dcmd->mbox.b[0] = MR_PD_QUERY_TYPE_EXPOSED_TO_HOST; 3142 dcmd->mbox.b[1] = 0; 3143 dcmd->cmd = MFI_CMD_DCMD; 3144 dcmd->cmd_status = 0xFF; 3145 dcmd->sge_count = 1; 3146 dcmd->flags = MFI_FRAME_DIR_READ; 3147 dcmd->timeout = 0; 3148 dcmd->pad_0 = 0; 3149 dcmd->data_xfer_len = MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST); 3150 dcmd->opcode = MR_DCMD_PD_LIST_QUERY; 3151 dcmd->sgl.sge32[0].phys_addr = ci_h; 3152 dcmd->sgl.sge32[0].length = MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST); 3153 3154 if (!megasas_issue_polled(instance, cmd)) { 3155 ret = 0; 3156 } else { 3157 ret = -1; 3158 } 3159 3160 /* 3161 * the following function will get the instance PD LIST. 3162 */ 3163 3164 pd_addr = ci->addr; 3165 3166 if ( ret == 0 && 3167 (ci->count < 3168 (MEGASAS_MAX_PD_CHANNELS * MEGASAS_MAX_DEV_PER_CHANNEL))) { 3169 3170 memset(instance->pd_list, 0, 3171 MEGASAS_MAX_PD * sizeof(struct megasas_pd_list)); 3172 3173 for (pd_index = 0; pd_index < ci->count; pd_index++) { 3174 3175 instance->pd_list[pd_addr->deviceId].tid = 3176 pd_addr->deviceId; 3177 instance->pd_list[pd_addr->deviceId].driveType = 3178 pd_addr->scsiDevType; 3179 instance->pd_list[pd_addr->deviceId].driveState = 3180 MR_PD_STATE_SYSTEM; 3181 pd_addr++; 3182 } 3183 } 3184 3185 pci_free_consistent(instance->pdev, 3186 MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), 3187 ci, ci_h); 3188 megasas_return_cmd(instance, cmd); 3189 3190 return ret; 3191 } 3192 3193 /* 3194 * megasas_get_ld_list_info - Returns FW's ld_list structure 3195 * @instance: Adapter soft state 3196 * @ld_list: ld_list structure 3197 * 3198 * Issues an internal command (DCMD) to get the FW's controller PD 3199 * list structure. This information is mainly used to find out SYSTEM 3200 * supported by the FW. 3201 */ 3202 static int 3203 megasas_get_ld_list(struct megasas_instance *instance) 3204 { 3205 int ret = 0, ld_index = 0, ids = 0; 3206 struct megasas_cmd *cmd; 3207 struct megasas_dcmd_frame *dcmd; 3208 struct MR_LD_LIST *ci; 3209 dma_addr_t ci_h = 0; 3210 3211 cmd = megasas_get_cmd(instance); 3212 3213 if (!cmd) { 3214 printk(KERN_DEBUG "megasas_get_ld_list: Failed to get cmd\n"); 3215 return -ENOMEM; 3216 } 3217 3218 dcmd = &cmd->frame->dcmd; 3219 3220 ci = pci_alloc_consistent(instance->pdev, 3221 sizeof(struct MR_LD_LIST), 3222 &ci_h); 3223 3224 if (!ci) { 3225 printk(KERN_DEBUG "Failed to alloc mem in get_ld_list\n"); 3226 megasas_return_cmd(instance, cmd); 3227 return -ENOMEM; 3228 } 3229 3230 memset(ci, 0, sizeof(*ci)); 3231 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3232 3233 dcmd->cmd = MFI_CMD_DCMD; 3234 dcmd->cmd_status = 0xFF; 3235 dcmd->sge_count = 1; 3236 dcmd->flags = MFI_FRAME_DIR_READ; 3237 dcmd->timeout = 0; 3238 dcmd->data_xfer_len = sizeof(struct MR_LD_LIST); 3239 dcmd->opcode = MR_DCMD_LD_GET_LIST; 3240 dcmd->sgl.sge32[0].phys_addr = ci_h; 3241 dcmd->sgl.sge32[0].length = sizeof(struct MR_LD_LIST); 3242 dcmd->pad_0 = 0; 3243 3244 if (!megasas_issue_polled(instance, cmd)) { 3245 ret = 0; 3246 } else { 3247 ret = -1; 3248 } 3249 3250 /* the following function will get the instance PD LIST */ 3251 3252 if ((ret == 0) && (ci->ldCount <= MAX_LOGICAL_DRIVES)) { 3253 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS); 3254 3255 for (ld_index = 0; ld_index < ci->ldCount; ld_index++) { 3256 if (ci->ldList[ld_index].state != 0) { 3257 ids = ci->ldList[ld_index].ref.targetId; 3258 instance->ld_ids[ids] = 3259 ci->ldList[ld_index].ref.targetId; 3260 } 3261 } 3262 } 3263 3264 pci_free_consistent(instance->pdev, 3265 sizeof(struct MR_LD_LIST), 3266 ci, 3267 ci_h); 3268 3269 megasas_return_cmd(instance, cmd); 3270 return ret; 3271 } 3272 3273 /** 3274 * megasas_get_controller_info - Returns FW's controller structure 3275 * @instance: Adapter soft state 3276 * @ctrl_info: Controller information structure 3277 * 3278 * Issues an internal command (DCMD) to get the FW's controller structure. 3279 * This information is mainly used to find out the maximum IO transfer per 3280 * command supported by the FW. 3281 */ 3282 static int 3283 megasas_get_ctrl_info(struct megasas_instance *instance, 3284 struct megasas_ctrl_info *ctrl_info) 3285 { 3286 int ret = 0; 3287 struct megasas_cmd *cmd; 3288 struct megasas_dcmd_frame *dcmd; 3289 struct megasas_ctrl_info *ci; 3290 dma_addr_t ci_h = 0; 3291 3292 cmd = megasas_get_cmd(instance); 3293 3294 if (!cmd) { 3295 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n"); 3296 return -ENOMEM; 3297 } 3298 3299 dcmd = &cmd->frame->dcmd; 3300 3301 ci = pci_alloc_consistent(instance->pdev, 3302 sizeof(struct megasas_ctrl_info), &ci_h); 3303 3304 if (!ci) { 3305 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n"); 3306 megasas_return_cmd(instance, cmd); 3307 return -ENOMEM; 3308 } 3309 3310 memset(ci, 0, sizeof(*ci)); 3311 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3312 3313 dcmd->cmd = MFI_CMD_DCMD; 3314 dcmd->cmd_status = 0xFF; 3315 dcmd->sge_count = 1; 3316 dcmd->flags = MFI_FRAME_DIR_READ; 3317 dcmd->timeout = 0; 3318 dcmd->pad_0 = 0; 3319 dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info); 3320 dcmd->opcode = MR_DCMD_CTRL_GET_INFO; 3321 dcmd->sgl.sge32[0].phys_addr = ci_h; 3322 dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info); 3323 3324 if (!megasas_issue_polled(instance, cmd)) { 3325 ret = 0; 3326 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info)); 3327 } else { 3328 ret = -1; 3329 } 3330 3331 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info), 3332 ci, ci_h); 3333 3334 megasas_return_cmd(instance, cmd); 3335 return ret; 3336 } 3337 3338 /** 3339 * megasas_issue_init_mfi - Initializes the FW 3340 * @instance: Adapter soft state 3341 * 3342 * Issues the INIT MFI cmd 3343 */ 3344 static int 3345 megasas_issue_init_mfi(struct megasas_instance *instance) 3346 { 3347 u32 context; 3348 3349 struct megasas_cmd *cmd; 3350 3351 struct megasas_init_frame *init_frame; 3352 struct megasas_init_queue_info *initq_info; 3353 dma_addr_t init_frame_h; 3354 dma_addr_t initq_info_h; 3355 3356 /* 3357 * Prepare a init frame. Note the init frame points to queue info 3358 * structure. Each frame has SGL allocated after first 64 bytes. For 3359 * this frame - since we don't need any SGL - we use SGL's space as 3360 * queue info structure 3361 * 3362 * We will not get a NULL command below. We just created the pool. 3363 */ 3364 cmd = megasas_get_cmd(instance); 3365 3366 init_frame = (struct megasas_init_frame *)cmd->frame; 3367 initq_info = (struct megasas_init_queue_info *) 3368 ((unsigned long)init_frame + 64); 3369 3370 init_frame_h = cmd->frame_phys_addr; 3371 initq_info_h = init_frame_h + 64; 3372 3373 context = init_frame->context; 3374 memset(init_frame, 0, MEGAMFI_FRAME_SIZE); 3375 memset(initq_info, 0, sizeof(struct megasas_init_queue_info)); 3376 init_frame->context = context; 3377 3378 initq_info->reply_queue_entries = instance->max_fw_cmds + 1; 3379 initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h; 3380 3381 initq_info->producer_index_phys_addr_lo = instance->producer_h; 3382 initq_info->consumer_index_phys_addr_lo = instance->consumer_h; 3383 3384 init_frame->cmd = MFI_CMD_INIT; 3385 init_frame->cmd_status = 0xFF; 3386 init_frame->queue_info_new_phys_addr_lo = initq_info_h; 3387 3388 init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info); 3389 3390 /* 3391 * disable the intr before firing the init frame to FW 3392 */ 3393 instance->instancet->disable_intr(instance); 3394 3395 /* 3396 * Issue the init frame in polled mode 3397 */ 3398 3399 if (megasas_issue_polled(instance, cmd)) { 3400 printk(KERN_ERR "megasas: Failed to init firmware\n"); 3401 megasas_return_cmd(instance, cmd); 3402 goto fail_fw_init; 3403 } 3404 3405 megasas_return_cmd(instance, cmd); 3406 3407 return 0; 3408 3409 fail_fw_init: 3410 return -EINVAL; 3411 } 3412 3413 static u32 3414 megasas_init_adapter_mfi(struct megasas_instance *instance) 3415 { 3416 struct megasas_register_set __iomem *reg_set; 3417 u32 context_sz; 3418 u32 reply_q_sz; 3419 3420 reg_set = instance->reg_set; 3421 3422 /* 3423 * Get various operational parameters from status register 3424 */ 3425 instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF; 3426 /* 3427 * Reduce the max supported cmds by 1. This is to ensure that the 3428 * reply_q_sz (1 more than the max cmd that driver may send) 3429 * does not exceed max cmds that the FW can support 3430 */ 3431 instance->max_fw_cmds = instance->max_fw_cmds-1; 3432 instance->max_mfi_cmds = instance->max_fw_cmds; 3433 instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >> 3434 0x10; 3435 /* 3436 * Create a pool of commands 3437 */ 3438 if (megasas_alloc_cmds(instance)) 3439 goto fail_alloc_cmds; 3440 3441 /* 3442 * Allocate memory for reply queue. Length of reply queue should 3443 * be _one_ more than the maximum commands handled by the firmware. 