xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_sli.c (revision f7eeb00845934851b580b188f079545ab176fa5c)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.     *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #include <linux/crash_dump.h>
39 #ifdef CONFIG_X86
40 #include <asm/set_memory.h>
41 #endif
42 
43 #include "lpfc_hw4.h"
44 #include "lpfc_hw.h"
45 #include "lpfc_sli.h"
46 #include "lpfc_sli4.h"
47 #include "lpfc_nl.h"
48 #include "lpfc_disc.h"
49 #include "lpfc.h"
50 #include "lpfc_scsi.h"
51 #include "lpfc_nvme.h"
52 #include "lpfc_crtn.h"
53 #include "lpfc_logmsg.h"
54 #include "lpfc_compat.h"
55 #include "lpfc_debugfs.h"
56 #include "lpfc_vport.h"
57 #include "lpfc_version.h"
58 
59 /* There are only four IOCB completion types. */
60 typedef enum _lpfc_iocb_type {
61 	LPFC_UNKNOWN_IOCB,
62 	LPFC_UNSOL_IOCB,
63 	LPFC_SOL_IOCB,
64 	LPFC_ABORT_IOCB
65 } lpfc_iocb_type;
66 
67 
68 /* Provide function prototypes local to this module. */
69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
70 				  uint32_t);
71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 			      uint8_t *, uint32_t *);
73 static struct lpfc_iocbq *
74 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba,
75 				  struct lpfc_iocbq *rspiocbq);
76 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
77 				      struct hbq_dmabuf *);
78 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
79 					  struct hbq_dmabuf *dmabuf);
80 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
81 				   struct lpfc_queue *cq, struct lpfc_cqe *cqe);
82 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
83 				       int);
84 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
85 				     struct lpfc_queue *eq,
86 				     struct lpfc_eqe *eqe);
87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q);
90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba,
91 				    struct lpfc_queue *cq,
92 				    struct lpfc_cqe *cqe);
93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba,
94 				 struct lpfc_iocbq *pwqeq,
95 				 struct lpfc_sglq *sglq);
96 
97 union lpfc_wqe128 lpfc_iread_cmd_template;
98 union lpfc_wqe128 lpfc_iwrite_cmd_template;
99 union lpfc_wqe128 lpfc_icmnd_cmd_template;
100 
101 /* Setup WQE templates for IOs */
102 void lpfc_wqe_cmd_template(void)
103 {
104 	union lpfc_wqe128 *wqe;
105 
106 	/* IREAD template */
107 	wqe = &lpfc_iread_cmd_template;
108 	memset(wqe, 0, sizeof(union lpfc_wqe128));
109 
110 	/* Word 0, 1, 2 - BDE is variable */
111 
112 	/* Word 3 - cmd_buff_len, payload_offset_len is zero */
113 
114 	/* Word 4 - total_xfer_len is variable */
115 
116 	/* Word 5 - is zero */
117 
118 	/* Word 6 - ctxt_tag, xri_tag is variable */
119 
120 	/* Word 7 */
121 	bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE);
122 	bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK);
123 	bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3);
124 	bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI);
125 
126 	/* Word 8 - abort_tag is variable */
127 
128 	/* Word 9  - reqtag is variable */
129 
130 	/* Word 10 - dbde, wqes is variable */
131 	bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0);
132 	bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
133 	bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4);
134 	bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
135 	bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
136 
137 	/* Word 11 - pbde is variable */
138 	bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN);
139 	bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
140 	bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
141 
142 	/* Word 12 - is zero */
143 
144 	/* Word 13, 14, 15 - PBDE is variable */
145 
146 	/* IWRITE template */
147 	wqe = &lpfc_iwrite_cmd_template;
148 	memset(wqe, 0, sizeof(union lpfc_wqe128));
149 
150 	/* Word 0, 1, 2 - BDE is variable */
151 
152 	/* Word 3 - cmd_buff_len, payload_offset_len is zero */
153 
154 	/* Word 4 - total_xfer_len is variable */
155 
156 	/* Word 5 - initial_xfer_len is variable */
157 
158 	/* Word 6 - ctxt_tag, xri_tag is variable */
159 
160 	/* Word 7 */
161 	bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE);
162 	bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK);
163 	bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3);
164 	bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI);
165 
166 	/* Word 8 - abort_tag is variable */
167 
168 	/* Word 9  - reqtag is variable */
169 
170 	/* Word 10 - dbde, wqes is variable */
171 	bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0);
172 	bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
173 	bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4);
174 	bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
175 	bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
176 
177 	/* Word 11 - pbde is variable */
178 	bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT);
179 	bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
180 	bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
181 
182 	/* Word 12 - is zero */
183 
184 	/* Word 13, 14, 15 - PBDE is variable */
185 
186 	/* ICMND template */
187 	wqe = &lpfc_icmnd_cmd_template;
188 	memset(wqe, 0, sizeof(union lpfc_wqe128));
189 
190 	/* Word 0, 1, 2 - BDE is variable */
191 
192 	/* Word 3 - payload_offset_len is variable */
193 
194 	/* Word 4, 5 - is zero */
195 
196 	/* Word 6 - ctxt_tag, xri_tag is variable */
197 
198 	/* Word 7 */
199 	bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE);
200 	bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
201 	bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3);
202 	bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI);
203 
204 	/* Word 8 - abort_tag is variable */
205 
206 	/* Word 9  - reqtag is variable */
207 
208 	/* Word 10 - dbde, wqes is variable */
209 	bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
210 	bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE);
211 	bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE);
212 	bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
213 	bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
214 
215 	/* Word 11 */
216 	bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN);
217 	bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
218 	bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0);
219 
220 	/* Word 12, 13, 14, 15 - is zero */
221 }
222 
223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
224 /**
225  * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
226  * @srcp: Source memory pointer.
227  * @destp: Destination memory pointer.
228  * @cnt: Number of words required to be copied.
229  *       Must be a multiple of sizeof(uint64_t)
230  *
231  * This function is used for copying data between driver memory
232  * and the SLI WQ. This function also changes the endianness
233  * of each word if native endianness is different from SLI
234  * endianness. This function can be called with or without
235  * lock.
236  **/
237 static void
238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
239 {
240 	uint64_t *src = srcp;
241 	uint64_t *dest = destp;
242 	int i;
243 
244 	for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
245 		*dest++ = *src++;
246 }
247 #else
248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
249 #endif
250 
251 /**
252  * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
253  * @q: The Work Queue to operate on.
254  * @wqe: The work Queue Entry to put on the Work queue.
255  *
256  * This routine will copy the contents of @wqe to the next available entry on
257  * the @q. This function will then ring the Work Queue Doorbell to signal the
258  * HBA to start processing the Work Queue Entry. This function returns 0 if
259  * successful. If no entries are available on @q then this function will return
260  * -ENOMEM.
261  * The caller is expected to hold the hbalock when calling this routine.
262  **/
263 static int
264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
265 {
266 	union lpfc_wqe *temp_wqe;
267 	struct lpfc_register doorbell;
268 	uint32_t host_index;
269 	uint32_t idx;
270 	uint32_t i = 0;
271 	uint8_t *tmp;
272 	u32 if_type;
273 
274 	/* sanity check on queue memory */
275 	if (unlikely(!q))
276 		return -ENOMEM;
277 
278 	temp_wqe = lpfc_sli4_qe(q, q->host_index);
279 
280 	/* If the host has not yet processed the next entry then we are done */
281 	idx = ((q->host_index + 1) % q->entry_count);
282 	if (idx == q->hba_index) {
283 		q->WQ_overflow++;
284 		return -EBUSY;
285 	}
286 	q->WQ_posted++;
287 	/* set consumption flag every once in a while */
288 	if (!((q->host_index + 1) % q->notify_interval))
289 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
290 	else
291 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
292 	if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
293 		bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
294 	lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
295 	if (q->dpp_enable && q->phba->cfg_enable_dpp) {
296 		/* write to DPP aperture taking advatage of Combined Writes */
297 		tmp = (uint8_t *)temp_wqe;
298 #ifdef __raw_writeq
299 		for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
300 			__raw_writeq(*((uint64_t *)(tmp + i)),
301 					q->dpp_regaddr + i);
302 #else
303 		for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
304 			__raw_writel(*((uint32_t *)(tmp + i)),
305 					q->dpp_regaddr + i);
306 #endif
307 	}
308 	/* ensure WQE bcopy and DPP flushed before doorbell write */
309 	wmb();
310 
311 	/* Update the host index before invoking device */
312 	host_index = q->host_index;
313 
314 	q->host_index = idx;
315 
316 	/* Ring Doorbell */
317 	doorbell.word0 = 0;
318 	if (q->db_format == LPFC_DB_LIST_FORMAT) {
319 		if (q->dpp_enable && q->phba->cfg_enable_dpp) {
320 			bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
321 			bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
322 			bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
323 			    q->dpp_id);
324 			bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
325 			    q->queue_id);
326 		} else {
327 			bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
328 			bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
329 
330 			/* Leave bits <23:16> clear for if_type 6 dpp */
331 			if_type = bf_get(lpfc_sli_intf_if_type,
332 					 &q->phba->sli4_hba.sli_intf);
333 			if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
334 				bf_set(lpfc_wq_db_list_fm_index, &doorbell,
335 				       host_index);
336 		}
337 	} else if (q->db_format == LPFC_DB_RING_FORMAT) {
338 		bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
339 		bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
340 	} else {
341 		return -EINVAL;
342 	}
343 	writel(doorbell.word0, q->db_regaddr);
344 
345 	return 0;
346 }
347 
348 /**
349  * lpfc_sli4_wq_release - Updates internal hba index for WQ
350  * @q: The Work Queue to operate on.
351  * @index: The index to advance the hba index to.
352  *
353  * This routine will update the HBA index of a queue to reflect consumption of
354  * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
355  * an entry the host calls this function to update the queue's internal
356  * pointers.
357  **/
358 static void
359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
360 {
361 	/* sanity check on queue memory */
362 	if (unlikely(!q))
363 		return;
364 
365 	q->hba_index = index;
366 }
367 
368 /**
369  * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
370  * @q: The Mailbox Queue to operate on.
371  * @mqe: The Mailbox Queue Entry to put on the Work queue.
372  *
373  * This routine will copy the contents of @mqe to the next available entry on
374  * the @q. This function will then ring the Work Queue Doorbell to signal the
375  * HBA to start processing the Work Queue Entry. This function returns 0 if
376  * successful. If no entries are available on @q then this function will return
377  * -ENOMEM.
378  * The caller is expected to hold the hbalock when calling this routine.
379  **/
380 static uint32_t
381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
382 {
383 	struct lpfc_mqe *temp_mqe;
384 	struct lpfc_register doorbell;
385 
386 	/* sanity check on queue memory */
387 	if (unlikely(!q))
388 		return -ENOMEM;
389 	temp_mqe = lpfc_sli4_qe(q, q->host_index);
390 
391 	/* If the host has not yet processed the next entry then we are done */
392 	if (((q->host_index + 1) % q->entry_count) == q->hba_index)
393 		return -ENOMEM;
394 	lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
395 	/* Save off the mailbox pointer for completion */
396 	q->phba->mbox = (MAILBOX_t *)temp_mqe;
397 
398 	/* Update the host index before invoking device */
399 	q->host_index = ((q->host_index + 1) % q->entry_count);
400 
401 	/* Ring Doorbell */
402 	doorbell.word0 = 0;
403 	bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
404 	bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
405 	writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
406 	return 0;
407 }
408 
409 /**
410  * lpfc_sli4_mq_release - Updates internal hba index for MQ
411  * @q: The Mailbox Queue to operate on.
412  *
413  * This routine will update the HBA index of a queue to reflect consumption of
414  * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
415  * an entry the host calls this function to update the queue's internal
416  * pointers. This routine returns the number of entries that were consumed by
417  * the HBA.
418  **/
419 static uint32_t
420 lpfc_sli4_mq_release(struct lpfc_queue *q)
421 {
422 	/* sanity check on queue memory */
423 	if (unlikely(!q))
424 		return 0;
425 
426 	/* Clear the mailbox pointer for completion */
427 	q->phba->mbox = NULL;
428 	q->hba_index = ((q->hba_index + 1) % q->entry_count);
429 	return 1;
430 }
431 
432 /**
433  * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
434  * @q: The Event Queue to get the first valid EQE from
435  *
436  * This routine will get the first valid Event Queue Entry from @q, update
437  * the queue's internal hba index, and return the EQE. If no valid EQEs are in
438  * the Queue (no more work to do), or the Queue is full of EQEs that have been
439  * processed, but not popped back to the HBA then this routine will return NULL.
440  **/
441 static struct lpfc_eqe *
442 lpfc_sli4_eq_get(struct lpfc_queue *q)
443 {
444 	struct lpfc_eqe *eqe;
445 
446 	/* sanity check on queue memory */
447 	if (unlikely(!q))
448 		return NULL;
449 	eqe = lpfc_sli4_qe(q, q->host_index);
450 
451 	/* If the next EQE is not valid then we are done */
452 	if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
453 		return NULL;
454 
455 	/*
456 	 * insert barrier for instruction interlock : data from the hardware
457 	 * must have the valid bit checked before it can be copied and acted
458 	 * upon. Speculative instructions were allowing a bcopy at the start
459 	 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
460 	 * after our return, to copy data before the valid bit check above
461 	 * was done. As such, some of the copied data was stale. The barrier
462 	 * ensures the check is before any data is copied.
463 	 */
464 	mb();
465 	return eqe;
466 }
467 
468 /**
469  * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
470  * @q: The Event Queue to disable interrupts
471  *
472  **/
473 void
474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
475 {
476 	struct lpfc_register doorbell;
477 
478 	doorbell.word0 = 0;
479 	bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
480 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
481 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
482 		(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
483 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
484 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
485 }
486 
487 /**
488  * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
489  * @q: The Event Queue to disable interrupts
490  *
491  **/
492 void
493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
494 {
495 	struct lpfc_register doorbell;
496 
497 	doorbell.word0 = 0;
498 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
499 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
500 }
501 
502 /**
503  * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
504  * @phba: adapter with EQ
505  * @q: The Event Queue that the host has completed processing for.
506  * @count: Number of elements that have been consumed
507  * @arm: Indicates whether the host wants to arms this CQ.
508  *
509  * This routine will notify the HBA, by ringing the doorbell, that count
510  * number of EQEs have been processed. The @arm parameter indicates whether
511  * the queue should be rearmed when ringing the doorbell.
512  **/
513 void
514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
515 		     uint32_t count, bool arm)
516 {
517 	struct lpfc_register doorbell;
518 
519 	/* sanity check on queue memory */
520 	if (unlikely(!q || (count == 0 && !arm)))
521 		return;
522 
523 	/* ring doorbell for number popped */
524 	doorbell.word0 = 0;
525 	if (arm) {
526 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
527 		bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
528 	}
529 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
530 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
531 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
532 			(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
533 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
534 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
535 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
536 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
537 		readl(q->phba->sli4_hba.EQDBregaddr);
538 }
539 
540 /**
541  * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
542  * @phba: adapter with EQ
543  * @q: The Event Queue that the host has completed processing for.
544  * @count: Number of elements that have been consumed
545  * @arm: Indicates whether the host wants to arms this CQ.
546  *
547  * This routine will notify the HBA, by ringing the doorbell, that count
548  * number of EQEs have been processed. The @arm parameter indicates whether
549  * the queue should be rearmed when ringing the doorbell.
550  **/
551 void
552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
553 			  uint32_t count, bool arm)
554 {
555 	struct lpfc_register doorbell;
556 
557 	/* sanity check on queue memory */
558 	if (unlikely(!q || (count == 0 && !arm)))
559 		return;
560 
561 	/* ring doorbell for number popped */
562 	doorbell.word0 = 0;
563 	if (arm)
564 		bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
565 	bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
566 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
567 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
568 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
569 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
570 		readl(q->phba->sli4_hba.EQDBregaddr);
571 }
572 
573 static void
574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
575 			struct lpfc_eqe *eqe)
576 {
577 	if (!phba->sli4_hba.pc_sli4_params.eqav)
578 		bf_set_le32(lpfc_eqe_valid, eqe, 0);
579 
580 	eq->host_index = ((eq->host_index + 1) % eq->entry_count);
581 
582 	/* if the index wrapped around, toggle the valid bit */
583 	if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
584 		eq->qe_valid = (eq->qe_valid) ? 0 : 1;
585 }
586 
587 static void
588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
589 {
590 	struct lpfc_eqe *eqe = NULL;
591 	u32 eq_count = 0, cq_count = 0;
592 	struct lpfc_cqe *cqe = NULL;
593 	struct lpfc_queue *cq = NULL, *childq = NULL;
594 	int cqid = 0;
595 
596 	/* walk all the EQ entries and drop on the floor */
597 	eqe = lpfc_sli4_eq_get(eq);
598 	while (eqe) {
599 		/* Get the reference to the corresponding CQ */
600 		cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
601 		cq = NULL;
602 
603 		list_for_each_entry(childq, &eq->child_list, list) {
604 			if (childq->queue_id == cqid) {
605 				cq = childq;
606 				break;
607 			}
608 		}
609 		/* If CQ is valid, iterate through it and drop all the CQEs */
610 		if (cq) {
611 			cqe = lpfc_sli4_cq_get(cq);
612 			while (cqe) {
613 				__lpfc_sli4_consume_cqe(phba, cq, cqe);
614 				cq_count++;
615 				cqe = lpfc_sli4_cq_get(cq);
616 			}
617 			/* Clear and re-arm the CQ */
618 			phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count,
619 			    LPFC_QUEUE_REARM);
620 			cq_count = 0;
621 		}
622 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
623 		eq_count++;
624 		eqe = lpfc_sli4_eq_get(eq);
625 	}
626 
627 	/* Clear and re-arm the EQ */
628 	phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM);
629 }
630 
631 static int
632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq,
633 		     uint8_t rearm)
634 {
635 	struct lpfc_eqe *eqe;
636 	int count = 0, consumed = 0;
637 
638 	if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
639 		goto rearm_and_exit;
640 
641 	eqe = lpfc_sli4_eq_get(eq);
642 	while (eqe) {
643 		lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
644 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
645 
646 		consumed++;
647 		if (!(++count % eq->max_proc_limit))
648 			break;
649 
650 		if (!(count % eq->notify_interval)) {
651 			phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
652 							LPFC_QUEUE_NOARM);
653 			consumed = 0;
654 		}
655 
656 		eqe = lpfc_sli4_eq_get(eq);
657 	}
658 	eq->EQ_processed += count;
659 
660 	/* Track the max number of EQEs processed in 1 intr */
661 	if (count > eq->EQ_max_eqe)
662 		eq->EQ_max_eqe = count;
663 
664 	xchg(&eq->queue_claimed, 0);
665 
666 rearm_and_exit:
667 	/* Always clear the EQ. */
668 	phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm);
669 
670 	return count;
671 }
672 
673 /**
674  * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
675  * @q: The Completion Queue to get the first valid CQE from
676  *
677  * This routine will get the first valid Completion Queue Entry from @q, update
678  * the queue's internal hba index, and return the CQE. If no valid CQEs are in
679  * the Queue (no more work to do), or the Queue is full of CQEs that have been
680  * processed, but not popped back to the HBA then this routine will return NULL.
681  **/
682 static struct lpfc_cqe *
683 lpfc_sli4_cq_get(struct lpfc_queue *q)
684 {
685 	struct lpfc_cqe *cqe;
686 
687 	/* sanity check on queue memory */
688 	if (unlikely(!q))
689 		return NULL;
690 	cqe = lpfc_sli4_qe(q, q->host_index);
691 
692 	/* If the next CQE is not valid then we are done */
693 	if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
694 		return NULL;
695 
696 	/*
697 	 * insert barrier for instruction interlock : data from the hardware
698 	 * must have the valid bit checked before it can be copied and acted
699 	 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
700 	 * instructions allowing action on content before valid bit checked,
701 	 * add barrier here as well. May not be needed as "content" is a
702 	 * single 32-bit entity here (vs multi word structure for cq's).
703 	 */
704 	mb();
705 	return cqe;
706 }
707 
708 static void
709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
710 			struct lpfc_cqe *cqe)
711 {
712 	if (!phba->sli4_hba.pc_sli4_params.cqav)
713 		bf_set_le32(lpfc_cqe_valid, cqe, 0);
714 
715 	cq->host_index = ((cq->host_index + 1) % cq->entry_count);
716 
717 	/* if the index wrapped around, toggle the valid bit */
718 	if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
719 		cq->qe_valid = (cq->qe_valid) ? 0 : 1;
720 }
721 
722 /**
723  * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
724  * @phba: the adapter with the CQ
725  * @q: The Completion Queue that the host has completed processing for.
726  * @count: the number of elements that were consumed
727  * @arm: Indicates whether the host wants to arms this CQ.
728  *
729  * This routine will notify the HBA, by ringing the doorbell, that the
730  * CQEs have been processed. The @arm parameter specifies whether the
731  * queue should be rearmed when ringing the doorbell.
732  **/
733 void
734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
735 		     uint32_t count, bool arm)
736 {
737 	struct lpfc_register doorbell;
738 
739 	/* sanity check on queue memory */
740 	if (unlikely(!q || (count == 0 && !arm)))
741 		return;
742 
743 	/* ring doorbell for number popped */
744 	doorbell.word0 = 0;
745 	if (arm)
746 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
747 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
748 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
749 	bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
750 			(q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
751 	bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
752 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
753 }
754 
755 /**
756  * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
757  * @phba: the adapter with the CQ
758  * @q: The Completion Queue that the host has completed processing for.
759  * @count: the number of elements that were consumed
760  * @arm: Indicates whether the host wants to arms this CQ.
761  *
762  * This routine will notify the HBA, by ringing the doorbell, that the
763  * CQEs have been processed. The @arm parameter specifies whether the
764  * queue should be rearmed when ringing the doorbell.
765  **/
766 void
767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
768 			 uint32_t count, bool arm)
769 {
770 	struct lpfc_register doorbell;
771 
772 	/* sanity check on queue memory */
773 	if (unlikely(!q || (count == 0 && !arm)))
774 		return;
775 
776 	/* ring doorbell for number popped */
777 	doorbell.word0 = 0;
778 	if (arm)
779 		bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
780 	bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
781 	bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
782 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
783 }
784 
785 /*
786  * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
787  *
788  * This routine will copy the contents of @wqe to the next available entry on
789  * the @q. This function will then ring the Receive Queue Doorbell to signal the
790  * HBA to start processing the Receive Queue Entry. This function returns the
791  * index that the rqe was copied to if successful. If no entries are available
792  * on @q then this function will return -ENOMEM.
793  * The caller is expected to hold the hbalock when calling this routine.
794  **/
795 int
796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
797 		 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
798 {
799 	struct lpfc_rqe *temp_hrqe;
800 	struct lpfc_rqe *temp_drqe;
801 	struct lpfc_register doorbell;
802 	int hq_put_index;
803 	int dq_put_index;
804 
805 	/* sanity check on queue memory */
806 	if (unlikely(!hq) || unlikely(!dq))
807 		return -ENOMEM;
808 	hq_put_index = hq->host_index;
809 	dq_put_index = dq->host_index;
810 	temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
811 	temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
812 
813 	if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
814 		return -EINVAL;
815 	if (hq_put_index != dq_put_index)
816 		return -EINVAL;
817 	/* If the host has not yet processed the next entry then we are done */
818 	if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
819 		return -EBUSY;
820 	lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
821 	lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
822 
823 	/* Update the host index to point to the next slot */
824 	hq->host_index = ((hq_put_index + 1) % hq->entry_count);
825 	dq->host_index = ((dq_put_index + 1) % dq->entry_count);
826 	hq->RQ_buf_posted++;
827 
828 	/* Ring The Header Receive Queue Doorbell */
829 	if (!(hq->host_index % hq->notify_interval)) {
830 		doorbell.word0 = 0;
831 		if (hq->db_format == LPFC_DB_RING_FORMAT) {
832 			bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
833 			       hq->notify_interval);
834 			bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
835 		} else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
836 			bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
837 			       hq->notify_interval);
838 			bf_set(lpfc_rq_db_list_fm_index, &doorbell,
839 			       hq->host_index);
840 			bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
841 		} else {
842 			return -EINVAL;
843 		}
844 		writel(doorbell.word0, hq->db_regaddr);
845 	}
846 	return hq_put_index;
847 }
848 
849 /*
850  * lpfc_sli4_rq_release - Updates internal hba index for RQ
851  *
852  * This routine will update the HBA index of a queue to reflect consumption of
853  * one Receive Queue Entry by the HBA. When the HBA indicates that it has
854  * consumed an entry the host calls this function to update the queue's
855  * internal pointers. This routine returns the number of entries that were
856  * consumed by the HBA.
857  **/
858 static uint32_t
859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
860 {
861 	/* sanity check on queue memory */
862 	if (unlikely(!hq) || unlikely(!dq))
863 		return 0;
864 
865 	if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
866 		return 0;
867 	hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
868 	dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
869 	return 1;
870 }
871 
872 /**
873  * lpfc_cmd_iocb - Get next command iocb entry in the ring
874  * @phba: Pointer to HBA context object.
875  * @pring: Pointer to driver SLI ring object.
876  *
877  * This function returns pointer to next command iocb entry
878  * in the command ring. The caller must hold hbalock to prevent
879  * other threads consume the next command iocb.
880  * SLI-2/SLI-3 provide different sized iocbs.
881  **/
882 static inline IOCB_t *
883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
884 {
885 	return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
886 			   pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
887 }
888 
889 /**
890  * lpfc_resp_iocb - Get next response iocb entry in the ring
891  * @phba: Pointer to HBA context object.
892  * @pring: Pointer to driver SLI ring object.
893  *
894  * This function returns pointer to next response iocb entry
895  * in the response ring. The caller must hold hbalock to make sure
896  * that no other thread consume the next response iocb.
897  * SLI-2/SLI-3 provide different sized iocbs.
898  **/
899 static inline IOCB_t *
900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
901 {
902 	return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
903 			   pring->sli.sli3.rspidx * phba->iocb_rsp_size);
904 }
905 
906 /**
907  * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
908  * @phba: Pointer to HBA context object.
909  *
910  * This function is called with hbalock held. This function
911  * allocates a new driver iocb object from the iocb pool. If the
912  * allocation is successful, it returns pointer to the newly
913  * allocated iocb object else it returns NULL.
914  **/
915 struct lpfc_iocbq *
916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
917 {
918 	struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
919 	struct lpfc_iocbq * iocbq = NULL;
920 
921 	lockdep_assert_held(&phba->hbalock);
922 
923 	list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
924 	if (iocbq)
925 		phba->iocb_cnt++;
926 	if (phba->iocb_cnt > phba->iocb_max)
927 		phba->iocb_max = phba->iocb_cnt;
928 	return iocbq;
929 }
930 
931 /**
932  * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
933  * @phba: Pointer to HBA context object.
934  * @xritag: XRI value.
935  *
936  * This function clears the sglq pointer from the array of active
937  * sglq's. The xritag that is passed in is used to index into the
938  * array. Before the xritag can be used it needs to be adjusted
939  * by subtracting the xribase.
940  *
941  * Returns sglq ponter = success, NULL = Failure.
942  **/
943 struct lpfc_sglq *
944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
945 {
946 	struct lpfc_sglq *sglq;
947 
948 	sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
949 	phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
950 	return sglq;
951 }
952 
953 /**
954  * __lpfc_get_active_sglq - Get the active sglq for this XRI.
955  * @phba: Pointer to HBA context object.
956  * @xritag: XRI value.
957  *
958  * This function returns the sglq pointer from the array of active
959  * sglq's. The xritag that is passed in is used to index into the
960  * array. Before the xritag can be used it needs to be adjusted
961  * by subtracting the xribase.
962  *
963  * Returns sglq ponter = success, NULL = Failure.
964  **/
965 struct lpfc_sglq *
966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
967 {
968 	struct lpfc_sglq *sglq;
969 
970 	sglq =  phba->sli4_hba.lpfc_sglq_active_list[xritag];
971 	return sglq;
972 }
973 
974 /**
975  * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
976  * @phba: Pointer to HBA context object.
977  * @xritag: xri used in this exchange.
978  * @rrq: The RRQ to be cleared.
979  *
980  **/
981 void
982 lpfc_clr_rrq_active(struct lpfc_hba *phba,
983 		    uint16_t xritag,
984 		    struct lpfc_node_rrq *rrq)
985 {
986 	struct lpfc_nodelist *ndlp = NULL;
987 
988 	/* Lookup did to verify if did is still active on this vport */
989 	if (rrq->vport)
990 		ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
991 
992 	if (!ndlp)
993 		goto out;
994 
995 	if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
996 		rrq->send_rrq = 0;
997 		rrq->xritag = 0;
998 		rrq->rrq_stop_time = 0;
999 	}
1000 out:
1001 	mempool_free(rrq, phba->rrq_pool);
1002 }
1003 
1004 /**
1005  * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
1006  * @phba: Pointer to HBA context object.
1007  *
1008  * This function is called with hbalock held. This function
1009  * Checks if stop_time (ratov from setting rrq active) has
1010  * been reached, if it has and the send_rrq flag is set then
1011  * it will call lpfc_send_rrq. If the send_rrq flag is not set
1012  * then it will just call the routine to clear the rrq and
1013  * free the rrq resource.
1014  * The timer is set to the next rrq that is going to expire before
1015  * leaving the routine.
1016  *
1017  **/
1018 void
1019 lpfc_handle_rrq_active(struct lpfc_hba *phba)
1020 {
1021 	struct lpfc_node_rrq *rrq;
1022 	struct lpfc_node_rrq *nextrrq;
1023 	unsigned long next_time;
1024 	unsigned long iflags;
1025 	LIST_HEAD(send_rrq);
1026 
1027 	spin_lock_irqsave(&phba->hbalock, iflags);
1028 	phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1029 	next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1030 	list_for_each_entry_safe(rrq, nextrrq,
1031 				 &phba->active_rrq_list, list) {
1032 		if (time_after(jiffies, rrq->rrq_stop_time))
1033 			list_move(&rrq->list, &send_rrq);
1034 		else if (time_before(rrq->rrq_stop_time, next_time))
1035 			next_time = rrq->rrq_stop_time;
1036 	}
1037 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1038 	if ((!list_empty(&phba->active_rrq_list)) &&
1039 	    (!(phba->pport->load_flag & FC_UNLOADING)))
1040 		mod_timer(&phba->rrq_tmr, next_time);
1041 	list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
1042 		list_del(&rrq->list);
1043 		if (!rrq->send_rrq) {
1044 			/* this call will free the rrq */
1045 			lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1046 		} else if (lpfc_send_rrq(phba, rrq)) {
1047 			/* if we send the rrq then the completion handler
1048 			*  will clear the bit in the xribitmap.
