xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_sli.c (revision ffcdf473)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2023 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.     *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/crash_dump.h>
38 #ifdef CONFIG_X86
39 #include <asm/set_memory.h>
40 #endif
41 
42 #include "lpfc_hw4.h"
43 #include "lpfc_hw.h"
44 #include "lpfc_sli.h"
45 #include "lpfc_sli4.h"
46 #include "lpfc_nl.h"
47 #include "lpfc_disc.h"
48 #include "lpfc.h"
49 #include "lpfc_scsi.h"
50 #include "lpfc_nvme.h"
51 #include "lpfc_crtn.h"
52 #include "lpfc_logmsg.h"
53 #include "lpfc_compat.h"
54 #include "lpfc_debugfs.h"
55 #include "lpfc_vport.h"
56 #include "lpfc_version.h"
57 
58 /* There are only four IOCB completion types. */
59 typedef enum _lpfc_iocb_type {
60 	LPFC_UNKNOWN_IOCB,
61 	LPFC_UNSOL_IOCB,
62 	LPFC_SOL_IOCB,
63 	LPFC_ABORT_IOCB
64 } lpfc_iocb_type;
65 
66 
67 /* Provide function prototypes local to this module. */
68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
69 				  uint32_t);
70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
71 			      uint8_t *, uint32_t *);
72 static struct lpfc_iocbq *
73 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba,
74 				  struct lpfc_iocbq *rspiocbq);
75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
76 				      struct hbq_dmabuf *);
77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
78 					  struct hbq_dmabuf *dmabuf);
79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
80 				   struct lpfc_queue *cq, struct lpfc_cqe *cqe);
81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
82 				       int);
83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
84 				     struct lpfc_queue *eq,
85 				     struct lpfc_eqe *eqe);
86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q);
89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba,
90 				    struct lpfc_queue *cq,
91 				    struct lpfc_cqe *cqe);
92 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba,
93 				 struct lpfc_iocbq *pwqeq,
94 				 struct lpfc_sglq *sglq);
95 
96 union lpfc_wqe128 lpfc_iread_cmd_template;
97 union lpfc_wqe128 lpfc_iwrite_cmd_template;
98 union lpfc_wqe128 lpfc_icmnd_cmd_template;
99 
100 /* Setup WQE templates for IOs */
101 void lpfc_wqe_cmd_template(void)
102 {
103 	union lpfc_wqe128 *wqe;
104 
105 	/* IREAD template */
106 	wqe = &lpfc_iread_cmd_template;
107 	memset(wqe, 0, sizeof(union lpfc_wqe128));
108 
109 	/* Word 0, 1, 2 - BDE is variable */
110 
111 	/* Word 3 - cmd_buff_len, payload_offset_len is zero */
112 
113 	/* Word 4 - total_xfer_len is variable */
114 
115 	/* Word 5 - is zero */
116 
117 	/* Word 6 - ctxt_tag, xri_tag is variable */
118 
119 	/* Word 7 */
120 	bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE);
121 	bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK);
122 	bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3);
123 	bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI);
124 
125 	/* Word 8 - abort_tag is variable */
126 
127 	/* Word 9  - reqtag is variable */
128 
129 	/* Word 10 - dbde, wqes is variable */
130 	bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0);
131 	bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
132 	bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4);
133 	bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
134 	bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
135 
136 	/* Word 11 - pbde is variable */
137 	bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN);
138 	bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
139 	bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
140 
141 	/* Word 12 - is zero */
142 
143 	/* Word 13, 14, 15 - PBDE is variable */
144 
145 	/* IWRITE template */
146 	wqe = &lpfc_iwrite_cmd_template;
147 	memset(wqe, 0, sizeof(union lpfc_wqe128));
148 
149 	/* Word 0, 1, 2 - BDE is variable */
150 
151 	/* Word 3 - cmd_buff_len, payload_offset_len is zero */
152 
153 	/* Word 4 - total_xfer_len is variable */
154 
155 	/* Word 5 - initial_xfer_len is variable */
156 
157 	/* Word 6 - ctxt_tag, xri_tag is variable */
158 
159 	/* Word 7 */
160 	bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE);
161 	bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK);
162 	bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3);
163 	bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI);
164 
165 	/* Word 8 - abort_tag is variable */
166 
167 	/* Word 9  - reqtag is variable */
168 
169 	/* Word 10 - dbde, wqes is variable */
170 	bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0);
171 	bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
172 	bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4);
173 	bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
174 	bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
175 
176 	/* Word 11 - pbde is variable */
177 	bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT);
178 	bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
179 	bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
180 
181 	/* Word 12 - is zero */
182 
183 	/* Word 13, 14, 15 - PBDE is variable */
184 
185 	/* ICMND template */
186 	wqe = &lpfc_icmnd_cmd_template;
187 	memset(wqe, 0, sizeof(union lpfc_wqe128));
188 
189 	/* Word 0, 1, 2 - BDE is variable */
190 
191 	/* Word 3 - payload_offset_len is variable */
192 
193 	/* Word 4, 5 - is zero */
194 
195 	/* Word 6 - ctxt_tag, xri_tag is variable */
196 
197 	/* Word 7 */
198 	bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE);
199 	bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
200 	bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3);
201 	bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI);
202 
203 	/* Word 8 - abort_tag is variable */
204 
205 	/* Word 9  - reqtag is variable */
206 
207 	/* Word 10 - dbde, wqes is variable */
208 	bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
209 	bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE);
210 	bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE);
211 	bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
212 	bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
213 
214 	/* Word 11 */
215 	bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN);
216 	bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
217 	bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0);
218 
219 	/* Word 12, 13, 14, 15 - is zero */
220 }
221 
222 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
223 /**
224  * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
225  * @srcp: Source memory pointer.
226  * @destp: Destination memory pointer.
227  * @cnt: Number of words required to be copied.
228  *       Must be a multiple of sizeof(uint64_t)
229  *
230  * This function is used for copying data between driver memory
231  * and the SLI WQ. This function also changes the endianness
232  * of each word if native endianness is different from SLI
233  * endianness. This function can be called with or without
234  * lock.
235  **/
236 static void
237 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
238 {
239 	uint64_t *src = srcp;
240 	uint64_t *dest = destp;
241 	int i;
242 
243 	for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
244 		*dest++ = *src++;
245 }
246 #else
247 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
248 #endif
249 
250 /**
251  * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
252  * @q: The Work Queue to operate on.
253  * @wqe: The work Queue Entry to put on the Work queue.
254  *
255  * This routine will copy the contents of @wqe to the next available entry on
256  * the @q. This function will then ring the Work Queue Doorbell to signal the
257  * HBA to start processing the Work Queue Entry. This function returns 0 if
258  * successful. If no entries are available on @q then this function will return
259  * -ENOMEM.
260  * The caller is expected to hold the hbalock when calling this routine.
261  **/
262 static int
263 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
264 {
265 	union lpfc_wqe *temp_wqe;
266 	struct lpfc_register doorbell;
267 	uint32_t host_index;
268 	uint32_t idx;
269 	uint32_t i = 0;
270 	uint8_t *tmp;
271 	u32 if_type;
272 
273 	/* sanity check on queue memory */
274 	if (unlikely(!q))
275 		return -ENOMEM;
276 
277 	temp_wqe = lpfc_sli4_qe(q, q->host_index);
278 
279 	/* If the host has not yet processed the next entry then we are done */
280 	idx = ((q->host_index + 1) % q->entry_count);
281 	if (idx == q->hba_index) {
282 		q->WQ_overflow++;
283 		return -EBUSY;
284 	}
285 	q->WQ_posted++;
286 	/* set consumption flag every once in a while */
287 	if (!((q->host_index + 1) % q->notify_interval))
288 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
289 	else
290 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
291 	if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
292 		bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
293 	lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
294 	if (q->dpp_enable && q->phba->cfg_enable_dpp) {
295 		/* write to DPP aperture taking advatage of Combined Writes */
296 		tmp = (uint8_t *)temp_wqe;
297 #ifdef __raw_writeq
298 		for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
299 			__raw_writeq(*((uint64_t *)(tmp + i)),
300 					q->dpp_regaddr + i);
301 #else
302 		for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
303 			__raw_writel(*((uint32_t *)(tmp + i)),
304 					q->dpp_regaddr + i);
305 #endif
306 	}
307 	/* ensure WQE bcopy and DPP flushed before doorbell write */
308 	wmb();
309 
310 	/* Update the host index before invoking device */
311 	host_index = q->host_index;
312 
313 	q->host_index = idx;
314 
315 	/* Ring Doorbell */
316 	doorbell.word0 = 0;
317 	if (q->db_format == LPFC_DB_LIST_FORMAT) {
318 		if (q->dpp_enable && q->phba->cfg_enable_dpp) {
319 			bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
320 			bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
321 			bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
322 			    q->dpp_id);
323 			bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
324 			    q->queue_id);
325 		} else {
326 			bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
327 			bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
328 
329 			/* Leave bits <23:16> clear for if_type 6 dpp */
330 			if_type = bf_get(lpfc_sli_intf_if_type,
331 					 &q->phba->sli4_hba.sli_intf);
332 			if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
333 				bf_set(lpfc_wq_db_list_fm_index, &doorbell,
334 				       host_index);
335 		}
336 	} else if (q->db_format == LPFC_DB_RING_FORMAT) {
337 		bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
338 		bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
339 	} else {
340 		return -EINVAL;
341 	}
342 	writel(doorbell.word0, q->db_regaddr);
343 
344 	return 0;
345 }
346 
347 /**
348  * lpfc_sli4_wq_release - Updates internal hba index for WQ
349  * @q: The Work Queue to operate on.
350  * @index: The index to advance the hba index to.
351  *
352  * This routine will update the HBA index of a queue to reflect consumption of
353  * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
354  * an entry the host calls this function to update the queue's internal
355  * pointers.
356  **/
357 static void
358 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
359 {
360 	/* sanity check on queue memory */
361 	if (unlikely(!q))
362 		return;
363 
364 	q->hba_index = index;
365 }
366 
367 /**
368  * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
369  * @q: The Mailbox Queue to operate on.
370  * @mqe: The Mailbox Queue Entry to put on the Work queue.
371  *
372  * This routine will copy the contents of @mqe to the next available entry on
373  * the @q. This function will then ring the Work Queue Doorbell to signal the
374  * HBA to start processing the Work Queue Entry. This function returns 0 if
375  * successful. If no entries are available on @q then this function will return
376  * -ENOMEM.
377  * The caller is expected to hold the hbalock when calling this routine.
378  **/
379 static uint32_t
380 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
381 {
382 	struct lpfc_mqe *temp_mqe;
383 	struct lpfc_register doorbell;
384 
385 	/* sanity check on queue memory */
386 	if (unlikely(!q))
387 		return -ENOMEM;
388 	temp_mqe = lpfc_sli4_qe(q, q->host_index);
389 
390 	/* If the host has not yet processed the next entry then we are done */
391 	if (((q->host_index + 1) % q->entry_count) == q->hba_index)
392 		return -ENOMEM;
393 	lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
394 	/* Save off the mailbox pointer for completion */
395 	q->phba->mbox = (MAILBOX_t *)temp_mqe;
396 
397 	/* Update the host index before invoking device */
398 	q->host_index = ((q->host_index + 1) % q->entry_count);
399 
400 	/* Ring Doorbell */
401 	doorbell.word0 = 0;
402 	bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
403 	bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
404 	writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
405 	return 0;
406 }
407 
408 /**
409  * lpfc_sli4_mq_release - Updates internal hba index for MQ
410  * @q: The Mailbox Queue to operate on.
411  *
412  * This routine will update the HBA index of a queue to reflect consumption of
413  * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
414  * an entry the host calls this function to update the queue's internal
415  * pointers. This routine returns the number of entries that were consumed by
416  * the HBA.
417  **/
418 static uint32_t
419 lpfc_sli4_mq_release(struct lpfc_queue *q)
420 {
421 	/* sanity check on queue memory */
422 	if (unlikely(!q))
423 		return 0;
424 
425 	/* Clear the mailbox pointer for completion */
426 	q->phba->mbox = NULL;
427 	q->hba_index = ((q->hba_index + 1) % q->entry_count);
428 	return 1;
429 }
430 
431 /**
432  * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
433  * @q: The Event Queue to get the first valid EQE from
434  *
435  * This routine will get the first valid Event Queue Entry from @q, update
436  * the queue's internal hba index, and return the EQE. If no valid EQEs are in
437  * the Queue (no more work to do), or the Queue is full of EQEs that have been
438  * processed, but not popped back to the HBA then this routine will return NULL.
439  **/
440 static struct lpfc_eqe *
441 lpfc_sli4_eq_get(struct lpfc_queue *q)
442 {
443 	struct lpfc_eqe *eqe;
444 
445 	/* sanity check on queue memory */
446 	if (unlikely(!q))
447 		return NULL;
448 	eqe = lpfc_sli4_qe(q, q->host_index);
449 
450 	/* If the next EQE is not valid then we are done */
451 	if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
452 		return NULL;
453 
454 	/*
455 	 * insert barrier for instruction interlock : data from the hardware
456 	 * must have the valid bit checked before it can be copied and acted
457 	 * upon. Speculative instructions were allowing a bcopy at the start
458 	 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
459 	 * after our return, to copy data before the valid bit check above
460 	 * was done. As such, some of the copied data was stale. The barrier
461 	 * ensures the check is before any data is copied.
462 	 */
463 	mb();
464 	return eqe;
465 }
466 
467 /**
468  * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
469  * @q: The Event Queue to disable interrupts
470  *
471  **/
472 void
473 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
474 {
475 	struct lpfc_register doorbell;
476 
477 	doorbell.word0 = 0;
478 	bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
479 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
480 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
481 		(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
482 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
483 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
484 }
485 
486 /**
487  * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
488  * @q: The Event Queue to disable interrupts
489  *
490  **/
491 void
492 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
493 {
494 	struct lpfc_register doorbell;
495 
496 	doorbell.word0 = 0;
497 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
498 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
499 }
500 
501 /**
502  * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
503  * @phba: adapter with EQ
504  * @q: The Event Queue that the host has completed processing for.
505  * @count: Number of elements that have been consumed
506  * @arm: Indicates whether the host wants to arms this CQ.
507  *
508  * This routine will notify the HBA, by ringing the doorbell, that count
509  * number of EQEs have been processed. The @arm parameter indicates whether
510  * the queue should be rearmed when ringing the doorbell.
511  **/
512 void
513 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
514 		     uint32_t count, bool arm)
515 {
516 	struct lpfc_register doorbell;
517 
518 	/* sanity check on queue memory */
519 	if (unlikely(!q || (count == 0 && !arm)))
520 		return;
521 
522 	/* ring doorbell for number popped */
523 	doorbell.word0 = 0;
524 	if (arm) {
525 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
526 		bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
527 	}
528 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
529 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
530 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
531 			(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
532 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
533 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
534 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
535 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
536 		readl(q->phba->sli4_hba.EQDBregaddr);
537 }
538 
539 /**
540  * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
541  * @phba: adapter with EQ
542  * @q: The Event Queue that the host has completed processing for.
543  * @count: Number of elements that have been consumed
544  * @arm: Indicates whether the host wants to arms this CQ.
545  *
546  * This routine will notify the HBA, by ringing the doorbell, that count
547  * number of EQEs have been processed. The @arm parameter indicates whether
548  * the queue should be rearmed when ringing the doorbell.
549  **/
550 void
551 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
552 			  uint32_t count, bool arm)
553 {
554 	struct lpfc_register doorbell;
555 
556 	/* sanity check on queue memory */
557 	if (unlikely(!q || (count == 0 && !arm)))
558 		return;
559 
560 	/* ring doorbell for number popped */
561 	doorbell.word0 = 0;
562 	if (arm)
563 		bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
564 	bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
565 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
566 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
567 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
568 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
569 		readl(q->phba->sli4_hba.EQDBregaddr);
570 }
571 
572 static void
573 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
574 			struct lpfc_eqe *eqe)
575 {
576 	if (!phba->sli4_hba.pc_sli4_params.eqav)
577 		bf_set_le32(lpfc_eqe_valid, eqe, 0);
578 
579 	eq->host_index = ((eq->host_index + 1) % eq->entry_count);
580 
581 	/* if the index wrapped around, toggle the valid bit */
582 	if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
583 		eq->qe_valid = (eq->qe_valid) ? 0 : 1;
584 }
585 
586 static void
587 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
588 {
589 	struct lpfc_eqe *eqe = NULL;
590 	u32 eq_count = 0, cq_count = 0;
591 	struct lpfc_cqe *cqe = NULL;
592 	struct lpfc_queue *cq = NULL, *childq = NULL;
593 	int cqid = 0;
594 
595 	/* walk all the EQ entries and drop on the floor */
596 	eqe = lpfc_sli4_eq_get(eq);
597 	while (eqe) {
598 		/* Get the reference to the corresponding CQ */
599 		cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
600 		cq = NULL;
601 
602 		list_for_each_entry(childq, &eq->child_list, list) {
603 			if (childq->queue_id == cqid) {
604 				cq = childq;
605 				break;
606 			}
607 		}
608 		/* If CQ is valid, iterate through it and drop all the CQEs */
609 		if (cq) {
610 			cqe = lpfc_sli4_cq_get(cq);
611 			while (cqe) {
612 				__lpfc_sli4_consume_cqe(phba, cq, cqe);
613 				cq_count++;
614 				cqe = lpfc_sli4_cq_get(cq);
615 			}
616 			/* Clear and re-arm the CQ */
617 			phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count,
618 			    LPFC_QUEUE_REARM);
619 			cq_count = 0;
620 		}
621 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
622 		eq_count++;
623 		eqe = lpfc_sli4_eq_get(eq);
624 	}
625 
626 	/* Clear and re-arm the EQ */
627 	phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM);
628 }
629 
630 static int
631 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq,
632 		     uint8_t rearm)
633 {
634 	struct lpfc_eqe *eqe;
635 	int count = 0, consumed = 0;
636 
637 	if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
638 		goto rearm_and_exit;
639 
640 	eqe = lpfc_sli4_eq_get(eq);
641 	while (eqe) {
642 		lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
643 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
644 
645 		consumed++;
646 		if (!(++count % eq->max_proc_limit))
647 			break;
648 
649 		if (!(count % eq->notify_interval)) {
650 			phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
651 							LPFC_QUEUE_NOARM);
652 			consumed = 0;
653 		}
654 
655 		eqe = lpfc_sli4_eq_get(eq);
656 	}
657 	eq->EQ_processed += count;
658 
659 	/* Track the max number of EQEs processed in 1 intr */
660 	if (count > eq->EQ_max_eqe)
661 		eq->EQ_max_eqe = count;
662 
663 	xchg(&eq->queue_claimed, 0);
664 
665 rearm_and_exit:
666 	/* Always clear the EQ. */
667 	phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm);
668 
669 	return count;
670 }
671 
672 /**
673  * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
674  * @q: The Completion Queue to get the first valid CQE from
675  *
676  * This routine will get the first valid Completion Queue Entry from @q, update
677  * the queue's internal hba index, and return the CQE. If no valid CQEs are in
678  * the Queue (no more work to do), or the Queue is full of CQEs that have been
679  * processed, but not popped back to the HBA then this routine will return NULL.
680  **/
681 static struct lpfc_cqe *
682 lpfc_sli4_cq_get(struct lpfc_queue *q)
683 {
684 	struct lpfc_cqe *cqe;
685 
686 	/* sanity check on queue memory */
687 	if (unlikely(!q))
688 		return NULL;
689 	cqe = lpfc_sli4_qe(q, q->host_index);
690 
691 	/* If the next CQE is not valid then we are done */
692 	if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
693 		return NULL;
694 
695 	/*
696 	 * insert barrier for instruction interlock : data from the hardware
697 	 * must have the valid bit checked before it can be copied and acted
698 	 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
699 	 * instructions allowing action on content before valid bit checked,
700 	 * add barrier here as well. May not be needed as "content" is a
701 	 * single 32-bit entity here (vs multi word structure for cq's).
702 	 */
703 	mb();
704 	return cqe;
705 }
706 
707 static void
708 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
709 			struct lpfc_cqe *cqe)
710 {
711 	if (!phba->sli4_hba.pc_sli4_params.cqav)
712 		bf_set_le32(lpfc_cqe_valid, cqe, 0);
713 
714 	cq->host_index = ((cq->host_index + 1) % cq->entry_count);
715 
716 	/* if the index wrapped around, toggle the valid bit */
717 	if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
718 		cq->qe_valid = (cq->qe_valid) ? 0 : 1;
719 }
720 
721 /**
722  * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
723  * @phba: the adapter with the CQ
724  * @q: The Completion Queue that the host has completed processing for.
725  * @count: the number of elements that were consumed
726  * @arm: Indicates whether the host wants to arms this CQ.
727  *
728  * This routine will notify the HBA, by ringing the doorbell, that the
729  * CQEs have been processed. The @arm parameter specifies whether the
730  * queue should be rearmed when ringing the doorbell.
731  **/
732 void
733 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
734 		     uint32_t count, bool arm)
735 {
736 	struct lpfc_register doorbell;
737 
738 	/* sanity check on queue memory */
739 	if (unlikely(!q || (count == 0 && !arm)))
740 		return;
741 
742 	/* ring doorbell for number popped */
743 	doorbell.word0 = 0;
744 	if (arm)
745 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
746 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
747 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
748 	bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
749 			(q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
750 	bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
751 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
752 }
753 
754 /**
755  * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
756  * @phba: the adapter with the CQ
757  * @q: The Completion Queue that the host has completed processing for.
758  * @count: the number of elements that were consumed
759  * @arm: Indicates whether the host wants to arms this CQ.
760  *
761  * This routine will notify the HBA, by ringing the doorbell, that the
762  * CQEs have been processed. The @arm parameter specifies whether the
763  * queue should be rearmed when ringing the doorbell.
764  **/
765 void
766 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
767 			 uint32_t count, bool arm)
768 {
769 	struct lpfc_register doorbell;
770 
771 	/* sanity check on queue memory */
772 	if (unlikely(!q || (count == 0 && !arm)))
773 		return;
774 
775 	/* ring doorbell for number popped */
776 	doorbell.word0 = 0;
777 	if (arm)
778 		bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
779 	bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
780 	bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
781 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
782 }
783 
784 /*
785  * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
786  *
787  * This routine will copy the contents of @wqe to the next available entry on
788  * the @q. This function will then ring the Receive Queue Doorbell to signal the
789  * HBA to start processing the Receive Queue Entry. This function returns the
790  * index that the rqe was copied to if successful. If no entries are available
791  * on @q then this function will return -ENOMEM.
792  * The caller is expected to hold the hbalock when calling this routine.
793  **/
794 int
795 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
796 		 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
797 {
798 	struct lpfc_rqe *temp_hrqe;
799 	struct lpfc_rqe *temp_drqe;
800 	struct lpfc_register doorbell;
801 	int hq_put_index;
802 	int dq_put_index;
803 
804 	/* sanity check on queue memory */
805 	if (unlikely(!hq) || unlikely(!dq))
806 		return -ENOMEM;
807 	hq_put_index = hq->host_index;
808 	dq_put_index = dq->host_index;
809 	temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
810 	temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
811 
812 	if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
813 		return -EINVAL;
814 	if (hq_put_index != dq_put_index)
815 		return -EINVAL;
816 	/* If the host has not yet processed the next entry then we are done */
817 	if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
818 		return -EBUSY;
819 	lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
820 	lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
821 
822 	/* Update the host index to point to the next slot */
823 	hq->host_index = ((hq_put_index + 1) % hq->entry_count);
824 	dq->host_index = ((dq_put_index + 1) % dq->entry_count);
825 	hq->RQ_buf_posted++;
826 
827 	/* Ring The Header Receive Queue Doorbell */
828 	if (!(hq->host_index % hq->notify_interval)) {
829 		doorbell.word0 = 0;
830 		if (hq->db_format == LPFC_DB_RING_FORMAT) {
831 			bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
832 			       hq->notify_interval);
833 			bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
834 		} else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
835 			bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
836 			       hq->notify_interval);
837 			bf_set(lpfc_rq_db_list_fm_index, &doorbell,
838 			       hq->host_index);
839 			bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
840 		} else {
841 			return -EINVAL;
842 		}
843 		writel(doorbell.word0, hq->db_regaddr);
844 	}
845 	return hq_put_index;
846 }
847 
848 /*
849  * lpfc_sli4_rq_release - Updates internal hba index for RQ
850  *
851  * This routine will update the HBA index of a queue to reflect consumption of
852  * one Receive Queue Entry by the HBA. When the HBA indicates that it has
853  * consumed an entry the host calls this function to update the queue's
854  * internal pointers. This routine returns the number of entries that were
855  * consumed by the HBA.
856  **/
857 static uint32_t
858 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
859 {
860 	/* sanity check on queue memory */
861 	if (unlikely(!hq) || unlikely(!dq))
862 		return 0;
863 
864 	if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
865 		return 0;
866 	hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
867 	dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
868 	return 1;
869 }
870 
871 /**
872  * lpfc_cmd_iocb - Get next command iocb entry in the ring
873  * @phba: Pointer to HBA context object.
874  * @pring: Pointer to driver SLI ring object.
875  *
876  * This function returns pointer to next command iocb entry
877  * in the command ring. The caller must hold hbalock to prevent
878  * other threads consume the next command iocb.
879  * SLI-2/SLI-3 provide different sized iocbs.
880  **/
881 static inline IOCB_t *
882 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
883 {
884 	return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
885 			   pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
886 }
887 
888 /**
889  * lpfc_resp_iocb - Get next response iocb entry in the ring
890  * @phba: Pointer to HBA context object.
891  * @pring: Pointer to driver SLI ring object.
892  *
893  * This function returns pointer to next response iocb entry
894  * in the response ring. The caller must hold hbalock to make sure
895  * that no other thread consume the next response iocb.
896  * SLI-2/SLI-3 provide different sized iocbs.
897  **/
898 static inline IOCB_t *
899 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
900 {
901 	return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
902 			   pring->sli.sli3.rspidx * phba->iocb_rsp_size);
903 }
904 
905 /**
906  * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
907  * @phba: Pointer to HBA context object.
908  *
909  * This function is called with hbalock held. This function
910  * allocates a new driver iocb object from the iocb pool. If the
911  * allocation is successful, it returns pointer to the newly
912  * allocated iocb object else it returns NULL.
913  **/
914 struct lpfc_iocbq *
915 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
916 {
917 	struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
918 	struct lpfc_iocbq * iocbq = NULL;
919 
920 	lockdep_assert_held(&phba->hbalock);
921 
922 	list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
923 	if (iocbq)
924 		phba->iocb_cnt++;
925 	if (phba->iocb_cnt > phba->iocb_max)
926 		phba->iocb_max = phba->iocb_cnt;
927 	return iocbq;
928 }
929 
930 /**
931  * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
932  * @phba: Pointer to HBA context object.
933  * @xritag: XRI value.
934  *
935  * This function clears the sglq pointer from the array of active
936  * sglq's. The xritag that is passed in is used to index into the
937  * array. Before the xritag can be used it needs to be adjusted
938  * by subtracting the xribase.
939  *
940  * Returns sglq ponter = success, NULL = Failure.
941  **/
942 struct lpfc_sglq *
943 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
944 {
945 	struct lpfc_sglq *sglq;
946 
947 	sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
948 	phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
949 	return sglq;
950 }
951 
952 /**
953  * __lpfc_get_active_sglq - Get the active sglq for this XRI.
954  * @phba: Pointer to HBA context object.
955  * @xritag: XRI value.
956  *
957  * This function returns the sglq pointer from the array of active
958  * sglq's. The xritag that is passed in is used to index into the
959  * array. Before the xritag can be used it needs to be adjusted
960  * by subtracting the xribase.
961  *
962  * Returns sglq ponter = success, NULL = Failure.
963  **/
964 struct lpfc_sglq *
965 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
966 {
967 	struct lpfc_sglq *sglq;
968 
969 	sglq =  phba->sli4_hba.lpfc_sglq_active_list[xritag];
970 	return sglq;
971 }
972 
973 /**
974  * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
975  * @phba: Pointer to HBA context object.
976  * @xritag: xri used in this exchange.
977  * @rrq: The RRQ to be cleared.
978  *
979  **/
980 void
981 lpfc_clr_rrq_active(struct lpfc_hba *phba,
982 		    uint16_t xritag,
983 		    struct lpfc_node_rrq *rrq)
984 {
985 	struct lpfc_nodelist *ndlp = NULL;
986 
987 	/* Lookup did to verify if did is still active on this vport */
988 	if (rrq->vport)
989 		ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
990 
991 	if (!ndlp)
992 		goto out;
993 
994 	if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
995 		rrq->send_rrq = 0;
996 		rrq->xritag = 0;
997 		rrq->rrq_stop_time = 0;
998 	}
999 out:
1000 	mempool_free(rrq, phba->rrq_pool);
1001 }
1002 
1003 /**
1004  * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
1005  * @phba: Pointer to HBA context object.
1006  *
1007  * This function is called with hbalock held. This function
1008  * Checks if stop_time (ratov from setting rrq active) has
1009  * been reached, if it has and the send_rrq flag is set then
1010  * it will call lpfc_send_rrq. If the send_rrq flag is not set
1011  * then it will just call the routine to clear the rrq and
1012  * free the rrq resource.
1013  * The timer is set to the next rrq that is going to expire before
1014  * leaving the routine.
1015  *
1016  **/
1017 void
1018 lpfc_handle_rrq_active(struct lpfc_hba *phba)
1019 {
1020 	struct lpfc_node_rrq *rrq;
1021 	struct lpfc_node_rrq *nextrrq;
1022 	unsigned long next_time;
1023 	unsigned long iflags;
1024 	LIST_HEAD(send_rrq);
1025 
1026 	spin_lock_irqsave(&phba->hbalock, iflags);
1027 	phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1028 	next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1029 	list_for_each_entry_safe(rrq, nextrrq,
1030 				 &phba->active_rrq_list, list) {
1031 		if (time_after(jiffies, rrq->rrq_stop_time))
1032 			list_move(&rrq->list, &send_rrq);
1033 		else if (time_before(rrq->rrq_stop_time, next_time))
1034 			next_time = rrq->rrq_stop_time;
1035 	}
1036 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1037 	if ((!list_empty(&phba->active_rrq_list)) &&
1038 	    (!(phba->pport->load_flag & FC_UNLOADING)))
1039 		mod_timer(&phba->rrq_tmr, next_time);
1040 	list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
1041 		list_del(&rrq->list);
1042 		if (!rrq->send_rrq) {
1043 			/* this call will free the rrq */
1044 			lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1045 		} else if (lpfc_send_rrq(phba, rrq)) {
1046 			/* if we send the rrq then the completion handler
1047 			*  will clear the bit in the xribitmap.
1048 			*/
1049 			lpfc_clr_rrq_active(phba, rrq->xritag,
1050 					    rrq);
1051 		}
1052 	}
1053 }
1054 
1055 /**
1056  * lpfc_get_active_rrq - Get the active RRQ for this exchange.
1057  * @vport: Pointer to vport context object.
1058  * @xri: The xri used in the exchange.
1059  * @did: The targets DID for this exchange.
1060  *
1061  * returns NULL = rrq not found in the phba->active_rrq_list.
1062  *         rrq = rrq for this xri and target.
1063  **/
1064 struct lpfc_node_rrq *
1065 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
1066 {
1067 	struct lpfc_hba *phba = vport->phba;
1068 	struct lpfc_node_rrq *rrq;
1069 	struct lpfc_node_rrq *nextrrq;
1070 	unsigned long iflags;
1071 
1072 	if (phba->sli_rev != LPFC_SLI_REV4)
1073 		return NULL;
1074 	spin_lock_irqsave(&phba->hbalock, iflags);
1075 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1076 		if (rrq->vport == vport && rrq->xritag == xri &&
1077 				rrq->nlp_DID == did){
1078 			list_del(&rrq->list);
1079 			spin_unlock_irqrestore(&phba->hbalock, iflags);
1080 			return rrq;
1081 		}
1082 	}
1083 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1084 	return NULL;
1085 }
1086 
1087 /**
1088  * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
1089  * @vport: Pointer to vport context object.
1090  * @ndlp: Pointer to the lpfc_node_list structure.
1091  * If ndlp is NULL Remove all active RRQs for this vport from the
1092  * phba->active_rrq_list and clear the rrq.
1093  * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
1094  **/
1095 void
1096 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
1097 
1098 {
1099 	struct lpfc_hba *phba = vport->phba;
1100 	struct lpfc_node_rrq *rrq;
1101 	struct lpfc_node_rrq *nextrrq;
1102 	unsigned long iflags;
1103 	LIST_HEAD(rrq_list);
1104 
1105 	if (phba->sli_rev != LPFC_SLI_REV4)
1106 		return;
1107 	if (!ndlp) {
1108 		lpfc_sli4_vport_delete_els_xri_aborted(vport);
1109 		lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
1110 	}
1111 	spin_lock_irqsave(&phba->hbalock, iflags);
1112 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1113 		if (rrq->vport != vport)
1114 			continue;
1115 
1116 		if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID))
1117 			list_move(&rrq->list, &rrq_list);
1118 
1119 	}
1120 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1121 
1122 	list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1123 		list_del(&rrq->list);
1124 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1125 	}
1126 }
1127 
1128 /**
1129  * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1130  * @phba: Pointer to HBA context object.
1131  * @ndlp: Targets nodelist pointer for this exchange.
1132  * @xritag: the xri in the bitmap to test.
1133  *
1134  * This function returns:
1135  * 0 = rrq not active for this xri
1136  * 1 = rrq is valid for this xri.
1137  **/
1138 int
1139 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1140 			uint16_t  xritag)
1141 {
1142 	if (!ndlp)
1143 		return 0;
1144 	if (!ndlp->active_rrqs_xri_bitmap)
1145 		return 0;
1146 	if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1147 		return 1;
1148 	else
1149 		return 0;
1150 }
1151 
1152 /**
1153  * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1154  * @phba: Pointer to HBA context object.
1155  * @ndlp: nodelist pointer for this target.
1156  * @xritag: xri used in this exchange.
1157  * @rxid: Remote Exchange ID.
1158  * @send_rrq: Flag used to determine if we should send rrq els cmd.
1159  *
1160  * This function takes the hbalock.
1161  * The active bit is always set in the active rrq xri_bitmap even
1162  * if there is no slot avaiable for the other rrq information.
1163  *
1164  * returns 0 rrq actived for this xri
1165  *         < 0 No memory or invalid ndlp.
1166  **/
1167 int
1168 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1169 		    uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1170 {
1171 	unsigned long iflags;
1172 	struct lpfc_node_rrq *rrq;
1173 	int empty;
1174 
1175 	if (!ndlp)
1176 		return -EINVAL;
1177 
1178 	if (!phba->cfg_enable_rrq)
1179 		return -EINVAL;
1180 
1181 	spin_lock_irqsave(&phba->hbalock, iflags);
1182 	if (phba->pport->load_flag & FC_UNLOADING) {
1183 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1184 		goto out;
1185 	}
1186 
1187 	if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1188 		goto out;
1189 
1190 	if (!ndlp->active_rrqs_xri_bitmap)
1191 		goto out;
1192 
1193 	if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1194 		goto out;
1195 
1196 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1197 	rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC);
1198 	if (!rrq) {
1199 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1200 				"3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1201 				" DID:0x%x Send:%d\n",
1202 				xritag, rxid, ndlp->nlp_DID, send_rrq);
1203 		return -EINVAL;
1204 	}
1205 	if (phba->cfg_enable_rrq == 1)
1206 		rrq->send_rrq = send_rrq;
1207 	else
1208 		rrq->send_rrq = 0;
1209 	rrq->xritag = xritag;
1210 	rrq->rrq_stop_time = jiffies +
1211 				msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1212 	rrq->nlp_DID = ndlp->nlp_DID;
1213 	rrq->vport = ndlp->vport;
1214 	rrq->rxid = rxid;
1215 	spin_lock_irqsave(&phba->hbalock, iflags);
1216 	empty = list_empty(&phba->active_rrq_list);
1217 	list_add_tail(&rrq->list, &phba->active_rrq_list);
1218 	phba->hba_flag |= HBA_RRQ_ACTIVE;
1219 	if (empty)
1220 		lpfc_worker_wake_up(phba);
1221 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1222 	return 0;
1223 out:
1224 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1225 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1226 			"2921 Can't set rrq active xri:0x%x rxid:0x%x"
1227 			" DID:0x%x Send:%d\n",
1228 			xritag, rxid, ndlp->nlp_DID, send_rrq);
1229 	return -EINVAL;
1230 }
1231 
1232 /**
1233  * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1234  * @phba: Pointer to HBA context object.
1235  * @piocbq: Pointer to the iocbq.
1236  *
1237  * The driver calls this function with either the nvme ls ring lock
1238  * or the fc els ring lock held depending on the iocb usage.  This function
1239  * gets a new driver sglq object from the sglq list. If the list is not empty
1240  * then it is successful, it returns pointer to the newly allocated sglq
1241  * object else it returns NULL.
1242  **/
1243 static struct lpfc_sglq *
1244 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1245 {
1246 	struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1247 	struct lpfc_sglq *sglq = NULL;
1248 	struct lpfc_sglq *start_sglq = NULL;
1249 	struct lpfc_io_buf *lpfc_cmd;
1250 	struct lpfc_nodelist *ndlp;
1251 	int found = 0;
1252 	u8 cmnd;
1253 
1254 	cmnd = get_job_cmnd(phba, piocbq);
1255 
1256 	if (piocbq->cmd_flag & LPFC_IO_FCP) {
1257 		lpfc_cmd = piocbq->io_buf;
1258 		ndlp = lpfc_cmd->rdata->pnode;
1259 	} else  if ((cmnd == CMD_GEN_REQUEST64_CR) &&
1260 			!(piocbq->cmd_flag & LPFC_IO_LIBDFC)) {
1261 		ndlp = piocbq->ndlp;
1262 	} else  if (piocbq->cmd_flag & LPFC_IO_LIBDFC) {
1263 		if (piocbq->cmd_flag & LPFC_IO_LOOPBACK)
1264 			ndlp = NULL;
1265 		else
1266 			ndlp = piocbq->ndlp;
1267 	} else {
1268 		ndlp = piocbq->ndlp;
1269 	}
1270 
1271 	spin_lock(&phba->sli4_hba.sgl_list_lock);
1272 	list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1273 	start_sglq = sglq;
1274 	while (!found) {
1275 		if (!sglq)
1276 			break;
1277 		if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1278 		    test_bit(sglq->sli4_lxritag,
1279 		    ndlp->active_rrqs_xri_bitmap)) {
1280 			/* This xri has an rrq outstanding for this DID.
1281 			 * put it back in the list and get another xri.
1282 			 */
1283 			list_add_tail(&sglq->list, lpfc_els_sgl_list);
1284 			sglq = NULL;
1285 			list_remove_head(lpfc_els_sgl_list, sglq,
1286 						struct lpfc_sglq, list);
1287 			if (sglq == start_sglq) {
1288 				list_add_tail(&sglq->list, lpfc_els_sgl_list);
1289 				sglq = NULL;
1290 				break;
1291 			} else
1292 				continue;
1293 		}
1294 		sglq->ndlp = ndlp;
1295 		found = 1;
1296 		phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1297 		sglq->state = SGL_ALLOCATED;
1298 	}
1299 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
1300 	return sglq;
1301 }
1302 
1303 /**
1304  * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1305  * @phba: Pointer to HBA context object.
1306  * @piocbq: Pointer to the iocbq.
1307  *
1308  * This function is called with the sgl_list lock held. This function
1309  * gets a new driver sglq object from the sglq list. If the
1310  * list is not empty then it is successful, it returns pointer to the newly
1311  * allocated sglq object else it returns NULL.
1312  **/
1313 struct lpfc_sglq *
1314 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1315 {
1316 	struct list_head *lpfc_nvmet_sgl_list;
1317 	struct lpfc_sglq *sglq = NULL;
1318 
1319 	lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1320 
1321 	lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1322 
1323 	list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1324 	if (!sglq)
1325 		return NULL;
1326 	phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1327 	sglq->state = SGL_ALLOCATED;
1328 	return sglq;
1329 }
1330 
1331 /**
1332  * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1333  * @phba: Pointer to HBA context object.
1334  *
1335  * This function is called with no lock held. This function
1336  * allocates a new driver iocb object from the iocb pool. If the
1337  * allocation is successful, it returns pointer to the newly
1338  * allocated iocb object else it returns NULL.
1339  **/
1340 struct lpfc_iocbq *
1341 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1342 {
1343 	struct lpfc_iocbq * iocbq = NULL;
1344 	unsigned long iflags;
1345 
1346 	spin_lock_irqsave(&phba->hbalock, iflags);
1347 	iocbq = __lpfc_sli_get_iocbq(phba);
1348 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1349 	return iocbq;
1350 }
1351 
1352 /**
1353  * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1354  * @phba: Pointer to HBA context object.
1355  * @iocbq: Pointer to driver iocb object.
1356  *
1357  * This function is called to release the driver iocb object
1358  * to the iocb pool. The iotag in the iocb object
1359  * does not change for each use of the iocb object. This function
1360  * clears all other fields of the iocb object when it is freed.
1361  * The sqlq structure that holds the xritag and phys and virtual
1362  * mappings for the scatter gather list is retrieved from the
1363  * active array of sglq. The get of the sglq pointer also clears
1364  * the entry in the array. If the status of the IO indiactes that
1365  * this IO was aborted then the sglq entry it put on the
1366  * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1367  * IO has good status or fails for any other reason then the sglq
1368  * entry is added to the free list (lpfc_els_sgl_list). The hbalock is
1369  *  asserted held in the code path calling this routine.
1370  **/
1371 static void
1372 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1373 {
1374 	struct lpfc_sglq *sglq;
1375 	unsigned long iflag = 0;
1376 	struct lpfc_sli_ring *pring;
1377 
1378 	if (iocbq->sli4_xritag == NO_XRI)
1379 		sglq = NULL;
1380 	else
1381 		sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1382 
1383 
1384 	if (sglq)  {
1385 		if (iocbq->cmd_flag & LPFC_IO_NVMET) {
1386 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1387 					  iflag);
1388 			sglq->state = SGL_FREED;
1389 			sglq->ndlp = NULL;
1390 			list_add_tail(&sglq->list,
1391 				      &phba->sli4_hba.lpfc_nvmet_sgl_list);
1392 			spin_unlock_irqrestore(
1393 				&phba->sli4_hba.sgl_list_lock, iflag);
1394 			goto out;
1395 		}
1396 
1397 		if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) &&
1398 		    (!(unlikely(pci_channel_offline(phba->pcidev)))) &&
1399 		    sglq->state != SGL_XRI_ABORTED) {
1400 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1401 					  iflag);
1402 
1403 			/* Check if we can get a reference on ndlp */
1404 			if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp))
1405 				sglq->ndlp = NULL;
1406 
1407 			list_add(&sglq->list,
1408 				 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1409 			spin_unlock_irqrestore(
1410 				&phba->sli4_hba.sgl_list_lock, iflag);
1411 		} else {
1412 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1413 					  iflag);
1414 			sglq->state = SGL_FREED;
1415 			sglq->ndlp = NULL;
1416 			list_add_tail(&sglq->list,
1417 				      &phba->sli4_hba.lpfc_els_sgl_list);
1418 			spin_unlock_irqrestore(
1419 				&phba->sli4_hba.sgl_list_lock, iflag);
1420 			pring = lpfc_phba_elsring(phba);
1421 			/* Check if TXQ queue needs to be serviced */
1422 			if (pring && (!list_empty(&pring->txq)))
1423 				lpfc_worker_wake_up(phba);
1424 		}
1425 	}
1426 
1427 out:
1428 	/*
1429 	 * Clean all volatile data fields, preserve iotag and node struct.
1430 	 */
1431 	memset_startat(iocbq, 0, wqe);
1432 	iocbq->sli4_lxritag = NO_XRI;
1433 	iocbq->sli4_xritag = NO_XRI;
1434 	iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF |
1435 			      LPFC_IO_NVME_LS);
1436 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1437 }
1438 
1439 
1440 /**
1441  * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1442  * @phba: Pointer to HBA context object.
1443  * @iocbq: Pointer to driver iocb object.
1444  *
1445  * This function is called to release the driver iocb object to the
1446  * iocb pool. The iotag in the iocb object does not change for each
1447  * use of the iocb object. This function clears all other fields of
1448  * the iocb object when it is freed. The hbalock is asserted held in
1449  * the code path calling this routine.
1450  **/
1451 static void
1452 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1453 {
1454 
1455 	/*
1456 	 * Clean all volatile data fields, preserve iotag and node struct.
1457 	 */
1458 	memset_startat(iocbq, 0, iocb);
1459 	iocbq->sli4_xritag = NO_XRI;
1460 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1461 }
1462 
1463 /**
1464  * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1465  * @phba: Pointer to HBA context object.
1466  * @iocbq: Pointer to driver iocb object.
1467  *
1468  * This function is called with hbalock held to release driver
1469  * iocb object to the iocb pool. The iotag in the iocb object
1470  * does not change for each use of the iocb object. This function
1471  * clears all other fields of the iocb object when it is freed.
1472  **/
1473 static void
1474 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1475 {
1476 	lockdep_assert_held(&phba->hbalock);
1477 
1478 	phba->__lpfc_sli_release_iocbq(phba, iocbq);
1479 	phba->iocb_cnt--;
1480 }
1481 
1482 /**
1483  * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1484  * @phba: Pointer to HBA context object.
1485  * @iocbq: Pointer to driver iocb object.
1486  *
1487  * This function is called with no lock held to release the iocb to
1488  * iocb pool.
1489  **/
1490 void
1491 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1492 {
1493 	unsigned long iflags;
1494 
1495 	/*
1496 	 * Clean all volatile data fields, preserve iotag and node struct.
1497 	 */
1498 	spin_lock_irqsave(&phba->hbalock, iflags);
1499 	__lpfc_sli_release_iocbq(phba, iocbq);
1500 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1501 }
1502 
1503 /**
1504  * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1505  * @phba: Pointer to HBA context object.
1506  * @iocblist: List of IOCBs.
1507  * @ulpstatus: ULP status in IOCB command field.
1508  * @ulpWord4: ULP word-4 in IOCB command field.
1509  *
1510  * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1511  * on the list by invoking the complete callback function associated with the
1512  * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1513  * fields.
1514  **/
1515 void
1516 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1517 		      uint32_t ulpstatus, uint32_t ulpWord4)
1518 {
1519 	struct lpfc_iocbq *piocb;
1520 
1521 	while (!list_empty(iocblist)) {
1522 		list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1523 		if (piocb->cmd_cmpl) {
1524 			if (piocb->cmd_flag & LPFC_IO_NVME) {
1525 				lpfc_nvme_cancel_iocb(phba, piocb,
1526 						      ulpstatus, ulpWord4);
1527 			} else {
1528 				if (phba->sli_rev == LPFC_SLI_REV4) {
1529 					bf_set(lpfc_wcqe_c_status,
1530 					       &piocb->wcqe_cmpl, ulpstatus);
1531 					piocb->wcqe_cmpl.parameter = ulpWord4;
1532 				} else {
1533 					piocb->iocb.ulpStatus = ulpstatus;
1534 					piocb->iocb.un.ulpWord[4] = ulpWord4;
1535 				}
1536 				(piocb->cmd_cmpl) (phba, piocb, piocb);
1537 			}
1538 		} else {
1539 			lpfc_sli_release_iocbq(phba, piocb);
1540 		}
1541 	}
1542 	return;
1543 }
1544 
1545 /**
1546  * lpfc_sli_iocb_cmd_type - Get the iocb type
1547  * @iocb_cmnd: iocb command code.
1548  *
1549  * This function is called by ring event handler function to get the iocb type.
1550  * This function translates the iocb command to an iocb command type used to
1551  * decide the final disposition of each completed IOCB.
1552  * The function returns
1553  * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1554  * LPFC_SOL_IOCB     if it is a solicited iocb completion
1555  * LPFC_ABORT_IOCB   if it is an abort iocb
1556  * LPFC_UNSOL_IOCB   if it is an unsolicited iocb
1557  *
1558  * The caller is not required to hold any lock.
1559  **/
1560 static lpfc_iocb_type
1561 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1562 {
1563 	lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1564 
1565 	if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1566 		return 0;
1567 
1568 	switch (iocb_cmnd) {
1569 	case CMD_XMIT_SEQUENCE_CR:
1570 	case CMD_XMIT_SEQUENCE_CX:
1571 	case CMD_XMIT_BCAST_CN:
1572 	case CMD_XMIT_BCAST_CX:
1573 	case CMD_ELS_REQUEST_CR:
1574 	case CMD_ELS_REQUEST_CX:
1575 	case CMD_CREATE_XRI_CR:
1576 	case CMD_CREATE_XRI_CX:
1577 	case CMD_GET_RPI_CN:
1578 	case CMD_XMIT_ELS_RSP_CX:
1579 	case CMD_GET_RPI_CR:
1580 	case CMD_FCP_IWRITE_CR:
1581 	case CMD_FCP_IWRITE_CX:
1582 	case CMD_FCP_IREAD_CR:
1583 	case CMD_FCP_IREAD_CX:
1584 	case CMD_FCP_ICMND_CR:
1585 	case CMD_FCP_ICMND_CX:
1586 	case CMD_FCP_TSEND_CX:
1587 	case CMD_FCP_TRSP_CX:
1588 	case CMD_FCP_TRECEIVE_CX:
1589 	case CMD_FCP_AUTO_TRSP_CX:
1590 	case CMD_ADAPTER_MSG:
1591 	case CMD_ADAPTER_DUMP:
1592 	case CMD_XMIT_SEQUENCE64_CR:
1593 	case CMD_XMIT_SEQUENCE64_CX:
1594 	case CMD_XMIT_BCAST64_CN:
1595 	case CMD_XMIT_BCAST64_CX:
1596 	case CMD_ELS_REQUEST64_CR:
1597 	case CMD_ELS_REQUEST64_CX:
1598 	case CMD_FCP_IWRITE64_CR:
1599 	case CMD_FCP_IWRITE64_CX:
1600 	case CMD_FCP_IREAD64_CR:
1601 	case CMD_FCP_IREAD64_CX:
1602 	case CMD_FCP_ICMND64_CR:
1603 	case CMD_FCP_ICMND64_CX:
1604 	case CMD_FCP_TSEND64_CX:
1605 	case CMD_FCP_TRSP64_CX:
1606 	case CMD_FCP_TRECEIVE64_CX:
1607 	case CMD_GEN_REQUEST64_CR:
1608 	case CMD_GEN_REQUEST64_CX:
1609 	case CMD_XMIT_ELS_RSP64_CX:
1610 	case DSSCMD_IWRITE64_CR:
1611 	case DSSCMD_IWRITE64_CX:
1612 	case DSSCMD_IREAD64_CR:
1613 	case DSSCMD_IREAD64_CX:
1614 	case CMD_SEND_FRAME:
1615 		type = LPFC_SOL_IOCB;
1616 		break;
1617 	case CMD_ABORT_XRI_CN:
1618 	case CMD_ABORT_XRI_CX:
1619 	case CMD_CLOSE_XRI_CN:
1620 	case CMD_CLOSE_XRI_CX:
1621 	case CMD_XRI_ABORTED_CX:
1622 	case CMD_ABORT_MXRI64_CN:
1623 	case CMD_XMIT_BLS_RSP64_CX:
1624 		type = LPFC_ABORT_IOCB;
1625 		break;
1626 	case CMD_RCV_SEQUENCE_CX:
1627 	case CMD_RCV_ELS_REQ_CX:
1628 	case CMD_RCV_SEQUENCE64_CX:
1629 	case CMD_RCV_ELS_REQ64_CX:
1630 	case CMD_ASYNC_STATUS:
1631 	case CMD_IOCB_RCV_SEQ64_CX:
1632 	case CMD_IOCB_RCV_ELS64_CX:
1633 	case CMD_IOCB_RCV_CONT64_CX:
1634 	case CMD_IOCB_RET_XRI64_CX:
1635 		type = LPFC_UNSOL_IOCB;
1636 		break;
1637 	case CMD_IOCB_XMIT_MSEQ64_CR:
1638 	case CMD_IOCB_XMIT_MSEQ64_CX:
1639 	case CMD_IOCB_RCV_SEQ_LIST64_CX:
1640 	case CMD_IOCB_RCV_ELS_LIST64_CX:
1641 	case CMD_IOCB_CLOSE_EXTENDED_CN:
1642 	case CMD_IOCB_ABORT_EXTENDED_CN:
1643 	case CMD_IOCB_RET_HBQE64_CN:
1644 	case CMD_IOCB_FCP_IBIDIR64_CR:
1645 	case CMD_IOCB_FCP_IBIDIR64_CX:
1646 	case CMD_IOCB_FCP_ITASKMGT64_CX:
1647 	case CMD_IOCB_LOGENTRY_CN:
1648 	case CMD_IOCB_LOGENTRY_ASYNC_CN:
1649 		printk("%s - Unhandled SLI-3 Command x%x\n",
1650 				__func__, iocb_cmnd);
1651 		type = LPFC_UNKNOWN_IOCB;
1652 		break;
1653 	default:
1654 		type = LPFC_UNKNOWN_IOCB;
1655 		break;
1656 	}
1657 
1658 	return type;
1659 }
1660 
1661 /**
1662  * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1663  * @phba: Pointer to HBA context object.
1664  *
1665  * This function is called from SLI initialization code
1666  * to configure every ring of the HBA's SLI interface. The
1667  * caller is not required to hold any lock. This function issues
1668  * a config_ring mailbox command for each ring.
1669  * This function returns zero if successful else returns a negative
1670  * error code.
1671  **/
1672 static int
1673 lpfc_sli_ring_map(struct lpfc_hba *phba)
1674 {
1675 	struct lpfc_sli *psli = &phba->sli;
1676 	LPFC_MBOXQ_t *pmb;
1677 	MAILBOX_t *pmbox;
1678 	int i, rc, ret = 0;
1679 
1680 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1681 	if (!pmb)
1682 		return -ENOMEM;
1683 	pmbox = &pmb->u.mb;
1684 	phba->link_state = LPFC_INIT_MBX_CMDS;
1685 	for (i = 0; i < psli->num_rings; i++) {
1686 		lpfc_config_ring(phba, i, pmb);
1687 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1688 		if (rc != MBX_SUCCESS) {
1689 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1690 					"0446 Adapter failed to init (%d), "
1691 					"mbxCmd x%x CFG_RING, mbxStatus x%x, "
1692 					"ring %d\n",
1693 					rc, pmbox->mbxCommand,
1694 					pmbox->mbxStatus, i);
1695 			phba->link_state = LPFC_HBA_ERROR;
1696 			ret = -ENXIO;
1697 			break;
1698 		}
1699 	}
1700 	mempool_free(pmb, phba->mbox_mem_pool);
1701 	return ret;
1702 }
1703 
1704 /**
1705  * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1706  * @phba: Pointer to HBA context object.
1707  * @pring: Pointer to driver SLI ring object.
1708  * @piocb: Pointer to the driver iocb object.
1709  *
1710  * The driver calls this function with the hbalock held for SLI3 ports or
1711  * the ring lock held for SLI4 ports. The function adds the
1712  * new iocb to txcmplq of the given ring. This function always returns
1713  * 0. If this function is called for ELS ring, this function checks if
1714  * there is a vport associated with the ELS command. This function also
1715  * starts els_tmofunc timer if this is an ELS command.
1716  **/
1717 static int
1718 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1719 			struct lpfc_iocbq *piocb)
1720 {
1721 	u32 ulp_command = 0;
1722 
1723 	BUG_ON(!piocb);
1724 	ulp_command = get_job_cmnd(phba, piocb);
1725 
1726 	list_add_tail(&piocb->list, &pring->txcmplq);
1727 	piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ;
1728 	pring->txcmplq_cnt++;
1729 	if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1730 	   (ulp_command != CMD_ABORT_XRI_WQE) &&
1731 	   (ulp_command != CMD_ABORT_XRI_CN) &&
1732 	   (ulp_command != CMD_CLOSE_XRI_CN)) {
1733 		BUG_ON(!piocb->vport);
1734 		if (!(piocb->vport->load_flag & FC_UNLOADING))
1735 			mod_timer(&piocb->vport->els_tmofunc,
1736 				  jiffies +
1737 				  msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1738 	}
1739 
1740 	return 0;
1741 }
1742 
1743 /**
1744  * lpfc_sli_ringtx_get - Get first element of the txq
1745  * @phba: Pointer to HBA context object.
1746  * @pring: Pointer to driver SLI ring object.
1747  *
1748  * This function is called with hbalock held to get next
1749  * iocb in txq of the given ring. If there is any iocb in
1750  * the txq, the function returns first iocb in the list after
1751  * removing the iocb from the list, else it returns NULL.
1752  **/
1753 struct lpfc_iocbq *
1754 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1755 {
1756 	struct lpfc_iocbq *cmd_iocb;
1757 
1758 	lockdep_assert_held(&phba->hbalock);
1759 
1760 	list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1761 	return cmd_iocb;
1762 }
1763 
1764 /**
1765  * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl
1766  * @phba: Pointer to HBA context object.
1767  * @cmdiocb: Pointer to driver command iocb object.
1768  * @rspiocb: Pointer to driver response iocb object.
1769  *
1770  * This routine will inform the driver of any BW adjustments we need
1771  * to make. These changes will be picked up during the next CMF
1772  * timer interrupt. In addition, any BW changes will be logged
1773  * with LOG_CGN_MGMT.
1774  **/
1775 static void
1776 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
1777 		   struct lpfc_iocbq *rspiocb)
1778 {
1779 	union lpfc_wqe128 *wqe;
1780 	uint32_t status, info;
1781 	struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl;
1782 	uint64_t bw, bwdif, slop;
1783 	uint64_t pcent, bwpcent;
1784 	int asig, afpin, sigcnt, fpincnt;
1785 	int wsigmax, wfpinmax, cg, tdp;
1786 	char *s;
1787 
1788 	/* First check for error */
1789 	status = bf_get(lpfc_wcqe_c_status, wcqe);
1790 	if (status) {
1791 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1792 				"6211 CMF_SYNC_WQE Error "
1793 				"req_tag x%x status x%x hwstatus x%x "
1794 				"tdatap x%x parm x%x\n",
1795 				bf_get(lpfc_wcqe_c_request_tag, wcqe),
1796 				bf_get(lpfc_wcqe_c_status, wcqe),
1797 				bf_get(lpfc_wcqe_c_hw_status, wcqe),
1798 				wcqe->total_data_placed,
1799 				wcqe->parameter);
1800 		goto out;
1801 	}
1802 
1803 	/* Gather congestion information on a successful cmpl */
1804 	info = wcqe->parameter;
1805 	phba->cmf_active_info = info;
1806 
1807 	/* See if firmware info count is valid or has changed */
1808 	if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info)
1809 		info = 0;
1810 	else
1811 		phba->cmf_info_per_interval = info;
1812 
1813 	tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe);
1814 	cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe);
1815 
1816 	/* Get BW requirement from firmware */
1817 	bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE;
1818 	if (!bw) {
1819 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1820 				"6212 CMF_SYNC_WQE x%x: NULL bw\n",
1821 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
1822 		goto out;
1823 	}
1824 
1825 	/* Gather information needed for logging if a BW change is required */
1826 	wqe = &cmdiocb->wqe;
1827 	asig = bf_get(cmf_sync_asig, &wqe->cmf_sync);
1828 	afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync);
1829 	fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync);
1830 	sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync);
1831 	if (phba->cmf_max_bytes_per_interval != bw ||
1832 	    (asig || afpin || sigcnt || fpincnt)) {
1833 		/* Are we increasing or decreasing BW */
1834 		if (phba->cmf_max_bytes_per_interval <  bw) {
1835 			bwdif = bw - phba->cmf_max_bytes_per_interval;
1836 			s = "Increase";
1837 		} else {
1838 			bwdif = phba->cmf_max_bytes_per_interval - bw;
1839 			s = "Decrease";
1840 		}
1841 
1842 		/* What is the change percentage */
1843 		slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/
1844 		pcent = div64_u64(bwdif * 100 + slop,
1845 				  phba->cmf_link_byte_count);
1846 		bwpcent = div64_u64(bw * 100 + slop,
1847 				    phba->cmf_link_byte_count);
1848 		/* Because of bytes adjustment due to shorter timer in
1849 		 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and
1850 		 * may seem like BW is above 100%.
1851 		 */
1852 		if (bwpcent > 100)
1853 			bwpcent = 100;
1854 
1855 		if (phba->cmf_max_bytes_per_interval < bw &&
1856 		    bwpcent > 95)
1857 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1858 					"6208 Congestion bandwidth "
1859 					"limits removed\n");
1860 		else if ((phba->cmf_max_bytes_per_interval > bw) &&
1861 			 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95))
1862 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1863 					"6209 Congestion bandwidth "
1864 					"limits in effect\n");
1865 
1866 		if (asig) {
1867 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1868 					"6237 BW Threshold %lld%% (%lld): "
1869 					"%lld%% %s: Signal Alarm: cg:%d "
1870 					"Info:%u\n",
1871 					bwpcent, bw, pcent, s, cg,
1872 					phba->cmf_active_info);
1873 		} else if (afpin) {
1874 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1875 					"6238 BW Threshold %lld%% (%lld): "
1876 					"%lld%% %s: FPIN Alarm: cg:%d "
1877 					"Info:%u\n",
1878 					bwpcent, bw, pcent, s, cg,
1879 					phba->cmf_active_info);
1880 		} else if (sigcnt) {
1881 			wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync);
1882 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1883 					"6239 BW Threshold %lld%% (%lld): "
1884 					"%lld%% %s: Signal Warning: "
1885 					"Cnt %d Max %d: cg:%d Info:%u\n",
1886 					bwpcent, bw, pcent, s, sigcnt,
1887 					wsigmax, cg, phba->cmf_active_info);
1888 		} else if (fpincnt) {
1889 			wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync);
1890 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1891 					"6240 BW Threshold %lld%% (%lld): "
1892 					"%lld%% %s: FPIN Warning: "
1893 					"Cnt %d Max %d: cg:%d Info:%u\n",
1894 					bwpcent, bw, pcent, s, fpincnt,
1895 					wfpinmax, cg, phba->cmf_active_info);
1896 		} else {
1897 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1898 					"6241 BW Threshold %lld%% (%lld): "
1899 					"CMF %lld%% %s: cg:%d Info:%u\n",
1900 					bwpcent, bw, pcent, s, cg,
1901 					phba->cmf_active_info);
1902 		}
1903 	} else if (info) {
1904 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1905 				"6246 Info Threshold %u\n", info);
1906 	}
1907 
1908 	/* Save BW change to be picked up during next timer interrupt */
1909 	phba->cmf_last_sync_bw = bw;
1910 out:
1911 	lpfc_sli_release_iocbq(phba, cmdiocb);
1912 }
1913 
1914 /**
1915  * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE
1916  * @phba: Pointer to HBA context object.
1917  * @ms:   ms to set in WQE interval, 0 means use init op
1918  * @total: Total rcv bytes for this interval
1919  *
1920  * This routine is called every CMF timer interrupt. Its purpose is
1921  * to issue a CMF_SYNC_WQE to the firmware to inform it of any events
1922  * that may indicate we have congestion (FPINs or Signals). Upon
1923  * completion, the firmware will indicate any BW restrictions the
1924  * driver may need to take.
1925  **/
1926 int
1927 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total)
1928 {
1929 	union lpfc_wqe128 *wqe;
1930 	struct lpfc_iocbq *sync_buf;
1931 	unsigned long iflags;
1932 	u32 ret_val;
1933 	u32 atot, wtot, max;
1934 	u16 warn_sync_period = 0;
1935 
1936 	/* First address any alarm / warning activity */
1937 	atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0);
1938 	wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0);
1939 
1940 	/* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */
1941 	if (phba->cmf_active_mode != LPFC_CFG_MANAGED ||
1942 	    phba->link_state == LPFC_LINK_DOWN)
1943 		return 0;
1944 
1945 	spin_lock_irqsave(&phba->hbalock, iflags);
1946 	sync_buf = __lpfc_sli_get_iocbq(phba);
1947 	if (!sync_buf) {
1948 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
1949 				"6244 No available WQEs for CMF_SYNC_WQE\n");
1950 		ret_val = ENOMEM;
1951 		goto out_unlock;
1952 	}
1953 
1954 	wqe = &sync_buf->wqe;
1955 
1956 	/* WQEs are reused.  Clear stale data and set key fields to zero */
1957 	memset(wqe, 0, sizeof(*wqe));
1958 
1959 	/* If this is the very first CMF_SYNC_WQE, issue an init operation */
1960 	if (!ms) {
1961 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1962 				"6441 CMF Init %d - CMF_SYNC_WQE\n",
1963 				phba->fc_eventTag);
1964 		bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */
1965 		bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL);
1966 		goto initpath;
1967 	}
1968 
1969 	bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */
1970 	bf_set(cmf_sync_interval, &wqe->cmf_sync, ms);
1971 
1972 	/* Check for alarms / warnings */
1973 	if (atot) {
1974 		if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
1975 			/* We hit an Signal alarm condition */
1976 			bf_set(cmf_sync_asig, &wqe->cmf_sync, 1);
1977 		} else {
1978 			/* We hit a FPIN alarm condition */
1979 			bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1);
1980 		}
1981 	} else if (wtot) {
1982 		if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
1983 		    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
1984 			/* We hit an Signal warning condition */
1985 			max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency *
1986 				lpfc_acqe_cgn_frequency;
1987 			bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max);
1988 			bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot);
1989 			warn_sync_period = lpfc_acqe_cgn_frequency;
1990 		} else {
1991 			/* We hit a FPIN warning condition */
1992 			bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1);
1993 			bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1);
1994 			if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ)
1995 				warn_sync_period =
1996 				LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency);
1997 		}
1998 	}
1999 
2000 	/* Update total read blocks during previous timer interval */
2001 	wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE);
2002 
2003 initpath:
2004 	bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER);
2005 	wqe->cmf_sync.event_tag = phba->fc_eventTag;
2006 	bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE);
2007 
2008 	/* Setup reqtag to match the wqe completion. */
2009 	bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag);
2010 
2011 	bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1);
2012 	bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period);
2013 
2014 	bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND);
2015 	bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1);
2016 	bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT);
2017 
2018 	sync_buf->vport = phba->pport;
2019 	sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl;
2020 	sync_buf->cmd_dmabuf = NULL;
2021 	sync_buf->rsp_dmabuf = NULL;
2022 	sync_buf->bpl_dmabuf = NULL;
2023 	sync_buf->sli4_xritag = NO_XRI;
2024 
2025 	sync_buf->cmd_flag |= LPFC_IO_CMF;
2026 	ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf);
2027 	if (ret_val) {
2028 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
2029 				"6214 Cannot issue CMF_SYNC_WQE: x%x\n",
2030 				ret_val);
2031 		__lpfc_sli_release_iocbq(phba, sync_buf);
2032 	}
2033 out_unlock:
2034 	spin_unlock_irqrestore(&phba->hbalock, iflags);
2035 	return ret_val;
2036 }
2037 
2038 /**
2039  * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
2040  * @phba: Pointer to HBA context object.
2041  * @pring: Pointer to driver SLI ring object.
2042  *
2043  * This function is called with hbalock held and the caller must post the
2044  * iocb without releasing the lock. If the caller releases the lock,
2045  * iocb slot returned by the function is not guaranteed to be available.
2046  * The function returns pointer to the next available iocb slot if there
2047  * is available slot in the ring, else it returns NULL.
2048  * If the get index of the ring is ahead of the put index, the function
2049  * will post an error attention event to the worker thread to take the
2050  * HBA to offline state.
2051  **/
2052 static IOCB_t *
2053 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2054 {
2055 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
2056 	uint32_t  max_cmd_idx = pring->sli.sli3.numCiocb;
2057 
2058 	lockdep_assert_held(&phba->hbalock);
2059 
2060 	if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
2061 	   (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
2062 		pring->sli.sli3.next_cmdidx = 0;
2063 
2064 	if (unlikely(pring->sli.sli3.local_getidx ==
2065 		pring->sli.sli3.next_cmdidx)) {
2066 
2067 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
2068 
2069 		if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
2070 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2071 					"0315 Ring %d issue: portCmdGet %d "
2072 					"is bigger than cmd ring %d\n",
2073 					pring->ringno,
2074 					pring->sli.sli3.local_getidx,
2075 					max_cmd_idx);
2076 
2077 			phba->link_state = LPFC_HBA_ERROR;
2078 			/*
2079 			 * All error attention handlers are posted to
2080 			 * worker thread
2081 			 */
2082 			phba->work_ha |= HA_ERATT;
2083 			phba->work_hs = HS_FFER3;
2084 
2085 			lpfc_worker_wake_up(phba);
2086 
2087 			return NULL;
2088 		}
2089 
2090 		if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
2091 			return NULL;
2092 	}
2093 
2094 	return lpfc_cmd_iocb(phba, pring);
2095 }
2096 
2097 /**
2098  * lpfc_sli_next_iotag - Get an iotag for the iocb
2099  * @phba: Pointer to HBA context object.
2100  * @iocbq: Pointer to driver iocb object.
2101  *
2102  * This function gets an iotag for the iocb. If there is no unused iotag and
2103  * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
2104  * array and assigns a new iotag.
2105  * The function returns the allocated iotag if successful, else returns zero.
2106  * Zero is not a valid iotag.
2107  * The caller is not required to hold any lock.
2108  **/
2109 uint16_t
2110 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
2111 {
2112 	struct lpfc_iocbq **new_arr;
2113 	struct lpfc_iocbq **old_arr;
2114 	size_t new_len;
2115 	struct lpfc_sli *psli = &phba->sli;
2116 	uint16_t iotag;
2117 
2118 	spin_lock_irq(&phba->hbalock);
2119 	iotag = psli->last_iotag;
2120 	if(++iotag < psli->iocbq_lookup_len) {
2121 		psli->last_iotag = iotag;
2122 		psli->iocbq_lookup[iotag] = iocbq;
2123 		spin_unlock_irq(&phba->hbalock);
2124 		iocbq->iotag = iotag;
2125 		return iotag;
2126 	} else if (psli->iocbq_lookup_len < (0xffff
2127 					   - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
2128 		new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
2129 		spin_unlock_irq(&phba->hbalock);
2130 		new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
2131 				  GFP_KERNEL);
2132 		if (new_arr) {
2133 			spin_lock_irq(&phba->hbalock);
2134 			old_arr = psli->iocbq_lookup;
2135 			if (new_len <= psli->iocbq_lookup_len) {
2136 				/* highly unprobable case */
2137 				kfree(new_arr);
2138 				iotag = psli->last_iotag;
2139 				if(++iotag < psli->iocbq_lookup_len) {
2140 					psli->last_iotag = iotag;
2141 					psli->iocbq_lookup[iotag] = iocbq;
2142 					spin_unlock_irq(&phba->hbalock);
2143 					iocbq->iotag = iotag;
2144 					return iotag;
2145 				}
2146 				spin_unlock_irq(&phba->hbalock);
2147 				return 0;
2148 			}
2149 			if (psli->iocbq_lookup)
2150 				memcpy(new_arr, old_arr,
2151 				       ((psli->last_iotag  + 1) *
2152 					sizeof (struct lpfc_iocbq *)));
2153 			psli->iocbq_lookup = new_arr;
2154 			psli->iocbq_lookup_len = new_len;
2155 			psli->last_iotag = iotag;
2156 			psli->iocbq_lookup[iotag] = iocbq;
2157 			spin_unlock_irq(&phba->hbalock);
2158 			iocbq->iotag = iotag;
2159 			kfree(old_arr);
2160 			return iotag;
2161 		}
2162 	} else
2163 		spin_unlock_irq(&phba->hbalock);
2164 
2165 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2166 			"0318 Failed to allocate IOTAG.last IOTAG is %d\n",
2167 			psli->last_iotag);
2168 
2169 	return 0;
2170 }
2171 
2172 /**
2173  * lpfc_sli_submit_iocb - Submit an iocb to the firmware
2174  * @phba: Pointer to HBA context object.
2175  * @pring: Pointer to driver SLI ring object.
2176  * @iocb: Pointer to iocb slot in the ring.
2177  * @nextiocb: Pointer to driver iocb object which need to be
2178  *            posted to firmware.
2179  *
2180  * This function is called to post a new iocb to the firmware. This
2181  * function copies the new iocb to ring iocb slot and updates the
2182  * ring pointers. It adds the new iocb to txcmplq if there is
2183  * a completion call back for this iocb else the function will free the
2184  * iocb object.  The hbalock is asserted held in the code path calling
2185  * this routine.
2186  **/
2187 static void
2188 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2189 		IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
2190 {
2191 	/*
2192 	 * Set up an iotag
2193 	 */
2194 	nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0;
2195 
2196 
2197 	if (pring->ringno == LPFC_ELS_RING) {
2198 		lpfc_debugfs_slow_ring_trc(phba,
2199 			"IOCB cmd ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
2200 			*(((uint32_t *) &nextiocb->iocb) + 4),
2201 			*(((uint32_t *) &nextiocb->iocb) + 6),
2202 			*(((uint32_t *) &nextiocb->iocb) + 7));
2203 	}
2204 
2205 	/*
2206 	 * Issue iocb command to adapter
2207 	 */
2208 	lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
2209 	wmb();
2210 	pring->stats.iocb_cmd++;
2211 
2212 	/*
2213 	 * If there is no completion routine to call, we can release the
2214 	 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
2215 	 * that have no rsp ring completion, cmd_cmpl MUST be NULL.
2216 	 */
2217 	if (nextiocb->cmd_cmpl)
2218 		lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
2219 	else
2220 		__lpfc_sli_release_iocbq(phba, nextiocb);
2221 
2222 	/*
2223 	 * Let the HBA know what IOCB slot will be the next one the
2224 	 * driver will put a command into.
2225 	 */
2226 	pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
2227 	writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
2228 }
2229 
2230 /**
2231  * lpfc_sli_update_full_ring - Update the chip attention register
2232  * @phba: Pointer to HBA context object.
2233  * @pring: Pointer to driver SLI ring object.
2234  *
2235  * The caller is not required to hold any lock for calling this function.
2236  * This function updates the chip attention bits for the ring to inform firmware
2237  * that there are pending work to be done for this ring and requests an
2238  * interrupt when there is space available in the ring. This function is
2239  * called when the driver is unable to post more iocbs to the ring due
2240  * to unavailability of space in the ring.
2241  **/
2242 static void
2243 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2244 {
2245 	int ringno = pring->ringno;
2246 
2247 	pring->flag |= LPFC_CALL_RING_AVAILABLE;
2248 
2249 	wmb();
2250 
2251 	/*
2252 	 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
2253 	 * The HBA will tell us when an IOCB entry is available.
2254 	 */
2255 	writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
2256 	readl(phba->CAregaddr); /* flush */
2257 
2258 	pring->stats.iocb_cmd_full++;
2259 }
2260 
2261 /**
2262  * lpfc_sli_update_ring - Update chip attention register
2263  * @phba: Pointer to HBA context object.
2264  * @pring: Pointer to driver SLI ring object.
2265  *
2266  * This function updates the chip attention register bit for the
2267  * given ring to inform HBA that there is more work to be done
2268  * in this ring. The caller is not required to hold any lock.
2269  **/
2270 static void
2271 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2272 {
2273 	int ringno = pring->ringno;
2274 
2275 	/*
2276 	 * Tell the HBA that there is work to do in this ring.
2277 	 */
2278 	if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
2279 		wmb();
2280 		writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
2281 		readl(phba->CAregaddr); /* flush */
2282 	}
2283 }
2284 
2285 /**
2286  * lpfc_sli_resume_iocb - Process iocbs in the txq
2287  * @phba: Pointer to HBA context object.
2288  * @pring: Pointer to driver SLI ring object.
2289  *
2290  * This function is called with hbalock held to post pending iocbs
2291  * in the txq to the firmware. This function is called when driver
2292  * detects space available in the ring.
2293  **/
2294 static void
2295 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2296 {
2297 	IOCB_t *iocb;
2298 	struct lpfc_iocbq *nextiocb;
2299 
2300 	lockdep_assert_held(&phba->hbalock);
2301 
2302 	/*
2303 	 * Check to see if:
2304 	 *  (a) there is anything on the txq to send
2305 	 *  (b) link is up
2306 	 *  (c) link attention events can be processed (fcp ring only)
2307 	 *  (d) IOCB processing is not blocked by the outstanding mbox command.
2308 	 */
2309 
2310 	if (lpfc_is_link_up(phba) &&
2311 	    (!list_empty(&pring->txq)) &&
2312 	    (pring->ringno != LPFC_FCP_RING ||
2313 	     phba->sli.sli_flag & LPFC_PROCESS_LA)) {
2314 
2315 		while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
2316 		       (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
2317 			lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
2318 
2319 		if (iocb)
2320 			lpfc_sli_update_ring(phba, pring);
2321 		else
2322 			lpfc_sli_update_full_ring(phba, pring);
2323 	}
2324 
2325 	return;
2326 }
2327 
2328 /**
2329  * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
2330  * @phba: Pointer to HBA context object.
2331  * @hbqno: HBQ number.
2332  *
2333  * This function is called with hbalock held to get the next
2334  * available slot for the given HBQ. If there is free slot
2335  * available for the HBQ it will return pointer to the next available
2336  * HBQ entry else it will return NULL.
2337  **/
2338 static struct lpfc_hbq_entry *
2339 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
2340 {
2341 	struct hbq_s *hbqp = &phba->hbqs[hbqno];
2342 
2343 	lockdep_assert_held(&phba->hbalock);
2344 
2345 	if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
2346 	    ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
2347 		hbqp->next_hbqPutIdx = 0;
2348 
2349 	if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
2350 		uint32_t raw_index = phba->hbq_get[hbqno];
2351 		uint32_t getidx = le32_to_cpu(raw_index);
2352 
2353 		hbqp->local_hbqGetIdx = getidx;
2354 
2355 		if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
2356 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2357 					"1802 HBQ %d: local_hbqGetIdx "
2358 					"%u is > than hbqp->entry_count %u\n",
2359 					hbqno, hbqp->local_hbqGetIdx,
2360 					hbqp->entry_count);
2361 
2362 			phba->link_state = LPFC_HBA_ERROR;
2363 			return NULL;
2364 		}
2365 
2366 		if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
2367 			return NULL;
2368 	}
2369 
2370 	return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
2371 			hbqp->hbqPutIdx;
2372 }
2373 
2374 /**
2375  * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
2376  * @phba: Pointer to HBA context object.
2377  *
2378  * This function is called with no lock held to free all the
2379  * hbq buffers while uninitializing the SLI interface. It also
2380  * frees the HBQ buffers returned by the firmware but not yet
2381  * processed by the upper layers.
2382  **/
2383 void
2384 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
2385 {
2386 	struct lpfc_dmabuf *dmabuf, *next_dmabuf;
2387 	struct hbq_dmabuf *hbq_buf;
2388 	unsigned long flags;
2389 	int i, hbq_count;
2390 
2391 	hbq_count = lpfc_sli_hbq_count();
2392 	/* Return all memory used by all HBQs */
2393 	spin_lock_irqsave(&phba->hbalock, flags);
2394 	for (i = 0; i < hbq_count; ++i) {
2395 		list_for_each_entry_safe(dmabuf, next_dmabuf,
2396 				&phba->hbqs[i].hbq_buffer_list, list) {
2397 			hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
2398 			list_del(&hbq_buf->dbuf.list);
2399 			(phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
2400 		}
2401 		phba->hbqs[i].buffer_count = 0;
2402 	}
2403 
2404 	/* Mark the HBQs not in use */
2405 	phba->hbq_in_use = 0;
2406 	spin_unlock_irqrestore(&phba->hbalock, flags);
2407 }
2408 
2409 /**
2410  * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2411  * @phba: Pointer to HBA context object.
2412  * @hbqno: HBQ number.
2413  * @hbq_buf: Pointer to HBQ buffer.
2414  *
2415  * This function is called with the hbalock held to post a
2416  * hbq buffer to the firmware. If the function finds an empty
2417  * slot in the HBQ, it will post the buffer. The function will return
2418  * pointer to the hbq entry if it successfully post the buffer
2419  * else it will return NULL.
2420  **/
2421 static int
2422 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2423 			 struct hbq_dmabuf *hbq_buf)
2424 {
2425 	lockdep_assert_held(&phba->hbalock);
2426 	return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2427 }
2428 
2429 /**
2430  * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2431  * @phba: Pointer to HBA context object.
2432  * @hbqno: HBQ number.
2433  * @hbq_buf: Pointer to HBQ buffer.
2434  *
2435  * This function is called with the hbalock held to post a hbq buffer to the
2436  * firmware. If the function finds an empty slot in the HBQ, it will post the
2437  * buffer and place it on the hbq_buffer_list. The function will return zero if
2438  * it successfully post the buffer else it will return an error.
2439  **/
2440 static int
2441 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2442 			    struct hbq_dmabuf *hbq_buf)
2443 {
2444 	struct lpfc_hbq_entry *hbqe;
2445 	dma_addr_t physaddr = hbq_buf->dbuf.phys;
2446 
2447 	lockdep_assert_held(&phba->hbalock);
2448 	/* Get next HBQ entry slot to use */
2449 	hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2450 	if (hbqe) {
2451 		struct hbq_s *hbqp = &phba->hbqs[hbqno];
2452 
2453 		hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2454 		hbqe->bde.addrLow  = le32_to_cpu(putPaddrLow(physaddr));
2455 		hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2456 		hbqe->bde.tus.f.bdeFlags = 0;
2457 		hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2458 		hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2459 				/* Sync SLIM */
2460 		hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2461 		writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2462 				/* flush */
2463 		readl(phba->hbq_put + hbqno);
2464 		list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2465 		return 0;
2466 	} else
2467 		return -ENOMEM;
2468 }
2469 
2470 /**
2471  * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2472  * @phba: Pointer to HBA context object.
2473  * @hbqno: HBQ number.
2474  * @hbq_buf: Pointer to HBQ buffer.
2475  *
2476  * This function is called with the hbalock held to post an RQE to the SLI4
2477  * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2478  * the hbq_buffer_list and return zero, otherwise it will return an error.
2479  **/
2480 static int
2481 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2482 			    struct hbq_dmabuf *hbq_buf)
2483 {
2484 	int rc;
2485 	struct lpfc_rqe hrqe;
2486 	struct lpfc_rqe drqe;
2487 	struct lpfc_queue *hrq;
2488 	struct lpfc_queue *drq;
2489 
2490 	if (hbqno != LPFC_ELS_HBQ)
2491 		return 1;
2492 	hrq = phba->sli4_hba.hdr_rq;
2493 	drq = phba->sli4_hba.dat_rq;
2494 
2495 	lockdep_assert_held(&phba->hbalock);
2496 	hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2497 	hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2498 	drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2499 	drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2500 	rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2501 	if (rc < 0)
2502 		return rc;
2503 	hbq_buf->tag = (rc | (hbqno << 16));
2504 	list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2505 	return 0;
2506 }
2507 
2508 /* HBQ for ELS and CT traffic. */
2509 static struct lpfc_hbq_init lpfc_els_hbq = {
2510 	.rn = 1,
2511 	.entry_count = 256,
2512 	.mask_count = 0,
2513 	.profile = 0,
2514 	.ring_mask = (1 << LPFC_ELS_RING),
2515 	.buffer_count = 0,
2516 	.init_count = 40,
2517 	.add_count = 40,
2518 };
2519 
2520 /* Array of HBQs */
2521 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2522 	&lpfc_els_hbq,
2523 };
2524 
2525 /**
2526  * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2527  * @phba: Pointer to HBA context object.
2528  * @hbqno: HBQ number.
2529  * @count: Number of HBQ buffers to be posted.
2530  *
2531  * This function is called with no lock held to post more hbq buffers to the
2532  * given HBQ. The function returns the number of HBQ buffers successfully
2533  * posted.
2534  **/
2535 static int
2536 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2537 {
2538 	uint32_t i, posted = 0;
2539 	unsigned long flags;
2540 	struct hbq_dmabuf *hbq_buffer;
2541 	LIST_HEAD(hbq_buf_list);
2542 	if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2543 		return 0;
2544 
2545 	if ((phba->hbqs[hbqno].buffer_count + count) >
2546 	    lpfc_hbq_defs[hbqno]->entry_count)
2547 		count = lpfc_hbq_defs[hbqno]->entry_count -
2548 					phba->hbqs[hbqno].buffer_count;
2549 	if (!count)
2550 		return 0;
2551 	/* Allocate HBQ entries */
2552 	for (i = 0; i < count; i++) {
2553 		hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2554 		if (!hbq_buffer)
2555 			break;
2556 		list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2557 	}
2558 	/* Check whether HBQ is still in use */
2559 	spin_lock_irqsave(&phba->hbalock, flags);
2560 	if (!phba->hbq_in_use)
2561 		goto err;
2562 	while (!list_empty(&hbq_buf_list)) {
2563 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2564 				 dbuf.list);
2565 		hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2566 				      (hbqno << 16));
2567 		if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2568 			phba->hbqs[hbqno].buffer_count++;
2569 			posted++;
2570 		} else
2571 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2572 	}
2573 	spin_unlock_irqrestore(&phba->hbalock, flags);
2574 	return posted;
2575 err:
2576 	spin_unlock_irqrestore(&phba->hbalock, flags);
2577 	while (!list_empty(&hbq_buf_list)) {
2578 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2579 				 dbuf.list);
2580 		(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2581 	}
2582 	return 0;
2583 }
2584 
2585 /**
2586  * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2587  * @phba: Pointer to HBA context object.
2588  * @qno: HBQ number.
2589  *
2590  * This function posts more buffers to the HBQ. This function
2591  * is called with no lock held. The function returns the number of HBQ entries
2592  * successfully allocated.
2593  **/
2594 int
2595 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2596 {
2597 	if (phba->sli_rev == LPFC_SLI_REV4)
2598 		return 0;
2599 	else
2600 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2601 					 lpfc_hbq_defs[qno]->add_count);
2602 }
2603 
2604 /**
2605  * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2606  * @phba: Pointer to HBA context object.
2607  * @qno:  HBQ queue number.
2608  *
2609  * This function is called from SLI initialization code path with
2610  * no lock held to post initial HBQ buffers to firmware. The
2611  * function returns the number of HBQ entries successfully allocated.
2612  **/
2613 static int
2614 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2615 {
2616 	if (phba->sli_rev == LPFC_SLI_REV4)
2617 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2618 					lpfc_hbq_defs[qno]->entry_count);
2619 	else
2620 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2621 					 lpfc_hbq_defs[qno]->init_count);
2622 }
2623 
2624 /*
2625  * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2626  *
2627  * This function removes the first hbq buffer on an hbq list and returns a
2628  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2629  **/
2630 static struct hbq_dmabuf *
2631 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2632 {
2633 	struct lpfc_dmabuf *d_buf;
2634 
2635 	list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2636 	if (!d_buf)
2637 		return NULL;
2638 	return container_of(d_buf, struct hbq_dmabuf, dbuf);
2639 }
2640 
2641 /**
2642  * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2643  * @phba: Pointer to HBA context object.
2644  * @hrq: HBQ number.
2645  *
2646  * This function removes the first RQ buffer on an RQ buffer list and returns a
2647  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2648  **/
2649 static struct rqb_dmabuf *
2650 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2651 {
2652 	struct lpfc_dmabuf *h_buf;
2653 	struct lpfc_rqb *rqbp;
2654 
2655 	rqbp = hrq->rqbp;
2656 	list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2657 			 struct lpfc_dmabuf, list);
2658 	if (!h_buf)
2659 		return NULL;
2660 	rqbp->buffer_count--;
2661 	return container_of(h_buf, struct rqb_dmabuf, hbuf);
2662 }
2663 
2664 /**
2665  * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2666  * @phba: Pointer to HBA context object.
2667  * @tag: Tag of the hbq buffer.
2668  *
2669  * This function searches for the hbq buffer associated with the given tag in
2670  * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2671  * otherwise it returns NULL.
2672  **/
2673 static struct hbq_dmabuf *
2674 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2675 {
2676 	struct lpfc_dmabuf *d_buf;
2677 	struct hbq_dmabuf *hbq_buf;
2678 	uint32_t hbqno;
2679 
2680 	hbqno = tag >> 16;
2681 	if (hbqno >= LPFC_MAX_HBQS)
2682 		return NULL;
2683 
2684 	spin_lock_irq(&phba->hbalock);
2685 	list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2686 		hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2687 		if (hbq_buf->tag == tag) {
2688 			spin_unlock_irq(&phba->hbalock);
2689 			return hbq_buf;
2690 		}
2691 	}
2692 	spin_unlock_irq(&phba->hbalock);
2693 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2694 			"1803 Bad hbq tag. Data: x%x x%x\n",
2695 			tag, phba->hbqs[tag >> 16].buffer_count);
2696 	return NULL;
2697 }
2698 
2699 /**
2700  * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2701  * @phba: Pointer to HBA context object.
2702  * @hbq_buffer: Pointer to HBQ buffer.
2703  *
2704  * This function is called with hbalock. This function gives back
2705  * the hbq buffer to firmware. If the HBQ does not have space to
2706  * post the buffer, it will free the buffer.
2707  **/
2708 void
2709 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2710 {
2711 	uint32_t hbqno;
2712 
2713 	if (hbq_buffer) {
2714 		hbqno = hbq_buffer->tag >> 16;
2715 		if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2716 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2717 	}
2718 }
2719 
2720 /**
2721  * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2722  * @mbxCommand: mailbox command code.
2723  *
2724  * This function is called by the mailbox event handler function to verify
2725  * that the completed mailbox command is a legitimate mailbox command. If the
2726  * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2727  * and the mailbox event handler will take the HBA offline.
2728  **/
2729 static int
2730 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2731 {
2732 	uint8_t ret;
2733 
2734 	switch (mbxCommand) {
2735 	case MBX_LOAD_SM:
2736 	case MBX_READ_NV:
2737 	case MBX_WRITE_NV:
2738 	case MBX_WRITE_VPARMS:
2739 	case MBX_RUN_BIU_DIAG:
2740 	case MBX_INIT_LINK:
2741 	case MBX_DOWN_LINK:
2742 	case MBX_CONFIG_LINK:
2743 	case MBX_CONFIG_RING:
2744 	case MBX_RESET_RING:
2745 	case MBX_READ_CONFIG:
2746 	case MBX_READ_RCONFIG:
2747 	case MBX_READ_SPARM:
2748 	case MBX_READ_STATUS:
2749 	case MBX_READ_RPI:
2750 	case MBX_READ_XRI:
2751 	case MBX_READ_REV:
2752 	case MBX_READ_LNK_STAT:
2753 	case MBX_REG_LOGIN:
2754 	case MBX_UNREG_LOGIN:
2755 	case MBX_CLEAR_LA:
2756 	case MBX_DUMP_MEMORY:
2757 	case MBX_DUMP_CONTEXT:
2758 	case MBX_RUN_DIAGS:
2759 	case MBX_RESTART:
2760 	case MBX_UPDATE_CFG:
2761 	case MBX_DOWN_LOAD:
2762 	case MBX_DEL_LD_ENTRY:
2763 	case MBX_RUN_PROGRAM:
2764 	case MBX_SET_MASK:
2765 	case MBX_SET_VARIABLE:
2766 	case MBX_UNREG_D_ID:
2767 	case MBX_KILL_BOARD:
2768 	case MBX_CONFIG_FARP:
2769 	case MBX_BEACON:
2770 	case MBX_LOAD_AREA:
2771 	case MBX_RUN_BIU_DIAG64:
2772 	case MBX_CONFIG_PORT:
2773 	case MBX_READ_SPARM64:
2774 	case MBX_READ_RPI64:
2775 	case MBX_REG_LOGIN64:
2776 	case MBX_READ_TOPOLOGY:
2777 	case MBX_WRITE_WWN:
2778 	case MBX_SET_DEBUG:
2779 	case MBX_LOAD_EXP_ROM:
2780 	case MBX_ASYNCEVT_ENABLE:
2781 	case MBX_REG_VPI:
2782 	case MBX_UNREG_VPI:
2783 	case MBX_HEARTBEAT:
2784 	case MBX_PORT_CAPABILITIES:
2785 	case MBX_PORT_IOV_CONTROL:
2786 	case MBX_SLI4_CONFIG:
2787 	case MBX_SLI4_REQ_FTRS:
2788 	case MBX_REG_FCFI:
2789 	case MBX_UNREG_FCFI:
2790 	case MBX_REG_VFI:
2791 	case MBX_UNREG_VFI:
2792 	case MBX_INIT_VPI:
2793 	case MBX_INIT_VFI:
2794 	case MBX_RESUME_RPI:
2795 	case MBX_READ_EVENT_LOG_STATUS:
2796 	case MBX_READ_EVENT_LOG:
2797 	case MBX_SECURITY_MGMT:
2798 	case MBX_AUTH_PORT:
2799 	case MBX_ACCESS_VDATA:
2800 		ret = mbxCommand;
2801 		break;
2802 	default:
2803 		ret = MBX_SHUTDOWN;
2804 		break;
2805 	}
2806 	return ret;
2807 }
2808 
2809 /**
2810  * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2811  * @phba: Pointer to HBA context object.
2812  * @pmboxq: Pointer to mailbox command.
2813  *
2814  * This is completion handler function for mailbox commands issued from
2815  * lpfc_sli_issue_mbox_wait function. This function is called by the
2816  * mailbox event handler function with no lock held. This function
2817  * will wake up thread waiting on the wait queue pointed by context1
2818  * of the mailbox.
2819  **/
2820 void
2821 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2822 {
2823 	unsigned long drvr_flag;
2824 	struct completion *pmbox_done;
2825 
2826 	/*
2827 	 * If pmbox_done is empty, the driver thread gave up waiting and
2828 	 * continued running.
2829 	 */
2830 	pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2831 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
2832 	pmbox_done = (struct completion *)pmboxq->context3;
2833 	if (pmbox_done)
2834 		complete(pmbox_done);
2835 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2836 	return;
2837 }
2838 
2839 static void
2840 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
2841 {
2842 	unsigned long iflags;
2843 
2844 	if (ndlp->nlp_flag & NLP_RELEASE_RPI) {
2845 		lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi);
2846 		spin_lock_irqsave(&ndlp->lock, iflags);
2847 		ndlp->nlp_flag &= ~NLP_RELEASE_RPI;
2848 		ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
2849 		spin_unlock_irqrestore(&ndlp->lock, iflags);
2850 	}
2851 	ndlp->nlp_flag &= ~NLP_UNREG_INP;
2852 }
2853 
2854 void
2855 lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
2856 {
2857 	__lpfc_sli_rpi_release(vport, ndlp);
2858 }
2859 
2860 /**
2861  * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2862  * @phba: Pointer to HBA context object.
2863  * @pmb: Pointer to mailbox object.
2864  *
2865  * This function is the default mailbox completion handler. It
2866  * frees the memory resources associated with the completed mailbox
2867  * command. If the completed command is a REG_LOGIN mailbox command,
2868  * this function will issue a UREG_LOGIN to re-claim the RPI.
2869  **/
2870 void
2871 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2872 {
2873 	struct lpfc_vport  *vport = pmb->vport;
2874 	struct lpfc_dmabuf *mp;
2875 	struct lpfc_nodelist *ndlp;
2876 	struct Scsi_Host *shost;
2877 	uint16_t rpi, vpi;
2878 	int rc;
2879 
2880 	/*
2881 	 * If a REG_LOGIN succeeded  after node is destroyed or node
2882 	 * is in re-discovery driver need to cleanup the RPI.
2883 	 */
2884 	if (!(phba->pport->load_flag & FC_UNLOADING) &&
2885 	    pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2886 	    !pmb->u.mb.mbxStatus) {
2887 		mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
2888 		if (mp) {
2889 			pmb->ctx_buf = NULL;
2890 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
2891 			kfree(mp);
2892 		}
2893 		rpi = pmb->u.mb.un.varWords[0];
2894 		vpi = pmb->u.mb.un.varRegLogin.vpi;
2895 		if (phba->sli_rev == LPFC_SLI_REV4)
2896 			vpi -= phba->sli4_hba.max_cfg_param.vpi_base;
2897 		lpfc_unreg_login(phba, vpi, rpi, pmb);
2898 		pmb->vport = vport;
2899 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2900 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2901 		if (rc != MBX_NOT_FINISHED)
2902 			return;
2903 	}
2904 
2905 	if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2906 		!(phba->pport->load_flag & FC_UNLOADING) &&
2907 		!pmb->u.mb.mbxStatus) {
2908 		shost = lpfc_shost_from_vport(vport);
2909 		spin_lock_irq(shost->host_lock);
2910 		vport->vpi_state |= LPFC_VPI_REGISTERED;
2911 		vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2912 		spin_unlock_irq(shost->host_lock);
2913 	}
2914 
2915 	if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2916 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2917 		lpfc_nlp_put(ndlp);
2918 	}
2919 
2920 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2921 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2922 
2923 		/* Check to see if there are any deferred events to process */
2924 		if (ndlp) {
2925 			lpfc_printf_vlog(
2926 				vport,
2927 				KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2928 				"1438 UNREG cmpl deferred mbox x%x "
2929 				"on NPort x%x Data: x%x x%x x%px x%x x%x\n",
2930 				ndlp->nlp_rpi, ndlp->nlp_DID,
2931 				ndlp->nlp_flag, ndlp->nlp_defer_did,
2932 				ndlp, vport->load_flag, kref_read(&ndlp->kref));
2933 
2934 			if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2935 			    (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2936 				ndlp->nlp_flag &= ~NLP_UNREG_INP;
2937 				ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2938 				lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2939 			} else {
2940 				__lpfc_sli_rpi_release(vport, ndlp);
2941 			}
2942 
2943 			/* The unreg_login mailbox is complete and had a
2944 			 * reference that has to be released.  The PLOGI
2945 			 * got its own ref.
2946 			 */
2947 			lpfc_nlp_put(ndlp);
2948 			pmb->ctx_ndlp = NULL;
2949 		}
2950 	}
2951 
2952 	/* This nlp_put pairs with lpfc_sli4_resume_rpi */
2953 	if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) {
2954 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2955 		lpfc_nlp_put(ndlp);
2956 	}
2957 
2958 	/* Check security permission status on INIT_LINK mailbox command */
2959 	if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2960 	    (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2961 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2962 				"2860 SLI authentication is required "
2963 				"for INIT_LINK but has not done yet\n");
2964 
2965 	if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2966 		lpfc_sli4_mbox_cmd_free(phba, pmb);
2967 	else
2968 		lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
2969 }
2970  /**
2971  * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2972  * @phba: Pointer to HBA context object.
2973  * @pmb: Pointer to mailbox object.
2974  *
2975  * This function is the unreg rpi mailbox completion handler. It
2976  * frees the memory resources associated with the completed mailbox
2977  * command. An additional reference is put on the ndlp to prevent
2978  * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2979  * the unreg mailbox command completes, this routine puts the
2980  * reference back.
