1 /* 2 * Linux MegaRAID driver for SAS based RAID controllers 3 * 4 * Copyright (c) 2003-2012 LSI Corporation. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * FILE: megaraid_sas_base.c 21 * Version : 06.700.06.00-rc1 22 * 23 * Authors: LSI Corporation 24 * Sreenivas Bagalkote 25 * Sumant Patro 26 * Bo Yang 27 * Adam Radford <linuxraid@lsi.com> 28 * 29 * Send feedback to: <megaraidlinux@lsi.com> 30 * 31 * Mail to: LSI Corporation, 1621 Barber Lane, Milpitas, CA 95035 32 * ATTN: Linuxraid 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/types.h> 37 #include <linux/pci.h> 38 #include <linux/list.h> 39 #include <linux/moduleparam.h> 40 #include <linux/module.h> 41 #include <linux/spinlock.h> 42 #include <linux/interrupt.h> 43 #include <linux/delay.h> 44 #include <linux/uio.h> 45 #include <linux/slab.h> 46 #include <asm/uaccess.h> 47 #include <linux/fs.h> 48 #include <linux/compat.h> 49 #include <linux/blkdev.h> 50 #include <linux/mutex.h> 51 #include <linux/poll.h> 52 53 #include <scsi/scsi.h> 54 #include <scsi/scsi_cmnd.h> 55 #include <scsi/scsi_device.h> 56 #include <scsi/scsi_host.h> 57 #include <scsi/scsi_tcq.h> 58 #include "megaraid_sas_fusion.h" 59 #include "megaraid_sas.h" 60 61 /* 62 * Number of sectors per IO command 63 * Will be set in megasas_init_mfi if user does not provide 64 */ 65 static unsigned int max_sectors; 66 module_param_named(max_sectors, max_sectors, int, 0); 67 MODULE_PARM_DESC(max_sectors, 68 "Maximum number of sectors per IO command"); 69 70 static int msix_disable; 71 module_param(msix_disable, int, S_IRUGO); 72 MODULE_PARM_DESC(msix_disable, "Disable MSI-X interrupt handling. Default: 0"); 73 74 static unsigned int msix_vectors; 75 module_param(msix_vectors, int, S_IRUGO); 76 MODULE_PARM_DESC(msix_vectors, "MSI-X max vector count. Default: Set by FW"); 77 78 static int throttlequeuedepth = MEGASAS_THROTTLE_QUEUE_DEPTH; 79 module_param(throttlequeuedepth, int, S_IRUGO); 80 MODULE_PARM_DESC(throttlequeuedepth, 81 "Adapter queue depth when throttled due to I/O timeout. Default: 16"); 82 83 int resetwaittime = MEGASAS_RESET_WAIT_TIME; 84 module_param(resetwaittime, int, S_IRUGO); 85 MODULE_PARM_DESC(resetwaittime, "Wait time in seconds after I/O timeout " 86 "before resetting adapter. Default: 180"); 87 88 MODULE_LICENSE("GPL"); 89 MODULE_VERSION(MEGASAS_VERSION); 90 MODULE_AUTHOR("megaraidlinux@lsi.com"); 91 MODULE_DESCRIPTION("LSI MegaRAID SAS Driver"); 92 93 int megasas_transition_to_ready(struct megasas_instance *instance, int ocr); 94 static int megasas_get_pd_list(struct megasas_instance *instance); 95 static int megasas_ld_list_query(struct megasas_instance *instance, 96 u8 query_type); 97 static int megasas_issue_init_mfi(struct megasas_instance *instance); 98 static int megasas_register_aen(struct megasas_instance *instance, 99 u32 seq_num, u32 class_locale_word); 100 /* 101 * PCI ID table for all supported controllers 102 */ 103 static struct pci_device_id megasas_pci_table[] = { 104 105 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)}, 106 /* xscale IOP */ 107 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)}, 108 /* ppc IOP */ 109 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)}, 110 /* ppc IOP */ 111 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078GEN2)}, 112 /* gen2*/ 113 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0079GEN2)}, 114 /* gen2*/ 115 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0073SKINNY)}, 116 /* skinny*/ 117 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0071SKINNY)}, 118 /* skinny*/ 119 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)}, 120 /* xscale IOP, vega */ 121 {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)}, 122 /* xscale IOP */ 123 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FUSION)}, 124 /* Fusion */ 125 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_INVADER)}, 126 /* Invader */ 127 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FURY)}, 128 /* Fury */ 129 {} 130 }; 131 132 MODULE_DEVICE_TABLE(pci, megasas_pci_table); 133 134 static int megasas_mgmt_majorno; 135 static struct megasas_mgmt_info megasas_mgmt_info; 136 static struct fasync_struct *megasas_async_queue; 137 static DEFINE_MUTEX(megasas_async_queue_mutex); 138 139 static int megasas_poll_wait_aen; 140 static DECLARE_WAIT_QUEUE_HEAD(megasas_poll_wait); 141 static u32 support_poll_for_event; 142 u32 megasas_dbg_lvl; 143 static u32 support_device_change; 144 145 /* define lock for aen poll */ 146 spinlock_t poll_aen_lock; 147 148 void 149 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd, 150 u8 alt_status); 151 static u32 152 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs); 153 static int 154 megasas_adp_reset_gen2(struct megasas_instance *instance, 155 struct megasas_register_set __iomem *reg_set); 156 static irqreturn_t megasas_isr(int irq, void *devp); 157 static u32 158 megasas_init_adapter_mfi(struct megasas_instance *instance); 159 u32 160 megasas_build_and_issue_cmd(struct megasas_instance *instance, 161 struct scsi_cmnd *scmd); 162 static void megasas_complete_cmd_dpc(unsigned long instance_addr); 163 void 164 megasas_release_fusion(struct megasas_instance *instance); 165 int 166 megasas_ioc_init_fusion(struct megasas_instance *instance); 167 void 168 megasas_free_cmds_fusion(struct megasas_instance *instance); 169 u8 170 megasas_get_map_info(struct megasas_instance *instance); 171 int 172 megasas_sync_map_info(struct megasas_instance *instance); 173 int 174 wait_and_poll(struct megasas_instance *instance, struct megasas_cmd *cmd); 175 void megasas_reset_reply_desc(struct megasas_instance *instance); 176 int megasas_reset_fusion(struct Scsi_Host *shost); 177 void megasas_fusion_ocr_wq(struct work_struct *work); 178 179 void 180 megasas_issue_dcmd(struct megasas_instance *instance, struct megasas_cmd *cmd) 181 { 182 instance->instancet->fire_cmd(instance, 183 cmd->frame_phys_addr, 0, instance->reg_set); 184 } 185 186 /** 187 * megasas_get_cmd - Get a command from the free pool 188 * @instance: Adapter soft state 189 * 190 * Returns a free command from the pool 191 */ 192 struct megasas_cmd *megasas_get_cmd(struct megasas_instance 193 *instance) 194 { 195 unsigned long flags; 196 struct megasas_cmd *cmd = NULL; 197 198 spin_lock_irqsave(&instance->cmd_pool_lock, flags); 199 200 if (!list_empty(&instance->cmd_pool)) { 201 cmd = list_entry((&instance->cmd_pool)->next, 202 struct megasas_cmd, list); 203 list_del_init(&cmd->list); 204 } else { 205 printk(KERN_ERR "megasas: Command pool empty!\n"); 206 } 207 208 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags); 209 return cmd; 210 } 211 212 /** 213 * megasas_return_cmd - Return a cmd to free command pool 214 * @instance: Adapter soft state 215 * @cmd: Command packet to be returned to free command pool 216 */ 217 inline void 218 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd) 219 { 220 unsigned long flags; 221 222 spin_lock_irqsave(&instance->cmd_pool_lock, flags); 223 224 cmd->scmd = NULL; 225 cmd->frame_count = 0; 226 if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) && 227 (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) && 228 (instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) && 229 (reset_devices)) 230 cmd->frame->hdr.cmd = MFI_CMD_INVALID; 231 list_add_tail(&cmd->list, &instance->cmd_pool); 232 233 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags); 234 } 235 236 237 /** 238 * The following functions are defined for xscale 239 * (deviceid : 1064R, PERC5) controllers 240 */ 241 242 /** 243 * megasas_enable_intr_xscale - Enables interrupts 244 * @regs: MFI register set 245 */ 246 static inline void 247 megasas_enable_intr_xscale(struct megasas_instance *instance) 248 { 249 struct megasas_register_set __iomem *regs; 250 regs = instance->reg_set; 251 writel(0, &(regs)->outbound_intr_mask); 252 253 /* Dummy readl to force pci flush */ 254 readl(®s->outbound_intr_mask); 255 } 256 257 /** 258 * megasas_disable_intr_xscale -Disables interrupt 259 * @regs: MFI register set 260 */ 261 static inline void 262 megasas_disable_intr_xscale(struct megasas_instance *instance) 263 { 264 struct megasas_register_set __iomem *regs; 265 u32 mask = 0x1f; 266 regs = instance->reg_set; 267 writel(mask, ®s->outbound_intr_mask); 268 /* Dummy readl to force pci flush */ 269 readl(®s->outbound_intr_mask); 270 } 271 272 /** 273 * megasas_read_fw_status_reg_xscale - returns the current FW status value 274 * @regs: MFI register set 275 */ 276 static u32 277 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs) 278 { 279 return readl(&(regs)->outbound_msg_0); 280 } 281 /** 282 * megasas_clear_interrupt_xscale - Check & clear interrupt 283 * @regs: MFI register set 284 */ 285 static int 286 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs) 287 { 288 u32 status; 289 u32 mfiStatus = 0; 290 /* 291 * Check if it is our interrupt 292 */ 293 status = readl(®s->outbound_intr_status); 294 295 if (status & MFI_OB_INTR_STATUS_MASK) 296 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; 297 if (status & MFI_XSCALE_OMR0_CHANGE_INTERRUPT) 298 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; 299 300 /* 301 * Clear the interrupt by writing back the same value 302 */ 303 if (mfiStatus) 304 writel(status, ®s->outbound_intr_status); 305 306 /* Dummy readl to force pci flush */ 307 readl(®s->outbound_intr_status); 308 309 return mfiStatus; 310 } 311 312 /** 313 * megasas_fire_cmd_xscale - Sends command to the FW 314 * @frame_phys_addr : Physical address of cmd 315 * @frame_count : Number of frames for the command 316 * @regs : MFI register set 317 */ 318 static inline void 319 megasas_fire_cmd_xscale(struct megasas_instance *instance, 320 dma_addr_t frame_phys_addr, 321 u32 frame_count, 322 struct megasas_register_set __iomem *regs) 323 { 324 unsigned long flags; 325 spin_lock_irqsave(&instance->hba_lock, flags); 326 writel((frame_phys_addr >> 3)|(frame_count), 327 &(regs)->inbound_queue_port); 328 spin_unlock_irqrestore(&instance->hba_lock, flags); 329 } 330 331 /** 332 * megasas_adp_reset_xscale - For controller reset 333 * @regs: MFI register set 334 */ 335 static int 336 megasas_adp_reset_xscale(struct megasas_instance *instance, 337 struct megasas_register_set __iomem *regs) 338 { 339 u32 i; 340 u32 pcidata; 341 writel(MFI_ADP_RESET, ®s->inbound_doorbell); 342 343 for (i = 0; i < 3; i++) 344 msleep(1000); /* sleep for 3 secs */ 345 pcidata = 0; 346 pci_read_config_dword(instance->pdev, MFI_1068_PCSR_OFFSET, &pcidata); 347 printk(KERN_NOTICE "pcidata = %x\n", pcidata); 348 if (pcidata & 0x2) { 349 printk(KERN_NOTICE "mfi 1068 offset read=%x\n", pcidata); 350 pcidata &= ~0x2; 351 pci_write_config_dword(instance->pdev, 352 MFI_1068_PCSR_OFFSET, pcidata); 353 354 for (i = 0; i < 2; i++) 355 msleep(1000); /* need to wait 2 secs again */ 356 357 pcidata = 0; 358 pci_read_config_dword(instance->pdev, 359 MFI_1068_FW_HANDSHAKE_OFFSET, &pcidata); 360 printk(KERN_NOTICE "1068 offset handshake read=%x\n", pcidata); 361 if ((pcidata & 0xffff0000) == MFI_1068_FW_READY) { 362 printk(KERN_NOTICE "1068 offset pcidt=%x\n", pcidata); 363 pcidata = 0; 364 pci_write_config_dword(instance->pdev, 365 MFI_1068_FW_HANDSHAKE_OFFSET, pcidata); 366 } 367 } 368 return 0; 369 } 370 371 /** 372 * megasas_check_reset_xscale - For controller reset check 373 * @regs: MFI register set 374 */ 375 static int 376 megasas_check_reset_xscale(struct megasas_instance *instance, 377 struct megasas_register_set __iomem *regs) 378 { 379 380 if ((instance->adprecovery != MEGASAS_HBA_OPERATIONAL) && 381 (le32_to_cpu(*instance->consumer) == 382 MEGASAS_ADPRESET_INPROG_SIGN)) 383 return 1; 384 return 0; 385 } 386 387 static struct megasas_instance_template megasas_instance_template_xscale = { 388 389 .fire_cmd = megasas_fire_cmd_xscale, 390 .enable_intr = megasas_enable_intr_xscale, 391 .disable_intr = megasas_disable_intr_xscale, 392 .clear_intr = megasas_clear_intr_xscale, 393 .read_fw_status_reg = megasas_read_fw_status_reg_xscale, 394 .adp_reset = megasas_adp_reset_xscale, 395 .check_reset = megasas_check_reset_xscale, 396 .service_isr = megasas_isr, 397 .tasklet = megasas_complete_cmd_dpc, 398 .init_adapter = megasas_init_adapter_mfi, 399 .build_and_issue_cmd = megasas_build_and_issue_cmd, 400 .issue_dcmd = megasas_issue_dcmd, 401 }; 402 403 /** 404 * This is the end of set of functions & definitions specific 405 * to xscale (deviceid : 1064R, PERC5) controllers 406 */ 407 408 /** 409 * The following functions are defined for ppc (deviceid : 0x60) 410 * controllers 411 */ 412 413 /** 414 * megasas_enable_intr_ppc - Enables interrupts 415 * @regs: MFI register set 416 */ 417 static inline void 418 megasas_enable_intr_ppc(struct megasas_instance *instance) 419 { 420 struct megasas_register_set __iomem *regs; 421 regs = instance->reg_set; 422 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear); 423 424 writel(~0x80000000, &(regs)->outbound_intr_mask); 425 426 /* Dummy readl to force pci flush */ 427 readl(®s->outbound_intr_mask); 428 } 429 430 /** 431 * megasas_disable_intr_ppc - Disable interrupt 432 * @regs: MFI register set 433 */ 434 static inline void 435 megasas_disable_intr_ppc(struct megasas_instance *instance) 436 { 437 struct megasas_register_set __iomem *regs; 438 u32 mask = 0xFFFFFFFF; 439 regs = instance->reg_set; 440 writel(mask, ®s->outbound_intr_mask); 441 /* Dummy readl to force pci flush */ 442 readl(®s->outbound_intr_mask); 443 } 444 445 /** 446 * megasas_read_fw_status_reg_ppc - returns the current FW status value 447 * @regs: MFI register set 448 */ 449 static u32 450 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs) 451 { 452 return readl(&(regs)->outbound_scratch_pad); 453 } 454 455 /** 456 * megasas_clear_interrupt_ppc - Check & clear interrupt 457 * @regs: MFI register set 458 */ 459 static int 460 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs) 461 { 462 u32 status, mfiStatus = 0; 463 464 /* 465 * Check if it is our interrupt 466 */ 467 status = readl(®s->outbound_intr_status); 468 469 if (status & MFI_REPLY_1078_MESSAGE_INTERRUPT) 470 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; 471 472 if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) 473 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; 474 475 /* 476 * Clear the interrupt by writing back the same value 477 */ 478 writel(status, ®s->outbound_doorbell_clear); 479 480 /* Dummy readl to force pci flush */ 481 readl(®s->outbound_doorbell_clear); 482 483 return mfiStatus; 484 } 485 486 /** 487 * megasas_fire_cmd_ppc - Sends command to the FW 488 * @frame_phys_addr : Physical address of cmd 489 * @frame_count : Number of frames for the command 490 * @regs : MFI register set 491 */ 492 static inline void 493 megasas_fire_cmd_ppc(struct megasas_instance *instance, 494 dma_addr_t frame_phys_addr, 495 u32 frame_count, 496 struct megasas_register_set __iomem *regs) 497 { 498 unsigned long flags; 499 spin_lock_irqsave(&instance->hba_lock, flags); 500 writel((frame_phys_addr | (frame_count<<1))|1, 501 &(regs)->inbound_queue_port); 502 spin_unlock_irqrestore(&instance->hba_lock, flags); 503 } 504 505 /** 506 * megasas_check_reset_ppc - For controller reset check 507 * @regs: MFI register set 508 */ 509 static int 510 megasas_check_reset_ppc(struct megasas_instance *instance, 511 struct megasas_register_set __iomem *regs) 512 { 513 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) 514 return 1; 515 516 return 0; 517 } 518 519 static struct megasas_instance_template megasas_instance_template_ppc = { 520 521 .fire_cmd = megasas_fire_cmd_ppc, 522 .enable_intr = megasas_enable_intr_ppc, 523 .disable_intr = megasas_disable_intr_ppc, 524 .clear_intr = megasas_clear_intr_ppc, 525 .read_fw_status_reg = megasas_read_fw_status_reg_ppc, 526 .adp_reset = megasas_adp_reset_xscale, 527 .check_reset = megasas_check_reset_ppc, 528 .service_isr = megasas_isr, 529 .tasklet = megasas_complete_cmd_dpc, 530 .init_adapter = megasas_init_adapter_mfi, 531 .build_and_issue_cmd = megasas_build_and_issue_cmd, 532 .issue_dcmd = megasas_issue_dcmd, 533 }; 534 535 /** 536 * megasas_enable_intr_skinny - Enables interrupts 537 * @regs: MFI register set 538 */ 539 static inline void 540 megasas_enable_intr_skinny(struct megasas_instance *instance) 541 { 542 struct megasas_register_set __iomem *regs; 543 regs = instance->reg_set; 544 writel(0xFFFFFFFF, &(regs)->outbound_intr_mask); 545 546 writel(~MFI_SKINNY_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask); 547 548 /* Dummy readl to force pci flush */ 549 readl(®s->outbound_intr_mask); 550 } 551 552 /** 553 * megasas_disable_intr_skinny - Disables interrupt 554 * @regs: MFI register set 555 */ 556 static inline void 557 megasas_disable_intr_skinny(struct megasas_instance *instance) 558 { 559 struct megasas_register_set __iomem *regs; 560 u32 mask = 0xFFFFFFFF; 561 regs = instance->reg_set; 562 writel(mask, ®s->outbound_intr_mask); 563 /* Dummy readl to force pci flush */ 564 readl(®s->outbound_intr_mask); 565 } 566 567 /** 568 * megasas_read_fw_status_reg_skinny - returns the current FW status value 569 * @regs: MFI register set 570 */ 571 static u32 572 megasas_read_fw_status_reg_skinny(struct megasas_register_set __iomem *regs) 573 { 574 return readl(&(regs)->outbound_scratch_pad); 575 } 576 577 /** 578 * megasas_clear_interrupt_skinny - Check & clear interrupt 579 * @regs: MFI register set 580 */ 581 static int 582 megasas_clear_intr_skinny(struct megasas_register_set __iomem *regs) 583 { 584 u32 status; 585 u32 mfiStatus = 0; 586 587 /* 588 * Check if it is our interrupt 589 */ 590 status = readl(®s->outbound_intr_status); 591 592 if (!(status & MFI_SKINNY_ENABLE_INTERRUPT_MASK)) { 593 return 0; 594 } 595 596 /* 597 * Check if it is our interrupt 598 */ 599 if ((megasas_read_fw_status_reg_skinny(regs) & MFI_STATE_MASK) == 600 MFI_STATE_FAULT) { 601 mfiStatus = MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; 602 } else 603 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; 604 605 /* 606 * Clear the interrupt by writing back the same value 607 */ 608 writel(status, ®s->outbound_intr_status); 609 610 /* 611 * dummy read to flush PCI 612 */ 613 readl(®s->outbound_intr_status); 614 615 return mfiStatus; 616 } 617 618 /** 619 * megasas_fire_cmd_skinny - Sends command to the FW 620 * @frame_phys_addr : Physical address of cmd 621 * @frame_count : Number of frames for the command 622 * @regs : MFI register set 623 */ 624 static inline void 625 megasas_fire_cmd_skinny(struct megasas_instance *instance, 626 dma_addr_t frame_phys_addr, 627 u32 frame_count, 628 struct megasas_register_set __iomem *regs) 629 { 630 unsigned long flags; 631 spin_lock_irqsave(&instance->hba_lock, flags); 632 writel(upper_32_bits(frame_phys_addr), 633 &(regs)->inbound_high_queue_port); 634 writel((lower_32_bits(frame_phys_addr) | (frame_count<<1))|1, 635 &(regs)->inbound_low_queue_port); 636 spin_unlock_irqrestore(&instance->hba_lock, flags); 637 } 638 639 /** 640 * megasas_check_reset_skinny - For controller reset check 641 * @regs: MFI register set 642 */ 643 static int 644 megasas_check_reset_skinny(struct megasas_instance *instance, 645 struct megasas_register_set __iomem *regs) 646 { 647 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) 648 return 1; 649 650 return 0; 651 } 652 653 static struct megasas_instance_template megasas_instance_template_skinny = { 654 655 .fire_cmd = megasas_fire_cmd_skinny, 656 .enable_intr = megasas_enable_intr_skinny, 657 .disable_intr = megasas_disable_intr_skinny, 658 .clear_intr = megasas_clear_intr_skinny, 659 .read_fw_status_reg = megasas_read_fw_status_reg_skinny, 660 .adp_reset = megasas_adp_reset_gen2, 661 .check_reset = megasas_check_reset_skinny, 662 .service_isr = megasas_isr, 663 .tasklet = megasas_complete_cmd_dpc, 664 .init_adapter = megasas_init_adapter_mfi, 665 .build_and_issue_cmd = megasas_build_and_issue_cmd, 666 .issue_dcmd = megasas_issue_dcmd, 667 }; 668 669 670 /** 671 * The following functions are defined for gen2 (deviceid : 0x78 0x79) 672 * controllers 673 */ 674 675 /** 676 * megasas_enable_intr_gen2 - Enables interrupts 677 * @regs: MFI register set 678 */ 679 static inline void 680 megasas_enable_intr_gen2(struct megasas_instance *instance) 681 { 682 struct megasas_register_set __iomem *regs; 683 regs = instance->reg_set; 684 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear); 685 686 /* write ~0x00000005 (4 & 1) to the intr mask*/ 687 writel(~MFI_GEN2_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask); 688 689 /* Dummy readl to force pci flush */ 690 readl(®s->outbound_intr_mask); 691 } 692 693 /** 694 * megasas_disable_intr_gen2 - Disables interrupt 695 * @regs: MFI register set 696 */ 697 static inline void 698 megasas_disable_intr_gen2(struct megasas_instance *instance) 699 { 700 struct megasas_register_set __iomem *regs; 701 u32 mask = 0xFFFFFFFF; 702 regs = instance->reg_set; 703 writel(mask, ®s->outbound_intr_mask); 704 /* Dummy readl to force pci flush */ 705 readl(®s->outbound_intr_mask); 706 } 707 708 /** 709 * megasas_read_fw_status_reg_gen2 - returns the current FW status value 710 * @regs: MFI register set 711 */ 712 static u32 713 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs) 714 { 715 return readl(&(regs)->outbound_scratch_pad); 716 } 717 718 /** 719 * megasas_clear_interrupt_gen2 - Check & clear interrupt 720 * @regs: MFI register set 721 */ 722 static int 723 megasas_clear_intr_gen2(struct megasas_register_set __iomem *regs) 724 { 725 u32 status; 726 u32 mfiStatus = 0; 727 /* 728 * Check if it is our interrupt 729 */ 730 status = readl(®s->outbound_intr_status); 731 732 if (status & MFI_INTR_FLAG_REPLY_MESSAGE) { 733 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; 734 } 735 if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) { 736 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; 737 } 738 739 /* 740 * Clear the interrupt by writing back the same value 741 */ 742 if (mfiStatus) 743 writel(status, ®s->outbound_doorbell_clear); 744 745 /* Dummy readl to force pci flush */ 746 readl(®s->outbound_intr_status); 747 748 return mfiStatus; 749 } 750 /** 751 * megasas_fire_cmd_gen2 - Sends command to the FW 752 * @frame_phys_addr : Physical address of cmd 753 * @frame_count : Number of frames for the command 754 * @regs : MFI register set 755 */ 756 static inline void 757 megasas_fire_cmd_gen2(struct megasas_instance *instance, 758 dma_addr_t frame_phys_addr, 759 u32 frame_count, 760 struct megasas_register_set __iomem *regs) 761 { 762 unsigned long flags; 763 spin_lock_irqsave(&instance->hba_lock, flags); 764 writel((frame_phys_addr | (frame_count<<1))|1, 765 &(regs)->inbound_queue_port); 766 spin_unlock_irqrestore(&instance->hba_lock, flags); 767 } 768 769 /** 770 * megasas_adp_reset_gen2 - For controller reset 771 * @regs: MFI register set 772 */ 773 static int 774 megasas_adp_reset_gen2(struct megasas_instance *instance, 775 struct megasas_register_set __iomem *reg_set) 776 { 777 u32 retry = 0 ; 778 u32 HostDiag; 779 u32 *seq_offset = ®_set->seq_offset; 780 u32 *hostdiag_offset = ®_set->host_diag; 781 782 if (instance->instancet == &megasas_instance_template_skinny) { 783 seq_offset = ®_set->fusion_seq_offset; 784 hostdiag_offset = ®_set->fusion_host_diag; 785 } 786 787 writel(0, seq_offset); 788 writel(4, seq_offset); 789 writel(0xb, seq_offset); 790 writel(2, seq_offset); 791 writel(7, seq_offset); 792 writel(0xd, seq_offset); 793 794 msleep(1000); 795 796 HostDiag = (u32)readl(hostdiag_offset); 797 798 while ( !