1049 			*/
1050 			lpfc_clr_rrq_active(phba, rrq->xritag,
1051 					    rrq);
1052 		}
1053 	}
1054 }
1055 
1056 /**
1057  * lpfc_get_active_rrq - Get the active RRQ for this exchange.
1058  * @vport: Pointer to vport context object.
1059  * @xri: The xri used in the exchange.
1060  * @did: The targets DID for this exchange.
1061  *
1062  * returns NULL = rrq not found in the phba->active_rrq_list.
1063  *         rrq = rrq for this xri and target.
1064  **/
1065 struct lpfc_node_rrq *
1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
1067 {
1068 	struct lpfc_hba *phba = vport->phba;
1069 	struct lpfc_node_rrq *rrq;
1070 	struct lpfc_node_rrq *nextrrq;
1071 	unsigned long iflags;
1072 
1073 	if (phba->sli_rev != LPFC_SLI_REV4)
1074 		return NULL;
1075 	spin_lock_irqsave(&phba->hbalock, iflags);
1076 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1077 		if (rrq->vport == vport && rrq->xritag == xri &&
1078 				rrq->nlp_DID == did){
1079 			list_del(&rrq->list);
1080 			spin_unlock_irqrestore(&phba->hbalock, iflags);
1081 			return rrq;
1082 		}
1083 	}
1084 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1085 	return NULL;
1086 }
1087 
1088 /**
1089  * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
1090  * @vport: Pointer to vport context object.
1091  * @ndlp: Pointer to the lpfc_node_list structure.
1092  * If ndlp is NULL Remove all active RRQs for this vport from the
1093  * phba->active_rrq_list and clear the rrq.
1094  * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
1095  **/
1096 void
1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
1098 
1099 {
1100 	struct lpfc_hba *phba = vport->phba;
1101 	struct lpfc_node_rrq *rrq;
1102 	struct lpfc_node_rrq *nextrrq;
1103 	unsigned long iflags;
1104 	LIST_HEAD(rrq_list);
1105 
1106 	if (phba->sli_rev != LPFC_SLI_REV4)
1107 		return;
1108 	if (!ndlp) {
1109 		lpfc_sli4_vport_delete_els_xri_aborted(vport);
1110 		lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
1111 	}
1112 	spin_lock_irqsave(&phba->hbalock, iflags);
1113 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1114 		if (rrq->vport != vport)
1115 			continue;
1116 
1117 		if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID))
1118 			list_move(&rrq->list, &rrq_list);
1119 
1120 	}
1121 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1122 
1123 	list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1124 		list_del(&rrq->list);
1125 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1126 	}
1127 }
1128 
1129 /**
1130  * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1131  * @phba: Pointer to HBA context object.
1132  * @ndlp: Targets nodelist pointer for this exchange.
1133  * @xritag: the xri in the bitmap to test.
1134  *
1135  * This function returns:
1136  * 0 = rrq not active for this xri
1137  * 1 = rrq is valid for this xri.
1138  **/
1139 int
1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1141 			uint16_t  xritag)
1142 {
1143 	if (!ndlp)
1144 		return 0;
1145 	if (!ndlp->active_rrqs_xri_bitmap)
1146 		return 0;
1147 	if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1148 		return 1;
1149 	else
1150 		return 0;
1151 }
1152 
1153 /**
1154  * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1155  * @phba: Pointer to HBA context object.
1156  * @ndlp: nodelist pointer for this target.
1157  * @xritag: xri used in this exchange.
1158  * @rxid: Remote Exchange ID.
1159  * @send_rrq: Flag used to determine if we should send rrq els cmd.
1160  *
1161  * This function takes the hbalock.
1162  * The active bit is always set in the active rrq xri_bitmap even
1163  * if there is no slot avaiable for the other rrq information.
1164  *
1165  * returns 0 rrq actived for this xri
1166  *         < 0 No memory or invalid ndlp.
1167  **/
1168 int
1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1170 		    uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1171 {
1172 	unsigned long iflags;
1173 	struct lpfc_node_rrq *rrq;
1174 	int empty;
1175 
1176 	if (!ndlp)
1177 		return -EINVAL;
1178 
1179 	if (!phba->cfg_enable_rrq)
1180 		return -EINVAL;
1181 
1182 	spin_lock_irqsave(&phba->hbalock, iflags);
1183 	if (phba->pport->load_flag & FC_UNLOADING) {
1184 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1185 		goto out;
1186 	}
1187 
1188 	if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1189 		goto out;
1190 
1191 	if (!ndlp->active_rrqs_xri_bitmap)
1192 		goto out;
1193 
1194 	if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1195 		goto out;
1196 
1197 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1198 	rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC);
1199 	if (!rrq) {
1200 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1201 				"3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1202 				" DID:0x%x Send:%d\n",
1203 				xritag, rxid, ndlp->nlp_DID, send_rrq);
1204 		return -EINVAL;
1205 	}
1206 	if (phba->cfg_enable_rrq == 1)
1207 		rrq->send_rrq = send_rrq;
1208 	else
1209 		rrq->send_rrq = 0;
1210 	rrq->xritag = xritag;
1211 	rrq->rrq_stop_time = jiffies +
1212 				msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1213 	rrq->nlp_DID = ndlp->nlp_DID;
1214 	rrq->vport = ndlp->vport;
1215 	rrq->rxid = rxid;
1216 	spin_lock_irqsave(&phba->hbalock, iflags);
1217 	empty = list_empty(&phba->active_rrq_list);
1218 	list_add_tail(&rrq->list, &phba->active_rrq_list);
1219 	phba->hba_flag |= HBA_RRQ_ACTIVE;
1220 	if (empty)
1221 		lpfc_worker_wake_up(phba);
1222 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1223 	return 0;
1224 out:
1225 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1226 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1227 			"2921 Can't set rrq active xri:0x%x rxid:0x%x"
1228 			" DID:0x%x Send:%d\n",
1229 			xritag, rxid, ndlp->nlp_DID, send_rrq);
1230 	return -EINVAL;
1231 }
1232 
1233 /**
1234  * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1235  * @phba: Pointer to HBA context object.
1236  * @piocbq: Pointer to the iocbq.
1237  *
1238  * The driver calls this function with either the nvme ls ring lock
1239  * or the fc els ring lock held depending on the iocb usage.  This function
1240  * gets a new driver sglq object from the sglq list. If the list is not empty
1241  * then it is successful, it returns pointer to the newly allocated sglq
1242  * object else it returns NULL.
1243  **/
1244 static struct lpfc_sglq *
1245 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1246 {
1247 	struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1248 	struct lpfc_sglq *sglq = NULL;
1249 	struct lpfc_sglq *start_sglq = NULL;
1250 	struct lpfc_io_buf *lpfc_cmd;
1251 	struct lpfc_nodelist *ndlp;
1252 	int found = 0;
1253 	u8 cmnd;
1254 
1255 	cmnd = get_job_cmnd(phba, piocbq);
1256 
1257 	if (piocbq->cmd_flag & LPFC_IO_FCP) {
1258 		lpfc_cmd = piocbq->io_buf;
1259 		ndlp = lpfc_cmd->rdata->pnode;
1260 	} else  if ((cmnd == CMD_GEN_REQUEST64_CR) &&
1261 			!(piocbq->cmd_flag & LPFC_IO_LIBDFC)) {
1262 		ndlp = piocbq->ndlp;
1263 	} else  if (piocbq->cmd_flag & LPFC_IO_LIBDFC) {
1264 		if (piocbq->cmd_flag & LPFC_IO_LOOPBACK)
1265 			ndlp = NULL;
1266 		else
1267 			ndlp = piocbq->ndlp;
1268 	} else {
1269 		ndlp = piocbq->ndlp;
1270 	}
1271 
1272 	spin_lock(&phba->sli4_hba.sgl_list_lock);
1273 	list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1274 	start_sglq = sglq;
1275 	while (!found) {
1276 		if (!sglq)
1277 			break;
1278 		if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1279 		    test_bit(sglq->sli4_lxritag,
1280 		    ndlp->active_rrqs_xri_bitmap)) {
1281 			/* This xri has an rrq outstanding for this DID.
1282 			 * put it back in the list and get another xri.
1283 			 */
1284 			list_add_tail(&sglq->list, lpfc_els_sgl_list);
1285 			sglq = NULL;
1286 			list_remove_head(lpfc_els_sgl_list, sglq,
1287 						struct lpfc_sglq, list);
1288 			if (sglq == start_sglq) {
1289 				list_add_tail(&sglq->list, lpfc_els_sgl_list);
1290 				sglq = NULL;
1291 				break;
1292 			} else
1293 				continue;
1294 		}
1295 		sglq->ndlp = ndlp;
1296 		found = 1;
1297 		phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1298 		sglq->state = SGL_ALLOCATED;
1299 	}
1300 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
1301 	return sglq;
1302 }
1303 
1304 /**
1305  * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1306  * @phba: Pointer to HBA context object.
1307  * @piocbq: Pointer to the iocbq.
1308  *
1309  * This function is called with the sgl_list lock held. This function
1310  * gets a new driver sglq object from the sglq list. If the
1311  * list is not empty then it is successful, it returns pointer to the newly
1312  * allocated sglq object else it returns NULL.
1313  **/
1314 struct lpfc_sglq *
1315 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1316 {
1317 	struct list_head *lpfc_nvmet_sgl_list;
1318 	struct lpfc_sglq *sglq = NULL;
1319 
1320 	lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1321 
1322 	lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1323 
1324 	list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1325 	if (!sglq)
1326 		return NULL;
1327 	phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1328 	sglq->state = SGL_ALLOCATED;
1329 	return sglq;
1330 }
1331 
1332 /**
1333  * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1334  * @phba: Pointer to HBA context object.
1335  *
1336  * This function is called with no lock held. This function
1337  * allocates a new driver iocb object from the iocb pool. If the
1338  * allocation is successful, it returns pointer to the newly
1339  * allocated iocb object else it returns NULL.
1340  **/
1341 struct lpfc_iocbq *
1342 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1343 {
1344 	struct lpfc_iocbq * iocbq = NULL;
1345 	unsigned long iflags;
1346 
1347 	spin_lock_irqsave(&phba->hbalock, iflags);
1348 	iocbq = __lpfc_sli_get_iocbq(phba);
1349 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1350 	return iocbq;
1351 }
1352 
1353 /**
1354  * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1355  * @phba: Pointer to HBA context object.
1356  * @iocbq: Pointer to driver iocb object.
1357  *
1358  * This function is called to release the driver iocb object
1359  * to the iocb pool. The iotag in the iocb object
1360  * does not change for each use of the iocb object. This function
1361  * clears all other fields of the iocb object when it is freed.
1362  * The sqlq structure that holds the xritag and phys and virtual
1363  * mappings for the scatter gather list is retrieved from the
1364  * active array of sglq. The get of the sglq pointer also clears
1365  * the entry in the array. If the status of the IO indiactes that
1366  * this IO was aborted then the sglq entry it put on the
1367  * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1368  * IO has good status or fails for any other reason then the sglq
1369  * entry is added to the free list (lpfc_els_sgl_list). The hbalock is
1370  *  asserted held in the code path calling this routine.
1371  **/
1372 static void
1373 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1374 {
1375 	struct lpfc_sglq *sglq;
1376 	size_t start_clean = offsetof(struct lpfc_iocbq, wqe);
1377 	unsigned long iflag = 0;
1378 	struct lpfc_sli_ring *pring;
1379 
1380 	if (iocbq->sli4_xritag == NO_XRI)
1381 		sglq = NULL;
1382 	else
1383 		sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1384 
1385 
1386 	if (sglq)  {
1387 		if (iocbq->cmd_flag & LPFC_IO_NVMET) {
1388 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1389 					  iflag);
1390 			sglq->state = SGL_FREED;
1391 			sglq->ndlp = NULL;
1392 			list_add_tail(&sglq->list,
1393 				      &phba->sli4_hba.lpfc_nvmet_sgl_list);
1394 			spin_unlock_irqrestore(
1395 				&phba->sli4_hba.sgl_list_lock, iflag);
1396 			goto out;
1397 		}
1398 
1399 		if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) &&
1400 		    (!(unlikely(pci_channel_offline(phba->pcidev)))) &&
1401 		    sglq->state != SGL_XRI_ABORTED) {
1402 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1403 					  iflag);
1404 
1405 			/* Check if we can get a reference on ndlp */
1406 			if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp))
1407 				sglq->ndlp = NULL;
1408 
1409 			list_add(&sglq->list,
1410 				 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1411 			spin_unlock_irqrestore(
1412 				&phba->sli4_hba.sgl_list_lock, iflag);
1413 		} else {
1414 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1415 					  iflag);
1416 			sglq->state = SGL_FREED;
1417 			sglq->ndlp = NULL;
1418 			list_add_tail(&sglq->list,
1419 				      &phba->sli4_hba.lpfc_els_sgl_list);
1420 			spin_unlock_irqrestore(
1421 				&phba->sli4_hba.sgl_list_lock, iflag);
1422 			pring = lpfc_phba_elsring(phba);
1423 			/* Check if TXQ queue needs to be serviced */
1424 			if (pring && (!list_empty(&pring->txq)))
1425 				lpfc_worker_wake_up(phba);
1426 		}
1427 	}
1428 
1429 out:
1430 	/*
1431 	 * Clean all volatile data fields, preserve iotag and node struct.
1432 	 */
1433 	memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1434 	iocbq->sli4_lxritag = NO_XRI;
1435 	iocbq->sli4_xritag = NO_XRI;
1436 	iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF |
1437 			      LPFC_IO_NVME_LS);
1438 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1439 }
1440 
1441 
1442 /**
1443  * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1444  * @phba: Pointer to HBA context object.
1445  * @iocbq: Pointer to driver iocb object.
1446  *
1447  * This function is called to release the driver iocb object to the
1448  * iocb pool. The iotag in the iocb object does not change for each
1449  * use of the iocb object. This function clears all other fields of
1450  * the iocb object when it is freed. The hbalock is asserted held in
1451  * the code path calling this routine.
1452  **/
1453 static void
1454 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1455 {
1456 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1457 
1458 	/*
1459 	 * Clean all volatile data fields, preserve iotag and node struct.
1460 	 */
1461 	memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1462 	iocbq->sli4_xritag = NO_XRI;
1463 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1464 }
1465 
1466 /**
1467  * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1468  * @phba: Pointer to HBA context object.
1469  * @iocbq: Pointer to driver iocb object.
1470  *
1471  * This function is called with hbalock held to release driver
1472  * iocb object to the iocb pool. The iotag in the iocb object
1473  * does not change for each use of the iocb object. This function
1474  * clears all other fields of the iocb object when it is freed.
1475  **/
1476 static void
1477 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1478 {
1479 	lockdep_assert_held(&phba->hbalock);
1480 
1481 	phba->__lpfc_sli_release_iocbq(phba, iocbq);
1482 	phba->iocb_cnt--;
1483 }
1484 
1485 /**
1486  * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1487  * @phba: Pointer to HBA context object.
1488  * @iocbq: Pointer to driver iocb object.
1489  *
1490  * This function is called with no lock held to release the iocb to
1491  * iocb pool.
1492  **/
1493 void
1494 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1495 {
1496 	unsigned long iflags;
1497 
1498 	/*
1499 	 * Clean all volatile data fields, preserve iotag and node struct.
1500 	 */
1501 	spin_lock_irqsave(&phba->hbalock, iflags);
1502 	__lpfc_sli_release_iocbq(phba, iocbq);
1503 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1504 }
1505 
1506 /**
1507  * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1508  * @phba: Pointer to HBA context object.
1509  * @iocblist: List of IOCBs.
1510  * @ulpstatus: ULP status in IOCB command field.
1511  * @ulpWord4: ULP word-4 in IOCB command field.
1512  *
1513  * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1514  * on the list by invoking the complete callback function associated with the
1515  * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1516  * fields.
1517  **/
1518 void
1519 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1520 		      uint32_t ulpstatus, uint32_t ulpWord4)
1521 {
1522 	struct lpfc_iocbq *piocb;
1523 
1524 	while (!list_empty(iocblist)) {
1525 		list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1526 		if (piocb->cmd_cmpl) {
1527 			if (piocb->cmd_flag & LPFC_IO_NVME) {
1528 				lpfc_nvme_cancel_iocb(phba, piocb,
1529 						      ulpstatus, ulpWord4);
1530 			} else {
1531 				if (phba->sli_rev == LPFC_SLI_REV4) {
1532 					bf_set(lpfc_wcqe_c_status,
1533 					       &piocb->wcqe_cmpl, ulpstatus);
1534 					piocb->wcqe_cmpl.parameter = ulpWord4;
1535 				} else {
1536 					piocb->iocb.ulpStatus = ulpstatus;
1537 					piocb->iocb.un.ulpWord[4] = ulpWord4;
1538 				}
1539 				(piocb->cmd_cmpl) (phba, piocb, piocb);
1540 			}
1541 		} else {
1542 			lpfc_sli_release_iocbq(phba, piocb);
1543 		}
1544 	}
1545 	return;
1546 }
1547 
1548 /**
1549  * lpfc_sli_iocb_cmd_type - Get the iocb type
1550  * @iocb_cmnd: iocb command code.
1551  *
1552  * This function is called by ring event handler function to get the iocb type.
1553  * This function translates the iocb command to an iocb command type used to
1554  * decide the final disposition of each completed IOCB.
1555  * The function returns
1556  * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1557  * LPFC_SOL_IOCB     if it is a solicited iocb completion
1558  * LPFC_ABORT_IOCB   if it is an abort iocb
1559  * LPFC_UNSOL_IOCB   if it is an unsolicited iocb
1560  *
1561  * The caller is not required to hold any lock.
1562  **/
1563 static lpfc_iocb_type
1564 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1565 {
1566 	lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1567 
1568 	if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1569 		return 0;
1570 
1571 	switch (iocb_cmnd) {
1572 	case CMD_XMIT_SEQUENCE_CR:
1573 	case CMD_XMIT_SEQUENCE_CX:
1574 	case CMD_XMIT_BCAST_CN:
1575 	case CMD_XMIT_BCAST_CX:
1576 	case CMD_ELS_REQUEST_CR:
1577 	case CMD_ELS_REQUEST_CX:
1578 	case CMD_CREATE_XRI_CR:
1579 	case CMD_CREATE_XRI_CX:
1580 	case CMD_GET_RPI_CN:
1581 	case CMD_XMIT_ELS_RSP_CX:
1582 	case CMD_GET_RPI_CR:
1583 	case CMD_FCP_IWRITE_CR:
1584 	case CMD_FCP_IWRITE_CX:
1585 	case CMD_FCP_IREAD_CR:
1586 	case CMD_FCP_IREAD_CX:
1587 	case CMD_FCP_ICMND_CR:
1588 	case CMD_FCP_ICMND_CX:
1589 	case CMD_FCP_TSEND_CX:
1590 	case CMD_FCP_TRSP_CX:
1591 	case CMD_FCP_TRECEIVE_CX:
1592 	case CMD_FCP_AUTO_TRSP_CX:
1593 	case CMD_ADAPTER_MSG:
1594 	case CMD_ADAPTER_DUMP:
1595 	case CMD_XMIT_SEQUENCE64_CR:
1596 	case CMD_XMIT_SEQUENCE64_CX:
1597 	case CMD_XMIT_BCAST64_CN:
1598 	case CMD_XMIT_BCAST64_CX:
1599 	case CMD_ELS_REQUEST64_CR:
1600 	case CMD_ELS_REQUEST64_CX:
1601 	case CMD_FCP_IWRITE64_CR:
1602 	case CMD_FCP_IWRITE64_CX:
1603 	case CMD_FCP_IREAD64_CR:
1604 	case CMD_FCP_IREAD64_CX:
1605 	case CMD_FCP_ICMND64_CR:
1606 	case CMD_FCP_ICMND64_CX:
1607 	case CMD_FCP_TSEND64_CX:
1608 	case CMD_FCP_TRSP64_CX:
1609 	case CMD_FCP_TRECEIVE64_CX:
1610 	case CMD_GEN_REQUEST64_CR:
1611 	case CMD_GEN_REQUEST64_CX:
1612 	case CMD_XMIT_ELS_RSP64_CX:
1613 	case DSSCMD_IWRITE64_CR:
1614 	case DSSCMD_IWRITE64_CX:
1615 	case DSSCMD_IREAD64_CR:
1616 	case DSSCMD_IREAD64_CX:
1617 	case CMD_SEND_FRAME:
1618 		type = LPFC_SOL_IOCB;
1619 		break;
1620 	case CMD_ABORT_XRI_CN:
1621 	case CMD_ABORT_XRI_CX:
1622 	case CMD_CLOSE_XRI_CN:
1623 	case CMD_CLOSE_XRI_CX:
1624 	case CMD_XRI_ABORTED_CX:
1625 	case CMD_ABORT_MXRI64_CN:
1626 	case CMD_XMIT_BLS_RSP64_CX:
1627 		type = LPFC_ABORT_IOCB;
1628 		break;
1629 	case CMD_RCV_SEQUENCE_CX:
1630 	case CMD_RCV_ELS_REQ_CX:
1631 	case CMD_RCV_SEQUENCE64_CX:
1632 	case CMD_RCV_ELS_REQ64_CX:
1633 	case CMD_ASYNC_STATUS:
1634 	case CMD_IOCB_RCV_SEQ64_CX:
1635 	case CMD_IOCB_RCV_ELS64_CX:
1636 	case CMD_IOCB_RCV_CONT64_CX:
1637 	case CMD_IOCB_RET_XRI64_CX:
1638 		type = LPFC_UNSOL_IOCB;
1639 		break;
1640 	case CMD_IOCB_XMIT_MSEQ64_CR:
1641 	case CMD_IOCB_XMIT_MSEQ64_CX:
1642 	case CMD_IOCB_RCV_SEQ_LIST64_CX:
1643 	case CMD_IOCB_RCV_ELS_LIST64_CX:
1644 	case CMD_IOCB_CLOSE_EXTENDED_CN:
1645 	case CMD_IOCB_ABORT_EXTENDED_CN:
1646 	case CMD_IOCB_RET_HBQE64_CN:
1647 	case CMD_IOCB_FCP_IBIDIR64_CR:
1648 	case CMD_IOCB_FCP_IBIDIR64_CX:
1649 	case CMD_IOCB_FCP_ITASKMGT64_CX:
1650 	case CMD_IOCB_LOGENTRY_CN:
1651 	case CMD_IOCB_LOGENTRY_ASYNC_CN:
1652 		printk("%s - Unhandled SLI-3 Command x%x\n",
1653 				__func__, iocb_cmnd);
1654 		type = LPFC_UNKNOWN_IOCB;
1655 		break;
1656 	default:
1657 		type = LPFC_UNKNOWN_IOCB;
1658 		break;
1659 	}
1660 
1661 	return type;
1662 }
1663 
1664 /**
1665  * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1666  * @phba: Pointer to HBA context object.
1667  *
1668  * This function is called from SLI initialization code
1669  * to configure every ring of the HBA's SLI interface. The
1670  * caller is not required to hold any lock. This function issues
1671  * a config_ring mailbox command for each ring.
1672  * This function returns zero if successful else returns a negative
1673  * error code.
1674  **/
1675 static int
1676 lpfc_sli_ring_map(struct lpfc_hba *phba)
1677 {
1678 	struct lpfc_sli *psli = &phba->sli;
1679 	LPFC_MBOXQ_t *pmb;
1680 	MAILBOX_t *pmbox;
1681 	int i, rc, ret = 0;
1682 
1683 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1684 	if (!pmb)
1685 		return -ENOMEM;
1686 	pmbox = &pmb->u.mb;
1687 	phba->link_state = LPFC_INIT_MBX_CMDS;
1688 	for (i = 0; i < psli->num_rings; i++) {
1689 		lpfc_config_ring(phba, i, pmb);
1690 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1691 		if (rc != MBX_SUCCESS) {
1692 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1693 					"0446 Adapter failed to init (%d), "
1694 					"mbxCmd x%x CFG_RING, mbxStatus x%x, "
1695 					"ring %d\n",
1696 					rc, pmbox->mbxCommand,
1697 					pmbox->mbxStatus, i);
1698 			phba->link_state = LPFC_HBA_ERROR;
1699 			ret = -ENXIO;
1700 			break;
1701 		}
1702 	}
1703 	mempool_free(pmb, phba->mbox_mem_pool);
1704 	return ret;
1705 }
1706 
1707 /**
1708  * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1709  * @phba: Pointer to HBA context object.
1710  * @pring: Pointer to driver SLI ring object.
1711  * @piocb: Pointer to the driver iocb object.
1712  *
1713  * The driver calls this function with the hbalock held for SLI3 ports or
1714  * the ring lock held for SLI4 ports. The function adds the
1715  * new iocb to txcmplq of the given ring. This function always returns
1716  * 0. If this function is called for ELS ring, this function checks if
1717  * there is a vport associated with the ELS command. This function also
1718  * starts els_tmofunc timer if this is an ELS command.
1719  **/
1720 static int
1721 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1722 			struct lpfc_iocbq *piocb)
1723 {
1724 	u32 ulp_command = 0;
1725 
1726 	BUG_ON(!piocb);
1727 	ulp_command = get_job_cmnd(phba, piocb);
1728 
1729 	list_add_tail(&piocb->list, &pring->txcmplq);
1730 	piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ;
1731 	pring->txcmplq_cnt++;
1732 	if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1733 	   (ulp_command != CMD_ABORT_XRI_WQE) &&
1734 	   (ulp_command != CMD_ABORT_XRI_CN) &&
1735 	   (ulp_command != CMD_CLOSE_XRI_CN)) {
1736 		BUG_ON(!piocb->vport);
1737 		if (!(piocb->vport->load_flag & FC_UNLOADING))
1738 			mod_timer(&piocb->vport->els_tmofunc,
1739 				  jiffies +
1740 				  msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1741 	}
1742 
1743 	return 0;
1744 }
1745 
1746 /**
1747  * lpfc_sli_ringtx_get - Get first element of the txq
1748  * @phba: Pointer to HBA context object.
1749  * @pring: Pointer to driver SLI ring object.
1750  *
1751  * This function is called with hbalock held to get next
1752  * iocb in txq of the given ring. If there is any iocb in
1753  * the txq, the function returns first iocb in the list after
1754  * removing the iocb from the list, else it returns NULL.
1755  **/
1756 struct lpfc_iocbq *
1757 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1758 {
1759 	struct lpfc_iocbq *cmd_iocb;
1760 
1761 	lockdep_assert_held(&phba->hbalock);
1762 
1763 	list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1764 	return cmd_iocb;
1765 }
1766 
1767 /**
1768  * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl
1769  * @phba: Pointer to HBA context object.
1770  * @cmdiocb: Pointer to driver command iocb object.
1771  * @rspiocb: Pointer to driver response iocb object.
1772  *
1773  * This routine will inform the driver of any BW adjustments we need
1774  * to make. These changes will be picked up during the next CMF
1775  * timer interrupt. In addition, any BW changes will be logged
1776  * with LOG_CGN_MGMT.
1777  **/
1778 static void
1779 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
1780 		   struct lpfc_iocbq *rspiocb)
1781 {
1782 	union lpfc_wqe128 *wqe;
1783 	uint32_t status, info;
1784 	struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl;
1785 	uint64_t bw, bwdif, slop;
1786 	uint64_t pcent, bwpcent;
1787 	int asig, afpin, sigcnt, fpincnt;
1788 	int wsigmax, wfpinmax, cg, tdp;
1789 	char *s;
1790 
1791 	/* First check for error */
1792 	status = bf_get(lpfc_wcqe_c_status, wcqe);
1793 	if (status) {
1794 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1795 				"6211 CMF_SYNC_WQE Error "
1796 				"req_tag x%x status x%x hwstatus x%x "
1797 				"tdatap x%x parm x%x\n",
1798 				bf_get(lpfc_wcqe_c_request_tag, wcqe),
1799 				bf_get(lpfc_wcqe_c_status, wcqe),
1800 				bf_get(lpfc_wcqe_c_hw_status, wcqe),
1801 				wcqe->total_data_placed,
1802 				wcqe->parameter);
1803 		goto out;
1804 	}
1805 
1806 	/* Gather congestion information on a successful cmpl */
1807 	info = wcqe->parameter;
1808 	phba->cmf_active_info = info;
1809 
1810 	/* See if firmware info count is valid or has changed */
1811 	if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info)
1812 		info = 0;
1813 	else
1814 		phba->cmf_info_per_interval = info;
1815 
1816 	tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe);
1817 	cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe);
1818 
1819 	/* Get BW requirement from firmware */
1820 	bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE;
1821 	if (!bw) {
1822 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1823 				"6212 CMF_SYNC_WQE x%x: NULL bw\n",
1824 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
1825 		goto out;
1826 	}
1827 
1828 	/* Gather information needed for logging if a BW change is required */
1829 	wqe = &cmdiocb->wqe;
1830 	asig = bf_get(cmf_sync_asig, &wqe->cmf_sync);
1831 	afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync);
1832 	fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync);
1833 	sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync);
1834 	if (phba->cmf_max_bytes_per_interval != bw ||
1835 	    (asig || afpin || sigcnt || fpincnt)) {
1836 		/* Are we increasing or decreasing BW */
1837 		if (phba->cmf_max_bytes_per_interval <  bw) {
1838 			bwdif = bw - phba->cmf_max_bytes_per_interval;
1839 			s = "Increase";
1840 		} else {
1841 			bwdif = phba->cmf_max_bytes_per_interval - bw;
1842 			s = "Decrease";
1843 		}
1844 
1845 		/* What is the change percentage */
1846 		slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/
1847 		pcent = div64_u64(bwdif * 100 + slop,
1848 				  phba->cmf_link_byte_count);
1849 		bwpcent = div64_u64(bw * 100 + slop,
1850 				    phba->cmf_link_byte_count);
1851 		if (asig) {
1852 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1853 					"6237 BW Threshold %lld%% (%lld): "
1854 					"%lld%% %s: Signal Alarm: cg:%d "
1855 					"Info:%u\n",
1856 					bwpcent, bw, pcent, s, cg,
1857 					phba->cmf_active_info);
1858 		} else if (afpin) {
1859 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1860 					"6238 BW Threshold %lld%% (%lld): "
1861 					"%lld%% %s: FPIN Alarm: cg:%d "
1862 					"Info:%u\n",
1863 					bwpcent, bw, pcent, s, cg,
1864 					phba->cmf_active_info);
1865 		} else if (sigcnt) {
1866 			wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync);
1867 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1868 					"6239 BW Threshold %lld%% (%lld): "
1869 					"%lld%% %s: Signal Warning: "
1870 					"Cnt %d Max %d: cg:%d Info:%u\n",
1871 					bwpcent, bw, pcent, s, sigcnt,
1872 					wsigmax, cg, phba->cmf_active_info);
1873 		} else if (fpincnt) {
1874 			wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync);
1875 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1876 					"6240 BW Threshold %lld%% (%lld): "
1877 					"%lld%% %s: FPIN Warning: "
1878 					"Cnt %d Max %d: cg:%d Info:%u\n",
1879 					bwpcent, bw, pcent, s, fpincnt,
1880 					wfpinmax, cg, phba->cmf_active_info);
1881 		} else {
1882 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1883 					"6241 BW Threshold %lld%% (%lld): "
1884 					"CMF %lld%% %s: cg:%d Info:%u\n",
1885 					bwpcent, bw, pcent, s, cg,
1886 					phba->cmf_active_info);
1887 		}
1888 	} else if (info) {
1889 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1890 				"6246 Info Threshold %u\n", info);
1891 	}
1892 
1893 	/* Save BW change to be picked up during next timer interrupt */
1894 	phba->cmf_last_sync_bw = bw;
1895 out:
1896 	lpfc_sli_release_iocbq(phba, cmdiocb);
1897 }
1898 
1899 /**
1900  * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE
1901  * @phba: Pointer to HBA context object.