3444 * 3445 * Note: When FW completes commands, it places corresponding contex 3446 * values in this circular reply queue. This circular queue is a fairly 3447 * typical producer-consumer queue. FW is the producer (of completed 3448 * commands) and the driver is the consumer. 3449 */ 3450 context_sz = sizeof(u32); 3451 reply_q_sz = context_sz * (instance->max_fw_cmds + 1); 3452 3453 instance->reply_queue = pci_alloc_consistent(instance->pdev, 3454 reply_q_sz, 3455 &instance->reply_queue_h); 3456 3457 if (!instance->reply_queue) { 3458 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n"); 3459 goto fail_reply_queue; 3460 } 3461 3462 if (megasas_issue_init_mfi(instance)) 3463 goto fail_fw_init; 3464 3465 instance->fw_support_ieee = 0; 3466 instance->fw_support_ieee = 3467 (instance->instancet->read_fw_status_reg(reg_set) & 3468 0x04000000); 3469 3470 printk(KERN_NOTICE "megasas_init_mfi: fw_support_ieee=%d", 3471 instance->fw_support_ieee); 3472 3473 if (instance->fw_support_ieee) 3474 instance->flag_ieee = 1; 3475 3476 return 0; 3477 3478 fail_fw_init: 3479 3480 pci_free_consistent(instance->pdev, reply_q_sz, 3481 instance->reply_queue, instance->reply_queue_h); 3482 fail_reply_queue: 3483 megasas_free_cmds(instance); 3484 3485 fail_alloc_cmds: 3486 return 1; 3487 } 3488 3489 /** 3490 * megasas_init_fw - Initializes the FW 3491 * @instance: Adapter soft state 3492 * 3493 * This is the main function for initializing firmware 3494 */ 3495 3496 static int megasas_init_fw(struct megasas_instance *instance) 3497 { 3498 u32 max_sectors_1; 3499 u32 max_sectors_2; 3500 u32 tmp_sectors, msix_enable, scratch_pad_2; 3501 struct megasas_register_set __iomem *reg_set; 3502 struct megasas_ctrl_info *ctrl_info; 3503 unsigned long bar_list; 3504 int i, loop, fw_msix_count = 0; 3505 3506 /* Find first memory bar */ 3507 bar_list = pci_select_bars(instance->pdev, IORESOURCE_MEM); 3508 instance->bar = find_first_bit(&bar_list, sizeof(unsigned long)); 3509 instance->base_addr = pci_resource_start(instance->pdev, instance->bar); 3510 if (pci_request_selected_regions(instance->pdev, instance->bar, 3511 "megasas: LSI")) { 3512 printk(KERN_DEBUG "megasas: IO memory region busy!\n"); 3513 return -EBUSY; 3514 } 3515 3516 instance->reg_set = ioremap_nocache(instance->base_addr, 8192); 3517 3518 if (!instance->reg_set) { 3519 printk(KERN_DEBUG "megasas: Failed to map IO mem\n"); 3520 goto fail_ioremap; 3521 } 3522 3523 reg_set = instance->reg_set; 3524 3525 switch (instance->pdev->device) { 3526 case PCI_DEVICE_ID_LSI_FUSION: 3527 case PCI_DEVICE_ID_LSI_INVADER: 3528 case PCI_DEVICE_ID_LSI_FURY: 3529 instance->instancet = &megasas_instance_template_fusion; 3530 break; 3531 case PCI_DEVICE_ID_LSI_SAS1078R: 3532 case PCI_DEVICE_ID_LSI_SAS1078DE: 3533 instance->instancet = &megasas_instance_template_ppc; 3534 break; 3535 case PCI_DEVICE_ID_LSI_SAS1078GEN2: 3536 case PCI_DEVICE_ID_LSI_SAS0079GEN2: 3537 instance->instancet = &megasas_instance_template_gen2; 3538 break; 3539 case PCI_DEVICE_ID_LSI_SAS0073SKINNY: 3540 case PCI_DEVICE_ID_LSI_SAS0071SKINNY: 3541 instance->instancet = &megasas_instance_template_skinny; 3542 break; 3543 case PCI_DEVICE_ID_LSI_SAS1064R: 3544 case PCI_DEVICE_ID_DELL_PERC5: 3545 default: 3546 instance->instancet = &megasas_instance_template_xscale; 3547 break; 3548 } 3549 3550 if (megasas_transition_to_ready(instance, 0)) { 3551 atomic_set(&instance->fw_reset_no_pci_access, 1); 3552 instance->instancet->adp_reset 3553 (instance, instance->reg_set); 3554 atomic_set(&instance->fw_reset_no_pci_access, 0); 3555 dev_info(&instance->pdev->dev, 3556 "megasas: FW restarted successfully from %s!\n", 3557 __func__); 3558 3559 /*waitting for about 30 second before retry*/ 3560 ssleep(30); 3561 3562 if (megasas_transition_to_ready(instance, 0)) 3563 goto fail_ready_state; 3564 } 3565 3566 /* 3567 * MSI-X host index 0 is common for all adapter. 3568 * It is used for all MPT based Adapters. 3569 */ 3570 instance->reply_post_host_index_addr[0] = 3571 (u32 *)((u8 *)instance->reg_set + 3572 MPI2_REPLY_POST_HOST_INDEX_OFFSET); 3573 3574 /* Check if MSI-X is supported while in ready state */ 3575 msix_enable = (instance->instancet->read_fw_status_reg(reg_set) & 3576 0x4000000) >> 0x1a; 3577 if (msix_enable && !msix_disable) { 3578 scratch_pad_2 = readl 3579 (&instance->reg_set->outbound_scratch_pad_2); 3580 /* Check max MSI-X vectors */ 3581 if (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) { 3582 instance->msix_vectors = (scratch_pad_2 3583 & MR_MAX_REPLY_QUEUES_OFFSET) + 1; 3584 fw_msix_count = instance->msix_vectors; 3585 if (msix_vectors) 3586 instance->msix_vectors = 3587 min(msix_vectors, 3588 instance->msix_vectors); 3589 } else if ((instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) 3590 || (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { 3591 /* Invader/Fury supports more than 8 MSI-X */ 3592 instance->msix_vectors = ((scratch_pad_2 3593 & MR_MAX_REPLY_QUEUES_EXT_OFFSET) 3594 >> MR_MAX_REPLY_QUEUES_EXT_OFFSET_SHIFT) + 1; 3595 fw_msix_count = instance->msix_vectors; 3596 /* Save 1-15 reply post index address to local memory 3597 * Index 0 is already saved from reg offset 3598 * MPI2_REPLY_POST_HOST_INDEX_OFFSET 3599 */ 3600 for (loop = 1; loop < MR_MAX_MSIX_REG_ARRAY; loop++) { 3601 instance->reply_post_host_index_addr[loop] = 3602 (u32 *)((u8 *)instance->reg_set + 3603 MPI2_SUP_REPLY_POST_HOST_INDEX_OFFSET 3604 + (loop * 0x10)); 3605 } 3606 if (msix_vectors) 3607 instance->msix_vectors = min(msix_vectors, 3608 instance->msix_vectors); 3609 } else 3610 instance->msix_vectors = 1; 3611 /* Don't bother allocating more MSI-X vectors than cpus */ 3612 instance->msix_vectors = min(instance->msix_vectors, 3613 (unsigned int)num_online_cpus()); 3614 for (i = 0; i < instance->msix_vectors; i++) 3615 instance->msixentry[i].entry = i; 3616 i = pci_enable_msix(instance->pdev, instance->msixentry, 3617 instance->msix_vectors); 3618 if (i >= 0) { 3619 if (i) { 3620 if (!pci_enable_msix(instance->pdev, 3621 instance->msixentry, i)) 3622 instance->msix_vectors = i; 3623 else 3624 instance->msix_vectors = 0; 3625 } 3626 } else 3627 instance->msix_vectors = 0; 3628 3629 dev_info(&instance->pdev->dev, "[scsi%d]: FW supports" 3630 "<%d> MSIX vector,Online CPUs: <%d>," 3631 "Current MSIX <%d>\n", instance->host->host_no, 3632 fw_msix_count, (unsigned int)num_online_cpus(), 3633 instance->msix_vectors); 3634 } 3635 3636 /* Get operational params, sge flags, send init cmd to controller */ 3637 if (instance->instancet->init_adapter(instance)) 3638 goto fail_init_adapter; 3639 3640 printk(KERN_ERR "megasas: INIT adapter done\n"); 3641 3642 /** for passthrough 3643 * the following function will get the PD LIST. 3644 */ 3645 3646 memset(instance->pd_list, 0 , 3647 (MEGASAS_MAX_PD * sizeof(struct megasas_pd_list))); 3648 megasas_get_pd_list(instance); 3649 3650 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS); 3651 megasas_get_ld_list(instance); 3652 3653 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL); 3654 3655 /* 3656 * Compute the max allowed sectors per IO: The controller info has two 3657 * limits on max sectors. Driver should use the minimum of these two. 3658 * 3659 * 1 << stripe_sz_ops.min = max sectors per strip 3660 * 3661 * Note that older firmwares ( < FW ver 30) didn't report information 3662 * to calculate max_sectors_1. So the number ended up as zero always. 3663 */ 3664 tmp_sectors = 0; 3665 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) { 3666 3667 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) * 3668 ctrl_info->max_strips_per_io; 3669 max_sectors_2 = ctrl_info->max_request_size; 3670 3671 tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2); 3672 3673 /*Check whether controller is iMR or MR */ 3674 if (ctrl_info->memory_size) { 3675 instance->is_imr = 0; 3676 dev_info(&instance->pdev->dev, "Controller type: MR," 3677 "Memory size is: %dMB\n", 3678 ctrl_info->memory_size); 3679 } else { 3680 instance->is_imr = 1; 3681 dev_info(&instance->pdev->dev, 3682 "Controller type: iMR\n"); 3683 } 3684 instance->disableOnlineCtrlReset = 3685 ctrl_info->properties.OnOffProperties.disableOnlineCtrlReset; 3686 instance->UnevenSpanSupport = 3687 ctrl_info->adapterOperations2.supportUnevenSpans; 3688 if (instance->UnevenSpanSupport) { 3689 struct fusion_context *fusion = instance->ctrl_context; 3690 dev_info(&instance->pdev->dev, "FW supports: " 3691 "UnevenSpanSupport=%x\n", instance->UnevenSpanSupport); 3692 if (MR_ValidateMapInfo(instance)) 3693 fusion->fast_path_io = 1; 3694 else 3695 fusion->fast_path_io = 0; 3696 3697 } 3698 } 3699 3700 instance->max_sectors_per_req = instance->max_num_sge * 3701 PAGE_SIZE / 512; 3702 if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors)) 3703 instance->max_sectors_per_req = tmp_sectors; 3704 3705 kfree(ctrl_info); 3706 3707 /* Check for valid throttlequeuedepth module parameter */ 3708 if (instance->is_imr) { 3709 if (throttlequeuedepth > (instance->max_fw_cmds - 3710 MEGASAS_SKINNY_INT_CMDS)) 3711 instance->throttlequeuedepth = 3712 MEGASAS_THROTTLE_QUEUE_DEPTH; 3713 else 3714 instance->throttlequeuedepth = throttlequeuedepth; 3715 } else { 3716 if (throttlequeuedepth > (instance->max_fw_cmds - 3717 MEGASAS_INT_CMDS)) 3718 instance->throttlequeuedepth = 3719 MEGASAS_THROTTLE_QUEUE_DEPTH; 3720 else 3721 instance->throttlequeuedepth = throttlequeuedepth; 3722 } 3723 3724 /* 3725 * Setup tasklet for cmd completion 3726 */ 3727 3728 tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet, 3729 (unsigned long)instance); 3730 3731 return 0; 3732 3733 fail_init_adapter: 3734 fail_ready_state: 3735 iounmap(instance->reg_set); 3736 3737 fail_ioremap: 3738 pci_release_selected_regions(instance->pdev, instance->bar); 3739 3740 return -EINVAL; 3741 } 3742 3743 /** 3744 * megasas_release_mfi - Reverses the FW initialization 3745 * @intance: Adapter soft state 3746 */ 3747 static void megasas_release_mfi(struct megasas_instance *instance) 3748 { 3749 u32 reply_q_sz = sizeof(u32) *(instance->max_mfi_cmds + 1); 3750 3751 if (instance->reply_queue) 3752 pci_free_consistent(instance->pdev, reply_q_sz, 3753 instance->reply_queue, instance->reply_queue_h); 3754 3755 megasas_free_cmds(instance); 3756 3757 iounmap(instance->reg_set); 3758 3759 pci_release_selected_regions(instance->pdev, instance->bar); 3760 } 3761 3762 /** 3763 * megasas_get_seq_num - Gets latest event sequence numbers 3764 * @instance: Adapter soft state 3765 * @eli: FW event log sequence numbers information 3766 * 3767 * FW maintains a log of all events in a non-volatile area. Upper layers would 3768 * usually find out the latest sequence number of the events, the seq number at 3769 * the boot etc. They would "read" all the events below the latest seq number 3770 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq 3771 * number), they would subsribe to AEN (asynchronous event notification) and 3772 * wait for the events to happen. 3773 */ 3774 static int 3775 megasas_get_seq_num(struct megasas_instance *instance, 3776 struct megasas_evt_log_info *eli) 3777 { 3778 struct megasas_cmd *cmd; 3779 struct megasas_dcmd_frame *dcmd; 3780 struct megasas_evt_log_info *el_info; 3781 dma_addr_t el_info_h = 0; 3782 3783 cmd = megasas_get_cmd(instance); 3784 3785 if (!cmd) { 3786 return -ENOMEM; 3787 } 3788 3789 dcmd = &cmd->frame->dcmd; 3790 el_info = pci_alloc_consistent(instance->pdev, 3791 sizeof(struct megasas_evt_log_info), 3792 &el_info_h); 3793 3794 if (!el_info) { 3795 megasas_return_cmd(instance, cmd); 3796 return -ENOMEM; 3797 } 3798 3799 memset(el_info, 0, sizeof(*el_info)); 3800 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3801 3802 dcmd->cmd = MFI_CMD_DCMD; 3803 dcmd->cmd_status = 0x0; 3804 dcmd->sge_count = 1; 3805 dcmd->flags = MFI_FRAME_DIR_READ; 3806 dcmd->timeout = 0; 3807 dcmd->pad_0 = 0; 3808 dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info); 3809 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO; 3810 dcmd->sgl.sge32[0].phys_addr = el_info_h; 3811 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info); 3812 3813 megasas_issue_blocked_cmd(instance, cmd); 3814 3815 /* 3816 * Copy the data back into callers buffer 3817 */ 3818 memcpy(eli, el_info, sizeof(struct megasas_evt_log_info)); 3819 3820 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info), 3821 el_info, el_info_h); 3822 3823 megasas_return_cmd(instance, cmd); 3824 3825 return 0; 3826 } 3827 3828 /** 3829 * megasas_register_aen - Registers for asynchronous event notification 3830 * @instance: Adapter soft state 3831 * @seq_num: The starting sequence number 3832 * @class_locale: Class of the event 3833 * 3834 * This function subscribes for AEN for events beyond the @seq_num. It requests 3835 * to be notified if and only if the event is of type @class_locale 3836 */ 3837 static int 3838 megasas_register_aen(struct megasas_instance *instance, u32 seq_num, 3839 u32 class_locale_word) 3840 { 3841 int ret_val; 3842 struct megasas_cmd *cmd; 3843 struct megasas_dcmd_frame *dcmd; 3844 union megasas_evt_class_locale curr_aen; 3845 union megasas_evt_class_locale prev_aen; 3846 3847 /* 3848 * If there an AEN pending already (aen_cmd), check if the 3849 * class_locale of that pending AEN is inclusive of the new 3850 * AEN request we currently have. If it is, then we don't have 3851 * to do anything. In other words, whichever events the current 3852 * AEN request is subscribing to, have already been subscribed 3853 * to. 3854 * 3855 * If the old_cmd is _not_ inclusive, then we have to abort 3856 * that command, form a class_locale that is superset of both 3857 * old and current and re-issue to the FW 3858 */ 3859 3860 curr_aen.word = class_locale_word; 3861 3862 if (instance->aen_cmd) { 3863 3864 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1]; 3865 3866 /* 3867 * A class whose enum value is smaller is inclusive of all 3868 * higher values. If a PROGRESS (= -1) was previously 3869 * registered, then a new registration requests for higher 3870 * classes need not be sent to FW. They are automatically 3871 * included. 3872 * 3873 * Locale numbers don't have such hierarchy. They are bitmap 3874 * values 3875 */ 3876 if ((prev_aen.members.class <= curr_aen.members.class) && 3877 !((prev_aen.members.locale & curr_aen.members.locale) ^ 3878 curr_aen.members.locale)) { 3879 /* 3880 * Previously issued event registration includes 3881 * current request. Nothing to do. 3882 */ 3883 return 0; 3884 } else { 3885 curr_aen.members.locale |= prev_aen.members.locale; 3886 3887 if (prev_aen.members.class < curr_aen.members.class) 3888 curr_aen.members.class = prev_aen.members.class; 3889 3890 instance->aen_cmd->abort_aen = 1; 3891 ret_val = megasas_issue_blocked_abort_cmd(instance, 3892 instance-> 3893 aen_cmd); 3894 3895 if (ret_val) { 3896 printk(KERN_DEBUG "megasas: Failed to abort " 3897 "previous AEN command\n"); 3898 return ret_val; 3899 } 3900 } 3901 } 3902 3903 cmd = megasas_get_cmd(instance); 3904 3905 if (!cmd) 3906 return -ENOMEM; 3907 3908 dcmd = &cmd->frame->dcmd; 3909 3910 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail)); 3911 3912 /* 3913 * Prepare DCMD for aen registration 3914 */ 3915 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3916 3917 dcmd->cmd = MFI_CMD_DCMD; 3918 dcmd->cmd_status = 0x0; 3919 dcmd->sge_count = 1; 3920 dcmd->flags = MFI_FRAME_DIR_READ; 3921 dcmd->timeout = 0; 3922 dcmd->pad_0 = 0; 3923 instance->last_seq_num = seq_num; 3924 dcmd->data_xfer_len = sizeof(struct megasas_evt_detail); 3925 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT; 3926 dcmd->mbox.w[0] = seq_num; 3927 dcmd->mbox.w[1] = curr_aen.word; 3928 dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h; 3929 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail); 3930 3931 if (instance->aen_cmd != NULL) { 3932 megasas_return_cmd(instance, cmd); 3933 return 0; 3934 } 3935 3936 /* 3937 * Store reference to the cmd used to register for AEN. When an 3938 * application wants us to register for AEN, we have to abort this 3939 * cmd and re-register with a new EVENT LOCALE supplied by that app 3940 */ 3941 instance->aen_cmd = cmd; 3942 3943 /* 3944 * Issue the aen registration frame 3945 */ 3946 instance->instancet->issue_dcmd(instance, cmd); 3947 3948 return 0; 3949 } 3950 3951 /** 3952 * megasas_start_aen - Subscribes to AEN during driver load time 3953 * @instance: Adapter soft state 3954 */ 3955 static int megasas_start_aen(struct megasas_instance *instance) 3956 { 3957 struct megasas_evt_log_info eli; 3958 union megasas_evt_class_locale class_locale; 3959 3960 /* 3961 * Get the latest sequence number from FW 3962 */ 3963 memset(&eli, 0, sizeof(eli)); 3964 3965 if (megasas_get_seq_num(instance, &eli)) 3966 return -1; 3967 3968 /* 3969 * Register AEN with FW for latest sequence number plus 1 3970 */ 3971 class_locale.members.reserved = 0; 3972 class_locale.members.locale = MR_EVT_LOCALE_ALL; 3973 class_locale.members.class = MR_EVT_CLASS_DEBUG; 3974 3975 return megasas_register_aen(instance, eli.newest_seq_num + 1, 3976 class_locale.word); 3977 } 3978 3979 /** 3980 * megasas_io_attach - Attaches this driver to SCSI mid-layer 3981 * @instance: Adapter soft state 3982 */ 3983 static int megasas_io_attach(struct megasas_instance *instance) 3984 { 3985 struct Scsi_Host *host = instance->host; 3986 3987 /* 3988 * Export parameters required by SCSI mid-layer 3989 */ 3990 host->irq = instance->pdev->irq; 3991 host->unique_id = instance->unique_id; 3992 if (instance->is_imr) { 3993 host->can_queue = 3994 instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS; 3995 } else 3996 host->can_queue = 3997 instance->max_fw_cmds - MEGASAS_INT_CMDS; 3998 host->this_id = instance->init_id; 3999 host->sg_tablesize = instance->max_num_sge; 4000 4001 if (instance->fw_support_ieee) 4002 instance->max_sectors_per_req = MEGASAS_MAX_SECTORS_IEEE; 4003 4004 /* 4005 * Check if the module parameter value for max_sectors can be used 4006 */ 4007 if (max_sectors && max_sectors < instance->max_sectors_per_req) 4008 instance->max_sectors_per_req = max_sectors; 4009 else { 4010 if (max_sectors) { 4011 if (((instance->pdev->device == 4012 PCI_DEVICE_ID_LSI_SAS1078GEN2) || 4013 (instance->pdev->device == 4014 PCI_DEVICE_ID_LSI_SAS0079GEN2)) && 4015 (max_sectors <= MEGASAS_MAX_SECTORS)) { 4016 instance->max_sectors_per_req = max_sectors; 4017 } else { 4018 printk(KERN_INFO "megasas: max_sectors should be > 0" 4019 "and <= %d (or < 1MB for GEN2 controller)\n", 4020 instance->max_sectors_per_req); 4021 } 4022 } 4023 } 4024 4025 host->max_sectors = instance->max_sectors_per_req; 4026 host->cmd_per_lun = MEGASAS_DEFAULT_CMD_PER_LUN; 4027 host->max_channel = MEGASAS_MAX_CHANNELS - 1; 4028 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL; 4029 host->max_lun = MEGASAS_MAX_LUN; 4030 host->max_cmd_len = 16; 4031 4032 /* Fusion only supports host reset */ 4033 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 4034 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 4035 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { 4036 host->hostt->eh_device_reset_handler = NULL; 4037 host->hostt->eh_bus_reset_handler = NULL; 4038 } 4039 4040 /* 4041 * Notify the mid-layer about the new controller 4042 */ 4043 if (scsi_add_host(host, &instance->pdev->dev)) { 4044 printk(KERN_DEBUG "megasas: scsi_add_host failed\n"); 4045 return -ENODEV; 4046 } 4047 4048 /* 4049 * Trigger SCSI to scan our drives 4050 */ 4051 scsi_scan_host(host); 4052 return 0; 4053 } 4054 4055 static int 4056 megasas_set_dma_mask(struct pci_dev *pdev) 4057 { 4058 /* 4059 * All our contollers are capable of performing 64-bit DMA 4060 */ 4061 if (IS_DMA64) { 4062 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) != 0) { 4063 4064 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) 4065 goto fail_set_dma_mask; 4066 } 4067 } else { 4068 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) 4069 goto fail_set_dma_mask; 4070 } 4071 return 0; 4072 4073 fail_set_dma_mask: 4074 return 1; 4075 } 4076 4077 /** 4078 * megasas_probe_one - PCI hotplug entry point 4079 * @pdev: PCI device structure 4080 * @id: PCI ids of supported hotplugged adapter 4081 */ 4082 static int megasas_probe_one(struct pci_dev *pdev, 4083 const struct pci_device_id *id) 4084 { 4085 int rval, pos, i, j; 4086 struct Scsi_Host *host; 4087 struct megasas_instance *instance; 4088 u16 control = 0; 4089 4090 /* Reset MSI-X in the kdump kernel */ 4091 if (reset_devices) { 4092 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); 4093 if (pos) { 4094 pci_read_config_word(pdev, pos + PCI_MSIX_FLAGS, 4095 &control); 4096 if (control & PCI_MSIX_FLAGS_ENABLE) { 4097 dev_info(&pdev->dev, "resetting MSI-X\n"); 4098 pci_write_config_word(pdev, 4099 pos + PCI_MSIX_FLAGS, 4100 control & 4101 ~PCI_MSIX_FLAGS_ENABLE); 4102 } 4103 } 4104 } 4105 4106 /* 4107 * Announce PCI information 4108 */ 4109 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ", 4110 pdev->vendor, pdev->device, pdev->subsystem_vendor, 4111 pdev->subsystem_device); 4112 4113 printk("bus %d:slot %d:func %d\n", 4114 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 4115 4116 /* 4117 * PCI prepping: enable device set bus mastering and dma mask 4118 */ 4119 rval = pci_enable_device_mem(pdev); 4120 4121 if (rval) { 4122 return rval; 4123 } 4124 4125 pci_set_master(pdev); 4126 4127 if (megasas_set_dma_mask(pdev)) 4128 goto fail_set_dma_mask; 4129 4130 host = scsi_host_alloc(&megasas_template, 4131 sizeof(struct megasas_instance)); 4132 4133 if (!host) { 4134 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n"); 4135 goto fail_alloc_instance; 4136 } 4137 4138 instance = (struct megasas_instance *)host->hostdata; 4139 memset(instance, 0, sizeof(*instance)); 4140 atomic_set( &instance->fw_reset_no_pci_access, 0 ); 4141 instance->pdev = pdev; 4142 4143 switch (instance->pdev->device) { 4144 case PCI_DEVICE_ID_LSI_FUSION: 4145 case PCI_DEVICE_ID_LSI_INVADER: 4146 case PCI_DEVICE_ID_LSI_FURY: 4147 { 4148 struct fusion_context *fusion; 4149 4150 instance->ctrl_context = 4151 kzalloc(sizeof(struct fusion_context), GFP_KERNEL); 4152 if (!instance->ctrl_context) { 4153 printk(KERN_DEBUG "megasas: Failed to allocate " 4154 "memory for Fusion context info\n"); 4155 goto fail_alloc_dma_buf; 4156 } 4157 fusion = instance->ctrl_context; 4158 INIT_LIST_HEAD(&fusion->cmd_pool); 4159 spin_lock_init(&fusion->cmd_pool_lock); 4160 } 4161 break; 4162 default: /* For all other supported controllers */ 4163 4164 instance->producer = 4165 pci_alloc_consistent(pdev, sizeof(u32), 4166 &instance->producer_h); 4167 instance->consumer = 4168 pci_alloc_consistent(pdev, sizeof(u32), 4169 &instance->consumer_h); 4170 4171 if (!instance->producer || !instance->consumer) { 4172 printk(KERN_DEBUG "megasas: Failed to allocate" 4173 "memory for producer, consumer\n"); 4174 goto fail_alloc_dma_buf; 4175 } 4176 4177 *instance->producer = 0; 4178 *instance->consumer = 0; 4179 break; 4180 } 4181 4182 megasas_poll_wait_aen = 0; 4183 instance->flag_ieee = 0; 4184 instance->ev = NULL; 4185 instance->issuepend_done = 1; 4186 instance->adprecovery = MEGASAS_HBA_OPERATIONAL; 4187 instance->is_imr = 0; 4188 megasas_poll_wait_aen = 0; 4189 4190 instance->evt_detail = pci_alloc_consistent(pdev, 4191 sizeof(struct 4192 megasas_evt_detail), 4193 &instance->evt_detail_h); 4194 4195 if (!instance->evt_detail) { 4196 printk(KERN_DEBUG "megasas: Failed to allocate memory for " 4197 "event detail structure\n"); 4198 goto fail_alloc_dma_buf; 4199 } 4200 4201 /* 4202 * Initialize locks and queues 4203 */ 4204 INIT_LIST_HEAD(&instance->cmd_pool); 4205 INIT_LIST_HEAD(&instance->internal_reset_pending_q); 4206 4207 atomic_set(&instance->fw_outstanding,0); 4208 4209 init_waitqueue_head(&instance->int_cmd_wait_q); 4210 init_waitqueue_head(&instance->abort_cmd_wait_q); 4211 4212 spin_lock_init(&instance->cmd_pool_lock); 4213 spin_lock_init(&instance->hba_lock); 4214 spin_lock_init(&instance->completion_lock); 4215 4216 mutex_init(&instance->aen_mutex); 4217 mutex_init(&instance->reset_mutex); 4218 4219 /* 4220 * Initialize PCI related and misc parameters 4221 */ 4222 instance->host = host; 4223 instance->unique_id = pdev->bus->number << 8 | pdev->devfn; 4224 instance->init_id = MEGASAS_DEFAULT_INIT_ID; 4225 4226 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 4227 (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) { 4228 instance->flag_ieee = 1; 4229 sema_init(&instance->ioctl_sem, MEGASAS_SKINNY_INT_CMDS); 4230 } else 4231 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS); 4232 4233 megasas_dbg_lvl = 0; 4234 instance->flag = 0; 4235 instance->unload = 1; 4236 instance->last_time = 0; 4237 instance->disableOnlineCtrlReset = 1; 4238 instance->UnevenSpanSupport = 0; 4239 4240 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 4241 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 4242 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) 4243 INIT_WORK(&instance->work_init, megasas_fusion_ocr_wq); 4244 else 4245 INIT_WORK(&instance->work_init, process_fw_state_change_wq); 4246 4247 /* 4248 * Initialize MFI Firmware 4249 */ 4250 if (megasas_init_fw(instance)) 4251 goto fail_init_mfi; 4252 4253 retry_irq_register: 4254 /* 4255 * Register IRQ 4256 */ 4257 if (instance->msix_vectors) { 4258 for (i = 0 ; i < instance->msix_vectors; i++) { 4259 instance->irq_context[i].instance = instance; 4260 instance->irq_context[i].MSIxIndex = i; 4261 if (request_irq(instance->msixentry[i].vector, 4262 instance->instancet->service_isr, 0, 4263 "megasas", 4264 &instance->irq_context[i])) { 4265 printk(KERN_DEBUG "megasas: Failed to " 4266 "register IRQ for vector %d.\n", i); 4267 for (j = 0 ; j < i ; j++) 4268 free_irq( 4269 instance->msixentry[j].vector, 4270 &instance->irq_context[j]); 4271 /* Retry irq register for IO_APIC */ 4272 instance->msix_vectors = 0; 4273 goto retry_irq_register; 4274 } 4275 } 4276 } else { 4277 instance->irq_context[0].instance = instance; 4278 instance->irq_context[0].MSIxIndex = 0; 4279 if (request_irq(pdev->irq, instance->instancet->service_isr, 4280 IRQF_SHARED, "megasas", 4281 &instance->irq_context[0])) { 4282 printk(KERN_DEBUG "megasas: Failed to register IRQ\n"); 4283 goto fail_irq; 4284 } 4285 } 4286 4287 instance->instancet->enable_intr(instance); 4288 4289 /* 4290 * Store instance in PCI softstate 4291 */ 4292 pci_set_drvdata(pdev, instance); 4293 4294 /* 4295 * Add this controller to megasas_mgmt_info structure so that it 4296 * can be exported to management applications 4297 */ 4298 megasas_mgmt_info.count++; 4299 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance; 4300 megasas_mgmt_info.max_index++; 4301 4302 /* 4303 * Register with SCSI mid-layer 4304 */ 4305 if (megasas_io_attach(instance)) 4306 goto fail_io_attach; 4307 4308 instance->unload = 0; 4309 4310 /* 4311 * Initiate AEN (Asynchronous Event Notification) 4312 */ 4313 if (megasas_start_aen(instance)) { 4314 printk(KERN_DEBUG "megasas: start aen failed\n"); 4315 goto fail_start_aen; 4316 } 4317 4318 return 0; 4319 4320 fail_start_aen: 4321 fail_io_attach: 4322 megasas_mgmt_info.count--; 4323 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL; 