1 /* 2 * Linux MegaRAID driver for SAS based RAID controllers 3 * 4 * Copyright (c) 2003-2012 LSI Corporation. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * FILE: megaraid_sas_base.c 21 * Version : 06.700.06.00-rc1 22 * 23 * Authors: LSI Corporation 24 * Sreenivas Bagalkote 25 * Sumant Patro 26 * Bo Yang 27 * Adam Radford <linuxraid@lsi.com> 28 * 29 * Send feedback to: <megaraidlinux@lsi.com> 30 * 31 * Mail to: LSI Corporation, 1621 Barber Lane, Milpitas, CA 95035 32 * ATTN: Linuxraid 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/types.h> 37 #include <linux/pci.h> 38 #include <linux/list.h> 39 #include <linux/moduleparam.h> 40 #include <linux/module.h> 41 #include <linux/spinlock.h> 42 #include <linux/interrupt.h> 43 #include <linux/delay.h> 44 #include <linux/uio.h> 45 #include <linux/slab.h> 46 #include <asm/uaccess.h> 47 #include <linux/fs.h> 48 #include <linux/compat.h> 49 #include <linux/blkdev.h> 50 #include <linux/mutex.h> 51 #include <linux/poll.h> 52 53 #include <scsi/scsi.h> 54 #include <scsi/scsi_cmnd.h> 55 #include <scsi/scsi_device.h> 56 #include <scsi/scsi_host.h> 57 #include <scsi/scsi_tcq.h> 58 #include "megaraid_sas_fusion.h" 59 #include "megaraid_sas.h" 60 61 /* 62 * Number of sectors per IO command 63 * Will be set in megasas_init_mfi if user does not provide 64 */ 65 static unsigned int max_sectors; 66 module_param_named(max_sectors, max_sectors, int, 0); 67 MODULE_PARM_DESC(max_sectors, 68 "Maximum number of sectors per IO command"); 69 70 static int msix_disable; 71 module_param(msix_disable, int, S_IRUGO); 72 MODULE_PARM_DESC(msix_disable, "Disable MSI-X interrupt handling. Default: 0"); 73 74 static unsigned int msix_vectors; 75 module_param(msix_vectors, int, S_IRUGO); 76 MODULE_PARM_DESC(msix_vectors, "MSI-X max vector count. Default: Set by FW"); 77 78 static int throttlequeuedepth = MEGASAS_THROTTLE_QUEUE_DEPTH; 79 module_param(throttlequeuedepth, int, S_IRUGO); 80 MODULE_PARM_DESC(throttlequeuedepth, 81 "Adapter queue depth when throttled due to I/O timeout. Default: 16"); 82 83 int resetwaittime = MEGASAS_RESET_WAIT_TIME; 84 module_param(resetwaittime, int, S_IRUGO); 85 MODULE_PARM_DESC(resetwaittime, "Wait time in seconds after I/O timeout " 86 "before resetting adapter. Default: 180"); 87 88 MODULE_LICENSE("GPL"); 89 MODULE_VERSION(MEGASAS_VERSION); 90 MODULE_AUTHOR("megaraidlinux@lsi.com"); 91 MODULE_DESCRIPTION("LSI MegaRAID SAS Driver"); 92 93 int megasas_transition_to_ready(struct megasas_instance *instance, int ocr); 94 static int megasas_get_pd_list(struct megasas_instance *instance); 95 static int megasas_ld_list_query(struct megasas_instance *instance, 96 u8 query_type); 97 static int megasas_issue_init_mfi(struct megasas_instance *instance); 98 static int megasas_register_aen(struct megasas_instance *instance, 99 u32 seq_num, u32 class_locale_word); 100 /* 101 * PCI ID table for all supported controllers 102 */ 103 static struct pci_device_id megasas_pci_table[] = { 104 105 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)}, 106 /* xscale IOP */ 107 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)}, 108 /* ppc IOP */ 109 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)}, 110 /* ppc IOP */ 111 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078GEN2)}, 112 /* gen2*/ 113 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0079GEN2)}, 114 /* gen2*/ 115 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0073SKINNY)}, 116 /* skinny*/ 117 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0071SKINNY)}, 118 /* skinny*/ 119 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)}, 120 /* xscale IOP, vega */ 121 {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)}, 122 /* xscale IOP */ 123 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FUSION)}, 124 /* Fusion */ 125 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_INVADER)}, 126 /* Invader */ 127 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FURY)}, 128 /* Fury */ 129 {} 130 }; 131 132 MODULE_DEVICE_TABLE(pci, megasas_pci_table); 133 134 static int megasas_mgmt_majorno; 135 static struct megasas_mgmt_info megasas_mgmt_info; 136 static struct fasync_struct *megasas_async_queue; 137 static DEFINE_MUTEX(megasas_async_queue_mutex); 138 139 static int megasas_poll_wait_aen; 140 static DECLARE_WAIT_QUEUE_HEAD(megasas_poll_wait); 141 static u32 support_poll_for_event; 142 u32 megasas_dbg_lvl; 143 static u32 support_device_change; 144 145 /* define lock for aen poll */ 146 spinlock_t poll_aen_lock; 147 148 void 149 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd, 150 u8 alt_status); 151 static u32 152 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs); 153 static int 154 megasas_adp_reset_gen2(struct megasas_instance *instance, 155 struct megasas_register_set __iomem *reg_set); 156 static irqreturn_t megasas_isr(int irq, void *devp); 157 static u32 158 megasas_init_adapter_mfi(struct megasas_instance *instance); 159 u32 160 megasas_build_and_issue_cmd(struct megasas_instance *instance, 161 struct scsi_cmnd *scmd); 162 static void megasas_complete_cmd_dpc(unsigned long instance_addr); 163 void 164 megasas_release_fusion(struct megasas_instance *instance); 165 int 166 megasas_ioc_init_fusion(struct megasas_instance *instance); 167 void 168 megasas_free_cmds_fusion(struct megasas_instance *instance); 169 u8 170 megasas_get_map_info(struct megasas_instance *instance); 171 int 172 megasas_sync_map_info(struct megasas_instance *instance); 173 int 174 wait_and_poll(struct megasas_instance *instance, struct megasas_cmd *cmd); 175 void megasas_reset_reply_desc(struct megasas_instance *instance); 176 int megasas_reset_fusion(struct Scsi_Host *shost); 177 void megasas_fusion_ocr_wq(struct work_struct *work); 178 179 void 180 megasas_issue_dcmd(struct megasas_instance *instance, struct megasas_cmd *cmd) 181 { 182 instance->instancet->fire_cmd(instance, 183 cmd->frame_phys_addr, 0, instance->reg_set); 184 } 185 186 /** 187 * megasas_get_cmd - Get a command from the free pool 188 * @instance: Adapter soft state 189 * 190 * Returns a free command from the pool 191 */ 192 struct megasas_cmd *megasas_get_cmd(struct megasas_instance 193 *instance) 194 { 195 unsigned long flags; 196 struct megasas_cmd *cmd = NULL; 197 198 spin_lock_irqsave(&instance->cmd_pool_lock, flags); 199 200 if (!list_empty(&instance->cmd_pool)) { 201 cmd = list_entry((&instance->cmd_pool)->next, 202 struct megasas_cmd, list); 203 list_del_init(&cmd->list); 204 } else { 205 printk(KERN_ERR "megasas: Command pool empty!\n"); 206 } 207 208 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags); 209 return cmd; 210 } 211 212 /** 213 * megasas_return_cmd - Return a cmd to free command pool 214 * @instance: Adapter soft state 215 * @cmd: Command packet to be returned to free command pool 216 */ 217 inline void 218 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd) 219 { 220 unsigned long flags; 221 222 spin_lock_irqsave(&instance->cmd_pool_lock, flags); 223 224 cmd->scmd = NULL; 225 cmd->frame_count = 0; 226 if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) && 227 (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) && 228 (instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) && 229 (reset_devices)) 230 cmd->frame->hdr.cmd = MFI_CMD_INVALID; 231 list_add_tail(&cmd->list, &instance->cmd_pool); 232 233 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags); 234 } 235 236 237 /** 238 * The following functions are defined for xscale 239 * (deviceid : 1064R, PERC5) controllers 240 */ 241 242 /** 243 * megasas_enable_intr_xscale - Enables interrupts 244 * @regs: MFI register set 245 */ 246 static inline void 247 megasas_enable_intr_xscale(struct megasas_instance *instance) 248 { 249 struct megasas_register_set __iomem *regs; 250 regs = instance->reg_set; 251 writel(0, &(regs)->outbound_intr_mask); 252 253 /* Dummy readl to force pci flush */ 254 readl(®s->outbound_intr_mask); 255 } 256 257 /** 258 * megasas_disable_intr_xscale -Disables interrupt 259 * @regs: MFI register set 260 */ 261 static inline void 262 megasas_disable_intr_xscale(struct megasas_instance *instance) 263 { 264 struct megasas_register_set __iomem *regs; 265 u32 mask = 0x1f; 266 regs = instance->reg_set; 267 writel(mask, ®s->outbound_intr_mask); 268 /* Dummy readl to force pci flush */ 269 readl(®s->outbound_intr_mask); 270 } 271 272 /** 273 * megasas_read_fw_status_reg_xscale - returns the current FW status value 274 * @regs: MFI register set 275 */ 276 static u32 277 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs) 278 { 279 return readl(&(regs)->outbound_msg_0); 280 } 281 /** 282 * megasas_clear_interrupt_xscale - Check & clear interrupt 283 * @regs: MFI register set 284 */ 285 static int 286 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs) 287 { 288 u32 status; 289 u32 mfiStatus = 0; 290 /* 291 * Check if it is our interrupt 292 */ 293 status = readl(®s->outbound_intr_status); 294 295 if (status & MFI_OB_INTR_STATUS_MASK) 296 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; 297 if (status & MFI_XSCALE_OMR0_CHANGE_INTERRUPT) 298 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; 299 300 /* 301 * Clear the interrupt by writing back the same value 302 */ 303 if (mfiStatus) 304 writel(status, ®s->outbound_intr_status); 305 306 /* Dummy readl to force pci flush */ 307 readl(®s->outbound_intr_status); 308 309 return mfiStatus; 310 } 311 312 /** 313 * megasas_fire_cmd_xscale - Sends command to the FW 314 * @frame_phys_addr : Physical address of cmd 315 * @frame_count : Number of frames for the command 316 * @regs : MFI register set 317 */ 318 static inline void 319 megasas_fire_cmd_xscale(struct megasas_instance *instance, 320 dma_addr_t frame_phys_addr, 321 u32 frame_count, 322 struct megasas_register_set __iomem *regs) 323 { 324 unsigned long flags; 325 spin_lock_irqsave(&instance->hba_lock, flags); 326 writel((frame_phys_addr >> 3)|(frame_count), 327 &(regs)->inbound_queue_port); 328 spin_unlock_irqrestore(&instance->hba_lock, flags); 329 } 330 331 /** 332 * megasas_adp_reset_xscale - For controller reset 333 * @regs: MFI register set 334 */ 335 static int 336 megasas_adp_reset_xscale(struct megasas_instance *instance, 337 struct megasas_register_set __iomem *regs) 338 { 339 u32 i; 340 u32 pcidata; 341 writel(MFI_ADP_RESET, ®s->inbound_doorbell); 342 343 for (i = 0; i < 3; i++) 344 msleep(1000); /* sleep for 3 secs */ 345 pcidata = 0; 346 pci_read_config_dword(instance->pdev, MFI_1068_PCSR_OFFSET, &pcidata); 347 printk(KERN_NOTICE "pcidata = %x\n", pcidata); 348 if (pcidata & 0x2) { 349 printk(KERN_NOTICE "mfi 1068 offset read=%x\n", pcidata); 350 pcidata &= ~0x2; 351 pci_write_config_dword(instance->pdev, 352 MFI_1068_PCSR_OFFSET, pcidata); 353 354 for (i = 0; i < 2; i++) 355 msleep(1000); /* need to wait 2 secs again */ 356 357 pcidata = 0; 358 pci_read_config_dword(instance->pdev, 359 MFI_1068_FW_HANDSHAKE_OFFSET, &pcidata); 360 printk(KERN_NOTICE "1068 offset handshake read=%x\n", pcidata); 361 if ((pcidata & 0xffff0000) == MFI_1068_FW_READY) { 362 printk(KERN_NOTICE "1068 offset pcidt=%x\n", pcidata); 363 pcidata = 0; 364 pci_write_config_dword(instance->pdev, 365 MFI_1068_FW_HANDSHAKE_OFFSET, pcidata); 366 } 367 } 368 return 0; 369 } 370 371 /** 372 * megasas_check_reset_xscale - For controller reset check 373 * @regs: MFI register set 374 */ 375 static int 376 megasas_check_reset_xscale(struct megasas_instance *instance, 377 struct megasas_register_set __iomem *regs) 378 { 379 380 if ((instance->adprecovery != MEGASAS_HBA_OPERATIONAL) && 381 (le32_to_cpu(*instance->consumer) == 382 MEGASAS_ADPRESET_INPROG_SIGN)) 383 return 1; 384 return 0; 385 } 386 387 static struct megasas_instance_template megasas_instance_template_xscale = { 388 389 .fire_cmd = megasas_fire_cmd_xscale, 390 .enable_intr = megasas_enable_intr_xscale, 391 .disable_intr = megasas_disable_intr_xscale, 392 .clear_intr = megasas_clear_intr_xscale, 393 .read_fw_status_reg = megasas_read_fw_status_reg_xscale, 394 .adp_reset = megasas_adp_reset_xscale, 395 .check_reset = megasas_check_reset_xscale, 396 .service_isr = megasas_isr, 397 .tasklet = megasas_complete_cmd_dpc, 398 .init_adapter = megasas_init_adapter_mfi, 399 .build_and_issue_cmd = megasas_build_and_issue_cmd, 400 .issue_dcmd = megasas_issue_dcmd, 401 }; 402 403 /** 404 * This is the end of set of functions & definitions specific 405 * to xscale (deviceid : 1064R, PERC5) controllers 406 */ 407 408 /** 409 * The following functions are defined for ppc (deviceid : 0x60) 410 * controllers 411 */ 412 413 /** 414 * megasas_enable_intr_ppc - Enables interrupts 415 * @regs: MFI register set 416 */ 417 static inline void 418 megasas_enable_intr_ppc(struct megasas_instance *instance) 419 { 420 struct megasas_register_set __iomem *regs; 421 regs = instance->reg_set; 422 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear); 423 424 writel(~0x80000000, &(regs)->outbound_intr_mask); 425 426 /* Dummy readl to force pci flush */ 427 readl(®s->outbound_intr_mask); 428 } 429 430 /** 431 * megasas_disable_intr_ppc - Disable interrupt 432 * @regs: MFI register set 433 */ 434 static inline void 435 megasas_disable_intr_ppc(struct megasas_instance *instance) 436 { 437 struct megasas_register_set __iomem *regs; 438 u32 mask = 0xFFFFFFFF; 439 regs = instance->reg_set; 440 writel(mask, ®s->outbound_intr_mask); 441 /* Dummy readl to force pci flush */ 442 readl(®s->outbound_intr_mask); 443 } 444 445 /** 446 * megasas_read_fw_status_reg_ppc - returns the current FW status value 447 * @regs: MFI register set 448 */ 449 static u32 450 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs) 451 { 452 return readl(&(regs)->outbound_scratch_pad); 453 } 454 455 /** 456 * megasas_clear_interrupt_ppc - Check & clear interrupt 457 * @regs: MFI register set 458 */ 459 static int 460 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs) 461 { 462 u32 status, mfiStatus = 0; 463 464 /* 465 * Check if it is our interrupt 466 */ 467 status = readl(®s->outbound_intr_status); 468 469 if (status & MFI_REPLY_1078_MESSAGE_INTERRUPT) 470 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; 471 472 if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) 473 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; 474 475 /* 476 * Clear the interrupt by writing back the same value 477 */ 478 writel(status, ®s->outbound_doorbell_clear); 479 480 /* Dummy readl to force pci flush */ 481 readl(®s->outbound_doorbell_clear); 482 483 return mfiStatus; 484 } 485 486 /** 487 * megasas_fire_cmd_ppc - Sends command to the FW 488 * @frame_phys_addr : Physical address of cmd 489 * @frame_count : Number of frames for the command 490 * @regs : MFI register set 491 */ 492 static inline void 493 megasas_fire_cmd_ppc(struct megasas_instance *instance, 494 dma_addr_t frame_phys_addr, 495 u32 frame_count, 496 struct megasas_register_set __iomem *regs) 497 { 498 unsigned long flags; 499 spin_lock_irqsave(&instance->hba_lock, flags); 500 writel((frame_phys_addr | (frame_count<<1))|1, 501 &(regs)->inbound_queue_port); 502 spin_unlock_irqrestore(&instance->hba_lock, flags); 503 } 504 505 /** 506 * megasas_check_reset_ppc - For controller reset check 507 * @regs: MFI register set 508 */ 509 static int 510 megasas_check_reset_ppc(struct megasas_instance *instance, 511 struct megasas_register_set __iomem *regs) 512 { 513 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) 514 return 1; 515 516 return 0; 517 } 518 519 static struct megasas_instance_template megasas_instance_template_ppc = { 520 521 .fire_cmd = megasas_fire_cmd_ppc, 522 .enable_intr = megasas_enable_intr_ppc, 523 .disable_intr = megasas_disable_intr_ppc, 524 .clear_intr = megasas_clear_intr_ppc, 525 .read_fw_status_reg = megasas_read_fw_status_reg_ppc, 526 .adp_reset = megasas_adp_reset_xscale, 527 .check_reset = megasas_check_reset_ppc, 528 .service_isr = megasas_isr, 529 .tasklet = megasas_complete_cmd_dpc, 530 .init_adapter = megasas_init_adapter_mfi, 531 .build_and_issue_cmd = megasas_build_and_issue_cmd, 532 .issue_dcmd = megasas_issue_dcmd, 533 }; 534 535 /** 536 * megasas_enable_intr_skinny - Enables interrupts 537 * @regs: MFI register set 538 */ 539 static inline void 540 megasas_enable_intr_skinny(struct megasas_instance *instance) 541 { 542 struct megasas_register_set __iomem *regs; 543 regs = instance->reg_set; 544 writel(0xFFFFFFFF, &(regs)->outbound_intr_mask); 545 546 writel(~MFI_SKINNY_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask); 547 548 /* Dummy readl to force pci flush */ 549 readl(®s->outbound_intr_mask); 550 } 551 552 /** 553 * megasas_disable_intr_skinny - Disables interrupt 554 * @regs: MFI register set 555 */ 556 static inline void 557 megasas_disable_intr_skinny(struct megasas_instance *instance) 558 { 559 struct megasas_register_set __iomem *regs; 560 u32 mask = 0xFFFFFFFF; 561 regs = instance->reg_set; 562 writel(mask, ®s->outbound_intr_mask); 563 /* Dummy readl to force pci flush */ 564 readl(®s->outbound_intr_mask); 565 } 566 567 /** 568 * megasas_read_fw_status_reg_skinny - returns the current FW status value 569 * @regs: MFI register set 570 */ 571 static u32 572 megasas_read_fw_status_reg_skinny(struct megasas_register_set __iomem *regs) 573 { 574 return readl(&(regs)->outbound_scratch_pad); 575 } 576 577 /** 578 * megasas_clear_interrupt_skinny - Check & clear interrupt 579 * @regs: MFI register set 580 */ 581 static int 582 megasas_clear_intr_skinny(struct megasas_register_set __iomem *regs) 583 { 584 u32 status; 585 u32 mfiStatus = 0; 586 587 /* 588 * Check if it is our interrupt 589 */ 590 status = readl(®s->outbound_intr_status); 591 592 if (!(status & MFI_SKINNY_ENABLE_INTERRUPT_MASK)) { 593 return 0; 594 } 595 596 /* 597 * Check if it is our interrupt 598 */ 599 if ((megasas_read_fw_status_reg_skinny(regs) & MFI_STATE_MASK) == 600 MFI_STATE_FAULT) { 601 mfiStatus = MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; 602 } else 603 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; 604 605 /* 606 * Clear the interrupt by writing back the same value 607 */ 608 writel(status, ®s->outbound_intr_status); 609 610 /* 611 * dummy read to flush PCI 612 */ 613 readl(®s->outbound_intr_status); 614 615 return mfiStatus; 616 } 617 618 /** 619 * megasas_fire_cmd_skinny - Sends command to the FW 620 * @frame_phys_addr : Physical address of cmd 621 * @frame_count : Number of frames for the command 622 * @regs : MFI register set 623 */ 624 static inline void 625 megasas_fire_cmd_skinny(struct megasas_instance *instance, 626 dma_addr_t frame_phys_addr, 627 u32 frame_count, 628 struct megasas_register_set __iomem *regs) 629 { 630 unsigned long flags; 631 spin_lock_irqsave(&instance->hba_lock, flags); 632 writel(upper_32_bits(frame_phys_addr), 633 &(regs)->inbound_high_queue_port); 634 writel((lower_32_bits(frame_phys_addr) | (frame_count<<1))|1, 635 &(regs)->inbound_low_queue_port); 636 spin_unlock_irqrestore(&instance->hba_lock, flags); 637 } 638 639 /** 640 * megasas_check_reset_skinny - For controller reset check 641 * @regs: MFI register set 642 */ 643 static int 644 megasas_check_reset_skinny(struct megasas_instance *instance, 645 struct megasas_register_set __iomem *regs) 646 { 647 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) 648 return 1; 649 650 return 0; 651 } 652 653 static struct megasas_instance_template megasas_instance_template_skinny = { 654 655 .fire_cmd = megasas_fire_cmd_skinny, 656 .enable_intr = megasas_enable_intr_skinny, 657 .disable_intr = megasas_disable_intr_skinny, 658 .clear_intr = megasas_clear_intr_skinny, 659 .read_fw_status_reg = megasas_read_fw_status_reg_skinny, 660 .adp_reset = megasas_adp_reset_gen2, 661 .check_reset = megasas_check_reset_skinny, 662 .service_isr = megasas_isr, 663 .tasklet = megasas_complete_cmd_dpc, 664 .init_adapter = megasas_init_adapter_mfi, 665 .build_and_issue_cmd = megasas_build_and_issue_cmd, 666 .issue_dcmd = megasas_issue_dcmd, 667 }; 668 669 670 /** 671 * The following functions are defined for gen2 (deviceid : 0x78 0x79) 672 * controllers 673 */ 674 675 /** 676 * megasas_enable_intr_gen2 - Enables interrupts 677 * @regs: MFI register set 678 */ 679 static inline void 680 megasas_enable_intr_gen2(struct megasas_instance *instance) 681 { 682 struct megasas_register_set __iomem *regs; 683 regs = instance->reg_set; 684 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear); 685 686 /* write ~0x00000005 (4 & 1) to the intr mask*/ 687 writel(~MFI_GEN2_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask); 688 689 /* Dummy readl to force pci flush */ 690 readl(®s->outbound_intr_mask); 691 } 692 693 /** 694 * megasas_disable_intr_gen2 - Disables interrupt 695 * @regs: MFI register set 696 */ 697 static inline void 698 megasas_disable_intr_gen2(struct megasas_instance *instance) 699 { 700 struct megasas_register_set __iomem *regs; 701 u32 mask = 0xFFFFFFFF; 702 regs = instance->reg_set; 703 writel(mask, ®s->outbound_intr_mask); 704 /* Dummy readl to force pci flush */ 705 readl(®s->outbound_intr_mask); 706 } 707 708 /** 709 * megasas_read_fw_status_reg_gen2 - returns the current FW status value 710 * @regs: MFI register set 711 */ 712 static u32 713 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs) 714 { 715 return readl(&(regs)->outbound_scratch_pad); 716 } 717 718 /** 719 * megasas_clear_interrupt_gen2 - Check & clear interrupt 720 * @regs: MFI register set 721 */ 722 static int 723 megasas_clear_intr_gen2(struct megasas_register_set __iomem *regs) 724 { 725 u32 status; 726 u32 mfiStatus = 0; 727 /* 728 * Check if it is our interrupt 729 */ 730 status = readl(®s->outbound_intr_status); 731 732 if (status & MFI_INTR_FLAG_REPLY_MESSAGE) { 733 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; 734 } 735 if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) { 736 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; 737 } 738 739 /* 740 * Clear the interrupt by writing back the same value 741 */ 742 if (mfiStatus) 743 writel(status, ®s->outbound_doorbell_clear); 744 745 /* Dummy readl to force pci flush */ 746 readl(®s->outbound_intr_status); 747 748 return mfiStatus; 749 } 750 /** 751 * megasas_fire_cmd_gen2 - Sends command to the FW 752 * @frame_phys_addr : Physical address of cmd 753 * @frame_count : Number of frames for the command 754 * @regs : MFI register set 755 */ 756 static inline void 757 megasas_fire_cmd_gen2(struct megasas_instance *instance, 758 dma_addr_t frame_phys_addr, 759 u32 frame_count, 760 struct megasas_register_set __iomem *regs) 761 { 762 unsigned long flags; 763 spin_lock_irqsave(&instance->hba_lock, flags); 764 writel((frame_phys_addr | (frame_count<<1))|1, 765 &(regs)->inbound_queue_port); 766 spin_unlock_irqrestore(&instance->hba_lock, flags); 767 } 768 769 /** 770 * megasas_adp_reset_gen2 - For controller reset 771 * @regs: MFI register set 772 */ 773 static int 774 megasas_adp_reset_gen2(struct megasas_instance *instance, 775 struct megasas_register_set __iomem *reg_set) 776 { 777 u32 retry = 0 ; 778 u32 HostDiag; 779 u32 *seq_offset = ®_set->seq_offset; 780 u32 *hostdiag_offset = ®_set->host_diag; 781 782 if (instance->instancet == &megasas_instance_template_skinny) { 783 seq_offset = ®_set->fusion_seq_offset; 784 hostdiag_offset = ®_set->fusion_host_diag; 785 } 786 787 writel(0, seq_offset); 788 writel(4, seq_offset); 789 writel(0xb, seq_offset); 790 writel(2, seq_offset); 791 writel(7, seq_offset); 792 writel(0xd, seq_offset); 793 794 msleep(1000); 795 796 HostDiag = (u32)readl(hostdiag_offset); 797 798 while ( !