1902  * @ms:   ms to set in WQE interval, 0 means use init op
1903  * @total: Total rcv bytes for this interval
1904  *
1905  * This routine is called every CMF timer interrupt. Its purpose is
1906  * to issue a CMF_SYNC_WQE to the firmware to inform it of any events
1907  * that may indicate we have congestion (FPINs or Signals). Upon
1908  * completion, the firmware will indicate any BW restrictions the
1909  * driver may need to take.
1910  **/
1911 int
1912 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total)
1913 {
1914 	union lpfc_wqe128 *wqe;
1915 	struct lpfc_iocbq *sync_buf;
1916 	unsigned long iflags;
1917 	u32 ret_val;
1918 	u32 atot, wtot, max;
1919 	u16 warn_sync_period = 0;
1920 
1921 	/* First address any alarm / warning activity */
1922 	atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0);
1923 	wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0);
1924 
1925 	/* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */
1926 	if (phba->cmf_active_mode != LPFC_CFG_MANAGED ||
1927 	    phba->link_state == LPFC_LINK_DOWN)
1928 		return 0;
1929 
1930 	spin_lock_irqsave(&phba->hbalock, iflags);
1931 	sync_buf = __lpfc_sli_get_iocbq(phba);
1932 	if (!sync_buf) {
1933 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
1934 				"6244 No available WQEs for CMF_SYNC_WQE\n");
1935 		ret_val = ENOMEM;
1936 		goto out_unlock;
1937 	}
1938 
1939 	wqe = &sync_buf->wqe;
1940 
1941 	/* WQEs are reused.  Clear stale data and set key fields to zero */
1942 	memset(wqe, 0, sizeof(*wqe));
1943 
1944 	/* If this is the very first CMF_SYNC_WQE, issue an init operation */
1945 	if (!ms) {
1946 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1947 				"6441 CMF Init %d - CMF_SYNC_WQE\n",
1948 				phba->fc_eventTag);
1949 		bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */
1950 		bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL);
1951 		goto initpath;
1952 	}
1953 
1954 	bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */
1955 	bf_set(cmf_sync_interval, &wqe->cmf_sync, ms);
1956 
1957 	/* Check for alarms / warnings */
1958 	if (atot) {
1959 		if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
1960 			/* We hit an Signal alarm condition */
1961 			bf_set(cmf_sync_asig, &wqe->cmf_sync, 1);
1962 		} else {
1963 			/* We hit a FPIN alarm condition */
1964 			bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1);
1965 		}
1966 	} else if (wtot) {
1967 		if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
1968 		    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
1969 			/* We hit an Signal warning condition */
1970 			max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency *
1971 				lpfc_acqe_cgn_frequency;
1972 			bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max);
1973 			bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot);
1974 			warn_sync_period = lpfc_acqe_cgn_frequency;
1975 		} else {
1976 			/* We hit a FPIN warning condition */
1977 			bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1);
1978 			bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1);
1979 			if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ)
1980 				warn_sync_period =
1981 				LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency);
1982 		}
1983 	}
1984 
1985 	/* Update total read blocks during previous timer interval */
1986 	wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE);
1987 
1988 initpath:
1989 	bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER);
1990 	wqe->cmf_sync.event_tag = phba->fc_eventTag;
1991 	bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE);
1992 
1993 	/* Setup reqtag to match the wqe completion. */
1994 	bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag);
1995 
1996 	bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1);
1997 	bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period);
1998 
1999 	bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND);
2000 	bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1);
2001 	bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT);
2002 
2003 	sync_buf->vport = phba->pport;
2004 	sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl;
2005 	sync_buf->cmd_dmabuf = NULL;
2006 	sync_buf->rsp_dmabuf = NULL;
2007 	sync_buf->bpl_dmabuf = NULL;
2008 	sync_buf->sli4_xritag = NO_XRI;
2009 
2010 	sync_buf->cmd_flag |= LPFC_IO_CMF;
2011 	ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf);
2012 	if (ret_val) {
2013 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
2014 				"6214 Cannot issue CMF_SYNC_WQE: x%x\n",
2015 				ret_val);
2016 		__lpfc_sli_release_iocbq(phba, sync_buf);
2017 	}
2018 out_unlock:
2019 	spin_unlock_irqrestore(&phba->hbalock, iflags);
2020 	return ret_val;
2021 }
2022 
2023 /**
2024  * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
2025  * @phba: Pointer to HBA context object.
2026  * @pring: Pointer to driver SLI ring object.
2027  *
2028  * This function is called with hbalock held and the caller must post the
2029  * iocb without releasing the lock. If the caller releases the lock,
2030  * iocb slot returned by the function is not guaranteed to be available.
2031  * The function returns pointer to the next available iocb slot if there
2032  * is available slot in the ring, else it returns NULL.
2033  * If the get index of the ring is ahead of the put index, the function
2034  * will post an error attention event to the worker thread to take the
2035  * HBA to offline state.
2036  **/
2037 static IOCB_t *
2038 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2039 {
2040 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
2041 	uint32_t  max_cmd_idx = pring->sli.sli3.numCiocb;
2042 
2043 	lockdep_assert_held(&phba->hbalock);
2044 
2045 	if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
2046 	   (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
2047 		pring->sli.sli3.next_cmdidx = 0;
2048 
2049 	if (unlikely(pring->sli.sli3.local_getidx ==
2050 		pring->sli.sli3.next_cmdidx)) {
2051 
2052 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
2053 
2054 		if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
2055 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2056 					"0315 Ring %d issue: portCmdGet %d "
2057 					"is bigger than cmd ring %d\n",
2058 					pring->ringno,
2059 					pring->sli.sli3.local_getidx,
2060 					max_cmd_idx);
2061 
2062 			phba->link_state = LPFC_HBA_ERROR;
2063 			/*
2064 			 * All error attention handlers are posted to
2065 			 * worker thread
2066 			 */
2067 			phba->work_ha |= HA_ERATT;
2068 			phba->work_hs = HS_FFER3;
2069 
2070 			lpfc_worker_wake_up(phba);
2071 
2072 			return NULL;
2073 		}
2074 
2075 		if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
2076 			return NULL;
2077 	}
2078 
2079 	return lpfc_cmd_iocb(phba, pring);
2080 }
2081 
2082 /**
2083  * lpfc_sli_next_iotag - Get an iotag for the iocb
2084  * @phba: Pointer to HBA context object.
2085  * @iocbq: Pointer to driver iocb object.
2086  *
2087  * This function gets an iotag for the iocb. If there is no unused iotag and
2088  * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
2089  * array and assigns a new iotag.
2090  * The function returns the allocated iotag if successful, else returns zero.
2091  * Zero is not a valid iotag.
2092  * The caller is not required to hold any lock.
2093  **/
2094 uint16_t
2095 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
2096 {
2097 	struct lpfc_iocbq **new_arr;
2098 	struct lpfc_iocbq **old_arr;
2099 	size_t new_len;
2100 	struct lpfc_sli *psli = &phba->sli;
2101 	uint16_t iotag;
2102 
2103 	spin_lock_irq(&phba->hbalock);
2104 	iotag = psli->last_iotag;
2105 	if(++iotag < psli->iocbq_lookup_len) {
2106 		psli->last_iotag = iotag;
2107 		psli->iocbq_lookup[iotag] = iocbq;
2108 		spin_unlock_irq(&phba->hbalock);
2109 		iocbq->iotag = iotag;
2110 		return iotag;
2111 	} else if (psli->iocbq_lookup_len < (0xffff
2112 					   - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
2113 		new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
2114 		spin_unlock_irq(&phba->hbalock);
2115 		new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
2116 				  GFP_KERNEL);
2117 		if (new_arr) {
2118 			spin_lock_irq(&phba->hbalock);
2119 			old_arr = psli->iocbq_lookup;
2120 			if (new_len <= psli->iocbq_lookup_len) {
2121 				/* highly unprobable case */
2122 				kfree(new_arr);
2123 				iotag = psli->last_iotag;
2124 				if(++iotag < psli->iocbq_lookup_len) {
2125 					psli->last_iotag = iotag;
2126 					psli->iocbq_lookup[iotag] = iocbq;
2127 					spin_unlock_irq(&phba->hbalock);
2128 					iocbq->iotag = iotag;
2129 					return iotag;
2130 				}
2131 				spin_unlock_irq(&phba->hbalock);
2132 				return 0;
2133 			}
2134 			if (psli->iocbq_lookup)
2135 				memcpy(new_arr, old_arr,
2136 				       ((psli->last_iotag  + 1) *
2137 					sizeof (struct lpfc_iocbq *)));
2138 			psli->iocbq_lookup = new_arr;
2139 			psli->iocbq_lookup_len = new_len;
2140 			psli->last_iotag = iotag;
2141 			psli->iocbq_lookup[iotag] = iocbq;
2142 			spin_unlock_irq(&phba->hbalock);
2143 			iocbq->iotag = iotag;
2144 			kfree(old_arr);
2145 			return iotag;
2146 		}
2147 	} else
2148 		spin_unlock_irq(&phba->hbalock);
2149 
2150 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2151 			"0318 Failed to allocate IOTAG.last IOTAG is %d\n",
2152 			psli->last_iotag);
2153 
2154 	return 0;
2155 }
2156 
2157 /**
2158  * lpfc_sli_submit_iocb - Submit an iocb to the firmware
2159  * @phba: Pointer to HBA context object.
2160  * @pring: Pointer to driver SLI ring object.
2161  * @iocb: Pointer to iocb slot in the ring.
2162  * @nextiocb: Pointer to driver iocb object which need to be
2163  *            posted to firmware.
2164  *
2165  * This function is called to post a new iocb to the firmware. This
2166  * function copies the new iocb to ring iocb slot and updates the
2167  * ring pointers. It adds the new iocb to txcmplq if there is
2168  * a completion call back for this iocb else the function will free the
2169  * iocb object.  The hbalock is asserted held in the code path calling
2170  * this routine.
2171  **/
2172 static void
2173 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2174 		IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
2175 {
2176 	/*
2177 	 * Set up an iotag
2178 	 */
2179 	nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0;
2180 
2181 
2182 	if (pring->ringno == LPFC_ELS_RING) {
2183 		lpfc_debugfs_slow_ring_trc(phba,
2184 			"IOCB cmd ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
2185 			*(((uint32_t *) &nextiocb->iocb) + 4),
2186 			*(((uint32_t *) &nextiocb->iocb) + 6),
2187 			*(((uint32_t *) &nextiocb->iocb) + 7));
2188 	}
2189 
2190 	/*
2191 	 * Issue iocb command to adapter
2192 	 */
2193 	lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
2194 	wmb();
2195 	pring->stats.iocb_cmd++;
2196 
2197 	/*
2198 	 * If there is no completion routine to call, we can release the
2199 	 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
2200 	 * that have no rsp ring completion, cmd_cmpl MUST be NULL.
2201 	 */
2202 	if (nextiocb->cmd_cmpl)
2203 		lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
2204 	else
2205 		__lpfc_sli_release_iocbq(phba, nextiocb);
2206 
2207 	/*
2208 	 * Let the HBA know what IOCB slot will be the next one the
2209 	 * driver will put a command into.
2210 	 */
2211 	pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
2212 	writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
2213 }
2214 
2215 /**
2216  * lpfc_sli_update_full_ring - Update the chip attention register
2217  * @phba: Pointer to HBA context object.
2218  * @pring: Pointer to driver SLI ring object.
2219  *
2220  * The caller is not required to hold any lock for calling this function.
2221  * This function updates the chip attention bits for the ring to inform firmware
2222  * that there are pending work to be done for this ring and requests an
2223  * interrupt when there is space available in the ring. This function is
2224  * called when the driver is unable to post more iocbs to the ring due
2225  * to unavailability of space in the ring.
2226  **/
2227 static void
2228 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2229 {
2230 	int ringno = pring->ringno;
2231 
2232 	pring->flag |= LPFC_CALL_RING_AVAILABLE;
2233 
2234 	wmb();
2235 
2236 	/*
2237 	 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
2238 	 * The HBA will tell us when an IOCB entry is available.
2239 	 */
2240 	writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
2241 	readl(phba->CAregaddr); /* flush */
2242 
2243 	pring->stats.iocb_cmd_full++;
2244 }
2245 
2246 /**
2247  * lpfc_sli_update_ring - Update chip attention register
2248  * @phba: Pointer to HBA context object.
2249  * @pring: Pointer to driver SLI ring object.
2250  *
2251  * This function updates the chip attention register bit for the
2252  * given ring to inform HBA that there is more work to be done
2253  * in this ring. The caller is not required to hold any lock.
2254  **/
2255 static void
2256 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2257 {
2258 	int ringno = pring->ringno;
2259 
2260 	/*
2261 	 * Tell the HBA that there is work to do in this ring.
2262 	 */
2263 	if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
2264 		wmb();
2265 		writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
2266 		readl(phba->CAregaddr); /* flush */
2267 	}
2268 }
2269 
2270 /**
2271  * lpfc_sli_resume_iocb - Process iocbs in the txq
2272  * @phba: Pointer to HBA context object.
2273  * @pring: Pointer to driver SLI ring object.
2274  *
2275  * This function is called with hbalock held to post pending iocbs
2276  * in the txq to the firmware. This function is called when driver
2277  * detects space available in the ring.
2278  **/
2279 static void
2280 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2281 {
2282 	IOCB_t *iocb;
2283 	struct lpfc_iocbq *nextiocb;
2284 
2285 	lockdep_assert_held(&phba->hbalock);
2286 
2287 	/*
2288 	 * Check to see if:
2289 	 *  (a) there is anything on the txq to send
2290 	 *  (b) link is up
2291 	 *  (c) link attention events can be processed (fcp ring only)
2292 	 *  (d) IOCB processing is not blocked by the outstanding mbox command.
2293 	 */
2294 
2295 	if (lpfc_is_link_up(phba) &&
2296 	    (!list_empty(&pring->txq)) &&
2297 	    (pring->ringno != LPFC_FCP_RING ||
2298 	     phba->sli.sli_flag & LPFC_PROCESS_LA)) {
2299 
2300 		while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
2301 		       (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
2302 			lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
2303 
2304 		if (iocb)
2305 			lpfc_sli_update_ring(phba, pring);
2306 		else
2307 			lpfc_sli_update_full_ring(phba, pring);
2308 	}
2309 
2310 	return;
2311 }
2312 
2313 /**
2314  * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
2315  * @phba: Pointer to HBA context object.
2316  * @hbqno: HBQ number.
2317  *
2318  * This function is called with hbalock held to get the next
2319  * available slot for the given HBQ. If there is free slot
2320  * available for the HBQ it will return pointer to the next available
2321  * HBQ entry else it will return NULL.
2322  **/
2323 static struct lpfc_hbq_entry *
2324 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
2325 {
2326 	struct hbq_s *hbqp = &phba->hbqs[hbqno];
2327 
2328 	lockdep_assert_held(&phba->hbalock);
2329 
2330 	if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
2331 	    ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
2332 		hbqp->next_hbqPutIdx = 0;
2333 
2334 	if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
2335 		uint32_t raw_index = phba->hbq_get[hbqno];
2336 		uint32_t getidx = le32_to_cpu(raw_index);
2337 
2338 		hbqp->local_hbqGetIdx = getidx;
2339 
2340 		if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
2341 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2342 					"1802 HBQ %d: local_hbqGetIdx "
2343 					"%u is > than hbqp->entry_count %u\n",
2344 					hbqno, hbqp->local_hbqGetIdx,
2345 					hbqp->entry_count);
2346 
2347 			phba->link_state = LPFC_HBA_ERROR;
2348 			return NULL;
2349 		}
2350 
2351 		if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
2352 			return NULL;
2353 	}
2354 
2355 	return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
2356 			hbqp->hbqPutIdx;
2357 }
2358 
2359 /**
2360  * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
2361  * @phba: Pointer to HBA context object.
2362  *
2363  * This function is called with no lock held to free all the
2364  * hbq buffers while uninitializing the SLI interface. It also
2365  * frees the HBQ buffers returned by the firmware but not yet
2366  * processed by the upper layers.
2367  **/
2368 void
2369 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
2370 {
2371 	struct lpfc_dmabuf *dmabuf, *next_dmabuf;
2372 	struct hbq_dmabuf *hbq_buf;
2373 	unsigned long flags;
2374 	int i, hbq_count;
2375 
2376 	hbq_count = lpfc_sli_hbq_count();
2377 	/* Return all memory used by all HBQs */
2378 	spin_lock_irqsave(&phba->hbalock, flags);
2379 	for (i = 0; i < hbq_count; ++i) {
2380 		list_for_each_entry_safe(dmabuf, next_dmabuf,
2381 				&phba->hbqs[i].hbq_buffer_list, list) {
2382 			hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
2383 			list_del(&hbq_buf->dbuf.list);
2384 			(phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
2385 		}
2386 		phba->hbqs[i].buffer_count = 0;
2387 	}
2388 
2389 	/* Mark the HBQs not in use */
2390 	phba->hbq_in_use = 0;
2391 	spin_unlock_irqrestore(&phba->hbalock, flags);
2392 }
2393 
2394 /**
2395  * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2396  * @phba: Pointer to HBA context object.
2397  * @hbqno: HBQ number.
2398  * @hbq_buf: Pointer to HBQ buffer.
2399  *
2400  * This function is called with the hbalock held to post a
2401  * hbq buffer to the firmware. If the function finds an empty
2402  * slot in the HBQ, it will post the buffer. The function will return
2403  * pointer to the hbq entry if it successfully post the buffer
2404  * else it will return NULL.
2405  **/
2406 static int
2407 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2408 			 struct hbq_dmabuf *hbq_buf)
2409 {
2410 	lockdep_assert_held(&phba->hbalock);
2411 	return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2412 }
2413 
2414 /**
2415  * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2416  * @phba: Pointer to HBA context object.
2417  * @hbqno: HBQ number.
2418  * @hbq_buf: Pointer to HBQ buffer.
2419  *
2420  * This function is called with the hbalock held to post a hbq buffer to the
2421  * firmware. If the function finds an empty slot in the HBQ, it will post the
2422  * buffer and place it on the hbq_buffer_list. The function will return zero if
2423  * it successfully post the buffer else it will return an error.
2424  **/
2425 static int
2426 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2427 			    struct hbq_dmabuf *hbq_buf)
2428 {
2429 	struct lpfc_hbq_entry *hbqe;
2430 	dma_addr_t physaddr = hbq_buf->dbuf.phys;
2431 
2432 	lockdep_assert_held(&phba->hbalock);
2433 	/* Get next HBQ entry slot to use */
2434 	hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2435 	if (hbqe) {
2436 		struct hbq_s *hbqp = &phba->hbqs[hbqno];
2437 
2438 		hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2439 		hbqe->bde.addrLow  = le32_to_cpu(putPaddrLow(physaddr));
2440 		hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2441 		hbqe->bde.tus.f.bdeFlags = 0;
2442 		hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2443 		hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2444 				/* Sync SLIM */
2445 		hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2446 		writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2447 				/* flush */
2448 		readl(phba->hbq_put + hbqno);
2449 		list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2450 		return 0;
2451 	} else
2452 		return -ENOMEM;
2453 }
2454 
2455 /**
2456  * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2457  * @phba: Pointer to HBA context object.
2458  * @hbqno: HBQ number.
2459  * @hbq_buf: Pointer to HBQ buffer.
2460  *
2461  * This function is called with the hbalock held to post an RQE to the SLI4
2462  * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2463  * the hbq_buffer_list and return zero, otherwise it will return an error.
2464  **/
2465 static int
2466 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2467 			    struct hbq_dmabuf *hbq_buf)
2468 {
2469 	int rc;
2470 	struct lpfc_rqe hrqe;
2471 	struct lpfc_rqe drqe;
2472 	struct lpfc_queue *hrq;
2473 	struct lpfc_queue *drq;
2474 
2475 	if (hbqno != LPFC_ELS_HBQ)
2476 		return 1;
2477 	hrq = phba->sli4_hba.hdr_rq;
2478 	drq = phba->sli4_hba.dat_rq;
2479 
2480 	lockdep_assert_held(&phba->hbalock);
2481 	hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2482 	hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2483 	drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2484 	drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2485 	rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2486 	if (rc < 0)
2487 		return rc;
2488 	hbq_buf->tag = (rc | (hbqno << 16));
2489 	list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2490 	return 0;
2491 }
2492 
2493 /* HBQ for ELS and CT traffic. */
2494 static struct lpfc_hbq_init lpfc_els_hbq = {
2495 	.rn = 1,
2496 	.entry_count = 256,
2497 	.mask_count = 0,
2498 	.profile = 0,
2499 	.ring_mask = (1 << LPFC_ELS_RING),
2500 	.buffer_count = 0,
2501 	.init_count = 40,
2502 	.add_count = 40,
2503 };
2504 
2505 /* Array of HBQs */
2506 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2507 	&lpfc_els_hbq,
2508 };
2509 
2510 /**
2511  * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2512  * @phba: Pointer to HBA context object.
2513  * @hbqno: HBQ number.
2514  * @count: Number of HBQ buffers to be posted.
2515  *
2516  * This function is called with no lock held to post more hbq buffers to the
2517  * given HBQ. The function returns the number of HBQ buffers successfully
2518  * posted.
2519  **/
2520 static int
2521 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2522 {
2523 	uint32_t i, posted = 0;
2524 	unsigned long flags;
2525 	struct hbq_dmabuf *hbq_buffer;
2526 	LIST_HEAD(hbq_buf_list);
2527 	if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2528 		return 0;
2529 
2530 	if ((phba->hbqs[hbqno].buffer_count + count) >
2531 	    lpfc_hbq_defs[hbqno]->entry_count)
2532 		count = lpfc_hbq_defs[hbqno]->entry_count -
2533 					phba->hbqs[hbqno].buffer_count;
2534 	if (!count)
2535 		return 0;
2536 	/* Allocate HBQ entries */
2537 	for (i = 0; i < count; i++) {
2538 		hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2539 		if (!hbq_buffer)
2540 			break;
2541 		list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2542 	}
2543 	/* Check whether HBQ is still in use */
2544 	spin_lock_irqsave(&phba->hbalock, flags);
2545 	if (!phba->hbq_in_use)
2546 		goto err;
2547 	while (!list_empty(&hbq_buf_list)) {
2548 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2549 				 dbuf.list);
2550 		hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2551 				      (hbqno << 16));
2552 		if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2553 			phba->hbqs[hbqno].buffer_count++;
2554 			posted++;
2555 		} else
2556 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2557 	}
2558 	spin_unlock_irqrestore(&phba->hbalock, flags);
2559 	return posted;
2560 err:
2561 	spin_unlock_irqrestore(&phba->hbalock, flags);
2562 	while (!list_empty(&hbq_buf_list)) {
2563 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2564 				 dbuf.list);
2565 		(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2566 	}
2567 	return 0;
2568 }
2569 
2570 /**
2571  * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2572  * @phba: Pointer to HBA context object.
2573  * @qno: HBQ number.
2574  *
2575  * This function posts more buffers to the HBQ. This function
2576  * is called with no lock held. The function returns the number of HBQ entries
2577  * successfully allocated.
2578  **/
2579 int
2580 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2581 {
2582 	if (phba->sli_rev == LPFC_SLI_REV4)
2583 		return 0;
2584 	else
2585 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2586 					 lpfc_hbq_defs[qno]->add_count);
2587 }
2588 
2589 /**
2590  * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2591  * @phba: Pointer to HBA context object.
2592  * @qno:  HBQ queue number.
2593  *
2594  * This function is called from SLI initialization code path with
2595  * no lock held to post initial HBQ buffers to firmware. The
2596  * function returns the number of HBQ entries successfully allocated.
2597  **/
2598 static int
2599 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2600 {
2601 	if (phba->sli_rev == LPFC_SLI_REV4)
2602 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2603 					lpfc_hbq_defs[qno]->entry_count);
2604 	else
2605 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2606 					 lpfc_hbq_defs[qno]->init_count);
2607 }
2608 
2609 /*
2610  * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2611  *
2612  * This function removes the first hbq buffer on an hbq list and returns a
2613  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2614  **/
2615 static struct hbq_dmabuf *
2616 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2617 {
2618 	struct lpfc_dmabuf *d_buf;
2619 
2620 	list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2621 	if (!d_buf)
2622 		return NULL;
2623 	return container_of(d_buf, struct hbq_dmabuf, dbuf);
2624 }
2625 
2626 /**
2627  * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2628  * @phba: Pointer to HBA context object.
2629  * @hrq: HBQ number.
2630  *
2631  * This function removes the first RQ buffer on an RQ buffer list and returns a
2632  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2633  **/
2634 static struct rqb_dmabuf *
2635 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2636 {
2637 	struct lpfc_dmabuf *h_buf;
2638 	struct lpfc_rqb *rqbp;
2639 
2640 	rqbp = hrq->rqbp;
2641 	list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2642 			 struct lpfc_dmabuf, list);
2643 	if (!h_buf)
2644 		return NULL;
2645 	rqbp->buffer_count--;
2646 	return container_of(h_buf, struct rqb_dmabuf, hbuf);
2647 }
2648 
2649 /**
2650  * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2651  * @phba: Pointer to HBA context object.
2652  * @tag: Tag of the hbq buffer.
2653  *
2654  * This function searches for the hbq buffer associated with the given tag in
2655  * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2656  * otherwise it returns NULL.
2657  **/
2658 static struct hbq_dmabuf *
2659 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2660 {
2661 	struct lpfc_dmabuf *d_buf;
2662 	struct hbq_dmabuf *hbq_buf;
2663 	uint32_t hbqno;
2664 
2665 	hbqno = tag >> 16;
2666 	if (hbqno >= LPFC_MAX_HBQS)
2667 		return NULL;
2668 
2669 	spin_lock_irq(&phba->hbalock);
2670 	list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2671 		hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2672 		if (hbq_buf->tag == tag) {
2673 			spin_unlock_irq(&phba->hbalock);
2674 			return hbq_buf;
2675 		}
2676 	}
2677 	spin_unlock_irq(&phba->hbalock);
2678 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2679 			"1803 Bad hbq tag. Data: x%x x%x\n",
2680 			tag, phba->hbqs[tag >> 16].buffer_count);
2681 	return NULL;
2682 }
2683 
2684 /**
2685  * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2686  * @phba: Pointer to HBA context object.
2687  * @hbq_buffer: Pointer to HBQ buffer.
2688  *
2689  * This function is called with hbalock. This function gives back
2690  * the hbq buffer to firmware. If the HBQ does not have space to
2691  * post the buffer, it will free the buffer.
2692  **/
2693 void
2694 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2695 {
2696 	uint32_t hbqno;
2697 
2698 	if (hbq_buffer) {
2699 		hbqno = hbq_buffer->tag >> 16;
2700 		if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2701 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2702 	}
2703 }
2704 
2705 /**
2706  * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2707  * @mbxCommand: mailbox command code.
2708  *
2709  * This function is called by the mailbox event handler function to verify
2710  * that the completed mailbox command is a legitimate mailbox command. If the
2711  * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2712  * and the mailbox event handler will take the HBA offline.