( HostDiag & DIAG_WRITE_ENABLE) ) { 799 msleep(100); 800 HostDiag = (u32)readl(hostdiag_offset); 801 printk(KERN_NOTICE "RESETGEN2: retry=%x, hostdiag=%x\n", 802 retry, HostDiag); 803 804 if (retry++ >= 100) 805 return 1; 806 807 } 808 809 printk(KERN_NOTICE "ADP_RESET_GEN2: HostDiag=%x\n", HostDiag); 810 811 writel((HostDiag | DIAG_RESET_ADAPTER), hostdiag_offset); 812 813 ssleep(10); 814 815 HostDiag = (u32)readl(hostdiag_offset); 816 while ( ( HostDiag & DIAG_RESET_ADAPTER) ) { 817 msleep(100); 818 HostDiag = (u32)readl(hostdiag_offset); 819 printk(KERN_NOTICE "RESET_GEN2: retry=%x, hostdiag=%x\n", 820 retry, HostDiag); 821 822 if (retry++ >= 1000) 823 return 1; 824 825 } 826 return 0; 827 } 828 829 /** 830 * megasas_check_reset_gen2 - For controller reset check 831 * @regs: MFI register set 832 */ 833 static int 834 megasas_check_reset_gen2(struct megasas_instance *instance, 835 struct megasas_register_set __iomem *regs) 836 { 837 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { 838 return 1; 839 } 840 841 return 0; 842 } 843 844 static struct megasas_instance_template megasas_instance_template_gen2 = { 845 846 .fire_cmd = megasas_fire_cmd_gen2, 847 .enable_intr = megasas_enable_intr_gen2, 848 .disable_intr = megasas_disable_intr_gen2, 849 .clear_intr = megasas_clear_intr_gen2, 850 .read_fw_status_reg = megasas_read_fw_status_reg_gen2, 851 .adp_reset = megasas_adp_reset_gen2, 852 .check_reset = megasas_check_reset_gen2, 853 .service_isr = megasas_isr, 854 .tasklet = megasas_complete_cmd_dpc, 855 .init_adapter = megasas_init_adapter_mfi, 856 .build_and_issue_cmd = megasas_build_and_issue_cmd, 857 .issue_dcmd = megasas_issue_dcmd, 858 }; 859 860 /** 861 * This is the end of set of functions & definitions 862 * specific to gen2 (deviceid : 0x78, 0x79) controllers 863 */ 864 865 /* 866 * Template added for TB (Fusion) 867 */ 868 extern struct megasas_instance_template megasas_instance_template_fusion; 869 870 /** 871 * megasas_issue_polled - Issues a polling command 872 * @instance: Adapter soft state 873 * @cmd: Command packet to be issued 874 * 875 * For polling, MFI requires the cmd_status to be set to 0xFF before posting. 876 */ 877 int 878 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd) 879 { 880 881 struct megasas_header *frame_hdr = &cmd->frame->hdr; 882 883 frame_hdr->cmd_status = MFI_CMD_STATUS_POLL_MODE; 884 frame_hdr->flags |= cpu_to_le16(MFI_FRAME_DONT_POST_IN_REPLY_QUEUE); 885 886 /* 887 * Issue the frame using inbound queue port 888 */ 889 instance->instancet->issue_dcmd(instance, cmd); 890 891 /* 892 * Wait for cmd_status to change 893 */ 894 return wait_and_poll(instance, cmd); 895 } 896 897 /** 898 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds 899 * @instance: Adapter soft state 900 * @cmd: Command to be issued 901 * 902 * This function waits on an event for the command to be returned from ISR. 903 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs 904 * Used to issue ioctl commands. 905 */ 906 static int 907 megasas_issue_blocked_cmd(struct megasas_instance *instance, 908 struct megasas_cmd *cmd) 909 { 910 cmd->cmd_status = ENODATA; 911 912 instance->instancet->issue_dcmd(instance, cmd); 913 914 wait_event(instance->int_cmd_wait_q, cmd->cmd_status != ENODATA); 915 916 return 0; 917 } 918 919 /** 920 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd 921 * @instance: Adapter soft state 922 * @cmd_to_abort: Previously issued cmd to be aborted 923 * 924 * MFI firmware can abort previously issued AEN command (automatic event 925 * notification). The megasas_issue_blocked_abort_cmd() issues such abort 926 * cmd and waits for return status. 927 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs 928 */ 929 static int 930 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance, 931 struct megasas_cmd *cmd_to_abort) 932 { 933 struct megasas_cmd *cmd; 934 struct megasas_abort_frame *abort_fr; 935 936 cmd = megasas_get_cmd(instance); 937 938 if (!cmd) 939 return -1; 940 941 abort_fr = &cmd->frame->abort; 942 943 /* 944 * Prepare and issue the abort frame 945 */ 946 abort_fr->cmd = MFI_CMD_ABORT; 947 abort_fr->cmd_status = 0xFF; 948 abort_fr->flags = cpu_to_le16(0); 949 abort_fr->abort_context = cpu_to_le32(cmd_to_abort->index); 950 abort_fr->abort_mfi_phys_addr_lo = 951 cpu_to_le32(lower_32_bits(cmd_to_abort->frame_phys_addr)); 952 abort_fr->abort_mfi_phys_addr_hi = 953 cpu_to_le32(upper_32_bits(cmd_to_abort->frame_phys_addr)); 954 955 cmd->sync_cmd = 1; 956 cmd->cmd_status = 0xFF; 957 958 instance->instancet->issue_dcmd(instance, cmd); 959 960 /* 961 * Wait for this cmd to complete 962 */ 963 wait_event(instance->abort_cmd_wait_q, cmd->cmd_status != 0xFF); 964 cmd->sync_cmd = 0; 965 966 megasas_return_cmd(instance, cmd); 967 return 0; 968 } 969 970 /** 971 * megasas_make_sgl32 - Prepares 32-bit SGL 972 * @instance: Adapter soft state 973 * @scp: SCSI command from the mid-layer 974 * @mfi_sgl: SGL to be filled in 975 * 976 * If successful, this function returns the number of SG elements. Otherwise, 977 * it returnes -1. 978 */ 979 static int 980 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp, 981 union megasas_sgl *mfi_sgl) 982 { 983 int i; 984 int sge_count; 985 struct scatterlist *os_sgl; 986 987 sge_count = scsi_dma_map(scp); 988 BUG_ON(sge_count < 0); 989 990 if (sge_count) { 991 scsi_for_each_sg(scp, os_sgl, sge_count, i) { 992 mfi_sgl->sge32[i].length = cpu_to_le32(sg_dma_len(os_sgl)); 993 mfi_sgl->sge32[i].phys_addr = cpu_to_le32(sg_dma_address(os_sgl)); 994 } 995 } 996 return sge_count; 997 } 998 999 /** 1000 * megasas_make_sgl64 - Prepares 64-bit SGL 1001 * @instance: Adapter soft state 1002 * @scp: SCSI command from the mid-layer 1003 * @mfi_sgl: SGL to be filled in 1004 * 1005 * If successful, this function returns the number of SG elements. Otherwise, 1006 * it returnes -1. 1007 */ 1008 static int 1009 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp, 1010 union megasas_sgl *mfi_sgl) 1011 { 1012 int i; 1013 int sge_count; 1014 struct scatterlist *os_sgl; 1015 1016 sge_count = scsi_dma_map(scp); 1017 BUG_ON(sge_count < 0); 1018 1019 if (sge_count) { 1020 scsi_for_each_sg(scp, os_sgl, sge_count, i) { 1021 mfi_sgl->sge64[i].length = cpu_to_le32(sg_dma_len(os_sgl)); 1022 mfi_sgl->sge64[i].phys_addr = cpu_to_le64(sg_dma_address(os_sgl)); 1023 } 1024 } 1025 return sge_count; 1026 } 1027 1028 /** 1029 * megasas_make_sgl_skinny - Prepares IEEE SGL 1030 * @instance: Adapter soft state 1031 * @scp: SCSI command from the mid-layer 1032 * @mfi_sgl: SGL to be filled in 1033 * 1034 * If successful, this function returns the number of SG elements. Otherwise, 1035 * it returnes -1. 1036 */ 1037 static int 1038 megasas_make_sgl_skinny(struct megasas_instance *instance, 1039 struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl) 1040 { 1041 int i; 1042 int sge_count; 1043 struct scatterlist *os_sgl; 1044 1045 sge_count = scsi_dma_map(scp); 1046 1047 if (sge_count) { 1048 scsi_for_each_sg(scp, os_sgl, sge_count, i) { 1049 mfi_sgl->sge_skinny[i].length = 1050 cpu_to_le32(sg_dma_len(os_sgl)); 1051 mfi_sgl->sge_skinny[i].phys_addr = 1052 cpu_to_le64(sg_dma_address(os_sgl)); 1053 mfi_sgl->sge_skinny[i].flag = cpu_to_le32(0); 1054 } 1055 } 1056 return sge_count; 1057 } 1058 1059 /** 1060 * megasas_get_frame_count - Computes the number of frames 1061 * @frame_type : type of frame- io or pthru frame 1062 * @sge_count : number of sg elements 1063 * 1064 * Returns the number of frames required for numnber of sge's (sge_count) 1065 */ 1066 1067 static u32 megasas_get_frame_count(struct megasas_instance *instance, 1068 u8 sge_count, u8 frame_type) 1069 { 1070 int num_cnt; 1071 int sge_bytes; 1072 u32 sge_sz; 1073 u32 frame_count=0; 1074 1075 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) : 1076 sizeof(struct megasas_sge32); 1077 1078 if (instance->flag_ieee) { 1079 sge_sz = sizeof(struct megasas_sge_skinny); 1080 } 1081 1082 /* 1083 * Main frame can contain 2 SGEs for 64-bit SGLs and 1084 * 3 SGEs for 32-bit SGLs for ldio & 1085 * 1 SGEs for 64-bit SGLs and 1086 * 2 SGEs for 32-bit SGLs for pthru frame 1087 */ 1088 if (unlikely(frame_type == PTHRU_FRAME)) { 1089 if (instance->flag_ieee == 1) { 1090 num_cnt = sge_count - 1; 1091 } else if (IS_DMA64) 1092 num_cnt = sge_count - 1; 1093 else 1094 num_cnt = sge_count - 2; 1095 } else { 1096 if (instance->flag_ieee == 1) { 1097 num_cnt = sge_count - 1; 1098 } else if (IS_DMA64) 1099 num_cnt = sge_count - 2; 1100 else 1101 num_cnt = sge_count - 3; 1102 } 1103 1104 if(num_cnt>0){ 1105 sge_bytes = sge_sz * num_cnt; 1106 1107 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) + 1108 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ; 1109 } 1110 /* Main frame */ 1111 frame_count +=1; 1112 1113 if (frame_count > 7) 1114 frame_count = 8; 1115 return frame_count; 1116 } 1117 1118 /** 1119 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command 1120 * @instance: Adapter soft state 1121 * @scp: SCSI command 1122 * @cmd: Command to be prepared in 1123 * 1124 * This function prepares CDB commands. These are typcially pass-through 1125 * commands to the devices. 1126 */ 1127 static int 1128 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp, 1129 struct megasas_cmd *cmd) 1130 { 1131 u32 is_logical; 1132 u32 device_id; 1133 u16 flags = 0; 1134 struct megasas_pthru_frame *pthru; 1135 1136 is_logical = MEGASAS_IS_LOGICAL(scp); 1137 device_id = MEGASAS_DEV_INDEX(instance, scp); 1138 pthru = (struct megasas_pthru_frame *)cmd->frame; 1139 1140 if (scp->sc_data_direction == PCI_DMA_TODEVICE) 1141 flags = MFI_FRAME_DIR_WRITE; 1142 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE) 1143 flags = MFI_FRAME_DIR_READ; 1144 else if (scp->sc_data_direction == PCI_DMA_NONE) 1145 flags = MFI_FRAME_DIR_NONE; 1146 1147 if (instance->flag_ieee == 1) { 1148 flags |= MFI_FRAME_IEEE; 1149 } 1150 1151 /* 1152 * Prepare the DCDB frame 1153 */ 1154 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO; 1155 pthru->cmd_status = 0x0; 1156 pthru->scsi_status = 0x0; 1157 pthru->target_id = device_id; 1158 pthru->lun = scp->device->lun; 1159 pthru->cdb_len = scp->cmd_len; 1160 pthru->timeout = 0; 1161 pthru->pad_0 = 0; 1162 pthru->flags = cpu_to_le16(flags); 1163 pthru->data_xfer_len = cpu_to_le32(scsi_bufflen(scp)); 1164 1165 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len); 1166 1167 /* 1168 * If the command is for the tape device, set the 1169 * pthru timeout to the os layer timeout value. 1170 */ 1171 if (scp->device->type == TYPE_TAPE) { 1172 if ((scp->request->timeout / HZ) > 0xFFFF) 1173 pthru->timeout = 0xFFFF; 1174 else 1175 pthru->timeout = cpu_to_le16(scp->request->timeout / HZ); 1176 } 1177 1178 /* 1179 * Construct SGL 1180 */ 1181 if (instance->flag_ieee == 1) { 1182 pthru->flags |= cpu_to_le16(MFI_FRAME_SGL64); 1183 pthru->sge_count = megasas_make_sgl_skinny(instance, scp, 1184 &pthru->sgl); 1185 } else if (IS_DMA64) { 1186 pthru->flags |= cpu_to_le16(MFI_FRAME_SGL64); 1187 pthru->sge_count = megasas_make_sgl64(instance, scp, 1188 &pthru->sgl); 1189 } else 1190 pthru->sge_count = megasas_make_sgl32(instance, scp, 1191 &pthru->sgl); 1192 1193 if (pthru->sge_count > instance->max_num_sge) { 1194 printk(KERN_ERR "megasas: DCDB two many SGE NUM=%x\n", 1195 pthru->sge_count); 1196 return 0; 1197 } 1198 1199 /* 1200 * Sense info specific 1201 */ 1202 pthru->sense_len = SCSI_SENSE_BUFFERSIZE; 1203 pthru->sense_buf_phys_addr_hi = 1204 cpu_to_le32(upper_32_bits(cmd->sense_phys_addr)); 1205 pthru->sense_buf_phys_addr_lo = 1206 cpu_to_le32(lower_32_bits(cmd->sense_phys_addr)); 1207 1208 /* 1209 * Compute the total number of frames this command consumes. FW uses 1210 * this number to pull sufficient number of frames from host memory. 1211 */ 1212 cmd->frame_count = megasas_get_frame_count(instance, pthru->sge_count, 1213 PTHRU_FRAME); 1214 1215 return cmd->frame_count; 1216 } 1217 1218 /** 1219 * megasas_build_ldio - Prepares IOs to logical devices 1220 * @instance: Adapter soft state 1221 * @scp: SCSI command 1222 * @cmd: Command to be prepared 1223 * 1224 * Frames (and accompanying SGLs) for regular SCSI IOs use this function. 1225 */ 1226 static int 1227 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp, 1228 struct megasas_cmd *cmd) 1229 { 1230 u32 device_id; 1231 u8 sc = scp->cmnd[0]; 1232 u16 flags = 0; 1233 struct megasas_io_frame *ldio; 1234 1235 device_id = MEGASAS_DEV_INDEX(instance, scp); 1236 ldio = (struct megasas_io_frame *)cmd->frame; 1237 1238 if (scp->sc_data_direction == PCI_DMA_TODEVICE) 1239 flags = MFI_FRAME_DIR_WRITE; 1240 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE) 1241 flags = MFI_FRAME_DIR_READ; 1242 1243 if (instance->flag_ieee == 1) { 1244 flags |= MFI_FRAME_IEEE; 1245 } 1246 1247 /* 1248 * Prepare the Logical IO frame: 2nd bit is zero for all read cmds 1249 */ 1250 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ; 1251 ldio->cmd_status = 0x0; 1252 ldio->scsi_status = 0x0; 1253 ldio->target_id = device_id; 1254 ldio->timeout = 0; 1255 ldio->reserved_0 = 0; 1256 ldio->pad_0 = 0; 1257 ldio->flags = cpu_to_le16(flags); 1258 ldio->start_lba_hi = 0; 1259 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0; 1260 1261 /* 1262 * 6-byte READ(0x08) or WRITE(0x0A) cdb 1263 */ 1264 if (scp->cmd_len == 6) { 1265 ldio->lba_count = cpu_to_le32((u32) scp->cmnd[4]); 1266 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[1] << 16) | 1267 ((u32) scp->cmnd[2] << 8) | 1268 (u32) scp->cmnd[3]); 1269 1270 ldio->start_lba_lo &= cpu_to_le32(0x1FFFFF); 1271 } 1272 1273 /* 1274 * 10-byte READ(0x28) or WRITE(0x2A) cdb 1275 */ 1276 else if (scp->cmd_len == 10) { 1277 ldio->lba_count = cpu_to_le32((u32) scp->cmnd[8] | 1278 ((u32) scp->cmnd[7] << 8)); 1279 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[2] << 24) | 1280 ((u32) scp->cmnd[3] << 16) | 1281 ((u32) scp->cmnd[4] << 8) | 1282 (u32) scp->cmnd[5]); 1283 } 1284 1285 /* 1286 * 12-byte READ(0xA8) or WRITE(0xAA) cdb 1287 */ 1288 else if (scp->cmd_len == 12) { 1289 ldio->lba_count = cpu_to_le32(((u32) scp->cmnd[6] << 24) | 1290 ((u32) scp->cmnd[7] << 16) | 1291 ((u32) scp->cmnd[8] << 8) | 1292 (u32) scp->cmnd[9]); 1293 1294 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[2] << 24) | 1295 ((u32) scp->cmnd[3] << 16) | 1296 ((u32) scp->cmnd[4] << 8) | 1297 (u32) scp->cmnd[5]); 1298 } 1299 1300 /* 1301 * 16-byte READ(0x88) or WRITE(0x8A) cdb 1302 */ 1303 else if (scp->cmd_len == 16) { 1304 ldio->lba_count = cpu_to_le32(((u32) scp->cmnd[10] << 24) | 1305 ((u32) scp->cmnd[11] << 16) | 1306 ((u32) scp->cmnd[12] << 8) | 1307 (u32) scp->cmnd[13]); 1308 1309 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[6] << 24) | 1310 ((u32) scp->cmnd[7] << 16) | 1311 ((u32) scp->cmnd[8] << 8) | 1312 (u32) scp->cmnd[9]); 1313 1314 ldio->start_lba_hi = cpu_to_le32(((u32) scp->cmnd[2] << 24) | 1315 ((u32) scp->cmnd[3] << 16) | 1316 ((u32) scp->cmnd[4] << 8) | 1317 (u32) scp->cmnd[5]); 1318 1319 } 1320 1321 /* 1322 * Construct SGL 1323 */ 1324 if (instance->flag_ieee) { 1325 ldio->flags |= cpu_to_le16(MFI_FRAME_SGL64); 1326 ldio->sge_count = megasas_make_sgl_skinny(instance, scp, 1327 &ldio->sgl); 1328 } else if (IS_DMA64) { 1329 ldio->flags |= cpu_to_le16(MFI_FRAME_SGL64); 1330 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl); 1331 } else 1332 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl); 1333 1334 if (ldio->sge_count > instance->max_num_sge) { 1335 printk(KERN_ERR "megasas: build_ld_io: sge_count = %x\n", 1336 ldio->sge_count); 1337 return 0; 1338 } 1339 1340 /* 1341 * Sense info specific 1342 */ 1343 ldio->sense_len = SCSI_SENSE_BUFFERSIZE; 1344 ldio->sense_buf_phys_addr_hi = 0; 1345 ldio->sense_buf_phys_addr_lo = cpu_to_le32(cmd->sense_phys_addr); 1346 1347 /* 1348 * Compute the total number of frames this command consumes. FW uses 1349 * this number to pull sufficient number of frames from host memory. 