2981  *
2982  **/
2983 void
2984 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2985 {
2986 	struct lpfc_vport  *vport = pmb->vport;
2987 	struct lpfc_nodelist *ndlp;
2988 
2989 	ndlp = pmb->ctx_ndlp;
2990 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2991 		if (phba->sli_rev == LPFC_SLI_REV4 &&
2992 		    (bf_get(lpfc_sli_intf_if_type,
2993 		     &phba->sli4_hba.sli_intf) >=
2994 		     LPFC_SLI_INTF_IF_TYPE_2)) {
2995 			if (ndlp) {
2996 				lpfc_printf_vlog(
2997 					 vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2998 					 "0010 UNREG_LOGIN vpi:%x "
2999 					 "rpi:%x DID:%x defer x%x flg x%x "
3000 					 "x%px\n",
3001 					 vport->vpi, ndlp->nlp_rpi,
3002 					 ndlp->nlp_DID, ndlp->nlp_defer_did,
3003 					 ndlp->nlp_flag,
3004 					 ndlp);
3005 				ndlp->nlp_flag &= ~NLP_LOGO_ACC;
3006 
3007 				/* Check to see if there are any deferred
3008 				 * events to process
3009 				 */
3010 				if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
3011 				    (ndlp->nlp_defer_did !=
3012 				    NLP_EVT_NOTHING_PENDING)) {
3013 					lpfc_printf_vlog(
3014 						vport, KERN_INFO, LOG_DISCOVERY,
3015 						"4111 UNREG cmpl deferred "
3016 						"clr x%x on "
3017 						"NPort x%x Data: x%x x%px\n",
3018 						ndlp->nlp_rpi, ndlp->nlp_DID,
3019 						ndlp->nlp_defer_did, ndlp);
3020 					ndlp->nlp_flag &= ~NLP_UNREG_INP;
3021 					ndlp->nlp_defer_did =
3022 						NLP_EVT_NOTHING_PENDING;
3023 					lpfc_issue_els_plogi(
3024 						vport, ndlp->nlp_DID, 0);
3025 				} else {
3026 					__lpfc_sli_rpi_release(vport, ndlp);
3027 				}
3028 				lpfc_nlp_put(ndlp);
3029 			}
3030 		}
3031 	}
3032 
3033 	mempool_free(pmb, phba->mbox_mem_pool);
3034 }
3035 
3036 /**
3037  * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
3038  * @phba: Pointer to HBA context object.
3039  *
3040  * This function is called with no lock held. This function processes all
3041  * the completed mailbox commands and gives it to upper layers. The interrupt
3042  * service routine processes mailbox completion interrupt and adds completed
3043  * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
3044  * Worker thread call lpfc_sli_handle_mb_event, which will return the
3045  * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
3046  * function returns the mailbox commands to the upper layer by calling the
3047  * completion handler function of each mailbox.
3048  **/
3049 int
3050 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
3051 {
3052 	MAILBOX_t *pmbox;
3053 	LPFC_MBOXQ_t *pmb;
3054 	int rc;
3055 	LIST_HEAD(cmplq);
3056 
3057 	phba->sli.slistat.mbox_event++;
3058 
3059 	/* Get all completed mailboxe buffers into the cmplq */
3060 	spin_lock_irq(&phba->hbalock);
3061 	list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
3062 	spin_unlock_irq(&phba->hbalock);
3063 
3064 	/* Get a Mailbox buffer to setup mailbox commands for callback */
3065 	do {
3066 		list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
3067 		if (pmb == NULL)
3068 			break;
3069 
3070 		pmbox = &pmb->u.mb;
3071 
3072 		if (pmbox->mbxCommand != MBX_HEARTBEAT) {
3073 			if (pmb->vport) {
3074 				lpfc_debugfs_disc_trc(pmb->vport,
3075 					LPFC_DISC_TRC_MBOX_VPORT,
3076 					"MBOX cmpl vport: cmd:x%x mb:x%x x%x",
3077 					(uint32_t)pmbox->mbxCommand,
3078 					pmbox->un.varWords[0],
3079 					pmbox->un.varWords[1]);
3080 			}
3081 			else {
3082 				lpfc_debugfs_disc_trc(phba->pport,
3083 					LPFC_DISC_TRC_MBOX,
3084 					"MBOX cmpl:       cmd:x%x mb:x%x x%x",
3085 					(uint32_t)pmbox->mbxCommand,
3086 					pmbox->un.varWords[0],
3087 					pmbox->un.varWords[1]);
3088 			}
3089 		}
3090 
3091 		/*
3092 		 * It is a fatal error if unknown mbox command completion.
3093 		 */
3094 		if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
3095 		    MBX_SHUTDOWN) {
3096 			/* Unknown mailbox command compl */
3097 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3098 					"(%d):0323 Unknown Mailbox command "
3099 					"x%x (x%x/x%x) Cmpl\n",
3100 					pmb->vport ? pmb->vport->vpi :
3101 					LPFC_VPORT_UNKNOWN,
3102 					pmbox->mbxCommand,
3103 					lpfc_sli_config_mbox_subsys_get(phba,
3104 									pmb),
3105 					lpfc_sli_config_mbox_opcode_get(phba,
3106 									pmb));
3107 			phba->link_state = LPFC_HBA_ERROR;
3108 			phba->work_hs = HS_FFER3;
3109 			lpfc_handle_eratt(phba);
3110 			continue;
3111 		}
3112 
3113 		if (pmbox->mbxStatus) {
3114 			phba->sli.slistat.mbox_stat_err++;
3115 			if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
3116 				/* Mbox cmd cmpl error - RETRYing */
3117 				lpfc_printf_log(phba, KERN_INFO,
3118 					LOG_MBOX | LOG_SLI,
3119 					"(%d):0305 Mbox cmd cmpl "
3120 					"error - RETRYing Data: x%x "
3121 					"(x%x/x%x) x%x x%x x%x\n",
3122 					pmb->vport ? pmb->vport->vpi :
3123 					LPFC_VPORT_UNKNOWN,
3124 					pmbox->mbxCommand,
3125 					lpfc_sli_config_mbox_subsys_get(phba,
3126 									pmb),
3127 					lpfc_sli_config_mbox_opcode_get(phba,
3128 									pmb),
3129 					pmbox->mbxStatus,
3130 					pmbox->un.varWords[0],
3131 					pmb->vport ? pmb->vport->port_state :
3132 					LPFC_VPORT_UNKNOWN);
3133 				pmbox->mbxStatus = 0;
3134 				pmbox->mbxOwner = OWN_HOST;
3135 				rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
3136 				if (rc != MBX_NOT_FINISHED)
3137 					continue;
3138 			}
3139 		}
3140 
3141 		/* Mailbox cmd <cmd> Cmpl <cmpl> */
3142 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
3143 				"(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
3144 				"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
3145 				"x%x x%x x%x\n",
3146 				pmb->vport ? pmb->vport->vpi : 0,
3147 				pmbox->mbxCommand,
3148 				lpfc_sli_config_mbox_subsys_get(phba, pmb),
3149 				lpfc_sli_config_mbox_opcode_get(phba, pmb),
3150 				pmb->mbox_cmpl,
3151 				*((uint32_t *) pmbox),
3152 				pmbox->un.varWords[0],
3153 				pmbox->un.varWords[1],
3154 				pmbox->un.varWords[2],
3155 				pmbox->un.varWords[3],
3156 				pmbox->un.varWords[4],
3157 				pmbox->un.varWords[5],
3158 				pmbox->un.varWords[6],
3159 				pmbox->un.varWords[7],
3160 				pmbox->un.varWords[8],
3161 				pmbox->un.varWords[9],
3162 				pmbox->un.varWords[10]);
3163 
3164 		if (pmb->mbox_cmpl)
3165 			pmb->mbox_cmpl(phba,pmb);
3166 	} while (1);
3167 	return 0;
3168 }
3169 
3170 /**
3171  * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
3172  * @phba: Pointer to HBA context object.
3173  * @pring: Pointer to driver SLI ring object.
3174  * @tag: buffer tag.
3175  *
3176  * This function is called with no lock held. When QUE_BUFTAG_BIT bit
3177  * is set in the tag the buffer is posted for a particular exchange,
3178  * the function will return the buffer without replacing the buffer.
3179  * If the buffer is for unsolicited ELS or CT traffic, this function
3180  * returns the buffer and also posts another buffer to the firmware.
3181  **/
3182 static struct lpfc_dmabuf *
3183 lpfc_sli_get_buff(struct lpfc_hba *phba,
3184 		  struct lpfc_sli_ring *pring,
3185 		  uint32_t tag)
3186 {
3187 	struct hbq_dmabuf *hbq_entry;
3188 
3189 	if (tag & QUE_BUFTAG_BIT)
3190 		return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
3191 	hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
3192 	if (!hbq_entry)
3193 		return NULL;
3194 	return &hbq_entry->dbuf;
3195 }
3196 
3197 /**
3198  * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer
3199  *                              containing a NVME LS request.
3200  * @phba: pointer to lpfc hba data structure.
3201  * @piocb: pointer to the iocbq struct representing the sequence starting
3202  *        frame.
3203  *
3204  * This routine initially validates the NVME LS, validates there is a login
3205  * with the port that sent the LS, and then calls the appropriate nvme host
3206  * or target LS request handler.
3207  **/
3208 static void
3209 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
3210 {
3211 	struct lpfc_nodelist *ndlp;
3212 	struct lpfc_dmabuf *d_buf;
3213 	struct hbq_dmabuf *nvmebuf;
3214 	struct fc_frame_header *fc_hdr;
3215 	struct lpfc_async_xchg_ctx *axchg = NULL;
3216 	char *failwhy = NULL;
3217 	uint32_t oxid, sid, did, fctl, size;
3218 	int ret = 1;
3219 
3220 	d_buf = piocb->cmd_dmabuf;
3221 
3222 	nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
3223 	fc_hdr = nvmebuf->hbuf.virt;
3224 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
3225 	sid = sli4_sid_from_fc_hdr(fc_hdr);
3226 	did = sli4_did_from_fc_hdr(fc_hdr);
3227 	fctl = (fc_hdr->fh_f_ctl[0] << 16 |
3228 		fc_hdr->fh_f_ctl[1] << 8 |
3229 		fc_hdr->fh_f_ctl[2]);
3230 	size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl);
3231 
3232 	lpfc_nvmeio_data(phba, "NVME LS    RCV: xri x%x sz %d from %06x\n",
3233 			 oxid, size, sid);
3234 
3235 	if (phba->pport->load_flag & FC_UNLOADING) {
3236 		failwhy = "Driver Unloading";
3237 	} else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) {
3238 		failwhy = "NVME FC4 Disabled";
3239 	} else if (!phba->nvmet_support && !phba->pport->localport) {
3240 		failwhy = "No Localport";
3241 	} else if (phba->nvmet_support && !phba->targetport) {
3242 		failwhy = "No Targetport";
3243 	} else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) {
3244 		failwhy = "Bad NVME LS R_CTL";
3245 	} else if (unlikely((fctl & 0x00FF0000) !=
3246 			(FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) {
3247 		failwhy = "Bad NVME LS F_CTL";
3248 	} else {
3249 		axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC);
3250 		if (!axchg)
3251 			failwhy = "No CTX memory";
3252 	}
3253 
3254 	if (unlikely(failwhy)) {
3255 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3256 				"6154 Drop NVME LS: SID %06X OXID x%X: %s\n",
3257 				sid, oxid, failwhy);
3258 		goto out_fail;
3259 	}
3260 
3261 	/* validate the source of the LS is logged in */
3262 	ndlp = lpfc_findnode_did(phba->pport, sid);
3263 	if (!ndlp ||
3264 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
3265 	     (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
3266 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
3267 				"6216 NVME Unsol rcv: No ndlp: "
3268 				"NPort_ID x%x oxid x%x\n",
3269 				sid, oxid);
3270 		goto out_fail;
3271 	}
3272 
3273 	axchg->phba = phba;
3274 	axchg->ndlp = ndlp;
3275 	axchg->size = size;
3276 	axchg->oxid = oxid;
3277 	axchg->sid = sid;
3278 	axchg->wqeq = NULL;
3279 	axchg->state = LPFC_NVME_STE_LS_RCV;
3280 	axchg->entry_cnt = 1;
3281 	axchg->rqb_buffer = (void *)nvmebuf;
3282 	axchg->hdwq = &phba->sli4_hba.hdwq[0];
3283 	axchg->payload = nvmebuf->dbuf.virt;
3284 	INIT_LIST_HEAD(&axchg->list);
3285 
3286 	if (phba->nvmet_support) {
3287 		ret = lpfc_nvmet_handle_lsreq(phba, axchg);
3288 		spin_lock_irq(&ndlp->lock);
3289 		if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) {
3290 			ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH;
3291 			spin_unlock_irq(&ndlp->lock);
3292 
3293 			/* This reference is a single occurrence to hold the
3294 			 * node valid until the nvmet transport calls
3295 			 * host_release.
3296 			 */
3297 			if (!lpfc_nlp_get(ndlp))
3298 				goto out_fail;
3299 
3300 			lpfc_printf_log(phba, KERN_ERR, LOG_NODE,
3301 					"6206 NVMET unsol ls_req ndlp x%px "
3302 					"DID x%x xflags x%x refcnt %d\n",
3303 					ndlp, ndlp->nlp_DID,
3304 					ndlp->fc4_xpt_flags,
3305 					kref_read(&ndlp->kref));
3306 		} else {
3307 			spin_unlock_irq(&ndlp->lock);
3308 		}
3309 	} else {
3310 		ret = lpfc_nvme_handle_lsreq(phba, axchg);
3311 	}
3312 
3313 	/* if zero, LS was successfully handled. If non-zero, LS not handled */
3314 	if (!ret)
3315 		return;
3316 
3317 out_fail:
3318 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3319 			"6155 Drop NVME LS from DID %06X: SID %06X OXID x%X "
3320 			"NVMe%s handler failed %d\n",
3321 			did, sid, oxid,
3322 			(phba->nvmet_support) ? "T" : "I", ret);
3323 
3324 	/* recycle receive buffer */
3325 	lpfc_in_buf_free(phba, &nvmebuf->dbuf);
3326 
3327 	/* If start of new exchange, abort it */
3328 	if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX)))
3329 		ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid);
3330 
3331 	if (ret)
3332 		kfree(axchg);
3333 }
3334 
3335 /**
3336  * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
3337  * @phba: Pointer to HBA context object.
3338  * @pring: Pointer to driver SLI ring object.
3339  * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
3340  * @fch_r_ctl: the r_ctl for the first frame of the sequence.
3341  * @fch_type: the type for the first frame of the sequence.
3342  *
3343  * This function is called with no lock held. This function uses the r_ctl and
3344  * type of the received sequence to find the correct callback function to call
3345  * to process the sequence.
3346  **/
3347 static int
3348 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3349 			 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
3350 			 uint32_t fch_type)
3351 {
3352 	int i;
3353 
3354 	switch (fch_type) {
3355 	case FC_TYPE_NVME:
3356 		lpfc_nvme_unsol_ls_handler(phba, saveq);
3357 		return 1;
3358 	default:
3359 		break;
3360 	}
3361 
3362 	/* unSolicited Responses */
3363 	if (pring->prt[0].profile) {
3364 		if (pring->prt[0].lpfc_sli_rcv_unsol_event)
3365 			(pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
3366 									saveq);
3367 		return 1;
3368 	}
3369 	/* We must search, based on rctl / type
3370 	   for the right routine */
3371 	for (i = 0; i < pring->num_mask; i++) {
3372 		if ((pring->prt[i].rctl == fch_r_ctl) &&
3373 		    (pring->prt[i].type == fch_type)) {
3374 			if (pring->prt[i].lpfc_sli_rcv_unsol_event)
3375 				(pring->prt[i].lpfc_sli_rcv_unsol_event)
3376 						(phba, pring, saveq);
3377 			return 1;
3378 		}
3379 	}
3380 	return 0;
3381 }
3382 
3383 static void
3384 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba,
3385 			struct lpfc_iocbq *saveq)
3386 {
3387 	IOCB_t *irsp;
3388 	union lpfc_wqe128 *wqe;
3389 	u16 i = 0;
3390 
3391 	irsp = &saveq->iocb;
3392 	wqe = &saveq->wqe;
3393 
3394 	/* Fill wcqe with the IOCB status fields */
3395 	bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus);
3396 	saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount;
3397 	saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4];
3398 	saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len;
3399 
3400 	/* Source ID */
3401 	bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo);
3402 
3403 	/* rx-id of the response frame */
3404 	bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext);
3405 
3406 	/* ox-id of the frame */
3407 	bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
3408 	       irsp->unsli3.rcvsli3.ox_id);
3409 
3410 	/* DID */
3411 	bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
3412 	       irsp->un.rcvels.remoteID);
3413 
3414 	/* unsol data len */
3415 	for (i = 0; i < irsp->ulpBdeCount; i++) {
3416 		struct lpfc_hbq_entry *hbqe = NULL;
3417 
3418 		if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3419 			if (i == 0) {
3420 				hbqe = (struct lpfc_hbq_entry *)
3421 					&irsp->un.ulpWord[0];
3422 				saveq->wqe.gen_req.bde.tus.f.bdeSize =
3423 					hbqe->bde.tus.f.bdeSize;
3424 			} else if (i == 1) {
3425 				hbqe = (struct lpfc_hbq_entry *)
3426 					&irsp->unsli3.sli3Words[4];
3427 				saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize;
3428 			}
3429 		}
3430 	}
3431 }
3432 
3433 /**
3434  * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
3435  * @phba: Pointer to HBA context object.
3436  * @pring: Pointer to driver SLI ring object.
3437  * @saveq: Pointer to the unsolicited iocb.
3438  *
3439  * This function is called with no lock held by the ring event handler
3440  * when there is an unsolicited iocb posted to the response ring by the
3441  * firmware. This function gets the buffer associated with the iocbs
3442  * and calls the event handler for the ring. This function handles both
3443  * qring buffers and hbq buffers.
3444  * When the function returns 1 the caller can free the iocb object otherwise
3445  * upper layer functions will free the iocb objects.
3446  **/
3447 static int
3448 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3449 			    struct lpfc_iocbq *saveq)
3450 {
3451 	IOCB_t           * irsp;
3452 	WORD5            * w5p;
3453 	dma_addr_t	 paddr;
3454 	uint32_t           Rctl, Type;
3455 	struct lpfc_iocbq *iocbq;
3456 	struct lpfc_dmabuf *dmzbuf;
3457 
3458 	irsp = &saveq->iocb;
3459 	saveq->vport = phba->pport;
3460 
3461 	if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
3462 		if (pring->lpfc_sli_rcv_async_status)
3463 			pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
3464 		else
3465 			lpfc_printf_log(phba,
3466 					KERN_WARNING,
3467 					LOG_SLI,
3468 					"0316 Ring %d handler: unexpected "
3469 					"ASYNC_STATUS iocb received evt_code "
3470 					"0x%x\n",
3471 					pring->ringno,
3472 					irsp->un.asyncstat.evt_code);
3473 		return 1;
3474 	}
3475 
3476 	if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
3477 	    (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
3478 		if (irsp->ulpBdeCount > 0) {
3479 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3480 						   irsp->un.ulpWord[3]);
3481 			lpfc_in_buf_free(phba, dmzbuf);
3482 		}
3483 
3484 		if (irsp->ulpBdeCount > 1) {
3485 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3486 						   irsp->unsli3.sli3Words[3]);
3487 			lpfc_in_buf_free(phba, dmzbuf);
3488 		}
3489 
3490 		if (irsp->ulpBdeCount > 2) {
3491 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3492 						   irsp->unsli3.sli3Words[7]);
3493 			lpfc_in_buf_free(phba, dmzbuf);
3494 		}
3495 
3496 		return 1;
3497 	}
3498 
3499 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3500 		if (irsp->ulpBdeCount != 0) {
3501 			saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring,
3502 						irsp->un.ulpWord[3]);
3503 			if (!saveq->cmd_dmabuf)
3504 				lpfc_printf_log(phba,
3505 					KERN_ERR,
3506 					LOG_SLI,
3507 					"0341 Ring %d Cannot find buffer for "
3508 					"an unsolicited iocb. tag 0x%x\n",
3509 					pring->ringno,
3510 					irsp->un.ulpWord[3]);
3511 		}
3512 		if (irsp->ulpBdeCount == 2) {
3513 			saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring,
3514 						irsp->unsli3.sli3Words[7]);
3515 			if (!saveq->bpl_dmabuf)
3516 				lpfc_printf_log(phba,
3517 					KERN_ERR,
3518 					LOG_SLI,
3519 					"0342 Ring %d Cannot find buffer for an"
3520 					" unsolicited iocb. tag 0x%x\n",
3521 					pring->ringno,
3522 					irsp->unsli3.sli3Words[7]);
3523 		}
3524 		list_for_each_entry(iocbq, &saveq->list, list) {
3525 			irsp = &iocbq->iocb;
3526 			if (irsp->ulpBdeCount != 0) {
3527 				iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba,
3528 							pring,
3529 							irsp->un.ulpWord[3]);
3530 				if (!iocbq->cmd_dmabuf)
3531 					lpfc_printf_log(phba,
3532 						KERN_ERR,
3533 						LOG_SLI,
3534 						"0343 Ring %d Cannot find "
3535 						"buffer for an unsolicited iocb"
3536 						". tag 0x%x\n", pring->ringno,
3537 						irsp->un.ulpWord[3]);
3538 			}
3539 			if (irsp->ulpBdeCount == 2) {
3540 				iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba,
3541 						pring,
3542 						irsp->unsli3.sli3Words[7]);
3543 				if (!iocbq->bpl_dmabuf)
3544 					lpfc_printf_log(phba,
3545 						KERN_ERR,
3546 						LOG_SLI,
3547 						"0344 Ring %d Cannot find "
3548 						"buffer for an unsolicited "
3549 						"iocb. tag 0x%x\n",
3550 						pring->ringno,
3551 						irsp->unsli3.sli3Words[7]);
3552 			}
3553 		}
3554 	} else {
3555 		paddr = getPaddr(irsp->un.cont64[0].addrHigh,
3556 				 irsp->un.cont64[0].addrLow);
3557 		saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring,
3558 							     paddr);
3559 		if (irsp->ulpBdeCount == 2) {
3560 			paddr = getPaddr(irsp->un.cont64[1].addrHigh,
3561 					 irsp->un.cont64[1].addrLow);
3562 			saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba,
3563 								   pring,
3564 								   paddr);
3565 		}
3566 	}
3567 
3568 	if (irsp->ulpBdeCount != 0 &&
3569 	    (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
3570 	     irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
3571 		int found = 0;
3572 
3573 		/* search continue save q for same XRI */
3574 		list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
3575 			if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
3576 				saveq->iocb.unsli3.rcvsli3.ox_id) {
3577 				list_add_tail(&saveq->list, &iocbq->list);
3578 				found = 1;
3579 				break;
3580 			}
3581 		}
3582 		if (!found)
3583 			list_add_tail(&saveq->clist,
3584 				      &pring->iocb_continue_saveq);
3585 
3586 		if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
3587 			list_del_init(&iocbq->clist);
3588 			saveq = iocbq;
3589 			irsp = &saveq->iocb;
3590 		} else {
3591 			return 0;
3592 		}
3593 	}
3594 	if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
3595 	    (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
3596 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
3597 		Rctl = FC_RCTL_ELS_REQ;
3598 		Type = FC_TYPE_ELS;
3599 	} else {
3600 		w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
3601 		Rctl = w5p->hcsw.Rctl;
3602 		Type = w5p->hcsw.Type;
3603 
3604 		/* Firmware Workaround */
3605 		if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
3606 			(irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
3607 			 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3608 			Rctl = FC_RCTL_ELS_REQ;
3609 			Type = FC_TYPE_ELS;
3610 			w5p->hcsw.Rctl = Rctl;
3611 			w5p->hcsw.Type = Type;
3612 		}
3613 	}
3614 
3615 	if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) &&
3616 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX ||
3617 	    irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3618 		if (irsp->unsli3.rcvsli3.vpi == 0xffff)
3619 			saveq->vport = phba->pport;
3620 		else
3621 			saveq->vport = lpfc_find_vport_by_vpid(phba,
3622 					       irsp->unsli3.rcvsli3.vpi);
3623 	}
3624 
3625 	/* Prepare WQE with Unsol frame */
3626 	lpfc_sli_prep_unsol_wqe(phba, saveq);
3627 
3628 	if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
3629 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3630 				"0313 Ring %d handler: unexpected Rctl x%x "
3631 				"Type x%x received\n",
3632 				pring->ringno, Rctl, Type);
3633 
3634 	return 1;
3635 }
3636 
3637 /**
3638  * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
3639  * @phba: Pointer to HBA context object.
3640  * @pring: Pointer to driver SLI ring object.
3641  * @prspiocb: Pointer to response iocb object.
3642  *
3643  * This function looks up the iocb_lookup table to get the command iocb
3644  * corresponding to the given response iocb using the iotag of the
3645  * response iocb. The driver calls this function with the hbalock held
3646  * for SLI3 ports or the ring lock held for SLI4 ports.
3647  * This function returns the command iocb object if it finds the command
3648  * iocb else returns NULL.
3649  **/
3650 static struct lpfc_iocbq *
3651 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
3652 		      struct lpfc_sli_ring *pring,
3653 		      struct lpfc_iocbq *prspiocb)
3654 {
3655 	struct lpfc_iocbq *cmd_iocb = NULL;
3656 	u16 iotag;
3657 
3658 	if (phba->sli_rev == LPFC_SLI_REV4)
3659 		iotag = get_wqe_reqtag(prspiocb);
3660 	else
3661 		iotag = prspiocb->iocb.ulpIoTag;
3662 
3663 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3664 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3665 		if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) {
3666 			/* remove from txcmpl queue list */
3667 			list_del_init(&cmd_iocb->list);
3668 			cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
3669 			pring->txcmplq_cnt--;
3670 			return cmd_iocb;
3671 		}
3672 	}
3673 
3674 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3675 			"0317 iotag x%x is out of "
3676 			"range: max iotag x%x\n",
3677 			iotag, phba->sli.last_iotag);
3678 	return NULL;
3679 }
3680 
3681 /**
3682  * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3683  * @phba: Pointer to HBA context object.
3684  * @pring: Pointer to driver SLI ring object.
3685  * @iotag: IOCB tag.
3686  *
3687  * This function looks up the iocb_lookup table to get the command iocb
3688  * corresponding to the given iotag. The driver calls this function with
3689  * the ring lock held because this function is an SLI4 port only helper.
3690  * This function returns the command iocb object if it finds the command
3691  * iocb else returns NULL.
3692  **/
3693 static struct lpfc_iocbq *
3694 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3695 			     struct lpfc_sli_ring *pring, uint16_t iotag)
3696 {
3697 	struct lpfc_iocbq *cmd_iocb = NULL;
3698 
3699 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3700 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3701 		if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) {
3702 			/* remove from txcmpl queue list */
3703 			list_del_init(&cmd_iocb->list);
3704 			cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
3705 			pring->txcmplq_cnt--;
3706 			return cmd_iocb;
3707 		}
3708 	}
3709 
3710 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3711 			"0372 iotag x%x lookup error: max iotag (x%x) "
3712 			"cmd_flag x%x\n",
3713 			iotag, phba->sli.last_iotag,
3714 			cmd_iocb ? cmd_iocb->cmd_flag : 0xffff);
3715 	return NULL;
3716 }
3717 
3718 /**
3719  * lpfc_sli_process_sol_iocb - process solicited iocb completion
3720  * @phba: Pointer to HBA context object.
3721  * @pring: Pointer to driver SLI ring object.
3722  * @saveq: Pointer to the response iocb to be processed.
3723  *
3724  * This function is called by the ring event handler for non-fcp
3725  * rings when there is a new response iocb in the response ring.
3726  * The caller is not required to hold any locks. This function
3727  * gets the command iocb associated with the response iocb and
3728  * calls the completion handler for the command iocb. If there
3729  * is no completion handler, the function will free the resources
3730  * associated with command iocb. If the response iocb is for
3731  * an already aborted command iocb, the status of the completion
3732  * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3733  * This function always returns 1.
3734  **/
3735 static int
3736 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3737 			  struct lpfc_iocbq *saveq)
3738 {
3739 	struct lpfc_iocbq *cmdiocbp;
3740 	unsigned long iflag;
3741 	u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag;
3742 
3743 	if (phba->sli_rev == LPFC_SLI_REV4)
3744 		spin_lock_irqsave(&pring->ring_lock, iflag);
3745 	else
3746 		spin_lock_irqsave(&phba->hbalock, iflag);
3747 	cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3748 	if (phba->sli_rev == LPFC_SLI_REV4)
3749 		spin_unlock_irqrestore(&pring->ring_lock, iflag);
3750 	else
3751 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3752 
3753 	ulp_command = get_job_cmnd(phba, saveq);
3754 	ulp_status = get_job_ulpstatus(phba, saveq);
3755 	ulp_word4 = get_job_word4(phba, saveq);
3756 	ulp_context = get_job_ulpcontext(phba, saveq);
3757 	if (phba->sli_rev == LPFC_SLI_REV4)
3758 		iotag = get_wqe_reqtag(saveq);
3759 	else
3760 		iotag = saveq->iocb.ulpIoTag;
3761 
3762 	if (cmdiocbp) {
3763 		ulp_command = get_job_cmnd(phba, cmdiocbp);
3764 		if (cmdiocbp->cmd_cmpl) {
3765 			/*
3766 			 * If an ELS command failed send an event to mgmt
3767 			 * application.
3768 			 */
3769 			if (ulp_status &&
3770 			     (pring->ringno == LPFC_ELS_RING) &&
3771 			     (ulp_command == CMD_ELS_REQUEST64_CR))
3772 				lpfc_send_els_failure_event(phba,
3773 					cmdiocbp, saveq);
3774 
3775 			/*
3776 			 * Post all ELS completions to the worker thread.
3777 			 * All other are passed to the completion callback.
3778 			 */
3779 			if (pring->ringno == LPFC_ELS_RING) {
3780 				if ((phba->sli_rev < LPFC_SLI_REV4) &&
3781 				    (cmdiocbp->cmd_flag &
3782 							LPFC_DRIVER_ABORTED)) {
3783 					spin_lock_irqsave(&phba->hbalock,
3784 							  iflag);
3785 					cmdiocbp->cmd_flag &=
3786 						~LPFC_DRIVER_ABORTED;
3787 					spin_unlock_irqrestore(&phba->hbalock,
3788 							       iflag);
3789 					saveq->iocb.ulpStatus =
3790 						IOSTAT_LOCAL_REJECT;
3791 					saveq->iocb.un.ulpWord[4] =
3792 						IOERR_SLI_ABORTED;
3793 
3794 					/* Firmware could still be in progress
3795 					 * of DMAing payload, so don't free data
3796 					 * buffer till after a hbeat.
3797 					 */
3798 					spin_lock_irqsave(&phba->hbalock,
3799 							  iflag);
3800 					saveq->cmd_flag |= LPFC_DELAY_MEM_FREE;
3801 					spin_unlock_irqrestore(&phba->hbalock,
3802 							       iflag);
3803 				}
3804 				if (phba->sli_rev == LPFC_SLI_REV4) {
3805 					if (saveq->cmd_flag &
3806 					    LPFC_EXCHANGE_BUSY) {
3807 						/* Set cmdiocb flag for the
3808 						 * exchange busy so sgl (xri)
3809 						 * will not be released until
3810 						 * the abort xri is received
3811 						 * from hba.
3812 						 */
3813 						spin_lock_irqsave(
3814 							&phba->hbalock, iflag);
3815 						cmdiocbp->cmd_flag |=
3816 							LPFC_EXCHANGE_BUSY;
3817 						spin_unlock_irqrestore(
3818 							&phba->hbalock, iflag);
3819 					}
3820 					if (cmdiocbp->cmd_flag &
3821 					    LPFC_DRIVER_ABORTED) {
3822 						/*
3823 						 * Clear LPFC_DRIVER_ABORTED
3824 						 * bit in case it was driver
3825 						 * initiated abort.
3826 						 */
3827 						spin_lock_irqsave(
3828 							&phba->hbalock, iflag);
3829 						cmdiocbp->cmd_flag &=
3830 							~LPFC_DRIVER_ABORTED;
3831 						spin_unlock_irqrestore(
3832 							&phba->hbalock, iflag);
3833 						set_job_ulpstatus(cmdiocbp,
3834 								  IOSTAT_LOCAL_REJECT);
3835 						set_job_ulpword4(cmdiocbp,
3836 								 IOERR_ABORT_REQUESTED);
3837 						/*
3838 						 * For SLI4, irspiocb contains
3839 						 * NO_XRI in sli_xritag, it
3840 						 * shall not affect releasing
3841 						 * sgl (xri) process.
3842 						 */
3843 						set_job_ulpstatus(saveq,
3844 								  IOSTAT_LOCAL_REJECT);
3845 						set_job_ulpword4(saveq,
3846 								 IOERR_SLI_ABORTED);
3847 						spin_lock_irqsave(
3848 							&phba->hbalock, iflag);
3849 						saveq->cmd_flag |=
3850 							LPFC_DELAY_MEM_FREE;
3851 						spin_unlock_irqrestore(
3852 							&phba->hbalock, iflag);
3853 					}
3854 				}
3855 			}
3856 			cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq);
3857 		} else
3858 			lpfc_sli_release_iocbq(phba, cmdiocbp);
3859 	} else {
3860 		/*
3861 		 * Unknown initiating command based on the response iotag.
3862 		 * This could be the case on the ELS ring because of
3863 		 * lpfc_els_abort().
3864 		 */
3865 		if (pring->ringno != LPFC_ELS_RING) {
3866 			/*
3867 			 * Ring <ringno> handler: unexpected completion IoTag
3868 			 * <IoTag>
3869 			 */
3870 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3871 					 "0322 Ring %d handler: "
3872 					 "unexpected completion IoTag x%x "
3873 					 "Data: x%x x%x x%x x%x\n",
3874 					 pring->ringno, iotag, ulp_status,
3875 					 ulp_word4, ulp_command, ulp_context);
3876 		}
3877 	}
3878 
3879 	return 1;
3880 }
3881 
3882 /**
3883  * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3884  * @phba: Pointer to HBA context object.
3885  * @pring: Pointer to driver SLI ring object.
3886  *
3887  * This function is called from the iocb ring event handlers when
3888  * put pointer is ahead of the get pointer for a ring. This function signal
3889  * an error attention condition to the worker thread and the worker
3890  * thread will transition the HBA to offline state.
3891  **/
3892 static void
3893 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3894 {
3895 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3896 	/*
3897 	 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3898 	 * rsp ring <portRspMax>
3899 	 */
3900 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3901 			"0312 Ring %d handler: portRspPut %d "
3902 			"is bigger than rsp ring %d\n",
3903 			pring->ringno, le32_to_cpu(pgp->rspPutInx),
3904 			pring->sli.sli3.numRiocb);
3905 
3906 	phba->link_state = LPFC_HBA_ERROR;
3907 
3908 	/*
3909 	 * All error attention handlers are posted to
3910 	 * worker thread
3911 	 */
3912 	phba->work_ha |= HA_ERATT;
3913 	phba->work_hs = HS_FFER3;
3914 
3915 	lpfc_worker_wake_up(phba);
3916 
3917 	return;
3918 }
3919 
3920 /**
3921  * lpfc_poll_eratt - Error attention polling timer timeout handler
3922  * @t: Context to fetch pointer to address of HBA context object from.
3923  *
3924  * This function is invoked by the Error Attention polling timer when the
3925  * timer times out. It will check the SLI Error Attention register for
3926  * possible attention events. If so, it will post an Error Attention event
3927  * and wake up worker thread to process it. Otherwise, it will set up the
3928  * Error Attention polling timer for the next poll.
3929  **/
3930 void lpfc_poll_eratt(struct timer_list *t)
3931 {
3932 	struct lpfc_hba *phba;
3933 	uint32_t eratt = 0;
3934 	uint64_t sli_intr, cnt;
3935 
3936 	phba = from_timer(phba, t, eratt_poll);
3937 
3938 	/* Here we will also keep track of interrupts per sec of the hba */
3939 	sli_intr = phba->sli.slistat.sli_intr;
3940 
3941 	if (phba->sli.slistat.sli_prev_intr > sli_intr)
3942 		cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3943 			sli_intr);
3944 	else
3945 		cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3946 
3947 	/* 64-bit integer division not supported on 32-bit x86 - use do_div */
3948 	do_div(cnt, phba->eratt_poll_interval);
3949 	phba->sli.slistat.sli_ips = cnt;
3950 
3951 	phba->sli.slistat.sli_prev_intr = sli_intr;
3952 
3953 	/* Check chip HA register for error event */
3954 	eratt = lpfc_sli_check_eratt(phba);
3955 
3956 	if (eratt)
3957 		/* Tell the worker thread there is work to do */
3958 		lpfc_worker_wake_up(phba);
3959 	else
3960 		/* Restart the timer for next eratt poll */
3961 		mod_timer(&phba->eratt_poll,
3962 			  jiffies +
3963 			  msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3964 	return;
3965 }
3966 
3967 
3968 /**
3969  * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3970  * @phba: Pointer to HBA context object.
3971  * @pring: Pointer to driver SLI ring object.
3972  * @mask: Host attention register mask for this ring.
3973  *
3974  * This function is called from the interrupt context when there is a ring
3975  * event for the fcp ring. The caller does not hold any lock.
3976  * The function processes each response iocb in the response ring until it
3977  * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3978  * LE bit set. The function will call the completion handler of the command iocb
3979  * if the response iocb indicates a completion for a command iocb or it is
3980  * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3981  * function if this is an unsolicited iocb.
3982  * This routine presumes LPFC_FCP_RING handling and doesn't bother
3983  * to check it explicitly.
3984  */
3985 int
3986 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3987 				struct lpfc_sli_ring *pring, uint32_t mask)
3988 {
3989 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3990 	IOCB_t *irsp = NULL;
3991 	IOCB_t *entry = NULL;
3992 	struct lpfc_iocbq *cmdiocbq = NULL;
3993 	struct lpfc_iocbq rspiocbq;
3994 	uint32_t status;
3995 	uint32_t portRspPut, portRspMax;
3996 	int rc = 1;
3997 	lpfc_iocb_type type;
3998 	unsigned long iflag;
3999 	uint32_t rsp_cmpl = 0;
4000 
4001 	spin_lock_irqsave(&phba->hbalock, iflag);
4002 	pring->stats.iocb_event++;
4003 
4004 	/*
4005 	 * The next available response entry should never exceed the maximum
4006 	 * entries.  If it does, treat it as an adapter hardware error.
4007 	 */
4008 	portRspMax = pring->sli.sli3.numRiocb;
4009 	portRspPut = le32_to_cpu(pgp->rspPutInx);
4010 	if (unlikely(portRspPut >= portRspMax)) {
4011 		lpfc_sli_rsp_pointers_error(phba, pring);
4012 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4013 		return 1;
4014 	}
4015 	if (phba->fcp_ring_in_use) {
4016 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4017 		return 1;
4018 	} else
4019 		phba->fcp_ring_in_use = 1;
4020 
4021 	rmb();
4022 	while (pring->sli.sli3.rspidx != portRspPut) {
4023 		/*
4024 		 * Fetch an entry off the ring and copy it into a local data
4025 		 * structure.  The copy involves a byte-swap since the
4026 		 * network byte order and pci byte orders are different.
4027 		 */
4028 		entry = lpfc_resp_iocb(phba, pring);
4029 		phba->last_completion_time = jiffies;
4030 
4031 		if (++pring->sli.sli3.rspidx >= portRspMax)
4032 			pring->sli.sli3.rspidx = 0;
4033 
4034 		lpfc_sli_pcimem_bcopy((uint32_t *) entry,
4035 				      (uint32_t *) &rspiocbq.iocb,
4036 				      phba->iocb_rsp_size);
4037 		INIT_LIST_HEAD(&(rspiocbq.list));
4038 		irsp = &rspiocbq.iocb;
4039 
4040 		type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
4041 		pring->stats.iocb_rsp++;
4042 		rsp_cmpl++;
4043 
4044 		if (unlikely(irsp->ulpStatus)) {
4045 			/*
4046 			 * If resource errors reported from HBA, reduce
4047 			 * queuedepths of the SCSI device.
4048 			 */
4049 			if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
4050 			    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
4051 			     IOERR_NO_RESOURCES)) {
4052 				spin_unlock_irqrestore(&phba->hbalock, iflag);
4053 				phba->lpfc_rampdown_queue_depth(phba);
4054 				spin_lock_irqsave(&phba->hbalock, iflag);
4055 			}
4056 
4057 			/* Rsp ring <ringno> error: IOCB */
4058 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4059 					"0336 Rsp Ring %d error: IOCB Data: "
4060 					"x%x x%x x%x x%x x%x x%x x%x x%x\n",
4061 					pring->ringno,
4062 					irsp->un.ulpWord[0],
4063 					irsp->un.ulpWord[1],
4064 					irsp->un.ulpWord[2],
4065 					irsp->un.ulpWord[3],
4066 					irsp->un.ulpWord[4],
4067 					irsp->un.ulpWord[5],
4068 					*(uint32_t *)&irsp->un1,
4069 					*((uint32_t *)&irsp->un1 + 1));
4070 		}
4071 
4072 		switch (type) {
4073 		case LPFC_ABORT_IOCB:
4074 		case LPFC_SOL_IOCB:
4075 			/*
4076 			 * Idle exchange closed via ABTS from port.  No iocb
4077 			 * resources need to be recovered.
4078 			 */
4079 			if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
4080 				lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4081 						"0333 IOCB cmd 0x%x"
4082 						" processed. Skipping"
4083 						" completion\n",
4084 						irsp->ulpCommand);
4085 				break;
4086 			}
4087 
4088 			cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
4089 							 &rspiocbq);
4090 			if (unlikely(!cmdiocbq))
4091 				break;
4092 			if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED)
4093 				cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
4094 			if (cmdiocbq->cmd_cmpl) {
4095 				spin_unlock_irqrestore(&phba->hbalock, iflag);
4096 				cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq);
4097 				spin_lock_irqsave(&phba->hbalock, iflag);
4098 			}
4099 			break;
4100 		case LPFC_UNSOL_IOCB:
4101 			spin_unlock_irqrestore(&phba->hbalock, iflag);
4102 			lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
4103 			spin_lock_irqsave(&phba->hbalock, iflag);
4104 			break;
4105 		default:
4106 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
4107 				char adaptermsg[LPFC_MAX_ADPTMSG];
4108 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
4109 				memcpy(&adaptermsg[0], (uint8_t *) irsp,
4110 				       MAX_MSG_DATA);
4111 				dev_warn(&((phba->pcidev)->dev),
4112 					 "lpfc%d: %s\n",
4113 					 phba->brd_no, adaptermsg);
4114 			} else {
4115 				/* Unknown IOCB command */
4116 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4117 						"0334 Unknown IOCB command "
4118 						"Data: x%x, x%x x%x x%x x%x\n",
4119 						type, irsp->ulpCommand,
4120 						irsp->ulpStatus,
4121 						irsp->ulpIoTag,
4122 						irsp->ulpContext);
4123 			}
4124 			break;
4125 		}
4126 
4127 		/*
4128 		 * The response IOCB has been processed.  Update the ring
4129 		 * pointer in SLIM.  If the port response put pointer has not
4130 		 * been updated, sync the pgp->rspPutInx and fetch the new port
4131 		 * response put pointer.
4132 		 */
4133 		writel(pring->sli.sli3.rspidx,
4134 			&phba->host_gp[pring->ringno].rspGetInx);
4135 
4136 		if (pring->sli.sli3.rspidx == portRspPut)
4137 			portRspPut = le32_to_cpu(pgp->rspPutInx);
4138 	}
4139 
4140 	if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
4141 		pring->stats.iocb_rsp_full++;
4142 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
4143 		writel(status, phba->CAregaddr);
4144 		readl(phba->CAregaddr);
4145 	}
4146 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
4147 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
4148 		pring->stats.iocb_cmd_empty++;
4149 
4150 		/* Force update of the local copy of cmdGetInx */
4151 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
4152 		lpfc_sli_resume_iocb(phba, pring);
4153 
4154 		if ((pring->lpfc_sli_cmd_available))
4155 			(pring->lpfc_sli_cmd_available) (phba, pring);
4156 
4157 	}
4158 
4159 	phba->fcp_ring_in_use = 0;
4160 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4161 	return rc;
4162 }
4163 
4164 /**
4165  * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
4166  * @phba: Pointer to HBA context object.
4167  * @pring: Pointer to driver SLI ring object.
4168  * @rspiocbp: Pointer to driver response IOCB object.
4169  *
4170  * This function is called from the worker thread when there is a slow-path
4171  * response IOCB to process. This function chains all the response iocbs until
4172  * seeing the iocb with the LE bit set. The function will call
4173  * lpfc_sli_process_sol_iocb function if the response iocb indicates a
4174  * completion of a command iocb. The function will call the
4175  * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
4176  * The function frees the resources or calls the completion handler if this
4177  * iocb is an abort completion. The function returns NULL when the response
4178  * iocb has the LE bit set and all the chained iocbs are processed, otherwise
4179  * this function shall chain the iocb on to the iocb_continueq and return the
4180  * response iocb passed in.
4181  **/
4182 static struct lpfc_iocbq *
4183 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
4184 			struct lpfc_iocbq *rspiocbp)
4185 {
4186 	struct lpfc_iocbq *saveq;
4187 	struct lpfc_iocbq *cmdiocb;
4188 	struct lpfc_iocbq *next_iocb;
4189 	IOCB_t *irsp;
4190 	uint32_t free_saveq;
4191 	u8 cmd_type;
4192 	lpfc_iocb_type type;
4193 	unsigned long iflag;
4194 	u32 ulp_status = get_job_ulpstatus(phba, rspiocbp);
4195 	u32 ulp_word4 = get_job_word4(phba, rspiocbp);
4196 	u32 ulp_command = get_job_cmnd(phba, rspiocbp);
4197 	int rc;
4198 
4199 	spin_lock_irqsave(&phba->hbalock, iflag);
4200 	/* First add the response iocb to the countinueq list */
4201 	list_add_tail(&rspiocbp->list, &pring->iocb_continueq);
4202 	pring->iocb_continueq_cnt++;
4203 
4204 	/*
4205 	 * By default, the driver expects to free all resources
4206 	 * associated with this iocb completion.
4207 	 */
4208 	free_saveq = 1;
4209 	saveq = list_get_first(&pring->iocb_continueq,
4210 			       struct lpfc_iocbq, list);
4211 	list_del_init(&pring->iocb_continueq);
4212 	pring->iocb_continueq_cnt = 0;
4213 
4214 	pring->stats.iocb_rsp++;
4215 
4216 	/*
4217 	 * If resource errors reported from HBA, reduce
4218 	 * queuedepths of the SCSI device.
4219 	 */
4220 	if (ulp_status == IOSTAT_LOCAL_REJECT &&
4221 	    ((ulp_word4 & IOERR_PARAM_MASK) ==
4222 	     IOERR_NO_RESOURCES)) {
4223 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4224 		phba->lpfc_rampdown_queue_depth(phba);
4225 		spin_lock_irqsave(&phba->hbalock, iflag);
4226 	}
4227 
4228 	if (ulp_status) {
4229 		/* Rsp ring <ringno> error: IOCB */
4230 		if (phba->sli_rev < LPFC_SLI_REV4) {
4231 			irsp = &rspiocbp->iocb;
4232 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4233 					"0328 Rsp Ring %d error: ulp_status x%x "
4234 					"IOCB Data: "
4235 					"x%08x x%08x x%08x x%08x "
4236 					"x%08x x%08x x%08x x%08x "
4237 					"x%08x x%08x x%08x x%08x "
4238 					"x%08x x%08x x%08x x%08x\n",
4239 					pring->ringno, ulp_status,
4240 					get_job_ulpword(rspiocbp, 0),
4241 					get_job_ulpword(rspiocbp, 1),
4242 					get_job_ulpword(rspiocbp, 2),
4243 					get_job_ulpword(rspiocbp, 3),
4244 					get_job_ulpword(rspiocbp, 4),
4245 					get_job_ulpword(rspiocbp, 5),
4246 					*(((uint32_t *)irsp) + 6),
4247 					*(((uint32_t *)irsp) + 7),
4248 					*(((uint32_t *)irsp) + 8),
4249 					*(((uint32_t *)irsp) + 9),
4250 					*(((uint32_t *)irsp) + 10),
4251 					*(((uint32_t *)irsp) + 11),
4252 					*(((uint32_t *)irsp) + 12),
4253 					*(((uint32_t *)irsp) + 13),
4254 					*(((uint32_t *)irsp) + 14),
4255 					*(((uint32_t *)irsp) + 15));
4256 		} else {
4257 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4258 					"0321 Rsp Ring %d error: "
4259 					"IOCB Data: "
4260 					"x%x x%x x%x x%x\n",
4261 					pring->ringno,
4262 					rspiocbp->wcqe_cmpl.word0,
4263 					rspiocbp->wcqe_cmpl.total_data_placed,
4264 					rspiocbp->wcqe_cmpl.parameter,
4265 					rspiocbp->wcqe_cmpl.word3);
4266 		}
4267 	}
4268 
4269 
4270 	/*
4271 	 * Fetch the iocb command type and call the correct completion
4272 	 * routine. Solicited and Unsolicited IOCBs on the ELS ring
4273 	 * get freed back to the lpfc_iocb_list by the discovery
4274 	 * kernel thread.
4275 	 */
4276 	cmd_type = ulp_command & CMD_IOCB_MASK;
4277 	type = lpfc_sli_iocb_cmd_type(cmd_type);
4278 	switch (type) {
4279 	case LPFC_SOL_IOCB:
4280 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4281 		rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
4282 		spin_lock_irqsave(&phba->hbalock, iflag);
4283 		break;
4284 	case LPFC_UNSOL_IOCB:
4285 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4286 		rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
4287 		spin_lock_irqsave(&phba->hbalock, iflag);
4288 		if (!rc)
4289 			free_saveq = 0;
4290 		break;
4291 	case LPFC_ABORT_IOCB:
4292 		cmdiocb = NULL;
4293 		if (ulp_command != CMD_XRI_ABORTED_CX)
4294 			cmdiocb = lpfc_sli_iocbq_lookup(phba, pring,
4295 							saveq);
4296 		if (cmdiocb) {
4297 			/* Call the specified completion routine */
4298 			if (cmdiocb->cmd_cmpl) {
4299 				spin_unlock_irqrestore(&phba->hbalock, iflag);
4300 				cmdiocb->cmd_cmpl(phba, cmdiocb, saveq);
4301 				spin_lock_irqsave(&phba->hbalock, iflag);
4302 			} else {
4303 				__lpfc_sli_release_iocbq(phba, cmdiocb);
4304 			}
4305 		}
4306 		break;
4307 	case LPFC_UNKNOWN_IOCB:
4308 		if (ulp_command == CMD_ADAPTER_MSG) {
4309 			char adaptermsg[LPFC_MAX_ADPTMSG];
4310 
4311 			memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
4312 			memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe,
4313 			       MAX_MSG_DATA);
4314 			dev_warn(&((phba->pcidev)->dev),
4315 				 "lpfc%d: %s\n",
4316 				 phba->brd_no, adaptermsg);
4317 		} else {
4318 			/* Unknown command */
4319 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4320 					"0335 Unknown IOCB "
4321 					"command Data: x%x "
4322 					"x%x x%x x%x\n",
4323 					ulp_command,
4324 					ulp_status,
4325 					get_wqe_reqtag(rspiocbp),
4326 					get_job_ulpcontext(phba, rspiocbp));
4327 		}
4328 		break;
4329 	}
4330 
4331 	if (free_saveq) {
4332 		list_for_each_entry_safe(rspiocbp, next_iocb,
4333 					 &saveq->list, list) {
4334 			list_del_init(&rspiocbp->list);
4335 			__lpfc_sli_release_iocbq(phba, rspiocbp);
4336 		}
4337 		__lpfc_sli_release_iocbq(phba, saveq);
4338 	}
4339 	rspiocbp = NULL;
4340 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4341 	return rspiocbp;
4342 }
4343 
4344 /**
4345  * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
4346  * @phba: Pointer to HBA context object.
4347  * @pring: Pointer to driver SLI ring object.
4348  * @mask: Host attention register mask for this ring.
4349  *
4350  * This routine wraps the actual slow_ring event process routine from the
4351  * API jump table function pointer from the lpfc_hba struct.
4352  **/
4353 void
4354 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
4355 				struct lpfc_sli_ring *pring, uint32_t mask)
4356 {
4357 	phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
4358 }
4359 
4360 /**
4361  * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
4362  * @phba: Pointer to HBA context object.
4363  * @pring: Pointer to driver SLI ring object.
4364  * @mask: Host attention register mask for this ring.
4365  *
4366  * This function is called from the worker thread when there is a ring event
4367  * for non-fcp rings. The caller does not hold any lock. The function will
4368  * remove each response iocb in the response ring and calls the handle
4369  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4370  **/
4371 static void
4372 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
4373 				   struct lpfc_sli_ring *pring, uint32_t mask)
4374 {
4375 	struct lpfc_pgp *pgp;
4376 	IOCB_t *entry;
4377 	IOCB_t *irsp = NULL;
4378 	struct lpfc_iocbq *rspiocbp = NULL;
4379 	uint32_t portRspPut, portRspMax;
4380 	unsigned long iflag;
4381 	uint32_t status;
4382 
4383 	pgp = &phba->port_gp[pring->ringno];
4384 	spin_lock_irqsave(&phba->hbalock, iflag);
4385 	pring->stats.iocb_event++;
4386 
4387 	/*
4388 	 * The next available response entry should never exceed the maximum
4389 	 * entries.  If it does, treat it as an adapter hardware error.
4390 	 */
4391 	portRspMax = pring->sli.sli3.numRiocb;
4392 	portRspPut = le32_to_cpu(pgp->rspPutInx);
4393 	if (portRspPut >= portRspMax) {
4394 		/*
4395 		 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
4396 		 * rsp ring <portRspMax>
4397 		 */
4398 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4399 				"0303 Ring %d handler: portRspPut %d "
4400 				"is bigger than rsp ring %d\n",
4401 				pring->ringno, portRspPut, portRspMax);
4402 
4403 		phba->link_state = LPFC_HBA_ERROR;
4404 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4405 
4406 		phba->work_hs = HS_FFER3;
4407 		lpfc_handle_eratt(phba);
4408 
4409 		return;
4410 	}
4411 
4412 	rmb();
4413 	while (pring->sli.sli3.rspidx != portRspPut) {
4414 		/*
4415 		 * Build a completion list and call the appropriate handler.
4416 		 * The process is to get the next available response iocb, get
4417 		 * a free iocb from the list, copy the response data into the
4418 		 * free iocb, insert to the continuation list, and update the
4419 		 * next response index to slim.  This process makes response
4420 		 * iocb's in the ring available to DMA as fast as possible but
4421 		 * pays a penalty for a copy operation.  Since the iocb is
4422 		 * only 32 bytes, this penalty is considered small relative to
4423 		 * the PCI reads for register values and a slim write.  When
4424 		 * the ulpLe field is set, the entire Command has been
4425 		 * received.
4426 		 */
4427 		entry = lpfc_resp_iocb(phba, pring);
4428 
4429 		phba->last_completion_time = jiffies;
4430 		rspiocbp = __lpfc_sli_get_iocbq(phba);
4431 		if (rspiocbp == NULL) {
4432 			printk(KERN_ERR "%s: out of buffers! Failing "
4433 			       "completion.\n", __func__);
4434 			break;
4435 		}
4436 
4437 		lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
4438 				      phba->iocb_rsp_size);
4439 		irsp = &rspiocbp->iocb;
4440 
4441 		if (++pring->sli.sli3.rspidx >= portRspMax)
4442 			pring->sli.sli3.rspidx = 0;
4443 
4444 		if (pring->ringno == LPFC_ELS_RING) {
4445 			lpfc_debugfs_slow_ring_trc(phba,
4446 			"IOCB rsp ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
4447 				*(((uint32_t *) irsp) + 4),
4448 				*(((uint32_t *) irsp) + 6),
4449 				*(((uint32_t *) irsp) + 7));
4450 		}
4451 
4452 		writel(pring->sli.sli3.rspidx,
4453 			&phba->host_gp[pring->ringno].rspGetInx);
4454 
4455 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4456 		/* Handle the response IOCB */
4457 		rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
4458 		spin_lock_irqsave(&phba->hbalock, iflag);
4459 
4460 		/*
4461 		 * If the port response put pointer has not been updated, sync
4462 		 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
4463 		 * response put pointer.
4464 		 */
4465 		if (pring->sli.sli3.rspidx == portRspPut) {
4466 			portRspPut = le32_to_cpu(pgp->rspPutInx);
4467 		}
4468 	} /* while (pring->sli.sli3.rspidx != portRspPut) */
4469 
4470 	if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
4471 		/* At least one response entry has been freed */
4472 		pring->stats.iocb_rsp_full++;
4473 		/* SET RxRE_RSP in Chip Att register */
4474 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
4475 		writel(status, phba->CAregaddr);
4476 		readl(phba->CAregaddr); /* flush */
4477 	}
4478 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
4479 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
4480 		pring->stats.iocb_cmd_empty++;
4481 
4482 		/* Force update of the local copy of cmdGetInx */
4483 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
4484 		lpfc_sli_resume_iocb(phba, pring);
4485 
4486 		if ((pring->lpfc_sli_cmd_available))
4487 			(pring->lpfc_sli_cmd_available) (phba, pring);
4488 
4489 	}
4490 
4491 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4492 	return;
4493 }
4494 
4495 /**
4496  * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
4497  * @phba: Pointer to HBA context object.
4498  * @pring: Pointer to driver SLI ring object.
4499  * @mask: Host attention register mask for this ring.
4500  *
4501  * This function is called from the worker thread when there is a pending
4502  * ELS response iocb on the driver internal slow-path response iocb worker
4503  * queue. The caller does not hold any lock. The function will remove each
4504  * response iocb from the response worker queue and calls the handle
4505  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4506  **/
4507 static void
4508 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
4509 				   struct lpfc_sli_ring *pring, uint32_t mask)
4510 {
4511 	struct lpfc_iocbq *irspiocbq;
4512 	struct hbq_dmabuf *dmabuf;
4513 	struct lpfc_cq_event *cq_event;
4514 	unsigned long iflag;
4515 	int count = 0;
4516 
4517 	spin_lock_irqsave(&phba->hbalock, iflag);
4518 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
4519 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4520 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
4521 		/* Get the response iocb from the head of work queue */
4522 		spin_lock_irqsave(&phba->hbalock, iflag);
4523 		list_remove_head(&phba->sli4_hba.sp_queue_event,
4524 				 cq_event, struct lpfc_cq_event, list);
4525 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4526 
4527 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
4528 		case CQE_CODE_COMPL_WQE:
4529 			irspiocbq = container_of(cq_event, struct lpfc_iocbq,
4530 						 cq_event);
4531 			/* Translate ELS WCQE to response IOCBQ */
4532 			irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba,
4533 								      irspiocbq);
4534 			if (irspiocbq)
4535 				lpfc_sli_sp_handle_rspiocb(phba, pring,
4536 							   irspiocbq);
4537 			count++;
4538 			break;
4539 		case CQE_CODE_RECEIVE:
4540 		case CQE_CODE_RECEIVE_V1:
4541 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
4542 					      cq_event);
4543 			lpfc_sli4_handle_received_buffer(phba, dmabuf);
4544 			count++;
4545 			break;
4546 		default:
4547 			break;
4548 		}
4549 
4550 		/* Limit the number of events to 64 to avoid soft lockups */
4551 		if (count == 64)
4552 			break;
4553 	}
4554 }
4555 
4556 /**
4557  * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
4558  * @phba: Pointer to HBA context object.
4559  * @pring: Pointer to driver SLI ring object.
4560  *
4561  * This function aborts all iocbs in the given ring and frees all the iocb
4562  * objects in txq. This function issues an abort iocb for all the iocb commands
4563  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4564  * the return of this function. The caller is not required to hold any locks.
4565  **/
4566 void
4567 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
4568 {
4569 	LIST_HEAD(tx_completions);
4570 	LIST_HEAD(txcmplq_completions);
4571 	struct lpfc_iocbq *iocb, *next_iocb;
4572 	int offline;
4573 
4574 	if (pring->ringno == LPFC_ELS_RING) {
4575 		lpfc_fabric_abort_hba(phba);
4576 	}
4577 	offline = pci_channel_offline(phba->pcidev);
4578 
4579 	/* Error everything on txq and txcmplq
4580 	 * First do the txq.
4581 	 */
4582 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4583 		spin_lock_irq(&pring->ring_lock);
4584 		list_splice_init(&pring->txq, &tx_completions);
4585 		pring->txq_cnt = 0;
4586 
4587 		if (offline) {
4588 			list_splice_init(&pring->txcmplq,
4589 					 &txcmplq_completions);
4590 		} else {
4591 			/* Next issue ABTS for everything on the txcmplq */
4592 			list_for_each_entry_safe(iocb, next_iocb,
4593 						 &pring->txcmplq, list)
4594 				lpfc_sli_issue_abort_iotag(phba, pring,
4595 							   iocb, NULL);
4596 		}
4597 		spin_unlock_irq(&pring->ring_lock);
4598 	} else {
4599 		spin_lock_irq(&phba->hbalock);
4600 		list_splice_init(&pring->txq, &tx_completions);
4601 		pring->txq_cnt = 0;
4602 
4603 		if (offline) {
4604 			list_splice_init(&pring->txcmplq, &txcmplq_completions);
4605 		} else {
4606 			/* Next issue ABTS for everything on the txcmplq */
4607 			list_for_each_entry_safe(iocb, next_iocb,
4608 						 &pring->txcmplq, list)
4609 				lpfc_sli_issue_abort_iotag(phba, pring,
4610 							   iocb, NULL);
4611 		}
4612 		spin_unlock_irq(&phba->hbalock);
4613 	}
4614 
4615 	if (offline) {
4616 		/* Cancel all the IOCBs from the completions list */
4617 		lpfc_sli_cancel_iocbs(phba, &txcmplq_completions,
4618 				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
4619 	} else {
4620 		/* Make sure HBA is alive */
4621 		lpfc_issue_hb_tmo(phba);
4622 	}
4623 	/* Cancel all the IOCBs from the completions list */
4624 	lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT,
4625 			      IOERR_SLI_ABORTED);
4626 }
4627 
4628 /**
4629  * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
4630  * @phba: Pointer to HBA context object.
4631  *
4632  * This function aborts all iocbs in FCP rings and frees all the iocb
4633  * objects in txq. This function issues an abort iocb for all the iocb commands
4634  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4635  * the return of this function. The caller is not required to hold any locks.
4636  **/
4637 void
4638 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
4639 {
4640 	struct lpfc_sli *psli = &phba->sli;
4641 	struct lpfc_sli_ring  *pring;
4642 	uint32_t i;
4643 
4644 	/* Look on all the FCP Rings for the iotag */
4645 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4646 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4647 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4648 			lpfc_sli_abort_iocb_ring(phba, pring);
4649 		}
4650 	} else {
4651 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4652 		lpfc_sli_abort_iocb_ring(phba, pring);
4653 	}
4654 }
4655 
4656 /**
4657  * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
4658  * @phba: Pointer to HBA context object.
4659  *
4660  * This function flushes all iocbs in the IO ring and frees all the iocb
4661  * objects in txq and txcmplq. This function will not issue abort iocbs
4662  * for all the iocb commands in txcmplq, they will just be returned with
4663  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4664  * slot has been permanently disabled.
4665  **/
4666 void
4667 lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
4668 {
4669 	LIST_HEAD(txq);
4670 	LIST_HEAD(txcmplq);
4671 	struct lpfc_sli *psli = &phba->sli;
4672 	struct lpfc_sli_ring  *pring;
4673 	uint32_t i;
4674 	struct lpfc_iocbq *piocb, *next_iocb;
4675 
4676 	spin_lock_irq(&phba->hbalock);
4677 	/* Indicate the I/O queues are flushed */
4678 	phba->hba_flag |= HBA_IOQ_FLUSH;
4679 	spin_unlock_irq(&phba->hbalock);
4680 
4681 	/* Look on all the FCP Rings for the iotag */
4682 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4683 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4684 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4685 
4686 			spin_lock_irq(&pring->ring_lock);
4687 			/* Retrieve everything on txq */
4688 			list_splice_init(&pring->txq, &txq);
4689 			list_for_each_entry_safe(piocb, next_iocb,
4690 						 &pring->txcmplq, list)
4691 				piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
4692 			/* Retrieve everything on the txcmplq */
4693 			list_splice_init(&pring->txcmplq, &txcmplq);
4694 			pring->txq_cnt = 0;
4695 			pring->txcmplq_cnt = 0;
4696 			spin_unlock_irq(&pring->ring_lock);
4697 
4698 			/* Flush the txq */
4699 			lpfc_sli_cancel_iocbs(phba, &txq,
4700 					      IOSTAT_LOCAL_REJECT,
4701 					      IOERR_SLI_DOWN);
4702 			/* Flush the txcmplq */
4703 			lpfc_sli_cancel_iocbs(phba, &txcmplq,
4704 					      IOSTAT_LOCAL_REJECT,
4705 					      IOERR_SLI_DOWN);
4706 			if (unlikely(pci_channel_offline(phba->pcidev)))
4707 				lpfc_sli4_io_xri_aborted(phba, NULL, 0);
4708 		}
4709 	} else {
4710 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4711 
4712 		spin_lock_irq(&phba->hbalock);
4713 		/* Retrieve everything on txq */
4714 		list_splice_init(&pring->txq, &txq);
4715 		list_for_each_entry_safe(piocb, next_iocb,
4716 					 &pring->txcmplq, list)
4717 			piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
4718 		/* Retrieve everything on the txcmplq */
4719 		list_splice_init(&pring->txcmplq, &txcmplq);
4720 		pring->txq_cnt = 0;
4721 		pring->txcmplq_cnt = 0;
4722 		spin_unlock_irq(&phba->hbalock);
4723 
4724 		/* Flush the txq */
4725 		lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4726 				      IOERR_SLI_DOWN);
4727 		/* Flush the txcmpq */
4728 		lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4729 				      IOERR_SLI_DOWN);
4730 	}
4731 }
4732 
4733 /**
4734  * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4735  * @phba: Pointer to HBA context object.
4736  * @mask: Bit mask to be checked.
4737  *
4738  * This function reads the host status register and compares
4739  * with the provided bit mask to check if HBA completed
4740  * the restart. This function will wait in a loop for the
4741  * HBA to complete restart. If the HBA does not restart within
4742  * 15 iterations, the function will reset the HBA again. The
4743  * function returns 1 when HBA fail to restart otherwise returns
4744  * zero.
4745  **/
4746 static int
4747 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4748 {
4749 	uint32_t status;
4750 	int i = 0;
4751 	int retval = 0;
4752 
4753 	/* Read the HBA Host Status Register */
4754 	if (lpfc_readl(phba->HSregaddr, &status))
4755 		return 1;
4756 
4757 	phba->hba_flag |= HBA_NEEDS_CFG_PORT;
4758 
4759 	/*
4760 	 * Check status register every 100ms for 5 retries, then every
4761 	 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4762 	 * every 2.5 sec for 4.
4763 	 * Break our of the loop if errors occurred during init.
4764 	 */
4765 	while (((status & mask) != mask) &&
4766 	       !(status & HS_FFERM) &&
4767 	       i++ < 20) {
4768 
4769 		if (i <= 5)
4770 			msleep(10);
4771 		else if (i <= 10)
4772 			msleep(500);
4773 		else
4774 			msleep(2500);
4775 
4776 		if (i == 15) {
4777 				/* Do post */
4778 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4779 			lpfc_sli_brdrestart(phba);
4780 		}
4781 		/* Read the HBA Host Status Register */
4782 		if (lpfc_readl(phba->HSregaddr, &status)) {
4783 			retval = 1;
4784 			break;
4785 		}
4786 	}
4787 
4788 	/* Check to see if any errors occurred during init */
4789 	if ((status & HS_FFERM) || (i >= 20)) {
4790 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4791 				"2751 Adapter failed to restart, "
4792 				"status reg x%x, FW Data: A8 x%x AC x%x\n",
4793 				status,
4794 				readl(phba->MBslimaddr + 0xa8),
4795 				readl(phba->MBslimaddr + 0xac));
4796 		phba->link_state = LPFC_HBA_ERROR;
4797 		retval = 1;
4798 	}
4799 
4800 	return retval;
4801 }
4802 
4803 /**
4804  * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4805  * @phba: Pointer to HBA context object.
4806  * @mask: Bit mask to be checked.
4807  *
4808  * This function checks the host status register to check if HBA is
4809  * ready. This function will wait in a loop for the HBA to be ready
4810  * If the HBA is not ready , the function will will reset the HBA PCI
4811  * function again. The function returns 1 when HBA fail to be ready
4812  * otherwise returns zero.
4813  **/
4814 static int
4815 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4816 {
4817 	uint32_t status;
4818 	int retval = 0;
4819 
4820 	/* Read the HBA Host Status Register */
4821 	status = lpfc_sli4_post_status_check(phba);
4822 
4823 	if (status) {
4824 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4825 		lpfc_sli_brdrestart(phba);
4826 		status = lpfc_sli4_post_status_check(phba);
4827 	}
4828 
4829 	/* Check to see if any errors occurred during init */
4830 	if (status) {
4831 		phba->link_state = LPFC_HBA_ERROR;
4832 		retval = 1;
4833 	} else
4834 		phba->sli4_hba.intr_enable = 0;
4835 
4836 	phba->hba_flag &= ~HBA_SETUP;
4837 	return retval;
4838 }
4839 
4840 /**
4841  * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4842  * @phba: Pointer to HBA context object.
4843  * @mask: Bit mask to be checked.
4844  *
4845  * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4846  * from the API jump table function pointer from the lpfc_hba struct.
4847  **/
4848 int
4849 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4850 {
4851 	return phba->lpfc_sli_brdready(phba, mask);
4852 }
4853 
4854 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4855 
4856 /**
4857  * lpfc_reset_barrier - Make HBA ready for HBA reset
4858  * @phba: Pointer to HBA context object.
4859  *
4860  * This function is called before resetting an HBA. This function is called
4861  * with hbalock held and requests HBA to quiesce DMAs before a reset.
4862  **/
4863 void lpfc_reset_barrier(struct lpfc_hba *phba)
4864 {
4865 	uint32_t __iomem *resp_buf;
4866 	uint32_t __iomem *mbox_buf;
4867 	volatile struct MAILBOX_word0 mbox;
4868 	uint32_t hc_copy, ha_copy, resp_data;
4869 	int  i;
4870 	uint8_t hdrtype;
4871 
4872 	lockdep_assert_held(&phba->hbalock);
4873 
4874 	pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4875 	if (hdrtype != 0x80 ||
4876 	    (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4877 	     FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4878 		return;
4879 
4880 	/*
4881 	 * Tell the other part of the chip to suspend temporarily all
4882 	 * its DMA activity.
4883 	 */
4884 	resp_buf = phba->MBslimaddr;
4885 
4886 	/* Disable the error attention */
4887 	if (lpfc_readl(phba->HCregaddr, &hc_copy))
4888 		return;
4889 	writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4890 	readl(phba->HCregaddr); /* flush */
4891 	phba->link_flag |= LS_IGNORE_ERATT;
4892 
4893 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4894 		return;
4895 	if (ha_copy & HA_ERATT) {
4896 		/* Clear Chip error bit */
4897 		writel(HA_ERATT, phba->HAregaddr);
4898 		phba->pport->stopped = 1;
4899 	}
4900 
4901 	mbox.word0 = 0;
4902 	mbox.mbxCommand = MBX_KILL_BOARD;
4903 	mbox.mbxOwner = OWN_CHIP;
4904 
4905 	writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4906 	mbox_buf = phba->MBslimaddr;
4907 	writel(mbox.word0, mbox_buf);
4908 
4909 	for (i = 0; i < 50; i++) {
4910 		if (lpfc_readl((resp_buf + 1), &resp_data))
4911 			return;
4912 		if (resp_data != ~(BARRIER_TEST_PATTERN))
4913 			mdelay(1);
4914 		else
4915 			break;
4916 	}
4917 	resp_data = 0;
4918 	if (lpfc_readl((resp_buf + 1), &resp_data))
4919 		return;
4920 	if (resp_data  != ~(BARRIER_TEST_PATTERN)) {
4921 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4922 		    phba->pport->stopped)
4923 			goto restore_hc;
4924 		else
4925 			goto clear_errat;
4926 	}
4927 
4928 	mbox.mbxOwner = OWN_HOST;
4929 	resp_data = 0;
4930 	for (i = 0; i < 500; i++) {
4931 		if (lpfc_readl(resp_buf, &resp_data))
4932 			return;
4933 		if (resp_data != mbox.word0)
4934 			mdelay(1);
4935 		else
4936 			break;
4937 	}
4938 
4939 clear_errat:
4940 
4941 	while (++i < 500) {
4942 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4943 			return;
4944 		if (!(ha_copy & HA_ERATT))
4945 			mdelay(1);
4946 		else
4947 			break;
4948 	}
4949 
4950 	if (readl(phba->HAregaddr) & HA_ERATT) {
4951 		writel(HA_ERATT, phba->HAregaddr);
4952 		phba->pport->stopped = 1;
4953 	}
4954 
4955 restore_hc:
4956 	phba->link_flag &= ~LS_IGNORE_ERATT;
4957 	writel(hc_copy, phba->HCregaddr);
4958 	readl(phba->HCregaddr); /* flush */
4959 }
4960 
4961 /**
4962  * lpfc_sli_brdkill - Issue a kill_board mailbox command
4963  * @phba: Pointer to HBA context object.
4964  *
4965  * This function issues a kill_board mailbox command and waits for
4966  * the error attention interrupt. This function is called for stopping
4967  * the firmware processing. The caller is not required to hold any
4968  * locks. This function calls lpfc_hba_down_post function to free
4969  * any pending commands after the kill. The function will return 1 when it
4970  * fails to kill the board else will return 0.
4971  **/
4972 int
4973 lpfc_sli_brdkill(struct lpfc_hba *phba)
4974 {
4975 	struct lpfc_sli *psli;
4976 	LPFC_MBOXQ_t *pmb;
4977 	uint32_t status;
4978 	uint32_t ha_copy;
4979 	int retval;
4980 	int i = 0;
4981 
4982 	psli = &phba->sli;
4983 
4984 	/* Kill HBA */
4985 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4986 			"0329 Kill HBA Data: x%x x%x\n",
4987 			phba->pport->port_state, psli->sli_flag);
4988 
4989 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4990 	if (!pmb)
4991 		return 1;
4992 
4993 	/* Disable the error attention */
4994 	spin_lock_irq(&phba->hbalock);
4995 	if (lpfc_readl(phba->HCregaddr, &status)) {
4996 		spin_unlock_irq(&phba->hbalock);
4997 		mempool_free(pmb, phba->mbox_mem_pool);
4998 		return 1;
4999 	}
5000 	status &= ~HC_ERINT_ENA;
5001 	writel(status, phba->HCregaddr);
5002 	readl(phba->HCregaddr); /* flush */
5003 	phba->link_flag |= LS_IGNORE_ERATT;
5004 	spin_unlock_irq(&phba->hbalock);
5005 
5006 	lpfc_kill_board(phba, pmb);
5007 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
5008 	retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5009 
5010 	if (retval != MBX_SUCCESS) {
5011 		if (retval != MBX_BUSY)
5012 			mempool_free(pmb, phba->mbox_mem_pool);
5013 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5014 				"2752 KILL_BOARD command failed retval %d\n",
5015 				retval);
5016 		spin_lock_irq(&phba->hbalock);
5017 		phba->link_flag &= ~LS_IGNORE_ERATT;
5018 		spin_unlock_irq(&phba->hbalock);
5019 		return 1;
5020 	}
5021 
5022 	spin_lock_irq(&phba->hbalock);
5023 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
5024 	spin_unlock_irq(&phba->hbalock);
5025 
5026 	mempool_free(pmb, phba->mbox_mem_pool);
5027 
5028 	/* There is no completion for a KILL_BOARD mbox cmd. Check for an error
5029 	 * attention every 100ms for 3 seconds. If we don't get ERATT after
5030 	 * 3 seconds we still set HBA_ERROR state because the status of the
5031 	 * board is now undefined.
5032 	 */
5033 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
5034 		return 1;
5035 	while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
5036 		mdelay(100);
5037 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
5038 			return 1;
5039 	}
5040 
5041 	del_timer_sync(&psli->mbox_tmo);
5042 	if (ha_copy & HA_ERATT) {
5043 		writel(HA_ERATT, phba->HAregaddr);
5044 		phba->pport->stopped = 1;
5045 	}
5046 	spin_lock_irq(&phba->hbalock);
5047 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5048 	psli->mbox_active = NULL;
5049 	phba->link_flag &= ~LS_IGNORE_ERATT;
5050 	spin_unlock_irq(&phba->hbalock);
5051 
5052 	lpfc_hba_down_post(phba);
5053 	phba->link_state = LPFC_HBA_ERROR;
5054 
5055 	return ha_copy & HA_ERATT ? 0 : 1;
5056 }
5057 
5058 /**
5059  * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
5060  * @phba: Pointer to HBA context object.
5061  *
5062  * This function resets the HBA by writing HC_INITFF to the control
5063  * register. After the HBA resets, this function resets all the iocb ring
5064  * indices. This function disables PCI layer parity checking during
5065  * the reset.
5066  * This function returns 0 always.
5067  * The caller is not required to hold any locks.
5068  **/
5069 int
5070 lpfc_sli_brdreset(struct lpfc_hba *phba)
5071 {
5072 	struct lpfc_sli *psli;
5073 	struct lpfc_sli_ring *pring;
5074 	uint16_t cfg_value;
5075 	int i;
5076 
5077 	psli = &phba->sli;
5078 
5079 	/* Reset HBA */
5080 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5081 			"0325 Reset HBA Data: x%x x%x\n",
5082 			(phba->pport) ? phba->pport->port_state : 0,
5083 			psli->sli_flag);
5084 
5085 	/* perform board reset */
5086 	phba->fc_eventTag = 0;
5087 	phba->link_events = 0;
5088 	phba->hba_flag |= HBA_NEEDS_CFG_PORT;
5089 	if (phba->pport) {
5090 		phba->pport->fc_myDID = 0;
5091 		phba->pport->fc_prevDID = 0;
5092 	}
5093 
5094 	/* Turn off parity checking and serr during the physical reset */
5095 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
5096 		return -EIO;
5097 
5098 	pci_write_config_word(phba->pcidev, PCI_COMMAND,
5099 			      (cfg_value &
5100 			       ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
5101 
5102 	psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
5103 
5104 	/* Now toggle INITFF bit in the Host Control Register */
5105 	writel(HC_INITFF, phba->HCregaddr);
5106 	mdelay(1);
5107 	readl(phba->HCregaddr); /* flush */
5108 	writel(0, phba->HCregaddr);
5109 	readl(phba->HCregaddr); /* flush */
5110 
5111 	/* Restore PCI cmd register */
5112 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
5113 
5114 	/* Initialize relevant SLI info */
5115 	for (i = 0; i < psli->num_rings; i++) {
5116 		pring = &psli->sli3_ring[i];
5117 		pring->flag = 0;
5118 		pring->sli.sli3.rspidx = 0;
5119 		pring->sli.sli3.next_cmdidx  = 0;
5120 		pring->sli.sli3.local_getidx = 0;
5121 		pring->sli.sli3.cmdidx = 0;
5122 		pring->missbufcnt = 0;
5123 	}
5124 
5125 	phba->link_state = LPFC_WARM_START;
5126 	return 0;
5127 }
5128 
5129 /**
5130  * lpfc_sli4_brdreset - Reset a sli-4 HBA
5131  * @phba: Pointer to HBA context object.
5132  *
5133  * This function resets a SLI4 HBA. This function disables PCI layer parity
5134  * checking during resets the device. The caller is not required to hold
5135  * any locks.
5136  *
5137  * This function returns 0 on success else returns negative error code.
5138  **/
5139 int
5140 lpfc_sli4_brdreset(struct lpfc_hba *phba)
5141 {
5142 	struct lpfc_sli *psli = &phba->sli;
5143 	uint16_t cfg_value;
5144 	int rc = 0;
5145 
5146 	/* Reset HBA */
5147 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5148 			"0295 Reset HBA Data: x%x x%x x%x\n",
5149 			phba->pport->port_state, psli->sli_flag,
5150 			phba->hba_flag);
5151 
5152 	/* perform board reset */
5153 	phba->fc_eventTag = 0;
5154 	phba->link_events = 0;
5155 	phba->pport->fc_myDID = 0;
5156 	phba->pport->fc_prevDID = 0;
5157 	phba->hba_flag &= ~HBA_SETUP;
5158 
5159 	spin_lock_irq(&phba->hbalock);
5160 	psli->sli_flag &= ~(LPFC_PROCESS_LA);
5161 	phba->fcf.fcf_flag = 0;
5162 	spin_unlock_irq(&phba->hbalock);
5163 
5164 	/* Now physically reset the device */
5165 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5166 			"0389 Performing PCI function reset!\n");
5167 
5168 	/* Turn off parity checking and serr during the physical reset */
5169 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
5170 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5171 				"3205 PCI read Config failed\n");
5172 		return -EIO;
5173 	}
5174 
5175 	pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
5176 			      ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
5177 
5178 	/* Perform FCoE PCI function reset before freeing queue memory */
5179 	rc = lpfc_pci_function_reset(phba);
5180 
5181 	/* Restore PCI cmd register */
5182 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
5183 
5184 	return rc;
5185 }
5186 
5187 /**
5188  * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
5189  * @phba: Pointer to HBA context object.
5190  *
5191  * This function is called in the SLI initialization code path to
5192  * restart the HBA. The caller is not required to hold any lock.
5193  * This function writes MBX_RESTART mailbox command to the SLIM and
5194  * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
5195  * function to free any pending commands. The function enables
5196  * POST only during the first initialization. The function returns zero.
5197  * The function does not guarantee completion of MBX_RESTART mailbox
5198  * command before the return of this function.
5199  **/
5200 static int
5201 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
5202 {
5203 	volatile struct MAILBOX_word0 mb;
5204 	struct lpfc_sli *psli;
5205 	void __iomem *to_slim;
5206 
5207 	spin_lock_irq(&phba->hbalock);
5208 
5209 	psli = &phba->sli;
5210 
5211 	/* Restart HBA */
5212 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5213 			"0337 Restart HBA Data: x%x x%x\n",
5214 			(phba->pport) ? phba->pport->port_state : 0,
5215 			psli->sli_flag);
5216 
5217 	mb.word0 = 0;
5218 	mb.mbxCommand = MBX_RESTART;
5219 	mb.mbxHc = 1;
5220 
5221 	lpfc_reset_barrier(phba);
5222 
5223 	to_slim = phba->MBslimaddr;
5224 	writel(mb.word0, to_slim);
5225 	readl(to_slim); /* flush */
5226 
5227 	/* Only skip post after fc_ffinit is completed */
5228 	if (phba->pport && phba->pport->port_state)
5229 		mb.word0 = 1;	/* This is really setting up word1 */
5230 	else
5231 		mb.word0 = 0;	/* This is really setting up word1 */
5232 	to_slim = phba->MBslimaddr + sizeof (uint32_t);
5233 	writel(mb.word0, to_slim);
5234 	readl(to_slim); /* flush */
5235 
5236 	lpfc_sli_brdreset(phba);
5237 	if (phba->pport)
5238 		phba->pport->stopped = 0;
5239 	phba->link_state = LPFC_INIT_START;
5240 	phba->hba_flag = 0;
5241 	spin_unlock_irq(&phba->hbalock);
5242 
5243 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
5244 	psli->stats_start = ktime_get_seconds();
5245 
5246 	/* Give the INITFF and Post time to settle. */
5247 	mdelay(100);
5248 
5249 	lpfc_hba_down_post(phba);
5250 
5251 	return 0;
5252 }
5253 
5254 /**
5255  * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
5256  * @phba: Pointer to HBA context object.
5257  *
5258  * This function is called in the SLI initialization code path to restart
5259  * a SLI4 HBA. The caller is not required to hold any lock.
5260  * At the end of the function, it calls lpfc_hba_down_post function to
5261  * free any pending commands.
5262  **/
5263 static int
5264 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
5265 {
5266 	struct lpfc_sli *psli = &phba->sli;
5267 	int rc;
5268 
5269 	/* Restart HBA */
5270 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5271 			"0296 Restart HBA Data: x%x x%x\n",
5272 			phba->pport->port_state, psli->sli_flag);
5273 
5274 	rc = lpfc_sli4_brdreset(phba);
5275 	if (rc) {
5276 		phba->link_state = LPFC_HBA_ERROR;
5277 		goto hba_down_queue;
5278 	}
5279 
5280 	spin_lock_irq(&phba->hbalock);
5281 	phba->pport->stopped = 0;
5282 	phba->link_state = LPFC_INIT_START;
5283 	phba->hba_flag = 0;
5284 	/* Preserve FA-PWWN expectation */
5285 	phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC;
5286 	spin_unlock_irq(&phba->hbalock);
5287 
5288 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
5289 	psli->stats_start = ktime_get_seconds();
5290 
5291 hba_down_queue:
5292 	lpfc_hba_down_post(phba);
5293 	lpfc_sli4_queue_destroy(phba);
5294 
5295 	return rc;
5296 }
5297 
5298 /**
5299  * lpfc_sli_brdrestart - Wrapper func for restarting hba
5300  * @phba: Pointer to HBA context object.
5301  *
5302  * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
5303  * API jump table function pointer from the lpfc_hba struct.
5304 **/
5305 int
5306 lpfc_sli_brdrestart(struct lpfc_hba *phba)
5307 {
5308 	return phba->lpfc_sli_brdrestart(phba);
5309 }
5310 
5311 /**
5312  * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
5313  * @phba: Pointer to HBA context object.
5314  *
5315  * This function is called after a HBA restart to wait for successful
5316  * restart of the HBA. Successful restart of the HBA is indicated by
5317  * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
5318  * iteration, the function will restart the HBA again. The function returns
5319  * zero if HBA successfully restarted else returns negative error code.
5320  **/
5321 int
5322 lpfc_sli_chipset_init(struct lpfc_hba *phba)
5323 {
5324 	uint32_t status, i = 0;
5325 
5326 	/* Read the HBA Host Status Register */
5327 	if (lpfc_readl(phba->HSregaddr, &status))
5328 		return -EIO;
5329 
5330 	/* Check status register to see what current state is */
5331 	i = 0;
5332 	while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
5333 
5334 		/* Check every 10ms for 10 retries, then every 100ms for 90
5335 		 * retries, then every 1 sec for 50 retires for a total of
5336 		 * ~60 seconds before reset the board again and check every
5337 		 * 1 sec for 50 retries. The up to 60 seconds before the
5338 		 * board ready is required by the Falcon FIPS zeroization
5339 		 * complete, and any reset the board in between shall cause
5340 		 * restart of zeroization, further delay the board ready.
5341 		 */
5342 		if (i++ >= 200) {
5343 			/* Adapter failed to init, timeout, status reg
5344 			   <status> */
5345 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5346 					"0436 Adapter failed to init, "
5347 					"timeout, status reg x%x, "
5348 					"FW Data: A8 x%x AC x%x\n", status,
5349 					readl(phba->MBslimaddr + 0xa8),
5350 					readl(phba->MBslimaddr + 0xac));
5351 			phba->link_state = LPFC_HBA_ERROR;
5352 			return -ETIMEDOUT;
5353 		}
5354 
5355 		/* Check to see if any errors occurred during init */
5356 		if (status & HS_FFERM) {
5357 			/* ERROR: During chipset initialization */
5358 			/* Adapter failed to init, chipset, status reg
5359 			   <status> */
5360 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5361 					"0437 Adapter failed to init, "
5362 					"chipset, status reg x%x, "
5363 					"FW Data: A8 x%x AC x%x\n", status,
5364 					readl(phba->MBslimaddr + 0xa8),
5365 					readl(phba->MBslimaddr + 0xac));
5366 			phba->link_state = LPFC_HBA_ERROR;
5367 			return -EIO;
5368 		}
5369 
5370 		if (i <= 10)
5371 			msleep(10);
5372 		else if (i <= 100)
5373 			msleep(100);
5374 		else
5375 			msleep(1000);
5376 
5377 		if (i == 150) {
5378 			/* Do post */
5379 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5380 			lpfc_sli_brdrestart(phba);
5381 		}
5382 		/* Read the HBA Host Status Register */
5383 		if (lpfc_readl(phba->HSregaddr, &status))
5384 			return -EIO;
5385 	}
5386 
5387 	/* Check to see if any errors occurred during init */
5388 	if (status & HS_FFERM) {
5389 		/* ERROR: During chipset initialization */
5390 		/* Adapter failed to init, chipset, status reg <status> */
5391 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5392 				"0438 Adapter failed to init, chipset, "
5393 				"status reg x%x, "
5394 				"FW Data: A8 x%x AC x%x\n", status,
5395 				readl(phba->MBslimaddr + 0xa8),
5396 				readl(phba->MBslimaddr + 0xac));
5397 		phba->link_state = LPFC_HBA_ERROR;
5398 		return -EIO;
5399 	}
5400 
5401 	phba->hba_flag |= HBA_NEEDS_CFG_PORT;
5402 
5403 	/* Clear all interrupt enable conditions */
5404 	writel(0, phba->HCregaddr);
5405 	readl(phba->HCregaddr); /* flush */
5406 
5407 	/* setup host attn register */
5408 	writel(0xffffffff, phba->HAregaddr);
5409 	readl(phba->HAregaddr); /* flush */
5410 	return 0;
5411 }
5412 
5413 /**
5414  * lpfc_sli_hbq_count - Get the number of HBQs to be configured
5415  *
5416  * This function calculates and returns the number of HBQs required to be
5417  * configured.
5418  **/
5419 int
5420 lpfc_sli_hbq_count(void)
5421 {
5422 	return ARRAY_SIZE(lpfc_hbq_defs);
5423 }
5424 
5425 /**
5426  * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
5427  *
5428  * This function adds the number of hbq entries in every HBQ to get
5429  * the total number of hbq entries required for the HBA and returns
5430  * the total count.
5431  **/
5432 static int
5433 lpfc_sli_hbq_entry_count(void)
5434 {
5435 	int  hbq_count = lpfc_sli_hbq_count();
5436 	int  count = 0;
5437 	int  i;
5438 
5439 	for (i = 0; i < hbq_count; ++i)
5440 		count += lpfc_hbq_defs[i]->entry_count;
5441 	return count;
5442 }
5443 
5444 /**
5445  * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
5446  *
5447  * This function calculates amount of memory required for all hbq entries
5448  * to be configured and returns the total memory required.
5449  **/
5450 int
5451 lpfc_sli_hbq_size(void)
5452 {
5453 	return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
5454 }
5455 
5456 /**
5457  * lpfc_sli_hbq_setup - configure and initialize HBQs
5458  * @phba: Pointer to HBA context object.
5459  *
5460  * This function is called during the SLI initialization to configure
5461  * all the HBQs and post buffers to the HBQ. The caller is not
5462  * required to hold any locks. This function will return zero if successful
5463  * else it will return negative error code.
5464  **/
5465 static int
5466 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
5467 {
5468 	int  hbq_count = lpfc_sli_hbq_count();
5469 	LPFC_MBOXQ_t *pmb;
5470 	MAILBOX_t *pmbox;
5471 	uint32_t hbqno;
5472 	uint32_t hbq_entry_index;
5473 
5474 				/* Get a Mailbox buffer to setup mailbox
5475 				 * commands for HBA initialization
5476 				 */
5477 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5478 
5479 	if (!pmb)
5480 		return -ENOMEM;
5481 
5482 	pmbox = &pmb->u.mb;
5483 
5484 	/* Initialize the struct lpfc_sli_hbq structure for each hbq */
5485 	phba->link_state = LPFC_INIT_MBX_CMDS;
5486 	phba->hbq_in_use = 1;
5487 
5488 	hbq_entry_index = 0;
5489 	for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
5490 		phba->hbqs[hbqno].next_hbqPutIdx = 0;
5491 		phba->hbqs[hbqno].hbqPutIdx      = 0;
5492 		phba->hbqs[hbqno].local_hbqGetIdx   = 0;
5493 		phba->hbqs[hbqno].entry_count =
5494 			lpfc_hbq_defs[hbqno]->entry_count;
5495 		lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
5496 			hbq_entry_index, pmb);
5497 		hbq_entry_index += phba->hbqs[hbqno].entry_count;
5498 
5499 		if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
5500 			/* Adapter failed to init, mbxCmd <cmd> CFG_RING,
5501 			   mbxStatus <status>, ring <num> */
5502 
5503 			lpfc_printf_log(phba, KERN_ERR,
5504 					LOG_SLI | LOG_VPORT,
5505 					"1805 Adapter failed to init. "
5506 					"Data: x%x x%x x%x\n",
5507 					pmbox->mbxCommand,
5508 					pmbox->mbxStatus, hbqno);
5509 
5510 			phba->link_state = LPFC_HBA_ERROR;
5511 			mempool_free(pmb, phba->mbox_mem_pool);
5512 			return -ENXIO;
5513 		}
5514 	}
5515 	phba->hbq_count = hbq_count;
5516 
5517 	mempool_free(pmb, phba->mbox_mem_pool);
5518 
5519 	/* Initially populate or replenish the HBQs */
5520 	for (hbqno = 0; hbqno < hbq_count; ++hbqno)
5521 		lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
5522 	return 0;
5523 }
5524 
5525 /**
5526  * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
5527  * @phba: Pointer to HBA context object.
5528  *
5529  * This function is called during the SLI initialization to configure
5530  * all the HBQs and post buffers to the HBQ. The caller is not
5531  * required to hold any locks. This function will return zero if successful
5532  * else it will return negative error code.
5533  **/
5534 static int
5535 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
5536 {
5537 	phba->hbq_in_use = 1;
5538 	/**
5539 	 * Specific case when the MDS diagnostics is enabled and supported.
5540 	 * The receive buffer count is truncated to manage the incoming
5541 	 * traffic.
5542 	 **/
5543 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support)
5544 		phba->hbqs[LPFC_ELS_HBQ].entry_count =
5545 			lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1;
5546 	else
5547 		phba->hbqs[LPFC_ELS_HBQ].entry_count =
5548 			lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
5549 	phba->hbq_count = 1;
5550 	lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
5551 	/* Initially populate or replenish the HBQs */
5552 	return 0;
5553 }
5554 
5555 /**
5556  * lpfc_sli_config_port - Issue config port mailbox command
5557  * @phba: Pointer to HBA context object.
5558  * @sli_mode: sli mode - 2/3
5559  *
5560  * This function is called by the sli initialization code path
5561  * to issue config_port mailbox command. This function restarts the
5562  * HBA firmware and issues a config_port mailbox command to configure
5563  * the SLI interface in the sli mode specified by sli_mode
5564  * variable. The caller is not required to hold any locks.
5565  * The function returns 0 if successful, else returns negative error
5566  * code.
5567  **/
5568 int
5569 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
5570 {
5571 	LPFC_MBOXQ_t *pmb;
5572 	uint32_t resetcount = 0, rc = 0, done = 0;
5573 
5574 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5575 	if (!pmb) {
5576 		phba->link_state = LPFC_HBA_ERROR;
5577 		return -ENOMEM;
5578 	}
5579 
5580 	phba->sli_rev = sli_mode;
5581 	while (resetcount < 2 && !done) {
5582 		spin_lock_irq(&phba->hbalock);
5583 		phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
5584 		spin_unlock_irq(&phba->hbalock);
5585 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5586 		lpfc_sli_brdrestart(phba);
5587 		rc = lpfc_sli_chipset_init(phba);
5588 		if (rc)
5589 			break;
5590 
5591 		spin_lock_irq(&phba->hbalock);
5592 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5593 		spin_unlock_irq(&phba->hbalock);
5594 		resetcount++;
5595 
5596 		/* Call pre CONFIG_PORT mailbox command initialization.  A
5597 		 * value of 0 means the call was successful.  Any other
5598 		 * nonzero value is a failure, but if ERESTART is returned,
5599 		 * the driver may reset the HBA and try again.
5600 		 */
5601 		rc = lpfc_config_port_prep(phba);
5602 		if (rc == -ERESTART) {
5603 			phba->link_state = LPFC_LINK_UNKNOWN;
5604 			continue;
5605 		} else if (rc)
5606 			break;
5607 
5608 		phba->link_state = LPFC_INIT_MBX_CMDS;
5609 		lpfc_config_port(phba, pmb);
5610 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
5611 		phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
5612 					LPFC_SLI3_HBQ_ENABLED |
5613 					LPFC_SLI3_CRP_ENABLED |
5614 					LPFC_SLI3_DSS_ENABLED);
5615 		if (rc != MBX_SUCCESS) {
5616 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5617 				"0442 Adapter failed to init, mbxCmd x%x "
5618 				"CONFIG_PORT, mbxStatus x%x Data: x%x\n",
5619 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
5620 			spin_lock_irq(&phba->hbalock);
5621 			phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
5622 			spin_unlock_irq(&phba->hbalock);
5623 			rc = -ENXIO;
5624 		} else {
5625 			/* Allow asynchronous mailbox command to go through */
5626 			spin_lock_irq(&phba->hbalock);
5627 			phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5628 			spin_unlock_irq(&phba->hbalock);
5629 			done = 1;
5630 
5631 			if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5632 			    (pmb->u.mb.un.varCfgPort.gasabt == 0))
5633 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5634 					"3110 Port did not grant ASABT\n");
5635 		}
5636 	}
5637 	if (!done) {
5638 		rc = -EINVAL;
5639 		goto do_prep_failed;
5640 	}
5641 	if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5642 		if (!pmb->u.mb.un.varCfgPort.cMA) {
5643 			rc = -ENXIO;
5644 			goto do_prep_failed;
5645 		}
5646 		if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5647 			phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5648 			phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5649 			phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5650 				phba->max_vpi : phba->max_vports;
5651 
5652 		} else
5653 			phba->max_vpi = 0;
5654 		if (pmb->u.mb.un.varCfgPort.gerbm)
5655 			phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5656 		if (pmb->u.mb.un.varCfgPort.gcrp)
5657 			phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5658 
5659 		phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5660 		phba->port_gp = phba->mbox->us.s3_pgp.port;
5661 
5662 		if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5663 			if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5664 				phba->cfg_enable_bg = 0;
5665 				phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5666 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5667 						"0443 Adapter did not grant "
5668 						"BlockGuard\n");
5669 			}
5670 		}
5671 	} else {
5672 		phba->hbq_get = NULL;
5673 		phba->port_gp = phba->mbox->us.s2.port;
5674 		phba->max_vpi = 0;
5675 	}
5676 do_prep_failed:
5677 	mempool_free(pmb, phba->mbox_mem_pool);
5678 	return rc;
5679 }
5680 
5681 
5682 /**
5683  * lpfc_sli_hba_setup - SLI initialization function
5684  * @phba: Pointer to HBA context object.
5685  *
5686  * This function is the main SLI initialization function. This function
5687  * is called by the HBA initialization code, HBA reset code and HBA
5688  * error attention handler code. Caller is not required to hold any
5689  * locks. This function issues config_port mailbox command to configure
5690  * the SLI, setup iocb rings and HBQ rings. In the end the function
5691  * calls the config_port_post function to issue init_link mailbox
5692  * command and to start the discovery. The function will return zero
5693  * if successful, else it will return negative error code.