( HostDiag & DIAG_WRITE_ENABLE) ) { 799 msleep(100); 800 HostDiag = (u32)readl(hostdiag_offset); 801 printk(KERN_NOTICE "RESETGEN2: retry=%x, hostdiag=%x\n", 802 retry, HostDiag); 803 804 if (retry++ >= 100) 805 return 1; 806 807 } 808 809 printk(KERN_NOTICE "ADP_RESET_GEN2: HostDiag=%x\n", HostDiag); 810 811 writel((HostDiag | DIAG_RESET_ADAPTER), hostdiag_offset); 812 813 ssleep(10); 814 815 HostDiag = (u32)readl(hostdiag_offset); 816 while ( ( HostDiag & DIAG_RESET_ADAPTER) ) { 817 msleep(100); 818 HostDiag = (u32)readl(hostdiag_offset); 819 printk(KERN_NOTICE "RESET_GEN2: retry=%x, hostdiag=%x\n", 820 retry, HostDiag); 821 822 if (retry++ >= 1000) 823 return 1; 824 825 } 826 return 0; 827 } 828 829 /** 830 * megasas_check_reset_gen2 - For controller reset check 831 * @regs: MFI register set 832 */ 833 static int 834 megasas_check_reset_gen2(struct megasas_instance *instance, 835 struct megasas_register_set __iomem *regs) 836 { 837 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { 838 return 1; 839 } 840 841 return 0; 842 } 843 844 static struct megasas_instance_template megasas_instance_template_gen2 = { 845 846 .fire_cmd = megasas_fire_cmd_gen2, 847 .enable_intr = megasas_enable_intr_gen2, 848 .disable_intr = megasas_disable_intr_gen2, 849 .clear_intr = megasas_clear_intr_gen2, 850 .read_fw_status_reg = megasas_read_fw_status_reg_gen2, 851 .adp_reset = megasas_adp_reset_gen2, 852 .check_reset = megasas_check_reset_gen2, 853 .service_isr = megasas_isr, 854 .tasklet = megasas_complete_cmd_dpc, 855 .init_adapter = megasas_init_adapter_mfi, 856 .build_and_issue_cmd = megasas_build_and_issue_cmd, 857 .issue_dcmd = megasas_issue_dcmd, 858 }; 859 860 /** 861 * This is the end of set of functions & definitions 862 * specific to gen2 (deviceid : 0x78, 0x79) controllers 863 */ 864 865 /* 866 * Template added for TB (Fusion) 867 */ 868 extern struct megasas_instance_template megasas_instance_template_fusion; 869 870 /** 871 * megasas_issue_polled - Issues a polling command 872 * @instance: Adapter soft state 873 * @cmd: Command packet to be issued 874 * 875 * For polling, MFI requires the cmd_status to be set to 0xFF before posting. 876 */ 877 int 878 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd) 879 { 880 881 struct megasas_header *frame_hdr = &cmd->frame->hdr; 882 883 frame_hdr->cmd_status = MFI_CMD_STATUS_POLL_MODE; 884 frame_hdr->flags |= cpu_to_le16(MFI_FRAME_DONT_POST_IN_REPLY_QUEUE); 885 886 /* 887 * Issue the frame using inbound queue port 888 */ 889 instance->instancet->issue_dcmd(instance, cmd); 890 891 /* 892 * Wait for cmd_status to change 893 */ 894 return wait_and_poll(instance, cmd); 895 } 896 897 /** 898 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds 899 * @instance: Adapter soft state 900 * @cmd: Command to be issued 901 * 902 * This function waits on an event for the command to be returned from ISR. 903 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs 904 * Used to issue ioctl commands. 905 */ 906 static int 907 megasas_issue_blocked_cmd(struct megasas_instance *instance, 908 struct megasas_cmd *cmd) 909 { 910 cmd->cmd_status = ENODATA; 911 912 instance->instancet->issue_dcmd(instance, cmd); 913 914 wait_event(instance->int_cmd_wait_q, cmd->cmd_status != ENODATA); 915 916 return 0; 917 } 918 919 /** 920 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd 921 * @instance: Adapter soft state 922 * @cmd_to_abort: Previously issued cmd to be aborted 923 * 924 * MFI firmware can abort previously issued AEN command (automatic event 925 * notification). The megasas_issue_blocked_abort_cmd() issues such abort 926 * cmd and waits for return status. 927 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs 928 */ 929 static int 930 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance, 931 struct megasas_cmd *cmd_to_abort) 932 { 933 struct megasas_cmd *cmd; 934 struct megasas_abort_frame *abort_fr; 935 936 cmd = megasas_get_cmd(instance); 937 938 if (!cmd) 939 return -1; 940 941 abort_fr = &cmd->frame->abort; 942 943 /* 944 * Prepare and issue the abort frame 945 */ 946 abort_fr->cmd = MFI_CMD_ABORT; 947 abort_fr->cmd_status = 0xFF; 948 abort_fr->flags = cpu_to_le16(0); 949 abort_fr->abort_context = cpu_to_le32(cmd_to_abort->index); 950 abort_fr->abort_mfi_phys_addr_lo = 951 cpu_to_le32(lower_32_bits(cmd_to_abort->frame_phys_addr)); 952 abort_fr->abort_mfi_phys_addr_hi = 953 cpu_to_le32(upper_32_bits(cmd_to_abort->frame_phys_addr)); 954 955 cmd->sync_cmd = 1; 956 cmd->cmd_status = 0xFF; 957 958 instance->instancet->issue_dcmd(instance, cmd); 959 960 /* 961 * Wait for this cmd to complete 962 */ 963 wait_event(instance->abort_cmd_wait_q, cmd->cmd_status != 0xFF); 964 cmd->sync_cmd = 0; 965 966 megasas_return_cmd(instance, cmd); 967 return 0; 968 } 969 970 /** 971 * megasas_make_sgl32 - Prepares 32-bit SGL 972 * @instance: Adapter soft state 973 * @scp: SCSI command from the mid-layer 974 * @mfi_sgl: SGL to be filled in 975 * 976 * If successful, this function returns the number of SG elements. Otherwise, 977 * it returnes -1. 978 */ 979 static int 980 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp, 981 union megasas_sgl *mfi_sgl) 982 { 983 int i; 984 int sge_count; 985 struct scatterlist *os_sgl; 986 987 sge_count = scsi_dma_map(scp); 988 BUG_ON(sge_count < 0); 989 990 if (sge_count) { 991 scsi_for_each_sg(scp, os_sgl, sge_count, i) { 992 mfi_sgl->sge32[i].length = cpu_to_le32(sg_dma_len(os_sgl)); 993 mfi_sgl->sge32[i].phys_addr = cpu_to_le32(sg_dma_address(os_sgl)); 994 } 995 } 996 return sge_count; 997 } 998 999 /** 1000 * megasas_make_sgl64 - Prepares 64-bit SGL 1001 * @instance: Adapter soft state 1002 * @scp: SCSI command from the mid-layer 1003 * @mfi_sgl: SGL to be filled in 1004 * 1005 * If successful, this function returns the number of SG elements. Otherwise, 1006 * it returnes -1. 1007 */ 1008 static int 1009 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp, 1010 union megasas_sgl *mfi_sgl) 1011 { 1012 int i; 1013 int sge_count; 1014 struct scatterlist *os_sgl; 1015 1016 sge_count = scsi_dma_map(scp); 1017 BUG_ON(sge_count < 0); 1018 1019 if (sge_count) { 1020 scsi_for_each_sg(scp, os_sgl, sge_count, i) { 1021 mfi_sgl->sge64[i].length = cpu_to_le32(sg_dma_len(os_sgl)); 1022 mfi_sgl->sge64[i].phys_addr = cpu_to_le64(sg_dma_address(os_sgl)); 1023 } 1024 } 1025 return sge_count; 1026 } 1027 1028 /** 1029 * megasas_make_sgl_skinny - Prepares IEEE SGL 1030 * @instance: Adapter soft state 1031 * @scp: SCSI command from the mid-layer 1032 * @mfi_sgl: SGL to be filled in 1033 * 1034 * If successful, this function returns the number of SG elements. Otherwise, 1035 * it returnes -1. 1036 */ 1037 static int 1038 megasas_make_sgl_skinny(struct megasas_instance *instance, 1039 struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl) 1040 { 1041 int i; 1042 int sge_count; 1043 struct scatterlist *os_sgl; 1044 1045 sge_count = scsi_dma_map(scp); 1046 1047 if (sge_count) { 1048 scsi_for_each_sg(scp, os_sgl, sge_count, i) { 1049 mfi_sgl->sge_skinny[i].length = 1050 cpu_to_le32(sg_dma_len(os_sgl)); 1051 mfi_sgl->sge_skinny[i].phys_addr = 1052 cpu_to_le64(sg_dma_address(os_sgl)); 1053 mfi_sgl->sge_skinny[i].flag = cpu_to_le32(0); 1054 } 1055 } 1056 return sge_count; 1057 } 1058 1059 /** 1060 * megasas_get_frame_count - Computes the number of frames 1061 * @frame_type : type of frame- io or pthru frame 1062 * @sge_count : number of sg elements 1063 * 1064 * Returns the number of frames required for numnber of sge's (sge_count) 1065 */ 1066 1067 static u32 megasas_get_frame_count(struct megasas_instance *instance, 1068 u8 sge_count, u8 frame_type) 1069 { 1070 int num_cnt; 1071 int sge_bytes; 1072 u32 sge_sz; 1073 u32 frame_count=0; 1074 1075 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) : 1076 sizeof(struct megasas_sge32); 1077 1078 if (instance->flag_ieee) { 1079 sge_sz = sizeof(struct megasas_sge_skinny); 1080 } 1081 1082 /* 1083 * Main frame can contain 2 SGEs for 64-bit SGLs and 1084 * 3 SGEs for 32-bit SGLs for ldio & 1085 * 1 SGEs for 64-bit SGLs and 1086 * 2 SGEs for 32-bit SGLs for pthru frame 1087 */ 1088 if (unlikely(frame_type == PTHRU_FRAME)) { 1089 if (instance->flag_ieee == 1) { 1090 num_cnt = sge_count - 1; 1091 } else if (IS_DMA64) 1092 num_cnt = sge_count - 1; 1093 else 1094 num_cnt = sge_count - 2; 1095 } else { 1096 if (instance->flag_ieee == 1) { 1097 num_cnt = sge_count - 1; 1098 } else if (IS_DMA64) 1099 num_cnt = sge_count - 2; 1100 else 1101 num_cnt = sge_count - 3; 1102 } 1103 1104 if(num_cnt>0){ 1105 sge_bytes = sge_sz * num_cnt; 1106 1107 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) + 1108 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ; 1109 } 1110 /* Main frame */ 1111 frame_count +=1; 1112 1113 if (frame_count > 7) 1114 frame_count = 8; 1115 return frame_count; 1116 } 1117 1118 /** 1119 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command 1120 * @instance: Adapter soft state 1121 * @scp: SCSI command 1122 * @cmd: Command to be prepared in 1123 * 1124 * This function prepares CDB commands. These are typcially pass-through 1125 * commands to the devices. 1126 */ 1127 static int 1128 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp, 1129 struct megasas_cmd *cmd) 1130 { 1131 u32 is_logical; 1132 u32 device_id; 1133 u16 flags = 0; 1134 struct megasas_pthru_frame *pthru; 1135 1136 is_logical = MEGASAS_IS_LOGICAL(scp); 1137 device_id = MEGASAS_DEV_INDEX(instance, scp); 1138 pthru = (struct megasas_pthru_frame *)cmd->frame; 1139 1140 if (scp->sc_data_direction == PCI_DMA_TODEVICE) 1141 flags = MFI_FRAME_DIR_WRITE; 1142 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE) 1143 flags = MFI_FRAME_DIR_READ; 1144 else if (scp->sc_data_direction == PCI_DMA_NONE) 1145 flags = MFI_FRAME_DIR_NONE; 1146 1147 if (instance->flag_ieee == 1) { 1148 flags |= MFI_FRAME_IEEE; 1149 } 1150 1151 /* 1152 * Prepare the DCDB frame 1153 */ 1154 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO; 1155 pthru->cmd_status = 0x0; 1156 pthru->scsi_status = 0x0; 1157 pthru->target_id = device_id; 1158 pthru->lun = scp->device->lun; 1159 pthru->cdb_len = scp->cmd_len; 1160 pthru->timeout = 0; 1161 pthru->pad_0 = 0; 1162 pthru->flags = cpu_to_le16(flags); 1163 pthru->data_xfer_len = cpu_to_le32(scsi_bufflen(scp)); 1164 1165 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len); 1166 1167 /* 1168 * If the command is for the tape device, set the 1169 * pthru timeout to the os layer timeout value. 1170 */ 1171 if (scp->device->type == TYPE_TAPE) { 1172 if ((scp->request->timeout / HZ) > 0xFFFF) 1173 pthru->timeout = 0xFFFF; 1174 else 1175 pthru->timeout = cpu_to_le16(scp->request->timeout / HZ); 1176 } 1177 1178 /* 1179 * Construct SGL 1180 */ 1181 if (instance->flag_ieee == 1) { 1182 pthru->flags |= cpu_to_le16(MFI_FRAME_SGL64); 1183 pthru->sge_count = megasas_make_sgl_skinny(instance, scp, 1184 &pthru->sgl); 1185 } else if (IS_DMA64) { 1186 pthru->flags |= cpu_to_le16(MFI_FRAME_SGL64); 1187 pthru->sge_count = megasas_make_sgl64(instance, scp, 1188 &pthru->sgl); 1189 } else 1190 pthru->sge_count = megasas_make_sgl32(instance, scp, 1191 &pthru->sgl); 1192 1193 if (pthru->sge_count > instance->max_num_sge) { 1194 printk(KERN_ERR "megasas: DCDB two many SGE NUM=%x\n", 1195 pthru->sge_count); 1196 return 0; 1197 } 1198 1199 /* 1200 * Sense info specific 1201 */ 1202 pthru->sense_len = SCSI_SENSE_BUFFERSIZE; 1203 pthru->sense_buf_phys_addr_hi = 1204 cpu_to_le32(upper_32_bits(cmd->sense_phys_addr)); 1205 pthru->sense_buf_phys_addr_lo = 1206 cpu_to_le32(lower_32_bits(cmd->sense_phys_addr)); 1207 1208 /* 1209 * Compute the total number of frames this command consumes. FW uses 1210 * this number to pull sufficient number of frames from host memory. 1211 */ 1212 cmd->frame_count = megasas_get_frame_count(instance, pthru->sge_count, 1213 PTHRU_FRAME); 1214 1215 return cmd->frame_count; 1216 } 1217 1218 /** 1219 * megasas_build_ldio - Prepares IOs to logical devices 1220 * @instance: Adapter soft state 1221 * @scp: SCSI command 1222 * @cmd: Command to be prepared 1223 * 1224 * Frames (and accompanying SGLs) for regular SCSI IOs use this function. 1225 */ 1226 static int 1227 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp, 1228 struct megasas_cmd *cmd) 1229 { 1230 u32 device_id; 1231 u8 sc = scp->cmnd[0]; 1232 u16 flags = 0; 1233 struct megasas_io_frame *ldio; 1234 1235 device_id = MEGASAS_DEV_INDEX(instance, scp); 1236 ldio = (struct megasas_io_frame *)cmd->frame; 1237 1238 if (scp->sc_data_direction == PCI_DMA_TODEVICE) 1239 flags = MFI_FRAME_DIR_WRITE; 1240 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE) 1241 flags = MFI_FRAME_DIR_READ; 1242 1243 if (instance->flag_ieee == 1) { 1244 flags |= MFI_FRAME_IEEE; 1245 } 1246 1247 /* 1248 * Prepare the Logical IO frame: 2nd bit is zero for all read cmds 1249 */ 1250 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ; 1251 ldio->cmd_status = 0x0; 1252 ldio->scsi_status = 0x0; 1253 ldio->target_id = device_id; 1254 ldio->timeout = 0; 1255 ldio->reserved_0 = 0; 1256 ldio->pad_0 = 0; 1257 ldio->flags = cpu_to_le16(flags); 1258 ldio->start_lba_hi = 0; 1259 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0; 1260 1261 /* 1262 * 6-byte READ(0x08) or WRITE(0x0A) cdb 1263 */ 1264 if (scp->cmd_len == 6) { 1265 ldio->lba_count = cpu_to_le32((u32) scp->cmnd[4]); 1266 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[1] << 16) | 1267 ((u32) scp->cmnd[2] << 8) | 1268 (u32) scp->cmnd[3]); 1269 1270 ldio->start_lba_lo &= cpu_to_le32(0x1FFFFF); 1271 } 1272 1273 /* 1274 * 10-byte READ(0x28) or WRITE(0x2A) cdb 1275 */ 1276 else if (scp->cmd_len == 10) { 1277 ldio->lba_count = cpu_to_le32((u32) scp->cmnd[8] | 1278 ((u32) scp->cmnd[7] << 8)); 1279 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[2] << 24) | 1280 ((u32) scp->cmnd[3] << 16) | 1281 ((u32) scp->cmnd[4] << 8) | 1282 (u32) scp->cmnd[5]); 1283 } 1284 1285 /* 1286 * 12-byte READ(0xA8) or WRITE(0xAA) cdb 1287 */ 1288 else if (scp->cmd_len == 12) { 1289 ldio->lba_count = cpu_to_le32(((u32) scp->cmnd[6] << 24) | 1290 ((u32) scp->cmnd[7] << 16) | 1291 ((u32) scp->cmnd[8] << 8) | 1292 (u32) scp->cmnd[9]); 1293 1294 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[2] << 24) | 1295 ((u32) scp->cmnd[3] << 16) | 1296 ((u32) scp->cmnd[4] << 8) | 1297 (u32) scp->cmnd[5]); 1298 } 1299 1300 /* 1301 * 16-byte READ(0x88) or WRITE(0x8A) cdb 1302 */ 1303 else if (scp->cmd_len == 16) { 1304 ldio->lba_count = cpu_to_le32(((u32) scp->cmnd[10] << 24) | 1305 ((u32) scp->cmnd[11] << 16) | 1306 ((u32) scp->cmnd[12] << 8) | 1307 (u32) scp->cmnd[13]); 1308 1309 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[6] << 24) | 1310 ((u32) scp->cmnd[7] << 16) | 1311 ((u32) scp->cmnd[8] << 8) | 1312 (u32) scp->cmnd[9]); 1313 1314 ldio->start_lba_hi = cpu_to_le32(((u32) scp->cmnd[2] << 24) | 1315 ((u32) scp->cmnd[3] << 16) | 1316 ((u32) scp->cmnd[4] << 8) | 1317 (u32) scp->cmnd[5]); 1318 1319 } 1320 1321 /* 1322 * Construct SGL 1323 */ 1324 if (instance->flag_ieee) { 1325 ldio->flags |= cpu_to_le16(MFI_FRAME_SGL64); 1326 ldio->sge_count = megasas_make_sgl_skinny(instance, scp, 1327 &ldio->sgl); 1328 } else if (IS_DMA64) { 1329 ldio->flags |= cpu_to_le16(MFI_FRAME_SGL64); 1330 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl); 1331 } else 1332 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl); 1333 1334 if (ldio->sge_count > instance->max_num_sge) { 1335 printk(KERN_ERR "megasas: build_ld_io: sge_count = %x\n", 1336 ldio->sge_count); 1337 return 0; 1338 } 1339 1340 /* 1341 * Sense info specific 1342 */ 1343 ldio->sense_len = SCSI_SENSE_BUFFERSIZE; 1344 ldio->sense_buf_phys_addr_hi = 0; 1345 ldio->sense_buf_phys_addr_lo = cpu_to_le32(cmd->sense_phys_addr); 1346 1347 /* 1348 * Compute the total number of frames this command consumes. FW uses 1349 * this number to pull sufficient number of frames from host memory. 