1350 */ 1351 cmd->frame_count = megasas_get_frame_count(instance, 1352 ldio->sge_count, IO_FRAME); 1353 1354 return cmd->frame_count; 1355 } 1356 1357 /** 1358 * megasas_is_ldio - Checks if the cmd is for logical drive 1359 * @scmd: SCSI command 1360 * 1361 * Called by megasas_queue_command to find out if the command to be queued 1362 * is a logical drive command 1363 */ 1364 inline int megasas_is_ldio(struct scsi_cmnd *cmd) 1365 { 1366 if (!MEGASAS_IS_LOGICAL(cmd)) 1367 return 0; 1368 switch (cmd->cmnd[0]) { 1369 case READ_10: 1370 case WRITE_10: 1371 case READ_12: 1372 case WRITE_12: 1373 case READ_6: 1374 case WRITE_6: 1375 case READ_16: 1376 case WRITE_16: 1377 return 1; 1378 default: 1379 return 0; 1380 } 1381 } 1382 1383 /** 1384 * megasas_dump_pending_frames - Dumps the frame address of all pending cmds 1385 * in FW 1386 * @instance: Adapter soft state 1387 */ 1388 static inline void 1389 megasas_dump_pending_frames(struct megasas_instance *instance) 1390 { 1391 struct megasas_cmd *cmd; 1392 int i,n; 1393 union megasas_sgl *mfi_sgl; 1394 struct megasas_io_frame *ldio; 1395 struct megasas_pthru_frame *pthru; 1396 u32 sgcount; 1397 u32 max_cmd = instance->max_fw_cmds; 1398 1399 printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no); 1400 printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding)); 1401 if (IS_DMA64) 1402 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no); 1403 else 1404 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no); 1405 1406 printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no); 1407 for (i = 0; i < max_cmd; i++) { 1408 cmd = instance->cmd_list[i]; 1409 if(!cmd->scmd) 1410 continue; 1411 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr); 1412 if (megasas_is_ldio(cmd->scmd)){ 1413 ldio = (struct megasas_io_frame *)cmd->frame; 1414 mfi_sgl = &ldio->sgl; 1415 sgcount = ldio->sge_count; 1416 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x," 1417 " lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n", 1418 instance->host->host_no, cmd->frame_count, ldio->cmd, ldio->target_id, 1419 le32_to_cpu(ldio->start_lba_lo), le32_to_cpu(ldio->start_lba_hi), 1420 le32_to_cpu(ldio->sense_buf_phys_addr_lo), sgcount); 1421 } 1422 else { 1423 pthru = (struct megasas_pthru_frame *) cmd->frame; 1424 mfi_sgl = &pthru->sgl; 1425 sgcount = pthru->sge_count; 1426 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, " 1427 "lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n", 1428 instance->host->host_no, cmd->frame_count, pthru->cmd, pthru->target_id, 1429 pthru->lun, pthru->cdb_len, le32_to_cpu(pthru->data_xfer_len), 1430 le32_to_cpu(pthru->sense_buf_phys_addr_lo), sgcount); 1431 } 1432 if(megasas_dbg_lvl & MEGASAS_DBG_LVL){ 1433 for (n = 0; n < sgcount; n++){ 1434 if (IS_DMA64) 1435 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%llx ", 1436 le32_to_cpu(mfi_sgl->sge64[n].length), 1437 le64_to_cpu(mfi_sgl->sge64[n].phys_addr)); 1438 else 1439 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ", 1440 le32_to_cpu(mfi_sgl->sge32[n].length), 1441 le32_to_cpu(mfi_sgl->sge32[n].phys_addr)); 1442 } 1443 } 1444 printk(KERN_ERR "\n"); 1445 } /*for max_cmd*/ 1446 printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no); 1447 for (i = 0; i < max_cmd; i++) { 1448 1449 cmd = instance->cmd_list[i]; 1450 1451 if(cmd->sync_cmd == 1){ 1452 printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr); 1453 } 1454 } 1455 printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no); 1456 } 1457 1458 u32 1459 megasas_build_and_issue_cmd(struct megasas_instance *instance, 1460 struct scsi_cmnd *scmd) 1461 { 1462 struct megasas_cmd *cmd; 1463 u32 frame_count; 1464 1465 cmd = megasas_get_cmd(instance); 1466 if (!cmd) 1467 return SCSI_MLQUEUE_HOST_BUSY; 1468 1469 /* 1470 * Logical drive command 1471 */ 1472 if (megasas_is_ldio(scmd)) 1473 frame_count = megasas_build_ldio(instance, scmd, cmd); 1474 else 1475 frame_count = megasas_build_dcdb(instance, scmd, cmd); 1476 1477 if (!frame_count) 1478 goto out_return_cmd; 1479 1480 cmd->scmd = scmd; 1481 scmd->SCp.ptr = (char *)cmd; 1482 1483 /* 1484 * Issue the command to the FW 1485 */ 1486 atomic_inc(&instance->fw_outstanding); 1487 1488 instance->instancet->fire_cmd(instance, cmd->frame_phys_addr, 1489 cmd->frame_count-1, instance->reg_set); 1490 1491 return 0; 1492 out_return_cmd: 1493 megasas_return_cmd(instance, cmd); 1494 return 1; 1495 } 1496 1497 1498 /** 1499 * megasas_queue_command - Queue entry point 1500 * @scmd: SCSI command to be queued 1501 * @done: Callback entry point 1502 */ 1503 static int 1504 megasas_queue_command_lck(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *)) 1505 { 1506 struct megasas_instance *instance; 1507 unsigned long flags; 1508 1509 instance = (struct megasas_instance *) 1510 scmd->device->host->hostdata; 1511 1512 if (instance->issuepend_done == 0) 1513 return SCSI_MLQUEUE_HOST_BUSY; 1514 1515 spin_lock_irqsave(&instance->hba_lock, flags); 1516 1517 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { 1518 spin_unlock_irqrestore(&instance->hba_lock, flags); 1519 scmd->result = DID_ERROR << 16; 1520 done(scmd); 1521 return 0; 1522 } 1523 1524 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { 1525 spin_unlock_irqrestore(&instance->hba_lock, flags); 1526 return SCSI_MLQUEUE_HOST_BUSY; 1527 } 1528 1529 spin_unlock_irqrestore(&instance->hba_lock, flags); 1530 1531 scmd->scsi_done = done; 1532 scmd->result = 0; 1533 1534 if (MEGASAS_IS_LOGICAL(scmd) && 1535 (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) { 1536 scmd->result = DID_BAD_TARGET << 16; 1537 goto out_done; 1538 } 1539 1540 switch (scmd->cmnd[0]) { 1541 case SYNCHRONIZE_CACHE: 1542 /* 1543 * FW takes care of flush cache on its own 1544 * No need to send it down 1545 */ 1546 scmd->result = DID_OK << 16; 1547 goto out_done; 1548 default: 1549 break; 1550 } 1551 1552 if (instance->instancet->build_and_issue_cmd(instance, scmd)) { 1553 printk(KERN_ERR "megasas: Err returned from build_and_issue_cmd\n"); 1554 return SCSI_MLQUEUE_HOST_BUSY; 1555 } 1556 1557 return 0; 1558 1559 out_done: 1560 done(scmd); 1561 return 0; 1562 } 1563 1564 static DEF_SCSI_QCMD(megasas_queue_command) 1565 1566 static struct megasas_instance *megasas_lookup_instance(u16 host_no) 1567 { 1568 int i; 1569 1570 for (i = 0; i < megasas_mgmt_info.max_index; i++) { 1571 1572 if ((megasas_mgmt_info.instance[i]) && 1573 (megasas_mgmt_info.instance[i]->host->host_no == host_no)) 1574 return megasas_mgmt_info.instance[i]; 1575 } 1576 1577 return NULL; 1578 } 1579 1580 static int megasas_slave_configure(struct scsi_device *sdev) 1581 { 1582 u16 pd_index = 0; 1583 struct megasas_instance *instance ; 1584 1585 instance = megasas_lookup_instance(sdev->host->host_no); 1586 1587 /* 1588 * Don't export physical disk devices to the disk driver. 1589 * 1590 * FIXME: Currently we don't export them to the midlayer at all. 1591 * That will be fixed once LSI engineers have audited the 1592 * firmware for possible issues. 1593 */ 1594 if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && 1595 sdev->type == TYPE_DISK) { 1596 pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) + 1597 sdev->id; 1598 if (instance->pd_list[pd_index].driveState == 1599 MR_PD_STATE_SYSTEM) { 1600 blk_queue_rq_timeout(sdev->request_queue, 1601 MEGASAS_DEFAULT_CMD_TIMEOUT * HZ); 1602 return 0; 1603 } 1604 return -ENXIO; 1605 } 1606 1607 /* 1608 * The RAID firmware may require extended timeouts. 1609 */ 1610 blk_queue_rq_timeout(sdev->request_queue, 1611 MEGASAS_DEFAULT_CMD_TIMEOUT * HZ); 1612 return 0; 1613 } 1614 1615 static int megasas_slave_alloc(struct scsi_device *sdev) 1616 { 1617 u16 pd_index = 0; 1618 struct megasas_instance *instance ; 1619 instance = megasas_lookup_instance(sdev->host->host_no); 1620 if ((sdev->channel < MEGASAS_MAX_PD_CHANNELS) && 1621 (sdev->type == TYPE_DISK)) { 1622 /* 1623 * Open the OS scan to the SYSTEM PD 1624 */ 1625 pd_index = 1626 (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) + 1627 sdev->id; 1628 if ((instance->pd_list[pd_index].driveState == 1629 MR_PD_STATE_SYSTEM) && 1630 (instance->pd_list[pd_index].driveType == 1631 TYPE_DISK)) { 1632 return 0; 1633 } 1634 return -ENXIO; 1635 } 1636 return 0; 1637 } 1638 1639 void megaraid_sas_kill_hba(struct megasas_instance *instance) 1640 { 1641 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 1642 (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) || 1643 (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 1644 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 1645 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { 1646 writel(MFI_STOP_ADP, &instance->reg_set->doorbell); 1647 } else { 1648 writel(MFI_STOP_ADP, &instance->reg_set->inbound_doorbell); 1649 } 1650 } 1651 1652 /** 1653 * megasas_check_and_restore_queue_depth - Check if queue depth needs to be 1654 * restored to max value 1655 * @instance: Adapter soft state 1656 * 1657 */ 1658 void 1659 megasas_check_and_restore_queue_depth(struct megasas_instance *instance) 1660 { 1661 unsigned long flags; 1662 if (instance->flag & MEGASAS_FW_BUSY 1663 && time_after(jiffies, instance->last_time + 5 * HZ) 1664 && atomic_read(&instance->fw_outstanding) < 1665 instance->throttlequeuedepth + 1) { 1666 1667 spin_lock_irqsave(instance->host->host_lock, flags); 1668 instance->flag &= ~MEGASAS_FW_BUSY; 1669 if (instance->is_imr) { 1670 instance->host->can_queue = 1671 instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS; 1672 } else 1673 instance->host->can_queue = 1674 instance->max_fw_cmds - MEGASAS_INT_CMDS; 1675 1676 spin_unlock_irqrestore(instance->host->host_lock, flags); 1677 } 1678 } 1679 1680 /** 1681 * megasas_complete_cmd_dpc - Returns FW's controller structure 1682 * @instance_addr: Address of adapter soft state 1683 * 1684 * Tasklet to complete cmds 1685 */ 1686 static void megasas_complete_cmd_dpc(unsigned long instance_addr) 1687 { 1688 u32 producer; 1689 u32 consumer; 1690 u32 context; 1691 struct megasas_cmd *cmd; 1692 struct megasas_instance *instance = 1693 (struct megasas_instance *)instance_addr; 1694 unsigned long flags; 1695 1696 /* If we have already declared adapter dead, donot complete cmds */ 1697 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR ) 1698 return; 1699 1700 spin_lock_irqsave(&instance->completion_lock, flags); 1701 1702 producer = le32_to_cpu(*instance->producer); 1703 consumer = le32_to_cpu(*instance->consumer); 1704 1705 while (consumer != producer) { 1706 context = le32_to_cpu(instance->reply_queue[consumer]); 1707 if (context >= instance->max_fw_cmds) { 1708 printk(KERN_ERR "Unexpected context value %x\n", 1709 context); 1710 BUG(); 1711 } 1712 1713 cmd = instance->cmd_list[context]; 1714 1715 megasas_complete_cmd(instance, cmd, DID_OK); 1716 1717 consumer++; 1718 if (consumer == (instance->max_fw_cmds + 1)) { 1719 consumer = 0; 1720 } 1721 } 1722 1723 *instance->consumer = cpu_to_le32(producer); 1724 1725 spin_unlock_irqrestore(&instance->completion_lock, flags); 1726 1727 /* 1728 * Check if we can restore can_queue 1729 */ 1730 megasas_check_and_restore_queue_depth(instance); 1731 } 1732 1733 static void 1734 megasas_internal_reset_defer_cmds(struct megasas_instance *instance); 1735 1736 static void 1737 process_fw_state_change_wq(struct work_struct *work); 1738 1739 void megasas_do_ocr(struct megasas_instance *instance) 1740 { 1741 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) || 1742 (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) || 1743 (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)) { 1744 *instance->consumer = cpu_to_le32(MEGASAS_ADPRESET_INPROG_SIGN); 1745 } 1746 instance->instancet->disable_intr(instance); 1747 instance->adprecovery = MEGASAS_ADPRESET_SM_INFAULT; 1748 instance->issuepend_done = 0; 1749 1750 atomic_set(&instance->fw_outstanding, 0); 1751 megasas_internal_reset_defer_cmds(instance); 1752 process_fw_state_change_wq(&instance->work_init); 1753 } 1754 1755 /** 1756 * megasas_wait_for_outstanding - Wait for all outstanding cmds 1757 * @instance: Adapter soft state 1758 * 1759 * This function waits for up to MEGASAS_RESET_WAIT_TIME seconds for FW to 1760 * complete all its outstanding commands. Returns error if one or more IOs 1761 * are pending after this time period. It also marks the controller dead. 1762 */ 1763 static int megasas_wait_for_outstanding(struct megasas_instance *instance) 1764 { 1765 int i; 1766 u32 reset_index; 1767 u32 wait_time = MEGASAS_RESET_WAIT_TIME; 1768 u8 adprecovery; 1769 unsigned long flags; 1770 struct list_head clist_local; 1771 struct megasas_cmd *reset_cmd; 1772 u32 fw_state; 1773 u8 kill_adapter_flag; 1774 1775 spin_lock_irqsave(&instance->hba_lock, flags); 1776 adprecovery = instance->adprecovery; 1777 spin_unlock_irqrestore(&instance->hba_lock, flags); 1778 1779 if (adprecovery != MEGASAS_HBA_OPERATIONAL) { 1780 1781 INIT_LIST_HEAD(&clist_local); 1782 spin_lock_irqsave(&instance->hba_lock, flags); 1783 list_splice_init(&instance->internal_reset_pending_q, 1784 &clist_local); 1785 spin_unlock_irqrestore(&instance->hba_lock, flags); 1786 1787 printk(KERN_NOTICE "megasas: HBA reset wait ...\n"); 1788 for (i = 0; i < wait_time; i++) { 1789 msleep(1000); 1790 spin_lock_irqsave(&instance->hba_lock, flags); 1791 adprecovery = instance->adprecovery; 1792 spin_unlock_irqrestore(&instance->hba_lock, flags); 1793 if (adprecovery == MEGASAS_HBA_OPERATIONAL) 1794 break; 1795 } 1796 1797 if (adprecovery != MEGASAS_HBA_OPERATIONAL) { 1798 printk(KERN_NOTICE "megasas: reset: Stopping HBA.\n"); 1799 spin_lock_irqsave(&instance->hba_lock, flags); 1800 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; 1801 spin_unlock_irqrestore(&instance->hba_lock, flags); 1802 return FAILED; 1803 } 1804 1805 reset_index = 0; 1806 while (!list_empty(&clist_local)) { 1807 reset_cmd = list_entry((&clist_local)->next, 1808 struct megasas_cmd, list); 1809 list_del_init(&reset_cmd->list); 1810 if (reset_cmd->scmd) { 1811 reset_cmd->scmd->result = DID_RESET << 16; 1812 printk(KERN_NOTICE "%d:%p reset [%02x]\n", 1813 reset_index, reset_cmd, 1814 reset_cmd->scmd->cmnd[0]); 1815 1816 reset_cmd->scmd->scsi_done(reset_cmd->scmd); 1817 megasas_return_cmd(instance, reset_cmd); 1818 } else if (reset_cmd->sync_cmd) { 1819 printk(KERN_NOTICE "megasas:%p synch cmds" 1820 "reset queue\n", 1821 reset_cmd); 1822 1823 reset_cmd->cmd_status = ENODATA; 1824 instance->instancet->fire_cmd(instance, 1825 reset_cmd->frame_phys_addr, 1826 0, instance->reg_set); 1827 } else { 1828 printk(KERN_NOTICE "megasas: %p unexpected" 1829 "cmds lst\n", 1830 reset_cmd); 1831 } 1832 reset_index++; 1833 } 1834 1835 return SUCCESS; 1836 } 1837 1838 for (i = 0; i < resetwaittime; i++) { 1839 1840 int outstanding = atomic_read(&instance->fw_outstanding); 1841 1842 if (!outstanding) 1843 break; 1844 1845 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { 1846 printk(KERN_NOTICE "megasas: [%2d]waiting for %d " 1847 "commands to complete\n",i,outstanding); 1848 /* 1849 * Call cmd completion routine. Cmd to be 1850 * be completed directly without depending on isr. 1851 */ 1852 megasas_complete_cmd_dpc((unsigned long)instance); 1853 } 1854 1855 msleep(1000); 1856 } 1857 1858 i = 0; 1859 kill_adapter_flag = 0; 1860 do { 1861 fw_state = instance->instancet->read_fw_status_reg( 1862 instance->reg_set) & MFI_STATE_MASK; 1863 if ((fw_state == MFI_STATE_FAULT) && 1864 (instance->disableOnlineCtrlReset == 0)) { 1865 if (i == 3) { 1866 kill_adapter_flag = 2; 1867 break; 1868 } 1869 megasas_do_ocr(instance); 1870 kill_adapter_flag = 1; 1871 1872 /* wait for 1 secs to let FW finish the pending cmds */ 1873 msleep(1000); 1874 } 1875 i++; 1876 } while (i <= 3); 1877 1878 if (atomic_read(&instance->fw_outstanding) && 1879 !kill_adapter_flag) { 1880 if (instance->disableOnlineCtrlReset == 0) { 1881 1882 megasas_do_ocr(instance); 1883 1884 /* wait for 5 secs to let FW finish the pending cmds */ 1885 for (i = 0; i < wait_time; i++) { 1886 int outstanding = 1887 atomic_read(&instance->fw_outstanding); 1888 if (!outstanding) 1889 return SUCCESS; 1890 msleep(1000); 1891 } 1892 } 1893 } 1894 1895 if (atomic_read(&instance->fw_outstanding) || 1896 (kill_adapter_flag == 2)) { 1897 printk(KERN_NOTICE "megaraid_sas: pending cmds after reset\n"); 1898 /* 1899 * Send signal to FW to stop processing any pending cmds. 1900 * The controller will be taken offline by the OS now. 1901 */ 1902 if ((instance->pdev->device == 1903 PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 1904 (instance->pdev->device == 1905 PCI_DEVICE_ID_LSI_SAS0071SKINNY)) { 1906 writel(MFI_STOP_ADP, 1907 &instance->reg_set->doorbell); 1908 } else { 1909 writel(MFI_STOP_ADP, 1910 &instance->reg_set->inbound_doorbell); 1911 } 1912 megasas_dump_pending_frames(instance); 1913 spin_lock_irqsave(&instance->hba_lock, flags); 1914 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; 1915 spin_unlock_irqrestore(&instance->hba_lock, flags); 1916 return FAILED; 1917 } 1918 1919 printk(KERN_NOTICE "megaraid_sas: no pending cmds after reset\n"); 1920 1921 return SUCCESS; 1922 } 1923 1924 /** 1925 * megasas_generic_reset - Generic reset routine 1926 * @scmd: Mid-layer SCSI command 1927 * 1928 * This routine implements a generic reset handler for device, bus and host 1929 * reset requests. Device, bus and host specific reset handlers can use this 1930 * function after they do their specific tasks. 1931 */ 1932 static int megasas_generic_reset(struct scsi_cmnd *scmd) 1933 { 1934 int ret_val; 1935 struct megasas_instance *instance; 1936 1937 instance = (struct megasas_instance *)scmd->device->host->hostdata; 1938 1939 scmd_printk(KERN_NOTICE, scmd, "megasas: RESET cmd=%x retries=%x\n", 1940 scmd->cmnd[0], scmd->retries); 1941 1942 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { 1943 printk(KERN_ERR "megasas: cannot recover from previous reset " 1944 "failures\n"); 1945 return FAILED; 1946 } 1947 1948 ret_val = megasas_wait_for_outstanding(instance); 1949 if (ret_val == SUCCESS) 1950 printk(KERN_NOTICE "megasas: reset successful \n"); 1951 else 1952 printk(KERN_ERR "megasas: failed to do reset\n"); 1953 1954 return ret_val; 1955 } 1956 1957 /** 1958 * megasas_reset_timer - quiesce the adapter if required 1959 * @scmd: scsi cmnd 1960 * 1961 * Sets the FW busy flag and reduces the host->can_queue if the 1962 * cmd has not been completed within the timeout period. 1963 */ 1964 static enum 1965 blk_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd) 1966 { 1967 struct megasas_instance *instance; 1968 unsigned long flags; 1969 1970 if (time_after(jiffies, scmd->jiffies_at_alloc + 1971 (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) { 1972 return BLK_EH_NOT_HANDLED; 1973 } 1974 1975 instance = (struct megasas_instance *)scmd->device->host->hostdata; 1976 if (!(instance->flag & MEGASAS_FW_BUSY)) { 1977 /* FW is busy, throttle IO */ 1978 spin_lock_irqsave(instance->host->host_lock, flags); 1979 1980 instance->host->can_queue = instance->throttlequeuedepth; 1981 instance->last_time = jiffies; 1982 instance->flag |= MEGASAS_FW_BUSY; 1983 1984 spin_unlock_irqrestore(instance->host->host_lock, flags); 1985 } 1986 return BLK_EH_RESET_TIMER; 1987 } 1988 1989 /** 1990 * megasas_reset_device - Device reset handler entry point 1991 */ 1992 static int megasas_reset_device(struct scsi_cmnd *scmd) 1993 { 1994 int ret; 1995 1996 /* 1997 * First wait for all commands to complete 1998 */ 1999 ret = megasas_generic_reset(scmd); 2000 2001 return ret; 2002 } 2003 2004 /** 2005 * megasas_reset_bus_host - Bus & host reset handler entry point 2006 */ 2007 static int megasas_reset_bus_host(struct scsi_cmnd *scmd) 2008 { 2009 int ret; 2010 struct megasas_instance *instance; 2011 instance = (struct megasas_instance *)scmd->device->host->hostdata; 2012 2013 /* 2014 * First wait for all commands to complete 2015 */ 2016 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 2017 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 2018 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) 2019 ret = megasas_reset_fusion(scmd->device->host); 2020 else 2021 ret = megasas_generic_reset(scmd); 2022 2023 return ret; 2024 } 2025 2026 /** 2027 * megasas_bios_param - Returns disk geometry for a disk 2028 * @sdev: device handle 2029 * @bdev: block device 2030 * @capacity: drive capacity 2031 * @geom: geometry parameters 2032 */ 2033 static int 2034 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev, 2035 sector_t capacity, int geom[]) 2036 { 2037 int heads; 2038 int sectors; 2039 sector_t cylinders; 2040 unsigned long tmp; 2041 /* Default heads (64) & sectors (32) */ 2042 heads = 64; 2043 sectors = 32; 2044 2045 tmp = heads * sectors; 2046 cylinders = capacity; 2047 2048 sector_div(cylinders, tmp); 2049 2050 /* 2051 * Handle extended translation size for logical drives > 1Gb 2052 */ 2053 2054 if (capacity >= 0x200000) { 2055 heads = 255; 2056 sectors = 63; 2057 tmp = heads*sectors; 2058 cylinders = capacity; 2059 sector_div(cylinders, tmp); 2060 } 2061 2062 geom[0] = heads; 2063 geom[1] = sectors; 2064 geom[2] = cylinders; 2065 2066 return 0; 2067 } 2068 2069 static void megasas_aen_polling(struct work_struct *work); 2070 2071 /** 2072 * megasas_service_aen - Processes an event notification 2073 * @instance: Adapter soft state 2074 * @cmd: AEN command completed by the ISR 2075 * 2076 * For AEN, driver sends a command down to FW that is held by the FW till an 2077 * event occurs. When an event of interest occurs, FW completes the command 2078 * that it was previously holding. 2079 * 2080 * This routines sends SIGIO signal to processes that have registered with the 2081 * driver for AEN. 2082 */ 2083 static void 2084 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd) 2085 { 2086 unsigned long flags; 2087 /* 2088 * Don't signal app if it is just an aborted previously registered aen 2089 */ 2090 if ((!cmd->abort_aen) && (instance->unload == 0)) { 2091 spin_lock_irqsave(&poll_aen_lock, flags); 2092 megasas_poll_wait_aen = 1; 2093 spin_unlock_irqrestore(&poll_aen_lock, flags); 2094 wake_up(&megasas_poll_wait); 2095 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN); 2096 } 2097 else 2098 cmd->abort_aen = 0; 2099 2100 instance->aen_cmd = NULL; 2101 megasas_return_cmd(instance, cmd); 2102 2103 if ((instance->unload == 0) && 2104 ((instance->issuepend_done == 1))) { 2105 struct megasas_aen_event *ev; 2106 ev = kzalloc(sizeof(*ev), GFP_ATOMIC); 2107 if (!ev) { 2108 printk(KERN_ERR "megasas_service_aen: out of memory\n"); 2109 } else { 2110 ev->instance = instance; 2111 instance->ev = ev; 2112 INIT_DELAYED_WORK(&ev->hotplug_work, 2113 megasas_aen_polling); 2114 schedule_delayed_work(&ev->hotplug_work, 0); 2115 } 2116 } 2117 } 2118 2119 static int megasas_change_queue_depth(struct scsi_device *sdev, 2120 int queue_depth, int reason) 2121 { 2122 if (reason != SCSI_QDEPTH_DEFAULT) 2123 return -EOPNOTSUPP; 2124 2125 if (queue_depth > sdev->host->can_queue) 2126 queue_depth = sdev->host->can_queue; 2127 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), 2128 queue_depth); 2129 2130 return queue_depth; 2131 } 2132 2133 /* 2134 * Scsi host template for megaraid_sas driver 2135 */ 2136 static struct scsi_host_template megasas_template = { 2137 2138 .module = THIS_MODULE, 2139 .name = "LSI SAS based MegaRAID driver", 2140 .proc_name = "megaraid_sas", 2141 .slave_configure = megasas_slave_configure, 2142 .slave_alloc = megasas_slave_alloc, 2143 .queuecommand = megasas_queue_command, 2144 .eh_device_reset_handler = megasas_reset_device, 2145 .eh_bus_reset_handler = megasas_reset_bus_host, 2146 .eh_host_reset_handler = megasas_reset_bus_host, 2147 .eh_timed_out = megasas_reset_timer, 2148 .bios_param = megasas_bios_param, 2149 .use_clustering = ENABLE_CLUSTERING, 2150 .change_queue_depth = megasas_change_queue_depth, 2151 }; 2152 2153 /** 2154 * megasas_complete_int_cmd - Completes an internal command 2155 * @instance: Adapter soft state 2156 * @cmd: Command to be completed 2157 * 2158 * The megasas_issue_blocked_cmd() function waits for a command to complete 2159 * after it issues a command. This function wakes up that waiting routine by 2160 * calling wake_up() on the wait queue. 