5694  **/
5695 int
5696 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5697 {
5698 	uint32_t rc;
5699 	int  i;
5700 	int longs;
5701 
5702 	/* Enable ISR already does config_port because of config_msi mbx */
5703 	if (phba->hba_flag & HBA_NEEDS_CFG_PORT) {
5704 		rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
5705 		if (rc)
5706 			return -EIO;
5707 		phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
5708 	}
5709 	phba->fcp_embed_io = 0;	/* SLI4 FC support only */
5710 
5711 	if (phba->sli_rev == 3) {
5712 		phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5713 		phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5714 	} else {
5715 		phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5716 		phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5717 		phba->sli3_options = 0;
5718 	}
5719 
5720 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5721 			"0444 Firmware in SLI %x mode. Max_vpi %d\n",
5722 			phba->sli_rev, phba->max_vpi);
5723 	rc = lpfc_sli_ring_map(phba);
5724 
5725 	if (rc)
5726 		goto lpfc_sli_hba_setup_error;
5727 
5728 	/* Initialize VPIs. */
5729 	if (phba->sli_rev == LPFC_SLI_REV3) {
5730 		/*
5731 		 * The VPI bitmask and physical ID array are allocated
5732 		 * and initialized once only - at driver load.  A port
5733 		 * reset doesn't need to reinitialize this memory.
5734 		 */
5735 		if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5736 			longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5737 			phba->vpi_bmask = kcalloc(longs,
5738 						  sizeof(unsigned long),
5739 						  GFP_KERNEL);
5740 			if (!phba->vpi_bmask) {
5741 				rc = -ENOMEM;
5742 				goto lpfc_sli_hba_setup_error;
5743 			}
5744 
5745 			phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5746 						sizeof(uint16_t),
5747 						GFP_KERNEL);
5748 			if (!phba->vpi_ids) {
5749 				kfree(phba->vpi_bmask);
5750 				rc = -ENOMEM;
5751 				goto lpfc_sli_hba_setup_error;
5752 			}
5753 			for (i = 0; i < phba->max_vpi; i++)
5754 				phba->vpi_ids[i] = i;
5755 		}
5756 	}
5757 
5758 	/* Init HBQs */
5759 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5760 		rc = lpfc_sli_hbq_setup(phba);
5761 		if (rc)
5762 			goto lpfc_sli_hba_setup_error;
5763 	}
5764 	spin_lock_irq(&phba->hbalock);
5765 	phba->sli.sli_flag |= LPFC_PROCESS_LA;
5766 	spin_unlock_irq(&phba->hbalock);
5767 
5768 	rc = lpfc_config_port_post(phba);
5769 	if (rc)
5770 		goto lpfc_sli_hba_setup_error;
5771 
5772 	return rc;
5773 
5774 lpfc_sli_hba_setup_error:
5775 	phba->link_state = LPFC_HBA_ERROR;
5776 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5777 			"0445 Firmware initialization failed\n");
5778 	return rc;
5779 }
5780 
5781 /**
5782  * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5783  * @phba: Pointer to HBA context object.
5784  *
5785  * This function issue a dump mailbox command to read config region
5786  * 23 and parse the records in the region and populate driver
5787  * data structure.
5788  **/
5789 static int
5790 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5791 {
5792 	LPFC_MBOXQ_t *mboxq;
5793 	struct lpfc_dmabuf *mp;
5794 	struct lpfc_mqe *mqe;
5795 	uint32_t data_length;
5796 	int rc;
5797 
5798 	/* Program the default value of vlan_id and fc_map */
5799 	phba->valid_vlan = 0;
5800 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5801 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5802 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5803 
5804 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5805 	if (!mboxq)
5806 		return -ENOMEM;
5807 
5808 	mqe = &mboxq->u.mqe;
5809 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5810 		rc = -ENOMEM;
5811 		goto out_free_mboxq;
5812 	}
5813 
5814 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5815 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5816 
5817 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5818 			"(%d):2571 Mailbox cmd x%x Status x%x "
5819 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5820 			"x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5821 			"CQ: x%x x%x x%x x%x\n",
5822 			mboxq->vport ? mboxq->vport->vpi : 0,
5823 			bf_get(lpfc_mqe_command, mqe),
5824 			bf_get(lpfc_mqe_status, mqe),
5825 			mqe->un.mb_words[0], mqe->un.mb_words[1],
5826 			mqe->un.mb_words[2], mqe->un.mb_words[3],
5827 			mqe->un.mb_words[4], mqe->un.mb_words[5],
5828 			mqe->un.mb_words[6], mqe->un.mb_words[7],
5829 			mqe->un.mb_words[8], mqe->un.mb_words[9],
5830 			mqe->un.mb_words[10], mqe->un.mb_words[11],
5831 			mqe->un.mb_words[12], mqe->un.mb_words[13],
5832 			mqe->un.mb_words[14], mqe->un.mb_words[15],
5833 			mqe->un.mb_words[16], mqe->un.mb_words[50],
5834 			mboxq->mcqe.word0,
5835 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
5836 			mboxq->mcqe.trailer);
5837 
5838 	if (rc) {
5839 		rc = -EIO;
5840 		goto out_free_mboxq;
5841 	}
5842 	data_length = mqe->un.mb_words[5];
5843 	if (data_length > DMP_RGN23_SIZE) {
5844 		rc = -EIO;
5845 		goto out_free_mboxq;
5846 	}
5847 
5848 	lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5849 	rc = 0;
5850 
5851 out_free_mboxq:
5852 	lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED);
5853 	return rc;
5854 }
5855 
5856 /**
5857  * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5858  * @phba: pointer to lpfc hba data structure.
5859  * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5860  * @vpd: pointer to the memory to hold resulting port vpd data.
5861  * @vpd_size: On input, the number of bytes allocated to @vpd.
5862  *	      On output, the number of data bytes in @vpd.
5863  *
5864  * This routine executes a READ_REV SLI4 mailbox command.  In
5865  * addition, this routine gets the port vpd data.
5866  *
5867  * Return codes
5868  * 	0 - successful
5869  * 	-ENOMEM - could not allocated memory.
5870  **/
5871 static int
5872 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5873 		    uint8_t *vpd, uint32_t *vpd_size)
5874 {
5875 	int rc = 0;
5876 	uint32_t dma_size;
5877 	struct lpfc_dmabuf *dmabuf;
5878 	struct lpfc_mqe *mqe;
5879 
5880 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5881 	if (!dmabuf)
5882 		return -ENOMEM;
5883 
5884 	/*
5885 	 * Get a DMA buffer for the vpd data resulting from the READ_REV
5886 	 * mailbox command.
5887 	 */
5888 	dma_size = *vpd_size;
5889 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5890 					  &dmabuf->phys, GFP_KERNEL);
5891 	if (!dmabuf->virt) {
5892 		kfree(dmabuf);
5893 		return -ENOMEM;
5894 	}
5895 
5896 	/*
5897 	 * The SLI4 implementation of READ_REV conflicts at word1,
5898 	 * bits 31:16 and SLI4 adds vpd functionality not present
5899 	 * in SLI3.  This code corrects the conflicts.
5900 	 */
5901 	lpfc_read_rev(phba, mboxq);
5902 	mqe = &mboxq->u.mqe;
5903 	mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5904 	mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5905 	mqe->un.read_rev.word1 &= 0x0000FFFF;
5906 	bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5907 	bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5908 
5909 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5910 	if (rc) {
5911 		dma_free_coherent(&phba->pcidev->dev, dma_size,
5912 				  dmabuf->virt, dmabuf->phys);
5913 		kfree(dmabuf);
5914 		return -EIO;
5915 	}
5916 
5917 	/*
5918 	 * The available vpd length cannot be bigger than the
5919 	 * DMA buffer passed to the port.  Catch the less than
5920 	 * case and update the caller's size.
5921 	 */
5922 	if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5923 		*vpd_size = mqe->un.read_rev.avail_vpd_len;
5924 
5925 	memcpy(vpd, dmabuf->virt, *vpd_size);
5926 
5927 	dma_free_coherent(&phba->pcidev->dev, dma_size,
5928 			  dmabuf->virt, dmabuf->phys);
5929 	kfree(dmabuf);
5930 	return 0;
5931 }
5932 
5933 /**
5934  * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5935  * @phba: pointer to lpfc hba data structure.
5936  *
5937  * This routine retrieves SLI4 device physical port name this PCI function
5938  * is attached to.
5939  *
5940  * Return codes
5941  *      0 - successful
5942  *      otherwise - failed to retrieve controller attributes
5943  **/
5944 static int
5945 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5946 {
5947 	LPFC_MBOXQ_t *mboxq;
5948 	struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5949 	struct lpfc_controller_attribute *cntl_attr;
5950 	void *virtaddr = NULL;
5951 	uint32_t alloclen, reqlen;
5952 	uint32_t shdr_status, shdr_add_status;
5953 	union lpfc_sli4_cfg_shdr *shdr;
5954 	int rc;
5955 
5956 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5957 	if (!mboxq)
5958 		return -ENOMEM;
5959 
5960 	/* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5961 	reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5962 	alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5963 			LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5964 			LPFC_SLI4_MBX_NEMBED);
5965 
5966 	if (alloclen < reqlen) {
5967 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5968 				"3084 Allocated DMA memory size (%d) is "
5969 				"less than the requested DMA memory size "
5970 				"(%d)\n", alloclen, reqlen);
5971 		rc = -ENOMEM;
5972 		goto out_free_mboxq;
5973 	}
5974 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5975 	virtaddr = mboxq->sge_array->addr[0];
5976 	mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5977 	shdr = &mbx_cntl_attr->cfg_shdr;
5978 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5979 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5980 	if (shdr_status || shdr_add_status || rc) {
5981 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5982 				"3085 Mailbox x%x (x%x/x%x) failed, "
5983 				"rc:x%x, status:x%x, add_status:x%x\n",
5984 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5985 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5986 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5987 				rc, shdr_status, shdr_add_status);
5988 		rc = -ENXIO;
5989 		goto out_free_mboxq;
5990 	}
5991 
5992 	cntl_attr = &mbx_cntl_attr->cntl_attr;
5993 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5994 	phba->sli4_hba.lnk_info.lnk_tp =
5995 		bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5996 	phba->sli4_hba.lnk_info.lnk_no =
5997 		bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5998 	phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr);
5999 	phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr);
6000 
6001 	memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
6002 	strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
6003 		sizeof(phba->BIOSVersion));
6004 
6005 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6006 			"3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, "
6007 			"flash_id: x%02x, asic_rev: x%02x\n",
6008 			phba->sli4_hba.lnk_info.lnk_tp,
6009 			phba->sli4_hba.lnk_info.lnk_no,
6010 			phba->BIOSVersion, phba->sli4_hba.flash_id,
6011 			phba->sli4_hba.asic_rev);
6012 out_free_mboxq:
6013 	if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
6014 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
6015 	else
6016 		mempool_free(mboxq, phba->mbox_mem_pool);
6017 	return rc;
6018 }
6019 
6020 /**
6021  * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
6022  * @phba: pointer to lpfc hba data structure.
6023  *
6024  * This routine retrieves SLI4 device physical port name this PCI function
6025  * is attached to.
6026  *
6027  * Return codes
6028  *      0 - successful
6029  *      otherwise - failed to retrieve physical port name
6030  **/
6031 static int
6032 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
6033 {
6034 	LPFC_MBOXQ_t *mboxq;
6035 	struct lpfc_mbx_get_port_name *get_port_name;
6036 	uint32_t shdr_status, shdr_add_status;
6037 	union lpfc_sli4_cfg_shdr *shdr;
6038 	char cport_name = 0;
6039 	int rc;
6040 
6041 	/* We assume nothing at this point */
6042 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
6043 	phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
6044 
6045 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6046 	if (!mboxq)
6047 		return -ENOMEM;
6048 	/* obtain link type and link number via READ_CONFIG */
6049 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
6050 	lpfc_sli4_read_config(phba);
6051 
6052 	if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG)
6053 		phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC;
6054 
6055 	if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
6056 		goto retrieve_ppname;
6057 
6058 	/* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
6059 	rc = lpfc_sli4_get_ctl_attr(phba);
6060 	if (rc)
6061 		goto out_free_mboxq;
6062 
6063 retrieve_ppname:
6064 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
6065 		LPFC_MBOX_OPCODE_GET_PORT_NAME,
6066 		sizeof(struct lpfc_mbx_get_port_name) -
6067 		sizeof(struct lpfc_sli4_cfg_mhdr),
6068 		LPFC_SLI4_MBX_EMBED);
6069 	get_port_name = &mboxq->u.mqe.un.get_port_name;
6070 	shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
6071 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
6072 	bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
6073 		phba->sli4_hba.lnk_info.lnk_tp);
6074 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6075 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6076 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6077 	if (shdr_status || shdr_add_status || rc) {
6078 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6079 				"3087 Mailbox x%x (x%x/x%x) failed: "
6080 				"rc:x%x, status:x%x, add_status:x%x\n",
6081 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
6082 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
6083 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
6084 				rc, shdr_status, shdr_add_status);
6085 		rc = -ENXIO;
6086 		goto out_free_mboxq;
6087 	}
6088 	switch (phba->sli4_hba.lnk_info.lnk_no) {
6089 	case LPFC_LINK_NUMBER_0:
6090 		cport_name = bf_get(lpfc_mbx_get_port_name_name0,
6091 				&get_port_name->u.response);
6092 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6093 		break;
6094 	case LPFC_LINK_NUMBER_1:
6095 		cport_name = bf_get(lpfc_mbx_get_port_name_name1,
6096 				&get_port_name->u.response);
6097 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6098 		break;
6099 	case LPFC_LINK_NUMBER_2:
6100 		cport_name = bf_get(lpfc_mbx_get_port_name_name2,
6101 				&get_port_name->u.response);
6102 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6103 		break;
6104 	case LPFC_LINK_NUMBER_3:
6105 		cport_name = bf_get(lpfc_mbx_get_port_name_name3,
6106 				&get_port_name->u.response);
6107 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6108 		break;
6109 	default:
6110 		break;
6111 	}
6112 
6113 	if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
6114 		phba->Port[0] = cport_name;
6115 		phba->Port[1] = '\0';
6116 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6117 				"3091 SLI get port name: %s\n", phba->Port);
6118 	}
6119 
6120 out_free_mboxq:
6121 	if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
6122 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
6123 	else
6124 		mempool_free(mboxq, phba->mbox_mem_pool);
6125 	return rc;
6126 }
6127 
6128 /**
6129  * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
6130  * @phba: pointer to lpfc hba data structure.
6131  *
6132  * This routine is called to explicitly arm the SLI4 device's completion and
6133  * event queues
6134  **/
6135 static void
6136 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
6137 {
6138 	int qidx;
6139 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
6140 	struct lpfc_sli4_hdw_queue *qp;
6141 	struct lpfc_queue *eq;
6142 
6143 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
6144 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
6145 	if (sli4_hba->nvmels_cq)
6146 		sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
6147 					   LPFC_QUEUE_REARM);
6148 
6149 	if (sli4_hba->hdwq) {
6150 		/* Loop thru all Hardware Queues */
6151 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
6152 			qp = &sli4_hba->hdwq[qidx];
6153 			/* ARM the corresponding CQ */
6154 			sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
6155 						LPFC_QUEUE_REARM);
6156 		}
6157 
6158 		/* Loop thru all IRQ vectors */
6159 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
6160 			eq = sli4_hba->hba_eq_hdl[qidx].eq;
6161 			/* ARM the corresponding EQ */
6162 			sli4_hba->sli4_write_eq_db(phba, eq,
6163 						   0, LPFC_QUEUE_REARM);
6164 		}
6165 	}
6166 
6167 	if (phba->nvmet_support) {
6168 		for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
6169 			sli4_hba->sli4_write_cq_db(phba,
6170 				sli4_hba->nvmet_cqset[qidx], 0,
6171 				LPFC_QUEUE_REARM);
6172 		}
6173 	}
6174 }
6175 
6176 /**
6177  * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
6178  * @phba: Pointer to HBA context object.
6179  * @type: The resource extent type.
6180  * @extnt_count: buffer to hold port available extent count.
6181  * @extnt_size: buffer to hold element count per extent.
6182  *
6183  * This function calls the port and retrievs the number of available
6184  * extents and their size for a particular extent type.
6185  *
6186  * Returns: 0 if successful.  Nonzero otherwise.
6187  **/
6188 int
6189 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
6190 			       uint16_t *extnt_count, uint16_t *extnt_size)
6191 {
6192 	int rc = 0;
6193 	uint32_t length;
6194 	uint32_t mbox_tmo;
6195 	struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
6196 	LPFC_MBOXQ_t *mbox;
6197 
6198 	*extnt_count = 0;
6199 	*extnt_size = 0;
6200 
6201 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6202 	if (!mbox)
6203 		return -ENOMEM;
6204 
6205 	/* Find out how many extents are available for this resource type */
6206 	length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
6207 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6208 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6209 			 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
6210 			 length, LPFC_SLI4_MBX_EMBED);
6211 
6212 	/* Send an extents count of 0 - the GET doesn't use it. */
6213 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6214 					LPFC_SLI4_MBX_EMBED);
6215 	if (unlikely(rc)) {
6216 		rc = -EIO;
6217 		goto err_exit;
6218 	}
6219 
6220 	if (!phba->sli4_hba.intr_enable)
6221 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6222 	else {
6223 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6224 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6225 	}
6226 	if (unlikely(rc)) {
6227 		rc = -EIO;
6228 		goto err_exit;
6229 	}
6230 
6231 	rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
6232 	if (bf_get(lpfc_mbox_hdr_status,
6233 		   &rsrc_info->header.cfg_shdr.response)) {
6234 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6235 				"2930 Failed to get resource extents "
6236 				"Status 0x%x Add'l Status 0x%x\n",
6237 				bf_get(lpfc_mbox_hdr_status,
6238 				       &rsrc_info->header.cfg_shdr.response),
6239 				bf_get(lpfc_mbox_hdr_add_status,
6240 				       &rsrc_info->header.cfg_shdr.response));
6241 		rc = -EIO;
6242 		goto err_exit;
6243 	}
6244 
6245 	*extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
6246 			      &rsrc_info->u.rsp);
6247 	*extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
6248 			     &rsrc_info->u.rsp);
6249 
6250 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6251 			"3162 Retrieved extents type-%d from port: count:%d, "
6252 			"size:%d\n", type, *extnt_count, *extnt_size);
6253 
6254 err_exit:
6255 	mempool_free(mbox, phba->mbox_mem_pool);
6256 	return rc;
6257 }
6258 
6259 /**
6260  * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
6261  * @phba: Pointer to HBA context object.
6262  * @type: The extent type to check.
6263  *
6264  * This function reads the current available extents from the port and checks
6265  * if the extent count or extent size has changed since the last access.
6266  * Callers use this routine post port reset to understand if there is a
6267  * extent reprovisioning requirement.
6268  *
6269  * Returns:
6270  *   -Error: error indicates problem.
6271  *   1: Extent count or size has changed.
6272  *   0: No changes.
6273  **/
6274 static int
6275 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
6276 {
6277 	uint16_t curr_ext_cnt, rsrc_ext_cnt;
6278 	uint16_t size_diff, rsrc_ext_size;
6279 	int rc = 0;
6280 	struct lpfc_rsrc_blks *rsrc_entry;
6281 	struct list_head *rsrc_blk_list = NULL;
6282 
6283 	size_diff = 0;
6284 	curr_ext_cnt = 0;
6285 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
6286 					    &rsrc_ext_cnt,
6287 					    &rsrc_ext_size);
6288 	if (unlikely(rc))
6289 		return -EIO;
6290 
6291 	switch (type) {
6292 	case LPFC_RSC_TYPE_FCOE_RPI:
6293 		rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6294 		break;
6295 	case LPFC_RSC_TYPE_FCOE_VPI:
6296 		rsrc_blk_list = &phba->lpfc_vpi_blk_list;
6297 		break;
6298 	case LPFC_RSC_TYPE_FCOE_XRI:
6299 		rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6300 		break;
6301 	case LPFC_RSC_TYPE_FCOE_VFI:
6302 		rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6303 		break;
6304 	default:
6305 		break;
6306 	}
6307 
6308 	list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
6309 		curr_ext_cnt++;
6310 		if (rsrc_entry->rsrc_size != rsrc_ext_size)
6311 			size_diff++;
6312 	}
6313 
6314 	if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
6315 		rc = 1;
6316 
6317 	return rc;
6318 }
6319 
6320 /**
6321  * lpfc_sli4_cfg_post_extnts -
6322  * @phba: Pointer to HBA context object.
6323  * @extnt_cnt: number of available extents.
6324  * @type: the extent type (rpi, xri, vfi, vpi).
6325  * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation.
6326  * @mbox: pointer to the caller's allocated mailbox structure.
6327  *
6328  * This function executes the extents allocation request.  It also
6329  * takes care of the amount of memory needed to allocate or get the
6330  * allocated extents. It is the caller's responsibility to evaluate
6331  * the response.
6332  *
6333  * Returns:
6334  *   -Error:  Error value describes the condition found.
6335  *   0: if successful
6336  **/
6337 static int
6338 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
6339 			  uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
6340 {
6341 	int rc = 0;
6342 	uint32_t req_len;
6343 	uint32_t emb_len;
6344 	uint32_t alloc_len, mbox_tmo;
6345 
6346 	/* Calculate the total requested length of the dma memory */
6347 	req_len = extnt_cnt * sizeof(uint16_t);
6348 
6349 	/*
6350 	 * Calculate the size of an embedded mailbox.  The uint32_t
6351 	 * accounts for extents-specific word.
6352 	 */
6353 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6354 		sizeof(uint32_t);
6355 
6356 	/*
6357 	 * Presume the allocation and response will fit into an embedded
6358 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
6359 	 */
6360 	*emb = LPFC_SLI4_MBX_EMBED;
6361 	if (req_len > emb_len) {
6362 		req_len = extnt_cnt * sizeof(uint16_t) +
6363 			sizeof(union lpfc_sli4_cfg_shdr) +
6364 			sizeof(uint32_t);
6365 		*emb = LPFC_SLI4_MBX_NEMBED;
6366 	}
6367 
6368 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6369 				     LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
6370 				     req_len, *emb);
6371 	if (alloc_len < req_len) {
6372 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6373 			"2982 Allocated DMA memory size (x%x) is "
6374 			"less than the requested DMA memory "
6375 			"size (x%x)\n", alloc_len, req_len);
6376 		return -ENOMEM;
6377 	}
6378 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
6379 	if (unlikely(rc))
6380 		return -EIO;
6381 
6382 	if (!phba->sli4_hba.intr_enable)
6383 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6384 	else {
6385 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6386 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6387 	}
6388 
6389 	if (unlikely(rc))
6390 		rc = -EIO;
6391 	return rc;
6392 }
6393 
6394 /**
6395  * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
6396  * @phba: Pointer to HBA context object.
6397  * @type:  The resource extent type to allocate.
6398  *
6399  * This function allocates the number of elements for the specified
6400  * resource type.
6401  **/
6402 static int
6403 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
6404 {
6405 	bool emb = false;
6406 	uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
6407 	uint16_t rsrc_id, rsrc_start, j, k;
6408 	uint16_t *ids;
6409 	int i, rc;
6410 	unsigned long longs;
6411 	unsigned long *bmask;
6412 	struct lpfc_rsrc_blks *rsrc_blks;
6413 	LPFC_MBOXQ_t *mbox;
6414 	uint32_t length;
6415 	struct lpfc_id_range *id_array = NULL;
6416 	void *virtaddr = NULL;
6417 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6418 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6419 	struct list_head *ext_blk_list;
6420 
6421 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
6422 					    &rsrc_cnt,
6423 					    &rsrc_size);
6424 	if (unlikely(rc))
6425 		return -EIO;
6426 
6427 	if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
6428 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6429 			"3009 No available Resource Extents "
6430 			"for resource type 0x%x: Count: 0x%x, "
6431 			"Size 0x%x\n", type, rsrc_cnt,
6432 			rsrc_size);
6433 		return -ENOMEM;
6434 	}
6435 
6436 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
6437 			"2903 Post resource extents type-0x%x: "
6438 			"count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
6439 
6440 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6441 	if (!mbox)
6442 		return -ENOMEM;
6443 
6444 	rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
6445 	if (unlikely(rc)) {
6446 		rc = -EIO;
6447 		goto err_exit;
6448 	}
6449 
6450 	/*
6451 	 * Figure out where the response is located.  Then get local pointers
6452 	 * to the response data.  The port does not guarantee to respond to
6453 	 * all extents counts request so update the local variable with the
6454 	 * allocated count from the port.
6455 	 */
6456 	if (emb == LPFC_SLI4_MBX_EMBED) {
6457 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6458 		id_array = &rsrc_ext->u.rsp.id[0];
6459 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6460 	} else {
6461 		virtaddr = mbox->sge_array->addr[0];
6462 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6463 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6464 		id_array = &n_rsrc->id;
6465 	}
6466 
6467 	longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
6468 	rsrc_id_cnt = rsrc_cnt * rsrc_size;
6469 
6470 	/*
6471 	 * Based on the resource size and count, correct the base and max
6472 	 * resource values.
6473 	 */
6474 	length = sizeof(struct lpfc_rsrc_blks);
6475 	switch (type) {
6476 	case LPFC_RSC_TYPE_FCOE_RPI:
6477 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6478 						   sizeof(unsigned long),
6479 						   GFP_KERNEL);
6480 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6481 			rc = -ENOMEM;
6482 			goto err_exit;
6483 		}
6484 		phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
6485 						 sizeof(uint16_t),
6486 						 GFP_KERNEL);
6487 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6488 			kfree(phba->sli4_hba.rpi_bmask);
6489 			rc = -ENOMEM;
6490 			goto err_exit;
6491 		}
6492 
6493 		/*
6494 		 * The next_rpi was initialized with the maximum available
6495 		 * count but the port may allocate a smaller number.  Catch
6496 		 * that case and update the next_rpi.
6497 		 */
6498 		phba->sli4_hba.next_rpi = rsrc_id_cnt;
6499 
6500 		/* Initialize local ptrs for common extent processing later. */
6501 		bmask = phba->sli4_hba.rpi_bmask;
6502 		ids = phba->sli4_hba.rpi_ids;
6503 		ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6504 		break;
6505 	case LPFC_RSC_TYPE_FCOE_VPI:
6506 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6507 					  GFP_KERNEL);
6508 		if (unlikely(!phba->vpi_bmask)) {
6509 			rc = -ENOMEM;
6510 			goto err_exit;
6511 		}
6512 		phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
6513 					 GFP_KERNEL);
6514 		if (unlikely(!phba->vpi_ids)) {
6515 			kfree(phba->vpi_bmask);
6516 			rc = -ENOMEM;
6517 			goto err_exit;
6518 		}
6519 
6520 		/* Initialize local ptrs for common extent processing later. */
6521 		bmask = phba->vpi_bmask;
6522 		ids = phba->vpi_ids;
6523 		ext_blk_list = &phba->lpfc_vpi_blk_list;
6524 		break;
6525 	case LPFC_RSC_TYPE_FCOE_XRI:
6526 		phba->sli4_hba.xri_bmask = kcalloc(longs,
6527 						   sizeof(unsigned long),
6528 						   GFP_KERNEL);
6529 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6530 			rc = -ENOMEM;
6531 			goto err_exit;
6532 		}
6533 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6534 		phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
6535 						 sizeof(uint16_t),
6536 						 GFP_KERNEL);
6537 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6538 			kfree(phba->sli4_hba.xri_bmask);
6539 			rc = -ENOMEM;
6540 			goto err_exit;
6541 		}
6542 
6543 		/* Initialize local ptrs for common extent processing later. */
6544 		bmask = phba->sli4_hba.xri_bmask;
6545 		ids = phba->sli4_hba.xri_ids;
6546 		ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6547 		break;
6548 	case LPFC_RSC_TYPE_FCOE_VFI:
6549 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6550 						   sizeof(unsigned long),
6551 						   GFP_KERNEL);
6552 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6553 			rc = -ENOMEM;
6554 			goto err_exit;
6555 		}
6556 		phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
6557 						 sizeof(uint16_t),
6558 						 GFP_KERNEL);
6559 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6560 			kfree(phba->sli4_hba.vfi_bmask);
6561 			rc = -ENOMEM;
6562 			goto err_exit;
6563 		}
6564 
6565 		/* Initialize local ptrs for common extent processing later. */
6566 		bmask = phba->sli4_hba.vfi_bmask;
6567 		ids = phba->sli4_hba.vfi_ids;
6568 		ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6569 		break;
6570 	default:
6571 		/* Unsupported Opcode.  Fail call. */
6572 		id_array = NULL;
6573 		bmask = NULL;
6574 		ids = NULL;
6575 		ext_blk_list = NULL;
6576 		goto err_exit;
6577 	}
6578 
6579 	/*
6580 	 * Complete initializing the extent configuration with the
6581 	 * allocated ids assigned to this function.  The bitmask serves
6582 	 * as an index into the array and manages the available ids.  The
6583 	 * array just stores the ids communicated to the port via the wqes.
6584 	 */
6585 	for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
6586 		if ((i % 2) == 0)
6587 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
6588 					 &id_array[k]);
6589 		else
6590 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
6591 					 &id_array[k]);
6592 
6593 		rsrc_blks = kzalloc(length, GFP_KERNEL);
6594 		if (unlikely(!rsrc_blks)) {
6595 			rc = -ENOMEM;
6596 			kfree(bmask);
6597 			kfree(ids);
6598 			goto err_exit;
6599 		}
6600 		rsrc_blks->rsrc_start = rsrc_id;
6601 		rsrc_blks->rsrc_size = rsrc_size;
6602 		list_add_tail(&rsrc_blks->list, ext_blk_list);
6603 		rsrc_start = rsrc_id;
6604 		if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6605 			phba->sli4_hba.io_xri_start = rsrc_start +
6606 				lpfc_sli4_get_iocb_cnt(phba);
6607 		}
6608 
6609 		while (rsrc_id < (rsrc_start + rsrc_size)) {
6610 			ids[j] = rsrc_id;
6611 			rsrc_id++;
6612 			j++;
6613 		}
6614 		/* Entire word processed.  Get next word.*/
6615 		if ((i % 2) == 1)
6616 			k++;
6617 	}
6618  err_exit:
6619 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6620 	return rc;
6621 }
6622 
6623 
6624 
6625 /**
6626  * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6627  * @phba: Pointer to HBA context object.
6628  * @type: the extent's type.
6629  *
6630  * This function deallocates all extents of a particular resource type.
6631  * SLI4 does not allow for deallocating a particular extent range.  It
6632  * is the caller's responsibility to release all kernel memory resources.
6633  **/
6634 static int
6635 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6636 {
6637 	int rc;
6638 	uint32_t length, mbox_tmo = 0;
6639 	LPFC_MBOXQ_t *mbox;
6640 	struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6641 	struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6642 
6643 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6644 	if (!mbox)
6645 		return -ENOMEM;
6646 
6647 	/*
6648 	 * This function sends an embedded mailbox because it only sends the
6649 	 * the resource type.  All extents of this type are released by the
6650 	 * port.
6651 	 */
6652 	length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6653 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6654 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6655 			 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6656 			 length, LPFC_SLI4_MBX_EMBED);
6657 
6658 	/* Send an extents count of 0 - the dealloc doesn't use it. */
6659 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6660 					LPFC_SLI4_MBX_EMBED);
6661 	if (unlikely(rc)) {
6662 		rc = -EIO;
6663 		goto out_free_mbox;
6664 	}
6665 	if (!phba->sli4_hba.intr_enable)
6666 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6667 	else {
6668 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6669 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6670 	}
6671 	if (unlikely(rc)) {
6672 		rc = -EIO;
6673 		goto out_free_mbox;
6674 	}
6675 
6676 	dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6677 	if (bf_get(lpfc_mbox_hdr_status,
6678 		   &dealloc_rsrc->header.cfg_shdr.response)) {
6679 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6680 				"2919 Failed to release resource extents "
6681 				"for type %d - Status 0x%x Add'l Status 0x%x. "
6682 				"Resource memory not released.\n",
6683 				type,
6684 				bf_get(lpfc_mbox_hdr_status,
6685 				    &dealloc_rsrc->header.cfg_shdr.response),
6686 				bf_get(lpfc_mbox_hdr_add_status,
6687 				    &dealloc_rsrc->header.cfg_shdr.response));
6688 		rc = -EIO;
6689 		goto out_free_mbox;
6690 	}
6691 
6692 	/* Release kernel memory resources for the specific type. */
6693 	switch (type) {
6694 	case LPFC_RSC_TYPE_FCOE_VPI:
6695 		kfree(phba->vpi_bmask);
6696 		kfree(phba->vpi_ids);
6697 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6698 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6699 				    &phba->lpfc_vpi_blk_list, list) {
6700 			list_del_init(&rsrc_blk->list);
6701 			kfree(rsrc_blk);
6702 		}
6703 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6704 		break;
6705 	case LPFC_RSC_TYPE_FCOE_XRI:
6706 		kfree(phba->sli4_hba.xri_bmask);
6707 		kfree(phba->sli4_hba.xri_ids);
6708 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6709 				    &phba->sli4_hba.lpfc_xri_blk_list, list) {
6710 			list_del_init(&rsrc_blk->list);
6711 			kfree(rsrc_blk);
6712 		}
6713 		break;
6714 	case LPFC_RSC_TYPE_FCOE_VFI:
6715 		kfree(phba->sli4_hba.vfi_bmask);
6716 		kfree(phba->sli4_hba.vfi_ids);
6717 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6718 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6719 				    &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6720 			list_del_init(&rsrc_blk->list);
6721 			kfree(rsrc_blk);
6722 		}
6723 		break;
6724 	case LPFC_RSC_TYPE_FCOE_RPI:
6725 		/* RPI bitmask and physical id array are cleaned up earlier. */
6726 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6727 				    &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6728 			list_del_init(&rsrc_blk->list);
6729 			kfree(rsrc_blk);
6730 		}
6731 		break;
6732 	default:
6733 		break;
6734 	}
6735 
6736 	bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6737 
6738  out_free_mbox:
6739 	mempool_free(mbox, phba->mbox_mem_pool);
6740 	return rc;
6741 }
6742 
6743 static void
6744 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6745 		  uint32_t feature)
6746 {
6747 	uint32_t len;
6748 	u32 sig_freq = 0;
6749 
6750 	len = sizeof(struct lpfc_mbx_set_feature) -
6751 		sizeof(struct lpfc_sli4_cfg_mhdr);
6752 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6753 			 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6754 			 LPFC_SLI4_MBX_EMBED);
6755 
6756 	switch (feature) {
6757 	case LPFC_SET_UE_RECOVERY:
6758 		bf_set(lpfc_mbx_set_feature_UER,
6759 		       &mbox->u.mqe.un.set_feature, 1);
6760 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6761 		mbox->u.mqe.un.set_feature.param_len = 8;
6762 		break;
6763 	case LPFC_SET_MDS_DIAGS:
6764 		bf_set(lpfc_mbx_set_feature_mds,
6765 		       &mbox->u.mqe.un.set_feature, 1);
6766 		bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6767 		       &mbox->u.mqe.un.set_feature, 1);
6768 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6769 		mbox->u.mqe.un.set_feature.param_len = 8;
6770 		break;
6771 	case LPFC_SET_CGN_SIGNAL:
6772 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6773 			sig_freq = 0;
6774 		else
6775 			sig_freq = phba->cgn_sig_freq;
6776 
6777 		if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6778 			bf_set(lpfc_mbx_set_feature_CGN_alarm_freq,
6779 			       &mbox->u.mqe.un.set_feature, sig_freq);
6780 			bf_set(lpfc_mbx_set_feature_CGN_warn_freq,
6781 			       &mbox->u.mqe.un.set_feature, sig_freq);
6782 		}
6783 
6784 		if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY)
6785 			bf_set(lpfc_mbx_set_feature_CGN_warn_freq,
6786 			       &mbox->u.mqe.un.set_feature, sig_freq);
6787 
6788 		if (phba->cmf_active_mode == LPFC_CFG_OFF ||
6789 		    phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED)
6790 			sig_freq = 0;
6791 		else
6792 			sig_freq = lpfc_acqe_cgn_frequency;
6793 
6794 		bf_set(lpfc_mbx_set_feature_CGN_acqe_freq,
6795 		       &mbox->u.mqe.un.set_feature, sig_freq);
6796 
6797 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL;
6798 		mbox->u.mqe.un.set_feature.param_len = 12;
6799 		break;
6800 	case LPFC_SET_DUAL_DUMP:
6801 		bf_set(lpfc_mbx_set_feature_dd,
6802 		       &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP);
6803 		bf_set(lpfc_mbx_set_feature_ddquery,
6804 		       &mbox->u.mqe.un.set_feature, 0);
6805 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP;
6806 		mbox->u.mqe.un.set_feature.param_len = 4;
6807 		break;
6808 	case LPFC_SET_ENABLE_MI:
6809 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI;
6810 		mbox->u.mqe.un.set_feature.param_len = 4;
6811 		bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature,
6812 		       phba->pport->cfg_lun_queue_depth);
6813 		bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature,
6814 		       phba->sli4_hba.pc_sli4_params.mi_ver);
6815 		break;
6816 	case LPFC_SET_LD_SIGNAL:
6817 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL;
6818 		mbox->u.mqe.un.set_feature.param_len = 16;
6819 		bf_set(lpfc_mbx_set_feature_lds_qry,
6820 		       &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP);
6821 		break;
6822 	case LPFC_SET_ENABLE_CMF:
6823 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF;
6824 		mbox->u.mqe.un.set_feature.param_len = 4;
6825 		bf_set(lpfc_mbx_set_feature_cmf,
6826 		       &mbox->u.mqe.un.set_feature, 1);
6827 		break;
6828 	}
6829 	return;
6830 }
6831 
6832 /**
6833  * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6834  * @phba: Pointer to HBA context object.
6835  *
6836  * Disable FW logging into host memory on the adapter. To
6837  * be done before reading logs from the host memory.
6838  **/
6839 void
6840 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6841 {
6842 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6843 
6844 	spin_lock_irq(&phba->hbalock);
6845 	ras_fwlog->state = INACTIVE;
6846 	spin_unlock_irq(&phba->hbalock);
6847 
6848 	/* Disable FW logging to host memory */
6849 	writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6850 	       phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6851 
6852 	/* Wait 10ms for firmware to stop using DMA buffer */
6853 	usleep_range(10 * 1000, 20 * 1000);
6854 }
6855 
6856 /**
6857  * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6858  * @phba: Pointer to HBA context object.
6859  *
6860  * This function is called to free memory allocated for RAS FW logging
6861  * support in the driver.
6862  **/
6863 void
6864 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6865 {
6866 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6867 	struct lpfc_dmabuf *dmabuf, *next;
6868 
6869 	if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6870 		list_for_each_entry_safe(dmabuf, next,
6871 				    &ras_fwlog->fwlog_buff_list,
6872 				    list) {
6873 			list_del(&dmabuf->list);
6874 			dma_free_coherent(&phba->pcidev->dev,
6875 					  LPFC_RAS_MAX_ENTRY_SIZE,
6876 					  dmabuf->virt, dmabuf->phys);
6877 			kfree(dmabuf);
6878 		}
6879 	}
6880 
6881 	if (ras_fwlog->lwpd.virt) {
6882 		dma_free_coherent(&phba->pcidev->dev,
6883 				  sizeof(uint32_t) * 2,
6884 				  ras_fwlog->lwpd.virt,
6885 				  ras_fwlog->lwpd.phys);
6886 		ras_fwlog->lwpd.virt = NULL;
6887 	}
6888 
6889 	spin_lock_irq(&phba->hbalock);
6890 	ras_fwlog->state = INACTIVE;
6891 	spin_unlock_irq(&phba->hbalock);
6892 }
6893 
6894 /**
6895  * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6896  * @phba: Pointer to HBA context object.
6897  * @fwlog_buff_count: Count of buffers to be created.
6898  *
6899  * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6900  * to update FW log is posted to the adapter.
6901  * Buffer count is calculated based on module param ras_fwlog_buffsize
6902  * Size of each buffer posted to FW is 64K.
6903  **/
6904 
6905 static int
6906 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6907 			uint32_t fwlog_buff_count)
6908 {
6909 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6910 	struct lpfc_dmabuf *dmabuf;
6911 	int rc = 0, i = 0;
6912 
6913 	/* Initialize List */
6914 	INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6915 
6916 	/* Allocate memory for the LWPD */
6917 	ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6918 					    sizeof(uint32_t) * 2,
6919 					    &ras_fwlog->lwpd.phys,
6920 					    GFP_KERNEL);
6921 	if (!ras_fwlog->lwpd.virt) {
6922 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6923 				"6185 LWPD Memory Alloc Failed\n");
6924 
6925 		return -ENOMEM;
6926 	}
6927 
6928 	ras_fwlog->fw_buffcount = fwlog_buff_count;
6929 	for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6930 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6931 				 GFP_KERNEL);
6932 		if (!dmabuf) {
6933 			rc = -ENOMEM;
6934 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6935 					"6186 Memory Alloc failed FW logging");
6936 			goto free_mem;
6937 		}
6938 
6939 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6940 						  LPFC_RAS_MAX_ENTRY_SIZE,
6941 						  &dmabuf->phys, GFP_KERNEL);
6942 		if (!dmabuf->virt) {
6943 			kfree(dmabuf);
6944 			rc = -ENOMEM;
6945 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6946 					"6187 DMA Alloc Failed FW logging");
6947 			goto free_mem;
6948 		}
6949 		dmabuf->buffer_tag = i;
6950 		list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6951 	}
6952 
6953 free_mem:
6954 	if (rc)
6955 		lpfc_sli4_ras_dma_free(phba);
6956 
6957 	return rc;
6958 }
6959 
6960 /**
6961  * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6962  * @phba: pointer to lpfc hba data structure.
6963  * @pmb: pointer to the driver internal queue element for mailbox command.
6964  *
6965  * Completion handler for driver's RAS MBX command to the device.
6966  **/
6967 static void
6968 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6969 {
6970 	MAILBOX_t *mb;
6971 	union lpfc_sli4_cfg_shdr *shdr;
6972 	uint32_t shdr_status, shdr_add_status;
6973 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6974 
6975 	mb = &pmb->u.mb;
6976 
6977 	shdr = (union lpfc_sli4_cfg_shdr *)
6978 		&pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6979 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6980 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6981 
6982 	if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6983 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6984 				"6188 FW LOG mailbox "
6985 				"completed with status x%x add_status x%x,"
6986 				" mbx status x%x\n",
6987 				shdr_status, shdr_add_status, mb->mbxStatus);
6988 
6989 		ras_fwlog->ras_hwsupport = false;
6990 		goto disable_ras;
6991 	}
6992 
6993 	spin_lock_irq(&phba->hbalock);
6994 	ras_fwlog->state = ACTIVE;
6995 	spin_unlock_irq(&phba->hbalock);
6996 	mempool_free(pmb, phba->mbox_mem_pool);
6997 
6998 	return;
6999 
7000 disable_ras:
7001 	/* Free RAS DMA memory */
7002 	lpfc_sli4_ras_dma_free(phba);
7003 	mempool_free(pmb, phba->mbox_mem_pool);
7004 }
7005 
7006 /**
7007  * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
7008  * @phba: pointer to lpfc hba data structure.
7009  * @fwlog_level: Logging verbosity level.
7010  * @fwlog_enable: Enable/Disable logging.
7011  *
7012  * Initialize memory and post mailbox command to enable FW logging in host
7013  * memory.
7014  **/
7015 int
7016 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
7017 			 uint32_t fwlog_level,
7018 			 uint32_t fwlog_enable)
7019 {
7020 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
7021 	struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
7022 	struct lpfc_dmabuf *dmabuf;
7023 	LPFC_MBOXQ_t *mbox;
7024 	uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
7025 	int rc = 0;
7026 
7027 	spin_lock_irq(&phba->hbalock);
7028 	ras_fwlog->state = INACTIVE;
7029 	spin_unlock_irq(&phba->hbalock);
7030 
7031 	fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
7032 			  phba->cfg_ras_fwlog_buffsize);
7033 	fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
7034 
7035 	/*
7036 	 * If re-enabling FW logging support use earlier allocated
7037 	 * DMA buffers while posting MBX command.
7038 	 **/
7039 	if (!ras_fwlog->lwpd.virt) {
7040 		rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
7041 		if (rc) {
7042 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7043 					"6189 FW Log Memory Allocation Failed");
7044 			return rc;
7045 		}
7046 	}
7047 
7048 	/* Setup Mailbox command */
7049 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7050 	if (!mbox) {
7051 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7052 				"6190 RAS MBX Alloc Failed");
7053 		rc = -ENOMEM;
7054 		goto mem_free;
7055 	}
7056 
7057 	ras_fwlog->fw_loglevel = fwlog_level;
7058 	len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
7059 		sizeof(struct lpfc_sli4_cfg_mhdr));
7060 
7061 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
7062 			 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
7063 			 len, LPFC_SLI4_MBX_EMBED);
7064 
7065 	mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
7066 	bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
7067 	       fwlog_enable);
7068 	bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
7069 	       ras_fwlog->fw_loglevel);
7070 	bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
7071 	       ras_fwlog->fw_buffcount);
7072 	bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
7073 	       LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
7074 
7075 	/* Update DMA buffer address */
7076 	list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
7077 		memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
7078 
7079 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
7080 			putPaddrLow(dmabuf->phys);
7081 
7082 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
7083 			putPaddrHigh(dmabuf->phys);
7084 	}
7085 
7086 	/* Update LPWD address */
7087 	mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
7088 	mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
7089 
7090 	spin_lock_irq(&phba->hbalock);
7091 	ras_fwlog->state = REG_INPROGRESS;
7092 	spin_unlock_irq(&phba->hbalock);
7093 	mbox->vport = phba->pport;
7094 	mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
7095 
7096 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
7097 
7098 	if (rc == MBX_NOT_FINISHED) {
7099 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7100 				"6191 FW-Log Mailbox failed. "
7101 				"status %d mbxStatus : x%x", rc,
7102 				bf_get(lpfc_mqe_status, &mbox->u.mqe));
7103 		mempool_free(mbox, phba->mbox_mem_pool);
7104 		rc = -EIO;
7105 		goto mem_free;
7106 	} else
7107 		rc = 0;
7108 mem_free:
7109 	if (rc)
7110 		lpfc_sli4_ras_dma_free(phba);
7111 
7112 	return rc;
7113 }
7114 
7115 /**
7116  * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
7117  * @phba: Pointer to HBA context object.
7118  *
7119  * Check if RAS is supported on the adapter and initialize it.
7120  **/
7121 void
7122 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
7123 {
7124 	/* Check RAS FW Log needs to be enabled or not */
7125 	if (lpfc_check_fwlog_support(phba))
7126 		return;
7127 
7128 	lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
7129 				 LPFC_RAS_ENABLE_LOGGING);
7130 }
7131 
7132 /**
7133  * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
7134  * @phba: Pointer to HBA context object.
7135  *
7136  * This function allocates all SLI4 resource identifiers.
7137  **/
7138 int
7139 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
7140 {
7141 	int i, rc, error = 0;
7142 	uint16_t count, base;
7143 	unsigned long longs;
7144 
7145 	if (!phba->sli4_hba.rpi_hdrs_in_use)
7146 		phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
7147 	if (phba->sli4_hba.extents_in_use) {
7148 		/*
7149 		 * The port supports resource extents. The XRI, VPI, VFI, RPI
7150 		 * resource extent count must be read and allocated before
7151 		 * provisioning the resource id arrays.
7152 		 */
7153 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
7154 		    LPFC_IDX_RSRC_RDY) {
7155 			/*
7156 			 * Extent-based resources are set - the driver could
7157 			 * be in a port reset. Figure out if any corrective
7158 			 * actions need to be taken.
7159 			 */
7160 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7161 						 LPFC_RSC_TYPE_FCOE_VFI);
7162 			if (rc != 0)
7163 				error++;
7164 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7165 						 LPFC_RSC_TYPE_FCOE_VPI);
7166 			if (rc != 0)
7167 				error++;
7168 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7169 						 LPFC_RSC_TYPE_FCOE_XRI);
7170 			if (rc != 0)
7171 				error++;
7172 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7173 						 LPFC_RSC_TYPE_FCOE_RPI);
7174 			if (rc != 0)
7175 				error++;
7176 
7177 			/*
7178 			 * It's possible that the number of resources
7179 			 * provided to this port instance changed between
7180 			 * resets.  Detect this condition and reallocate
7181 			 * resources.  Otherwise, there is no action.
7182 			 */
7183 			if (error) {
7184 				lpfc_printf_log(phba, KERN_INFO,
7185 						LOG_MBOX | LOG_INIT,
7186 						"2931 Detected extent resource "
7187 						"change.  Reallocating all "
7188 						"extents.\n");
7189 				rc = lpfc_sli4_dealloc_extent(phba,
7190 						 LPFC_RSC_TYPE_FCOE_VFI);
7191 				rc = lpfc_sli4_dealloc_extent(phba,
7192 						 LPFC_RSC_TYPE_FCOE_VPI);
7193 				rc = lpfc_sli4_dealloc_extent(phba,
7194 						 LPFC_RSC_TYPE_FCOE_XRI);
7195 				rc = lpfc_sli4_dealloc_extent(phba,
7196 						 LPFC_RSC_TYPE_FCOE_RPI);
7197 			} else
7198 				return 0;
7199 		}
7200 
7201 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
7202 		if (unlikely(rc))
7203 			goto err_exit;
7204 
7205 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
7206 		if (unlikely(rc))
7207 			goto err_exit;
7208 
7209 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
7210 		if (unlikely(rc))
7211 			goto err_exit;
7212 
7213 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
7214 		if (unlikely(rc))
7215 			goto err_exit;
7216 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
7217 		       LPFC_IDX_RSRC_RDY);
7218 		return rc;
7219 	} else {
7220 		/*
7221 		 * The port does not support resource extents.  The XRI, VPI,
7222 		 * VFI, RPI resource ids were determined from READ_CONFIG.
7223 		 * Just allocate the bitmasks and provision the resource id
7224 		 * arrays.  If a port reset is active, the resources don't
7225 		 * need any action - just exit.
7226 		 */
7227 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
7228 		    LPFC_IDX_RSRC_RDY) {
7229 			lpfc_sli4_dealloc_resource_identifiers(phba);
7230 			lpfc_sli4_remove_rpis(phba);
7231 		}
7232 		/* RPIs. */
7233 		count = phba->sli4_hba.max_cfg_param.max_rpi;
7234 		if (count <= 0) {
7235 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7236 					"3279 Invalid provisioning of "
7237 					"rpi:%d\n", count);
7238 			rc = -EINVAL;
7239 			goto err_exit;
7240 		}
7241 		base = phba->sli4_hba.max_cfg_param.rpi_base;
7242 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7243 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
7244 						   sizeof(unsigned long),
7245 						   GFP_KERNEL);
7246 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
7247 			rc = -ENOMEM;
7248 			goto err_exit;
7249 		}
7250 		phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
7251 						 GFP_KERNEL);
7252 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
7253 			rc = -ENOMEM;
7254 			goto free_rpi_bmask;
7255 		}
7256 
7257 		for (i = 0; i < count; i++)
7258 			phba->sli4_hba.rpi_ids[i] = base + i;
7259 
7260 		/* VPIs. */
7261 		count = phba->sli4_hba.max_cfg_param.max_vpi;
7262 		if (count <= 0) {
7263 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7264 					"3280 Invalid provisioning of "
7265 					"vpi:%d\n", count);
7266 			rc = -EINVAL;
7267 			goto free_rpi_ids;
7268 		}
7269 		base = phba->sli4_hba.max_cfg_param.vpi_base;
7270 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7271 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
7272 					  GFP_KERNEL);
7273 		if (unlikely(!phba->vpi_bmask)) {
7274 			rc = -ENOMEM;
7275 			goto free_rpi_ids;
7276 		}
7277 		phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
7278 					GFP_KERNEL);
7279 		if (unlikely(!phba->vpi_ids)) {
7280 			rc = -ENOMEM;
7281 			goto free_vpi_bmask;
7282 		}
7283 
7284 		for (i = 0; i < count; i++)
7285 			phba->vpi_ids[i] = base + i;
7286 
7287 		/* XRIs. */
7288 		count = phba->sli4_hba.max_cfg_param.max_xri;
7289 		if (count <= 0) {
7290 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7291 					"3281 Invalid provisioning of "
7292 					"xri:%d\n", count);
7293 			rc = -EINVAL;
7294 			goto free_vpi_ids;
7295 		}
7296 		base = phba->sli4_hba.max_cfg_param.xri_base;
7297 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7298 		phba->sli4_hba.xri_bmask = kcalloc(longs,
7299 						   sizeof(unsigned long),
7300 						   GFP_KERNEL);
7301 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
7302 			rc = -ENOMEM;
7303 			goto free_vpi_ids;
7304 		}
7305 		phba->sli4_hba.max_cfg_param.xri_used = 0;
7306 		phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
7307 						 GFP_KERNEL);
7308 		if (unlikely(!phba->sli4_hba.xri_ids)) {
7309 			rc = -ENOMEM;
7310 			goto free_xri_bmask;
7311 		}
7312 
7313 		for (i = 0; i < count; i++)
7314 			phba->sli4_hba.xri_ids[i] = base + i;
7315 
7316 		/* VFIs. */
7317 		count = phba->sli4_hba.max_cfg_param.max_vfi;
7318 		if (count <= 0) {
7319 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7320 					"3282 Invalid provisioning of "
7321 					"vfi:%d\n", count);
7322 			rc = -EINVAL;
7323 			goto free_xri_ids;
7324 		}
7325 		base = phba->sli4_hba.max_cfg_param.vfi_base;
7326 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7327 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
7328 						   sizeof(unsigned long),
7329 						   GFP_KERNEL);
7330 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
7331 			rc = -ENOMEM;
7332 			goto free_xri_ids;
7333 		}
7334 		phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
7335 						 GFP_KERNEL);
7336 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
7337 			rc = -ENOMEM;
7338 			goto free_vfi_bmask;
7339 		}
7340 
7341 		for (i = 0; i < count; i++)
7342 			phba->sli4_hba.vfi_ids[i] = base + i;
7343 
7344 		/*
7345 		 * Mark all resources ready.  An HBA reset doesn't need
7346 		 * to reset the initialization.
7347 		 */
7348 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
7349 		       LPFC_IDX_RSRC_RDY);
7350 		return 0;
7351 	}
7352 
7353  free_vfi_bmask:
7354 	kfree(phba->sli4_hba.vfi_bmask);
7355 	phba->sli4_hba.vfi_bmask = NULL;
7356  free_xri_ids:
7357 	kfree(phba->sli4_hba.xri_ids);
7358 	phba->sli4_hba.xri_ids = NULL;
7359  free_xri_bmask:
7360 	kfree(phba->sli4_hba.xri_bmask);
7361 	phba->sli4_hba.xri_bmask = NULL;
7362  free_vpi_ids:
7363 	kfree(phba->vpi_ids);
7364 	phba->vpi_ids = NULL;
7365  free_vpi_bmask:
7366 	kfree(phba->vpi_bmask);
7367 	phba->vpi_bmask = NULL;
7368  free_rpi_ids:
7369 	kfree(phba->sli4_hba.rpi_ids);
7370 	phba->sli4_hba.rpi_ids = NULL;
7371  free_rpi_bmask:
7372 	kfree(phba->sli4_hba.rpi_bmask);
7373 	phba->sli4_hba.rpi_bmask = NULL;
7374  err_exit:
7375 	return rc;
7376 }
7377 
7378 /**
7379  * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
7380  * @phba: Pointer to HBA context object.
7381  *
7382  * This function allocates the number of elements for the specified
7383  * resource type.
7384  **/
7385 int
7386 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
7387 {
7388 	if (phba->sli4_hba.extents_in_use) {
7389 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
7390 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
7391 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
7392 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
7393 	} else {
7394 		kfree(phba->vpi_bmask);
7395 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
7396 		kfree(phba->vpi_ids);
7397 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7398 		kfree(phba->sli4_hba.xri_bmask);
7399 		kfree(phba->sli4_hba.xri_ids);
7400 		kfree(phba->sli4_hba.vfi_bmask);
7401 		kfree(phba->sli4_hba.vfi_ids);
7402 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7403 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7404 	}
7405 
7406 	return 0;
7407 }
7408 
7409 /**
7410  * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
7411  * @phba: Pointer to HBA context object.
7412  * @type: The resource extent type.
7413  * @extnt_cnt: buffer to hold port extent count response
7414  * @extnt_size: buffer to hold port extent size response.
7415  *
7416  * This function calls the port to read the host allocated extents
7417  * for a particular type.
7418  **/
7419 int
7420 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
7421 			       uint16_t *extnt_cnt, uint16_t *extnt_size)
7422 {
7423 	bool emb;
7424 	int rc = 0;
7425 	uint16_t curr_blks = 0;
7426 	uint32_t req_len, emb_len;
7427 	uint32_t alloc_len, mbox_tmo;
7428 	struct list_head *blk_list_head;
7429 	struct lpfc_rsrc_blks *rsrc_blk;
7430 	LPFC_MBOXQ_t *mbox;
7431 	void *virtaddr = NULL;
7432 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
7433 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
7434 	union  lpfc_sli4_cfg_shdr *shdr;
7435 
7436 	switch (type) {
7437 	case LPFC_RSC_TYPE_FCOE_VPI:
7438 		blk_list_head = &phba->lpfc_vpi_blk_list;
7439 		break;
7440 	case LPFC_RSC_TYPE_FCOE_XRI:
7441 		blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
7442 		break;
7443 	case LPFC_RSC_TYPE_FCOE_VFI:
7444 		blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
7445 		break;
7446 	case LPFC_RSC_TYPE_FCOE_RPI:
7447 		blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
7448 		break;
7449 	default:
7450 		return -EIO;
7451 	}
7452 
7453 	/* Count the number of extents currently allocatd for this type. */
7454 	list_for_each_entry(rsrc_blk, blk_list_head, list) {
7455 		if (curr_blks == 0) {
7456 			/*
7457 			 * The GET_ALLOCATED mailbox does not return the size,
7458 			 * just the count.  The size should be just the size
7459 			 * stored in the current allocated block and all sizes
7460 			 * for an extent type are the same so set the return
7461 			 * value now.
7462 			 */
7463 			*extnt_size = rsrc_blk->rsrc_size;
7464 		}
7465 		curr_blks++;
7466 	}
7467 
7468 	/*
7469 	 * Calculate the size of an embedded mailbox.  The uint32_t
7470 	 * accounts for extents-specific word.
7471 	 */
7472 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
7473 		sizeof(uint32_t);
7474 
7475 	/*
7476 	 * Presume the allocation and response will fit into an embedded
7477 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
7478 	 */
7479 	emb = LPFC_SLI4_MBX_EMBED;
7480 	req_len = emb_len;
7481 	if (req_len > emb_len) {
7482 		req_len = curr_blks * sizeof(uint16_t) +
7483 			sizeof(union lpfc_sli4_cfg_shdr) +
7484 			sizeof(uint32_t);
7485 		emb = LPFC_SLI4_MBX_NEMBED;
7486 	}
7487 
7488 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7489 	if (!mbox)
7490 		return -ENOMEM;
7491 	memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
7492 
7493 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7494 				     LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
7495 				     req_len, emb);
7496 	if (alloc_len < req_len) {
7497 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7498 			"2983 Allocated DMA memory size (x%x) is "
7499 			"less than the requested DMA memory "
7500 			"size (x%x)\n", alloc_len, req_len);
7501 		rc = -ENOMEM;
7502 		goto err_exit;
7503 	}
7504 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
7505 	if (unlikely(rc)) {
7506 		rc = -EIO;
7507 		goto err_exit;
7508 	}
7509 
7510 	if (!phba->sli4_hba.intr_enable)
7511 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
7512 	else {
7513 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
7514 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
7515 	}
7516 
7517 	if (unlikely(rc)) {
7518 		rc = -EIO;
7519 		goto err_exit;
7520 	}
7521 
7522 	/*
7523 	 * Figure out where the response is located.  Then get local pointers
7524 	 * to the response data.  The port does not guarantee to respond to
7525 	 * all extents counts request so update the local variable with the
7526 	 * allocated count from the port.
7527 	 */
7528 	if (emb == LPFC_SLI4_MBX_EMBED) {
7529 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
7530 		shdr = &rsrc_ext->header.cfg_shdr;
7531 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
7532 	} else {
7533 		virtaddr = mbox->sge_array->addr[0];
7534 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
7535 		shdr = &n_rsrc->cfg_shdr;
7536 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
7537 	}
7538 
7539 	if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
7540 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7541 			"2984 Failed to read allocated resources "
7542 			"for type %d - Status 0x%x Add'l Status 0x%x.\n",
7543 			type,
7544 			bf_get(lpfc_mbox_hdr_status, &shdr->response),
7545 			bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
7546 		rc = -EIO;
7547 		goto err_exit;
7548 	}
7549  err_exit:
7550 	lpfc_sli4_mbox_cmd_free(phba, mbox);
7551 	return rc;
7552 }
7553 
7554 /**
7555  * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
7556  * @phba: pointer to lpfc hba data structure.
7557  * @sgl_list: linked link of sgl buffers to post
7558  * @cnt: number of linked list buffers
7559  *
7560  * This routine walks the list of buffers that have been allocated and
7561  * repost them to the port by using SGL block post. This is needed after a
7562  * pci_function_reset/warm_start or start. It attempts to construct blocks
7563  * of buffer sgls which contains contiguous xris and uses the non-embedded
7564  * SGL block post mailbox commands to post them to the port. For single
7565  * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
7566  * mailbox command for posting.
7567  *
7568  * Returns: 0 = success, non-zero failure.
7569  **/
7570 static int
7571 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
7572 			  struct list_head *sgl_list, int cnt)
7573 {
7574 	struct lpfc_sglq *sglq_entry = NULL;
7575 	struct lpfc_sglq *sglq_entry_next = NULL;
7576 	struct lpfc_sglq *sglq_entry_first = NULL;
7577 	int status, total_cnt;
7578 	int post_cnt = 0, num_posted = 0, block_cnt = 0;
7579 	int last_xritag = NO_XRI;
7580 	LIST_HEAD(prep_sgl_list);
7581 	LIST_HEAD(blck_sgl_list);
7582 	LIST_HEAD(allc_sgl_list);
7583 	LIST_HEAD(post_sgl_list);
7584 	LIST_HEAD(free_sgl_list);
7585 
7586 	spin_lock_irq(&phba->hbalock);
7587 	spin_lock(&phba->sli4_hba.sgl_list_lock);
7588 	list_splice_init(sgl_list, &allc_sgl_list);
7589 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
7590 	spin_unlock_irq(&phba->hbalock);
7591 
7592 	total_cnt = cnt;
7593 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
7594 				 &allc_sgl_list, list) {
7595 		list_del_init(&sglq_entry->list);
7596 		block_cnt++;
7597 		if ((last_xritag != NO_XRI) &&
7598 		    (sglq_entry->sli4_xritag != last_xritag + 1)) {
7599 			/* a hole in xri block, form a sgl posting block */
7600 			list_splice_init(&prep_sgl_list, &blck_sgl_list);
7601 			post_cnt = block_cnt - 1;
7602 			/* prepare list for next posting block */
7603 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
7604 			block_cnt = 1;
7605 		} else {
7606 			/* prepare list for next posting block */
7607 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
7608 			/* enough sgls for non-embed sgl mbox command */
7609 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
7610 				list_splice_init(&prep_sgl_list,
7611 						 &blck_sgl_list);
7612 				post_cnt = block_cnt;
7613 				block_cnt = 0;
7614 			}
7615 		}
7616 		num_posted++;
7617 
7618 		/* keep track of last sgl's xritag */
7619 		last_xritag = sglq_entry->sli4_xritag;
7620 
7621 		/* end of repost sgl list condition for buffers */
7622 		if (num_posted == total_cnt) {
7623 			if (post_cnt == 0) {
7624 				list_splice_init(&prep_sgl_list,
7625 						 &blck_sgl_list);
7626 				post_cnt = block_cnt;
7627 			} else if (block_cnt == 1) {
7628 				status = lpfc_sli4_post_sgl(phba,
7629 						sglq_entry->phys, 0,
7630 						sglq_entry->sli4_xritag);
7631 				if (!status) {
7632 					/* successful, put sgl to posted list */
7633 					list_add_tail(&sglq_entry->list,
7634 						      &post_sgl_list);
7635 				} else {
7636 					/* Failure, put sgl to free list */
7637 					lpfc_printf_log(phba, KERN_WARNING,
7638 						LOG_SLI,
7639 						"3159 Failed to post "
7640 						"sgl, xritag:x%x\n",
7641 						sglq_entry->sli4_xritag);
7642 					list_add_tail(&sglq_entry->list,
7643 						      &free_sgl_list);
7644 					total_cnt--;
7645 				}
7646 			}
7647 		}
7648 
7649 		/* continue until a nembed page worth of sgls */
7650 		if (post_cnt == 0)
7651 			continue;
7652 
7653 		/* post the buffer list sgls as a block */
7654 		status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
7655 						 post_cnt);
7656 
7657 		if (!status) {
7658 			/* success, put sgl list to posted sgl list */
7659 			list_splice_init(&blck_sgl_list, &post_sgl_list);
7660 		} else {
7661 			/* Failure, put sgl list to free sgl list */
7662 			sglq_entry_first = list_first_entry(&blck_sgl_list,
7663 							    struct lpfc_sglq,
7664 							    list);
7665 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7666 					"3160 Failed to post sgl-list, "
7667 					"xritag:x%x-x%x\n",
7668 					sglq_entry_first->sli4_xritag,
7669 					(sglq_entry_first->sli4_xritag +
7670 					 post_cnt - 1));
7671 			list_splice_init(&blck_sgl_list, &free_sgl_list);
7672 			total_cnt -= post_cnt;
7673 		}
7674 
7675 		/* don't reset xirtag due to hole in xri block */
7676 		if (block_cnt == 0)
7677 			last_xritag = NO_XRI;
7678 
7679 		/* reset sgl post count for next round of posting */
7680 		post_cnt = 0;
7681 	}
7682 
7683 	/* free the sgls failed to post */
7684 	lpfc_free_sgl_list(phba, &free_sgl_list);
7685 
7686 	/* push sgls posted to the available list */
7687 	if (!list_empty(&post_sgl_list)) {
7688 		spin_lock_irq(&phba->hbalock);
7689 		spin_lock(&phba->sli4_hba.sgl_list_lock);
7690 		list_splice_init(&post_sgl_list, sgl_list);
7691 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
7692 		spin_unlock_irq(&phba->hbalock);
7693 	} else {
7694 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7695 				"3161 Failure to post sgl to port.\n");
7696 		return -EIO;
7697 	}
7698 
7699 	/* return the number of XRIs actually posted */
7700 	return total_cnt;
7701 }
7702 
7703 /**
7704  * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7705  * @phba: pointer to lpfc hba data structure.
7706  *
7707  * This routine walks the list of nvme buffers that have been allocated and
7708  * repost them to the port by using SGL block post. This is needed after a
7709  * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7710  * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7711  * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7712  *
7713  * Returns: 0 = success, non-zero failure.
7714  **/
7715 static int
7716 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7717 {
7718 	LIST_HEAD(post_nblist);
7719 	int num_posted, rc = 0;
7720 
7721 	/* get all NVME buffers need to repost to a local list */
7722 	lpfc_io_buf_flush(phba, &post_nblist);
7723 
7724 	/* post the list of nvme buffer sgls to port if available */
7725 	if (!list_empty(&post_nblist)) {
7726 		num_posted = lpfc_sli4_post_io_sgl_list(
7727 			phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7728 		/* failed to post any nvme buffer, return error */
7729 		if (num_posted == 0)
7730 			rc = -EIO;
7731 	}
7732 	return rc;
7733 }
7734 
7735 static void
7736 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7737 {
7738 	uint32_t len;
7739 
7740 	len = sizeof(struct lpfc_mbx_set_host_data) -
7741 		sizeof(struct lpfc_sli4_cfg_mhdr);
7742 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7743 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7744 			 LPFC_SLI4_MBX_EMBED);
7745 
7746 	mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7747 	mbox->u.mqe.un.set_host_data.param_len =
7748 					LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7749 	snprintf(mbox->u.mqe.un.set_host_data.un.data,
7750 		 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7751 		 "Linux %s v"LPFC_DRIVER_VERSION,
7752 		 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7753 }
7754 
7755 int
7756 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7757 		    struct lpfc_queue *drq, int count, int idx)
7758 {
7759 	int rc, i;
7760 	struct lpfc_rqe hrqe;
7761 	struct lpfc_rqe drqe;
7762 	struct lpfc_rqb *rqbp;
7763 	unsigned long flags;
7764 	struct rqb_dmabuf *rqb_buffer;
7765 	LIST_HEAD(rqb_buf_list);
7766 
7767 	rqbp = hrq->rqbp;
7768 	for (i = 0; i < count; i++) {
7769 		spin_lock_irqsave(&phba->hbalock, flags);
7770 		/* IF RQ is already full, don't bother */
7771 		if (rqbp->buffer_count + i >= rqbp->entry_count - 1) {
7772 			spin_unlock_irqrestore(&phba->hbalock, flags);
7773 			break;
7774 		}
7775 		spin_unlock_irqrestore(&phba->hbalock, flags);
7776 
7777 		rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7778 		if (!rqb_buffer)
7779 			break;
7780 		rqb_buffer->hrq = hrq;
7781 		rqb_buffer->drq = drq;
7782 		rqb_buffer->idx = idx;
7783 		list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7784 	}
7785 
7786 	spin_lock_irqsave(&phba->hbalock, flags);
7787 	while (!list_empty(&rqb_buf_list)) {
7788 		list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7789 				 hbuf.list);
7790 
7791 		hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7792 		hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7793 		drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7794 		drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7795 		rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7796 		if (rc < 0) {
7797 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7798 					"6421 Cannot post to HRQ %d: %x %x %x "
7799 					"DRQ %x %x\n",
7800 					hrq->queue_id,
7801 					hrq->host_index,
7802 					hrq->hba_index,
7803 					hrq->entry_count,
7804 					drq->host_index,
7805 					drq->hba_index);
7806 			rqbp->rqb_free_buffer(phba, rqb_buffer);
7807 		} else {
7808 			list_add_tail(&rqb_buffer->hbuf.list,
7809 				      &rqbp->rqb_buffer_list);
7810 			rqbp->buffer_count++;
7811 		}
7812 	}
7813 	spin_unlock_irqrestore(&phba->hbalock, flags);
7814 	return 1;
7815 }
7816 
7817 static void
7818 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
7819 {
7820 	union lpfc_sli4_cfg_shdr *shdr;
7821 	u32 shdr_status, shdr_add_status;
7822 
7823 	shdr = (union lpfc_sli4_cfg_shdr *)
7824 		&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
7825 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
7826 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
7827 	if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) {
7828 		lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX,
7829 				"4622 SET_FEATURE (x%x) mbox failed, "
7830 				"status x%x add_status x%x, mbx status x%x\n",
7831 				LPFC_SET_LD_SIGNAL, shdr_status,
7832 				shdr_add_status, pmb->u.mb.mbxStatus);
7833 		phba->degrade_activate_threshold = 0;
7834 		phba->degrade_deactivate_threshold = 0;
7835 		phba->fec_degrade_interval = 0;
7836 		goto out;
7837 	}
7838 
7839 	phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7;
7840 	phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8;
7841 	phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10;
7842 
7843 	lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT,
7844 			"4624 Success: da x%x dd x%x interval x%x\n",
7845 			phba->degrade_activate_threshold,
7846 			phba->degrade_deactivate_threshold,
7847 			phba->fec_degrade_interval);
7848 out:
7849 	mempool_free(pmb, phba->mbox_mem_pool);
7850 }
7851 
7852 int
7853 lpfc_read_lds_params(struct lpfc_hba *phba)
7854 {
7855 	LPFC_MBOXQ_t *mboxq;
7856 	int rc;
7857 
7858 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7859 	if (!mboxq)
7860 		return -ENOMEM;
7861 
7862 	lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL);
7863 	mboxq->vport = phba->pport;
7864 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params;
7865 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
7866 	if (rc == MBX_NOT_FINISHED) {
7867 		mempool_free(mboxq, phba->mbox_mem_pool);
7868 		return -EIO;
7869 	}
7870 	return 0;
7871 }
7872 
7873 static void
7874 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
7875 {
7876 	struct lpfc_vport *vport = pmb->vport;
7877 	union lpfc_sli4_cfg_shdr *shdr;
7878 	u32 shdr_status, shdr_add_status;
7879 	u32 sig, acqe;
7880 
7881 	/* Two outcomes. (1) Set featurs was successul and EDC negotiation
7882 	 * is done. (2) Mailbox failed and send FPIN support only.
7883 	 */
7884 	shdr = (union lpfc_sli4_cfg_shdr *)
7885 		&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
7886 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
7887 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
7888 	if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) {
7889 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
7890 				"2516 CGN SET_FEATURE mbox failed with "
7891 				"status x%x add_status x%x, mbx status x%x "
7892 				"Reset Congestion to FPINs only\n",
7893 				shdr_status, shdr_add_status,
7894 				pmb->u.mb.mbxStatus);
7895 		/* If there is a mbox error, move on to RDF */
7896 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
7897 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM;
7898 		goto out;
7899 	}
7900 
7901 	/* Zero out Congestion Signal ACQE counter */
7902 	phba->cgn_acqe_cnt = 0;
7903 
7904 	acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq,
7905 		      &pmb->u.mqe.un.set_feature);
7906 	sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq,
7907 		     &pmb->u.mqe.un.set_feature);
7908 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7909 			"4620 SET_FEATURES Success: Freq: %ds %dms "
7910 			" Reg: x%x x%x\n", acqe, sig,
7911 			phba->cgn_reg_signal, phba->cgn_reg_fpin);
7912 out:
7913 	mempool_free(pmb, phba->mbox_mem_pool);
7914 
7915 	/* Register for FPIN events from the fabric now that the
7916 	 * EDC common_set_features has completed.
7917 	 */
7918 	lpfc_issue_els_rdf(vport, 0);
7919 }
7920 
7921 int
7922 lpfc_config_cgn_signal(struct lpfc_hba *phba)
7923 {
7924 	LPFC_MBOXQ_t *mboxq;
7925 	u32 rc;
7926 
7927 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7928 	if (!mboxq)
7929 		goto out_rdf;
7930 
7931 	lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL);
7932 	mboxq->vport = phba->pport;
7933 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs;
7934 
7935 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7936 			"4621 SET_FEATURES: FREQ sig x%x acqe x%x: "
7937 			"Reg: x%x x%x\n",
7938 			phba->cgn_sig_freq, lpfc_acqe_cgn_frequency,
7939 			phba->cgn_reg_signal, phba->cgn_reg_fpin);
7940 
7941 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
7942 	if (rc == MBX_NOT_FINISHED)
7943 		goto out;
7944 	return 0;
7945 
7946 out:
7947 	mempool_free(mboxq, phba->mbox_mem_pool);
7948 out_rdf:
7949 	/* If there is a mbox error, move on to RDF */
7950 	phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM;
7951 	phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
7952 	lpfc_issue_els_rdf(phba->pport, 0);
7953 	return -EIO;
7954 }
7955 
7956 /**
7957  * lpfc_init_idle_stat_hb - Initialize idle_stat tracking
7958  * @phba: pointer to lpfc hba data structure.
7959  *
7960  * This routine initializes the per-cq idle_stat to dynamically dictate
7961  * polling decisions.
7962  *
7963  * Return codes:
7964  *   None
7965  **/
7966 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba)
7967 {
7968 	int i;
7969 	struct lpfc_sli4_hdw_queue *hdwq;
7970 	struct lpfc_queue *cq;
7971 	struct lpfc_idle_stat *idle_stat;
7972 	u64 wall;
7973 
7974 	for_each_present_cpu(i) {
7975 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
7976 		cq = hdwq->io_cq;
7977 
7978 		/* Skip if we've already handled this cq's primary CPU */
7979 		if (cq->chann != i)
7980 			continue;
7981 
7982 		idle_stat = &phba->sli4_hba.idle_stat[i];
7983 
7984 		idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1);
7985 		idle_stat->prev_wall = wall;
7986 
7987 		if (phba->nvmet_support ||
7988 		    phba->cmf_active_mode != LPFC_CFG_OFF)
7989 			cq->poll_mode = LPFC_QUEUE_WORK;
7990 		else
7991 			cq->poll_mode = LPFC_IRQ_POLL;
7992 	}
7993 
7994 	if (!phba->nvmet_support)
7995 		schedule_delayed_work(&phba->idle_stat_delay_work,
7996 				      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
7997 }
7998 
7999 static void lpfc_sli4_dip(struct lpfc_hba *phba)
8000 {
8001 	uint32_t if_type;
8002 
8003 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
8004 	if (if_type == LPFC_SLI_INTF_IF_TYPE_2 ||
8005 	    if_type == LPFC_SLI_INTF_IF_TYPE_6) {
8006 		struct lpfc_register reg_data;
8007 
8008 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
8009 			       &reg_data.word0))
8010 			return;
8011 
8012 		if (bf_get(lpfc_sliport_status_dip, &reg_data))
8013 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8014 					"2904 Firmware Dump Image Present"
8015 					" on Adapter");
8016 	}
8017 }
8018 
8019 /**
8020  * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor
8021  * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8022  * @entries: Number of rx_info_entry objects to allocate in ring
8023  *
8024  * Return:
8025  * 0 - Success
8026  * ENOMEM - Failure to kmalloc
8027  **/
8028 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor,
8029 				u32 entries)
8030 {
8031 	rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry),
8032 					 GFP_KERNEL);
8033 	if (!rx_monitor->ring)
8034 		return -ENOMEM;
8035 
8036 	rx_monitor->head_idx = 0;
8037 	rx_monitor->tail_idx = 0;
8038 	spin_lock_init(&rx_monitor->lock);
8039 	rx_monitor->entries = entries;
8040 
8041 	return 0;
8042 }
8043 
8044 /**
8045  * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor
8046  * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8047  *
8048  * Called after cancellation of cmf_timer.
8049  **/
8050 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor)
8051 {
8052 	kfree(rx_monitor->ring);
8053 	rx_monitor->ring = NULL;
8054 	rx_monitor->entries = 0;
8055 	rx_monitor->head_idx = 0;
8056 	rx_monitor->tail_idx = 0;
8057 }
8058 
8059 /**
8060  * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring
8061  * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8062  * @entry: Pointer to rx_info_entry
8063  *
8064  * Used to insert an rx_info_entry into rx_monitor's ring.  Note that this is a
8065  * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr.
8066  *
8067  * This is called from lpfc_cmf_timer, which is in timer/softirq context.
8068  *
8069  * In cases of old data overflow, we do a best effort of FIFO order.
8070  **/
8071 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor,
8072 			    struct rx_info_entry *entry)
8073 {
8074 	struct rx_info_entry *ring = rx_monitor->ring;
8075 	u32 *head_idx = &rx_monitor->head_idx;
8076 	u32 *tail_idx = &rx_monitor->tail_idx;
8077 	spinlock_t *ring_lock = &rx_monitor->lock;
8078 	u32 ring_size = rx_monitor->entries;
8079 
8080 	spin_lock(ring_lock);
8081 	memcpy(&ring[*tail_idx], entry, sizeof(*entry));
8082 	*tail_idx = (*tail_idx + 1) % ring_size;
8083 
8084 	/* Best effort of FIFO saved data */
8085 	if (*tail_idx == *head_idx)
8086 		*head_idx = (*head_idx + 1) % ring_size;
8087 
8088 	spin_unlock(ring_lock);
8089 }
8090 
8091 /**
8092  * lpfc_rx_monitor_report - Read out rx_monitor's ring
8093  * @phba: Pointer to lpfc_hba object
8094  * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8095  * @buf: Pointer to char buffer that will contain rx monitor info data
8096  * @buf_len: Length buf including null char
8097  * @max_read_entries: Maximum number of entries to read out of ring
8098  *
8099  * Used to dump/read what's in rx_monitor's ring buffer.
8100  *
8101  * If buf is NULL || buf_len == 0, then it is implied that we want to log the
8102  * information to kmsg instead of filling out buf.
8103  *
8104  * Return:
8105  * Number of entries read out of the ring
8106  **/
8107 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba,
8108 			   struct lpfc_rx_info_monitor *rx_monitor, char *buf,
8109 			   u32 buf_len, u32 max_read_entries)
8110 {
8111 	struct rx_info_entry *ring = rx_monitor->ring;
8112 	struct rx_info_entry *entry;
8113 	u32 *head_idx = &rx_monitor->head_idx;
8114 	u32 *tail_idx = &rx_monitor->tail_idx;
8115 	spinlock_t *ring_lock = &rx_monitor->lock;
8116 	u32 ring_size = rx_monitor->entries;
8117 	u32 cnt = 0;
8118 	char tmp[DBG_LOG_STR_SZ] = {0};
8119 	bool log_to_kmsg = (!buf || !buf_len) ? true : false;
8120 
8121 	if (!log_to_kmsg) {
8122 		/* clear the buffer to be sure */
8123 		memset(buf, 0, buf_len);
8124 
8125 		scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s"
8126 					"%-8s%-8s%-8s%-16s\n",
8127 					"MaxBPI", "Tot_Data_CMF",
8128 					"Tot_Data_Cmd", "Tot_Data_Cmpl",
8129 					"Lat(us)", "Avg_IO", "Max_IO", "Bsy",
8130 					"IO_cnt", "Info", "BWutil(ms)");
8131 	}
8132 
8133 	/* Needs to be _irq because record is called from timer interrupt
8134 	 * context
8135 	 */
8136 	spin_lock_irq(ring_lock);
8137 	while (*head_idx != *tail_idx) {
8138 		entry = &ring[*head_idx];
8139 
8140 		/* Read out this entry's data. */
8141 		if (!log_to_kmsg) {
8142 			/* If !log_to_kmsg, then store to buf. */
8143 			scnprintf(tmp, sizeof(tmp),
8144 				  "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu"
8145 				  "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n",
8146 				  *head_idx, entry->max_bytes_per_interval,
8147 				  entry->cmf_bytes, entry->total_bytes,
8148 				  entry->rcv_bytes, entry->avg_io_latency,
8149 				  entry->avg_io_size, entry->max_read_cnt,
8150 				  entry->cmf_busy, entry->io_cnt,
8151 				  entry->cmf_info, entry->timer_utilization,
8152 				  entry->timer_interval);
8153 
8154 			/* Check for buffer overflow */
8155 			if ((strlen(buf) + strlen(tmp)) >= buf_len)
8156 				break;
8157 
8158 			/* Append entry's data to buffer */
8159 			strlcat(buf, tmp, buf_len);
8160 		} else {
8161 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
8162 					"4410 %02u: MBPI %llu Xmit %llu "
8163 					"Cmpl %llu Lat %llu ASz %llu Info %02u "
8164 					"BWUtil %u Int %u slot %u\n",
8165 					cnt, entry->max_bytes_per_interval,
8166 					entry->total_bytes, entry->rcv_bytes,
8167 					entry->avg_io_latency,
8168 					entry->avg_io_size, entry->cmf_info,
8169 					entry->timer_utilization,
8170 					entry->timer_interval, *head_idx);
8171 		}
8172 
8173 		*head_idx = (*head_idx + 1) % ring_size;
8174 
8175 		/* Don't feed more than max_read_entries */
8176 		cnt++;
8177 		if (cnt >= max_read_entries)
8178 			break;
8179 	}
8180 	spin_unlock_irq(ring_lock);
8181 
8182 	return cnt;
8183 }
8184 
8185 /**
8186  * lpfc_cmf_setup - Initialize idle_stat tracking
8187  * @phba: Pointer to HBA context object.
8188  *
8189  * This is called from HBA setup during driver load or when the HBA
8190  * comes online. this does all the initialization to support CMF and MI.
8191  **/
8192 static int
8193 lpfc_cmf_setup(struct lpfc_hba *phba)
8194 {
8195 	LPFC_MBOXQ_t *mboxq;
8196 	struct lpfc_dmabuf *mp;
8197 	struct lpfc_pc_sli4_params *sli4_params;
8198 	int rc, cmf, mi_ver;
8199 
8200 	rc = lpfc_sli4_refresh_params(phba);
8201 	if (unlikely(rc))
8202 		return rc;
8203 
8204 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8205 	if (!mboxq)
8206 		return -ENOMEM;
8207 
8208 	sli4_params = &phba->sli4_hba.pc_sli4_params;
8209 
8210 	/* Always try to enable MI feature if we can */
8211 	if (sli4_params->mi_ver) {
8212 		lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI);
8213 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8214 		mi_ver = bf_get(lpfc_mbx_set_feature_mi,
8215 				 &mboxq->u.mqe.un.set_feature);
8216 
8217 		if (rc == MBX_SUCCESS) {
8218 			if (mi_ver) {
8219 				lpfc_printf_log(phba,
8220 						KERN_WARNING, LOG_CGN_MGMT,
8221 						"6215 MI is enabled\n");
8222 				sli4_params->mi_ver = mi_ver;
8223 			} else {
8224 				lpfc_printf_log(phba,
8225 						KERN_WARNING, LOG_CGN_MGMT,
8226 						"6338 MI is disabled\n");
8227 				sli4_params->mi_ver = 0;
8228 			}
8229 		} else {
8230 			/* mi_ver is already set from GET_SLI4_PARAMETERS */
8231 			lpfc_printf_log(phba, KERN_INFO,
8232 					LOG_CGN_MGMT | LOG_INIT,
8233 					"6245 Enable MI Mailbox x%x (x%x/x%x) "
8234 					"failed, rc:x%x mi:x%x\n",
8235 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8236 					lpfc_sli_config_mbox_subsys_get
8237 						(phba, mboxq),
8238 					lpfc_sli_config_mbox_opcode_get
8239 						(phba, mboxq),
8240 					rc, sli4_params->mi_ver);
8241 		}
8242 	} else {
8243 		lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8244 				"6217 MI is disabled\n");
8245 	}
8246 
8247 	/* Ensure FDMI is enabled for MI if enable_mi is set */
8248 	if (sli4_params->mi_ver)
8249 		phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT;
8250 
8251 	/* Always try to enable CMF feature if we can */
8252 	if (sli4_params->cmf) {
8253 		lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF);
8254 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8255 		cmf = bf_get(lpfc_mbx_set_feature_cmf,
8256 			     &mboxq->u.mqe.un.set_feature);
8257 		if (rc == MBX_SUCCESS && cmf) {
8258 			lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8259 					"6218 CMF is enabled: mode %d\n",
8260 					phba->cmf_active_mode);
8261 		} else {
8262 			lpfc_printf_log(phba, KERN_WARNING,
8263 					LOG_CGN_MGMT | LOG_INIT,
8264 					"6219 Enable CMF Mailbox x%x (x%x/x%x) "
8265 					"failed, rc:x%x dd:x%x\n",
8266 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8267 					lpfc_sli_config_mbox_subsys_get
8268 						(phba, mboxq),
8269 					lpfc_sli_config_mbox_opcode_get
8270 						(phba, mboxq),
8271 					rc, cmf);
8272 			sli4_params->cmf = 0;
8273 			phba->cmf_active_mode = LPFC_CFG_OFF;
8274 			goto no_cmf;
8275 		}
8276 
8277 		/* Allocate Congestion Information Buffer */
8278 		if (!phba->cgn_i) {
8279 			mp = kmalloc(sizeof(*mp), GFP_KERNEL);
8280 			if (mp)
8281 				mp->virt = dma_alloc_coherent
8282 						(&phba->pcidev->dev,
8283 						sizeof(struct lpfc_cgn_info),
8284 						&mp->phys, GFP_KERNEL);
8285 			if (!mp || !mp->virt) {
8286 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8287 						"2640 Failed to alloc memory "
8288 						"for Congestion Info\n");
8289 				kfree(mp);
8290 				sli4_params->cmf = 0;
8291 				phba->cmf_active_mode = LPFC_CFG_OFF;
8292 				goto no_cmf;
8293 			}
8294 			phba->cgn_i = mp;
8295 
8296 			/* initialize congestion buffer info */
8297 			lpfc_init_congestion_buf(phba);
8298 			lpfc_init_congestion_stat(phba);
8299 
8300 			/* Zero out Congestion Signal counters */
8301 			atomic64_set(&phba->cgn_acqe_stat.alarm, 0);
8302 			atomic64_set(&phba->cgn_acqe_stat.warn, 0);
8303 		}
8304 
8305 		rc = lpfc_sli4_cgn_params_read(phba);
8306 		if (rc < 0) {
8307 			lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
8308 					"6242 Error reading Cgn Params (%d)\n",
8309 					rc);
8310 			/* Ensure CGN Mode is off */
8311 			sli4_params->cmf = 0;
8312 		} else if (!rc) {
8313 			lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
8314 					"6243 CGN Event empty object.\n");
8315 			/* Ensure CGN Mode is off */
8316 			sli4_params->cmf = 0;
8317 		}
8318 	} else {
8319 no_cmf:
8320 		lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8321 				"6220 CMF is disabled\n");
8322 	}
8323 
8324 	/* Only register congestion buffer with firmware if BOTH
8325 	 * CMF and E2E are enabled.
8326 	 */
8327 	if (sli4_params->cmf && sli4_params->mi_ver) {
8328 		rc = lpfc_reg_congestion_buf(phba);
8329 		if (rc) {
8330 			dma_free_coherent(&phba->pcidev->dev,
8331 					  sizeof(struct lpfc_cgn_info),
8332 					  phba->cgn_i->virt, phba->cgn_i->phys);
8333 			kfree(phba->cgn_i);
8334 			phba->cgn_i = NULL;
8335 			/* Ensure CGN Mode is off */
8336 			phba->cmf_active_mode = LPFC_CFG_OFF;
8337 			sli4_params->cmf = 0;
8338 			return 0;
8339 		}
8340 	}
8341 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8342 			"6470 Setup MI version %d CMF %d mode %d\n",
8343 			sli4_params->mi_ver, sli4_params->cmf,
8344 			phba->cmf_active_mode);
8345 
8346 	mempool_free(mboxq, phba->mbox_mem_pool);
8347 
8348 	/* Initialize atomic counters */
8349 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
8350 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
8351 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
8352 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
8353 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
8354 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
8355 	atomic64_set(&phba->cgn_latency_evt, 0);
8356 
8357 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
8358 
8359 	/* Allocate RX Monitor Buffer */
8360 	if (!phba->rx_monitor) {
8361 		phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor),
8362 					   GFP_KERNEL);
8363 
8364 		if (!phba->rx_monitor) {
8365 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8366 					"2644 Failed to alloc memory "
8367 					"for RX Monitor Buffer\n");
8368 			return -ENOMEM;
8369 		}
8370 
8371 		/* Instruct the rx_monitor object to instantiate its ring */
8372 		if (lpfc_rx_monitor_create_ring(phba->rx_monitor,
8373 						LPFC_MAX_RXMONITOR_ENTRY)) {
8374 			kfree(phba->rx_monitor);
8375 			phba->rx_monitor = NULL;
8376 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8377 					"2645 Failed to alloc memory "
8378 					"for RX Monitor's Ring\n");
8379 			return -ENOMEM;
8380 		}
8381 	}
8382 
8383 	return 0;
8384 }
8385 
8386 static int
8387 lpfc_set_host_tm(struct lpfc_hba *phba)
8388 {
8389 	LPFC_MBOXQ_t *mboxq;
8390 	uint32_t len, rc;
8391 	struct timespec64 cur_time;
8392 	struct tm broken;
8393 	uint32_t month, day, year;
8394 	uint32_t hour, minute, second;
8395 	struct lpfc_mbx_set_host_date_time *tm;
8396 
8397 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8398 	if (!mboxq)
8399 		return -ENOMEM;
8400 
8401 	len = sizeof(struct lpfc_mbx_set_host_data) -
8402 		sizeof(struct lpfc_sli4_cfg_mhdr);
8403 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
8404 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
8405 			 LPFC_SLI4_MBX_EMBED);
8406 
8407 	mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME;
8408 	mboxq->u.mqe.un.set_host_data.param_len =
8409 			sizeof(struct lpfc_mbx_set_host_date_time);
8410 	tm = &mboxq->u.mqe.un.set_host_data.un.tm;
8411 	ktime_get_real_ts64(&cur_time);
8412 	time64_to_tm(cur_time.tv_sec, 0, &broken);
8413 	month = broken.tm_mon + 1;
8414 	day = broken.tm_mday;
8415 	year = broken.tm_year - 100;
8416 	hour = broken.tm_hour;
8417 	minute = broken.tm_min;
8418 	second = broken.tm_sec;
8419 	bf_set(lpfc_mbx_set_host_month, tm, month);
8420 	bf_set(lpfc_mbx_set_host_day, tm, day);
8421 	bf_set(lpfc_mbx_set_host_year, tm, year);
8422 	bf_set(lpfc_mbx_set_host_hour, tm, hour);
8423 	bf_set(lpfc_mbx_set_host_min, tm, minute);
8424 	bf_set(lpfc_mbx_set_host_sec, tm, second);
8425 
8426 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8427 	mempool_free(mboxq, phba->mbox_mem_pool);
8428 	return rc;
8429 }
8430 
8431 /**
8432  * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
8433  * @phba: Pointer to HBA context object.
8434  *
8435  * This function is the main SLI4 device initialization PCI function. This
8436  * function is called by the HBA initialization code, HBA reset code and
8437  * HBA error attention handler code. Caller is not required to hold any
8438  * locks.
8439  **/
8440 int
8441 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
8442 {
8443 	int rc, i, cnt, len, dd;
8444 	LPFC_MBOXQ_t *mboxq;
8445 	struct lpfc_mqe *mqe;
8446 	uint8_t *vpd;
8447 	uint32_t vpd_size;
8448 	uint32_t ftr_rsp = 0;
8449 	struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
8450 	struct lpfc_vport *vport = phba->pport;
8451 	struct lpfc_dmabuf *mp;
8452 	struct lpfc_rqb *rqbp;
8453 	u32 flg;
8454 
8455 	/* Perform a PCI function reset to start from clean */
8456 	rc = lpfc_pci_function_reset(phba);
8457 	if (unlikely(rc))
8458 		return -ENODEV;
8459 
8460 	/* Check the HBA Host Status Register for readyness */
8461 	rc = lpfc_sli4_post_status_check(phba);
8462 	if (unlikely(rc))
8463 		return -ENODEV;
8464 	else {
8465 		spin_lock_irq(&phba->hbalock);
8466 		phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
8467 		flg = phba->sli.sli_flag;
8468 		spin_unlock_irq(&phba->hbalock);
8469 		/* Allow a little time after setting SLI_ACTIVE for any polled
8470 		 * MBX commands to complete via BSG.
8471 		 */
8472 		for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) {
8473 			msleep(20);
8474 			spin_lock_irq(&phba->hbalock);
8475 			flg = phba->sli.sli_flag;
8476 			spin_unlock_irq(&phba->hbalock);
8477 		}
8478 	}
8479 
8480 	lpfc_sli4_dip(phba);
8481 
8482 	/*
8483 	 * Allocate a single mailbox container for initializing the
8484 	 * port.
8485 	 */
8486 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8487 	if (!mboxq)
8488 		return -ENOMEM;
8489 
8490 	/* Issue READ_REV to collect vpd and FW information. */
8491 	vpd_size = SLI4_PAGE_SIZE;
8492 	vpd = kzalloc(vpd_size, GFP_KERNEL);
8493 	if (!vpd) {
8494 		rc = -ENOMEM;
8495 		goto out_free_mbox;
8496 	}
8497 
8498 	rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
8499 	if (unlikely(rc)) {
8500 		kfree(vpd);
8501 		goto out_free_mbox;
8502 	}
8503 
8504 	mqe = &mboxq->u.mqe;
8505 	phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
8506 	if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
8507 		phba->hba_flag |= HBA_FCOE_MODE;
8508 		phba->fcp_embed_io = 0;	/* SLI4 FC support only */
8509 	} else {
8510 		phba->hba_flag &= ~HBA_FCOE_MODE;
8511 	}
8512 
8513 	if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
8514 		LPFC_DCBX_CEE_MODE)
8515 		phba->hba_flag |= HBA_FIP_SUPPORT;
8516 	else
8517 		phba->hba_flag &= ~HBA_FIP_SUPPORT;
8518 
8519 	phba->hba_flag &= ~HBA_IOQ_FLUSH;
8520 
8521 	if (phba->sli_rev != LPFC_SLI_REV4) {
8522 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8523 			"0376 READ_REV Error. SLI Level %d "
8524 			"FCoE enabled %d\n",
8525 			phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
8526 		rc = -EIO;
8527 		kfree(vpd);
8528 		goto out_free_mbox;
8529 	}
8530 
8531 	rc = lpfc_set_host_tm(phba);
8532 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
8533 			"6468 Set host date / time: Status x%x:\n", rc);
8534 
8535 	/*
8536 	 * Continue initialization with default values even if driver failed
8537 	 * to read FCoE param config regions, only read parameters if the
8538 	 * board is FCoE
8539 	 */
8540 	if (phba->hba_flag & HBA_FCOE_MODE &&
8541 	    lpfc_sli4_read_fcoe_params(phba))
8542 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
8543 			"2570 Failed to read FCoE parameters\n");
8544 
8545 	/*
8546 	 * Retrieve sli4 device physical port name, failure of doing it
8547 	 * is considered as non-fatal.
8548 	 */
8549 	rc = lpfc_sli4_retrieve_pport_name(phba);
8550 	if (!rc)
8551 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8552 				"3080 Successful retrieving SLI4 device "
8553 				"physical port name: %s.\n", phba->Port);
8554 
8555 	rc = lpfc_sli4_get_ctl_attr(phba);
8556 	if (!rc)
8557 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8558 				"8351 Successful retrieving SLI4 device "
8559 				"CTL ATTR\n");
8560 
8561 	/*
8562 	 * Evaluate the read rev and vpd data. Populate the driver
8563 	 * state with the results. If this routine fails, the failure
8564 	 * is not fatal as the driver will use generic values.