2713  **/
2714 static int
2715 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2716 {
2717 	uint8_t ret;
2718 
2719 	switch (mbxCommand) {
2720 	case MBX_LOAD_SM:
2721 	case MBX_READ_NV:
2722 	case MBX_WRITE_NV:
2723 	case MBX_WRITE_VPARMS:
2724 	case MBX_RUN_BIU_DIAG:
2725 	case MBX_INIT_LINK:
2726 	case MBX_DOWN_LINK:
2727 	case MBX_CONFIG_LINK:
2728 	case MBX_CONFIG_RING:
2729 	case MBX_RESET_RING:
2730 	case MBX_READ_CONFIG:
2731 	case MBX_READ_RCONFIG:
2732 	case MBX_READ_SPARM:
2733 	case MBX_READ_STATUS:
2734 	case MBX_READ_RPI:
2735 	case MBX_READ_XRI:
2736 	case MBX_READ_REV:
2737 	case MBX_READ_LNK_STAT:
2738 	case MBX_REG_LOGIN:
2739 	case MBX_UNREG_LOGIN:
2740 	case MBX_CLEAR_LA:
2741 	case MBX_DUMP_MEMORY:
2742 	case MBX_DUMP_CONTEXT:
2743 	case MBX_RUN_DIAGS:
2744 	case MBX_RESTART:
2745 	case MBX_UPDATE_CFG:
2746 	case MBX_DOWN_LOAD:
2747 	case MBX_DEL_LD_ENTRY:
2748 	case MBX_RUN_PROGRAM:
2749 	case MBX_SET_MASK:
2750 	case MBX_SET_VARIABLE:
2751 	case MBX_UNREG_D_ID:
2752 	case MBX_KILL_BOARD:
2753 	case MBX_CONFIG_FARP:
2754 	case MBX_BEACON:
2755 	case MBX_LOAD_AREA:
2756 	case MBX_RUN_BIU_DIAG64:
2757 	case MBX_CONFIG_PORT:
2758 	case MBX_READ_SPARM64:
2759 	case MBX_READ_RPI64:
2760 	case MBX_REG_LOGIN64:
2761 	case MBX_READ_TOPOLOGY:
2762 	case MBX_WRITE_WWN:
2763 	case MBX_SET_DEBUG:
2764 	case MBX_LOAD_EXP_ROM:
2765 	case MBX_ASYNCEVT_ENABLE:
2766 	case MBX_REG_VPI:
2767 	case MBX_UNREG_VPI:
2768 	case MBX_HEARTBEAT:
2769 	case MBX_PORT_CAPABILITIES:
2770 	case MBX_PORT_IOV_CONTROL:
2771 	case MBX_SLI4_CONFIG:
2772 	case MBX_SLI4_REQ_FTRS:
2773 	case MBX_REG_FCFI:
2774 	case MBX_UNREG_FCFI:
2775 	case MBX_REG_VFI:
2776 	case MBX_UNREG_VFI:
2777 	case MBX_INIT_VPI:
2778 	case MBX_INIT_VFI:
2779 	case MBX_RESUME_RPI:
2780 	case MBX_READ_EVENT_LOG_STATUS:
2781 	case MBX_READ_EVENT_LOG:
2782 	case MBX_SECURITY_MGMT:
2783 	case MBX_AUTH_PORT:
2784 	case MBX_ACCESS_VDATA:
2785 		ret = mbxCommand;
2786 		break;
2787 	default:
2788 		ret = MBX_SHUTDOWN;
2789 		break;
2790 	}
2791 	return ret;
2792 }
2793 
2794 /**
2795  * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2796  * @phba: Pointer to HBA context object.
2797  * @pmboxq: Pointer to mailbox command.
2798  *
2799  * This is completion handler function for mailbox commands issued from
2800  * lpfc_sli_issue_mbox_wait function. This function is called by the
2801  * mailbox event handler function with no lock held. This function
2802  * will wake up thread waiting on the wait queue pointed by context1
2803  * of the mailbox.
2804  **/
2805 void
2806 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2807 {
2808 	unsigned long drvr_flag;
2809 	struct completion *pmbox_done;
2810 
2811 	/*
2812 	 * If pmbox_done is empty, the driver thread gave up waiting and
2813 	 * continued running.
2814 	 */
2815 	pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2816 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
2817 	pmbox_done = (struct completion *)pmboxq->context3;
2818 	if (pmbox_done)
2819 		complete(pmbox_done);
2820 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2821 	return;
2822 }
2823 
2824 static void
2825 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
2826 {
2827 	unsigned long iflags;
2828 
2829 	if (ndlp->nlp_flag & NLP_RELEASE_RPI) {
2830 		lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi);
2831 		spin_lock_irqsave(&ndlp->lock, iflags);
2832 		ndlp->nlp_flag &= ~NLP_RELEASE_RPI;
2833 		ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
2834 		spin_unlock_irqrestore(&ndlp->lock, iflags);
2835 	}
2836 	ndlp->nlp_flag &= ~NLP_UNREG_INP;
2837 }
2838 
2839 void
2840 lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
2841 {
2842 	__lpfc_sli_rpi_release(vport, ndlp);
2843 }
2844 
2845 /**
2846  * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2847  * @phba: Pointer to HBA context object.
2848  * @pmb: Pointer to mailbox object.
2849  *
2850  * This function is the default mailbox completion handler. It
2851  * frees the memory resources associated with the completed mailbox
2852  * command. If the completed command is a REG_LOGIN mailbox command,
2853  * this function will issue a UREG_LOGIN to re-claim the RPI.
2854  **/
2855 void
2856 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2857 {
2858 	struct lpfc_vport  *vport = pmb->vport;
2859 	struct lpfc_dmabuf *mp;
2860 	struct lpfc_nodelist *ndlp;
2861 	struct Scsi_Host *shost;
2862 	uint16_t rpi, vpi;
2863 	int rc;
2864 
2865 	/*
2866 	 * If a REG_LOGIN succeeded  after node is destroyed or node
2867 	 * is in re-discovery driver need to cleanup the RPI.
2868 	 */
2869 	if (!(phba->pport->load_flag & FC_UNLOADING) &&
2870 	    pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2871 	    !pmb->u.mb.mbxStatus) {
2872 		mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
2873 		if (mp) {
2874 			pmb->ctx_buf = NULL;
2875 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
2876 			kfree(mp);
2877 		}
2878 		rpi = pmb->u.mb.un.varWords[0];
2879 		vpi = pmb->u.mb.un.varRegLogin.vpi;
2880 		if (phba->sli_rev == LPFC_SLI_REV4)
2881 			vpi -= phba->sli4_hba.max_cfg_param.vpi_base;
2882 		lpfc_unreg_login(phba, vpi, rpi, pmb);
2883 		pmb->vport = vport;
2884 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2885 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2886 		if (rc != MBX_NOT_FINISHED)
2887 			return;
2888 	}
2889 
2890 	if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2891 		!(phba->pport->load_flag & FC_UNLOADING) &&
2892 		!pmb->u.mb.mbxStatus) {
2893 		shost = lpfc_shost_from_vport(vport);
2894 		spin_lock_irq(shost->host_lock);
2895 		vport->vpi_state |= LPFC_VPI_REGISTERED;
2896 		vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2897 		spin_unlock_irq(shost->host_lock);
2898 	}
2899 
2900 	if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2901 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2902 		lpfc_nlp_put(ndlp);
2903 	}
2904 
2905 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2906 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2907 
2908 		/* Check to see if there are any deferred events to process */
2909 		if (ndlp) {
2910 			lpfc_printf_vlog(
2911 				vport,
2912 				KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2913 				"1438 UNREG cmpl deferred mbox x%x "
2914 				"on NPort x%x Data: x%x x%x x%px x%x x%x\n",
2915 				ndlp->nlp_rpi, ndlp->nlp_DID,
2916 				ndlp->nlp_flag, ndlp->nlp_defer_did,
2917 				ndlp, vport->load_flag, kref_read(&ndlp->kref));
2918 
2919 			if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2920 			    (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2921 				ndlp->nlp_flag &= ~NLP_UNREG_INP;
2922 				ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2923 				lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2924 			} else {
2925 				__lpfc_sli_rpi_release(vport, ndlp);
2926 			}
2927 
2928 			/* The unreg_login mailbox is complete and had a
2929 			 * reference that has to be released.  The PLOGI
2930 			 * got its own ref.
2931 			 */
2932 			lpfc_nlp_put(ndlp);
2933 			pmb->ctx_ndlp = NULL;
2934 		}
2935 	}
2936 
2937 	/* This nlp_put pairs with lpfc_sli4_resume_rpi */
2938 	if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) {
2939 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2940 		lpfc_nlp_put(ndlp);
2941 	}
2942 
2943 	/* Check security permission status on INIT_LINK mailbox command */
2944 	if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2945 	    (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2946 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2947 				"2860 SLI authentication is required "
2948 				"for INIT_LINK but has not done yet\n");
2949 
2950 	if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2951 		lpfc_sli4_mbox_cmd_free(phba, pmb);
2952 	else
2953 		lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
2954 }
2955  /**
2956  * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2957  * @phba: Pointer to HBA context object.
2958  * @pmb: Pointer to mailbox object.
2959  *
2960  * This function is the unreg rpi mailbox completion handler. It
2961  * frees the memory resources associated with the completed mailbox
2962  * command. An additional reference is put on the ndlp to prevent
2963  * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2964  * the unreg mailbox command completes, this routine puts the
2965  * reference back.
2966  *
2967  **/
2968 void
2969 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2970 {
2971 	struct lpfc_vport  *vport = pmb->vport;
2972 	struct lpfc_nodelist *ndlp;
2973 
2974 	ndlp = pmb->ctx_ndlp;
2975 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2976 		if (phba->sli_rev == LPFC_SLI_REV4 &&
2977 		    (bf_get(lpfc_sli_intf_if_type,
2978 		     &phba->sli4_hba.sli_intf) >=
2979 		     LPFC_SLI_INTF_IF_TYPE_2)) {
2980 			if (ndlp) {
2981 				lpfc_printf_vlog(
2982 					 vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2983 					 "0010 UNREG_LOGIN vpi:%x "
2984 					 "rpi:%x DID:%x defer x%x flg x%x "
2985 					 "x%px\n",
2986 					 vport->vpi, ndlp->nlp_rpi,
2987 					 ndlp->nlp_DID, ndlp->nlp_defer_did,
2988 					 ndlp->nlp_flag,
2989 					 ndlp);
2990 				ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2991 
2992 				/* Check to see if there are any deferred
2993 				 * events to process
2994 				 */
2995 				if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2996 				    (ndlp->nlp_defer_did !=
2997 				    NLP_EVT_NOTHING_PENDING)) {
2998 					lpfc_printf_vlog(
2999 						vport, KERN_INFO, LOG_DISCOVERY,
3000 						"4111 UNREG cmpl deferred "
3001 						"clr x%x on "
3002 						"NPort x%x Data: x%x x%px\n",
3003 						ndlp->nlp_rpi, ndlp->nlp_DID,
3004 						ndlp->nlp_defer_did, ndlp);
3005 					ndlp->nlp_flag &= ~NLP_UNREG_INP;
3006 					ndlp->nlp_defer_did =
3007 						NLP_EVT_NOTHING_PENDING;
3008 					lpfc_issue_els_plogi(
3009 						vport, ndlp->nlp_DID, 0);
3010 				} else {
3011 					__lpfc_sli_rpi_release(vport, ndlp);
3012 				}
3013 				lpfc_nlp_put(ndlp);
3014 			}
3015 		}
3016 	}
3017 
3018 	mempool_free(pmb, phba->mbox_mem_pool);
3019 }
3020 
3021 /**
3022  * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
3023  * @phba: Pointer to HBA context object.
3024  *
3025  * This function is called with no lock held. This function processes all
3026  * the completed mailbox commands and gives it to upper layers. The interrupt
3027  * service routine processes mailbox completion interrupt and adds completed
3028  * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
3029  * Worker thread call lpfc_sli_handle_mb_event, which will return the
3030  * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
3031  * function returns the mailbox commands to the upper layer by calling the
3032  * completion handler function of each mailbox.
3033  **/
3034 int
3035 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
3036 {
3037 	MAILBOX_t *pmbox;
3038 	LPFC_MBOXQ_t *pmb;
3039 	int rc;
3040 	LIST_HEAD(cmplq);
3041 
3042 	phba->sli.slistat.mbox_event++;
3043 
3044 	/* Get all completed mailboxe buffers into the cmplq */
3045 	spin_lock_irq(&phba->hbalock);
3046 	list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
3047 	spin_unlock_irq(&phba->hbalock);
3048 
3049 	/* Get a Mailbox buffer to setup mailbox commands for callback */
3050 	do {
3051 		list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
3052 		if (pmb == NULL)
3053 			break;
3054 
3055 		pmbox = &pmb->u.mb;
3056 
3057 		if (pmbox->mbxCommand != MBX_HEARTBEAT) {
3058 			if (pmb->vport) {
3059 				lpfc_debugfs_disc_trc(pmb->vport,
3060 					LPFC_DISC_TRC_MBOX_VPORT,
3061 					"MBOX cmpl vport: cmd:x%x mb:x%x x%x",
3062 					(uint32_t)pmbox->mbxCommand,
3063 					pmbox->un.varWords[0],
3064 					pmbox->un.varWords[1]);
3065 			}
3066 			else {
3067 				lpfc_debugfs_disc_trc(phba->pport,
3068 					LPFC_DISC_TRC_MBOX,
3069 					"MBOX cmpl:       cmd:x%x mb:x%x x%x",
3070 					(uint32_t)pmbox->mbxCommand,
3071 					pmbox->un.varWords[0],
3072 					pmbox->un.varWords[1]);
3073 			}
3074 		}
3075 
3076 		/*
3077 		 * It is a fatal error if unknown mbox command completion.
3078 		 */
3079 		if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
3080 		    MBX_SHUTDOWN) {
3081 			/* Unknown mailbox command compl */
3082 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3083 					"(%d):0323 Unknown Mailbox command "
3084 					"x%x (x%x/x%x) Cmpl\n",
3085 					pmb->vport ? pmb->vport->vpi :
3086 					LPFC_VPORT_UNKNOWN,
3087 					pmbox->mbxCommand,
3088 					lpfc_sli_config_mbox_subsys_get(phba,
3089 									pmb),
3090 					lpfc_sli_config_mbox_opcode_get(phba,
3091 									pmb));
3092 			phba->link_state = LPFC_HBA_ERROR;
3093 			phba->work_hs = HS_FFER3;
3094 			lpfc_handle_eratt(phba);
3095 			continue;
3096 		}
3097 
3098 		if (pmbox->mbxStatus) {
3099 			phba->sli.slistat.mbox_stat_err++;
3100 			if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
3101 				/* Mbox cmd cmpl error - RETRYing */
3102 				lpfc_printf_log(phba, KERN_INFO,
3103 					LOG_MBOX | LOG_SLI,
3104 					"(%d):0305 Mbox cmd cmpl "
3105 					"error - RETRYing Data: x%x "
3106 					"(x%x/x%x) x%x x%x x%x\n",
3107 					pmb->vport ? pmb->vport->vpi :
3108 					LPFC_VPORT_UNKNOWN,
3109 					pmbox->mbxCommand,
3110 					lpfc_sli_config_mbox_subsys_get(phba,
3111 									pmb),
3112 					lpfc_sli_config_mbox_opcode_get(phba,
3113 									pmb),
3114 					pmbox->mbxStatus,
3115 					pmbox->un.varWords[0],
3116 					pmb->vport ? pmb->vport->port_state :
3117 					LPFC_VPORT_UNKNOWN);
3118 				pmbox->mbxStatus = 0;
3119 				pmbox->mbxOwner = OWN_HOST;
3120 				rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
3121 				if (rc != MBX_NOT_FINISHED)
3122 					continue;
3123 			}
3124 		}
3125 
3126 		/* Mailbox cmd <cmd> Cmpl <cmpl> */
3127 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
3128 				"(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
3129 				"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
3130 				"x%x x%x x%x\n",
3131 				pmb->vport ? pmb->vport->vpi : 0,
3132 				pmbox->mbxCommand,
3133 				lpfc_sli_config_mbox_subsys_get(phba, pmb),
3134 				lpfc_sli_config_mbox_opcode_get(phba, pmb),
3135 				pmb->mbox_cmpl,
3136 				*((uint32_t *) pmbox),
3137 				pmbox->un.varWords[0],
3138 				pmbox->un.varWords[1],
3139 				pmbox->un.varWords[2],
3140 				pmbox->un.varWords[3],
3141 				pmbox->un.varWords[4],
3142 				pmbox->un.varWords[5],
3143 				pmbox->un.varWords[6],
3144 				pmbox->un.varWords[7],
3145 				pmbox->un.varWords[8],
3146 				pmbox->un.varWords[9],
3147 				pmbox->un.varWords[10]);
3148 
3149 		if (pmb->mbox_cmpl)
3150 			pmb->mbox_cmpl(phba,pmb);
3151 	} while (1);
3152 	return 0;
3153 }
3154 
3155 /**
3156  * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
3157  * @phba: Pointer to HBA context object.
3158  * @pring: Pointer to driver SLI ring object.
3159  * @tag: buffer tag.
3160  *
3161  * This function is called with no lock held. When QUE_BUFTAG_BIT bit
3162  * is set in the tag the buffer is posted for a particular exchange,
3163  * the function will return the buffer without replacing the buffer.
3164  * If the buffer is for unsolicited ELS or CT traffic, this function
3165  * returns the buffer and also posts another buffer to the firmware.
3166  **/
3167 static struct lpfc_dmabuf *
3168 lpfc_sli_get_buff(struct lpfc_hba *phba,
3169 		  struct lpfc_sli_ring *pring,
3170 		  uint32_t tag)
3171 {
3172 	struct hbq_dmabuf *hbq_entry;
3173 
3174 	if (tag & QUE_BUFTAG_BIT)
3175 		return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
3176 	hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
3177 	if (!hbq_entry)
3178 		return NULL;
3179 	return &hbq_entry->dbuf;
3180 }
3181 
3182 /**
3183  * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer
3184  *                              containing a NVME LS request.
3185  * @phba: pointer to lpfc hba data structure.
3186  * @piocb: pointer to the iocbq struct representing the sequence starting
3187  *        frame.
3188  *
3189  * This routine initially validates the NVME LS, validates there is a login
3190  * with the port that sent the LS, and then calls the appropriate nvme host
3191  * or target LS request handler.
3192  **/
3193 static void
3194 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
3195 {
3196 	struct lpfc_nodelist *ndlp;
3197 	struct lpfc_dmabuf *d_buf;
3198 	struct hbq_dmabuf *nvmebuf;
3199 	struct fc_frame_header *fc_hdr;
3200 	struct lpfc_async_xchg_ctx *axchg = NULL;
3201 	char *failwhy = NULL;
3202 	uint32_t oxid, sid, did, fctl, size;
3203 	int ret = 1;
3204 
3205 	d_buf = piocb->cmd_dmabuf;
3206 
3207 	nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
3208 	fc_hdr = nvmebuf->hbuf.virt;
3209 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
3210 	sid = sli4_sid_from_fc_hdr(fc_hdr);
3211 	did = sli4_did_from_fc_hdr(fc_hdr);
3212 	fctl = (fc_hdr->fh_f_ctl[0] << 16 |
3213 		fc_hdr->fh_f_ctl[1] << 8 |
3214 		fc_hdr->fh_f_ctl[2]);
3215 	size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl);
3216 
3217 	lpfc_nvmeio_data(phba, "NVME LS    RCV: xri x%x sz %d from %06x\n",
3218 			 oxid, size, sid);
3219 
3220 	if (phba->pport->load_flag & FC_UNLOADING) {
3221 		failwhy = "Driver Unloading";
3222 	} else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) {
3223 		failwhy = "NVME FC4 Disabled";
3224 	} else if (!phba->nvmet_support && !phba->pport->localport) {
3225 		failwhy = "No Localport";
3226 	} else if (phba->nvmet_support && !phba->targetport) {
3227 		failwhy = "No Targetport";
3228 	} else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) {
3229 		failwhy = "Bad NVME LS R_CTL";
3230 	} else if (unlikely((fctl & 0x00FF0000) !=
3231 			(FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) {
3232 		failwhy = "Bad NVME LS F_CTL";
3233 	} else {
3234 		axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC);
3235 		if (!axchg)
3236 			failwhy = "No CTX memory";
3237 	}
3238 
3239 	if (unlikely(failwhy)) {
3240 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3241 				"6154 Drop NVME LS: SID %06X OXID x%X: %s\n",
3242 				sid, oxid, failwhy);
3243 		goto out_fail;
3244 	}
3245 
3246 	/* validate the source of the LS is logged in */
3247 	ndlp = lpfc_findnode_did(phba->pport, sid);
3248 	if (!ndlp ||
3249 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
3250 	     (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
3251 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
3252 				"6216 NVME Unsol rcv: No ndlp: "
3253 				"NPort_ID x%x oxid x%x\n",
3254 				sid, oxid);
3255 		goto out_fail;
3256 	}
3257 
3258 	axchg->phba = phba;
3259 	axchg->ndlp = ndlp;
3260 	axchg->size = size;
3261 	axchg->oxid = oxid;
3262 	axchg->sid = sid;
3263 	axchg->wqeq = NULL;
3264 	axchg->state = LPFC_NVME_STE_LS_RCV;
3265 	axchg->entry_cnt = 1;
3266 	axchg->rqb_buffer = (void *)nvmebuf;
3267 	axchg->hdwq = &phba->sli4_hba.hdwq[0];
3268 	axchg->payload = nvmebuf->dbuf.virt;
3269 	INIT_LIST_HEAD(&axchg->list);
3270 
3271 	if (phba->nvmet_support) {
3272 		ret = lpfc_nvmet_handle_lsreq(phba, axchg);
3273 		spin_lock_irq(&ndlp->lock);
3274 		if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) {
3275 			ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH;
3276 			spin_unlock_irq(&ndlp->lock);
3277 
3278 			/* This reference is a single occurrence to hold the
3279 			 * node valid until the nvmet transport calls
3280 			 * host_release.
3281 			 */
3282 			if (!lpfc_nlp_get(ndlp))
3283 				goto out_fail;
3284 
3285 			lpfc_printf_log(phba, KERN_ERR, LOG_NODE,
3286 					"6206 NVMET unsol ls_req ndlp x%px "
3287 					"DID x%x xflags x%x refcnt %d\n",
3288 					ndlp, ndlp->nlp_DID,
3289 					ndlp->fc4_xpt_flags,
3290 					kref_read(&ndlp->kref));
3291 		} else {
3292 			spin_unlock_irq(&ndlp->lock);
3293 		}
3294 	} else {
3295 		ret = lpfc_nvme_handle_lsreq(phba, axchg);
3296 	}
3297 
3298 	/* if zero, LS was successfully handled. If non-zero, LS not handled */
3299 	if (!ret)
3300 		return;
3301 
3302 out_fail:
3303 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3304 			"6155 Drop NVME LS from DID %06X: SID %06X OXID x%X "
3305 			"NVMe%s handler failed %d\n",
3306 			did, sid, oxid,
3307 			(phba->nvmet_support) ? "T" : "I", ret);
3308 
3309 	/* recycle receive buffer */
3310 	lpfc_in_buf_free(phba, &nvmebuf->dbuf);
3311 
3312 	/* If start of new exchange, abort it */
3313 	if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX)))
3314 		ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid);
3315 
3316 	if (ret)
3317 		kfree(axchg);
3318 }
3319 
3320 /**
3321  * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
3322  * @phba: Pointer to HBA context object.
3323  * @pring: Pointer to driver SLI ring object.
3324  * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
3325  * @fch_r_ctl: the r_ctl for the first frame of the sequence.
3326  * @fch_type: the type for the first frame of the sequence.
3327  *
3328  * This function is called with no lock held. This function uses the r_ctl and
3329  * type of the received sequence to find the correct callback function to call
3330  * to process the sequence.
3331  **/
3332 static int
3333 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3334 			 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
3335 			 uint32_t fch_type)
3336 {
3337 	int i;
3338 
3339 	switch (fch_type) {
3340 	case FC_TYPE_NVME:
3341 		lpfc_nvme_unsol_ls_handler(phba, saveq);
3342 		return 1;
3343 	default:
3344 		break;
3345 	}
3346 
3347 	/* unSolicited Responses */
3348 	if (pring->prt[0].profile) {
3349 		if (pring->prt[0].lpfc_sli_rcv_unsol_event)
3350 			(pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
3351 									saveq);
3352 		return 1;
3353 	}
3354 	/* We must search, based on rctl / type
3355 	   for the right routine */
3356 	for (i = 0; i < pring->num_mask; i++) {
3357 		if ((pring->prt[i].rctl == fch_r_ctl) &&
3358 		    (pring->prt[i].type == fch_type)) {
3359 			if (pring->prt[i].lpfc_sli_rcv_unsol_event)
3360 				(pring->prt[i].lpfc_sli_rcv_unsol_event)
3361 						(phba, pring, saveq);
3362 			return 1;
3363 		}
3364 	}
3365 	return 0;
3366 }
3367 
3368 static void
3369 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba,
3370 			struct lpfc_iocbq *saveq)
3371 {
3372 	IOCB_t *irsp;
3373 	union lpfc_wqe128 *wqe;
3374 	u16 i = 0;
3375 
3376 	irsp = &saveq->iocb;
3377 	wqe = &saveq->wqe;
3378 
3379 	/* Fill wcqe with the IOCB status fields */
3380 	bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus);
3381 	saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount;
3382 	saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4];
3383 	saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len;
3384 
3385 	/* Source ID */
3386 	bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo);
3387 
3388 	/* rx-id of the response frame */
3389 	bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext);
3390 
3391 	/* ox-id of the frame */
3392 	bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
3393 	       irsp->unsli3.rcvsli3.ox_id);
3394 
3395 	/* DID */
3396 	bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
3397 	       irsp->un.rcvels.remoteID);
3398 
3399 	/* unsol data len */
3400 	for (i = 0; i < irsp->ulpBdeCount; i++) {
3401 		struct lpfc_hbq_entry *hbqe = NULL;
3402 
3403 		if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3404 			if (i == 0) {
3405 				hbqe = (struct lpfc_hbq_entry *)
3406 					&irsp->un.ulpWord[0];
3407 				saveq->wqe.gen_req.bde.tus.f.bdeSize =
3408 					hbqe->bde.tus.f.bdeSize;
3409 			} else if (i == 1) {
3410 				hbqe = (struct lpfc_hbq_entry *)
3411 					&irsp->unsli3.sli3Words[4];
3412 				saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize;
3413 			}
3414 		}
3415 	}
3416 }
3417 
3418 /**
3419  * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
3420  * @phba: Pointer to HBA context object.
3421  * @pring: Pointer to driver SLI ring object.
3422  * @saveq: Pointer to the unsolicited iocb.
3423  *
3424  * This function is called with no lock held by the ring event handler
3425  * when there is an unsolicited iocb posted to the response ring by the
3426  * firmware. This function gets the buffer associated with the iocbs
3427  * and calls the event handler for the ring. This function handles both
3428  * qring buffers and hbq buffers.
3429  * When the function returns 1 the caller can free the iocb object otherwise
3430  * upper layer functions will free the iocb objects.
3431  **/
3432 static int
3433 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3434 			    struct lpfc_iocbq *saveq)
3435 {
3436 	IOCB_t           * irsp;
3437 	WORD5            * w5p;
3438 	dma_addr_t	 paddr;
3439 	uint32_t           Rctl, Type;
3440 	struct lpfc_iocbq *iocbq;
3441 	struct lpfc_dmabuf *dmzbuf;
3442 
3443 	irsp = &saveq->iocb;
3444 	saveq->vport = phba->pport;
3445 
3446 	if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
3447 		if (pring->lpfc_sli_rcv_async_status)
3448 			pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
3449 		else
3450 			lpfc_printf_log(phba,
3451 					KERN_WARNING,
3452 					LOG_SLI,
3453 					"0316 Ring %d handler: unexpected "
3454 					"ASYNC_STATUS iocb received evt_code "
3455 					"0x%x\n",
3456 					pring->ringno,
3457 					irsp->un.asyncstat.evt_code);
3458 		return 1;
3459 	}
3460 
3461 	if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
3462 	    (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
3463 		if (irsp->ulpBdeCount > 0) {
3464 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3465 						   irsp->un.ulpWord[3]);
3466 			lpfc_in_buf_free(phba, dmzbuf);
3467 		}
3468 
3469 		if (irsp->ulpBdeCount > 1) {
3470 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3471 						   irsp->unsli3.sli3Words[3]);
3472 			lpfc_in_buf_free(phba, dmzbuf);
3473 		}
3474 
3475 		if (irsp->ulpBdeCount > 2) {
3476 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3477 						   irsp->unsli3.sli3Words[7]);
3478 			lpfc_in_buf_free(phba, dmzbuf);
3479 		}
3480 
3481 		return 1;
3482 	}
3483 
3484 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3485 		if (irsp->ulpBdeCount != 0) {
3486 			saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring,
3487 						irsp->un.ulpWord[3]);
3488 			if (!saveq->cmd_dmabuf)
3489 				lpfc_printf_log(phba,
3490 					KERN_ERR,
3491 					LOG_SLI,
3492 					"0341 Ring %d Cannot find buffer for "
3493 					"an unsolicited iocb. tag 0x%x\n",
3494 					pring->ringno,
3495 					irsp->un.ulpWord[3]);
3496 		}
3497 		if (irsp->ulpBdeCount == 2) {
3498 			saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring,
3499 						irsp->unsli3.sli3Words[7]);
3500 			if (!saveq->bpl_dmabuf)
3501 				lpfc_printf_log(phba,
3502 					KERN_ERR,
3503 					LOG_SLI,
3504 					"0342 Ring %d Cannot find buffer for an"
3505 					" unsolicited iocb. tag 0x%x\n",
3506 					pring->ringno,
3507 					irsp->unsli3.sli3Words[7]);
3508 		}
3509 		list_for_each_entry(iocbq, &saveq->list, list) {
3510 			irsp = &iocbq->iocb;
3511 			if (irsp->ulpBdeCount != 0) {
3512 				iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba,
3513 							pring,
3514 							irsp->un.ulpWord[3]);
3515 				if (!iocbq->cmd_dmabuf)
3516 					lpfc_printf_log(phba,
3517 						KERN_ERR,
3518 						LOG_SLI,
3519 						"0343 Ring %d Cannot find "
3520 						"buffer for an unsolicited iocb"
3521 						". tag 0x%x\n", pring->ringno,
3522 						irsp->un.ulpWord[3]);
3523 			}
3524 			if (irsp->ulpBdeCount == 2) {
3525 				iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba,
3526 						pring,
3527 						irsp->unsli3.sli3Words[7]);
3528 				if (!iocbq->bpl_dmabuf)
3529 					lpfc_printf_log(phba,
3530 						KERN_ERR,
3531 						LOG_SLI,
3532 						"0344 Ring %d Cannot find "
3533 						"buffer for an unsolicited "
3534 						"iocb. tag 0x%x\n",
3535 						pring->ringno,
3536 						irsp->unsli3.sli3Words[7]);
3537 			}
3538 		}
3539 	} else {
3540 		paddr = getPaddr(irsp->un.cont64[0].addrHigh,
3541 				 irsp->un.cont64[0].addrLow);
3542 		saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring,
3543 							     paddr);
3544 		if (irsp->ulpBdeCount == 2) {
3545 			paddr = getPaddr(irsp->un.cont64[1].addrHigh,
3546 					 irsp->un.cont64[1].addrLow);
3547 			saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba,
3548 								   pring,
3549 								   paddr);
3550 		}
3551 	}
3552 
3553 	if (irsp->ulpBdeCount != 0 &&
3554 	    (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
3555 	     irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
3556 		int found = 0;
3557 
3558 		/* search continue save q for same XRI */
3559 		list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
3560 			if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
3561 				saveq->iocb.unsli3.rcvsli3.ox_id) {
3562 				list_add_tail(&saveq->list, &iocbq->list);
3563 				found = 1;
3564 				break;
3565 			}
3566 		}
3567 		if (!found)
3568 			list_add_tail(&saveq->clist,
3569 				      &pring->iocb_continue_saveq);
3570 
3571 		if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
3572 			list_del_init(&iocbq->clist);
3573 			saveq = iocbq;
3574 			irsp = &saveq->iocb;
3575 		} else {
3576 			return 0;
3577 		}
3578 	}
3579 	if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
3580 	    (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
3581 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
3582 		Rctl = FC_RCTL_ELS_REQ;
3583 		Type = FC_TYPE_ELS;
3584 	} else {
3585 		w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
3586 		Rctl = w5p->hcsw.Rctl;
3587 		Type = w5p->hcsw.Type;
3588 
3589 		/* Firmware Workaround */
3590 		if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
3591 			(irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
3592 			 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3593 			Rctl = FC_RCTL_ELS_REQ;
3594 			Type = FC_TYPE_ELS;
3595 			w5p->hcsw.Rctl = Rctl;
3596 			w5p->hcsw.Type = Type;
3597 		}
3598 	}
3599 
3600 	if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) &&
3601 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX ||
3602 	    irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3603 		if (irsp->unsli3.rcvsli3.vpi == 0xffff)
3604 			saveq->vport = phba->pport;
3605 		else
3606 			saveq->vport = lpfc_find_vport_by_vpid(phba,
3607 					       irsp->unsli3.rcvsli3.vpi);
3608 	}
3609 
3610 	/* Prepare WQE with Unsol frame */
3611 	lpfc_sli_prep_unsol_wqe(phba, saveq);
3612 
3613 	if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
3614 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3615 				"0313 Ring %d handler: unexpected Rctl x%x "
3616 				"Type x%x received\n",
3617 				pring->ringno, Rctl, Type);
3618 
3619 	return 1;
3620 }
3621 
3622 /**
3623  * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
3624  * @phba: Pointer to HBA context object.