2161 */ 2162 static void 2163 megasas_complete_int_cmd(struct megasas_instance *instance, 2164 struct megasas_cmd *cmd) 2165 { 2166 cmd->cmd_status = cmd->frame->io.cmd_status; 2167 2168 if (cmd->cmd_status == ENODATA) { 2169 cmd->cmd_status = 0; 2170 } 2171 wake_up(&instance->int_cmd_wait_q); 2172 } 2173 2174 /** 2175 * megasas_complete_abort - Completes aborting a command 2176 * @instance: Adapter soft state 2177 * @cmd: Cmd that was issued to abort another cmd 2178 * 2179 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q 2180 * after it issues an abort on a previously issued command. This function 2181 * wakes up all functions waiting on the same wait queue. 2182 */ 2183 static void 2184 megasas_complete_abort(struct megasas_instance *instance, 2185 struct megasas_cmd *cmd) 2186 { 2187 if (cmd->sync_cmd) { 2188 cmd->sync_cmd = 0; 2189 cmd->cmd_status = 0; 2190 wake_up(&instance->abort_cmd_wait_q); 2191 } 2192 2193 return; 2194 } 2195 2196 /** 2197 * megasas_complete_cmd - Completes a command 2198 * @instance: Adapter soft state 2199 * @cmd: Command to be completed 2200 * @alt_status: If non-zero, use this value as status to 2201 * SCSI mid-layer instead of the value returned 2202 * by the FW. This should be used if caller wants 2203 * an alternate status (as in the case of aborted 2204 * commands) 2205 */ 2206 void 2207 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd, 2208 u8 alt_status) 2209 { 2210 int exception = 0; 2211 struct megasas_header *hdr = &cmd->frame->hdr; 2212 unsigned long flags; 2213 struct fusion_context *fusion = instance->ctrl_context; 2214 u32 opcode; 2215 2216 /* flag for the retry reset */ 2217 cmd->retry_for_fw_reset = 0; 2218 2219 if (cmd->scmd) 2220 cmd->scmd->SCp.ptr = NULL; 2221 2222 switch (hdr->cmd) { 2223 case MFI_CMD_INVALID: 2224 /* Some older 1068 controller FW may keep a pended 2225 MR_DCMD_CTRL_EVENT_GET_INFO left over from the main kernel 2226 when booting the kdump kernel. Ignore this command to 2227 prevent a kernel panic on shutdown of the kdump kernel. */ 2228 printk(KERN_WARNING "megaraid_sas: MFI_CMD_INVALID command " 2229 "completed.\n"); 2230 printk(KERN_WARNING "megaraid_sas: If you have a controller " 2231 "other than PERC5, please upgrade your firmware.\n"); 2232 break; 2233 case MFI_CMD_PD_SCSI_IO: 2234 case MFI_CMD_LD_SCSI_IO: 2235 2236 /* 2237 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been 2238 * issued either through an IO path or an IOCTL path. If it 2239 * was via IOCTL, we will send it to internal completion. 2240 */ 2241 if (cmd->sync_cmd) { 2242 cmd->sync_cmd = 0; 2243 megasas_complete_int_cmd(instance, cmd); 2244 break; 2245 } 2246 2247 case MFI_CMD_LD_READ: 2248 case MFI_CMD_LD_WRITE: 2249 2250 if (alt_status) { 2251 cmd->scmd->result = alt_status << 16; 2252 exception = 1; 2253 } 2254 2255 if (exception) { 2256 2257 atomic_dec(&instance->fw_outstanding); 2258 2259 scsi_dma_unmap(cmd->scmd); 2260 cmd->scmd->scsi_done(cmd->scmd); 2261 megasas_return_cmd(instance, cmd); 2262 2263 break; 2264 } 2265 2266 switch (hdr->cmd_status) { 2267 2268 case MFI_STAT_OK: 2269 cmd->scmd->result = DID_OK << 16; 2270 break; 2271 2272 case MFI_STAT_SCSI_IO_FAILED: 2273 case MFI_STAT_LD_INIT_IN_PROGRESS: 2274 cmd->scmd->result = 2275 (DID_ERROR << 16) | hdr->scsi_status; 2276 break; 2277 2278 case MFI_STAT_SCSI_DONE_WITH_ERROR: 2279 2280 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status; 2281 2282 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) { 2283 memset(cmd->scmd->sense_buffer, 0, 2284 SCSI_SENSE_BUFFERSIZE); 2285 memcpy(cmd->scmd->sense_buffer, cmd->sense, 2286 hdr->sense_len); 2287 2288 cmd->scmd->result |= DRIVER_SENSE << 24; 2289 } 2290 2291 break; 2292 2293 case MFI_STAT_LD_OFFLINE: 2294 case MFI_STAT_DEVICE_NOT_FOUND: 2295 cmd->scmd->result = DID_BAD_TARGET << 16; 2296 break; 2297 2298 default: 2299 printk(KERN_DEBUG "megasas: MFI FW status %#x\n", 2300 hdr->cmd_status); 2301 cmd->scmd->result = DID_ERROR << 16; 2302 break; 2303 } 2304 2305 atomic_dec(&instance->fw_outstanding); 2306 2307 scsi_dma_unmap(cmd->scmd); 2308 cmd->scmd->scsi_done(cmd->scmd); 2309 megasas_return_cmd(instance, cmd); 2310 2311 break; 2312 2313 case MFI_CMD_SMP: 2314 case MFI_CMD_STP: 2315 case MFI_CMD_DCMD: 2316 opcode = le32_to_cpu(cmd->frame->dcmd.opcode); 2317 /* Check for LD map update */ 2318 if ((opcode == MR_DCMD_LD_MAP_GET_INFO) 2319 && (cmd->frame->dcmd.mbox.b[1] == 1)) { 2320 fusion->fast_path_io = 0; 2321 spin_lock_irqsave(instance->host->host_lock, flags); 2322 if (cmd->frame->hdr.cmd_status != 0) { 2323 if (cmd->frame->hdr.cmd_status != 2324 MFI_STAT_NOT_FOUND) 2325 printk(KERN_WARNING "megasas: map sync" 2326 "failed, status = 0x%x.\n", 2327 cmd->frame->hdr.cmd_status); 2328 else { 2329 megasas_return_cmd(instance, cmd); 2330 spin_unlock_irqrestore( 2331 instance->host->host_lock, 2332 flags); 2333 break; 2334 } 2335 } else 2336 instance->map_id++; 2337 megasas_return_cmd(instance, cmd); 2338 2339 /* 2340 * Set fast path IO to ZERO. 2341 * Validate Map will set proper value. 2342 * Meanwhile all IOs will go as LD IO. 2343 */ 2344 if (MR_ValidateMapInfo(instance)) 2345 fusion->fast_path_io = 1; 2346 else 2347 fusion->fast_path_io = 0; 2348 megasas_sync_map_info(instance); 2349 spin_unlock_irqrestore(instance->host->host_lock, 2350 flags); 2351 break; 2352 } 2353 if (opcode == MR_DCMD_CTRL_EVENT_GET_INFO || 2354 opcode == MR_DCMD_CTRL_EVENT_GET) { 2355 spin_lock_irqsave(&poll_aen_lock, flags); 2356 megasas_poll_wait_aen = 0; 2357 spin_unlock_irqrestore(&poll_aen_lock, flags); 2358 } 2359 2360 /* 2361 * See if got an event notification 2362 */ 2363 if (opcode == MR_DCMD_CTRL_EVENT_WAIT) 2364 megasas_service_aen(instance, cmd); 2365 else 2366 megasas_complete_int_cmd(instance, cmd); 2367 2368 break; 2369 2370 case MFI_CMD_ABORT: 2371 /* 2372 * Cmd issued to abort another cmd returned 2373 */ 2374 megasas_complete_abort(instance, cmd); 2375 break; 2376 2377 default: 2378 printk("megasas: Unknown command completed! [0x%X]\n", 2379 hdr->cmd); 2380 break; 2381 } 2382 } 2383 2384 /** 2385 * megasas_issue_pending_cmds_again - issue all pending cmds 2386 * in FW again because of the fw reset 2387 * @instance: Adapter soft state 2388 */ 2389 static inline void 2390 megasas_issue_pending_cmds_again(struct megasas_instance *instance) 2391 { 2392 struct megasas_cmd *cmd; 2393 struct list_head clist_local; 2394 union megasas_evt_class_locale class_locale; 2395 unsigned long flags; 2396 u32 seq_num; 2397 2398 INIT_LIST_HEAD(&clist_local); 2399 spin_lock_irqsave(&instance->hba_lock, flags); 2400 list_splice_init(&instance->internal_reset_pending_q, &clist_local); 2401 spin_unlock_irqrestore(&instance->hba_lock, flags); 2402 2403 while (!list_empty(&clist_local)) { 2404 cmd = list_entry((&clist_local)->next, 2405 struct megasas_cmd, list); 2406 list_del_init(&cmd->list); 2407 2408 if (cmd->sync_cmd || cmd->scmd) { 2409 printk(KERN_NOTICE "megaraid_sas: command %p, %p:%d" 2410 "detected to be pending while HBA reset.\n", 2411 cmd, cmd->scmd, cmd->sync_cmd); 2412 2413 cmd->retry_for_fw_reset++; 2414 2415 if (cmd->retry_for_fw_reset == 3) { 2416 printk(KERN_NOTICE "megaraid_sas: cmd %p, %p:%d" 2417 "was tried multiple times during reset." 2418 "Shutting down the HBA\n", 2419 cmd, cmd->scmd, cmd->sync_cmd); 2420 megaraid_sas_kill_hba(instance); 2421 2422 instance->adprecovery = 2423 MEGASAS_HW_CRITICAL_ERROR; 2424 return; 2425 } 2426 } 2427 2428 if (cmd->sync_cmd == 1) { 2429 if (cmd->scmd) { 2430 printk(KERN_NOTICE "megaraid_sas: unexpected" 2431 "cmd attached to internal command!\n"); 2432 } 2433 printk(KERN_NOTICE "megasas: %p synchronous cmd" 2434 "on the internal reset queue," 2435 "issue it again.\n", cmd); 2436 cmd->cmd_status = ENODATA; 2437 instance->instancet->fire_cmd(instance, 2438 cmd->frame_phys_addr , 2439 0, instance->reg_set); 2440 } else if (cmd->scmd) { 2441 printk(KERN_NOTICE "megasas: %p scsi cmd [%02x]" 2442 "detected on the internal queue, issue again.\n", 2443 cmd, cmd->scmd->cmnd[0]); 2444 2445 atomic_inc(&instance->fw_outstanding); 2446 instance->instancet->fire_cmd(instance, 2447 cmd->frame_phys_addr, 2448 cmd->frame_count-1, instance->reg_set); 2449 } else { 2450 printk(KERN_NOTICE "megasas: %p unexpected cmd on the" 2451 "internal reset defer list while re-issue!!\n", 2452 cmd); 2453 } 2454 } 2455 2456 if (instance->aen_cmd) { 2457 printk(KERN_NOTICE "megaraid_sas: aen_cmd in def process\n"); 2458 megasas_return_cmd(instance, instance->aen_cmd); 2459 2460 instance->aen_cmd = NULL; 2461 } 2462 2463 /* 2464 * Initiate AEN (Asynchronous Event Notification) 2465 */ 2466 seq_num = instance->last_seq_num; 2467 class_locale.members.reserved = 0; 2468 class_locale.members.locale = MR_EVT_LOCALE_ALL; 2469 class_locale.members.class = MR_EVT_CLASS_DEBUG; 2470 2471 megasas_register_aen(instance, seq_num, class_locale.word); 2472 } 2473 2474 /** 2475 * Move the internal reset pending commands to a deferred queue. 2476 * 2477 * We move the commands pending at internal reset time to a 2478 * pending queue. This queue would be flushed after successful 2479 * completion of the internal reset sequence. if the internal reset 2480 * did not complete in time, the kernel reset handler would flush 2481 * these commands. 2482 **/ 2483 static void 2484 megasas_internal_reset_defer_cmds(struct megasas_instance *instance) 2485 { 2486 struct megasas_cmd *cmd; 2487 int i; 2488 u32 max_cmd = instance->max_fw_cmds; 2489 u32 defer_index; 2490 unsigned long flags; 2491 2492 defer_index = 0; 2493 spin_lock_irqsave(&instance->cmd_pool_lock, flags); 2494 for (i = 0; i < max_cmd; i++) { 2495 cmd = instance->cmd_list[i]; 2496 if (cmd->sync_cmd == 1 || cmd->scmd) { 2497 printk(KERN_NOTICE "megasas: moving cmd[%d]:%p:%d:%p" 2498 "on the defer queue as internal\n", 2499 defer_index, cmd, cmd->sync_cmd, cmd->scmd); 2500 2501 if (!list_empty(&cmd->list)) { 2502 printk(KERN_NOTICE "megaraid_sas: ERROR while" 2503 " moving this cmd:%p, %d %p, it was" 2504 "discovered on some list?\n", 2505 cmd, cmd->sync_cmd, cmd->scmd); 2506 2507 list_del_init(&cmd->list); 2508 } 2509 defer_index++; 2510 list_add_tail(&cmd->list, 2511 &instance->internal_reset_pending_q); 2512 } 2513 } 2514 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags); 2515 } 2516 2517 2518 static void 2519 process_fw_state_change_wq(struct work_struct *work) 2520 { 2521 struct megasas_instance *instance = 2522 container_of(work, struct megasas_instance, work_init); 2523 u32 wait; 2524 unsigned long flags; 2525 2526 if (instance->adprecovery != MEGASAS_ADPRESET_SM_INFAULT) { 2527 printk(KERN_NOTICE "megaraid_sas: error, recovery st %x \n", 2528 instance->adprecovery); 2529 return ; 2530 } 2531 2532 if (instance->adprecovery == MEGASAS_ADPRESET_SM_INFAULT) { 2533 printk(KERN_NOTICE "megaraid_sas: FW detected to be in fault" 2534 "state, restarting it...\n"); 2535 2536 instance->instancet->disable_intr(instance); 2537 atomic_set(&instance->fw_outstanding, 0); 2538 2539 atomic_set(&instance->fw_reset_no_pci_access, 1); 2540 instance->instancet->adp_reset(instance, instance->reg_set); 2541 atomic_set(&instance->fw_reset_no_pci_access, 0 ); 2542 2543 printk(KERN_NOTICE "megaraid_sas: FW restarted successfully," 2544 "initiating next stage...\n"); 2545 2546 printk(KERN_NOTICE "megaraid_sas: HBA recovery state machine," 2547 "state 2 starting...\n"); 2548 2549 /*waitting for about 20 second before start the second init*/ 2550 for (wait = 0; wait < 30; wait++) { 2551 msleep(1000); 2552 } 2553 2554 if (megasas_transition_to_ready(instance, 1)) { 2555 printk(KERN_NOTICE "megaraid_sas:adapter not ready\n"); 2556 2557 megaraid_sas_kill_hba(instance); 2558 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; 2559 return ; 2560 } 2561 2562 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) || 2563 (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) || 2564 (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR) 2565 ) { 2566 *instance->consumer = *instance->producer; 2567 } else { 2568 *instance->consumer = 0; 2569 *instance->producer = 0; 2570 } 2571 2572 megasas_issue_init_mfi(instance); 2573 2574 spin_lock_irqsave(&instance->hba_lock, flags); 2575 instance->adprecovery = MEGASAS_HBA_OPERATIONAL; 2576 spin_unlock_irqrestore(&instance->hba_lock, flags); 2577 instance->instancet->enable_intr(instance); 2578 2579 megasas_issue_pending_cmds_again(instance); 2580 instance->issuepend_done = 1; 2581 } 2582 return ; 2583 } 2584 2585 /** 2586 * megasas_deplete_reply_queue - Processes all completed commands 2587 * @instance: Adapter soft state 2588 * @alt_status: Alternate status to be returned to 2589 * SCSI mid-layer instead of the status 2590 * returned by the FW 2591 * Note: this must be called with hba lock held 2592 */ 2593 static int 2594 megasas_deplete_reply_queue(struct megasas_instance *instance, 2595 u8 alt_status) 2596 { 2597 u32 mfiStatus; 2598 u32 fw_state; 2599 2600 if ((mfiStatus = instance->instancet->check_reset(instance, 2601 instance->reg_set)) == 1) { 2602 return IRQ_HANDLED; 2603 } 2604 2605 if ((mfiStatus = instance->instancet->clear_intr( 2606 instance->reg_set) 2607 ) == 0) { 2608 /* Hardware may not set outbound_intr_status in MSI-X mode */ 2609 if (!instance->msix_vectors) 2610 return IRQ_NONE; 2611 } 2612 2613 instance->mfiStatus = mfiStatus; 2614 2615 if ((mfiStatus & MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE)) { 2616 fw_state = instance->instancet->read_fw_status_reg( 2617 instance->reg_set) & MFI_STATE_MASK; 2618 2619 if (fw_state != MFI_STATE_FAULT) { 2620 printk(KERN_NOTICE "megaraid_sas: fw state:%x\n", 2621 fw_state); 2622 } 2623 2624 if ((fw_state == MFI_STATE_FAULT) && 2625 (instance->disableOnlineCtrlReset == 0)) { 2626 printk(KERN_NOTICE "megaraid_sas: wait adp restart\n"); 2627 2628 if ((instance->pdev->device == 2629 PCI_DEVICE_ID_LSI_SAS1064R) || 2630 (instance->pdev->device == 2631 PCI_DEVICE_ID_DELL_PERC5) || 2632 (instance->pdev->device == 2633 PCI_DEVICE_ID_LSI_VERDE_ZCR)) { 2634 2635 *instance->consumer = 2636 cpu_to_le32(MEGASAS_ADPRESET_INPROG_SIGN); 2637 } 2638 2639 2640 instance->instancet->disable_intr(instance); 2641 instance->adprecovery = MEGASAS_ADPRESET_SM_INFAULT; 2642 instance->issuepend_done = 0; 2643 2644 atomic_set(&instance->fw_outstanding, 0); 2645 megasas_internal_reset_defer_cmds(instance); 2646 2647 printk(KERN_NOTICE "megasas: fwState=%x, stage:%d\n", 2648 fw_state, instance->adprecovery); 2649 2650 schedule_work(&instance->work_init); 2651 return IRQ_HANDLED; 2652 2653 } else { 2654 printk(KERN_NOTICE "megasas: fwstate:%x, dis_OCR=%x\n", 2655 fw_state, instance->disableOnlineCtrlReset); 2656 } 2657 } 2658 2659 tasklet_schedule(&instance->isr_tasklet); 2660 return IRQ_HANDLED; 2661 } 2662 /** 2663 * megasas_isr - isr entry point 2664 */ 2665 static irqreturn_t megasas_isr(int irq, void *devp) 2666 { 2667 struct megasas_irq_context *irq_context = devp; 2668 struct megasas_instance *instance = irq_context->instance; 2669 unsigned long flags; 2670 irqreturn_t rc; 2671 2672 if (atomic_read(&instance->fw_reset_no_pci_access)) 2673 return IRQ_HANDLED; 2674 2675 spin_lock_irqsave(&instance->hba_lock, flags); 2676 rc = megasas_deplete_reply_queue(instance, DID_OK); 2677 spin_unlock_irqrestore(&instance->hba_lock, flags); 2678 2679 return rc; 2680 } 2681 2682 /** 2683 * megasas_transition_to_ready - Move the FW to READY state 2684 * @instance: Adapter soft state 2685 * 2686 * During the initialization, FW passes can potentially be in any one of 2687 * several possible states. If the FW in operational, waiting-for-handshake 2688 * states, driver must take steps to bring it to ready state. Otherwise, it 2689 * has to wait for the ready state. 2690 */ 2691 int 2692 megasas_transition_to_ready(struct megasas_instance *instance, int ocr) 2693 { 2694 int i; 2695 u8 max_wait; 2696 u32 fw_state; 2697 u32 cur_state; 2698 u32 abs_state, curr_abs_state; 2699 2700 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK; 2701 2702 if (fw_state != MFI_STATE_READY) 2703 printk(KERN_INFO "megasas: Waiting for FW to come to ready" 2704 " state\n"); 2705 2706 while (fw_state != MFI_STATE_READY) { 2707 2708 abs_state = 2709 instance->instancet->read_fw_status_reg(instance->reg_set); 2710 2711 switch (fw_state) { 2712 2713 case MFI_STATE_FAULT: 2714 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n"); 2715 if (ocr) { 2716 max_wait = MEGASAS_RESET_WAIT_TIME; 2717 cur_state = MFI_STATE_FAULT; 2718 break; 2719 } else 2720 return -ENODEV; 2721 2722 case MFI_STATE_WAIT_HANDSHAKE: 2723 /* 2724 * Set the CLR bit in inbound doorbell 2725 */ 2726 if ((instance->pdev->device == 2727 PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 2728 (instance->pdev->device == 2729 PCI_DEVICE_ID_LSI_SAS0071SKINNY) || 2730 (instance->pdev->device == 2731 PCI_DEVICE_ID_LSI_FUSION) || 2732 (instance->pdev->device == 2733 PCI_DEVICE_ID_LSI_INVADER) || 2734 (instance->pdev->device == 2735 PCI_DEVICE_ID_LSI_FURY)) { 2736 writel( 2737 MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG, 2738 &instance->reg_set->doorbell); 2739 } else { 2740 writel( 2741 MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG, 2742 &instance->reg_set->inbound_doorbell); 2743 } 2744 2745 max_wait = MEGASAS_RESET_WAIT_TIME; 2746 cur_state = MFI_STATE_WAIT_HANDSHAKE; 2747 break; 2748 2749 case MFI_STATE_BOOT_MESSAGE_PENDING: 2750 if ((instance->pdev->device == 2751 PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 2752 (instance->pdev->device == 2753 PCI_DEVICE_ID_LSI_SAS0071SKINNY) || 2754 (instance->pdev->device == 2755 PCI_DEVICE_ID_LSI_FUSION) || 2756 (instance->pdev->device == 2757 PCI_DEVICE_ID_LSI_INVADER) || 2758 (instance->pdev->device == 2759 PCI_DEVICE_ID_LSI_FURY)) { 2760 writel(MFI_INIT_HOTPLUG, 2761 &instance->reg_set->doorbell); 2762 } else 2763 writel(MFI_INIT_HOTPLUG, 2764 &instance->reg_set->inbound_doorbell); 2765 2766 max_wait = MEGASAS_RESET_WAIT_TIME; 2767 cur_state = MFI_STATE_BOOT_MESSAGE_PENDING; 2768 break; 2769 2770 case MFI_STATE_OPERATIONAL: 2771 /* 2772 * Bring it to READY state; assuming max wait 10 secs 2773 */ 2774 instance->instancet->disable_intr(instance); 2775 if ((instance->pdev->device == 2776 PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 2777 (instance->pdev->device == 2778 PCI_DEVICE_ID_LSI_SAS0071SKINNY) || 2779 (instance->pdev->device 2780 == PCI_DEVICE_ID_LSI_FUSION) || 2781 (instance->pdev->device 2782 == PCI_DEVICE_ID_LSI_INVADER) || 2783 (instance->pdev->device 2784 == PCI_DEVICE_ID_LSI_FURY)) { 2785 writel(MFI_RESET_FLAGS, 2786 &instance->reg_set->doorbell); 2787 if ((instance->pdev->device == 2788 PCI_DEVICE_ID_LSI_FUSION) || 2789 (instance->pdev->device == 2790 PCI_DEVICE_ID_LSI_INVADER) || 2791 (instance->pdev->device == 2792 PCI_DEVICE_ID_LSI_FURY)) { 2793 for (i = 0; i < (10 * 1000); i += 20) { 2794 if (readl( 2795 &instance-> 2796 reg_set-> 2797 doorbell) & 1) 2798 msleep(20); 2799 else 2800 break; 2801 } 2802 } 2803 } else 2804 writel(MFI_RESET_FLAGS, 2805 &instance->reg_set->inbound_doorbell); 2806 2807 max_wait = MEGASAS_RESET_WAIT_TIME; 2808 cur_state = MFI_STATE_OPERATIONAL; 2809 break; 2810 2811 case MFI_STATE_UNDEFINED: 2812 /* 2813 * This state should not last for more than 2 seconds 2814 */ 2815 max_wait = MEGASAS_RESET_WAIT_TIME; 2816 cur_state = MFI_STATE_UNDEFINED; 2817 break; 2818 2819 case MFI_STATE_BB_INIT: 2820 max_wait = MEGASAS_RESET_WAIT_TIME; 2821 cur_state = MFI_STATE_BB_INIT; 2822 break; 2823 2824 case MFI_STATE_FW_INIT: 2825 max_wait = MEGASAS_RESET_WAIT_TIME; 2826 cur_state = MFI_STATE_FW_INIT; 2827 break; 2828 2829 case MFI_STATE_FW_INIT_2: 2830 max_wait = MEGASAS_RESET_WAIT_TIME; 2831 cur_state = MFI_STATE_FW_INIT_2; 2832 break; 2833 2834 case MFI_STATE_DEVICE_SCAN: 2835 max_wait = MEGASAS_RESET_WAIT_TIME; 2836 cur_state = MFI_STATE_DEVICE_SCAN; 2837 break; 2838 2839 case MFI_STATE_FLUSH_CACHE: 2840 max_wait = MEGASAS_RESET_WAIT_TIME; 2841 cur_state = MFI_STATE_FLUSH_CACHE; 2842 break; 2843 2844 default: 2845 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n", 2846 fw_state); 2847 return -ENODEV; 2848 } 2849 2850 /* 2851 * The cur_state should not last for more than max_wait secs 2852 */ 2853 for (i = 0; i < (max_wait * 1000); i++) { 2854 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & 2855 MFI_STATE_MASK ; 2856 curr_abs_state = 2857 instance->instancet->read_fw_status_reg(instance->reg_set); 2858 2859 if (abs_state == curr_abs_state) { 2860 msleep(1); 2861 } else 2862 break; 2863 } 2864 2865 /* 2866 * Return error if fw_state hasn't changed after max_wait 2867 */ 2868 if (curr_abs_state == abs_state) { 2869 printk(KERN_DEBUG "FW state [%d] hasn't changed " 2870 "in %d secs\n", fw_state, max_wait); 2871 return -ENODEV; 2872 } 2873 } 2874 printk(KERN_INFO "megasas: FW now in Ready state\n"); 2875 2876 return 0; 2877 } 2878 2879 /** 2880 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool 2881 * @instance: Adapter soft state 2882 */ 2883 static void megasas_teardown_frame_pool(struct megasas_instance *instance) 2884 { 2885 int i; 2886 u32 max_cmd = instance->max_mfi_cmds; 2887 struct megasas_cmd *cmd; 2888 2889 if (!instance->frame_dma_pool) 2890 return; 2891 2892 /* 2893 * Return all frames to pool 2894 */ 2895 for (i = 0; i < max_cmd; i++) { 2896 2897 cmd = instance->cmd_list[i]; 2898 2899 if (cmd->frame) 2900 pci_pool_free(instance->frame_dma_pool, cmd->frame, 2901 cmd->frame_phys_addr); 2902 2903 if (cmd->sense) 2904 pci_pool_free(instance->sense_dma_pool, cmd->sense, 2905 cmd->sense_phys_addr); 2906 } 2907 2908 /* 2909 * Now destroy the pool itself 2910 */ 2911 pci_pool_destroy(instance->frame_dma_pool); 2912 pci_pool_destroy(instance->sense_dma_pool); 2913 2914 instance->frame_dma_pool = NULL; 2915 instance->sense_dma_pool = NULL; 2916 } 2917 2918 /** 2919 * megasas_create_frame_pool - Creates DMA pool for cmd frames 2920 * @instance: Adapter soft state 2921 * 2922 * Each command packet has an embedded DMA memory buffer that is used for 2923 * filling MFI frame and the SG list that immediately follows the frame. This 2924 * function creates those DMA memory buffers for each command packet by using 2925 * PCI pool facility. 