4324 megasas_mgmt_info.max_index--; 4325 4326 pci_set_drvdata(pdev, NULL); 4327 instance->instancet->disable_intr(instance); 4328 if (instance->msix_vectors) 4329 for (i = 0 ; i < instance->msix_vectors; i++) 4330 free_irq(instance->msixentry[i].vector, 4331 &instance->irq_context[i]); 4332 else 4333 free_irq(instance->pdev->irq, &instance->irq_context[0]); 4334 fail_irq: 4335 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 4336 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 4337 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) 4338 megasas_release_fusion(instance); 4339 else 4340 megasas_release_mfi(instance); 4341 fail_init_mfi: 4342 if (instance->msix_vectors) 4343 pci_disable_msix(instance->pdev); 4344 fail_alloc_dma_buf: 4345 if (instance->evt_detail) 4346 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail), 4347 instance->evt_detail, 4348 instance->evt_detail_h); 4349 4350 if (instance->producer) 4351 pci_free_consistent(pdev, sizeof(u32), instance->producer, 4352 instance->producer_h); 4353 if (instance->consumer) 4354 pci_free_consistent(pdev, sizeof(u32), instance->consumer, 4355 instance->consumer_h); 4356 scsi_host_put(host); 4357 4358 fail_alloc_instance: 4359 fail_set_dma_mask: 4360 pci_disable_device(pdev); 4361 4362 return -ENODEV; 4363 } 4364 4365 /** 4366 * megasas_flush_cache - Requests FW to flush all its caches 4367 * @instance: Adapter soft state 4368 */ 4369 static void megasas_flush_cache(struct megasas_instance *instance) 4370 { 4371 struct megasas_cmd *cmd; 4372 struct megasas_dcmd_frame *dcmd; 4373 4374 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) 4375 return; 4376 4377 cmd = megasas_get_cmd(instance); 4378 4379 if (!cmd) 4380 return; 4381 4382 dcmd = &cmd->frame->dcmd; 4383 4384 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 4385 4386 dcmd->cmd = MFI_CMD_DCMD; 4387 dcmd->cmd_status = 0x0; 4388 dcmd->sge_count = 0; 4389 dcmd->flags = MFI_FRAME_DIR_NONE; 4390 dcmd->timeout = 0; 4391 dcmd->pad_0 = 0; 4392 dcmd->data_xfer_len = 0; 4393 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH; 4394 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE; 4395 4396 megasas_issue_blocked_cmd(instance, cmd); 4397 4398 megasas_return_cmd(instance, cmd); 4399 4400 return; 4401 } 4402 4403 /** 4404 * megasas_shutdown_controller - Instructs FW to shutdown the controller 4405 * @instance: Adapter soft state 4406 * @opcode: Shutdown/Hibernate 4407 */ 4408 static void megasas_shutdown_controller(struct megasas_instance *instance, 4409 u32 opcode) 4410 { 4411 struct megasas_cmd *cmd; 4412 struct megasas_dcmd_frame *dcmd; 4413 4414 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) 4415 return; 4416 4417 cmd = megasas_get_cmd(instance); 4418 4419 if (!cmd) 4420 return; 4421 4422 if (instance->aen_cmd) 4423 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd); 4424 if (instance->map_update_cmd) 4425 megasas_issue_blocked_abort_cmd(instance, 4426 instance->map_update_cmd); 4427 dcmd = &cmd->frame->dcmd; 4428 4429 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 4430 4431 dcmd->cmd = MFI_CMD_DCMD; 4432 dcmd->cmd_status = 0x0; 4433 dcmd->sge_count = 0; 4434 dcmd->flags = MFI_FRAME_DIR_NONE; 4435 dcmd->timeout = 0; 4436 dcmd->pad_0 = 0; 4437 dcmd->data_xfer_len = 0; 4438 dcmd->opcode = opcode; 4439 4440 megasas_issue_blocked_cmd(instance, cmd); 4441 4442 megasas_return_cmd(instance, cmd); 4443 4444 return; 4445 } 4446 4447 #ifdef CONFIG_PM 4448 /** 4449 * megasas_suspend - driver suspend entry point 4450 * @pdev: PCI device structure 4451 * @state: PCI power state to suspend routine 4452 */ 4453 static int 4454 megasas_suspend(struct pci_dev *pdev, pm_message_t state) 4455 { 4456 struct Scsi_Host *host; 4457 struct megasas_instance *instance; 4458 int i; 4459 4460 instance = pci_get_drvdata(pdev); 4461 host = instance->host; 4462 instance->unload = 1; 4463 4464 megasas_flush_cache(instance); 4465 megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN); 4466 4467 /* cancel the delayed work if this work still in queue */ 4468 if (instance->ev != NULL) { 4469 struct megasas_aen_event *ev = instance->ev; 4470 cancel_delayed_work_sync(&ev->hotplug_work); 4471 instance->ev = NULL; 4472 } 4473 4474 tasklet_kill(&instance->isr_tasklet); 4475 4476 pci_set_drvdata(instance->pdev, instance); 4477 instance->instancet->disable_intr(instance); 4478 4479 if (instance->msix_vectors) 4480 for (i = 0 ; i < instance->msix_vectors; i++) 4481 free_irq(instance->msixentry[i].vector, 4482 &instance->irq_context[i]); 4483 else 4484 free_irq(instance->pdev->irq, &instance->irq_context[0]); 4485 if (instance->msix_vectors) 4486 pci_disable_msix(instance->pdev); 4487 4488 pci_save_state(pdev); 4489 pci_disable_device(pdev); 4490 4491 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 4492 4493 return 0; 4494 } 4495 4496 /** 4497 * megasas_resume- driver resume entry point 4498 * @pdev: PCI device structure 4499 */ 4500 static int 4501 megasas_resume(struct pci_dev *pdev) 4502 { 4503 int rval, i, j; 4504 struct Scsi_Host *host; 4505 struct megasas_instance *instance; 4506 4507 instance = pci_get_drvdata(pdev); 4508 host = instance->host; 4509 pci_set_power_state(pdev, PCI_D0); 4510 pci_enable_wake(pdev, PCI_D0, 0); 4511 pci_restore_state(pdev); 4512 4513 /* 4514 * PCI prepping: enable device set bus mastering and dma mask 4515 */ 4516 rval = pci_enable_device_mem(pdev); 4517 4518 if (rval) { 4519 printk(KERN_ERR "megasas: Enable device failed\n"); 4520 return rval; 4521 } 4522 4523 pci_set_master(pdev); 4524 4525 if (megasas_set_dma_mask(pdev)) 4526 goto fail_set_dma_mask; 4527 4528 /* 4529 * Initialize MFI Firmware 4530 */ 4531 4532 atomic_set(&instance->fw_outstanding, 0); 4533 4534 /* 4535 * We expect the FW state to be READY 4536 */ 4537 if (megasas_transition_to_ready(instance, 0)) 4538 goto fail_ready_state; 4539 4540 /* Now re-enable MSI-X */ 4541 if (instance->msix_vectors) 4542 pci_enable_msix(instance->pdev, instance->msixentry, 4543 instance->msix_vectors); 4544 4545 switch (instance->pdev->device) { 4546 case PCI_DEVICE_ID_LSI_FUSION: 4547 case PCI_DEVICE_ID_LSI_INVADER: 4548 case PCI_DEVICE_ID_LSI_FURY: 4549 { 4550 megasas_reset_reply_desc(instance); 4551 if (megasas_ioc_init_fusion(instance)) { 4552 megasas_free_cmds(instance); 4553 megasas_free_cmds_fusion(instance); 4554 goto fail_init_mfi; 4555 } 4556 if (!megasas_get_map_info(instance)) 4557 megasas_sync_map_info(instance); 4558 } 4559 break; 4560 default: 4561 *instance->producer = 0; 4562 *instance->consumer = 0; 4563 if (megasas_issue_init_mfi(instance)) 4564 goto fail_init_mfi; 4565 break; 4566 } 4567 4568 tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet, 4569 (unsigned long)instance); 4570 4571 /* 4572 * Register IRQ 4573 */ 4574 if (instance->msix_vectors) { 4575 for (i = 0 ; i < instance->msix_vectors; i++) { 4576 instance->irq_context[i].instance = instance; 4577 instance->irq_context[i].MSIxIndex = i; 4578 if (request_irq(instance->msixentry[i].vector, 4579 instance->instancet->service_isr, 0, 4580 "megasas", 4581 &instance->irq_context[i])) { 4582 printk(KERN_DEBUG "megasas: Failed to " 4583 "register IRQ for vector %d.\n", i); 4584 for (j = 0 ; j < i ; j++) 4585 free_irq( 4586 instance->msixentry[j].vector, 4587 &instance->irq_context[j]); 4588 goto fail_irq; 4589 } 4590 } 4591 } else { 4592 instance->irq_context[0].instance = instance; 4593 instance->irq_context[0].MSIxIndex = 0; 4594 if (request_irq(pdev->irq, instance->instancet->service_isr, 4595 IRQF_SHARED, "megasas", 4596 &instance->irq_context[0])) { 4597 printk(KERN_DEBUG "megasas: Failed to register IRQ\n"); 4598 goto fail_irq; 4599 } 4600 } 4601 4602 instance->instancet->enable_intr(instance); 4603 instance->unload = 0; 4604 4605 /* 4606 * Initiate AEN (Asynchronous Event Notification) 4607 */ 4608 if (megasas_start_aen(instance)) 4609 printk(KERN_ERR "megasas: Start AEN failed\n"); 4610 4611 return 0; 4612 4613 fail_irq: 4614 fail_init_mfi: 4615 if (instance->evt_detail) 4616 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail), 4617 instance->evt_detail, 4618 instance->evt_detail_h); 4619 4620 if (instance->producer) 4621 pci_free_consistent(pdev, sizeof(u32), instance->producer, 4622 instance->producer_h); 4623 if (instance->consumer) 4624 pci_free_consistent(pdev, sizeof(u32), instance->consumer, 4625 instance->consumer_h); 4626 scsi_host_put(host); 4627 4628 fail_set_dma_mask: 4629 fail_ready_state: 4630 4631 pci_disable_device(pdev); 4632 4633 return -ENODEV; 4634 } 4635 #else 4636 #define megasas_suspend NULL 4637 #define megasas_resume NULL 4638 #endif 4639 4640 /** 4641 * megasas_detach_one - PCI hot"un"plug entry point 4642 * @pdev: PCI device structure 4643 */ 4644 static void megasas_detach_one(struct pci_dev *pdev) 4645 { 4646 int i; 4647 struct Scsi_Host *host; 4648 struct megasas_instance *instance; 4649 struct fusion_context *fusion; 4650 4651 instance = pci_get_drvdata(pdev); 4652 instance->unload = 1; 4653 host = instance->host; 4654 fusion = instance->ctrl_context; 4655 4656 scsi_remove_host(instance->host); 4657 megasas_flush_cache(instance); 4658 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN); 4659 4660 /* cancel the delayed work if this work still in queue*/ 4661 if (instance->ev != NULL) { 4662 struct megasas_aen_event *ev = instance->ev; 4663 cancel_delayed_work_sync(&ev->hotplug_work); 4664 instance->ev = NULL; 4665 } 4666 4667 tasklet_kill(&instance->isr_tasklet); 4668 4669 /* 4670 * Take the instance off the instance array. Note that we will not 4671 * decrement the max_index. We let this array be sparse array 4672 */ 4673 for (i = 0; i < megasas_mgmt_info.max_index; i++) { 4674 if (megasas_mgmt_info.instance[i] == instance) { 4675 megasas_mgmt_info.count--; 4676 megasas_mgmt_info.instance[i] = NULL; 4677 4678 break; 4679 } 4680 } 4681 4682 pci_set_drvdata(instance->pdev, NULL); 4683 4684 instance->instancet->disable_intr(instance); 4685 4686 if (instance->msix_vectors) 4687 for (i = 0 ; i < instance->msix_vectors; i++) 4688 free_irq(instance->msixentry[i].vector, 4689 &instance->irq_context[i]); 4690 else 4691 free_irq(instance->pdev->irq, &instance->irq_context[0]); 4692 if (instance->msix_vectors) 4693 pci_disable_msix(instance->pdev); 4694 4695 switch (instance->pdev->device) { 4696 case PCI_DEVICE_ID_LSI_FUSION: 4697 case PCI_DEVICE_ID_LSI_INVADER: 4698 case PCI_DEVICE_ID_LSI_FURY: 4699 megasas_release_fusion(instance); 4700 for (i = 0; i < 2 ; i++) 4701 if (fusion->ld_map[i]) 4702 dma_free_coherent(&instance->pdev->dev, 4703 fusion->map_sz, 4704 fusion->ld_map[i], 4705 fusion-> 4706 ld_map_phys[i]); 4707 kfree(instance->ctrl_context); 4708 break; 4709 default: 4710 megasas_release_mfi(instance); 4711 pci_free_consistent(pdev, sizeof(u32), 4712 instance->producer, 4713 instance->producer_h); 4714 pci_free_consistent(pdev, sizeof(u32), 4715 instance->consumer, 4716 instance->consumer_h); 4717 break; 4718 } 4719 4720 if (instance->evt_detail) 4721 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail), 4722 instance->evt_detail, instance->evt_detail_h); 4723 scsi_host_put(host); 4724 4725 pci_set_drvdata(pdev, NULL); 4726 4727 pci_disable_device(pdev); 4728 4729 return; 4730 } 4731 4732 /** 4733 * megasas_shutdown - Shutdown entry point 4734 * @device: Generic device structure 4735 */ 4736 static void megasas_shutdown(struct pci_dev *pdev) 4737 { 4738 int i; 4739 struct megasas_instance *instance = pci_get_drvdata(pdev); 4740 4741 instance->unload = 1; 4742 megasas_flush_cache(instance); 4743 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN); 4744 instance->instancet->disable_intr(instance); 4745 if (instance->msix_vectors) 4746 for (i = 0 ; i < instance->msix_vectors; i++) 4747 free_irq(instance->msixentry[i].vector, 4748 &instance->irq_context[i]); 4749 else 4750 free_irq(instance->pdev->irq, &instance->irq_context[0]); 4751 if (instance->msix_vectors) 4752 pci_disable_msix(instance->pdev); 4753 } 4754 4755 /** 4756 * megasas_mgmt_open - char node "open" entry point 4757 */ 4758 static int megasas_mgmt_open(struct inode *inode, struct file *filep) 4759 { 4760 /* 4761 * Allow only those users with admin rights 4762 */ 4763 if (!capable(CAP_SYS_ADMIN)) 4764 return -EACCES; 4765 4766 return 0; 4767 } 4768 4769 /** 4770 * megasas_mgmt_fasync - Async notifier registration from applications 4771 * 4772 * This function adds the calling process to a driver global queue. When an 4773 * event occurs, SIGIO will be sent to all processes in this queue. 4774 */ 4775 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode) 4776 { 4777 int rc; 4778 4779 mutex_lock(&megasas_async_queue_mutex); 4780 4781 rc = fasync_helper(fd, filep, mode, &megasas_async_queue); 4782 4783 mutex_unlock(&megasas_async_queue_mutex); 4784 4785 if (rc >= 0) { 4786 /* For sanity check when we get ioctl */ 4787 filep->private_data = filep; 4788 return 0; 4789 } 4790 4791 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc); 4792 4793 return rc; 4794 } 4795 4796 /** 4797 * megasas_mgmt_poll - char node "poll" entry point 4798 * */ 4799 static unsigned int megasas_mgmt_poll(struct file *file, poll_table *wait) 4800 { 4801 unsigned int mask; 4802 unsigned long flags; 4803 poll_wait(file, &megasas_poll_wait, wait); 4804 spin_lock_irqsave(&poll_aen_lock, flags); 4805 if (megasas_poll_wait_aen) 4806 mask = (POLLIN | POLLRDNORM); 4807 else 4808 mask = 0; 4809 spin_unlock_irqrestore(&poll_aen_lock, flags); 4810 return mask; 4811 } 4812 4813 /** 4814 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW 4815 * @instance: Adapter soft state 4816 * @argp: User's ioctl packet 4817 */ 4818 static int 4819 megasas_mgmt_fw_ioctl(struct megasas_instance *instance, 4820 struct megasas_iocpacket __user * user_ioc, 4821 struct megasas_iocpacket *ioc) 4822 { 4823 struct megasas_sge32 *kern_sge32; 4824 struct megasas_cmd *cmd; 4825 void *kbuff_arr[MAX_IOCTL_SGE]; 4826 dma_addr_t buf_handle = 0; 4827 int error = 0, i; 4828 void *sense = NULL; 4829 dma_addr_t sense_handle; 4830 unsigned long *sense_ptr; 4831 4832 memset(kbuff_arr, 0, sizeof(kbuff_arr)); 4833 4834 if (ioc->sge_count > MAX_IOCTL_SGE) { 4835 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n", 4836 ioc->sge_count, MAX_IOCTL_SGE); 4837 return -EINVAL; 4838 } 4839 4840 cmd = megasas_get_cmd(instance); 4841 if (!cmd) { 4842 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n"); 4843 return -ENOMEM; 4844 } 4845 4846 /* 4847 * User's IOCTL packet has 2 frames (maximum). Copy those two 4848 * frames into our cmd's frames. cmd->frame's context will get 4849 * overwritten when we copy from user's frames. So set that value 4850 * alone separately 4851 */ 4852 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE); 4853 cmd->frame->hdr.context = cmd->index; 4854 cmd->frame->hdr.pad_0 = 0; 4855 cmd->frame->hdr.flags &= ~(MFI_FRAME_IEEE | MFI_FRAME_SGL64 | 4856 MFI_FRAME_SENSE64); 4857 4858 /* 4859 * The management interface between applications and the fw uses 4860 * MFI frames. E.g, RAID configuration changes, LD property changes 4861 * etc are accomplishes through different kinds of MFI frames. The 4862 * driver needs to care only about substituting user buffers with 4863 * kernel buffers in SGLs. The location of SGL is embedded in the 4864 * struct iocpacket itself. 4865 */ 4866 kern_sge32 = (struct megasas_sge32 *) 4867 ((unsigned long)cmd->frame + ioc->sgl_off); 4868 4869 /* 4870 * For each user buffer, create a mirror buffer and copy in 4871 */ 4872 for (i = 0; i < ioc->sge_count; i++) { 4873 if (!ioc->sgl[i].iov_len) 4874 continue; 4875 4876 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev, 4877 ioc->sgl[i].iov_len, 4878 &buf_handle, GFP_KERNEL); 4879 if (!kbuff_arr[i]) { 4880 printk(KERN_DEBUG "megasas: Failed to alloc " 4881 "kernel SGL buffer for IOCTL \n"); 4882 error = -ENOMEM; 4883 goto out; 4884 } 4885 4886 /* 4887 * We don't change the dma_coherent_mask, so 4888 * pci_alloc_consistent only returns 32bit addresses 4889 */ 4890 kern_sge32[i].phys_addr = (u32) buf_handle; 4891 kern_sge32[i].length = ioc->sgl[i].iov_len; 4892 4893 /* 4894 * We created a kernel buffer corresponding to the 4895 * user buffer. Now copy in from the user buffer 4896 */ 4897 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base, 4898 (u32) (ioc->sgl[i].iov_len))) { 4899 error = -EFAULT; 4900 goto out; 4901 } 4902 } 4903 4904 if (ioc->sense_len) { 4905 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len, 4906 &sense_handle, GFP_KERNEL); 4907 if (!sense) { 4908 error = -ENOMEM; 4909 goto out; 4910 } 4911 4912 sense_ptr = 4913 (unsigned long *) ((unsigned long)cmd->frame + ioc->sense_off); 4914 *sense_ptr = sense_handle; 4915 } 4916 4917 /* 4918 * Set the sync_cmd flag so that the ISR knows not to complete this 4919 * cmd to the SCSI mid-layer 4920 */ 4921 cmd->sync_cmd = 1; 4922 megasas_issue_blocked_cmd(instance, cmd); 4923 cmd->sync_cmd = 0; 4924 4925 /* 4926 * copy out the kernel buffers to user buffers 4927 */ 4928 for (i = 0; i < ioc->sge_count; i++) { 4929 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i], 4930 ioc->sgl[i].iov_len)) { 4931 error = -EFAULT; 4932 goto out; 4933 } 4934 } 4935 4936 /* 4937 * copy out the sense 4938 */ 4939 if (ioc->sense_len) { 4940 /* 4941 * sense_ptr points to the location that has the user 4942 * sense buffer address 4943 */ 4944 sense_ptr = (unsigned long *) ((unsigned long)ioc->frame.raw + 4945 ioc->sense_off); 4946 4947 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)), 4948 sense, ioc->sense_len)) { 4949 printk(KERN_ERR "megasas: Failed to copy out to user " 4950 "sense data\n"); 4951 error = -EFAULT; 4952 goto out; 4953 } 4954 } 4955 4956 /* 4957 * copy the status codes returned by the fw 4958 */ 4959 if (copy_to_user(&user_ioc->frame.hdr.cmd_status, 4960 &cmd->frame->hdr.cmd_status, sizeof(u8))) { 4961 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n"); 4962 error = -EFAULT; 4963 } 4964 4965 out: 4966 if (sense) { 4967 dma_free_coherent(&instance->pdev->dev, ioc->sense_len, 