3625  * @pring: Pointer to driver SLI ring object.
3626  * @prspiocb: Pointer to response iocb object.
3627  *
3628  * This function looks up the iocb_lookup table to get the command iocb
3629  * corresponding to the given response iocb using the iotag of the
3630  * response iocb. The driver calls this function with the hbalock held
3631  * for SLI3 ports or the ring lock held for SLI4 ports.
3632  * This function returns the command iocb object if it finds the command
3633  * iocb else returns NULL.
3634  **/
3635 static struct lpfc_iocbq *
3636 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
3637 		      struct lpfc_sli_ring *pring,
3638 		      struct lpfc_iocbq *prspiocb)
3639 {
3640 	struct lpfc_iocbq *cmd_iocb = NULL;
3641 	u16 iotag;
3642 
3643 	if (phba->sli_rev == LPFC_SLI_REV4)
3644 		iotag = get_wqe_reqtag(prspiocb);
3645 	else
3646 		iotag = prspiocb->iocb.ulpIoTag;
3647 
3648 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3649 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3650 		if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) {
3651 			/* remove from txcmpl queue list */
3652 			list_del_init(&cmd_iocb->list);
3653 			cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
3654 			pring->txcmplq_cnt--;
3655 			return cmd_iocb;
3656 		}
3657 	}
3658 
3659 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3660 			"0317 iotag x%x is out of "
3661 			"range: max iotag x%x\n",
3662 			iotag, phba->sli.last_iotag);
3663 	return NULL;
3664 }
3665 
3666 /**
3667  * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3668  * @phba: Pointer to HBA context object.
3669  * @pring: Pointer to driver SLI ring object.
3670  * @iotag: IOCB tag.
3671  *
3672  * This function looks up the iocb_lookup table to get the command iocb
3673  * corresponding to the given iotag. The driver calls this function with
3674  * the ring lock held because this function is an SLI4 port only helper.
3675  * This function returns the command iocb object if it finds the command
3676  * iocb else returns NULL.
3677  **/
3678 static struct lpfc_iocbq *
3679 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3680 			     struct lpfc_sli_ring *pring, uint16_t iotag)
3681 {
3682 	struct lpfc_iocbq *cmd_iocb = NULL;
3683 
3684 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3685 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3686 		if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) {
3687 			/* remove from txcmpl queue list */
3688 			list_del_init(&cmd_iocb->list);
3689 			cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
3690 			pring->txcmplq_cnt--;
3691 			return cmd_iocb;
3692 		}
3693 	}
3694 
3695 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3696 			"0372 iotag x%x lookup error: max iotag (x%x) "
3697 			"cmd_flag x%x\n",
3698 			iotag, phba->sli.last_iotag,
3699 			cmd_iocb ? cmd_iocb->cmd_flag : 0xffff);
3700 	return NULL;
3701 }
3702 
3703 /**
3704  * lpfc_sli_process_sol_iocb - process solicited iocb completion
3705  * @phba: Pointer to HBA context object.
3706  * @pring: Pointer to driver SLI ring object.
3707  * @saveq: Pointer to the response iocb to be processed.
3708  *
3709  * This function is called by the ring event handler for non-fcp
3710  * rings when there is a new response iocb in the response ring.
3711  * The caller is not required to hold any locks. This function
3712  * gets the command iocb associated with the response iocb and
3713  * calls the completion handler for the command iocb. If there
3714  * is no completion handler, the function will free the resources
3715  * associated with command iocb. If the response iocb is for
3716  * an already aborted command iocb, the status of the completion
3717  * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3718  * This function always returns 1.
3719  **/
3720 static int
3721 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3722 			  struct lpfc_iocbq *saveq)
3723 {
3724 	struct lpfc_iocbq *cmdiocbp;
3725 	unsigned long iflag;
3726 	u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag;
3727 
3728 	if (phba->sli_rev == LPFC_SLI_REV4)
3729 		spin_lock_irqsave(&pring->ring_lock, iflag);
3730 	else
3731 		spin_lock_irqsave(&phba->hbalock, iflag);
3732 	cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3733 	if (phba->sli_rev == LPFC_SLI_REV4)
3734 		spin_unlock_irqrestore(&pring->ring_lock, iflag);
3735 	else
3736 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3737 
3738 	ulp_command = get_job_cmnd(phba, saveq);
3739 	ulp_status = get_job_ulpstatus(phba, saveq);
3740 	ulp_word4 = get_job_word4(phba, saveq);
3741 	ulp_context = get_job_ulpcontext(phba, saveq);
3742 	if (phba->sli_rev == LPFC_SLI_REV4)
3743 		iotag = get_wqe_reqtag(saveq);
3744 	else
3745 		iotag = saveq->iocb.ulpIoTag;
3746 
3747 	if (cmdiocbp) {
3748 		ulp_command = get_job_cmnd(phba, cmdiocbp);
3749 		if (cmdiocbp->cmd_cmpl) {
3750 			/*
3751 			 * If an ELS command failed send an event to mgmt
3752 			 * application.
3753 			 */
3754 			if (ulp_status &&
3755 			     (pring->ringno == LPFC_ELS_RING) &&
3756 			     (ulp_command == CMD_ELS_REQUEST64_CR))
3757 				lpfc_send_els_failure_event(phba,
3758 					cmdiocbp, saveq);
3759 
3760 			/*
3761 			 * Post all ELS completions to the worker thread.
3762 			 * All other are passed to the completion callback.
3763 			 */
3764 			if (pring->ringno == LPFC_ELS_RING) {
3765 				if ((phba->sli_rev < LPFC_SLI_REV4) &&
3766 				    (cmdiocbp->cmd_flag &
3767 							LPFC_DRIVER_ABORTED)) {
3768 					spin_lock_irqsave(&phba->hbalock,
3769 							  iflag);
3770 					cmdiocbp->cmd_flag &=
3771 						~LPFC_DRIVER_ABORTED;
3772 					spin_unlock_irqrestore(&phba->hbalock,
3773 							       iflag);
3774 					saveq->iocb.ulpStatus =
3775 						IOSTAT_LOCAL_REJECT;
3776 					saveq->iocb.un.ulpWord[4] =
3777 						IOERR_SLI_ABORTED;
3778 
3779 					/* Firmware could still be in progress
3780 					 * of DMAing payload, so don't free data
3781 					 * buffer till after a hbeat.
3782 					 */
3783 					spin_lock_irqsave(&phba->hbalock,
3784 							  iflag);
3785 					saveq->cmd_flag |= LPFC_DELAY_MEM_FREE;
3786 					spin_unlock_irqrestore(&phba->hbalock,
3787 							       iflag);
3788 				}
3789 				if (phba->sli_rev == LPFC_SLI_REV4) {
3790 					if (saveq->cmd_flag &
3791 					    LPFC_EXCHANGE_BUSY) {
3792 						/* Set cmdiocb flag for the
3793 						 * exchange busy so sgl (xri)
3794 						 * will not be released until
3795 						 * the abort xri is received
3796 						 * from hba.
3797 						 */
3798 						spin_lock_irqsave(
3799 							&phba->hbalock, iflag);
3800 						cmdiocbp->cmd_flag |=
3801 							LPFC_EXCHANGE_BUSY;
3802 						spin_unlock_irqrestore(
3803 							&phba->hbalock, iflag);
3804 					}
3805 					if (cmdiocbp->cmd_flag &
3806 					    LPFC_DRIVER_ABORTED) {
3807 						/*
3808 						 * Clear LPFC_DRIVER_ABORTED
3809 						 * bit in case it was driver
3810 						 * initiated abort.
3811 						 */
3812 						spin_lock_irqsave(
3813 							&phba->hbalock, iflag);
3814 						cmdiocbp->cmd_flag &=
3815 							~LPFC_DRIVER_ABORTED;
3816 						spin_unlock_irqrestore(
3817 							&phba->hbalock, iflag);
3818 						set_job_ulpstatus(cmdiocbp,
3819 								  IOSTAT_LOCAL_REJECT);
3820 						set_job_ulpword4(cmdiocbp,
3821 								 IOERR_ABORT_REQUESTED);
3822 						/*
3823 						 * For SLI4, irspiocb contains
3824 						 * NO_XRI in sli_xritag, it
3825 						 * shall not affect releasing
3826 						 * sgl (xri) process.
3827 						 */
3828 						set_job_ulpstatus(saveq,
3829 								  IOSTAT_LOCAL_REJECT);
3830 						set_job_ulpword4(saveq,
3831 								 IOERR_SLI_ABORTED);
3832 						spin_lock_irqsave(
3833 							&phba->hbalock, iflag);
3834 						saveq->cmd_flag |=
3835 							LPFC_DELAY_MEM_FREE;
3836 						spin_unlock_irqrestore(
3837 							&phba->hbalock, iflag);
3838 					}
3839 				}
3840 			}
3841 			cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq);
3842 		} else
3843 			lpfc_sli_release_iocbq(phba, cmdiocbp);
3844 	} else {
3845 		/*
3846 		 * Unknown initiating command based on the response iotag.
3847 		 * This could be the case on the ELS ring because of
3848 		 * lpfc_els_abort().
3849 		 */
3850 		if (pring->ringno != LPFC_ELS_RING) {
3851 			/*
3852 			 * Ring <ringno> handler: unexpected completion IoTag
3853 			 * <IoTag>
3854 			 */
3855 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3856 					 "0322 Ring %d handler: "
3857 					 "unexpected completion IoTag x%x "
3858 					 "Data: x%x x%x x%x x%x\n",
3859 					 pring->ringno, iotag, ulp_status,
3860 					 ulp_word4, ulp_command, ulp_context);
3861 		}
3862 	}
3863 
3864 	return 1;
3865 }
3866 
3867 /**
3868  * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3869  * @phba: Pointer to HBA context object.
3870  * @pring: Pointer to driver SLI ring object.
3871  *
3872  * This function is called from the iocb ring event handlers when
3873  * put pointer is ahead of the get pointer for a ring. This function signal
3874  * an error attention condition to the worker thread and the worker
3875  * thread will transition the HBA to offline state.
3876  **/
3877 static void
3878 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3879 {
3880 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3881 	/*
3882 	 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3883 	 * rsp ring <portRspMax>
3884 	 */
3885 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3886 			"0312 Ring %d handler: portRspPut %d "
3887 			"is bigger than rsp ring %d\n",
3888 			pring->ringno, le32_to_cpu(pgp->rspPutInx),
3889 			pring->sli.sli3.numRiocb);
3890 
3891 	phba->link_state = LPFC_HBA_ERROR;
3892 
3893 	/*
3894 	 * All error attention handlers are posted to
3895 	 * worker thread
3896 	 */
3897 	phba->work_ha |= HA_ERATT;
3898 	phba->work_hs = HS_FFER3;
3899 
3900 	lpfc_worker_wake_up(phba);
3901 
3902 	return;
3903 }
3904 
3905 /**
3906  * lpfc_poll_eratt - Error attention polling timer timeout handler
3907  * @t: Context to fetch pointer to address of HBA context object from.
3908  *
3909  * This function is invoked by the Error Attention polling timer when the
3910  * timer times out. It will check the SLI Error Attention register for
3911  * possible attention events. If so, it will post an Error Attention event
3912  * and wake up worker thread to process it. Otherwise, it will set up the
3913  * Error Attention polling timer for the next poll.
3914  **/
3915 void lpfc_poll_eratt(struct timer_list *t)
3916 {
3917 	struct lpfc_hba *phba;
3918 	uint32_t eratt = 0;
3919 	uint64_t sli_intr, cnt;
3920 
3921 	phba = from_timer(phba, t, eratt_poll);
3922 
3923 	/* Here we will also keep track of interrupts per sec of the hba */
3924 	sli_intr = phba->sli.slistat.sli_intr;
3925 
3926 	if (phba->sli.slistat.sli_prev_intr > sli_intr)
3927 		cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3928 			sli_intr);
3929 	else
3930 		cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3931 
3932 	/* 64-bit integer division not supported on 32-bit x86 - use do_div */
3933 	do_div(cnt, phba->eratt_poll_interval);
3934 	phba->sli.slistat.sli_ips = cnt;
3935 
3936 	phba->sli.slistat.sli_prev_intr = sli_intr;
3937 
3938 	/* Check chip HA register for error event */
3939 	eratt = lpfc_sli_check_eratt(phba);
3940 
3941 	if (eratt)
3942 		/* Tell the worker thread there is work to do */
3943 		lpfc_worker_wake_up(phba);
3944 	else
3945 		/* Restart the timer for next eratt poll */
3946 		mod_timer(&phba->eratt_poll,
3947 			  jiffies +
3948 			  msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3949 	return;
3950 }
3951 
3952 
3953 /**
3954  * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3955  * @phba: Pointer to HBA context object.
3956  * @pring: Pointer to driver SLI ring object.
3957  * @mask: Host attention register mask for this ring.
3958  *
3959  * This function is called from the interrupt context when there is a ring
3960  * event for the fcp ring. The caller does not hold any lock.
3961  * The function processes each response iocb in the response ring until it
3962  * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3963  * LE bit set. The function will call the completion handler of the command iocb
3964  * if the response iocb indicates a completion for a command iocb or it is
3965  * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3966  * function if this is an unsolicited iocb.
3967  * This routine presumes LPFC_FCP_RING handling and doesn't bother
3968  * to check it explicitly.
3969  */
3970 int
3971 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3972 				struct lpfc_sli_ring *pring, uint32_t mask)
3973 {
3974 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3975 	IOCB_t *irsp = NULL;
3976 	IOCB_t *entry = NULL;
3977 	struct lpfc_iocbq *cmdiocbq = NULL;
3978 	struct lpfc_iocbq rspiocbq;
3979 	uint32_t status;
3980 	uint32_t portRspPut, portRspMax;
3981 	int rc = 1;
3982 	lpfc_iocb_type type;
3983 	unsigned long iflag;
3984 	uint32_t rsp_cmpl = 0;
3985 
3986 	spin_lock_irqsave(&phba->hbalock, iflag);
3987 	pring->stats.iocb_event++;
3988 
3989 	/*
3990 	 * The next available response entry should never exceed the maximum
3991 	 * entries.  If it does, treat it as an adapter hardware error.
3992 	 */
3993 	portRspMax = pring->sli.sli3.numRiocb;
3994 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3995 	if (unlikely(portRspPut >= portRspMax)) {
3996 		lpfc_sli_rsp_pointers_error(phba, pring);
3997 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3998 		return 1;
3999 	}
4000 	if (phba->fcp_ring_in_use) {
4001 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4002 		return 1;
4003 	} else
4004 		phba->fcp_ring_in_use = 1;
4005 
4006 	rmb();
4007 	while (pring->sli.sli3.rspidx != portRspPut) {
4008 		/*
4009 		 * Fetch an entry off the ring and copy it into a local data
4010 		 * structure.  The copy involves a byte-swap since the
4011 		 * network byte order and pci byte orders are different.
4012 		 */
4013 		entry = lpfc_resp_iocb(phba, pring);
4014 		phba->last_completion_time = jiffies;
4015 
4016 		if (++pring->sli.sli3.rspidx >= portRspMax)
4017 			pring->sli.sli3.rspidx = 0;
4018 
4019 		lpfc_sli_pcimem_bcopy((uint32_t *) entry,
4020 				      (uint32_t *) &rspiocbq.iocb,
4021 				      phba->iocb_rsp_size);
4022 		INIT_LIST_HEAD(&(rspiocbq.list));
4023 		irsp = &rspiocbq.iocb;
4024 
4025 		type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
4026 		pring->stats.iocb_rsp++;
4027 		rsp_cmpl++;
4028 
4029 		if (unlikely(irsp->ulpStatus)) {
4030 			/*
4031 			 * If resource errors reported from HBA, reduce
4032 			 * queuedepths of the SCSI device.
4033 			 */
4034 			if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
4035 			    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
4036 			     IOERR_NO_RESOURCES)) {
4037 				spin_unlock_irqrestore(&phba->hbalock, iflag);
4038 				phba->lpfc_rampdown_queue_depth(phba);
4039 				spin_lock_irqsave(&phba->hbalock, iflag);
4040 			}
4041 
4042 			/* Rsp ring <ringno> error: IOCB */
4043 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4044 					"0336 Rsp Ring %d error: IOCB Data: "
4045 					"x%x x%x x%x x%x x%x x%x x%x x%x\n",
4046 					pring->ringno,
4047 					irsp->un.ulpWord[0],
4048 					irsp->un.ulpWord[1],
4049 					irsp->un.ulpWord[2],
4050 					irsp->un.ulpWord[3],
4051 					irsp->un.ulpWord[4],
4052 					irsp->un.ulpWord[5],
4053 					*(uint32_t *)&irsp->un1,
4054 					*((uint32_t *)&irsp->un1 + 1));
4055 		}
4056 
4057 		switch (type) {
4058 		case LPFC_ABORT_IOCB:
4059 		case LPFC_SOL_IOCB:
4060 			/*
4061 			 * Idle exchange closed via ABTS from port.  No iocb
4062 			 * resources need to be recovered.
4063 			 */
4064 			if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
4065 				lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4066 						"0333 IOCB cmd 0x%x"
4067 						" processed. Skipping"
4068 						" completion\n",
4069 						irsp->ulpCommand);
4070 				break;
4071 			}
4072 
4073 			cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
4074 							 &rspiocbq);
4075 			if (unlikely(!cmdiocbq))
4076 				break;
4077 			if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED)
4078 				cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
4079 			if (cmdiocbq->cmd_cmpl) {
4080 				spin_unlock_irqrestore(&phba->hbalock, iflag);
4081 				cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq);
4082 				spin_lock_irqsave(&phba->hbalock, iflag);
4083 			}
4084 			break;
4085 		case LPFC_UNSOL_IOCB:
4086 			spin_unlock_irqrestore(&phba->hbalock, iflag);
4087 			lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
4088 			spin_lock_irqsave(&phba->hbalock, iflag);
4089 			break;
4090 		default:
4091 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
4092 				char adaptermsg[LPFC_MAX_ADPTMSG];
4093 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
4094 				memcpy(&adaptermsg[0], (uint8_t *) irsp,
4095 				       MAX_MSG_DATA);
4096 				dev_warn(&((phba->pcidev)->dev),
4097 					 "lpfc%d: %s\n",
4098 					 phba->brd_no, adaptermsg);
4099 			} else {
4100 				/* Unknown IOCB command */
4101 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4102 						"0334 Unknown IOCB command "
4103 						"Data: x%x, x%x x%x x%x x%x\n",
4104 						type, irsp->ulpCommand,
4105 						irsp->ulpStatus,
4106 						irsp->ulpIoTag,
4107 						irsp->ulpContext);
4108 			}
4109 			break;
4110 		}
4111 
4112 		/*
4113 		 * The response IOCB has been processed.  Update the ring
4114 		 * pointer in SLIM.  If the port response put pointer has not
4115 		 * been updated, sync the pgp->rspPutInx and fetch the new port
4116 		 * response put pointer.
4117 		 */
4118 		writel(pring->sli.sli3.rspidx,
4119 			&phba->host_gp[pring->ringno].rspGetInx);
4120 
4121 		if (pring->sli.sli3.rspidx == portRspPut)
4122 			portRspPut = le32_to_cpu(pgp->rspPutInx);
4123 	}
4124 
4125 	if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
4126 		pring->stats.iocb_rsp_full++;
4127 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
4128 		writel(status, phba->CAregaddr);
4129 		readl(phba->CAregaddr);
4130 	}
4131 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
4132 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
4133 		pring->stats.iocb_cmd_empty++;
4134 
4135 		/* Force update of the local copy of cmdGetInx */
4136 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
4137 		lpfc_sli_resume_iocb(phba, pring);
4138 
4139 		if ((pring->lpfc_sli_cmd_available))
4140 			(pring->lpfc_sli_cmd_available) (phba, pring);
4141 
4142 	}
4143 
4144 	phba->fcp_ring_in_use = 0;
4145 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4146 	return rc;
4147 }
4148 
4149 /**
4150  * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
4151  * @phba: Pointer to HBA context object.
4152  * @pring: Pointer to driver SLI ring object.
4153  * @rspiocbp: Pointer to driver response IOCB object.
4154  *
4155  * This function is called from the worker thread when there is a slow-path
4156  * response IOCB to process. This function chains all the response iocbs until
4157  * seeing the iocb with the LE bit set. The function will call
4158  * lpfc_sli_process_sol_iocb function if the response iocb indicates a
4159  * completion of a command iocb. The function will call the
4160  * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
4161  * The function frees the resources or calls the completion handler if this
4162  * iocb is an abort completion. The function returns NULL when the response
4163  * iocb has the LE bit set and all the chained iocbs are processed, otherwise
4164  * this function shall chain the iocb on to the iocb_continueq and return the
4165  * response iocb passed in.
4166  **/
4167 static struct lpfc_iocbq *
4168 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
4169 			struct lpfc_iocbq *rspiocbp)
4170 {
4171 	struct lpfc_iocbq *saveq;
4172 	struct lpfc_iocbq *cmdiocb;
4173 	struct lpfc_iocbq *next_iocb;
4174 	IOCB_t *irsp;
4175 	uint32_t free_saveq;
4176 	u8 cmd_type;
4177 	lpfc_iocb_type type;
4178 	unsigned long iflag;
4179 	u32 ulp_status = get_job_ulpstatus(phba, rspiocbp);
4180 	u32 ulp_word4 = get_job_word4(phba, rspiocbp);
4181 	u32 ulp_command = get_job_cmnd(phba, rspiocbp);
4182 	int rc;
4183 
4184 	spin_lock_irqsave(&phba->hbalock, iflag);
4185 	/* First add the response iocb to the countinueq list */
4186 	list_add_tail(&rspiocbp->list, &pring->iocb_continueq);
4187 	pring->iocb_continueq_cnt++;
4188 
4189 	/*
4190 	 * By default, the driver expects to free all resources
4191 	 * associated with this iocb completion.
4192 	 */
4193 	free_saveq = 1;
4194 	saveq = list_get_first(&pring->iocb_continueq,
4195 			       struct lpfc_iocbq, list);
4196 	list_del_init(&pring->iocb_continueq);
4197 	pring->iocb_continueq_cnt = 0;
4198 
4199 	pring->stats.iocb_rsp++;
4200 
4201 	/*
4202 	 * If resource errors reported from HBA, reduce
4203 	 * queuedepths of the SCSI device.
4204 	 */
4205 	if (ulp_status == IOSTAT_LOCAL_REJECT &&
4206 	    ((ulp_word4 & IOERR_PARAM_MASK) ==
4207 	     IOERR_NO_RESOURCES)) {
4208 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4209 		phba->lpfc_rampdown_queue_depth(phba);
4210 		spin_lock_irqsave(&phba->hbalock, iflag);
4211 	}
4212 
4213 	if (ulp_status) {
4214 		/* Rsp ring <ringno> error: IOCB */
4215 		if (phba->sli_rev < LPFC_SLI_REV4) {
4216 			irsp = &rspiocbp->iocb;
4217 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4218 					"0328 Rsp Ring %d error: ulp_status x%x "
4219 					"IOCB Data: "
4220 					"x%08x x%08x x%08x x%08x "
4221 					"x%08x x%08x x%08x x%08x "
4222 					"x%08x x%08x x%08x x%08x "
4223 					"x%08x x%08x x%08x x%08x\n",
4224 					pring->ringno, ulp_status,
4225 					get_job_ulpword(rspiocbp, 0),
4226 					get_job_ulpword(rspiocbp, 1),
4227 					get_job_ulpword(rspiocbp, 2),
4228 					get_job_ulpword(rspiocbp, 3),
4229 					get_job_ulpword(rspiocbp, 4),
4230 					get_job_ulpword(rspiocbp, 5),
4231 					*(((uint32_t *)irsp) + 6),
4232 					*(((uint32_t *)irsp) + 7),
4233 					*(((uint32_t *)irsp) + 8),
4234 					*(((uint32_t *)irsp) + 9),
4235 					*(((uint32_t *)irsp) + 10),
4236 					*(((uint32_t *)irsp) + 11),
4237 					*(((uint32_t *)irsp) + 12),
4238 					*(((uint32_t *)irsp) + 13),
4239 					*(((uint32_t *)irsp) + 14),
4240 					*(((uint32_t *)irsp) + 15));
4241 		} else {
4242 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4243 					"0321 Rsp Ring %d error: "
4244 					"IOCB Data: "
4245 					"x%x x%x x%x x%x\n",
4246 					pring->ringno,
4247 					rspiocbp->wcqe_cmpl.word0,
4248 					rspiocbp->wcqe_cmpl.total_data_placed,
4249 					rspiocbp->wcqe_cmpl.parameter,
4250 					rspiocbp->wcqe_cmpl.word3);
4251 		}
4252 	}
4253 
4254 
4255 	/*
4256 	 * Fetch the iocb command type and call the correct completion
4257 	 * routine. Solicited and Unsolicited IOCBs on the ELS ring
4258 	 * get freed back to the lpfc_iocb_list by the discovery
4259 	 * kernel thread.
4260 	 */
4261 	cmd_type = ulp_command & CMD_IOCB_MASK;
4262 	type = lpfc_sli_iocb_cmd_type(cmd_type);
4263 	switch (type) {
4264 	case LPFC_SOL_IOCB:
4265 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4266 		rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
4267 		spin_lock_irqsave(&phba->hbalock, iflag);
4268 		break;
4269 	case LPFC_UNSOL_IOCB:
4270 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4271 		rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
4272 		spin_lock_irqsave(&phba->hbalock, iflag);
4273 		if (!rc)
4274 			free_saveq = 0;
4275 		break;
4276 	case LPFC_ABORT_IOCB:
4277 		cmdiocb = NULL;
4278 		if (ulp_command != CMD_XRI_ABORTED_CX)
4279 			cmdiocb = lpfc_sli_iocbq_lookup(phba, pring,
4280 							saveq);
4281 		if (cmdiocb) {
4282 			/* Call the specified completion routine */
4283 			if (cmdiocb->cmd_cmpl) {
4284 				spin_unlock_irqrestore(&phba->hbalock, iflag);
4285 				cmdiocb->cmd_cmpl(phba, cmdiocb, saveq);
4286 				spin_lock_irqsave(&phba->hbalock, iflag);
4287 			} else {
4288 				__lpfc_sli_release_iocbq(phba, cmdiocb);
4289 			}
4290 		}
4291 		break;
4292 	case LPFC_UNKNOWN_IOCB:
4293 		if (ulp_command == CMD_ADAPTER_MSG) {
4294 			char adaptermsg[LPFC_MAX_ADPTMSG];
4295 
4296 			memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
4297 			memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe,
4298 			       MAX_MSG_DATA);
4299 			dev_warn(&((phba->pcidev)->dev),
4300 				 "lpfc%d: %s\n",
4301 				 phba->brd_no, adaptermsg);
4302 		} else {
4303 			/* Unknown command */
4304 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4305 					"0335 Unknown IOCB "
4306 					"command Data: x%x "
4307 					"x%x x%x x%x\n",
4308 					ulp_command,
4309 					ulp_status,
4310 					get_wqe_reqtag(rspiocbp),
4311 					get_job_ulpcontext(phba, rspiocbp));
4312 		}
4313 		break;
4314 	}
4315 
4316 	if (free_saveq) {
4317 		list_for_each_entry_safe(rspiocbp, next_iocb,
4318 					 &saveq->list, list) {
4319 			list_del_init(&rspiocbp->list);
4320 			__lpfc_sli_release_iocbq(phba, rspiocbp);
4321 		}
4322 		__lpfc_sli_release_iocbq(phba, saveq);
4323 	}
4324 	rspiocbp = NULL;
4325 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4326 	return rspiocbp;
4327 }
4328 
4329 /**
4330  * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
4331  * @phba: Pointer to HBA context object.
4332  * @pring: Pointer to driver SLI ring object.
4333  * @mask: Host attention register mask for this ring.
4334  *
4335  * This routine wraps the actual slow_ring event process routine from the
4336  * API jump table function pointer from the lpfc_hba struct.
4337  **/
4338 void
4339 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
4340 				struct lpfc_sli_ring *pring, uint32_t mask)
4341 {
4342 	phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
4343 }
4344 
4345 /**
4346  * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
4347  * @phba: Pointer to HBA context object.
4348  * @pring: Pointer to driver SLI ring object.
4349  * @mask: Host attention register mask for this ring.