2926 */ 2927 static int megasas_create_frame_pool(struct megasas_instance *instance) 2928 { 2929 int i; 2930 u32 max_cmd; 2931 u32 sge_sz; 2932 u32 sgl_sz; 2933 u32 total_sz; 2934 u32 frame_count; 2935 struct megasas_cmd *cmd; 2936 2937 max_cmd = instance->max_mfi_cmds; 2938 2939 /* 2940 * Size of our frame is 64 bytes for MFI frame, followed by max SG 2941 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer 2942 */ 2943 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) : 2944 sizeof(struct megasas_sge32); 2945 2946 if (instance->flag_ieee) { 2947 sge_sz = sizeof(struct megasas_sge_skinny); 2948 } 2949 2950 /* 2951 * Calculated the number of 64byte frames required for SGL 2952 */ 2953 sgl_sz = sge_sz * instance->max_num_sge; 2954 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE; 2955 frame_count = 15; 2956 2957 /* 2958 * We need one extra frame for the MFI command 2959 */ 2960 frame_count++; 2961 2962 total_sz = MEGAMFI_FRAME_SIZE * frame_count; 2963 /* 2964 * Use DMA pool facility provided by PCI layer 2965 */ 2966 instance->frame_dma_pool = pci_pool_create("megasas frame pool", 2967 instance->pdev, total_sz, 64, 2968 0); 2969 2970 if (!instance->frame_dma_pool) { 2971 printk(KERN_DEBUG "megasas: failed to setup frame pool\n"); 2972 return -ENOMEM; 2973 } 2974 2975 instance->sense_dma_pool = pci_pool_create("megasas sense pool", 2976 instance->pdev, 128, 4, 0); 2977 2978 if (!instance->sense_dma_pool) { 2979 printk(KERN_DEBUG "megasas: failed to setup sense pool\n"); 2980 2981 pci_pool_destroy(instance->frame_dma_pool); 2982 instance->frame_dma_pool = NULL; 2983 2984 return -ENOMEM; 2985 } 2986 2987 /* 2988 * Allocate and attach a frame to each of the commands in cmd_list. 2989 * By making cmd->index as the context instead of the &cmd, we can 2990 * always use 32bit context regardless of the architecture 2991 */ 2992 for (i = 0; i < max_cmd; i++) { 2993 2994 cmd = instance->cmd_list[i]; 2995 2996 cmd->frame = pci_pool_alloc(instance->frame_dma_pool, 2997 GFP_KERNEL, &cmd->frame_phys_addr); 2998 2999 cmd->sense = pci_pool_alloc(instance->sense_dma_pool, 3000 GFP_KERNEL, &cmd->sense_phys_addr); 3001 3002 /* 3003 * megasas_teardown_frame_pool() takes care of freeing 3004 * whatever has been allocated 3005 */ 3006 if (!cmd->frame || !cmd->sense) { 3007 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n"); 3008 megasas_teardown_frame_pool(instance); 3009 return -ENOMEM; 3010 } 3011 3012 memset(cmd->frame, 0, total_sz); 3013 cmd->frame->io.context = cpu_to_le32(cmd->index); 3014 cmd->frame->io.pad_0 = 0; 3015 if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) && 3016 (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) && 3017 (instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) && 3018 (reset_devices)) 3019 cmd->frame->hdr.cmd = MFI_CMD_INVALID; 3020 } 3021 3022 return 0; 3023 } 3024 3025 /** 3026 * megasas_free_cmds - Free all the cmds in the free cmd pool 3027 * @instance: Adapter soft state 3028 */ 3029 void megasas_free_cmds(struct megasas_instance *instance) 3030 { 3031 int i; 3032 /* First free the MFI frame pool */ 3033 megasas_teardown_frame_pool(instance); 3034 3035 /* Free all the commands in the cmd_list */ 3036 for (i = 0; i < instance->max_mfi_cmds; i++) 3037 3038 kfree(instance->cmd_list[i]); 3039 3040 /* Free the cmd_list buffer itself */ 3041 kfree(instance->cmd_list); 3042 instance->cmd_list = NULL; 3043 3044 INIT_LIST_HEAD(&instance->cmd_pool); 3045 } 3046 3047 /** 3048 * megasas_alloc_cmds - Allocates the command packets 3049 * @instance: Adapter soft state 3050 * 3051 * Each command that is issued to the FW, whether IO commands from the OS or 3052 * internal commands like IOCTLs, are wrapped in local data structure called 3053 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to 3054 * the FW. 3055 * 3056 * Each frame has a 32-bit field called context (tag). This context is used 3057 * to get back the megasas_cmd from the frame when a frame gets completed in 3058 * the ISR. Typically the address of the megasas_cmd itself would be used as 3059 * the context. But we wanted to keep the differences between 32 and 64 bit 3060 * systems to the mininum. We always use 32 bit integers for the context. In 3061 * this driver, the 32 bit values are the indices into an array cmd_list. 3062 * This array is used only to look up the megasas_cmd given the context. The 3063 * free commands themselves are maintained in a linked list called cmd_pool. 3064 */ 3065 int megasas_alloc_cmds(struct megasas_instance *instance) 3066 { 3067 int i; 3068 int j; 3069 u32 max_cmd; 3070 struct megasas_cmd *cmd; 3071 3072 max_cmd = instance->max_mfi_cmds; 3073 3074 /* 3075 * instance->cmd_list is an array of struct megasas_cmd pointers. 3076 * Allocate the dynamic array first and then allocate individual 3077 * commands. 3078 */ 3079 instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL); 3080 3081 if (!instance->cmd_list) { 3082 printk(KERN_DEBUG "megasas: out of memory\n"); 3083 return -ENOMEM; 3084 } 3085 3086 memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) *max_cmd); 3087 3088 for (i = 0; i < max_cmd; i++) { 3089 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd), 3090 GFP_KERNEL); 3091 3092 if (!instance->cmd_list[i]) { 3093 3094 for (j = 0; j < i; j++) 3095 kfree(instance->cmd_list[j]); 3096 3097 kfree(instance->cmd_list); 3098 instance->cmd_list = NULL; 3099 3100 return -ENOMEM; 3101 } 3102 } 3103 3104 /* 3105 * Add all the commands to command pool (instance->cmd_pool) 3106 */ 3107 for (i = 0; i < max_cmd; i++) { 3108 cmd = instance->cmd_list[i]; 3109 memset(cmd, 0, sizeof(struct megasas_cmd)); 3110 cmd->index = i; 3111 cmd->scmd = NULL; 3112 cmd->instance = instance; 3113 3114 list_add_tail(&cmd->list, &instance->cmd_pool); 3115 } 3116 3117 /* 3118 * Create a frame pool and assign one frame to each cmd 3119 */ 3120 if (megasas_create_frame_pool(instance)) { 3121 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n"); 3122 megasas_free_cmds(instance); 3123 } 3124 3125 return 0; 3126 } 3127 3128 /* 3129 * megasas_get_pd_list_info - Returns FW's pd_list structure 3130 * @instance: Adapter soft state 3131 * @pd_list: pd_list structure 3132 * 3133 * Issues an internal command (DCMD) to get the FW's controller PD 3134 * list structure. This information is mainly used to find out SYSTEM 3135 * supported by the FW. 3136 */ 3137 static int 3138 megasas_get_pd_list(struct megasas_instance *instance) 3139 { 3140 int ret = 0, pd_index = 0; 3141 struct megasas_cmd *cmd; 3142 struct megasas_dcmd_frame *dcmd; 3143 struct MR_PD_LIST *ci; 3144 struct MR_PD_ADDRESS *pd_addr; 3145 dma_addr_t ci_h = 0; 3146 3147 cmd = megasas_get_cmd(instance); 3148 3149 if (!cmd) { 3150 printk(KERN_DEBUG "megasas (get_pd_list): Failed to get cmd\n"); 3151 return -ENOMEM; 3152 } 3153 3154 dcmd = &cmd->frame->dcmd; 3155 3156 ci = pci_alloc_consistent(instance->pdev, 3157 MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), &ci_h); 3158 3159 if (!ci) { 3160 printk(KERN_DEBUG "Failed to alloc mem for pd_list\n"); 3161 megasas_return_cmd(instance, cmd); 3162 return -ENOMEM; 3163 } 3164 3165 memset(ci, 0, sizeof(*ci)); 3166 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3167 3168 dcmd->mbox.b[0] = MR_PD_QUERY_TYPE_EXPOSED_TO_HOST; 3169 dcmd->mbox.b[1] = 0; 3170 dcmd->cmd = MFI_CMD_DCMD; 3171 dcmd->cmd_status = 0xFF; 3172 dcmd->sge_count = 1; 3173 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); 3174 dcmd->timeout = 0; 3175 dcmd->pad_0 = 0; 3176 dcmd->data_xfer_len = cpu_to_le32(MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST)); 3177 dcmd->opcode = cpu_to_le32(MR_DCMD_PD_LIST_QUERY); 3178 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h); 3179 dcmd->sgl.sge32[0].length = cpu_to_le32(MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST)); 3180 3181 if (!megasas_issue_polled(instance, cmd)) { 3182 ret = 0; 3183 } else { 3184 ret = -1; 3185 } 3186 3187 /* 3188 * the following function will get the instance PD LIST. 3189 */ 3190 3191 pd_addr = ci->addr; 3192 3193 if ( ret == 0 && 3194 (le32_to_cpu(ci->count) < 3195 (MEGASAS_MAX_PD_CHANNELS * MEGASAS_MAX_DEV_PER_CHANNEL))) { 3196 3197 memset(instance->local_pd_list, 0, 3198 MEGASAS_MAX_PD * sizeof(struct megasas_pd_list)); 3199 3200 for (pd_index = 0; pd_index < le32_to_cpu(ci->count); pd_index++) { 3201 3202 instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].tid = 3203 le16_to_cpu(pd_addr->deviceId); 3204 instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].driveType = 3205 pd_addr->scsiDevType; 3206 instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].driveState = 3207 MR_PD_STATE_SYSTEM; 3208 pd_addr++; 3209 } 3210 memcpy(instance->pd_list, instance->local_pd_list, 3211 sizeof(instance->pd_list)); 3212 } 3213 3214 pci_free_consistent(instance->pdev, 3215 MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), 3216 ci, ci_h); 3217 megasas_return_cmd(instance, cmd); 3218 3219 return ret; 3220 } 3221 3222 /* 3223 * megasas_get_ld_list_info - Returns FW's ld_list structure 3224 * @instance: Adapter soft state 3225 * @ld_list: ld_list structure 3226 * 3227 * Issues an internal command (DCMD) to get the FW's controller PD 3228 * list structure. This information is mainly used to find out SYSTEM 3229 * supported by the FW. 3230 */ 3231 static int 3232 megasas_get_ld_list(struct megasas_instance *instance) 3233 { 3234 int ret = 0, ld_index = 0, ids = 0; 3235 struct megasas_cmd *cmd; 3236 struct megasas_dcmd_frame *dcmd; 3237 struct MR_LD_LIST *ci; 3238 dma_addr_t ci_h = 0; 3239 u32 ld_count; 3240 3241 cmd = megasas_get_cmd(instance); 3242 3243 if (!cmd) { 3244 printk(KERN_DEBUG "megasas_get_ld_list: Failed to get cmd\n"); 3245 return -ENOMEM; 3246 } 3247 3248 dcmd = &cmd->frame->dcmd; 3249 3250 ci = pci_alloc_consistent(instance->pdev, 3251 sizeof(struct MR_LD_LIST), 3252 &ci_h); 3253 3254 if (!ci) { 3255 printk(KERN_DEBUG "Failed to alloc mem in get_ld_list\n"); 3256 megasas_return_cmd(instance, cmd); 3257 return -ENOMEM; 3258 } 3259 3260 memset(ci, 0, sizeof(*ci)); 3261 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3262 3263 dcmd->cmd = MFI_CMD_DCMD; 3264 dcmd->cmd_status = 0xFF; 3265 dcmd->sge_count = 1; 3266 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); 3267 dcmd->timeout = 0; 3268 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_LD_LIST)); 3269 dcmd->opcode = cpu_to_le32(MR_DCMD_LD_GET_LIST); 3270 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h); 3271 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct MR_LD_LIST)); 3272 dcmd->pad_0 = 0; 3273 3274 if (!megasas_issue_polled(instance, cmd)) { 3275 ret = 0; 3276 } else { 3277 ret = -1; 3278 } 3279 3280 ld_count = le32_to_cpu(ci->ldCount); 3281 3282 /* the following function will get the instance PD LIST */ 3283 3284 if ((ret == 0) && (ld_count <= MAX_LOGICAL_DRIVES)) { 3285 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS); 3286 3287 for (ld_index = 0; ld_index < ld_count; ld_index++) { 3288 if (ci->ldList[ld_index].state != 0) { 3289 ids = ci->ldList[ld_index].ref.targetId; 3290 instance->ld_ids[ids] = 3291 ci->ldList[ld_index].ref.targetId; 3292 } 3293 } 3294 } 3295 3296 pci_free_consistent(instance->pdev, 3297 sizeof(struct MR_LD_LIST), 3298 ci, 3299 ci_h); 3300 3301 megasas_return_cmd(instance, cmd); 3302 return ret; 3303 } 3304 3305 /** 3306 * megasas_ld_list_query - Returns FW's ld_list structure 3307 * @instance: Adapter soft state 3308 * @ld_list: ld_list structure 3309 * 3310 * Issues an internal command (DCMD) to get the FW's controller PD 3311 * list structure. This information is mainly used to find out SYSTEM 3312 * supported by the FW. 3313 */ 3314 static int 3315 megasas_ld_list_query(struct megasas_instance *instance, u8 query_type) 3316 { 3317 int ret = 0, ld_index = 0, ids = 0; 3318 struct megasas_cmd *cmd; 3319 struct megasas_dcmd_frame *dcmd; 3320 struct MR_LD_TARGETID_LIST *ci; 3321 dma_addr_t ci_h = 0; 3322 u32 tgtid_count; 3323 3324 cmd = megasas_get_cmd(instance); 3325 3326 if (!cmd) { 3327 printk(KERN_WARNING 3328 "megasas:(megasas_ld_list_query): Failed to get cmd\n"); 3329 return -ENOMEM; 3330 } 3331 3332 dcmd = &cmd->frame->dcmd; 3333 3334 ci = pci_alloc_consistent(instance->pdev, 3335 sizeof(struct MR_LD_TARGETID_LIST), &ci_h); 3336 3337 if (!ci) { 3338 printk(KERN_WARNING 3339 "megasas: Failed to alloc mem for ld_list_query\n"); 3340 megasas_return_cmd(instance, cmd); 3341 return -ENOMEM; 3342 } 3343 3344 memset(ci, 0, sizeof(*ci)); 3345 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3346 3347 dcmd->mbox.b[0] = query_type; 3348 3349 dcmd->cmd = MFI_CMD_DCMD; 3350 dcmd->cmd_status = 0xFF; 3351 dcmd->sge_count = 1; 3352 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); 3353 dcmd->timeout = 0; 3354 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_LD_TARGETID_LIST)); 3355 dcmd->opcode = cpu_to_le32(MR_DCMD_LD_LIST_QUERY); 3356 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h); 3357 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct MR_LD_TARGETID_LIST)); 3358 dcmd->pad_0 = 0; 3359 3360 if (!megasas_issue_polled(instance, cmd) && !dcmd->cmd_status) { 3361 ret = 0; 3362 } else { 3363 /* On failure, call older LD list DCMD */ 3364 ret = 1; 3365 } 3366 3367 tgtid_count = le32_to_cpu(ci->count); 3368 3369 if ((ret == 0) && (tgtid_count <= (MAX_LOGICAL_DRIVES))) { 3370 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS); 3371 for (ld_index = 0; ld_index < tgtid_count; ld_index++) { 3372 ids = ci->targetId[ld_index]; 3373 instance->ld_ids[ids] = ci->targetId[ld_index]; 3374 } 3375 3376 } 3377 3378 pci_free_consistent(instance->pdev, sizeof(struct MR_LD_TARGETID_LIST), 3379 ci, ci_h); 3380 3381 megasas_return_cmd(instance, cmd); 3382 3383 return ret; 3384 } 3385 3386 /** 3387 * megasas_get_controller_info - Returns FW's controller structure 3388 * @instance: Adapter soft state 3389 * @ctrl_info: Controller information structure 3390 * 3391 * Issues an internal command (DCMD) to get the FW's controller structure. 3392 * This information is mainly used to find out the maximum IO transfer per 3393 * command supported by the FW. 3394 */ 3395 static int 3396 megasas_get_ctrl_info(struct megasas_instance *instance, 3397 struct megasas_ctrl_info *ctrl_info) 3398 { 3399 int ret = 0; 3400 struct megasas_cmd *cmd; 3401 struct megasas_dcmd_frame *dcmd; 3402 struct megasas_ctrl_info *ci; 3403 dma_addr_t ci_h = 0; 3404 3405 cmd = megasas_get_cmd(instance); 3406 3407 if (!cmd) { 3408 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n"); 3409 return -ENOMEM; 3410 } 3411 3412 dcmd = &cmd->frame->dcmd; 3413 3414 ci = pci_alloc_consistent(instance->pdev, 3415 sizeof(struct megasas_ctrl_info), &ci_h); 3416 3417 if (!ci) { 3418 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n"); 3419 megasas_return_cmd(instance, cmd); 3420 return -ENOMEM; 3421 } 3422 3423 memset(ci, 0, sizeof(*ci)); 3424 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3425 3426 dcmd->cmd = MFI_CMD_DCMD; 3427 dcmd->cmd_status = 0xFF; 3428 dcmd->sge_count = 1; 3429 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); 3430 dcmd->timeout = 0; 3431 dcmd->pad_0 = 0; 3432 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_ctrl_info)); 3433 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_GET_INFO); 3434 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h); 3435 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_ctrl_info)); 3436 3437 if (!megasas_issue_polled(instance, cmd)) { 3438 ret = 0; 3439 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info)); 3440 } else { 3441 ret = -1; 3442 } 3443 3444 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info), 3445 ci, ci_h); 3446 3447 megasas_return_cmd(instance, cmd); 3448 return ret; 3449 } 3450 3451 /** 3452 * megasas_issue_init_mfi - Initializes the FW 3453 * @instance: Adapter soft state 3454 * 3455 * Issues the INIT MFI cmd 3456 */ 3457 static int 3458 megasas_issue_init_mfi(struct megasas_instance *instance) 3459 { 3460 u32 context; 3461 3462 struct megasas_cmd *cmd; 3463 3464 struct megasas_init_frame *init_frame; 3465 struct megasas_init_queue_info *initq_info; 3466 dma_addr_t init_frame_h; 3467 dma_addr_t initq_info_h; 3468 3469 /* 3470 * Prepare a init frame. Note the init frame points to queue info 3471 * structure. Each frame has SGL allocated after first 64 bytes. For 3472 * this frame - since we don't need any SGL - we use SGL's space as 3473 * queue info structure 3474 * 3475 * We will not get a NULL command below. We just created the pool. 3476 */ 3477 cmd = megasas_get_cmd(instance); 3478 3479 init_frame = (struct megasas_init_frame *)cmd->frame; 3480 initq_info = (struct megasas_init_queue_info *) 3481 ((unsigned long)init_frame + 64); 3482 3483 init_frame_h = cmd->frame_phys_addr; 3484 initq_info_h = init_frame_h + 64; 3485 3486 context = init_frame->context; 3487 memset(init_frame, 0, MEGAMFI_FRAME_SIZE); 3488 memset(initq_info, 0, sizeof(struct megasas_init_queue_info)); 3489 init_frame->context = context; 3490 3491 initq_info->reply_queue_entries = cpu_to_le32(instance->max_fw_cmds + 1); 3492 initq_info->reply_queue_start_phys_addr_lo = cpu_to_le32(instance->reply_queue_h); 3493 3494 initq_info->producer_index_phys_addr_lo = cpu_to_le32(instance->producer_h); 3495 initq_info->consumer_index_phys_addr_lo = cpu_to_le32(instance->consumer_h); 3496 3497 init_frame->cmd = MFI_CMD_INIT; 3498 init_frame->cmd_status = 0xFF; 3499 init_frame->queue_info_new_phys_addr_lo = 3500 cpu_to_le32(lower_32_bits(initq_info_h)); 3501 init_frame->queue_info_new_phys_addr_hi = 3502 cpu_to_le32(upper_32_bits(initq_info_h)); 3503 3504 init_frame->data_xfer_len = cpu_to_le32(sizeof(struct megasas_init_queue_info)); 3505 3506 /* 3507 * disable the intr before firing the init frame to FW 3508 */ 3509 instance->instancet->disable_intr(instance); 3510 3511 /* 3512 * Issue the init frame in polled mode 3513 */ 3514 3515 if (megasas_issue_polled(instance, cmd)) { 3516 printk(KERN_ERR "megasas: Failed to init firmware\n"); 3517 megasas_return_cmd(instance, cmd); 3518 goto fail_fw_init; 3519 } 3520 3521 megasas_return_cmd(instance, cmd); 3522 3523 return 0; 3524 3525 fail_fw_init: 3526 return -EINVAL; 3527 } 3528 3529 static u32 3530 megasas_init_adapter_mfi(struct megasas_instance *instance) 3531 { 3532 struct megasas_register_set __iomem *reg_set; 3533 u32 context_sz; 3534 u32 reply_q_sz; 3535 3536 reg_set = instance->reg_set; 3537 3538 /* 3539 * Get various operational parameters from status register 3540 */ 3541 instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF; 3542 /* 3543 * Reduce the max supported cmds by 1. This is to ensure that the 3544 * reply_q_sz (1 more than the max cmd that driver may send) 3545 * does not exceed max cmds that the FW can support 3546 */ 3547 instance->max_fw_cmds = instance->max_fw_cmds-1; 3548 instance->max_mfi_cmds = instance->max_fw_cmds; 3549 instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >> 3550 0x10; 3551 /* 3552 * Create a pool of commands 3553 */ 3554 if (megasas_alloc_cmds(instance)) 3555 goto fail_alloc_cmds; 3556 3557 /* 3558 * Allocate memory for reply queue. Length of reply queue should 3559 * be _one_ more than the maximum commands handled by the firmware. 3560 * 3561 * Note: When FW completes commands, it places corresponding contex 3562 * values in this circular reply queue. This circular queue is a fairly 3563 * typical producer-consumer queue. FW is the producer (of completed 3564 * commands) and the driver is the consumer. 