4968 sense, sense_handle); 4969 } 4970 4971 for (i = 0; i < ioc->sge_count; i++) { 4972 if (kbuff_arr[i]) 4973 dma_free_coherent(&instance->pdev->dev, 4974 kern_sge32[i].length, 4975 kbuff_arr[i], 4976 kern_sge32[i].phys_addr); 4977 } 4978 4979 megasas_return_cmd(instance, cmd); 4980 return error; 4981 } 4982 4983 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg) 4984 { 4985 struct megasas_iocpacket __user *user_ioc = 4986 (struct megasas_iocpacket __user *)arg; 4987 struct megasas_iocpacket *ioc; 4988 struct megasas_instance *instance; 4989 int error; 4990 int i; 4991 unsigned long flags; 4992 u32 wait_time = MEGASAS_RESET_WAIT_TIME; 4993 4994 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL); 4995 if (!ioc) 4996 return -ENOMEM; 4997 4998 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) { 4999 error = -EFAULT; 5000 goto out_kfree_ioc; 5001 } 5002 5003 instance = megasas_lookup_instance(ioc->host_no); 5004 if (!instance) { 5005 error = -ENODEV; 5006 goto out_kfree_ioc; 5007 } 5008 5009 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { 5010 printk(KERN_ERR "Controller in crit error\n"); 5011 error = -ENODEV; 5012 goto out_kfree_ioc; 5013 } 5014 5015 if (instance->unload == 1) { 5016 error = -ENODEV; 5017 goto out_kfree_ioc; 5018 } 5019 5020 /* 5021 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds 5022 */ 5023 if (down_interruptible(&instance->ioctl_sem)) { 5024 error = -ERESTARTSYS; 5025 goto out_kfree_ioc; 5026 } 5027 5028 for (i = 0; i < wait_time; i++) { 5029 5030 spin_lock_irqsave(&instance->hba_lock, flags); 5031 if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) { 5032 spin_unlock_irqrestore(&instance->hba_lock, flags); 5033 break; 5034 } 5035 spin_unlock_irqrestore(&instance->hba_lock, flags); 5036 5037 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { 5038 printk(KERN_NOTICE "megasas: waiting" 5039 "for controller reset to finish\n"); 5040 } 5041 5042 msleep(1000); 5043 } 5044 5045 spin_lock_irqsave(&instance->hba_lock, flags); 5046 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { 5047 spin_unlock_irqrestore(&instance->hba_lock, flags); 5048 5049 printk(KERN_ERR "megaraid_sas: timed out while" 5050 "waiting for HBA to recover\n"); 5051 error = -ENODEV; 5052 goto out_up; 5053 } 5054 spin_unlock_irqrestore(&instance->hba_lock, flags); 5055 5056 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc); 5057 out_up: 5058 up(&instance->ioctl_sem); 5059 5060 out_kfree_ioc: 5061 kfree(ioc); 5062 return error; 5063 } 5064 5065 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg) 5066 { 5067 struct megasas_instance *instance; 5068 struct megasas_aen aen; 5069 int error; 5070 int i; 5071 unsigned long flags; 5072 u32 wait_time = MEGASAS_RESET_WAIT_TIME; 5073 5074 if (file->private_data != file) { 5075 printk(KERN_DEBUG "megasas: fasync_helper was not " 5076 "called first\n"); 5077 return -EINVAL; 5078 } 5079 5080 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen))) 5081 return -EFAULT; 5082 5083 instance = megasas_lookup_instance(aen.host_no); 5084 5085 if (!instance) 5086 return -ENODEV; 5087 5088 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { 5089 return -ENODEV; 5090 } 5091 5092 if (instance->unload == 1) { 5093 return -ENODEV; 5094 } 5095 5096 for (i = 0; i < wait_time; i++) { 5097 5098 spin_lock_irqsave(&instance->hba_lock, flags); 5099 if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) { 5100 spin_unlock_irqrestore(&instance->hba_lock, 5101 flags); 5102 break; 5103 } 5104 5105 spin_unlock_irqrestore(&instance->hba_lock, flags); 5106 5107 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { 5108 printk(KERN_NOTICE "megasas: waiting for" 5109 "controller reset to finish\n"); 5110 } 5111 5112 msleep(1000); 5113 } 5114 5115 spin_lock_irqsave(&instance->hba_lock, flags); 5116 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { 5117 spin_unlock_irqrestore(&instance->hba_lock, flags); 5118 printk(KERN_ERR "megaraid_sas: timed out while waiting" 5119 "for HBA to recover.\n"); 5120 return -ENODEV; 5121 } 5122 spin_unlock_irqrestore(&instance->hba_lock, flags); 5123 5124 mutex_lock(&instance->aen_mutex); 5125 error = megasas_register_aen(instance, aen.seq_num, 5126 aen.class_locale_word); 5127 mutex_unlock(&instance->aen_mutex); 5128 return error; 5129 } 5130 5131 /** 5132 * megasas_mgmt_ioctl - char node ioctl entry point 5133 */ 5134 static long 5135 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5136 { 5137 switch (cmd) { 5138 case MEGASAS_IOC_FIRMWARE: 5139 return megasas_mgmt_ioctl_fw(file, arg); 5140 5141 case MEGASAS_IOC_GET_AEN: 5142 return megasas_mgmt_ioctl_aen(file, arg); 5143 } 5144 5145 return -ENOTTY; 5146 } 5147 5148 #ifdef CONFIG_COMPAT 5149 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg) 5150 { 5151 struct compat_megasas_iocpacket __user *cioc = 5152 (struct compat_megasas_iocpacket __user *)arg; 5153 struct megasas_iocpacket __user *ioc = 5154 compat_alloc_user_space(sizeof(struct megasas_iocpacket)); 5155 int i; 5156 int error = 0; 5157 compat_uptr_t ptr; 5158 5159 if (clear_user(ioc, sizeof(*ioc))) 5160 return -EFAULT; 5161 5162 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) || 5163 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) || 5164 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) || 5165 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) || 5166 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) || 5167 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32))) 5168 return -EFAULT; 5169 5170 /* 5171 * The sense_ptr is used in megasas_mgmt_fw_ioctl only when 5172 * sense_len is not null, so prepare the 64bit value under 5173 * the same condition. 5174 */ 5175 if (ioc->sense_len) { 5176 void __user **sense_ioc_ptr = 5177 (void __user **)(ioc->frame.raw + ioc->sense_off); 5178 compat_uptr_t *sense_cioc_ptr = 5179 (compat_uptr_t *)(cioc->frame.raw + cioc->sense_off); 5180 if (get_user(ptr, sense_cioc_ptr) || 5181 put_user(compat_ptr(ptr), sense_ioc_ptr)) 5182 return -EFAULT; 5183 } 5184 5185 for (i = 0; i < MAX_IOCTL_SGE; i++) { 5186 if (get_user(ptr, &cioc->sgl[i].iov_base) || 5187 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) || 5188 copy_in_user(&ioc->sgl[i].iov_len, 5189 &cioc->sgl[i].iov_len, sizeof(compat_size_t))) 5190 return -EFAULT; 5191 } 5192 5193 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc); 5194 5195 if (copy_in_user(&cioc->frame.hdr.cmd_status, 5196 &ioc->frame.hdr.cmd_status, sizeof(u8))) { 5197 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n"); 5198 return -EFAULT; 5199 } 5200 return error; 5201 } 5202 5203 static long 5204 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd, 5205 unsigned long arg) 5206 { 5207 switch (cmd) { 5208 case MEGASAS_IOC_FIRMWARE32: 5209 return megasas_mgmt_compat_ioctl_fw(file, arg); 5210 case MEGASAS_IOC_GET_AEN: 5211 return megasas_mgmt_ioctl_aen(file, arg); 5212 } 5213 5214 return -ENOTTY; 5215 } 5216 #endif 5217 5218 /* 5219 * File operations structure for management interface 5220 */ 5221 static const struct file_operations megasas_mgmt_fops = { 5222 .owner = THIS_MODULE, 5223 .open = megasas_mgmt_open, 5224 .fasync = megasas_mgmt_fasync, 5225 .unlocked_ioctl = megasas_mgmt_ioctl, 5226 .poll = megasas_mgmt_poll, 5227 #ifdef CONFIG_COMPAT 5228 .compat_ioctl = megasas_mgmt_compat_ioctl, 5229 #endif 5230 .llseek = noop_llseek, 5231 }; 5232 5233 /* 5234 * PCI hotplug support registration structure 5235 */ 5236 static struct pci_driver megasas_pci_driver = { 5237 5238 .name = "megaraid_sas", 5239 .id_table = megasas_pci_table, 5240 .probe = megasas_probe_one, 5241 .remove = megasas_detach_one, 5242 .suspend = megasas_suspend, 5243 .resume = megasas_resume, 5244 .shutdown = megasas_shutdown, 5245 }; 5246 5247 /* 5248 * Sysfs driver attributes 5249 */ 5250 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf) 5251 { 5252 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n", 5253 MEGASAS_VERSION); 5254 } 5255 5256 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL); 5257 5258 static ssize_t 5259 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf) 5260 { 5261 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n", 5262 MEGASAS_RELDATE); 5263 } 5264 5265 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date, 5266 NULL); 5267 5268 static ssize_t 5269 megasas_sysfs_show_support_poll_for_event(struct device_driver *dd, char *buf) 5270 { 5271 return sprintf(buf, "%u\n", support_poll_for_event); 5272 } 5273 5274 static DRIVER_ATTR(support_poll_for_event, S_IRUGO, 5275 megasas_sysfs_show_support_poll_for_event, NULL); 5276 5277 static ssize_t 5278 megasas_sysfs_show_support_device_change(struct device_driver *dd, char *buf) 5279 { 5280 return sprintf(buf, "%u\n", support_device_change); 5281 } 5282 5283 static DRIVER_ATTR(support_device_change, S_IRUGO, 5284 megasas_sysfs_show_support_device_change, NULL); 5285 5286 static ssize_t 5287 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf) 5288 { 5289 return sprintf(buf, "%u\n", megasas_dbg_lvl); 5290 } 5291 5292 static ssize_t 5293 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count) 5294 { 5295 int retval = count; 5296 if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){ 5297 printk(KERN_ERR "megasas: could not set dbg_lvl\n"); 5298 retval = -EINVAL; 5299 } 5300 return retval; 5301 } 5302 5303 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUSR, megasas_sysfs_show_dbg_lvl, 5304 megasas_sysfs_set_dbg_lvl); 5305 5306 static void 5307 megasas_aen_polling(struct work_struct *work) 5308 { 5309 struct megasas_aen_event *ev = 5310 container_of(work, struct megasas_aen_event, hotplug_work.work); 5311 struct megasas_instance *instance = ev->instance; 5312 union megasas_evt_class_locale class_locale; 5313 struct Scsi_Host *host; 5314 struct scsi_device *sdev1; 5315 u16 pd_index = 0; 5316 u16 ld_index = 0; 5317 int i, j, doscan = 0; 5318 u32 seq_num; 5319 int error; 5320 5321 if (!instance) { 5322 printk(KERN_ERR "invalid instance!