4350  *
4351  * This function is called from the worker thread when there is a ring event
4352  * for non-fcp rings. The caller does not hold any lock. The function will
4353  * remove each response iocb in the response ring and calls the handle
4354  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4355  **/
4356 static void
4357 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
4358 				   struct lpfc_sli_ring *pring, uint32_t mask)
4359 {
4360 	struct lpfc_pgp *pgp;
4361 	IOCB_t *entry;
4362 	IOCB_t *irsp = NULL;
4363 	struct lpfc_iocbq *rspiocbp = NULL;
4364 	uint32_t portRspPut, portRspMax;
4365 	unsigned long iflag;
4366 	uint32_t status;
4367 
4368 	pgp = &phba->port_gp[pring->ringno];
4369 	spin_lock_irqsave(&phba->hbalock, iflag);
4370 	pring->stats.iocb_event++;
4371 
4372 	/*
4373 	 * The next available response entry should never exceed the maximum
4374 	 * entries.  If it does, treat it as an adapter hardware error.
4375 	 */
4376 	portRspMax = pring->sli.sli3.numRiocb;
4377 	portRspPut = le32_to_cpu(pgp->rspPutInx);
4378 	if (portRspPut >= portRspMax) {
4379 		/*
4380 		 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
4381 		 * rsp ring <portRspMax>
4382 		 */
4383 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4384 				"0303 Ring %d handler: portRspPut %d "
4385 				"is bigger than rsp ring %d\n",
4386 				pring->ringno, portRspPut, portRspMax);
4387 
4388 		phba->link_state = LPFC_HBA_ERROR;
4389 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4390 
4391 		phba->work_hs = HS_FFER3;
4392 		lpfc_handle_eratt(phba);
4393 
4394 		return;
4395 	}
4396 
4397 	rmb();
4398 	while (pring->sli.sli3.rspidx != portRspPut) {
4399 		/*
4400 		 * Build a completion list and call the appropriate handler.
4401 		 * The process is to get the next available response iocb, get
4402 		 * a free iocb from the list, copy the response data into the
4403 		 * free iocb, insert to the continuation list, and update the
4404 		 * next response index to slim.  This process makes response
4405 		 * iocb's in the ring available to DMA as fast as possible but
4406 		 * pays a penalty for a copy operation.  Since the iocb is
4407 		 * only 32 bytes, this penalty is considered small relative to
4408 		 * the PCI reads for register values and a slim write.  When
4409 		 * the ulpLe field is set, the entire Command has been
4410 		 * received.
4411 		 */
4412 		entry = lpfc_resp_iocb(phba, pring);
4413 
4414 		phba->last_completion_time = jiffies;
4415 		rspiocbp = __lpfc_sli_get_iocbq(phba);
4416 		if (rspiocbp == NULL) {
4417 			printk(KERN_ERR "%s: out of buffers! Failing "
4418 			       "completion.\n", __func__);
4419 			break;
4420 		}
4421 
4422 		lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
4423 				      phba->iocb_rsp_size);
4424 		irsp = &rspiocbp->iocb;
4425 
4426 		if (++pring->sli.sli3.rspidx >= portRspMax)
4427 			pring->sli.sli3.rspidx = 0;
4428 
4429 		if (pring->ringno == LPFC_ELS_RING) {
4430 			lpfc_debugfs_slow_ring_trc(phba,
4431 			"IOCB rsp ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
4432 				*(((uint32_t *) irsp) + 4),
4433 				*(((uint32_t *) irsp) + 6),
4434 				*(((uint32_t *) irsp) + 7));
4435 		}
4436 
4437 		writel(pring->sli.sli3.rspidx,
4438 			&phba->host_gp[pring->ringno].rspGetInx);
4439 
4440 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4441 		/* Handle the response IOCB */
4442 		rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
4443 		spin_lock_irqsave(&phba->hbalock, iflag);
4444 
4445 		/*
4446 		 * If the port response put pointer has not been updated, sync
4447 		 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
4448 		 * response put pointer.
4449 		 */
4450 		if (pring->sli.sli3.rspidx == portRspPut) {
4451 			portRspPut = le32_to_cpu(pgp->rspPutInx);
4452 		}
4453 	} /* while (pring->sli.sli3.rspidx != portRspPut) */
4454 
4455 	if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
4456 		/* At least one response entry has been freed */
4457 		pring->stats.iocb_rsp_full++;
4458 		/* SET RxRE_RSP in Chip Att register */
4459 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
4460 		writel(status, phba->CAregaddr);
4461 		readl(phba->CAregaddr); /* flush */
4462 	}
4463 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
4464 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
4465 		pring->stats.iocb_cmd_empty++;
4466 
4467 		/* Force update of the local copy of cmdGetInx */
4468 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
4469 		lpfc_sli_resume_iocb(phba, pring);
4470 
4471 		if ((pring->lpfc_sli_cmd_available))
4472 			(pring->lpfc_sli_cmd_available) (phba, pring);
4473 
4474 	}
4475 
4476 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4477 	return;
4478 }
4479 
4480 /**
4481  * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
4482  * @phba: Pointer to HBA context object.
4483  * @pring: Pointer to driver SLI ring object.
4484  * @mask: Host attention register mask for this ring.
4485  *
4486  * This function is called from the worker thread when there is a pending
4487  * ELS response iocb on the driver internal slow-path response iocb worker
4488  * queue. The caller does not hold any lock. The function will remove each
4489  * response iocb from the response worker queue and calls the handle
4490  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4491  **/
4492 static void
4493 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
4494 				   struct lpfc_sli_ring *pring, uint32_t mask)
4495 {
4496 	struct lpfc_iocbq *irspiocbq;
4497 	struct hbq_dmabuf *dmabuf;
4498 	struct lpfc_cq_event *cq_event;
4499 	unsigned long iflag;
4500 	int count = 0;
4501 
4502 	spin_lock_irqsave(&phba->hbalock, iflag);
4503 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
4504 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4505 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
4506 		/* Get the response iocb from the head of work queue */
4507 		spin_lock_irqsave(&phba->hbalock, iflag);
4508 		list_remove_head(&phba->sli4_hba.sp_queue_event,
4509 				 cq_event, struct lpfc_cq_event, list);
4510 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4511 
4512 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
4513 		case CQE_CODE_COMPL_WQE:
4514 			irspiocbq = container_of(cq_event, struct lpfc_iocbq,
4515 						 cq_event);
4516 			/* Translate ELS WCQE to response IOCBQ */
4517 			irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba,
4518 								      irspiocbq);
4519 			if (irspiocbq)
4520 				lpfc_sli_sp_handle_rspiocb(phba, pring,
4521 							   irspiocbq);
4522 			count++;
4523 			break;
4524 		case CQE_CODE_RECEIVE:
4525 		case CQE_CODE_RECEIVE_V1:
4526 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
4527 					      cq_event);
4528 			lpfc_sli4_handle_received_buffer(phba, dmabuf);
4529 			count++;
4530 			break;
4531 		default:
4532 			break;
4533 		}
4534 
4535 		/* Limit the number of events to 64 to avoid soft lockups */
4536 		if (count == 64)
4537 			break;
4538 	}
4539 }
4540 
4541 /**
4542  * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
4543  * @phba: Pointer to HBA context object.
4544  * @pring: Pointer to driver SLI ring object.
4545  *
4546  * This function aborts all iocbs in the given ring and frees all the iocb
4547  * objects in txq. This function issues an abort iocb for all the iocb commands
4548  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4549  * the return of this function. The caller is not required to hold any locks.
4550  **/
4551 void
4552 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
4553 {
4554 	LIST_HEAD(tx_completions);
4555 	LIST_HEAD(txcmplq_completions);
4556 	struct lpfc_iocbq *iocb, *next_iocb;
4557 	int offline;
4558 
4559 	if (pring->ringno == LPFC_ELS_RING) {
4560 		lpfc_fabric_abort_hba(phba);
4561 	}
4562 	offline = pci_channel_offline(phba->pcidev);
4563 
4564 	/* Error everything on txq and txcmplq
4565 	 * First do the txq.
4566 	 */
4567 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4568 		spin_lock_irq(&pring->ring_lock);
4569 		list_splice_init(&pring->txq, &tx_completions);
4570 		pring->txq_cnt = 0;
4571 
4572 		if (offline) {
4573 			list_splice_init(&pring->txcmplq,
4574 					 &txcmplq_completions);
4575 		} else {
4576 			/* Next issue ABTS for everything on the txcmplq */
4577 			list_for_each_entry_safe(iocb, next_iocb,
4578 						 &pring->txcmplq, list)
4579 				lpfc_sli_issue_abort_iotag(phba, pring,
4580 							   iocb, NULL);
4581 		}
4582 		spin_unlock_irq(&pring->ring_lock);
4583 	} else {
4584 		spin_lock_irq(&phba->hbalock);
4585 		list_splice_init(&pring->txq, &tx_completions);
4586 		pring->txq_cnt = 0;
4587 
4588 		if (offline) {
4589 			list_splice_init(&pring->txcmplq, &txcmplq_completions);
4590 		} else {
4591 			/* Next issue ABTS for everything on the txcmplq */
4592 			list_for_each_entry_safe(iocb, next_iocb,
4593 						 &pring->txcmplq, list)
4594 				lpfc_sli_issue_abort_iotag(phba, pring,
4595 							   iocb, NULL);
4596 		}
4597 		spin_unlock_irq(&phba->hbalock);
4598 	}
4599 
4600 	if (offline) {
4601 		/* Cancel all the IOCBs from the completions list */
4602 		lpfc_sli_cancel_iocbs(phba, &txcmplq_completions,
4603 				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
4604 	} else {
4605 		/* Make sure HBA is alive */
4606 		lpfc_issue_hb_tmo(phba);
4607 	}
4608 	/* Cancel all the IOCBs from the completions list */
4609 	lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT,
4610 			      IOERR_SLI_ABORTED);
4611 }
4612 
4613 /**
4614  * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
4615  * @phba: Pointer to HBA context object.
4616  *
4617  * This function aborts all iocbs in FCP rings and frees all the iocb
4618  * objects in txq. This function issues an abort iocb for all the iocb commands
4619  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4620  * the return of this function. The caller is not required to hold any locks.
4621  **/
4622 void
4623 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
4624 {
4625 	struct lpfc_sli *psli = &phba->sli;
4626 	struct lpfc_sli_ring  *pring;
4627 	uint32_t i;
4628 
4629 	/* Look on all the FCP Rings for the iotag */
4630 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4631 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4632 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4633 			lpfc_sli_abort_iocb_ring(phba, pring);
4634 		}
4635 	} else {
4636 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4637 		lpfc_sli_abort_iocb_ring(phba, pring);
4638 	}
4639 }
4640 
4641 /**
4642  * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
4643  * @phba: Pointer to HBA context object.
4644  *
4645  * This function flushes all iocbs in the IO ring and frees all the iocb
4646  * objects in txq and txcmplq. This function will not issue abort iocbs
4647  * for all the iocb commands in txcmplq, they will just be returned with
4648  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4649  * slot has been permanently disabled.
4650  **/
4651 void
4652 lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
4653 {
4654 	LIST_HEAD(txq);
4655 	LIST_HEAD(txcmplq);
4656 	struct lpfc_sli *psli = &phba->sli;
4657 	struct lpfc_sli_ring  *pring;
4658 	uint32_t i;
4659 	struct lpfc_iocbq *piocb, *next_iocb;
4660 
4661 	spin_lock_irq(&phba->hbalock);
4662 	/* Indicate the I/O queues are flushed */
4663 	phba->hba_flag |= HBA_IOQ_FLUSH;
4664 	spin_unlock_irq(&phba->hbalock);
4665 
4666 	/* Look on all the FCP Rings for the iotag */
4667 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4668 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4669 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4670 
4671 			spin_lock_irq(&pring->ring_lock);
4672 			/* Retrieve everything on txq */
4673 			list_splice_init(&pring->txq, &txq);
4674 			list_for_each_entry_safe(piocb, next_iocb,
4675 						 &pring->txcmplq, list)
4676 				piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
4677 			/* Retrieve everything on the txcmplq */
4678 			list_splice_init(&pring->txcmplq, &txcmplq);
4679 			pring->txq_cnt = 0;
4680 			pring->txcmplq_cnt = 0;
4681 			spin_unlock_irq(&pring->ring_lock);
4682 
4683 			/* Flush the txq */
4684 			lpfc_sli_cancel_iocbs(phba, &txq,
4685 					      IOSTAT_LOCAL_REJECT,
4686 					      IOERR_SLI_DOWN);
4687 			/* Flush the txcmplq */
4688 			lpfc_sli_cancel_iocbs(phba, &txcmplq,
4689 					      IOSTAT_LOCAL_REJECT,
4690 					      IOERR_SLI_DOWN);
4691 			if (unlikely(pci_channel_offline(phba->pcidev)))
4692 				lpfc_sli4_io_xri_aborted(phba, NULL, 0);
4693 		}
4694 	} else {
4695 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4696 
4697 		spin_lock_irq(&phba->hbalock);
4698 		/* Retrieve everything on txq */
4699 		list_splice_init(&pring->txq, &txq);
4700 		list_for_each_entry_safe(piocb, next_iocb,
4701 					 &pring->txcmplq, list)
4702 			piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
4703 		/* Retrieve everything on the txcmplq */
4704 		list_splice_init(&pring->txcmplq, &txcmplq);
4705 		pring->txq_cnt = 0;
4706 		pring->txcmplq_cnt = 0;
4707 		spin_unlock_irq(&phba->hbalock);
4708 
4709 		/* Flush the txq */
4710 		lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4711 				      IOERR_SLI_DOWN);
4712 		/* Flush the txcmpq */
4713 		lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4714 				      IOERR_SLI_DOWN);
4715 	}
4716 }
4717 
4718 /**
4719  * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4720  * @phba: Pointer to HBA context object.
4721  * @mask: Bit mask to be checked.
4722  *
4723  * This function reads the host status register and compares
4724  * with the provided bit mask to check if HBA completed
4725  * the restart. This function will wait in a loop for the
4726  * HBA to complete restart. If the HBA does not restart within
4727  * 15 iterations, the function will reset the HBA again. The
4728  * function returns 1 when HBA fail to restart otherwise returns
4729  * zero.
4730  **/
4731 static int
4732 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4733 {
4734 	uint32_t status;
4735 	int i = 0;
4736 	int retval = 0;
4737 
4738 	/* Read the HBA Host Status Register */
4739 	if (lpfc_readl(phba->HSregaddr, &status))
4740 		return 1;
4741 
4742 	phba->hba_flag |= HBA_NEEDS_CFG_PORT;
4743 
4744 	/*
4745 	 * Check status register every 100ms for 5 retries, then every
4746 	 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4747 	 * every 2.5 sec for 4.
4748 	 * Break our of the loop if errors occurred during init.
4749 	 */
4750 	while (((status & mask) != mask) &&
4751 	       !(status & HS_FFERM) &&
4752 	       i++ < 20) {
4753 
4754 		if (i <= 5)
4755 			msleep(10);
4756 		else if (i <= 10)
4757 			msleep(500);
4758 		else
4759 			msleep(2500);
4760 
4761 		if (i == 15) {
4762 				/* Do post */
4763 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4764 			lpfc_sli_brdrestart(phba);
4765 		}
4766 		/* Read the HBA Host Status Register */
4767 		if (lpfc_readl(phba->HSregaddr, &status)) {
4768 			retval = 1;
4769 			break;
4770 		}
4771 	}
4772 
4773 	/* Check to see if any errors occurred during init */
4774 	if ((status & HS_FFERM) || (i >= 20)) {
4775 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4776 				"2751 Adapter failed to restart, "
4777 				"status reg x%x, FW Data: A8 x%x AC x%x\n",
4778 				status,
4779 				readl(phba->MBslimaddr + 0xa8),
4780 				readl(phba->MBslimaddr + 0xac));
4781 		phba->link_state = LPFC_HBA_ERROR;
4782 		retval = 1;
4783 	}
4784 
4785 	return retval;
4786 }
4787 
4788 /**
4789  * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4790  * @phba: Pointer to HBA context object.
4791  * @mask: Bit mask to be checked.
4792  *
4793  * This function checks the host status register to check if HBA is
4794  * ready. This function will wait in a loop for the HBA to be ready
4795  * If the HBA is not ready , the function will will reset the HBA PCI
4796  * function again. The function returns 1 when HBA fail to be ready
4797  * otherwise returns zero.
4798  **/
4799 static int
4800 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4801 {
4802 	uint32_t status;
4803 	int retval = 0;
4804 
4805 	/* Read the HBA Host Status Register */
4806 	status = lpfc_sli4_post_status_check(phba);
4807 
4808 	if (status) {
4809 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4810 		lpfc_sli_brdrestart(phba);
4811 		status = lpfc_sli4_post_status_check(phba);
4812 	}
4813 
4814 	/* Check to see if any errors occurred during init */
4815 	if (status) {
4816 		phba->link_state = LPFC_HBA_ERROR;
4817 		retval = 1;
4818 	} else
4819 		phba->sli4_hba.intr_enable = 0;
4820 
4821 	phba->hba_flag &= ~HBA_SETUP;
4822 	return retval;
4823 }
4824 
4825 /**
4826  * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4827  * @phba: Pointer to HBA context object.
4828  * @mask: Bit mask to be checked.
4829  *
4830  * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4831  * from the API jump table function pointer from the lpfc_hba struct.
4832  **/
4833 int
4834 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4835 {
4836 	return phba->lpfc_sli_brdready(phba, mask);
4837 }
4838 
4839 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4840 
4841 /**
4842  * lpfc_reset_barrier - Make HBA ready for HBA reset
4843  * @phba: Pointer to HBA context object.
4844  *
4845  * This function is called before resetting an HBA. This function is called
4846  * with hbalock held and requests HBA to quiesce DMAs before a reset.
4847  **/
4848 void lpfc_reset_barrier(struct lpfc_hba *phba)
4849 {
4850 	uint32_t __iomem *resp_buf;
4851 	uint32_t __iomem *mbox_buf;
4852 	volatile struct MAILBOX_word0 mbox;
4853 	uint32_t hc_copy, ha_copy, resp_data;
4854 	int  i;
4855 	uint8_t hdrtype;
4856 
4857 	lockdep_assert_held(&phba->hbalock);
4858 
4859 	pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4860 	if (hdrtype != 0x80 ||
4861 	    (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4862 	     FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4863 		return;
4864 
4865 	/*
4866 	 * Tell the other part of the chip to suspend temporarily all
4867 	 * its DMA activity.
4868 	 */
4869 	resp_buf = phba->MBslimaddr;
4870 
4871 	/* Disable the error attention */
4872 	if (lpfc_readl(phba->HCregaddr, &hc_copy))
4873 		return;
4874 	writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4875 	readl(phba->HCregaddr); /* flush */
4876 	phba->link_flag |= LS_IGNORE_ERATT;
4877 
4878 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4879 		return;
4880 	if (ha_copy & HA_ERATT) {
4881 		/* Clear Chip error bit */
4882 		writel(HA_ERATT, phba->HAregaddr);
4883 		phba->pport->stopped = 1;
4884 	}
4885 
4886 	mbox.word0 = 0;
4887 	mbox.mbxCommand = MBX_KILL_BOARD;
4888 	mbox.mbxOwner = OWN_CHIP;
4889 
4890 	writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4891 	mbox_buf = phba->MBslimaddr;
4892 	writel(mbox.word0, mbox_buf);
4893 
4894 	for (i = 0; i < 50; i++) {
4895 		if (lpfc_readl((resp_buf + 1), &resp_data))
4896 			return;
4897 		if (resp_data != ~(BARRIER_TEST_PATTERN))
4898 			mdelay(1);
4899 		else
4900 			break;
4901 	}
4902 	resp_data = 0;
4903 	if (lpfc_readl((resp_buf + 1), &resp_data))
4904 		return;
4905 	if (resp_data  != ~(BARRIER_TEST_PATTERN)) {
4906 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4907 		    phba->pport->stopped)
4908 			goto restore_hc;
4909 		else
4910 			goto clear_errat;
4911 	}
4912 
4913 	mbox.mbxOwner = OWN_HOST;
4914 	resp_data = 0;
4915 	for (i = 0; i < 500; i++) {
4916 		if (lpfc_readl(resp_buf, &resp_data))
4917 			return;
4918 		if (resp_data != mbox.word0)
4919 			mdelay(1);
4920 		else
4921 			break;
4922 	}
4923 
4924 clear_errat:
4925 
4926 	while (++i < 500) {
4927 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4928 			return;
4929 		if (!(ha_copy & HA_ERATT))
4930 			mdelay(1);
4931 		else
4932 			break;
4933 	}
4934 
4935 	if (readl(phba->HAregaddr) & HA_ERATT) {
4936 		writel(HA_ERATT, phba->HAregaddr);
4937 		phba->pport->stopped = 1;
4938 	}
4939 
4940 restore_hc:
4941 	phba->link_flag &= ~LS_IGNORE_ERATT;
4942 	writel(hc_copy, phba->HCregaddr);
4943 	readl(phba->HCregaddr); /* flush */
4944 }
4945 
4946 /**
4947  * lpfc_sli_brdkill - Issue a kill_board mailbox command
4948  * @phba: Pointer to HBA context object.
4949  *
4950  * This function issues a kill_board mailbox command and waits for
4951  * the error attention interrupt. This function is called for stopping
4952  * the firmware processing. The caller is not required to hold any
4953  * locks. This function calls lpfc_hba_down_post function to free
4954  * any pending commands after the kill. The function will return 1 when it
4955  * fails to kill the board else will return 0.
4956  **/
4957 int
4958 lpfc_sli_brdkill(struct lpfc_hba *phba)
4959 {
4960 	struct lpfc_sli *psli;
4961 	LPFC_MBOXQ_t *pmb;
4962 	uint32_t status;
4963 	uint32_t ha_copy;
4964 	int retval;
4965 	int i = 0;
4966 
4967 	psli = &phba->sli;
4968 
4969 	/* Kill HBA */
4970 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4971 			"0329 Kill HBA Data: x%x x%x\n",
4972 			phba->pport->port_state, psli->sli_flag);
4973 
4974 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4975 	if (!pmb)
4976 		return 1;
4977 
4978 	/* Disable the error attention */
4979 	spin_lock_irq(&phba->hbalock);
4980 	if (lpfc_readl(phba->HCregaddr, &status)) {
4981 		spin_unlock_irq(&phba->hbalock);
4982 		mempool_free(pmb, phba->mbox_mem_pool);
4983 		return 1;
4984 	}
4985 	status &= ~HC_ERINT_ENA;
4986 	writel(status, phba->HCregaddr);
4987 	readl(phba->HCregaddr); /* flush */
4988 	phba->link_flag |= LS_IGNORE_ERATT;
4989 	spin_unlock_irq(&phba->hbalock);
4990 
4991 	lpfc_kill_board(phba, pmb);
4992 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4993 	retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4994 
4995 	if (retval != MBX_SUCCESS) {
4996 		if (retval != MBX_BUSY)
4997 			mempool_free(pmb, phba->mbox_mem_pool);
4998 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4999 				"2752 KILL_BOARD command failed retval %d\n",
5000 				retval);
5001 		spin_lock_irq(&phba->hbalock);
5002 		phba->link_flag &= ~LS_IGNORE_ERATT;
5003 		spin_unlock_irq(&phba->hbalock);
5004 		return 1;
5005 	}
5006 
5007 	spin_lock_irq(&phba->hbalock);
5008 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
5009 	spin_unlock_irq(&phba->hbalock);
5010 
5011 	mempool_free(pmb, phba->mbox_mem_pool);
5012 
5013 	/* There is no completion for a KILL_BOARD mbox cmd. Check for an error
5014 	 * attention every 100ms for 3 seconds. If we don't get ERATT after
5015 	 * 3 seconds we still set HBA_ERROR state because the status of the
5016 	 * board is now undefined.
5017 	 */
5018 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
5019 		return 1;
5020 	while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
5021 		mdelay(100);
5022 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
5023 			return 1;
5024 	}
5025 
5026 	del_timer_sync(&psli->mbox_tmo);
5027 	if (ha_copy & HA_ERATT) {
5028 		writel(HA_ERATT, phba->HAregaddr);
5029 		phba->pport->stopped = 1;
5030 	}
5031 	spin_lock_irq(&phba->hbalock);
5032 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5033 	psli->mbox_active = NULL;
5034 	phba->link_flag &= ~LS_IGNORE_ERATT;
5035 	spin_unlock_irq(&phba->hbalock);
5036 
5037 	lpfc_hba_down_post(phba);
5038 	phba->link_state = LPFC_HBA_ERROR;
5039 
5040 	return ha_copy & HA_ERATT ? 0 : 1;
5041 }
5042 
5043 /**
5044  * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
5045  * @phba: Pointer to HBA context object.
5046  *
5047  * This function resets the HBA by writing HC_INITFF to the control
5048  * register. After the HBA resets, this function resets all the iocb ring
5049  * indices. This function disables PCI layer parity checking during
5050  * the reset.
5051  * This function returns 0 always.
5052  * The caller is not required to hold any locks.
5053  **/
5054 int
5055 lpfc_sli_brdreset(struct lpfc_hba *phba)
5056 {
5057 	struct lpfc_sli *psli;
5058 	struct lpfc_sli_ring *pring;
5059 	uint16_t cfg_value;
5060 	int i;
5061 
5062 	psli = &phba->sli;
5063 
5064 	/* Reset HBA */
5065 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5066 			"0325 Reset HBA Data: x%x x%x\n",
5067 			(phba->pport) ? phba->pport->port_state : 0,
5068 			psli->sli_flag);
5069 
5070 	/* perform board reset */
5071 	phba->fc_eventTag = 0;
5072 	phba->link_events = 0;
5073 	phba->hba_flag |= HBA_NEEDS_CFG_PORT;
5074 	if (phba->pport) {
5075 		phba->pport->fc_myDID = 0;
5076 		phba->pport->fc_prevDID = 0;
5077 	}
5078 
5079 	/* Turn off parity checking and serr during the physical reset */
5080 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
5081 		return -EIO;
5082 
5083 	pci_write_config_word(phba->pcidev, PCI_COMMAND,
5084 			      (cfg_value &
5085 			       ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
5086 
5087 	psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
5088 
5089 	/* Now toggle INITFF bit in the Host Control Register */
5090 	writel(HC_INITFF, phba->HCregaddr);
5091 	mdelay(1);
5092 	readl(phba->HCregaddr); /* flush */
5093 	writel(0, phba->HCregaddr);
5094 	readl(phba->HCregaddr); /* flush */
5095 
5096 	/* Restore PCI cmd register */
5097 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
5098 
5099 	/* Initialize relevant SLI info */
5100 	for (i = 0; i < psli->num_rings; i++) {
5101 		pring = &psli->sli3_ring[i];
5102 		pring->flag = 0;
5103 		pring->sli.sli3.rspidx = 0;
5104 		pring->sli.sli3.next_cmdidx  = 0;
5105 		pring->sli.sli3.local_getidx = 0;
5106 		pring->sli.sli3.cmdidx = 0;
5107 		pring->missbufcnt = 0;
5108 	}
5109 
5110 	phba->link_state = LPFC_WARM_START;
5111 	return 0;
5112 }
5113 
5114 /**
5115  * lpfc_sli4_brdreset - Reset a sli-4 HBA
5116  * @phba: Pointer to HBA context object.
5117  *
5118  * This function resets a SLI4 HBA. This function disables PCI layer parity
5119  * checking during resets the device. The caller is not required to hold
5120  * any locks.
5121  *
5122  * This function returns 0 on success else returns negative error code.
5123  **/
5124 int
5125 lpfc_sli4_brdreset(struct lpfc_hba *phba)
5126 {
5127 	struct lpfc_sli *psli = &phba->sli;
5128 	uint16_t cfg_value;
5129 	int rc = 0;
5130 
5131 	/* Reset HBA */
5132 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5133 			"0295 Reset HBA Data: x%x x%x x%x\n",
5134 			phba->pport->port_state, psli->sli_flag,
5135 			phba->hba_flag);
5136 
5137 	/* perform board reset */
5138 	phba->fc_eventTag = 0;
5139 	phba->link_events = 0;
5140 	phba->pport->fc_myDID = 0;
5141 	phba->pport->fc_prevDID = 0;
5142 	phba->hba_flag &= ~HBA_SETUP;
5143 
5144 	spin_lock_irq(&phba->hbalock);
5145 	psli->sli_flag &= ~(LPFC_PROCESS_LA);
5146 	phba->fcf.fcf_flag = 0;
5147 	spin_unlock_irq(&phba->hbalock);
5148 
5149 	/* Now physically reset the device */
5150 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5151 			"0389 Performing PCI function reset!\n");
5152 
5153 	/* Turn off parity checking and serr during the physical reset */
5154 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
5155 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5156 				"3205 PCI read Config failed\n");
5157 		return -EIO;
5158 	}
5159 
5160 	pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
5161 			      ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
5162 
5163 	/* Perform FCoE PCI function reset before freeing queue memory */
5164 	rc = lpfc_pci_function_reset(phba);
5165 
5166 	/* Restore PCI cmd register */
5167 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
5168 
5169 	return rc;
5170 }
5171 
5172 /**
5173  * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
5174  * @phba: Pointer to HBA context object.
5175  *
5176  * This function is called in the SLI initialization code path to
5177  * restart the HBA. The caller is not required to hold any lock.
5178  * This function writes MBX_RESTART mailbox command to the SLIM and
5179  * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
5180  * function to free any pending commands. The function enables
5181  * POST only during the first initialization. The function returns zero.
5182  * The function does not guarantee completion of MBX_RESTART mailbox
5183  * command before the return of this function.