1350 */ 1351 cmd->frame_count = megasas_get_frame_count(instance, 1352 ldio->sge_count, IO_FRAME); 1353 1354 return cmd->frame_count; 1355 } 1356 1357 /** 1358 * megasas_is_ldio - Checks if the cmd is for logical drive 1359 * @scmd: SCSI command 1360 * 1361 * Called by megasas_queue_command to find out if the command to be queued 1362 * is a logical drive command 1363 */ 1364 inline int megasas_is_ldio(struct scsi_cmnd *cmd) 1365 { 1366 if (!MEGASAS_IS_LOGICAL(cmd)) 1367 return 0; 1368 switch (cmd->cmnd[0]) { 1369 case READ_10: 1370 case WRITE_10: 1371 case READ_12: 1372 case WRITE_12: 1373 case READ_6: 1374 case WRITE_6: 1375 case READ_16: 1376 case WRITE_16: 1377 return 1; 1378 default: 1379 return 0; 1380 } 1381 } 1382 1383 /** 1384 * megasas_dump_pending_frames - Dumps the frame address of all pending cmds 1385 * in FW 1386 * @instance: Adapter soft state 1387 */ 1388 static inline void 1389 megasas_dump_pending_frames(struct megasas_instance *instance) 1390 { 1391 struct megasas_cmd *cmd; 1392 int i,n; 1393 union megasas_sgl *mfi_sgl; 1394 struct megasas_io_frame *ldio; 1395 struct megasas_pthru_frame *pthru; 1396 u32 sgcount; 1397 u32 max_cmd = instance->max_fw_cmds; 1398 1399 printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no); 1400 printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding)); 1401 if (IS_DMA64) 1402 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no); 1403 else 1404 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no); 1405 1406 printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no); 1407 for (i = 0; i < max_cmd; i++) { 1408 cmd = instance->cmd_list[i]; 1409 if(!cmd->scmd) 1410 continue; 1411 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr); 1412 if (megasas_is_ldio(cmd->scmd)){ 1413 ldio = (struct megasas_io_frame *)cmd->frame; 1414 mfi_sgl = &ldio->sgl; 1415 sgcount = ldio->sge_count; 1416 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x," 1417 " lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n", 1418 instance->host->host_no, cmd->frame_count, ldio->cmd, ldio->target_id, 1419 le32_to_cpu(ldio->start_lba_lo), le32_to_cpu(ldio->start_lba_hi), 1420 le32_to_cpu(ldio->sense_buf_phys_addr_lo), sgcount); 1421 } 1422 else { 1423 pthru = (struct megasas_pthru_frame *) cmd->frame; 1424 mfi_sgl = &pthru->sgl; 1425 sgcount = pthru->sge_count; 1426 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, " 1427 "lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n", 1428 instance->host->host_no, cmd->frame_count, pthru->cmd, pthru->target_id, 1429 pthru->lun, pthru->cdb_len, le32_to_cpu(pthru->data_xfer_len), 1430 le32_to_cpu(pthru->sense_buf_phys_addr_lo), sgcount); 1431 } 1432 if(megasas_dbg_lvl & MEGASAS_DBG_LVL){ 1433 for (n = 0; n < sgcount; n++){ 1434 if (IS_DMA64) 1435 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%llx ", 1436 le32_to_cpu(mfi_sgl->sge64[n].length), 1437 le64_to_cpu(mfi_sgl->sge64[n].phys_addr)); 1438 else 1439 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ", 1440 le32_to_cpu(mfi_sgl->sge32[n].length), 1441 le32_to_cpu(mfi_sgl->sge32[n].phys_addr)); 1442 } 1443 } 1444 printk(KERN_ERR "\n"); 1445 } /*for max_cmd*/ 1446 printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no); 1447 for (i = 0; i < max_cmd; i++) { 1448 1449 cmd = instance->cmd_list[i]; 1450 1451 if(cmd->sync_cmd == 1){ 1452 printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr); 1453 } 1454 } 1455 printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no); 1456 } 1457 1458 u32 1459 megasas_build_and_issue_cmd(struct megasas_instance *instance, 1460 struct scsi_cmnd *scmd) 1461 { 1462 struct megasas_cmd *cmd; 1463 u32 frame_count; 1464 1465 cmd = megasas_get_cmd(instance); 1466 if (!cmd) 1467 return SCSI_MLQUEUE_HOST_BUSY; 1468 1469 /* 1470 * Logical drive command 1471 */ 1472 if (megasas_is_ldio(scmd)) 1473 frame_count = megasas_build_ldio(instance, scmd, cmd); 1474 else 1475 frame_count = megasas_build_dcdb(instance, scmd, cmd); 1476 1477 if (!frame_count) 1478 goto out_return_cmd; 1479 1480 cmd->scmd = scmd; 1481 scmd->SCp.ptr = (char *)cmd; 1482 1483 /* 1484 * Issue the command to the FW 1485 */ 1486 atomic_inc(&instance->fw_outstanding); 1487 1488 instance->instancet->fire_cmd(instance, cmd->frame_phys_addr, 1489 cmd->frame_count-1, instance->reg_set); 1490 1491 return 0; 1492 out_return_cmd: 1493 megasas_return_cmd(instance, cmd); 1494 return 1; 1495 } 1496 1497 1498 /** 1499 * megasas_queue_command - Queue entry point 1500 * @scmd: SCSI command to be queued 1501 * @done: Callback entry point 1502 */ 1503 static int 1504 megasas_queue_command_lck(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *)) 1505 { 1506 struct megasas_instance *instance; 1507 unsigned long flags; 1508 1509 instance = (struct megasas_instance *) 1510 scmd->device->host->hostdata; 1511 1512 if (instance->issuepend_done == 0) 1513 return SCSI_MLQUEUE_HOST_BUSY; 1514 1515 spin_lock_irqsave(&instance->hba_lock, flags); 1516 1517 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { 1518 spin_unlock_irqrestore(&instance->hba_lock, flags); 1519 scmd->result = DID_ERROR << 16; 1520 done(scmd); 1521 return 0; 1522 } 1523 1524 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { 1525 spin_unlock_irqrestore(&instance->hba_lock, flags); 1526 return SCSI_MLQUEUE_HOST_BUSY; 1527 } 1528 1529 spin_unlock_irqrestore(&instance->hba_lock, flags); 1530 1531 scmd->scsi_done = done; 1532 scmd->result = 0; 1533 1534 if (MEGASAS_IS_LOGICAL(scmd) && 1535 (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) { 1536 scmd->result = DID_BAD_TARGET << 16; 1537 goto out_done; 1538 } 1539 1540 switch (scmd->cmnd[0]) { 1541 case SYNCHRONIZE_CACHE: 1542 /* 1543 * FW takes care of flush cache on its own 1544 * No need to send it down 1545 */ 1546 scmd->result = DID_OK << 16; 1547 goto out_done; 1548 default: 1549 break; 1550 } 1551 1552 if (instance->instancet->build_and_issue_cmd(instance, scmd)) { 1553 printk(KERN_ERR "megasas: Err returned from build_and_issue_cmd\n"); 1554 return SCSI_MLQUEUE_HOST_BUSY; 1555 } 1556 1557 return 0; 1558 1559 out_done: 1560 done(scmd); 1561 return 0; 1562 } 1563 1564 static DEF_SCSI_QCMD(megasas_queue_command) 1565 1566 static struct megasas_instance *megasas_lookup_instance(u16 host_no) 1567 { 1568 int i; 1569 1570 for (i = 0; i < megasas_mgmt_info.max_index; i++) { 1571 1572 if ((megasas_mgmt_info.instance[i]) && 1573 (megasas_mgmt_info.instance[i]->host->host_no == host_no)) 1574 return megasas_mgmt_info.instance[i]; 1575 } 1576 1577 return NULL; 1578 } 1579 1580 static int megasas_slave_configure(struct scsi_device *sdev) 1581 { 1582 u16 pd_index = 0; 1583 struct megasas_instance *instance ; 1584 1585 instance = megasas_lookup_instance(sdev->host->host_no); 1586 1587 /* 1588 * Don't export physical disk devices to the disk driver. 1589 * 1590 * FIXME: Currently we don't export them to the midlayer at all. 1591 * That will be fixed once LSI engineers have audited the 1592 * firmware for possible issues. 1593 */ 1594 if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && 1595 sdev->type == TYPE_DISK) { 1596 pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) + 1597 sdev->id; 1598 if (instance->pd_list[pd_index].driveState == 1599 MR_PD_STATE_SYSTEM) { 1600 blk_queue_rq_timeout(sdev->request_queue, 1601 MEGASAS_DEFAULT_CMD_TIMEOUT * HZ); 1602 return 0; 1603 } 1604 return -ENXIO; 1605 } 1606 1607 /* 1608 * The RAID firmware may require extended timeouts. 1609 */ 1610 blk_queue_rq_timeout(sdev->request_queue, 1611 MEGASAS_DEFAULT_CMD_TIMEOUT * HZ); 1612 return 0; 1613 } 1614 1615 static int megasas_slave_alloc(struct scsi_device *sdev) 1616 { 1617 u16 pd_index = 0; 1618 struct megasas_instance *instance ; 1619 instance = megasas_lookup_instance(sdev->host->host_no); 1620 if ((sdev->channel < MEGASAS_MAX_PD_CHANNELS) && 1621 (sdev->type == TYPE_DISK)) { 1622 /* 1623 * Open the OS scan to the SYSTEM PD 1624 */ 1625 pd_index = 1626 (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) + 1627 sdev->id; 1628 if ((instance->pd_list[pd_index].driveState == 1629 MR_PD_STATE_SYSTEM) && 1630 (instance->pd_list[pd_index].driveType == 1631 TYPE_DISK)) { 1632 return 0; 1633 } 1634 return -ENXIO; 1635 } 1636 return 0; 1637 } 1638 1639 void megaraid_sas_kill_hba(struct megasas_instance *instance) 1640 { 1641 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 1642 (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) || 1643 (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 1644 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 1645 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { 1646 writel(MFI_STOP_ADP, &instance->reg_set->doorbell); 1647 } else { 1648 writel(MFI_STOP_ADP, &instance->reg_set->inbound_doorbell); 1649 } 1650 } 1651 1652 /** 1653 * megasas_check_and_restore_queue_depth - Check if queue depth needs to be 1654 * restored to max value 1655 * @instance: Adapter soft state 1656 * 1657 */ 1658 void 1659 megasas_check_and_restore_queue_depth(struct megasas_instance *instance) 1660 { 1661 unsigned long flags; 1662 if (instance->flag & MEGASAS_FW_BUSY 1663 && time_after(jiffies, instance->last_time + 5 * HZ) 1664 && atomic_read(&instance->fw_outstanding) < 1665 instance->throttlequeuedepth + 1) { 1666 1667 spin_lock_irqsave(instance->host->host_lock, flags); 1668 instance->flag &= ~MEGASAS_FW_BUSY; 1669 if (instance->is_imr) { 1670 instance->host->can_queue = 1671 instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS; 1672 } else 1673 instance->host->can_queue = 1674 instance->max_fw_cmds - MEGASAS_INT_CMDS; 1675 1676 spin_unlock_irqrestore(instance->host->host_lock, flags); 1677 } 1678 } 1679 1680 /** 1681 * megasas_complete_cmd_dpc - Returns FW's controller structure 1682 * @instance_addr: Address of adapter soft state 1683 * 1684 * Tasklet to complete cmds 1685 */ 1686 static void megasas_complete_cmd_dpc(unsigned long instance_addr) 1687 { 1688 u32 producer; 1689 u32 consumer; 1690 u32 context; 1691 struct megasas_cmd *cmd; 1692 struct megasas_instance *instance = 1693 (struct megasas_instance *)instance_addr; 1694 unsigned long flags; 1695 1696 /* If we have already declared adapter dead, donot complete cmds */ 1697 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR ) 1698 return; 1699 1700 spin_lock_irqsave(&instance->completion_lock, flags); 1701 1702 producer = le32_to_cpu(*instance->producer); 1703 consumer = le32_to_cpu(*instance->consumer); 1704 1705 while (consumer != producer) { 1706 context = le32_to_cpu(instance->reply_queue[consumer]); 1707 if (context >= instance->max_fw_cmds) { 1708 printk(KERN_ERR "Unexpected context value %x\n", 1709 context); 1710 BUG(); 1711 } 1712 1713 cmd = instance->cmd_list[context]; 1714 1715 megasas_complete_cmd(instance, cmd, DID_OK); 1716 1717 consumer++; 1718 if (consumer == (instance->max_fw_cmds + 1)) { 1719 consumer = 0; 1720 } 1721 } 1722 1723 *instance->consumer = cpu_to_le32(producer); 1724 1725 spin_unlock_irqrestore(&instance->completion_lock, flags); 1726 1727 /* 1728 * Check if we can restore can_queue 1729 */ 1730 megasas_check_and_restore_queue_depth(instance); 1731 } 1732 1733 static void 1734 megasas_internal_reset_defer_cmds(struct megasas_instance *instance); 1735 1736 static void 1737 process_fw_state_change_wq(struct work_struct *work); 1738 1739 void megasas_do_ocr(struct megasas_instance *instance) 1740 { 1741 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) || 1742 (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) || 1743 (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)) { 1744 *instance->consumer = cpu_to_le32(MEGASAS_ADPRESET_INPROG_SIGN); 1745 } 1746 instance->instancet->disable_intr(instance); 1747 instance->adprecovery = MEGASAS_ADPRESET_SM_INFAULT; 1748 instance->issuepend_done = 0; 1749 1750 atomic_set(&instance->fw_outstanding, 0); 1751 megasas_internal_reset_defer_cmds(instance); 1752 process_fw_state_change_wq(&instance->work_init); 1753 } 1754 1755 /** 1756 * megasas_wait_for_outstanding - Wait for all outstanding cmds 1757 * @instance: Adapter soft state 1758 * 1759 * This function waits for up to MEGASAS_RESET_WAIT_TIME seconds for FW to 1760 * complete all its outstanding commands. Returns error if one or more IOs 1761 * are pending after this time period. It also marks the controller dead. 1762 */ 1763 static int megasas_wait_for_outstanding(struct megasas_instance *instance) 1764 { 1765 int i; 1766 u32 reset_index; 1767 u32 wait_time = MEGASAS_RESET_WAIT_TIME; 1768 u8 adprecovery; 1769 unsigned long flags; 1770 struct list_head clist_local; 1771 struct megasas_cmd *reset_cmd; 1772 u32 fw_state; 1773 u8 kill_adapter_flag; 1774 1775 spin_lock_irqsave(&instance->hba_lock, flags); 1776 adprecovery = instance->adprecovery; 1777 spin_unlock_irqrestore(&instance->hba_lock, flags); 1778 1779 if (adprecovery != MEGASAS_HBA_OPERATIONAL) { 1780 1781 INIT_LIST_HEAD(&clist_local); 1782 spin_lock_irqsave(&instance->hba_lock, flags); 1783 list_splice_init(&instance->internal_reset_pending_q, 1784 &clist_local); 1785 spin_unlock_irqrestore(&instance->hba_lock, flags); 1786 1787 printk(KERN_NOTICE "megasas: HBA reset wait ...\n"); 1788 for (i = 0; i < wait_time; i++) { 1789 msleep(1000); 1790 spin_lock_irqsave(&instance->hba_lock, flags); 1791 adprecovery = instance->adprecovery; 1792 spin_unlock_irqrestore(&instance->hba_lock, flags); 1793 if (adprecovery == MEGASAS_HBA_OPERATIONAL) 1794 break; 1795 } 1796 1797 if (adprecovery != MEGASAS_HBA_OPERATIONAL) { 1798 printk(KERN_NOTICE "megasas: reset: Stopping HBA.\n"); 1799 spin_lock_irqsave(&instance->hba_lock, flags); 1800 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; 1801 spin_unlock_irqrestore(&instance->hba_lock, flags); 1802 return FAILED; 1803 } 1804 1805 reset_index = 0; 1806 while (!list_empty(&clist_local)) { 1807 reset_cmd = list_entry((&clist_local)->next, 1808 struct megasas_cmd, list); 1809 list_del_init(&reset_cmd->list); 1810 if (reset_cmd->scmd) { 1811 reset_cmd->scmd->result = DID_RESET << 16; 1812 printk(KERN_NOTICE "%d:%p reset [%02x]\n", 1813 reset_index, reset_cmd, 1814 reset_cmd->scmd->cmnd[0]); 1815 1816 reset_cmd->scmd->scsi_done(reset_cmd->scmd); 1817 megasas_return_cmd(instance, reset_cmd); 1818 } else if (reset_cmd->sync_cmd) { 1819 printk(KERN_NOTICE "megasas:%p synch cmds" 1820 "reset queue\n", 1821 reset_cmd); 1822 1823 reset_cmd->cmd_status = ENODATA; 1824 instance->instancet->fire_cmd(instance, 1825 reset_cmd->frame_phys_addr, 1826 0, instance->reg_set); 1827 } else { 1828 printk(KERN_NOTICE "megasas: %p unexpected" 1829 "cmds lst\n", 1830 reset_cmd); 1831 } 1832 reset_index++; 1833 } 1834 1835 return SUCCESS; 1836 } 1837 1838 for (i = 0; i < resetwaittime; i++) { 1839 1840 int outstanding = atomic_read(&instance->fw_outstanding); 1841 1842 if (!outstanding) 1843 break; 1844 1845 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { 1846 printk(KERN_NOTICE "megasas: [%2d]waiting for %d " 1847 "commands to complete\n",i,outstanding); 1848 /* 1849 * Call cmd completion routine. Cmd to be 1850 * be completed directly without depending on isr. 1851 */ 1852 megasas_complete_cmd_dpc((unsigned long)instance); 1853 } 1854 1855 msleep(1000); 1856 } 1857 1858 i = 0; 1859 kill_adapter_flag = 0; 1860 do { 1861 fw_state = instance->instancet->read_fw_status_reg( 1862 instance->reg_set) & MFI_STATE_MASK; 1863 if ((fw_state == MFI_STATE_FAULT) && 1864 (instance->disableOnlineCtrlReset == 0)) { 1865 if (i == 3) { 1866 kill_adapter_flag = 2; 1867 break; 1868 } 1869 megasas_do_ocr(instance); 1870 kill_adapter_flag = 1; 1871 1872 /* wait for 1 secs to let FW finish the pending cmds */ 1873 msleep(1000); 1874 } 1875 i++; 1876 } while (i <= 3); 1877 1878 if (atomic_read(&instance->fw_outstanding) && 1879 !kill_adapter_flag) { 1880 if (instance->disableOnlineCtrlReset == 0) { 1881 1882 megasas_do_ocr(instance); 1883 1884 /* wait for 5 secs to let FW finish the pending cmds */ 1885 for (i = 0; i < wait_time; i++) { 1886 int outstanding = 1887 atomic_read(&instance->fw_outstanding); 1888 if (!outstanding) 1889 return SUCCESS; 1890 msleep(1000); 1891 } 1892 } 1893 } 1894 1895 if (atomic_read(&instance->fw_outstanding) || 1896 (kill_adapter_flag == 2)) { 1897 printk(KERN_NOTICE "megaraid_sas: pending cmds after reset\n"); 1898 /* 1899 * Send signal to FW to stop processing any pending cmds. 1900 * The controller will be taken offline by the OS now. 1901 */ 1902 if ((instance->pdev->device == 1903 PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 1904 (instance->pdev->device == 1905 PCI_DEVICE_ID_LSI_SAS0071SKINNY)) { 1906 writel(MFI_STOP_ADP, 1907 &instance->reg_set->doorbell); 1908 } else { 1909 writel(MFI_STOP_ADP, 1910 &instance->reg_set->inbound_doorbell); 1911 } 1912 megasas_dump_pending_frames(instance); 1913 spin_lock_irqsave(&instance->hba_lock, flags); 1914 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; 1915 spin_unlock_irqrestore(&instance->hba_lock, flags); 1916 return FAILED; 1917 } 1918 1919 printk(KERN_NOTICE "megaraid_sas: no pending cmds after reset\n"); 1920 1921 return SUCCESS; 1922 } 1923 1924 /** 1925 * megasas_generic_reset - Generic reset routine 1926 * @scmd: Mid-layer SCSI command 1927 * 1928 * This routine implements a generic reset handler for device, bus and host 1929 * reset requests. Device, bus and host specific reset handlers can use this 1930 * function after they do their specific tasks. 1931 */ 1932 static int megasas_generic_reset(struct scsi_cmnd *scmd) 1933 { 1934 int ret_val; 1935 struct megasas_instance *instance; 1936 1937 instance = (struct megasas_instance *)scmd->device->host->hostdata; 1938 1939 scmd_printk(KERN_NOTICE, scmd, "megasas: RESET cmd=%x retries=%x\n", 1940 scmd->cmnd[0], scmd->retries); 1941 1942 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { 1943 printk(KERN_ERR "megasas: cannot recover from previous reset " 1944 "failures\n"); 1945 return FAILED; 1946 } 1947 1948 ret_val = megasas_wait_for_outstanding(instance); 1949 if (ret_val == SUCCESS) 1950 printk(KERN_NOTICE "megasas: reset successful \n"); 1951 else 1952 printk(KERN_ERR "megasas: failed to do reset\n"); 1953 1954 return ret_val; 1955 } 1956 1957 /** 1958 * megasas_reset_timer - quiesce the adapter if required 1959 * @scmd: scsi cmnd 1960 * 1961 * Sets the FW busy flag and reduces the host->can_queue if the 1962 * cmd has not been completed within the timeout period. 1963 */ 1964 static enum 1965 blk_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd) 1966 { 1967 struct megasas_instance *instance; 1968 unsigned long flags; 1969 1970 if (time_after(jiffies, scmd->jiffies_at_alloc + 1971 (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) { 1972 return BLK_EH_NOT_HANDLED; 1973 } 1974 1975 instance = (struct megasas_instance *)scmd->device->host->hostdata; 1976 if (!(instance->flag & MEGASAS_FW_BUSY)) { 1977 /* FW is busy, throttle IO */ 1978 spin_lock_irqsave(instance->host->host_lock, flags); 1979 1980 instance->host->can_queue = instance->throttlequeuedepth; 1981 instance->last_time = jiffies; 1982 instance->flag |= MEGASAS_FW_BUSY; 1983 1984 spin_unlock_irqrestore(instance->host->host_lock, flags); 1985 } 1986 return BLK_EH_RESET_TIMER; 1987 } 1988 1989 /** 1990 * megasas_reset_device - Device reset handler entry point 1991 */ 1992 static int megasas_reset_device(struct scsi_cmnd *scmd) 1993 { 1994 int ret; 1995 1996 /* 1997 * First wait for all commands to complete 1998 */ 1999 ret = megasas_generic_reset(scmd); 2000 2001 return ret; 2002 } 2003 2004 /** 2005 * megasas_reset_bus_host - Bus & host reset handler entry point 2006 */ 2007 static int megasas_reset_bus_host(struct scsi_cmnd *scmd) 2008 { 2009 int ret; 2010 struct megasas_instance *instance; 2011 instance = (struct megasas_instance *)scmd->device->host->hostdata; 2012 2013 /* 2014 * First wait for all commands to complete 2015 */ 2016 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 2017 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 2018 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) 2019 ret = megasas_reset_fusion(scmd->device->host); 2020 else 2021 ret = megasas_generic_reset(scmd); 2022 2023 return ret; 2024 } 2025 2026 /** 2027 * megasas_bios_param - Returns disk geometry for a disk 2028 * @sdev: device handle 2029 * @bdev: block device 2030 * @capacity: drive capacity 2031 * @geom: geometry parameters 2032 */ 2033 static int 2034 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev, 2035 sector_t capacity, int geom[]) 2036 { 2037 int heads; 2038 int sectors; 2039 sector_t cylinders; 2040 unsigned long tmp; 2041 /* Default heads (64) & sectors (32) */ 2042 heads = 64; 2043 sectors = 32; 2044 2045 tmp = heads * sectors; 2046 cylinders = capacity; 2047 2048 sector_div(cylinders, tmp); 2049 2050 /* 2051 * Handle extended translation size for logical drives > 1Gb 2052 */ 2053 2054 if (capacity >= 0x200000) { 2055 heads = 255; 2056 sectors = 63; 2057 tmp = heads*sectors; 2058 cylinders = capacity; 2059 sector_div(cylinders, tmp); 2060 } 2061 2062 geom[0] = heads; 2063 geom[1] = sectors; 2064 geom[2] = cylinders; 2065 2066 return 0; 2067 } 2068 2069 static void megasas_aen_polling(struct work_struct *work); 2070 2071 /** 2072 * megasas_service_aen - Processes an event notification 2073 * @instance: Adapter soft state 2074 * @cmd: AEN command completed by the ISR 2075 * 2076 * For AEN, driver sends a command down to FW that is held by the FW till an 2077 * event occurs. When an event of interest occurs, FW completes the command 2078 * that it was previously holding. 2079 * 2080 * This routines sends SIGIO signal to processes that have registered with the 2081 * driver for AEN. 2082 */ 2083 static void 2084 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd) 2085 { 2086 unsigned long flags; 2087 /* 2088 * Don't signal app if it is just an aborted previously registered aen 2089 */ 2090 if ((!cmd->abort_aen) && (instance->unload == 0)) { 2091 spin_lock_irqsave(&poll_aen_lock, flags); 2092 megasas_poll_wait_aen = 1; 2093 spin_unlock_irqrestore(&poll_aen_lock, flags); 2094 wake_up(&megasas_poll_wait); 2095 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN); 2096 } 2097 else 2098 cmd->abort_aen = 0; 2099 2100 instance->aen_cmd = NULL; 2101 megasas_return_cmd(instance, cmd); 2102 2103 if ((instance->unload == 0) && 2104 ((instance->issuepend_done == 1))) { 2105 struct megasas_aen_event *ev; 2106 ev = kzalloc(sizeof(*ev), GFP_ATOMIC); 2107 if (!ev) { 2108 printk(KERN_ERR "megasas_service_aen: out of memory\n"); 2109 } else { 2110 ev->instance = instance; 2111 instance->ev = ev; 2112 INIT_DELAYED_WORK(&ev->hotplug_work, 2113 megasas_aen_polling); 2114 schedule_delayed_work(&ev->hotplug_work, 0); 2115 } 2116 } 2117 } 2118 2119 static int megasas_change_queue_depth(struct scsi_device *sdev, 2120 int queue_depth, int reason) 2121 { 2122 if (reason != SCSI_QDEPTH_DEFAULT) 2123 return -EOPNOTSUPP; 2124 2125 if (queue_depth > sdev->host->can_queue) 2126 queue_depth = sdev->host->can_queue; 2127 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), 2128 queue_depth); 2129 2130 return queue_depth; 2131 } 2132 2133 /* 2134 * Scsi host template for megaraid_sas driver 2135 */ 2136 static struct scsi_host_template megasas_template = { 2137 2138 .module = THIS_MODULE, 2139 .name = "LSI SAS based MegaRAID driver", 2140 .proc_name = "megaraid_sas", 2141 .slave_configure = megasas_slave_configure, 2142 .slave_alloc = megasas_slave_alloc, 2143 .queuecommand = megasas_queue_command, 2144 .eh_device_reset_handler = megasas_reset_device, 2145 .eh_bus_reset_handler = megasas_reset_bus_host, 2146 .eh_host_reset_handler = megasas_reset_bus_host, 2147 .eh_timed_out = megasas_reset_timer, 2148 .bios_param = megasas_bios_param, 2149 .use_clustering = ENABLE_CLUSTERING, 2150 .change_queue_depth = megasas_change_queue_depth, 2151 }; 2152 2153 /** 2154 * megasas_complete_int_cmd - Completes an internal command 2155 * @instance: Adapter soft state 2156 * @cmd: Command to be completed 2157 * 2158 * The megasas_issue_blocked_cmd() function waits for a command to complete 2159 * after it issues a command. This function wakes up that waiting routine by 2160 * calling wake_up() on the wait queue. 