8565 	 */
8566 	rc = lpfc_parse_vpd(phba, vpd, vpd_size);
8567 	if (unlikely(!rc)) {
8568 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8569 				"0377 Error %d parsing vpd. "
8570 				"Using defaults.\n", rc);
8571 		rc = 0;
8572 	}
8573 	kfree(vpd);
8574 
8575 	/* Save information as VPD data */
8576 	phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
8577 	phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
8578 
8579 	/*
8580 	 * This is because first G7 ASIC doesn't support the standard
8581 	 * 0x5a NVME cmd descriptor type/subtype
8582 	 */
8583 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8584 			LPFC_SLI_INTF_IF_TYPE_6) &&
8585 	    (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
8586 	    (phba->vpd.rev.smRev == 0) &&
8587 	    (phba->cfg_nvme_embed_cmd == 1))
8588 		phba->cfg_nvme_embed_cmd = 0;
8589 
8590 	phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
8591 	phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
8592 					 &mqe->un.read_rev);
8593 	phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
8594 				       &mqe->un.read_rev);
8595 	phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
8596 					    &mqe->un.read_rev);
8597 	phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
8598 					   &mqe->un.read_rev);
8599 	phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
8600 	memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
8601 	phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
8602 	memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
8603 	phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
8604 	memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
8605 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8606 			"(%d):0380 READ_REV Status x%x "
8607 			"fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
8608 			mboxq->vport ? mboxq->vport->vpi : 0,
8609 			bf_get(lpfc_mqe_status, mqe),
8610 			phba->vpd.rev.opFwName,
8611 			phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
8612 			phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
8613 
8614 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8615 	    LPFC_SLI_INTF_IF_TYPE_0) {
8616 		lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
8617 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8618 		if (rc == MBX_SUCCESS) {
8619 			phba->hba_flag |= HBA_RECOVERABLE_UE;
8620 			/* Set 1Sec interval to detect UE */
8621 			phba->eratt_poll_interval = 1;
8622 			phba->sli4_hba.ue_to_sr = bf_get(
8623 					lpfc_mbx_set_feature_UESR,
8624 					&mboxq->u.mqe.un.set_feature);
8625 			phba->sli4_hba.ue_to_rp = bf_get(
8626 					lpfc_mbx_set_feature_UERP,
8627 					&mboxq->u.mqe.un.set_feature);
8628 		}
8629 	}
8630 
8631 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
8632 		/* Enable MDS Diagnostics only if the SLI Port supports it */
8633 		lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
8634 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8635 		if (rc != MBX_SUCCESS)
8636 			phba->mds_diags_support = 0;
8637 	}
8638 
8639 	/*
8640 	 * Discover the port's supported feature set and match it against the
8641 	 * hosts requests.
8642 	 */
8643 	lpfc_request_features(phba, mboxq);
8644 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8645 	if (unlikely(rc)) {
8646 		rc = -EIO;
8647 		goto out_free_mbox;
8648 	}
8649 
8650 	/* Disable VMID if app header is not supported */
8651 	if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr,
8652 						  &mqe->un.req_ftrs))) {
8653 		bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0);
8654 		phba->cfg_vmid_app_header = 0;
8655 		lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI,
8656 				"1242 vmid feature not supported\n");
8657 	}
8658 
8659 	/*
8660 	 * The port must support FCP initiator mode as this is the
8661 	 * only mode running in the host.
8662 	 */
8663 	if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
8664 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8665 				"0378 No support for fcpi mode.\n");
8666 		ftr_rsp++;
8667 	}
8668 
8669 	/* Performance Hints are ONLY for FCoE */
8670 	if (phba->hba_flag & HBA_FCOE_MODE) {
8671 		if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
8672 			phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
8673 		else
8674 			phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
8675 	}
8676 
8677 	/*
8678 	 * If the port cannot support the host's requested features
8679 	 * then turn off the global config parameters to disable the
8680 	 * feature in the driver.  This is not a fatal error.
8681 	 */
8682 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8683 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
8684 			phba->cfg_enable_bg = 0;
8685 			phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
8686 			ftr_rsp++;
8687 		}
8688 	}
8689 
8690 	if (phba->max_vpi && phba->cfg_enable_npiv &&
8691 	    !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
8692 		ftr_rsp++;
8693 
8694 	if (ftr_rsp) {
8695 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8696 				"0379 Feature Mismatch Data: x%08x %08x "
8697 				"x%x x%x x%x\n", mqe->un.req_ftrs.word2,
8698 				mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
8699 				phba->cfg_enable_npiv, phba->max_vpi);
8700 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
8701 			phba->cfg_enable_bg = 0;
8702 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
8703 			phba->cfg_enable_npiv = 0;
8704 	}
8705 
8706 	/* These SLI3 features are assumed in SLI4 */
8707 	spin_lock_irq(&phba->hbalock);
8708 	phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
8709 	spin_unlock_irq(&phba->hbalock);
8710 
8711 	/* Always try to enable dual dump feature if we can */
8712 	lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP);
8713 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8714 	dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature);
8715 	if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP))
8716 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8717 				"6448 Dual Dump is enabled\n");
8718 	else
8719 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT,
8720 				"6447 Dual Dump Mailbox x%x (x%x/x%x) failed, "
8721 				"rc:x%x dd:x%x\n",
8722 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8723 				lpfc_sli_config_mbox_subsys_get(
8724 					phba, mboxq),
8725 				lpfc_sli_config_mbox_opcode_get(
8726 					phba, mboxq),
8727 				rc, dd);
8728 	/*
8729 	 * Allocate all resources (xri,rpi,vpi,vfi) now.  Subsequent
8730 	 * calls depends on these resources to complete port setup.
8731 	 */
8732 	rc = lpfc_sli4_alloc_resource_identifiers(phba);
8733 	if (rc) {
8734 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8735 				"2920 Failed to alloc Resource IDs "
8736 				"rc = x%x\n", rc);
8737 		goto out_free_mbox;
8738 	}
8739 
8740 	lpfc_set_host_data(phba, mboxq);
8741 
8742 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8743 	if (rc) {
8744 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8745 				"2134 Failed to set host os driver version %x",
8746 				rc);
8747 	}
8748 
8749 	/* Read the port's service parameters. */
8750 	rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
8751 	if (rc) {
8752 		phba->link_state = LPFC_HBA_ERROR;
8753 		rc = -ENOMEM;
8754 		goto out_free_mbox;
8755 	}
8756 
8757 	mboxq->vport = vport;
8758 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8759 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
8760 	if (rc == MBX_SUCCESS) {
8761 		memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
8762 		rc = 0;
8763 	}
8764 
8765 	/*
8766 	 * This memory was allocated by the lpfc_read_sparam routine but is
8767 	 * no longer needed.  It is released and ctx_buf NULLed to prevent
8768 	 * unintended pointer access as the mbox is reused.
8769 	 */
8770 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
8771 	kfree(mp);
8772 	mboxq->ctx_buf = NULL;
8773 	if (unlikely(rc)) {
8774 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8775 				"0382 READ_SPARAM command failed "
8776 				"status %d, mbxStatus x%x\n",
8777 				rc, bf_get(lpfc_mqe_status, mqe));
8778 		phba->link_state = LPFC_HBA_ERROR;
8779 		rc = -EIO;
8780 		goto out_free_mbox;
8781 	}
8782 
8783 	lpfc_update_vport_wwn(vport);
8784 
8785 	/* Update the fc_host data structures with new wwn. */
8786 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
8787 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
8788 
8789 	/* Create all the SLI4 queues */
8790 	rc = lpfc_sli4_queue_create(phba);
8791 	if (rc) {
8792 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8793 				"3089 Failed to allocate queues\n");
8794 		rc = -ENODEV;
8795 		goto out_free_mbox;
8796 	}
8797 	/* Set up all the queues to the device */
8798 	rc = lpfc_sli4_queue_setup(phba);
8799 	if (unlikely(rc)) {
8800 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8801 				"0381 Error %d during queue setup.\n ", rc);
8802 		goto out_stop_timers;
8803 	}
8804 	/* Initialize the driver internal SLI layer lists. */
8805 	lpfc_sli4_setup(phba);
8806 	lpfc_sli4_queue_init(phba);
8807 
8808 	/* update host els xri-sgl sizes and mappings */
8809 	rc = lpfc_sli4_els_sgl_update(phba);
8810 	if (unlikely(rc)) {
8811 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8812 				"1400 Failed to update xri-sgl size and "
8813 				"mapping: %d\n", rc);
8814 		goto out_destroy_queue;
8815 	}
8816 
8817 	/* register the els sgl pool to the port */
8818 	rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
8819 				       phba->sli4_hba.els_xri_cnt);
8820 	if (unlikely(rc < 0)) {
8821 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8822 				"0582 Error %d during els sgl post "
8823 				"operation\n", rc);
8824 		rc = -ENODEV;
8825 		goto out_destroy_queue;
8826 	}
8827 	phba->sli4_hba.els_xri_cnt = rc;
8828 
8829 	if (phba->nvmet_support) {
8830 		/* update host nvmet xri-sgl sizes and mappings */
8831 		rc = lpfc_sli4_nvmet_sgl_update(phba);
8832 		if (unlikely(rc)) {
8833 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8834 					"6308 Failed to update nvmet-sgl size "
8835 					"and mapping: %d\n", rc);
8836 			goto out_destroy_queue;
8837 		}
8838 
8839 		/* register the nvmet sgl pool to the port */
8840 		rc = lpfc_sli4_repost_sgl_list(
8841 			phba,
8842 			&phba->sli4_hba.lpfc_nvmet_sgl_list,
8843 			phba->sli4_hba.nvmet_xri_cnt);
8844 		if (unlikely(rc < 0)) {
8845 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8846 					"3117 Error %d during nvmet "
8847 					"sgl post\n", rc);
8848 			rc = -ENODEV;
8849 			goto out_destroy_queue;
8850 		}
8851 		phba->sli4_hba.nvmet_xri_cnt = rc;
8852 
8853 		/* We allocate an iocbq for every receive context SGL.
8854 		 * The additional allocation is for abort and ls handling.
8855 		 */
8856 		cnt = phba->sli4_hba.nvmet_xri_cnt +
8857 			phba->sli4_hba.max_cfg_param.max_xri;
8858 	} else {
8859 		/* update host common xri-sgl sizes and mappings */
8860 		rc = lpfc_sli4_io_sgl_update(phba);
8861 		if (unlikely(rc)) {
8862 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8863 					"6082 Failed to update nvme-sgl size "
8864 					"and mapping: %d\n", rc);
8865 			goto out_destroy_queue;
8866 		}
8867 
8868 		/* register the allocated common sgl pool to the port */
8869 		rc = lpfc_sli4_repost_io_sgl_list(phba);
8870 		if (unlikely(rc)) {
8871 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8872 					"6116 Error %d during nvme sgl post "
8873 					"operation\n", rc);
8874 			/* Some NVME buffers were moved to abort nvme list */
8875 			/* A pci function reset will repost them */
8876 			rc = -ENODEV;
8877 			goto out_destroy_queue;
8878 		}
8879 		/* Each lpfc_io_buf job structure has an iocbq element.
8880 		 * This cnt provides for abort, els, ct and ls requests.
8881 		 */
8882 		cnt = phba->sli4_hba.max_cfg_param.max_xri;
8883 	}
8884 
8885 	if (!phba->sli.iocbq_lookup) {
8886 		/* Initialize and populate the iocb list per host */
8887 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8888 				"2821 initialize iocb list with %d entries\n",
8889 				cnt);
8890 		rc = lpfc_init_iocb_list(phba, cnt);
8891 		if (rc) {
8892 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8893 					"1413 Failed to init iocb list.\n");
8894 			goto out_destroy_queue;
8895 		}
8896 	}
8897 
8898 	if (phba->nvmet_support)
8899 		lpfc_nvmet_create_targetport(phba);
8900 
8901 	if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
8902 		/* Post initial buffers to all RQs created */
8903 		for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
8904 			rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
8905 			INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
8906 			rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
8907 			rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
8908 			rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
8909 			rqbp->buffer_count = 0;
8910 
8911 			lpfc_post_rq_buffer(
8912 				phba, phba->sli4_hba.nvmet_mrq_hdr[i],
8913 				phba->sli4_hba.nvmet_mrq_data[i],
8914 				phba->cfg_nvmet_mrq_post, i);
8915 		}
8916 	}
8917 
8918 	/* Post the rpi header region to the device. */
8919 	rc = lpfc_sli4_post_all_rpi_hdrs(phba);
8920 	if (unlikely(rc)) {
8921 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8922 				"0393 Error %d during rpi post operation\n",
8923 				rc);
8924 		rc = -ENODEV;
8925 		goto out_free_iocblist;
8926 	}
8927 	lpfc_sli4_node_prep(phba);
8928 
8929 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
8930 		if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
8931 			/*
8932 			 * The FC Port needs to register FCFI (index 0)
8933 			 */
8934 			lpfc_reg_fcfi(phba, mboxq);
8935 			mboxq->vport = phba->pport;
8936 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8937 			if (rc != MBX_SUCCESS)
8938 				goto out_unset_queue;
8939 			rc = 0;
8940 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
8941 						&mboxq->u.mqe.un.reg_fcfi);
8942 		} else {
8943 			/* We are a NVME Target mode with MRQ > 1 */
8944 
8945 			/* First register the FCFI */
8946 			lpfc_reg_fcfi_mrq(phba, mboxq, 0);
8947 			mboxq->vport = phba->pport;
8948 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8949 			if (rc != MBX_SUCCESS)
8950 				goto out_unset_queue;
8951 			rc = 0;
8952 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
8953 						&mboxq->u.mqe.un.reg_fcfi_mrq);
8954 
8955 			/* Next register the MRQs */
8956 			lpfc_reg_fcfi_mrq(phba, mboxq, 1);
8957 			mboxq->vport = phba->pport;
8958 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8959 			if (rc != MBX_SUCCESS)
8960 				goto out_unset_queue;
8961 			rc = 0;
8962 		}
8963 		/* Check if the port is configured to be disabled */
8964 		lpfc_sli_read_link_ste(phba);
8965 	}
8966 
8967 	/* Don't post more new bufs if repost already recovered
8968 	 * the nvme sgls.
8969 	 */
8970 	if (phba->nvmet_support == 0) {
8971 		if (phba->sli4_hba.io_xri_cnt == 0) {
8972 			len = lpfc_new_io_buf(
8973 					      phba, phba->sli4_hba.io_xri_max);
8974 			if (len == 0) {
8975 				rc = -ENOMEM;
8976 				goto out_unset_queue;
8977 			}
8978 
8979 			if (phba->cfg_xri_rebalancing)
8980 				lpfc_create_multixri_pools(phba);
8981 		}
8982 	} else {
8983 		phba->cfg_xri_rebalancing = 0;
8984 	}
8985 
8986 	/* Allow asynchronous mailbox command to go through */
8987 	spin_lock_irq(&phba->hbalock);
8988 	phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8989 	spin_unlock_irq(&phba->hbalock);
8990 
8991 	/* Post receive buffers to the device */
8992 	lpfc_sli4_rb_setup(phba);
8993 
8994 	/* Reset HBA FCF states after HBA reset */
8995 	phba->fcf.fcf_flag = 0;
8996 	phba->fcf.current_rec.flag = 0;
8997 
8998 	/* Start the ELS watchdog timer */
8999 	mod_timer(&vport->els_tmofunc,
9000 		  jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
9001 
9002 	/* Start heart beat timer */
9003 	mod_timer(&phba->hb_tmofunc,
9004 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
9005 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
9006 	phba->last_completion_time = jiffies;
9007 
9008 	/* start eq_delay heartbeat */
9009 	if (phba->cfg_auto_imax)
9010 		queue_delayed_work(phba->wq, &phba->eq_delay_work,
9011 				   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
9012 
9013 	/* start per phba idle_stat_delay heartbeat */
9014 	lpfc_init_idle_stat_hb(phba);
9015 
9016 	/* Start error attention (ERATT) polling timer */
9017 	mod_timer(&phba->eratt_poll,
9018 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
9019 
9020 	/*
9021 	 * The port is ready, set the host's link state to LINK_DOWN
9022 	 * in preparation for link interrupts.
9023 	 */
9024 	spin_lock_irq(&phba->hbalock);
9025 	phba->link_state = LPFC_LINK_DOWN;
9026 
9027 	/* Check if physical ports are trunked */
9028 	if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
9029 		phba->trunk_link.link0.state = LPFC_LINK_DOWN;
9030 	if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
9031 		phba->trunk_link.link1.state = LPFC_LINK_DOWN;
9032 	if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
9033 		phba->trunk_link.link2.state = LPFC_LINK_DOWN;
9034 	if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
9035 		phba->trunk_link.link3.state = LPFC_LINK_DOWN;
9036 	spin_unlock_irq(&phba->hbalock);
9037 
9038 	/* Arm the CQs and then EQs on device */
9039 	lpfc_sli4_arm_cqeq_intr(phba);
9040 
9041 	/* Indicate device interrupt mode */
9042 	phba->sli4_hba.intr_enable = 1;
9043 
9044 	/* Setup CMF after HBA is initialized */
9045 	lpfc_cmf_setup(phba);
9046 
9047 	if (!(phba->hba_flag & HBA_FCOE_MODE) &&
9048 	    (phba->hba_flag & LINK_DISABLED)) {
9049 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9050 				"3103 Adapter Link is disabled.\n");
9051 		lpfc_down_link(phba, mboxq);
9052 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
9053 		if (rc != MBX_SUCCESS) {
9054 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9055 					"3104 Adapter failed to issue "
9056 					"DOWN_LINK mbox cmd, rc:x%x\n", rc);
9057 			goto out_io_buff_free;
9058 		}
9059 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
9060 		/* don't perform init_link on SLI4 FC port loopback test */
9061 		if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
9062 			rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
9063 			if (rc)
9064 				goto out_io_buff_free;
9065 		}
9066 	}
9067 	mempool_free(mboxq, phba->mbox_mem_pool);
9068 
9069 	/* Enable RAS FW log support */
9070 	lpfc_sli4_ras_setup(phba);
9071 
9072 	phba->hba_flag |= HBA_SETUP;
9073 	return rc;
9074 
9075 out_io_buff_free:
9076 	/* Free allocated IO Buffers */
9077 	lpfc_io_free(phba);
9078 out_unset_queue:
9079 	/* Unset all the queues set up in this routine when error out */
9080 	lpfc_sli4_queue_unset(phba);
9081 out_free_iocblist:
9082 	lpfc_free_iocb_list(phba);
9083 out_destroy_queue:
9084 	lpfc_sli4_queue_destroy(phba);
9085 out_stop_timers:
9086 	lpfc_stop_hba_timers(phba);
9087 out_free_mbox:
9088 	mempool_free(mboxq, phba->mbox_mem_pool);
9089 	return rc;
9090 }
9091 
9092 /**
9093  * lpfc_mbox_timeout - Timeout call back function for mbox timer
9094  * @t: Context to fetch pointer to hba structure from.
9095  *
9096  * This is the callback function for mailbox timer. The mailbox
9097  * timer is armed when a new mailbox command is issued and the timer
9098  * is deleted when the mailbox complete. The function is called by
9099  * the kernel timer code when a mailbox does not complete within
9100  * expected time. This function wakes up the worker thread to
9101  * process the mailbox timeout and returns. All the processing is
9102  * done by the worker thread function lpfc_mbox_timeout_handler.
9103  **/
9104 void
9105 lpfc_mbox_timeout(struct timer_list *t)
9106 {
9107 	struct lpfc_hba  *phba = from_timer(phba, t, sli.mbox_tmo);
9108 	unsigned long iflag;
9109 	uint32_t tmo_posted;
9110 
9111 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
9112 	tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
9113 	if (!tmo_posted)
9114 		phba->pport->work_port_events |= WORKER_MBOX_TMO;
9115 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
9116 
9117 	if (!tmo_posted)
9118 		lpfc_worker_wake_up(phba);
9119 	return;
9120 }
9121 
9122 /**
9123  * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
9124  *                                    are pending
9125  * @phba: Pointer to HBA context object.
9126  *
9127  * This function checks if any mailbox completions are present on the mailbox
9128  * completion queue.
9129  **/
9130 static bool
9131 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
9132 {
9133 
9134 	uint32_t idx;
9135 	struct lpfc_queue *mcq;
9136 	struct lpfc_mcqe *mcqe;
9137 	bool pending_completions = false;
9138 	uint8_t	qe_valid;
9139 
9140 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
9141 		return false;
9142 
9143 	/* Check for completions on mailbox completion queue */
9144 
9145 	mcq = phba->sli4_hba.mbx_cq;
9146 	idx = mcq->hba_index;
9147 	qe_valid = mcq->qe_valid;
9148 	while (bf_get_le32(lpfc_cqe_valid,
9149 	       (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
9150 		mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
9151 		if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
9152 		    (!bf_get_le32(lpfc_trailer_async, mcqe))) {
9153 			pending_completions = true;
9154 			break;
9155 		}
9156 		idx = (idx + 1) % mcq->entry_count;
9157 		if (mcq->hba_index == idx)
9158 			break;
9159 
9160 		/* if the index wrapped around, toggle the valid bit */
9161 		if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
9162 			qe_valid = (qe_valid) ? 0 : 1;
9163 	}
9164 	return pending_completions;
9165 
9166 }
9167 
9168 /**
9169  * lpfc_sli4_process_missed_mbox_completions - process mbox completions
9170  *					      that were missed.
9171  * @phba: Pointer to HBA context object.
9172  *
9173  * For sli4, it is possible to miss an interrupt. As such mbox completions
9174  * maybe missed causing erroneous mailbox timeouts to occur. This function
9175  * checks to see if mbox completions are on the mailbox completion queue
9176  * and will process all the completions associated with the eq for the
9177  * mailbox completion queue.
9178  **/
9179 static bool
9180 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
9181 {
9182 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
9183 	uint32_t eqidx;
9184 	struct lpfc_queue *fpeq = NULL;
9185 	struct lpfc_queue *eq;
9186 	bool mbox_pending;
9187 
9188 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
9189 		return false;
9190 
9191 	/* Find the EQ associated with the mbox CQ */
9192 	if (sli4_hba->hdwq) {
9193 		for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
9194 			eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
9195 			if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
9196 				fpeq = eq;
9197 				break;
9198 			}
9199 		}
9200 	}
9201 	if (!fpeq)
9202 		return false;
9203 
9204 	/* Turn off interrupts from this EQ */
9205 
9206 	sli4_hba->sli4_eq_clr_intr(fpeq);
9207 
9208 	/* Check to see if a mbox completion is pending */
9209 
9210 	mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
9211 
9212 	/*
9213 	 * If a mbox completion is pending, process all the events on EQ
9214 	 * associated with the mbox completion queue (this could include
9215 	 * mailbox commands, async events, els commands, receive queue data
9216 	 * and fcp commands)
9217 	 */
9218 
9219 	if (mbox_pending)
9220 		/* process and rearm the EQ */
9221 		lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
9222 	else
9223 		/* Always clear and re-arm the EQ */
9224 		sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
9225 
9226 	return mbox_pending;
9227 
9228 }
9229 
9230 /**
9231  * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
9232  * @phba: Pointer to HBA context object.
9233  *
9234  * This function is called from worker thread when a mailbox command times out.
9235  * The caller is not required to hold any locks. This function will reset the
9236  * HBA and recover all the pending commands.
9237  **/
9238 void
9239 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
9240 {
9241 	LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
9242 	MAILBOX_t *mb = NULL;
9243 
9244 	struct lpfc_sli *psli = &phba->sli;
9245 
9246 	/* If the mailbox completed, process the completion */
9247 	lpfc_sli4_process_missed_mbox_completions(phba);
9248 
9249 	if (!(psli->sli_flag & LPFC_SLI_ACTIVE))
9250 		return;
9251 
9252 	if (pmbox != NULL)
9253 		mb = &pmbox->u.mb;
9254 	/* Check the pmbox pointer first.  There is a race condition
9255 	 * between the mbox timeout handler getting executed in the
9256 	 * worklist and the mailbox actually completing. When this
9257 	 * race condition occurs, the mbox_active will be NULL.
9258 	 */
9259 	spin_lock_irq(&phba->hbalock);
9260 	if (pmbox == NULL) {
9261 		lpfc_printf_log(phba, KERN_WARNING,
9262 				LOG_MBOX | LOG_SLI,
9263 				"0353 Active Mailbox cleared - mailbox timeout "
9264 				"exiting\n");
9265 		spin_unlock_irq(&phba->hbalock);
9266 		return;
9267 	}
9268 
9269 	/* Mbox cmd <mbxCommand> timeout */
9270 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9271 			"0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
9272 			mb->mbxCommand,
9273 			phba->pport->port_state,
9274 			phba->sli.sli_flag,
9275 			phba->sli.mbox_active);
9276 	spin_unlock_irq(&phba->hbalock);
9277 
9278 	/* Setting state unknown so lpfc_sli_abort_iocb_ring
9279 	 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
9280 	 * it to fail all outstanding SCSI IO.
9281 	 */
9282 	spin_lock_irq(&phba->pport->work_port_lock);
9283 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
9284 	spin_unlock_irq(&phba->pport->work_port_lock);
9285 	spin_lock_irq(&phba->hbalock);
9286 	phba->link_state = LPFC_LINK_UNKNOWN;
9287 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
9288 	spin_unlock_irq(&phba->hbalock);
9289 
9290 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9291 			"0345 Resetting board due to mailbox timeout\n");
9292 
9293 	/* Reset the HBA device */
9294 	lpfc_reset_hba(phba);
9295 }
9296 
9297 /**
9298  * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
9299  * @phba: Pointer to HBA context object.
9300  * @pmbox: Pointer to mailbox object.
9301  * @flag: Flag indicating how the mailbox need to be processed.
9302  *
9303  * This function is called by discovery code and HBA management code
9304  * to submit a mailbox command to firmware with SLI-3 interface spec. This
9305  * function gets the hbalock to protect the data structures.
9306  * The mailbox command can be submitted in polling mode, in which case
9307  * this function will wait in a polling loop for the completion of the
9308  * mailbox.
9309  * If the mailbox is submitted in no_wait mode (not polling) the
9310  * function will submit the command and returns immediately without waiting
9311  * for the mailbox completion. The no_wait is supported only when HBA
9312  * is in SLI2/SLI3 mode - interrupts are enabled.
9313  * The SLI interface allows only one mailbox pending at a time. If the
9314  * mailbox is issued in polling mode and there is already a mailbox
9315  * pending, then the function will return an error. If the mailbox is issued
9316  * in NO_WAIT mode and there is a mailbox pending already, the function
9317  * will return MBX_BUSY after queuing the mailbox into mailbox queue.
9318  * The sli layer owns the mailbox object until the completion of mailbox
9319  * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
9320  * return codes the caller owns the mailbox command after the return of
9321  * the function.
9322  **/
9323 static int
9324 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
9325 		       uint32_t flag)
9326 {
9327 	MAILBOX_t *mbx;
9328 	struct lpfc_sli *psli = &phba->sli;
9329 	uint32_t status, evtctr;
9330 	uint32_t ha_copy, hc_copy;
9331 	int i;
9332 	unsigned long timeout;
9333 	unsigned long drvr_flag = 0;
9334 	uint32_t word0, ldata;
9335 	void __iomem *to_slim;
9336 	int processing_queue = 0;
9337 
9338 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
9339 	if (!pmbox) {
9340 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9341 		/* processing mbox queue from intr_handler */
9342 		if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9343 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9344 			return MBX_SUCCESS;
9345 		}
9346 		processing_queue = 1;
9347 		pmbox = lpfc_mbox_get(phba);
9348 		if (!pmbox) {
9349 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9350 			return MBX_SUCCESS;
9351 		}
9352 	}
9353 
9354 	if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
9355 		pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
9356 		if(!pmbox->vport) {
9357 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9358 			lpfc_printf_log(phba, KERN_ERR,
9359 					LOG_MBOX | LOG_VPORT,
9360 					"1806 Mbox x%x failed. No vport\n",
9361 					pmbox->u.mb.mbxCommand);
9362 			dump_stack();
9363 			goto out_not_finished;
9364 		}
9365 	}
9366 
9367 	/* If the PCI channel is in offline state, do not post mbox. */
9368 	if (unlikely(pci_channel_offline(phba->pcidev))) {
9369 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9370 		goto out_not_finished;
9371 	}
9372 
9373 	/* If HBA has a deferred error attention, fail the iocb. */
9374 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
9375 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9376 		goto out_not_finished;
9377 	}
9378 
9379 	psli = &phba->sli;
9380 
9381 	mbx = &pmbox->u.mb;
9382 	status = MBX_SUCCESS;
9383 
9384 	if (phba->link_state == LPFC_HBA_ERROR) {
9385 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9386 
9387 		/* Mbox command <mbxCommand> cannot issue */
9388 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9389 				"(%d):0311 Mailbox command x%x cannot "
9390 				"issue Data: x%x x%x\n",
9391 				pmbox->vport ? pmbox->vport->vpi : 0,
9392 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
9393 		goto out_not_finished;
9394 	}
9395 
9396 	if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
9397 		if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
9398 			!(hc_copy & HC_MBINT_ENA)) {
9399 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9400 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9401 				"(%d):2528 Mailbox command x%x cannot "
9402 				"issue Data: x%x x%x\n",
9403 				pmbox->vport ? pmbox->vport->vpi : 0,
9404 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
9405 			goto out_not_finished;
9406 		}
9407 	}
9408 
9409 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9410 		/* Polling for a mbox command when another one is already active
9411 		 * is not allowed in SLI. Also, the driver must have established
9412 		 * SLI2 mode to queue and process multiple mbox commands.
9413 		 */
9414 
9415 		if (flag & MBX_POLL) {
9416 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9417 
9418 			/* Mbox command <mbxCommand> cannot issue */
9419 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9420 					"(%d):2529 Mailbox command x%x "
9421 					"cannot issue Data: x%x x%x\n",
9422 					pmbox->vport ? pmbox->vport->vpi : 0,
9423 					pmbox->u.mb.mbxCommand,
9424 					psli->sli_flag, flag);
9425 			goto out_not_finished;
9426 		}
9427 
9428 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
9429 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9430 			/* Mbox command <mbxCommand> cannot issue */
9431 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9432 					"(%d):2530 Mailbox command x%x "
9433 					"cannot issue Data: x%x x%x\n",
9434 					pmbox->vport ? pmbox->vport->vpi : 0,
9435 					pmbox->u.mb.mbxCommand,
9436 					psli->sli_flag, flag);
9437 			goto out_not_finished;
9438 		}
9439 
9440 		/* Another mailbox command is still being processed, queue this
9441 		 * command to be processed later.
9442 		 */
9443 		lpfc_mbox_put(phba, pmbox);
9444 
9445 		/* Mbox cmd issue - BUSY */
9446 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9447 				"(%d):0308 Mbox cmd issue - BUSY Data: "
9448 				"x%x x%x x%x x%x\n",
9449 				pmbox->vport ? pmbox->vport->vpi : 0xffffff,
9450 				mbx->mbxCommand,
9451 				phba->pport ? phba->pport->port_state : 0xff,
9452 				psli->sli_flag, flag);
9453 
9454 		psli->slistat.mbox_busy++;
9455 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9456 
9457 		if (pmbox->vport) {
9458 			lpfc_debugfs_disc_trc(pmbox->vport,
9459 				LPFC_DISC_TRC_MBOX_VPORT,
9460 				"MBOX Bsy vport:  cmd:x%x mb:x%x x%x",
9461 				(uint32_t)mbx->mbxCommand,
9462 				mbx->un.varWords[0], mbx->un.varWords[1]);
9463 		}
9464 		else {
9465 			lpfc_debugfs_disc_trc(phba->pport,
9466 				LPFC_DISC_TRC_MBOX,
9467 				"MBOX Bsy:        cmd:x%x mb:x%x x%x",
9468 				(uint32_t)mbx->mbxCommand,
9469 				mbx->un.varWords[0], mbx->un.varWords[1]);
9470 		}
9471 
9472 		return MBX_BUSY;
9473 	}
9474 
9475 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9476 
9477 	/* If we are not polling, we MUST be in SLI2 mode */
9478 	if (flag != MBX_POLL) {
9479 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
9480 		    (mbx->mbxCommand != MBX_KILL_BOARD)) {
9481 			psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9482 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9483 			/* Mbox command <mbxCommand> cannot issue */
9484 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9485 					"(%d):2531 Mailbox command x%x "
9486 					"cannot issue Data: x%x x%x\n",
9487 					pmbox->vport ? pmbox->vport->vpi : 0,
9488 					pmbox->u.mb.mbxCommand,
9489 					psli->sli_flag, flag);
9490 			goto out_not_finished;
9491 		}
9492 		/* timeout active mbox command */
9493 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
9494 					   1000);
9495 		mod_timer(&psli->mbox_tmo, jiffies + timeout);
9496 	}
9497 
9498 	/* Mailbox cmd <cmd> issue */
9499 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9500 			"(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
9501 			"x%x\n",
9502 			pmbox->vport ? pmbox->vport->vpi : 0,
9503 			mbx->mbxCommand,
9504 			phba->pport ? phba->pport->port_state : 0xff,
9505 			psli->sli_flag, flag);
9506 
9507 	if (mbx->mbxCommand != MBX_HEARTBEAT) {
9508 		if (pmbox->vport) {
9509 			lpfc_debugfs_disc_trc(pmbox->vport,
9510 				LPFC_DISC_TRC_MBOX_VPORT,
9511 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
9512 				(uint32_t)mbx->mbxCommand,
9513 				mbx->un.varWords[0], mbx->un.varWords[1]);
9514 		}
9515 		else {
9516 			lpfc_debugfs_disc_trc(phba->pport,
9517 				LPFC_DISC_TRC_MBOX,
9518 				"MBOX Send:       cmd:x%x mb:x%x x%x",
9519 				(uint32_t)mbx->mbxCommand,
9520 				mbx->un.varWords[0], mbx->un.varWords[1]);
9521 		}
9522 	}
9523 
9524 	psli->slistat.mbox_cmd++;
9525 	evtctr = psli->slistat.mbox_event;
9526 
9527 	/* next set own bit for the adapter and copy over command word */
9528 	mbx->mbxOwner = OWN_CHIP;
9529 
9530 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9531 		/* Populate mbox extension offset word. */
9532 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
9533 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
9534 				= (uint8_t *)phba->mbox_ext
9535 				  - (uint8_t *)phba->mbox;
9536 		}
9537 
9538 		/* Copy the mailbox extension data */
9539 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
9540 			lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
9541 					      (uint8_t *)phba->mbox_ext,
9542 					      pmbox->in_ext_byte_len);
9543 		}
9544 		/* Copy command data to host SLIM area */
9545 		lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
9546 	} else {
9547 		/* Populate mbox extension offset word. */
9548 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
9549 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
9550 				= MAILBOX_HBA_EXT_OFFSET;
9551 
9552 		/* Copy the mailbox extension data */
9553 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
9554 			lpfc_memcpy_to_slim(phba->MBslimaddr +
9555 				MAILBOX_HBA_EXT_OFFSET,
9556 				pmbox->ctx_buf, pmbox->in_ext_byte_len);
9557 
9558 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
9559 			/* copy command data into host mbox for cmpl */
9560 			lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
9561 					      MAILBOX_CMD_SIZE);
9562 
9563 		/* First copy mbox command data to HBA SLIM, skip past first
9564 		   word */
9565 		to_slim = phba->MBslimaddr + sizeof (uint32_t);
9566 		lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
9567 			    MAILBOX_CMD_SIZE - sizeof (uint32_t));
9568 
9569 		/* Next copy over first word, with mbxOwner set */
9570 		ldata = *((uint32_t *)mbx);
9571 		to_slim = phba->MBslimaddr;
9572 		writel(ldata, to_slim);
9573 		readl(to_slim); /* flush */
9574 
9575 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
9576 			/* switch over to host mailbox */
9577 			psli->sli_flag |= LPFC_SLI_ACTIVE;
9578 	}
9579 
9580 	wmb();
9581 
9582 	switch (flag) {
9583 	case MBX_NOWAIT:
9584 		/* Set up reference to mailbox command */
9585 		psli->mbox_active = pmbox;
9586 		/* Interrupt board to do it */
9587 		writel(CA_MBATT, phba->CAregaddr);
9588 		readl(phba->CAregaddr); /* flush */
9589 		/* Don't wait for it to finish, just return */
9590 		break;
9591 
9592 	case MBX_POLL:
9593 		/* Set up null reference to mailbox command */
9594 		psli->mbox_active = NULL;
9595 		/* Interrupt board to do it */
9596 		writel(CA_MBATT, phba->CAregaddr);
9597 		readl(phba->CAregaddr); /* flush */
9598 
9599 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9600 			/* First read mbox status word */
9601 			word0 = *((uint32_t *)phba->mbox);
9602 			word0 = le32_to_cpu(word0);
9603 		} else {
9604 			/* First read mbox status word */
9605 			if (lpfc_readl(phba->MBslimaddr, &word0)) {
9606 				spin_unlock_irqrestore(&phba->hbalock,
9607 						       drvr_flag);
9608 				goto out_not_finished;
9609 			}
9610 		}
9611 
9612 		/* Read the HBA Host Attention Register */
9613 		if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
9614 			spin_unlock_irqrestore(&phba->hbalock,
9615 						       drvr_flag);
9616 			goto out_not_finished;
9617 		}
9618 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
9619 							1000) + jiffies;
9620 		i = 0;
9621 		/* Wait for command to complete */
9622 		while (((word0 & OWN_CHIP) == OWN_CHIP) ||
9623 		       (!(ha_copy & HA_MBATT) &&
9624 			(phba->link_state > LPFC_WARM_START))) {
9625 			if (time_after(jiffies, timeout)) {
9626 				psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9627 				spin_unlock_irqrestore(&phba->hbalock,
9628 						       drvr_flag);
9629 				goto out_not_finished;
9630 			}
9631 
9632 			/* Check if we took a mbox interrupt while we were
9633 			   polling */
9634 			if (((word0 & OWN_CHIP) != OWN_CHIP)
9635 			    && (evtctr != psli->slistat.mbox_event))
9636 				break;
9637 
9638 			if (i++ > 10) {
9639 				spin_unlock_irqrestore(&phba->hbalock,
9640 						       drvr_flag);
9641 				msleep(1);
9642 				spin_lock_irqsave(&phba->hbalock, drvr_flag);
9643 			}
9644 
9645 			if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9646 				/* First copy command data */
9647 				word0 = *((uint32_t *)phba->mbox);
9648 				word0 = le32_to_cpu(word0);
9649 				if (mbx->mbxCommand == MBX_CONFIG_PORT) {
9650 					MAILBOX_t *slimmb;
9651 					uint32_t slimword0;
9652 					/* Check real SLIM for any errors */
9653 					slimword0 = readl(phba->MBslimaddr);
9654 					slimmb = (MAILBOX_t *) & slimword0;
9655 					if (((slimword0 & OWN_CHIP) != OWN_CHIP)
9656 					    && slimmb->mbxStatus) {
9657 						psli->sli_flag &=
9658 						    ~LPFC_SLI_ACTIVE;
9659 						word0 = slimword0;
9660 					}
9661 				}
9662 			} else {
9663 				/* First copy command data */
9664 				word0 = readl(phba->MBslimaddr);
9665 			}
9666 			/* Read the HBA Host Attention Register */
9667 			if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
9668 				spin_unlock_irqrestore(&phba->hbalock,
9669 						       drvr_flag);
9670 				goto out_not_finished;
9671 			}
9672 		}
9673 
9674 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9675 			/* copy results back to user */
9676 			lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
9677 						MAILBOX_CMD_SIZE);
9678 			/* Copy the mailbox extension data */
9679 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
9680 				lpfc_sli_pcimem_bcopy(phba->mbox_ext,
9681 						      pmbox->ctx_buf,
9682 						      pmbox->out_ext_byte_len);
9683 			}
9684 		} else {
9685 			/* First copy command data */
9686 			lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
9687 						MAILBOX_CMD_SIZE);
9688 			/* Copy the mailbox extension data */
9689 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
9690 				lpfc_memcpy_from_slim(
9691 					pmbox->ctx_buf,
9692 					phba->MBslimaddr +
9693 					MAILBOX_HBA_EXT_OFFSET,
9694 					pmbox->out_ext_byte_len);
9695 			}
9696 		}
9697 
9698 		writel(HA_MBATT, phba->HAregaddr);
9699 		readl(phba->HAregaddr); /* flush */
9700 
9701 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9702 		status = mbx->mbxStatus;
9703 	}
9704 
9705 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9706 	return status;
9707 
9708 out_not_finished:
9709 	if (processing_queue) {
9710 		pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
9711 		lpfc_mbox_cmpl_put(phba, pmbox);
9712 	}
9713 	return MBX_NOT_FINISHED;
9714 }
9715 
9716 /**
9717  * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
9718  * @phba: Pointer to HBA context object.
9719  *
9720  * The function blocks the posting of SLI4 asynchronous mailbox commands from
9721  * the driver internal pending mailbox queue. It will then try to wait out the
9722  * possible outstanding mailbox command before return.
9723  *
9724  * Returns:
9725  * 	0 - the outstanding mailbox command completed; otherwise, the wait for
9726  * 	the outstanding mailbox command timed out.
9727  **/
9728 static int
9729 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
9730 {
9731 	struct lpfc_sli *psli = &phba->sli;
9732 	LPFC_MBOXQ_t *mboxq;
9733 	int rc = 0;
9734 	unsigned long timeout = 0;
9735 	u32 sli_flag;
9736 	u8 cmd, subsys, opcode;
9737 
9738 	/* Mark the asynchronous mailbox command posting as blocked */
9739 	spin_lock_irq(&phba->hbalock);
9740 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
9741 	/* Determine how long we might wait for the active mailbox
9742 	 * command to be gracefully completed by firmware.
9743 	 */
9744 	if (phba->sli.mbox_active)
9745 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
9746 						phba->sli.mbox_active) *
9747 						1000) + jiffies;
9748 	spin_unlock_irq(&phba->hbalock);
9749 
9750 	/* Make sure the mailbox is really active */
9751 	if (timeout)
9752 		lpfc_sli4_process_missed_mbox_completions(phba);
9753 
9754 	/* Wait for the outstanding mailbox command to complete */
9755 	while (phba->sli.mbox_active) {
9756 		/* Check active mailbox complete status every 2ms */
9757 		msleep(2);
9758 		if (time_after(jiffies, timeout)) {
9759 			/* Timeout, mark the outstanding cmd not complete */
9760 
9761 			/* Sanity check sli.mbox_active has not completed or
9762 			 * cancelled from another context during last 2ms sleep,
9763 			 * so take hbalock to be sure before logging.
9764 			 */
9765 			spin_lock_irq(&phba->hbalock);
9766 			if (phba->sli.mbox_active) {
9767 				mboxq = phba->sli.mbox_active;
9768 				cmd = mboxq->u.mb.mbxCommand;
9769 				subsys = lpfc_sli_config_mbox_subsys_get(phba,
9770 									 mboxq);
9771 				opcode = lpfc_sli_config_mbox_opcode_get(phba,
9772 									 mboxq);
9773 				sli_flag = psli->sli_flag;
9774 				spin_unlock_irq(&phba->hbalock);
9775 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9776 						"2352 Mailbox command x%x "
9777 						"(x%x/x%x) sli_flag x%x could "
9778 						"not complete\n",
9779 						cmd, subsys, opcode,
9780 						sli_flag);
9781 			} else {
9782 				spin_unlock_irq(&phba->hbalock);
9783 			}
9784 
9785 			rc = 1;
9786 			break;
9787 		}
9788 	}
9789 
9790 	/* Can not cleanly block async mailbox command, fails it */
9791 	if (rc) {
9792 		spin_lock_irq(&phba->hbalock);
9793 		psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9794 		spin_unlock_irq(&phba->hbalock);
9795 	}
9796 	return rc;
9797 }
9798 
9799 /**
9800  * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
9801  * @phba: Pointer to HBA context object.
9802  *
9803  * The function unblocks and resume posting of SLI4 asynchronous mailbox
9804  * commands from the driver internal pending mailbox queue. It makes sure
9805  * that there is no outstanding mailbox command before resuming posting
9806  * asynchronous mailbox commands. If, for any reason, there is outstanding
9807  * mailbox command, it will try to wait it out before resuming asynchronous
9808  * mailbox command posting.
9809  **/
9810 static void
9811 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
9812 {
9813 	struct lpfc_sli *psli = &phba->sli;
9814 
9815 	spin_lock_irq(&phba->hbalock);
9816 	if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9817 		/* Asynchronous mailbox posting is not blocked, do nothing */
9818 		spin_unlock_irq(&phba->hbalock);
9819 		return;
9820 	}
9821 
9822 	/* Outstanding synchronous mailbox command is guaranteed to be done,
9823 	 * successful or timeout, after timing-out the outstanding mailbox
9824 	 * command shall always be removed, so just unblock posting async
9825 	 * mailbox command and resume
9826 	 */
9827 	psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9828 	spin_unlock_irq(&phba->hbalock);
9829 
9830 	/* wake up worker thread to post asynchronous mailbox command */
9831 	lpfc_worker_wake_up(phba);
9832 }
9833 
9834 /**
9835  * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
9836  * @phba: Pointer to HBA context object.
9837  * @mboxq: Pointer to mailbox object.
9838  *
9839  * The function waits for the bootstrap mailbox register ready bit from
9840  * port for twice the regular mailbox command timeout value.
9841  *
9842  *      0 - no timeout on waiting for bootstrap mailbox register ready.
9843  *      MBXERR_ERROR - wait for bootstrap mailbox register timed out or port
9844  *                     is in an unrecoverable state.
9845  **/
9846 static int
9847 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
9848 {
9849 	uint32_t db_ready;
9850 	unsigned long timeout;
9851 	struct lpfc_register bmbx_reg;
9852 	struct lpfc_register portstat_reg = {-1};
9853 
9854 	/* Sanity check - there is no point to wait if the port is in an
9855 	 * unrecoverable state.
9856 	 */
9857 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
9858 	    LPFC_SLI_INTF_IF_TYPE_2) {
9859 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9860 			       &portstat_reg.word0) ||
9861 		    lpfc_sli4_unrecoverable_port(&portstat_reg)) {
9862 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9863 					"3858 Skipping bmbx ready because "
9864 					"Port Status x%x\n",
9865 					portstat_reg.word0);
9866 			return MBXERR_ERROR;
9867 		}
9868 	}
9869 
9870 	timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
9871 				   * 1000) + jiffies;
9872 
9873 	do {
9874 		bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
9875 		db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
9876 		if (!db_ready)
9877 			mdelay(2);
9878 
9879 		if (time_after(jiffies, timeout))
9880 			return MBXERR_ERROR;
9881 	} while (!db_ready);
9882 
9883 	return 0;
9884 }
9885 
9886 /**
9887  * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
9888  * @phba: Pointer to HBA context object.
9889  * @mboxq: Pointer to mailbox object.
9890  *
9891  * The function posts a mailbox to the port.  The mailbox is expected
9892  * to be comletely filled in and ready for the port to operate on it.
9893  * This routine executes a synchronous completion operation on the
9894  * mailbox by polling for its completion.
9895  *
9896  * The caller must not be holding any locks when calling this routine.
9897  *
9898  * Returns:
9899  *	MBX_SUCCESS - mailbox posted successfully
9900  *	Any of the MBX error values.
9901  **/
9902 static int
9903 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
9904 {
9905 	int rc = MBX_SUCCESS;
9906 	unsigned long iflag;
9907 	uint32_t mcqe_status;
9908 	uint32_t mbx_cmnd;
9909 	struct lpfc_sli *psli = &phba->sli;
9910 	struct lpfc_mqe *mb = &mboxq->u.mqe;
9911 	struct lpfc_bmbx_create *mbox_rgn;
9912 	struct dma_address *dma_address;
9913 
9914 	/*
9915 	 * Only one mailbox can be active to the bootstrap mailbox region
9916 	 * at a time and there is no queueing provided.
9917 	 */
9918 	spin_lock_irqsave(&phba->hbalock, iflag);
9919 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9920 		spin_unlock_irqrestore(&phba->hbalock, iflag);
9921 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9922 				"(%d):2532 Mailbox command x%x (x%x/x%x) "
9923 				"cannot issue Data: x%x x%x\n",
9924 				mboxq->vport ? mboxq->vport->vpi : 0,
9925 				mboxq->u.mb.mbxCommand,
9926 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9927 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9928 				psli->sli_flag, MBX_POLL);
9929 		return MBXERR_ERROR;
9930 	}
9931 	/* The server grabs the token and owns it until release */
9932 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9933 	phba->sli.mbox_active = mboxq;
9934 	spin_unlock_irqrestore(&phba->hbalock, iflag);
9935 
9936 	/* wait for bootstrap mbox register for readyness */
9937 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9938 	if (rc)
9939 		goto exit;
9940 	/*
9941 	 * Initialize the bootstrap memory region to avoid stale data areas
9942 	 * in the mailbox post.  Then copy the caller's mailbox contents to
9943 	 * the bmbx mailbox region.
9944 	 */
9945 	mbx_cmnd = bf_get(lpfc_mqe_command, mb);
9946 	memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
9947 	lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
9948 			       sizeof(struct lpfc_mqe));
9949 
9950 	/* Post the high mailbox dma address to the port and wait for ready. */
9951 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9952 	writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
9953 
9954 	/* wait for bootstrap mbox register for hi-address write done */
9955 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9956 	if (rc)
9957 		goto exit;
9958 
9959 	/* Post the low mailbox dma address to the port. */
9960 	writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
9961 
9962 	/* wait for bootstrap mbox register for low address write done */
9963 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9964 	if (rc)
9965 		goto exit;
9966 
9967 	/*
9968 	 * Read the CQ to ensure the mailbox has completed.
9969 	 * If so, update the mailbox status so that the upper layers
9970 	 * can complete the request normally.
9971 	 */
9972 	lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
9973 			       sizeof(struct lpfc_mqe));
9974 	mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
9975 	lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
9976 			       sizeof(struct lpfc_mcqe));
9977 	mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
9978 	/*
9979 	 * When the CQE status indicates a failure and the mailbox status
9980 	 * indicates success then copy the CQE status into the mailbox status
9981 	 * (and prefix it with x4000).
9982 	 */
9983 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
9984 		if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
9985 			bf_set(lpfc_mqe_status, mb,
9986 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
9987 		rc = MBXERR_ERROR;
9988 	} else
9989 		lpfc_sli4_swap_str(phba, mboxq);
9990 
9991 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9992 			"(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
9993 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
9994 			" x%x x%x CQ: x%x x%x x%x x%x\n",
9995 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
9996 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9997 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9998 			bf_get(lpfc_mqe_status, mb),
9999 			mb->un.mb_words[0], mb->un.mb_words[1],
10000 			mb->un.mb_words[2], mb->un.mb_words[3],
10001 			mb->un.mb_words[4], mb->un.mb_words[5],
10002 			mb->un.mb_words[6], mb->un.mb_words[7],
10003 			mb->un.mb_words[8], mb->un.mb_words[9],
10004 			mb->un.mb_words[10], mb->un.mb_words[11],
10005 			mb->un.mb_words[12], mboxq->mcqe.word0,
10006 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
10007 			mboxq->mcqe.trailer);
10008 exit:
10009 	/* We are holding the token, no needed for lock when release */
10010 	spin_lock_irqsave(&phba->hbalock, iflag);
10011 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10012 	phba->sli.mbox_active = NULL;
10013 	spin_unlock_irqrestore(&phba->hbalock, iflag);
10014 	return rc;
10015 }
10016 
10017 /**
10018  * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
10019  * @phba: Pointer to HBA context object.
10020  * @mboxq: Pointer to mailbox object.
10021  * @flag: Flag indicating how the mailbox need to be processed.
10022  *
10023  * This function is called by discovery code and HBA management code to submit
10024  * a mailbox command to firmware with SLI-4 interface spec.
10025  *
10026  * Return codes the caller owns the mailbox command after the return of the
10027  * function.
10028  **/
10029 static int
10030 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
10031 		       uint32_t flag)
10032 {
10033 	struct lpfc_sli *psli = &phba->sli;
10034 	unsigned long iflags;
10035 	int rc;
10036 
10037 	/* dump from issue mailbox command if setup */
10038 	lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
10039 
10040 	rc = lpfc_mbox_dev_check(phba);
10041 	if (unlikely(rc)) {
10042 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10043 				"(%d):2544 Mailbox command x%x (x%x/x%x) "
10044 				"cannot issue Data: x%x x%x\n",
10045 				mboxq->vport ? mboxq->vport->vpi : 0,
10046 				mboxq->u.mb.mbxCommand,
10047 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10048 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10049 				psli->sli_flag, flag);
10050 		goto out_not_finished;
10051 	}
10052 
10053 	/* Detect polling mode and jump to a handler */
10054 	if (!phba->sli4_hba.intr_enable) {
10055 		if (flag == MBX_POLL)
10056 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
10057 		else
10058 			rc = -EIO;
10059 		if (rc != MBX_SUCCESS)
10060 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
10061 					"(%d):2541 Mailbox command x%x "
10062 					"(x%x/x%x) failure: "
10063 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
10064 					"Data: x%x x%x\n",
10065 					mboxq->vport ? mboxq->vport->vpi : 0,
10066 					mboxq->u.mb.mbxCommand,
10067 					lpfc_sli_config_mbox_subsys_get(phba,
10068 									mboxq),
10069 					lpfc_sli_config_mbox_opcode_get(phba,
10070 									mboxq),
10071 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
10072 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
10073 					bf_get(lpfc_mcqe_ext_status,
10074 					       &mboxq->mcqe),
10075 					psli->sli_flag, flag);
10076 		return rc;
10077 	} else if (flag == MBX_POLL) {
10078 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
10079 				"(%d):2542 Try to issue mailbox command "
10080 				"x%x (x%x/x%x) synchronously ahead of async "
10081 				"mailbox command queue: x%x x%x\n",
10082 				mboxq->vport ? mboxq->vport->vpi : 0,
10083 				mboxq->u.mb.mbxCommand,
10084 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10085 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10086 				psli->sli_flag, flag);
10087 		/* Try to block the asynchronous mailbox posting */
10088 		rc = lpfc_sli4_async_mbox_block(phba);
10089 		if (!rc) {
10090 			/* Successfully blocked, now issue sync mbox cmd */
10091 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
10092 			if (rc != MBX_SUCCESS)
10093 				lpfc_printf_log(phba, KERN_WARNING,
10094 					LOG_MBOX | LOG_SLI,
10095 					"(%d):2597 Sync Mailbox command "
10096 					"x%x (x%x/x%x) failure: "
10097 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
10098 					"Data: x%x x%x\n",
10099 					mboxq->vport ? mboxq->vport->vpi : 0,
10100 					mboxq->u.mb.mbxCommand,
10101 					lpfc_sli_config_mbox_subsys_get(phba,
10102 									mboxq),
10103 					lpfc_sli_config_mbox_opcode_get(phba,
10104 									mboxq),
10105 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
10106 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
10107 					bf_get(lpfc_mcqe_ext_status,
10108 					       &mboxq->mcqe),
10109 					psli->sli_flag, flag);
10110 			/* Unblock the async mailbox posting afterward */
10111 			lpfc_sli4_async_mbox_unblock(phba);
10112 		}
10113 		return rc;
10114 	}
10115 
10116 	/* Now, interrupt mode asynchronous mailbox command */
10117 	rc = lpfc_mbox_cmd_check(phba, mboxq);
10118 	if (rc) {
10119 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10120 				"(%d):2543 Mailbox command x%x (x%x/x%x) "
10121 				"cannot issue Data: x%x x%x\n",
10122 				mboxq->vport ? mboxq->vport->vpi : 0,
10123 				mboxq->u.mb.mbxCommand,
10124 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10125 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10126 				psli->sli_flag, flag);
10127 		goto out_not_finished;
10128 	}
10129 
10130 	/* Put the mailbox command to the driver internal FIFO */
10131 	psli->slistat.mbox_busy++;
10132 	spin_lock_irqsave(&phba->hbalock, iflags);
10133 	lpfc_mbox_put(phba, mboxq);
10134 	spin_unlock_irqrestore(&phba->hbalock, iflags);
10135 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
10136 			"(%d):0354 Mbox cmd issue - Enqueue Data: "
10137 			"x%x (x%x/x%x) x%x x%x x%x\n",
10138 			mboxq->vport ? mboxq->vport->vpi : 0xffffff,
10139 			bf_get(lpfc_mqe_command, &mboxq->u.mqe),
10140 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10141 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10142 			phba->pport->port_state,
10143 			psli->sli_flag, MBX_NOWAIT);
10144 	/* Wake up worker thread to transport mailbox command from head */
10145 	lpfc_worker_wake_up(phba);
10146 
10147 	return MBX_BUSY;
10148 
10149 out_not_finished:
10150 	return MBX_NOT_FINISHED;
10151 }
10152 
10153 /**
10154  * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
10155  * @phba: Pointer to HBA context object.
10156  *
10157  * This function is called by worker thread to send a mailbox command to
10158  * SLI4 HBA firmware.
10159  *
10160  **/
10161 int
10162 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
10163 {
10164 	struct lpfc_sli *psli = &phba->sli;
10165 	LPFC_MBOXQ_t *mboxq;
10166 	int rc = MBX_SUCCESS;
10167 	unsigned long iflags;
10168 	struct lpfc_mqe *mqe;
10169 	uint32_t mbx_cmnd;
10170 
10171 	/* Check interrupt mode before post async mailbox command */
10172 	if (unlikely(!phba->sli4_hba.intr_enable))
10173 		return MBX_NOT_FINISHED;
10174 
10175 	/* Check for mailbox command service token */
10176 	spin_lock_irqsave(&phba->hbalock, iflags);
10177 	if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
10178 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10179 		return MBX_NOT_FINISHED;
10180 	}
10181 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
10182 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10183 		return MBX_NOT_FINISHED;
10184 	}
10185 	if (unlikely(phba->sli.mbox_active)) {
10186 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10187 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10188 				"0384 There is pending active mailbox cmd\n");
10189 		return MBX_NOT_FINISHED;
10190 	}
10191 	/* Take the mailbox command service token */
10192 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
10193 
10194 	/* Get the next mailbox command from head of queue */
10195 	mboxq = lpfc_mbox_get(phba);
10196 
10197 	/* If no more mailbox command waiting for post, we're done */
10198 	if (!mboxq) {
10199 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10200 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10201 		return MBX_SUCCESS;
10202 	}
10203 	phba->sli.mbox_active = mboxq;
10204 	spin_unlock_irqrestore(&phba->hbalock, iflags);
10205 
10206 	/* Check device readiness for posting mailbox command */
10207 	rc = lpfc_mbox_dev_check(phba);
10208 	if (unlikely(rc))
10209 		/* Driver clean routine will clean up pending mailbox */
10210 		goto out_not_finished;
10211 
10212 	/* Prepare the mbox command to be posted */
10213 	mqe = &mboxq->u.mqe;
10214 	mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
10215 
10216 	/* Start timer for the mbox_tmo and log some mailbox post messages */
10217 	mod_timer(&psli->mbox_tmo, (jiffies +
10218 		  msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
10219 
10220 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
10221 			"(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
10222 			"x%x x%x\n",
10223 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
10224 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10225 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10226 			phba->pport->port_state, psli->sli_flag);
10227 
10228 	if (mbx_cmnd != MBX_HEARTBEAT) {
10229 		if (mboxq->vport) {
10230 			lpfc_debugfs_disc_trc(mboxq->vport,
10231 				LPFC_DISC_TRC_MBOX_VPORT,
10232 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
10233 				mbx_cmnd, mqe->un.mb_words[0],
10234 				mqe->un.mb_words[1]);
10235 		} else {
10236 			lpfc_debugfs_disc_trc(phba->pport,
10237 				LPFC_DISC_TRC_MBOX,
10238 				"MBOX Send: cmd:x%x mb:x%x x%x",
10239 				mbx_cmnd, mqe->un.mb_words[0],
10240 				mqe->un.mb_words[1]);
10241 		}
10242 	}
10243 	psli->slistat.mbox_cmd++;
10244 
10245 	/* Post the mailbox command to the port */
10246 	rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
10247 	if (rc != MBX_SUCCESS) {
10248 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10249 				"(%d):2533 Mailbox command x%x (x%x/x%x) "
10250 				"cannot issue Data: x%x x%x\n",
10251 				mboxq->vport ? mboxq->vport->vpi : 0,
10252 				mboxq->u.mb.mbxCommand,
10253 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10254 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10255 				psli->sli_flag, MBX_NOWAIT);
10256 		goto out_not_finished;
10257 	}
10258 
10259 	return rc;
10260 
10261 out_not_finished:
10262 	spin_lock_irqsave(&phba->hbalock, iflags);
10263 	if (phba->sli.mbox_active) {
10264 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
10265 		__lpfc_mbox_cmpl_put(phba, mboxq);
10266 		/* Release the token */
10267 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10268 		phba->sli.mbox_active = NULL;
10269 	}
10270 	spin_unlock_irqrestore(&phba->hbalock, iflags);
10271 
10272 	return MBX_NOT_FINISHED;
10273 }
10274 
10275 /**
10276  * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
10277  * @phba: Pointer to HBA context object.
10278  * @pmbox: Pointer to mailbox object.
10279  * @flag: Flag indicating how the mailbox need to be processed.
10280  *
10281  * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
10282  * the API jump table function pointer from the lpfc_hba struct.
10283  *
10284  * Return codes the caller owns the mailbox command after the return of the
10285  * function.
10286  **/
10287 int
10288 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
10289 {
10290 	return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
10291 }
10292 
10293 /**
10294  * lpfc_mbox_api_table_setup - Set up mbox api function jump table
10295  * @phba: The hba struct for which this call is being executed.
10296  * @dev_grp: The HBA PCI-Device group number.
10297  *
10298  * This routine sets up the mbox interface API function jump table in @phba
10299  * struct.
10300  * Returns: 0 - success, -ENODEV - failure.
10301  **/
10302 int
10303 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
10304 {
10305 
10306 	switch (dev_grp) {
10307 	case LPFC_PCI_DEV_LP:
10308 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
10309 		phba->lpfc_sli_handle_slow_ring_event =
10310 				lpfc_sli_handle_slow_ring_event_s3;
10311 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
10312 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
10313 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
10314 		break;
10315 	case LPFC_PCI_DEV_OC:
10316 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
10317 		phba->lpfc_sli_handle_slow_ring_event =
10318 				lpfc_sli_handle_slow_ring_event_s4;
10319 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
10320 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
10321 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
10322 		break;
10323 	default:
10324 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10325 				"1420 Invalid HBA PCI-device group: 0x%x\n",
10326 				dev_grp);
10327 		return -ENODEV;
10328 	}
10329 	return 0;
10330 }
10331 
10332 /**
10333  * __lpfc_sli_ringtx_put - Add an iocb to the txq
10334  * @phba: Pointer to HBA context object.
10335  * @pring: Pointer to driver SLI ring object.
10336  * @piocb: Pointer to address of newly added command iocb.
10337  *
10338  * This function is called with hbalock held for SLI3 ports or
10339  * the ring lock held for SLI4 ports to add a command
10340  * iocb to the txq when SLI layer cannot submit the command iocb
10341  * to the ring.
10342  **/
10343 void
10344 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10345 		    struct lpfc_iocbq *piocb)
10346 {
10347 	if (phba->sli_rev == LPFC_SLI_REV4)
10348 		lockdep_assert_held(&pring->ring_lock);
10349 	else
10350 		lockdep_assert_held(&phba->hbalock);
10351 	/* Insert the caller's iocb in the txq tail for later processing. */
10352 	list_add_tail(&piocb->list, &pring->txq);
10353 }
10354 
10355 /**
10356  * lpfc_sli_next_iocb - Get the next iocb in the txq
10357  * @phba: Pointer to HBA context object.
10358  * @pring: Pointer to driver SLI ring object.
10359  * @piocb: Pointer to address of newly added command iocb.
10360  *
10361  * This function is called with hbalock held before a new
10362  * iocb is submitted to the firmware. This function checks
10363  * txq to flush the iocbs in txq to Firmware before
10364  * submitting new iocbs to the Firmware.
10365  * If there are iocbs in the txq which need to be submitted
10366  * to firmware, lpfc_sli_next_iocb returns the first element
10367  * of the txq after dequeuing it from txq.
10368  * If there is no iocb in the txq then the function will return
10369  * *piocb and *piocb is set to NULL. Caller needs to check
10370  * *piocb to find if there are more commands in the txq.
10371  **/
10372 static struct lpfc_iocbq *
10373 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10374 		   struct lpfc_iocbq **piocb)
10375 {
10376 	struct lpfc_iocbq * nextiocb;
10377 
10378 	lockdep_assert_held(&phba->hbalock);
10379 
10380 	nextiocb = lpfc_sli_ringtx_get(phba, pring);
10381 	if (!nextiocb) {
10382 		nextiocb = *piocb;
10383 		*piocb = NULL;
10384 	}
10385 
10386 	return nextiocb;
10387 }
10388 
10389 /**
10390  * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
10391  * @phba: Pointer to HBA context object.
10392  * @ring_number: SLI ring number to issue iocb on.
10393  * @piocb: Pointer to command iocb.
10394  * @flag: Flag indicating if this command can be put into txq.
10395  *
10396  * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
10397  * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
10398  * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
10399  * flag is turned on, the function returns IOCB_ERROR. When the link is down,
10400  * this function allows only iocbs for posting buffers. This function finds
10401  * next available slot in the command ring and posts the command to the
10402  * available slot and writes the port attention register to request HBA start
10403  * processing new iocb. If there is no slot available in the ring and
10404  * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
10405  * the function returns IOCB_BUSY.
10406  *
10407  * This function is called with hbalock held. The function will return success
10408  * after it successfully submit the iocb to firmware or after adding to the
10409  * txq.
10410  **/
10411 static int
10412 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
10413 		    struct lpfc_iocbq *piocb, uint32_t flag)
10414 {
10415 	struct lpfc_iocbq *nextiocb;
10416 	IOCB_t *iocb;
10417 	struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
10418 
10419 	lockdep_assert_held(&phba->hbalock);
10420 
10421 	if (piocb->cmd_cmpl && (!piocb->vport) &&
10422 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
10423 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
10424 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10425 				"1807 IOCB x%x failed. No vport\n",
10426 				piocb->iocb.ulpCommand);
10427 		dump_stack();
10428 		return IOCB_ERROR;
10429 	}
10430 
10431 
10432 	/* If the PCI channel is in offline state, do not post iocbs. */
10433 	if (unlikely(pci_channel_offline(phba->pcidev)))
10434 		return IOCB_ERROR;
10435 
10436 	/* If HBA has a deferred error attention, fail the iocb. */
10437 	if (unlikely(phba->hba_flag & DEFER_ERATT))
10438 		return IOCB_ERROR;
10439 
10440 	/*
10441 	 * We should never get an IOCB if we are in a < LINK_DOWN state
10442 	 */
10443 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
10444 		return IOCB_ERROR;
10445 
10446 	/*
10447 	 * Check to see if we are blocking IOCB processing because of a
10448 	 * outstanding event.
10449 	 */
10450 	if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
10451 		goto iocb_busy;
10452 
10453 	if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
10454 		/*
10455 		 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
10456 		 * can be issued if the link is not up.
10457 		 */
10458 		switch (piocb->iocb.ulpCommand) {
10459 		case CMD_QUE_RING_BUF_CN:
10460 		case CMD_QUE_RING_BUF64_CN:
10461 			/*
10462 			 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
10463 			 * completion, cmd_cmpl MUST be 0.
10464 			 */
10465 			if (piocb->cmd_cmpl)
10466 				piocb->cmd_cmpl = NULL;
10467 			fallthrough;
10468 		case CMD_CREATE_XRI_CR:
10469 		case CMD_CLOSE_XRI_CN:
10470 		case CMD_CLOSE_XRI_CX:
10471 			break;
10472 		default:
10473 			goto iocb_busy;
10474 		}
10475 
10476 	/*
10477 	 * For FCP commands, we must be in a state where we can process link
10478 	 * attention events.
10479 	 */
10480 	} else if (unlikely(pring->ringno == LPFC_FCP_RING &&
10481 			    !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
10482 		goto iocb_busy;
10483 	}
10484 
10485 	while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
10486 	       (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
10487 		lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
10488 
10489 	if (iocb)
10490 		lpfc_sli_update_ring(phba, pring);
10491 	else
10492 		lpfc_sli_update_full_ring(phba, pring);
10493 
10494 	if (!piocb)
10495 		return IOCB_SUCCESS;
10496 
10497 	goto out_busy;
10498 
10499  iocb_busy:
10500 	pring->stats.iocb_cmd_delay++;
10501 
10502  out_busy:
10503 
10504 	if (!(flag & SLI_IOCB_RET_IOCB)) {
10505 		__lpfc_sli_ringtx_put(phba, pring, piocb);
10506 		return IOCB_SUCCESS;
10507 	}
10508 
10509 	return IOCB_BUSY;
10510 }
10511 
10512 /**
10513  * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb
10514  * @phba: Pointer to HBA context object.
10515  * @ring_number: SLI ring number to issue wqe on.
10516  * @piocb: Pointer to command iocb.
10517  * @flag: Flag indicating if this command can be put into txq.
10518  *
10519  * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to
10520  * send  an iocb command to an HBA with SLI-3 interface spec.
10521  *
10522  * This function takes the hbalock before invoking the lockless version.
10523  * The function will return success after it successfully submit the wqe to
10524  * firmware or after adding to the txq.
10525  **/
10526 static int
10527 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number,
10528 			   struct lpfc_iocbq *piocb, uint32_t flag)
10529 {
10530 	unsigned long iflags;
10531 	int rc;
10532 
10533 	spin_lock_irqsave(&phba->hbalock, iflags);
10534 	rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag);
10535 	spin_unlock_irqrestore(&phba->hbalock, iflags);
10536 
10537 	return rc;
10538 }
10539 
10540 /**
10541  * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe
10542  * @phba: Pointer to HBA context object.
10543  * @ring_number: SLI ring number to issue wqe on.
10544  * @piocb: Pointer to command iocb.
10545  * @flag: Flag indicating if this command can be put into txq.
10546  *
10547  * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue
10548  * an wqe command to an HBA with SLI-4 interface spec.
10549  *
10550  * This function is a lockless version. The function will return success
10551  * after it successfully submit the wqe to firmware or after adding to the
10552  * txq.
10553  **/
10554 static int
10555 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number,
10556 			   struct lpfc_iocbq *piocb, uint32_t flag)
10557 {
10558 	struct lpfc_io_buf *lpfc_cmd = piocb->io_buf;
10559 
10560 	lpfc_prep_embed_io(phba, lpfc_cmd);
10561 	return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb);
10562 }
10563 
10564 void
10565 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd)
10566 {
10567 	struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq;
10568 	union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe;
10569 	struct sli4_sge *sgl;
10570 
10571 	/* 128 byte wqe support here */
10572 	sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
10573 
10574 	if (phba->fcp_embed_io) {
10575 		struct fcp_cmnd *fcp_cmnd;
10576 		u32 *ptr;
10577 
10578 		fcp_cmnd = lpfc_cmd->fcp_cmnd;
10579 
10580 		/* Word 0-2 - FCP_CMND */
10581 		wqe->generic.bde.tus.f.bdeFlags =
10582 			BUFF_TYPE_BDE_IMMED;
10583 		wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
10584 		wqe->generic.bde.addrHigh = 0;
10585 		wqe->generic.bde.addrLow =  88;  /* Word 22 */
10586 
10587 		bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10588 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
10589 
10590 		/* Word 22-29  FCP CMND Payload */
10591 		ptr = &wqe->words[22];
10592 		memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
10593 	} else {
10594 		/* Word 0-2 - Inline BDE */
10595 		wqe->generic.bde.tus.f.bdeFlags =  BUFF_TYPE_BDE_64;
10596 		wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd);
10597 		wqe->generic.bde.addrHigh = sgl->addr_hi;
10598 		wqe->generic.bde.addrLow =  sgl->addr_lo;
10599 
10600 		/* Word 10 */
10601 		bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
10602 		bf_set(wqe_wqes, &wqe->generic.wqe_com, 0);
10603 	}
10604 
10605 	/* add the VMID tags as per switch response */
10606 	if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) {
10607 		if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) {
10608 			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
10609 			bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
10610 					(piocb->vmid_tag.cs_ctl_vmid));
10611 		} else if (phba->cfg_vmid_app_header) {
10612 			bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1);
10613 			bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10614 			wqe->words[31] = piocb->vmid_tag.app_id;
10615 		}
10616 	}
10617 }
10618 
10619 /**
10620  * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
10621  * @phba: Pointer to HBA context object.
10622  * @ring_number: SLI ring number to issue iocb on.
10623  * @piocb: Pointer to command iocb.
10624  * @flag: Flag indicating if this command can be put into txq.
10625  *
10626  * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
10627  * an iocb command to an HBA with SLI-4 interface spec.
10628  *
10629  * This function is called with ringlock held. The function will return success
10630  * after it successfully submit the iocb to firmware or after adding to the
10631  * txq.
10632  **/
10633 static int
10634 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
10635 			 struct lpfc_iocbq *piocb, uint32_t flag)
10636 {
10637 	struct lpfc_sglq *sglq;
10638 	union lpfc_wqe128 *wqe;
10639 	struct lpfc_queue *wq;
10640 	struct lpfc_sli_ring *pring;
10641 	u32 ulp_command = get_job_cmnd(phba, piocb);
10642 
10643 	/* Get the WQ */
10644 	if ((piocb->cmd_flag & LPFC_IO_FCP) ||
10645 	    (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) {
10646 		wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
10647 	} else {
10648 		wq = phba->sli4_hba.els_wq;
10649 	}
10650 
10651 	/* Get corresponding ring */
10652 	pring = wq->pring;
10653 
10654 	/*
10655 	 * The WQE can be either 64 or 128 bytes,
10656 	 */
10657 
10658 	lockdep_assert_held(&pring->ring_lock);
10659 	wqe = &piocb->wqe;
10660 	if (piocb->sli4_xritag == NO_XRI) {
10661 		if (ulp_command == CMD_ABORT_XRI_CX)
10662 			sglq = NULL;
10663 		else {
10664 			sglq = __lpfc_sli_get_els_sglq(phba, piocb);
10665 			if (!sglq) {
10666 				if (!(flag & SLI_IOCB_RET_IOCB)) {
10667 					__lpfc_sli_ringtx_put(phba,
10668 							pring,
10669 							piocb);
10670 					return IOCB_SUCCESS;
10671 				} else {
10672 					return IOCB_BUSY;
10673 				}
10674 			}
10675 		}
10676 	} else if (piocb->cmd_flag &  LPFC_IO_FCP) {
10677 		/* These IO's already have an XRI and a mapped sgl. */
10678 		sglq = NULL;
10679 	}
10680 	else {
10681 		/*
10682 		 * This is a continuation of a commandi,(CX) so this
10683 		 * sglq is on the active list
10684 		 */
10685 		sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
10686 		if (!sglq)
10687 			return IOCB_ERROR;
10688 	}
10689 
10690 	if (sglq) {
10691 		piocb->sli4_lxritag = sglq->sli4_lxritag;
10692 		piocb->sli4_xritag = sglq->sli4_xritag;
10693 
10694 		/* ABTS sent by initiator to CT exchange, the
10695 		 * RX_ID field will be filled with the newly
10696 		 * allocated responder XRI.
10697 		 */
10698 		if (ulp_command == CMD_XMIT_BLS_RSP64_CX &&
10699 		    piocb->abort_bls == LPFC_ABTS_UNSOL_INT)
10700 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
10701 			       piocb->sli4_xritag);
10702 
10703 		bf_set(wqe_xri_tag, &wqe->generic.wqe_com,
10704 		       piocb->sli4_xritag);
10705 
10706 		if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI)
10707 			return IOCB_ERROR;
10708 	}
10709 
10710 	if (lpfc_sli4_wq_put(wq, wqe))
10711 		return IOCB_ERROR;
10712 
10713 	lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
10714 
10715 	return 0;
10716 }
10717 
10718 /*
10719  * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o
10720  *
10721  * This routine wraps the actual fcp i/o function for issusing WQE for sli-4
10722  * or IOCB for sli-3  function.
10723  * pointer from the lpfc_hba struct.
10724  *
10725  * Return codes:
10726  * IOCB_ERROR - Error
10727  * IOCB_SUCCESS - Success
10728  * IOCB_BUSY - Busy
10729  **/
10730 int
10731 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number,
10732 		      struct lpfc_iocbq *piocb, uint32_t flag)
10733 {
10734 	return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag);
10735 }
10736 
10737 /*
10738  * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
10739  *
10740  * This routine wraps the actual lockless version for issusing IOCB function
10741  * pointer from the lpfc_hba struct.
10742  *
10743  * Return codes:
10744  * IOCB_ERROR - Error
10745  * IOCB_SUCCESS - Success
10746  * IOCB_BUSY - Busy
10747  **/
10748 int
10749 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10750 		struct lpfc_iocbq *piocb, uint32_t flag)
10751 {
10752 	return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10753 }
10754 
10755 static void
10756 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq,
10757 			       struct lpfc_vport *vport,
10758 			       struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did,
10759 			       u32 elscmd, u8 tmo, u8 expect_rsp)
10760 {
10761 	struct lpfc_hba *phba = vport->phba;
10762 	IOCB_t *cmd;
10763 
10764 	cmd = &cmdiocbq->iocb;
10765 	memset(cmd, 0, sizeof(*cmd));
10766 
10767 	cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
10768 	cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys);
10769 	cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
10770 
10771 	if (expect_rsp) {
10772 		cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64));
10773 		cmd->un.elsreq64.remoteID = did; /* DID */
10774 		cmd->ulpCommand = CMD_ELS_REQUEST64_CR;
10775 		cmd->ulpTimeout = tmo;
10776 	} else {
10777 		cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64);
10778 		cmd->un.genreq64.xmit_els_remoteID = did; /* DID */
10779 		cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX;
10780 		cmd->ulpPU = PARM_NPIV_DID;
10781 	}
10782 	cmd->ulpBdeCount = 1;
10783 	cmd->ulpLe = 1;
10784 	cmd->ulpClass = CLASS3;
10785 
10786 	/* If we have NPIV enabled, we want to send ELS traffic by VPI. */
10787 	if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) {
10788 		if (expect_rsp) {
10789 			cmd->un.elsreq64.myID = vport->fc_myDID;
10790 
10791 			/* For ELS_REQUEST64_CR, use the VPI by default */
10792 			cmd->ulpContext = phba->vpi_ids[vport->vpi];
10793 		}
10794 
10795 		cmd->ulpCt_h = 0;
10796 		/* The CT field must be 0=INVALID_RPI for the ECHO cmd */
10797 		if (elscmd == ELS_CMD_ECHO)
10798 			cmd->ulpCt_l = 0; /* context = invalid RPI */
10799 		else
10800 			cmd->ulpCt_l = 1; /* context = VPI */
10801 	}
10802 }
10803 
10804 static void
10805 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq,
10806 			       struct lpfc_vport *vport,
10807 			       struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did,
10808 			       u32 elscmd, u8 tmo, u8 expect_rsp)
10809 {
10810 	struct lpfc_hba  *phba = vport->phba;
10811 	union lpfc_wqe128 *wqe;
10812 	struct ulp_bde64_le *bde;
10813 	u8 els_id;
10814 
10815 	wqe = &cmdiocbq->wqe;
10816 	memset(wqe, 0, sizeof(*wqe));
10817 
10818 	/* Word 0 - 2 BDE */
10819 	bde = (struct ulp_bde64_le *)&wqe->generic.bde;
10820 	bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys));
10821 	bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys));
10822 	bde->type_size = cpu_to_le32(cmd_size);
10823 	bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64);
10824 
10825 	if (expect_rsp) {
10826 		bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE);
10827 
10828 		/* Transfer length */
10829 		wqe->els_req.payload_len = cmd_size;
10830 		wqe->els_req.max_response_payload_len = FCELSSIZE;
10831 
10832 		/* DID */
10833 		bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did);
10834 
10835 		/* Word 11 - ELS_ID */
10836 		switch (elscmd) {
10837 		case ELS_CMD_PLOGI:
10838 			els_id = LPFC_ELS_ID_PLOGI;
10839 			break;
10840 		case ELS_CMD_FLOGI:
10841 			els_id = LPFC_ELS_ID_FLOGI;
10842 			break;
10843 		case ELS_CMD_LOGO:
10844 			els_id = LPFC_ELS_ID_LOGO;
10845 			break;
10846 		case ELS_CMD_FDISC:
10847 			if (!vport->fc_myDID) {
10848 				els_id = LPFC_ELS_ID_FDISC;
10849 				break;
10850 			}
10851 			fallthrough;
10852 		default:
10853 			els_id = LPFC_ELS_ID_DEFAULT;
10854 			break;
10855 		}
10856 
10857 		bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
10858 	} else {
10859 		/* DID */
10860 		bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did);
10861 
10862 		/* Transfer length */
10863 		wqe->xmit_els_rsp.response_payload_len = cmd_size;
10864 
10865 		bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com,
10866 		       CMD_XMIT_ELS_RSP64_WQE);
10867 	}
10868 
10869 	bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo);
10870 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag);
10871 	bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3);
10872 
10873 	/* If we have NPIV enabled, we want to send ELS traffic by VPI.
10874 	 * For SLI4, since the driver controls VPIs we also want to include
10875 	 * all ELS pt2pt protocol traffic as well.
10876 	 */
10877 	if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) ||
10878 	    (vport->fc_flag & FC_PT2PT)) {
10879 		if (expect_rsp) {
10880 			bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID);
10881 
10882 			/* For ELS_REQUEST64_WQE, use the VPI by default */
10883 			bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
10884 			       phba->vpi_ids[vport->vpi]);
10885 		}
10886 
10887 		/* The CT field must be 0=INVALID_RPI for the ECHO cmd */
10888 		if (elscmd == ELS_CMD_ECHO)
10889 			bf_set(wqe_ct, &wqe->generic.wqe_com, 0);
10890 		else
10891 			bf_set(wqe_ct, &wqe->generic.wqe_com, 1);
10892 	}
10893 }
10894 
10895 void
10896 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
10897 			  struct lpfc_vport *vport, struct lpfc_dmabuf *bmp,
10898 			  u16 cmd_size, u32 did, u32 elscmd, u8 tmo,
10899 			  u8 expect_rsp)
10900 {
10901 	phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did,
10902 					  elscmd, tmo, expect_rsp);
10903 }
10904 
10905 static void
10906 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp,
10907 			   u16 rpi, u32 num_entry, u8 tmo)
10908 {
10909 	IOCB_t *cmd;
10910 
10911 	cmd = &cmdiocbq->iocb;
10912 	memset(cmd, 0, sizeof(*cmd));
10913 
10914 	cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
10915 	cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys);
10916 	cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
10917 	cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64);
10918 
10919 	cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL;
10920 	cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT;
10921 	cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA);
10922 
10923 	cmd->ulpContext = rpi;
10924 	cmd->ulpClass = CLASS3;
10925 	cmd->ulpCommand = CMD_GEN_REQUEST64_CR;
10926 	cmd->ulpBdeCount = 1;
10927 	cmd->ulpLe = 1;
10928 	cmd->ulpOwner = OWN_CHIP;
10929 	cmd->ulpTimeout = tmo;
10930 }
10931 
10932 static void
10933 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp,
10934 			   u16 rpi, u32 num_entry, u8 tmo)
10935 {
10936 	union lpfc_wqe128 *cmdwqe;
10937 	struct ulp_bde64_le *bde, *bpl;
10938 	u32 xmit_len = 0, total_len = 0, size, type, i;
10939 
10940 	cmdwqe = &cmdiocbq->wqe;
10941 	memset(cmdwqe, 0, sizeof(*cmdwqe));
10942 
10943 	/* Calculate total_len and xmit_len */
10944 	bpl = (struct ulp_bde64_le *)bmp->virt;
10945 	for (i = 0; i < num_entry; i++) {
10946 		size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK;
10947 		total_len += size;
10948 	}
10949 	for (i = 0; i < num_entry; i++) {
10950 		size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK;
10951 		type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK;
10952 		if (type != ULP_BDE64_TYPE_BDE_64)
10953 			break;
10954 		xmit_len += size;
10955 	}
10956 
10957 	/* Words 0 - 2 */
10958 	bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde;
10959 	bde->addr_low = bpl->addr_low;
10960 	bde->addr_high = bpl->addr_high;
10961 	bde->type_size = cpu_to_le32(xmit_len);
10962 	bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64);
10963 
10964 	/* Word 3 */
10965 	cmdwqe->gen_req.request_payload_len = xmit_len;
10966 
10967 	/* Word 5 */
10968 	bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT);
10969 	bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL);
10970 	bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1);
10971 	bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1);
10972 
10973 	/* Word 6 */
10974 	bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi);
10975 
10976 	/* Word 7 */
10977 	bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo);
10978 	bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3);
10979 	bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR);
10980 	bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI);
10981 
10982 	/* Word 12 */
10983 	cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len;
10984 }
10985 
10986 void
10987 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
10988 		      struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo)
10989 {
10990 	phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo);
10991 }
10992 
10993 static void
10994 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq,
10995 			      struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
10996 			      u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
10997 {
10998 	IOCB_t *icmd;
10999 
11000 	icmd = &cmdiocbq->iocb;
11001 	memset(icmd, 0, sizeof(*icmd));
11002 
11003 	icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
11004 	icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys);
11005 	icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
11006 	icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64));
11007 	icmd->un.xseq64.w5.hcsw.Fctl = LA;
11008 	if (last_seq)
11009 		icmd->un.xseq64.w5.hcsw.Fctl |= LS;
11010 	icmd->un.xseq64.w5.hcsw.Dfctl = 0;
11011 	icmd->un.xseq64.w5.hcsw.Rctl = rctl;
11012 	icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT;
11013 
11014 	icmd->ulpBdeCount = 1;
11015 	icmd->ulpLe = 1;
11016 	icmd->ulpClass = CLASS3;
11017 
11018 	switch (cr_cx_cmd) {
11019 	case CMD_XMIT_SEQUENCE64_CR:
11020 		icmd->ulpContext = rpi;
11021 		icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR;
11022 		break;
11023 	case CMD_XMIT_SEQUENCE64_CX:
11024 		icmd->ulpContext = ox_id;
11025 		icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX;
11026 		break;
11027 	default:
11028 		break;
11029 	}
11030 }
11031 
11032 static void
11033 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq,
11034 			      struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
11035 			      u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
11036 {
11037 	union lpfc_wqe128 *wqe;
11038 	struct ulp_bde64 *bpl;
11039 
11040 	wqe = &cmdiocbq->wqe;
11041 	memset(wqe, 0, sizeof(*wqe));
11042 
11043 	/* Words 0 - 2 */
11044 	bpl = (struct ulp_bde64 *)bmp->virt;
11045 	wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh;
11046 	wqe->xmit_sequence.bde.addrLow = bpl->addrLow;
11047 	wqe->xmit_sequence.bde.tus.w = bpl->tus.w;
11048 
11049 	/* Word 5 */
11050 	bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq);
11051 	bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1);
11052 	bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0);
11053 	bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl);
11054 	bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT);
11055 
11056 	/* Word 6 */
11057 	bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi);
11058 
11059 	bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com,
11060 	       CMD_XMIT_SEQUENCE64_WQE);
11061 
11062 	/* Word 7 */
11063 	bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3);
11064 
11065 	/* Word 9 */
11066 	bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id);
11067 
11068 	/* Word 12 */
11069 	if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK))
11070 		wqe->xmit_sequence.xmit_len = full_size;
11071 	else
11072 		wqe->xmit_sequence.xmit_len =
11073 			wqe->xmit_sequence.bde.tus.f.bdeSize;
11074 }
11075 
11076 void
11077 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
11078 			 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
11079 			 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
11080 {
11081 	phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry,
11082 					 rctl, last_seq, cr_cx_cmd);
11083 }
11084 
11085 static void
11086 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context,
11087 			     u16 iotag, u8 ulp_class, u16 cqid, bool ia,
11088 			     bool wqec)
11089 {
11090 	IOCB_t *icmd = NULL;
11091 
11092 	icmd = &cmdiocbq->iocb;
11093 	memset(icmd, 0, sizeof(*icmd));
11094 
11095 	/* Word 5 */
11096 	icmd->un.acxri.abortContextTag = ulp_context;
11097 	icmd->un.acxri.abortIoTag = iotag;
11098 
11099 	if (ia) {
11100 		/* Word 7 */
11101 		icmd->ulpCommand = CMD_CLOSE_XRI_CN;
11102 	} else {
11103 		/* Word 3 */
11104 		icmd->un.acxri.abortType = ABORT_TYPE_ABTS;
11105 
11106 		/* Word 7 */
11107 		icmd->ulpClass = ulp_class;
11108 		icmd->ulpCommand = CMD_ABORT_XRI_CN;
11109 	}
11110 
11111 	/* Word 7 */
11112 	icmd->ulpLe = 1;
11113 }
11114 
11115 static void
11116 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context,
11117 			     u16 iotag, u8 ulp_class, u16 cqid, bool ia,
11118 			     bool wqec)
11119 {
11120 	union lpfc_wqe128 *wqe;
11121 
11122 	wqe = &cmdiocbq->wqe;
11123 	memset(wqe, 0, sizeof(*wqe));
11124 
11125 	/* Word 3 */
11126 	bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
11127 	if (ia)
11128 		bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
11129 	else
11130 		bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
11131 
11132 	/* Word 7 */
11133 	bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE);
11134 
11135 	/* Word 8 */
11136 	wqe->abort_cmd.wqe_com.abort_tag = ulp_context;
11137 
11138 	/* Word 9 */
11139 	bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag);
11140 
11141 	/* Word 10 */
11142 	bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
11143 
11144 	/* Word 11 */
11145 	if (wqec)
11146 		bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1);
11147 	bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid);
11148 	bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND);
11149 }
11150 
11151 void
11152 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
11153 			u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid,
11154 			bool ia, bool wqec)
11155 {
11156 	phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class,
11157 					cqid, ia, wqec);
11158 }
11159 
11160 /**
11161  * lpfc_sli_api_table_setup - Set up sli api function jump table
11162  * @phba: The hba struct for which this call is being executed.
11163  * @dev_grp: The HBA PCI-Device group number.
11164  *
11165  * This routine sets up the SLI interface API function jump table in @phba
11166  * struct.
11167  * Returns: 0 - success, -ENODEV - failure.
11168  **/
11169 int
11170 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
11171 {
11172 
11173 	switch (dev_grp) {
11174 	case LPFC_PCI_DEV_LP:
11175 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
11176 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
11177 		phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3;
11178 		phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3;
11179 		phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3;
11180 		phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3;
11181 		phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3;
11182 		break;
11183 	case LPFC_PCI_DEV_OC:
11184 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
11185 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
11186 		phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4;
11187 		phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4;
11188 		phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4;
11189 		phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4;
11190 		phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4;
11191 		break;
11192 	default:
11193 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11194 				"1419 Invalid HBA PCI-device group: 0x%x\n",
11195 				dev_grp);
11196 		return -ENODEV;
11197 	}
11198 	return 0;
11199 }
11200 
11201 /**
11202  * lpfc_sli4_calc_ring - Calculates which ring to use
11203  * @phba: Pointer to HBA context object.
11204  * @piocb: Pointer to command iocb.
11205  *
11206  * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
11207  * hba_wqidx, thus we need to calculate the corresponding ring.
11208  * Since ABORTS must go on the same WQ of the command they are
11209  * aborting, we use command's hba_wqidx.
11210  */
11211 struct lpfc_sli_ring *
11212 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
11213 {
11214 	struct lpfc_io_buf *lpfc_cmd;
11215 
11216 	if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
11217 		if (unlikely(!phba->sli4_hba.hdwq))
11218 			return NULL;
11219 		/*
11220 		 * for abort iocb hba_wqidx should already
11221 		 * be setup based on what work queue we used.
11222 		 */
11223 		if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) {
11224 			lpfc_cmd = piocb->io_buf;
11225 			piocb->hba_wqidx = lpfc_cmd->hdwq_no;
11226 		}
11227 		return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
11228 	} else {
11229 		if (unlikely(!phba->sli4_hba.els_wq))
11230 			return NULL;
11231 		piocb->hba_wqidx = 0;
11232 		return phba->sli4_hba.els_wq->pring;
11233 	}
11234 }
11235 
11236 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq)
11237 {
11238 	struct lpfc_hba *phba = eq->phba;
11239 
11240 	/*
11241 	 * Unlocking an irq is one of the entry point to check
11242 	 * for re-schedule, but we are good for io submission
11243 	 * path as midlayer does a get_cpu to glue us in. Flush
11244 	 * out the invalidate queue so we can see the updated
11245 	 * value for flag.
11246 	 */
11247 	smp_rmb();
11248 
11249 	if (READ_ONCE(eq->mode) == LPFC_EQ_POLL)
11250 		/* We will not likely get the completion for the caller
11251 		 * during this iteration but i guess that's fine.
11252 		 * Future io's coming on this eq should be able to
11253 		 * pick it up.  As for the case of single io's, they
11254 		 * will be handled through a sched from polling timer
11255 		 * function which is currently triggered every 1msec.
11256 		 */
11257 		lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM);
11258 }
11259 
11260 /**
11261  * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
11262  * @phba: Pointer to HBA context object.
11263  * @ring_number: Ring number
11264  * @piocb: Pointer to command iocb.
11265  * @flag: Flag indicating if this command can be put into txq.
11266  *
11267  * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
11268  * function. This function gets the hbalock and calls
11269  * __lpfc_sli_issue_iocb function and will return the error returned
11270  * by __lpfc_sli_issue_iocb function. This wrapper is used by
11271  * functions which do not hold hbalock.
11272  **/
11273 int
11274 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
11275 		    struct lpfc_iocbq *piocb, uint32_t flag)
11276 {
11277 	struct lpfc_sli_ring *pring;
11278 	struct lpfc_queue *eq;
11279 	unsigned long iflags;
11280 	int rc;
11281 
11282 	/* If the PCI channel is in offline state, do not post iocbs. */
11283 	if (unlikely(pci_channel_offline(phba->pcidev)))
11284 		return IOCB_ERROR;
11285 
11286 	if (phba->sli_rev == LPFC_SLI_REV4) {
11287 		lpfc_sli_prep_wqe(phba, piocb);
11288 
11289 		eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq;
11290 
11291 		pring = lpfc_sli4_calc_ring(phba, piocb);
11292 		if (unlikely(pring == NULL))
11293 			return IOCB_ERROR;
11294 
11295 		spin_lock_irqsave(&pring->ring_lock, iflags);
11296 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
11297 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
11298 
11299 		lpfc_sli4_poll_eq(eq);
11300 	} else {
11301 		/* For now, SLI2/3 will still use hbalock */
11302 		spin_lock_irqsave(&phba->hbalock, iflags);
11303 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
11304 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11305 	}
11306 	return rc;
11307 }
11308 
11309 /**
11310  * lpfc_extra_ring_setup - Extra ring setup function
11311  * @phba: Pointer to HBA context object.
11312  *
11313  * This function is called while driver attaches with the
11314  * HBA to setup the extra ring. The extra ring is used
11315  * only when driver needs to support target mode functionality
11316  * or IP over FC functionalities.
11317  *
11318  * This function is called with no lock held. SLI3 only.
11319  **/
11320 static int
11321 lpfc_extra_ring_setup( struct lpfc_hba *phba)
11322 {
11323 	struct lpfc_sli *psli;
11324 	struct lpfc_sli_ring *pring;
11325 
11326 	psli = &phba->sli;
11327 
11328 	/* Adjust cmd/rsp ring iocb entries more evenly */
11329 
11330 	/* Take some away from the FCP ring */
11331 	pring = &psli->sli3_ring[LPFC_FCP_RING];
11332 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11333 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11334 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11335 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11336 
11337 	/* and give them to the extra ring */
11338 	pring = &psli->sli3_ring[LPFC_EXTRA_RING];
11339 
11340 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11341 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11342 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11343 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11344 
11345 	/* Setup default profile for this ring */
11346 	pring->iotag_max = 4096;
11347 	pring->num_mask = 1;
11348 	pring->prt[0].profile = 0;      /* Mask 0 */
11349 	pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
11350 	pring->prt[0].type = phba->cfg_multi_ring_type;
11351 	pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
11352 	return 0;
11353 }
11354 
11355 static void
11356 lpfc_sli_post_recovery_event(struct lpfc_hba *phba,
11357 			     struct lpfc_nodelist *ndlp)
11358 {
11359 	unsigned long iflags;
11360 	struct lpfc_work_evt  *evtp = &ndlp->recovery_evt;
11361 
11362 	spin_lock_irqsave(&phba->hbalock, iflags);
11363 	if (!list_empty(&evtp->evt_listp)) {
11364 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11365 		return;
11366 	}
11367 
11368 	/* Incrementing the reference count until the queued work is done. */
11369 	evtp->evt_arg1  = lpfc_nlp_get(ndlp);
11370 	if (!evtp->evt_arg1) {
11371 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11372 		return;
11373 	}
11374 	evtp->evt = LPFC_EVT_RECOVER_PORT;
11375 	list_add_tail(&evtp->evt_listp, &phba->work_list);
11376 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11377 
11378 	lpfc_worker_wake_up(phba);
11379 }
11380 
11381 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
11382  * @phba: Pointer to HBA context object.
11383  * @iocbq: Pointer to iocb object.
11384  *
11385  * The async_event handler calls this routine when it receives
11386  * an ASYNC_STATUS_CN event from the port.  The port generates
11387  * this event when an Abort Sequence request to an rport fails
11388  * twice in succession.  The abort could be originated by the
11389  * driver or by the port.  The ABTS could have been for an ELS
11390  * or FCP IO.  The port only generates this event when an ABTS
11391  * fails to complete after one retry.
11392  */
11393 static void
11394 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
11395 			  struct lpfc_iocbq *iocbq)
11396 {
11397 	struct lpfc_nodelist *ndlp = NULL;
11398 	uint16_t rpi = 0, vpi = 0;
11399 	struct lpfc_vport *vport = NULL;
11400 
11401 	/* The rpi in the ulpContext is vport-sensitive. */
11402 	vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
11403 	rpi = iocbq->iocb.ulpContext;
11404 
11405 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11406 			"3092 Port generated ABTS async event "
11407 			"on vpi %d rpi %d status 0x%x\n",
11408 			vpi, rpi, iocbq->iocb.ulpStatus);
11409 
11410 	vport = lpfc_find_vport_by_vpid(phba, vpi);
11411 	if (!vport)
11412 		goto err_exit;
11413 	ndlp = lpfc_findnode_rpi(vport, rpi);
11414 	if (!ndlp)
11415 		goto err_exit;
11416 
11417 	if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
11418 		lpfc_sli_abts_recover_port(vport, ndlp);
11419 	return;
11420 
11421  err_exit:
11422 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11423 			"3095 Event Context not found, no "
11424 			"action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
11425 			vpi, rpi, iocbq->iocb.ulpStatus,
11426 			iocbq->iocb.ulpContext);
11427 }
11428 
11429 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
11430  * @phba: pointer to HBA context object.
11431  * @ndlp: nodelist pointer for the impacted rport.
11432  * @axri: pointer to the wcqe containing the failed exchange.
11433  *
11434  * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
11435  * port.  The port generates this event when an abort exchange request to an
11436  * rport fails twice in succession with no reply.  The abort could be originated
11437  * by the driver or by the port.  The ABTS could have been for an ELS or FCP IO.
11438  */
11439 void
11440 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
11441 			   struct lpfc_nodelist *ndlp,
11442 			   struct sli4_wcqe_xri_aborted *axri)
11443 {
11444 	uint32_t ext_status = 0;
11445 
11446 	if (!ndlp) {
11447 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11448 				"3115 Node Context not found, driver "
11449 				"ignoring abts err event\n");
11450 		return;
11451 	}
11452 
11453 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11454 			"3116 Port generated FCP XRI ABORT event on "
11455 			"vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
11456 			ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
11457 			bf_get(lpfc_wcqe_xa_xri, axri),
11458 			bf_get(lpfc_wcqe_xa_status, axri),
11459 			axri->parameter);
11460 
11461 	/*
11462 	 * Catch the ABTS protocol failure case.  Older OCe FW releases returned
11463 	 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
11464 	 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
11465 	 */
11466 	ext_status = axri->parameter & IOERR_PARAM_MASK;
11467 	if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
11468 	    ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
11469 		lpfc_sli_post_recovery_event(phba, ndlp);
11470 }
11471 
11472 /**
11473  * lpfc_sli_async_event_handler - ASYNC iocb handler function
11474  * @phba: Pointer to HBA context object.