5184  **/
5185 static int
5186 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
5187 {
5188 	volatile struct MAILBOX_word0 mb;
5189 	struct lpfc_sli *psli;
5190 	void __iomem *to_slim;
5191 	uint32_t hba_aer_enabled;
5192 
5193 	spin_lock_irq(&phba->hbalock);
5194 
5195 	/* Take PCIe device Advanced Error Reporting (AER) state */
5196 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
5197 
5198 	psli = &phba->sli;
5199 
5200 	/* Restart HBA */
5201 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5202 			"0337 Restart HBA Data: x%x x%x\n",
5203 			(phba->pport) ? phba->pport->port_state : 0,
5204 			psli->sli_flag);
5205 
5206 	mb.word0 = 0;
5207 	mb.mbxCommand = MBX_RESTART;
5208 	mb.mbxHc = 1;
5209 
5210 	lpfc_reset_barrier(phba);
5211 
5212 	to_slim = phba->MBslimaddr;
5213 	writel(mb.word0, to_slim);
5214 	readl(to_slim); /* flush */
5215 
5216 	/* Only skip post after fc_ffinit is completed */
5217 	if (phba->pport && phba->pport->port_state)
5218 		mb.word0 = 1;	/* This is really setting up word1 */
5219 	else
5220 		mb.word0 = 0;	/* This is really setting up word1 */
5221 	to_slim = phba->MBslimaddr + sizeof (uint32_t);
5222 	writel(mb.word0, to_slim);
5223 	readl(to_slim); /* flush */
5224 
5225 	lpfc_sli_brdreset(phba);
5226 	if (phba->pport)
5227 		phba->pport->stopped = 0;
5228 	phba->link_state = LPFC_INIT_START;
5229 	phba->hba_flag = 0;
5230 	spin_unlock_irq(&phba->hbalock);
5231 
5232 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
5233 	psli->stats_start = ktime_get_seconds();
5234 
5235 	/* Give the INITFF and Post time to settle. */
5236 	mdelay(100);
5237 
5238 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
5239 	if (hba_aer_enabled)
5240 		pci_disable_pcie_error_reporting(phba->pcidev);
5241 
5242 	lpfc_hba_down_post(phba);
5243 
5244 	return 0;
5245 }
5246 
5247 /**
5248  * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
5249  * @phba: Pointer to HBA context object.
5250  *
5251  * This function is called in the SLI initialization code path to restart
5252  * a SLI4 HBA. The caller is not required to hold any lock.
5253  * At the end of the function, it calls lpfc_hba_down_post function to
5254  * free any pending commands.
5255  **/
5256 static int
5257 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
5258 {
5259 	struct lpfc_sli *psli = &phba->sli;
5260 	uint32_t hba_aer_enabled;
5261 	int rc;
5262 
5263 	/* Restart HBA */
5264 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5265 			"0296 Restart HBA Data: x%x x%x\n",
5266 			phba->pport->port_state, psli->sli_flag);
5267 
5268 	/* Take PCIe device Advanced Error Reporting (AER) state */
5269 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
5270 
5271 	rc = lpfc_sli4_brdreset(phba);
5272 	if (rc) {
5273 		phba->link_state = LPFC_HBA_ERROR;
5274 		goto hba_down_queue;
5275 	}
5276 
5277 	spin_lock_irq(&phba->hbalock);
5278 	phba->pport->stopped = 0;
5279 	phba->link_state = LPFC_INIT_START;
5280 	phba->hba_flag = 0;
5281 	/* Preserve FA-PWWN expectation */
5282 	phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC;
5283 	spin_unlock_irq(&phba->hbalock);
5284 
5285 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
5286 	psli->stats_start = ktime_get_seconds();
5287 
5288 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
5289 	if (hba_aer_enabled)
5290 		pci_disable_pcie_error_reporting(phba->pcidev);
5291 
5292 hba_down_queue:
5293 	lpfc_hba_down_post(phba);
5294 	lpfc_sli4_queue_destroy(phba);
5295 
5296 	return rc;
5297 }
5298 
5299 /**
5300  * lpfc_sli_brdrestart - Wrapper func for restarting hba
5301  * @phba: Pointer to HBA context object.
5302  *
5303  * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
5304  * API jump table function pointer from the lpfc_hba struct.
5305 **/
5306 int
5307 lpfc_sli_brdrestart(struct lpfc_hba *phba)
5308 {
5309 	return phba->lpfc_sli_brdrestart(phba);
5310 }
5311 
5312 /**
5313  * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
5314  * @phba: Pointer to HBA context object.
5315  *
5316  * This function is called after a HBA restart to wait for successful
5317  * restart of the HBA. Successful restart of the HBA is indicated by
5318  * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
5319  * iteration, the function will restart the HBA again. The function returns
5320  * zero if HBA successfully restarted else returns negative error code.
5321  **/
5322 int
5323 lpfc_sli_chipset_init(struct lpfc_hba *phba)
5324 {
5325 	uint32_t status, i = 0;
5326 
5327 	/* Read the HBA Host Status Register */
5328 	if (lpfc_readl(phba->HSregaddr, &status))
5329 		return -EIO;
5330 
5331 	/* Check status register to see what current state is */
5332 	i = 0;
5333 	while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
5334 
5335 		/* Check every 10ms for 10 retries, then every 100ms for 90
5336 		 * retries, then every 1 sec for 50 retires for a total of
5337 		 * ~60 seconds before reset the board again and check every
5338 		 * 1 sec for 50 retries. The up to 60 seconds before the
5339 		 * board ready is required by the Falcon FIPS zeroization
5340 		 * complete, and any reset the board in between shall cause
5341 		 * restart of zeroization, further delay the board ready.
5342 		 */
5343 		if (i++ >= 200) {
5344 			/* Adapter failed to init, timeout, status reg
5345 			   <status> */
5346 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5347 					"0436 Adapter failed to init, "
5348 					"timeout, status reg x%x, "
5349 					"FW Data: A8 x%x AC x%x\n", status,
5350 					readl(phba->MBslimaddr + 0xa8),
5351 					readl(phba->MBslimaddr + 0xac));
5352 			phba->link_state = LPFC_HBA_ERROR;
5353 			return -ETIMEDOUT;
5354 		}
5355 
5356 		/* Check to see if any errors occurred during init */
5357 		if (status & HS_FFERM) {
5358 			/* ERROR: During chipset initialization */
5359 			/* Adapter failed to init, chipset, status reg
5360 			   <status> */
5361 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5362 					"0437 Adapter failed to init, "
5363 					"chipset, status reg x%x, "
5364 					"FW Data: A8 x%x AC x%x\n", status,
5365 					readl(phba->MBslimaddr + 0xa8),
5366 					readl(phba->MBslimaddr + 0xac));
5367 			phba->link_state = LPFC_HBA_ERROR;
5368 			return -EIO;
5369 		}
5370 
5371 		if (i <= 10)
5372 			msleep(10);
5373 		else if (i <= 100)
5374 			msleep(100);
5375 		else
5376 			msleep(1000);
5377 
5378 		if (i == 150) {
5379 			/* Do post */
5380 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5381 			lpfc_sli_brdrestart(phba);
5382 		}
5383 		/* Read the HBA Host Status Register */
5384 		if (lpfc_readl(phba->HSregaddr, &status))
5385 			return -EIO;
5386 	}
5387 
5388 	/* Check to see if any errors occurred during init */
5389 	if (status & HS_FFERM) {
5390 		/* ERROR: During chipset initialization */
5391 		/* Adapter failed to init, chipset, status reg <status> */
5392 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5393 				"0438 Adapter failed to init, chipset, "
5394 				"status reg x%x, "
5395 				"FW Data: A8 x%x AC x%x\n", status,
5396 				readl(phba->MBslimaddr + 0xa8),
5397 				readl(phba->MBslimaddr + 0xac));
5398 		phba->link_state = LPFC_HBA_ERROR;
5399 		return -EIO;
5400 	}
5401 
5402 	phba->hba_flag |= HBA_NEEDS_CFG_PORT;
5403 
5404 	/* Clear all interrupt enable conditions */
5405 	writel(0, phba->HCregaddr);
5406 	readl(phba->HCregaddr); /* flush */
5407 
5408 	/* setup host attn register */
5409 	writel(0xffffffff, phba->HAregaddr);
5410 	readl(phba->HAregaddr); /* flush */
5411 	return 0;
5412 }
5413 
5414 /**
5415  * lpfc_sli_hbq_count - Get the number of HBQs to be configured
5416  *
5417  * This function calculates and returns the number of HBQs required to be
5418  * configured.
5419  **/
5420 int
5421 lpfc_sli_hbq_count(void)
5422 {
5423 	return ARRAY_SIZE(lpfc_hbq_defs);
5424 }
5425 
5426 /**
5427  * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
5428  *
5429  * This function adds the number of hbq entries in every HBQ to get
5430  * the total number of hbq entries required for the HBA and returns
5431  * the total count.
5432  **/
5433 static int
5434 lpfc_sli_hbq_entry_count(void)
5435 {
5436 	int  hbq_count = lpfc_sli_hbq_count();
5437 	int  count = 0;
5438 	int  i;
5439 
5440 	for (i = 0; i < hbq_count; ++i)
5441 		count += lpfc_hbq_defs[i]->entry_count;
5442 	return count;
5443 }
5444 
5445 /**
5446  * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
5447  *
5448  * This function calculates amount of memory required for all hbq entries
5449  * to be configured and returns the total memory required.
5450  **/
5451 int
5452 lpfc_sli_hbq_size(void)
5453 {
5454 	return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
5455 }
5456 
5457 /**
5458  * lpfc_sli_hbq_setup - configure and initialize HBQs
5459  * @phba: Pointer to HBA context object.
5460  *
5461  * This function is called during the SLI initialization to configure
5462  * all the HBQs and post buffers to the HBQ. The caller is not
5463  * required to hold any locks. This function will return zero if successful
5464  * else it will return negative error code.
5465  **/
5466 static int
5467 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
5468 {
5469 	int  hbq_count = lpfc_sli_hbq_count();
5470 	LPFC_MBOXQ_t *pmb;
5471 	MAILBOX_t *pmbox;
5472 	uint32_t hbqno;
5473 	uint32_t hbq_entry_index;
5474 
5475 				/* Get a Mailbox buffer to setup mailbox
5476 				 * commands for HBA initialization
5477 				 */
5478 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5479 
5480 	if (!pmb)
5481 		return -ENOMEM;
5482 
5483 	pmbox = &pmb->u.mb;
5484 
5485 	/* Initialize the struct lpfc_sli_hbq structure for each hbq */
5486 	phba->link_state = LPFC_INIT_MBX_CMDS;
5487 	phba->hbq_in_use = 1;
5488 
5489 	hbq_entry_index = 0;
5490 	for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
5491 		phba->hbqs[hbqno].next_hbqPutIdx = 0;
5492 		phba->hbqs[hbqno].hbqPutIdx      = 0;
5493 		phba->hbqs[hbqno].local_hbqGetIdx   = 0;
5494 		phba->hbqs[hbqno].entry_count =
5495 			lpfc_hbq_defs[hbqno]->entry_count;
5496 		lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
5497 			hbq_entry_index, pmb);
5498 		hbq_entry_index += phba->hbqs[hbqno].entry_count;
5499 
5500 		if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
5501 			/* Adapter failed to init, mbxCmd <cmd> CFG_RING,
5502 			   mbxStatus <status>, ring <num> */
5503 
5504 			lpfc_printf_log(phba, KERN_ERR,
5505 					LOG_SLI | LOG_VPORT,
5506 					"1805 Adapter failed to init. "
5507 					"Data: x%x x%x x%x\n",
5508 					pmbox->mbxCommand,
5509 					pmbox->mbxStatus, hbqno);
5510 
5511 			phba->link_state = LPFC_HBA_ERROR;
5512 			mempool_free(pmb, phba->mbox_mem_pool);
5513 			return -ENXIO;
5514 		}
5515 	}
5516 	phba->hbq_count = hbq_count;
5517 
5518 	mempool_free(pmb, phba->mbox_mem_pool);
5519 
5520 	/* Initially populate or replenish the HBQs */
5521 	for (hbqno = 0; hbqno < hbq_count; ++hbqno)
5522 		lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
5523 	return 0;
5524 }
5525 
5526 /**
5527  * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
5528  * @phba: Pointer to HBA context object.
5529  *
5530  * This function is called during the SLI initialization to configure
5531  * all the HBQs and post buffers to the HBQ. The caller is not
5532  * required to hold any locks. This function will return zero if successful
5533  * else it will return negative error code.
5534  **/
5535 static int
5536 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
5537 {
5538 	phba->hbq_in_use = 1;
5539 	/**
5540 	 * Specific case when the MDS diagnostics is enabled and supported.
5541 	 * The receive buffer count is truncated to manage the incoming
5542 	 * traffic.
5543 	 **/
5544 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support)
5545 		phba->hbqs[LPFC_ELS_HBQ].entry_count =
5546 			lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1;
5547 	else
5548 		phba->hbqs[LPFC_ELS_HBQ].entry_count =
5549 			lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
5550 	phba->hbq_count = 1;
5551 	lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
5552 	/* Initially populate or replenish the HBQs */
5553 	return 0;
5554 }
5555 
5556 /**
5557  * lpfc_sli_config_port - Issue config port mailbox command
5558  * @phba: Pointer to HBA context object.
5559  * @sli_mode: sli mode - 2/3
5560  *
5561  * This function is called by the sli initialization code path
5562  * to issue config_port mailbox command. This function restarts the
5563  * HBA firmware and issues a config_port mailbox command to configure
5564  * the SLI interface in the sli mode specified by sli_mode
5565  * variable. The caller is not required to hold any locks.
5566  * The function returns 0 if successful, else returns negative error
5567  * code.
5568  **/
5569 int
5570 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
5571 {
5572 	LPFC_MBOXQ_t *pmb;
5573 	uint32_t resetcount = 0, rc = 0, done = 0;
5574 
5575 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5576 	if (!pmb) {
5577 		phba->link_state = LPFC_HBA_ERROR;
5578 		return -ENOMEM;
5579 	}
5580 
5581 	phba->sli_rev = sli_mode;
5582 	while (resetcount < 2 && !done) {
5583 		spin_lock_irq(&phba->hbalock);
5584 		phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
5585 		spin_unlock_irq(&phba->hbalock);
5586 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5587 		lpfc_sli_brdrestart(phba);
5588 		rc = lpfc_sli_chipset_init(phba);
5589 		if (rc)
5590 			break;
5591 
5592 		spin_lock_irq(&phba->hbalock);
5593 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5594 		spin_unlock_irq(&phba->hbalock);
5595 		resetcount++;
5596 
5597 		/* Call pre CONFIG_PORT mailbox command initialization.  A
5598 		 * value of 0 means the call was successful.  Any other
5599 		 * nonzero value is a failure, but if ERESTART is returned,
5600 		 * the driver may reset the HBA and try again.
5601 		 */
5602 		rc = lpfc_config_port_prep(phba);
5603 		if (rc == -ERESTART) {
5604 			phba->link_state = LPFC_LINK_UNKNOWN;
5605 			continue;
5606 		} else if (rc)
5607 			break;
5608 
5609 		phba->link_state = LPFC_INIT_MBX_CMDS;
5610 		lpfc_config_port(phba, pmb);
5611 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
5612 		phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
5613 					LPFC_SLI3_HBQ_ENABLED |
5614 					LPFC_SLI3_CRP_ENABLED |
5615 					LPFC_SLI3_DSS_ENABLED);
5616 		if (rc != MBX_SUCCESS) {
5617 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5618 				"0442 Adapter failed to init, mbxCmd x%x "
5619 				"CONFIG_PORT, mbxStatus x%x Data: x%x\n",
5620 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
5621 			spin_lock_irq(&phba->hbalock);
5622 			phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
5623 			spin_unlock_irq(&phba->hbalock);
5624 			rc = -ENXIO;
5625 		} else {
5626 			/* Allow asynchronous mailbox command to go through */
5627 			spin_lock_irq(&phba->hbalock);
5628 			phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5629 			spin_unlock_irq(&phba->hbalock);
5630 			done = 1;
5631 
5632 			if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5633 			    (pmb->u.mb.un.varCfgPort.gasabt == 0))
5634 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5635 					"3110 Port did not grant ASABT\n");
5636 		}
5637 	}
5638 	if (!done) {
5639 		rc = -EINVAL;
5640 		goto do_prep_failed;
5641 	}
5642 	if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5643 		if (!pmb->u.mb.un.varCfgPort.cMA) {
5644 			rc = -ENXIO;
5645 			goto do_prep_failed;
5646 		}
5647 		if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5648 			phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5649 			phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5650 			phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5651 				phba->max_vpi : phba->max_vports;
5652 
5653 		} else
5654 			phba->max_vpi = 0;
5655 		if (pmb->u.mb.un.varCfgPort.gerbm)
5656 			phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5657 		if (pmb->u.mb.un.varCfgPort.gcrp)
5658 			phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5659 
5660 		phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5661 		phba->port_gp = phba->mbox->us.s3_pgp.port;
5662 
5663 		if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5664 			if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5665 				phba->cfg_enable_bg = 0;
5666 				phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5667 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5668 						"0443 Adapter did not grant "
5669 						"BlockGuard\n");
5670 			}
5671 		}
5672 	} else {
5673 		phba->hbq_get = NULL;
5674 		phba->port_gp = phba->mbox->us.s2.port;
5675 		phba->max_vpi = 0;
5676 	}
5677 do_prep_failed:
5678 	mempool_free(pmb, phba->mbox_mem_pool);
5679 	return rc;
5680 }
5681 
5682 
5683 /**
5684  * lpfc_sli_hba_setup - SLI initialization function
5685  * @phba: Pointer to HBA context object.
5686  *
5687  * This function is the main SLI initialization function. This function
5688  * is called by the HBA initialization code, HBA reset code and HBA
5689  * error attention handler code. Caller is not required to hold any
5690  * locks. This function issues config_port mailbox command to configure
5691  * the SLI, setup iocb rings and HBQ rings. In the end the function
5692  * calls the config_port_post function to issue init_link mailbox
5693  * command and to start the discovery. The function will return zero
5694  * if successful, else it will return negative error code.
5695  **/
5696 int
5697 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5698 {
5699 	uint32_t rc;
5700 	int  i;
5701 	int longs;
5702 
5703 	/* Enable ISR already does config_port because of config_msi mbx */
5704 	if (phba->hba_flag & HBA_NEEDS_CFG_PORT) {
5705 		rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
5706 		if (rc)
5707 			return -EIO;
5708 		phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
5709 	}
5710 	phba->fcp_embed_io = 0;	/* SLI4 FC support only */
5711 
5712 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
5713 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5714 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
5715 		if (!rc) {
5716 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5717 					"2709 This device supports "
5718 					"Advanced Error Reporting (AER)\n");
5719 			spin_lock_irq(&phba->hbalock);
5720 			phba->hba_flag |= HBA_AER_ENABLED;
5721 			spin_unlock_irq(&phba->hbalock);
5722 		} else {
5723 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5724 					"2708 This device does not support "
5725 					"Advanced Error Reporting (AER): %d\n",
5726 					rc);
5727 			phba->cfg_aer_support = 0;
5728 		}
5729 	}
5730 
5731 	if (phba->sli_rev == 3) {
5732 		phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5733 		phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5734 	} else {
5735 		phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5736 		phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5737 		phba->sli3_options = 0;
5738 	}
5739 
5740 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5741 			"0444 Firmware in SLI %x mode. Max_vpi %d\n",
5742 			phba->sli_rev, phba->max_vpi);
5743 	rc = lpfc_sli_ring_map(phba);
5744 
5745 	if (rc)
5746 		goto lpfc_sli_hba_setup_error;
5747 
5748 	/* Initialize VPIs. */
5749 	if (phba->sli_rev == LPFC_SLI_REV3) {
5750 		/*
5751 		 * The VPI bitmask and physical ID array are allocated
5752 		 * and initialized once only - at driver load.  A port
5753 		 * reset doesn't need to reinitialize this memory.
5754 		 */
5755 		if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5756 			longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5757 			phba->vpi_bmask = kcalloc(longs,
5758 						  sizeof(unsigned long),
5759 						  GFP_KERNEL);
5760 			if (!phba->vpi_bmask) {
5761 				rc = -ENOMEM;
5762 				goto lpfc_sli_hba_setup_error;
5763 			}
5764 
5765 			phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5766 						sizeof(uint16_t),
5767 						GFP_KERNEL);
5768 			if (!phba->vpi_ids) {
5769 				kfree(phba->vpi_bmask);
5770 				rc = -ENOMEM;
5771 				goto lpfc_sli_hba_setup_error;
5772 			}
5773 			for (i = 0; i < phba->max_vpi; i++)
5774 				phba->vpi_ids[i] = i;
5775 		}
5776 	}
5777 
5778 	/* Init HBQs */
5779 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5780 		rc = lpfc_sli_hbq_setup(phba);
5781 		if (rc)
5782 			goto lpfc_sli_hba_setup_error;
5783 	}
5784 	spin_lock_irq(&phba->hbalock);
5785 	phba->sli.sli_flag |= LPFC_PROCESS_LA;
5786 	spin_unlock_irq(&phba->hbalock);
5787 
5788 	rc = lpfc_config_port_post(phba);
5789 	if (rc)
5790 		goto lpfc_sli_hba_setup_error;
5791 
5792 	return rc;
5793 
5794 lpfc_sli_hba_setup_error:
5795 	phba->link_state = LPFC_HBA_ERROR;
5796 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5797 			"0445 Firmware initialization failed\n");
5798 	return rc;
5799 }
5800 
5801 /**
5802  * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5803  * @phba: Pointer to HBA context object.
5804  *
5805  * This function issue a dump mailbox command to read config region
5806  * 23 and parse the records in the region and populate driver
5807  * data structure.
5808  **/
5809 static int
5810 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5811 {
5812 	LPFC_MBOXQ_t *mboxq;
5813 	struct lpfc_dmabuf *mp;
5814 	struct lpfc_mqe *mqe;
5815 	uint32_t data_length;
5816 	int rc;
5817 
5818 	/* Program the default value of vlan_id and fc_map */
5819 	phba->valid_vlan = 0;
5820 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5821 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5822 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5823 
5824 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5825 	if (!mboxq)
5826 		return -ENOMEM;
5827 
5828 	mqe = &mboxq->u.mqe;
5829 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5830 		rc = -ENOMEM;
5831 		goto out_free_mboxq;
5832 	}
5833 
5834 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5835 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5836 
5837 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5838 			"(%d):2571 Mailbox cmd x%x Status x%x "
5839 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5840 			"x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5841 			"CQ: x%x x%x x%x x%x\n",
5842 			mboxq->vport ? mboxq->vport->vpi : 0,
5843 			bf_get(lpfc_mqe_command, mqe),
5844 			bf_get(lpfc_mqe_status, mqe),
5845 			mqe->un.mb_words[0], mqe->un.mb_words[1],
5846 			mqe->un.mb_words[2], mqe->un.mb_words[3],
5847 			mqe->un.mb_words[4], mqe->un.mb_words[5],
5848 			mqe->un.mb_words[6], mqe->un.mb_words[7],
5849 			mqe->un.mb_words[8], mqe->un.mb_words[9],
5850 			mqe->un.mb_words[10], mqe->un.mb_words[11],
5851 			mqe->un.mb_words[12], mqe->un.mb_words[13],
5852 			mqe->un.mb_words[14], mqe->un.mb_words[15],
5853 			mqe->un.mb_words[16], mqe->un.mb_words[50],
5854 			mboxq->mcqe.word0,
5855 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
5856 			mboxq->mcqe.trailer);
5857 
5858 	if (rc) {
5859 		rc = -EIO;
5860 		goto out_free_mboxq;
5861 	}
5862 	data_length = mqe->un.mb_words[5];
5863 	if (data_length > DMP_RGN23_SIZE) {
5864 		rc = -EIO;
5865 		goto out_free_mboxq;
5866 	}
5867 
5868 	lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5869 	rc = 0;
5870 
5871 out_free_mboxq:
5872 	lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED);
5873 	return rc;
5874 }
5875 
5876 /**
5877  * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5878  * @phba: pointer to lpfc hba data structure.
5879  * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5880  * @vpd: pointer to the memory to hold resulting port vpd data.
5881  * @vpd_size: On input, the number of bytes allocated to @vpd.
5882  *	      On output, the number of data bytes in @vpd.
5883  *
5884  * This routine executes a READ_REV SLI4 mailbox command.  In
5885  * addition, this routine gets the port vpd data.
5886  *
5887  * Return codes
5888  * 	0 - successful
5889  * 	-ENOMEM - could not allocated memory.
5890  **/
5891 static int
5892 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5893 		    uint8_t *vpd, uint32_t *vpd_size)
5894 {
5895 	int rc = 0;
5896 	uint32_t dma_size;
5897 	struct lpfc_dmabuf *dmabuf;
5898 	struct lpfc_mqe *mqe;
5899 
5900 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5901 	if (!dmabuf)
5902 		return -ENOMEM;
5903 
5904 	/*
5905 	 * Get a DMA buffer for the vpd data resulting from the READ_REV
5906 	 * mailbox command.
5907 	 */
5908 	dma_size = *vpd_size;
5909 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5910 					  &dmabuf->phys, GFP_KERNEL);
5911 	if (!dmabuf->virt) {
5912 		kfree(dmabuf);
5913 		return -ENOMEM;
5914 	}
5915 
5916 	/*
5917 	 * The SLI4 implementation of READ_REV conflicts at word1,
5918 	 * bits 31:16 and SLI4 adds vpd functionality not present
5919 	 * in SLI3.  This code corrects the conflicts.
5920 	 */
5921 	lpfc_read_rev(phba, mboxq);
5922 	mqe = &mboxq->u.mqe;
5923 	mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5924 	mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5925 	mqe->un.read_rev.word1 &= 0x0000FFFF;
5926 	bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5927 	bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5928 
5929 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5930 	if (rc) {
5931 		dma_free_coherent(&phba->pcidev->dev, dma_size,
5932 				  dmabuf->virt, dmabuf->phys);
5933 		kfree(dmabuf);
5934 		return -EIO;
5935 	}
5936 
5937 	/*
5938 	 * The available vpd length cannot be bigger than the
5939 	 * DMA buffer passed to the port.  Catch the less than
5940 	 * case and update the caller's size.
5941 	 */
5942 	if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5943 		*vpd_size = mqe->un.read_rev.avail_vpd_len;
5944 
5945 	memcpy(vpd, dmabuf->virt, *vpd_size);
5946 
5947 	dma_free_coherent(&phba->pcidev->dev, dma_size,
5948 			  dmabuf->virt, dmabuf->phys);
5949 	kfree(dmabuf);
5950 	return 0;
5951 }
5952 
5953 /**
5954  * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5955  * @phba: pointer to lpfc hba data structure.
5956  *
5957  * This routine retrieves SLI4 device physical port name this PCI function
5958  * is attached to.
5959  *
5960  * Return codes
5961  *      0 - successful
5962  *      otherwise - failed to retrieve controller attributes
5963  **/
5964 static int
5965 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5966 {
5967 	LPFC_MBOXQ_t *mboxq;
5968 	struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5969 	struct lpfc_controller_attribute *cntl_attr;
5970 	void *virtaddr = NULL;
5971 	uint32_t alloclen, reqlen;
5972 	uint32_t shdr_status, shdr_add_status;
5973 	union lpfc_sli4_cfg_shdr *shdr;
5974 	int rc;
5975 
5976 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5977 	if (!mboxq)
5978 		return -ENOMEM;
5979 
5980 	/* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5981 	reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5982 	alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5983 			LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5984 			LPFC_SLI4_MBX_NEMBED);
5985 
5986 	if (alloclen < reqlen) {
5987 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5988 				"3084 Allocated DMA memory size (%d) is "
5989 				"less than the requested DMA memory size "
5990 				"(%d)\n", alloclen, reqlen);
5991 		rc = -ENOMEM;
5992 		goto out_free_mboxq;
5993 	}
5994 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5995 	virtaddr = mboxq->sge_array->addr[0];
5996 	mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5997 	shdr = &mbx_cntl_attr->cfg_shdr;
5998 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5999 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6000 	if (shdr_status || shdr_add_status || rc) {
6001 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6002 				"3085 Mailbox x%x (x%x/x%x) failed, "
6003 				"rc:x%x, status:x%x, add_status:x%x\n",
6004 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
6005 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
6006 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
6007 				rc, shdr_status, shdr_add_status);
6008 		rc = -ENXIO;
6009 		goto out_free_mboxq;
6010 	}
6011 
6012 	cntl_attr = &mbx_cntl_attr->cntl_attr;
6013 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
6014 	phba->sli4_hba.lnk_info.lnk_tp =
6015 		bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
6016 	phba->sli4_hba.lnk_info.lnk_no =
6017 		bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
6018 	phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr);
6019 	phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr);
6020 
6021 	memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
6022 	strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
6023 		sizeof(phba->BIOSVersion));
6024 
6025 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6026 			"3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, "
6027 			"flash_id: x%02x, asic_rev: x%02x\n",
6028 			phba->sli4_hba.lnk_info.lnk_tp,
6029 			phba->sli4_hba.lnk_info.lnk_no,
6030 			phba->BIOSVersion, phba->sli4_hba.flash_id,
6031 			phba->sli4_hba.asic_rev);
6032 out_free_mboxq:
6033 	if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
6034 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
6035 	else
6036 		mempool_free(mboxq, phba->mbox_mem_pool);
6037 	return rc;
6038 }
6039 
6040 /**
6041  * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
6042  * @phba: pointer to lpfc hba data structure.
6043  *
6044  * This routine retrieves SLI4 device physical port name this PCI function
6045  * is attached to.