2161 */ 2162 static void 2163 megasas_complete_int_cmd(struct megasas_instance *instance, 2164 struct megasas_cmd *cmd) 2165 { 2166 cmd->cmd_status = cmd->frame->io.cmd_status; 2167 2168 if (cmd->cmd_status == ENODATA) { 2169 cmd->cmd_status = 0; 2170 } 2171 wake_up(&instance->int_cmd_wait_q); 2172 } 2173 2174 /** 2175 * megasas_complete_abort - Completes aborting a command 2176 * @instance: Adapter soft state 2177 * @cmd: Cmd that was issued to abort another cmd 2178 * 2179 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q 2180 * after it issues an abort on a previously issued command. This function 2181 * wakes up all functions waiting on the same wait queue. 2182 */ 2183 static void 2184 megasas_complete_abort(struct megasas_instance *instance, 2185 struct megasas_cmd *cmd) 2186 { 2187 if (cmd->sync_cmd) { 2188 cmd->sync_cmd = 0; 2189 cmd->cmd_status = 0; 2190 wake_up(&instance->abort_cmd_wait_q); 2191 } 2192 2193 return; 2194 } 2195 2196 /** 2197 * megasas_complete_cmd - Completes a command 2198 * @instance: Adapter soft state 2199 * @cmd: Command to be completed 2200 * @alt_status: If non-zero, use this value as status to 2201 * SCSI mid-layer instead of the value returned 2202 * by the FW. This should be used if caller wants 2203 * an alternate status (as in the case of aborted 2204 * commands) 2205 */ 2206 void 2207 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd, 2208 u8 alt_status) 2209 { 2210 int exception = 0; 2211 struct megasas_header *hdr = &cmd->frame->hdr; 2212 unsigned long flags; 2213 struct fusion_context *fusion = instance->ctrl_context; 2214 u32 opcode; 2215 2216 /* flag for the retry reset */ 2217 cmd->retry_for_fw_reset = 0; 2218 2219 if (cmd->scmd) 2220 cmd->scmd->SCp.ptr = NULL; 2221 2222 switch (hdr->cmd) { 2223 case MFI_CMD_INVALID: 2224 /* Some older 1068 controller FW may keep a pended 2225 MR_DCMD_CTRL_EVENT_GET_INFO left over from the main kernel 2226 when booting the kdump kernel. Ignore this command to 2227 prevent a kernel panic on shutdown of the kdump kernel. */ 2228 printk(KERN_WARNING "megaraid_sas: MFI_CMD_INVALID command " 2229 "completed.\n"); 2230 printk(KERN_WARNING "megaraid_sas: If you have a controller " 2231 "other than PERC5, please upgrade your firmware.\n"); 2232 break; 2233 case MFI_CMD_PD_SCSI_IO: 2234 case MFI_CMD_LD_SCSI_IO: 2235 2236 /* 2237 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been 2238 * issued either through an IO path or an IOCTL path. If it 2239 * was via IOCTL, we will send it to internal completion. 2240 */ 2241 if (cmd->sync_cmd) { 2242 cmd->sync_cmd = 0; 2243 megasas_complete_int_cmd(instance, cmd); 2244 break; 2245 } 2246 2247 case MFI_CMD_LD_READ: 2248 case MFI_CMD_LD_WRITE: 2249 2250 if (alt_status) { 2251 cmd->scmd->result = alt_status << 16; 2252 exception = 1; 2253 } 2254 2255 if (exception) { 2256 2257 atomic_dec(&instance->fw_outstanding); 2258 2259 scsi_dma_unmap(cmd->scmd); 2260 cmd->scmd->scsi_done(cmd->scmd); 2261 megasas_return_cmd(instance, cmd); 2262 2263 break; 2264 } 2265 2266 switch (hdr->cmd_status) { 2267 2268 case MFI_STAT_OK: 2269 cmd->scmd->result = DID_OK << 16; 2270 break; 2271 2272 case MFI_STAT_SCSI_IO_FAILED: 2273 case MFI_STAT_LD_INIT_IN_PROGRESS: 2274 cmd->scmd->result = 2275 (DID_ERROR << 16) | hdr->scsi_status; 2276 break; 2277 2278 case MFI_STAT_SCSI_DONE_WITH_ERROR: 2279 2280 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status; 2281 2282 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) { 2283 memset(cmd->scmd->sense_buffer, 0, 2284 SCSI_SENSE_BUFFERSIZE); 2285 memcpy(cmd->scmd->sense_buffer, cmd->sense, 2286 hdr->sense_len); 2287 2288 cmd->scmd->result |= DRIVER_SENSE << 24; 2289 } 2290 2291 break; 2292 2293 case MFI_STAT_LD_OFFLINE: 2294 case MFI_STAT_DEVICE_NOT_FOUND: 2295 cmd->scmd->result = DID_BAD_TARGET << 16; 2296 break; 2297 2298 default: 2299 printk(KERN_DEBUG "megasas: MFI FW status %#x\n", 2300 hdr->cmd_status); 2301 cmd->scmd->result = DID_ERROR << 16; 2302 break; 2303 } 2304 2305 atomic_dec(&instance->fw_outstanding); 2306 2307 scsi_dma_unmap(cmd->scmd); 2308 cmd->scmd->scsi_done(cmd->scmd); 2309 megasas_return_cmd(instance, cmd); 2310 2311 break; 2312 2313 case MFI_CMD_SMP: 2314 case MFI_CMD_STP: 2315 case MFI_CMD_DCMD: 2316 opcode = le32_to_cpu(cmd->frame->dcmd.opcode); 2317 /* Check for LD map update */ 2318 if ((opcode == MR_DCMD_LD_MAP_GET_INFO) 2319 && (cmd->frame->dcmd.mbox.b[1] == 1)) { 2320 fusion->fast_path_io = 0; 2321 spin_lock_irqsave(instance->host->host_lock, flags); 2322 if (cmd->frame->hdr.cmd_status != 0) { 2323 if (cmd->frame->hdr.cmd_status != 2324 MFI_STAT_NOT_FOUND) 2325 printk(KERN_WARNING "megasas: map sync" 2326 "failed, status = 0x%x.\n", 2327 cmd->frame->hdr.cmd_status); 2328 else { 2329 megasas_return_cmd(instance, cmd); 2330 spin_unlock_irqrestore( 2331 instance->host->host_lock, 2332 flags); 2333 break; 2334 } 2335 } else 2336 instance->map_id++; 2337 megasas_return_cmd(instance, cmd); 2338 2339 /* 2340 * Set fast path IO to ZERO. 2341 * Validate Map will set proper value. 2342 * Meanwhile all IOs will go as LD IO. 2343 */ 2344 if (MR_ValidateMapInfo(instance)) 2345 fusion->fast_path_io = 1; 2346 else 2347 fusion->fast_path_io = 0; 2348 megasas_sync_map_info(instance); 2349 spin_unlock_irqrestore(instance->host->host_lock, 2350 flags); 2351 break; 2352 } 2353 if (opcode == MR_DCMD_CTRL_EVENT_GET_INFO || 2354 opcode == MR_DCMD_CTRL_EVENT_GET) { 2355 spin_lock_irqsave(&poll_aen_lock, flags); 2356 megasas_poll_wait_aen = 0; 2357 spin_unlock_irqrestore(&poll_aen_lock, flags); 2358 } 2359 2360 /* 2361 * See if got an event notification 2362 */ 2363 if (opcode == MR_DCMD_CTRL_EVENT_WAIT) 2364 megasas_service_aen(instance, cmd); 2365 else 2366 megasas_complete_int_cmd(instance, cmd); 2367 2368 break; 2369 2370 case MFI_CMD_ABORT: 2371 /* 2372 * Cmd issued to abort another cmd returned 2373 */ 2374 megasas_complete_abort(instance, cmd); 2375 break; 2376 2377 default: 2378 printk("megasas: Unknown command completed! [0x%X]\n", 2379 hdr->cmd); 2380 break; 2381 } 2382 } 2383 2384 /** 2385 * megasas_issue_pending_cmds_again - issue all pending cmds 2386 * in FW again because of the fw reset 2387 * @instance: Adapter soft state 2388 */ 2389 static inline void 2390 megasas_issue_pending_cmds_again(struct megasas_instance *instance) 2391 { 2392 struct megasas_cmd *cmd; 2393 struct list_head clist_local; 2394 union megasas_evt_class_locale class_locale; 2395 unsigned long flags; 2396 u32 seq_num; 2397 2398 INIT_LIST_HEAD(&clist_local); 2399 spin_lock_irqsave(&instance->hba_lock, flags); 2400 list_splice_init(&instance->internal_reset_pending_q, &clist_local); 2401 spin_unlock_irqrestore(&instance->hba_lock, flags); 2402 2403 while (!list_empty(&clist_local)) { 2404 cmd = list_entry((&clist_local)->next, 2405 struct megasas_cmd, list); 2406 list_del_init(&cmd->list); 2407 2408 if (cmd->sync_cmd || cmd->scmd) { 2409 printk(KERN_NOTICE "megaraid_sas: command %p, %p:%d" 2410 "detected to be pending while HBA reset.\n", 2411 cmd, cmd->scmd, cmd->sync_cmd); 2412 2413 cmd->retry_for_fw_reset++; 2414 2415 if (cmd->retry_for_fw_reset == 3) { 2416 printk(KERN_NOTICE "megaraid_sas: cmd %p, %p:%d" 2417 "was tried multiple times during reset." 2418 "Shutting down the HBA\n", 2419 cmd, cmd->scmd, cmd->sync_cmd); 2420 megaraid_sas_kill_hba(instance); 2421 2422 instance->adprecovery = 2423 MEGASAS_HW_CRITICAL_ERROR; 2424 return; 2425 } 2426 } 2427 2428 if (cmd->sync_cmd == 1) { 2429 if (cmd->scmd) { 2430 printk(KERN_NOTICE "megaraid_sas: unexpected" 2431 "cmd attached to internal command!\n"); 2432 } 2433 printk(KERN_NOTICE "megasas: %p synchronous cmd" 2434 "on the internal reset queue," 2435 "issue it again.\n", cmd); 2436 cmd->cmd_status = ENODATA; 2437 instance->instancet->fire_cmd(instance, 2438 cmd->frame_phys_addr , 2439 0, instance->reg_set); 2440 } else if (cmd->scmd) { 2441 printk(KERN_NOTICE "megasas: %p scsi cmd [%02x]" 2442 "detected on the internal queue, issue again.\n", 2443 cmd, cmd->scmd->cmnd[0]); 2444 2445 atomic_inc(&instance->fw_outstanding); 2446 instance->instancet->fire_cmd(instance, 2447 cmd->frame_phys_addr, 2448 cmd->frame_count-1, instance->reg_set); 2449 } else { 2450 printk(KERN_NOTICE "megasas: %p unexpected cmd on the" 2451 "internal reset defer list while re-issue!!\n", 2452 cmd); 2453 } 2454 } 2455 2456 if (instance->aen_cmd) { 2457 printk(KERN_NOTICE "megaraid_sas: aen_cmd in def process\n"); 2458 megasas_return_cmd(instance, instance->aen_cmd); 2459 2460 instance->aen_cmd = NULL; 2461 } 2462 2463 /* 2464 * Initiate AEN (Asynchronous Event Notification) 2465 */ 2466 seq_num = instance->last_seq_num; 2467 class_locale.members.reserved = 0; 2468 class_locale.members.locale = MR_EVT_LOCALE_ALL; 2469 class_locale.members.class = MR_EVT_CLASS_DEBUG; 2470 2471 megasas_register_aen(instance, seq_num, class_locale.word); 2472 } 2473 2474 /** 2475 * Move the internal reset pending commands to a deferred queue. 2476 * 2477 * We move the commands pending at internal reset time to a 2478 * pending queue. This queue would be flushed after successful 2479 * completion of the internal reset sequence. if the internal reset 2480 * did not complete in time, the kernel reset handler would flush 2481 * these commands. 2482 **/ 2483 static void 2484 megasas_internal_reset_defer_cmds(struct megasas_instance *instance) 2485 { 2486 struct megasas_cmd *cmd; 2487 int i; 2488 u32 max_cmd = instance->max_fw_cmds; 2489 u32 defer_index; 2490 unsigned long flags; 2491 2492 defer_index = 0; 2493 spin_lock_irqsave(&instance->cmd_pool_lock, flags); 2494 for (i = 0; i < max_cmd; i++) { 2495 cmd = instance->cmd_list[i]; 2496 if (cmd->sync_cmd == 1 || cmd->scmd) { 2497 printk(KERN_NOTICE "megasas: moving cmd[%d]:%p:%d:%p" 2498 "on the defer queue as internal\n", 2499 defer_index, cmd, cmd->sync_cmd, cmd->scmd); 2500 2501 if (!list_empty(&cmd->list)) { 2502 printk(KERN_NOTICE "megaraid_sas: ERROR while" 2503 " moving this cmd:%p, %d %p, it was" 2504 "discovered on some list?\n", 2505 cmd, cmd->sync_cmd, cmd->scmd); 2506 2507 list_del_init(&cmd->list); 2508 } 2509 defer_index++; 2510 list_add_tail(&cmd->list, 2511 &instance->internal_reset_pending_q); 2512 } 2513 } 2514 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags); 2515 } 2516 2517 2518 static void 2519 process_fw_state_change_wq(struct work_struct *work) 2520 { 2521 struct megasas_instance *instance = 2522 container_of(work, struct megasas_instance, work_init); 2523 u32 wait; 2524 unsigned long flags; 2525 2526 if (instance->adprecovery != MEGASAS_ADPRESET_SM_INFAULT) { 2527 printk(KERN_NOTICE "megaraid_sas: error, recovery st %x \n", 2528 instance->adprecovery); 2529 return ; 2530 } 2531 2532 if (instance->adprecovery == MEGASAS_ADPRESET_SM_INFAULT) { 2533 printk(KERN_NOTICE "megaraid_sas: FW detected to be in fault" 2534 "state, restarting it...\n"); 2535 2536 instance->instancet->disable_intr(instance); 2537 atomic_set(&instance->fw_outstanding, 0); 2538 2539 atomic_set(&instance->fw_reset_no_pci_access, 1); 2540 instance->instancet->adp_reset(instance, instance->reg_set); 2541 atomic_set(&instance->fw_reset_no_pci_access, 0 ); 2542 2543 printk(KERN_NOTICE "megaraid_sas: FW restarted successfully," 2544 "initiating next stage...\n"); 2545 2546 printk(KERN_NOTICE "megaraid_sas: HBA recovery state machine," 2547 "state 2 starting...\n"); 2548 2549 /*waitting for about 20 second before start the second init*/ 2550 for (wait = 0; wait < 30; wait++) { 2551 msleep(1000); 2552 } 2553 2554 if (megasas_transition_to_ready(instance, 1)) { 2555 printk(KERN_NOTICE "megaraid_sas:adapter not ready\n"); 2556 2557 megaraid_sas_kill_hba(instance); 2558 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; 2559 return ; 2560 } 2561 2562 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) || 2563 (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) || 2564 (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR) 2565 ) { 2566 *instance->consumer = *instance->producer; 2567 } else { 2568 *instance->consumer = 0; 2569 *instance->producer = 0; 2570 } 2571 2572 megasas_issue_init_mfi(instance); 2573 2574 spin_lock_irqsave(&instance->hba_lock, flags); 2575 instance->adprecovery = MEGASAS_HBA_OPERATIONAL; 2576 spin_unlock_irqrestore(&instance->hba_lock, flags); 2577 instance->instancet->enable_intr(instance); 2578 2579 megasas_issue_pending_cmds_again(instance); 2580 instance->issuepend_done = 1; 2581 } 2582 return ; 2583 } 2584 2585 /** 2586 * megasas_deplete_reply_queue - Processes all completed commands 2587 * @instance: Adapter soft state 2588 * @alt_status: Alternate status to be returned to 2589 * SCSI mid-layer instead of the status 2590 * returned by the FW 2591 * Note: this must be called with hba lock held 2592 */ 2593 static int 2594 megasas_deplete_reply_queue(struct megasas_instance *instance, 2595 u8 alt_status) 2596 { 2597 u32 mfiStatus; 2598 u32 fw_state; 2599 2600 if ((mfiStatus = instance->instancet->check_reset(instance, 2601 instance->reg_set)) == 1) { 2602 return IRQ_HANDLED; 2603 } 2604 2605 if ((mfiStatus = instance->instancet->clear_intr( 2606 instance->reg_set) 2607 ) == 0) { 2608 /* Hardware may not set outbound_intr_status in MSI-X mode */ 2609 if (!instance->msix_vectors) 2610 return IRQ_NONE; 2611 } 2612 2613 instance->mfiStatus = mfiStatus; 2614 2615 if ((mfiStatus & MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE)) { 2616 fw_state = instance->instancet->read_fw_status_reg( 2617 instance->reg_set) & MFI_STATE_MASK; 2618 2619 if (fw_state != MFI_STATE_FAULT) { 2620 printk(KERN_NOTICE "megaraid_sas: fw state:%x\n", 2621 fw_state); 2622 } 2623 2624 if ((fw_state == MFI_STATE_FAULT) && 2625 (instance->disableOnlineCtrlReset == 0)) { 2626 printk(KERN_NOTICE "megaraid_sas: wait adp restart\n"); 2627 2628 if ((instance->pdev->device == 2629 PCI_DEVICE_ID_LSI_SAS1064R) || 2630 (instance->pdev->device == 2631 PCI_DEVICE_ID_DELL_PERC5) || 2632 (instance->pdev->device == 2633 PCI_DEVICE_ID_LSI_VERDE_ZCR)) { 2634 2635 *instance->consumer = 2636 cpu_to_le32(MEGASAS_ADPRESET_INPROG_SIGN); 2637 } 2638 2639 2640 instance->instancet->disable_intr(instance); 2641 instance->adprecovery = MEGASAS_ADPRESET_SM_INFAULT; 2642 instance->issuepend_done = 0; 2643 2644 atomic_set(&instance->fw_outstanding, 0); 2645 megasas_internal_reset_defer_cmds(instance); 2646 2647 printk(KERN_NOTICE "megasas: fwState=%x, stage:%d\n", 2648 fw_state, instance->adprecovery); 2649 2650 schedule_work(&instance->work_init); 2651 return IRQ_HANDLED; 2652 2653 } else { 2654 printk(KERN_NOTICE "megasas: fwstate:%x, dis_OCR=%x\n", 2655 fw_state, instance->disableOnlineCtrlReset); 2656 } 2657 } 2658 2659 tasklet_schedule(&instance->isr_tasklet); 2660 return IRQ_HANDLED; 2661 } 2662 /** 2663 * megasas_isr - isr entry point 2664 */ 2665 static irqreturn_t megasas_isr(int irq, void *devp) 2666 { 2667 struct megasas_irq_context *irq_context = devp; 2668 struct megasas_instance *instance = irq_context->instance; 2669 unsigned long flags; 2670 irqreturn_t rc; 2671 2672 if (atomic_read(&instance->fw_reset_no_pci_access)) 2673 return IRQ_HANDLED; 2674 2675 spin_lock_irqsave(&instance->hba_lock, flags); 2676 rc = megasas_deplete_reply_queue(instance, DID_OK); 2677 spin_unlock_irqrestore(&instance->hba_lock, flags); 2678 2679 return rc; 2680 } 2681 2682 /** 2683 * megasas_transition_to_ready - Move the FW to READY state 2684 * @instance: Adapter soft state 2685 * 2686 * During the initialization, FW passes can potentially be in any one of 2687 * several possible states. If the FW in operational, waiting-for-handshake 2688 * states, driver must take steps to bring it to ready state. Otherwise, it 2689 * has to wait for the ready state. 2690 */ 2691 int 2692 megasas_transition_to_ready(struct megasas_instance *instance, int ocr) 2693 { 2694 int i; 2695 u8 max_wait; 2696 u32 fw_state; 2697 u32 cur_state; 2698 u32 abs_state, curr_abs_state; 2699 2700 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK; 2701 2702 if (fw_state != MFI_STATE_READY) 2703 printk(KERN_INFO "megasas: Waiting for FW to come to ready" 2704 " state\n"); 2705 2706 while (fw_state != MFI_STATE_READY) { 2707 2708 abs_state = 2709 instance->instancet->read_fw_status_reg(instance->reg_set); 2710 2711 switch (fw_state) { 2712 2713 case MFI_STATE_FAULT: 2714 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n"); 2715 if (ocr) { 2716 max_wait = MEGASAS_RESET_WAIT_TIME; 2717 cur_state = MFI_STATE_FAULT; 2718 break; 2719 } else 2720 return -ENODEV; 2721 2722 case MFI_STATE_WAIT_HANDSHAKE: 2723 /* 2724 * Set the CLR bit in inbound doorbell 2725 */ 2726 if ((instance->pdev->device == 2727 PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 2728 (instance->pdev->device == 2729 PCI_DEVICE_ID_LSI_SAS0071SKINNY) || 2730 (instance->pdev->device == 2731 PCI_DEVICE_ID_LSI_FUSION) || 2732 (instance->pdev->device == 2733 PCI_DEVICE_ID_LSI_INVADER) || 2734 (instance->pdev->device == 2735 PCI_DEVICE_ID_LSI_FURY)) { 2736 writel( 2737 MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG, 2738 &instance->reg_set->doorbell); 2739 } else { 2740 writel( 2741 MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG, 2742 &instance->reg_set->inbound_doorbell); 2743 } 2744 2745 max_wait = MEGASAS_RESET_WAIT_TIME; 2746 cur_state = MFI_STATE_WAIT_HANDSHAKE; 2747 break; 2748 2749 case MFI_STATE_BOOT_MESSAGE_PENDING: 2750 if ((instance->pdev->device == 2751 PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 2752 (instance->pdev->device == 2753 PCI_DEVICE_ID_LSI_SAS0071SKINNY) || 2754 (instance->pdev->device == 2755 PCI_DEVICE_ID_LSI_FUSION) || 2756 (instance->pdev->device == 2757 PCI_DEVICE_ID_LSI_INVADER) || 2758 (instance->pdev->device == 2759 PCI_DEVICE_ID_LSI_FURY)) { 2760 writel(MFI_INIT_HOTPLUG, 2761 &instance->reg_set->doorbell); 2762 } else 2763 writel(MFI_INIT_HOTPLUG, 2764 &instance->reg_set->inbound_doorbell); 2765 2766 max_wait = MEGASAS_RESET_WAIT_TIME; 2767 cur_state = MFI_STATE_BOOT_MESSAGE_PENDING; 2768 break; 2769 2770 case MFI_STATE_OPERATIONAL: 2771 /* 2772 * Bring it to READY state; assuming max wait 10 secs 2773 */ 2774 instance->instancet->disable_intr(instance); 2775 if ((instance->pdev->device == 2776 PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 2777 (instance->pdev->device == 2778 PCI_DEVICE_ID_LSI_SAS0071SKINNY) || 2779 (instance->pdev->device 2780 == PCI_DEVICE_ID_LSI_FUSION) || 2781 (instance->pdev->device 2782 == PCI_DEVICE_ID_LSI_INVADER) || 2783 (instance->pdev->device 2784 == PCI_DEVICE_ID_LSI_FURY)) { 2785 writel(MFI_RESET_FLAGS, 2786 &instance->reg_set->doorbell); 2787 if ((instance->pdev->device == 2788 PCI_DEVICE_ID_LSI_FUSION) || 2789 (instance->pdev->device == 2790 PCI_DEVICE_ID_LSI_INVADER) || 2791 (instance->pdev->device == 2792 PCI_DEVICE_ID_LSI_FURY)) { 2793 for (i = 0; i < (10 * 1000); i += 20) { 2794 if (readl( 2795 &instance-> 2796 reg_set-> 2797 doorbell) & 1) 2798 msleep(20); 2799 else 2800 break; 2801 } 2802 } 2803 } else 2804 writel(MFI_RESET_FLAGS, 2805 &instance->reg_set->inbound_doorbell); 2806 2807 max_wait = MEGASAS_RESET_WAIT_TIME; 2808 cur_state = MFI_STATE_OPERATIONAL; 2809 break; 2810 2811 case MFI_STATE_UNDEFINED: 2812 /* 2813 * This state should not last for more than 2 seconds 2814 */ 2815 max_wait = MEGASAS_RESET_WAIT_TIME; 2816 cur_state = MFI_STATE_UNDEFINED; 2817 break; 2818 2819 case MFI_STATE_BB_INIT: 2820 max_wait = MEGASAS_RESET_WAIT_TIME; 2821 cur_state = MFI_STATE_BB_INIT; 2822 break; 2823 2824 case MFI_STATE_FW_INIT: 2825 max_wait = MEGASAS_RESET_WAIT_TIME; 2826 cur_state = MFI_STATE_FW_INIT; 2827 break; 2828 2829 case MFI_STATE_FW_INIT_2: 2830 max_wait = MEGASAS_RESET_WAIT_TIME; 2831 cur_state = MFI_STATE_FW_INIT_2; 2832 break; 2833 2834 case MFI_STATE_DEVICE_SCAN: 2835 max_wait = MEGASAS_RESET_WAIT_TIME; 2836 cur_state = MFI_STATE_DEVICE_SCAN; 2837 break; 2838 2839 case MFI_STATE_FLUSH_CACHE: 2840 max_wait = MEGASAS_RESET_WAIT_TIME; 2841 cur_state = MFI_STATE_FLUSH_CACHE; 2842 break; 2843 2844 default: 2845 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n", 2846 fw_state); 2847 return -ENODEV; 2848 } 2849 2850 /* 2851 * The cur_state should not last for more than max_wait secs 2852 */ 2853 for (i = 0; i < (max_wait * 1000); i++) { 2854 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & 2855 MFI_STATE_MASK ; 2856 curr_abs_state = 2857 instance->instancet->read_fw_status_reg(instance->reg_set); 2858 2859 if (abs_state == curr_abs_state) { 2860 msleep(1); 2861 } else 2862 break; 2863 } 2864 2865 /* 2866 * Return error if fw_state hasn't changed after max_wait 2867 */ 2868 if (curr_abs_state == abs_state) { 2869 printk(KERN_DEBUG "FW state [%d] hasn't changed " 2870 "in %d secs\n", fw_state, max_wait); 2871 return -ENODEV; 2872 } 2873 } 2874 printk(KERN_INFO "megasas: FW now in Ready state\n"); 2875 2876 return 0; 2877 } 2878 2879 /** 2880 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool 2881 * @instance: Adapter soft state 2882 */ 2883 static void megasas_teardown_frame_pool(struct megasas_instance *instance) 2884 { 2885 int i; 2886 u32 max_cmd = instance->max_mfi_cmds; 2887 struct megasas_cmd *cmd; 2888 2889 if (!instance->frame_dma_pool) 2890 return; 2891 2892 /* 2893 * Return all frames to pool 2894 */ 2895 for (i = 0; i < max_cmd; i++) { 2896 2897 cmd = instance->cmd_list[i]; 2898 2899 if (cmd->frame) 2900 pci_pool_free(instance->frame_dma_pool, cmd->frame, 2901 cmd->frame_phys_addr); 2902 2903 if (cmd->sense) 2904 pci_pool_free(instance->sense_dma_pool, cmd->sense, 2905 cmd->sense_phys_addr); 2906 } 2907 2908 /* 2909 * Now destroy the pool itself 2910 */ 2911 pci_pool_destroy(instance->frame_dma_pool); 2912 pci_pool_destroy(instance->sense_dma_pool); 2913 2914 instance->frame_dma_pool = NULL; 2915 instance->sense_dma_pool = NULL; 2916 } 2917 2918 /** 2919 * megasas_create_frame_pool - Creates DMA pool for cmd frames 2920 * @instance: Adapter soft state 2921 * 2922 * Each command packet has an embedded DMA memory buffer that is used for 2923 * filling MFI frame and the SG list that immediately follows the frame. This 2924 * function creates those DMA memory buffers for each command packet by using 2925 * PCI pool facility. 