11475  * @pring: Pointer to driver SLI ring object.
11476  * @iocbq: Pointer to iocb object.
11477  *
11478  * This function is called by the slow ring event handler
11479  * function when there is an ASYNC event iocb in the ring.
11480  * This function is called with no lock held.
11481  * Currently this function handles only temperature related
11482  * ASYNC events. The function decodes the temperature sensor
11483  * event message and posts events for the management applications.
11484  **/
11485 static void
11486 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
11487 	struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
11488 {
11489 	IOCB_t *icmd;
11490 	uint16_t evt_code;
11491 	struct temp_event temp_event_data;
11492 	struct Scsi_Host *shost;
11493 	uint32_t *iocb_w;
11494 
11495 	icmd = &iocbq->iocb;
11496 	evt_code = icmd->un.asyncstat.evt_code;
11497 
11498 	switch (evt_code) {
11499 	case ASYNC_TEMP_WARN:
11500 	case ASYNC_TEMP_SAFE:
11501 		temp_event_data.data = (uint32_t) icmd->ulpContext;
11502 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
11503 		if (evt_code == ASYNC_TEMP_WARN) {
11504 			temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
11505 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11506 				"0347 Adapter is very hot, please take "
11507 				"corrective action. temperature : %d Celsius\n",
11508 				(uint32_t) icmd->ulpContext);
11509 		} else {
11510 			temp_event_data.event_code = LPFC_NORMAL_TEMP;
11511 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11512 				"0340 Adapter temperature is OK now. "
11513 				"temperature : %d Celsius\n",
11514 				(uint32_t) icmd->ulpContext);
11515 		}
11516 
11517 		/* Send temperature change event to applications */
11518 		shost = lpfc_shost_from_vport(phba->pport);
11519 		fc_host_post_vendor_event(shost, fc_get_event_number(),
11520 			sizeof(temp_event_data), (char *) &temp_event_data,
11521 			LPFC_NL_VENDOR_ID);
11522 		break;
11523 	case ASYNC_STATUS_CN:
11524 		lpfc_sli_abts_err_handler(phba, iocbq);
11525 		break;
11526 	default:
11527 		iocb_w = (uint32_t *) icmd;
11528 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11529 			"0346 Ring %d handler: unexpected ASYNC_STATUS"
11530 			" evt_code 0x%x\n"
11531 			"W0  0x%08x W1  0x%08x W2  0x%08x W3  0x%08x\n"
11532 			"W4  0x%08x W5  0x%08x W6  0x%08x W7  0x%08x\n"
11533 			"W8  0x%08x W9  0x%08x W10 0x%08x W11 0x%08x\n"
11534 			"W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
11535 			pring->ringno, icmd->un.asyncstat.evt_code,
11536 			iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
11537 			iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
11538 			iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
11539 			iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
11540 
11541 		break;
11542 	}
11543 }
11544 
11545 
11546 /**
11547  * lpfc_sli4_setup - SLI ring setup function
11548  * @phba: Pointer to HBA context object.
11549  *
11550  * lpfc_sli_setup sets up rings of the SLI interface with
11551  * number of iocbs per ring and iotags. This function is
11552  * called while driver attach to the HBA and before the
11553  * interrupts are enabled. So there is no need for locking.
11554  *
11555  * This function always returns 0.
11556  **/
11557 int
11558 lpfc_sli4_setup(struct lpfc_hba *phba)
11559 {
11560 	struct lpfc_sli_ring *pring;
11561 
11562 	pring = phba->sli4_hba.els_wq->pring;
11563 	pring->num_mask = LPFC_MAX_RING_MASK;
11564 	pring->prt[0].profile = 0;	/* Mask 0 */
11565 	pring->prt[0].rctl = FC_RCTL_ELS_REQ;
11566 	pring->prt[0].type = FC_TYPE_ELS;
11567 	pring->prt[0].lpfc_sli_rcv_unsol_event =
11568 	    lpfc_els_unsol_event;
11569 	pring->prt[1].profile = 0;	/* Mask 1 */
11570 	pring->prt[1].rctl = FC_RCTL_ELS_REP;
11571 	pring->prt[1].type = FC_TYPE_ELS;
11572 	pring->prt[1].lpfc_sli_rcv_unsol_event =
11573 	    lpfc_els_unsol_event;
11574 	pring->prt[2].profile = 0;	/* Mask 2 */
11575 	/* NameServer Inquiry */
11576 	pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
11577 	/* NameServer */
11578 	pring->prt[2].type = FC_TYPE_CT;
11579 	pring->prt[2].lpfc_sli_rcv_unsol_event =
11580 	    lpfc_ct_unsol_event;
11581 	pring->prt[3].profile = 0;	/* Mask 3 */
11582 	/* NameServer response */
11583 	pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
11584 	/* NameServer */
11585 	pring->prt[3].type = FC_TYPE_CT;
11586 	pring->prt[3].lpfc_sli_rcv_unsol_event =
11587 	    lpfc_ct_unsol_event;
11588 	return 0;
11589 }
11590 
11591 /**
11592  * lpfc_sli_setup - SLI ring setup function
11593  * @phba: Pointer to HBA context object.
11594  *
11595  * lpfc_sli_setup sets up rings of the SLI interface with
11596  * number of iocbs per ring and iotags. This function is
11597  * called while driver attach to the HBA and before the
11598  * interrupts are enabled. So there is no need for locking.
11599  *
11600  * This function always returns 0. SLI3 only.
11601  **/
11602 int
11603 lpfc_sli_setup(struct lpfc_hba *phba)
11604 {
11605 	int i, totiocbsize = 0;
11606 	struct lpfc_sli *psli = &phba->sli;
11607 	struct lpfc_sli_ring *pring;
11608 
11609 	psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
11610 	psli->sli_flag = 0;
11611 
11612 	psli->iocbq_lookup = NULL;
11613 	psli->iocbq_lookup_len = 0;
11614 	psli->last_iotag = 0;
11615 
11616 	for (i = 0; i < psli->num_rings; i++) {
11617 		pring = &psli->sli3_ring[i];
11618 		switch (i) {
11619 		case LPFC_FCP_RING:	/* ring 0 - FCP */
11620 			/* numCiocb and numRiocb are used in config_port */
11621 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
11622 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
11623 			pring->sli.sli3.numCiocb +=
11624 				SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11625 			pring->sli.sli3.numRiocb +=
11626 				SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11627 			pring->sli.sli3.numCiocb +=
11628 				SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11629 			pring->sli.sli3.numRiocb +=
11630 				SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11631 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11632 							SLI3_IOCB_CMD_SIZE :
11633 							SLI2_IOCB_CMD_SIZE;
11634 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11635 							SLI3_IOCB_RSP_SIZE :
11636 							SLI2_IOCB_RSP_SIZE;
11637 			pring->iotag_ctr = 0;
11638 			pring->iotag_max =
11639 			    (phba->cfg_hba_queue_depth * 2);
11640 			pring->fast_iotag = pring->iotag_max;
11641 			pring->num_mask = 0;
11642 			break;
11643 		case LPFC_EXTRA_RING:	/* ring 1 - EXTRA */
11644 			/* numCiocb and numRiocb are used in config_port */
11645 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
11646 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
11647 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11648 							SLI3_IOCB_CMD_SIZE :
11649 							SLI2_IOCB_CMD_SIZE;
11650 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11651 							SLI3_IOCB_RSP_SIZE :
11652 							SLI2_IOCB_RSP_SIZE;
11653 			pring->iotag_max = phba->cfg_hba_queue_depth;
11654 			pring->num_mask = 0;
11655 			break;
11656 		case LPFC_ELS_RING:	/* ring 2 - ELS / CT */
11657 			/* numCiocb and numRiocb are used in config_port */
11658 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
11659 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
11660 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11661 							SLI3_IOCB_CMD_SIZE :
11662 							SLI2_IOCB_CMD_SIZE;
11663 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11664 							SLI3_IOCB_RSP_SIZE :
11665 							SLI2_IOCB_RSP_SIZE;
11666 			pring->fast_iotag = 0;
11667 			pring->iotag_ctr = 0;
11668 			pring->iotag_max = 4096;
11669 			pring->lpfc_sli_rcv_async_status =
11670 				lpfc_sli_async_event_handler;
11671 			pring->num_mask = LPFC_MAX_RING_MASK;
11672 			pring->prt[0].profile = 0;	/* Mask 0 */
11673 			pring->prt[0].rctl = FC_RCTL_ELS_REQ;
11674 			pring->prt[0].type = FC_TYPE_ELS;
11675 			pring->prt[0].lpfc_sli_rcv_unsol_event =
11676 			    lpfc_els_unsol_event;
11677 			pring->prt[1].profile = 0;	/* Mask 1 */
11678 			pring->prt[1].rctl = FC_RCTL_ELS_REP;
11679 			pring->prt[1].type = FC_TYPE_ELS;
11680 			pring->prt[1].lpfc_sli_rcv_unsol_event =
11681 			    lpfc_els_unsol_event;
11682 			pring->prt[2].profile = 0;	/* Mask 2 */
11683 			/* NameServer Inquiry */
11684 			pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
11685 			/* NameServer */
11686 			pring->prt[2].type = FC_TYPE_CT;
11687 			pring->prt[2].lpfc_sli_rcv_unsol_event =
11688 			    lpfc_ct_unsol_event;
11689 			pring->prt[3].profile = 0;	/* Mask 3 */
11690 			/* NameServer response */
11691 			pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
11692 			/* NameServer */
11693 			pring->prt[3].type = FC_TYPE_CT;
11694 			pring->prt[3].lpfc_sli_rcv_unsol_event =
11695 			    lpfc_ct_unsol_event;
11696 			break;
11697 		}
11698 		totiocbsize += (pring->sli.sli3.numCiocb *
11699 			pring->sli.sli3.sizeCiocb) +
11700 			(pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
11701 	}
11702 	if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
11703 		/* Too many cmd / rsp ring entries in SLI2 SLIM */
11704 		printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
11705 		       "SLI2 SLIM Data: x%x x%lx\n",
11706 		       phba->brd_no, totiocbsize,
11707 		       (unsigned long) MAX_SLIM_IOCB_SIZE);
11708 	}
11709 	if (phba->cfg_multi_ring_support == 2)
11710 		lpfc_extra_ring_setup(phba);
11711 
11712 	return 0;
11713 }
11714 
11715 /**
11716  * lpfc_sli4_queue_init - Queue initialization function
11717  * @phba: Pointer to HBA context object.
11718  *
11719  * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
11720  * ring. This function also initializes ring indices of each ring.
11721  * This function is called during the initialization of the SLI
11722  * interface of an HBA.
11723  * This function is called with no lock held and always returns
11724  * 1.
11725  **/
11726 void
11727 lpfc_sli4_queue_init(struct lpfc_hba *phba)
11728 {
11729 	struct lpfc_sli *psli;
11730 	struct lpfc_sli_ring *pring;
11731 	int i;
11732 
11733 	psli = &phba->sli;
11734 	spin_lock_irq(&phba->hbalock);
11735 	INIT_LIST_HEAD(&psli->mboxq);
11736 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
11737 	/* Initialize list headers for txq and txcmplq as double linked lists */
11738 	for (i = 0; i < phba->cfg_hdw_queue; i++) {
11739 		pring = phba->sli4_hba.hdwq[i].io_wq->pring;
11740 		pring->flag = 0;
11741 		pring->ringno = LPFC_FCP_RING;
11742 		pring->txcmplq_cnt = 0;
11743 		INIT_LIST_HEAD(&pring->txq);
11744 		INIT_LIST_HEAD(&pring->txcmplq);
11745 		INIT_LIST_HEAD(&pring->iocb_continueq);
11746 		spin_lock_init(&pring->ring_lock);
11747 	}
11748 	pring = phba->sli4_hba.els_wq->pring;
11749 	pring->flag = 0;
11750 	pring->ringno = LPFC_ELS_RING;
11751 	pring->txcmplq_cnt = 0;
11752 	INIT_LIST_HEAD(&pring->txq);
11753 	INIT_LIST_HEAD(&pring->txcmplq);
11754 	INIT_LIST_HEAD(&pring->iocb_continueq);
11755 	spin_lock_init(&pring->ring_lock);
11756 
11757 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11758 		pring = phba->sli4_hba.nvmels_wq->pring;
11759 		pring->flag = 0;
11760 		pring->ringno = LPFC_ELS_RING;
11761 		pring->txcmplq_cnt = 0;
11762 		INIT_LIST_HEAD(&pring->txq);
11763 		INIT_LIST_HEAD(&pring->txcmplq);
11764 		INIT_LIST_HEAD(&pring->iocb_continueq);
11765 		spin_lock_init(&pring->ring_lock);
11766 	}
11767 
11768 	spin_unlock_irq(&phba->hbalock);
11769 }
11770 
11771 /**
11772  * lpfc_sli_queue_init - Queue initialization function
11773  * @phba: Pointer to HBA context object.
11774  *
11775  * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
11776  * ring. This function also initializes ring indices of each ring.
11777  * This function is called during the initialization of the SLI
11778  * interface of an HBA.
11779  * This function is called with no lock held and always returns
11780  * 1.
11781  **/
11782 void
11783 lpfc_sli_queue_init(struct lpfc_hba *phba)
11784 {
11785 	struct lpfc_sli *psli;
11786 	struct lpfc_sli_ring *pring;
11787 	int i;
11788 
11789 	psli = &phba->sli;
11790 	spin_lock_irq(&phba->hbalock);
11791 	INIT_LIST_HEAD(&psli->mboxq);
11792 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
11793 	/* Initialize list headers for txq and txcmplq as double linked lists */
11794 	for (i = 0; i < psli->num_rings; i++) {
11795 		pring = &psli->sli3_ring[i];
11796 		pring->ringno = i;
11797 		pring->sli.sli3.next_cmdidx  = 0;
11798 		pring->sli.sli3.local_getidx = 0;
11799 		pring->sli.sli3.cmdidx = 0;
11800 		INIT_LIST_HEAD(&pring->iocb_continueq);
11801 		INIT_LIST_HEAD(&pring->iocb_continue_saveq);
11802 		INIT_LIST_HEAD(&pring->postbufq);
11803 		pring->flag = 0;
11804 		INIT_LIST_HEAD(&pring->txq);
11805 		INIT_LIST_HEAD(&pring->txcmplq);
11806 		spin_lock_init(&pring->ring_lock);
11807 	}
11808 	spin_unlock_irq(&phba->hbalock);
11809 }
11810 
11811 /**
11812  * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
11813  * @phba: Pointer to HBA context object.
11814  *
11815  * This routine flushes the mailbox command subsystem. It will unconditionally
11816  * flush all the mailbox commands in the three possible stages in the mailbox
11817  * command sub-system: pending mailbox command queue; the outstanding mailbox
11818  * command; and completed mailbox command queue. It is caller's responsibility
11819  * to make sure that the driver is in the proper state to flush the mailbox
11820  * command sub-system. Namely, the posting of mailbox commands into the
11821  * pending mailbox command queue from the various clients must be stopped;
11822  * either the HBA is in a state that it will never works on the outstanding
11823  * mailbox command (such as in EEH or ERATT conditions) or the outstanding
11824  * mailbox command has been completed.
11825  **/
11826 static void
11827 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
11828 {
11829 	LIST_HEAD(completions);
11830 	struct lpfc_sli *psli = &phba->sli;
11831 	LPFC_MBOXQ_t *pmb;
11832 	unsigned long iflag;
11833 
11834 	/* Disable softirqs, including timers from obtaining phba->hbalock */
11835 	local_bh_disable();
11836 
11837 	/* Flush all the mailbox commands in the mbox system */
11838 	spin_lock_irqsave(&phba->hbalock, iflag);
11839 
11840 	/* The pending mailbox command queue */
11841 	list_splice_init(&phba->sli.mboxq, &completions);
11842 	/* The outstanding active mailbox command */
11843 	if (psli->mbox_active) {
11844 		list_add_tail(&psli->mbox_active->list, &completions);
11845 		psli->mbox_active = NULL;
11846 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
11847 	}
11848 	/* The completed mailbox command queue */
11849 	list_splice_init(&phba->sli.mboxq_cmpl, &completions);
11850 	spin_unlock_irqrestore(&phba->hbalock, iflag);
11851 
11852 	/* Enable softirqs again, done with phba->hbalock */
11853 	local_bh_enable();
11854 
11855 	/* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
11856 	while (!list_empty(&completions)) {
11857 		list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
11858 		pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
11859 		if (pmb->mbox_cmpl)
11860 			pmb->mbox_cmpl(phba, pmb);
11861 	}
11862 }
11863 
11864 /**
11865  * lpfc_sli_host_down - Vport cleanup function
11866  * @vport: Pointer to virtual port object.
11867  *
11868  * lpfc_sli_host_down is called to clean up the resources
11869  * associated with a vport before destroying virtual
11870  * port data structures.
11871  * This function does following operations:
11872  * - Free discovery resources associated with this virtual
11873  *   port.
11874  * - Free iocbs associated with this virtual port in
11875  *   the txq.
11876  * - Send abort for all iocb commands associated with this
11877  *   vport in txcmplq.
11878  *
11879  * This function is called with no lock held and always returns 1.
11880  **/
11881 int
11882 lpfc_sli_host_down(struct lpfc_vport *vport)
11883 {
11884 	LIST_HEAD(completions);
11885 	struct lpfc_hba *phba = vport->phba;
11886 	struct lpfc_sli *psli = &phba->sli;
11887 	struct lpfc_queue *qp = NULL;
11888 	struct lpfc_sli_ring *pring;
11889 	struct lpfc_iocbq *iocb, *next_iocb;
11890 	int i;
11891 	unsigned long flags = 0;
11892 	uint16_t prev_pring_flag;
11893 
11894 	lpfc_cleanup_discovery_resources(vport);
11895 
11896 	spin_lock_irqsave(&phba->hbalock, flags);
11897 
11898 	/*
11899 	 * Error everything on the txq since these iocbs
11900 	 * have not been given to the FW yet.
11901 	 * Also issue ABTS for everything on the txcmplq
11902 	 */
11903 	if (phba->sli_rev != LPFC_SLI_REV4) {
11904 		for (i = 0; i < psli->num_rings; i++) {
11905 			pring = &psli->sli3_ring[i];
11906 			prev_pring_flag = pring->flag;
11907 			/* Only slow rings */
11908 			if (pring->ringno == LPFC_ELS_RING) {
11909 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11910 				/* Set the lpfc data pending flag */
11911 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11912 			}
11913 			list_for_each_entry_safe(iocb, next_iocb,
11914 						 &pring->txq, list) {
11915 				if (iocb->vport != vport)
11916 					continue;
11917 				list_move_tail(&iocb->list, &completions);
11918 			}
11919 			list_for_each_entry_safe(iocb, next_iocb,
11920 						 &pring->txcmplq, list) {
11921 				if (iocb->vport != vport)
11922 					continue;
11923 				lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11924 							   NULL);
11925 			}
11926 			pring->flag = prev_pring_flag;
11927 		}
11928 	} else {
11929 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11930 			pring = qp->pring;
11931 			if (!pring)
11932 				continue;
11933 			if (pring == phba->sli4_hba.els_wq->pring) {
11934 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11935 				/* Set the lpfc data pending flag */
11936 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11937 			}
11938 			prev_pring_flag = pring->flag;
11939 			spin_lock(&pring->ring_lock);
11940 			list_for_each_entry_safe(iocb, next_iocb,
11941 						 &pring->txq, list) {
11942 				if (iocb->vport != vport)
11943 					continue;
11944 				list_move_tail(&iocb->list, &completions);
11945 			}
11946 			spin_unlock(&pring->ring_lock);
11947 			list_for_each_entry_safe(iocb, next_iocb,
11948 						 &pring->txcmplq, list) {
11949 				if (iocb->vport != vport)
11950 					continue;
11951 				lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11952 							   NULL);
11953 			}
11954 			pring->flag = prev_pring_flag;
11955 		}
11956 	}
11957 	spin_unlock_irqrestore(&phba->hbalock, flags);
11958 
11959 	/* Make sure HBA is alive */
11960 	lpfc_issue_hb_tmo(phba);
11961 
11962 	/* Cancel all the IOCBs from the completions list */
11963 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
11964 			      IOERR_SLI_DOWN);
11965 	return 1;
11966 }
11967 
11968 /**
11969  * lpfc_sli_hba_down - Resource cleanup function for the HBA
11970  * @phba: Pointer to HBA context object.
11971  *
11972  * This function cleans up all iocb, buffers, mailbox commands
11973  * while shutting down the HBA. This function is called with no
11974  * lock held and always returns 1.
11975  * This function does the following to cleanup driver resources:
11976  * - Free discovery resources for each virtual port
11977  * - Cleanup any pending fabric iocbs
11978  * - Iterate through the iocb txq and free each entry
11979  *   in the list.
11980  * - Free up any buffer posted to the HBA
11981  * - Free mailbox commands in the mailbox queue.
11982  **/
11983 int
11984 lpfc_sli_hba_down(struct lpfc_hba *phba)
11985 {
11986 	LIST_HEAD(completions);
11987 	struct lpfc_sli *psli = &phba->sli;
11988 	struct lpfc_queue *qp = NULL;
11989 	struct lpfc_sli_ring *pring;
11990 	struct lpfc_dmabuf *buf_ptr;
11991 	unsigned long flags = 0;
11992 	int i;
11993 
11994 	/* Shutdown the mailbox command sub-system */
11995 	lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
11996 
11997 	lpfc_hba_down_prep(phba);
11998 
11999 	/* Disable softirqs, including timers from obtaining phba->hbalock */
12000 	local_bh_disable();
12001 
12002 	lpfc_fabric_abort_hba(phba);
12003 
12004 	spin_lock_irqsave(&phba->hbalock, flags);
12005 
12006 	/*
12007 	 * Error everything on the txq since these iocbs
12008 	 * have not been given to the FW yet.
12009 	 */
12010 	if (phba->sli_rev != LPFC_SLI_REV4) {
12011 		for (i = 0; i < psli->num_rings; i++) {
12012 			pring = &psli->sli3_ring[i];
12013 			/* Only slow rings */
12014 			if (pring->ringno == LPFC_ELS_RING) {
12015 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
12016 				/* Set the lpfc data pending flag */
12017 				set_bit(LPFC_DATA_READY, &phba->data_flags);
12018 			}
12019 			list_splice_init(&pring->txq, &completions);
12020 		}
12021 	} else {
12022 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
12023 			pring = qp->pring;
12024 			if (!pring)
12025 				continue;
12026 			spin_lock(&pring->ring_lock);
12027 			list_splice_init(&pring->txq, &completions);
12028 			spin_unlock(&pring->ring_lock);
12029 			if (pring == phba->sli4_hba.els_wq->pring) {
12030 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
12031 				/* Set the lpfc data pending flag */
12032 				set_bit(LPFC_DATA_READY, &phba->data_flags);
12033 			}
12034 		}
12035 	}
12036 	spin_unlock_irqrestore(&phba->hbalock, flags);
12037 
12038 	/* Cancel all the IOCBs from the completions list */
12039 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
12040 			      IOERR_SLI_DOWN);
12041 
12042 	spin_lock_irqsave(&phba->hbalock, flags);
12043 	list_splice_init(&phba->elsbuf, &completions);
12044 	phba->elsbuf_cnt = 0;
12045 	phba->elsbuf_prev_cnt = 0;
12046 	spin_unlock_irqrestore(&phba->hbalock, flags);
12047 
12048 	while (!list_empty(&completions)) {
12049 		list_remove_head(&completions, buf_ptr,
12050 			struct lpfc_dmabuf, list);
12051 		lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
12052 		kfree(buf_ptr);
12053 	}
12054 
12055 	/* Enable softirqs again, done with phba->hbalock */
12056 	local_bh_enable();
12057 
12058 	/* Return any active mbox cmds */
12059 	del_timer_sync(&psli->mbox_tmo);
12060 
12061 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
12062 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
12063 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
12064 
12065 	return 1;
12066 }
12067 
12068 /**
12069  * lpfc_sli_pcimem_bcopy - SLI memory copy function
12070  * @srcp: Source memory pointer.
12071  * @destp: Destination memory pointer.
12072  * @cnt: Number of words required to be copied.
12073  *
12074  * This function is used for copying data between driver memory
12075  * and the SLI memory. This function also changes the endianness
12076  * of each word if native endianness is different from SLI
12077  * endianness. This function can be called with or without
12078  * lock.
12079  **/
12080 void
12081 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
12082 {
12083 	uint32_t *src = srcp;
12084 	uint32_t *dest = destp;
12085 	uint32_t ldata;
12086 	int i;
12087 
12088 	for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
12089 		ldata = *src;
12090 		ldata = le32_to_cpu(ldata);
12091 		*dest = ldata;
12092 		src++;
12093 		dest++;
12094 	}
12095 }
12096 
12097 
12098 /**
12099  * lpfc_sli_bemem_bcopy - SLI memory copy function
12100  * @srcp: Source memory pointer.
12101  * @destp: Destination memory pointer.
12102  * @cnt: Number of words required to be copied.
12103  *
12104  * This function is used for copying data between a data structure
12105  * with big endian representation to local endianness.
12106  * This function can be called with or without lock.
12107  **/
12108 void
12109 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
12110 {
12111 	uint32_t *src = srcp;
12112 	uint32_t *dest = destp;
12113 	uint32_t ldata;
12114 	int i;
12115 
12116 	for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
12117 		ldata = *src;
12118 		ldata = be32_to_cpu(ldata);
12119 		*dest = ldata;
12120 		src++;
12121 		dest++;
12122 	}
12123 }
12124 
12125 /**
12126  * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
12127  * @phba: Pointer to HBA context object.
12128  * @pring: Pointer to driver SLI ring object.
12129  * @mp: Pointer to driver buffer object.
12130  *
12131  * This function is called with no lock held.
12132  * It always return zero after adding the buffer to the postbufq
12133  * buffer list.
12134  **/
12135 int
12136 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12137 			 struct lpfc_dmabuf *mp)
12138 {
12139 	/* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
12140 	   later */
12141 	spin_lock_irq(&phba->hbalock);
12142 	list_add_tail(&mp->list, &pring->postbufq);
12143 	pring->postbufq_cnt++;
12144 	spin_unlock_irq(&phba->hbalock);
12145 	return 0;
12146 }
12147 
12148 /**
12149  * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
12150  * @phba: Pointer to HBA context object.
12151  *
12152  * When HBQ is enabled, buffers are searched based on tags. This function
12153  * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
12154  * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
12155  * does not conflict with tags of buffer posted for unsolicited events.
12156  * The function returns the allocated tag. The function is called with
12157  * no locks held.
12158  **/
12159 uint32_t
12160 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
12161 {
12162 	spin_lock_irq(&phba->hbalock);
12163 	phba->buffer_tag_count++;
12164 	/*
12165 	 * Always set the QUE_BUFTAG_BIT to distiguish between
12166 	 * a tag assigned by HBQ.
12167 	 */
12168 	phba->buffer_tag_count |= QUE_BUFTAG_BIT;
12169 	spin_unlock_irq(&phba->hbalock);
12170 	return phba->buffer_tag_count;
12171 }
12172 
12173 /**
12174  * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
12175  * @phba: Pointer to HBA context object.
12176  * @pring: Pointer to driver SLI ring object.
12177  * @tag: Buffer tag.
12178  *
12179  * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
12180  * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
12181  * iocb is posted to the response ring with the tag of the buffer.
12182  * This function searches the pring->postbufq list using the tag
12183  * to find buffer associated with CMD_IOCB_RET_XRI64_CX
12184  * iocb. If the buffer is found then lpfc_dmabuf object of the
12185  * buffer is returned to the caller else NULL is returned.
12186  * This function is called with no lock held.
12187  **/
12188 struct lpfc_dmabuf *
12189 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12190 			uint32_t tag)
12191 {
12192 	struct lpfc_dmabuf *mp, *next_mp;
12193 	struct list_head *slp = &pring->postbufq;
12194 
12195 	/* Search postbufq, from the beginning, looking for a match on tag */
12196 	spin_lock_irq(&phba->hbalock);
12197 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
12198 		if (mp->buffer_tag == tag) {
12199 			list_del_init(&mp->list);
12200 			pring->postbufq_cnt--;
12201 			spin_unlock_irq(&phba->hbalock);
12202 			return mp;
12203 		}
12204 	}
12205 
12206 	spin_unlock_irq(&phba->hbalock);
12207 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12208 			"0402 Cannot find virtual addr for buffer tag on "
12209 			"ring %d Data x%lx x%px x%px x%x\n",
12210 			pring->ringno, (unsigned long) tag,
12211 			slp->next, slp->prev, pring->postbufq_cnt);
12212 
12213 	return NULL;
12214 }
12215 
12216 /**
12217  * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
12218  * @phba: Pointer to HBA context object.
12219  * @pring: Pointer to driver SLI ring object.
12220  * @phys: DMA address of the buffer.
12221  *
12222  * This function searches the buffer list using the dma_address
12223  * of unsolicited event to find the driver's lpfc_dmabuf object
12224  * corresponding to the dma_address. The function returns the
12225  * lpfc_dmabuf object if a buffer is found else it returns NULL.
12226  * This function is called by the ct and els unsolicited event
12227  * handlers to get the buffer associated with the unsolicited
12228  * event.
12229  *
12230  * This function is called with no lock held.
12231  **/
12232 struct lpfc_dmabuf *
12233 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12234 			 dma_addr_t phys)
12235 {
12236 	struct lpfc_dmabuf *mp, *next_mp;
12237 	struct list_head *slp = &pring->postbufq;
12238 
12239 	/* Search postbufq, from the beginning, looking for a match on phys */
12240 	spin_lock_irq(&phba->hbalock);
12241 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
12242 		if (mp->phys == phys) {
12243 			list_del_init(&mp->list);
12244 			pring->postbufq_cnt--;
12245 			spin_unlock_irq(&phba->hbalock);
12246 			return mp;
12247 		}
12248 	}
12249 
12250 	spin_unlock_irq(&phba->hbalock);
12251 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12252 			"0410 Cannot find virtual addr for mapped buf on "
12253 			"ring %d Data x%llx x%px x%px x%x\n",
12254 			pring->ringno, (unsigned long long)phys,
12255 			slp->next, slp->prev, pring->postbufq_cnt);
12256 	return NULL;
12257 }
12258 
12259 /**
12260  * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
12261  * @phba: Pointer to HBA context object.
12262  * @cmdiocb: Pointer to driver command iocb object.
12263  * @rspiocb: Pointer to driver response iocb object.
12264  *
12265  * This function is the completion handler for the abort iocbs for
12266  * ELS commands. This function is called from the ELS ring event
12267  * handler with no lock held. This function frees memory resources
12268  * associated with the abort iocb.
12269  **/
12270 static void
12271 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12272 			struct lpfc_iocbq *rspiocb)
12273 {
12274 	u32 ulp_status = get_job_ulpstatus(phba, rspiocb);
12275 	u32 ulp_word4 = get_job_word4(phba, rspiocb);
12276 	u8 cmnd = get_job_cmnd(phba, cmdiocb);
12277 
12278 	if (ulp_status) {
12279 		/*
12280 		 * Assume that the port already completed and returned, or
12281 		 * will return the iocb. Just Log the message.
12282 		 */
12283 		if (phba->sli_rev < LPFC_SLI_REV4) {
12284 			if (cmnd == CMD_ABORT_XRI_CX &&
12285 			    ulp_status == IOSTAT_LOCAL_REJECT &&
12286 			    ulp_word4 == IOERR_ABORT_REQUESTED) {
12287 				goto release_iocb;
12288 			}
12289 		}
12290 
12291 		lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
12292 				"0327 Cannot abort els iocb x%px "
12293 				"with io cmd xri %x abort tag : x%x, "
12294 				"abort status %x abort code %x\n",
12295 				cmdiocb, get_job_abtsiotag(phba, cmdiocb),
12296 				(phba->sli_rev == LPFC_SLI_REV4) ?
12297 				get_wqe_reqtag(cmdiocb) :
12298 				cmdiocb->iocb.un.acxri.abortContextTag,
12299 				ulp_status, ulp_word4);
12300 
12301 	}
12302 release_iocb:
12303 	lpfc_sli_release_iocbq(phba, cmdiocb);
12304 	return;
12305 }
12306 
12307 /**
12308  * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
12309  * @phba: Pointer to HBA context object.
12310  * @cmdiocb: Pointer to driver command iocb object.
12311  * @rspiocb: Pointer to driver response iocb object.
12312  *
12313  * The function is called from SLI ring event handler with no
12314  * lock held. This function is the completion handler for ELS commands
12315  * which are aborted. The function frees memory resources used for
12316  * the aborted ELS commands.
12317  **/
12318 void
12319 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12320 		     struct lpfc_iocbq *rspiocb)
12321 {
12322 	struct lpfc_nodelist *ndlp = cmdiocb->ndlp;
12323 	IOCB_t *irsp;
12324 	LPFC_MBOXQ_t *mbox;
12325 	u32 ulp_command, ulp_status, ulp_word4, iotag;
12326 
12327 	ulp_command = get_job_cmnd(phba, cmdiocb);
12328 	ulp_status = get_job_ulpstatus(phba, rspiocb);
12329 	ulp_word4 = get_job_word4(phba, rspiocb);
12330 
12331 	if (phba->sli_rev == LPFC_SLI_REV4) {
12332 		iotag = get_wqe_reqtag(cmdiocb);
12333 	} else {
12334 		irsp = &rspiocb->iocb;
12335 		iotag = irsp->ulpIoTag;
12336 
12337 		/* It is possible a PLOGI_RJT for NPIV ports to get aborted.
12338 		 * The MBX_REG_LOGIN64 mbox command is freed back to the
12339 		 * mbox_mem_pool here.
12340 		 */
12341 		if (cmdiocb->context_un.mbox) {
12342 			mbox = cmdiocb->context_un.mbox;
12343 			lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED);
12344 			cmdiocb->context_un.mbox = NULL;
12345 		}
12346 	}
12347 
12348 	/* ELS cmd tag <ulpIoTag> completes */
12349 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
12350 			"0139 Ignoring ELS cmd code x%x completion Data: "
12351 			"x%x x%x x%x x%px\n",
12352 			ulp_command, ulp_status, ulp_word4, iotag,
12353 			cmdiocb->ndlp);
12354 	/*
12355 	 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp
12356 	 * if exchange is busy.
12357 	 */
12358 	if (ulp_command == CMD_GEN_REQUEST64_CR)
12359 		lpfc_ct_free_iocb(phba, cmdiocb);
12360 	else
12361 		lpfc_els_free_iocb(phba, cmdiocb);
12362 
12363 	lpfc_nlp_put(ndlp);
12364 }
12365 
12366 /**
12367  * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
12368  * @phba: Pointer to HBA context object.
12369  * @pring: Pointer to driver SLI ring object.
12370  * @cmdiocb: Pointer to driver command iocb object.
12371  * @cmpl: completion function.
12372  *
12373  * This function issues an abort iocb for the provided command iocb. In case
12374  * of unloading, the abort iocb will not be issued to commands on the ELS
12375  * ring. Instead, the callback function shall be changed to those commands
12376  * so that nothing happens when them finishes. This function is called with
12377  * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS
12378  * when the command iocb is an abort request.
12379  *
12380  **/
12381 int
12382 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12383 			   struct lpfc_iocbq *cmdiocb, void *cmpl)
12384 {
12385 	struct lpfc_vport *vport = cmdiocb->vport;
12386 	struct lpfc_iocbq *abtsiocbp;
12387 	int retval = IOCB_ERROR;
12388 	unsigned long iflags;
12389 	struct lpfc_nodelist *ndlp = NULL;
12390 	u32 ulp_command = get_job_cmnd(phba, cmdiocb);
12391 	u16 ulp_context, iotag;
12392 	bool ia;
12393 
12394 	/*
12395 	 * There are certain command types we don't want to abort.  And we
12396 	 * don't want to abort commands that are already in the process of
12397 	 * being aborted.
12398 	 */
12399 	if (ulp_command == CMD_ABORT_XRI_WQE ||
12400 	    ulp_command == CMD_ABORT_XRI_CN ||
12401 	    ulp_command == CMD_CLOSE_XRI_CN ||
12402 	    cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED)
12403 		return IOCB_ABORTING;
12404 
12405 	if (!pring) {
12406 		if (cmdiocb->cmd_flag & LPFC_IO_FABRIC)
12407 			cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl;
12408 		else
12409 			cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl;
12410 		return retval;
12411 	}
12412 
12413 	/*
12414 	 * If we're unloading, don't abort iocb on the ELS ring, but change
12415 	 * the callback so that nothing happens when it finishes.
12416 	 */
12417 	if ((vport->load_flag & FC_UNLOADING) &&
12418 	    pring->ringno == LPFC_ELS_RING) {
12419 		if (cmdiocb->cmd_flag & LPFC_IO_FABRIC)
12420 			cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl;
12421 		else
12422 			cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl;
12423 		return retval;
12424 	}
12425 
12426 	/* issue ABTS for this IOCB based on iotag */
12427 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
12428 	if (abtsiocbp == NULL)
12429 		return IOCB_NORESOURCE;
12430 
12431 	/* This signals the response to set the correct status
12432 	 * before calling the completion handler
12433 	 */
12434 	cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED;
12435 
12436 	if (phba->sli_rev == LPFC_SLI_REV4) {
12437 		ulp_context = cmdiocb->sli4_xritag;
12438 		iotag = abtsiocbp->iotag;
12439 	} else {
12440 		iotag = cmdiocb->iocb.ulpIoTag;
12441 		if (pring->ringno == LPFC_ELS_RING) {
12442 			ndlp = cmdiocb->ndlp;
12443 			ulp_context = ndlp->nlp_rpi;
12444 		} else {
12445 			ulp_context = cmdiocb->iocb.ulpContext;
12446 		}
12447 	}
12448 
12449 	if (phba->link_state < LPFC_LINK_UP ||
12450 	    (phba->sli_rev == LPFC_SLI_REV4 &&
12451 	     phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) ||
12452 	    (phba->link_flag & LS_EXTERNAL_LOOPBACK))
12453 		ia = true;
12454 	else
12455 		ia = false;
12456 
12457 	lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag,
12458 				cmdiocb->iocb.ulpClass,
12459 				LPFC_WQE_CQ_ID_DEFAULT, ia, false);
12460 
12461 	abtsiocbp->vport = vport;
12462 
12463 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
12464 	abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
12465 	if (cmdiocb->cmd_flag & LPFC_IO_FCP)
12466 		abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX);
12467 
12468 	if (cmdiocb->cmd_flag & LPFC_IO_FOF)
12469 		abtsiocbp->cmd_flag |= LPFC_IO_FOF;
12470 
12471 	if (cmpl)
12472 		abtsiocbp->cmd_cmpl = cmpl;
12473 	else
12474 		abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl;
12475 	abtsiocbp->vport = vport;
12476 
12477 	if (phba->sli_rev == LPFC_SLI_REV4) {
12478 		pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
12479 		if (unlikely(pring == NULL))
12480 			goto abort_iotag_exit;
12481 		/* Note: both hbalock and ring_lock need to be set here */
12482 		spin_lock_irqsave(&pring->ring_lock, iflags);
12483 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
12484 			abtsiocbp, 0);
12485 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
12486 	} else {
12487 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
12488 			abtsiocbp, 0);
12489 	}
12490 
12491 abort_iotag_exit:
12492 
12493 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
12494 			 "0339 Abort IO XRI x%x, Original iotag x%x, "
12495 			 "abort tag x%x Cmdjob : x%px Abortjob : x%px "
12496 			 "retval x%x\n",
12497 			 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ?
12498 			 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp,
12499 			 retval);
12500 	if (retval) {
12501 		cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED;
12502 		__lpfc_sli_release_iocbq(phba, abtsiocbp);
12503 	}
12504 
12505 	/*
12506 	 * Caller to this routine should check for IOCB_ERROR
12507 	 * and handle it properly.  This routine no longer removes
12508 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
12509 	 */
12510 	return retval;
12511 }
12512 
12513 /**
12514  * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
12515  * @phba: pointer to lpfc HBA data structure.
12516  *
12517  * This routine will abort all pending and outstanding iocbs to an HBA.
12518  **/
12519 void
12520 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
12521 {
12522 	struct lpfc_sli *psli = &phba->sli;
12523 	struct lpfc_sli_ring *pring;
12524 	struct lpfc_queue *qp = NULL;
12525 	int i;
12526 
12527 	if (phba->sli_rev != LPFC_SLI_REV4) {
12528 		for (i = 0; i < psli->num_rings; i++) {
12529 			pring = &psli->sli3_ring[i];
12530 			lpfc_sli_abort_iocb_ring(phba, pring);
12531 		}
12532 		return;
12533 	}
12534 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
12535 		pring = qp->pring;
12536 		if (!pring)
12537 			continue;
12538 		lpfc_sli_abort_iocb_ring(phba, pring);
12539 	}
12540 }
12541 
12542 /**
12543  * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts
12544  * @iocbq: Pointer to iocb object.
12545  * @vport: Pointer to driver virtual port object.
12546  *
12547  * This function acts as an iocb filter for functions which abort FCP iocbs.
12548  *
12549  * Return values
12550  * -ENODEV, if a null iocb or vport ptr is encountered
12551  * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as
12552  *          driver already started the abort process, or is an abort iocb itself
12553  * 0, passes criteria for aborting the FCP I/O iocb
12554  **/
12555 static int
12556 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq,
12557 				     struct lpfc_vport *vport)
12558 {
12559 	u8 ulp_command;
12560 
12561 	/* No null ptr vports */
12562 	if (!iocbq || iocbq->vport != vport)
12563 		return -ENODEV;
12564 
12565 	/* iocb must be for FCP IO, already exists on the TX cmpl queue,
12566 	 * can't be premarked as driver aborted, nor be an ABORT iocb itself
12567 	 */
12568 	ulp_command = get_job_cmnd(vport->phba, iocbq);
12569 	if (!(iocbq->cmd_flag & LPFC_IO_FCP) ||
12570 	    !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) ||
12571 	    (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) ||
12572 	    (ulp_command == CMD_ABORT_XRI_CN ||
12573 	     ulp_command == CMD_CLOSE_XRI_CN ||
12574 	     ulp_command == CMD_ABORT_XRI_WQE))
12575 		return -EINVAL;
12576 
12577 	return 0;
12578 }
12579 
12580 /**
12581  * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target
12582  * @iocbq: Pointer to driver iocb object.
12583  * @vport: Pointer to driver virtual port object.
12584  * @tgt_id: SCSI ID of the target.
12585  * @lun_id: LUN ID of the scsi device.
12586  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
12587  *
12588  * This function acts as an iocb filter for validating a lun/SCSI target/SCSI
12589  * host.
12590  *
12591  * It will return
12592  * 0 if the filtering criteria is met for the given iocb and will return
12593  * 1 if the filtering criteria is not met.
12594  * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
12595  * given iocb is for the SCSI device specified by vport, tgt_id and
12596  * lun_id parameter.
12597  * If ctx_cmd == LPFC_CTX_TGT,  the function returns 0 only if the
12598  * given iocb is for the SCSI target specified by vport and tgt_id
12599  * parameters.
12600  * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
12601  * given iocb is for the SCSI host associated with the given vport.
12602  * This function is called with no locks held.
12603  **/
12604 static int
12605 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
12606 			   uint16_t tgt_id, uint64_t lun_id,
12607 			   lpfc_ctx_cmd ctx_cmd)
12608 {
12609 	struct lpfc_io_buf *lpfc_cmd;
12610 	int rc = 1;
12611 
12612 	lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
12613 
12614 	if (lpfc_cmd->pCmd == NULL)
12615 		return rc;
12616 
12617 	switch (ctx_cmd) {
12618 	case LPFC_CTX_LUN:
12619 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
12620 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
12621 		    (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
12622 			rc = 0;
12623 		break;
12624 	case LPFC_CTX_TGT:
12625 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
12626 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
12627 			rc = 0;
12628 		break;
12629 	case LPFC_CTX_HOST:
12630 		rc = 0;
12631 		break;
12632 	default:
12633 		printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
12634 			__func__, ctx_cmd);
12635 		break;
12636 	}
12637 
12638 	return rc;
12639 }
12640 
12641 /**
12642  * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
12643  * @vport: Pointer to virtual port.
12644  * @tgt_id: SCSI ID of the target.
12645  * @lun_id: LUN ID of the scsi device.
12646  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12647  *
12648  * This function returns number of FCP commands pending for the vport.
12649  * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
12650  * commands pending on the vport associated with SCSI device specified
12651  * by tgt_id and lun_id parameters.
12652  * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
12653  * commands pending on the vport associated with SCSI target specified
12654  * by tgt_id parameter.
12655  * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
12656  * commands pending on the vport.
12657  * This function returns the number of iocbs which satisfy the filter.
12658  * This function is called without any lock held.
12659  **/
12660 int
12661 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
12662 		  lpfc_ctx_cmd ctx_cmd)
12663 {
12664 	struct lpfc_hba *phba = vport->phba;
12665 	struct lpfc_iocbq *iocbq;
12666 	int sum, i;
12667 	unsigned long iflags;
12668 	u8 ulp_command;
12669 
12670 	spin_lock_irqsave(&phba->hbalock, iflags);
12671 	for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
12672 		iocbq = phba->sli.iocbq_lookup[i];
12673 
12674 		if (!iocbq || iocbq->vport != vport)
12675 			continue;
12676 		if (!(iocbq->cmd_flag & LPFC_IO_FCP) ||
12677 		    !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ))
12678 			continue;
12679 
12680 		/* Include counting outstanding aborts */
12681 		ulp_command = get_job_cmnd(phba, iocbq);
12682 		if (ulp_command == CMD_ABORT_XRI_CN ||
12683 		    ulp_command == CMD_CLOSE_XRI_CN ||
12684 		    ulp_command == CMD_ABORT_XRI_WQE) {
12685 			sum++;
12686 			continue;
12687 		}
12688 
12689 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12690 					       ctx_cmd) == 0)
12691 			sum++;
12692 	}
12693 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12694 
12695 	return sum;
12696 }
12697 
12698 /**
12699  * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
12700  * @phba: Pointer to HBA context object
12701  * @cmdiocb: Pointer to command iocb object.
12702  * @rspiocb: Pointer to response iocb object.
12703  *
12704  * This function is called when an aborted FCP iocb completes. This
12705  * function is called by the ring event handler with no lock held.
12706  * This function frees the iocb.
12707  **/
12708 void
12709 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12710 			struct lpfc_iocbq *rspiocb)
12711 {
12712 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12713 			"3096 ABORT_XRI_CX completing on rpi x%x "
12714 			"original iotag x%x, abort cmd iotag x%x "
12715 			"status 0x%x, reason 0x%x\n",
12716 			(phba->sli_rev == LPFC_SLI_REV4) ?
12717 			cmdiocb->sli4_xritag :
12718 			cmdiocb->iocb.un.acxri.abortContextTag,
12719 			get_job_abtsiotag(phba, cmdiocb),
12720 			cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb),
12721 			get_job_word4(phba, rspiocb));
12722 	lpfc_sli_release_iocbq(phba, cmdiocb);
12723 	return;
12724 }
12725 
12726 /**
12727  * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
12728  * @vport: Pointer to virtual port.
12729  * @tgt_id: SCSI ID of the target.
12730  * @lun_id: LUN ID of the scsi device.
12731  * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12732  *
12733  * This function sends an abort command for every SCSI command
12734  * associated with the given virtual port pending on the ring
12735  * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then
12736  * lpfc_sli_validate_fcp_iocb function.  The ordering for validation before
12737  * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort
12738  * followed by lpfc_sli_validate_fcp_iocb.
12739  *
12740  * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
12741  * FCP iocbs associated with lun specified by tgt_id and lun_id
12742  * parameters
12743  * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
12744  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
12745  * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
12746  * FCP iocbs associated with virtual port.
12747  * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4
12748  * lpfc_sli4_calc_ring is used.
12749  * This function returns number of iocbs it failed to abort.
12750  * This function is called with no locks held.
12751  **/
12752 int
12753 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id,
12754 		    lpfc_ctx_cmd abort_cmd)
12755 {
12756 	struct lpfc_hba *phba = vport->phba;
12757 	struct lpfc_sli_ring *pring = NULL;
12758 	struct lpfc_iocbq *iocbq;
12759 	int errcnt = 0, ret_val = 0;
12760 	unsigned long iflags;
12761 	int i;
12762 
12763 	/* all I/Os are in process of being flushed */
12764 	if (phba->hba_flag & HBA_IOQ_FLUSH)
12765 		return errcnt;
12766 
12767 	for (i = 1; i <= phba->sli.last_iotag; i++) {
12768 		iocbq = phba->sli.iocbq_lookup[i];
12769 
12770 		if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport))
12771 			continue;
12772 
12773 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12774 					       abort_cmd) != 0)
12775 			continue;
12776 
12777 		spin_lock_irqsave(&phba->hbalock, iflags);
12778 		if (phba->sli_rev == LPFC_SLI_REV3) {
12779 			pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12780 		} else if (phba->sli_rev == LPFC_SLI_REV4) {
12781 			pring = lpfc_sli4_calc_ring(phba, iocbq);
12782 		}
12783 		ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq,
12784 						     lpfc_sli_abort_fcp_cmpl);
12785 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12786 		if (ret_val != IOCB_SUCCESS)
12787 			errcnt++;
12788 	}
12789 
12790 	return errcnt;
12791 }
12792 
12793 /**
12794  * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
12795  * @vport: Pointer to virtual port.
12796  * @pring: Pointer to driver SLI ring object.
12797  * @tgt_id: SCSI ID of the target.
12798  * @lun_id: LUN ID of the scsi device.
12799  * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12800  *
12801  * This function sends an abort command for every SCSI command
12802  * associated with the given virtual port pending on the ring
12803  * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then
12804  * lpfc_sli_validate_fcp_iocb function.  The ordering for validation before
12805  * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort
12806  * followed by lpfc_sli_validate_fcp_iocb.
12807  *
12808  * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
12809  * FCP iocbs associated with lun specified by tgt_id and lun_id
12810  * parameters
12811  * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
12812  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
12813  * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
12814  * FCP iocbs associated with virtual port.
12815  * This function returns number of iocbs it aborted .
12816  * This function is called with no locks held right after a taskmgmt
12817  * command is sent.
12818  **/
12819 int
12820 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
12821 			uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
12822 {
12823 	struct lpfc_hba *phba = vport->phba;
12824 	struct lpfc_io_buf *lpfc_cmd;
12825 	struct lpfc_iocbq *abtsiocbq;
12826 	struct lpfc_nodelist *ndlp = NULL;
12827 	struct lpfc_iocbq *iocbq;
12828 	int sum, i, ret_val;
12829 	unsigned long iflags;
12830 	struct lpfc_sli_ring *pring_s4 = NULL;
12831 	u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT;
12832 	bool ia;
12833 
12834 	spin_lock_irqsave(&phba->hbalock, iflags);
12835 
12836 	/* all I/Os are in process of being flushed */
12837 	if (phba->hba_flag & HBA_IOQ_FLUSH) {
12838 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12839 		return 0;
12840 	}
12841 	sum = 0;
12842 
12843 	for (i = 1; i <= phba->sli.last_iotag; i++) {
12844 		iocbq = phba->sli.iocbq_lookup[i];
12845 
12846 		if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport))
12847 			continue;
12848 
12849 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12850 					       cmd) != 0)
12851 			continue;
12852 
12853 		/* Guard against IO completion being called at same time */
12854 		lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
12855 		spin_lock(&lpfc_cmd->buf_lock);
12856 
12857 		if (!lpfc_cmd->pCmd) {
12858 			spin_unlock(&lpfc_cmd->buf_lock);
12859 			continue;
12860 		}
12861 
12862 		if (phba->sli_rev == LPFC_SLI_REV4) {
12863 			pring_s4 =
12864 			    phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
12865 			if (!pring_s4) {
12866 				spin_unlock(&lpfc_cmd->buf_lock);
12867 				continue;
12868 			}
12869 			/* Note: both hbalock and ring_lock must be set here */
12870 			spin_lock(&pring_s4->ring_lock);
12871 		}
12872 
12873 		/*
12874 		 * If the iocbq is already being aborted, don't take a second
12875 		 * action, but do count it.
12876 		 */
12877 		if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) ||
12878 		    !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) {
12879 			if (phba->sli_rev == LPFC_SLI_REV4)
12880 				spin_unlock(&pring_s4->ring_lock);
12881 			spin_unlock(&lpfc_cmd->buf_lock);
12882 			continue;
12883 		}
12884 
12885 		/* issue ABTS for this IOCB based on iotag */
12886 		abtsiocbq = __lpfc_sli_get_iocbq(phba);
12887 		if (!abtsiocbq) {
12888 			if (phba->sli_rev == LPFC_SLI_REV4)
12889 				spin_unlock(&pring_s4->ring_lock);
12890 			spin_unlock(&lpfc_cmd->buf_lock);
12891 			continue;
12892 		}
12893 
12894 		if (phba->sli_rev == LPFC_SLI_REV4) {
12895 			iotag = abtsiocbq->iotag;
12896 			ulp_context = iocbq->sli4_xritag;
12897 			cqid = lpfc_cmd->hdwq->io_cq_map;
12898 		} else {
12899 			iotag = iocbq->iocb.ulpIoTag;
12900 			if (pring->ringno == LPFC_ELS_RING) {
12901 				ndlp = iocbq->ndlp;
12902 				ulp_context = ndlp->nlp_rpi;
12903 			} else {
12904 				ulp_context = iocbq->iocb.ulpContext;
12905 			}
12906 		}
12907 
12908 		ndlp = lpfc_cmd->rdata->pnode;
12909 
12910 		if (lpfc_is_link_up(phba) &&
12911 		    (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) &&
12912 		    !(phba->link_flag & LS_EXTERNAL_LOOPBACK))
12913 			ia = false;
12914 		else
12915 			ia = true;
12916 
12917 		lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag,
12918 					iocbq->iocb.ulpClass, cqid,
12919 					ia, false);
12920 
12921 		abtsiocbq->vport = vport;
12922 
12923 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
12924 		abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
12925 		if (iocbq->cmd_flag & LPFC_IO_FCP)
12926 			abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX;
12927 		if (iocbq->cmd_flag & LPFC_IO_FOF)
12928 			abtsiocbq->cmd_flag |= LPFC_IO_FOF;
12929 
12930 		/* Setup callback routine and issue the command. */
12931 		abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl;
12932 
12933 		/*
12934 		 * Indicate the IO is being aborted by the driver and set
12935 		 * the caller's flag into the aborted IO.
12936 		 */
12937 		iocbq->cmd_flag |= LPFC_DRIVER_ABORTED;
12938 
12939 		if (phba->sli_rev == LPFC_SLI_REV4) {
12940 			ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
12941 							abtsiocbq, 0);
12942 			spin_unlock(&pring_s4->ring_lock);
12943 		} else {
12944 			ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
12945 							abtsiocbq, 0);
12946 		}
12947 
12948 		spin_unlock(&lpfc_cmd->buf_lock);
12949 
12950 		if (ret_val == IOCB_ERROR)
12951 			__lpfc_sli_release_iocbq(phba, abtsiocbq);
12952 		else
12953 			sum++;
12954 	}
12955 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12956 	return sum;
12957 }
12958 
12959 /**
12960  * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
12961  * @phba: Pointer to HBA context object.
12962  * @cmdiocbq: Pointer to command iocb.
12963  * @rspiocbq: Pointer to response iocb.
12964  *
12965  * This function is the completion handler for iocbs issued using
12966  * lpfc_sli_issue_iocb_wait function. This function is called by the
12967  * ring event handler function without any lock held. This function
12968  * can be called from both worker thread context and interrupt
12969  * context. This function also can be called from other thread which
12970  * cleans up the SLI layer objects.
12971  * This function copy the contents of the response iocb to the
12972  * response iocb memory object provided by the caller of
12973  * lpfc_sli_issue_iocb_wait and then wakes up the thread which
12974  * sleeps for the iocb completion.
12975  **/
12976 static void
12977 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
12978 			struct lpfc_iocbq *cmdiocbq,
12979 			struct lpfc_iocbq *rspiocbq)
12980 {
12981 	wait_queue_head_t *pdone_q;
12982 	unsigned long iflags;
12983 	struct lpfc_io_buf *lpfc_cmd;
12984 	size_t offset = offsetof(struct lpfc_iocbq, wqe);
12985 
12986 	spin_lock_irqsave(&phba->hbalock, iflags);
12987 	if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) {
12988 
12989 		/*
12990 		 * A time out has occurred for the iocb.  If a time out
12991 		 * completion handler has been supplied, call it.  Otherwise,
12992 		 * just free the iocbq.
12993 		 */
12994 
12995 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12996 		cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl;
12997 		cmdiocbq->wait_cmd_cmpl = NULL;
12998 		if (cmdiocbq->cmd_cmpl)
12999 			cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL);
13000 		else
13001 			lpfc_sli_release_iocbq(phba, cmdiocbq);
13002 		return;
13003 	}
13004 
13005 	/* Copy the contents of the local rspiocb into the caller's buffer. */
13006 	cmdiocbq->cmd_flag |= LPFC_IO_WAKE;
13007 	if (cmdiocbq->rsp_iocb && rspiocbq)
13008 		memcpy((char *)cmdiocbq->rsp_iocb + offset,
13009 		       (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset);
13010 
13011 	/* Set the exchange busy flag for task management commands */
13012 	if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) &&
13013 	    !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) {
13014 		lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
13015 					cur_iocbq);
13016 		if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY))
13017 			lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
13018 		else
13019 			lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
13020 	}
13021 
13022 	pdone_q = cmdiocbq->context_un.wait_queue;
13023 	if (pdone_q)
13024 		wake_up(pdone_q);
13025 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13026 	return;
13027 }
13028 
13029 /**
13030  * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
13031  * @phba: Pointer to HBA context object..
13032  * @piocbq: Pointer to command iocb.
13033  * @flag: Flag to test.
13034  *
13035  * This routine grabs the hbalock and then test the cmd_flag to
13036  * see if the passed in flag is set.
13037  * Returns:
13038  * 1 if flag is set.
13039  * 0 if flag is not set.
13040  **/
13041 static int
13042 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
13043 		 struct lpfc_iocbq *piocbq, uint32_t flag)
13044 {
13045 	unsigned long iflags;
13046 	int ret;
13047 
13048 	spin_lock_irqsave(&phba->hbalock, iflags);
13049 	ret = piocbq->cmd_flag & flag;
13050 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13051 	return ret;
13052 
13053 }
13054 
13055 /**
13056  * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
13057  * @phba: Pointer to HBA context object..
13058  * @ring_number: Ring number
13059  * @piocb: Pointer to command iocb.
13060  * @prspiocbq: Pointer to response iocb.
13061  * @timeout: Timeout in number of seconds.
13062  *
13063  * This function issues the iocb to firmware and waits for the
13064  * iocb to complete. The cmd_cmpl field of the shall be used
13065  * to handle iocbs which time out. If the field is NULL, the
13066  * function shall free the iocbq structure.  If more clean up is
13067  * needed, the caller is expected to provide a completion function
13068  * that will provide the needed clean up.  If the iocb command is
13069  * not completed within timeout seconds, the function will either
13070  * free the iocbq structure (if cmd_cmpl == NULL) or execute the
13071  * completion function set in the cmd_cmpl field and then return
13072  * a status of IOCB_TIMEDOUT.  The caller should not free the iocb
13073  * resources if this function returns IOCB_TIMEDOUT.
13074  * The function waits for the iocb completion using an
13075  * non-interruptible wait.
13076  * This function will sleep while waiting for iocb completion.
13077  * So, this function should not be called from any context which
13078  * does not allow sleeping. Due to the same reason, this function
13079  * cannot be called with interrupt disabled.
13080  * This function assumes that the iocb completions occur while
13081  * this function sleep. So, this function cannot be called from
13082  * the thread which process iocb completion for this ring.
13083  * This function clears the cmd_flag of the iocb object before
13084  * issuing the iocb and the iocb completion handler sets this
13085  * flag and wakes this thread when the iocb completes.
13086  * The contents of the response iocb will be copied to prspiocbq
13087  * by the completion handler when the command completes.
13088  * This function returns IOCB_SUCCESS when success.
13089  * This function is called with no lock held.
13090  **/
13091 int
13092 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
13093 			 uint32_t ring_number,
13094 			 struct lpfc_iocbq *piocb,
13095 			 struct lpfc_iocbq *prspiocbq,
13096 			 uint32_t timeout)
13097 {
13098 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
13099 	long timeleft, timeout_req = 0;
13100 	int retval = IOCB_SUCCESS;
13101 	uint32_t creg_val;
13102 	struct lpfc_iocbq *iocb;
13103 	int txq_cnt = 0;
13104 	int txcmplq_cnt = 0;
13105 	struct lpfc_sli_ring *pring;
13106 	unsigned long iflags;
13107 	bool iocb_completed = true;
13108 
13109 	if (phba->sli_rev >= LPFC_SLI_REV4) {
13110 		lpfc_sli_prep_wqe(phba, piocb);
13111 
13112 		pring = lpfc_sli4_calc_ring(phba, piocb);
13113 	} else
13114 		pring = &phba->sli.sli3_ring[ring_number];
13115 	/*
13116 	 * If the caller has provided a response iocbq buffer, then rsp_iocb
13117 	 * is NULL or its an error.
13118 	 */
13119 	if (prspiocbq) {
13120 		if (piocb->rsp_iocb)
13121 			return IOCB_ERROR;
13122 		piocb->rsp_iocb = prspiocbq;
13123 	}
13124 
13125 	piocb->wait_cmd_cmpl = piocb->cmd_cmpl;
13126 	piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait;
13127 	piocb->context_un.wait_queue = &done_q;
13128 	piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
13129 
13130 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
13131 		if (lpfc_readl(phba->HCregaddr, &creg_val))
13132 			return IOCB_ERROR;
13133 		creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
13134 		writel(creg_val, phba->HCregaddr);
13135 		readl(phba->HCregaddr); /* flush */
13136 	}
13137 
13138 	retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
13139 				     SLI_IOCB_RET_IOCB);
13140 	if (retval == IOCB_SUCCESS) {
13141 		timeout_req = msecs_to_jiffies(timeout * 1000);
13142 		timeleft = wait_event_timeout(done_q,
13143 				lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
13144 				timeout_req);
13145 		spin_lock_irqsave(&phba->hbalock, iflags);
13146 		if (!(piocb->cmd_flag & LPFC_IO_WAKE)) {
13147 
13148 			/*
13149 			 * IOCB timed out.  Inform the wake iocb wait
13150 			 * completion function and set local status
13151 			 */
13152 
13153 			iocb_completed = false;
13154 			piocb->cmd_flag |= LPFC_IO_WAKE_TMO;
13155 		}
13156 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13157 		if (iocb_completed) {
13158 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13159 					"0331 IOCB wake signaled\n");
13160 			/* Note: we are not indicating if the IOCB has a success
13161 			 * status or not - that's for the caller to check.
13162 			 * IOCB_SUCCESS means just that the command was sent and
13163 			 * completed. Not that it completed successfully.
13164 			 * */
13165 		} else if (timeleft == 0) {
13166 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13167 					"0338 IOCB wait timeout error - no "
13168 					"wake response Data x%x\n", timeout);
13169 			retval = IOCB_TIMEDOUT;
13170 		} else {
13171 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13172 					"0330 IOCB wake NOT set, "
13173 					"Data x%x x%lx\n",
13174 					timeout, (timeleft / jiffies));
13175 			retval = IOCB_TIMEDOUT;
13176 		}
13177 	} else if (retval == IOCB_BUSY) {
13178 		if (phba->cfg_log_verbose & LOG_SLI) {
13179 			list_for_each_entry(iocb, &pring->txq, list) {
13180 				txq_cnt++;
13181 			}
13182 			list_for_each_entry(iocb, &pring->txcmplq, list) {
13183 				txcmplq_cnt++;
13184 			}
13185 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13186 				"2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
13187 				phba->iocb_cnt, txq_cnt, txcmplq_cnt);
13188 		}
13189 		return retval;
13190 	} else {
13191 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13192 				"0332 IOCB wait issue failed, Data x%x\n",
13193 				retval);
13194 		retval = IOCB_ERROR;
13195 	}
13196 
13197 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
13198 		if (lpfc_readl(phba->HCregaddr, &creg_val))
13199 			return IOCB_ERROR;
13200 		creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
13201 		writel(creg_val, phba->HCregaddr);
13202 		readl(phba->HCregaddr); /* flush */
13203 	}
13204 
13205 	if (prspiocbq)
13206 		piocb->rsp_iocb = NULL;
13207 
13208 	piocb->context_un.wait_queue = NULL;
13209 	piocb->cmd_cmpl = NULL;
13210 	return retval;
13211 }
13212 
13213 /**
13214  * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
13215  * @phba: Pointer to HBA context object.
13216  * @pmboxq: Pointer to driver mailbox object.
13217  * @timeout: Timeout in number of seconds.
13218  *
13219  * This function issues the mailbox to firmware and waits for the
13220  * mailbox command to complete. If the mailbox command is not
13221  * completed within timeout seconds, it returns MBX_TIMEOUT.
13222  * The function waits for the mailbox completion using an
13223  * interruptible wait. If the thread is woken up due to a
13224  * signal, MBX_TIMEOUT error is returned to the caller. Caller
13225  * should not free the mailbox resources, if this function returns
13226  * MBX_TIMEOUT.
13227  * This function will sleep while waiting for mailbox completion.
13228  * So, this function should not be called from any context which
13229  * does not allow sleeping. Due to the same reason, this function
13230  * cannot be called with interrupt disabled.
13231  * This function assumes that the mailbox completion occurs while
13232  * this function sleep. So, this function cannot be called from
13233  * the worker thread which processes mailbox completion.
13234  * This function is called in the context of HBA management
13235  * applications.
13236  * This function returns MBX_SUCCESS when successful.
13237  * This function is called with no lock held.
13238  **/
13239 int
13240 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
13241 			 uint32_t timeout)
13242 {
13243 	struct completion mbox_done;
13244 	int retval;
13245 	unsigned long flag;
13246 
13247 	pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
13248 	/* setup wake call as IOCB callback */
13249 	pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
13250 
13251 	/* setup context3 field to pass wait_queue pointer to wake function  */
13252 	init_completion(&mbox_done);
13253 	pmboxq->context3 = &mbox_done;
13254 	/* now issue the command */
13255 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
13256 	if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
13257 		wait_for_completion_timeout(&mbox_done,
13258 					    msecs_to_jiffies(timeout * 1000));
13259 
13260 		spin_lock_irqsave(&phba->hbalock, flag);
13261 		pmboxq->context3 = NULL;
13262 		/*
13263 		 * if LPFC_MBX_WAKE flag is set the mailbox is completed
13264 		 * else do not free the resources.
13265 		 */
13266 		if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
13267 			retval = MBX_SUCCESS;
13268 		} else {
13269 			retval = MBX_TIMEOUT;
13270 			pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
13271 		}
13272 		spin_unlock_irqrestore(&phba->hbalock, flag);
13273 	}
13274 	return retval;
13275 }
13276 
13277 /**
13278  * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
13279  * @phba: Pointer to HBA context.
13280  * @mbx_action: Mailbox shutdown options.
13281  *
13282  * This function is called to shutdown the driver's mailbox sub-system.
13283  * It first marks the mailbox sub-system is in a block state to prevent
13284  * the asynchronous mailbox command from issued off the pending mailbox
13285  * command queue. If the mailbox command sub-system shutdown is due to
13286  * HBA error conditions such as EEH or ERATT, this routine shall invoke
13287  * the mailbox sub-system flush routine to forcefully bring down the
13288  * mailbox sub-system. Otherwise, if it is due to normal condition (such
13289  * as with offline or HBA function reset), this routine will wait for the
13290  * outstanding mailbox command to complete before invoking the mailbox
13291  * sub-system flush routine to gracefully bring down mailbox sub-system.
13292  **/
13293 void
13294 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
13295 {
13296 	struct lpfc_sli *psli = &phba->sli;
13297 	unsigned long timeout;
13298 
13299 	if (mbx_action == LPFC_MBX_NO_WAIT) {
13300 		/* delay 100ms for port state */
13301 		msleep(100);
13302 		lpfc_sli_mbox_sys_flush(phba);
13303 		return;
13304 	}
13305 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
13306 
13307 	/* Disable softirqs, including timers from obtaining phba->hbalock */
13308 	local_bh_disable();
13309 
13310 	spin_lock_irq(&phba->hbalock);
13311 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13312 
13313 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
13314 		/* Determine how long we might wait for the active mailbox
13315 		 * command to be gracefully completed by firmware.
13316 		 */
13317 		if (phba->sli.mbox_active)
13318 			timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
13319 						phba->sli.mbox_active) *
13320 						1000) + jiffies;
13321 		spin_unlock_irq(&phba->hbalock);
13322 
13323 		/* Enable softirqs again, done with phba->hbalock */
13324 		local_bh_enable();
13325 
13326 		while (phba->sli.mbox_active) {
13327 			/* Check active mailbox complete status every 2ms */
13328 			msleep(2);
13329 			if (time_after(jiffies, timeout))
13330 				/* Timeout, let the mailbox flush routine to
13331 				 * forcefully release active mailbox command
13332 				 */
13333 				break;
13334 		}
13335 	} else {
13336 		spin_unlock_irq(&phba->hbalock);
13337 
13338 		/* Enable softirqs again, done with phba->hbalock */
13339 		local_bh_enable();
13340 	}
13341 
13342 	lpfc_sli_mbox_sys_flush(phba);
13343 }
13344 
13345 /**
13346  * lpfc_sli_eratt_read - read sli-3 error attention events
13347  * @phba: Pointer to HBA context.
13348  *
13349  * This function is called to read the SLI3 device error attention registers
13350  * for possible error attention events. The caller must hold the hostlock
13351  * with spin_lock_irq().
13352  *
13353  * This function returns 1 when there is Error Attention in the Host Attention
13354  * Register and returns 0 otherwise.
13355  **/
13356 static int
13357 lpfc_sli_eratt_read(struct lpfc_hba *phba)
13358 {
13359 	uint32_t ha_copy;
13360 
13361 	/* Read chip Host Attention (HA) register */
13362 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
13363 		goto unplug_err;
13364 
13365 	if (ha_copy & HA_ERATT) {
13366 		/* Read host status register to retrieve error event */
13367 		if (lpfc_sli_read_hs(phba))
13368 			goto unplug_err;
13369 
13370 		/* Check if there is a deferred error condition is active */
13371 		if ((HS_FFER1 & phba->work_hs) &&
13372 		    ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
13373 		      HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
13374 			phba->hba_flag |= DEFER_ERATT;
13375 			/* Clear all interrupt enable conditions */
13376 			writel(0, phba->HCregaddr);
13377 			readl(phba->HCregaddr);
13378 		}
13379 
13380 		/* Set the driver HA work bitmap */
13381 		phba->work_ha |= HA_ERATT;
13382 		/* Indicate polling handles this ERATT */
13383 		phba->hba_flag |= HBA_ERATT_HANDLED;
13384 		return 1;
13385 	}
13386 	return 0;
13387 
13388 unplug_err:
13389 	/* Set the driver HS work bitmap */
13390 	phba->work_hs |= UNPLUG_ERR;
13391 	/* Set the driver HA work bitmap */
13392 	phba->work_ha |= HA_ERATT;
13393 	/* Indicate polling handles this ERATT */
13394 	phba->hba_flag |= HBA_ERATT_HANDLED;
13395 	return 1;
13396 }
13397 
13398 /**
13399  * lpfc_sli4_eratt_read - read sli-4 error attention events
13400  * @phba: Pointer to HBA context.
13401  *
13402  * This function is called to read the SLI4 device error attention registers
13403  * for possible error attention events. The caller must hold the hostlock
13404  * with spin_lock_irq().
13405  *
13406  * This function returns 1 when there is Error Attention in the Host Attention
13407  * Register and returns 0 otherwise.
13408  **/
13409 static int
13410 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
13411 {
13412 	uint32_t uerr_sta_hi, uerr_sta_lo;
13413 	uint32_t if_type, portsmphr;
13414 	struct lpfc_register portstat_reg;
13415 	u32 logmask;
13416 
13417 	/*
13418 	 * For now, use the SLI4 device internal unrecoverable error
13419 	 * registers for error attention. This can be changed later.
13420 	 */
13421 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
13422 	switch (if_type) {
13423 	case LPFC_SLI_INTF_IF_TYPE_0:
13424 		if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
13425 			&uerr_sta_lo) ||
13426 			lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
13427 			&uerr_sta_hi)) {
13428 			phba->work_hs |= UNPLUG_ERR;
13429 			phba->work_ha |= HA_ERATT;
13430 			phba->hba_flag |= HBA_ERATT_HANDLED;
13431 			return 1;
13432 		}
13433 		if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
13434 		    (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
13435 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13436 					"1423 HBA Unrecoverable error: "
13437 					"uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
13438 					"ue_mask_lo_reg=0x%x, "
13439 					"ue_mask_hi_reg=0x%x\n",
13440 					uerr_sta_lo, uerr_sta_hi,
13441 					phba->sli4_hba.ue_mask_lo,
13442 					phba->sli4_hba.ue_mask_hi);
13443 			phba->work_status[0] = uerr_sta_lo;
13444 			phba->work_status[1] = uerr_sta_hi;
13445 			phba->work_ha |= HA_ERATT;
13446 			phba->hba_flag |= HBA_ERATT_HANDLED;
13447 			return 1;
13448 		}
13449 		break;
13450 	case LPFC_SLI_INTF_IF_TYPE_2:
13451 	case LPFC_SLI_INTF_IF_TYPE_6:
13452 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
13453 			&portstat_reg.word0) ||
13454 			lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
13455 			&portsmphr)){
13456 			phba->work_hs |= UNPLUG_ERR;
13457 			phba->work_ha |= HA_ERATT;
13458 			phba->hba_flag |= HBA_ERATT_HANDLED;
13459 			return 1;
13460 		}
13461 		if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
13462 			phba->work_status[0] =
13463 				readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
13464 			phba->work_status[1] =
13465 				readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
13466 			logmask = LOG_TRACE_EVENT;
13467 			if (phba->work_status[0] ==
13468 				SLIPORT_ERR1_REG_ERR_CODE_2 &&
13469 			    phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART)
13470 				logmask = LOG_SLI;
13471 			lpfc_printf_log(phba, KERN_ERR, logmask,
13472 					"2885 Port Status Event: "
13473 					"port status reg 0x%x, "
13474 					"port smphr reg 0x%x, "
13475 					"error 1=0x%x, error 2=0x%x\n",
13476 					portstat_reg.word0,
13477 					portsmphr,
13478 					phba->work_status[0],
13479 					phba->work_status[1]);
13480 			phba->work_ha |= HA_ERATT;
13481 			phba->hba_flag |= HBA_ERATT_HANDLED;
13482 			return 1;
13483 		}
13484 		break;
13485 	case LPFC_SLI_INTF_IF_TYPE_1:
13486 	default:
13487 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13488 				"2886 HBA Error Attention on unsupported "
13489 				"if type %d.", if_type);
13490 		return 1;
13491 	}
13492 
13493 	return 0;
13494 }
13495 
13496 /**
13497  * lpfc_sli_check_eratt - check error attention events
13498  * @phba: Pointer to HBA context.
13499  *
13500  * This function is called from timer soft interrupt context to check HBA's
13501  * error attention register bit for error attention events.
13502  *
13503  * This function returns 1 when there is Error Attention in the Host Attention
13504  * Register and returns 0 otherwise.
13505  **/
13506 int
13507 lpfc_sli_check_eratt(struct lpfc_hba *phba)
13508 {
13509 	uint32_t ha_copy;
13510 
13511 	/* If somebody is waiting to handle an eratt, don't process it
13512 	 * here. The brdkill function will do this.
13513 	 */
13514 	if (phba->link_flag & LS_IGNORE_ERATT)
13515 		return 0;
13516 
13517 	/* Check if interrupt handler handles this ERATT */
13518 	spin_lock_irq(&phba->hbalock);
13519 	if (phba->hba_flag & HBA_ERATT_HANDLED) {
13520 		/* Interrupt handler has handled ERATT */
13521 		spin_unlock_irq(&phba->hbalock);
13522 		return 0;
13523 	}
13524 
13525 	/*
13526 	 * If there is deferred error attention, do not check for error
13527 	 * attention
13528 	 */
13529 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13530 		spin_unlock_irq(&phba->hbalock);
13531 		return 0;
13532 	}
13533 
13534 	/* If PCI channel is offline, don't process it */
13535 	if (unlikely(pci_channel_offline(phba->pcidev))) {
13536 		spin_unlock_irq(&phba->hbalock);
13537 		return 0;
13538 	}
13539 
13540 	switch (phba->sli_rev) {
13541 	case LPFC_SLI_REV2:
13542 	case LPFC_SLI_REV3:
13543 		/* Read chip Host Attention (HA) register */
13544 		ha_copy = lpfc_sli_eratt_read(phba);
13545 		break;
13546 	case LPFC_SLI_REV4:
13547 		/* Read device Uncoverable Error (UERR) registers */
13548 		ha_copy = lpfc_sli4_eratt_read(phba);
13549 		break;
13550 	default:
13551 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13552 				"0299 Invalid SLI revision (%d)\n",
13553 				phba->sli_rev);
13554 		ha_copy = 0;
13555 		break;
13556 	}
13557 	spin_unlock_irq(&phba->hbalock);
13558 
13559 	return ha_copy;
13560 }
13561 
13562 /**
13563  * lpfc_intr_state_check - Check device state for interrupt handling
13564  * @phba: Pointer to HBA context.
13565  *
13566  * This inline routine checks whether a device or its PCI slot is in a state
13567  * that the interrupt should be handled.
13568  *
13569  * This function returns 0 if the device or the PCI slot is in a state that
13570  * interrupt should be handled, otherwise -EIO.
13571  */
13572 static inline int
13573 lpfc_intr_state_check(struct lpfc_hba *phba)
13574 {
13575 	/* If the pci channel is offline, ignore all the interrupts */
13576 	if (unlikely(pci_channel_offline(phba->pcidev)))
13577 		return -EIO;
13578 
13579 	/* Update device level interrupt statistics */
13580 	phba->sli.slistat.sli_intr++;
13581 
13582 	/* Ignore all interrupts during initialization. */
13583 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
13584 		return -EIO;
13585 
13586 	return 0;
13587 }
13588 
13589 /**
13590  * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
13591  * @irq: Interrupt number.
13592  * @dev_id: The device context pointer.
13593  *
13594  * This function is directly called from the PCI layer as an interrupt
13595  * service routine when device with SLI-3 interface spec is enabled with
13596  * MSI-X multi-message interrupt mode and there are slow-path events in
13597  * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
13598  * interrupt mode, this function is called as part of the device-level
13599  * interrupt handler. When the PCI slot is in error recovery or the HBA
13600  * is undergoing initialization, the interrupt handler will not process
13601  * the interrupt. The link attention and ELS ring attention events are
13602  * handled by the worker thread. The interrupt handler signals the worker
13603  * thread and returns for these events. This function is called without
13604  * any lock held. It gets the hbalock to access and update SLI data
13605  * structures.
13606  *
13607  * This function returns IRQ_HANDLED when interrupt is handled else it
13608  * returns IRQ_NONE.
13609  **/
13610 irqreturn_t
13611 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
13612 {
13613 	struct lpfc_hba  *phba;
13614 	uint32_t ha_copy, hc_copy;
13615 	uint32_t work_ha_copy;
13616 	unsigned long status;
13617 	unsigned long iflag;
13618 	uint32_t control;
13619 
13620 	MAILBOX_t *mbox, *pmbox;
13621 	struct lpfc_vport *vport;
13622 	struct lpfc_nodelist *ndlp;
13623 	struct lpfc_dmabuf *mp;
13624 	LPFC_MBOXQ_t *pmb;
13625 	int rc;
13626 
13627 	/*
13628 	 * Get the driver's phba structure from the dev_id and
13629 	 * assume the HBA is not interrupting.
13630 	 */
13631 	phba = (struct lpfc_hba *)dev_id;
13632 
13633 	if (unlikely(!phba))
13634 		return IRQ_NONE;
13635 
13636 	/*
13637 	 * Stuff needs to be attented to when this function is invoked as an
13638 	 * individual interrupt handler in MSI-X multi-message interrupt mode
13639 	 */
13640 	if (phba->intr_type == MSIX) {
13641 		/* Check device state for handling interrupt */
13642 		if (lpfc_intr_state_check(phba))
13643 			return IRQ_NONE;
13644 		/* Need to read HA REG for slow-path events */
13645 		spin_lock_irqsave(&phba->hbalock, iflag);
13646 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
13647 			goto unplug_error;
13648 		/* If somebody is waiting to handle an eratt don't process it
13649 		 * here. The brdkill function will do this.
13650 		 */
13651 		if (phba->link_flag & LS_IGNORE_ERATT)
13652 			ha_copy &= ~HA_ERATT;
13653 		/* Check the need for handling ERATT in interrupt handler */
13654 		if (ha_copy & HA_ERATT) {
13655 			if (phba->hba_flag & HBA_ERATT_HANDLED)
13656 				/* ERATT polling has handled ERATT */
13657 				ha_copy &= ~HA_ERATT;
13658 			else
13659 				/* Indicate interrupt handler handles ERATT */
13660 				phba->hba_flag |= HBA_ERATT_HANDLED;
13661 		}
13662 
13663 		/*
13664 		 * If there is deferred error attention, do not check for any
13665 		 * interrupt.
13666 		 */
13667 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13668 			spin_unlock_irqrestore(&phba->hbalock, iflag);
13669 			return IRQ_NONE;
13670 		}
13671 
13672 		/* Clear up only attention source related to slow-path */
13673 		if (lpfc_readl(phba->HCregaddr, &hc_copy))
13674 			goto unplug_error;
13675 
13676 		writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
13677 			HC_LAINT_ENA | HC_ERINT_ENA),
13678 			phba->HCregaddr);
13679 		writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
13680 			phba->HAregaddr);
13681 		writel(hc_copy, phba->HCregaddr);
13682 		readl(phba->HAregaddr); /* flush */
13683 		spin_unlock_irqrestore(&phba->hbalock, iflag);
13684 	} else
13685 		ha_copy = phba->ha_copy;
13686 
13687 	work_ha_copy = ha_copy & phba->work_ha_mask;
13688 
13689 	if (work_ha_copy) {
13690 		if (work_ha_copy & HA_LATT) {
13691 			if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
13692 				/*
13693 				 * Turn off Link Attention interrupts
13694 				 * until CLEAR_LA done
13695 				 */
13696 				spin_lock_irqsave(&phba->hbalock, iflag);
13697 				phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
13698 				if (lpfc_readl(phba->HCregaddr, &control))
13699 					goto unplug_error;
13700 				control &= ~HC_LAINT_ENA;
13701 				writel(control, phba->HCregaddr);
13702 				readl(phba->HCregaddr); /* flush */
13703 				spin_unlock_irqrestore(&phba->hbalock, iflag);
13704 			}
13705 			else
13706 				work_ha_copy &= ~HA_LATT;
13707 		}
13708 
13709 		if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
13710 			/*
13711 			 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
13712 			 * the only slow ring.
13713 			 */
13714 			status = (work_ha_copy &
13715 				(HA_RXMASK  << (4*LPFC_ELS_RING)));
13716 			status >>= (4*LPFC_ELS_RING);
13717 			if (status & HA_RXMASK) {
13718 				spin_lock_irqsave(&phba->hbalock, iflag);
13719 				if (lpfc_readl(phba->HCregaddr, &control))
13720 					goto unplug_error;
13721 
13722 				lpfc_debugfs_slow_ring_trc(phba,
13723 				"ISR slow ring:   ctl:x%x stat:x%x isrcnt:x%x",
13724 				control, status,
13725 				(uint32_t)phba->sli.slistat.sli_intr);
13726 
13727 				if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
13728 					lpfc_debugfs_slow_ring_trc(phba,
13729 						"ISR Disable ring:"
13730 						"pwork:x%x hawork:x%x wait:x%x",
13731 						phba->work_ha, work_ha_copy,
13732 						(uint32_t)((unsigned long)
13733 						&phba->work_waitq));
13734 
13735 					control &=
13736 					    ~(HC_R0INT_ENA << LPFC_ELS_RING);
13737 					writel(control, phba->HCregaddr);
13738 					readl(phba->HCregaddr); /* flush */
13739 				}
13740 				else {
13741 					lpfc_debugfs_slow_ring_trc(phba,
13742 						"ISR slow ring:   pwork:"
13743 						"x%x hawork:x%x wait:x%x",
13744 						phba->work_ha, work_ha_copy,
13745 						(uint32_t)((unsigned long)
13746 						&phba->work_waitq));
13747 				}
13748 				spin_unlock_irqrestore(&phba->hbalock, iflag);
13749 			}
13750 		}
13751 		spin_lock_irqsave(&phba->hbalock, iflag);
13752 		if (work_ha_copy & HA_ERATT) {
13753 			if (lpfc_sli_read_hs(phba))
13754 				goto unplug_error;
13755 			/*
13756 			 * Check if there is a deferred error condition
13757 			 * is active
13758 			 */
13759 			if ((HS_FFER1 & phba->work_hs) &&
13760 				((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
13761 				  HS_FFER6 | HS_FFER7 | HS_FFER8) &
13762 				  phba->work_hs)) {
13763 				phba->hba_flag |= DEFER_ERATT;
13764 				/* Clear all interrupt enable conditions */
13765 				writel(0, phba->HCregaddr);
13766 				readl(phba->HCregaddr);
13767 			}
13768 		}
13769 
13770 		if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
13771 			pmb = phba->sli.mbox_active;
13772 			pmbox = &pmb->u.mb;
13773 			mbox = phba->mbox;
13774 			vport = pmb->vport;
13775 
13776 			/* First check out the status word */
13777 			lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
13778 			if (pmbox->mbxOwner != OWN_HOST) {
13779 				spin_unlock_irqrestore(&phba->hbalock, iflag);
13780 				/*
13781 				 * Stray Mailbox Interrupt, mbxCommand <cmd>
13782 				 * mbxStatus <status>
13783 				 */
13784 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13785 						"(%d):0304 Stray Mailbox "
13786 						"Interrupt mbxCommand x%x "
13787 						"mbxStatus x%x\n",
13788 						(vport ? vport->vpi : 0),
13789 						pmbox->mbxCommand,
13790 						pmbox->mbxStatus);
13791 				/* clear mailbox attention bit */
13792 				work_ha_copy &= ~HA_MBATT;
13793 			} else {
13794 				phba->sli.mbox_active = NULL;
13795 				spin_unlock_irqrestore(&phba->hbalock, iflag);
13796 				phba->last_completion_time = jiffies;
13797 				del_timer(&phba->sli.mbox_tmo);
13798 				if (pmb->mbox_cmpl) {
13799 					lpfc_sli_pcimem_bcopy(mbox, pmbox,
13800 							MAILBOX_CMD_SIZE);
13801 					if (pmb->out_ext_byte_len &&
13802 						pmb->ctx_buf)
13803 						lpfc_sli_pcimem_bcopy(
13804 						phba->mbox_ext,
13805 						pmb->ctx_buf,
13806 						pmb->out_ext_byte_len);
13807 				}
13808 				if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13809 					pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13810 
13811 					lpfc_debugfs_disc_trc(vport,
13812 						LPFC_DISC_TRC_MBOX_VPORT,
13813 						"MBOX dflt rpi: : "
13814 						"status:x%x rpi:x%x",
13815 						(uint32_t)pmbox->mbxStatus,
13816 						pmbox->un.varWords[0], 0);
13817 
13818 					if (!pmbox->mbxStatus) {
13819 						mp = (struct lpfc_dmabuf *)
13820 							(pmb->ctx_buf);
13821 						ndlp = (struct lpfc_nodelist *)
13822 							pmb->ctx_ndlp;
13823 
13824 						/* Reg_LOGIN of dflt RPI was
13825 						 * successful. new lets get
13826 						 * rid of the RPI using the
13827 						 * same mbox buffer.
13828 						 */
13829 						lpfc_unreg_login(phba,
13830 							vport->vpi,
13831 							pmbox->un.varWords[0],
13832 							pmb);
13833 						pmb->mbox_cmpl =
13834 							lpfc_mbx_cmpl_dflt_rpi;
13835 						pmb->ctx_buf = mp;
13836 						pmb->ctx_ndlp = ndlp;
13837 						pmb->vport = vport;
13838 						rc = lpfc_sli_issue_mbox(phba,
13839 								pmb,
13840 								MBX_NOWAIT);
13841 						if (rc != MBX_BUSY)
13842 							lpfc_printf_log(phba,
13843 							KERN_ERR,
13844 							LOG_TRACE_EVENT,
13845 							"0350 rc should have"
13846 							"been MBX_BUSY\n");
13847 						if (rc != MBX_NOT_FINISHED)
13848 							goto send_current_mbox;
13849 					}
13850 				}
13851 				spin_lock_irqsave(
13852 						&phba->pport->work_port_lock,
13853 						iflag);
13854 				phba->pport->work_port_events &=
13855 					~WORKER_MBOX_TMO;
13856 				spin_unlock_irqrestore(
13857 						&phba->pport->work_port_lock,
13858 						iflag);
13859 
13860 				/* Do NOT queue MBX_HEARTBEAT to the worker
13861 				 * thread for processing.
13862 				 */
13863 				if (pmbox->mbxCommand == MBX_HEARTBEAT) {
13864 					/* Process mbox now */
13865 					phba->sli.mbox_active = NULL;
13866 					phba->sli.sli_flag &=
13867 						~LPFC_SLI_MBOX_ACTIVE;
13868 					if (pmb->mbox_cmpl)
13869 						pmb->mbox_cmpl(phba, pmb);
13870 				} else {
13871 					/* Queue to worker thread to process */
13872 					lpfc_mbox_cmpl_put(phba, pmb);
13873 				}
13874 			}
13875 		} else
13876 			spin_unlock_irqrestore(&phba->hbalock, iflag);
13877 
13878 		if ((work_ha_copy & HA_MBATT) &&
13879 		    (phba->sli.mbox_active == NULL)) {
13880 send_current_mbox:
13881 			/* Process next mailbox command if there is one */
13882 			do {
13883 				rc = lpfc_sli_issue_mbox(phba, NULL,
13884 							 MBX_NOWAIT);
13885 			} while (rc == MBX_NOT_FINISHED);
13886 			if (rc != MBX_SUCCESS)
13887 				lpfc_printf_log(phba, KERN_ERR,
13888 						LOG_TRACE_EVENT,
13889 						"0349 rc should be "
13890 						"MBX_SUCCESS\n");
13891 		}
13892 
13893 		spin_lock_irqsave(&phba->hbalock, iflag);
13894 		phba->work_ha |= work_ha_copy;
13895 		spin_unlock_irqrestore(&phba->hbalock, iflag);
13896 		lpfc_worker_wake_up(phba);
13897 	}
13898 	return IRQ_HANDLED;
13899 unplug_error:
13900 	spin_unlock_irqrestore(&phba->hbalock, iflag);
13901 	return IRQ_HANDLED;
13902 
13903 } /* lpfc_sli_sp_intr_handler */
13904 
13905 /**
13906  * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
13907  * @irq: Interrupt number.
13908  * @dev_id: The device context pointer.
13909  *
13910  * This function is directly called from the PCI layer as an interrupt
13911  * service routine when device with SLI-3 interface spec is enabled with
13912  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
13913  * ring event in the HBA. However, when the device is enabled with either
13914  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
13915  * device-level interrupt handler. When the PCI slot is in error recovery
13916  * or the HBA is undergoing initialization, the interrupt handler will not
13917  * process the interrupt. The SCSI FCP fast-path ring event are handled in
13918  * the intrrupt context. This function is called without any lock held.
13919  * It gets the hbalock to access and update SLI data structures.
13920  *
13921  * This function returns IRQ_HANDLED when interrupt is handled else it
13922  * returns IRQ_NONE.
13923  **/
13924 irqreturn_t
13925 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
13926 {
13927 	struct lpfc_hba  *phba;
13928 	uint32_t ha_copy;
13929 	unsigned long status;
13930 	unsigned long iflag;
13931 	struct lpfc_sli_ring *pring;
13932 
13933 	/* Get the driver's phba structure from the dev_id and
13934 	 * assume the HBA is not interrupting.
13935 	 */
13936 	phba = (struct lpfc_hba *) dev_id;
13937 
13938 	if (unlikely(!phba))
13939 		return IRQ_NONE;
13940 
13941 	/*
13942 	 * Stuff needs to be attented to when this function is invoked as an
13943 	 * individual interrupt handler in MSI-X multi-message interrupt mode
13944 	 */
13945 	if (phba->intr_type == MSIX) {
13946 		/* Check device state for handling interrupt */
13947 		if (lpfc_intr_state_check(phba))
13948 			return IRQ_NONE;
13949 		/* Need to read HA REG for FCP ring and other ring events */
13950 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
13951 			return IRQ_HANDLED;
13952 		/* Clear up only attention source related to fast-path */
13953 		spin_lock_irqsave(&phba->hbalock, iflag);
13954 		/*
13955 		 * If there is deferred error attention, do not check for
13956 		 * any interrupt.
13957 		 */
13958 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13959 			spin_unlock_irqrestore(&phba->hbalock, iflag);
13960 			return IRQ_NONE;
13961 		}
13962 		writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
13963 			phba->HAregaddr);
13964 		readl(phba->HAregaddr); /* flush */
13965 		spin_unlock_irqrestore(&phba->hbalock, iflag);
13966 	} else
13967 		ha_copy = phba->ha_copy;
13968 
13969 	/*
13970 	 * Process all events on FCP ring. Take the optimized path for FCP IO.
13971 	 */
13972 	ha_copy &= ~(phba->work_ha_mask);
13973 
13974 	status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
13975 	status >>= (4*LPFC_FCP_RING);
13976 	pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
13977 	if (status & HA_RXMASK)
13978 		lpfc_sli_handle_fast_ring_event(phba, pring, status);
13979 
13980 	if (phba->cfg_multi_ring_support == 2) {
13981 		/*
13982 		 * Process all events on extra ring. Take the optimized path
13983 		 * for extra ring IO.
13984 		 */
13985 		status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
13986 		status >>= (4*LPFC_EXTRA_RING);
13987 		if (status & HA_RXMASK) {
13988 			lpfc_sli_handle_fast_ring_event(phba,
13989 					&phba->sli.sli3_ring[LPFC_EXTRA_RING],
13990 					status);
13991 		}
13992 	}
13993 	return IRQ_HANDLED;
13994 }  /* lpfc_sli_fp_intr_handler */
13995 
13996 /**
13997  * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
13998  * @irq: Interrupt number.
13999  * @dev_id: The device context pointer.
14000  *
14001  * This function is the HBA device-level interrupt handler to device with
14002  * SLI-3 interface spec, called from the PCI layer when either MSI or
14003  * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
14004  * requires driver attention. This function invokes the slow-path interrupt
14005  * attention handling function and fast-path interrupt attention handling
14006  * function in turn to process the relevant HBA attention events. This
14007  * function is called without any lock held. It gets the hbalock to access
14008  * and update SLI data structures.
14009  *
14010  * This function returns IRQ_HANDLED when interrupt is handled, else it
14011  * returns IRQ_NONE.
14012  **/
14013 irqreturn_t
14014 lpfc_sli_intr_handler(int irq, void *dev_id)
14015 {
14016 	struct lpfc_hba  *phba;
14017 	irqreturn_t sp_irq_rc, fp_irq_rc;
14018 	unsigned long status1, status2;
14019 	uint32_t hc_copy;
14020 
14021 	/*
14022 	 * Get the driver's phba structure from the dev_id and
14023 	 * assume the HBA is not interrupting.
14024 	 */
14025 	phba = (struct lpfc_hba *) dev_id;
14026 
14027 	if (unlikely(!phba))
14028 		return IRQ_NONE;
14029 
14030 	/* Check device state for handling interrupt */
14031 	if (lpfc_intr_state_check(phba))
14032 		return IRQ_NONE;
14033 
14034 	spin_lock(&phba->hbalock);
14035 	if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
14036 		spin_unlock(&phba->hbalock);
14037 		return IRQ_HANDLED;
14038 	}
14039 
14040 	if (unlikely(!phba->ha_copy)) {
14041 		spin_unlock(&phba->hbalock);
14042 		return IRQ_NONE;
14043 	} else if (phba->ha_copy & HA_ERATT) {
14044 		if (phba->hba_flag & HBA_ERATT_HANDLED)
14045 			/* ERATT polling has handled ERATT */
14046 			phba->ha_copy &= ~HA_ERATT;
14047 		else
14048 			/* Indicate interrupt handler handles ERATT */
14049 			phba->hba_flag |= HBA_ERATT_HANDLED;
14050 	}
14051 
14052 	/*
14053 	 * If there is deferred error attention, do not check for any interrupt.
14054 	 */
14055 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
14056 		spin_unlock(&phba->hbalock);
14057 		return IRQ_NONE;
14058 	}
14059 
14060 	/* Clear attention sources except link and error attentions */
14061 	if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
14062 		spin_unlock(&phba->hbalock);
14063 		return IRQ_HANDLED;
14064 	}
14065 	writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
14066 		| HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
14067 		phba->HCregaddr);
14068 	writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
14069 	writel(hc_copy, phba->HCregaddr);
14070 	readl(phba->HAregaddr); /* flush */
14071 	spin_unlock(&phba->hbalock);
14072 
14073 	/*
14074 	 * Invokes slow-path host attention interrupt handling as appropriate.
14075 	 */
14076 
14077 	/* status of events with mailbox and link attention */
14078 	status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
14079 
14080 	/* status of events with ELS ring */
14081 	status2 = (phba->ha_copy & (HA_RXMASK  << (4*LPFC_ELS_RING)));
14082 	status2 >>= (4*LPFC_ELS_RING);
14083 
14084 	if (status1 || (status2 & HA_RXMASK))
14085 		sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
14086 	else
14087 		sp_irq_rc = IRQ_NONE;
14088 
14089 	/*
14090 	 * Invoke fast-path host attention interrupt handling as appropriate.
14091 	 */
14092 
14093 	/* status of events with FCP ring */
14094 	status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
14095 	status1 >>= (4*LPFC_FCP_RING);
14096 
14097 	/* status of events with extra ring */
14098 	if (phba->cfg_multi_ring_support == 2) {
14099 		status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
14100 		status2 >>= (4*LPFC_EXTRA_RING);
14101 	} else
14102 		status2 = 0;
14103 
14104 	if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
14105 		fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
14106 	else
14107 		fp_irq_rc = IRQ_NONE;
14108 
14109 	/* Return device-level interrupt handling status */
14110 	return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
14111 }  /* lpfc_sli_intr_handler */
14112 
14113 /**
14114  * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
14115  * @phba: pointer to lpfc hba data structure.