3565 */ 3566 context_sz = sizeof(u32); 3567 reply_q_sz = context_sz * (instance->max_fw_cmds + 1); 3568 3569 instance->reply_queue = pci_alloc_consistent(instance->pdev, 3570 reply_q_sz, 3571 &instance->reply_queue_h); 3572 3573 if (!instance->reply_queue) { 3574 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n"); 3575 goto fail_reply_queue; 3576 } 3577 3578 if (megasas_issue_init_mfi(instance)) 3579 goto fail_fw_init; 3580 3581 instance->fw_support_ieee = 0; 3582 instance->fw_support_ieee = 3583 (instance->instancet->read_fw_status_reg(reg_set) & 3584 0x04000000); 3585 3586 printk(KERN_NOTICE "megasas_init_mfi: fw_support_ieee=%d", 3587 instance->fw_support_ieee); 3588 3589 if (instance->fw_support_ieee) 3590 instance->flag_ieee = 1; 3591 3592 return 0; 3593 3594 fail_fw_init: 3595 3596 pci_free_consistent(instance->pdev, reply_q_sz, 3597 instance->reply_queue, instance->reply_queue_h); 3598 fail_reply_queue: 3599 megasas_free_cmds(instance); 3600 3601 fail_alloc_cmds: 3602 return 1; 3603 } 3604 3605 /** 3606 * megasas_init_fw - Initializes the FW 3607 * @instance: Adapter soft state 3608 * 3609 * This is the main function for initializing firmware 3610 */ 3611 3612 static int megasas_init_fw(struct megasas_instance *instance) 3613 { 3614 u32 max_sectors_1; 3615 u32 max_sectors_2; 3616 u32 tmp_sectors, msix_enable, scratch_pad_2; 3617 struct megasas_register_set __iomem *reg_set; 3618 struct megasas_ctrl_info *ctrl_info; 3619 unsigned long bar_list; 3620 int i, loop, fw_msix_count = 0; 3621 3622 /* Find first memory bar */ 3623 bar_list = pci_select_bars(instance->pdev, IORESOURCE_MEM); 3624 instance->bar = find_first_bit(&bar_list, sizeof(unsigned long)); 3625 instance->base_addr = pci_resource_start(instance->pdev, instance->bar); 3626 if (pci_request_selected_regions(instance->pdev, instance->bar, 3627 "megasas: LSI")) { 3628 printk(KERN_DEBUG "megasas: IO memory region busy!\n"); 3629 return -EBUSY; 3630 } 3631 3632 instance->reg_set = ioremap_nocache(instance->base_addr, 8192); 3633 3634 if (!instance->reg_set) { 3635 printk(KERN_DEBUG "megasas: Failed to map IO mem\n"); 3636 goto fail_ioremap; 3637 } 3638 3639 reg_set = instance->reg_set; 3640 3641 switch (instance->pdev->device) { 3642 case PCI_DEVICE_ID_LSI_FUSION: 3643 case PCI_DEVICE_ID_LSI_INVADER: 3644 case PCI_DEVICE_ID_LSI_FURY: 3645 instance->instancet = &megasas_instance_template_fusion; 3646 break; 3647 case PCI_DEVICE_ID_LSI_SAS1078R: 3648 case PCI_DEVICE_ID_LSI_SAS1078DE: 3649 instance->instancet = &megasas_instance_template_ppc; 3650 break; 3651 case PCI_DEVICE_ID_LSI_SAS1078GEN2: 3652 case PCI_DEVICE_ID_LSI_SAS0079GEN2: 3653 instance->instancet = &megasas_instance_template_gen2; 3654 break; 3655 case PCI_DEVICE_ID_LSI_SAS0073SKINNY: 3656 case PCI_DEVICE_ID_LSI_SAS0071SKINNY: 3657 instance->instancet = &megasas_instance_template_skinny; 3658 break; 3659 case PCI_DEVICE_ID_LSI_SAS1064R: 3660 case PCI_DEVICE_ID_DELL_PERC5: 3661 default: 3662 instance->instancet = &megasas_instance_template_xscale; 3663 break; 3664 } 3665 3666 if (megasas_transition_to_ready(instance, 0)) { 3667 atomic_set(&instance->fw_reset_no_pci_access, 1); 3668 instance->instancet->adp_reset 3669 (instance, instance->reg_set); 3670 atomic_set(&instance->fw_reset_no_pci_access, 0); 3671 dev_info(&instance->pdev->dev, 3672 "megasas: FW restarted successfully from %s!\n", 3673 __func__); 3674 3675 /*waitting for about 30 second before retry*/ 3676 ssleep(30); 3677 3678 if (megasas_transition_to_ready(instance, 0)) 3679 goto fail_ready_state; 3680 } 3681 3682 /* 3683 * MSI-X host index 0 is common for all adapter. 3684 * It is used for all MPT based Adapters. 3685 */ 3686 instance->reply_post_host_index_addr[0] = 3687 (u32 *)((u8 *)instance->reg_set + 3688 MPI2_REPLY_POST_HOST_INDEX_OFFSET); 3689 3690 /* Check if MSI-X is supported while in ready state */ 3691 msix_enable = (instance->instancet->read_fw_status_reg(reg_set) & 3692 0x4000000) >> 0x1a; 3693 if (msix_enable && !msix_disable) { 3694 scratch_pad_2 = readl 3695 (&instance->reg_set->outbound_scratch_pad_2); 3696 /* Check max MSI-X vectors */ 3697 if (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) { 3698 instance->msix_vectors = (scratch_pad_2 3699 & MR_MAX_REPLY_QUEUES_OFFSET) + 1; 3700 fw_msix_count = instance->msix_vectors; 3701 if (msix_vectors) 3702 instance->msix_vectors = 3703 min(msix_vectors, 3704 instance->msix_vectors); 3705 } else if ((instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) 3706 || (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { 3707 /* Invader/Fury supports more than 8 MSI-X */ 3708 instance->msix_vectors = ((scratch_pad_2 3709 & MR_MAX_REPLY_QUEUES_EXT_OFFSET) 3710 >> MR_MAX_REPLY_QUEUES_EXT_OFFSET_SHIFT) + 1; 3711 fw_msix_count = instance->msix_vectors; 3712 /* Save 1-15 reply post index address to local memory 3713 * Index 0 is already saved from reg offset 3714 * MPI2_REPLY_POST_HOST_INDEX_OFFSET 3715 */ 3716 for (loop = 1; loop < MR_MAX_MSIX_REG_ARRAY; loop++) { 3717 instance->reply_post_host_index_addr[loop] = 3718 (u32 *)((u8 *)instance->reg_set + 3719 MPI2_SUP_REPLY_POST_HOST_INDEX_OFFSET 3720 + (loop * 0x10)); 3721 } 3722 if (msix_vectors) 3723 instance->msix_vectors = min(msix_vectors, 3724 instance->msix_vectors); 3725 } else 3726 instance->msix_vectors = 1; 3727 /* Don't bother allocating more MSI-X vectors than cpus */ 3728 instance->msix_vectors = min(instance->msix_vectors, 3729 (unsigned int)num_online_cpus()); 3730 for (i = 0; i < instance->msix_vectors; i++) 3731 instance->msixentry[i].entry = i; 3732 i = pci_enable_msix(instance->pdev, instance->msixentry, 3733 instance->msix_vectors); 3734 if (i >= 0) { 3735 if (i) { 3736 if (!pci_enable_msix(instance->pdev, 3737 instance->msixentry, i)) 3738 instance->msix_vectors = i; 3739 else 3740 instance->msix_vectors = 0; 3741 } 3742 } else 3743 instance->msix_vectors = 0; 3744 3745 dev_info(&instance->pdev->dev, "[scsi%d]: FW supports" 3746 "<%d> MSIX vector,Online CPUs: <%d>," 3747 "Current MSIX <%d>\n", instance->host->host_no, 3748 fw_msix_count, (unsigned int)num_online_cpus(), 3749 instance->msix_vectors); 3750 } 3751 3752 /* Get operational params, sge flags, send init cmd to controller */ 3753 if (instance->instancet->init_adapter(instance)) 3754 goto fail_init_adapter; 3755 3756 printk(KERN_ERR "megasas: INIT adapter done\n"); 3757 3758 /** for passthrough 3759 * the following function will get the PD LIST. 3760 */ 3761 3762 memset(instance->pd_list, 0 , 3763 (MEGASAS_MAX_PD * sizeof(struct megasas_pd_list))); 3764 megasas_get_pd_list(instance); 3765 3766 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS); 3767 if (megasas_ld_list_query(instance, 3768 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST)) 3769 megasas_get_ld_list(instance); 3770 3771 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL); 3772 3773 /* 3774 * Compute the max allowed sectors per IO: The controller info has two 3775 * limits on max sectors. Driver should use the minimum of these two. 3776 * 3777 * 1 << stripe_sz_ops.min = max sectors per strip 3778 * 3779 * Note that older firmwares ( < FW ver 30) didn't report information 3780 * to calculate max_sectors_1. So the number ended up as zero always. 3781 */ 3782 tmp_sectors = 0; 3783 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) { 3784 3785 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) * 3786 le16_to_cpu(ctrl_info->max_strips_per_io); 3787 max_sectors_2 = le32_to_cpu(ctrl_info->max_request_size); 3788 3789 tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2); 3790 3791 /*Check whether controller is iMR or MR */ 3792 if (ctrl_info->memory_size) { 3793 instance->is_imr = 0; 3794 dev_info(&instance->pdev->dev, "Controller type: MR," 3795 "Memory size is: %dMB\n", 3796 le16_to_cpu(ctrl_info->memory_size)); 3797 } else { 3798 instance->is_imr = 1; 3799 dev_info(&instance->pdev->dev, 3800 "Controller type: iMR\n"); 3801 } 3802 /* OnOffProperties are converted into CPU arch*/ 3803 le32_to_cpus((u32 *)&ctrl_info->properties.OnOffProperties); 3804 instance->disableOnlineCtrlReset = 3805 ctrl_info->properties.OnOffProperties.disableOnlineCtrlReset; 3806 /* adapterOperations2 are converted into CPU arch*/ 3807 le32_to_cpus((u32 *)&ctrl_info->adapterOperations2); 3808 instance->UnevenSpanSupport = 3809 ctrl_info->adapterOperations2.supportUnevenSpans; 3810 if (instance->UnevenSpanSupport) { 3811 struct fusion_context *fusion = instance->ctrl_context; 3812 dev_info(&instance->pdev->dev, "FW supports: " 3813 "UnevenSpanSupport=%x\n", instance->UnevenSpanSupport); 3814 if (MR_ValidateMapInfo(instance)) 3815 fusion->fast_path_io = 1; 3816 else 3817 fusion->fast_path_io = 0; 3818 3819 } 3820 } 3821 instance->max_sectors_per_req = instance->max_num_sge * 3822 PAGE_SIZE / 512; 3823 if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors)) 3824 instance->max_sectors_per_req = tmp_sectors; 3825 3826 kfree(ctrl_info); 3827 3828 /* Check for valid throttlequeuedepth module parameter */ 3829 if (instance->is_imr) { 3830 if (throttlequeuedepth > (instance->max_fw_cmds - 3831 MEGASAS_SKINNY_INT_CMDS)) 3832 instance->throttlequeuedepth = 3833 MEGASAS_THROTTLE_QUEUE_DEPTH; 3834 else 3835 instance->throttlequeuedepth = throttlequeuedepth; 3836 } else { 3837 if (throttlequeuedepth > (instance->max_fw_cmds - 3838 MEGASAS_INT_CMDS)) 3839 instance->throttlequeuedepth = 3840 MEGASAS_THROTTLE_QUEUE_DEPTH; 3841 else 3842 instance->throttlequeuedepth = throttlequeuedepth; 3843 } 3844 3845 /* 3846 * Setup tasklet for cmd completion 3847 */ 3848 3849 tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet, 3850 (unsigned long)instance); 3851 3852 return 0; 3853 3854 fail_init_adapter: 3855 fail_ready_state: 3856 iounmap(instance->reg_set); 3857 3858 fail_ioremap: 3859 pci_release_selected_regions(instance->pdev, instance->bar); 3860 3861 return -EINVAL; 3862 } 3863 3864 /** 3865 * megasas_release_mfi - Reverses the FW initialization 3866 * @intance: Adapter soft state 3867 */ 3868 static void megasas_release_mfi(struct megasas_instance *instance) 3869 { 3870 u32 reply_q_sz = sizeof(u32) *(instance->max_mfi_cmds + 1); 3871 3872 if (instance->reply_queue) 3873 pci_free_consistent(instance->pdev, reply_q_sz, 3874 instance->reply_queue, instance->reply_queue_h); 3875 3876 megasas_free_cmds(instance); 3877 3878 iounmap(instance->reg_set); 3879 3880 pci_release_selected_regions(instance->pdev, instance->bar); 3881 } 3882 3883 /** 3884 * megasas_get_seq_num - Gets latest event sequence numbers 3885 * @instance: Adapter soft state 3886 * @eli: FW event log sequence numbers information 3887 * 3888 * FW maintains a log of all events in a non-volatile area. Upper layers would 3889 * usually find out the latest sequence number of the events, the seq number at 3890 * the boot etc. They would "read" all the events below the latest seq number 3891 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq 3892 * number), they would subsribe to AEN (asynchronous event notification) and 3893 * wait for the events to happen. 3894 */ 3895 static int 3896 megasas_get_seq_num(struct megasas_instance *instance, 3897 struct megasas_evt_log_info *eli) 3898 { 3899 struct megasas_cmd *cmd; 3900 struct megasas_dcmd_frame *dcmd; 3901 struct megasas_evt_log_info *el_info; 3902 dma_addr_t el_info_h = 0; 3903 3904 cmd = megasas_get_cmd(instance); 3905 3906 if (!cmd) { 3907 return -ENOMEM; 3908 } 3909 3910 dcmd = &cmd->frame->dcmd; 3911 el_info = pci_alloc_consistent(instance->pdev, 3912 sizeof(struct megasas_evt_log_info), 3913 &el_info_h); 3914 3915 if (!el_info) { 3916 megasas_return_cmd(instance, cmd); 3917 return -ENOMEM; 3918 } 3919 3920 memset(el_info, 0, sizeof(*el_info)); 3921 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3922 3923 dcmd->cmd = MFI_CMD_DCMD; 3924 dcmd->cmd_status = 0x0; 3925 dcmd->sge_count = 1; 3926 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); 3927 dcmd->timeout = 0; 3928 dcmd->pad_0 = 0; 3929 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_evt_log_info)); 3930 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_EVENT_GET_INFO); 3931 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(el_info_h); 3932 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_evt_log_info)); 3933 3934 megasas_issue_blocked_cmd(instance, cmd); 3935 3936 /* 3937 * Copy the data back into callers buffer 3938 */ 3939 eli->newest_seq_num = le32_to_cpu(el_info->newest_seq_num); 3940 eli->oldest_seq_num = le32_to_cpu(el_info->oldest_seq_num); 3941 eli->clear_seq_num = le32_to_cpu(el_info->clear_seq_num); 3942 eli->shutdown_seq_num = le32_to_cpu(el_info->shutdown_seq_num); 3943 eli->boot_seq_num = le32_to_cpu(el_info->boot_seq_num); 3944 3945 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info), 3946 el_info, el_info_h); 3947 3948 megasas_return_cmd(instance, cmd); 3949 3950 return 0; 3951 } 3952 3953 /** 3954 * megasas_register_aen - Registers for asynchronous event notification 3955 * @instance: Adapter soft state 3956 * @seq_num: The starting sequence number 3957 * @class_locale: Class of the event 3958 * 3959 * This function subscribes for AEN for events beyond the @seq_num. It requests 3960 * to be notified if and only if the event is of type @class_locale 3961 */ 3962 static int 3963 megasas_register_aen(struct megasas_instance *instance, u32 seq_num, 3964 u32 class_locale_word) 3965 { 3966 int ret_val; 3967 struct megasas_cmd *cmd; 3968 struct megasas_dcmd_frame *dcmd; 3969 union megasas_evt_class_locale curr_aen; 3970 union megasas_evt_class_locale prev_aen; 3971 3972 /* 3973 * If there an AEN pending already (aen_cmd), check if the 3974 * class_locale of that pending AEN is inclusive of the new 3975 * AEN request we currently have. If it is, then we don't have 3976 * to do anything. In other words, whichever events the current 3977 * AEN request is subscribing to, have already been subscribed 3978 * to. 3979 * 3980 * If the old_cmd is _not_ inclusive, then we have to abort 3981 * that command, form a class_locale that is superset of both 3982 * old and current and re-issue to the FW 3983 */ 3984 3985 curr_aen.word = class_locale_word; 3986 3987 if (instance->aen_cmd) { 3988 3989 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1]; 3990 prev_aen.members.locale = le16_to_cpu(prev_aen.members.locale); 3991 3992 /* 3993 * A class whose enum value is smaller is inclusive of all 3994 * higher values. If a PROGRESS (= -1) was previously 3995 * registered, then a new registration requests for higher 3996 * classes need not be sent to FW. They are automatically 3997 * included. 3998 * 3999 * Locale numbers don't have such hierarchy. They are bitmap 4000 * values 4001 */ 4002 if ((prev_aen.members.class <= curr_aen.members.class) && 4003 !((prev_aen.members.locale & curr_aen.members.locale) ^ 4004 curr_aen.members.locale)) { 4005 /* 4006 * Previously issued event registration includes 4007 * current request. Nothing to do. 4008 */ 4009 return 0; 4010 } else { 4011 curr_aen.members.locale |= prev_aen.members.locale; 4012 4013 if (prev_aen.members.class < curr_aen.members.class) 4014 curr_aen.members.class = prev_aen.members.class; 4015 4016 instance->aen_cmd->abort_aen = 1; 4017 ret_val = megasas_issue_blocked_abort_cmd(instance, 4018 instance-> 4019 aen_cmd); 4020 4021 if (ret_val) { 4022 printk(KERN_DEBUG "megasas: Failed to abort " 4023 "previous AEN command\n"); 4024 return ret_val; 4025 } 4026 } 4027 } 4028 4029 cmd = megasas_get_cmd(instance); 4030 4031 if (!cmd) 4032 return -ENOMEM; 4033 4034 dcmd = &cmd->frame->dcmd; 4035 4036 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail)); 4037 4038 /* 4039 * Prepare DCMD for aen registration 4040 */ 4041 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 4042 4043 dcmd->cmd = MFI_CMD_DCMD; 4044 dcmd->cmd_status = 0x0; 4045 dcmd->sge_count = 1; 4046 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); 4047 dcmd->timeout = 0; 4048 dcmd->pad_0 = 0; 4049 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_evt_detail)); 4050 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_EVENT_WAIT); 4051 dcmd->mbox.w[0] = cpu_to_le32(seq_num); 4052 instance->last_seq_num = seq_num; 4053 dcmd->mbox.w[1] = cpu_to_le32(curr_aen.word); 4054 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(instance->evt_detail_h); 4055 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_evt_detail)); 4056 4057 if (instance->aen_cmd != NULL) { 4058 megasas_return_cmd(instance, cmd); 4059 return 0; 4060 } 4061 4062 /* 4063 * Store reference to the cmd used to register for AEN. When an 4064 * application wants us to register for AEN, we have to abort this 4065 * cmd and re-register with a new EVENT LOCALE supplied by that app 4066 */ 4067 instance->aen_cmd = cmd; 4068 4069 /* 4070 * Issue the aen registration frame 4071 */ 4072 instance->instancet->issue_dcmd(instance, cmd); 4073 4074 return 0; 4075 } 4076 4077 /** 4078 * megasas_start_aen - Subscribes to AEN during driver load time 4079 * @instance: Adapter soft state 4080 */ 4081 static int megasas_start_aen(struct megasas_instance *instance) 4082 { 4083 struct megasas_evt_log_info eli; 4084 union megasas_evt_class_locale class_locale; 4085 4086 /* 4087 * Get the latest sequence number from FW 4088 */ 4089 memset(&eli, 0, sizeof(eli)); 4090 4091 if (megasas_get_seq_num(instance, &eli)) 4092 return -1; 4093 4094 /* 4095 * Register AEN with FW for latest sequence number plus 1 4096 */ 4097 class_locale.members.reserved = 0; 4098 class_locale.members.locale = MR_EVT_LOCALE_ALL; 4099 class_locale.members.class = MR_EVT_CLASS_DEBUG; 4100 4101 return megasas_register_aen(instance, 4102 eli.newest_seq_num + 1, 4103 class_locale.word); 4104 } 4105 4106 /** 4107 * megasas_io_attach - Attaches this driver to SCSI mid-layer 4108 * @instance: Adapter soft state 4109 */ 4110 static int megasas_io_attach(struct megasas_instance *instance) 4111 { 4112 struct Scsi_Host *host = instance->host; 4113 4114 /* 4115 * Export parameters required by SCSI mid-layer 4116 */ 4117 host->irq = instance->pdev->irq; 4118 host->unique_id = instance->unique_id; 4119 if (instance->is_imr) { 4120 host->can_queue = 4121 instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS; 4122 } else 4123 host->can_queue = 4124 instance->max_fw_cmds - MEGASAS_INT_CMDS; 4125 host->this_id = instance->init_id; 4126 host->sg_tablesize = instance->max_num_sge; 4127 4128 if (instance->fw_support_ieee) 4129 instance->max_sectors_per_req = MEGASAS_MAX_SECTORS_IEEE; 4130 4131 /* 4132 * Check if the module parameter value for max_sectors can be used 4133 */ 4134 if (max_sectors && max_sectors < instance->max_sectors_per_req) 4135 instance->max_sectors_per_req = max_sectors; 4136 else { 4137 if (max_sectors) { 4138 if (((instance->pdev->device == 4139 PCI_DEVICE_ID_LSI_SAS1078GEN2) || 4140 (instance->pdev->device == 4141 PCI_DEVICE_ID_LSI_SAS0079GEN2)) && 4142 (max_sectors <= MEGASAS_MAX_SECTORS)) { 4143 instance->max_sectors_per_req = max_sectors; 4144 } else { 4145 printk(KERN_INFO "megasas: max_sectors should be > 0" 4146 "and <= %d (or < 1MB for GEN2 controller)\n", 4147 instance->max_sectors_per_req); 4148 } 4149 } 4150 } 4151 4152 host->max_sectors = instance->max_sectors_per_req; 4153 host->cmd_per_lun = MEGASAS_DEFAULT_CMD_PER_LUN; 4154 host->max_channel = MEGASAS_MAX_CHANNELS - 1; 4155 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL; 4156 host->max_lun = MEGASAS_MAX_LUN; 4157 host->max_cmd_len = 16; 4158 4159 /* Fusion only supports host reset */ 4160 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 4161 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 4162 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { 4163 host->hostt->eh_device_reset_handler = NULL; 4164 host->hostt->eh_bus_reset_handler = NULL; 4165 } 4166 4167 /* 4168 * Notify the mid-layer about the new controller 4169 */ 4170 if (scsi_add_host(host, &instance->pdev->dev)) { 4171 printk(KERN_DEBUG "megasas: scsi_add_host failed\n"); 4172 return -ENODEV; 4173 } 4174 4175 /* 4176 * Trigger SCSI to scan our drives 4177 */ 4178 scsi_scan_host(host); 4179 return 0; 4180 } 4181 4182 static int 4183 megasas_set_dma_mask(struct pci_dev *pdev) 4184 { 4185 /* 4186 * All our contollers are capable of performing 64-bit DMA 4187 */ 4188 if (IS_DMA64) { 4189 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) != 0) { 4190 4191 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) 4192 goto fail_set_dma_mask; 4193 } 4194 } else { 4195 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) 4196 goto fail_set_dma_mask; 4197 } 4198 4199 return 0; 4200 4201 fail_set_dma_mask: 4202 return 1; 4203 } 4204 4205 /** 4206 * megasas_probe_one - PCI hotplug entry point 4207 * @pdev: PCI device structure 4208 * @id: PCI ids of supported hotplugged adapter 4209 */ 4210 static int megasas_probe_one(struct pci_dev *pdev, 4211 const struct pci_device_id *id) 4212 { 4213 int rval, pos, i, j; 4214 struct Scsi_Host *host; 4215 struct megasas_instance *instance; 4216 u16 control = 0; 4217 4218 /* Reset MSI-X in the kdump kernel */ 4219 if (reset_devices) { 4220 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); 4221 if (pos) { 4222 pci_read_config_word(pdev, pos + PCI_MSIX_FLAGS, 4223 &control); 4224 if (control & PCI_MSIX_FLAGS_ENABLE) { 4225 dev_info(&pdev->dev, "resetting MSI-X\n"); 4226 pci_write_config_word(pdev, 4227 pos + PCI_MSIX_FLAGS, 4228 control & 4229 ~PCI_MSIX_FLAGS_ENABLE); 4230 } 4231 } 4232 } 4233 4234 /* 4235 * Announce PCI information 4236 */ 4237 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ", 4238 pdev->vendor, pdev->device, pdev->subsystem_vendor, 4239 pdev->subsystem_device); 4240 4241 printk("bus %d:slot %d:func %d\n", 4242 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 4243 4244 /* 4245 * PCI prepping: enable device set bus mastering and dma mask 4246 */ 4247 rval = pci_enable_device_mem(pdev); 4248 4249 if (rval) { 4250 return rval; 4251 } 4252 4253 pci_set_master(pdev); 4254 4255 if (megasas_set_dma_mask(pdev)) 4256 goto fail_set_dma_mask; 4257 4258 host = scsi_host_alloc(&megasas_template, 4259 sizeof(struct megasas_instance)); 4260 4261 if (!host) { 4262 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n"); 4263 goto fail_alloc_instance; 4264 } 4265 4266 instance = (struct megasas_instance *)host->hostdata; 4267 memset(instance, 0, sizeof(*instance)); 4268 atomic_set( &instance->fw_reset_no_pci_access, 0 ); 4269 instance->pdev = pdev; 4270 4271 switch (instance->pdev->device) { 4272 case PCI_DEVICE_ID_LSI_FUSION: 4273 case PCI_DEVICE_ID_LSI_INVADER: 4274 case PCI_DEVICE_ID_LSI_FURY: 4275 { 4276 struct fusion_context *fusion; 4277 4278 instance->ctrl_context = 4279 kzalloc(sizeof(struct fusion_context), GFP_KERNEL); 4280 if (!instance->ctrl_context) { 4281 printk(KERN_DEBUG "megasas: Failed to allocate " 4282 "memory for Fusion context info\n"); 4283 goto fail_alloc_dma_buf; 4284 } 4285 fusion = instance->ctrl_context; 4286 INIT_LIST_HEAD(&fusion->cmd_pool); 4287 spin_lock_init(&fusion->cmd_pool_lock); 4288 } 4289 break; 4290 default: /* For all other supported controllers */ 4291 4292 instance->producer = 4293 pci_alloc_consistent(pdev, sizeof(u32), 4294 &instance->producer_h); 4295 instance->consumer = 4296 pci_alloc_consistent(pdev, sizeof(u32), 4297 &instance->consumer_h); 4298 4299 if (!instance->producer || !instance->consumer) { 4300 printk(KERN_DEBUG "megasas: Failed to allocate" 4301 "memory for producer, consumer\n"); 4302 goto fail_alloc_dma_buf; 4303 } 4304 4305 *instance->producer = 0; 4306 *instance->consumer = 0; 4307 break; 4308 } 4309 4310 megasas_poll_wait_aen = 0; 4311 instance->flag_ieee = 0; 4312 instance->ev = NULL; 4313 instance->issuepend_done = 1; 4314 instance->adprecovery = MEGASAS_HBA_OPERATIONAL; 4315 instance->is_imr = 0; 4316 megasas_poll_wait_aen = 0; 4317 4318 instance->evt_detail = pci_alloc_consistent(pdev, 4319 sizeof(struct 4320 megasas_evt_detail), 4321 &instance->evt_detail_h); 4322 4323 if (!instance->evt_detail) { 4324 printk(KERN_DEBUG "megasas: Failed to allocate memory for " 4325 "event detail structure\n"); 4326 goto fail_alloc_dma_buf; 4327 } 4328 4329 /* 4330 * Initialize locks and queues 4331 */ 4332 INIT_LIST_HEAD(&instance->cmd_pool); 4333 INIT_LIST_HEAD(&instance->internal_reset_pending_q); 4334 4335 atomic_set(&instance->fw_outstanding,0); 4336 4337 init_waitqueue_head(&instance->int_cmd_wait_q); 4338 init_waitqueue_head(&instance->abort_cmd_wait_q); 4339 4340 spin_lock_init(&instance->cmd_pool_lock); 4341 spin_lock_init(&instance->hba_lock); 4342 spin_lock_init(&instance->completion_lock); 4343 4344 mutex_init(&instance->aen_mutex); 4345 mutex_init(&instance->reset_mutex); 4346 4347 /* 4348 * Initialize PCI related and misc parameters 4349 */ 4350 instance->host = host; 4351 instance->unique_id = pdev->bus->number << 8 | pdev->devfn; 4352 instance->init_id = MEGASAS_DEFAULT_INIT_ID; 4353 4354 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 4355 (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) { 4356 instance->flag_ieee = 1; 4357 sema_init(&instance->ioctl_sem, MEGASAS_SKINNY_INT_CMDS); 4358 } else 4359 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS); 4360 4361 megasas_dbg_lvl = 0; 4362 instance->flag = 0; 4363 instance->unload = 1; 4364 instance->last_time = 0; 4365 instance->disableOnlineCtrlReset = 1; 4366 instance->UnevenSpanSupport = 0; 4367 4368 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 4369 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 4370 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) 4371 INIT_WORK(&instance->work_init, megasas_fusion_ocr_wq); 4372 else 4373 INIT_WORK(&instance->work_init, process_fw_state_change_wq); 4374 4375 /* 4376 * Initialize MFI Firmware 4377 */ 4378 if (megasas_init_fw(instance)) 4379 goto fail_init_mfi; 4380 4381 retry_irq_register: 4382 /* 4383 * Register IRQ 4384 */ 4385 if (instance->msix_vectors) { 4386 for (i = 0 ; i < instance->msix_vectors; i++) { 4387 instance->irq_context[i].instance = instance; 4388 instance->irq_context[i].MSIxIndex = i; 4389 if (request_irq(instance->msixentry[i].vector, 4390 instance->instancet->service_isr, 0, 4391 "megasas", 4392 &instance->irq_context[i])) { 4393 printk(KERN_DEBUG "megasas: Failed to " 4394 "register IRQ for vector %d.\n", i); 4395 for (j = 0 ; j < i ; j++) 4396 free_irq( 4397 instance->msixentry[j].vector, 4398 &instance->irq_context[j]); 4399 /* Retry irq register for IO_APIC */ 4400 instance->msix_vectors = 0; 4401 goto retry_irq_register; 4402 } 4403 } 4404 } else { 4405 instance->irq_context[0].instance = instance; 4406 instance->irq_context[0].MSIxIndex = 0; 4407 if (request_irq(pdev->irq, instance->instancet->service_isr, 4408 IRQF_SHARED, "megasas", 4409 &instance->irq_context[0])) { 4410 printk(KERN_DEBUG "megasas: Failed to register IRQ\n"); 4411 goto fail_irq; 4412 } 4413 } 4414 4415 instance->instancet->enable_intr(instance); 4416 4417 /* 4418 * Store instance in PCI softstate 4419 */ 4420 pci_set_drvdata(pdev, instance); 4421 4422 /* 4423 * Add this controller to megasas_mgmt_info structure so that it 4424 * can be exported to management applications 4425 */ 4426 megasas_mgmt_info.count++; 4427 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance; 4428 megasas_mgmt_info.max_index++; 4429 4430 /* 4431 * Register with SCSI mid-layer 4432 */ 4433 if (megasas_io_attach(instance)) 4434 goto fail_io_attach; 4435 4436 instance->unload = 0; 4437 4438 /* 4439 * Initiate AEN (Asynchronous Event Notification) 4440 */ 4441 if (megasas_start_aen(instance)) { 4442 printk(KERN_DEBUG "megasas: start aen failed\n"); 4443 goto fail_start_aen; 4444 } 4445 4446 return 0; 4447 4448 fail_start_aen: 4449 fail_io_attach: 4450 megasas_mgmt_info.count--; 4451 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL; 4452 megasas_mgmt_info.max_index--; 4453 4454 instance->instancet->disable_intr(instance); 4455 if (instance->msix_vectors) 4456 for (i = 0 ; i < instance->msix_vectors; i++) 4457 free_irq(instance->msixentry[i].vector, 4458 &instance->irq_context[i]); 4459 else 4460 free_irq(instance->pdev->irq, &instance->irq_context[0]); 4461 fail_irq: 4462 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 4463 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 4464 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) 4465 megasas_release_fusion(instance); 4466 else 4467 megasas_release_mfi(instance); 4468 fail_init_mfi: 4469 if (instance->msix_vectors) 4470 pci_disable_msix(instance->pdev); 4471 fail_alloc_dma_buf: 4472 if (instance->evt_detail) 4473 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail), 4474 instance->evt_detail, 4475 instance->evt_detail_h); 4476 4477 if (instance->producer) 4478 pci_free_consistent(pdev, sizeof(u32), instance->producer, 4479 instance->producer_h); 4480 if (instance->consumer) 4481 pci_free_consistent(pdev, sizeof(u32), instance->consumer, 4482 instance->consumer_h); 4483 scsi_host_put(host); 4484 4485 fail_alloc_instance: 4486 fail_set_dma_mask: 4487 pci_disable_device(pdev); 4488 4489 return -ENODEV; 4490 } 4491 4492 /** 4493 * megasas_flush_cache - Requests FW to flush all its caches 4494 * @instance: Adapter soft state 4495 */ 4496 static void megasas_flush_cache(struct megasas_instance *instance) 4497 { 4498 struct megasas_cmd *cmd; 4499 struct megasas_dcmd_frame *dcmd; 4500 4501 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) 4502 return; 4503 4504 cmd = megasas_get_cmd(instance); 4505 4506 if (!cmd) 4507 return; 4508 4509 dcmd = &cmd->frame->dcmd; 4510 4511 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 4512 4513 dcmd->cmd = MFI_CMD_DCMD; 4514 dcmd->cmd_status = 0x0; 4515 dcmd->sge_count = 0; 4516 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_NONE); 4517 dcmd->timeout = 0; 4518 dcmd->pad_0 = 0; 4519 dcmd->data_xfer_len = 0; 4520 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_CACHE_FLUSH); 4521 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE; 4522 4523 megasas_issue_blocked_cmd(instance, cmd); 4524 4525 megasas_return_cmd(instance, cmd); 4526 4527 return; 4528 } 4529 4530 /** 4531 * megasas_shutdown_controller - Instructs FW to shutdown the controller 4532 * @instance: Adapter soft state 4533 * @opcode: Shutdown/Hibernate 4534 */ 4535 static void megasas_shutdown_controller(struct megasas_instance *instance, 4536 u32 opcode) 4537 { 4538 struct megasas_cmd *cmd; 4539 struct megasas_dcmd_frame *dcmd; 4540 4541 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) 4542 return; 4543 4544 cmd = megasas_get_cmd(instance); 4545 4546 if (!cmd) 4547 return; 4548 4549 if (instance->aen_cmd) 4550 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd); 4551 if (instance->map_update_cmd) 4552 megasas_issue_blocked_abort_cmd(instance, 4553 instance->map_update_cmd); 4554 dcmd = &cmd->frame->dcmd; 4555 4556 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 4557 4558 dcmd->cmd = MFI_CMD_DCMD; 4559 dcmd->cmd_status = 0x0; 4560 dcmd->sge_count = 0; 4561 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_NONE); 4562 dcmd->timeout = 0; 4563 dcmd->pad_0 = 0; 4564 dcmd->data_xfer_len = 0; 4565 dcmd->opcode = cpu_to_le32(opcode); 4566 4567 megasas_issue_blocked_cmd(instance, cmd); 4568 4569 megasas_return_cmd(instance, cmd); 4570 4571 return; 4572 } 4573 4574 #ifdef CONFIG_PM 4575 /** 4576 * megasas_suspend - driver suspend entry point 4577 * @pdev: PCI device structure 4578 * @state: PCI power state to suspend routine 4579 */ 4580 static int 4581 megasas_suspend(struct pci_dev *pdev, pm_message_t state) 4582 { 4583 struct Scsi_Host *host; 4584 struct megasas_instance *instance; 4585 int i; 4586 4587 instance = pci_get_drvdata(pdev); 4588 host = instance->host; 4589 instance->unload = 1; 4590 4591 megasas_flush_cache(instance); 4592 megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN); 4593 4594 /* cancel the delayed work if this work still in queue */ 4595 if (instance->ev != NULL) { 4596 struct megasas_aen_event *ev = instance->ev; 4597 cancel_delayed_work_sync(&ev->hotplug_work); 4598 instance->ev = NULL; 4599 } 4600 4601 tasklet_kill(&instance->isr_tasklet); 4602 4603 pci_set_drvdata(instance->pdev, instance); 4604 instance->instancet->disable_intr(instance); 4605 4606 if (instance->msix_vectors) 4607 for (i = 0 ; i < instance->msix_vectors; i++) 4608 free_irq(instance->msixentry[i].vector, 4609 &instance->irq_context[i]); 4610 else 4611 free_irq(instance->pdev->irq, &instance->irq_context[0]); 4612 if (instance->msix_vectors) 4613 pci_disable_msix(instance->pdev); 4614 4615 pci_save_state(pdev); 4616 pci_disable_device(pdev); 4617 4618 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 4619 4620 return 0; 4621 } 4622 4623 /** 4624 * megasas_resume- driver resume entry point 4625 * @pdev: PCI device structure 4626 */ 4627 static int 4628 megasas_resume(struct pci_dev *pdev) 4629 { 4630 int rval, i, j; 4631 struct Scsi_Host *host; 4632 struct megasas_instance *instance; 4633 4634 instance = pci_get_drvdata(pdev); 4635 host = instance->host; 4636 pci_set_power_state(pdev, PCI_D0); 4637 pci_enable_wake(pdev, PCI_D0, 0); 4638 pci_restore_state(pdev); 4639 4640 /* 4641 * PCI prepping: enable device set bus mastering and dma mask 4642 */ 4643 rval = pci_enable_device_mem(pdev); 4644 4645 if (rval) { 4646 printk(KERN_ERR "megasas: Enable device failed\n"); 4647 return rval; 4648 } 4649 4650 pci_set_master(pdev); 4651 4652 if (megasas_set_dma_mask(pdev)) 4653 goto fail_set_dma_mask; 4654 4655 /* 4656 * Initialize MFI Firmware 4657 */ 4658 4659 atomic_set(&instance->fw_outstanding, 0); 4660 4661 /* 4662 * We expect the FW state to be READY 4663 */ 4664 if (megasas_transition_to_ready(instance, 0)) 4665 goto fail_ready_state; 4666 4667 /* Now re-enable MSI-X */ 4668 if (instance->msix_vectors) 4669 pci_enable_msix(instance->pdev, instance->msixentry, 4670 instance->msix_vectors); 4671 4672 switch (instance->pdev->device) { 4673 case PCI_DEVICE_ID_LSI_FUSION: 4674 case PCI_DEVICE_ID_LSI_INVADER: 4675 case PCI_DEVICE_ID_LSI_FURY: 4676 { 4677 megasas_reset_reply_desc(instance); 4678 if (megasas_ioc_init_fusion(instance)) { 4679 megasas_free_cmds(instance); 4680 megasas_free_cmds_fusion(instance); 4681 goto fail_init_mfi; 4682 } 4683 if (!megasas_get_map_info(instance)) 4684 megasas_sync_map_info(instance); 4685 } 4686 break; 4687 default: 4688 *instance->producer = 0; 4689 *instance->consumer = 0; 4690 if (megasas_issue_init_mfi(instance)) 4691 goto fail_init_mfi; 4692 break; 4693 } 4694 4695 tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet, 4696 (unsigned long)instance); 4697 4698 /* 4699 * Register IRQ 4700 */ 4701 if (instance->msix_vectors) { 4702 for (i = 0 ; i < instance->msix_vectors; i++) { 4703 instance->irq_context[i].instance = instance; 4704 instance->irq_context[i].MSIxIndex = i; 4705 if (request_irq(instance->msixentry[i].vector, 4706 instance->instancet->service_isr, 0, 4707 "megasas", 4708 &instance->irq_context[i])) { 4709 printk(KERN_DEBUG "megasas: Failed to " 4710 "register IRQ for vector %d.\n", i); 4711 for (j = 0 ; j < i ; j++) 4712 free_irq( 4713 instance->msixentry[j].vector, 4714 &instance->irq_context[j]); 4715 goto fail_irq; 4716 } 4717 } 4718 } else { 4719 instance->irq_context[0].instance = instance; 4720 instance->irq_context[0].MSIxIndex = 0; 4721 if (request_irq(pdev->irq, instance->instancet->service_isr, 4722 IRQF_SHARED, "megasas", 4723 &instance->irq_context[0])) { 4724 printk(KERN_DEBUG "megasas: Failed to register IRQ\n"); 4725 goto fail_irq; 4726 } 4727 } 4728 4729 instance->instancet->enable_intr(instance); 4730 instance->unload = 0; 4731 4732 /* 4733 * Initiate AEN (Asynchronous Event Notification) 4734 */ 4735 if (megasas_start_aen(instance)) 4736 printk(KERN_ERR "megasas: Start AEN failed\n"); 4737 4738 return 0; 4739 4740 fail_irq: 4741 fail_init_mfi: 4742 if (instance->evt_detail) 4743 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail), 4744 instance->evt_detail, 4745 instance->evt_detail_h); 4746 4747 if (instance->producer) 4748 pci_free_consistent(pdev, sizeof(u32), instance->producer, 4749 instance->producer_h); 4750 if (instance->consumer) 4751 pci_free_consistent(pdev, sizeof(u32), instance->consumer, 4752 instance->consumer_h); 4753 scsi_host_put(host); 4754 4755 fail_set_dma_mask: 4756 fail_ready_state: 4757 4758 pci_disable_device(pdev); 4759 4760 return -ENODEV; 4761 } 4762 #else 4763 #define megasas_suspend NULL 4764 #define megasas_resume NULL 4765 #endif 4766 4767 /** 4768 * megasas_detach_one - PCI hot"un"plug entry point 4769 * @pdev: PCI device structure 4770 */ 4771 static void megasas_detach_one(struct pci_dev *pdev) 4772 { 4773 int i; 4774 struct Scsi_Host *host; 4775 struct megasas_instance *instance; 4776 struct fusion_context *fusion; 4777 4778 instance = pci_get_drvdata(pdev); 4779 instance->unload = 1; 4780 host = instance->host; 4781 fusion = instance->ctrl_context; 4782 4783 scsi_remove_host(instance->host); 4784 megasas_flush_cache(instance); 4785 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN); 4786 4787 /* cancel the delayed work if this work still in queue*/ 4788 if (instance->ev != NULL) { 4789 struct megasas_aen_event *ev = instance->ev; 4790 cancel_delayed_work_sync(&ev->hotplug_work); 4791 instance->ev = NULL; 4792 } 4793 4794 tasklet_kill(&instance->isr_tasklet); 4795 4796 /* 4797 * Take the instance off the instance array. Note that we will not 4798 * decrement the max_index. We let this array be sparse array 4799 */ 4800 for (i = 0; i < megasas_mgmt_info.max_index; i++) { 4801 if (megasas_mgmt_info.instance[i] == instance) { 4802 megasas_mgmt_info.count--; 4803 megasas_mgmt_info.instance[i] = NULL; 4804 4805 break; 4806 } 4807 } 4808 4809 instance->instancet->disable_intr(instance); 4810 4811 if (instance->msix_vectors) 4812 for (i = 0 ; i < instance->msix_vectors; i++) 4813 free_irq(instance->msixentry[i].vector, 4814 &instance->irq_context[i]); 4815 else 4816 free_irq(instance->pdev->irq, &instance->irq_context[0]); 4817 if (instance->msix_vectors) 4818 pci_disable_msix(instance->pdev); 4819 4820 switch (instance->pdev->device) { 4821 case PCI_DEVICE_ID_LSI_FUSION: 4822 case PCI_DEVICE_ID_LSI_INVADER: 4823 case PCI_DEVICE_ID_LSI_FURY: 4824 megasas_release_fusion(instance); 4825 for (i = 0; i < 2 ; i++) 4826 if (fusion->ld_map[i]) 4827 dma_free_coherent(&instance->pdev->dev, 4828 fusion->map_sz, 4829 fusion->ld_map[i], 4830 fusion-> 4831 ld_map_phys[i]); 4832 kfree(instance->ctrl_context); 4833 break; 4834 default: 4835 megasas_release_mfi(instance); 4836 pci_free_consistent(pdev, sizeof(u32), 4837 instance->producer, 4838 instance->producer_h); 4839 pci_free_consistent(pdev, sizeof(u32), 4840 instance->consumer, 4841 instance->consumer_h); 4842 break; 4843 } 4844 4845 if (instance->evt_detail) 4846 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail), 4847 instance->evt_detail, instance->evt_detail_h); 4848 scsi_host_put(host); 4849 4850 pci_disable_device(pdev); 4851 4852 return; 4853 } 4854 4855 /** 4856 * megasas_shutdown - Shutdown entry point 4857 * @device: Generic device structure 4858 */ 4859 static void megasas_shutdown(struct pci_dev *pdev) 4860 { 4861 int i; 4862 struct megasas_instance *instance = pci_get_drvdata(pdev); 4863 4864 instance->unload = 1; 4865 megasas_flush_cache(instance); 4866 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN); 4867 instance->instancet->disable_intr(instance); 4868 if (instance->msix_vectors) 4869 for (i = 0 ; i < instance->msix_vectors; i++) 4870 free_irq(instance->msixentry[i].vector, 4871 &instance->irq_context[i]); 4872 else 4873 free_irq(instance->pdev->irq, &instance->irq_context[0]); 4874 if (instance->msix_vectors) 4875 pci_disable_msix(instance->pdev); 4876 } 4877 4878 /** 4879 * megasas_mgmt_open - char node "open" entry point 4880 */ 4881 static int megasas_mgmt_open(struct inode *inode, struct file *filep) 4882 { 4883 /* 4884 * Allow only those users with admin rights 4885 */ 4886 if (!capable(CAP_SYS_ADMIN)) 4887 return -EACCES; 4888 4889 return 0; 4890 } 4891 4892 /** 4893 * megasas_mgmt_fasync - Async notifier registration from applications 4894 * 4895 * This function adds the calling process to a driver global queue. When an 4896 * event occurs, SIGIO will be sent to all processes in this queue. 4897 */ 4898 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode) 4899 { 4900 int rc; 4901 4902 mutex_lock(&megasas_async_queue_mutex); 4903 4904 rc = fasync_helper(fd, filep, mode, &megasas_async_queue); 4905 4906 mutex_unlock(&megasas_async_queue_mutex); 4907 4908 if (rc >= 0) { 4909 /* For sanity check when we get ioctl */ 4910 filep->private_data = filep; 4911 return 0; 4912 } 4913 4914 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc); 4915 4916 return rc; 4917 } 4918 4919 /** 4920 * megasas_mgmt_poll - char node "poll" entry point 4921 * */ 4922 static unsigned int megasas_mgmt_poll(struct file *file, poll_table *wait) 4923 { 4924 unsigned int mask; 4925 unsigned long flags; 4926 poll_wait(file, &megasas_poll_wait, wait); 4927 spin_lock_irqsave(&poll_aen_lock, flags); 4928 if (megasas_poll_wait_aen) 4929 mask = (POLLIN | POLLRDNORM); 4930 else 4931 mask = 0; 4932 spin_unlock_irqrestore(&poll_aen_lock, flags); 4933 return mask; 4934 } 4935 4936 /** 4937 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW 4938 * @instance: Adapter soft state 4939 * @argp: User's ioctl packet 4940 */ 4941 static int 4942 megasas_mgmt_fw_ioctl(struct megasas_instance *instance, 4943 struct megasas_iocpacket __user * user_ioc, 4944 struct megasas_iocpacket *ioc) 4945 { 4946 struct megasas_sge32 *kern_sge32; 4947 struct megasas_cmd *cmd; 4948 void *kbuff_arr[MAX_IOCTL_SGE]; 4949 dma_addr_t buf_handle = 0; 4950 int error = 0, i; 4951 void *sense = NULL; 4952 dma_addr_t sense_handle; 4953 unsigned long *sense_ptr; 4954 4955 memset(kbuff_arr, 0, sizeof(kbuff_arr)); 4956 4957 if (ioc->sge_count > MAX_IOCTL_SGE) { 4958 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n", 4959 ioc->sge_count, MAX_IOCTL_SGE); 4960 return -EINVAL; 4961 } 4962 4963 cmd = megasas_get_cmd(instance); 4964 if (!cmd) { 4965 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n"); 4966 return -ENOMEM; 4967 } 4968 4969 /* 4970 * User's IOCTL packet has 2 frames (maximum). Copy those two 4971 * frames into our cmd's frames. cmd->frame's context will get 4972 * overwritten when we copy from user's frames. So set that value 4973 * alone separately 4974 */ 4975 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE); 4976 cmd->frame->hdr.context = cpu_to_le32(cmd->index); 4977 cmd->frame->hdr.pad_0 = 0; 4978 cmd->frame->hdr.flags &= cpu_to_le16(~(MFI_FRAME_IEEE | 4979 MFI_FRAME_SGL64 | 4980 MFI_FRAME_SENSE64)); 4981 4982 /* 4983 * The management interface between applications and the fw uses 4984 * MFI frames. E.g, RAID configuration changes, LD property changes 4985 * etc are accomplishes through different kinds of MFI frames. The 4986 * driver needs to care only about substituting user buffers with 4987 * kernel buffers in SGLs. The location of SGL is embedded in the 4988 * struct iocpacket itself. 