\n"); 5323 kfree(ev); 5324 return; 5325 } 5326 instance->ev = NULL; 5327 host = instance->host; 5328 if (instance->evt_detail) { 5329 5330 switch (instance->evt_detail->code) { 5331 case MR_EVT_PD_INSERTED: 5332 if (megasas_get_pd_list(instance) == 0) { 5333 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) { 5334 for (j = 0; 5335 j < MEGASAS_MAX_DEV_PER_CHANNEL; 5336 j++) { 5337 5338 pd_index = 5339 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5340 5341 sdev1 = 5342 scsi_device_lookup(host, i, j, 0); 5343 5344 if (instance->pd_list[pd_index].driveState 5345 == MR_PD_STATE_SYSTEM) { 5346 if (!sdev1) { 5347 scsi_add_device(host, i, j, 0); 5348 } 5349 5350 if (sdev1) 5351 scsi_device_put(sdev1); 5352 } 5353 } 5354 } 5355 } 5356 doscan = 0; 5357 break; 5358 5359 case MR_EVT_PD_REMOVED: 5360 if (megasas_get_pd_list(instance) == 0) { 5361 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) { 5362 for (j = 0; 5363 j < MEGASAS_MAX_DEV_PER_CHANNEL; 5364 j++) { 5365 5366 pd_index = 5367 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5368 5369 sdev1 = 5370 scsi_device_lookup(host, i, j, 0); 5371 5372 if (instance->pd_list[pd_index].driveState 5373 == MR_PD_STATE_SYSTEM) { 5374 if (sdev1) { 5375 scsi_device_put(sdev1); 5376 } 5377 } else { 5378 if (sdev1) { 5379 scsi_remove_device(sdev1); 5380 scsi_device_put(sdev1); 5381 } 5382 } 5383 } 5384 } 5385 } 5386 doscan = 0; 5387 break; 5388 5389 case MR_EVT_LD_OFFLINE: 5390 case MR_EVT_CFG_CLEARED: 5391 case MR_EVT_LD_DELETED: 5392 megasas_get_ld_list(instance); 5393 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) { 5394 for (j = 0; 5395 j < MEGASAS_MAX_DEV_PER_CHANNEL; 5396 j++) { 5397 5398 ld_index = 5399 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5400 5401 sdev1 = scsi_device_lookup(host, 5402 i + MEGASAS_MAX_LD_CHANNELS, 5403 j, 5404 0); 5405 5406 if (instance->ld_ids[ld_index] != 0xff) { 5407 if (sdev1) { 5408 scsi_device_put(sdev1); 5409 } 5410 } else { 5411 if (sdev1) { 5412 scsi_remove_device(sdev1); 5413 scsi_device_put(sdev1); 5414 } 5415 } 5416 } 5417 } 5418 doscan = 0; 5419 break; 5420 case MR_EVT_LD_CREATED: 5421 megasas_get_ld_list(instance); 5422 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) { 5423 for (j = 0; 5424 j < MEGASAS_MAX_DEV_PER_CHANNEL; 5425 j++) { 5426 ld_index = 5427 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5428 5429 sdev1 = scsi_device_lookup(host, 5430 i+MEGASAS_MAX_LD_CHANNELS, 5431 j, 0); 5432 5433 if (instance->ld_ids[ld_index] != 5434 0xff) { 5435 if (!sdev1) { 5436 scsi_add_device(host, 5437 i + 2, 5438 j, 0); 5439 } 5440 } 5441 if (sdev1) { 5442 scsi_device_put(sdev1); 5443 } 5444 } 5445 } 5446 doscan = 0; 5447 break; 5448 case MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED: 5449 case MR_EVT_FOREIGN_CFG_IMPORTED: 5450 case MR_EVT_LD_STATE_CHANGE: 5451 doscan = 1; 5452 break; 5453 default: 5454 doscan = 0; 5455 break; 5456 } 5457 } else { 5458 printk(KERN_ERR "invalid evt_detail!\n"); 5459 kfree(ev); 5460 return; 5461 } 5462 5463 if (doscan) { 5464 printk(KERN_INFO "scanning ...\n"); 5465 megasas_get_pd_list(instance); 5466 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) { 5467 for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { 5468 pd_index = i*MEGASAS_MAX_DEV_PER_CHANNEL + j; 5469 sdev1 = scsi_device_lookup(host, i, j, 0); 5470 if (instance->pd_list[pd_index].driveState == 5471 MR_PD_STATE_SYSTEM) { 5472 if (!sdev1) { 5473 scsi_add_device(host, i, j, 0); 5474 } 5475 if (sdev1) 5476 scsi_device_put(sdev1); 5477 } else { 5478 if (sdev1) { 5479 scsi_remove_device(sdev1); 5480 scsi_device_put(sdev1); 5481 } 5482 } 5483 } 5484 } 5485 5486 megasas_get_ld_list(instance); 5487 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) { 5488 for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { 5489 ld_index = 5490 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5491 5492 sdev1 = scsi_device_lookup(host, 5493 i+MEGASAS_MAX_LD_CHANNELS, j, 0); 5494 if (instance->ld_ids[ld_index] != 0xff) { 5495 if (!sdev1) { 5496 scsi_add_device(host, 5497 i+2, 5498 j, 0); 5499 } else { 5500 scsi_device_put(sdev1); 5501 } 5502 } else { 5503 if (sdev1) { 5504 scsi_remove_device(sdev1); 5505 scsi_device_put(sdev1); 5506 } 5507 } 5508 } 5509 } 5510 } 5511 5512 if ( instance->aen_cmd != NULL ) { 5513 kfree(ev); 5514 return ; 5515 } 5516 5517 seq_num = instance->evt_detail->seq_num + 1; 5518 5519 /* Register AEN with FW for latest sequence number plus 1 */ 5520 class_locale.members.reserved = 0; 5521 class_locale.members.locale = MR_EVT_LOCALE_ALL; 5522 class_locale.members.class = MR_EVT_CLASS_DEBUG; 5523 mutex_lock(&instance->aen_mutex); 5524 error = megasas_register_aen(instance, seq_num, 5525 class_locale.word); 5526 mutex_unlock(&instance->aen_mutex); 5527 5528 if (error) 5529 printk(KERN_ERR "register aen failed error %x\n", error); 5530 5531 kfree(ev); 5532 } 5533 5534 /** 5535 * megasas_init - Driver load entry point 5536 */ 5537 static int __init megasas_init(void) 5538 { 5539 int rval; 5540 5541 /* 5542 * Announce driver version and other information 5543 */ 5544 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION, 5545 MEGASAS_EXT_VERSION); 5546 5547 spin_lock_init(&poll_aen_lock); 5548 5549 support_poll_for_event = 2; 5550 support_device_change = 1; 5551 5552 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info)); 5553 5554 /* 5555 * Register character device node 5556 */ 5557 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops); 5558 5559 if (rval < 0) { 5560 printk(KERN_DEBUG "megasas: failed to open device node\n"); 5561 return rval; 5562 } 5563 5564 megasas_mgmt_majorno = rval; 5565 5566 /* 5567 * Register ourselves as PCI hotplug module 5568 */ 5569 rval = pci_register_driver(&megasas_pci_driver); 5570 5571 if (rval) { 5572 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n"); 5573 goto err_pcidrv; 5574 } 5575 5576 rval = driver_create_file(&megasas_pci_driver.driver, 5577 &driver_attr_version); 5578 if (rval) 5579 goto err_dcf_attr_ver; 5580 rval = driver_create_file(&megasas_pci_driver.driver, 5581 &driver_attr_release_date); 5582 if (rval) 5583 goto err_dcf_rel_date; 5584 5585 rval = driver_create_file(&megasas_pci_driver.driver, 5586 &driver_attr_support_poll_for_event); 5587 if (rval) 5588 goto err_dcf_support_poll_for_event; 5589 5590 rval = driver_create_file(&megasas_pci_driver.driver, 5591 &driver_attr_dbg_lvl); 5592 if (rval) 5593 goto err_dcf_dbg_lvl; 5594 rval = driver_create_file(&megasas_pci_driver.driver, 5595 &driver_attr_support_device_change); 5596 if (rval) 5597 goto err_dcf_support_device_change; 5598 5599 return rval; 5600 5601 err_dcf_support_device_change: 5602 driver_remove_file(&megasas_pci_driver.driver, 5603 &driver_attr_dbg_lvl); 5604 err_dcf_dbg_lvl: 5605 driver_remove_file(&megasas_pci_driver.driver, 5606 &driver_attr_support_poll_for_event); 5607 5608 err_dcf_support_poll_for_event: 5609 driver_remove_file(&megasas_pci_driver.driver, 5610 &driver_attr_release_date); 5611 5612 err_dcf_rel_date: 5613 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version); 5614 err_dcf_attr_ver: 5615 pci_unregister_driver(&megasas_pci_driver); 5616 err_pcidrv: 5617 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl"); 5618 return rval; 5619 } 5620 5621 /** 5622 * megasas_exit - Driver unload entry point 5623 */ 5624 static void __exit megasas_exit(void) 5625 { 5626 driver_remove_file(&megasas_pci_driver.driver, 5627 &driver_attr_dbg_lvl); 5628 driver_remove_file(&megasas_pci_driver.driver, 5629 &driver_attr_support_poll_for_event); 5630 driver_remove_file(&megasas_pci_driver.driver, 5631 &driver_attr_support_device_change); 5632 driver_remove_file(&megasas_pci_driver.driver, 5633 &driver_attr_release_date); 5634 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version); 5635 5636 pci_unregister_driver(&megasas_pci_driver); 5637 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl"); 5638 } 5639 5640 module_init(megasas_init); 5641 module_exit(megasas_exit); 5642