14116  *
14117  * This routine is invoked by the worker thread to process all the pending
14118  * SLI4 els abort xri events.
14119  **/
14120 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
14121 {
14122 	struct lpfc_cq_event *cq_event;
14123 	unsigned long iflags;
14124 
14125 	/* First, declare the els xri abort event has been handled */
14126 	spin_lock_irqsave(&phba->hbalock, iflags);
14127 	phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
14128 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14129 
14130 	/* Now, handle all the els xri abort events */
14131 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
14132 	while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
14133 		/* Get the first event from the head of the event queue */
14134 		list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
14135 				 cq_event, struct lpfc_cq_event, list);
14136 		spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
14137 				       iflags);
14138 		/* Notify aborted XRI for ELS work queue */
14139 		lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
14140 
14141 		/* Free the event processed back to the free pool */
14142 		lpfc_sli4_cq_event_release(phba, cq_event);
14143 		spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
14144 				  iflags);
14145 	}
14146 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
14147 }
14148 
14149 /**
14150  * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe
14151  * @phba: Pointer to HBA context object.
14152  * @irspiocbq: Pointer to work-queue completion queue entry.
14153  *
14154  * This routine handles an ELS work-queue completion event and construct
14155  * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common
14156  * discovery engine to handle.
14157  *
14158  * Return: Pointer to the receive IOCBQ, NULL otherwise.
14159  **/
14160 static struct lpfc_iocbq *
14161 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba,
14162 				  struct lpfc_iocbq *irspiocbq)
14163 {
14164 	struct lpfc_sli_ring *pring;
14165 	struct lpfc_iocbq *cmdiocbq;
14166 	struct lpfc_wcqe_complete *wcqe;
14167 	unsigned long iflags;
14168 
14169 	pring = lpfc_phba_elsring(phba);
14170 	if (unlikely(!pring))
14171 		return NULL;
14172 
14173 	wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
14174 	spin_lock_irqsave(&pring->ring_lock, iflags);
14175 	pring->stats.iocb_event++;
14176 	/* Look up the ELS command IOCB and create pseudo response IOCB */
14177 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
14178 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
14179 	if (unlikely(!cmdiocbq)) {
14180 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
14181 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14182 				"0386 ELS complete with no corresponding "
14183 				"cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
14184 				wcqe->word0, wcqe->total_data_placed,
14185 				wcqe->parameter, wcqe->word3);
14186 		lpfc_sli_release_iocbq(phba, irspiocbq);
14187 		return NULL;
14188 	}
14189 
14190 	memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128));
14191 	memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe));
14192 
14193 	/* Put the iocb back on the txcmplq */
14194 	lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
14195 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
14196 
14197 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
14198 		spin_lock_irqsave(&phba->hbalock, iflags);
14199 		irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY;
14200 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14201 	}
14202 
14203 	return irspiocbq;
14204 }
14205 
14206 inline struct lpfc_cq_event *
14207 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
14208 {
14209 	struct lpfc_cq_event *cq_event;
14210 
14211 	/* Allocate a new internal CQ_EVENT entry */
14212 	cq_event = lpfc_sli4_cq_event_alloc(phba);
14213 	if (!cq_event) {
14214 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14215 				"0602 Failed to alloc CQ_EVENT entry\n");
14216 		return NULL;
14217 	}
14218 
14219 	/* Move the CQE into the event */
14220 	memcpy(&cq_event->cqe, entry, size);
14221 	return cq_event;
14222 }
14223 
14224 /**
14225  * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event
14226  * @phba: Pointer to HBA context object.
14227  * @mcqe: Pointer to mailbox completion queue entry.
14228  *
14229  * This routine process a mailbox completion queue entry with asynchronous
14230  * event.
14231  *
14232  * Return: true if work posted to worker thread, otherwise false.
14233  **/
14234 static bool
14235 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
14236 {
14237 	struct lpfc_cq_event *cq_event;
14238 	unsigned long iflags;
14239 
14240 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14241 			"0392 Async Event: word0:x%x, word1:x%x, "
14242 			"word2:x%x, word3:x%x\n", mcqe->word0,
14243 			mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
14244 
14245 	cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
14246 	if (!cq_event)
14247 		return false;
14248 
14249 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
14250 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
14251 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
14252 
14253 	/* Set the async event flag */
14254 	spin_lock_irqsave(&phba->hbalock, iflags);
14255 	phba->hba_flag |= ASYNC_EVENT;
14256 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14257 
14258 	return true;
14259 }
14260 
14261 /**
14262  * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
14263  * @phba: Pointer to HBA context object.
14264  * @mcqe: Pointer to mailbox completion queue entry.
14265  *
14266  * This routine process a mailbox completion queue entry with mailbox
14267  * completion event.
14268  *
14269  * Return: true if work posted to worker thread, otherwise false.
14270  **/
14271 static bool
14272 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
14273 {
14274 	uint32_t mcqe_status;
14275 	MAILBOX_t *mbox, *pmbox;
14276 	struct lpfc_mqe *mqe;
14277 	struct lpfc_vport *vport;
14278 	struct lpfc_nodelist *ndlp;
14279 	struct lpfc_dmabuf *mp;
14280 	unsigned long iflags;
14281 	LPFC_MBOXQ_t *pmb;
14282 	bool workposted = false;
14283 	int rc;
14284 
14285 	/* If not a mailbox complete MCQE, out by checking mailbox consume */
14286 	if (!bf_get(lpfc_trailer_completed, mcqe))
14287 		goto out_no_mqe_complete;
14288 
14289 	/* Get the reference to the active mbox command */
14290 	spin_lock_irqsave(&phba->hbalock, iflags);
14291 	pmb = phba->sli.mbox_active;
14292 	if (unlikely(!pmb)) {
14293 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14294 				"1832 No pending MBOX command to handle\n");
14295 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14296 		goto out_no_mqe_complete;
14297 	}
14298 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14299 	mqe = &pmb->u.mqe;
14300 	pmbox = (MAILBOX_t *)&pmb->u.mqe;
14301 	mbox = phba->mbox;
14302 	vport = pmb->vport;
14303 
14304 	/* Reset heartbeat timer */
14305 	phba->last_completion_time = jiffies;
14306 	del_timer(&phba->sli.mbox_tmo);
14307 
14308 	/* Move mbox data to caller's mailbox region, do endian swapping */
14309 	if (pmb->mbox_cmpl && mbox)
14310 		lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
14311 
14312 	/*
14313 	 * For mcqe errors, conditionally move a modified error code to
14314 	 * the mbox so that the error will not be missed.
14315 	 */
14316 	mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
14317 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
14318 		if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
14319 			bf_set(lpfc_mqe_status, mqe,
14320 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
14321 	}
14322 	if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
14323 		pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
14324 		lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
14325 				      "MBOX dflt rpi: status:x%x rpi:x%x",
14326 				      mcqe_status,
14327 				      pmbox->un.varWords[0], 0);
14328 		if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
14329 			mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
14330 			ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
14331 
14332 			/* Reg_LOGIN of dflt RPI was successful. Mark the
14333 			 * node as having an UNREG_LOGIN in progress to stop
14334 			 * an unsolicited PLOGI from the same NPortId from
14335 			 * starting another mailbox transaction.
14336 			 */
14337 			spin_lock_irqsave(&ndlp->lock, iflags);
14338 			ndlp->nlp_flag |= NLP_UNREG_INP;
14339 			spin_unlock_irqrestore(&ndlp->lock, iflags);
14340 			lpfc_unreg_login(phba, vport->vpi,
14341 					 pmbox->un.varWords[0], pmb);
14342 			pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
14343 			pmb->ctx_buf = mp;
14344 
14345 			/* No reference taken here.  This is a default
14346 			 * RPI reg/immediate unreg cycle. The reference was
14347 			 * taken in the reg rpi path and is released when
14348 			 * this mailbox completes.
14349 			 */
14350 			pmb->ctx_ndlp = ndlp;
14351 			pmb->vport = vport;
14352 			rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
14353 			if (rc != MBX_BUSY)
14354 				lpfc_printf_log(phba, KERN_ERR,
14355 						LOG_TRACE_EVENT,
14356 						"0385 rc should "
14357 						"have been MBX_BUSY\n");
14358 			if (rc != MBX_NOT_FINISHED)
14359 				goto send_current_mbox;
14360 		}
14361 	}
14362 	spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
14363 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
14364 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
14365 
14366 	/* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */
14367 	if (pmbox->mbxCommand == MBX_HEARTBEAT) {
14368 		spin_lock_irqsave(&phba->hbalock, iflags);
14369 		/* Release the mailbox command posting token */
14370 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
14371 		phba->sli.mbox_active = NULL;
14372 		if (bf_get(lpfc_trailer_consumed, mcqe))
14373 			lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14374 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14375 
14376 		/* Post the next mbox command, if there is one */
14377 		lpfc_sli4_post_async_mbox(phba);
14378 
14379 		/* Process cmpl now */
14380 		if (pmb->mbox_cmpl)
14381 			pmb->mbox_cmpl(phba, pmb);
14382 		return false;
14383 	}
14384 
14385 	/* There is mailbox completion work to queue to the worker thread */
14386 	spin_lock_irqsave(&phba->hbalock, iflags);
14387 	__lpfc_mbox_cmpl_put(phba, pmb);
14388 	phba->work_ha |= HA_MBATT;
14389 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14390 	workposted = true;
14391 
14392 send_current_mbox:
14393 	spin_lock_irqsave(&phba->hbalock, iflags);
14394 	/* Release the mailbox command posting token */
14395 	phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
14396 	/* Setting active mailbox pointer need to be in sync to flag clear */
14397 	phba->sli.mbox_active = NULL;
14398 	if (bf_get(lpfc_trailer_consumed, mcqe))
14399 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14400 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14401 	/* Wake up worker thread to post the next pending mailbox command */
14402 	lpfc_worker_wake_up(phba);
14403 	return workposted;
14404 
14405 out_no_mqe_complete:
14406 	spin_lock_irqsave(&phba->hbalock, iflags);
14407 	if (bf_get(lpfc_trailer_consumed, mcqe))
14408 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14409 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14410 	return false;
14411 }
14412 
14413 /**
14414  * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
14415  * @phba: Pointer to HBA context object.
14416  * @cq: Pointer to associated CQ
14417  * @cqe: Pointer to mailbox completion queue entry.
14418  *
14419  * This routine process a mailbox completion queue entry, it invokes the
14420  * proper mailbox complete handling or asynchronous event handling routine
14421  * according to the MCQE's async bit.
14422  *
14423  * Return: true if work posted to worker thread, otherwise false.
14424  **/
14425 static bool
14426 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14427 			 struct lpfc_cqe *cqe)
14428 {
14429 	struct lpfc_mcqe mcqe;
14430 	bool workposted;
14431 
14432 	cq->CQ_mbox++;
14433 
14434 	/* Copy the mailbox MCQE and convert endian order as needed */
14435 	lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
14436 
14437 	/* Invoke the proper event handling routine */
14438 	if (!bf_get(lpfc_trailer_async, &mcqe))
14439 		workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
14440 	else
14441 		workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
14442 	return workposted;
14443 }
14444 
14445 /**
14446  * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
14447  * @phba: Pointer to HBA context object.
14448  * @cq: Pointer to associated CQ
14449  * @wcqe: Pointer to work-queue completion queue entry.
14450  *
14451  * This routine handles an ELS work-queue completion event.
14452  *
14453  * Return: true if work posted to worker thread, otherwise false.
14454  **/
14455 static bool
14456 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14457 			     struct lpfc_wcqe_complete *wcqe)
14458 {
14459 	struct lpfc_iocbq *irspiocbq;
14460 	unsigned long iflags;
14461 	struct lpfc_sli_ring *pring = cq->pring;
14462 	int txq_cnt = 0;
14463 	int txcmplq_cnt = 0;
14464 
14465 	/* Check for response status */
14466 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
14467 		/* Log the error status */
14468 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14469 				"0357 ELS CQE error: status=x%x: "
14470 				"CQE: %08x %08x %08x %08x\n",
14471 				bf_get(lpfc_wcqe_c_status, wcqe),
14472 				wcqe->word0, wcqe->total_data_placed,
14473 				wcqe->parameter, wcqe->word3);
14474 	}
14475 
14476 	/* Get an irspiocbq for later ELS response processing use */
14477 	irspiocbq = lpfc_sli_get_iocbq(phba);
14478 	if (!irspiocbq) {
14479 		if (!list_empty(&pring->txq))
14480 			txq_cnt++;
14481 		if (!list_empty(&pring->txcmplq))
14482 			txcmplq_cnt++;
14483 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14484 			"0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
14485 			"els_txcmplq_cnt=%d\n",
14486 			txq_cnt, phba->iocb_cnt,
14487 			txcmplq_cnt);
14488 		return false;
14489 	}
14490 
14491 	/* Save off the slow-path queue event for work thread to process */
14492 	memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
14493 	spin_lock_irqsave(&phba->hbalock, iflags);
14494 	list_add_tail(&irspiocbq->cq_event.list,
14495 		      &phba->sli4_hba.sp_queue_event);
14496 	phba->hba_flag |= HBA_SP_QUEUE_EVT;
14497 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14498 
14499 	return true;
14500 }
14501 
14502 /**
14503  * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
14504  * @phba: Pointer to HBA context object.
14505  * @wcqe: Pointer to work-queue completion queue entry.
14506  *
14507  * This routine handles slow-path WQ entry consumed event by invoking the
14508  * proper WQ release routine to the slow-path WQ.
14509  **/
14510 static void
14511 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
14512 			     struct lpfc_wcqe_release *wcqe)
14513 {
14514 	/* sanity check on queue memory */
14515 	if (unlikely(!phba->sli4_hba.els_wq))
14516 		return;
14517 	/* Check for the slow-path ELS work queue */
14518 	if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
14519 		lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
14520 				     bf_get(lpfc_wcqe_r_wqe_index, wcqe));
14521 	else
14522 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14523 				"2579 Slow-path wqe consume event carries "
14524 				"miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
14525 				bf_get(lpfc_wcqe_r_wqe_index, wcqe),
14526 				phba->sli4_hba.els_wq->queue_id);
14527 }
14528 
14529 /**
14530  * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
14531  * @phba: Pointer to HBA context object.
14532  * @cq: Pointer to a WQ completion queue.
14533  * @wcqe: Pointer to work-queue completion queue entry.
14534  *
14535  * This routine handles an XRI abort event.
14536  *
14537  * Return: true if work posted to worker thread, otherwise false.
14538  **/
14539 static bool
14540 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
14541 				   struct lpfc_queue *cq,
14542 				   struct sli4_wcqe_xri_aborted *wcqe)
14543 {
14544 	bool workposted = false;
14545 	struct lpfc_cq_event *cq_event;
14546 	unsigned long iflags;
14547 
14548 	switch (cq->subtype) {
14549 	case LPFC_IO:
14550 		lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
14551 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14552 			/* Notify aborted XRI for NVME work queue */
14553 			if (phba->nvmet_support)
14554 				lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
14555 		}
14556 		workposted = false;
14557 		break;
14558 	case LPFC_NVME_LS: /* NVME LS uses ELS resources */
14559 	case LPFC_ELS:
14560 		cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe));
14561 		if (!cq_event) {
14562 			workposted = false;
14563 			break;
14564 		}
14565 		cq_event->hdwq = cq->hdwq;
14566 		spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
14567 				  iflags);
14568 		list_add_tail(&cq_event->list,
14569 			      &phba->sli4_hba.sp_els_xri_aborted_work_queue);
14570 		/* Set the els xri abort event flag */
14571 		phba->hba_flag |= ELS_XRI_ABORT_EVENT;
14572 		spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
14573 				       iflags);
14574 		workposted = true;
14575 		break;
14576 	default:
14577 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14578 				"0603 Invalid CQ subtype %d: "
14579 				"%08x %08x %08x %08x\n",
14580 				cq->subtype, wcqe->word0, wcqe->parameter,
14581 				wcqe->word2, wcqe->word3);
14582 		workposted = false;
14583 		break;
14584 	}
14585 	return workposted;
14586 }
14587 
14588 #define FC_RCTL_MDS_DIAGS	0xF4
14589 
14590 /**
14591  * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
14592  * @phba: Pointer to HBA context object.
14593  * @rcqe: Pointer to receive-queue completion queue entry.
14594  *
14595  * This routine process a receive-queue completion queue entry.
14596  *
14597  * Return: true if work posted to worker thread, otherwise false.
14598  **/
14599 static bool
14600 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
14601 {
14602 	bool workposted = false;
14603 	struct fc_frame_header *fc_hdr;
14604 	struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
14605 	struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
14606 	struct lpfc_nvmet_tgtport *tgtp;
14607 	struct hbq_dmabuf *dma_buf;
14608 	uint32_t status, rq_id;
14609 	unsigned long iflags;
14610 
14611 	/* sanity check on queue memory */
14612 	if (unlikely(!hrq) || unlikely(!drq))
14613 		return workposted;
14614 
14615 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
14616 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
14617 	else
14618 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
14619 	if (rq_id != hrq->queue_id)
14620 		goto out;
14621 
14622 	status = bf_get(lpfc_rcqe_status, rcqe);
14623 	switch (status) {
14624 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
14625 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14626 				"2537 Receive Frame Truncated!!\n");
14627 		fallthrough;
14628 	case FC_STATUS_RQ_SUCCESS:
14629 		spin_lock_irqsave(&phba->hbalock, iflags);
14630 		lpfc_sli4_rq_release(hrq, drq);
14631 		dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
14632 		if (!dma_buf) {
14633 			hrq->RQ_no_buf_found++;
14634 			spin_unlock_irqrestore(&phba->hbalock, iflags);
14635 			goto out;
14636 		}
14637 		hrq->RQ_rcv_buf++;
14638 		hrq->RQ_buf_posted--;
14639 		memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
14640 
14641 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
14642 
14643 		if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
14644 		    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
14645 			spin_unlock_irqrestore(&phba->hbalock, iflags);
14646 			/* Handle MDS Loopback frames */
14647 			if  (!(phba->pport->load_flag & FC_UNLOADING))
14648 				lpfc_sli4_handle_mds_loopback(phba->pport,
14649 							      dma_buf);
14650 			else
14651 				lpfc_in_buf_free(phba, &dma_buf->dbuf);
14652 			break;
14653 		}
14654 
14655 		/* save off the frame for the work thread to process */
14656 		list_add_tail(&dma_buf->cq_event.list,
14657 			      &phba->sli4_hba.sp_queue_event);
14658 		/* Frame received */
14659 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
14660 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14661 		workposted = true;
14662 		break;
14663 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
14664 		if (phba->nvmet_support) {
14665 			tgtp = phba->targetport->private;
14666 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14667 					"6402 RQE Error x%x, posted %d err_cnt "
14668 					"%d: %x %x %x\n",
14669 					status, hrq->RQ_buf_posted,
14670 					hrq->RQ_no_posted_buf,
14671 					atomic_read(&tgtp->rcv_fcp_cmd_in),
14672 					atomic_read(&tgtp->rcv_fcp_cmd_out),
14673 					atomic_read(&tgtp->xmt_fcp_release));
14674 		}
14675 		fallthrough;
14676 
14677 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
14678 		hrq->RQ_no_posted_buf++;
14679 		/* Post more buffers if possible */
14680 		spin_lock_irqsave(&phba->hbalock, iflags);
14681 		phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
14682 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14683 		workposted = true;
14684 		break;
14685 	}
14686 out:
14687 	return workposted;
14688 }
14689 
14690 /**
14691  * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
14692  * @phba: Pointer to HBA context object.
14693  * @cq: Pointer to the completion queue.
14694  * @cqe: Pointer to a completion queue entry.
14695  *
14696  * This routine process a slow-path work-queue or receive queue completion queue
14697  * entry.
14698  *
14699  * Return: true if work posted to worker thread, otherwise false.
14700  **/
14701 static bool
14702 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14703 			 struct lpfc_cqe *cqe)
14704 {
14705 	struct lpfc_cqe cqevt;
14706 	bool workposted = false;
14707 
14708 	/* Copy the work queue CQE and convert endian order if needed */
14709 	lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
14710 
14711 	/* Check and process for different type of WCQE and dispatch */
14712 	switch (bf_get(lpfc_cqe_code, &cqevt)) {
14713 	case CQE_CODE_COMPL_WQE:
14714 		/* Process the WQ/RQ complete event */
14715 		phba->last_completion_time = jiffies;
14716 		workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
14717 				(struct lpfc_wcqe_complete *)&cqevt);
14718 		break;
14719 	case CQE_CODE_RELEASE_WQE:
14720 		/* Process the WQ release event */
14721 		lpfc_sli4_sp_handle_rel_wcqe(phba,
14722 				(struct lpfc_wcqe_release *)&cqevt);
14723 		break;
14724 	case CQE_CODE_XRI_ABORTED:
14725 		/* Process the WQ XRI abort event */
14726 		phba->last_completion_time = jiffies;
14727 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14728 				(struct sli4_wcqe_xri_aborted *)&cqevt);
14729 		break;
14730 	case CQE_CODE_RECEIVE:
14731 	case CQE_CODE_RECEIVE_V1:
14732 		/* Process the RQ event */
14733 		phba->last_completion_time = jiffies;
14734 		workposted = lpfc_sli4_sp_handle_rcqe(phba,
14735 				(struct lpfc_rcqe *)&cqevt);
14736 		break;
14737 	default:
14738 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14739 				"0388 Not a valid WCQE code: x%x\n",
14740 				bf_get(lpfc_cqe_code, &cqevt));
14741 		break;
14742 	}
14743 	return workposted;
14744 }
14745 
14746 /**
14747  * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
14748  * @phba: Pointer to HBA context object.
14749  * @eqe: Pointer to fast-path event queue entry.
14750  * @speq: Pointer to slow-path event queue.
14751  *
14752  * This routine process a event queue entry from the slow-path event queue.
14753  * It will check the MajorCode and MinorCode to determine this is for a
14754  * completion event on a completion queue, if not, an error shall be logged
14755  * and just return. Otherwise, it will get to the corresponding completion
14756  * queue and process all the entries on that completion queue, rearm the
14757  * completion queue, and then return.
14758  *
14759  **/
14760 static void
14761 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
14762 	struct lpfc_queue *speq)
14763 {
14764 	struct lpfc_queue *cq = NULL, *childq;
14765 	uint16_t cqid;
14766 	int ret = 0;
14767 
14768 	/* Get the reference to the corresponding CQ */
14769 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14770 
14771 	list_for_each_entry(childq, &speq->child_list, list) {
14772 		if (childq->queue_id == cqid) {
14773 			cq = childq;
14774 			break;
14775 		}
14776 	}
14777 	if (unlikely(!cq)) {
14778 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
14779 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14780 					"0365 Slow-path CQ identifier "
14781 					"(%d) does not exist\n", cqid);
14782 		return;
14783 	}
14784 
14785 	/* Save EQ associated with this CQ */
14786 	cq->assoc_qp = speq;
14787 
14788 	if (is_kdump_kernel())
14789 		ret = queue_work(phba->wq, &cq->spwork);
14790 	else
14791 		ret = queue_work_on(cq->chann, phba->wq, &cq->spwork);
14792 
14793 	if (!ret)
14794 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14795 				"0390 Cannot schedule queue work "
14796 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14797 				cqid, cq->queue_id, raw_smp_processor_id());
14798 }
14799 
14800 /**
14801  * __lpfc_sli4_process_cq - Process elements of a CQ
14802  * @phba: Pointer to HBA context object.
14803  * @cq: Pointer to CQ to be processed
14804  * @handler: Routine to process each cqe
14805  * @delay: Pointer to usdelay to set in case of rescheduling of the handler
14806  * @poll_mode: Polling mode we were called from
14807  *
14808  * This routine processes completion queue entries in a CQ. While a valid
14809  * queue element is found, the handler is called. During processing checks
14810  * are made for periodic doorbell writes to let the hardware know of
14811  * element consumption.
14812  *
14813  * If the max limit on cqes to process is hit, or there are no more valid
14814  * entries, the loop stops. If we processed a sufficient number of elements,
14815  * meaning there is sufficient load, rather than rearming and generating
14816  * another interrupt, a cq rescheduling delay will be set. A delay of 0
14817  * indicates no rescheduling.
14818  *
14819  * Returns True if work scheduled, False otherwise.
14820  **/
14821 static bool
14822 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
14823 	bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
14824 			struct lpfc_cqe *), unsigned long *delay,
14825 			enum lpfc_poll_mode poll_mode)
14826 {
14827 	struct lpfc_cqe *cqe;
14828 	bool workposted = false;
14829 	int count = 0, consumed = 0;
14830 	bool arm = true;
14831 
14832 	/* default - no reschedule */
14833 	*delay = 0;
14834 
14835 	if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
14836 		goto rearm_and_exit;
14837 
14838 	/* Process all the entries to the CQ */
14839 	cq->q_flag = 0;
14840 	cqe = lpfc_sli4_cq_get(cq);
14841 	while (cqe) {
14842 		workposted |= handler(phba, cq, cqe);
14843 		__lpfc_sli4_consume_cqe(phba, cq, cqe);
14844 
14845 		consumed++;
14846 		if (!(++count % cq->max_proc_limit))
14847 			break;
14848 
14849 		if (!(count % cq->notify_interval)) {
14850 			phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14851 						LPFC_QUEUE_NOARM);
14852 			consumed = 0;
14853 			cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK;
14854 		}
14855 
14856 		if (count == LPFC_NVMET_CQ_NOTIFY)
14857 			cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
14858 
14859 		cqe = lpfc_sli4_cq_get(cq);
14860 	}
14861 	if (count >= phba->cfg_cq_poll_threshold) {
14862 		*delay = 1;
14863 		arm = false;
14864 	}
14865 
14866 	/* Note: complete the irq_poll softirq before rearming CQ */
14867 	if (poll_mode == LPFC_IRQ_POLL)
14868 		irq_poll_complete(&cq->iop);
14869 
14870 	/* Track the max number of CQEs processed in 1 EQ */
14871 	if (count > cq->CQ_max_cqe)
14872 		cq->CQ_max_cqe = count;
14873 
14874 	cq->assoc_qp->EQ_cqe_cnt += count;
14875 
14876 	/* Catch the no cq entry condition */
14877 	if (unlikely(count == 0))
14878 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14879 				"0369 No entry from completion queue "
14880 				"qid=%d\n", cq->queue_id);
14881 
14882 	xchg(&cq->queue_claimed, 0);
14883 
14884 rearm_and_exit:
14885 	phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14886 			arm ?  LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
14887 
14888 	return workposted;
14889 }
14890 
14891 /**
14892  * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
14893  * @cq: pointer to CQ to process
14894  *
14895  * This routine calls the cq processing routine with a handler specific
14896  * to the type of queue bound to it.
14897  *
14898  * The CQ routine returns two values: the first is the calling status,
14899  * which indicates whether work was queued to the  background discovery
14900  * thread. If true, the routine should wakeup the discovery thread;
14901  * the second is the delay parameter. If non-zero, rather than rearming
14902  * the CQ and yet another interrupt, the CQ handler should be queued so
14903  * that it is processed in a subsequent polling action. The value of
14904  * the delay indicates when to reschedule it.
14905  **/
14906 static void
14907 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
14908 {
14909 	struct lpfc_hba *phba = cq->phba;
14910 	unsigned long delay;
14911 	bool workposted = false;
14912 	int ret = 0;
14913 
14914 	/* Process and rearm the CQ */
14915 	switch (cq->type) {
14916 	case LPFC_MCQ:
14917 		workposted |= __lpfc_sli4_process_cq(phba, cq,
14918 						lpfc_sli4_sp_handle_mcqe,
14919 						&delay, LPFC_QUEUE_WORK);
14920 		break;
14921 	case LPFC_WCQ:
14922 		if (cq->subtype == LPFC_IO)
14923 			workposted |= __lpfc_sli4_process_cq(phba, cq,
14924 						lpfc_sli4_fp_handle_cqe,
14925 						&delay, LPFC_QUEUE_WORK);
14926 		else
14927 			workposted |= __lpfc_sli4_process_cq(phba, cq,
14928 						lpfc_sli4_sp_handle_cqe,
14929 						&delay, LPFC_QUEUE_WORK);
14930 		break;
14931 	default:
14932 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14933 				"0370 Invalid completion queue type (%d)\n",
14934 				cq->type);
14935 		return;
14936 	}
14937 
14938 	if (delay) {
14939 		if (is_kdump_kernel())
14940 			ret = queue_delayed_work(phba->wq, &cq->sched_spwork,
14941 						delay);
14942 		else
14943 			ret = queue_delayed_work_on(cq->chann, phba->wq,
14944 						&cq->sched_spwork, delay);
14945 		if (!ret)
14946 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14947 				"0394 Cannot schedule queue work "
14948 				"for cqid=%d on CPU %d\n",
14949 				cq->queue_id, cq->chann);
14950 	}
14951 
14952 	/* wake up worker thread if there are works to be done */
14953 	if (workposted)
14954 		lpfc_worker_wake_up(phba);
14955 }
14956 
14957 /**
14958  * lpfc_sli4_sp_process_cq - slow-path work handler when started by
14959  *   interrupt
14960  * @work: pointer to work element
14961  *
14962  * translates from the work handler and calls the slow-path handler.
14963  **/
14964 static void
14965 lpfc_sli4_sp_process_cq(struct work_struct *work)
14966 {
14967 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
14968 
14969 	__lpfc_sli4_sp_process_cq(cq);
14970 }
14971 
14972 /**
14973  * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
14974  * @work: pointer to work element
14975  *
14976  * translates from the work handler and calls the slow-path handler.
14977  **/
14978 static void
14979 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
14980 {
14981 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
14982 					struct lpfc_queue, sched_spwork);
14983 
14984 	__lpfc_sli4_sp_process_cq(cq);
14985 }
14986 
14987 /**
14988  * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
14989  * @phba: Pointer to HBA context object.
14990  * @cq: Pointer to associated CQ
14991  * @wcqe: Pointer to work-queue completion queue entry.
14992  *
14993  * This routine process a fast-path work queue completion entry from fast-path
14994  * event queue for FCP command response completion.
14995  **/
14996 static void
14997 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14998 			     struct lpfc_wcqe_complete *wcqe)
14999 {
15000 	struct lpfc_sli_ring *pring = cq->pring;
15001 	struct lpfc_iocbq *cmdiocbq;
15002 	unsigned long iflags;
15003 
15004 	/* Check for response status */
15005 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
15006 		/* If resource errors reported from HBA, reduce queue
15007 		 * depth of the SCSI device.
15008 		 */
15009 		if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
15010 		     IOSTAT_LOCAL_REJECT)) &&
15011 		    ((wcqe->parameter & IOERR_PARAM_MASK) ==
15012 		     IOERR_NO_RESOURCES))
15013 			phba->lpfc_rampdown_queue_depth(phba);
15014 
15015 		/* Log the cmpl status */
15016 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
15017 				"0373 FCP CQE cmpl: status=x%x: "
15018 				"CQE: %08x %08x %08x %08x\n",
15019 				bf_get(lpfc_wcqe_c_status, wcqe),
15020 				wcqe->word0, wcqe->total_data_placed,
15021 				wcqe->parameter, wcqe->word3);
15022 	}
15023 
15024 	/* Look up the FCP command IOCB and create pseudo response IOCB */
15025 	spin_lock_irqsave(&pring->ring_lock, iflags);
15026 	pring->stats.iocb_event++;
15027 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
15028 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
15029 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
15030 	if (unlikely(!cmdiocbq)) {
15031 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15032 				"0374 FCP complete with no corresponding "
15033 				"cmdiocb: iotag (%d)\n",
15034 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
15035 		return;
15036 	}
15037 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
15038 	cmdiocbq->isr_timestamp = cq->isr_timestamp;
15039 #endif
15040 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
15041 		spin_lock_irqsave(&phba->hbalock, iflags);
15042 		cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY;
15043 		spin_unlock_irqrestore(&phba->hbalock, iflags);
15044 	}
15045 
15046 	if (cmdiocbq->cmd_cmpl) {
15047 		/* For FCP the flag is cleared in cmd_cmpl */
15048 		if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) &&
15049 		    cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) {
15050 			spin_lock_irqsave(&phba->hbalock, iflags);
15051 			cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
15052 			spin_unlock_irqrestore(&phba->hbalock, iflags);
15053 		}
15054 
15055 		/* Pass the cmd_iocb and the wcqe to the upper layer */
15056 		memcpy(&cmdiocbq->wcqe_cmpl, wcqe,
15057 		       sizeof(struct lpfc_wcqe_complete));
15058 		cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq);
15059 	} else {
15060 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15061 				"0375 FCP cmdiocb not callback function "
15062 				"iotag: (%d)\n",
15063 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
15064 	}
15065 }
15066 
15067 /**
15068  * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
15069  * @phba: Pointer to HBA context object.
15070  * @cq: Pointer to completion queue.
15071  * @wcqe: Pointer to work-queue completion queue entry.
15072  *
15073  * This routine handles an fast-path WQ entry consumed event by invoking the
15074  * proper WQ release routine to the slow-path WQ.
15075  **/
15076 static void
15077 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15078 			     struct lpfc_wcqe_release *wcqe)
15079 {
15080 	struct lpfc_queue *childwq;
15081 	bool wqid_matched = false;
15082 	uint16_t hba_wqid;
15083 
15084 	/* Check for fast-path FCP work queue release */
15085 	hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
15086 	list_for_each_entry(childwq, &cq->child_list, list) {
15087 		if (childwq->queue_id == hba_wqid) {
15088 			lpfc_sli4_wq_release(childwq,
15089 					bf_get(lpfc_wcqe_r_wqe_index, wcqe));
15090 			if (childwq->q_flag & HBA_NVMET_WQFULL)
15091 				lpfc_nvmet_wqfull_process(phba, childwq);
15092 			wqid_matched = true;
15093 			break;
15094 		}
15095 	}
15096 	/* Report warning log message if no match found */
15097 	if (wqid_matched != true)
15098 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15099 				"2580 Fast-path wqe consume event carries "
15100 				"miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
15101 }
15102 
15103 /**
15104  * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
15105  * @phba: Pointer to HBA context object.
15106  * @cq: Pointer to completion queue.
15107  * @rcqe: Pointer to receive-queue completion queue entry.
15108  *
15109  * This routine process a receive-queue completion queue entry.
15110  *
15111  * Return: true if work posted to worker thread, otherwise false.
15112  **/
15113 static bool
15114 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15115 			    struct lpfc_rcqe *rcqe)
15116 {
15117 	bool workposted = false;
15118 	struct lpfc_queue *hrq;
15119 	struct lpfc_queue *drq;
15120 	struct rqb_dmabuf *dma_buf;
15121 	struct fc_frame_header *fc_hdr;
15122 	struct lpfc_nvmet_tgtport *tgtp;
15123 	uint32_t status, rq_id;
15124 	unsigned long iflags;
15125 	uint32_t fctl, idx;
15126 
15127 	if ((phba->nvmet_support == 0) ||
15128 	    (phba->sli4_hba.nvmet_cqset == NULL))
15129 		return workposted;
15130 
15131 	idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
15132 	hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
15133 	drq = phba->sli4_hba.nvmet_mrq_data[idx];
15134 
15135 	/* sanity check on queue memory */
15136 	if (unlikely(!hrq) || unlikely(!drq))
15137 		return workposted;
15138 
15139 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
15140 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
15141 	else
15142 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
15143 
15144 	if ((phba->nvmet_support == 0) ||
15145 	    (rq_id != hrq->queue_id))
15146 		return workposted;
15147 
15148 	status = bf_get(lpfc_rcqe_status, rcqe);
15149 	switch (status) {
15150 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
15151 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15152 				"6126 Receive Frame Truncated!!\n");
15153 		fallthrough;
15154 	case FC_STATUS_RQ_SUCCESS:
15155 		spin_lock_irqsave(&phba->hbalock, iflags);
15156 		lpfc_sli4_rq_release(hrq, drq);
15157 		dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
15158 		if (!dma_buf) {
15159 			hrq->RQ_no_buf_found++;
15160 			spin_unlock_irqrestore(&phba->hbalock, iflags);
15161 			goto out;
15162 		}
15163 		spin_unlock_irqrestore(&phba->hbalock, iflags);
15164 		hrq->RQ_rcv_buf++;
15165 		hrq->RQ_buf_posted--;
15166 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
15167 
15168 		/* Just some basic sanity checks on FCP Command frame */
15169 		fctl = (fc_hdr->fh_f_ctl[0] << 16 |
15170 			fc_hdr->fh_f_ctl[1] << 8 |
15171 			fc_hdr->fh_f_ctl[2]);
15172 		if (((fctl &
15173 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
15174 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
15175 		    (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
15176 			goto drop;
15177 
15178 		if (fc_hdr->fh_type == FC_TYPE_FCP) {
15179 			dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
15180 			lpfc_nvmet_unsol_fcp_event(
15181 				phba, idx, dma_buf, cq->isr_timestamp,
15182 				cq->q_flag & HBA_NVMET_CQ_NOTIFY);
15183 			return false;
15184 		}
15185 drop:
15186 		lpfc_rq_buf_free(phba, &dma_buf->hbuf);
15187 		break;
15188 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
15189 		if (phba->nvmet_support) {
15190 			tgtp = phba->targetport->private;
15191 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15192 					"6401 RQE Error x%x, posted %d err_cnt "
15193 					"%d: %x %x %x\n",
15194 					status, hrq->RQ_buf_posted,
15195 					hrq->RQ_no_posted_buf,
15196 					atomic_read(&tgtp->rcv_fcp_cmd_in),
15197 					atomic_read(&tgtp->rcv_fcp_cmd_out),
15198 					atomic_read(&tgtp->xmt_fcp_release));
15199 		}
15200 		fallthrough;
15201 
15202 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
15203 		hrq->RQ_no_posted_buf++;
15204 		/* Post more buffers if possible */
15205 		break;
15206 	}
15207 out:
15208 	return workposted;
15209 }
15210 
15211 /**
15212  * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
15213  * @phba: adapter with cq
15214  * @cq: Pointer to the completion queue.
15215  * @cqe: Pointer to fast-path completion queue entry.
15216  *
15217  * This routine process a fast-path work queue completion entry from fast-path
15218  * event queue for FCP command response completion.
15219  *
15220  * Return: true if work posted to worker thread, otherwise false.
15221  **/
15222 static bool
15223 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15224 			 struct lpfc_cqe *cqe)
15225 {
15226 	struct lpfc_wcqe_release wcqe;
15227 	bool workposted = false;
15228 
15229 	/* Copy the work queue CQE and convert endian order if needed */
15230 	lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
15231 
15232 	/* Check and process for different type of WCQE and dispatch */
15233 	switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
15234 	case CQE_CODE_COMPL_WQE:
15235 	case CQE_CODE_NVME_ERSP:
15236 		cq->CQ_wq++;
15237 		/* Process the WQ complete event */
15238 		phba->last_completion_time = jiffies;
15239 		if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
15240 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
15241 				(struct lpfc_wcqe_complete *)&wcqe);
15242 		break;
15243 	case CQE_CODE_RELEASE_WQE:
15244 		cq->CQ_release_wqe++;
15245 		/* Process the WQ release event */
15246 		lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
15247 				(struct lpfc_wcqe_release *)&wcqe);
15248 		break;
15249 	case CQE_CODE_XRI_ABORTED:
15250 		cq->CQ_xri_aborted++;
15251 		/* Process the WQ XRI abort event */
15252 		phba->last_completion_time = jiffies;
15253 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
15254 				(struct sli4_wcqe_xri_aborted *)&wcqe);
15255 		break;
15256 	case CQE_CODE_RECEIVE_V1:
15257 	case CQE_CODE_RECEIVE:
15258 		phba->last_completion_time = jiffies;
15259 		if (cq->subtype == LPFC_NVMET) {
15260 			workposted = lpfc_sli4_nvmet_handle_rcqe(
15261 				phba, cq, (struct lpfc_rcqe *)&wcqe);
15262 		}
15263 		break;
15264 	default:
15265 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15266 				"0144 Not a valid CQE code: x%x\n",
15267 				bf_get(lpfc_wcqe_c_code, &wcqe));
15268 		break;
15269 	}
15270 	return workposted;
15271 }
15272 
15273 /**
15274  * lpfc_sli4_sched_cq_work - Schedules cq work
15275  * @phba: Pointer to HBA context object.
15276  * @cq: Pointer to CQ
15277  * @cqid: CQ ID
15278  *
15279  * This routine checks the poll mode of the CQ corresponding to
15280  * cq->chann, then either schedules a softirq or queue_work to complete
15281  * cq work.
15282  *
15283  * queue_work path is taken if in NVMET mode, or if poll_mode is in
15284  * LPFC_QUEUE_WORK mode.  Otherwise, softirq path is taken.
15285  *
15286  **/
15287 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba,
15288 				    struct lpfc_queue *cq, uint16_t cqid)
15289 {
15290 	int ret = 0;
15291 
15292 	switch (cq->poll_mode) {
15293 	case LPFC_IRQ_POLL:
15294 		/* CGN mgmt is mutually exclusive from softirq processing */
15295 		if (phba->cmf_active_mode == LPFC_CFG_OFF) {
15296 			irq_poll_sched(&cq->iop);
15297 			break;
15298 		}
15299 		fallthrough;
15300 	case LPFC_QUEUE_WORK:
15301 	default:
15302 		if (is_kdump_kernel())
15303 			ret = queue_work(phba->wq, &cq->irqwork);
15304 		else
15305 			ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork);
15306 		if (!ret)
15307 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15308 					"0383 Cannot schedule queue work "
15309 					"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
15310 					cqid, cq->queue_id,
15311 					raw_smp_processor_id());
15312 	}
15313 }
15314 
15315 /**
15316  * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
15317  * @phba: Pointer to HBA context object.
15318  * @eq: Pointer to the queue structure.
15319  * @eqe: Pointer to fast-path event queue entry.
15320  *
15321  * This routine process a event queue entry from the fast-path event queue.
15322  * It will check the MajorCode and MinorCode to determine this is for a
15323  * completion event on a completion queue, if not, an error shall be logged
15324  * and just return. Otherwise, it will get to the corresponding completion
15325  * queue and process all the entries on the completion queue, rearm the
15326  * completion queue, and then return.
15327  **/
15328 static void
15329 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
15330 			 struct lpfc_eqe *eqe)
15331 {
15332 	struct lpfc_queue *cq = NULL;
15333 	uint32_t qidx = eq->hdwq;
15334 	uint16_t cqid, id;
15335 
15336 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
15337 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15338 				"0366 Not a valid completion "
15339 				"event: majorcode=x%x, minorcode=x%x\n",
15340 				bf_get_le32(lpfc_eqe_major_code, eqe),
15341 				bf_get_le32(lpfc_eqe_minor_code, eqe));
15342 		return;
15343 	}
15344 
15345 	/* Get the reference to the corresponding CQ */
15346 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
15347 
15348 	/* Use the fast lookup method first */
15349 	if (cqid <= phba->sli4_hba.cq_max) {
15350 		cq = phba->sli4_hba.cq_lookup[cqid];
15351 		if (cq)
15352 			goto  work_cq;
15353 	}
15354 
15355 	/* Next check for NVMET completion */
15356 	if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
15357 		id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
15358 		if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
15359 			/* Process NVMET unsol rcv */
15360 			cq = phba->sli4_hba.nvmet_cqset[cqid - id];
15361 			goto  process_cq;
15362 		}
15363 	}
15364 
15365 	if (phba->sli4_hba.nvmels_cq &&
15366 	    (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
15367 		/* Process NVME unsol rcv */
15368 		cq = phba->sli4_hba.nvmels_cq;
15369 	}
15370 
15371 	/* Otherwise this is a Slow path event */
15372 	if (cq == NULL) {
15373 		lpfc_sli4_sp_handle_eqe(phba, eqe,
15374 					phba->sli4_hba.hdwq[qidx].hba_eq);
15375 		return;
15376 	}
15377 
15378 process_cq:
15379 	if (unlikely(cqid != cq->queue_id)) {
15380 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15381 				"0368 Miss-matched fast-path completion "
15382 				"queue identifier: eqcqid=%d, fcpcqid=%d\n",
15383 				cqid, cq->queue_id);
15384 		return;
15385 	}
15386 
15387 work_cq:
15388 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
15389 	if (phba->ktime_on)
15390 		cq->isr_timestamp = ktime_get_ns();
15391 	else
15392 		cq->isr_timestamp = 0;
15393 #endif
15394 	lpfc_sli4_sched_cq_work(phba, cq, cqid);
15395 }
15396 
15397 /**
15398  * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
15399  * @cq: Pointer to CQ to be processed
15400  * @poll_mode: Enum lpfc_poll_state to determine poll mode
15401  *
15402  * This routine calls the cq processing routine with the handler for
15403  * fast path CQEs.
15404  *
15405  * The CQ routine returns two values: the first is the calling status,
15406  * which indicates whether work was queued to the  background discovery
15407  * thread. If true, the routine should wakeup the discovery thread;
15408  * the second is the delay parameter. If non-zero, rather than rearming
15409  * the CQ and yet another interrupt, the CQ handler should be queued so
15410  * that it is processed in a subsequent polling action. The value of
15411  * the delay indicates when to reschedule it.
15412  **/
15413 static void
15414 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq,
15415 			   enum lpfc_poll_mode poll_mode)
15416 {
15417 	struct lpfc_hba *phba = cq->phba;
15418 	unsigned long delay;
15419 	bool workposted = false;
15420 	int ret = 0;
15421 
15422 	/* process and rearm the CQ */
15423 	workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
15424 					     &delay, poll_mode);
15425 
15426 	if (delay) {
15427 		if (is_kdump_kernel())
15428 			ret = queue_delayed_work(phba->wq, &cq->sched_irqwork,
15429 						delay);
15430 		else
15431 			ret = queue_delayed_work_on(cq->chann, phba->wq,
15432 						&cq->sched_irqwork, delay);
15433 		if (!ret)
15434 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15435 					"0367 Cannot schedule queue work "
15436 					"for cqid=%d on CPU %d\n",
15437 					cq->queue_id, cq->chann);
15438 	}
15439 
15440 	/* wake up worker thread if there are works to be done */
15441 	if (workposted)
15442 		lpfc_worker_wake_up(phba);
15443 }
15444 
15445 /**
15446  * lpfc_sli4_hba_process_cq - fast-path work handler when started by
15447  *   interrupt
15448  * @work: pointer to work element
15449  *
15450  * translates from the work handler and calls the fast-path handler.
15451  **/
15452 static void
15453 lpfc_sli4_hba_process_cq(struct work_struct *work)
15454 {
15455 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
15456 
15457 	__lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
15458 }
15459 
15460 /**
15461  * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer
15462  * @work: pointer to work element
15463  *
15464  * translates from the work handler and calls the fast-path handler.
15465  **/
15466 static void
15467 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
15468 {
15469 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
15470 					struct lpfc_queue, sched_irqwork);
15471 
15472 	__lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
15473 }
15474 
15475 /**
15476  * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
15477  * @irq: Interrupt number.
15478  * @dev_id: The device context pointer.
15479  *
15480  * This function is directly called from the PCI layer as an interrupt
15481  * service routine when device with SLI-4 interface spec is enabled with
15482  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
15483  * ring event in the HBA. However, when the device is enabled with either
15484  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
15485  * device-level interrupt handler. When the PCI slot is in error recovery
15486  * or the HBA is undergoing initialization, the interrupt handler will not
15487  * process the interrupt. The SCSI FCP fast-path ring event are handled in
15488  * the intrrupt context. This function is called without any lock held.
15489  * It gets the hbalock to access and update SLI data structures. Note that,
15490  * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
15491  * equal to that of FCP CQ index.
15492  *
15493  * The link attention and ELS ring attention events are handled
15494  * by the worker thread. The interrupt handler signals the worker thread
15495  * and returns for these events. This function is called without any lock
15496  * held. It gets the hbalock to access and update SLI data structures.
15497  *
15498  * This function returns IRQ_HANDLED when interrupt is handled else it
15499  * returns IRQ_NONE.
15500  **/
15501 irqreturn_t
15502 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
15503 {
15504 	struct lpfc_hba *phba;
15505 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
15506 	struct lpfc_queue *fpeq;
15507 	unsigned long iflag;
15508 	int ecount = 0;
15509 	int hba_eqidx;
15510 	struct lpfc_eq_intr_info *eqi;
15511 
15512 	/* Get the driver's phba structure from the dev_id */
15513 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
15514 	phba = hba_eq_hdl->phba;
15515 	hba_eqidx = hba_eq_hdl->idx;
15516 
15517 	if (unlikely(!phba))
15518 		return IRQ_NONE;
15519 	if (unlikely(!phba->sli4_hba.hdwq))
15520 		return IRQ_NONE;
15521 
15522 	/* Get to the EQ struct associated with this vector */
15523 	fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
15524 	if (unlikely(!fpeq))
15525 		return IRQ_NONE;
15526 
15527 	/* Check device state for handling interrupt */
15528 	if (unlikely(lpfc_intr_state_check(phba))) {
15529 		/* Check again for link_state with lock held */
15530 		spin_lock_irqsave(&phba->hbalock, iflag);
15531 		if (phba->link_state < LPFC_LINK_DOWN)
15532 			/* Flush, clear interrupt, and rearm the EQ */
15533 			lpfc_sli4_eqcq_flush(phba, fpeq);
15534 		spin_unlock_irqrestore(&phba->hbalock, iflag);
15535 		return IRQ_NONE;
15536 	}
15537 
15538 	eqi = this_cpu_ptr(phba->sli4_hba.eq_info);
15539 	eqi->icnt++;
15540 
15541 	fpeq->last_cpu = raw_smp_processor_id();
15542 
15543 	if (eqi->icnt > LPFC_EQD_ISR_TRIGGER &&
15544 	    fpeq->q_flag & HBA_EQ_DELAY_CHK &&
15545 	    phba->cfg_auto_imax &&
15546 	    fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
15547 	    phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
15548 		lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
15549 
15550 	/* process and rearm the EQ */
15551 	ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
15552 
15553 	if (unlikely(ecount == 0)) {
15554 		fpeq->EQ_no_entry++;
15555 		if (phba->intr_type == MSIX)
15556 			/* MSI-X treated interrupt served as no EQ share INT */
15557 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15558 					"0358 MSI-X interrupt with no EQE\n");
15559 		else
15560 			/* Non MSI-X treated on interrupt as EQ share INT */
15561 			return IRQ_NONE;
15562 	}
15563 
15564 	return IRQ_HANDLED;
15565 } /* lpfc_sli4_hba_intr_handler */
15566 
15567 /**
15568  * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
15569  * @irq: Interrupt number.
15570  * @dev_id: The device context pointer.
15571  *
15572  * This function is the device-level interrupt handler to device with SLI-4
15573  * interface spec, called from the PCI layer when either MSI or Pin-IRQ
15574  * interrupt mode is enabled and there is an event in the HBA which requires
15575  * driver attention. This function invokes the slow-path interrupt attention
15576  * handling function and fast-path interrupt attention handling function in
15577  * turn to process the relevant HBA attention events. This function is called
15578  * without any lock held. It gets the hbalock to access and update SLI data
15579  * structures.
15580  *
15581  * This function returns IRQ_HANDLED when interrupt is handled, else it
15582  * returns IRQ_NONE.
15583  **/
15584 irqreturn_t
15585 lpfc_sli4_intr_handler(int irq, void *dev_id)
15586 {
15587 	struct lpfc_hba  *phba;
15588 	irqreturn_t hba_irq_rc;
15589 	bool hba_handled = false;
15590 	int qidx;
15591 
15592 	/* Get the driver's phba structure from the dev_id */
15593 	phba = (struct lpfc_hba *)dev_id;
15594 
15595 	if (unlikely(!phba))
15596 		return IRQ_NONE;
15597 
15598 	/*
15599 	 * Invoke fast-path host attention interrupt handling as appropriate.
15600 	 */
15601 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
15602 		hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
15603 					&phba->sli4_hba.hba_eq_hdl[qidx]);
15604 		if (hba_irq_rc == IRQ_HANDLED)
15605 			hba_handled |= true;
15606 	}
15607 
15608 	return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
15609 } /* lpfc_sli4_intr_handler */
15610 
15611 void lpfc_sli4_poll_hbtimer(struct timer_list *t)
15612 {
15613 	struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer);
15614 	struct lpfc_queue *eq;
15615 
15616 	rcu_read_lock();
15617 
15618 	list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list)
15619 		lpfc_sli4_poll_eq(eq);
15620 	if (!list_empty(&phba->poll_list))
15621 		mod_timer(&phba->cpuhp_poll_timer,
15622 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
15623 
15624 	rcu_read_unlock();
15625 }
15626 
15627 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq)
15628 {
15629 	struct lpfc_hba *phba = eq->phba;
15630 
15631 	/* kickstart slowpath processing if needed */
15632 	if (list_empty(&phba->poll_list))
15633 		mod_timer(&phba->cpuhp_poll_timer,
15634 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
15635 
15636 	list_add_rcu(&eq->_poll_list, &phba->poll_list);
15637 	synchronize_rcu();
15638 }
15639 
15640 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq)
15641 {
15642 	struct lpfc_hba *phba = eq->phba;
15643 
15644 	/* Disable slowpath processing for this eq.  Kick start the eq
15645 	 * by RE-ARMING the eq's ASAP
15646 	 */
15647 	list_del_rcu(&eq->_poll_list);
15648 	synchronize_rcu();
15649 
15650 	if (list_empty(&phba->poll_list))
15651 		del_timer_sync(&phba->cpuhp_poll_timer);
15652 }
15653 
15654 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba)
15655 {
15656 	struct lpfc_queue *eq, *next;
15657 
15658 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list)
15659 		list_del(&eq->_poll_list);
15660 
15661 	INIT_LIST_HEAD(&phba->poll_list);
15662 	synchronize_rcu();
15663 }
15664 
15665 static inline void
15666 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode)
15667 {
15668 	if (mode == eq->mode)
15669 		return;
15670 	/*
15671 	 * currently this function is only called during a hotplug
15672 	 * event and the cpu on which this function is executing
15673 	 * is going offline.  By now the hotplug has instructed
15674 	 * the scheduler to remove this cpu from cpu active mask.
15675 	 * So we don't need to work about being put aside by the
15676 	 * scheduler for a high priority process.  Yes, the inte-
15677 	 * rrupts could come but they are known to retire ASAP.
15678 	 */
15679 
15680 	/* Disable polling in the fastpath */
15681 	WRITE_ONCE(eq->mode, mode);
15682 	/* flush out the store buffer */
15683 	smp_wmb();
15684 
15685 	/*
15686 	 * Add this eq to the polling list and start polling. For
15687 	 * a grace period both interrupt handler and poller will
15688 	 * try to process the eq _but_ that's fine.  We have a
15689 	 * synchronization mechanism in place (queue_claimed) to
15690 	 * deal with it.  This is just a draining phase for int-
15691 	 * errupt handler (not eq's) as we have guranteed through
15692 	 * barrier that all the CPUs have seen the new CQ_POLLED
15693 	 * state. which will effectively disable the REARMING of
15694 	 * the EQ.  The whole idea is eq's die off eventually as
15695 	 * we are not rearming EQ's anymore.
15696 	 */
15697 	mode ? lpfc_sli4_add_to_poll_list(eq) :
15698 	       lpfc_sli4_remove_from_poll_list(eq);
15699 }
15700 
15701 void lpfc_sli4_start_polling(struct lpfc_queue *eq)
15702 {
15703 	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL);
15704 }
15705 
15706 void lpfc_sli4_stop_polling(struct lpfc_queue *eq)
15707 {
15708 	struct lpfc_hba *phba = eq->phba;
15709 
15710 	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT);
15711 
15712 	/* Kick start for the pending io's in h/w.
15713 	 * Once we switch back to interrupt processing on a eq
15714 	 * the io path completion will only arm eq's when it
15715 	 * receives a completion.  But since eq's are in disa-
15716 	 * rmed state it doesn't receive a completion.  This
15717 	 * creates a deadlock scenaro.
15718 	 */
15719 	phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM);
15720 }
15721 
15722 /**
15723  * lpfc_sli4_queue_free - free a queue structure and associated memory
15724  * @queue: The queue structure to free.
15725  *
15726  * This function frees a queue structure and the DMAable memory used for
15727  * the host resident queue. This function must be called after destroying the
15728  * queue on the HBA.
15729  **/
15730 void
15731 lpfc_sli4_queue_free(struct lpfc_queue *queue)
15732 {
15733 	struct lpfc_dmabuf *dmabuf;
15734 
15735 	if (!queue)
15736 		return;
15737 
15738 	if (!list_empty(&queue->wq_list))
15739 		list_del(&queue->wq_list);
15740 
15741 	while (!list_empty(&queue->page_list)) {
15742 		list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
15743 				 list);
15744 		dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
15745 				  dmabuf->virt, dmabuf->phys);
15746 		kfree(dmabuf);
15747 	}
15748 	if (queue->rqbp) {
15749 		lpfc_free_rq_buffer(queue->phba, queue);
15750 		kfree(queue->rqbp);
15751 	}
15752 
15753 	if (!list_empty(&queue->cpu_list))
15754 		list_del(&queue->cpu_list);
15755 
15756 	kfree(queue);
15757 	return;
15758 }
15759 
15760 /**
15761  * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
15762  * @phba: The HBA that this queue is being created on.
15763  * @page_size: The size of a queue page
15764  * @entry_size: The size of each queue entry for this queue.
15765  * @entry_count: The number of entries that this queue will handle.
15766  * @cpu: The cpu that will primarily utilize this queue.
15767  *
15768  * This function allocates a queue structure and the DMAable memory used for
15769  * the host resident queue. This function must be called before creating the
15770  * queue on the HBA.
15771  **/
15772 struct lpfc_queue *
15773 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
15774 		      uint32_t entry_size, uint32_t entry_count, int cpu)
15775 {
15776 	struct lpfc_queue *queue;
15777 	struct lpfc_dmabuf *dmabuf;
15778 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15779 	uint16_t x, pgcnt;
15780 
15781 	if (!phba->sli4_hba.pc_sli4_params.supported)
15782 		hw_page_size = page_size;
15783 
15784 	pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
15785 
15786 	/* If needed, Adjust page count to match the max the adapter supports */
15787 	if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
15788 		pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
15789 
15790 	queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
15791 			     GFP_KERNEL, cpu_to_node(cpu));
15792 	if (!queue)
15793 		return NULL;
15794 
15795 	INIT_LIST_HEAD(&queue->list);
15796 	INIT_LIST_HEAD(&queue->_poll_list);
15797 	INIT_LIST_HEAD(&queue->wq_list);
15798 	INIT_LIST_HEAD(&queue->wqfull_list);
15799 	INIT_LIST_HEAD(&queue->page_list);
15800 	INIT_LIST_HEAD(&queue->child_list);
15801 	INIT_LIST_HEAD(&queue->cpu_list);
15802 
15803 	/* Set queue parameters now.  If the system cannot provide memory
15804 	 * resources, the free routine needs to know what was allocated.
15805 	 */
15806 	queue->page_count = pgcnt;
15807 	queue->q_pgs = (void **)&queue[1];
15808 	queue->entry_cnt_per_pg = hw_page_size / entry_size;
15809 	queue->entry_size = entry_size;
15810 	queue->entry_count = entry_count;
15811 	queue->page_size = hw_page_size;
15812 	queue->phba = phba;
15813 
15814 	for (x = 0; x < queue->page_count; x++) {
15815 		dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
15816 				      dev_to_node(&phba->pcidev->dev));
15817 		if (!dmabuf)
15818 			goto out_fail;
15819 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
15820 						  hw_page_size, &dmabuf->phys,
15821 						  GFP_KERNEL);
15822 		if (!dmabuf->virt) {
15823 			kfree(dmabuf);
15824 			goto out_fail;
15825 		}
15826 		dmabuf->buffer_tag = x;
15827 		list_add_tail(&dmabuf->list, &queue->page_list);
15828 		/* use lpfc_sli4_qe to index a paritcular entry in this page */
15829 		queue->q_pgs[x] = dmabuf->virt;
15830 	}
15831 	INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
15832 	INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
15833 	INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
15834 	INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
15835 
15836 	/* notify_interval will be set during q creation */
15837 
15838 	return queue;
15839 out_fail:
15840 	lpfc_sli4_queue_free(queue);
15841 	return NULL;
15842 }
15843 
15844 /**
15845  * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
15846  * @phba: HBA structure that indicates port to create a queue on.
15847  * @pci_barset: PCI BAR set flag.
15848  *
15849  * This function shall perform iomap of the specified PCI BAR address to host
15850  * memory address if not already done so and return it. The returned host
15851  * memory address can be NULL.
15852  */
15853 static void __iomem *
15854 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
15855 {
15856 	if (!phba->pcidev)
15857 		return NULL;
15858 
15859 	switch (pci_barset) {
15860 	case WQ_PCI_BAR_0_AND_1:
15861 		return phba->pci_bar0_memmap_p;
15862 	case WQ_PCI_BAR_2_AND_3:
15863 		return phba->pci_bar2_memmap_p;
15864 	case WQ_PCI_BAR_4_AND_5:
15865 		return phba->pci_bar4_memmap_p;
15866 	default:
15867 		break;
15868 	}
15869 	return NULL;
15870 }
15871 
15872 /**
15873  * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
15874  * @phba: HBA structure that EQs are on.
15875  * @startq: The starting EQ index to modify
15876  * @numq: The number of EQs (consecutive indexes) to modify
15877  * @usdelay: amount of delay
15878  *
15879  * This function revises the EQ delay on 1 or more EQs. The EQ delay
15880  * is set either by writing to a register (if supported by the SLI Port)
15881  * or by mailbox command. The mailbox command allows several EQs to be
15882  * updated at once.
15883  *
15884  * The @phba struct is used to send a mailbox command to HBA. The @startq
15885  * is used to get the starting EQ index to change. The @numq value is
15886  * used to specify how many consecutive EQ indexes, starting at EQ index,
15887  * are to be changed. This function is asynchronous and will wait for any
15888  * mailbox commands to finish before returning.
15889  *
15890  * On success this function will return a zero. If unable to allocate
15891  * enough memory this function will return -ENOMEM. If a mailbox command
15892  * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
15893  * have had their delay multipler changed.
15894  **/
15895 void
15896 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
15897 			 uint32_t numq, uint32_t usdelay)
15898 {
15899 	struct lpfc_mbx_modify_eq_delay *eq_delay;
15900 	LPFC_MBOXQ_t *mbox;
15901 	struct lpfc_queue *eq;
15902 	int cnt = 0, rc, length;
15903 	uint32_t shdr_status, shdr_add_status;
15904 	uint32_t dmult;
15905 	int qidx;
15906 	union lpfc_sli4_cfg_shdr *shdr;
15907 
15908 	if (startq >= phba->cfg_irq_chann)
15909 		return;
15910 
15911 	if (usdelay > 0xFFFF) {
15912 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
15913 				"6429 usdelay %d too large. Scaled down to "
15914 				"0xFFFF.\n", usdelay);
15915 		usdelay = 0xFFFF;
15916 	}
15917 
15918 	/* set values by EQ_DELAY register if supported */
15919 	if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
15920 		for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
15921 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
15922 			if (!eq)
15923 				continue;
15924 
15925 			lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
15926 
15927 			if (++cnt >= numq)
15928 				break;
15929 		}
15930 		return;
15931 	}
15932 
15933 	/* Otherwise, set values by mailbox cmd */
15934 
15935 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15936 	if (!mbox) {
15937 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15938 				"6428 Failed allocating mailbox cmd buffer."
15939 				" EQ delay was not set.\n");
15940 		return;
15941 	}
15942 	length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
15943 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15944 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15945 			 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
15946 			 length, LPFC_SLI4_MBX_EMBED);
15947 	eq_delay = &mbox->u.mqe.un.eq_delay;
15948 
15949 	/* Calculate delay multiper from maximum interrupt per second */
15950 	dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
15951 	if (dmult)
15952 		dmult--;
15953 	if (dmult > LPFC_DMULT_MAX)
15954 		dmult = LPFC_DMULT_MAX;
15955 
15956 	for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
15957 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
15958 		if (!eq)
15959 			continue;
15960 		eq->q_mode = usdelay;
15961 		eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
15962 		eq_delay->u.request.eq[cnt].phase = 0;
15963 		eq_delay->u.request.eq[cnt].delay_multi = dmult;
15964 
15965 		if (++cnt >= numq)
15966 			break;
15967 	}
15968 	eq_delay->u.request.num_eq = cnt;
15969 
15970 	mbox->vport = phba->pport;
15971 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15972 	mbox->ctx_ndlp = NULL;
15973 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15974 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
15975 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15976 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15977 	if (shdr_status || shdr_add_status || rc) {
15978 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15979 				"2512 MODIFY_EQ_DELAY mailbox failed with "
15980 				"status x%x add_status x%x, mbx status x%x\n",
15981 				shdr_status, shdr_add_status, rc);
15982 	}
15983 	mempool_free(mbox, phba->mbox_mem_pool);
15984 	return;
15985 }
15986 
15987 /**
15988  * lpfc_eq_create - Create an Event Queue on the HBA
15989  * @phba: HBA structure that indicates port to create a queue on.
15990  * @eq: The queue structure to use to create the event queue.
15991  * @imax: The maximum interrupt per second limit.
15992  *
15993  * This function creates an event queue, as detailed in @eq, on a port,
15994  * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
15995  *
15996  * The @phba struct is used to send mailbox command to HBA. The @eq struct
15997  * is used to get the entry count and entry size that are necessary to
15998  * determine the number of pages to allocate and use for this queue. This
15999  * function will send the EQ_CREATE mailbox command to the HBA to setup the
16000  * event queue. This function is asynchronous and will wait for the mailbox
16001  * command to finish before continuing.
16002  *
16003  * On success this function will return a zero. If unable to allocate enough
16004  * memory this function will return -ENOMEM. If the queue create mailbox command
16005  * fails this function will return -ENXIO.
16006  **/
16007 int
16008 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
16009 {
16010 	struct lpfc_mbx_eq_create *eq_create;
16011 	LPFC_MBOXQ_t *mbox;
16012 	int rc, length, status = 0;
16013 	struct lpfc_dmabuf *dmabuf;
16014 	uint32_t shdr_status, shdr_add_status;
16015 	union lpfc_sli4_cfg_shdr *shdr;
16016 	uint16_t dmult;
16017 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16018 
16019 	/* sanity check on queue memory */
16020 	if (!eq)
16021 		return -ENODEV;
16022 	if (!phba->sli4_hba.pc_sli4_params.supported)
16023 		hw_page_size = SLI4_PAGE_SIZE;
16024 
16025 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16026 	if (!mbox)
16027 		return -ENOMEM;
16028 	length = (sizeof(struct lpfc_mbx_eq_create) -
16029 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16030 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16031 			 LPFC_MBOX_OPCODE_EQ_CREATE,
16032 			 length, LPFC_SLI4_MBX_EMBED);
16033 	eq_create = &mbox->u.mqe.un.eq_create;
16034 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
16035 	bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
16036 	       eq->page_count);
16037 	bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
16038 	       LPFC_EQE_SIZE);
16039 	bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
16040 
16041 	/* Use version 2 of CREATE_EQ if eqav is set */
16042 	if (phba->sli4_hba.pc_sli4_params.eqav) {
16043 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
16044 		       LPFC_Q_CREATE_VERSION_2);
16045 		bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
16046 		       phba->sli4_hba.pc_sli4_params.eqav);
16047 	}
16048 
16049 	/* don't setup delay multiplier using EQ_CREATE */
16050 	dmult = 0;
16051 	bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
16052 	       dmult);
16053 	switch (eq->entry_count) {
16054 	default:
16055 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16056 				"0360 Unsupported EQ count. (%d)\n",
16057 				eq->entry_count);
16058 		if (eq->entry_count < 256) {
16059 			status = -EINVAL;
16060 			goto out;
16061 		}
16062 		fallthrough;	/* otherwise default to smallest count */
16063 	case 256:
16064 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16065 		       LPFC_EQ_CNT_256);
16066 		break;
16067 	case 512:
16068 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16069 		       LPFC_EQ_CNT_512);
16070 		break;
16071 	case 1024:
16072 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16073 		       LPFC_EQ_CNT_1024);
16074 		break;
16075 	case 2048:
16076 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16077 		       LPFC_EQ_CNT_2048);
16078 		break;
16079 	case 4096:
16080 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16081 		       LPFC_EQ_CNT_4096);
16082 		break;
16083 	}
16084 	list_for_each_entry(dmabuf, &eq->page_list, list) {
16085 		memset(dmabuf->virt, 0, hw_page_size);
16086 		eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16087 					putPaddrLow(dmabuf->phys);
16088 		eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16089 					putPaddrHigh(dmabuf->phys);
16090 	}
16091 	mbox->vport = phba->pport;
16092 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16093 	mbox->ctx_buf = NULL;
16094 	mbox->ctx_ndlp = NULL;
16095 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16096 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16097 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16098 	if (shdr_status || shdr_add_status || rc) {
16099 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16100 				"2500 EQ_CREATE mailbox failed with "
16101 				"status x%x add_status x%x, mbx status x%x\n",
16102 				shdr_status, shdr_add_status, rc);
16103 		status = -ENXIO;
16104 	}
16105 	eq->type = LPFC_EQ;
16106 	eq->subtype = LPFC_NONE;
16107 	eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
16108 	if (eq->queue_id == 0xFFFF)
16109 		status = -ENXIO;
16110 	eq->host_index = 0;
16111 	eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
16112 	eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
16113 out:
16114 	mempool_free(mbox, phba->mbox_mem_pool);
16115 	return status;
16116 }
16117 
16118 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget)
16119 {
16120 	struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop);
16121 
16122 	__lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL);
16123 
16124 	return 1;
16125 }
16126 
16127 /**
16128  * lpfc_cq_create - Create a Completion Queue on the HBA
16129  * @phba: HBA structure that indicates port to create a queue on.
16130  * @cq: The queue structure to use to create the completion queue.
16131  * @eq: The event queue to bind this completion queue to.
16132  * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
16133  * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16134  *
16135  * This function creates a completion queue, as detailed in @wq, on a port,
16136  * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
16137  *
16138  * The @phba struct is used to send mailbox command to HBA. The @cq struct
16139  * is used to get the entry count and entry size that are necessary to
16140  * determine the number of pages to allocate and use for this queue. The @eq
16141  * is used to indicate which event queue to bind this completion queue to. This
16142  * function will send the CQ_CREATE mailbox command to the HBA to setup the
16143  * completion queue. This function is asynchronous and will wait for the mailbox
16144  * command to finish before continuing.
16145  *
16146  * On success this function will return a zero. If unable to allocate enough
16147  * memory this function will return -ENOMEM. If the queue create mailbox command
16148  * fails this function will return -ENXIO.
16149  **/
16150 int
16151 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
16152 	       struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
16153 {
16154 	struct lpfc_mbx_cq_create *cq_create;
16155 	struct lpfc_dmabuf *dmabuf;
16156 	LPFC_MBOXQ_t *mbox;
16157 	int rc, length, status = 0;
16158 	uint32_t shdr_status, shdr_add_status;
16159 	union lpfc_sli4_cfg_shdr *shdr;
16160 
16161 	/* sanity check on queue memory */
16162 	if (!cq || !eq)
16163 		return -ENODEV;
16164 
16165 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16166 	if (!mbox)
16167 		return -ENOMEM;
16168 	length = (sizeof(struct lpfc_mbx_cq_create) -
16169 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16170 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16171 			 LPFC_MBOX_OPCODE_CQ_CREATE,
16172 			 length, LPFC_SLI4_MBX_EMBED);
16173 	cq_create = &mbox->u.mqe.un.cq_create;
16174 	shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
16175 	bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
16176 		    cq->page_count);
16177 	bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
16178 	bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
16179 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16180 	       phba->sli4_hba.pc_sli4_params.cqv);
16181 	if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
16182 		bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
16183 		       (cq->page_size / SLI4_PAGE_SIZE));
16184 		bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
16185 		       eq->queue_id);
16186 		bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
16187 		       phba->sli4_hba.pc_sli4_params.cqav);
16188 	} else {
16189 		bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
16190 		       eq->queue_id);
16191 	}
16192 	switch (cq->entry_count) {
16193 	case 2048:
16194 	case 4096:
16195 		if (phba->sli4_hba.pc_sli4_params.cqv ==
16196 		    LPFC_Q_CREATE_VERSION_2) {
16197 			cq_create->u.request.context.lpfc_cq_context_count =
16198 				cq->entry_count;
16199 			bf_set(lpfc_cq_context_count,
16200 			       &cq_create->u.request.context,
16201 			       LPFC_CQ_CNT_WORD7);
16202 			break;
16203 		}
16204 		fallthrough;
16205 	default:
16206 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16207 				"0361 Unsupported CQ count: "
16208 				"entry cnt %d sz %d pg cnt %d\n",
16209 				cq->entry_count, cq->entry_size,
16210 				cq->page_count);
16211 		if (cq->entry_count < 256) {
16212 			status = -EINVAL;
16213 			goto out;
16214 		}
16215 		fallthrough;	/* otherwise default to smallest count */
16216 	case 256:
16217 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16218 		       LPFC_CQ_CNT_256);
16219 		break;
16220 	case 512:
16221 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16222 		       LPFC_CQ_CNT_512);
16223 		break;
16224 	case 1024:
16225 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16226 		       LPFC_CQ_CNT_1024);
16227 		break;
16228 	}
16229 	list_for_each_entry(dmabuf, &cq->page_list, list) {
16230 		memset(dmabuf->virt, 0, cq->page_size);
16231 		cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16232 					putPaddrLow(dmabuf->phys);
16233 		cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16234 					putPaddrHigh(dmabuf->phys);
16235 	}
16236 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16237 
16238 	/* The IOCTL status is embedded in the mailbox subheader. */
16239 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16240 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16241 	if (shdr_status || shdr_add_status || rc) {
16242 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16243 				"2501 CQ_CREATE mailbox failed with "
16244 				"status x%x add_status x%x, mbx status x%x\n",
16245 				shdr_status, shdr_add_status, rc);
16246 		status = -ENXIO;
16247 		goto out;
16248 	}
16249 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
16250 	if (cq->queue_id == 0xFFFF) {
16251 		status = -ENXIO;
16252 		goto out;
16253 	}
16254 	/* link the cq onto the parent eq child list */
16255 	list_add_tail(&cq->list, &eq->child_list);
16256 	/* Set up completion queue's type and subtype */
16257 	cq->type = type;
16258 	cq->subtype = subtype;
16259 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
16260 	cq->assoc_qid = eq->queue_id;
16261 	cq->assoc_qp = eq;
16262 	cq->host_index = 0;
16263 	cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
16264 	cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
16265 
16266 	if (cq->queue_id > phba->sli4_hba.cq_max)
16267 		phba->sli4_hba.cq_max = cq->queue_id;
16268 
16269 	irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler);
16270 out:
16271 	mempool_free(mbox, phba->mbox_mem_pool);
16272 	return status;
16273 }
16274 
16275 /**
16276  * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
16277  * @phba: HBA structure that indicates port to create a queue on.
16278  * @cqp: The queue structure array to use to create the completion queues.
16279  * @hdwq: The hardware queue array  with the EQ to bind completion queues to.
16280  * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
16281  * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16282  *
16283  * This function creates a set of  completion queue, s to support MRQ
16284  * as detailed in @cqp, on a port,
16285  * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
16286  *
16287  * The @phba struct is used to send mailbox command to HBA. The @cq struct
16288  * is used to get the entry count and entry size that are necessary to
16289  * determine the number of pages to allocate and use for this queue. The @eq
16290  * is used to indicate which event queue to bind this completion queue to. This
16291  * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
16292  * completion queue. This function is asynchronous and will wait for the mailbox
16293  * command to finish before continuing.
16294  *
16295  * On success this function will return a zero. If unable to allocate enough
16296  * memory this function will return -ENOMEM. If the queue create mailbox command
16297  * fails this function will return -ENXIO.
16298  **/
16299 int
16300 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
16301 		   struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
16302 		   uint32_t subtype)
16303 {
16304 	struct lpfc_queue *cq;
16305 	struct lpfc_queue *eq;
16306 	struct lpfc_mbx_cq_create_set *cq_set;
16307 	struct lpfc_dmabuf *dmabuf;
16308 	LPFC_MBOXQ_t *mbox;
16309 	int rc, length, alloclen, status = 0;
16310 	int cnt, idx, numcq, page_idx = 0;
16311 	uint32_t shdr_status, shdr_add_status;
16312 	union lpfc_sli4_cfg_shdr *shdr;
16313 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16314 
16315 	/* sanity check on queue memory */
16316 	numcq = phba->cfg_nvmet_mrq;
16317 	if (!cqp || !hdwq || !numcq)
16318 		return -ENODEV;
16319 
16320 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16321 	if (!mbox)
16322 		return -ENOMEM;
16323 
16324 	length = sizeof(struct lpfc_mbx_cq_create_set);
16325 	length += ((numcq * cqp[0]->page_count) *
16326 		   sizeof(struct dma_address));
16327 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16328 			LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
16329 			LPFC_SLI4_MBX_NEMBED);
16330 	if (alloclen < length) {
16331 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16332 				"3098 Allocated DMA memory size (%d) is "
16333 				"less than the requested DMA memory size "
16334 				"(%d)\n", alloclen, length);
16335 		status = -ENOMEM;
16336 		goto out;
16337 	}
16338 	cq_set = mbox->sge_array->addr[0];
16339 	shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
16340 	bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
16341 
16342 	for (idx = 0; idx < numcq; idx++) {
16343 		cq = cqp[idx];
16344 		eq = hdwq[idx].hba_eq;
16345 		if (!cq || !eq) {
16346 			status = -ENOMEM;
16347 			goto out;
16348 		}
16349 		if (!phba->sli4_hba.pc_sli4_params.supported)
16350 			hw_page_size = cq->page_size;
16351 
16352 		switch (idx) {
16353 		case 0:
16354 			bf_set(lpfc_mbx_cq_create_set_page_size,
16355 			       &cq_set->u.request,
16356 			       (hw_page_size / SLI4_PAGE_SIZE));
16357 			bf_set(lpfc_mbx_cq_create_set_num_pages,
16358 			       &cq_set->u.request, cq->page_count);
16359 			bf_set(lpfc_mbx_cq_create_set_evt,
16360 			       &cq_set->u.request, 1);
16361 			bf_set(lpfc_mbx_cq_create_set_valid,
16362 			       &cq_set->u.request, 1);
16363 			bf_set(lpfc_mbx_cq_create_set_cqe_size,
16364 			       &cq_set->u.request, 0);
16365 			bf_set(lpfc_mbx_cq_create_set_num_cq,
16366 			       &cq_set->u.request, numcq);
16367 			bf_set(lpfc_mbx_cq_create_set_autovalid,
16368 			       &cq_set->u.request,
16369 			       phba->sli4_hba.pc_sli4_params.cqav);
16370 			switch (cq->entry_count) {
16371 			case 2048:
16372 			case 4096:
16373 				if (phba->sli4_hba.pc_sli4_params.cqv ==
16374 				    LPFC_Q_CREATE_VERSION_2) {
16375 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16376 					       &cq_set->u.request,
16377 						cq->entry_count);
16378 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16379 					       &cq_set->u.request,
16380 					       LPFC_CQ_CNT_WORD7);
16381 					break;
16382 				}
16383 				fallthrough;
16384 			default:
16385 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16386 						"3118 Bad CQ count. (%d)\n",
16387 						cq->entry_count);
16388 				if (cq->entry_count < 256) {
16389 					status = -EINVAL;
16390 					goto out;
16391 				}
16392 				fallthrough;	/* otherwise default to smallest */
16393 			case 256:
16394 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16395 				       &cq_set->u.request, LPFC_CQ_CNT_256);
16396 				break;
16397 			case 512:
16398 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16399 				       &cq_set->u.request, LPFC_CQ_CNT_512);
16400 				break;
16401 			case 1024:
16402 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16403 				       &cq_set->u.request, LPFC_CQ_CNT_1024);
16404 				break;
16405 			}
16406 			bf_set(lpfc_mbx_cq_create_set_eq_id0,
16407 			       &cq_set->u.request, eq->queue_id);
16408 			break;
16409 		case 1:
16410 			bf_set(lpfc_mbx_cq_create_set_eq_id1,
16411 			       &cq_set->u.request, eq->queue_id);
16412 			break;
16413 		case 2:
16414 			bf_set(lpfc_mbx_cq_create_set_eq_id2,
16415 			       &cq_set->u.request, eq->queue_id);
16416 			break;
16417 		case 3:
16418 			bf_set(lpfc_mbx_cq_create_set_eq_id3,
16419 			       &cq_set->u.request, eq->queue_id);
16420 			break;
16421 		case 4:
16422 			bf_set(lpfc_mbx_cq_create_set_eq_id4,
16423 			       &cq_set->u.request, eq->queue_id);
16424 			break;
16425 		case 5:
16426 			bf_set(lpfc_mbx_cq_create_set_eq_id5,
16427 			       &cq_set->u.request, eq->queue_id);
16428 			break;
16429 		case 6:
16430 			bf_set(lpfc_mbx_cq_create_set_eq_id6,
16431 			       &cq_set->u.request, eq->queue_id);
16432 			break;
16433 		case 7:
16434 			bf_set(lpfc_mbx_cq_create_set_eq_id7,
16435 			       &cq_set->u.request, eq->queue_id);
16436 			break;
16437 		case 8:
16438 			bf_set(lpfc_mbx_cq_create_set_eq_id8,
16439 			       &cq_set->u.request, eq->queue_id);
16440 			break;
16441 		case 9:
16442 			bf_set(lpfc_mbx_cq_create_set_eq_id9,
16443 			       &cq_set->u.request, eq->queue_id);
16444 			break;
16445 		case 10:
16446 			bf_set(lpfc_mbx_cq_create_set_eq_id10,
16447 			       &cq_set->u.request, eq->queue_id);
16448 			break;
16449 		case 11:
16450 			bf_set(lpfc_mbx_cq_create_set_eq_id11,
16451 			       &cq_set->u.request, eq->queue_id);
16452 			break;
16453 		case 12:
16454 			bf_set(lpfc_mbx_cq_create_set_eq_id12,
16455 			       &cq_set->u.request, eq->queue_id);
16456 			break;
16457 		case 13:
16458 			bf_set(lpfc_mbx_cq_create_set_eq_id13,
16459 			       &cq_set->u.request, eq->queue_id);
16460 			break;
16461 		case 14:
16462 			bf_set(lpfc_mbx_cq_create_set_eq_id14,
16463 			       &cq_set->u.request, eq->queue_id);
16464 			break;
16465 		case 15:
16466 			bf_set(lpfc_mbx_cq_create_set_eq_id15,
16467 			       &cq_set->u.request, eq->queue_id);
16468 			break;
16469 		}
16470 
16471 		/* link the cq onto the parent eq child list */
16472 		list_add_tail(&cq->list, &eq->child_list);
16473 		/* Set up completion queue's type and subtype */
16474 		cq->type = type;
16475 		cq->subtype = subtype;
16476 		cq->assoc_qid = eq->queue_id;
16477 		cq->assoc_qp = eq;
16478 		cq->host_index = 0;
16479 		cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
16480 		cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
16481 					 cq->entry_count);
16482 		cq->chann = idx;
16483 
16484 		rc = 0;
16485 		list_for_each_entry(dmabuf, &cq->page_list, list) {
16486 			memset(dmabuf->virt, 0, hw_page_size);
16487 			cnt = page_idx + dmabuf->buffer_tag;
16488 			cq_set->u.request.page[cnt].addr_lo =
16489 					putPaddrLow(dmabuf->phys);
16490 			cq_set->u.request.page[cnt].addr_hi =
16491 					putPaddrHigh(dmabuf->phys);
16492 			rc++;
16493 		}
16494 		page_idx += rc;
16495 	}
16496 
16497 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16498 
16499 	/* The IOCTL status is embedded in the mailbox subheader. */
16500 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16501 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16502 	if (shdr_status || shdr_add_status || rc) {
16503 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16504 				"3119 CQ_CREATE_SET mailbox failed with "
16505 				"status x%x add_status x%x, mbx status x%x\n",
16506 				shdr_status, shdr_add_status, rc);
16507 		status = -ENXIO;
16508 		goto out;
16509 	}
16510 	rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
16511 	if (rc == 0xFFFF) {
16512 		status = -ENXIO;
16513 		goto out;
16514 	}
16515 
16516 	for (idx = 0; idx < numcq; idx++) {
16517 		cq = cqp[idx];
16518 		cq->queue_id = rc + idx;
16519 		if (cq->queue_id > phba->sli4_hba.cq_max)
16520 			phba->sli4_hba.cq_max = cq->queue_id;
16521 	}
16522 
16523 out:
16524 	lpfc_sli4_mbox_cmd_free(phba, mbox);
16525 	return status;
16526 }
16527 
16528 /**
16529  * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
16530  * @phba: HBA structure that indicates port to create a queue on.
16531  * @mq: The queue structure to use to create the mailbox queue.
16532  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
16533  * @cq: The completion queue to associate with this cq.
16534  *
16535  * This function provides failback (fb) functionality when the
16536  * mq_create_ext fails on older FW generations.  It's purpose is identical
16537  * to mq_create_ext otherwise.
16538  *
16539  * This routine cannot fail as all attributes were previously accessed and
16540  * initialized in mq_create_ext.
16541  **/
16542 static void
16543 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
16544 		       LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
16545 {
16546 	struct lpfc_mbx_mq_create *mq_create;
16547 	struct lpfc_dmabuf *dmabuf;
16548 	int length;
16549 
16550 	length = (sizeof(struct lpfc_mbx_mq_create) -
16551 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16552 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16553 			 LPFC_MBOX_OPCODE_MQ_CREATE,
16554 			 length, LPFC_SLI4_MBX_EMBED);
16555 	mq_create = &mbox->u.mqe.un.mq_create;
16556 	bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
16557 	       mq->page_count);
16558 	bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
16559 	       cq->queue_id);
16560 	bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
16561 	switch (mq->entry_count) {
16562 	case 16:
16563 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16564 		       LPFC_MQ_RING_SIZE_16);
16565 		break;
16566 	case 32:
16567 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16568 		       LPFC_MQ_RING_SIZE_32);
16569 		break;
16570 	case 64:
16571 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16572 		       LPFC_MQ_RING_SIZE_64);
16573 		break;
16574 	case 128:
16575 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16576 		       LPFC_MQ_RING_SIZE_128);
16577 		break;
16578 	}
16579 	list_for_each_entry(dmabuf, &mq->page_list, list) {
16580 		mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16581 			putPaddrLow(dmabuf->phys);
16582 		mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16583 			putPaddrHigh(dmabuf->phys);
16584 	}
16585 }
16586 
16587 /**
16588  * lpfc_mq_create - Create a mailbox Queue on the HBA
16589  * @phba: HBA structure that indicates port to create a queue on.
16590  * @mq: The queue structure to use to create the mailbox queue.
16591  * @cq: The completion queue to associate with this cq.
16592  * @subtype: The queue's subtype.
16593  *
16594  * This function creates a mailbox queue, as detailed in @mq, on a port,
16595  * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
16596  *
16597  * The @phba struct is used to send mailbox command to HBA. The @cq struct
16598  * is used to get the entry count and entry size that are necessary to
16599  * determine the number of pages to allocate and use for this queue. This
16600  * function will send the MQ_CREATE mailbox command to the HBA to setup the
16601  * mailbox queue. This function is asynchronous and will wait for the mailbox
16602  * command to finish before continuing.
16603  *
16604  * On success this function will return a zero. If unable to allocate enough
16605  * memory this function will return -ENOMEM. If the queue create mailbox command
16606  * fails this function will return -ENXIO.
16607  **/
16608 int32_t
16609 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
16610 	       struct lpfc_queue *cq, uint32_t subtype)
16611 {
16612 	struct lpfc_mbx_mq_create *mq_create;
16613 	struct lpfc_mbx_mq_create_ext *mq_create_ext;
16614 	struct lpfc_dmabuf *dmabuf;
16615 	LPFC_MBOXQ_t *mbox;
16616 	int rc, length, status = 0;
16617 	uint32_t shdr_status, shdr_add_status;
16618 	union lpfc_sli4_cfg_shdr *shdr;
16619 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16620 
16621 	/* sanity check on queue memory */
16622 	if (!mq || !cq)
16623 		return -ENODEV;
16624 	if (!phba->sli4_hba.pc_sli4_params.supported)
16625 		hw_page_size = SLI4_PAGE_SIZE;
16626 
16627 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16628 	if (!mbox)
16629 		return -ENOMEM;
16630 	length = (sizeof(struct lpfc_mbx_mq_create_ext) -
16631 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16632 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16633 			 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
16634 			 length, LPFC_SLI4_MBX_EMBED);
16635 
16636 	mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
16637 	shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
16638 	bf_set(lpfc_mbx_mq_create_ext_num_pages,
16639 	       &mq_create_ext->u.request, mq->page_count);
16640 	bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
16641 	       &mq_create_ext->u.request, 1);
16642 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
16643 	       &mq_create_ext->u.request, 1);
16644 	bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
16645 	       &mq_create_ext->u.request, 1);
16646 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
16647 	       &mq_create_ext->u.request, 1);
16648 	bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
16649 	       &mq_create_ext->u.request, 1);
16650 	bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
16651 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16652 	       phba->sli4_hba.pc_sli4_params.mqv);
16653 	if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
16654 		bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
16655 		       cq->queue_id);
16656 	else
16657 		bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
16658 		       cq->queue_id);
16659 	switch (mq->entry_count) {
16660 	default:
16661 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16662 				"0362 Unsupported MQ count. (%d)\n",
16663 				mq->entry_count);
16664 		if (mq->entry_count < 16) {
16665 			status = -EINVAL;
16666 			goto out;
16667 		}
16668 		fallthrough;	/* otherwise default to smallest count */
16669 	case 16:
16670 		bf_set(lpfc_mq_context_ring_size,
16671 		       &mq_create_ext->u.request.context,
16672 		       LPFC_MQ_RING_SIZE_16);
16673 		break;
16674 	case 32:
16675 		bf_set(lpfc_mq_context_ring_size,
16676 		       &mq_create_ext->u.request.context,
16677 		       LPFC_MQ_RING_SIZE_32);
16678 		break;
16679 	case 64:
16680 		bf_set(lpfc_mq_context_ring_size,
16681 		       &mq_create_ext->u.request.context,
16682 		       LPFC_MQ_RING_SIZE_64);
16683 		break;
16684 	case 128:
16685 		bf_set(lpfc_mq_context_ring_size,
16686 		       &mq_create_ext->u.request.context,
16687 		       LPFC_MQ_RING_SIZE_128);
16688 		break;
16689 	}
16690 	list_for_each_entry(dmabuf, &mq->page_list, list) {
16691 		memset(dmabuf->virt, 0, hw_page_size);
16692 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
16693 					putPaddrLow(dmabuf->phys);
16694 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
16695 					putPaddrHigh(dmabuf->phys);
16696 	}
16697 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16698 	mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
16699 			      &mq_create_ext->u.response);
16700 	if (rc != MBX_SUCCESS) {
16701 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16702 				"2795 MQ_CREATE_EXT failed with "
16703 				"status x%x. Failback to MQ_CREATE.\n",
16704 				rc);
16705 		lpfc_mq_create_fb_init(phba, mq, mbox, cq);
16706 		mq_create = &mbox->u.mqe.un.mq_create;
16707 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16708 		shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
16709 		mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
16710 				      &mq_create->u.response);
16711 	}
16712 
16713 	/* The IOCTL status is embedded in the mailbox subheader. */
16714 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16715 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16716 	if (shdr_status || shdr_add_status || rc) {
16717 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16718 				"2502 MQ_CREATE mailbox failed with "
16719 				"status x%x add_status x%x, mbx status x%x\n",
16720 				shdr_status, shdr_add_status, rc);
16721 		status = -ENXIO;
16722 		goto out;
16723 	}
16724 	if (mq->queue_id == 0xFFFF) {
16725 		status = -ENXIO;
16726 		goto out;
16727 	}
16728 	mq->type = LPFC_MQ;
16729 	mq->assoc_qid = cq->queue_id;
16730 	mq->subtype = subtype;
16731 	mq->host_index = 0;
16732 	mq->hba_index = 0;
16733 
16734 	/* link the mq onto the parent cq child list */
16735 	list_add_tail(&mq->list, &cq->child_list);
16736 out:
16737 	mempool_free(mbox, phba->mbox_mem_pool);
16738 	return status;
16739 }
16740 
16741 /**
16742  * lpfc_wq_create - Create a Work Queue on the HBA
16743  * @phba: HBA structure that indicates port to create a queue on.
16744  * @wq: The queue structure to use to create the work queue.
16745  * @cq: The completion queue to bind this work queue to.
16746  * @subtype: The subtype of the work queue indicating its functionality.
16747  *
16748  * This function creates a work queue, as detailed in @wq, on a port, described
16749  * by @phba by sending a WQ_CREATE mailbox command to the HBA.
16750  *
16751  * The @phba struct is used to send mailbox command to HBA. The @wq struct
16752  * is used to get the entry count and entry size that are necessary to
16753  * determine the number of pages to allocate and use for this queue. The @cq
16754  * is used to indicate which completion queue to bind this work queue to. This
16755  * function will send the WQ_CREATE mailbox command to the HBA to setup the
16756  * work queue. This function is asynchronous and will wait for the mailbox
16757  * command to finish before continuing.
16758  *
16759  * On success this function will return a zero. If unable to allocate enough
16760  * memory this function will return -ENOMEM. If the queue create mailbox command
16761  * fails this function will return -ENXIO.
16762  **/
16763 int
16764 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
16765 	       struct lpfc_queue *cq, uint32_t subtype)
16766 {
16767 	struct lpfc_mbx_wq_create *wq_create;
16768 	struct lpfc_dmabuf *dmabuf;
16769 	LPFC_MBOXQ_t *mbox;
16770 	int rc, length, status = 0;
16771 	uint32_t shdr_status, shdr_add_status;
16772 	union lpfc_sli4_cfg_shdr *shdr;
16773 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16774 	struct dma_address *page;
16775 	void __iomem *bar_memmap_p;
16776 	uint32_t db_offset;
16777 	uint16_t pci_barset;
16778 	uint8_t dpp_barset;
16779 	uint32_t dpp_offset;
16780 	uint8_t wq_create_version;
16781 #ifdef CONFIG_X86
16782 	unsigned long pg_addr;
16783 #endif
16784 
16785 	/* sanity check on queue memory */
16786 	if (!wq || !cq)
16787 		return -ENODEV;
16788 	if (!phba->sli4_hba.pc_sli4_params.supported)
16789 		hw_page_size = wq->page_size;
16790 
16791 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16792 	if (!mbox)
16793 		return -ENOMEM;
16794 	length = (sizeof(struct lpfc_mbx_wq_create) -
16795 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16796 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16797 			 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
16798 			 length, LPFC_SLI4_MBX_EMBED);
16799 	wq_create = &mbox->u.mqe.un.wq_create;
16800 	shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
16801 	bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
16802 		    wq->page_count);
16803 	bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
16804 		    cq->queue_id);
16805 
16806 	/* wqv is the earliest version supported, NOT the latest */
16807 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16808 	       phba->sli4_hba.pc_sli4_params.wqv);
16809 
16810 	if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
16811 	    (wq->page_size > SLI4_PAGE_SIZE))
16812 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
16813 	else
16814 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
16815 
16816 	switch (wq_create_version) {
16817 	case LPFC_Q_CREATE_VERSION_1:
16818 		bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
16819 		       wq->entry_count);
16820 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
16821 		       LPFC_Q_CREATE_VERSION_1);
16822 
16823 		switch (wq->entry_size) {
16824 		default:
16825 		case 64:
16826 			bf_set(lpfc_mbx_wq_create_wqe_size,
16827 			       &wq_create->u.request_1,
16828 			       LPFC_WQ_WQE_SIZE_64);
16829 			break;
16830 		case 128:
16831 			bf_set(lpfc_mbx_wq_create_wqe_size,
16832 			       &wq_create->u.request_1,
16833 			       LPFC_WQ_WQE_SIZE_128);
16834 			break;
16835 		}
16836 		/* Request DPP by default */
16837 		bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
16838 		bf_set(lpfc_mbx_wq_create_page_size,
16839 		       &wq_create->u.request_1,
16840 		       (wq->page_size / SLI4_PAGE_SIZE));
16841 		page = wq_create->u.request_1.page;
16842 		break;
16843 	default:
16844 		page = wq_create->u.request.page;
16845 		break;
16846 	}
16847 
16848 	list_for_each_entry(dmabuf, &wq->page_list, list) {
16849 		memset(dmabuf->virt, 0, hw_page_size);
16850 		page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
16851 		page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
16852 	}
16853 
16854 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16855 		bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
16856 
16857 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16858 	/* The IOCTL status is embedded in the mailbox subheader. */
16859 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16860 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16861 	if (shdr_status || shdr_add_status || rc) {
16862 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16863 				"2503 WQ_CREATE mailbox failed with "
16864 				"status x%x add_status x%x, mbx status x%x\n",
16865 				shdr_status, shdr_add_status, rc);
16866 		status = -ENXIO;
16867 		goto out;
16868 	}
16869 
16870 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
16871 		wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
16872 					&wq_create->u.response);
16873 	else
16874 		wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
16875 					&wq_create->u.response_1);
16876 
16877 	if (wq->queue_id == 0xFFFF) {
16878 		status = -ENXIO;
16879 		goto out;
16880 	}
16881 
16882 	wq->db_format = LPFC_DB_LIST_FORMAT;
16883 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
16884 		if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
16885 			wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
16886 					       &wq_create->u.response);
16887 			if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
16888 			    (wq->db_format != LPFC_DB_RING_FORMAT)) {
16889 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16890 						"3265 WQ[%d] doorbell format "
16891 						"not supported: x%x\n",
16892 						wq->queue_id, wq->db_format);
16893 				status = -EINVAL;
16894 				goto out;
16895 			}
16896 			pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
16897 					    &wq_create->u.response);
16898 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16899 								   pci_barset);
16900 			if (!bar_memmap_p) {
16901 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16902 						"3263 WQ[%d] failed to memmap "
16903 						"pci barset:x%x\n",
16904 						wq->queue_id, pci_barset);
16905 				status = -ENOMEM;
16906 				goto out;
16907 			}
16908 			db_offset = wq_create->u.response.doorbell_offset;
16909 			if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
16910 			    (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
16911 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16912 						"3252 WQ[%d] doorbell offset "
16913 						"not supported: x%x\n",
16914 						wq->queue_id, db_offset);
16915 				status = -EINVAL;
16916 				goto out;
16917 			}
16918 			wq->db_regaddr = bar_memmap_p + db_offset;
16919 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16920 					"3264 WQ[%d]: barset:x%x, offset:x%x, "
16921 					"format:x%x\n", wq->queue_id,
16922 					pci_barset, db_offset, wq->db_format);
16923 		} else
16924 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
16925 	} else {
16926 		/* Check if DPP was honored by the firmware */
16927 		wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
16928 				    &wq_create->u.response_1);
16929 		if (wq->dpp_enable) {
16930 			pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
16931 					    &wq_create->u.response_1);
16932 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16933 								   pci_barset);
16934 			if (!bar_memmap_p) {
16935 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16936 						"3267 WQ[%d] failed to memmap "
16937 						"pci barset:x%x\n",
16938 						wq->queue_id, pci_barset);
16939 				status = -ENOMEM;
16940 				goto out;
16941 			}
16942 			db_offset = wq_create->u.response_1.doorbell_offset;
16943 			wq->db_regaddr = bar_memmap_p + db_offset;
16944 			wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
16945 					    &wq_create->u.response_1);
16946 			dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
16947 					    &wq_create->u.response_1);
16948 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16949 								   dpp_barset);
16950 			if (!bar_memmap_p) {
16951 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16952 						"3268 WQ[%d] failed to memmap "
16953 						"pci barset:x%x\n",
16954 						wq->queue_id, dpp_barset);
16955 				status = -ENOMEM;
16956 				goto out;
16957 			}
16958 			dpp_offset = wq_create->u.response_1.dpp_offset;
16959 			wq->dpp_regaddr = bar_memmap_p + dpp_offset;
16960 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16961 					"3271 WQ[%d]: barset:x%x, offset:x%x, "
16962 					"dpp_id:x%x dpp_barset:x%x "
16963 					"dpp_offset:x%x\n",
16964 					wq->queue_id, pci_barset, db_offset,
16965 					wq->dpp_id, dpp_barset, dpp_offset);
16966 
16967 #ifdef CONFIG_X86
16968 			/* Enable combined writes for DPP aperture */
16969 			pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
16970 			rc = set_memory_wc(pg_addr, 1);
16971 			if (rc) {
16972 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16973 					"3272 Cannot setup Combined "
16974 					"Write on WQ[%d] - disable DPP\n",
16975 					wq->queue_id);
16976 				phba->cfg_enable_dpp = 0;
16977 			}
16978 #else
16979 			phba->cfg_enable_dpp = 0;
16980 #endif
16981 		} else
16982 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
16983 	}
16984 	wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
16985 	if (wq->pring == NULL) {
16986 		status = -ENOMEM;
16987 		goto out;
16988 	}
16989 	wq->type = LPFC_WQ;
16990 	wq->assoc_qid = cq->queue_id;
16991 	wq->subtype = subtype;
16992 	wq->host_index = 0;
16993 	wq->hba_index = 0;
16994 	wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
16995 
16996 	/* link the wq onto the parent cq child list */
16997 	list_add_tail(&wq->list, &cq->child_list);
16998 out:
16999 	mempool_free(mbox, phba->mbox_mem_pool);
17000 	return status;
17001 }
17002 
17003 /**
17004  * lpfc_rq_create - Create a Receive Queue on the HBA
17005  * @phba: HBA structure that indicates port to create a queue on.