4989 */ 4990 kern_sge32 = (struct megasas_sge32 *) 4991 ((unsigned long)cmd->frame + ioc->sgl_off); 4992 4993 /* 4994 * For each user buffer, create a mirror buffer and copy in 4995 */ 4996 for (i = 0; i < ioc->sge_count; i++) { 4997 if (!ioc->sgl[i].iov_len) 4998 continue; 4999 5000 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev, 5001 ioc->sgl[i].iov_len, 5002 &buf_handle, GFP_KERNEL); 5003 if (!kbuff_arr[i]) { 5004 printk(KERN_DEBUG "megasas: Failed to alloc " 5005 "kernel SGL buffer for IOCTL \n"); 5006 error = -ENOMEM; 5007 goto out; 5008 } 5009 5010 /* 5011 * We don't change the dma_coherent_mask, so 5012 * pci_alloc_consistent only returns 32bit addresses 5013 */ 5014 kern_sge32[i].phys_addr = cpu_to_le32(buf_handle); 5015 kern_sge32[i].length = cpu_to_le32(ioc->sgl[i].iov_len); 5016 5017 /* 5018 * We created a kernel buffer corresponding to the 5019 * user buffer. Now copy in from the user buffer 5020 */ 5021 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base, 5022 (u32) (ioc->sgl[i].iov_len))) { 5023 error = -EFAULT; 5024 goto out; 5025 } 5026 } 5027 5028 if (ioc->sense_len) { 5029 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len, 5030 &sense_handle, GFP_KERNEL); 5031 if (!sense) { 5032 error = -ENOMEM; 5033 goto out; 5034 } 5035 5036 sense_ptr = 5037 (unsigned long *) ((unsigned long)cmd->frame + ioc->sense_off); 5038 *sense_ptr = cpu_to_le32(sense_handle); 5039 } 5040 5041 /* 5042 * Set the sync_cmd flag so that the ISR knows not to complete this 5043 * cmd to the SCSI mid-layer 5044 */ 5045 cmd->sync_cmd = 1; 5046 megasas_issue_blocked_cmd(instance, cmd); 5047 cmd->sync_cmd = 0; 5048 5049 /* 5050 * copy out the kernel buffers to user buffers 5051 */ 5052 for (i = 0; i < ioc->sge_count; i++) { 5053 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i], 5054 ioc->sgl[i].iov_len)) { 5055 error = -EFAULT; 5056 goto out; 5057 } 5058 } 5059 5060 /* 5061 * copy out the sense 5062 */ 5063 if (ioc->sense_len) { 5064 /* 5065 * sense_ptr points to the location that has the user 5066 * sense buffer address 5067 */ 5068 sense_ptr = (unsigned long *) ((unsigned long)ioc->frame.raw + 5069 ioc->sense_off); 5070 5071 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)), 5072 sense, ioc->sense_len)) { 5073 printk(KERN_ERR "megasas: Failed to copy out to user " 5074 "sense data\n"); 5075 error = -EFAULT; 5076 goto out; 5077 } 5078 } 5079 5080 /* 5081 * copy the status codes returned by the fw 5082 */ 5083 if (copy_to_user(&user_ioc->frame.hdr.cmd_status, 5084 &cmd->frame->hdr.cmd_status, sizeof(u8))) { 5085 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n"); 5086 error = -EFAULT; 5087 } 5088 5089 out: 5090 if (sense) { 5091 dma_free_coherent(&instance->pdev->dev, ioc->sense_len, 5092 sense, sense_handle); 5093 } 5094 5095 for (i = 0; i < ioc->sge_count; i++) { 5096 if (kbuff_arr[i]) 5097 dma_free_coherent(&instance->pdev->dev, 5098 le32_to_cpu(kern_sge32[i].length), 5099 kbuff_arr[i], 5100 le32_to_cpu(kern_sge32[i].phys_addr)); 5101 } 5102 5103 megasas_return_cmd(instance, cmd); 5104 return error; 5105 } 5106 5107 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg) 5108 { 5109 struct megasas_iocpacket __user *user_ioc = 5110 (struct megasas_iocpacket __user *)arg; 5111 struct megasas_iocpacket *ioc; 5112 struct megasas_instance *instance; 5113 int error; 5114 int i; 5115 unsigned long flags; 5116 u32 wait_time = MEGASAS_RESET_WAIT_TIME; 5117 5118 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL); 5119 if (!ioc) 5120 return -ENOMEM; 5121 5122 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) { 5123 error = -EFAULT; 5124 goto out_kfree_ioc; 5125 } 5126 5127 instance = megasas_lookup_instance(ioc->host_no); 5128 if (!instance) { 5129 error = -ENODEV; 5130 goto out_kfree_ioc; 5131 } 5132 5133 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { 5134 printk(KERN_ERR "Controller in crit error\n"); 5135 error = -ENODEV; 5136 goto out_kfree_ioc; 5137 } 5138 5139 if (instance->unload == 1) { 5140 error = -ENODEV; 5141 goto out_kfree_ioc; 5142 } 5143 5144 /* 5145 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds 5146 */ 5147 if (down_interruptible(&instance->ioctl_sem)) { 5148 error = -ERESTARTSYS; 5149 goto out_kfree_ioc; 5150 } 5151 5152 for (i = 0; i < wait_time; i++) { 5153 5154 spin_lock_irqsave(&instance->hba_lock, flags); 5155 if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) { 5156 spin_unlock_irqrestore(&instance->hba_lock, flags); 5157 break; 5158 } 5159 spin_unlock_irqrestore(&instance->hba_lock, flags); 5160 5161 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { 5162 printk(KERN_NOTICE "megasas: waiting" 5163 "for controller reset to finish\n"); 5164 } 5165 5166 msleep(1000); 5167 } 5168 5169 spin_lock_irqsave(&instance->hba_lock, flags); 5170 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { 5171 spin_unlock_irqrestore(&instance->hba_lock, flags); 5172 5173 printk(KERN_ERR "megaraid_sas: timed out while" 5174 "waiting for HBA to recover\n"); 5175 error = -ENODEV; 5176 goto out_up; 5177 } 5178 spin_unlock_irqrestore(&instance->hba_lock, flags); 5179 5180 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc); 5181 out_up: 5182 up(&instance->ioctl_sem); 5183 5184 out_kfree_ioc: 5185 kfree(ioc); 5186 return error; 5187 } 5188 5189 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg) 5190 { 5191 struct megasas_instance *instance; 5192 struct megasas_aen aen; 5193 int error; 5194 int i; 5195 unsigned long flags; 5196 u32 wait_time = MEGASAS_RESET_WAIT_TIME; 5197 5198 if (file->private_data != file) { 5199 printk(KERN_DEBUG "megasas: fasync_helper was not " 5200 "called first\n"); 5201 return -EINVAL; 5202 } 5203 5204 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen))) 5205 return -EFAULT; 5206 5207 instance = megasas_lookup_instance(aen.host_no); 5208 5209 if (!instance) 5210 return -ENODEV; 5211 5212 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { 5213 return -ENODEV; 5214 } 5215 5216 if (instance->unload == 1) { 5217 return -ENODEV; 5218 } 5219 5220 for (i = 0; i < wait_time; i++) { 5221 5222 spin_lock_irqsave(&instance->hba_lock, flags); 5223 if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) { 5224 spin_unlock_irqrestore(&instance->hba_lock, 5225 flags); 5226 break; 5227 } 5228 5229 spin_unlock_irqrestore(&instance->hba_lock, flags); 5230 5231 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { 5232 printk(KERN_NOTICE "megasas: waiting for" 5233 "controller reset to finish\n"); 5234 } 5235 5236 msleep(1000); 5237 } 5238 5239 spin_lock_irqsave(&instance->hba_lock, flags); 5240 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { 5241 spin_unlock_irqrestore(&instance->hba_lock, flags); 5242 printk(KERN_ERR "megaraid_sas: timed out while waiting" 5243 "for HBA to recover.\n"); 5244 return -ENODEV; 5245 } 5246 spin_unlock_irqrestore(&instance->hba_lock, flags); 5247 5248 mutex_lock(&instance->aen_mutex); 5249 error = megasas_register_aen(instance, aen.seq_num, 5250 aen.class_locale_word); 5251 mutex_unlock(&instance->aen_mutex); 5252 return error; 5253 } 5254 5255 /** 5256 * megasas_mgmt_ioctl - char node ioctl entry point 5257 */ 5258 static long 5259 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5260 { 5261 switch (cmd) { 5262 case MEGASAS_IOC_FIRMWARE: 5263 return megasas_mgmt_ioctl_fw(file, arg); 5264 5265 case MEGASAS_IOC_GET_AEN: 5266 return megasas_mgmt_ioctl_aen(file, arg); 5267 } 5268 5269 return -ENOTTY; 5270 } 5271 5272 #ifdef CONFIG_COMPAT 5273 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg) 5274 { 5275 struct compat_megasas_iocpacket __user *cioc = 5276 (struct compat_megasas_iocpacket __user *)arg; 5277 struct megasas_iocpacket __user *ioc = 5278 compat_alloc_user_space(sizeof(struct megasas_iocpacket)); 5279 int i; 5280 int error = 0; 5281 compat_uptr_t ptr; 5282 5283 if (clear_user(ioc, sizeof(*ioc))) 5284 return -EFAULT; 5285 5286 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) || 5287 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) || 5288 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) || 5289 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) || 5290 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) || 5291 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32))) 5292 return -EFAULT; 5293 5294 /* 5295 * The sense_ptr is used in megasas_mgmt_fw_ioctl only when 5296 * sense_len is not null, so prepare the 64bit value under 5297 * the same condition. 5298 */ 5299 if (ioc->sense_len) { 5300 void __user **sense_ioc_ptr = 5301 (void __user **)(ioc->frame.raw + ioc->sense_off); 5302 compat_uptr_t *sense_cioc_ptr = 5303 (compat_uptr_t *)(cioc->frame.raw + cioc->sense_off); 5304 if (get_user(ptr, sense_cioc_ptr) || 5305 put_user(compat_ptr(ptr), sense_ioc_ptr)) 5306 return -EFAULT; 5307 } 5308 5309 for (i = 0; i < MAX_IOCTL_SGE; i++) { 5310 if (get_user(ptr, &cioc->sgl[i].iov_base) || 5311 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) || 5312 copy_in_user(&ioc->sgl[i].iov_len, 5313 &cioc->sgl[i].iov_len, sizeof(compat_size_t))) 5314 return -EFAULT; 5315 } 5316 5317 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc); 5318 5319 if (copy_in_user(&cioc->frame.hdr.cmd_status, 5320 &ioc->frame.hdr.cmd_status, sizeof(u8))) { 5321 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n"); 5322 return -EFAULT; 5323 } 5324 return error; 5325 } 5326 5327 static long 5328 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd, 5329 unsigned long arg) 5330 { 5331 switch (cmd) { 5332 case MEGASAS_IOC_FIRMWARE32: 5333 return megasas_mgmt_compat_ioctl_fw(file, arg); 5334 case MEGASAS_IOC_GET_AEN: 5335 return megasas_mgmt_ioctl_aen(file, arg); 5336 } 5337 5338 return -ENOTTY; 5339 } 5340 #endif 5341 5342 /* 5343 * File operations structure for management interface 5344 */ 5345 static const struct file_operations megasas_mgmt_fops = { 5346 .owner = THIS_MODULE, 5347 .open = megasas_mgmt_open, 5348 .fasync = megasas_mgmt_fasync, 5349 .unlocked_ioctl = megasas_mgmt_ioctl, 5350 .poll = megasas_mgmt_poll, 5351 #ifdef CONFIG_COMPAT 5352 .compat_ioctl = megasas_mgmt_compat_ioctl, 5353 #endif 5354 .llseek = noop_llseek, 5355 }; 5356 5357 /* 5358 * PCI hotplug support registration structure 5359 */ 5360 static struct pci_driver megasas_pci_driver = { 5361 5362 .name = "megaraid_sas", 5363 .id_table = megasas_pci_table, 5364 .probe = megasas_probe_one, 5365 .remove = megasas_detach_one, 5366 .suspend = megasas_suspend, 5367 .resume = megasas_resume, 5368 .shutdown = megasas_shutdown, 5369 }; 5370 5371 /* 5372 * Sysfs driver attributes 5373 */ 5374 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf) 5375 { 5376 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n", 5377 MEGASAS_VERSION); 5378 } 5379 5380 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL); 5381 5382 static ssize_t 5383 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf) 5384 { 5385 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n", 5386 MEGASAS_RELDATE); 5387 } 5388 5389 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date, 5390 NULL); 5391 5392 static ssize_t 5393 megasas_sysfs_show_support_poll_for_event(struct device_driver *dd, char *buf) 5394 { 5395 return sprintf(buf, "%u\n", support_poll_for_event); 5396 } 5397 5398 static DRIVER_ATTR(support_poll_for_event, S_IRUGO, 5399 megasas_sysfs_show_support_poll_for_event, NULL); 5400 5401 static ssize_t 5402 megasas_sysfs_show_support_device_change(struct device_driver *dd, char *buf) 5403 { 5404 return sprintf(buf, "%u\n", support_device_change); 5405 } 5406 5407 static DRIVER_ATTR(support_device_change, S_IRUGO, 5408 megasas_sysfs_show_support_device_change, NULL); 5409 5410 static ssize_t 5411 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf) 5412 { 5413 return sprintf(buf, "%u\n", megasas_dbg_lvl); 5414 } 5415 5416 static ssize_t 5417 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count) 5418 { 5419 int retval = count; 5420 if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){ 5421 printk(KERN_ERR "megasas: could not set dbg_lvl\n"); 5422 retval = -EINVAL; 5423 } 5424 return retval; 5425 } 5426 5427 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUSR, megasas_sysfs_show_dbg_lvl, 5428 megasas_sysfs_set_dbg_lvl); 5429 5430 static void 5431 megasas_aen_polling(struct work_struct *work) 5432 { 5433 struct megasas_aen_event *ev = 5434 container_of(work, struct megasas_aen_event, hotplug_work.work); 5435 struct megasas_instance *instance = ev->instance; 5436 union megasas_evt_class_locale class_locale; 5437 struct Scsi_Host *host; 5438 struct scsi_device *sdev1; 5439 u16 pd_index = 0; 5440 u16 ld_index = 0; 5441 int i, j, doscan = 0; 5442 u32 seq_num; 5443 int error; 5444 5445 if (!instance) { 5446 printk(KERN_ERR "invalid instance!\n"); 5447 kfree(ev); 5448 return; 5449 } 5450 instance->ev = NULL; 5451 host = instance->host; 5452 if (instance->evt_detail) { 5453 5454 switch (le32_to_cpu(instance->evt_detail->code)) { 5455 case MR_EVT_PD_INSERTED: 5456 if (megasas_get_pd_list(instance) == 0) { 5457 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) { 5458 for (j = 0; 5459 j < MEGASAS_MAX_DEV_PER_CHANNEL; 5460 j++) { 5461 5462 pd_index = 5463 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5464 5465 sdev1 = 5466 scsi_device_lookup(host, i, j, 0); 5467 5468 if (instance->pd_list[pd_index].driveState 5469 == MR_PD_STATE_SYSTEM) { 5470 if (!sdev1) { 5471 scsi_add_device(host, i, j, 0); 5472 } 5473 5474 if (sdev1) 5475 scsi_device_put(sdev1); 5476 } 5477 } 5478 } 5479 } 5480 doscan = 0; 5481 break; 5482 5483 case MR_EVT_PD_REMOVED: 5484 if (megasas_get_pd_list(instance) == 0) { 5485 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) { 5486 for (j = 0; 5487 j < MEGASAS_MAX_DEV_PER_CHANNEL; 5488 j++) { 5489 5490 pd_index = 5491 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5492 5493 sdev1 = 5494 scsi_device_lookup(host, i, j, 0); 5495 5496 if (instance->pd_list[pd_index].driveState 5497 == MR_PD_STATE_SYSTEM) { 5498 if (sdev1) { 5499 scsi_device_put(sdev1); 5500 } 5501 } else { 5502 if (sdev1) { 5503 scsi_remove_device(sdev1); 5504 scsi_device_put(sdev1); 5505 } 5506 } 5507 } 5508 } 5509 } 5510 doscan = 0; 5511 break; 5512 5513 case MR_EVT_LD_OFFLINE: 5514 case MR_EVT_CFG_CLEARED: 5515 case MR_EVT_LD_DELETED: 5516 if (megasas_ld_list_query(instance, 5517 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST)) 5518 megasas_get_ld_list(instance); 5519 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) { 5520 for (j = 0; 5521 j < MEGASAS_MAX_DEV_PER_CHANNEL; 5522 j++) { 5523 5524 ld_index = 5525 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5526 5527 sdev1 = scsi_device_lookup(host, 5528 MEGASAS_MAX_PD_CHANNELS + i, 5529 j, 5530 0); 5531 5532 if (instance->ld_ids[ld_index] != 0xff) { 5533 if (sdev1) { 5534 scsi_device_put(sdev1); 5535 } 5536 } else { 5537 if (sdev1) { 5538 scsi_remove_device(sdev1); 5539 scsi_device_put(sdev1); 5540 } 5541 } 5542 } 5543 } 5544 doscan = 0; 5545 break; 5546 case MR_EVT_LD_CREATED: 5547 if (megasas_ld_list_query(instance, 5548 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST)) 5549 megasas_get_ld_list(instance); 5550 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) { 5551 for (j = 0; 5552 j < MEGASAS_MAX_DEV_PER_CHANNEL; 5553 j++) { 5554 ld_index = 5555 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5556 5557 sdev1 = scsi_device_lookup(host, 5558 MEGASAS_MAX_PD_CHANNELS + i, 5559 j, 0); 5560 5561 if (instance->ld_ids[ld_index] != 5562 0xff) { 5563 if (!sdev1) { 5564 scsi_add_device(host, 5565 MEGASAS_MAX_PD_CHANNELS + i, 5566 j, 0); 5567 } 5568 } 5569 if (sdev1) { 5570 scsi_device_put(sdev1); 5571 } 5572 } 5573 } 5574 doscan = 0; 5575 break; 5576 case MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED: 5577 case MR_EVT_FOREIGN_CFG_IMPORTED: 5578 case MR_EVT_LD_STATE_CHANGE: 5579 doscan = 1; 5580 break; 5581 default: 5582 doscan = 0; 5583 break; 5584 } 5585 } else { 5586 printk(KERN_ERR "invalid evt_detail!\n"); 5587 kfree(ev); 5588 return; 5589 } 5590 5591 if (doscan) { 5592 printk(KERN_INFO "scanning ...\n"); 5593 megasas_get_pd_list(instance); 5594 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) { 5595 for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { 5596 pd_index = i*MEGASAS_MAX_DEV_PER_CHANNEL + j; 5597 sdev1 = scsi_device_lookup(host, i, j, 0); 5598 if (instance->pd_list[pd_index].driveState == 5599 MR_PD_STATE_SYSTEM) { 5600 if (!sdev1) { 5601 scsi_add_device(host, i, j, 0); 5602 } 5603 if (sdev1) 5604 scsi_device_put(sdev1); 5605 } else { 5606 if (sdev1) { 5607 scsi_remove_device(sdev1); 5608 scsi_device_put(sdev1); 5609 } 5610 } 5611 } 5612 } 5613 5614 if (megasas_ld_list_query(instance, 5615 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST)) 5616 megasas_get_ld_list(instance); 5617 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) { 5618 for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { 5619 ld_index = 5620 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5621 5622 sdev1 = scsi_device_lookup(host, 5623 MEGASAS_MAX_PD_CHANNELS + i, j, 0); 5624 if (instance->ld_ids[ld_index] != 0xff) { 5625 if (!sdev1) { 5626 scsi_add_device(host, 5627 MEGASAS_MAX_PD_CHANNELS + i, 5628 j, 0); 5629 } else { 5630 scsi_device_put(sdev1); 5631 } 5632 } else { 5633 if (sdev1) { 5634 scsi_remove_device(sdev1); 5635 scsi_device_put(sdev1); 5636 } 5637 } 5638 } 5639 } 5640 } 5641 5642 if ( instance->aen_cmd != NULL ) { 5643 kfree(ev); 5644 return ; 5645 } 5646 5647 seq_num = le32_to_cpu(instance->evt_detail->seq_num) + 1; 5648 5649 /* Register AEN with FW for latest sequence number plus 1 */ 5650 class_locale.members.reserved = 0; 5651 class_locale.members.locale = MR_EVT_LOCALE_ALL; 5652 class_locale.members.class = MR_EVT_CLASS_DEBUG; 5653 mutex_lock(&instance->aen_mutex); 5654 error = megasas_register_aen(instance, seq_num, 5655 class_locale.word); 5656 mutex_unlock(&instance->aen_mutex); 5657 5658 if (error) 5659 printk(KERN_ERR "register aen failed error %x\n", error); 5660 5661 kfree(ev); 5662 } 5663 5664 /** 5665 * megasas_init - Driver load entry point 5666 */ 5667 static int __init megasas_init(void) 5668 { 5669 int rval; 5670 5671 /* 5672 * Announce driver version and other information 5673 */ 5674 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION, 5675 MEGASAS_EXT_VERSION); 5676 5677 spin_lock_init(&poll_aen_lock); 5678 5679 support_poll_for_event = 2; 5680 support_device_change = 1; 5681 5682 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info)); 5683 5684 /* 5685 * Register character device node 5686 */ 5687 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops); 5688 5689 if (rval < 0) { 5690 printk(KERN_DEBUG "megasas: failed to open device node\n"); 5691 return rval; 5692 } 5693 5694 megasas_mgmt_majorno = rval; 5695 5696 /* 5697 * Register ourselves as PCI hotplug module 5698 */ 5699 rval = pci_register_driver(&megasas_pci_driver); 5700 5701 if (rval) { 5702 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n"); 5703 goto err_pcidrv; 5704 } 5705 5706 rval = driver_create_file(&megasas_pci_driver.driver, 5707 &driver_attr_version); 5708 if (rval) 5709 goto err_dcf_attr_ver; 5710 rval = driver_create_file(&megasas_pci_driver.driver, 5711 &driver_attr_release_date); 5712 if (rval) 5713 goto err_dcf_rel_date; 5714 5715 rval = driver_create_file(&megasas_pci_driver.driver, 5716 &driver_attr_support_poll_for_event); 5717 if (rval) 5718 goto err_dcf_support_poll_for_event; 5719 5720 rval = driver_create_file(&megasas_pci_driver.driver, 5721 &driver_attr_dbg_lvl); 5722 if (rval) 5723 goto err_dcf_dbg_lvl; 5724 rval = driver_create_file(&megasas_pci_driver.driver, 5725 &driver_attr_support_device_change); 5726 if (rval) 5727 goto err_dcf_support_device_change; 5728 5729 return rval; 5730 5731 err_dcf_support_device_change: 5732 driver_remove_file(&megasas_pci_driver.driver, 5733 &driver_attr_dbg_lvl); 5734 err_dcf_dbg_lvl: 5735 driver_remove_file(&megasas_pci_driver.driver, 5736 &driver_attr_support_poll_for_event); 5737 5738 err_dcf_support_poll_for_event: 5739 driver_remove_file(&megasas_pci_driver.driver, 5740 &driver_attr_release_date); 5741 5742 err_dcf_rel_date: 5743 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version); 5744 err_dcf_attr_ver: 5745 pci_unregister_driver(&megasas_pci_driver); 5746 err_pcidrv: 5747 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl"); 5748 return rval; 5749 } 5750 5751 /** 5752 * megasas_exit - Driver unload entry point 5753 */ 5754 static void __exit megasas_exit(void) 5755 { 5756 driver_remove_file(&megasas_pci_driver.driver, 5757 &driver_attr_dbg_lvl); 5758 driver_remove_file(&megasas_pci_driver.driver, 5759 &driver_attr_support_poll_for_event); 5760 driver_remove_file(&megasas_pci_driver.driver, 5761 &driver_attr_support_device_change); 5762 driver_remove_file(&megasas_pci_driver.driver, 5763 &driver_attr_release_date); 5764 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version); 5765 5766 pci_unregister_driver(&megasas_pci_driver); 5767 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl"); 5768 } 5769 5770 module_init(megasas_init); 5771 module_exit(megasas_exit); 5772