2926 */ 2927 static int megasas_create_frame_pool(struct megasas_instance *instance) 2928 { 2929 int i; 2930 u32 max_cmd; 2931 u32 sge_sz; 2932 u32 sgl_sz; 2933 u32 total_sz; 2934 u32 frame_count; 2935 struct megasas_cmd *cmd; 2936 2937 max_cmd = instance->max_mfi_cmds; 2938 2939 /* 2940 * Size of our frame is 64 bytes for MFI frame, followed by max SG 2941 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer 2942 */ 2943 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) : 2944 sizeof(struct megasas_sge32); 2945 2946 if (instance->flag_ieee) { 2947 sge_sz = sizeof(struct megasas_sge_skinny); 2948 } 2949 2950 /* 2951 * Calculated the number of 64byte frames required for SGL 2952 */ 2953 sgl_sz = sge_sz * instance->max_num_sge; 2954 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE; 2955 frame_count = 15; 2956 2957 /* 2958 * We need one extra frame for the MFI command 2959 */ 2960 frame_count++; 2961 2962 total_sz = MEGAMFI_FRAME_SIZE * frame_count; 2963 /* 2964 * Use DMA pool facility provided by PCI layer 2965 */ 2966 instance->frame_dma_pool = pci_pool_create("megasas frame pool", 2967 instance->pdev, total_sz, 64, 2968 0); 2969 2970 if (!instance->frame_dma_pool) { 2971 printk(KERN_DEBUG "megasas: failed to setup frame pool\n"); 2972 return -ENOMEM; 2973 } 2974 2975 instance->sense_dma_pool = pci_pool_create("megasas sense pool", 2976 instance->pdev, 128, 4, 0); 2977 2978 if (!instance->sense_dma_pool) { 2979 printk(KERN_DEBUG "megasas: failed to setup sense pool\n"); 2980 2981 pci_pool_destroy(instance->frame_dma_pool); 2982 instance->frame_dma_pool = NULL; 2983 2984 return -ENOMEM; 2985 } 2986 2987 /* 2988 * Allocate and attach a frame to each of the commands in cmd_list. 2989 * By making cmd->index as the context instead of the &cmd, we can 2990 * always use 32bit context regardless of the architecture 2991 */ 2992 for (i = 0; i < max_cmd; i++) { 2993 2994 cmd = instance->cmd_list[i]; 2995 2996 cmd->frame = pci_pool_alloc(instance->frame_dma_pool, 2997 GFP_KERNEL, &cmd->frame_phys_addr); 2998 2999 cmd->sense = pci_pool_alloc(instance->sense_dma_pool, 3000 GFP_KERNEL, &cmd->sense_phys_addr); 3001 3002 /* 3003 * megasas_teardown_frame_pool() takes care of freeing 3004 * whatever has been allocated 3005 */ 3006 if (!cmd->frame || !cmd->sense) { 3007 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n"); 3008 megasas_teardown_frame_pool(instance); 3009 return -ENOMEM; 3010 } 3011 3012 memset(cmd->frame, 0, total_sz); 3013 cmd->frame->io.context = cpu_to_le32(cmd->index); 3014 cmd->frame->io.pad_0 = 0; 3015 if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) && 3016 (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) && 3017 (instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) && 3018 (reset_devices)) 3019 cmd->frame->hdr.cmd = MFI_CMD_INVALID; 3020 } 3021 3022 return 0; 3023 } 3024 3025 /** 3026 * megasas_free_cmds - Free all the cmds in the free cmd pool 3027 * @instance: Adapter soft state 3028 */ 3029 void megasas_free_cmds(struct megasas_instance *instance) 3030 { 3031 int i; 3032 /* First free the MFI frame pool */ 3033 megasas_teardown_frame_pool(instance); 3034 3035 /* Free all the commands in the cmd_list */ 3036 for (i = 0; i < instance->max_mfi_cmds; i++) 3037 3038 kfree(instance->cmd_list[i]); 3039 3040 /* Free the cmd_list buffer itself */ 3041 kfree(instance->cmd_list); 3042 instance->cmd_list = NULL; 3043 3044 INIT_LIST_HEAD(&instance->cmd_pool); 3045 } 3046 3047 /** 3048 * megasas_alloc_cmds - Allocates the command packets 3049 * @instance: Adapter soft state 3050 * 3051 * Each command that is issued to the FW, whether IO commands from the OS or 3052 * internal commands like IOCTLs, are wrapped in local data structure called 3053 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to 3054 * the FW. 3055 * 3056 * Each frame has a 32-bit field called context (tag). This context is used 3057 * to get back the megasas_cmd from the frame when a frame gets completed in 3058 * the ISR. Typically the address of the megasas_cmd itself would be used as 3059 * the context. But we wanted to keep the differences between 32 and 64 bit 3060 * systems to the mininum. We always use 32 bit integers for the context. In 3061 * this driver, the 32 bit values are the indices into an array cmd_list. 3062 * This array is used only to look up the megasas_cmd given the context. The 3063 * free commands themselves are maintained in a linked list called cmd_pool. 3064 */ 3065 int megasas_alloc_cmds(struct megasas_instance *instance) 3066 { 3067 int i; 3068 int j; 3069 u32 max_cmd; 3070 struct megasas_cmd *cmd; 3071 3072 max_cmd = instance->max_mfi_cmds; 3073 3074 /* 3075 * instance->cmd_list is an array of struct megasas_cmd pointers. 3076 * Allocate the dynamic array first and then allocate individual 3077 * commands. 3078 */ 3079 instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL); 3080 3081 if (!instance->cmd_list) { 3082 printk(KERN_DEBUG "megasas: out of memory\n"); 3083 return -ENOMEM; 3084 } 3085 3086 memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) *max_cmd); 3087 3088 for (i = 0; i < max_cmd; i++) { 3089 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd), 3090 GFP_KERNEL); 3091 3092 if (!instance->cmd_list[i]) { 3093 3094 for (j = 0; j < i; j++) 3095 kfree(instance->cmd_list[j]); 3096 3097 kfree(instance->cmd_list); 3098 instance->cmd_list = NULL; 3099 3100 return -ENOMEM; 3101 } 3102 } 3103 3104 /* 3105 * Add all the commands to command pool (instance->cmd_pool) 3106 */ 3107 for (i = 0; i < max_cmd; i++) { 3108 cmd = instance->cmd_list[i]; 3109 memset(cmd, 0, sizeof(struct megasas_cmd)); 3110 cmd->index = i; 3111 cmd->scmd = NULL; 3112 cmd->instance = instance; 3113 3114 list_add_tail(&cmd->list, &instance->cmd_pool); 3115 } 3116 3117 /* 3118 * Create a frame pool and assign one frame to each cmd 3119 */ 3120 if (megasas_create_frame_pool(instance)) { 3121 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n"); 3122 megasas_free_cmds(instance); 3123 } 3124 3125 return 0; 3126 } 3127 3128 /* 3129 * megasas_get_pd_list_info - Returns FW's pd_list structure 3130 * @instance: Adapter soft state 3131 * @pd_list: pd_list structure 3132 * 3133 * Issues an internal command (DCMD) to get the FW's controller PD 3134 * list structure. This information is mainly used to find out SYSTEM 3135 * supported by the FW. 3136 */ 3137 static int 3138 megasas_get_pd_list(struct megasas_instance *instance) 3139 { 3140 int ret = 0, pd_index = 0; 3141 struct megasas_cmd *cmd; 3142 struct megasas_dcmd_frame *dcmd; 3143 struct MR_PD_LIST *ci; 3144 struct MR_PD_ADDRESS *pd_addr; 3145 dma_addr_t ci_h = 0; 3146 3147 cmd = megasas_get_cmd(instance); 3148 3149 if (!cmd) { 3150 printk(KERN_DEBUG "megasas (get_pd_list): Failed to get cmd\n"); 3151 return -ENOMEM; 3152 } 3153 3154 dcmd = &cmd->frame->dcmd; 3155 3156 ci = pci_alloc_consistent(instance->pdev, 3157 MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), &ci_h); 3158 3159 if (!ci) { 3160 printk(KERN_DEBUG "Failed to alloc mem for pd_list\n"); 3161 megasas_return_cmd(instance, cmd); 3162 return -ENOMEM; 3163 } 3164 3165 memset(ci, 0, sizeof(*ci)); 3166 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3167 3168 dcmd->mbox.b[0] = MR_PD_QUERY_TYPE_EXPOSED_TO_HOST; 3169 dcmd->mbox.b[1] = 0; 3170 dcmd->cmd = MFI_CMD_DCMD; 3171 dcmd->cmd_status = 0xFF; 3172 dcmd->sge_count = 1; 3173 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); 3174 dcmd->timeout = 0; 3175 dcmd->pad_0 = 0; 3176 dcmd->data_xfer_len = cpu_to_le32(MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST)); 3177 dcmd->opcode = cpu_to_le32(MR_DCMD_PD_LIST_QUERY); 3178 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h); 3179 dcmd->sgl.sge32[0].length = cpu_to_le32(MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST)); 3180 3181 if (!megasas_issue_polled(instance, cmd)) { 3182 ret = 0; 3183 } else { 3184 ret = -1; 3185 } 3186 3187 /* 3188 * the following function will get the instance PD LIST. 3189 */ 3190 3191 pd_addr = ci->addr; 3192 3193 if ( ret == 0 && 3194 (le32_to_cpu(ci->count) < 3195 (MEGASAS_MAX_PD_CHANNELS * MEGASAS_MAX_DEV_PER_CHANNEL))) { 3196 3197 memset(instance->pd_list, 0, 3198 MEGASAS_MAX_PD * sizeof(struct megasas_pd_list)); 3199 3200 for (pd_index = 0; pd_index < le32_to_cpu(ci->count); pd_index++) { 3201 3202 instance->pd_list[pd_addr->deviceId].tid = 3203 le16_to_cpu(pd_addr->deviceId); 3204 instance->pd_list[pd_addr->deviceId].driveType = 3205 pd_addr->scsiDevType; 3206 instance->pd_list[pd_addr->deviceId].driveState = 3207 MR_PD_STATE_SYSTEM; 3208 pd_addr++; 3209 } 3210 } 3211 3212 pci_free_consistent(instance->pdev, 3213 MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), 3214 ci, ci_h); 3215 megasas_return_cmd(instance, cmd); 3216 3217 return ret; 3218 } 3219 3220 /* 3221 * megasas_get_ld_list_info - Returns FW's ld_list structure 3222 * @instance: Adapter soft state 3223 * @ld_list: ld_list structure 3224 * 3225 * Issues an internal command (DCMD) to get the FW's controller PD 3226 * list structure. This information is mainly used to find out SYSTEM 3227 * supported by the FW. 3228 */ 3229 static int 3230 megasas_get_ld_list(struct megasas_instance *instance) 3231 { 3232 int ret = 0, ld_index = 0, ids = 0; 3233 struct megasas_cmd *cmd; 3234 struct megasas_dcmd_frame *dcmd; 3235 struct MR_LD_LIST *ci; 3236 dma_addr_t ci_h = 0; 3237 u32 ld_count; 3238 3239 cmd = megasas_get_cmd(instance); 3240 3241 if (!cmd) { 3242 printk(KERN_DEBUG "megasas_get_ld_list: Failed to get cmd\n"); 3243 return -ENOMEM; 3244 } 3245 3246 dcmd = &cmd->frame->dcmd; 3247 3248 ci = pci_alloc_consistent(instance->pdev, 3249 sizeof(struct MR_LD_LIST), 3250 &ci_h); 3251 3252 if (!ci) { 3253 printk(KERN_DEBUG "Failed to alloc mem in get_ld_list\n"); 3254 megasas_return_cmd(instance, cmd); 3255 return -ENOMEM; 3256 } 3257 3258 memset(ci, 0, sizeof(*ci)); 3259 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3260 3261 dcmd->cmd = MFI_CMD_DCMD; 3262 dcmd->cmd_status = 0xFF; 3263 dcmd->sge_count = 1; 3264 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); 3265 dcmd->timeout = 0; 3266 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_LD_LIST)); 3267 dcmd->opcode = cpu_to_le32(MR_DCMD_LD_GET_LIST); 3268 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h); 3269 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct MR_LD_LIST)); 3270 dcmd->pad_0 = 0; 3271 3272 if (!megasas_issue_polled(instance, cmd)) { 3273 ret = 0; 3274 } else { 3275 ret = -1; 3276 } 3277 3278 ld_count = le32_to_cpu(ci->ldCount); 3279 3280 /* the following function will get the instance PD LIST */ 3281 3282 if ((ret == 0) && (ld_count <= MAX_LOGICAL_DRIVES)) { 3283 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS); 3284 3285 for (ld_index = 0; ld_index < ld_count; ld_index++) { 3286 if (ci->ldList[ld_index].state != 0) { 3287 ids = ci->ldList[ld_index].ref.targetId; 3288 instance->ld_ids[ids] = 3289 ci->ldList[ld_index].ref.targetId; 3290 } 3291 } 3292 } 3293 3294 pci_free_consistent(instance->pdev, 3295 sizeof(struct MR_LD_LIST), 3296 ci, 3297 ci_h); 3298 3299 megasas_return_cmd(instance, cmd); 3300 return ret; 3301 } 3302 3303 /** 3304 * megasas_ld_list_query - Returns FW's ld_list structure 3305 * @instance: Adapter soft state 3306 * @ld_list: ld_list structure 3307 * 3308 * Issues an internal command (DCMD) to get the FW's controller PD 3309 * list structure. This information is mainly used to find out SYSTEM 3310 * supported by the FW. 3311 */ 3312 static int 3313 megasas_ld_list_query(struct megasas_instance *instance, u8 query_type) 3314 { 3315 int ret = 0, ld_index = 0, ids = 0; 3316 struct megasas_cmd *cmd; 3317 struct megasas_dcmd_frame *dcmd; 3318 struct MR_LD_TARGETID_LIST *ci; 3319 dma_addr_t ci_h = 0; 3320 u32 tgtid_count; 3321 3322 cmd = megasas_get_cmd(instance); 3323 3324 if (!cmd) { 3325 printk(KERN_WARNING 3326 "megasas:(megasas_ld_list_query): Failed to get cmd\n"); 3327 return -ENOMEM; 3328 } 3329 3330 dcmd = &cmd->frame->dcmd; 3331 3332 ci = pci_alloc_consistent(instance->pdev, 3333 sizeof(struct MR_LD_TARGETID_LIST), &ci_h); 3334 3335 if (!ci) { 3336 printk(KERN_WARNING 3337 "megasas: Failed to alloc mem for ld_list_query\n"); 3338 megasas_return_cmd(instance, cmd); 3339 return -ENOMEM; 3340 } 3341 3342 memset(ci, 0, sizeof(*ci)); 3343 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3344 3345 dcmd->mbox.b[0] = query_type; 3346 3347 dcmd->cmd = MFI_CMD_DCMD; 3348 dcmd->cmd_status = 0xFF; 3349 dcmd->sge_count = 1; 3350 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); 3351 dcmd->timeout = 0; 3352 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_LD_TARGETID_LIST)); 3353 dcmd->opcode = cpu_to_le32(MR_DCMD_LD_LIST_QUERY); 3354 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h); 3355 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct MR_LD_TARGETID_LIST)); 3356 dcmd->pad_0 = 0; 3357 3358 if (!megasas_issue_polled(instance, cmd) && !dcmd->cmd_status) { 3359 ret = 0; 3360 } else { 3361 /* On failure, call older LD list DCMD */ 3362 ret = 1; 3363 } 3364 3365 tgtid_count = le32_to_cpu(ci->count); 3366 3367 if ((ret == 0) && (tgtid_count <= (MAX_LOGICAL_DRIVES))) { 3368 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS); 3369 for (ld_index = 0; ld_index < tgtid_count; ld_index++) { 3370 ids = ci->targetId[ld_index]; 3371 instance->ld_ids[ids] = ci->targetId[ld_index]; 3372 } 3373 3374 } 3375 3376 pci_free_consistent(instance->pdev, sizeof(struct MR_LD_TARGETID_LIST), 3377 ci, ci_h); 3378 3379 megasas_return_cmd(instance, cmd); 3380 3381 return ret; 3382 } 3383 3384 /** 3385 * megasas_get_controller_info - Returns FW's controller structure 3386 * @instance: Adapter soft state 3387 * @ctrl_info: Controller information structure 3388 * 3389 * Issues an internal command (DCMD) to get the FW's controller structure. 3390 * This information is mainly used to find out the maximum IO transfer per 3391 * command supported by the FW. 3392 */ 3393 static int 3394 megasas_get_ctrl_info(struct megasas_instance *instance, 3395 struct megasas_ctrl_info *ctrl_info) 3396 { 3397 int ret = 0; 3398 struct megasas_cmd *cmd; 3399 struct megasas_dcmd_frame *dcmd; 3400 struct megasas_ctrl_info *ci; 3401 dma_addr_t ci_h = 0; 3402 3403 cmd = megasas_get_cmd(instance); 3404 3405 if (!cmd) { 3406 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n"); 3407 return -ENOMEM; 3408 } 3409 3410 dcmd = &cmd->frame->dcmd; 3411 3412 ci = pci_alloc_consistent(instance->pdev, 3413 sizeof(struct megasas_ctrl_info), &ci_h); 3414 3415 if (!ci) { 3416 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n"); 3417 megasas_return_cmd(instance, cmd); 3418 return -ENOMEM; 3419 } 3420 3421 memset(ci, 0, sizeof(*ci)); 3422 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3423 3424 dcmd->cmd = MFI_CMD_DCMD; 3425 dcmd->cmd_status = 0xFF; 3426 dcmd->sge_count = 1; 3427 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); 3428 dcmd->timeout = 0; 3429 dcmd->pad_0 = 0; 3430 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_ctrl_info)); 3431 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_GET_INFO); 3432 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h); 3433 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_ctrl_info)); 3434 3435 if (!megasas_issue_polled(instance, cmd)) { 3436 ret = 0; 3437 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info)); 3438 } else { 3439 ret = -1; 3440 } 3441 3442 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info), 3443 ci, ci_h); 3444 3445 megasas_return_cmd(instance, cmd); 3446 return ret; 3447 } 3448 3449 /** 3450 * megasas_issue_init_mfi - Initializes the FW 3451 * @instance: Adapter soft state 3452 * 3453 * Issues the INIT MFI cmd 3454 */ 3455 static int 3456 megasas_issue_init_mfi(struct megasas_instance *instance) 3457 { 3458 u32 context; 3459 3460 struct megasas_cmd *cmd; 3461 3462 struct megasas_init_frame *init_frame; 3463 struct megasas_init_queue_info *initq_info; 3464 dma_addr_t init_frame_h; 3465 dma_addr_t initq_info_h; 3466 3467 /* 3468 * Prepare a init frame. Note the init frame points to queue info 3469 * structure. Each frame has SGL allocated after first 64 bytes. For 3470 * this frame - since we don't need any SGL - we use SGL's space as 3471 * queue info structure 3472 * 3473 * We will not get a NULL command below. We just created the pool. 3474 */ 3475 cmd = megasas_get_cmd(instance); 3476 3477 init_frame = (struct megasas_init_frame *)cmd->frame; 3478 initq_info = (struct megasas_init_queue_info *) 3479 ((unsigned long)init_frame + 64); 3480 3481 init_frame_h = cmd->frame_phys_addr; 3482 initq_info_h = init_frame_h + 64; 3483 3484 context = init_frame->context; 3485 memset(init_frame, 0, MEGAMFI_FRAME_SIZE); 3486 memset(initq_info, 0, sizeof(struct megasas_init_queue_info)); 3487 init_frame->context = context; 3488 3489 initq_info->reply_queue_entries = cpu_to_le32(instance->max_fw_cmds + 1); 3490 initq_info->reply_queue_start_phys_addr_lo = cpu_to_le32(instance->reply_queue_h); 3491 3492 initq_info->producer_index_phys_addr_lo = cpu_to_le32(instance->producer_h); 3493 initq_info->consumer_index_phys_addr_lo = cpu_to_le32(instance->consumer_h); 3494 3495 init_frame->cmd = MFI_CMD_INIT; 3496 init_frame->cmd_status = 0xFF; 3497 init_frame->queue_info_new_phys_addr_lo = 3498 cpu_to_le32(lower_32_bits(initq_info_h)); 3499 init_frame->queue_info_new_phys_addr_hi = 3500 cpu_to_le32(upper_32_bits(initq_info_h)); 3501 3502 init_frame->data_xfer_len = cpu_to_le32(sizeof(struct megasas_init_queue_info)); 3503 3504 /* 3505 * disable the intr before firing the init frame to FW 3506 */ 3507 instance->instancet->disable_intr(instance); 3508 3509 /* 3510 * Issue the init frame in polled mode 3511 */ 3512 3513 if (megasas_issue_polled(instance, cmd)) { 3514 printk(KERN_ERR "megasas: Failed to init firmware\n"); 3515 megasas_return_cmd(instance, cmd); 3516 goto fail_fw_init; 3517 } 3518 3519 megasas_return_cmd(instance, cmd); 3520 3521 return 0; 3522 3523 fail_fw_init: 3524 return -EINVAL; 3525 } 3526 3527 static u32 3528 megasas_init_adapter_mfi(struct megasas_instance *instance) 3529 { 3530 struct megasas_register_set __iomem *reg_set; 3531 u32 context_sz; 3532 u32 reply_q_sz; 3533 3534 reg_set = instance->reg_set; 3535 3536 /* 3537 * Get various operational parameters from status register 3538 */ 3539 instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF; 3540 /* 3541 * Reduce the max supported cmds by 1. This is to ensure that the 3542 * reply_q_sz (1 more than the max cmd that driver may send) 3543 * does not exceed max cmds that the FW can support 3544 */ 3545 instance->max_fw_cmds = instance->max_fw_cmds-1; 3546 instance->max_mfi_cmds = instance->max_fw_cmds; 3547 instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >> 3548 0x10; 3549 /* 3550 * Create a pool of commands 3551 */ 3552 if (megasas_alloc_cmds(instance)) 3553 goto fail_alloc_cmds; 3554 3555 /* 3556 * Allocate memory for reply queue. Length of reply queue should 3557 * be _one_ more than the maximum commands handled by the firmware. 3558 * 3559 * Note: When FW completes commands, it places corresponding contex 3560 * values in this circular reply queue. This circular queue is a fairly 3561 * typical producer-consumer queue. FW is the producer (of completed 3562 * commands) and the driver is the consumer. 