17006  * @hrq: The queue structure to use to create the header receive queue.
17007  * @drq: The queue structure to use to create the data receive queue.
17008  * @cq: The completion queue to bind this work queue to.
17009  * @subtype: The subtype of the work queue indicating its functionality.
17010  *
17011  * This function creates a receive buffer queue pair , as detailed in @hrq and
17012  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
17013  * to the HBA.
17014  *
17015  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
17016  * struct is used to get the entry count that is necessary to determine the
17017  * number of pages to use for this queue. The @cq is used to indicate which
17018  * completion queue to bind received buffers that are posted to these queues to.
17019  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
17020  * receive queue pair. This function is asynchronous and will wait for the
17021  * mailbox command to finish before continuing.
17022  *
17023  * On success this function will return a zero. If unable to allocate enough
17024  * memory this function will return -ENOMEM. If the queue create mailbox command
17025  * fails this function will return -ENXIO.
17026  **/
17027 int
17028 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
17029 	       struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
17030 {
17031 	struct lpfc_mbx_rq_create *rq_create;
17032 	struct lpfc_dmabuf *dmabuf;
17033 	LPFC_MBOXQ_t *mbox;
17034 	int rc, length, status = 0;
17035 	uint32_t shdr_status, shdr_add_status;
17036 	union lpfc_sli4_cfg_shdr *shdr;
17037 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
17038 	void __iomem *bar_memmap_p;
17039 	uint32_t db_offset;
17040 	uint16_t pci_barset;
17041 
17042 	/* sanity check on queue memory */
17043 	if (!hrq || !drq || !cq)
17044 		return -ENODEV;
17045 	if (!phba->sli4_hba.pc_sli4_params.supported)
17046 		hw_page_size = SLI4_PAGE_SIZE;
17047 
17048 	if (hrq->entry_count != drq->entry_count)
17049 		return -EINVAL;
17050 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17051 	if (!mbox)
17052 		return -ENOMEM;
17053 	length = (sizeof(struct lpfc_mbx_rq_create) -
17054 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17055 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17056 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
17057 			 length, LPFC_SLI4_MBX_EMBED);
17058 	rq_create = &mbox->u.mqe.un.rq_create;
17059 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
17060 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
17061 	       phba->sli4_hba.pc_sli4_params.rqv);
17062 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
17063 		bf_set(lpfc_rq_context_rqe_count_1,
17064 		       &rq_create->u.request.context,
17065 		       hrq->entry_count);
17066 		rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
17067 		bf_set(lpfc_rq_context_rqe_size,
17068 		       &rq_create->u.request.context,
17069 		       LPFC_RQE_SIZE_8);
17070 		bf_set(lpfc_rq_context_page_size,
17071 		       &rq_create->u.request.context,
17072 		       LPFC_RQ_PAGE_SIZE_4096);
17073 	} else {
17074 		switch (hrq->entry_count) {
17075 		default:
17076 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17077 					"2535 Unsupported RQ count. (%d)\n",
17078 					hrq->entry_count);
17079 			if (hrq->entry_count < 512) {
17080 				status = -EINVAL;
17081 				goto out;
17082 			}
17083 			fallthrough;	/* otherwise default to smallest count */
17084 		case 512:
17085 			bf_set(lpfc_rq_context_rqe_count,
17086 			       &rq_create->u.request.context,
17087 			       LPFC_RQ_RING_SIZE_512);
17088 			break;
17089 		case 1024:
17090 			bf_set(lpfc_rq_context_rqe_count,
17091 			       &rq_create->u.request.context,
17092 			       LPFC_RQ_RING_SIZE_1024);
17093 			break;
17094 		case 2048:
17095 			bf_set(lpfc_rq_context_rqe_count,
17096 			       &rq_create->u.request.context,
17097 			       LPFC_RQ_RING_SIZE_2048);
17098 			break;
17099 		case 4096:
17100 			bf_set(lpfc_rq_context_rqe_count,
17101 			       &rq_create->u.request.context,
17102 			       LPFC_RQ_RING_SIZE_4096);
17103 			break;
17104 		}
17105 		bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
17106 		       LPFC_HDR_BUF_SIZE);
17107 	}
17108 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
17109 	       cq->queue_id);
17110 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
17111 	       hrq->page_count);
17112 	list_for_each_entry(dmabuf, &hrq->page_list, list) {
17113 		memset(dmabuf->virt, 0, hw_page_size);
17114 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
17115 					putPaddrLow(dmabuf->phys);
17116 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
17117 					putPaddrHigh(dmabuf->phys);
17118 	}
17119 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
17120 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
17121 
17122 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17123 	/* The IOCTL status is embedded in the mailbox subheader. */
17124 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17125 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17126 	if (shdr_status || shdr_add_status || rc) {
17127 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17128 				"2504 RQ_CREATE mailbox failed with "
17129 				"status x%x add_status x%x, mbx status x%x\n",
17130 				shdr_status, shdr_add_status, rc);
17131 		status = -ENXIO;
17132 		goto out;
17133 	}
17134 	hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17135 	if (hrq->queue_id == 0xFFFF) {
17136 		status = -ENXIO;
17137 		goto out;
17138 	}
17139 
17140 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
17141 		hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
17142 					&rq_create->u.response);
17143 		if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
17144 		    (hrq->db_format != LPFC_DB_RING_FORMAT)) {
17145 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17146 					"3262 RQ [%d] doorbell format not "
17147 					"supported: x%x\n", hrq->queue_id,
17148 					hrq->db_format);
17149 			status = -EINVAL;
17150 			goto out;
17151 		}
17152 
17153 		pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
17154 				    &rq_create->u.response);
17155 		bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
17156 		if (!bar_memmap_p) {
17157 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17158 					"3269 RQ[%d] failed to memmap pci "
17159 					"barset:x%x\n", hrq->queue_id,
17160 					pci_barset);
17161 			status = -ENOMEM;
17162 			goto out;
17163 		}
17164 
17165 		db_offset = rq_create->u.response.doorbell_offset;
17166 		if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
17167 		    (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
17168 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17169 					"3270 RQ[%d] doorbell offset not "
17170 					"supported: x%x\n", hrq->queue_id,
17171 					db_offset);
17172 			status = -EINVAL;
17173 			goto out;
17174 		}
17175 		hrq->db_regaddr = bar_memmap_p + db_offset;
17176 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
17177 				"3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
17178 				"format:x%x\n", hrq->queue_id, pci_barset,
17179 				db_offset, hrq->db_format);
17180 	} else {
17181 		hrq->db_format = LPFC_DB_RING_FORMAT;
17182 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17183 	}
17184 	hrq->type = LPFC_HRQ;
17185 	hrq->assoc_qid = cq->queue_id;
17186 	hrq->subtype = subtype;
17187 	hrq->host_index = 0;
17188 	hrq->hba_index = 0;
17189 	hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17190 
17191 	/* now create the data queue */
17192 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17193 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
17194 			 length, LPFC_SLI4_MBX_EMBED);
17195 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
17196 	       phba->sli4_hba.pc_sli4_params.rqv);
17197 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
17198 		bf_set(lpfc_rq_context_rqe_count_1,
17199 		       &rq_create->u.request.context, hrq->entry_count);
17200 		if (subtype == LPFC_NVMET)
17201 			rq_create->u.request.context.buffer_size =
17202 				LPFC_NVMET_DATA_BUF_SIZE;
17203 		else
17204 			rq_create->u.request.context.buffer_size =
17205 				LPFC_DATA_BUF_SIZE;
17206 		bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
17207 		       LPFC_RQE_SIZE_8);
17208 		bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
17209 		       (PAGE_SIZE/SLI4_PAGE_SIZE));
17210 	} else {
17211 		switch (drq->entry_count) {
17212 		default:
17213 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17214 					"2536 Unsupported RQ count. (%d)\n",
17215 					drq->entry_count);
17216 			if (drq->entry_count < 512) {
17217 				status = -EINVAL;
17218 				goto out;
17219 			}
17220 			fallthrough;	/* otherwise default to smallest count */
17221 		case 512:
17222 			bf_set(lpfc_rq_context_rqe_count,
17223 			       &rq_create->u.request.context,
17224 			       LPFC_RQ_RING_SIZE_512);
17225 			break;
17226 		case 1024:
17227 			bf_set(lpfc_rq_context_rqe_count,
17228 			       &rq_create->u.request.context,
17229 			       LPFC_RQ_RING_SIZE_1024);
17230 			break;
17231 		case 2048:
17232 			bf_set(lpfc_rq_context_rqe_count,
17233 			       &rq_create->u.request.context,
17234 			       LPFC_RQ_RING_SIZE_2048);
17235 			break;
17236 		case 4096:
17237 			bf_set(lpfc_rq_context_rqe_count,
17238 			       &rq_create->u.request.context,
17239 			       LPFC_RQ_RING_SIZE_4096);
17240 			break;
17241 		}
17242 		if (subtype == LPFC_NVMET)
17243 			bf_set(lpfc_rq_context_buf_size,
17244 			       &rq_create->u.request.context,
17245 			       LPFC_NVMET_DATA_BUF_SIZE);
17246 		else
17247 			bf_set(lpfc_rq_context_buf_size,
17248 			       &rq_create->u.request.context,
17249 			       LPFC_DATA_BUF_SIZE);
17250 	}
17251 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
17252 	       cq->queue_id);
17253 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
17254 	       drq->page_count);
17255 	list_for_each_entry(dmabuf, &drq->page_list, list) {
17256 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
17257 					putPaddrLow(dmabuf->phys);
17258 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
17259 					putPaddrHigh(dmabuf->phys);
17260 	}
17261 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
17262 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
17263 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17264 	/* The IOCTL status is embedded in the mailbox subheader. */
17265 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
17266 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17267 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17268 	if (shdr_status || shdr_add_status || rc) {
17269 		status = -ENXIO;
17270 		goto out;
17271 	}
17272 	drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17273 	if (drq->queue_id == 0xFFFF) {
17274 		status = -ENXIO;
17275 		goto out;
17276 	}
17277 	drq->type = LPFC_DRQ;
17278 	drq->assoc_qid = cq->queue_id;
17279 	drq->subtype = subtype;
17280 	drq->host_index = 0;
17281 	drq->hba_index = 0;
17282 	drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17283 
17284 	/* link the header and data RQs onto the parent cq child list */
17285 	list_add_tail(&hrq->list, &cq->child_list);
17286 	list_add_tail(&drq->list, &cq->child_list);
17287 
17288 out:
17289 	mempool_free(mbox, phba->mbox_mem_pool);
17290 	return status;
17291 }
17292 
17293 /**
17294  * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
17295  * @phba: HBA structure that indicates port to create a queue on.
17296  * @hrqp: The queue structure array to use to create the header receive queues.
17297  * @drqp: The queue structure array to use to create the data receive queues.
17298  * @cqp: The completion queue array to bind these receive queues to.
17299  * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
17300  *
17301  * This function creates a receive buffer queue pair , as detailed in @hrq and
17302  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
17303  * to the HBA.
17304  *
17305  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
17306  * struct is used to get the entry count that is necessary to determine the
17307  * number of pages to use for this queue. The @cq is used to indicate which
17308  * completion queue to bind received buffers that are posted to these queues to.
17309  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
17310  * receive queue pair. This function is asynchronous and will wait for the
17311  * mailbox command to finish before continuing.
17312  *
17313  * On success this function will return a zero. If unable to allocate enough
17314  * memory this function will return -ENOMEM. If the queue create mailbox command
17315  * fails this function will return -ENXIO.
17316  **/
17317 int
17318 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
17319 		struct lpfc_queue **drqp, struct lpfc_queue **cqp,
17320 		uint32_t subtype)
17321 {
17322 	struct lpfc_queue *hrq, *drq, *cq;
17323 	struct lpfc_mbx_rq_create_v2 *rq_create;
17324 	struct lpfc_dmabuf *dmabuf;
17325 	LPFC_MBOXQ_t *mbox;
17326 	int rc, length, alloclen, status = 0;
17327 	int cnt, idx, numrq, page_idx = 0;
17328 	uint32_t shdr_status, shdr_add_status;
17329 	union lpfc_sli4_cfg_shdr *shdr;
17330 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
17331 
17332 	numrq = phba->cfg_nvmet_mrq;
17333 	/* sanity check on array memory */
17334 	if (!hrqp || !drqp || !cqp || !numrq)
17335 		return -ENODEV;
17336 	if (!phba->sli4_hba.pc_sli4_params.supported)
17337 		hw_page_size = SLI4_PAGE_SIZE;
17338 
17339 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17340 	if (!mbox)
17341 		return -ENOMEM;
17342 
17343 	length = sizeof(struct lpfc_mbx_rq_create_v2);
17344 	length += ((2 * numrq * hrqp[0]->page_count) *
17345 		   sizeof(struct dma_address));
17346 
17347 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17348 				    LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
17349 				    LPFC_SLI4_MBX_NEMBED);
17350 	if (alloclen < length) {
17351 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17352 				"3099 Allocated DMA memory size (%d) is "
17353 				"less than the requested DMA memory size "
17354 				"(%d)\n", alloclen, length);
17355 		status = -ENOMEM;
17356 		goto out;
17357 	}
17358 
17359 
17360 
17361 	rq_create = mbox->sge_array->addr[0];
17362 	shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
17363 
17364 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
17365 	cnt = 0;
17366 
17367 	for (idx = 0; idx < numrq; idx++) {
17368 		hrq = hrqp[idx];
17369 		drq = drqp[idx];
17370 		cq  = cqp[idx];
17371 
17372 		/* sanity check on queue memory */
17373 		if (!hrq || !drq || !cq) {
17374 			status = -ENODEV;
17375 			goto out;
17376 		}
17377 
17378 		if (hrq->entry_count != drq->entry_count) {
17379 			status = -EINVAL;
17380 			goto out;
17381 		}
17382 
17383 		if (idx == 0) {
17384 			bf_set(lpfc_mbx_rq_create_num_pages,
17385 			       &rq_create->u.request,
17386 			       hrq->page_count);
17387 			bf_set(lpfc_mbx_rq_create_rq_cnt,
17388 			       &rq_create->u.request, (numrq * 2));
17389 			bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
17390 			       1);
17391 			bf_set(lpfc_rq_context_base_cq,
17392 			       &rq_create->u.request.context,
17393 			       cq->queue_id);
17394 			bf_set(lpfc_rq_context_data_size,
17395 			       &rq_create->u.request.context,
17396 			       LPFC_NVMET_DATA_BUF_SIZE);
17397 			bf_set(lpfc_rq_context_hdr_size,
17398 			       &rq_create->u.request.context,
17399 			       LPFC_HDR_BUF_SIZE);
17400 			bf_set(lpfc_rq_context_rqe_count_1,
17401 			       &rq_create->u.request.context,
17402 			       hrq->entry_count);
17403 			bf_set(lpfc_rq_context_rqe_size,
17404 			       &rq_create->u.request.context,
17405 			       LPFC_RQE_SIZE_8);
17406 			bf_set(lpfc_rq_context_page_size,
17407 			       &rq_create->u.request.context,
17408 			       (PAGE_SIZE/SLI4_PAGE_SIZE));
17409 		}
17410 		rc = 0;
17411 		list_for_each_entry(dmabuf, &hrq->page_list, list) {
17412 			memset(dmabuf->virt, 0, hw_page_size);
17413 			cnt = page_idx + dmabuf->buffer_tag;
17414 			rq_create->u.request.page[cnt].addr_lo =
17415 					putPaddrLow(dmabuf->phys);
17416 			rq_create->u.request.page[cnt].addr_hi =
17417 					putPaddrHigh(dmabuf->phys);
17418 			rc++;
17419 		}
17420 		page_idx += rc;
17421 
17422 		rc = 0;
17423 		list_for_each_entry(dmabuf, &drq->page_list, list) {
17424 			memset(dmabuf->virt, 0, hw_page_size);
17425 			cnt = page_idx + dmabuf->buffer_tag;
17426 			rq_create->u.request.page[cnt].addr_lo =
17427 					putPaddrLow(dmabuf->phys);
17428 			rq_create->u.request.page[cnt].addr_hi =
17429 					putPaddrHigh(dmabuf->phys);
17430 			rc++;
17431 		}
17432 		page_idx += rc;
17433 
17434 		hrq->db_format = LPFC_DB_RING_FORMAT;
17435 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17436 		hrq->type = LPFC_HRQ;
17437 		hrq->assoc_qid = cq->queue_id;
17438 		hrq->subtype = subtype;
17439 		hrq->host_index = 0;
17440 		hrq->hba_index = 0;
17441 		hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17442 
17443 		drq->db_format = LPFC_DB_RING_FORMAT;
17444 		drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17445 		drq->type = LPFC_DRQ;
17446 		drq->assoc_qid = cq->queue_id;
17447 		drq->subtype = subtype;
17448 		drq->host_index = 0;
17449 		drq->hba_index = 0;
17450 		drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17451 
17452 		list_add_tail(&hrq->list, &cq->child_list);
17453 		list_add_tail(&drq->list, &cq->child_list);
17454 	}
17455 
17456 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17457 	/* The IOCTL status is embedded in the mailbox subheader. */
17458 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17459 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17460 	if (shdr_status || shdr_add_status || rc) {
17461 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17462 				"3120 RQ_CREATE mailbox failed with "
17463 				"status x%x add_status x%x, mbx status x%x\n",
17464 				shdr_status, shdr_add_status, rc);
17465 		status = -ENXIO;
17466 		goto out;
17467 	}
17468 	rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17469 	if (rc == 0xFFFF) {
17470 		status = -ENXIO;
17471 		goto out;
17472 	}
17473 
17474 	/* Initialize all RQs with associated queue id */
17475 	for (idx = 0; idx < numrq; idx++) {
17476 		hrq = hrqp[idx];
17477 		hrq->queue_id = rc + (2 * idx);
17478 		drq = drqp[idx];
17479 		drq->queue_id = rc + (2 * idx) + 1;
17480 	}
17481 
17482 out:
17483 	lpfc_sli4_mbox_cmd_free(phba, mbox);
17484 	return status;
17485 }
17486 
17487 /**
17488  * lpfc_eq_destroy - Destroy an event Queue on the HBA
17489  * @phba: HBA structure that indicates port to destroy a queue on.
17490  * @eq: The queue structure associated with the queue to destroy.
17491  *
17492  * This function destroys a queue, as detailed in @eq by sending an mailbox
17493  * command, specific to the type of queue, to the HBA.
17494  *
17495  * The @eq struct is used to get the queue ID of the queue to destroy.
17496  *
17497  * On success this function will return a zero. If the queue destroy mailbox
17498  * command fails this function will return -ENXIO.
17499  **/
17500 int
17501 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
17502 {
17503 	LPFC_MBOXQ_t *mbox;
17504 	int rc, length, status = 0;
17505 	uint32_t shdr_status, shdr_add_status;
17506 	union lpfc_sli4_cfg_shdr *shdr;
17507 
17508 	/* sanity check on queue memory */
17509 	if (!eq)
17510 		return -ENODEV;
17511 
17512 	mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
17513 	if (!mbox)
17514 		return -ENOMEM;
17515 	length = (sizeof(struct lpfc_mbx_eq_destroy) -
17516 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17517 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17518 			 LPFC_MBOX_OPCODE_EQ_DESTROY,
17519 			 length, LPFC_SLI4_MBX_EMBED);
17520 	bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
17521 	       eq->queue_id);
17522 	mbox->vport = eq->phba->pport;
17523 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17524 
17525 	rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
17526 	/* The IOCTL status is embedded in the mailbox subheader. */
17527 	shdr = (union lpfc_sli4_cfg_shdr *)
17528 		&mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
17529 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17530 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17531 	if (shdr_status || shdr_add_status || rc) {
17532 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17533 				"2505 EQ_DESTROY mailbox failed with "
17534 				"status x%x add_status x%x, mbx status x%x\n",
17535 				shdr_status, shdr_add_status, rc);
17536 		status = -ENXIO;
17537 	}
17538 
17539 	/* Remove eq from any list */
17540 	list_del_init(&eq->list);
17541 	mempool_free(mbox, eq->phba->mbox_mem_pool);
17542 	return status;
17543 }
17544 
17545 /**
17546  * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
17547  * @phba: HBA structure that indicates port to destroy a queue on.
17548  * @cq: The queue structure associated with the queue to destroy.
17549  *
17550  * This function destroys a queue, as detailed in @cq by sending an mailbox
17551  * command, specific to the type of queue, to the HBA.
17552  *
17553  * The @cq struct is used to get the queue ID of the queue to destroy.
17554  *
17555  * On success this function will return a zero. If the queue destroy mailbox
17556  * command fails this function will return -ENXIO.
17557  **/
17558 int
17559 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
17560 {
17561 	LPFC_MBOXQ_t *mbox;
17562 	int rc, length, status = 0;
17563 	uint32_t shdr_status, shdr_add_status;
17564 	union lpfc_sli4_cfg_shdr *shdr;
17565 
17566 	/* sanity check on queue memory */
17567 	if (!cq)
17568 		return -ENODEV;
17569 	mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
17570 	if (!mbox)
17571 		return -ENOMEM;
17572 	length = (sizeof(struct lpfc_mbx_cq_destroy) -
17573 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17574 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17575 			 LPFC_MBOX_OPCODE_CQ_DESTROY,
17576 			 length, LPFC_SLI4_MBX_EMBED);
17577 	bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
17578 	       cq->queue_id);
17579 	mbox->vport = cq->phba->pport;
17580 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17581 	rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
17582 	/* The IOCTL status is embedded in the mailbox subheader. */
17583 	shdr = (union lpfc_sli4_cfg_shdr *)
17584 		&mbox->u.mqe.un.wq_create.header.cfg_shdr;
17585 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17586 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17587 	if (shdr_status || shdr_add_status || rc) {
17588 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17589 				"2506 CQ_DESTROY mailbox failed with "
17590 				"status x%x add_status x%x, mbx status x%x\n",
17591 				shdr_status, shdr_add_status, rc);
17592 		status = -ENXIO;
17593 	}
17594 	/* Remove cq from any list */
17595 	list_del_init(&cq->list);
17596 	mempool_free(mbox, cq->phba->mbox_mem_pool);
17597 	return status;
17598 }
17599 
17600 /**
17601  * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
17602  * @phba: HBA structure that indicates port to destroy a queue on.
17603  * @mq: The queue structure associated with the queue to destroy.
17604  *
17605  * This function destroys a queue, as detailed in @mq by sending an mailbox
17606  * command, specific to the type of queue, to the HBA.
17607  *
17608  * The @mq struct is used to get the queue ID of the queue to destroy.
17609  *
17610  * On success this function will return a zero. If the queue destroy mailbox
17611  * command fails this function will return -ENXIO.
17612  **/
17613 int
17614 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
17615 {
17616 	LPFC_MBOXQ_t *mbox;
17617 	int rc, length, status = 0;
17618 	uint32_t shdr_status, shdr_add_status;
17619 	union lpfc_sli4_cfg_shdr *shdr;
17620 
17621 	/* sanity check on queue memory */
17622 	if (!mq)
17623 		return -ENODEV;
17624 	mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
17625 	if (!mbox)
17626 		return -ENOMEM;
17627 	length = (sizeof(struct lpfc_mbx_mq_destroy) -
17628 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17629 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17630 			 LPFC_MBOX_OPCODE_MQ_DESTROY,
17631 			 length, LPFC_SLI4_MBX_EMBED);
17632 	bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
17633 	       mq->queue_id);
17634 	mbox->vport = mq->phba->pport;
17635 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17636 	rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
17637 	/* The IOCTL status is embedded in the mailbox subheader. */
17638 	shdr = (union lpfc_sli4_cfg_shdr *)
17639 		&mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
17640 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17641 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17642 	if (shdr_status || shdr_add_status || rc) {
17643 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17644 				"2507 MQ_DESTROY mailbox failed with "
17645 				"status x%x add_status x%x, mbx status x%x\n",
17646 				shdr_status, shdr_add_status, rc);
17647 		status = -ENXIO;
17648 	}
17649 	/* Remove mq from any list */
17650 	list_del_init(&mq->list);
17651 	mempool_free(mbox, mq->phba->mbox_mem_pool);
17652 	return status;
17653 }
17654 
17655 /**
17656  * lpfc_wq_destroy - Destroy a Work Queue on the HBA
17657  * @phba: HBA structure that indicates port to destroy a queue on.
17658  * @wq: The queue structure associated with the queue to destroy.
17659  *
17660  * This function destroys a queue, as detailed in @wq by sending an mailbox
17661  * command, specific to the type of queue, to the HBA.
17662  *
17663  * The @wq struct is used to get the queue ID of the queue to destroy.
17664  *
17665  * On success this function will return a zero. If the queue destroy mailbox
17666  * command fails this function will return -ENXIO.
17667  **/
17668 int
17669 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
17670 {
17671 	LPFC_MBOXQ_t *mbox;
17672 	int rc, length, status = 0;
17673 	uint32_t shdr_status, shdr_add_status;
17674 	union lpfc_sli4_cfg_shdr *shdr;
17675 
17676 	/* sanity check on queue memory */
17677 	if (!wq)
17678 		return -ENODEV;
17679 	mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
17680 	if (!mbox)
17681 		return -ENOMEM;
17682 	length = (sizeof(struct lpfc_mbx_wq_destroy) -
17683 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17684 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17685 			 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
17686 			 length, LPFC_SLI4_MBX_EMBED);
17687 	bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
17688 	       wq->queue_id);
17689 	mbox->vport = wq->phba->pport;
17690 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17691 	rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
17692 	shdr = (union lpfc_sli4_cfg_shdr *)
17693 		&mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
17694 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17695 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17696 	if (shdr_status || shdr_add_status || rc) {
17697 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17698 				"2508 WQ_DESTROY mailbox failed with "
17699 				"status x%x add_status x%x, mbx status x%x\n",
17700 				shdr_status, shdr_add_status, rc);
17701 		status = -ENXIO;
17702 	}
17703 	/* Remove wq from any list */
17704 	list_del_init(&wq->list);
17705 	kfree(wq->pring);
17706 	wq->pring = NULL;
17707 	mempool_free(mbox, wq->phba->mbox_mem_pool);
17708 	return status;
17709 }
17710 
17711 /**
17712  * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
17713  * @phba: HBA structure that indicates port to destroy a queue on.
17714  * @hrq: The queue structure associated with the queue to destroy.
17715  * @drq: The queue structure associated with the queue to destroy.
17716  *
17717  * This function destroys a queue, as detailed in @rq by sending an mailbox
17718  * command, specific to the type of queue, to the HBA.
17719  *
17720  * The @rq struct is used to get the queue ID of the queue to destroy.
17721  *
17722  * On success this function will return a zero. If the queue destroy mailbox
17723  * command fails this function will return -ENXIO.
17724  **/
17725 int
17726 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
17727 		struct lpfc_queue *drq)
17728 {
17729 	LPFC_MBOXQ_t *mbox;
17730 	int rc, length, status = 0;
17731 	uint32_t shdr_status, shdr_add_status;
17732 	union lpfc_sli4_cfg_shdr *shdr;
17733 
17734 	/* sanity check on queue memory */
17735 	if (!hrq || !drq)
17736 		return -ENODEV;
17737 	mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
17738 	if (!mbox)
17739 		return -ENOMEM;
17740 	length = (sizeof(struct lpfc_mbx_rq_destroy) -
17741 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17742 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17743 			 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
17744 			 length, LPFC_SLI4_MBX_EMBED);
17745 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17746 	       hrq->queue_id);
17747 	mbox->vport = hrq->phba->pport;
17748 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17749 	rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
17750 	/* The IOCTL status is embedded in the mailbox subheader. */
17751 	shdr = (union lpfc_sli4_cfg_shdr *)
17752 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17753 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17754 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17755 	if (shdr_status || shdr_add_status || rc) {
17756 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17757 				"2509 RQ_DESTROY mailbox failed with "
17758 				"status x%x add_status x%x, mbx status x%x\n",
17759 				shdr_status, shdr_add_status, rc);
17760 		mempool_free(mbox, hrq->phba->mbox_mem_pool);
17761 		return -ENXIO;
17762 	}
17763 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17764 	       drq->queue_id);
17765 	rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
17766 	shdr = (union lpfc_sli4_cfg_shdr *)
17767 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17768 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17769 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17770 	if (shdr_status || shdr_add_status || rc) {
17771 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17772 				"2510 RQ_DESTROY mailbox failed with "
17773 				"status x%x add_status x%x, mbx status x%x\n",
17774 				shdr_status, shdr_add_status, rc);
17775 		status = -ENXIO;
17776 	}
17777 	list_del_init(&hrq->list);
17778 	list_del_init(&drq->list);
17779 	mempool_free(mbox, hrq->phba->mbox_mem_pool);
17780 	return status;
17781 }
17782 
17783 /**
17784  * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
17785  * @phba: The virtual port for which this call being executed.
17786  * @pdma_phys_addr0: Physical address of the 1st SGL page.
17787  * @pdma_phys_addr1: Physical address of the 2nd SGL page.
17788  * @xritag: the xritag that ties this io to the SGL pages.
17789  *
17790  * This routine will post the sgl pages for the IO that has the xritag
17791  * that is in the iocbq structure. The xritag is assigned during iocbq
17792  * creation and persists for as long as the driver is loaded.
17793  * if the caller has fewer than 256 scatter gather segments to map then
17794  * pdma_phys_addr1 should be 0.
17795  * If the caller needs to map more than 256 scatter gather segment then
17796  * pdma_phys_addr1 should be a valid physical address.
17797  * physical address for SGLs must be 64 byte aligned.
17798  * If you are going to map 2 SGL's then the first one must have 256 entries
17799  * the second sgl can have between 1 and 256 entries.
17800  *
17801  * Return codes:
17802  * 	0 - Success
17803  * 	-ENXIO, -ENOMEM - Failure
17804  **/
17805 int
17806 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
17807 		dma_addr_t pdma_phys_addr0,
17808 		dma_addr_t pdma_phys_addr1,
17809 		uint16_t xritag)
17810 {
17811 	struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
17812 	LPFC_MBOXQ_t *mbox;
17813 	int rc;
17814 	uint32_t shdr_status, shdr_add_status;
17815 	uint32_t mbox_tmo;
17816 	union lpfc_sli4_cfg_shdr *shdr;
17817 
17818 	if (xritag == NO_XRI) {
17819 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17820 				"0364 Invalid param:\n");
17821 		return -EINVAL;
17822 	}
17823 
17824 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17825 	if (!mbox)
17826 		return -ENOMEM;
17827 
17828 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17829 			LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
17830 			sizeof(struct lpfc_mbx_post_sgl_pages) -
17831 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
17832 
17833 	post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
17834 				&mbox->u.mqe.un.post_sgl_pages;
17835 	bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
17836 	bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
17837 
17838 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo	=
17839 				cpu_to_le32(putPaddrLow(pdma_phys_addr0));
17840 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
17841 				cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
17842 
17843 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo	=
17844 				cpu_to_le32(putPaddrLow(pdma_phys_addr1));
17845 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
17846 				cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
17847 	if (!phba->sli4_hba.intr_enable)
17848 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17849 	else {
17850 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17851 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17852 	}
17853 	/* The IOCTL status is embedded in the mailbox subheader. */
17854 	shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
17855 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17856 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17857 	if (!phba->sli4_hba.intr_enable)
17858 		mempool_free(mbox, phba->mbox_mem_pool);
17859 	else if (rc != MBX_TIMEOUT)
17860 		mempool_free(mbox, phba->mbox_mem_pool);
17861 	if (shdr_status || shdr_add_status || rc) {
17862 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17863 				"2511 POST_SGL mailbox failed with "
17864 				"status x%x add_status x%x, mbx status x%x\n",
17865 				shdr_status, shdr_add_status, rc);
17866 	}
17867 	return 0;
17868 }
17869 
17870 /**
17871  * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
17872  * @phba: pointer to lpfc hba data structure.
17873  *
17874  * This routine is invoked to post rpi header templates to the
17875  * HBA consistent with the SLI-4 interface spec.  This routine
17876  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
17877  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
17878  *
17879  * Returns
17880  *	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
17881  *	LPFC_RPI_ALLOC_ERROR if no rpis are available.
17882  **/
17883 static uint16_t
17884 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
17885 {
17886 	unsigned long xri;
17887 
17888 	/*
17889 	 * Fetch the next logical xri.  Because this index is logical,
17890 	 * the driver starts at 0 each time.
17891 	 */
17892 	spin_lock_irq(&phba->hbalock);
17893 	xri = find_first_zero_bit(phba->sli4_hba.xri_bmask,
17894 				 phba->sli4_hba.max_cfg_param.max_xri);
17895 	if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
17896 		spin_unlock_irq(&phba->hbalock);
17897 		return NO_XRI;
17898 	} else {
17899 		set_bit(xri, phba->sli4_hba.xri_bmask);
17900 		phba->sli4_hba.max_cfg_param.xri_used++;
17901 	}
17902 	spin_unlock_irq(&phba->hbalock);
17903 	return xri;
17904 }
17905 
17906 /**
17907  * __lpfc_sli4_free_xri - Release an xri for reuse.
17908  * @phba: pointer to lpfc hba data structure.
17909  * @xri: xri to release.
17910  *
17911  * This routine is invoked to release an xri to the pool of
17912  * available rpis maintained by the driver.
17913  **/
17914 static void
17915 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
17916 {
17917 	if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
17918 		phba->sli4_hba.max_cfg_param.xri_used--;
17919 	}
17920 }
17921 
17922 /**
17923  * lpfc_sli4_free_xri - Release an xri for reuse.
17924  * @phba: pointer to lpfc hba data structure.
17925  * @xri: xri to release.
17926  *
17927  * This routine is invoked to release an xri to the pool of
17928  * available rpis maintained by the driver.
17929  **/
17930 void
17931 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
17932 {
17933 	spin_lock_irq(&phba->hbalock);
17934 	__lpfc_sli4_free_xri(phba, xri);
17935 	spin_unlock_irq(&phba->hbalock);
17936 }
17937 
17938 /**
17939  * lpfc_sli4_next_xritag - Get an xritag for the io
17940  * @phba: Pointer to HBA context object.
17941  *
17942  * This function gets an xritag for the iocb. If there is no unused xritag
17943  * it will return 0xffff.
17944  * The function returns the allocated xritag if successful, else returns zero.
17945  * Zero is not a valid xritag.
17946  * The caller is not required to hold any lock.
17947  **/
17948 uint16_t
17949 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
17950 {
17951 	uint16_t xri_index;
17952 
17953 	xri_index = lpfc_sli4_alloc_xri(phba);
17954 	if (xri_index == NO_XRI)
17955 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
17956 				"2004 Failed to allocate XRI.last XRITAG is %d"
17957 				" Max XRI is %d, Used XRI is %d\n",
17958 				xri_index,
17959 				phba->sli4_hba.max_cfg_param.max_xri,
17960 				phba->sli4_hba.max_cfg_param.xri_used);
17961 	return xri_index;
17962 }
17963 
17964 /**
17965  * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
17966  * @phba: pointer to lpfc hba data structure.
17967  * @post_sgl_list: pointer to els sgl entry list.
17968  * @post_cnt: number of els sgl entries on the list.
17969  *
17970  * This routine is invoked to post a block of driver's sgl pages to the
17971  * HBA using non-embedded mailbox command. No Lock is held. This routine
17972  * is only called when the driver is loading and after all IO has been
17973  * stopped.
17974  **/
17975 static int
17976 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
17977 			    struct list_head *post_sgl_list,
17978 			    int post_cnt)
17979 {
17980 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
17981 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
17982 	struct sgl_page_pairs *sgl_pg_pairs;
17983 	void *viraddr;
17984 	LPFC_MBOXQ_t *mbox;
17985 	uint32_t reqlen, alloclen, pg_pairs;
17986 	uint32_t mbox_tmo;
17987 	uint16_t xritag_start = 0;
17988 	int rc = 0;
17989 	uint32_t shdr_status, shdr_add_status;
17990 	union lpfc_sli4_cfg_shdr *shdr;
17991 
17992 	reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
17993 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
17994 	if (reqlen > SLI4_PAGE_SIZE) {
17995 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17996 				"2559 Block sgl registration required DMA "
17997 				"size (%d) great than a page\n", reqlen);
17998 		return -ENOMEM;
17999 	}
18000 
18001 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18002 	if (!mbox)
18003 		return -ENOMEM;
18004 
18005 	/* Allocate DMA memory and set up the non-embedded mailbox command */
18006 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18007 			 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
18008 			 LPFC_SLI4_MBX_NEMBED);
18009 
18010 	if (alloclen < reqlen) {
18011 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18012 				"0285 Allocated DMA memory size (%d) is "
18013 				"less than the requested DMA memory "
18014 				"size (%d)\n", alloclen, reqlen);
18015 		lpfc_sli4_mbox_cmd_free(phba, mbox);
18016 		return -ENOMEM;
18017 	}
18018 	/* Set up the SGL pages in the non-embedded DMA pages */
18019 	viraddr = mbox->sge_array->addr[0];
18020 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
18021 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
18022 
18023 	pg_pairs = 0;
18024 	list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
18025 		/* Set up the sge entry */
18026 		sgl_pg_pairs->sgl_pg0_addr_lo =
18027 				cpu_to_le32(putPaddrLow(sglq_entry->phys));
18028 		sgl_pg_pairs->sgl_pg0_addr_hi =
18029 				cpu_to_le32(putPaddrHigh(sglq_entry->phys));
18030 		sgl_pg_pairs->sgl_pg1_addr_lo =
18031 				cpu_to_le32(putPaddrLow(0));
18032 		sgl_pg_pairs->sgl_pg1_addr_hi =
18033 				cpu_to_le32(putPaddrHigh(0));
18034 
18035 		/* Keep the first xritag on the list */
18036 		if (pg_pairs == 0)
18037 			xritag_start = sglq_entry->sli4_xritag;
18038 		sgl_pg_pairs++;
18039 		pg_pairs++;
18040 	}
18041 
18042 	/* Complete initialization and perform endian conversion. */
18043 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
18044 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
18045 	sgl->word0 = cpu_to_le32(sgl->word0);
18046 
18047 	if (!phba->sli4_hba.intr_enable)
18048 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
18049 	else {
18050 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
18051 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
18052 	}
18053 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
18054 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18055 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18056 	if (!phba->sli4_hba.intr_enable)
18057 		lpfc_sli4_mbox_cmd_free(phba, mbox);
18058 	else if (rc != MBX_TIMEOUT)
18059 		lpfc_sli4_mbox_cmd_free(phba, mbox);
18060 	if (shdr_status || shdr_add_status || rc) {
18061 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18062 				"2513 POST_SGL_BLOCK mailbox command failed "
18063 				"status x%x add_status x%x mbx status x%x\n",
18064 				shdr_status, shdr_add_status, rc);
18065 		rc = -ENXIO;
18066 	}
18067 	return rc;
18068 }
18069 
18070 /**
18071  * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
18072  * @phba: pointer to lpfc hba data structure.
18073  * @nblist: pointer to nvme buffer list.
18074  * @count: number of scsi buffers on the list.
18075  *
18076  * This routine is invoked to post a block of @count scsi sgl pages from a
18077  * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
18078  * No Lock is held.
18079  *
18080  **/
18081 static int
18082 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
18083 			    int count)
18084 {
18085 	struct lpfc_io_buf *lpfc_ncmd;
18086 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
18087 	struct sgl_page_pairs *sgl_pg_pairs;
18088 	void *viraddr;
18089 	LPFC_MBOXQ_t *mbox;
18090 	uint32_t reqlen, alloclen, pg_pairs;
18091 	uint32_t mbox_tmo;
18092 	uint16_t xritag_start = 0;
18093 	int rc = 0;
18094 	uint32_t shdr_status, shdr_add_status;
18095 	dma_addr_t pdma_phys_bpl1;
18096 	union lpfc_sli4_cfg_shdr *shdr;
18097 
18098 	/* Calculate the requested length of the dma memory */
18099 	reqlen = count * sizeof(struct sgl_page_pairs) +
18100 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
18101 	if (reqlen > SLI4_PAGE_SIZE) {
18102 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
18103 				"6118 Block sgl registration required DMA "
18104 				"size (%d) great than a page\n", reqlen);
18105 		return -ENOMEM;
18106 	}
18107 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18108 	if (!mbox) {
18109 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18110 				"6119 Failed to allocate mbox cmd memory\n");
18111 		return -ENOMEM;
18112 	}
18113 
18114 	/* Allocate DMA memory and set up the non-embedded mailbox command */
18115 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18116 				    LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
18117 				    reqlen, LPFC_SLI4_MBX_NEMBED);
18118 
18119 	if (alloclen < reqlen) {
18120 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18121 				"6120 Allocated DMA memory size (%d) is "
18122 				"less than the requested DMA memory "
18123 				"size (%d)\n", alloclen, reqlen);
18124 		lpfc_sli4_mbox_cmd_free(phba, mbox);
18125 		return -ENOMEM;
18126 	}
18127 
18128 	/* Get the first SGE entry from the non-embedded DMA memory */
18129 	viraddr = mbox->sge_array->addr[0];
18130 
18131 	/* Set up the SGL pages in the non-embedded DMA pages */
18132 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
18133 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
18134 
18135 	pg_pairs = 0;
18136 	list_for_each_entry(lpfc_ncmd, nblist, list) {
18137 		/* Set up the sge entry */
18138 		sgl_pg_pairs->sgl_pg0_addr_lo =
18139 			cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
18140 		sgl_pg_pairs->sgl_pg0_addr_hi =
18141 			cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
18142 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
18143 			pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
18144 						SGL_PAGE_SIZE;
18145 		else
18146 			pdma_phys_bpl1 = 0;
18147 		sgl_pg_pairs->sgl_pg1_addr_lo =
18148 			cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
18149 		sgl_pg_pairs->sgl_pg1_addr_hi =
18150 			cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
18151 		/* Keep the first xritag on the list */
18152 		if (pg_pairs == 0)
18153 			xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
18154 		sgl_pg_pairs++;
18155 		pg_pairs++;
18156 	}
18157 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
18158 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
18159 	/* Perform endian conversion if necessary */
18160 	sgl->word0 = cpu_to_le32(sgl->word0);
18161 
18162 	if (!phba->sli4_hba.intr_enable) {
18163 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
18164 	} else {
18165 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
18166 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
18167 	}
18168 	shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
18169 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18170 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18171 	if (!phba->sli4_hba.intr_enable)
18172 		lpfc_sli4_mbox_cmd_free(phba, mbox);
18173 	else if (rc != MBX_TIMEOUT)
18174 		lpfc_sli4_mbox_cmd_free(phba, mbox);
18175 	if (shdr_status || shdr_add_status || rc) {
18176 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18177 				"6125 POST_SGL_BLOCK mailbox command failed "
18178 				"status x%x add_status x%x mbx status x%x\n",
18179 				shdr_status, shdr_add_status, rc);
18180 		rc = -ENXIO;
18181 	}
18182 	return rc;
18183 }
18184 
18185 /**
18186  * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
18187  * @phba: pointer to lpfc hba data structure.
18188  * @post_nblist: pointer to the nvme buffer list.
18189  * @sb_count: number of nvme buffers.
18190  *
18191  * This routine walks a list of nvme buffers that was passed in. It attempts
18192  * to construct blocks of nvme buffer sgls which contains contiguous xris and
18193  * uses the non-embedded SGL block post mailbox commands to post to the port.
18194  * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
18195  * embedded SGL post mailbox command for posting. The @post_nblist passed in
18196  * must be local list, thus no lock is needed when manipulate the list.
18197  *
18198  * Returns: 0 = failure, non-zero number of successfully posted buffers.
18199  **/
18200 int
18201 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
18202 			   struct list_head *post_nblist, int sb_count)
18203 {
18204 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
18205 	int status, sgl_size;
18206 	int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
18207 	dma_addr_t pdma_phys_sgl1;
18208 	int last_xritag = NO_XRI;
18209 	int cur_xritag;
18210 	LIST_HEAD(prep_nblist);
18211 	LIST_HEAD(blck_nblist);
18212 	LIST_HEAD(nvme_nblist);
18213 
18214 	/* sanity check */
18215 	if (sb_count <= 0)
18216 		return -EINVAL;
18217 
18218 	sgl_size = phba->cfg_sg_dma_buf_size;
18219 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
18220 		list_del_init(&lpfc_ncmd->list);
18221 		block_cnt++;
18222 		if ((last_xritag != NO_XRI) &&
18223 		    (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
18224 			/* a hole in xri block, form a sgl posting block */
18225 			list_splice_init(&prep_nblist, &blck_nblist);
18226 			post_cnt = block_cnt - 1;
18227 			/* prepare list for next posting block */
18228 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
18229 			block_cnt = 1;
18230 		} else {
18231 			/* prepare list for next posting block */
18232 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
18233 			/* enough sgls for non-embed sgl mbox command */
18234 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
18235 				list_splice_init(&prep_nblist, &blck_nblist);
18236 				post_cnt = block_cnt;
18237 				block_cnt = 0;
18238 			}
18239 		}
18240 		num_posting++;
18241 		last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
18242 
18243 		/* end of repost sgl list condition for NVME buffers */
18244 		if (num_posting == sb_count) {
18245 			if (post_cnt == 0) {
18246 				/* last sgl posting block */
18247 				list_splice_init(&prep_nblist, &blck_nblist);
18248 				post_cnt = block_cnt;
18249 			} else if (block_cnt == 1) {
18250 				/* last single sgl with non-contiguous xri */
18251 				if (sgl_size > SGL_PAGE_SIZE)
18252 					pdma_phys_sgl1 =
18253 						lpfc_ncmd->dma_phys_sgl +
18254 						SGL_PAGE_SIZE;
18255 				else
18256 					pdma_phys_sgl1 = 0;
18257 				cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
18258 				status = lpfc_sli4_post_sgl(
18259 						phba, lpfc_ncmd->dma_phys_sgl,
18260 						pdma_phys_sgl1, cur_xritag);
18261 				if (status) {
18262 					/* Post error.  Buffer unavailable. */
18263 					lpfc_ncmd->flags |=
18264 						LPFC_SBUF_NOT_POSTED;
18265 				} else {
18266 					/* Post success. Bffer available. */
18267 					lpfc_ncmd->flags &=
18268 						~LPFC_SBUF_NOT_POSTED;
18269 					lpfc_ncmd->status = IOSTAT_SUCCESS;
18270 					num_posted++;
18271 				}
18272 				/* success, put on NVME buffer sgl list */
18273 				list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
18274 			}
18275 		}
18276 
18277 		/* continue until a nembed page worth of sgls */
18278 		if (post_cnt == 0)
18279 			continue;
18280 
18281 		/* post block of NVME buffer list sgls */
18282 		status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
18283 						     post_cnt);
18284 
18285 		/* don't reset xirtag due to hole in xri block */
18286 		if (block_cnt == 0)
18287 			last_xritag = NO_XRI;
18288 
18289 		/* reset NVME buffer post count for next round of posting */
18290 		post_cnt = 0;
18291 
18292 		/* put posted NVME buffer-sgl posted on NVME buffer sgl list */
18293 		while (!list_empty(&blck_nblist)) {
18294 			list_remove_head(&blck_nblist, lpfc_ncmd,
18295 					 struct lpfc_io_buf, list);
18296 			if (status) {
18297 				/* Post error.  Mark buffer unavailable. */
18298 				lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
18299 			} else {
18300 				/* Post success, Mark buffer available. */
18301 				lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
18302 				lpfc_ncmd->status = IOSTAT_SUCCESS;
18303 				num_posted++;
18304 			}
18305 			list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
18306 		}
18307 	}
18308 	/* Push NVME buffers with sgl posted to the available list */
18309 	lpfc_io_buf_replenish(phba, &nvme_nblist);
18310 
18311 	return num_posted;
18312 }
18313 
18314 /**
18315  * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
18316  * @phba: pointer to lpfc_hba struct that the frame was received on
18317  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18318  *
18319  * This function checks the fields in the @fc_hdr to see if the FC frame is a
18320  * valid type of frame that the LPFC driver will handle. This function will
18321  * return a zero if the frame is a valid frame or a non zero value when the
18322  * frame does not pass the check.
18323  **/
18324 static int
18325 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
18326 {
18327 	/*  make rctl_names static to save stack space */
18328 	struct fc_vft_header *fc_vft_hdr;
18329 	uint32_t *header = (uint32_t *) fc_hdr;
18330 
18331 #define FC_RCTL_MDS_DIAGS	0xF4
18332 
18333 	switch (fc_hdr->fh_r_ctl) {
18334 	case FC_RCTL_DD_UNCAT:		/* uncategorized information */
18335 	case FC_RCTL_DD_SOL_DATA:	/* solicited data */
18336 	case FC_RCTL_DD_UNSOL_CTL:	/* unsolicited control */
18337 	case FC_RCTL_DD_SOL_CTL:	/* solicited control or reply */
18338 	case FC_RCTL_DD_UNSOL_DATA:	/* unsolicited data */
18339 	case FC_RCTL_DD_DATA_DESC:	/* data descriptor */
18340 	case FC_RCTL_DD_UNSOL_CMD:	/* unsolicited command */
18341 	case FC_RCTL_DD_CMD_STATUS:	/* command status */
18342 	case FC_RCTL_ELS_REQ:	/* extended link services request */
18343 	case FC_RCTL_ELS_REP:	/* extended link services reply */
18344 	case FC_RCTL_ELS4_REQ:	/* FC-4 ELS request */
18345 	case FC_RCTL_ELS4_REP:	/* FC-4 ELS reply */
18346 	case FC_RCTL_BA_ABTS: 	/* basic link service abort */
18347 	case FC_RCTL_BA_RMC: 	/* remove connection */
18348 	case FC_RCTL_BA_ACC:	/* basic accept */
18349 	case FC_RCTL_BA_RJT:	/* basic reject */
18350 	case FC_RCTL_BA_PRMT:
18351 	case FC_RCTL_ACK_1:	/* acknowledge_1 */
18352 	case FC_RCTL_ACK_0:	/* acknowledge_0 */
18353 	case FC_RCTL_P_RJT:	/* port reject */
18354 	case FC_RCTL_F_RJT:	/* fabric reject */
18355 	case FC_RCTL_P_BSY:	/* port busy */
18356 	case FC_RCTL_F_BSY:	/* fabric busy to data frame */
18357 	case FC_RCTL_F_BSYL:	/* fabric busy to link control frame */
18358 	case FC_RCTL_LCR:	/* link credit reset */
18359 	case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
18360 	case FC_RCTL_END:	/* end */
18361 		break;
18362 	case FC_RCTL_VFTH:	/* Virtual Fabric tagging Header */
18363 		fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
18364 		fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
18365 		return lpfc_fc_frame_check(phba, fc_hdr);
18366 	case FC_RCTL_BA_NOP:	/* basic link service NOP */
18367 	default:
18368 		goto drop;
18369 	}
18370 
18371 	switch (fc_hdr->fh_type) {
18372 	case FC_TYPE_BLS:
18373 	case FC_TYPE_ELS:
18374 	case FC_TYPE_FCP:
18375 	case FC_TYPE_CT:
18376 	case FC_TYPE_NVME:
18377 		break;
18378 	case FC_TYPE_IP:
18379 	case FC_TYPE_ILS:
18380 	default:
18381 		goto drop;
18382 	}
18383 
18384 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
18385 			"2538 Received frame rctl:x%x, type:x%x, "
18386 			"frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
18387 			fc_hdr->fh_r_ctl, fc_hdr->fh_type,
18388 			be32_to_cpu(header[0]), be32_to_cpu(header[1]),
18389 			be32_to_cpu(header[2]), be32_to_cpu(header[3]),
18390 			be32_to_cpu(header[4]), be32_to_cpu(header[5]),
18391 			be32_to_cpu(header[6]));
18392 	return 0;
18393 drop:
18394 	lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
18395 			"2539 Dropped frame rctl:x%x type:x%x\n",
18396 			fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18397 	return 1;
18398 }
18399 
18400 /**
18401  * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
18402  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18403  *
18404  * This function processes the FC header to retrieve the VFI from the VF
18405  * header, if one exists. This function will return the VFI if one exists
18406  * or 0 if no VSAN Header exists.
18407  **/
18408 static uint32_t
18409 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
18410 {
18411 	struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
18412 
18413 	if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
18414 		return 0;
18415 	return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
18416 }
18417 
18418 /**
18419  * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
18420  * @phba: Pointer to the HBA structure to search for the vport on
18421  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18422  * @fcfi: The FC Fabric ID that the frame came from
18423  * @did: Destination ID to match against
18424  *
18425  * This function searches the @phba for a vport that matches the content of the
18426  * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
18427  * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
18428  * returns the matching vport pointer or NULL if unable to match frame to a
18429  * vport.
18430  **/
18431 static struct lpfc_vport *
18432 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
18433 		       uint16_t fcfi, uint32_t did)
18434 {
18435 	struct lpfc_vport **vports;
18436 	struct lpfc_vport *vport = NULL;
18437 	int i;
18438 
18439 	if (did == Fabric_DID)
18440 		return phba->pport;
18441 	if ((phba->pport->fc_flag & FC_PT2PT) &&
18442 		!(phba->link_state == LPFC_HBA_READY))
18443 		return phba->pport;
18444 
18445 	vports = lpfc_create_vport_work_array(phba);
18446 	if (vports != NULL) {
18447 		for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
18448 			if (phba->fcf.fcfi == fcfi &&
18449 			    vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
18450 			    vports[i]->fc_myDID == did) {
18451 				vport = vports[i];
18452 				break;
18453 			}
18454 		}
18455 	}
18456 	lpfc_destroy_vport_work_array(phba, vports);
18457 	return vport;
18458 }
18459 
18460 /**
18461  * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
18462  * @vport: The vport to work on.
18463  *
18464  * This function updates the receive sequence time stamp for this vport. The
18465  * receive sequence time stamp indicates the time that the last frame of the
18466  * the sequence that has been idle for the longest amount of time was received.
18467  * the driver uses this time stamp to indicate if any received sequences have
18468  * timed out.
18469  **/
18470 static void
18471 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
18472 {
18473 	struct lpfc_dmabuf *h_buf;
18474 	struct hbq_dmabuf *dmabuf = NULL;
18475 
18476 	/* get the oldest sequence on the rcv list */
18477 	h_buf = list_get_first(&vport->rcv_buffer_list,
18478 			       struct lpfc_dmabuf, list);
18479 	if (!h_buf)
18480 		return;
18481 	dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18482 	vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
18483 }
18484 
18485 /**
18486  * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
18487  * @vport: The vport that the received sequences were sent to.
18488  *
18489  * This function cleans up all outstanding received sequences. This is called
18490  * by the driver when a link event or user action invalidates all the received
18491  * sequences.
18492  **/
18493 void
18494 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
18495 {
18496 	struct lpfc_dmabuf *h_buf, *hnext;
18497 	struct lpfc_dmabuf *d_buf, *dnext;
18498 	struct hbq_dmabuf *dmabuf = NULL;
18499 
18500 	/* start with the oldest sequence on the rcv list */
18501 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
18502 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18503 		list_del_init(&dmabuf->hbuf.list);
18504 		list_for_each_entry_safe(d_buf, dnext,
18505 					 &dmabuf->dbuf.list, list) {
18506 			list_del_init(&d_buf->list);
18507 			lpfc_in_buf_free(vport->phba, d_buf);
18508 		}
18509 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
18510 	}
18511 }
18512 
18513 /**
18514  * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
18515  * @vport: The vport that the received sequences were sent to.
18516  *
18517  * This function determines whether any received sequences have timed out by
18518  * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
18519  * indicates that there is at least one timed out sequence this routine will
18520  * go through the received sequences one at a time from most inactive to most
18521  * active to determine which ones need to be cleaned up. Once it has determined
18522  * that a sequence needs to be cleaned up it will simply free up the resources
18523  * without sending an abort.
18524  **/
18525 void
18526 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
18527 {
18528 	struct lpfc_dmabuf *h_buf, *hnext;
18529 	struct lpfc_dmabuf *d_buf, *dnext;
18530 	struct hbq_dmabuf *dmabuf = NULL;
18531 	unsigned long timeout;
18532 	int abort_count = 0;
18533 
18534 	timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
18535 		   vport->rcv_buffer_time_stamp);
18536 	if (list_empty(&vport->rcv_buffer_list) ||
18537 	    time_before(jiffies, timeout))
18538 		return;
18539 	/* start with the oldest sequence on the rcv list */
18540 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
18541 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18542 		timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
18543 			   dmabuf->time_stamp);
18544 		if (time_before(jiffies, timeout))
18545 			break;
18546 		abort_count++;
18547 		list_del_init(&dmabuf->hbuf.list);
18548 		list_for_each_entry_safe(d_buf, dnext,
18549 					 &dmabuf->dbuf.list, list) {
18550 			list_del_init(&d_buf->list);
18551 			lpfc_in_buf_free(vport->phba, d_buf);
18552 		}
18553 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
18554 	}
18555 	if (abort_count)
18556 		lpfc_update_rcv_time_stamp(vport);
18557 }
18558 
18559 /**
18560  * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
18561  * @vport: pointer to a vitural port
18562  * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
18563  *
18564  * This function searches through the existing incomplete sequences that have
18565  * been sent to this @vport. If the frame matches one of the incomplete
18566  * sequences then the dbuf in the @dmabuf is added to the list of frames that
18567  * make up that sequence. If no sequence is found that matches this frame then
18568  * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
18569  * This function returns a pointer to the first dmabuf in the sequence list that
18570  * the frame was linked to.
18571  **/
18572 static struct hbq_dmabuf *
18573 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
18574 {
18575 	struct fc_frame_header *new_hdr;
18576 	struct fc_frame_header *temp_hdr;
18577 	struct lpfc_dmabuf *d_buf;
18578 	struct lpfc_dmabuf *h_buf;
18579 	struct hbq_dmabuf *seq_dmabuf = NULL;
18580 	struct hbq_dmabuf *temp_dmabuf = NULL;
18581 	uint8_t	found = 0;
18582 
18583 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
18584 	dmabuf->time_stamp = jiffies;
18585 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18586 
18587 	/* Use the hdr_buf to find the sequence that this frame belongs to */
18588 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
18589 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
18590 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
18591 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
18592 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
18593 			continue;
18594 		/* found a pending sequence that matches this frame */
18595 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18596 		break;
18597 	}
18598 	if (!seq_dmabuf) {
18599 		/*
18600 		 * This indicates first frame received for this sequence.
18601 		 * Queue the buffer on the vport's rcv_buffer_list.
18602 		 */
18603 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
18604 		lpfc_update_rcv_time_stamp(vport);
18605 		return dmabuf;
18606 	}
18607 	temp_hdr = seq_dmabuf->hbuf.virt;
18608 	if (be16_to_cpu(new_hdr->fh_seq_cnt) <
18609 		be16_to_cpu(temp_hdr->fh_seq_cnt)) {
18610 		list_del_init(&seq_dmabuf->hbuf.list);
18611 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
18612 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
18613 		lpfc_update_rcv_time_stamp(vport);
18614 		return dmabuf;
18615 	}
18616 	/* move this sequence to the tail to indicate a young sequence */
18617 	list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
18618 	seq_dmabuf->time_stamp = jiffies;
18619 	lpfc_update_rcv_time_stamp(vport);
18620 	if (list_empty(&seq_dmabuf->dbuf.list)) {
18621 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
18622 		return seq_dmabuf;
18623 	}
18624 	/* find the correct place in the sequence to insert this frame */
18625 	d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
18626 	while (!found) {
18627 		temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18628 		temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
18629 		/*
18630 		 * If the frame's sequence count is greater than the frame on
18631 		 * the list then insert the frame right after this frame
18632 		 */
18633 		if (be16_to_cpu(new_hdr->fh_seq_cnt) >
18634 			be16_to_cpu(temp_hdr->fh_seq_cnt)) {
18635 			list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
18636 			found = 1;
18637 			break;
18638 		}
18639 
18640 		if (&d_buf->list == &seq_dmabuf->dbuf.list)
18641 			break;
18642 		d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
18643 	}
18644 
18645 	if (found)
18646 		return seq_dmabuf;
18647 	return NULL;
18648 }
18649 
18650 /**
18651  * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
18652  * @vport: pointer to a vitural port
18653  * @dmabuf: pointer to a dmabuf that describes the FC sequence
18654  *
18655  * This function tries to abort from the partially assembed sequence, described
18656  * by the information from basic abbort @dmabuf. It checks to see whether such
18657  * partially assembled sequence held by the driver. If so, it shall free up all
18658  * the frames from the partially assembled sequence.
18659  *
18660  * Return
18661  * true  -- if there is matching partially assembled sequence present and all
18662  *          the frames freed with the sequence;
18663  * false -- if there is no matching partially assembled sequence present so
18664  *          nothing got aborted in the lower layer driver
18665  **/
18666 static bool
18667 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
18668 			    struct hbq_dmabuf *dmabuf)
18669 {
18670 	struct fc_frame_header *new_hdr;
18671 	struct fc_frame_header *temp_hdr;
18672 	struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
18673 	struct hbq_dmabuf *seq_dmabuf = NULL;
18674 
18675 	/* Use the hdr_buf to find the sequence that matches this frame */
18676 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
18677 	INIT_LIST_HEAD(&dmabuf->hbuf.list);
18678 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18679 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
18680 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
18681 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
18682 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
18683 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
18684 			continue;
18685 		/* found a pending sequence that matches this frame */
18686 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18687 		break;
18688 	}
18689 
18690 	/* Free up all the frames from the partially assembled sequence */
18691 	if (seq_dmabuf) {
18692 		list_for_each_entry_safe(d_buf, n_buf,
18693 					 &seq_dmabuf->dbuf.list, list) {
18694 			list_del_init(&d_buf->list);
18695 			lpfc_in_buf_free(vport->phba, d_buf);
18696 		}
18697 		return true;
18698 	}
18699 	return false;
18700 }
18701 
18702 /**
18703  * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
18704  * @vport: pointer to a vitural port
18705  * @dmabuf: pointer to a dmabuf that describes the FC sequence
18706  *
18707  * This function tries to abort from the assembed sequence from upper level
18708  * protocol, described by the information from basic abbort @dmabuf. It
18709  * checks to see whether such pending context exists at upper level protocol.
18710  * If so, it shall clean up the pending context.
18711  *
18712  * Return
18713  * true  -- if there is matching pending context of the sequence cleaned
18714  *          at ulp;
18715  * false -- if there is no matching pending context of the sequence present
18716  *          at ulp.
18717  **/
18718 static bool
18719 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
18720 {
18721 	struct lpfc_hba *phba = vport->phba;
18722 	int handled;
18723 
18724 	/* Accepting abort at ulp with SLI4 only */
18725 	if (phba->sli_rev < LPFC_SLI_REV4)
18726 		return false;
18727 
18728 	/* Register all caring upper level protocols to attend abort */
18729 	handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
18730 	if (handled)
18731 		return true;
18732 
18733 	return false;
18734 }
18735 
18736 /**
18737  * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
18738  * @phba: Pointer to HBA context object.
18739  * @cmd_iocbq: pointer to the command iocbq structure.
18740  * @rsp_iocbq: pointer to the response iocbq structure.
18741  *
18742  * This function handles the sequence abort response iocb command complete
18743  * event. It properly releases the memory allocated to the sequence abort
18744  * accept iocb.
18745  **/
18746 static void
18747 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
18748 			     struct lpfc_iocbq *cmd_iocbq,
18749 			     struct lpfc_iocbq *rsp_iocbq)
18750 {
18751 	if (cmd_iocbq) {
18752 		lpfc_nlp_put(cmd_iocbq->ndlp);
18753 		lpfc_sli_release_iocbq(phba, cmd_iocbq);
18754 	}
18755 
18756 	/* Failure means BLS ABORT RSP did not get delivered to remote node*/
18757 	if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
18758 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18759 			"3154 BLS ABORT RSP failed, data:  x%x/x%x\n",
18760 			get_job_ulpstatus(phba, rsp_iocbq),
18761 			get_job_word4(phba, rsp_iocbq));
18762 }
18763 
18764 /**
18765  * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
18766  * @phba: Pointer to HBA context object.
18767  * @xri: xri id in transaction.
18768  *
18769  * This function validates the xri maps to the known range of XRIs allocated an
18770  * used by the driver.
18771  **/
18772 uint16_t
18773 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
18774 		      uint16_t xri)
18775 {
18776 	uint16_t i;
18777 
18778 	for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
18779 		if (xri == phba->sli4_hba.xri_ids[i])
18780 			return i;
18781 	}
18782 	return NO_XRI;
18783 }
18784 
18785 /**
18786  * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
18787  * @vport: pointer to a virtual port.
18788  * @fc_hdr: pointer to a FC frame header.
18789  * @aborted: was the partially assembled receive sequence successfully aborted
18790  *
18791  * This function sends a basic response to a previous unsol sequence abort
18792  * event after aborting the sequence handling.
18793  **/
18794 void
18795 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
18796 			struct fc_frame_header *fc_hdr, bool aborted)
18797 {
18798 	struct lpfc_hba *phba = vport->phba;
18799 	struct lpfc_iocbq *ctiocb = NULL;
18800 	struct lpfc_nodelist *ndlp;
18801 	uint16_t oxid, rxid, xri, lxri;
18802 	uint32_t sid, fctl;
18803 	union lpfc_wqe128 *icmd;
18804 	int rc;
18805 
18806 	if (!lpfc_is_link_up(phba))
18807 		return;
18808 
18809 	sid = sli4_sid_from_fc_hdr(fc_hdr);
18810 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
18811 	rxid = be16_to_cpu(fc_hdr->fh_rx_id);
18812 
18813 	ndlp = lpfc_findnode_did(vport, sid);
18814 	if (!ndlp) {
18815 		ndlp = lpfc_nlp_init(vport, sid);
18816 		if (!ndlp) {
18817 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
18818 					 "1268 Failed to allocate ndlp for "
18819 					 "oxid:x%x SID:x%x\n", oxid, sid);
18820 			return;
18821 		}
18822 		/* Put ndlp onto pport node list */
18823 		lpfc_enqueue_node(vport, ndlp);
18824 	}
18825 
18826 	/* Allocate buffer for rsp iocb */
18827 	ctiocb = lpfc_sli_get_iocbq(phba);
18828 	if (!ctiocb)
18829 		return;
18830 
18831 	icmd = &ctiocb->wqe;
18832 
18833 	/* Extract the F_CTL field from FC_HDR */
18834 	fctl = sli4_fctl_from_fc_hdr(fc_hdr);
18835 
18836 	ctiocb->ndlp = lpfc_nlp_get(ndlp);
18837 	if (!ctiocb->ndlp) {
18838 		lpfc_sli_release_iocbq(phba, ctiocb);
18839 		return;
18840 	}
18841 
18842 	ctiocb->vport = phba->pport;
18843 	ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
18844 	ctiocb->sli4_lxritag = NO_XRI;
18845 	ctiocb->sli4_xritag = NO_XRI;
18846 	ctiocb->abort_rctl = FC_RCTL_BA_ACC;
18847 
18848 	if (fctl & FC_FC_EX_CTX)
18849 		/* Exchange responder sent the abort so we
18850 		 * own the oxid.
18851 		 */
18852 		xri = oxid;
18853 	else
18854 		xri = rxid;
18855 	lxri = lpfc_sli4_xri_inrange(phba, xri);
18856 	if (lxri != NO_XRI)
18857 		lpfc_set_rrq_active(phba, ndlp, lxri,
18858 			(xri == oxid) ? rxid : oxid, 0);
18859 	/* For BA_ABTS from exchange responder, if the logical xri with
18860 	 * the oxid maps to the FCP XRI range, the port no longer has
18861 	 * that exchange context, send a BLS_RJT. Override the IOCB for
18862 	 * a BA_RJT.
18863 	 */
18864 	if ((fctl & FC_FC_EX_CTX) &&
18865 	    (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
18866 		ctiocb->abort_rctl = FC_RCTL_BA_RJT;
18867 		bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0);
18868 		bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp,
18869 		       FC_BA_RJT_INV_XID);
18870 		bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp,
18871 		       FC_BA_RJT_UNABLE);
18872 	}
18873 
18874 	/* If BA_ABTS failed to abort a partially assembled receive sequence,
18875 	 * the driver no longer has that exchange, send a BLS_RJT. Override
18876 	 * the IOCB for a BA_RJT.
18877 	 */
18878 	if (aborted == false) {
18879 		ctiocb->abort_rctl = FC_RCTL_BA_RJT;
18880 		bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0);
18881 		bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp,
18882 		       FC_BA_RJT_INV_XID);
18883 		bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp,
18884 		       FC_BA_RJT_UNABLE);
18885 	}
18886 
18887 	if (fctl & FC_FC_EX_CTX) {
18888 		/* ABTS sent by responder to CT exchange, construction
18889 		 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
18890 		 * field and RX_ID from ABTS for RX_ID field.
18891 		 */
18892 		ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP;
18893 		bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid);
18894 	} else {
18895 		/* ABTS sent by initiator to CT exchange, construction
18896 		 * of BA_ACC will need to allocate a new XRI as for the
18897 		 * XRI_TAG field.
18898 		 */
18899 		ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT;
18900 	}
18901 
18902 	/* OX_ID is invariable to who sent ABTS to CT exchange */
18903 	bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid);
18904 	bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid);
18905 
18906 	/* Use CT=VPI */
18907 	bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest,
18908 	       ndlp->nlp_DID);
18909 	bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp,
18910 	       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
18911 	bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX);
18912 
18913 	/* Xmit CT abts response on exchange <xid> */
18914 	lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
18915 			 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
18916 			 ctiocb->abort_rctl, oxid, phba->link_state);
18917 
18918 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
18919 	if (rc == IOCB_ERROR) {
18920 		lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
18921 				 "2925 Failed to issue CT ABTS RSP x%x on "
18922 				 "xri x%x, Data x%x\n",
18923 				 ctiocb->abort_rctl, oxid,
18924 				 phba->link_state);
18925 		lpfc_nlp_put(ndlp);
18926 		ctiocb->ndlp = NULL;
18927 		lpfc_sli_release_iocbq(phba, ctiocb);
18928 	}
18929 }
18930 
18931 /**
18932  * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
18933  * @vport: Pointer to the vport on which this sequence was received
18934  * @dmabuf: pointer to a dmabuf that describes the FC sequence
18935  *
18936  * This function handles an SLI-4 unsolicited abort event. If the unsolicited
18937  * receive sequence is only partially assembed by the driver, it shall abort
18938  * the partially assembled frames for the sequence. Otherwise, if the
18939  * unsolicited receive sequence has been completely assembled and passed to
18940  * the Upper Layer Protocol (ULP), it then mark the per oxid status for the
18941  * unsolicited sequence has been aborted. After that, it will issue a basic
18942  * accept to accept the abort.
18943  **/
18944 static void
18945 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
18946 			     struct hbq_dmabuf *dmabuf)
18947 {
18948 	struct lpfc_hba *phba = vport->phba;
18949 	struct fc_frame_header fc_hdr;
18950 	uint32_t fctl;
18951 	bool aborted;
18952 
18953 	/* Make a copy of fc_hdr before the dmabuf being released */
18954 	memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
18955 	fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
18956 
18957 	if (fctl & FC_FC_EX_CTX) {
18958 		/* ABTS by responder to exchange, no cleanup needed */
18959 		aborted = true;
18960 	} else {
18961 		/* ABTS by initiator to exchange, need to do cleanup */
18962 		aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
18963 		if (aborted == false)
18964 			aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
18965 	}
18966 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
18967 
18968 	if (phba->nvmet_support) {
18969 		lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
18970 		return;
18971 	}
18972 
18973 	/* Respond with BA_ACC or BA_RJT accordingly */
18974 	lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
18975 }
18976 
18977 /**
18978  * lpfc_seq_complete - Indicates if a sequence is complete
18979  * @dmabuf: pointer to a dmabuf that describes the FC sequence
18980  *
18981  * This function checks the sequence, starting with the frame described by
18982  * @dmabuf, to see if all the frames associated with this sequence are present.
18983  * the frames associated with this sequence are linked to the @dmabuf using the
18984  * dbuf list. This function looks for two major things. 1) That the first frame
18985  * has a sequence count of zero. 2) There is a frame with last frame of sequence
18986  * set. 3) That there are no holes in the sequence count. The function will
18987  * return 1 when the sequence is complete, otherwise it will return 0.
18988  **/
18989 static int
18990 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
18991 {
18992 	struct fc_frame_header *hdr;
18993 	struct lpfc_dmabuf *d_buf;
18994 	struct hbq_dmabuf *seq_dmabuf;
18995 	uint32_t fctl;
18996 	int seq_count = 0;
18997 
18998 	hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18999 	/* make sure first fame of sequence has a sequence count of zero */
19000 	if (hdr->fh_seq_cnt != seq_count)
19001 		return 0;
19002 	fctl = (hdr->fh_f_ctl[0] << 16 |
19003 		hdr->fh_f_ctl[1] << 8 |
19004 		hdr->fh_f_ctl[2]);
19005 	/* If last frame of sequence we can return success. */
19006 	if (fctl & FC_FC_END_SEQ)
19007 		return 1;
19008 	list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
19009 		seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19010 		hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19011 		/* If there is a hole in the sequence count then fail. */
19012 		if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
19013 			return 0;
19014 		fctl = (hdr->fh_f_ctl[0] << 16 |
19015 			hdr->fh_f_ctl[1] << 8 |
19016 			hdr->fh_f_ctl[2]);
19017 		/* If last frame of sequence we can return success. */
19018 		if (fctl & FC_FC_END_SEQ)
19019 			return 1;
19020 	}
19021 	return 0;
19022 }
19023 
19024 /**
19025  * lpfc_prep_seq - Prep sequence for ULP processing
19026  * @vport: Pointer to the vport on which this sequence was received
19027  * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence
19028  *
19029  * This function takes a sequence, described by a list of frames, and creates
19030  * a list of iocbq structures to describe the sequence. This iocbq list will be
19031  * used to issue to the generic unsolicited sequence handler. This routine
19032  * returns a pointer to the first iocbq in the list. If the function is unable
19033  * to allocate an iocbq then it throw out the received frames that were not
19034  * able to be described and return a pointer to the first iocbq. If unable to
19035  * allocate any iocbqs (including the first) this function will return NULL.
19036  **/
19037 static struct lpfc_iocbq *
19038 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
19039 {
19040 	struct hbq_dmabuf *hbq_buf;
19041 	struct lpfc_dmabuf *d_buf, *n_buf;
19042 	struct lpfc_iocbq *first_iocbq, *iocbq;
19043 	struct fc_frame_header *fc_hdr;
19044 	uint32_t sid;
19045 	uint32_t len, tot_len;
19046 
19047 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19048 	/* remove from receive buffer list */
19049 	list_del_init(&seq_dmabuf->hbuf.list);
19050 	lpfc_update_rcv_time_stamp(vport);
19051 	/* get the Remote Port's SID */
19052 	sid = sli4_sid_from_fc_hdr(fc_hdr);
19053 	tot_len = 0;
19054 	/* Get an iocbq struct to fill in. */
19055 	first_iocbq = lpfc_sli_get_iocbq(vport->phba);
19056 	if (first_iocbq) {
19057 		/* Initialize the first IOCB. */
19058 		first_iocbq->wcqe_cmpl.total_data_placed = 0;
19059 		bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl,
19060 		       IOSTAT_SUCCESS);
19061 		first_iocbq->vport = vport;
19062 
19063 		/* Check FC Header to see what TYPE of frame we are rcv'ing */
19064 		if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
19065 			bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp,
19066 			       sli4_did_from_fc_hdr(fc_hdr));
19067 		}
19068 
19069 		bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com,
19070 		       NO_XRI);
19071 		bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com,
19072 		       be16_to_cpu(fc_hdr->fh_ox_id));
19073 
19074 		/* put the first buffer into the first iocb */
19075 		tot_len = bf_get(lpfc_rcqe_length,
19076 				 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
19077 
19078 		first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf;
19079 		first_iocbq->bpl_dmabuf = NULL;
19080 		/* Keep track of the BDE count */
19081 		first_iocbq->wcqe_cmpl.word3 = 1;
19082 
19083 		if (tot_len > LPFC_DATA_BUF_SIZE)
19084 			first_iocbq->wqe.gen_req.bde.tus.f.bdeSize =
19085 				LPFC_DATA_BUF_SIZE;
19086 		else
19087 			first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len;
19088 
19089 		first_iocbq->wcqe_cmpl.total_data_placed = tot_len;
19090 		bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest,
19091 		       sid);
19092 	}
19093 	iocbq = first_iocbq;
19094 	/*
19095 	 * Each IOCBq can have two Buffers assigned, so go through the list
19096 	 * of buffers for this sequence and save two buffers in each IOCBq
19097 	 */
19098 	list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
19099 		if (!iocbq) {
19100 			lpfc_in_buf_free(vport->phba, d_buf);
19101 			continue;
19102 		}
19103 		if (!iocbq->bpl_dmabuf) {
19104 			iocbq->bpl_dmabuf = d_buf;
19105 			iocbq->wcqe_cmpl.word3++;
19106 			/* We need to get the size out of the right CQE */
19107 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19108 			len = bf_get(lpfc_rcqe_length,
19109 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
19110 			iocbq->unsol_rcv_len = len;
19111 			iocbq->wcqe_cmpl.total_data_placed += len;
19112 			tot_len += len;
19113 		} else {
19114 			iocbq = lpfc_sli_get_iocbq(vport->phba);
19115 			if (!iocbq) {
19116 				if (first_iocbq) {
19117 					bf_set(lpfc_wcqe_c_status,
19118 					       &first_iocbq->wcqe_cmpl,
19119 					       IOSTAT_SUCCESS);
19120 					first_iocbq->wcqe_cmpl.parameter =
19121 						IOERR_NO_RESOURCES;
19122 				}
19123 				lpfc_in_buf_free(vport->phba, d_buf);
19124 				continue;
19125 			}
19126 			/* We need to get the size out of the right CQE */
19127 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19128 			len = bf_get(lpfc_rcqe_length,
19129 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
19130 			iocbq->cmd_dmabuf = d_buf;
19131 			iocbq->bpl_dmabuf = NULL;
19132 			iocbq->wcqe_cmpl.word3 = 1;
19133 
19134 			if (len > LPFC_DATA_BUF_SIZE)
19135 				iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize =
19136 					LPFC_DATA_BUF_SIZE;
19137 			else
19138 				iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize =
19139 					len;
19140 
19141 			tot_len += len;
19142 			iocbq->wcqe_cmpl.total_data_placed = tot_len;
19143 			bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest,
19144 			       sid);
19145 			list_add_tail(&iocbq->list, &first_iocbq->list);
19146 		}
19147 	}
19148 	/* Free the sequence's header buffer */
19149 	if (!first_iocbq)
19150 		lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf);
19151 
19152 	return first_iocbq;
19153 }
19154 
19155 static void
19156 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
19157 			  struct hbq_dmabuf *seq_dmabuf)
19158 {
19159 	struct fc_frame_header *fc_hdr;
19160 	struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
19161 	struct lpfc_hba *phba = vport->phba;
19162 
19163 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19164 	iocbq = lpfc_prep_seq(vport, seq_dmabuf);
19165 	if (!iocbq) {
19166 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19167 				"2707 Ring %d handler: Failed to allocate "
19168 				"iocb Rctl x%x Type x%x received\n",
19169 				LPFC_ELS_RING,
19170 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
19171 		return;
19172 	}
19173 	if (!lpfc_complete_unsol_iocb(phba,
19174 				      phba->sli4_hba.els_wq->pring,
19175 				      iocbq, fc_hdr->fh_r_ctl,
19176 				      fc_hdr->fh_type)) {
19177 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19178 				"2540 Ring %d handler: unexpected Rctl "
19179 				"x%x Type x%x received\n",
19180 				LPFC_ELS_RING,
19181 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
19182 		lpfc_in_buf_free(phba, &seq_dmabuf->dbuf);
19183 	}
19184 
19185 	/* Free iocb created in lpfc_prep_seq */
19186 	list_for_each_entry_safe(curr_iocb, next_iocb,
19187 				 &iocbq->list, list) {
19188 		list_del_init(&curr_iocb->list);
19189 		lpfc_sli_release_iocbq(phba, curr_iocb);
19190 	}
19191 	lpfc_sli_release_iocbq(phba, iocbq);
19192 }
19193 
19194 static void
19195 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
19196 			    struct lpfc_iocbq *rspiocb)
19197 {
19198 	struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf;
19199 
19200 	if (pcmd && pcmd->virt)
19201 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
19202 	kfree(pcmd);
19203 	lpfc_sli_release_iocbq(phba, cmdiocb);
19204 	lpfc_drain_txq(phba);
19205 }
19206 
19207 static void
19208 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
19209 			      struct hbq_dmabuf *dmabuf)
19210 {
19211 	struct fc_frame_header *fc_hdr;
19212 	struct lpfc_hba *phba = vport->phba;
19213 	struct lpfc_iocbq *iocbq = NULL;
19214 	union  lpfc_wqe128 *pwqe;
19215 	struct lpfc_dmabuf *pcmd = NULL;
19216 	uint32_t frame_len;
19217 	int rc;
19218 	unsigned long iflags;
19219 
19220 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19221 	frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
19222 
19223 	/* Send the received frame back */
19224 	iocbq = lpfc_sli_get_iocbq(phba);
19225 	if (!iocbq) {
19226 		/* Queue cq event and wakeup worker thread to process it */
19227 		spin_lock_irqsave(&phba->hbalock, iflags);
19228 		list_add_tail(&dmabuf->cq_event.list,
19229 			      &phba->sli4_hba.sp_queue_event);
19230 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
19231 		spin_unlock_irqrestore(&phba->hbalock, iflags);
19232 		lpfc_worker_wake_up(phba);
19233 		return;
19234 	}
19235 
19236 	/* Allocate buffer for command payload */
19237 	pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
19238 	if (pcmd)
19239 		pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
19240 					    &pcmd->phys);
19241 	if (!pcmd || !pcmd->virt)
19242 		goto exit;
19243 
19244 	INIT_LIST_HEAD(&pcmd->list);
19245 
19246 	/* copyin the payload */
19247 	memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
19248 
19249 	iocbq->cmd_dmabuf = pcmd;
19250 	iocbq->vport = vport;
19251 	iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK;
19252 	iocbq->cmd_flag |= LPFC_USE_FCPWQIDX;
19253 	iocbq->num_bdes = 0;
19254 
19255 	pwqe = &iocbq->wqe;
19256 	/* fill in BDE's for command */
19257 	pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys);
19258 	pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys);
19259 	pwqe->gen_req.bde.tus.f.bdeSize = frame_len;
19260 	pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
19261 
19262 	pwqe->send_frame.frame_len = frame_len;
19263 	pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr));
19264 	pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1));
19265 	pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2));
19266 	pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3));
19267 	pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4));
19268 	pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5));
19269 
19270 	pwqe->generic.wqe_com.word7 = 0;
19271 	pwqe->generic.wqe_com.word10 = 0;
19272 
19273 	bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME);
19274 	bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */
19275 	bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */
19276 	bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1);
19277 	bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1);
19278 	bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1);
19279 	bf_set(wqe_xc, &pwqe->generic.wqe_com, 1);
19280 	bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA);
19281 	bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
19282 	bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag);
19283 	bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag);
19284 	bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3);
19285 	pwqe->generic.wqe_com.abort_tag = iocbq->iotag;
19286 
19287 	iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl;
19288 
19289 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
19290 	if (rc == IOCB_ERROR)
19291 		goto exit;
19292 
19293 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
19294 	return;
19295 
19296 exit:
19297 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
19298 			"2023 Unable to process MDS loopback frame\n");
19299 	if (pcmd && pcmd->virt)
19300 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
19301 	kfree(pcmd);
19302 	if (iocbq)
19303 		lpfc_sli_release_iocbq(phba, iocbq);
19304 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
19305 }
19306 
19307 /**
19308  * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
19309  * @phba: Pointer to HBA context object.
19310  * @dmabuf: Pointer to a dmabuf that describes the FC sequence.
19311  *
19312  * This function is called with no lock held. This function processes all
19313  * the received buffers and gives it to upper layers when a received buffer
19314  * indicates that it is the final frame in the sequence. The interrupt
19315  * service routine processes received buffers at interrupt contexts.
19316  * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
19317  * appropriate receive function when the final frame in a sequence is received.
19318  **/
19319 void
19320 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
19321 				 struct hbq_dmabuf *dmabuf)
19322 {
19323 	struct hbq_dmabuf *seq_dmabuf;
19324 	struct fc_frame_header *fc_hdr;
19325 	struct lpfc_vport *vport;
19326 	uint32_t fcfi;
19327 	uint32_t did;
19328 
19329 	/* Process each received buffer */
19330 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19331 
19332 	if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
19333 	    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
19334 		vport = phba->pport;
19335 		/* Handle MDS Loopback frames */
19336 		if  (!(phba->pport->load_flag & FC_UNLOADING))
19337 			lpfc_sli4_handle_mds_loopback(vport, dmabuf);
19338 		else
19339 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
19340 		return;
19341 	}
19342 
19343 	/* check to see if this a valid type of frame */
19344 	if (lpfc_fc_frame_check(phba, fc_hdr)) {
19345 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
19346 		return;
19347 	}
19348 
19349 	if ((bf_get(lpfc_cqe_code,
19350 		    &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
19351 		fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
19352 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
19353 	else
19354 		fcfi = bf_get(lpfc_rcqe_fcf_id,
19355 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
19356 
19357 	if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
19358 		vport = phba->pport;
19359 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
19360 				"2023 MDS Loopback %d bytes\n",
19361 				bf_get(lpfc_rcqe_length,
19362 				       &dmabuf->cq_event.cqe.rcqe_cmpl));
19363 		/* Handle MDS Loopback frames */
19364 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
19365 		return;
19366 	}
19367 
19368 	/* d_id this frame is directed to */
19369 	did = sli4_did_from_fc_hdr(fc_hdr);
19370 
19371 	vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
19372 	if (!vport) {
19373 		/* throw out the frame */
19374 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
19375 		return;
19376 	}
19377 
19378 	/* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
19379 	if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
19380 		(did != Fabric_DID)) {
19381 		/*
19382 		 * Throw out the frame if we are not pt2pt.
19383 		 * The pt2pt protocol allows for discovery frames
19384 		 * to be received without a registered VPI.
19385 		 */
19386 		if (!(vport->fc_flag & FC_PT2PT) ||
19387 			(phba->link_state == LPFC_HBA_READY)) {
19388 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
19389 			return;
19390 		}
19391 	}
19392 
19393 	/* Handle the basic abort sequence (BA_ABTS) event */
19394 	if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
19395 		lpfc_sli4_handle_unsol_abort(vport, dmabuf);
19396 		return;
19397 	}
19398 
19399 	/* Link this frame */
19400 	seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
19401 	if (!seq_dmabuf) {
19402 		/* unable to add frame to vport - throw it out */
19403 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
19404 		return;
19405 	}
19406 	/* If not last frame in sequence continue processing frames. */
19407 	if (!lpfc_seq_complete(seq_dmabuf))
19408 		return;
19409 
19410 	/* Send the complete sequence to the upper layer protocol */
19411 	lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
19412 }
19413 
19414 /**
19415  * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
19416  * @phba: pointer to lpfc hba data structure.
19417  *
19418  * This routine is invoked to post rpi header templates to the
19419  * HBA consistent with the SLI-4 interface spec.  This routine
19420  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
19421  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
19422  *
19423  * This routine does not require any locks.  It's usage is expected
19424  * to be driver load or reset recovery when the driver is
19425  * sequential.
19426  *
19427  * Return codes
19428  * 	0 - successful
19429  *      -EIO - The mailbox failed to complete successfully.
19430  * 	When this error occurs, the driver is not guaranteed
19431  *	to have any rpi regions posted to the device and
19432  *	must either attempt to repost the regions or take a
19433  *	fatal error.
19434  **/
19435 int
19436 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
19437 {
19438 	struct lpfc_rpi_hdr *rpi_page;
19439 	uint32_t rc = 0;
19440 	uint16_t lrpi = 0;
19441 
19442 	/* SLI4 ports that support extents do not require RPI headers. */
19443 	if (!phba->sli4_hba.rpi_hdrs_in_use)
19444 		goto exit;
19445 	if (phba->sli4_hba.extents_in_use)
19446 		return -EIO;
19447 
19448 	list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
19449 		/*
19450 		 * Assign the rpi headers a physical rpi only if the driver
19451 		 * has not initialized those resources.  A port reset only
19452 		 * needs the headers posted.
19453 		 */
19454 		if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
19455 		    LPFC_RPI_RSRC_RDY)
19456 			rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
19457 
19458 		rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
19459 		if (rc != MBX_SUCCESS) {
19460 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19461 					"2008 Error %d posting all rpi "
19462 					"headers\n", rc);
19463 			rc = -EIO;
19464 			break;
19465 		}
19466 	}
19467 
19468  exit:
19469 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
19470 	       LPFC_RPI_RSRC_RDY);
19471 	return rc;
19472 }
19473 
19474 /**
19475  * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
19476  * @phba: pointer to lpfc hba data structure.
19477  * @rpi_page:  pointer to the rpi memory region.
19478  *
19479  * This routine is invoked to post a single rpi header to the
19480  * HBA consistent with the SLI-4 interface spec.  This memory region
19481  * maps up to 64 rpi context regions.
19482  *
19483  * Return codes
19484  * 	0 - successful
19485  * 	-ENOMEM - No available memory
19486  *      -EIO - The mailbox failed to complete successfully.
19487  **/
19488 int
19489 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
19490 {
19491 	LPFC_MBOXQ_t *mboxq;
19492 	struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
19493 	uint32_t rc = 0;
19494 	uint32_t shdr_status, shdr_add_status;
19495 	union lpfc_sli4_cfg_shdr *shdr;
19496 
19497 	/* SLI4 ports that support extents do not require RPI headers. */
19498 	if (!phba->sli4_hba.rpi_hdrs_in_use)
19499 		return rc;
19500 	if (phba->sli4_hba.extents_in_use)
19501 		return -EIO;
19502 
19503 	/* The port is notified of the header region via a mailbox command. */
19504 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19505 	if (!mboxq) {
19506 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19507 				"2001 Unable to allocate memory for issuing "
19508 				"SLI_CONFIG_SPECIAL mailbox command\n");
19509 		return -ENOMEM;
19510 	}
19511 
19512 	/* Post all rpi memory regions to the port. */
19513 	hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
19514 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
19515 			 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
19516 			 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
19517 			 sizeof(struct lpfc_sli4_cfg_mhdr),
19518 			 LPFC_SLI4_MBX_EMBED);
19519 
19520 
19521 	/* Post the physical rpi to the port for this rpi header. */
19522 	bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
19523 	       rpi_page->start_rpi);
19524 	bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
19525 	       hdr_tmpl, rpi_page->page_count);
19526 
19527 	hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
19528 	hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
19529 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19530 	shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
19531 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19532 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19533 	mempool_free(mboxq, phba->mbox_mem_pool);
19534 	if (shdr_status || shdr_add_status || rc) {
19535 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19536 				"2514 POST_RPI_HDR mailbox failed with "
19537 				"status x%x add_status x%x, mbx status x%x\n",
19538 				shdr_status, shdr_add_status, rc);
19539 		rc = -ENXIO;
19540 	} else {
19541 		/*
19542 		 * The next_rpi stores the next logical module-64 rpi value used
19543 		 * to post physical rpis in subsequent rpi postings.
19544 		 */
19545 		spin_lock_irq(&phba->hbalock);
19546 		phba->sli4_hba.next_rpi = rpi_page->next_rpi;
19547 		spin_unlock_irq(&phba->hbalock);
19548 	}
19549 	return rc;
19550 }
19551 
19552 /**
19553  * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
19554  * @phba: pointer to lpfc hba data structure.
19555  *
19556  * This routine is invoked to post rpi header templates to the
19557  * HBA consistent with the SLI-4 interface spec.  This routine
19558  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
19559  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
19560  *
19561  * Returns
19562  * 	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
19563  * 	LPFC_RPI_ALLOC_ERROR if no rpis are available.
19564  **/
19565 int
19566 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
19567 {
19568 	unsigned long rpi;
19569 	uint16_t max_rpi, rpi_limit;
19570 	uint16_t rpi_remaining, lrpi = 0;
19571 	struct lpfc_rpi_hdr *rpi_hdr;
19572 	unsigned long iflag;
19573 
19574 	/*
19575 	 * Fetch the next logical rpi.  Because this index is logical,
19576 	 * the  driver starts at 0 each time.
19577 	 */
19578 	spin_lock_irqsave(&phba->hbalock, iflag);
19579 	max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
19580 	rpi_limit = phba->sli4_hba.next_rpi;
19581 
19582 	rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit);
19583 	if (rpi >= rpi_limit)
19584 		rpi = LPFC_RPI_ALLOC_ERROR;
19585 	else {
19586 		set_bit(rpi, phba->sli4_hba.rpi_bmask);
19587 		phba->sli4_hba.max_cfg_param.rpi_used++;
19588 		phba->sli4_hba.rpi_count++;
19589 	}
19590 	lpfc_printf_log(phba, KERN_INFO,
19591 			LOG_NODE | LOG_DISCOVERY,
19592 			"0001 Allocated rpi:x%x max:x%x lim:x%x\n",
19593 			(int) rpi, max_rpi, rpi_limit);
19594 
19595 	/*
19596 	 * Don't try to allocate more rpi header regions if the device limit
19597 	 * has been exhausted.
19598 	 */
19599 	if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
19600 	    (phba->sli4_hba.rpi_count >= max_rpi)) {
19601 		spin_unlock_irqrestore(&phba->hbalock, iflag);
19602 		return rpi;
19603 	}
19604 
19605 	/*
19606 	 * RPI header postings are not required for SLI4 ports capable of
19607 	 * extents.
19608 	 */
19609 	if (!phba->sli4_hba.rpi_hdrs_in_use) {
19610 		spin_unlock_irqrestore(&phba->hbalock, iflag);
19611 		return rpi;
19612 	}
19613 
19614 	/*
19615 	 * If the driver is running low on rpi resources, allocate another
19616 	 * page now.  Note that the next_rpi value is used because
19617 	 * it represents how many are actually in use whereas max_rpi notes
19618 	 * how many are supported max by the device.
19619 	 */
19620 	rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
19621 	spin_unlock_irqrestore(&phba->hbalock, iflag);
19622 	if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
19623 		rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
19624 		if (!rpi_hdr) {
19625 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19626 					"2002 Error Could not grow rpi "
19627 					"count\n");
19628 		} else {
19629 			lrpi = rpi_hdr->start_rpi;
19630 			rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
19631 			lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
19632 		}
19633 	}
19634 
19635 	return rpi;
19636 }
19637 
19638 /**
19639  * __lpfc_sli4_free_rpi - Release an rpi for reuse.
19640  * @phba: pointer to lpfc hba data structure.
19641  * @rpi: rpi to free
19642  *
19643  * This routine is invoked to release an rpi to the pool of
19644  * available rpis maintained by the driver.
19645  **/
19646 static void
19647 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
19648 {
19649 	/*
19650 	 * if the rpi value indicates a prior unreg has already
19651 	 * been done, skip the unreg.
19652 	 */
19653 	if (rpi == LPFC_RPI_ALLOC_ERROR)
19654 		return;
19655 
19656 	if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
19657 		phba->sli4_hba.rpi_count--;
19658 		phba->sli4_hba.max_cfg_param.rpi_used--;
19659 	} else {
19660 		lpfc_printf_log(phba, KERN_INFO,
19661 				LOG_NODE | LOG_DISCOVERY,
19662 				"2016 rpi %x not inuse\n",
19663 				rpi);
19664 	}
19665 }
19666 
19667 /**
19668  * lpfc_sli4_free_rpi - Release an rpi for reuse.
19669  * @phba: pointer to lpfc hba data structure.
19670  * @rpi: rpi to free
19671  *
19672  * This routine is invoked to release an rpi to the pool of
19673  * available rpis maintained by the driver.
19674  **/
19675 void
19676 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
19677 {
19678 	spin_lock_irq(&phba->hbalock);
19679 	__lpfc_sli4_free_rpi(phba, rpi);
19680 	spin_unlock_irq(&phba->hbalock);
19681 }
19682 
19683 /**
19684  * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
19685  * @phba: pointer to lpfc hba data structure.
19686  *
19687  * This routine is invoked to remove the memory region that
19688  * provided rpi via a bitmask.
19689  **/
19690 void
19691 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
19692 {
19693 	kfree(phba->sli4_hba.rpi_bmask);
19694 	kfree(phba->sli4_hba.rpi_ids);
19695 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
19696 }
19697 
19698 /**
19699  * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
19700  * @ndlp: pointer to lpfc nodelist data structure.
19701  * @cmpl: completion call-back.
19702  * @arg: data to load as MBox 'caller buffer information'
19703  *
19704  * This routine is invoked to remove the memory region that
19705  * provided rpi via a bitmask.
19706  **/
19707 int
19708 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
19709 	void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
19710 {
19711 	LPFC_MBOXQ_t *mboxq;
19712 	struct lpfc_hba *phba = ndlp->phba;
19713 	int rc;
19714 
19715 	/* The port is notified of the header region via a mailbox command. */
19716 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19717 	if (!mboxq)
19718 		return -ENOMEM;
19719 
19720 	/* If cmpl assigned, then this nlp_get pairs with
19721 	 * lpfc_mbx_cmpl_resume_rpi.
19722 	 *
19723 	 * Else cmpl is NULL, then this nlp_get pairs with
19724 	 * lpfc_sli_def_mbox_cmpl.
19725 	 */
19726 	if (!lpfc_nlp_get(ndlp)) {
19727 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19728 				"2122 %s: Failed to get nlp ref\n",
19729 				__func__);
19730 		mempool_free(mboxq, phba->mbox_mem_pool);
19731 		return -EIO;
19732 	}
19733 
19734 	/* Post all rpi memory regions to the port. */
19735 	lpfc_resume_rpi(mboxq, ndlp);
19736 	if (cmpl) {
19737 		mboxq->mbox_cmpl = cmpl;
19738 		mboxq->ctx_buf = arg;
19739 	} else
19740 		mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19741 	mboxq->ctx_ndlp = ndlp;
19742 	mboxq->vport = ndlp->vport;
19743 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19744 	if (rc == MBX_NOT_FINISHED) {
19745 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19746 				"2010 Resume RPI Mailbox failed "
19747 				"status %d, mbxStatus x%x\n", rc,
19748 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
19749 		lpfc_nlp_put(ndlp);
19750 		mempool_free(mboxq, phba->mbox_mem_pool);
19751 		return -EIO;
19752 	}
19753 	return 0;
19754 }
19755 
19756 /**
19757  * lpfc_sli4_init_vpi - Initialize a vpi with the port
19758  * @vport: Pointer to the vport for which the vpi is being initialized
19759  *
19760  * This routine is invoked to activate a vpi with the port.
19761  *
19762  * Returns:
19763  *    0 success
19764  *    -Evalue otherwise
19765  **/
19766 int
19767 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
19768 {
19769 	LPFC_MBOXQ_t *mboxq;
19770 	int rc = 0;
19771 	int retval = MBX_SUCCESS;
19772 	uint32_t mbox_tmo;
19773 	struct lpfc_hba *phba = vport->phba;
19774 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19775 	if (!mboxq)
19776 		return -ENOMEM;
19777 	lpfc_init_vpi(phba, mboxq, vport->vpi);
19778 	mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
19779 	rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
19780 	if (rc != MBX_SUCCESS) {
19781 		lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
19782 				"2022 INIT VPI Mailbox failed "
19783 				"status %d, mbxStatus x%x\n", rc,
19784 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
19785 		retval = -EIO;
19786 	}
19787 	if (rc != MBX_TIMEOUT)
19788 		mempool_free(mboxq, vport->phba->mbox_mem_pool);
19789 
19790 	return retval;
19791 }
19792 
19793 /**
19794  * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
19795  * @phba: pointer to lpfc hba data structure.
19796  * @mboxq: Pointer to mailbox object.
19797  *
19798  * This routine is invoked to manually add a single FCF record. The caller
19799  * must pass a completely initialized FCF_Record.  This routine takes
19800  * care of the nonembedded mailbox operations.
19801  **/
19802 static void
19803 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
19804 {
19805 	void *virt_addr;
19806 	union lpfc_sli4_cfg_shdr *shdr;
19807 	uint32_t shdr_status, shdr_add_status;
19808 
19809 	virt_addr = mboxq->sge_array->addr[0];
19810 	/* The IOCTL status is embedded in the mailbox subheader. */
19811 	shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
19812 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19813 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19814 
19815 	if ((shdr_status || shdr_add_status) &&
19816 		(shdr_status != STATUS_FCF_IN_USE))
19817 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19818 			"2558 ADD_FCF_RECORD mailbox failed with "
19819 			"status x%x add_status x%x\n",
19820 			shdr_status, shdr_add_status);
19821 
19822 	lpfc_sli4_mbox_cmd_free(phba, mboxq);
19823 }
19824 
19825 /**
19826  * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
19827  * @phba: pointer to lpfc hba data structure.
19828  * @fcf_record:  pointer to the initialized fcf record to add.
19829  *
19830  * This routine is invoked to manually add a single FCF record. The caller
19831  * must pass a completely initialized FCF_Record.  This routine takes
19832  * care of the nonembedded mailbox operations.
19833  **/
19834 int
19835 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
19836 {
19837 	int rc = 0;
19838 	LPFC_MBOXQ_t *mboxq;
19839 	uint8_t *bytep;
19840 	void *virt_addr;
19841 	struct lpfc_mbx_sge sge;
19842 	uint32_t alloc_len, req_len;
19843 	uint32_t fcfindex;
19844 
19845 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19846 	if (!mboxq) {
19847 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19848 			"2009 Failed to allocate mbox for ADD_FCF cmd\n");
19849 		return -ENOMEM;
19850 	}
19851 
19852 	req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
19853 		  sizeof(uint32_t);
19854 
19855 	/* Allocate DMA memory and set up the non-embedded mailbox command */
19856 	alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
19857 				     LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
19858 				     req_len, LPFC_SLI4_MBX_NEMBED);
19859 	if (alloc_len < req_len) {
19860 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19861 			"2523 Allocated DMA memory size (x%x) is "
19862 			"less than the requested DMA memory "
19863 			"size (x%x)\n", alloc_len, req_len);
19864 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19865 		return -ENOMEM;
19866 	}
19867 
19868 	/*
19869 	 * Get the first SGE entry from the non-embedded DMA memory.  This
19870 	 * routine only uses a single SGE.
19871 	 */
19872 	lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
19873 	virt_addr = mboxq->sge_array->addr[0];
19874 	/*
19875 	 * Configure the FCF record for FCFI 0.  This is the driver's
19876 	 * hardcoded default and gets used in nonFIP mode.
19877 	 */
19878 	fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
19879 	bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
19880 	lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
19881 
19882 	/*
19883 	 * Copy the fcf_index and the FCF Record Data. The data starts after
19884 	 * the FCoE header plus word10. The data copy needs to be endian
19885 	 * correct.
19886 	 */
19887 	bytep += sizeof(uint32_t);
19888 	lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
19889 	mboxq->vport = phba->pport;
19890 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
19891 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19892 	if (rc == MBX_NOT_FINISHED) {
19893 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19894 			"2515 ADD_FCF_RECORD mailbox failed with "
19895 			"status 0x%x\n", rc);
19896 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19897 		rc = -EIO;
19898 	} else
19899 		rc = 0;
19900 
19901 	return rc;
19902 }
19903 
19904 /**
19905  * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
19906  * @phba: pointer to lpfc hba data structure.
19907  * @fcf_record:  pointer to the fcf record to write the default data.
19908  * @fcf_index: FCF table entry index.
19909  *
19910  * This routine is invoked to build the driver's default FCF record.  The
19911  * values used are hardcoded.  This routine handles memory initialization.
19912  *
19913  **/
19914 void
19915 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
19916 				struct fcf_record *fcf_record,
19917 				uint16_t fcf_index)
19918 {
19919 	memset(fcf_record, 0, sizeof(struct fcf_record));
19920 	fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
19921 	fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
19922 	fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
19923 	bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
19924 	bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
19925 	bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
19926 	bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
19927 	bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
19928 	bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
19929 	bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
19930 	bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
19931 	bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
19932 	bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
19933 	bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
19934 	bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
19935 	bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
19936 		LPFC_FCF_FPMA | LPFC_FCF_SPMA);
19937 	/* Set the VLAN bit map */
19938 	if (phba->valid_vlan) {
19939 		fcf_record->vlan_bitmap[phba->vlan_id / 8]
19940 			= 1 << (phba->vlan_id % 8);
19941 	}
19942 }
19943 
19944 /**
19945  * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
19946  * @phba: pointer to lpfc hba data structure.
19947  * @fcf_index: FCF table entry offset.
19948  *
19949  * This routine is invoked to scan the entire FCF table by reading FCF
19950  * record and processing it one at a time starting from the @fcf_index
19951  * for initial FCF discovery or fast FCF failover rediscovery.
19952  *
19953  * Return 0 if the mailbox command is submitted successfully, none 0
19954  * otherwise.
19955  **/
19956 int
19957 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
19958 {
19959 	int rc = 0, error;
19960 	LPFC_MBOXQ_t *mboxq;
19961 
19962 	phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
19963 	phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
19964 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19965 	if (!mboxq) {
19966 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19967 				"2000 Failed to allocate mbox for "
19968 				"READ_FCF cmd\n");
19969 		error = -ENOMEM;
19970 		goto fail_fcf_scan;
19971 	}
19972 	/* Construct the read FCF record mailbox command */
19973 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
19974 	if (rc) {
19975 		error = -EINVAL;
19976 		goto fail_fcf_scan;
19977 	}
19978 	/* Issue the mailbox command asynchronously */
19979 	mboxq->vport = phba->pport;
19980 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
19981 
19982 	spin_lock_irq(&phba->hbalock);
19983 	phba->hba_flag |= FCF_TS_INPROG;
19984 	spin_unlock_irq(&phba->hbalock);
19985 
19986 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19987 	if (rc == MBX_NOT_FINISHED)
19988 		error = -EIO;
19989 	else {
19990 		/* Reset eligible FCF count for new scan */
19991 		if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
19992 			phba->fcf.eligible_fcf_cnt = 0;
19993 		error = 0;
19994 	}
19995 fail_fcf_scan:
19996 	if (error) {
19997 		if (mboxq)
19998 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
19999 		/* FCF scan failed, clear FCF_TS_INPROG flag */
20000 		spin_lock_irq(&phba->hbalock);
20001 		phba->hba_flag &= ~FCF_TS_INPROG;
20002 		spin_unlock_irq(&phba->hbalock);
20003 	}
20004 	return error;
20005 }
20006 
20007 /**
20008  * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
20009  * @phba: pointer to lpfc hba data structure.
20010  * @fcf_index: FCF table entry offset.
20011  *
20012  * This routine is invoked to read an FCF record indicated by @fcf_index
20013  * and to use it for FLOGI roundrobin FCF failover.
20014  *
20015  * Return 0 if the mailbox command is submitted successfully, none 0
20016  * otherwise.
20017  **/
20018 int
20019 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
20020 {
20021 	int rc = 0, error;
20022 	LPFC_MBOXQ_t *mboxq;
20023 
20024 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20025 	if (!mboxq) {
20026 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
20027 				"2763 Failed to allocate mbox for "
20028 				"READ_FCF cmd\n");
20029 		error = -ENOMEM;
20030 		goto fail_fcf_read;
20031 	}
20032 	/* Construct the read FCF record mailbox command */
20033 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
20034 	if (rc) {
20035 		error = -EINVAL;
20036 		goto fail_fcf_read;
20037 	}
20038 	/* Issue the mailbox command asynchronously */
20039 	mboxq->vport = phba->pport;
20040 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
20041 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20042 	if (rc == MBX_NOT_FINISHED)
20043 		error = -EIO;
20044 	else
20045 		error = 0;
20046 
20047 fail_fcf_read:
20048 	if (error && mboxq)
20049 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
20050 	return error;
20051 }
20052 
20053 /**
20054  * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
20055  * @phba: pointer to lpfc hba data structure.
20056  * @fcf_index: FCF table entry offset.
20057  *
20058  * This routine is invoked to read an FCF record indicated by @fcf_index to
20059  * determine whether it's eligible for FLOGI roundrobin failover list.
20060  *
20061  * Return 0 if the mailbox command is submitted successfully, none 0
20062  * otherwise.
20063  **/
20064 int
20065 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
20066 {
20067 	int rc = 0, error;
20068 	LPFC_MBOXQ_t *mboxq;
20069 
20070 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20071 	if (!mboxq) {
20072 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
20073 				"2758 Failed to allocate mbox for "
20074 				"READ_FCF cmd\n");
20075 				error = -ENOMEM;
20076 				goto fail_fcf_read;
20077 	}
20078 	/* Construct the read FCF record mailbox command */
20079 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
20080 	if (rc) {
20081 		error = -EINVAL;
20082 		goto fail_fcf_read;
20083 	}
20084 	/* Issue the mailbox command asynchronously */
20085 	mboxq->vport = phba->pport;
20086 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
20087 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20088 	if (rc == MBX_NOT_FINISHED)
20089 		error = -EIO;
20090 	else
20091 		error = 0;
20092 
20093 fail_fcf_read:
20094 	if (error && mboxq)
20095 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
20096 	return error;
20097 }
20098 
20099 /**
20100  * lpfc_check_next_fcf_pri_level
20101  * @phba: pointer to the lpfc_hba struct for this port.
20102  * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
20103  * routine when the rr_bmask is empty. The FCF indecies are put into the
20104  * rr_bmask based on their priority level. Starting from the highest priority
20105  * to the lowest. The most likely FCF candidate will be in the highest
20106  * priority group. When this routine is called it searches the fcf_pri list for
20107  * next lowest priority group and repopulates the rr_bmask with only those
20108  * fcf_indexes.
20109  * returns:
20110  * 1=success 0=failure
20111  **/
20112 static int
20113 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
20114 {
20115 	uint16_t next_fcf_pri;
20116 	uint16_t last_index;
20117 	struct lpfc_fcf_pri *fcf_pri;
20118 	int rc;
20119 	int ret = 0;
20120 
20121 	last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
20122 			LPFC_SLI4_FCF_TBL_INDX_MAX);
20123 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20124 			"3060 Last IDX %d\n", last_index);
20125 
20126 	/* Verify the priority list has 2 or more entries */
20127 	spin_lock_irq(&phba->hbalock);
20128 	if (list_empty(&phba->fcf.fcf_pri_list) ||
20129 	    list_is_singular(&phba->fcf.fcf_pri_list)) {
20130 		spin_unlock_irq(&phba->hbalock);
20131 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20132 			"3061 Last IDX %d\n", last_index);
20133 		return 0; /* Empty rr list */
20134 	}
20135 	spin_unlock_irq(&phba->hbalock);
20136 
20137 	next_fcf_pri = 0;
20138 	/*
20139 	 * Clear the rr_bmask and set all of the bits that are at this
20140 	 * priority.
20141 	 */
20142 	memset(phba->fcf.fcf_rr_bmask, 0,
20143 			sizeof(*phba->fcf.fcf_rr_bmask));
20144 	spin_lock_irq(&phba->hbalock);
20145 	list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
20146 		if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
20147 			continue;
20148 		/*
20149 		 * the 1st priority that has not FLOGI failed
20150 		 * will be the highest.
20151 		 */
20152 		if (!next_fcf_pri)
20153 			next_fcf_pri = fcf_pri->fcf_rec.priority;
20154 		spin_unlock_irq(&phba->hbalock);
20155 		if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
20156 			rc = lpfc_sli4_fcf_rr_index_set(phba,
20157 						fcf_pri->fcf_rec.fcf_index);
20158 			if (rc)
20159 				return 0;
20160 		}
20161 		spin_lock_irq(&phba->hbalock);
20162 	}
20163 	/*
20164 	 * if next_fcf_pri was not set above and the list is not empty then
20165 	 * we have failed flogis on all of them. So reset flogi failed
20166 	 * and start at the beginning.
20167 	 */
20168 	if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
20169 		list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
20170 			fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
20171 			/*
20172 			 * the 1st priority that has not FLOGI failed
20173 			 * will be the highest.
20174 			 */
20175 			if (!next_fcf_pri)
20176 				next_fcf_pri = fcf_pri->fcf_rec.priority;
20177 			spin_unlock_irq(&phba->hbalock);
20178 			if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
20179 				rc = lpfc_sli4_fcf_rr_index_set(phba,
20180 						fcf_pri->fcf_rec.fcf_index);
20181 				if (rc)
20182 					return 0;
20183 			}
20184 			spin_lock_irq(&phba->hbalock);
20185 		}
20186 	} else
20187 		ret = 1;
20188 	spin_unlock_irq(&phba->hbalock);
20189 
20190 	return ret;
20191 }
20192 /**
20193  * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
20194  * @phba: pointer to lpfc hba data structure.
20195  *
20196  * This routine is to get the next eligible FCF record index in a round
20197  * robin fashion. If the next eligible FCF record index equals to the
20198  * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
20199  * shall be returned, otherwise, the next eligible FCF record's index
20200  * shall be returned.
20201  **/
20202 uint16_t
20203 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
20204 {
20205 	uint16_t next_fcf_index;
20206 
20207 initial_priority:
20208 	/* Search start from next bit of currently registered FCF index */
20209 	next_fcf_index = phba->fcf.current_rec.fcf_indx;
20210 
20211 next_priority:
20212 	/* Determine the next fcf index to check */
20213 	next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
20214 	next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
20215 				       LPFC_SLI4_FCF_TBL_INDX_MAX,
20216 				       next_fcf_index);
20217 
20218 	/* Wrap around condition on phba->fcf.fcf_rr_bmask */
20219 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20220 		/*
20221 		 * If we have wrapped then we need to clear the bits that
20222 		 * have been tested so that we can detect when we should
20223 		 * change the priority level.
20224 		 */
20225 		next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask,
20226 					       LPFC_SLI4_FCF_TBL_INDX_MAX);
20227 	}
20228 
20229 
20230 	/* Check roundrobin failover list empty condition */
20231 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
20232 		next_fcf_index == phba->fcf.current_rec.fcf_indx) {
20233 		/*
20234 		 * If next fcf index is not found check if there are lower
20235 		 * Priority level fcf's in the fcf_priority list.
20236 		 * Set up the rr_bmask with all of the avaiable fcf bits
20237 		 * at that level and continue the selection process.
20238 		 */
20239 		if (lpfc_check_next_fcf_pri_level(phba))
20240 			goto initial_priority;
20241 		lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
20242 				"2844 No roundrobin failover FCF available\n");
20243 
20244 		return LPFC_FCOE_FCF_NEXT_NONE;
20245 	}
20246 
20247 	if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
20248 		phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
20249 		LPFC_FCF_FLOGI_FAILED) {
20250 		if (list_is_singular(&phba->fcf.fcf_pri_list))
20251 			return LPFC_FCOE_FCF_NEXT_NONE;
20252 
20253 		goto next_priority;
20254 	}
20255 
20256 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20257 			"2845 Get next roundrobin failover FCF (x%x)\n",
20258 			next_fcf_index);
20259 
20260 	return next_fcf_index;
20261 }
20262 
20263 /**
20264  * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
20265  * @phba: pointer to lpfc hba data structure.
20266  * @fcf_index: index into the FCF table to 'set'
20267  *
20268  * This routine sets the FCF record index in to the eligible bmask for
20269  * roundrobin failover search. It checks to make sure that the index
20270  * does not go beyond the range of the driver allocated bmask dimension
20271  * before setting the bit.
20272  *
20273  * Returns 0 if the index bit successfully set, otherwise, it returns
20274  * -EINVAL.
20275  **/
20276 int
20277 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
20278 {
20279 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20280 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20281 				"2610 FCF (x%x) reached driver's book "
20282 				"keeping dimension:x%x\n",
20283 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
20284 		return -EINVAL;
20285 	}
20286 	/* Set the eligible FCF record index bmask */
20287 	set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
20288 
20289 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20290 			"2790 Set FCF (x%x) to roundrobin FCF failover "
20291 			"bmask\n", fcf_index);
20292 
20293 	return 0;
20294 }
20295 
20296 /**
20297  * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
20298  * @phba: pointer to lpfc hba data structure.
20299  * @fcf_index: index into the FCF table to 'clear'
20300  *
20301  * This routine clears the FCF record index from the eligible bmask for
20302  * roundrobin failover search. It checks to make sure that the index
20303  * does not go beyond the range of the driver allocated bmask dimension
20304  * before clearing the bit.
20305  **/
20306 void
20307 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
20308 {
20309 	struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
20310 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20311 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20312 				"2762 FCF (x%x) reached driver's book "
20313 				"keeping dimension:x%x\n",
20314 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
20315 		return;
20316 	}
20317 	/* Clear the eligible FCF record index bmask */
20318 	spin_lock_irq(&phba->hbalock);
20319 	list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
20320 				 list) {
20321 		if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
20322 			list_del_init(&fcf_pri->list);
20323 			break;
20324 		}
20325 	}
20326 	spin_unlock_irq(&phba->hbalock);
20327 	clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
20328 
20329 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20330 			"2791 Clear FCF (x%x) from roundrobin failover "
20331 			"bmask\n", fcf_index);
20332 }
20333 
20334 /**
20335  * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
20336  * @phba: pointer to lpfc hba data structure.
20337  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
20338  *
20339  * This routine is the completion routine for the rediscover FCF table mailbox
20340  * command. If the mailbox command returned failure, it will try to stop the
20341  * FCF rediscover wait timer.
20342  **/
20343 static void
20344 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
20345 {
20346 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
20347 	uint32_t shdr_status, shdr_add_status;
20348 
20349 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
20350 
20351 	shdr_status = bf_get(lpfc_mbox_hdr_status,
20352 			     &redisc_fcf->header.cfg_shdr.response);
20353 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
20354 			     &redisc_fcf->header.cfg_shdr.response);
20355 	if (shdr_status || shdr_add_status) {
20356 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20357 				"2746 Requesting for FCF rediscovery failed "
20358 				"status x%x add_status x%x\n",
20359 				shdr_status, shdr_add_status);
20360 		if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
20361 			spin_lock_irq(&phba->hbalock);
20362 			phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
20363 			spin_unlock_irq(&phba->hbalock);
20364 			/*
20365 			 * CVL event triggered FCF rediscover request failed,
20366 			 * last resort to re-try current registered FCF entry.
20367 			 */
20368 			lpfc_retry_pport_discovery(phba);
20369 		} else {
20370 			spin_lock_irq(&phba->hbalock);
20371 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
20372 			spin_unlock_irq(&phba->hbalock);
20373 			/*
20374 			 * DEAD FCF event triggered FCF rediscover request
20375 			 * failed, last resort to fail over as a link down
20376 			 * to FCF registration.
20377 			 */
20378 			lpfc_sli4_fcf_dead_failthrough(phba);
20379 		}
20380 	} else {
20381 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20382 				"2775 Start FCF rediscover quiescent timer\n");
20383 		/*
20384 		 * Start FCF rediscovery wait timer for pending FCF
20385 		 * before rescan FCF record table.
20386 		 */
20387 		lpfc_fcf_redisc_wait_start_timer(phba);
20388 	}
20389 
20390 	mempool_free(mbox, phba->mbox_mem_pool);
20391 }
20392 
20393 /**
20394  * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
20395  * @phba: pointer to lpfc hba data structure.
20396  *
20397  * This routine is invoked to request for rediscovery of the entire FCF table
20398  * by the port.
20399  **/
20400 int
20401 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
20402 {
20403 	LPFC_MBOXQ_t *mbox;
20404 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
20405 	int rc, length;
20406 
20407 	/* Cancel retry delay timers to all vports before FCF rediscover */
20408 	lpfc_cancel_all_vport_retry_delay_timer(phba);
20409 
20410 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20411 	if (!mbox) {
20412 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20413 				"2745 Failed to allocate mbox for "
20414 				"requesting FCF rediscover.\n");
20415 		return -ENOMEM;
20416 	}
20417 
20418 	length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
20419 		  sizeof(struct lpfc_sli4_cfg_mhdr));
20420 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
20421 			 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
20422 			 length, LPFC_SLI4_MBX_EMBED);
20423 
20424 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
20425 	/* Set count to 0 for invalidating the entire FCF database */
20426 	bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
20427 
20428 	/* Issue the mailbox command asynchronously */
20429 	mbox->vport = phba->pport;
20430 	mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
20431 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
20432 
20433 	if (rc == MBX_NOT_FINISHED) {
20434 		mempool_free(mbox, phba->mbox_mem_pool);
20435 		return -EIO;
20436 	}
20437 	return 0;
20438 }
20439 
20440 /**
20441  * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
20442  * @phba: pointer to lpfc hba data structure.
20443  *
20444  * This function is the failover routine as a last resort to the FCF DEAD
20445  * event when driver failed to perform fast FCF failover.
20446  **/
20447 void
20448 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
20449 {
20450 	uint32_t link_state;
20451 
20452 	/*
20453 	 * Last resort as FCF DEAD event failover will treat this as
20454 	 * a link down, but save the link state because we don't want
20455 	 * it to be changed to Link Down unless it is already down.
20456 	 */
20457 	link_state = phba->link_state;
20458 	lpfc_linkdown(phba);
20459 	phba->link_state = link_state;
20460 
20461 	/* Unregister FCF if no devices connected to it */
20462 	lpfc_unregister_unused_fcf(phba);
20463 }
20464 
20465 /**
20466  * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
20467  * @phba: pointer to lpfc hba data structure.
20468  * @rgn23_data: pointer to configure region 23 data.
20469  *
20470  * This function gets SLI3 port configure region 23 data through memory dump
20471  * mailbox command. When it successfully retrieves data, the size of the data
20472  * will be returned, otherwise, 0 will be returned.
20473  **/
20474 static uint32_t
20475 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
20476 {
20477 	LPFC_MBOXQ_t *pmb = NULL;
20478 	MAILBOX_t *mb;
20479 	uint32_t offset = 0;
20480 	int rc;
20481 
20482 	if (!rgn23_data)
20483 		return 0;
20484 
20485 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20486 	if (!pmb) {
20487 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20488 				"2600 failed to allocate mailbox memory\n");
20489 		return 0;
20490 	}
20491 	mb = &pmb->u.mb;
20492 
20493 	do {
20494 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
20495 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
20496 
20497 		if (rc != MBX_SUCCESS) {
20498 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20499 					"2601 failed to read config "
20500 					"region 23, rc 0x%x Status 0x%x\n",
20501 					rc, mb->mbxStatus);
20502 			mb->un.varDmp.word_cnt = 0;
20503 		}
20504 		/*
20505 		 * dump mem may return a zero when finished or we got a
20506 		 * mailbox error, either way we are done.
20507 		 */
20508 		if (mb->un.varDmp.word_cnt == 0)
20509 			break;
20510 
20511 		if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
20512 			mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
20513 
20514 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
20515 				       rgn23_data + offset,
20516 				       mb->un.varDmp.word_cnt);
20517 		offset += mb->un.varDmp.word_cnt;
20518 	} while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
20519 
20520 	mempool_free(pmb, phba->mbox_mem_pool);
20521 	return offset;
20522 }
20523 
20524 /**
20525  * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
20526  * @phba: pointer to lpfc hba data structure.
20527  * @rgn23_data: pointer to configure region 23 data.
20528  *
20529  * This function gets SLI4 port configure region 23 data through memory dump
20530  * mailbox command. When it successfully retrieves data, the size of the data
20531  * will be returned, otherwise, 0 will be returned.
20532  **/
20533 static uint32_t
20534 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
20535 {
20536 	LPFC_MBOXQ_t *mboxq = NULL;
20537 	struct lpfc_dmabuf *mp = NULL;
20538 	struct lpfc_mqe *mqe;
20539 	uint32_t data_length = 0;
20540 	int rc;
20541 
20542 	if (!rgn23_data)
20543 		return 0;
20544 
20545 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20546 	if (!mboxq) {
20547 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20548 				"3105 failed to allocate mailbox memory\n");
20549 		return 0;
20550 	}
20551 
20552 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
20553 		goto out;
20554 	mqe = &mboxq->u.mqe;
20555 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
20556 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
20557 	if (rc)
20558 		goto out;
20559 	data_length = mqe->un.mb_words[5];
20560 	if (data_length == 0)
20561 		goto out;
20562 	if (data_length > DMP_RGN23_SIZE) {
20563 		data_length = 0;
20564 		goto out;
20565 	}
20566 	lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
20567 out:
20568 	lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED);
20569 	return data_length;
20570 }
20571 
20572 /**
20573  * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
20574  * @phba: pointer to lpfc hba data structure.
20575  *
20576  * This function read region 23 and parse TLV for port status to
20577  * decide if the user disaled the port. If the TLV indicates the
20578  * port is disabled, the hba_flag is set accordingly.
20579  **/
20580 void
20581 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
20582 {
20583 	uint8_t *rgn23_data = NULL;
20584 	uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
20585 	uint32_t offset = 0;
20586 
20587 	/* Get adapter Region 23 data */
20588 	rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
20589 	if (!rgn23_data)
20590 		goto out;
20591 
20592 	if (phba->sli_rev < LPFC_SLI_REV4)
20593 		data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
20594 	else {
20595 		if_type = bf_get(lpfc_sli_intf_if_type,
20596 				 &phba->sli4_hba.sli_intf);
20597 		if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
20598 			goto out;
20599 		data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
20600 	}
20601 
20602 	if (!data_size)
20603 		goto out;
20604 
20605 	/* Check the region signature first */
20606 	if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
20607 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20608 			"2619 Config region 23 has bad signature\n");
20609 			goto out;
20610 	}
20611 	offset += 4;
20612 
20613 	/* Check the data structure version */
20614 	if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
20615 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20616 			"2620 Config region 23 has bad version\n");
20617 		goto out;
20618 	}
20619 	offset += 4;
20620 
20621 	/* Parse TLV entries in the region */
20622 	while (offset < data_size) {
20623 		if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
20624 			break;
20625 		/*
20626 		 * If the TLV is not driver specific TLV or driver id is
20627 		 * not linux driver id, skip the record.
20628 		 */
20629 		if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
20630 		    (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
20631 		    (rgn23_data[offset + 3] != 0)) {
20632 			offset += rgn23_data[offset + 1] * 4 + 4;
20633 			continue;
20634 		}
20635 
20636 		/* Driver found a driver specific TLV in the config region */
20637 		sub_tlv_len = rgn23_data[offset + 1] * 4;
20638 		offset += 4;
20639 		tlv_offset = 0;
20640 
20641 		/*
20642 		 * Search for configured port state sub-TLV.
20643 		 */
20644 		while ((offset < data_size) &&
20645 			(tlv_offset < sub_tlv_len)) {
20646 			if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
20647 				offset += 4;
20648 				tlv_offset += 4;
20649 				break;
20650 			}
20651 			if (rgn23_data[offset] != PORT_STE_TYPE) {
20652 				offset += rgn23_data[offset + 1] * 4 + 4;
20653 				tlv_offset += rgn23_data[offset + 1] * 4 + 4;
20654 				continue;
20655 			}
20656 
20657 			/* This HBA contains PORT_STE configured */
20658 			if (!rgn23_data[offset + 2])
20659 				phba->hba_flag |= LINK_DISABLED;
20660 
20661 			goto out;
20662 		}
20663 	}
20664 
20665 out:
20666 	kfree(rgn23_data);
20667 	return;
20668 }
20669 
20670 /**
20671  * lpfc_log_fw_write_cmpl - logs firmware write completion status
20672  * @phba: pointer to lpfc hba data structure
20673  * @shdr_status: wr_object rsp's status field
20674  * @shdr_add_status: wr_object rsp's add_status field
20675  * @shdr_add_status_2: wr_object rsp's add_status_2 field
20676  * @shdr_change_status: wr_object rsp's change_status field
20677  * @shdr_csf: wr_object rsp's csf bit
20678  *
20679  * This routine is intended to be called after a firmware write completes.
20680  * It will log next action items to be performed by the user to instantiate
20681  * the newly downloaded firmware or reason for incompatibility.
20682  **/
20683 static void
20684 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status,
20685 		       u32 shdr_add_status, u32 shdr_add_status_2,
20686 		       u32 shdr_change_status, u32 shdr_csf)
20687 {
20688 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20689 			"4198 %s: flash_id x%02x, asic_rev x%02x, "
20690 			"status x%02x, add_status x%02x, add_status_2 x%02x, "
20691 			"change_status x%02x, csf %01x\n", __func__,
20692 			phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev,
20693 			shdr_status, shdr_add_status, shdr_add_status_2,
20694 			shdr_change_status, shdr_csf);
20695 
20696 	if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) {
20697 		switch (shdr_add_status_2) {
20698 		case LPFC_ADD_STATUS_2_INCOMPAT_FLASH:
20699 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20700 					"4199 Firmware write failed: "
20701 					"image incompatible with flash x%02x\n",
20702 					phba->sli4_hba.flash_id);
20703 			break;
20704 		case LPFC_ADD_STATUS_2_INCORRECT_ASIC:
20705 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20706 					"4200 Firmware write failed: "
20707 					"image incompatible with ASIC "
20708 					"architecture x%02x\n",
20709 					phba->sli4_hba.asic_rev);
20710 			break;
20711 		default:
20712 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20713 					"4210 Firmware write failed: "
20714 					"add_status_2 x%02x\n",
20715 					shdr_add_status_2);
20716 			break;
20717 		}
20718 	} else if (!shdr_status && !shdr_add_status) {
20719 		if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET ||
20720 		    shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) {
20721 			if (shdr_csf)
20722 				shdr_change_status =
20723 						   LPFC_CHANGE_STATUS_PCI_RESET;
20724 		}
20725 
20726 		switch (shdr_change_status) {
20727 		case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
20728 			lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20729 					"3198 Firmware write complete: System "
20730 					"reboot required to instantiate\n");
20731 			break;
20732 		case (LPFC_CHANGE_STATUS_FW_RESET):
20733 			lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20734 					"3199 Firmware write complete: "
20735 					"Firmware reset required to "
20736 					"instantiate\n");
20737 			break;
20738 		case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
20739 			lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20740 					"3200 Firmware write complete: Port "
20741 					"Migration or PCI Reset required to "
20742 					"instantiate\n");
20743 			break;
20744 		case (LPFC_CHANGE_STATUS_PCI_RESET):
20745 			lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20746 					"3201 Firmware write complete: PCI "
20747 					"Reset required to instantiate\n");
20748 			break;
20749 		default:
20750 			break;
20751 		}
20752 	}
20753 }
20754 
20755 /**
20756  * lpfc_wr_object - write an object to the firmware
20757  * @phba: HBA structure that indicates port to create a queue on.
20758  * @dmabuf_list: list of dmabufs to write to the port.
20759  * @size: the total byte value of the objects to write to the port.
20760  * @offset: the current offset to be used to start the transfer.
20761  *
20762  * This routine will create a wr_object mailbox command to send to the port.
20763  * the mailbox command will be constructed using the dma buffers described in
20764  * @dmabuf_list to create a list of BDEs. This routine will fill in as many
20765  * BDEs that the imbedded mailbox can support. The @offset variable will be
20766  * used to indicate the starting offset of the transfer and will also return
20767  * the offset after the write object mailbox has completed. @size is used to
20768  * determine the end of the object and whether the eof bit should be set.
20769  *
20770  * Return 0 is successful and offset will contain the new offset to use
20771  * for the next write.
20772  * Return negative value for error cases.
20773  **/
20774 int
20775 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
20776 	       uint32_t size, uint32_t *offset)
20777 {
20778 	struct lpfc_mbx_wr_object *wr_object;
20779 	LPFC_MBOXQ_t *mbox;
20780 	int rc = 0, i = 0;
20781 	int mbox_status = 0;
20782 	uint32_t shdr_status, shdr_add_status, shdr_add_status_2;
20783 	uint32_t shdr_change_status = 0, shdr_csf = 0;
20784 	uint32_t mbox_tmo;
20785 	struct lpfc_dmabuf *dmabuf;
20786 	uint32_t written = 0;
20787 	bool check_change_status = false;
20788 
20789 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20790 	if (!mbox)
20791 		return -ENOMEM;
20792 
20793 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
20794 			LPFC_MBOX_OPCODE_WRITE_OBJECT,
20795 			sizeof(struct lpfc_mbx_wr_object) -
20796 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
20797 
20798 	wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
20799 	wr_object->u.request.write_offset = *offset;
20800 	sprintf((uint8_t *)wr_object->u.request.object_name, "/");
20801 	wr_object->u.request.object_name[0] =
20802 		cpu_to_le32(wr_object->u.request.object_name[0]);
20803 	bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
20804 	list_for_each_entry(dmabuf, dmabuf_list, list) {
20805 		if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
20806 			break;
20807 		wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
20808 		wr_object->u.request.bde[i].addrHigh =
20809 			putPaddrHigh(dmabuf->phys);
20810 		if (written + SLI4_PAGE_SIZE >= size) {
20811 			wr_object->u.request.bde[i].tus.f.bdeSize =
20812 				(size - written);
20813 			written += (size - written);
20814 			bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
20815 			bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
20816 			check_change_status = true;
20817 		} else {
20818 			wr_object->u.request.bde[i].tus.f.bdeSize =
20819 				SLI4_PAGE_SIZE;
20820 			written += SLI4_PAGE_SIZE;
20821 		}
20822 		i++;
20823 	}
20824 	wr_object->u.request.bde_count = i;
20825 	bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
20826 	if (!phba->sli4_hba.intr_enable)
20827 		mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
20828 	else {
20829 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
20830 		mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
20831 	}
20832 
20833 	/* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */
20834 	rc = mbox_status;
20835 
20836 	/* The IOCTL status is embedded in the mailbox subheader. */
20837 	shdr_status = bf_get(lpfc_mbox_hdr_status,
20838 			     &wr_object->header.cfg_shdr.response);
20839 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
20840 				 &wr_object->header.cfg_shdr.response);
20841 	shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2,
20842 				   &wr_object->header.cfg_shdr.response);
20843 	if (check_change_status) {
20844 		shdr_change_status = bf_get(lpfc_wr_object_change_status,
20845 					    &wr_object->u.response);
20846 		shdr_csf = bf_get(lpfc_wr_object_csf,
20847 				  &wr_object->u.response);
20848 	}
20849 
20850 	if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) {
20851 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20852 				"3025 Write Object mailbox failed with "
20853 				"status x%x add_status x%x, add_status_2 x%x, "
20854 				"mbx status x%x\n",
20855 				shdr_status, shdr_add_status, shdr_add_status_2,
20856 				rc);
20857 		rc = -ENXIO;
20858 		*offset = shdr_add_status;
20859 	} else {
20860 		*offset += wr_object->u.response.actual_write_length;
20861 	}
20862 
20863 	if (rc || check_change_status)
20864 		lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status,
20865 				       shdr_add_status_2, shdr_change_status,
20866 				       shdr_csf);
20867 
20868 	if (!phba->sli4_hba.intr_enable)
20869 		mempool_free(mbox, phba->mbox_mem_pool);
20870 	else if (mbox_status != MBX_TIMEOUT)
20871 		mempool_free(mbox, phba->mbox_mem_pool);
20872 
20873 	return rc;
20874 }
20875 
20876 /**
20877  * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
20878  * @vport: pointer to vport data structure.
20879  *
20880  * This function iterate through the mailboxq and clean up all REG_LOGIN
20881  * and REG_VPI mailbox commands associated with the vport. This function
20882  * is called when driver want to restart discovery of the vport due to
20883  * a Clear Virtual Link event.
20884  **/
20885 void
20886 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
20887 {
20888 	struct lpfc_hba *phba = vport->phba;
20889 	LPFC_MBOXQ_t *mb, *nextmb;
20890 	struct lpfc_nodelist *ndlp;
20891 	struct lpfc_nodelist *act_mbx_ndlp = NULL;
20892 	LIST_HEAD(mbox_cmd_list);
20893 	uint8_t restart_loop;
20894 
20895 	/* Clean up internally queued mailbox commands with the vport */
20896 	spin_lock_irq(&phba->hbalock);
20897 	list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
20898 		if (mb->vport != vport)
20899 			continue;
20900 
20901 		if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
20902 			(mb->u.mb.mbxCommand != MBX_REG_VPI))
20903 			continue;
20904 
20905 		list_move_tail(&mb->list, &mbox_cmd_list);
20906 	}
20907 	/* Clean up active mailbox command with the vport */
20908 	mb = phba->sli.mbox_active;
20909 	if (mb && (mb->vport == vport)) {
20910 		if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
20911 			(mb->u.mb.mbxCommand == MBX_REG_VPI))
20912 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
20913 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
20914 			act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
20915 
20916 			/* This reference is local to this routine.  The
20917 			 * reference is removed at routine exit.
20918 			 */
20919 			act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
20920 
20921 			/* Unregister the RPI when mailbox complete */
20922 			mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
20923 		}
20924 	}
20925 	/* Cleanup any mailbox completions which are not yet processed */
20926 	do {
20927 		restart_loop = 0;
20928 		list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
20929 			/*
20930 			 * If this mailox is already processed or it is
20931 			 * for another vport ignore it.
20932 			 */
20933 			if ((mb->vport != vport) ||
20934 				(mb->mbox_flag & LPFC_MBX_IMED_UNREG))
20935 				continue;
20936 
20937 			if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
20938 				(mb->u.mb.mbxCommand != MBX_REG_VPI))
20939 				continue;
20940 
20941 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
20942 			if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
20943 				ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
20944 				/* Unregister the RPI when mailbox complete */
20945 				mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
20946 				restart_loop = 1;
20947 				spin_unlock_irq(&phba->hbalock);
20948 				spin_lock(&ndlp->lock);
20949 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
20950 				spin_unlock(&ndlp->lock);
20951 				spin_lock_irq(&phba->hbalock);
20952 				break;
20953 			}
20954 		}
20955 	} while (restart_loop);
20956 
20957 	spin_unlock_irq(&phba->hbalock);
20958 
20959 	/* Release the cleaned-up mailbox commands */
20960 	while (!list_empty(&mbox_cmd_list)) {
20961 		list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
20962 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
20963 			ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
20964 			mb->ctx_ndlp = NULL;
20965 			if (ndlp) {
20966 				spin_lock(&ndlp->lock);
20967 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
20968 				spin_unlock(&ndlp->lock);
20969 				lpfc_nlp_put(ndlp);
20970 			}
20971 		}
20972 		lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED);
20973 	}
20974 
20975 	/* Release the ndlp with the cleaned-up active mailbox command */
20976 	if (act_mbx_ndlp) {
20977 		spin_lock(&act_mbx_ndlp->lock);
20978 		act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
20979 		spin_unlock(&act_mbx_ndlp->lock);
20980 		lpfc_nlp_put(act_mbx_ndlp);
20981 	}
20982 }
20983 
20984 /**
20985  * lpfc_drain_txq - Drain the txq
20986  * @phba: Pointer to HBA context object.
20987  *
20988  * This function attempt to submit IOCBs on the txq
20989  * to the adapter.  For SLI4 adapters, the txq contains
20990  * ELS IOCBs that have been deferred because the there
20991  * are no SGLs.  This congestion can occur with large
20992  * vport counts during node discovery.
20993  **/
20994 
20995 uint32_t
20996 lpfc_drain_txq(struct lpfc_hba *phba)
20997 {
20998 	LIST_HEAD(completions);
20999 	struct lpfc_sli_ring *pring;
21000 	struct lpfc_iocbq *piocbq = NULL;
21001 	unsigned long iflags = 0;
21002 	char *fail_msg = NULL;
21003 	uint32_t txq_cnt = 0;
21004 	struct lpfc_queue *wq;
21005 	int ret = 0;
21006 
21007 	if (phba->link_flag & LS_MDS_LOOPBACK) {
21008 		/* MDS WQE are posted only to first WQ*/
21009 		wq = phba->sli4_hba.hdwq[0].io_wq;
21010 		if (unlikely(!wq))
21011 			return 0;
21012 		pring = wq->pring;
21013 	} else {
21014 		wq = phba->sli4_hba.els_wq;
21015 		if (unlikely(!wq))
21016 			return 0;
21017 		pring = lpfc_phba_elsring(phba);
21018 	}
21019 
21020 	if (unlikely(!pring) || list_empty(&pring->txq))
21021 		return 0;
21022 
21023 	spin_lock_irqsave(&pring->ring_lock, iflags);
21024 	list_for_each_entry(piocbq, &pring->txq, list) {
21025 		txq_cnt++;
21026 	}
21027 
21028 	if (txq_cnt > pring->txq_max)
21029 		pring->txq_max = txq_cnt;
21030 
21031 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
21032 
21033 	while (!list_empty(&pring->txq)) {
21034 		spin_lock_irqsave(&pring->ring_lock, iflags);
21035 
21036 		piocbq = lpfc_sli_ringtx_get(phba, pring);
21037 		if (!piocbq) {
21038 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21039 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
21040 				"2823 txq empty and txq_cnt is %d\n ",
21041 				txq_cnt);
21042 			break;
21043 		}
21044 		txq_cnt--;
21045 
21046 		ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0);
21047 
21048 		if (ret && ret != IOCB_BUSY) {
21049 			fail_msg = " - Cannot send IO ";
21050 			piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
21051 		}
21052 		if (fail_msg) {
21053 			piocbq->cmd_flag |= LPFC_DRIVER_ABORTED;
21054 			/* Failed means we can't issue and need to cancel */
21055 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
21056 					"2822 IOCB failed %s iotag 0x%x "
21057 					"xri 0x%x %d flg x%x\n",
21058 					fail_msg, piocbq->iotag,
21059 					piocbq->sli4_xritag, ret,
21060 					piocbq->cmd_flag);
21061 			list_add_tail(&piocbq->list, &completions);
21062 			fail_msg = NULL;
21063 		}
21064 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
21065 		if (txq_cnt == 0 || ret == IOCB_BUSY)
21066 			break;
21067 	}
21068 	/* Cancel all the IOCBs that cannot be issued */
21069 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
21070 			      IOERR_SLI_ABORTED);
21071 
21072 	return txq_cnt;
21073 }
21074 
21075 /**
21076  * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
21077  * @phba: Pointer to HBA context object.
21078  * @pwqeq: Pointer to command WQE.
21079  * @sglq: Pointer to the scatter gather queue object.
21080  *
21081  * This routine converts the bpl or bde that is in the WQE
21082  * to a sgl list for the sli4 hardware. The physical address
21083  * of the bpl/bde is converted back to a virtual address.
21084  * If the WQE contains a BPL then the list of BDE's is
21085  * converted to sli4_sge's. If the WQE contains a single
21086  * BDE then it is converted to a single sli_sge.
21087  * The WQE is still in cpu endianness so the contents of
21088  * the bpl can be used without byte swapping.
21089  *
21090  * Returns valid XRI = Success, NO_XRI = Failure.
21091  */
21092 static uint16_t
21093 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
21094 		 struct lpfc_sglq *sglq)
21095 {
21096 	uint16_t xritag = NO_XRI;
21097 	struct ulp_bde64 *bpl = NULL;
21098 	struct ulp_bde64 bde;
21099 	struct sli4_sge *sgl  = NULL;
21100 	struct lpfc_dmabuf *dmabuf;
21101 	union lpfc_wqe128 *wqe;
21102 	int numBdes = 0;
21103 	int i = 0;
21104 	uint32_t offset = 0; /* accumulated offset in the sg request list */
21105 	int inbound = 0; /* number of sg reply entries inbound from firmware */
21106 	uint32_t cmd;
21107 
21108 	if (!pwqeq || !sglq)
21109 		return xritag;
21110 
21111 	sgl  = (struct sli4_sge *)sglq->sgl;
21112 	wqe = &pwqeq->wqe;
21113 	pwqeq->iocb.ulpIoTag = pwqeq->iotag;
21114 
21115 	cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
21116 	if (cmd == CMD_XMIT_BLS_RSP64_WQE)
21117 		return sglq->sli4_xritag;
21118 	numBdes = pwqeq->num_bdes;
21119 	if (numBdes) {
21120 		/* The addrHigh and addrLow fields within the WQE
21121 		 * have not been byteswapped yet so there is no
21122 		 * need to swap them back.
21123 		 */
21124 		if (pwqeq->bpl_dmabuf)
21125 			dmabuf = pwqeq->bpl_dmabuf;
21126 		else
21127 			return xritag;
21128 
21129 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
21130 		if (!bpl)
21131 			return xritag;
21132 
21133 		for (i = 0; i < numBdes; i++) {
21134 			/* Should already be byte swapped. */
21135 			sgl->addr_hi = bpl->addrHigh;
21136 			sgl->addr_lo = bpl->addrLow;
21137 
21138 			sgl->word2 = le32_to_cpu(sgl->word2);
21139 			if ((i+1) == numBdes)
21140 				bf_set(lpfc_sli4_sge_last, sgl, 1);
21141 			else
21142 				bf_set(lpfc_sli4_sge_last, sgl, 0);
21143 			/* swap the size field back to the cpu so we
21144 			 * can assign it to the sgl.
21145 			 */
21146 			bde.tus.w = le32_to_cpu(bpl->tus.w);
21147 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
21148 			/* The offsets in the sgl need to be accumulated
21149 			 * separately for the request and reply lists.
21150 			 * The request is always first, the reply follows.
21151 			 */
21152 			switch (cmd) {
21153 			case CMD_GEN_REQUEST64_WQE:
21154 				/* add up the reply sg entries */
21155 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
21156 					inbound++;
21157 				/* first inbound? reset the offset */
21158 				if (inbound == 1)
21159 					offset = 0;
21160 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
21161 				bf_set(lpfc_sli4_sge_type, sgl,
21162 					LPFC_SGE_TYPE_DATA);
21163 				offset += bde.tus.f.bdeSize;
21164 				break;
21165 			case CMD_FCP_TRSP64_WQE:
21166 				bf_set(lpfc_sli4_sge_offset, sgl, 0);
21167 				bf_set(lpfc_sli4_sge_type, sgl,
21168 					LPFC_SGE_TYPE_DATA);
21169 				break;
21170 			case CMD_FCP_TSEND64_WQE:
21171 			case CMD_FCP_TRECEIVE64_WQE:
21172 				bf_set(lpfc_sli4_sge_type, sgl,
21173 					bpl->tus.f.bdeFlags);
21174 				if (i < 3)
21175 					offset = 0;
21176 				else
21177 					offset += bde.tus.f.bdeSize;
21178 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
21179 				break;
21180 			}
21181 			sgl->word2 = cpu_to_le32(sgl->word2);
21182 			bpl++;
21183 			sgl++;
21184 		}
21185 	} else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
21186 		/* The addrHigh and addrLow fields of the BDE have not
21187 		 * been byteswapped yet so they need to be swapped
21188 		 * before putting them in the sgl.
21189 		 */
21190 		sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
21191 		sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
21192 		sgl->word2 = le32_to_cpu(sgl->word2);
21193 		bf_set(lpfc_sli4_sge_last, sgl, 1);
21194 		sgl->word2 = cpu_to_le32(sgl->word2);
21195 		sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
21196 	}
21197 	return sglq->sli4_xritag;
21198 }
21199 
21200 /**
21201  * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
21202  * @phba: Pointer to HBA context object.
21203  * @qp: Pointer to HDW queue.
21204  * @pwqe: Pointer to command WQE.
21205  **/
21206 int
21207 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
21208 		    struct lpfc_iocbq *pwqe)
21209 {
21210 	union lpfc_wqe128 *wqe = &pwqe->wqe;
21211 	struct lpfc_async_xchg_ctx *ctxp;
21212 	struct lpfc_queue *wq;
21213 	struct lpfc_sglq *sglq;
21214 	struct lpfc_sli_ring *pring;
21215 	unsigned long iflags;
21216 	uint32_t ret = 0;
21217 
21218 	/* NVME_LS and NVME_LS ABTS requests. */
21219 	if (pwqe->cmd_flag & LPFC_IO_NVME_LS) {
21220 		pring =  phba->sli4_hba.nvmels_wq->pring;
21221 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21222 					  qp, wq_access);
21223 		sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
21224 		if (!sglq) {
21225 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21226 			return WQE_BUSY;
21227 		}
21228 		pwqe->sli4_lxritag = sglq->sli4_lxritag;
21229 		pwqe->sli4_xritag = sglq->sli4_xritag;
21230 		if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
21231 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21232 			return WQE_ERROR;
21233 		}
21234 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
21235 		       pwqe->sli4_xritag);
21236 		ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
21237 		if (ret) {
21238 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21239 			return ret;
21240 		}
21241 
21242 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21243 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
21244 
21245 		lpfc_sli4_poll_eq(qp->hba_eq);
21246 		return 0;
21247 	}
21248 
21249 	/* NVME_FCREQ and NVME_ABTS requests */
21250 	if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) {
21251 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
21252 		wq = qp->io_wq;
21253 		pring = wq->pring;
21254 
21255 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
21256 
21257 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21258 					  qp, wq_access);
21259 		ret = lpfc_sli4_wq_put(wq, wqe);
21260 		if (ret) {
21261 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21262 			return ret;
21263 		}
21264 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21265 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
21266 
21267 		lpfc_sli4_poll_eq(qp->hba_eq);
21268 		return 0;
21269 	}
21270 
21271 	/* NVMET requests */
21272 	if (pwqe->cmd_flag & LPFC_IO_NVMET) {
21273 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
21274 		wq = qp->io_wq;
21275 		pring = wq->pring;
21276 
21277 		ctxp = pwqe->context_un.axchg;
21278 		sglq = ctxp->ctxbuf->sglq;
21279 		if (pwqe->sli4_xritag ==  NO_XRI) {
21280 			pwqe->sli4_lxritag = sglq->sli4_lxritag;
21281 			pwqe->sli4_xritag = sglq->sli4_xritag;
21282 		}
21283 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
21284 		       pwqe->sli4_xritag);
21285 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
21286 
21287 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21288 					  qp, wq_access);
21289 		ret = lpfc_sli4_wq_put(wq, wqe);
21290 		if (ret) {
21291 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21292 			return ret;
21293 		}
21294 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21295 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
21296 
21297 		lpfc_sli4_poll_eq(qp->hba_eq);
21298 		return 0;
21299 	}
21300 	return WQE_ERROR;
21301 }
21302 
21303 /**
21304  * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort
21305  * @phba: Pointer to HBA context object.
21306  * @cmdiocb: Pointer to driver command iocb object.
21307  * @cmpl: completion function.
21308  *
21309  * Fill the appropriate fields for the abort WQE and call
21310  * internal routine lpfc_sli4_issue_wqe to send the WQE
21311  * This function is called with hbalock held and no ring_lock held.
21312  *
21313  * RETURNS 0 - SUCCESS
21314  **/
21315 
21316 int
21317 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
21318 			    void *cmpl)
21319 {
21320 	struct lpfc_vport *vport = cmdiocb->vport;
21321 	struct lpfc_iocbq *abtsiocb = NULL;
21322 	union lpfc_wqe128 *abtswqe;
21323 	struct lpfc_io_buf *lpfc_cmd;
21324 	int retval = IOCB_ERROR;
21325 	u16 xritag = cmdiocb->sli4_xritag;
21326 
21327 	/*
21328 	 * The scsi command can not be in txq and it is in flight because the
21329 	 * pCmd is still pointing at the SCSI command we have to abort. There
21330 	 * is no need to search the txcmplq. Just send an abort to the FW.
21331 	 */
21332 
21333 	abtsiocb = __lpfc_sli_get_iocbq(phba);
21334 	if (!abtsiocb)
21335 		return WQE_NORESOURCE;
21336 
21337 	/* Indicate the IO is being aborted by the driver. */
21338 	cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED;
21339 
21340 	abtswqe = &abtsiocb->wqe;
21341 	memset(abtswqe, 0, sizeof(*abtswqe));
21342 
21343 	if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK))
21344 		bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1);
21345 	bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG);
21346 	abtswqe->abort_cmd.rsrvd5 = 0;
21347 	abtswqe->abort_cmd.wqe_com.abort_tag = xritag;
21348 	bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag);
21349 	bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
21350 	bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0);
21351 	bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1);
21352 	bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
21353 	bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND);
21354 
21355 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
21356 	abtsiocb->hba_wqidx = cmdiocb->hba_wqidx;
21357 	abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX;
21358 	if (cmdiocb->cmd_flag & LPFC_IO_FCP)
21359 		abtsiocb->cmd_flag |= LPFC_IO_FCP;
21360 	if (cmdiocb->cmd_flag & LPFC_IO_NVME)
21361 		abtsiocb->cmd_flag |= LPFC_IO_NVME;
21362 	if (cmdiocb->cmd_flag & LPFC_IO_FOF)
21363 		abtsiocb->cmd_flag |= LPFC_IO_FOF;
21364 	abtsiocb->vport = vport;
21365 	abtsiocb->cmd_cmpl = cmpl;
21366 
21367 	lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq);
21368 	retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb);
21369 
21370 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
21371 			 "0359 Abort xri x%x, original iotag x%x, "
21372 			 "abort cmd iotag x%x retval x%x\n",
21373 			 xritag, cmdiocb->iotag, abtsiocb->iotag, retval);
21374 
21375 	if (retval) {
21376 		cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED;
21377 		__lpfc_sli_release_iocbq(phba, abtsiocb);
21378 	}
21379 
21380 	return retval;
21381 }
21382 
21383 #ifdef LPFC_MXP_STAT
21384 /**
21385  * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
21386  * @phba: pointer to lpfc hba data structure.
21387  * @hwqid: belong to which HWQ.
21388  *
21389  * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
21390  * 15 seconds after a test case is running.
21391  *
21392  * The user should call lpfc_debugfs_multixripools_write before running a test
21393  * case to clear stat_snapshot_taken. Then the user starts a test case. During
21394  * test case is running, stat_snapshot_taken is incremented by 1 every time when
21395  * this routine is called from heartbeat timer. When stat_snapshot_taken is
21396  * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
21397  **/
21398 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
21399 {
21400 	struct lpfc_sli4_hdw_queue *qp;
21401 	struct lpfc_multixri_pool *multixri_pool;
21402 	struct lpfc_pvt_pool *pvt_pool;
21403 	struct lpfc_pbl_pool *pbl_pool;
21404 	u32 txcmplq_cnt;
21405 
21406 	qp = &phba->sli4_hba.hdwq[hwqid];
21407 	multixri_pool = qp->p_multixri_pool;
21408 	if (!multixri_pool)
21409 		return;
21410 
21411 	if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
21412 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
21413 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
21414 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21415 
21416 		multixri_pool->stat_pbl_count = pbl_pool->count;
21417 		multixri_pool->stat_pvt_count = pvt_pool->count;
21418 		multixri_pool->stat_busy_count = txcmplq_cnt;
21419 	}
21420 
21421 	multixri_pool->stat_snapshot_taken++;
21422 }
21423 #endif
21424 
21425 /**
21426  * lpfc_adjust_pvt_pool_count - Adjust private pool count
21427  * @phba: pointer to lpfc hba data structure.
21428  * @hwqid: belong to which HWQ.
21429  *
21430  * This routine moves some XRIs from private to public pool when private pool
21431  * is not busy.
21432  **/
21433 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
21434 {
21435 	struct lpfc_multixri_pool *multixri_pool;
21436 	u32 io_req_count;
21437 	u32 prev_io_req_count;
21438 
21439 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
21440 	if (!multixri_pool)
21441 		return;
21442 	io_req_count = multixri_pool->io_req_count;
21443 	prev_io_req_count = multixri_pool->prev_io_req_count;
21444 
21445 	if (prev_io_req_count != io_req_count) {
21446 		/* Private pool is busy */
21447 		multixri_pool->prev_io_req_count = io_req_count;
21448 	} else {
21449 		/* Private pool is not busy.
21450 		 * Move XRIs from private to public pool.
21451 		 */
21452 		lpfc_move_xri_pvt_to_pbl(phba, hwqid);
21453 	}
21454 }
21455 
21456 /**
21457  * lpfc_adjust_high_watermark - Adjust high watermark
21458  * @phba: pointer to lpfc hba data structure.
21459  * @hwqid: belong to which HWQ.
21460  *
21461  * This routine sets high watermark as number of outstanding XRIs,
21462  * but make sure the new value is between xri_limit/2 and xri_limit.
21463  **/
21464 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
21465 {
21466 	u32 new_watermark;
21467 	u32 watermark_max;
21468 	u32 watermark_min;
21469 	u32 xri_limit;
21470 	u32 txcmplq_cnt;
21471 	u32 abts_io_bufs;
21472 	struct lpfc_multixri_pool *multixri_pool;
21473 	struct lpfc_sli4_hdw_queue *qp;
21474 
21475 	qp = &phba->sli4_hba.hdwq[hwqid];
21476 	multixri_pool = qp->p_multixri_pool;
21477 	if (!multixri_pool)
21478 		return;
21479 	xri_limit = multixri_pool->xri_limit;
21480 
21481 	watermark_max = xri_limit;
21482 	watermark_min = xri_limit / 2;
21483 
21484 	txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21485 	abts_io_bufs = qp->abts_scsi_io_bufs;
21486 	abts_io_bufs += qp->abts_nvme_io_bufs;
21487 
21488 	new_watermark = txcmplq_cnt + abts_io_bufs;
21489 	new_watermark = min(watermark_max, new_watermark);
21490 	new_watermark = max(watermark_min, new_watermark);
21491 	multixri_pool->pvt_pool.high_watermark = new_watermark;
21492 
21493 #ifdef LPFC_MXP_STAT
21494 	multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
21495 					  new_watermark);
21496 #endif
21497 }
21498 
21499 /**
21500  * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
21501  * @phba: pointer to lpfc hba data structure.
21502  * @hwqid: belong to which HWQ.
21503  *
21504  * This routine is called from hearbeat timer when pvt_pool is idle.
21505  * All free XRIs are moved from private to public pool on hwqid with 2 steps.
21506  * The first step moves (all - low_watermark) amount of XRIs.
21507  * The second step moves the rest of XRIs.
21508  **/
21509 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
21510 {
21511 	struct lpfc_pbl_pool *pbl_pool;
21512 	struct lpfc_pvt_pool *pvt_pool;
21513 	struct lpfc_sli4_hdw_queue *qp;
21514 	struct lpfc_io_buf *lpfc_ncmd;
21515 	struct lpfc_io_buf *lpfc_ncmd_next;
21516 	unsigned long iflag;
21517 	struct list_head tmp_list;
21518 	u32 tmp_count;
21519 
21520 	qp = &phba->sli4_hba.hdwq[hwqid];
21521 	pbl_pool = &qp->p_multixri_pool->pbl_pool;
21522 	pvt_pool = &qp->p_multixri_pool->pvt_pool;
21523 	tmp_count = 0;
21524 
21525 	lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
21526 	lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
21527 
21528 	if (pvt_pool->count > pvt_pool->low_watermark) {
21529 		/* Step 1: move (all - low_watermark) from pvt_pool
21530 		 * to pbl_pool
21531 		 */
21532 
21533 		/* Move low watermark of bufs from pvt_pool to tmp_list */
21534 		INIT_LIST_HEAD(&tmp_list);
21535 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21536 					 &pvt_pool->list, list) {
21537 			list_move_tail(&lpfc_ncmd->list, &tmp_list);
21538 			tmp_count++;
21539 			if (tmp_count >= pvt_pool->low_watermark)
21540 				break;
21541 		}
21542 
21543 		/* Move all bufs from pvt_pool to pbl_pool */
21544 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
21545 
21546 		/* Move all bufs from tmp_list to pvt_pool */
21547 		list_splice(&tmp_list, &pvt_pool->list);
21548 
21549 		pbl_pool->count += (pvt_pool->count - tmp_count);
21550 		pvt_pool->count = tmp_count;
21551 	} else {
21552 		/* Step 2: move the rest from pvt_pool to pbl_pool */
21553 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
21554 		pbl_pool->count += pvt_pool->count;
21555 		pvt_pool->count = 0;
21556 	}
21557 
21558 	spin_unlock(&pvt_pool->lock);
21559 	spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21560 }
21561 
21562 /**
21563  * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
21564  * @phba: pointer to lpfc hba data structure
21565  * @qp: pointer to HDW queue
21566  * @pbl_pool: specified public free XRI pool
21567  * @pvt_pool: specified private free XRI pool
21568  * @count: number of XRIs to move
21569  *
21570  * This routine tries to move some free common bufs from the specified pbl_pool
21571  * to the specified pvt_pool. It might move less than count XRIs if there's not
21572  * enough in public pool.
21573  *
21574  * Return:
21575  *   true - if XRIs are successfully moved from the specified pbl_pool to the
21576  *          specified pvt_pool
21577  *   false - if the specified pbl_pool is empty or locked by someone else
21578  **/
21579 static bool
21580 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
21581 			  struct lpfc_pbl_pool *pbl_pool,
21582 			  struct lpfc_pvt_pool *pvt_pool, u32 count)
21583 {
21584 	struct lpfc_io_buf *lpfc_ncmd;
21585 	struct lpfc_io_buf *lpfc_ncmd_next;
21586 	unsigned long iflag;
21587 	int ret;
21588 
21589 	ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
21590 	if (ret) {
21591 		if (pbl_pool->count) {
21592 			/* Move a batch of XRIs from public to private pool */
21593 			lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
21594 			list_for_each_entry_safe(lpfc_ncmd,
21595 						 lpfc_ncmd_next,
21596 						 &pbl_pool->list,
21597 						 list) {
21598 				list_move_tail(&lpfc_ncmd->list,
21599 					       &pvt_pool->list);
21600 				pvt_pool->count++;
21601 				pbl_pool->count--;
21602 				count--;
21603 				if (count == 0)
21604 					break;
21605 			}
21606 
21607 			spin_unlock(&pvt_pool->lock);
21608 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21609 			return true;
21610 		}
21611 		spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21612 	}
21613 
21614 	return false;
21615 }
21616 
21617 /**
21618  * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
21619  * @phba: pointer to lpfc hba data structure.
21620  * @hwqid: belong to which HWQ.
21621  * @count: number of XRIs to move
21622  *
21623  * This routine tries to find some free common bufs in one of public pools with
21624  * Round Robin method. The search always starts from local hwqid, then the next
21625  * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
21626  * a batch of free common bufs are moved to private pool on hwqid.
21627  * It might move less than count XRIs if there's not enough in public pool.
21628  **/
21629 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
21630 {
21631 	struct lpfc_multixri_pool *multixri_pool;
21632 	struct lpfc_multixri_pool *next_multixri_pool;
21633 	struct lpfc_pvt_pool *pvt_pool;
21634 	struct lpfc_pbl_pool *pbl_pool;
21635 	struct lpfc_sli4_hdw_queue *qp;
21636 	u32 next_hwqid;
21637 	u32 hwq_count;
21638 	int ret;
21639 
21640 	qp = &phba->sli4_hba.hdwq[hwqid];
21641 	multixri_pool = qp->p_multixri_pool;
21642 	pvt_pool = &multixri_pool->pvt_pool;
21643 	pbl_pool = &multixri_pool->pbl_pool;
21644 
21645 	/* Check if local pbl_pool is available */
21646 	ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
21647 	if (ret) {
21648 #ifdef LPFC_MXP_STAT
21649 		multixri_pool->local_pbl_hit_count++;
21650 #endif
21651 		return;
21652 	}
21653 
21654 	hwq_count = phba->cfg_hdw_queue;
21655 
21656 	/* Get the next hwqid which was found last time */
21657 	next_hwqid = multixri_pool->rrb_next_hwqid;
21658 
21659 	do {
21660 		/* Go to next hwq */
21661 		next_hwqid = (next_hwqid + 1) % hwq_count;
21662 
21663 		next_multixri_pool =
21664 			phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
21665 		pbl_pool = &next_multixri_pool->pbl_pool;
21666 
21667 		/* Check if the public free xri pool is available */
21668 		ret = _lpfc_move_xri_pbl_to_pvt(
21669 			phba, qp, pbl_pool, pvt_pool, count);
21670 
21671 		/* Exit while-loop if success or all hwqid are checked */
21672 	} while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
21673 
21674 	/* Starting point for the next time */
21675 	multixri_pool->rrb_next_hwqid = next_hwqid;
21676 
21677 	if (!ret) {
21678 		/* stats: all public pools are empty*/
21679 		multixri_pool->pbl_empty_count++;
21680 	}
21681 
21682 #ifdef LPFC_MXP_STAT
21683 	if (ret) {
21684 		if (next_hwqid == hwqid)
21685 			multixri_pool->local_pbl_hit_count++;
21686 		else
21687 			multixri_pool->other_pbl_hit_count++;
21688 	}
21689 #endif
21690 }
21691 
21692 /**
21693  * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
21694  * @phba: pointer to lpfc hba data structure.
21695  * @hwqid: belong to which HWQ.
21696  *
21697  * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
21698  * low watermark.
21699  **/
21700 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
21701 {
21702 	struct lpfc_multixri_pool *multixri_pool;
21703 	struct lpfc_pvt_pool *pvt_pool;
21704 
21705 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
21706 	pvt_pool = &multixri_pool->pvt_pool;
21707 
21708 	if (pvt_pool->count < pvt_pool->low_watermark)
21709 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
21710 }
21711 
21712 /**
21713  * lpfc_release_io_buf - Return one IO buf back to free pool
21714  * @phba: pointer to lpfc hba data structure.
21715  * @lpfc_ncmd: IO buf to be returned.
21716  * @qp: belong to which HWQ.
21717  *
21718  * This routine returns one IO buf back to free pool. If this is an urgent IO,
21719  * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
21720  * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
21721  * xri_limit.  If cfg_xri_rebalancing==0, the IO buf is returned to
21722  * lpfc_io_buf_list_put.
21723  **/
21724 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
21725 			 struct lpfc_sli4_hdw_queue *qp)
21726 {
21727 	unsigned long iflag;
21728 	struct lpfc_pbl_pool *pbl_pool;
21729 	struct lpfc_pvt_pool *pvt_pool;
21730 	struct lpfc_epd_pool *epd_pool;
21731 	u32 txcmplq_cnt;
21732 	u32 xri_owned;
21733 	u32 xri_limit;
21734 	u32 abts_io_bufs;
21735 
21736 	/* MUST zero fields if buffer is reused by another protocol */
21737 	lpfc_ncmd->nvmeCmd = NULL;
21738 	lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL;
21739 
21740 	if (phba->cfg_xpsgl && !phba->nvmet_support &&
21741 	    !list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
21742 		lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
21743 
21744 	if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
21745 		lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
21746 
21747 	if (phba->cfg_xri_rebalancing) {
21748 		if (lpfc_ncmd->expedite) {
21749 			/* Return to expedite pool */
21750 			epd_pool = &phba->epd_pool;
21751 			spin_lock_irqsave(&epd_pool->lock, iflag);
21752 			list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
21753 			epd_pool->count++;
21754 			spin_unlock_irqrestore(&epd_pool->lock, iflag);
21755 			return;
21756 		}
21757 
21758 		/* Avoid invalid access if an IO sneaks in and is being rejected
21759 		 * just _after_ xri pools are destroyed in lpfc_offline.
21760 		 * Nothing much can be done at this point.
21761 		 */
21762 		if (!qp->p_multixri_pool)
21763 			return;
21764 
21765 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
21766 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
21767 
21768 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21769 		abts_io_bufs = qp->abts_scsi_io_bufs;
21770 		abts_io_bufs += qp->abts_nvme_io_bufs;
21771 
21772 		xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
21773 		xri_limit = qp->p_multixri_pool->xri_limit;
21774 
21775 #ifdef LPFC_MXP_STAT
21776 		if (xri_owned <= xri_limit)
21777 			qp->p_multixri_pool->below_limit_count++;
21778 		else
21779 			qp->p_multixri_pool->above_limit_count++;
21780 #endif
21781 
21782 		/* XRI goes to either public or private free xri pool
21783 		 *     based on watermark and xri_limit
21784 		 */
21785 		if ((pvt_pool->count < pvt_pool->low_watermark) ||
21786 		    (xri_owned < xri_limit &&
21787 		     pvt_pool->count < pvt_pool->high_watermark)) {
21788 			lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
21789 						  qp, free_pvt_pool);
21790 			list_add_tail(&lpfc_ncmd->list,
21791 				      &pvt_pool->list);
21792 			pvt_pool->count++;
21793 			spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21794 		} else {
21795 			lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
21796 						  qp, free_pub_pool);
21797 			list_add_tail(&lpfc_ncmd->list,
21798 				      &pbl_pool->list);
21799 			pbl_pool->count++;
21800 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21801 		}
21802 	} else {
21803 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
21804 					  qp, free_xri);
21805 		list_add_tail(&lpfc_ncmd->list,
21806 			      &qp->lpfc_io_buf_list_put);
21807 		qp->put_io_bufs++;
21808 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
21809 				       iflag);
21810 	}
21811 }
21812 
21813 /**
21814  * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
21815  * @phba: pointer to lpfc hba data structure.
21816  * @qp: pointer to HDW queue
21817  * @pvt_pool: pointer to private pool data structure.
21818  * @ndlp: pointer to lpfc nodelist data structure.
21819  *
21820  * This routine tries to get one free IO buf from private pool.
21821  *
21822  * Return:
21823  *   pointer to one free IO buf - if private pool is not empty
21824  *   NULL - if private pool is empty
21825  **/
21826 static struct lpfc_io_buf *
21827 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
21828 				  struct lpfc_sli4_hdw_queue *qp,
21829 				  struct lpfc_pvt_pool *pvt_pool,
21830 				  struct lpfc_nodelist *ndlp)
21831 {
21832 	struct lpfc_io_buf *lpfc_ncmd;
21833 	struct lpfc_io_buf *lpfc_ncmd_next;
21834 	unsigned long iflag;
21835 
21836 	lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
21837 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21838 				 &pvt_pool->list, list) {
21839 		if (lpfc_test_rrq_active(
21840 			phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
21841 			continue;
21842 		list_del(&lpfc_ncmd->list);
21843 		pvt_pool->count--;
21844 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21845 		return lpfc_ncmd;
21846 	}
21847 	spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21848 
21849 	return NULL;
21850 }
21851 
21852 /**
21853  * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
21854  * @phba: pointer to lpfc hba data structure.
21855  *
21856  * This routine tries to get one free IO buf from expedite pool.
21857  *
21858  * Return:
21859  *   pointer to one free IO buf - if expedite pool is not empty
21860  *   NULL - if expedite pool is empty
21861  **/
21862 static struct lpfc_io_buf *
21863 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
21864 {
21865 	struct lpfc_io_buf *lpfc_ncmd = NULL, *iter;
21866 	struct lpfc_io_buf *lpfc_ncmd_next;
21867 	unsigned long iflag;
21868 	struct lpfc_epd_pool *epd_pool;
21869 
21870 	epd_pool = &phba->epd_pool;
21871 
21872 	spin_lock_irqsave(&epd_pool->lock, iflag);
21873 	if (epd_pool->count > 0) {
21874 		list_for_each_entry_safe(iter, lpfc_ncmd_next,
21875 					 &epd_pool->list, list) {
21876 			list_del(&iter->list);
21877 			epd_pool->count--;
21878 			lpfc_ncmd = iter;
21879 			break;
21880 		}
21881 	}
21882 	spin_unlock_irqrestore(&epd_pool->lock, iflag);
21883 
21884 	return lpfc_ncmd;
21885 }
21886 
21887 /**
21888  * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
21889  * @phba: pointer to lpfc hba data structure.
21890  * @ndlp: pointer to lpfc nodelist data structure.
21891  * @hwqid: belong to which HWQ
21892  * @expedite: 1 means this request is urgent.
21893  *
21894  * This routine will do the following actions and then return a pointer to
21895  * one free IO buf.
21896  *
21897  * 1. If private free xri count is empty, move some XRIs from public to
21898  *    private pool.
21899  * 2. Get one XRI from private free xri pool.
21900  * 3. If we fail to get one from pvt_pool and this is an expedite request,
21901  *    get one free xri from expedite pool.
21902  *
21903  * Note: ndlp is only used on SCSI side for RRQ testing.
21904  *       The caller should pass NULL for ndlp on NVME side.
21905  *
21906  * Return:
21907  *   pointer to one free IO buf - if private pool is not empty
21908  *   NULL - if private pool is empty
21909  **/
21910 static struct lpfc_io_buf *
21911 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
21912 				    struct lpfc_nodelist *ndlp,
21913 				    int hwqid, int expedite)
21914 {
21915 	struct lpfc_sli4_hdw_queue *qp;
21916 	struct lpfc_multixri_pool *multixri_pool;
21917 	struct lpfc_pvt_pool *pvt_pool;
21918 	struct lpfc_io_buf *lpfc_ncmd;
21919 
21920 	qp = &phba->sli4_hba.hdwq[hwqid];
21921 	lpfc_ncmd = NULL;
21922 	if (!qp) {
21923 		lpfc_printf_log(phba, KERN_INFO,
21924 				LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
21925 				"5556 NULL qp for hwqid  x%x\n", hwqid);
21926 		return lpfc_ncmd;
21927 	}
21928 	multixri_pool = qp->p_multixri_pool;
21929 	if (!multixri_pool) {
21930 		lpfc_printf_log(phba, KERN_INFO,
21931 				LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
21932 				"5557 NULL multixri for hwqid  x%x\n", hwqid);
21933 		return lpfc_ncmd;
21934 	}
21935 	pvt_pool = &multixri_pool->pvt_pool;
21936 	if (!pvt_pool) {
21937 		lpfc_printf_log(phba, KERN_INFO,
21938 				LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
21939 				"5558 NULL pvt_pool for hwqid  x%x\n", hwqid);
21940 		return lpfc_ncmd;
21941 	}
21942 	multixri_pool->io_req_count++;
21943 
21944 	/* If pvt_pool is empty, move some XRIs from public to private pool */
21945 	if (pvt_pool->count == 0)
21946 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
21947 
21948 	/* Get one XRI from private free xri pool */
21949 	lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
21950 
21951 	if (lpfc_ncmd) {
21952 		lpfc_ncmd->hdwq = qp;
21953 		lpfc_ncmd->hdwq_no = hwqid;
21954 	} else if (expedite) {
21955 		/* If we fail to get one from pvt_pool and this is an expedite
21956 		 * request, get one free xri from expedite pool.
21957 		 */
21958 		lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
21959 	}
21960 
21961 	return lpfc_ncmd;
21962 }
21963 
21964 static inline struct lpfc_io_buf *
21965 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
21966 {
21967 	struct lpfc_sli4_hdw_queue *qp;
21968 	struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
21969 
21970 	qp = &phba->sli4_hba.hdwq[idx];
21971 	list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
21972 				 &qp->lpfc_io_buf_list_get, list) {
21973 		if (lpfc_test_rrq_active(phba, ndlp,
21974 					 lpfc_cmd->cur_iocbq.sli4_lxritag))
21975 			continue;
21976 
21977 		if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
21978 			continue;
21979 
21980 		list_del_init(&lpfc_cmd->list);
21981 		qp->get_io_bufs--;
21982 		lpfc_cmd->hdwq = qp;
21983 		lpfc_cmd->hdwq_no = idx;
21984 		return lpfc_cmd;
21985 	}
21986 	return NULL;
21987 }
21988 
21989 /**
21990  * lpfc_get_io_buf - Get one IO buffer from free pool
21991  * @phba: The HBA for which this call is being executed.
21992  * @ndlp: pointer to lpfc nodelist data structure.
21993  * @hwqid: belong to which HWQ
21994  * @expedite: 1 means this request is urgent.
21995  *
21996  * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
21997  * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
21998  * a IO buffer from head of @hdwq io_buf_list and returns to caller.
21999  *
22000  * Note: ndlp is only used on SCSI side for RRQ testing.
22001  *       The caller should pass NULL for ndlp on NVME side.
22002  *
22003  * Return codes:
22004  *   NULL - Error
22005  *   Pointer to lpfc_io_buf - Success
22006  **/
22007 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
22008 				    struct lpfc_nodelist *ndlp,
22009 				    u32 hwqid, int expedite)
22010 {
22011 	struct lpfc_sli4_hdw_queue *qp;
22012 	unsigned long iflag;
22013 	struct lpfc_io_buf *lpfc_cmd;
22014 
22015 	qp = &phba->sli4_hba.hdwq[hwqid];
22016 	lpfc_cmd = NULL;
22017 	if (!qp) {
22018 		lpfc_printf_log(phba, KERN_WARNING,
22019 				LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22020 				"5555 NULL qp for hwqid  x%x\n", hwqid);
22021 		return lpfc_cmd;
22022 	}
22023 
22024 	if (phba->cfg_xri_rebalancing)
22025 		lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
22026 			phba, ndlp, hwqid, expedite);
22027 	else {
22028 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
22029 					  qp, alloc_xri_get);
22030 		if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
22031 			lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
22032 		if (!lpfc_cmd) {
22033 			lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
22034 					  qp, alloc_xri_put);
22035 			list_splice(&qp->lpfc_io_buf_list_put,
22036 				    &qp->lpfc_io_buf_list_get);
22037 			qp->get_io_bufs += qp->put_io_bufs;
22038 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
22039 			qp->put_io_bufs = 0;
22040 			spin_unlock(&qp->io_buf_list_put_lock);
22041 			if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
22042 			    expedite)
22043 				lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
22044 		}
22045 		spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
22046 	}
22047 
22048 	return lpfc_cmd;
22049 }
22050 
22051 /**
22052  * lpfc_read_object - Retrieve object data from HBA
22053  * @phba: The HBA for which this call is being executed.
22054  * @rdobject: Pathname of object data we want to read.
22055  * @datap: Pointer to where data will be copied to.
22056  * @datasz: size of data area
22057  *
22058  * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less.
22059  * The data will be truncated if datasz is not large enough.
22060  * Version 1 is not supported with Embedded mbox cmd, so we must use version 0.
22061  * Returns the actual bytes read from the object.
22062  */
22063 int
22064 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap,
22065 		 uint32_t datasz)
22066 {
22067 	struct lpfc_mbx_read_object *read_object;
22068 	LPFC_MBOXQ_t *mbox;
22069 	int rc, length, eof, j, byte_cnt = 0;
22070 	uint32_t shdr_status, shdr_add_status;
22071 	union lpfc_sli4_cfg_shdr *shdr;
22072 	struct lpfc_dmabuf *pcmd;
22073 	u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0};
22074 
22075 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
22076 	if (!mbox)
22077 		return -ENOMEM;
22078 	length = (sizeof(struct lpfc_mbx_read_object) -
22079 		  sizeof(struct lpfc_sli4_cfg_mhdr));
22080 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
22081 			 LPFC_MBOX_OPCODE_READ_OBJECT,
22082 			 length, LPFC_SLI4_MBX_EMBED);
22083 	read_object = &mbox->u.mqe.un.read_object;
22084 	shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr;
22085 
22086 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0);
22087 	bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz);
22088 	read_object->u.request.rd_object_offset = 0;
22089 	read_object->u.request.rd_object_cnt = 1;
22090 
22091 	memset((void *)read_object->u.request.rd_object_name, 0,
22092 	       LPFC_OBJ_NAME_SZ);
22093 	scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject);
22094 	for (j = 0; j < strlen(rdobject); j++)
22095 		read_object->u.request.rd_object_name[j] =
22096 			cpu_to_le32(rd_object_name[j]);
22097 
22098 	pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL);
22099 	if (pcmd)
22100 		pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys);
22101 	if (!pcmd || !pcmd->virt) {
22102 		kfree(pcmd);
22103 		mempool_free(mbox, phba->mbox_mem_pool);
22104 		return -ENOMEM;
22105 	}
22106 	memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE);
22107 	read_object->u.request.rd_object_hbuf[0].pa_lo =
22108 		putPaddrLow(pcmd->phys);
22109 	read_object->u.request.rd_object_hbuf[0].pa_hi =
22110 		putPaddrHigh(pcmd->phys);
22111 	read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE;
22112 
22113 	mbox->vport = phba->pport;
22114 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
22115 	mbox->ctx_ndlp = NULL;
22116 
22117 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
22118 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
22119 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
22120 
22121 	if (shdr_status == STATUS_FAILED &&
22122 	    shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) {
22123 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
22124 				"4674 No port cfg file in FW.\n");
22125 		byte_cnt = -ENOENT;
22126 	} else if (shdr_status || shdr_add_status || rc) {
22127 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
22128 				"2625 READ_OBJECT mailbox failed with "
22129 				"status x%x add_status x%x, mbx status x%x\n",
22130 				shdr_status, shdr_add_status, rc);
22131 		byte_cnt = -ENXIO;
22132 	} else {
22133 		/* Success */
22134 		length = read_object->u.response.rd_object_actual_rlen;
22135 		eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response);
22136 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT,
22137 				"2626 READ_OBJECT Success len %d:%d, EOF %d\n",
22138 				length, datasz, eof);
22139 
22140 		/* Detect the port config file exists but is empty */
22141 		if (!length && eof) {
22142 			byte_cnt = 0;
22143 			goto exit;
22144 		}
22145 
22146 		byte_cnt = length;
22147 		lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt);
22148 	}
22149 
22150  exit:
22151 	/* This is an embedded SLI4 mailbox with an external buffer allocated.
22152 	 * Free the pcmd and then cleanup with the correct routine.
22153 	 */
22154 	lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys);
22155 	kfree(pcmd);
22156 	lpfc_sli4_mbox_cmd_free(phba, mbox);
22157 	return byte_cnt;
22158 }
22159 
22160 /**
22161  * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
22162  * @phba: The HBA for which this call is being executed.
22163  * @lpfc_buf: IO buf structure to append the SGL chunk
22164  *
22165  * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
22166  * and will allocate an SGL chunk if the pool is empty.
22167  *
22168  * Return codes:
22169  *   NULL - Error
22170  *   Pointer to sli4_hybrid_sgl - Success
22171  **/
22172 struct sli4_hybrid_sgl *
22173 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
22174 {
22175 	struct sli4_hybrid_sgl *list_entry = NULL;
22176 	struct sli4_hybrid_sgl *tmp = NULL;
22177 	struct sli4_hybrid_sgl *allocated_sgl = NULL;
22178 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22179 	struct list_head *buf_list = &hdwq->sgl_list;
22180 	unsigned long iflags;
22181 
22182 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22183 
22184 	if (likely(!list_empty(buf_list))) {
22185 		/* break off 1 chunk from the sgl_list */
22186 		list_for_each_entry_safe(list_entry, tmp,
22187 					 buf_list, list_node) {
22188 			list_move_tail(&list_entry->list_node,
22189 				       &lpfc_buf->dma_sgl_xtra_list);
22190 			break;
22191 		}
22192 	} else {
22193 		/* allocate more */
22194 		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22195 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
22196 				   cpu_to_node(hdwq->io_wq->chann));
22197 		if (!tmp) {
22198 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22199 					"8353 error kmalloc memory for HDWQ "
22200 					"%d %s\n",
22201 					lpfc_buf->hdwq_no, __func__);
22202 			return NULL;
22203 		}
22204 
22205 		tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
22206 					      GFP_ATOMIC, &tmp->dma_phys_sgl);
22207 		if (!tmp->dma_sgl) {
22208 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22209 					"8354 error pool_alloc memory for HDWQ "
22210 					"%d %s\n",
22211 					lpfc_buf->hdwq_no, __func__);
22212 			kfree(tmp);
22213 			return NULL;
22214 		}
22215 
22216 		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22217 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
22218 	}
22219 
22220 	allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
22221 					struct sli4_hybrid_sgl,
22222 					list_node);
22223 
22224 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22225 
22226 	return allocated_sgl;
22227 }
22228 
22229 /**
22230  * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
22231  * @phba: The HBA for which this call is being executed.
22232  * @lpfc_buf: IO buf structure with the SGL chunk
22233  *
22234  * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
22235  *
22236  * Return codes:
22237  *   0 - Success
22238  *   -EINVAL - Error
22239  **/
22240 int
22241 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
22242 {
22243 	int rc = 0;
22244 	struct sli4_hybrid_sgl *list_entry = NULL;
22245 	struct sli4_hybrid_sgl *tmp = NULL;
22246 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22247 	struct list_head *buf_list = &hdwq->sgl_list;
22248 	unsigned long iflags;
22249 
22250 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22251 
22252 	if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
22253 		list_for_each_entry_safe(list_entry, tmp,
22254 					 &lpfc_buf->dma_sgl_xtra_list,
22255 					 list_node) {
22256 			list_move_tail(&list_entry->list_node,
22257 				       buf_list);
22258 		}
22259 	} else {
22260 		rc = -EINVAL;
22261 	}
22262 
22263 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22264 	return rc;
22265 }
22266 
22267 /**
22268  * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
22269  * @phba: phba object
22270  * @hdwq: hdwq to cleanup sgl buff resources on
22271  *
22272  * This routine frees all SGL chunks of hdwq SGL chunk pool.
22273  *
22274  * Return codes:
22275  *   None
22276  **/
22277 void
22278 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
22279 		       struct lpfc_sli4_hdw_queue *hdwq)
22280 {
22281 	struct list_head *buf_list = &hdwq->sgl_list;
22282 	struct sli4_hybrid_sgl *list_entry = NULL;
22283 	struct sli4_hybrid_sgl *tmp = NULL;
22284 	unsigned long iflags;
22285 
22286 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22287 
22288 	/* Free sgl pool */
22289 	list_for_each_entry_safe(list_entry, tmp,
22290 				 buf_list, list_node) {
22291 		list_del(&list_entry->list_node);
22292 		dma_pool_free(phba->lpfc_sg_dma_buf_pool,
22293 			      list_entry->dma_sgl,
22294 			      list_entry->dma_phys_sgl);
22295 		kfree(list_entry);
22296 	}
22297 
22298 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22299 }
22300 
22301 /**
22302  * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
22303  * @phba: The HBA for which this call is being executed.
22304  * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
22305  *
22306  * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
22307  * and will allocate an CMD/RSP buffer if the pool is empty.
22308  *
22309  * Return codes:
22310  *   NULL - Error
22311  *   Pointer to fcp_cmd_rsp_buf - Success
22312  **/
22313 struct fcp_cmd_rsp_buf *
22314 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22315 			      struct lpfc_io_buf *lpfc_buf)
22316 {
22317 	struct fcp_cmd_rsp_buf *list_entry = NULL;
22318 	struct fcp_cmd_rsp_buf *tmp = NULL;
22319 	struct fcp_cmd_rsp_buf *allocated_buf = NULL;
22320 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22321 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22322 	unsigned long iflags;
22323 
22324 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22325 
22326 	if (likely(!list_empty(buf_list))) {
22327 		/* break off 1 chunk from the list */
22328 		list_for_each_entry_safe(list_entry, tmp,
22329 					 buf_list,
22330 					 list_node) {
22331 			list_move_tail(&list_entry->list_node,
22332 				       &lpfc_buf->dma_cmd_rsp_list);
22333 			break;
22334 		}
22335 	} else {
22336 		/* allocate more */
22337 		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22338 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
22339 				   cpu_to_node(hdwq->io_wq->chann));
22340 		if (!tmp) {
22341 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22342 					"8355 error kmalloc memory for HDWQ "
22343 					"%d %s\n",
22344 					lpfc_buf->hdwq_no, __func__);
22345 			return NULL;
22346 		}
22347 
22348 		tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool,
22349 						GFP_ATOMIC,
22350 						&tmp->fcp_cmd_rsp_dma_handle);
22351 
22352 		if (!tmp->fcp_cmnd) {
22353 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22354 					"8356 error pool_alloc memory for HDWQ "
22355 					"%d %s\n",
22356 					lpfc_buf->hdwq_no, __func__);
22357 			kfree(tmp);
22358 			return NULL;
22359 		}
22360 
22361 		tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
22362 				sizeof(struct fcp_cmnd));
22363 
22364 		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22365 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
22366 	}
22367 
22368 	allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
22369 					struct fcp_cmd_rsp_buf,
22370 					list_node);
22371 
22372 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22373 
22374 	return allocated_buf;
22375 }
22376 
22377 /**
22378  * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
22379  * @phba: The HBA for which this call is being executed.
22380  * @lpfc_buf: IO buf structure with the CMD/RSP buf
22381  *
22382  * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
22383  *
22384  * Return codes:
22385  *   0 - Success
22386  *   -EINVAL - Error
22387  **/
22388 int
22389 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22390 			      struct lpfc_io_buf *lpfc_buf)
22391 {
22392 	int rc = 0;
22393 	struct fcp_cmd_rsp_buf *list_entry = NULL;
22394 	struct fcp_cmd_rsp_buf *tmp = NULL;
22395 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22396 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22397 	unsigned long iflags;
22398 
22399 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22400 
22401 	if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
22402 		list_for_each_entry_safe(list_entry, tmp,
22403 					 &lpfc_buf->dma_cmd_rsp_list,
22404 					 list_node) {
22405 			list_move_tail(&list_entry->list_node,
22406 				       buf_list);
22407 		}
22408 	} else {
22409 		rc = -EINVAL;
22410 	}
22411 
22412 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22413 	return rc;
22414 }
22415 
22416 /**
22417  * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
22418  * @phba: phba object
22419  * @hdwq: hdwq to cleanup cmd rsp buff resources on
22420  *
22421  * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
22422  *
22423  * Return codes:
22424  *   None
22425  **/
22426 void
22427 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22428 			       struct lpfc_sli4_hdw_queue *hdwq)
22429 {
22430 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22431 	struct fcp_cmd_rsp_buf *list_entry = NULL;
22432 	struct fcp_cmd_rsp_buf *tmp = NULL;
22433 	unsigned long iflags;
22434 
22435 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22436 
22437 	/* Free cmd_rsp buf pool */
22438 	list_for_each_entry_safe(list_entry, tmp,
22439 				 buf_list,
22440 				 list_node) {
22441 		list_del(&list_entry->list_node);
22442 		dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
22443 			      list_entry->fcp_cmnd,
22444 			      list_entry->fcp_cmd_rsp_dma_handle);
22445 		kfree(list_entry);
22446 	}
22447 
22448 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22449 }
22450 
22451 /**
22452  * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted
22453  * @phba: phba object
22454  * @job: job entry of the command to be posted.
22455  *
22456  * Fill the common fields of the wqe for each of the command.
22457  *
22458  * Return codes:
22459  *	None
22460  **/
22461 void
22462 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job)
22463 {
22464 	u8 cmnd;
22465 	u32 *pcmd;
22466 	u32 if_type = 0;
22467 	u32 fip, abort_tag;
22468 	struct lpfc_nodelist *ndlp = NULL;
22469 	union lpfc_wqe128 *wqe = &job->wqe;
22470 	u8 command_type = ELS_COMMAND_NON_FIP;
22471 
22472 	fip = phba->hba_flag & HBA_FIP_SUPPORT;
22473 	/* The fcp commands will set command type */
22474 	if (job->cmd_flag &  LPFC_IO_FCP)
22475 		command_type = FCP_COMMAND;
22476 	else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK))
22477 		command_type = ELS_COMMAND_FIP;
22478 	else
22479 		command_type = ELS_COMMAND_NON_FIP;
22480 
22481 	abort_tag = job->iotag;
22482 	cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com);
22483 
22484 	switch (cmnd) {
22485 	case CMD_ELS_REQUEST64_WQE:
22486 		ndlp = job->ndlp;
22487 
22488 		if_type = bf_get(lpfc_sli_intf_if_type,
22489 				 &phba->sli4_hba.sli_intf);
22490 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
22491 			pcmd = (u32 *)job->cmd_dmabuf->virt;
22492 			if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
22493 				     *pcmd == ELS_CMD_SCR ||
22494 				     *pcmd == ELS_CMD_RDF ||
22495 				     *pcmd == ELS_CMD_EDC ||
22496 				     *pcmd == ELS_CMD_RSCN_XMT ||
22497 				     *pcmd == ELS_CMD_FDISC ||
22498 				     *pcmd == ELS_CMD_LOGO ||
22499 				     *pcmd == ELS_CMD_QFPA ||
22500 				     *pcmd == ELS_CMD_UVEM ||
22501 				     *pcmd == ELS_CMD_PLOGI)) {
22502 				bf_set(els_req64_sp, &wqe->els_req, 1);
22503 				bf_set(els_req64_sid, &wqe->els_req,
22504 				       job->vport->fc_myDID);
22505 
22506 				if ((*pcmd == ELS_CMD_FLOGI) &&
22507 				    !(phba->fc_topology ==
22508 				      LPFC_TOPOLOGY_LOOP))
22509 					bf_set(els_req64_sid, &wqe->els_req, 0);
22510 
22511 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
22512 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
22513 				       phba->vpi_ids[job->vport->vpi]);
22514 			} else if (pcmd) {
22515 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
22516 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
22517 				       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22518 			}
22519 		}
22520 
22521 		bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
22522 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22523 
22524 		bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
22525 		bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
22526 		bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
22527 		bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
22528 		bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
22529 		break;
22530 	case CMD_XMIT_ELS_RSP64_WQE:
22531 		ndlp = job->ndlp;
22532 
22533 		/* word4 */
22534 		wqe->xmit_els_rsp.word4 = 0;
22535 
22536 		if_type = bf_get(lpfc_sli_intf_if_type,
22537 				 &phba->sli4_hba.sli_intf);
22538 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
22539 			if (job->vport->fc_flag & FC_PT2PT) {
22540 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
22541 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
22542 				       job->vport->fc_myDID);
22543 				if (job->vport->fc_myDID == Fabric_DID) {
22544 					bf_set(wqe_els_did,
22545 					       &wqe->xmit_els_rsp.wqe_dest, 0);
22546 				}
22547 			}
22548 		}
22549 
22550 		bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
22551 		bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
22552 		bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
22553 		bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
22554 		       LPFC_WQE_LENLOC_WORD3);
22555 		bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
22556 
22557 		if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
22558 			bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
22559 			bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
22560 			       job->vport->fc_myDID);
22561 			bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
22562 		}
22563 
22564 		if (phba->sli_rev == LPFC_SLI_REV4) {
22565 			bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
22566 			       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22567 
22568 			if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com))
22569 				bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
22570 				       phba->vpi_ids[job->vport->vpi]);
22571 		}
22572 		command_type = OTHER_COMMAND;
22573 		break;
22574 	case CMD_GEN_REQUEST64_WQE:
22575 		/* Word 10 */
22576 		bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
22577 		bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
22578 		bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
22579 		bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
22580 		bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
22581 		command_type = OTHER_COMMAND;
22582 		break;
22583 	case CMD_XMIT_SEQUENCE64_WQE:
22584 		if (phba->link_flag & LS_LOOPBACK_MODE)
22585 			bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
22586 
22587 		wqe->xmit_sequence.rsvd3 = 0;
22588 		bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
22589 		bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
22590 		bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
22591 		       LPFC_WQE_IOD_WRITE);
22592 		bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
22593 		       LPFC_WQE_LENLOC_WORD12);
22594 		bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
22595 		command_type = OTHER_COMMAND;
22596 		break;
22597 	case CMD_XMIT_BLS_RSP64_WQE:
22598 		bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
22599 		bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
22600 		bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
22601 		bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
22602 		       phba->vpi_ids[phba->pport->vpi]);
22603 		bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
22604 		bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
22605 		       LPFC_WQE_LENLOC_NONE);
22606 		/* Overwrite the pre-set comnd type with OTHER_COMMAND */
22607 		command_type = OTHER_COMMAND;
22608 		break;
22609 	case CMD_FCP_ICMND64_WQE:	/* task mgmt commands */
22610 	case CMD_ABORT_XRI_WQE:		/* abort iotag */
22611 	case CMD_SEND_FRAME:		/* mds loopback */
22612 		/* cases already formatted for sli4 wqe - no chgs necessary */
22613 		return;
22614 	default:
22615 		dump_stack();
22616 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
22617 				"6207 Invalid command 0x%x\n",
22618 				cmnd);
22619 		break;
22620 	}
22621 
22622 	wqe->generic.wqe_com.abort_tag = abort_tag;
22623 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag);
22624 	bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
22625 	bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
22626 }
22627