3563 */ 3564 context_sz = sizeof(u32); 3565 reply_q_sz = context_sz * (instance->max_fw_cmds + 1); 3566 3567 instance->reply_queue = pci_alloc_consistent(instance->pdev, 3568 reply_q_sz, 3569 &instance->reply_queue_h); 3570 3571 if (!instance->reply_queue) { 3572 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n"); 3573 goto fail_reply_queue; 3574 } 3575 3576 if (megasas_issue_init_mfi(instance)) 3577 goto fail_fw_init; 3578 3579 instance->fw_support_ieee = 0; 3580 instance->fw_support_ieee = 3581 (instance->instancet->read_fw_status_reg(reg_set) & 3582 0x04000000); 3583 3584 printk(KERN_NOTICE "megasas_init_mfi: fw_support_ieee=%d", 3585 instance->fw_support_ieee); 3586 3587 if (instance->fw_support_ieee) 3588 instance->flag_ieee = 1; 3589 3590 return 0; 3591 3592 fail_fw_init: 3593 3594 pci_free_consistent(instance->pdev, reply_q_sz, 3595 instance->reply_queue, instance->reply_queue_h); 3596 fail_reply_queue: 3597 megasas_free_cmds(instance); 3598 3599 fail_alloc_cmds: 3600 return 1; 3601 } 3602 3603 /** 3604 * megasas_init_fw - Initializes the FW 3605 * @instance: Adapter soft state 3606 * 3607 * This is the main function for initializing firmware 3608 */ 3609 3610 static int megasas_init_fw(struct megasas_instance *instance) 3611 { 3612 u32 max_sectors_1; 3613 u32 max_sectors_2; 3614 u32 tmp_sectors, msix_enable, scratch_pad_2; 3615 struct megasas_register_set __iomem *reg_set; 3616 struct megasas_ctrl_info *ctrl_info; 3617 unsigned long bar_list; 3618 int i, loop, fw_msix_count = 0; 3619 3620 /* Find first memory bar */ 3621 bar_list = pci_select_bars(instance->pdev, IORESOURCE_MEM); 3622 instance->bar = find_first_bit(&bar_list, sizeof(unsigned long)); 3623 instance->base_addr = pci_resource_start(instance->pdev, instance->bar); 3624 if (pci_request_selected_regions(instance->pdev, instance->bar, 3625 "megasas: LSI")) { 3626 printk(KERN_DEBUG "megasas: IO memory region busy!\n"); 3627 return -EBUSY; 3628 } 3629 3630 instance->reg_set = ioremap_nocache(instance->base_addr, 8192); 3631 3632 if (!instance->reg_set) { 3633 printk(KERN_DEBUG "megasas: Failed to map IO mem\n"); 3634 goto fail_ioremap; 3635 } 3636 3637 reg_set = instance->reg_set; 3638 3639 switch (instance->pdev->device) { 3640 case PCI_DEVICE_ID_LSI_FUSION: 3641 case PCI_DEVICE_ID_LSI_INVADER: 3642 case PCI_DEVICE_ID_LSI_FURY: 3643 instance->instancet = &megasas_instance_template_fusion; 3644 break; 3645 case PCI_DEVICE_ID_LSI_SAS1078R: 3646 case PCI_DEVICE_ID_LSI_SAS1078DE: 3647 instance->instancet = &megasas_instance_template_ppc; 3648 break; 3649 case PCI_DEVICE_ID_LSI_SAS1078GEN2: 3650 case PCI_DEVICE_ID_LSI_SAS0079GEN2: 3651 instance->instancet = &megasas_instance_template_gen2; 3652 break; 3653 case PCI_DEVICE_ID_LSI_SAS0073SKINNY: 3654 case PCI_DEVICE_ID_LSI_SAS0071SKINNY: 3655 instance->instancet = &megasas_instance_template_skinny; 3656 break; 3657 case PCI_DEVICE_ID_LSI_SAS1064R: 3658 case PCI_DEVICE_ID_DELL_PERC5: 3659 default: 3660 instance->instancet = &megasas_instance_template_xscale; 3661 break; 3662 } 3663 3664 if (megasas_transition_to_ready(instance, 0)) { 3665 atomic_set(&instance->fw_reset_no_pci_access, 1); 3666 instance->instancet->adp_reset 3667 (instance, instance->reg_set); 3668 atomic_set(&instance->fw_reset_no_pci_access, 0); 3669 dev_info(&instance->pdev->dev, 3670 "megasas: FW restarted successfully from %s!\n", 3671 __func__); 3672 3673 /*waitting for about 30 second before retry*/ 3674 ssleep(30); 3675 3676 if (megasas_transition_to_ready(instance, 0)) 3677 goto fail_ready_state; 3678 } 3679 3680 /* 3681 * MSI-X host index 0 is common for all adapter. 3682 * It is used for all MPT based Adapters. 3683 */ 3684 instance->reply_post_host_index_addr[0] = 3685 (u32 *)((u8 *)instance->reg_set + 3686 MPI2_REPLY_POST_HOST_INDEX_OFFSET); 3687 3688 /* Check if MSI-X is supported while in ready state */ 3689 msix_enable = (instance->instancet->read_fw_status_reg(reg_set) & 3690 0x4000000) >> 0x1a; 3691 if (msix_enable && !msix_disable) { 3692 scratch_pad_2 = readl 3693 (&instance->reg_set->outbound_scratch_pad_2); 3694 /* Check max MSI-X vectors */ 3695 if (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) { 3696 instance->msix_vectors = (scratch_pad_2 3697 & MR_MAX_REPLY_QUEUES_OFFSET) + 1; 3698 fw_msix_count = instance->msix_vectors; 3699 if (msix_vectors) 3700 instance->msix_vectors = 3701 min(msix_vectors, 3702 instance->msix_vectors); 3703 } else if ((instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) 3704 || (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { 3705 /* Invader/Fury supports more than 8 MSI-X */ 3706 instance->msix_vectors = ((scratch_pad_2 3707 & MR_MAX_REPLY_QUEUES_EXT_OFFSET) 3708 >> MR_MAX_REPLY_QUEUES_EXT_OFFSET_SHIFT) + 1; 3709 fw_msix_count = instance->msix_vectors; 3710 /* Save 1-15 reply post index address to local memory 3711 * Index 0 is already saved from reg offset 3712 * MPI2_REPLY_POST_HOST_INDEX_OFFSET 3713 */ 3714 for (loop = 1; loop < MR_MAX_MSIX_REG_ARRAY; loop++) { 3715 instance->reply_post_host_index_addr[loop] = 3716 (u32 *)((u8 *)instance->reg_set + 3717 MPI2_SUP_REPLY_POST_HOST_INDEX_OFFSET 3718 + (loop * 0x10)); 3719 } 3720 if (msix_vectors) 3721 instance->msix_vectors = min(msix_vectors, 3722 instance->msix_vectors); 3723 } else 3724 instance->msix_vectors = 1; 3725 /* Don't bother allocating more MSI-X vectors than cpus */ 3726 instance->msix_vectors = min(instance->msix_vectors, 3727 (unsigned int)num_online_cpus()); 3728 for (i = 0; i < instance->msix_vectors; i++) 3729 instance->msixentry[i].entry = i; 3730 i = pci_enable_msix(instance->pdev, instance->msixentry, 3731 instance->msix_vectors); 3732 if (i >= 0) { 3733 if (i) { 3734 if (!pci_enable_msix(instance->pdev, 3735 instance->msixentry, i)) 3736 instance->msix_vectors = i; 3737 else 3738 instance->msix_vectors = 0; 3739 } 3740 } else 3741 instance->msix_vectors = 0; 3742 3743 dev_info(&instance->pdev->dev, "[scsi%d]: FW supports" 3744 "<%d> MSIX vector,Online CPUs: <%d>," 3745 "Current MSIX <%d>\n", instance->host->host_no, 3746 fw_msix_count, (unsigned int)num_online_cpus(), 3747 instance->msix_vectors); 3748 } 3749 3750 /* Get operational params, sge flags, send init cmd to controller */ 3751 if (instance->instancet->init_adapter(instance)) 3752 goto fail_init_adapter; 3753 3754 printk(KERN_ERR "megasas: INIT adapter done\n"); 3755 3756 /** for passthrough 3757 * the following function will get the PD LIST. 3758 */ 3759 3760 memset(instance->pd_list, 0 , 3761 (MEGASAS_MAX_PD * sizeof(struct megasas_pd_list))); 3762 megasas_get_pd_list(instance); 3763 3764 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS); 3765 if (megasas_ld_list_query(instance, 3766 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST)) 3767 megasas_get_ld_list(instance); 3768 3769 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL); 3770 3771 /* 3772 * Compute the max allowed sectors per IO: The controller info has two 3773 * limits on max sectors. Driver should use the minimum of these two. 3774 * 3775 * 1 << stripe_sz_ops.min = max sectors per strip 3776 * 3777 * Note that older firmwares ( < FW ver 30) didn't report information 3778 * to calculate max_sectors_1. So the number ended up as zero always. 3779 */ 3780 tmp_sectors = 0; 3781 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) { 3782 3783 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) * 3784 le16_to_cpu(ctrl_info->max_strips_per_io); 3785 max_sectors_2 = le32_to_cpu(ctrl_info->max_request_size); 3786 3787 tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2); 3788 3789 /*Check whether controller is iMR or MR */ 3790 if (ctrl_info->memory_size) { 3791 instance->is_imr = 0; 3792 dev_info(&instance->pdev->dev, "Controller type: MR," 3793 "Memory size is: %dMB\n", 3794 le16_to_cpu(ctrl_info->memory_size)); 3795 } else { 3796 instance->is_imr = 1; 3797 dev_info(&instance->pdev->dev, 3798 "Controller type: iMR\n"); 3799 } 3800 /* OnOffProperties are converted into CPU arch*/ 3801 le32_to_cpus((u32 *)&ctrl_info->properties.OnOffProperties); 3802 instance->disableOnlineCtrlReset = 3803 ctrl_info->properties.OnOffProperties.disableOnlineCtrlReset; 3804 /* adapterOperations2 are converted into CPU arch*/ 3805 le32_to_cpus((u32 *)&ctrl_info->adapterOperations2); 3806 instance->UnevenSpanSupport = 3807 ctrl_info->adapterOperations2.supportUnevenSpans; 3808 if (instance->UnevenSpanSupport) { 3809 struct fusion_context *fusion = instance->ctrl_context; 3810 dev_info(&instance->pdev->dev, "FW supports: " 3811 "UnevenSpanSupport=%x\n", instance->UnevenSpanSupport); 3812 if (MR_ValidateMapInfo(instance)) 3813 fusion->fast_path_io = 1; 3814 else 3815 fusion->fast_path_io = 0; 3816 3817 } 3818 } 3819 instance->max_sectors_per_req = instance->max_num_sge * 3820 PAGE_SIZE / 512; 3821 if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors)) 3822 instance->max_sectors_per_req = tmp_sectors; 3823 3824 kfree(ctrl_info); 3825 3826 /* Check for valid throttlequeuedepth module parameter */ 3827 if (instance->is_imr) { 3828 if (throttlequeuedepth > (instance->max_fw_cmds - 3829 MEGASAS_SKINNY_INT_CMDS)) 3830 instance->throttlequeuedepth = 3831 MEGASAS_THROTTLE_QUEUE_DEPTH; 3832 else 3833 instance->throttlequeuedepth = throttlequeuedepth; 3834 } else { 3835 if (throttlequeuedepth > (instance->max_fw_cmds - 3836 MEGASAS_INT_CMDS)) 3837 instance->throttlequeuedepth = 3838 MEGASAS_THROTTLE_QUEUE_DEPTH; 3839 else 3840 instance->throttlequeuedepth = throttlequeuedepth; 3841 } 3842 3843 /* 3844 * Setup tasklet for cmd completion 3845 */ 3846 3847 tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet, 3848 (unsigned long)instance); 3849 3850 return 0; 3851 3852 fail_init_adapter: 3853 fail_ready_state: 3854 iounmap(instance->reg_set); 3855 3856 fail_ioremap: 3857 pci_release_selected_regions(instance->pdev, instance->bar); 3858 3859 return -EINVAL; 3860 } 3861 3862 /** 3863 * megasas_release_mfi - Reverses the FW initialization 3864 * @intance: Adapter soft state 3865 */ 3866 static void megasas_release_mfi(struct megasas_instance *instance) 3867 { 3868 u32 reply_q_sz = sizeof(u32) *(instance->max_mfi_cmds + 1); 3869 3870 if (instance->reply_queue) 3871 pci_free_consistent(instance->pdev, reply_q_sz, 3872 instance->reply_queue, instance->reply_queue_h); 3873 3874 megasas_free_cmds(instance); 3875 3876 iounmap(instance->reg_set); 3877 3878 pci_release_selected_regions(instance->pdev, instance->bar); 3879 } 3880 3881 /** 3882 * megasas_get_seq_num - Gets latest event sequence numbers 3883 * @instance: Adapter soft state 3884 * @eli: FW event log sequence numbers information 3885 * 3886 * FW maintains a log of all events in a non-volatile area. Upper layers would 3887 * usually find out the latest sequence number of the events, the seq number at 3888 * the boot etc. They would "read" all the events below the latest seq number 3889 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq 3890 * number), they would subsribe to AEN (asynchronous event notification) and 3891 * wait for the events to happen. 3892 */ 3893 static int 3894 megasas_get_seq_num(struct megasas_instance *instance, 3895 struct megasas_evt_log_info *eli) 3896 { 3897 struct megasas_cmd *cmd; 3898 struct megasas_dcmd_frame *dcmd; 3899 struct megasas_evt_log_info *el_info; 3900 dma_addr_t el_info_h = 0; 3901 3902 cmd = megasas_get_cmd(instance); 3903 3904 if (!cmd) { 3905 return -ENOMEM; 3906 } 3907 3908 dcmd = &cmd->frame->dcmd; 3909 el_info = pci_alloc_consistent(instance->pdev, 3910 sizeof(struct megasas_evt_log_info), 3911 &el_info_h); 3912 3913 if (!el_info) { 3914 megasas_return_cmd(instance, cmd); 3915 return -ENOMEM; 3916 } 3917 3918 memset(el_info, 0, sizeof(*el_info)); 3919 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 3920 3921 dcmd->cmd = MFI_CMD_DCMD; 3922 dcmd->cmd_status = 0x0; 3923 dcmd->sge_count = 1; 3924 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); 3925 dcmd->timeout = 0; 3926 dcmd->pad_0 = 0; 3927 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_evt_log_info)); 3928 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_EVENT_GET_INFO); 3929 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(el_info_h); 3930 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_evt_log_info)); 3931 3932 megasas_issue_blocked_cmd(instance, cmd); 3933 3934 /* 3935 * Copy the data back into callers buffer 3936 */ 3937 eli->newest_seq_num = le32_to_cpu(el_info->newest_seq_num); 3938 eli->oldest_seq_num = le32_to_cpu(el_info->oldest_seq_num); 3939 eli->clear_seq_num = le32_to_cpu(el_info->clear_seq_num); 3940 eli->shutdown_seq_num = le32_to_cpu(el_info->shutdown_seq_num); 3941 eli->boot_seq_num = le32_to_cpu(el_info->boot_seq_num); 3942 3943 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info), 3944 el_info, el_info_h); 3945 3946 megasas_return_cmd(instance, cmd); 3947 3948 return 0; 3949 } 3950 3951 /** 3952 * megasas_register_aen - Registers for asynchronous event notification 3953 * @instance: Adapter soft state 3954 * @seq_num: The starting sequence number 3955 * @class_locale: Class of the event 3956 * 3957 * This function subscribes for AEN for events beyond the @seq_num. It requests 3958 * to be notified if and only if the event is of type @class_locale 3959 */ 3960 static int 3961 megasas_register_aen(struct megasas_instance *instance, u32 seq_num, 3962 u32 class_locale_word) 3963 { 3964 int ret_val; 3965 struct megasas_cmd *cmd; 3966 struct megasas_dcmd_frame *dcmd; 3967 union megasas_evt_class_locale curr_aen; 3968 union megasas_evt_class_locale prev_aen; 3969 3970 /* 3971 * If there an AEN pending already (aen_cmd), check if the 3972 * class_locale of that pending AEN is inclusive of the new 3973 * AEN request we currently have. If it is, then we don't have 3974 * to do anything. In other words, whichever events the current 3975 * AEN request is subscribing to, have already been subscribed 3976 * to. 3977 * 3978 * If the old_cmd is _not_ inclusive, then we have to abort 3979 * that command, form a class_locale that is superset of both 3980 * old and current and re-issue to the FW 3981 */ 3982 3983 curr_aen.word = class_locale_word; 3984 3985 if (instance->aen_cmd) { 3986 3987 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1]; 3988 prev_aen.members.locale = le16_to_cpu(prev_aen.members.locale); 3989 3990 /* 3991 * A class whose enum value is smaller is inclusive of all 3992 * higher values. If a PROGRESS (= -1) was previously 3993 * registered, then a new registration requests for higher 3994 * classes need not be sent to FW. They are automatically 3995 * included. 3996 * 3997 * Locale numbers don't have such hierarchy. They are bitmap 3998 * values 3999 */ 4000 if ((prev_aen.members.class <= curr_aen.members.class) && 4001 !((le16_to_cpu(prev_aen.members.locale) & curr_aen.members.locale) ^ 4002 curr_aen.members.locale)) { 4003 /* 4004 * Previously issued event registration includes 4005 * current request. Nothing to do. 4006 */ 4007 return 0; 4008 } else { 4009 curr_aen.members.locale |= le16_to_cpu(prev_aen.members.locale); 4010 4011 if (prev_aen.members.class < curr_aen.members.class) 4012 curr_aen.members.class = prev_aen.members.class; 4013 4014 instance->aen_cmd->abort_aen = 1; 4015 ret_val = megasas_issue_blocked_abort_cmd(instance, 4016 instance-> 4017 aen_cmd); 4018 4019 if (ret_val) { 4020 printk(KERN_DEBUG "megasas: Failed to abort " 4021 "previous AEN command\n"); 4022 return ret_val; 4023 } 4024 } 4025 } 4026 4027 cmd = megasas_get_cmd(instance); 4028 4029 if (!cmd) 4030 return -ENOMEM; 4031 4032 dcmd = &cmd->frame->dcmd; 4033 4034 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail)); 4035 4036 /* 4037 * Prepare DCMD for aen registration 4038 */ 4039 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 4040 4041 dcmd->cmd = MFI_CMD_DCMD; 4042 dcmd->cmd_status = 0x0; 4043 dcmd->sge_count = 1; 4044 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); 4045 dcmd->timeout = 0; 4046 dcmd->pad_0 = 0; 4047 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_evt_detail)); 4048 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_EVENT_WAIT); 4049 dcmd->mbox.w[0] = cpu_to_le32(seq_num); 4050 instance->last_seq_num = seq_num; 4051 dcmd->mbox.w[1] = cpu_to_le32(curr_aen.word); 4052 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(instance->evt_detail_h); 4053 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_evt_detail)); 4054 4055 if (instance->aen_cmd != NULL) { 4056 megasas_return_cmd(instance, cmd); 4057 return 0; 4058 } 4059 4060 /* 4061 * Store reference to the cmd used to register for AEN. When an 4062 * application wants us to register for AEN, we have to abort this 4063 * cmd and re-register with a new EVENT LOCALE supplied by that app 4064 */ 4065 instance->aen_cmd = cmd; 4066 4067 /* 4068 * Issue the aen registration frame 4069 */ 4070 instance->instancet->issue_dcmd(instance, cmd); 4071 4072 return 0; 4073 } 4074 4075 /** 4076 * megasas_start_aen - Subscribes to AEN during driver load time 4077 * @instance: Adapter soft state 4078 */ 4079 static int megasas_start_aen(struct megasas_instance *instance) 4080 { 4081 struct megasas_evt_log_info eli; 4082 union megasas_evt_class_locale class_locale; 4083 4084 /* 4085 * Get the latest sequence number from FW 4086 */ 4087 memset(&eli, 0, sizeof(eli)); 4088 4089 if (megasas_get_seq_num(instance, &eli)) 4090 return -1; 4091 4092 /* 4093 * Register AEN with FW for latest sequence number plus 1 4094 */ 4095 class_locale.members.reserved = 0; 4096 class_locale.members.locale = MR_EVT_LOCALE_ALL; 4097 class_locale.members.class = MR_EVT_CLASS_DEBUG; 4098 4099 return megasas_register_aen(instance, 4100 le32_to_cpu(eli.newest_seq_num) + 1, 4101 class_locale.word); 4102 } 4103 4104 /** 4105 * megasas_io_attach - Attaches this driver to SCSI mid-layer 4106 * @instance: Adapter soft state 4107 */ 4108 static int megasas_io_attach(struct megasas_instance *instance) 4109 { 4110 struct Scsi_Host *host = instance->host; 4111 4112 /* 4113 * Export parameters required by SCSI mid-layer 4114 */ 4115 host->irq = instance->pdev->irq; 4116 host->unique_id = instance->unique_id; 4117 if (instance->is_imr) { 4118 host->can_queue = 4119 instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS; 4120 } else 4121 host->can_queue = 4122 instance->max_fw_cmds - MEGASAS_INT_CMDS; 4123 host->this_id = instance->init_id; 4124 host->sg_tablesize = instance->max_num_sge; 4125 4126 if (instance->fw_support_ieee) 4127 instance->max_sectors_per_req = MEGASAS_MAX_SECTORS_IEEE; 4128 4129 /* 4130 * Check if the module parameter value for max_sectors can be used 4131 */ 4132 if (max_sectors && max_sectors < instance->max_sectors_per_req) 4133 instance->max_sectors_per_req = max_sectors; 4134 else { 4135 if (max_sectors) { 4136 if (((instance->pdev->device == 4137 PCI_DEVICE_ID_LSI_SAS1078GEN2) || 4138 (instance->pdev->device == 4139 PCI_DEVICE_ID_LSI_SAS0079GEN2)) && 4140 (max_sectors <= MEGASAS_MAX_SECTORS)) { 4141 instance->max_sectors_per_req = max_sectors; 4142 } else { 4143 printk(KERN_INFO "megasas: max_sectors should be > 0" 4144 "and <= %d (or < 1MB for GEN2 controller)\n", 4145 instance->max_sectors_per_req); 4146 } 4147 } 4148 } 4149 4150 host->max_sectors = instance->max_sectors_per_req; 4151 host->cmd_per_lun = MEGASAS_DEFAULT_CMD_PER_LUN; 4152 host->max_channel = MEGASAS_MAX_CHANNELS - 1; 4153 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL; 4154 host->max_lun = MEGASAS_MAX_LUN; 4155 host->max_cmd_len = 16; 4156 4157 /* Fusion only supports host reset */ 4158 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 4159 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 4160 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { 4161 host->hostt->eh_device_reset_handler = NULL; 4162 host->hostt->eh_bus_reset_handler = NULL; 4163 } 4164 4165 /* 4166 * Notify the mid-layer about the new controller 4167 */ 4168 if (scsi_add_host(host, &instance->pdev->dev)) { 4169 printk(KERN_DEBUG "megasas: scsi_add_host failed\n"); 4170 return -ENODEV; 4171 } 4172 4173 /* 4174 * Trigger SCSI to scan our drives 4175 */ 4176 scsi_scan_host(host); 4177 return 0; 4178 } 4179 4180 static int 4181 megasas_set_dma_mask(struct pci_dev *pdev) 4182 { 4183 /* 4184 * All our contollers are capable of performing 64-bit DMA 4185 */ 4186 if (IS_DMA64) { 4187 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) != 0) { 4188 4189 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) 4190 goto fail_set_dma_mask; 4191 } 4192 } else { 4193 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) 4194 goto fail_set_dma_mask; 4195 } 4196 4197 return 0; 4198 4199 fail_set_dma_mask: 4200 return 1; 4201 } 4202 4203 /** 4204 * megasas_probe_one - PCI hotplug entry point 4205 * @pdev: PCI device structure 4206 * @id: PCI ids of supported hotplugged adapter 4207 */ 4208 static int megasas_probe_one(struct pci_dev *pdev, 4209 const struct pci_device_id *id) 4210 { 4211 int rval, pos, i, j; 4212 struct Scsi_Host *host; 4213 struct megasas_instance *instance; 4214 u16 control = 0; 4215 4216 /* Reset MSI-X in the kdump kernel */ 4217 if (reset_devices) { 4218 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); 4219 if (pos) { 4220 pci_read_config_word(pdev, pos + PCI_MSIX_FLAGS, 4221 &control); 4222 if (control & PCI_MSIX_FLAGS_ENABLE) { 4223 dev_info(&pdev->dev, "resetting MSI-X\n"); 4224 pci_write_config_word(pdev, 4225 pos + PCI_MSIX_FLAGS, 4226 control & 4227 ~PCI_MSIX_FLAGS_ENABLE); 4228 } 4229 } 4230 } 4231 4232 /* 4233 * Announce PCI information 4234 */ 4235 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ", 4236 pdev->vendor, pdev->device, pdev->subsystem_vendor, 4237 pdev->subsystem_device); 4238 4239 printk("bus %d:slot %d:func %d\n", 4240 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 4241 4242 /* 4243 * PCI prepping: enable device set bus mastering and dma mask 4244 */ 4245 rval = pci_enable_device_mem(pdev); 4246 4247 if (rval) { 4248 return rval; 4249 } 4250 4251 pci_set_master(pdev); 4252 4253 if (megasas_set_dma_mask(pdev)) 4254 goto fail_set_dma_mask; 4255 4256 host = scsi_host_alloc(&megasas_template, 4257 sizeof(struct megasas_instance)); 4258 4259 if (!host) { 4260 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n"); 4261 goto fail_alloc_instance; 4262 } 4263 4264 instance = (struct megasas_instance *)host->hostdata; 4265 memset(instance, 0, sizeof(*instance)); 4266 atomic_set( &instance->fw_reset_no_pci_access, 0 ); 4267 instance->pdev = pdev; 4268 4269 switch (instance->pdev->device) { 4270 case PCI_DEVICE_ID_LSI_FUSION: 4271 case PCI_DEVICE_ID_LSI_INVADER: 4272 case PCI_DEVICE_ID_LSI_FURY: 4273 { 4274 struct fusion_context *fusion; 4275 4276 instance->ctrl_context = 4277 kzalloc(sizeof(struct fusion_context), GFP_KERNEL); 4278 if (!instance->ctrl_context) { 4279 printk(KERN_DEBUG "megasas: Failed to allocate " 4280 "memory for Fusion context info\n"); 4281 goto fail_alloc_dma_buf; 4282 } 4283 fusion = instance->ctrl_context; 4284 INIT_LIST_HEAD(&fusion->cmd_pool); 4285 spin_lock_init(&fusion->cmd_pool_lock); 4286 } 4287 break; 4288 default: /* For all other supported controllers */ 4289 4290 instance->producer = 4291 pci_alloc_consistent(pdev, sizeof(u32), 4292 &instance->producer_h); 4293 instance->consumer = 4294 pci_alloc_consistent(pdev, sizeof(u32), 4295 &instance->consumer_h); 4296 4297 if (!instance->producer || !instance->consumer) { 4298 printk(KERN_DEBUG "megasas: Failed to allocate" 4299 "memory for producer, consumer\n"); 4300 goto fail_alloc_dma_buf; 4301 } 4302 4303 *instance->producer = 0; 4304 *instance->consumer = 0; 4305 break; 4306 } 4307 4308 megasas_poll_wait_aen = 0; 4309 instance->flag_ieee = 0; 4310 instance->ev = NULL; 4311 instance->issuepend_done = 1; 4312 instance->adprecovery = MEGASAS_HBA_OPERATIONAL; 4313 instance->is_imr = 0; 4314 megasas_poll_wait_aen = 0; 4315 4316 instance->evt_detail = pci_alloc_consistent(pdev, 4317 sizeof(struct 4318 megasas_evt_detail), 4319 &instance->evt_detail_h); 4320 4321 if (!instance->evt_detail) { 4322 printk(KERN_DEBUG "megasas: Failed to allocate memory for " 4323 "event detail structure\n"); 4324 goto fail_alloc_dma_buf; 4325 } 4326 4327 /* 4328 * Initialize locks and queues 4329 */ 4330 INIT_LIST_HEAD(&instance->cmd_pool); 4331 INIT_LIST_HEAD(&instance->internal_reset_pending_q); 4332 4333 atomic_set(&instance->fw_outstanding,0); 4334 4335 init_waitqueue_head(&instance->int_cmd_wait_q); 4336 init_waitqueue_head(&instance->abort_cmd_wait_q); 4337 4338 spin_lock_init(&instance->cmd_pool_lock); 4339 spin_lock_init(&instance->hba_lock); 4340 spin_lock_init(&instance->completion_lock); 4341 4342 mutex_init(&instance->aen_mutex); 4343 mutex_init(&instance->reset_mutex); 4344 4345 /* 4346 * Initialize PCI related and misc parameters 4347 */ 4348 instance->host = host; 4349 instance->unique_id = pdev->bus->number << 8 | pdev->devfn; 4350 instance->init_id = MEGASAS_DEFAULT_INIT_ID; 4351 4352 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || 4353 (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) { 4354 instance->flag_ieee = 1; 4355 sema_init(&instance->ioctl_sem, MEGASAS_SKINNY_INT_CMDS); 4356 } else 4357 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS); 4358 4359 megasas_dbg_lvl = 0; 4360 instance->flag = 0; 4361 instance->unload = 1; 4362 instance->last_time = 0; 4363 instance->disableOnlineCtrlReset = 1; 4364 instance->UnevenSpanSupport = 0; 4365 4366 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 4367 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 4368 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) 4369 INIT_WORK(&instance->work_init, megasas_fusion_ocr_wq); 4370 else 4371 INIT_WORK(&instance->work_init, process_fw_state_change_wq); 4372 4373 /* 4374 * Initialize MFI Firmware 4375 */ 4376 if (megasas_init_fw(instance)) 4377 goto fail_init_mfi; 4378 4379 retry_irq_register: 4380 /* 4381 * Register IRQ 4382 */ 4383 if (instance->msix_vectors) { 4384 for (i = 0 ; i < instance->msix_vectors; i++) { 4385 instance->irq_context[i].instance = instance; 4386 instance->irq_context[i].MSIxIndex = i; 4387 if (request_irq(instance->msixentry[i].vector, 4388 instance->instancet->service_isr, 0, 4389 "megasas", 4390 &instance->irq_context[i])) { 4391 printk(KERN_DEBUG "megasas: Failed to " 4392 "register IRQ for vector %d.\n", i); 4393 for (j = 0 ; j < i ; j++) 4394 free_irq( 4395 instance->msixentry[j].vector, 4396 &instance->irq_context[j]); 4397 /* Retry irq register for IO_APIC */ 4398 instance->msix_vectors = 0; 4399 goto retry_irq_register; 4400 } 4401 } 4402 } else { 4403 instance->irq_context[0].instance = instance; 4404 instance->irq_context[0].MSIxIndex = 0; 4405 if (request_irq(pdev->irq, instance->instancet->service_isr, 4406 IRQF_SHARED, "megasas", 4407 &instance->irq_context[0])) { 4408 printk(KERN_DEBUG "megasas: Failed to register IRQ\n"); 4409 goto fail_irq; 4410 } 4411 } 4412 4413 instance->instancet->enable_intr(instance); 4414 4415 /* 4416 * Store instance in PCI softstate 4417 */ 4418 pci_set_drvdata(pdev, instance); 4419 4420 /* 4421 * Add this controller to megasas_mgmt_info structure so that it 4422 * can be exported to management applications 4423 */ 4424 megasas_mgmt_info.count++; 4425 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance; 4426 megasas_mgmt_info.max_index++; 4427 4428 /* 4429 * Register with SCSI mid-layer 4430 */ 4431 if (megasas_io_attach(instance)) 4432 goto fail_io_attach; 4433 4434 instance->unload = 0; 4435 4436 /* 4437 * Initiate AEN (Asynchronous Event Notification) 4438 */ 4439 if (megasas_start_aen(instance)) { 4440 printk(KERN_DEBUG "megasas: start aen failed\n"); 4441 goto fail_start_aen; 4442 } 4443 4444 return 0; 4445 4446 fail_start_aen: 4447 fail_io_attach: 4448 megasas_mgmt_info.count--; 4449 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL; 4450 megasas_mgmt_info.max_index--; 4451 4452 pci_set_drvdata(pdev, NULL); 4453 instance->instancet->disable_intr(instance); 4454 if (instance->msix_vectors) 4455 for (i = 0 ; i < instance->msix_vectors; i++) 4456 free_irq(instance->msixentry[i].vector, 4457 &instance->irq_context[i]); 4458 else 4459 free_irq(instance->pdev->irq, &instance->irq_context[0]); 4460 fail_irq: 4461 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || 4462 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || 4463 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) 4464 megasas_release_fusion(instance); 4465 else 4466 megasas_release_mfi(instance); 4467 fail_init_mfi: 4468 if (instance->msix_vectors) 4469 pci_disable_msix(instance->pdev); 4470 fail_alloc_dma_buf: 4471 if (instance->evt_detail) 4472 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail), 4473 instance->evt_detail, 4474 instance->evt_detail_h); 4475 4476 if (instance->producer) 4477 pci_free_consistent(pdev, sizeof(u32), instance->producer, 4478 instance->producer_h); 4479 if (instance->consumer) 4480 pci_free_consistent(pdev, sizeof(u32), instance->consumer, 4481 instance->consumer_h); 4482 scsi_host_put(host); 4483 4484 fail_alloc_instance: 4485 fail_set_dma_mask: 4486 pci_disable_device(pdev); 4487 4488 return -ENODEV; 4489 } 4490 4491 /** 4492 * megasas_flush_cache - Requests FW to flush all its caches 4493 * @instance: Adapter soft state 4494 */ 4495 static void megasas_flush_cache(struct megasas_instance *instance) 4496 { 4497 struct megasas_cmd *cmd; 4498 struct megasas_dcmd_frame *dcmd; 4499 4500 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) 4501 return; 4502 4503 cmd = megasas_get_cmd(instance); 4504 4505 if (!cmd) 4506 return; 4507 4508 dcmd = &cmd->frame->dcmd; 4509 4510 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 4511 4512 dcmd->cmd = MFI_CMD_DCMD; 4513 dcmd->cmd_status = 0x0; 4514 dcmd->sge_count = 0; 4515 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_NONE); 4516 dcmd->timeout = 0; 4517 dcmd->pad_0 = 0; 4518 dcmd->data_xfer_len = 0; 4519 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_CACHE_FLUSH); 4520 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE; 4521 4522 megasas_issue_blocked_cmd(instance, cmd); 4523 4524 megasas_return_cmd(instance, cmd); 4525 4526 return; 4527 } 4528 4529 /** 4530 * megasas_shutdown_controller - Instructs FW to shutdown the controller 4531 * @instance: Adapter soft state 4532 * @opcode: Shutdown/Hibernate 4533 */ 4534 static void megasas_shutdown_controller(struct megasas_instance *instance, 4535 u32 opcode) 4536 { 4537 struct megasas_cmd *cmd; 4538 struct megasas_dcmd_frame *dcmd; 4539 4540 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) 4541 return; 4542 4543 cmd = megasas_get_cmd(instance); 4544 4545 if (!cmd) 4546 return; 4547 4548 if (instance->aen_cmd) 4549 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd); 4550 if (instance->map_update_cmd) 4551 megasas_issue_blocked_abort_cmd(instance, 4552 instance->map_update_cmd); 4553 dcmd = &cmd->frame->dcmd; 4554 4555 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); 4556 4557 dcmd->cmd = MFI_CMD_DCMD; 4558 dcmd->cmd_status = 0x0; 4559 dcmd->sge_count = 0; 4560 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_NONE); 4561 dcmd->timeout = 0; 4562 dcmd->pad_0 = 0; 4563 dcmd->data_xfer_len = 0; 4564 dcmd->opcode = cpu_to_le32(opcode); 4565 4566 megasas_issue_blocked_cmd(instance, cmd); 4567 4568 megasas_return_cmd(instance, cmd); 4569 4570 return; 4571 } 4572 4573 #ifdef CONFIG_PM 4574 /** 4575 * megasas_suspend - driver suspend entry point 4576 * @pdev: PCI device structure 4577 * @state: PCI power state to suspend routine 4578 */ 4579 static int 4580 megasas_suspend(struct pci_dev *pdev, pm_message_t state) 4581 { 4582 struct Scsi_Host *host; 4583 struct megasas_instance *instance; 4584 int i; 4585 4586 instance = pci_get_drvdata(pdev); 4587 host = instance->host; 4588 instance->unload = 1; 4589 4590 megasas_flush_cache(instance); 4591 megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN); 4592 4593 /* cancel the delayed work if this work still in queue */ 4594 if (instance->ev != NULL) { 4595 struct megasas_aen_event *ev = instance->ev; 4596 cancel_delayed_work_sync(&ev->hotplug_work); 4597 instance->ev = NULL; 4598 } 4599 4600 tasklet_kill(&instance->isr_tasklet); 4601 4602 pci_set_drvdata(instance->pdev, instance); 4603 instance->instancet->disable_intr(instance); 4604 4605 if (instance->msix_vectors) 4606 for (i = 0 ; i < instance->msix_vectors; i++) 4607 free_irq(instance->msixentry[i].vector, 4608 &instance->irq_context[i]); 4609 else 4610 free_irq(instance->pdev->irq, &instance->irq_context[0]); 4611 if (instance->msix_vectors) 4612 pci_disable_msix(instance->pdev); 4613 4614 pci_save_state(pdev); 4615 pci_disable_device(pdev); 4616 4617 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 4618 4619 return 0; 4620 } 4621 4622 /** 4623 * megasas_resume- driver resume entry point 4624 * @pdev: PCI device structure 4625 */ 4626 static int 4627 megasas_resume(struct pci_dev *pdev) 4628 { 4629 int rval, i, j; 4630 struct Scsi_Host *host; 4631 struct megasas_instance *instance; 4632 4633 instance = pci_get_drvdata(pdev); 4634 host = instance->host; 4635 pci_set_power_state(pdev, PCI_D0); 4636 pci_enable_wake(pdev, PCI_D0, 0); 4637 pci_restore_state(pdev); 4638 4639 /* 4640 * PCI prepping: enable device set bus mastering and dma mask 4641 */ 4642 rval = pci_enable_device_mem(pdev); 4643 4644 if (rval) { 4645 printk(KERN_ERR "megasas: Enable device failed\n"); 4646 return rval; 4647 } 4648 4649 pci_set_master(pdev); 4650 4651 if (megasas_set_dma_mask(pdev)) 4652 goto fail_set_dma_mask; 4653 4654 /* 4655 * Initialize MFI Firmware 4656 */ 4657 4658 atomic_set(&instance->fw_outstanding, 0); 4659 4660 /* 4661 * We expect the FW state to be READY 4662 */ 4663 if (megasas_transition_to_ready(instance, 0)) 4664 goto fail_ready_state; 4665 4666 /* Now re-enable MSI-X */ 4667 if (instance->msix_vectors) 4668 pci_enable_msix(instance->pdev, instance->msixentry, 4669 instance->msix_vectors); 4670 4671 switch (instance->pdev->device) { 4672 case PCI_DEVICE_ID_LSI_FUSION: 4673 case PCI_DEVICE_ID_LSI_INVADER: 4674 case PCI_DEVICE_ID_LSI_FURY: 4675 { 4676 megasas_reset_reply_desc(instance); 4677 if (megasas_ioc_init_fusion(instance)) { 4678 megasas_free_cmds(instance); 4679 megasas_free_cmds_fusion(instance); 4680 goto fail_init_mfi; 4681 } 4682 if (!megasas_get_map_info(instance)) 4683 megasas_sync_map_info(instance); 4684 } 4685 break; 4686 default: 4687 *instance->producer = 0; 4688 *instance->consumer = 0; 4689 if (megasas_issue_init_mfi(instance)) 4690 goto fail_init_mfi; 4691 break; 4692 } 4693 4694 tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet, 4695 (unsigned long)instance); 4696 4697 /* 4698 * Register IRQ 4699 */ 4700 if (instance->msix_vectors) { 4701 for (i = 0 ; i < instance->msix_vectors; i++) { 4702 instance->irq_context[i].instance = instance; 4703 instance->irq_context[i].MSIxIndex = i; 4704 if (request_irq(instance->msixentry[i].vector, 4705 instance->instancet->service_isr, 0, 4706 "megasas", 4707 &instance->irq_context[i])) { 4708 printk(KERN_DEBUG "megasas: Failed to " 4709 "register IRQ for vector %d.\n", i); 4710 for (j = 0 ; j < i ; j++) 4711 free_irq( 4712 instance->msixentry[j].vector, 4713 &instance->irq_context[j]); 4714 goto fail_irq; 4715 } 4716 } 4717 } else { 4718 instance->irq_context[0].instance = instance; 4719 instance->irq_context[0].MSIxIndex = 0; 4720 if (request_irq(pdev->irq, instance->instancet->service_isr, 4721 IRQF_SHARED, "megasas", 4722 &instance->irq_context[0])) { 4723 printk(KERN_DEBUG "megasas: Failed to register IRQ\n"); 4724 goto fail_irq; 4725 } 4726 } 4727 4728 instance->instancet->enable_intr(instance); 4729 instance->unload = 0; 4730 4731 /* 4732 * Initiate AEN (Asynchronous Event Notification) 4733 */ 4734 if (megasas_start_aen(instance)) 4735 printk(KERN_ERR "megasas: Start AEN failed\n"); 4736 4737 return 0; 4738 4739 fail_irq: 4740 fail_init_mfi: 4741 if (instance->evt_detail) 4742 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail), 4743 instance->evt_detail, 4744 instance->evt_detail_h); 4745 4746 if (instance->producer) 4747 pci_free_consistent(pdev, sizeof(u32), instance->producer, 4748 instance->producer_h); 4749 if (instance->consumer) 4750 pci_free_consistent(pdev, sizeof(u32), instance->consumer, 4751 instance->consumer_h); 4752 scsi_host_put(host); 4753 4754 fail_set_dma_mask: 4755 fail_ready_state: 4756 4757 pci_disable_device(pdev); 4758 4759 return -ENODEV; 4760 } 4761 #else 4762 #define megasas_suspend NULL 4763 #define megasas_resume NULL 4764 #endif 4765 4766 /** 4767 * megasas_detach_one - PCI hot"un"plug entry point 4768 * @pdev: PCI device structure 4769 */ 4770 static void megasas_detach_one(struct pci_dev *pdev) 4771 { 4772 int i; 4773 struct Scsi_Host *host; 4774 struct megasas_instance *instance; 4775 struct fusion_context *fusion; 4776 4777 instance = pci_get_drvdata(pdev); 4778 instance->unload = 1; 4779 host = instance->host; 4780 fusion = instance->ctrl_context; 4781 4782 scsi_remove_host(instance->host); 4783 megasas_flush_cache(instance); 4784 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN); 4785 4786 /* cancel the delayed work if this work still in queue*/ 4787 if (instance->ev != NULL) { 4788 struct megasas_aen_event *ev = instance->ev; 4789 cancel_delayed_work_sync(&ev->hotplug_work); 4790 instance->ev = NULL; 4791 } 4792 4793 tasklet_kill(&instance->isr_tasklet); 4794 4795 /* 4796 * Take the instance off the instance array. Note that we will not 4797 * decrement the max_index. We let this array be sparse array 4798 */ 4799 for (i = 0; i < megasas_mgmt_info.max_index; i++) { 4800 if (megasas_mgmt_info.instance[i] == instance) { 4801 megasas_mgmt_info.count--; 4802 megasas_mgmt_info.instance[i] = NULL; 4803 4804 break; 4805 } 4806 } 4807 4808 pci_set_drvdata(instance->pdev, NULL); 4809 4810 instance->instancet->disable_intr(instance); 4811 4812 if (instance->msix_vectors) 4813 for (i = 0 ; i < instance->msix_vectors; i++) 4814 free_irq(instance->msixentry[i].vector, 4815 &instance->irq_context[i]); 4816 else 4817 free_irq(instance->pdev->irq, &instance->irq_context[0]); 4818 if (instance->msix_vectors) 4819 pci_disable_msix(instance->pdev); 4820 4821 switch (instance->pdev->device) { 4822 case PCI_DEVICE_ID_LSI_FUSION: 4823 case PCI_DEVICE_ID_LSI_INVADER: 4824 case PCI_DEVICE_ID_LSI_FURY: 4825 megasas_release_fusion(instance); 4826 for (i = 0; i < 2 ; i++) 4827 if (fusion->ld_map[i]) 4828 dma_free_coherent(&instance->pdev->dev, 4829 fusion->map_sz, 4830 fusion->ld_map[i], 4831 fusion-> 4832 ld_map_phys[i]); 4833 kfree(instance->ctrl_context); 4834 break; 4835 default: 4836 megasas_release_mfi(instance); 4837 pci_free_consistent(pdev, sizeof(u32), 4838 instance->producer, 4839 instance->producer_h); 4840 pci_free_consistent(pdev, sizeof(u32), 4841 instance->consumer, 4842 instance->consumer_h); 4843 break; 4844 } 4845 4846 if (instance->evt_detail) 4847 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail), 4848 instance->evt_detail, instance->evt_detail_h); 4849 scsi_host_put(host); 4850 4851 pci_set_drvdata(pdev, NULL); 4852 4853 pci_disable_device(pdev); 4854 4855 return; 4856 } 4857 4858 /** 4859 * megasas_shutdown - Shutdown entry point 4860 * @device: Generic device structure 4861 */ 4862 static void megasas_shutdown(struct pci_dev *pdev) 4863 { 4864 int i; 4865 struct megasas_instance *instance = pci_get_drvdata(pdev); 4866 4867 instance->unload = 1; 4868 megasas_flush_cache(instance); 4869 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN); 4870 instance->instancet->disable_intr(instance); 4871 if (instance->msix_vectors) 4872 for (i = 0 ; i < instance->msix_vectors; i++) 4873 free_irq(instance->msixentry[i].vector, 4874 &instance->irq_context[i]); 4875 else 4876 free_irq(instance->pdev->irq, &instance->irq_context[0]); 4877 if (instance->msix_vectors) 4878 pci_disable_msix(instance->pdev); 4879 } 4880 4881 /** 4882 * megasas_mgmt_open - char node "open" entry point 4883 */ 4884 static int megasas_mgmt_open(struct inode *inode, struct file *filep) 4885 { 4886 /* 4887 * Allow only those users with admin rights 4888 */ 4889 if (!capable(CAP_SYS_ADMIN)) 4890 return -EACCES; 4891 4892 return 0; 4893 } 4894 4895 /** 4896 * megasas_mgmt_fasync - Async notifier registration from applications 4897 * 4898 * This function adds the calling process to a driver global queue. When an 4899 * event occurs, SIGIO will be sent to all processes in this queue. 4900 */ 4901 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode) 4902 { 4903 int rc; 4904 4905 mutex_lock(&megasas_async_queue_mutex); 4906 4907 rc = fasync_helper(fd, filep, mode, &megasas_async_queue); 4908 4909 mutex_unlock(&megasas_async_queue_mutex); 4910 4911 if (rc >= 0) { 4912 /* For sanity check when we get ioctl */ 4913 filep->private_data = filep; 4914 return 0; 4915 } 4916 4917 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc); 4918 4919 return rc; 4920 } 4921 4922 /** 4923 * megasas_mgmt_poll - char node "poll" entry point 4924 * */ 4925 static unsigned int megasas_mgmt_poll(struct file *file, poll_table *wait) 4926 { 4927 unsigned int mask; 4928 unsigned long flags; 4929 poll_wait(file, &megasas_poll_wait, wait); 4930 spin_lock_irqsave(&poll_aen_lock, flags); 4931 if (megasas_poll_wait_aen) 4932 mask = (POLLIN | POLLRDNORM); 4933 else 4934 mask = 0; 4935 spin_unlock_irqrestore(&poll_aen_lock, flags); 4936 return mask; 4937 } 4938 4939 /** 4940 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW 4941 * @instance: Adapter soft state 4942 * @argp: User's ioctl packet 4943 */ 4944 static int 4945 megasas_mgmt_fw_ioctl(struct megasas_instance *instance, 4946 struct megasas_iocpacket __user * user_ioc, 4947 struct megasas_iocpacket *ioc) 4948 { 4949 struct megasas_sge32 *kern_sge32; 4950 struct megasas_cmd *cmd; 4951 void *kbuff_arr[MAX_IOCTL_SGE]; 4952 dma_addr_t buf_handle = 0; 4953 int error = 0, i; 4954 void *sense = NULL; 4955 dma_addr_t sense_handle; 4956 unsigned long *sense_ptr; 4957 4958 memset(kbuff_arr, 0, sizeof(kbuff_arr)); 4959 4960 if (ioc->sge_count > MAX_IOCTL_SGE) { 4961 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n", 4962 ioc->sge_count, MAX_IOCTL_SGE); 4963 return -EINVAL; 4964 } 4965 4966 cmd = megasas_get_cmd(instance); 4967 if (!cmd) { 4968 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n"); 4969 return -ENOMEM; 4970 } 4971 4972 /* 4973 * User's IOCTL packet has 2 frames (maximum). Copy those two 4974 * frames into our cmd's frames. cmd->frame's context will get 4975 * overwritten when we copy from user's frames. So set that value 4976 * alone separately 4977 */ 4978 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE); 4979 cmd->frame->hdr.context = cpu_to_le32(cmd->index); 4980 cmd->frame->hdr.pad_0 = 0; 4981 cmd->frame->hdr.flags &= cpu_to_le16(~(MFI_FRAME_IEEE | 4982 MFI_FRAME_SGL64 | 4983 MFI_FRAME_SENSE64)); 4984 4985 /* 4986 * The management interface between applications and the fw uses 4987 * MFI frames. E.g, RAID configuration changes, LD property changes 4988 * etc are accomplishes through different kinds of MFI frames. The 4989 * driver needs to care only about substituting user buffers with 4990 * kernel buffers in SGLs. The location of SGL is embedded in the 4991 * struct iocpacket itself. 4992 */ 4993 kern_sge32 = (struct megasas_sge32 *) 4994 ((unsigned long)cmd->frame + ioc->sgl_off); 4995 4996 /* 4997 * For each user buffer, create a mirror buffer and copy in 4998 */ 4999 for (i = 0; i < ioc->sge_count; i++) { 5000 if (!ioc->sgl[i].iov_len) 5001 continue; 5002 5003 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev, 5004 ioc->sgl[i].iov_len, 5005 &buf_handle, GFP_KERNEL); 5006 if (!kbuff_arr[i]) { 5007 printk(KERN_DEBUG "megasas: Failed to alloc " 5008 "kernel SGL buffer for IOCTL \n"); 5009 error = -ENOMEM; 5010 goto out; 5011 } 5012 5013 /* 5014 * We don't change the dma_coherent_mask, so 5015 * pci_alloc_consistent only returns 32bit addresses 5016 */ 5017 kern_sge32[i].phys_addr = cpu_to_le32(buf_handle); 5018 kern_sge32[i].length = cpu_to_le32(ioc->sgl[i].iov_len); 5019 5020 /* 5021 * We created a kernel buffer corresponding to the 5022 * user buffer. Now copy in from the user buffer 5023 */ 5024 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base, 5025 (u32) (ioc->sgl[i].iov_len))) { 5026 error = -EFAULT; 5027 goto out; 5028 } 5029 } 5030 5031 if (ioc->sense_len) { 5032 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len, 5033 &sense_handle, GFP_KERNEL); 5034 if (!sense) { 5035 error = -ENOMEM; 5036 goto out; 5037 } 5038 5039 sense_ptr = 5040 (unsigned long *) ((unsigned long)cmd->frame + ioc->sense_off); 5041 *sense_ptr = cpu_to_le32(sense_handle); 5042 } 5043 5044 /* 5045 * Set the sync_cmd flag so that the ISR knows not to complete this 5046 * cmd to the SCSI mid-layer 5047 */ 5048 cmd->sync_cmd = 1; 5049 megasas_issue_blocked_cmd(instance, cmd); 5050 cmd->sync_cmd = 0; 5051 5052 /* 5053 * copy out the kernel buffers to user buffers 5054 */ 5055 for (i = 0; i < ioc->sge_count; i++) { 5056 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i], 5057 ioc->sgl[i].iov_len)) { 5058 error = -EFAULT; 5059 goto out; 5060 } 5061 } 5062 5063 /* 5064 * copy out the sense 5065 */ 5066 if (ioc->sense_len) { 5067 /* 5068 * sense_ptr points to the location that has the user 5069 * sense buffer address 5070 */ 5071 sense_ptr = (unsigned long *) ((unsigned long)ioc->frame.raw + 5072 ioc->sense_off); 5073 5074 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)), 5075 sense, ioc->sense_len)) { 5076 printk(KERN_ERR "megasas: Failed to copy out to user " 5077 "sense data\n"); 5078 error = -EFAULT; 5079 goto out; 5080 } 5081 } 5082 5083 /* 5084 * copy the status codes returned by the fw 5085 */ 5086 if (copy_to_user(&user_ioc->frame.hdr.cmd_status, 5087 &cmd->frame->hdr.cmd_status, sizeof(u8))) { 5088 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n"); 5089 error = -EFAULT; 5090 } 5091 5092 out: 5093 if (sense) { 5094 dma_free_coherent(&instance->pdev->dev, ioc->sense_len, 5095 sense, sense_handle); 5096 } 5097 5098 for (i = 0; i < ioc->sge_count; i++) { 5099 if (kbuff_arr[i]) 5100 dma_free_coherent(&instance->pdev->dev, 5101 le32_to_cpu(kern_sge32[i].length), 5102 kbuff_arr[i], 5103 le32_to_cpu(kern_sge32[i].phys_addr)); 5104 } 5105 5106 megasas_return_cmd(instance, cmd); 5107 return error; 5108 } 5109 5110 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg) 5111 { 5112 struct megasas_iocpacket __user *user_ioc = 5113 (struct megasas_iocpacket __user *)arg; 5114 struct megasas_iocpacket *ioc; 5115 struct megasas_instance *instance; 5116 int error; 5117 int i; 5118 unsigned long flags; 5119 u32 wait_time = MEGASAS_RESET_WAIT_TIME; 5120 5121 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL); 5122 if (!ioc) 5123 return -ENOMEM; 5124 5125 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) { 5126 error = -EFAULT; 5127 goto out_kfree_ioc; 5128 } 5129 5130 instance = megasas_lookup_instance(ioc->host_no); 5131 if (!instance) { 5132 error = -ENODEV; 5133 goto out_kfree_ioc; 5134 } 5135 5136 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { 5137 printk(KERN_ERR "Controller in crit error\n"); 5138 error = -ENODEV; 5139 goto out_kfree_ioc; 5140 } 5141 5142 if (instance->unload == 1) { 5143 error = -ENODEV; 5144 goto out_kfree_ioc; 5145 } 5146 5147 /* 5148 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds 5149 */ 5150 if (down_interruptible(&instance->ioctl_sem)) { 5151 error = -ERESTARTSYS; 5152 goto out_kfree_ioc; 5153 } 5154 5155 for (i = 0; i < wait_time; i++) { 5156 5157 spin_lock_irqsave(&instance->hba_lock, flags); 5158 if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) { 5159 spin_unlock_irqrestore(&instance->hba_lock, flags); 5160 break; 5161 } 5162 spin_unlock_irqrestore(&instance->hba_lock, flags); 5163 5164 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { 5165 printk(KERN_NOTICE "megasas: waiting" 5166 "for controller reset to finish\n"); 5167 } 5168 5169 msleep(1000); 5170 } 5171 5172 spin_lock_irqsave(&instance->hba_lock, flags); 5173 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { 5174 spin_unlock_irqrestore(&instance->hba_lock, flags); 5175 5176 printk(KERN_ERR "megaraid_sas: timed out while" 5177 "waiting for HBA to recover\n"); 5178 error = -ENODEV; 5179 goto out_up; 5180 } 5181 spin_unlock_irqrestore(&instance->hba_lock, flags); 5182 5183 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc); 5184 out_up: 5185 up(&instance->ioctl_sem); 5186 5187 out_kfree_ioc: 5188 kfree(ioc); 5189 return error; 5190 } 5191 5192 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg) 5193 { 5194 struct megasas_instance *instance; 5195 struct megasas_aen aen; 5196 int error; 5197 int i; 5198 unsigned long flags; 5199 u32 wait_time = MEGASAS_RESET_WAIT_TIME; 5200 5201 if (file->private_data != file) { 5202 printk(KERN_DEBUG "megasas: fasync_helper was not " 5203 "called first\n"); 5204 return -EINVAL; 5205 } 5206 5207 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen))) 5208 return -EFAULT; 5209 5210 instance = megasas_lookup_instance(aen.host_no); 5211 5212 if (!instance) 5213 return -ENODEV; 5214 5215 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { 5216 return -ENODEV; 5217 } 5218 5219 if (instance->unload == 1) { 5220 return -ENODEV; 5221 } 5222 5223 for (i = 0; i < wait_time; i++) { 5224 5225 spin_lock_irqsave(&instance->hba_lock, flags); 5226 if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) { 5227 spin_unlock_irqrestore(&instance->hba_lock, 5228 flags); 5229 break; 5230 } 5231 5232 spin_unlock_irqrestore(&instance->hba_lock, flags); 5233 5234 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { 5235 printk(KERN_NOTICE "megasas: waiting for" 5236 "controller reset to finish\n"); 5237 } 5238 5239 msleep(1000); 5240 } 5241 5242 spin_lock_irqsave(&instance->hba_lock, flags); 5243 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { 5244 spin_unlock_irqrestore(&instance->hba_lock, flags); 5245 printk(KERN_ERR "megaraid_sas: timed out while waiting" 5246 "for HBA to recover.\n"); 5247 return -ENODEV; 5248 } 5249 spin_unlock_irqrestore(&instance->hba_lock, flags); 5250 5251 mutex_lock(&instance->aen_mutex); 5252 error = megasas_register_aen(instance, aen.seq_num, 5253 aen.class_locale_word); 5254 mutex_unlock(&instance->aen_mutex); 5255 return error; 5256 } 5257 5258 /** 5259 * megasas_mgmt_ioctl - char node ioctl entry point 5260 */ 5261 static long 5262 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5263 { 5264 switch (cmd) { 5265 case MEGASAS_IOC_FIRMWARE: 5266 return megasas_mgmt_ioctl_fw(file, arg); 5267 5268 case MEGASAS_IOC_GET_AEN: 5269 return megasas_mgmt_ioctl_aen(file, arg); 5270 } 5271 5272 return -ENOTTY; 5273 } 5274 5275 #ifdef CONFIG_COMPAT 5276 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg) 5277 { 5278 struct compat_megasas_iocpacket __user *cioc = 5279 (struct compat_megasas_iocpacket __user *)arg; 5280 struct megasas_iocpacket __user *ioc = 5281 compat_alloc_user_space(sizeof(struct megasas_iocpacket)); 5282 int i; 5283 int error = 0; 5284 compat_uptr_t ptr; 5285 5286 if (clear_user(ioc, sizeof(*ioc))) 5287 return -EFAULT; 5288 5289 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) || 5290 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) || 5291 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) || 5292 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) || 5293 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) || 5294 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32))) 5295 return -EFAULT; 5296 5297 /* 5298 * The sense_ptr is used in megasas_mgmt_fw_ioctl only when 5299 * sense_len is not null, so prepare the 64bit value under 5300 * the same condition. 5301 */ 5302 if (ioc->sense_len) { 5303 void __user **sense_ioc_ptr = 5304 (void __user **)(ioc->frame.raw + ioc->sense_off); 5305 compat_uptr_t *sense_cioc_ptr = 5306 (compat_uptr_t *)(cioc->frame.raw + cioc->sense_off); 5307 if (get_user(ptr, sense_cioc_ptr) || 5308 put_user(compat_ptr(ptr), sense_ioc_ptr)) 5309 return -EFAULT; 5310 } 5311 5312 for (i = 0; i < MAX_IOCTL_SGE; i++) { 5313 if (get_user(ptr, &cioc->sgl[i].iov_base) || 5314 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) || 5315 copy_in_user(&ioc->sgl[i].iov_len, 5316 &cioc->sgl[i].iov_len, sizeof(compat_size_t))) 5317 return -EFAULT; 5318 } 5319 5320 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc); 5321 5322 if (copy_in_user(&cioc->frame.hdr.cmd_status, 5323 &ioc->frame.hdr.cmd_status, sizeof(u8))) { 5324 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n"); 5325 return -EFAULT; 5326 } 5327 return error; 5328 } 5329 5330 static long 5331 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd, 5332 unsigned long arg) 5333 { 5334 switch (cmd) { 5335 case MEGASAS_IOC_FIRMWARE32: 5336 return megasas_mgmt_compat_ioctl_fw(file, arg); 5337 case MEGASAS_IOC_GET_AEN: 5338 return megasas_mgmt_ioctl_aen(file, arg); 5339 } 5340 5341 return -ENOTTY; 5342 } 5343 #endif 5344 5345 /* 5346 * File operations structure for management interface 5347 */ 5348 static const struct file_operations megasas_mgmt_fops = { 5349 .owner = THIS_MODULE, 5350 .open = megasas_mgmt_open, 5351 .fasync = megasas_mgmt_fasync, 5352 .unlocked_ioctl = megasas_mgmt_ioctl, 5353 .poll = megasas_mgmt_poll, 5354 #ifdef CONFIG_COMPAT 5355 .compat_ioctl = megasas_mgmt_compat_ioctl, 5356 #endif 5357 .llseek = noop_llseek, 5358 }; 5359 5360 /* 5361 * PCI hotplug support registration structure 5362 */ 5363 static struct pci_driver megasas_pci_driver = { 5364 5365 .name = "megaraid_sas", 5366 .id_table = megasas_pci_table, 5367 .probe = megasas_probe_one, 5368 .remove = megasas_detach_one, 5369 .suspend = megasas_suspend, 5370 .resume = megasas_resume, 5371 .shutdown = megasas_shutdown, 5372 }; 5373 5374 /* 5375 * Sysfs driver attributes 5376 */ 5377 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf) 5378 { 5379 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n", 5380 MEGASAS_VERSION); 5381 } 5382 5383 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL); 5384 5385 static ssize_t 5386 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf) 5387 { 5388 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n", 5389 MEGASAS_RELDATE); 5390 } 5391 5392 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date, 5393 NULL); 5394 5395 static ssize_t 5396 megasas_sysfs_show_support_poll_for_event(struct device_driver *dd, char *buf) 5397 { 5398 return sprintf(buf, "%u\n", support_poll_for_event); 5399 } 5400 5401 static DRIVER_ATTR(support_poll_for_event, S_IRUGO, 5402 megasas_sysfs_show_support_poll_for_event, NULL); 5403 5404 static ssize_t 5405 megasas_sysfs_show_support_device_change(struct device_driver *dd, char *buf) 5406 { 5407 return sprintf(buf, "%u\n", support_device_change); 5408 } 5409 5410 static DRIVER_ATTR(support_device_change, S_IRUGO, 5411 megasas_sysfs_show_support_device_change, NULL); 5412 5413 static ssize_t 5414 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf) 5415 { 5416 return sprintf(buf, "%u\n", megasas_dbg_lvl); 5417 } 5418 5419 static ssize_t 5420 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count) 5421 { 5422 int retval = count; 5423 if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){ 5424 printk(KERN_ERR "megasas: could not set dbg_lvl\n"); 5425 retval = -EINVAL; 5426 } 5427 return retval; 5428 } 5429 5430 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUSR, megasas_sysfs_show_dbg_lvl, 5431 megasas_sysfs_set_dbg_lvl); 5432 5433 static void 5434 megasas_aen_polling(struct work_struct *work) 5435 { 5436 struct megasas_aen_event *ev = 5437 container_of(work, struct megasas_aen_event, hotplug_work.work); 5438 struct megasas_instance *instance = ev->instance; 5439 union megasas_evt_class_locale class_locale; 5440 struct Scsi_Host *host; 5441 struct scsi_device *sdev1; 5442 u16 pd_index = 0; 5443 u16 ld_index = 0; 5444 int i, j, doscan = 0; 5445 u32 seq_num; 5446 int error; 5447 5448 if (!instance) { 5449 printk(KERN_ERR "invalid instance!\n"); 5450 kfree(ev); 5451 return; 5452 } 5453 instance->ev = NULL; 5454 host = instance->host; 5455 if (instance->evt_detail) { 5456 5457 switch (le32_to_cpu(instance->evt_detail->code)) { 5458 case MR_EVT_PD_INSERTED: 5459 if (megasas_get_pd_list(instance) == 0) { 5460 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) { 5461 for (j = 0; 5462 j < MEGASAS_MAX_DEV_PER_CHANNEL; 5463 j++) { 5464 5465 pd_index = 5466 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5467 5468 sdev1 = 5469 scsi_device_lookup(host, i, j, 0); 5470 5471 if (instance->pd_list[pd_index].driveState 5472 == MR_PD_STATE_SYSTEM) { 5473 if (!sdev1) { 5474 scsi_add_device(host, i, j, 0); 5475 } 5476 5477 if (sdev1) 5478 scsi_device_put(sdev1); 5479 } 5480 } 5481 } 5482 } 5483 doscan = 0; 5484 break; 5485 5486 case MR_EVT_PD_REMOVED: 5487 if (megasas_get_pd_list(instance) == 0) { 5488 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) { 5489 for (j = 0; 5490 j < MEGASAS_MAX_DEV_PER_CHANNEL; 5491 j++) { 5492 5493 pd_index = 5494 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5495 5496 sdev1 = 5497 scsi_device_lookup(host, i, j, 0); 5498 5499 if (instance->pd_list[pd_index].driveState 5500 == MR_PD_STATE_SYSTEM) { 5501 if (sdev1) { 5502 scsi_device_put(sdev1); 5503 } 5504 } else { 5505 if (sdev1) { 5506 scsi_remove_device(sdev1); 5507 scsi_device_put(sdev1); 5508 } 5509 } 5510 } 5511 } 5512 } 5513 doscan = 0; 5514 break; 5515 5516 case MR_EVT_LD_OFFLINE: 5517 case MR_EVT_CFG_CLEARED: 5518 case MR_EVT_LD_DELETED: 5519 if (megasas_ld_list_query(instance, 5520 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST)) 5521 megasas_get_ld_list(instance); 5522 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) { 5523 for (j = 0; 5524 j < MEGASAS_MAX_DEV_PER_CHANNEL; 5525 j++) { 5526 5527 ld_index = 5528 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5529 5530 sdev1 = scsi_device_lookup(host, 5531 MEGASAS_MAX_PD_CHANNELS + i, 5532 j, 5533 0); 5534 5535 if (instance->ld_ids[ld_index] != 0xff) { 5536 if (sdev1) { 5537 scsi_device_put(sdev1); 5538 } 5539 } else { 5540 if (sdev1) { 5541 scsi_remove_device(sdev1); 5542 scsi_device_put(sdev1); 5543 } 5544 } 5545 } 5546 } 5547 doscan = 0; 5548 break; 5549 case MR_EVT_LD_CREATED: 5550 if (megasas_ld_list_query(instance, 5551 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST)) 5552 megasas_get_ld_list(instance); 5553 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) { 5554 for (j = 0; 5555 j < MEGASAS_MAX_DEV_PER_CHANNEL; 5556 j++) { 5557 ld_index = 5558 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5559 5560 sdev1 = scsi_device_lookup(host, 5561 MEGASAS_MAX_PD_CHANNELS + i, 5562 j, 0); 5563 5564 if (instance->ld_ids[ld_index] != 5565 0xff) { 5566 if (!sdev1) { 5567 scsi_add_device(host, 5568 MEGASAS_MAX_PD_CHANNELS + i, 5569 j, 0); 5570 } 5571 } 5572 if (sdev1) { 5573 scsi_device_put(sdev1); 5574 } 5575 } 5576 } 5577 doscan = 0; 5578 break; 5579 case MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED: 5580 case MR_EVT_FOREIGN_CFG_IMPORTED: 5581 case MR_EVT_LD_STATE_CHANGE: 5582 doscan = 1; 5583 break; 5584 default: 5585 doscan = 0; 5586 break; 5587 } 5588 } else { 5589 printk(KERN_ERR "invalid evt_detail!\n"); 5590 kfree(ev); 5591 return; 5592 } 5593 5594 if (doscan) { 5595 printk(KERN_INFO "scanning ...\n"); 5596 megasas_get_pd_list(instance); 5597 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) { 5598 for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { 5599 pd_index = i*MEGASAS_MAX_DEV_PER_CHANNEL + j; 5600 sdev1 = scsi_device_lookup(host, i, j, 0); 5601 if (instance->pd_list[pd_index].driveState == 5602 MR_PD_STATE_SYSTEM) { 5603 if (!sdev1) { 5604 scsi_add_device(host, i, j, 0); 5605 } 5606 if (sdev1) 5607 scsi_device_put(sdev1); 5608 } else { 5609 if (sdev1) { 5610 scsi_remove_device(sdev1); 5611 scsi_device_put(sdev1); 5612 } 5613 } 5614 } 5615 } 5616 5617 if (megasas_ld_list_query(instance, 5618 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST)) 5619 megasas_get_ld_list(instance); 5620 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) { 5621 for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { 5622 ld_index = 5623 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; 5624 5625 sdev1 = scsi_device_lookup(host, 5626 MEGASAS_MAX_PD_CHANNELS + i, j, 0); 5627 if (instance->ld_ids[ld_index] != 0xff) { 5628 if (!sdev1) { 5629 scsi_add_device(host, 5630 MEGASAS_MAX_PD_CHANNELS + i, 5631 j, 0); 5632 } else { 5633 scsi_device_put(sdev1); 5634 } 5635 } else { 5636 if (sdev1) { 5637 scsi_remove_device(sdev1); 5638 scsi_device_put(sdev1); 5639 } 5640 } 5641 } 5642 } 5643 } 5644 5645 if ( instance->aen_cmd != NULL ) { 5646 kfree(ev); 5647 return ; 5648 } 5649 5650 seq_num = le32_to_cpu(instance->evt_detail->seq_num) + 1; 5651 5652 /* Register AEN with FW for latest sequence number plus 1 */ 5653 class_locale.members.reserved = 0; 5654 class_locale.members.locale = MR_EVT_LOCALE_ALL; 5655 class_locale.members.class = MR_EVT_CLASS_DEBUG; 5656 mutex_lock(&instance->aen_mutex); 5657 error = megasas_register_aen(instance, seq_num, 5658 class_locale.word); 5659 mutex_unlock(&instance->aen_mutex); 5660 5661 if (error) 5662 printk(KERN_ERR "register aen failed error %x\n", error); 5663 5664 kfree(ev); 5665 } 5666 5667 /** 5668 * megasas_init - Driver load entry point 5669 */ 5670 static int __init megasas_init(void) 5671 { 5672 int rval; 5673 5674 /* 5675 * Announce driver version and other information 5676 */ 5677 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION, 5678 MEGASAS_EXT_VERSION); 5679 5680 spin_lock_init(&poll_aen_lock); 5681 5682 support_poll_for_event = 2; 5683 support_device_change = 1; 5684 5685 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info)); 5686 5687 /* 5688 * Register character device node 5689 */ 5690 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops); 5691 5692 if (rval < 0) { 5693 printk(KERN_DEBUG "megasas: failed to open device node\n"); 5694 return rval; 5695 } 5696 5697 megasas_mgmt_majorno = rval; 5698 5699 /* 5700 * Register ourselves as PCI hotplug module 5701 */ 5702 rval = pci_register_driver(&megasas_pci_driver); 5703 5704 if (rval) { 5705 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n"); 5706 goto err_pcidrv; 5707 } 5708 5709 rval = driver_create_file(&megasas_pci_driver.driver, 5710 &driver_attr_version); 5711 if (rval) 5712 goto err_dcf_attr_ver; 5713 rval = driver_create_file(&megasas_pci_driver.driver, 5714 &driver_attr_release_date); 5715 if (rval) 5716 goto err_dcf_rel_date; 5717 5718 rval = driver_create_file(&megasas_pci_driver.driver, 5719 &driver_attr_support_poll_for_event); 5720 if (rval) 5721 goto err_dcf_support_poll_for_event; 5722 5723 rval = driver_create_file(&megasas_pci_driver.driver, 5724 &driver_attr_dbg_lvl); 5725 if (rval) 5726 goto err_dcf_dbg_lvl; 5727 rval = driver_create_file(&megasas_pci_driver.driver, 5728 &driver_attr_support_device_change); 5729 if (rval) 5730 goto err_dcf_support_device_change; 5731 5732 return rval; 5733 5734 err_dcf_support_device_change: 5735 driver_remove_file(&megasas_pci_driver.driver, 5736 &driver_attr_dbg_lvl); 5737 err_dcf_dbg_lvl: 5738 driver_remove_file(&megasas_pci_driver.driver, 5739 &driver_attr_support_poll_for_event); 5740 5741 err_dcf_support_poll_for_event: 5742 driver_remove_file(&megasas_pci_driver.driver, 5743 &driver_attr_release_date); 5744 5745 err_dcf_rel_date: 5746 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version); 5747 err_dcf_attr_ver: 5748 pci_unregister_driver(&megasas_pci_driver); 5749 err_pcidrv: 5750 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl"); 5751 return rval; 5752 } 5753 5754 /** 5755 * megasas_exit - Driver unload entry point 5756 */ 5757 static void __exit megasas_exit(void) 5758 { 5759 driver_remove_file(&megasas_pci_driver.driver, 5760 &driver_attr_dbg_lvl); 5761 driver_remove_file(&megasas_pci_driver.driver, 5762 &driver_attr_support_poll_for_event); 5763 driver_remove_file(&megasas_pci_driver.driver, 5764 &driver_attr_support_device_change); 5765 driver_remove_file(&megasas_pci_driver.driver, 5766 &driver_attr_release_date); 5767 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version); 5768 5769 pci_unregister_driver(&megasas_pci_driver); 5770 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl"); 5771 } 5772 5773 module_init(megasas_init); 5774 module_exit(megasas_exit); 5775