6046  *
6047  * Return codes
6048  *      0 - successful
6049  *      otherwise - failed to retrieve physical port name
6050  **/
6051 static int
6052 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
6053 {
6054 	LPFC_MBOXQ_t *mboxq;
6055 	struct lpfc_mbx_get_port_name *get_port_name;
6056 	uint32_t shdr_status, shdr_add_status;
6057 	union lpfc_sli4_cfg_shdr *shdr;
6058 	char cport_name = 0;
6059 	int rc;
6060 
6061 	/* We assume nothing at this point */
6062 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
6063 	phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
6064 
6065 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6066 	if (!mboxq)
6067 		return -ENOMEM;
6068 	/* obtain link type and link number via READ_CONFIG */
6069 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
6070 	lpfc_sli4_read_config(phba);
6071 
6072 	if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG)
6073 		phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC;
6074 
6075 	if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
6076 		goto retrieve_ppname;
6077 
6078 	/* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
6079 	rc = lpfc_sli4_get_ctl_attr(phba);
6080 	if (rc)
6081 		goto out_free_mboxq;
6082 
6083 retrieve_ppname:
6084 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
6085 		LPFC_MBOX_OPCODE_GET_PORT_NAME,
6086 		sizeof(struct lpfc_mbx_get_port_name) -
6087 		sizeof(struct lpfc_sli4_cfg_mhdr),
6088 		LPFC_SLI4_MBX_EMBED);
6089 	get_port_name = &mboxq->u.mqe.un.get_port_name;
6090 	shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
6091 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
6092 	bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
6093 		phba->sli4_hba.lnk_info.lnk_tp);
6094 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6095 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6096 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6097 	if (shdr_status || shdr_add_status || rc) {
6098 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6099 				"3087 Mailbox x%x (x%x/x%x) failed: "
6100 				"rc:x%x, status:x%x, add_status:x%x\n",
6101 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
6102 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
6103 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
6104 				rc, shdr_status, shdr_add_status);
6105 		rc = -ENXIO;
6106 		goto out_free_mboxq;
6107 	}
6108 	switch (phba->sli4_hba.lnk_info.lnk_no) {
6109 	case LPFC_LINK_NUMBER_0:
6110 		cport_name = bf_get(lpfc_mbx_get_port_name_name0,
6111 				&get_port_name->u.response);
6112 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6113 		break;
6114 	case LPFC_LINK_NUMBER_1:
6115 		cport_name = bf_get(lpfc_mbx_get_port_name_name1,
6116 				&get_port_name->u.response);
6117 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6118 		break;
6119 	case LPFC_LINK_NUMBER_2:
6120 		cport_name = bf_get(lpfc_mbx_get_port_name_name2,
6121 				&get_port_name->u.response);
6122 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6123 		break;
6124 	case LPFC_LINK_NUMBER_3:
6125 		cport_name = bf_get(lpfc_mbx_get_port_name_name3,
6126 				&get_port_name->u.response);
6127 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6128 		break;
6129 	default:
6130 		break;
6131 	}
6132 
6133 	if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
6134 		phba->Port[0] = cport_name;
6135 		phba->Port[1] = '\0';
6136 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6137 				"3091 SLI get port name: %s\n", phba->Port);
6138 	}
6139 
6140 out_free_mboxq:
6141 	if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
6142 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
6143 	else
6144 		mempool_free(mboxq, phba->mbox_mem_pool);
6145 	return rc;
6146 }
6147 
6148 /**
6149  * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
6150  * @phba: pointer to lpfc hba data structure.
6151  *
6152  * This routine is called to explicitly arm the SLI4 device's completion and
6153  * event queues
6154  **/
6155 static void
6156 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
6157 {
6158 	int qidx;
6159 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
6160 	struct lpfc_sli4_hdw_queue *qp;
6161 	struct lpfc_queue *eq;
6162 
6163 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
6164 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
6165 	if (sli4_hba->nvmels_cq)
6166 		sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
6167 					   LPFC_QUEUE_REARM);
6168 
6169 	if (sli4_hba->hdwq) {
6170 		/* Loop thru all Hardware Queues */
6171 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
6172 			qp = &sli4_hba->hdwq[qidx];
6173 			/* ARM the corresponding CQ */
6174 			sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
6175 						LPFC_QUEUE_REARM);
6176 		}
6177 
6178 		/* Loop thru all IRQ vectors */
6179 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
6180 			eq = sli4_hba->hba_eq_hdl[qidx].eq;
6181 			/* ARM the corresponding EQ */
6182 			sli4_hba->sli4_write_eq_db(phba, eq,
6183 						   0, LPFC_QUEUE_REARM);
6184 		}
6185 	}
6186 
6187 	if (phba->nvmet_support) {
6188 		for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
6189 			sli4_hba->sli4_write_cq_db(phba,
6190 				sli4_hba->nvmet_cqset[qidx], 0,
6191 				LPFC_QUEUE_REARM);
6192 		}
6193 	}
6194 }
6195 
6196 /**
6197  * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
6198  * @phba: Pointer to HBA context object.
6199  * @type: The resource extent type.
6200  * @extnt_count: buffer to hold port available extent count.
6201  * @extnt_size: buffer to hold element count per extent.
6202  *
6203  * This function calls the port and retrievs the number of available
6204  * extents and their size for a particular extent type.
6205  *
6206  * Returns: 0 if successful.  Nonzero otherwise.
6207  **/
6208 int
6209 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
6210 			       uint16_t *extnt_count, uint16_t *extnt_size)
6211 {
6212 	int rc = 0;
6213 	uint32_t length;
6214 	uint32_t mbox_tmo;
6215 	struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
6216 	LPFC_MBOXQ_t *mbox;
6217 
6218 	*extnt_count = 0;
6219 	*extnt_size = 0;
6220 
6221 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6222 	if (!mbox)
6223 		return -ENOMEM;
6224 
6225 	/* Find out how many extents are available for this resource type */
6226 	length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
6227 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6228 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6229 			 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
6230 			 length, LPFC_SLI4_MBX_EMBED);
6231 
6232 	/* Send an extents count of 0 - the GET doesn't use it. */
6233 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6234 					LPFC_SLI4_MBX_EMBED);
6235 	if (unlikely(rc)) {
6236 		rc = -EIO;
6237 		goto err_exit;
6238 	}
6239 
6240 	if (!phba->sli4_hba.intr_enable)
6241 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6242 	else {
6243 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6244 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6245 	}
6246 	if (unlikely(rc)) {
6247 		rc = -EIO;
6248 		goto err_exit;
6249 	}
6250 
6251 	rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
6252 	if (bf_get(lpfc_mbox_hdr_status,
6253 		   &rsrc_info->header.cfg_shdr.response)) {
6254 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6255 				"2930 Failed to get resource extents "
6256 				"Status 0x%x Add'l Status 0x%x\n",
6257 				bf_get(lpfc_mbox_hdr_status,
6258 				       &rsrc_info->header.cfg_shdr.response),
6259 				bf_get(lpfc_mbox_hdr_add_status,
6260 				       &rsrc_info->header.cfg_shdr.response));
6261 		rc = -EIO;
6262 		goto err_exit;
6263 	}
6264 
6265 	*extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
6266 			      &rsrc_info->u.rsp);
6267 	*extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
6268 			     &rsrc_info->u.rsp);
6269 
6270 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6271 			"3162 Retrieved extents type-%d from port: count:%d, "
6272 			"size:%d\n", type, *extnt_count, *extnt_size);
6273 
6274 err_exit:
6275 	mempool_free(mbox, phba->mbox_mem_pool);
6276 	return rc;
6277 }
6278 
6279 /**
6280  * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
6281  * @phba: Pointer to HBA context object.
6282  * @type: The extent type to check.
6283  *
6284  * This function reads the current available extents from the port and checks
6285  * if the extent count or extent size has changed since the last access.
6286  * Callers use this routine post port reset to understand if there is a
6287  * extent reprovisioning requirement.
6288  *
6289  * Returns:
6290  *   -Error: error indicates problem.
6291  *   1: Extent count or size has changed.
6292  *   0: No changes.
6293  **/
6294 static int
6295 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
6296 {
6297 	uint16_t curr_ext_cnt, rsrc_ext_cnt;
6298 	uint16_t size_diff, rsrc_ext_size;
6299 	int rc = 0;
6300 	struct lpfc_rsrc_blks *rsrc_entry;
6301 	struct list_head *rsrc_blk_list = NULL;
6302 
6303 	size_diff = 0;
6304 	curr_ext_cnt = 0;
6305 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
6306 					    &rsrc_ext_cnt,
6307 					    &rsrc_ext_size);
6308 	if (unlikely(rc))
6309 		return -EIO;
6310 
6311 	switch (type) {
6312 	case LPFC_RSC_TYPE_FCOE_RPI:
6313 		rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6314 		break;
6315 	case LPFC_RSC_TYPE_FCOE_VPI:
6316 		rsrc_blk_list = &phba->lpfc_vpi_blk_list;
6317 		break;
6318 	case LPFC_RSC_TYPE_FCOE_XRI:
6319 		rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6320 		break;
6321 	case LPFC_RSC_TYPE_FCOE_VFI:
6322 		rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6323 		break;
6324 	default:
6325 		break;
6326 	}
6327 
6328 	list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
6329 		curr_ext_cnt++;
6330 		if (rsrc_entry->rsrc_size != rsrc_ext_size)
6331 			size_diff++;
6332 	}
6333 
6334 	if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
6335 		rc = 1;
6336 
6337 	return rc;
6338 }
6339 
6340 /**
6341  * lpfc_sli4_cfg_post_extnts -
6342  * @phba: Pointer to HBA context object.
6343  * @extnt_cnt: number of available extents.
6344  * @type: the extent type (rpi, xri, vfi, vpi).
6345  * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation.
6346  * @mbox: pointer to the caller's allocated mailbox structure.
6347  *
6348  * This function executes the extents allocation request.  It also
6349  * takes care of the amount of memory needed to allocate or get the
6350  * allocated extents. It is the caller's responsibility to evaluate
6351  * the response.
6352  *
6353  * Returns:
6354  *   -Error:  Error value describes the condition found.
6355  *   0: if successful
6356  **/
6357 static int
6358 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
6359 			  uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
6360 {
6361 	int rc = 0;
6362 	uint32_t req_len;
6363 	uint32_t emb_len;
6364 	uint32_t alloc_len, mbox_tmo;
6365 
6366 	/* Calculate the total requested length of the dma memory */
6367 	req_len = extnt_cnt * sizeof(uint16_t);
6368 
6369 	/*
6370 	 * Calculate the size of an embedded mailbox.  The uint32_t
6371 	 * accounts for extents-specific word.
6372 	 */
6373 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6374 		sizeof(uint32_t);
6375 
6376 	/*
6377 	 * Presume the allocation and response will fit into an embedded
6378 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
6379 	 */
6380 	*emb = LPFC_SLI4_MBX_EMBED;
6381 	if (req_len > emb_len) {
6382 		req_len = extnt_cnt * sizeof(uint16_t) +
6383 			sizeof(union lpfc_sli4_cfg_shdr) +
6384 			sizeof(uint32_t);
6385 		*emb = LPFC_SLI4_MBX_NEMBED;
6386 	}
6387 
6388 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6389 				     LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
6390 				     req_len, *emb);
6391 	if (alloc_len < req_len) {
6392 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6393 			"2982 Allocated DMA memory size (x%x) is "
6394 			"less than the requested DMA memory "
6395 			"size (x%x)\n", alloc_len, req_len);
6396 		return -ENOMEM;
6397 	}
6398 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
6399 	if (unlikely(rc))
6400 		return -EIO;
6401 
6402 	if (!phba->sli4_hba.intr_enable)
6403 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6404 	else {
6405 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6406 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6407 	}
6408 
6409 	if (unlikely(rc))
6410 		rc = -EIO;
6411 	return rc;
6412 }
6413 
6414 /**
6415  * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
6416  * @phba: Pointer to HBA context object.
6417  * @type:  The resource extent type to allocate.
6418  *
6419  * This function allocates the number of elements for the specified
6420  * resource type.
6421  **/
6422 static int
6423 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
6424 {
6425 	bool emb = false;
6426 	uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
6427 	uint16_t rsrc_id, rsrc_start, j, k;
6428 	uint16_t *ids;
6429 	int i, rc;
6430 	unsigned long longs;
6431 	unsigned long *bmask;
6432 	struct lpfc_rsrc_blks *rsrc_blks;
6433 	LPFC_MBOXQ_t *mbox;
6434 	uint32_t length;
6435 	struct lpfc_id_range *id_array = NULL;
6436 	void *virtaddr = NULL;
6437 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6438 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6439 	struct list_head *ext_blk_list;
6440 
6441 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
6442 					    &rsrc_cnt,
6443 					    &rsrc_size);
6444 	if (unlikely(rc))
6445 		return -EIO;
6446 
6447 	if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
6448 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6449 			"3009 No available Resource Extents "
6450 			"for resource type 0x%x: Count: 0x%x, "
6451 			"Size 0x%x\n", type, rsrc_cnt,
6452 			rsrc_size);
6453 		return -ENOMEM;
6454 	}
6455 
6456 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
6457 			"2903 Post resource extents type-0x%x: "
6458 			"count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
6459 
6460 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6461 	if (!mbox)
6462 		return -ENOMEM;
6463 
6464 	rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
6465 	if (unlikely(rc)) {
6466 		rc = -EIO;
6467 		goto err_exit;
6468 	}
6469 
6470 	/*
6471 	 * Figure out where the response is located.  Then get local pointers
6472 	 * to the response data.  The port does not guarantee to respond to
6473 	 * all extents counts request so update the local variable with the
6474 	 * allocated count from the port.
6475 	 */
6476 	if (emb == LPFC_SLI4_MBX_EMBED) {
6477 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6478 		id_array = &rsrc_ext->u.rsp.id[0];
6479 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6480 	} else {
6481 		virtaddr = mbox->sge_array->addr[0];
6482 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6483 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6484 		id_array = &n_rsrc->id;
6485 	}
6486 
6487 	longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
6488 	rsrc_id_cnt = rsrc_cnt * rsrc_size;
6489 
6490 	/*
6491 	 * Based on the resource size and count, correct the base and max
6492 	 * resource values.
6493 	 */
6494 	length = sizeof(struct lpfc_rsrc_blks);
6495 	switch (type) {
6496 	case LPFC_RSC_TYPE_FCOE_RPI:
6497 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6498 						   sizeof(unsigned long),
6499 						   GFP_KERNEL);
6500 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6501 			rc = -ENOMEM;
6502 			goto err_exit;
6503 		}
6504 		phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
6505 						 sizeof(uint16_t),
6506 						 GFP_KERNEL);
6507 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6508 			kfree(phba->sli4_hba.rpi_bmask);
6509 			rc = -ENOMEM;
6510 			goto err_exit;
6511 		}
6512 
6513 		/*
6514 		 * The next_rpi was initialized with the maximum available
6515 		 * count but the port may allocate a smaller number.  Catch
6516 		 * that case and update the next_rpi.
6517 		 */
6518 		phba->sli4_hba.next_rpi = rsrc_id_cnt;
6519 
6520 		/* Initialize local ptrs for common extent processing later. */
6521 		bmask = phba->sli4_hba.rpi_bmask;
6522 		ids = phba->sli4_hba.rpi_ids;
6523 		ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6524 		break;
6525 	case LPFC_RSC_TYPE_FCOE_VPI:
6526 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6527 					  GFP_KERNEL);
6528 		if (unlikely(!phba->vpi_bmask)) {
6529 			rc = -ENOMEM;
6530 			goto err_exit;
6531 		}
6532 		phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
6533 					 GFP_KERNEL);
6534 		if (unlikely(!phba->vpi_ids)) {
6535 			kfree(phba->vpi_bmask);
6536 			rc = -ENOMEM;
6537 			goto err_exit;
6538 		}
6539 
6540 		/* Initialize local ptrs for common extent processing later. */
6541 		bmask = phba->vpi_bmask;
6542 		ids = phba->vpi_ids;
6543 		ext_blk_list = &phba->lpfc_vpi_blk_list;
6544 		break;
6545 	case LPFC_RSC_TYPE_FCOE_XRI:
6546 		phba->sli4_hba.xri_bmask = kcalloc(longs,
6547 						   sizeof(unsigned long),
6548 						   GFP_KERNEL);
6549 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6550 			rc = -ENOMEM;
6551 			goto err_exit;
6552 		}
6553 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6554 		phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
6555 						 sizeof(uint16_t),
6556 						 GFP_KERNEL);
6557 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6558 			kfree(phba->sli4_hba.xri_bmask);
6559 			rc = -ENOMEM;
6560 			goto err_exit;
6561 		}
6562 
6563 		/* Initialize local ptrs for common extent processing later. */
6564 		bmask = phba->sli4_hba.xri_bmask;
6565 		ids = phba->sli4_hba.xri_ids;
6566 		ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6567 		break;
6568 	case LPFC_RSC_TYPE_FCOE_VFI:
6569 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6570 						   sizeof(unsigned long),
6571 						   GFP_KERNEL);
6572 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6573 			rc = -ENOMEM;
6574 			goto err_exit;
6575 		}
6576 		phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
6577 						 sizeof(uint16_t),
6578 						 GFP_KERNEL);
6579 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6580 			kfree(phba->sli4_hba.vfi_bmask);
6581 			rc = -ENOMEM;
6582 			goto err_exit;
6583 		}
6584 
6585 		/* Initialize local ptrs for common extent processing later. */
6586 		bmask = phba->sli4_hba.vfi_bmask;
6587 		ids = phba->sli4_hba.vfi_ids;
6588 		ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6589 		break;
6590 	default:
6591 		/* Unsupported Opcode.  Fail call. */
6592 		id_array = NULL;
6593 		bmask = NULL;
6594 		ids = NULL;
6595 		ext_blk_list = NULL;
6596 		goto err_exit;
6597 	}
6598 
6599 	/*
6600 	 * Complete initializing the extent configuration with the
6601 	 * allocated ids assigned to this function.  The bitmask serves
6602 	 * as an index into the array and manages the available ids.  The
6603 	 * array just stores the ids communicated to the port via the wqes.
6604 	 */
6605 	for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
6606 		if ((i % 2) == 0)
6607 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
6608 					 &id_array[k]);
6609 		else
6610 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
6611 					 &id_array[k]);
6612 
6613 		rsrc_blks = kzalloc(length, GFP_KERNEL);
6614 		if (unlikely(!rsrc_blks)) {
6615 			rc = -ENOMEM;
6616 			kfree(bmask);
6617 			kfree(ids);
6618 			goto err_exit;
6619 		}
6620 		rsrc_blks->rsrc_start = rsrc_id;
6621 		rsrc_blks->rsrc_size = rsrc_size;
6622 		list_add_tail(&rsrc_blks->list, ext_blk_list);
6623 		rsrc_start = rsrc_id;
6624 		if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6625 			phba->sli4_hba.io_xri_start = rsrc_start +
6626 				lpfc_sli4_get_iocb_cnt(phba);
6627 		}
6628 
6629 		while (rsrc_id < (rsrc_start + rsrc_size)) {
6630 			ids[j] = rsrc_id;
6631 			rsrc_id++;
6632 			j++;
6633 		}
6634 		/* Entire word processed.  Get next word.*/
6635 		if ((i % 2) == 1)
6636 			k++;
6637 	}
6638  err_exit:
6639 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6640 	return rc;
6641 }
6642 
6643 
6644 
6645 /**
6646  * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6647  * @phba: Pointer to HBA context object.
6648  * @type: the extent's type.
6649  *
6650  * This function deallocates all extents of a particular resource type.
6651  * SLI4 does not allow for deallocating a particular extent range.  It
6652  * is the caller's responsibility to release all kernel memory resources.
6653  **/
6654 static int
6655 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6656 {
6657 	int rc;
6658 	uint32_t length, mbox_tmo = 0;
6659 	LPFC_MBOXQ_t *mbox;
6660 	struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6661 	struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6662 
6663 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6664 	if (!mbox)
6665 		return -ENOMEM;
6666 
6667 	/*
6668 	 * This function sends an embedded mailbox because it only sends the
6669 	 * the resource type.  All extents of this type are released by the
6670 	 * port.
6671 	 */
6672 	length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6673 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6674 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6675 			 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6676 			 length, LPFC_SLI4_MBX_EMBED);
6677 
6678 	/* Send an extents count of 0 - the dealloc doesn't use it. */
6679 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6680 					LPFC_SLI4_MBX_EMBED);
6681 	if (unlikely(rc)) {
6682 		rc = -EIO;
6683 		goto out_free_mbox;
6684 	}
6685 	if (!phba->sli4_hba.intr_enable)
6686 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6687 	else {
6688 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6689 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6690 	}
6691 	if (unlikely(rc)) {
6692 		rc = -EIO;
6693 		goto out_free_mbox;
6694 	}
6695 
6696 	dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6697 	if (bf_get(lpfc_mbox_hdr_status,
6698 		   &dealloc_rsrc->header.cfg_shdr.response)) {
6699 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6700 				"2919 Failed to release resource extents "
6701 				"for type %d - Status 0x%x Add'l Status 0x%x. "
6702 				"Resource memory not released.\n",
6703 				type,
6704 				bf_get(lpfc_mbox_hdr_status,
6705 				    &dealloc_rsrc->header.cfg_shdr.response),
6706 				bf_get(lpfc_mbox_hdr_add_status,
6707 				    &dealloc_rsrc->header.cfg_shdr.response));
6708 		rc = -EIO;
6709 		goto out_free_mbox;
6710 	}
6711 
6712 	/* Release kernel memory resources for the specific type. */
6713 	switch (type) {
6714 	case LPFC_RSC_TYPE_FCOE_VPI:
6715 		kfree(phba->vpi_bmask);
6716 		kfree(phba->vpi_ids);
6717 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6718 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6719 				    &phba->lpfc_vpi_blk_list, list) {
6720 			list_del_init(&rsrc_blk->list);
6721 			kfree(rsrc_blk);
6722 		}
6723 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6724 		break;
6725 	case LPFC_RSC_TYPE_FCOE_XRI:
6726 		kfree(phba->sli4_hba.xri_bmask);
6727 		kfree(phba->sli4_hba.xri_ids);
6728 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6729 				    &phba->sli4_hba.lpfc_xri_blk_list, list) {
6730 			list_del_init(&rsrc_blk->list);
6731 			kfree(rsrc_blk);
6732 		}
6733 		break;
6734 	case LPFC_RSC_TYPE_FCOE_VFI:
6735 		kfree(phba->sli4_hba.vfi_bmask);
6736 		kfree(phba->sli4_hba.vfi_ids);
6737 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6738 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6739 				    &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6740 			list_del_init(&rsrc_blk->list);
6741 			kfree(rsrc_blk);
6742 		}
6743 		break;
6744 	case LPFC_RSC_TYPE_FCOE_RPI:
6745 		/* RPI bitmask and physical id array are cleaned up earlier. */
6746 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6747 				    &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6748 			list_del_init(&rsrc_blk->list);
6749 			kfree(rsrc_blk);
6750 		}
6751 		break;
6752 	default:
6753 		break;
6754 	}
6755 
6756 	bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6757 
6758  out_free_mbox:
6759 	mempool_free(mbox, phba->mbox_mem_pool);
6760 	return rc;
6761 }
6762 
6763 static void
6764 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6765 		  uint32_t feature)
6766 {
6767 	uint32_t len;
6768 	u32 sig_freq = 0;
6769 
6770 	len = sizeof(struct lpfc_mbx_set_feature) -
6771 		sizeof(struct lpfc_sli4_cfg_mhdr);
6772 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6773 			 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6774 			 LPFC_SLI4_MBX_EMBED);
6775 
6776 	switch (feature) {
6777 	case LPFC_SET_UE_RECOVERY:
6778 		bf_set(lpfc_mbx_set_feature_UER,
6779 		       &mbox->u.mqe.un.set_feature, 1);
6780 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6781 		mbox->u.mqe.un.set_feature.param_len = 8;
6782 		break;
6783 	case LPFC_SET_MDS_DIAGS:
6784 		bf_set(lpfc_mbx_set_feature_mds,
6785 		       &mbox->u.mqe.un.set_feature, 1);
6786 		bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6787 		       &mbox->u.mqe.un.set_feature, 1);
6788 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6789 		mbox->u.mqe.un.set_feature.param_len = 8;
6790 		break;
6791 	case LPFC_SET_CGN_SIGNAL:
6792 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6793 			sig_freq = 0;
6794 		else
6795 			sig_freq = phba->cgn_sig_freq;
6796 
6797 		if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6798 			bf_set(lpfc_mbx_set_feature_CGN_alarm_freq,
6799 			       &mbox->u.mqe.un.set_feature, sig_freq);
6800 			bf_set(lpfc_mbx_set_feature_CGN_warn_freq,
6801 			       &mbox->u.mqe.un.set_feature, sig_freq);
6802 		}
6803 
6804 		if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY)
6805 			bf_set(lpfc_mbx_set_feature_CGN_warn_freq,
6806 			       &mbox->u.mqe.un.set_feature, sig_freq);
6807 
6808 		if (phba->cmf_active_mode == LPFC_CFG_OFF ||
6809 		    phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED)
6810 			sig_freq = 0;
6811 		else
6812 			sig_freq = lpfc_acqe_cgn_frequency;
6813 
6814 		bf_set(lpfc_mbx_set_feature_CGN_acqe_freq,
6815 		       &mbox->u.mqe.un.set_feature, sig_freq);
6816 
6817 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL;
6818 		mbox->u.mqe.un.set_feature.param_len = 12;
6819 		break;
6820 	case LPFC_SET_DUAL_DUMP:
6821 		bf_set(lpfc_mbx_set_feature_dd,
6822 		       &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP);
6823 		bf_set(lpfc_mbx_set_feature_ddquery,
6824 		       &mbox->u.mqe.un.set_feature, 0);
6825 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP;
6826 		mbox->u.mqe.un.set_feature.param_len = 4;
6827 		break;
6828 	case LPFC_SET_ENABLE_MI:
6829 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI;
6830 		mbox->u.mqe.un.set_feature.param_len = 4;
6831 		bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature,
6832 		       phba->pport->cfg_lun_queue_depth);
6833 		bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature,
6834 		       phba->sli4_hba.pc_sli4_params.mi_ver);
6835 		break;
6836 	case LPFC_SET_LD_SIGNAL:
6837 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL;
6838 		mbox->u.mqe.un.set_feature.param_len = 16;
6839 		bf_set(lpfc_mbx_set_feature_lds_qry,
6840 		       &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP);
6841 		break;
6842 	case LPFC_SET_ENABLE_CMF:
6843 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF;
6844 		mbox->u.mqe.un.set_feature.param_len = 4;
6845 		bf_set(lpfc_mbx_set_feature_cmf,
6846 		       &mbox->u.mqe.un.set_feature, 1);
6847 		break;
6848 	}
6849 	return;
6850 }
6851 
6852 /**
6853  * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6854  * @phba: Pointer to HBA context object.
6855  *
6856  * Disable FW logging into host memory on the adapter. To
6857  * be done before reading logs from the host memory.
6858  **/
6859 void
6860 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6861 {
6862 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6863 
6864 	spin_lock_irq(&phba->hbalock);
6865 	ras_fwlog->state = INACTIVE;
6866 	spin_unlock_irq(&phba->hbalock);
6867 
6868 	/* Disable FW logging to host memory */
6869 	writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6870 	       phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6871 
6872 	/* Wait 10ms for firmware to stop using DMA buffer */
6873 	usleep_range(10 * 1000, 20 * 1000);
6874 }
6875 
6876 /**
6877  * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6878  * @phba: Pointer to HBA context object.
6879  *
6880  * This function is called to free memory allocated for RAS FW logging
6881  * support in the driver.
6882  **/
6883 void
6884 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6885 {
6886 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6887 	struct lpfc_dmabuf *dmabuf, *next;
6888 
6889 	if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6890 		list_for_each_entry_safe(dmabuf, next,
6891 				    &ras_fwlog->fwlog_buff_list,
6892 				    list) {
6893 			list_del(&dmabuf->list);
6894 			dma_free_coherent(&phba->pcidev->dev,
6895 					  LPFC_RAS_MAX_ENTRY_SIZE,
6896 					  dmabuf->virt, dmabuf->phys);
6897 			kfree(dmabuf);
6898 		}
6899 	}
6900 
6901 	if (ras_fwlog->lwpd.virt) {
6902 		dma_free_coherent(&phba->pcidev->dev,
6903 				  sizeof(uint32_t) * 2,
6904 				  ras_fwlog->lwpd.virt,
6905 				  ras_fwlog->lwpd.phys);
6906 		ras_fwlog->lwpd.virt = NULL;
6907 	}
6908 
6909 	spin_lock_irq(&phba->hbalock);
6910 	ras_fwlog->state = INACTIVE;
6911 	spin_unlock_irq(&phba->hbalock);
6912 }
6913 
6914 /**
6915  * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6916  * @phba: Pointer to HBA context object.
6917  * @fwlog_buff_count: Count of buffers to be created.
6918  *
6919  * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6920  * to update FW log is posted to the adapter.
6921  * Buffer count is calculated based on module param ras_fwlog_buffsize
6922  * Size of each buffer posted to FW is 64K.
6923  **/
6924 
6925 static int
6926 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6927 			uint32_t fwlog_buff_count)
6928 {
6929 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6930 	struct lpfc_dmabuf *dmabuf;
6931 	int rc = 0, i = 0;
6932 
6933 	/* Initialize List */
6934 	INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6935 
6936 	/* Allocate memory for the LWPD */
6937 	ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6938 					    sizeof(uint32_t) * 2,
6939 					    &ras_fwlog->lwpd.phys,
6940 					    GFP_KERNEL);
6941 	if (!ras_fwlog->lwpd.virt) {
6942 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6943 				"6185 LWPD Memory Alloc Failed\n");
6944 
6945 		return -ENOMEM;
6946 	}
6947 
6948 	ras_fwlog->fw_buffcount = fwlog_buff_count;
6949 	for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6950 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6951 				 GFP_KERNEL);
6952 		if (!dmabuf) {
6953 			rc = -ENOMEM;
6954 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6955 					"6186 Memory Alloc failed FW logging");
6956 			goto free_mem;
6957 		}
6958 
6959 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6960 						  LPFC_RAS_MAX_ENTRY_SIZE,
6961 						  &dmabuf->phys, GFP_KERNEL);
6962 		if (!dmabuf->virt) {
6963 			kfree(dmabuf);
6964 			rc = -ENOMEM;
6965 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6966 					"6187 DMA Alloc Failed FW logging");
6967 			goto free_mem;
6968 		}
6969 		dmabuf->buffer_tag = i;
6970 		list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6971 	}
6972 
6973 free_mem:
6974 	if (rc)
6975 		lpfc_sli4_ras_dma_free(phba);
6976 
6977 	return rc;
6978 }
6979 
6980 /**
6981  * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6982  * @phba: pointer to lpfc hba data structure.
6983  * @pmb: pointer to the driver internal queue element for mailbox command.
6984  *
6985  * Completion handler for driver's RAS MBX command to the device.
6986  **/
6987 static void
6988 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6989 {
6990 	MAILBOX_t *mb;
6991 	union lpfc_sli4_cfg_shdr *shdr;
6992 	uint32_t shdr_status, shdr_add_status;
6993 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6994 
6995 	mb = &pmb->u.mb;
6996 
6997 	shdr = (union lpfc_sli4_cfg_shdr *)
6998 		&pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6999 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
7000 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
7001 
7002 	if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
7003 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7004 				"6188 FW LOG mailbox "
7005 				"completed with status x%x add_status x%x,"
7006 				" mbx status x%x\n",
7007 				shdr_status, shdr_add_status, mb->mbxStatus);
7008 
7009 		ras_fwlog->ras_hwsupport = false;
7010 		goto disable_ras;
7011 	}
7012 
7013 	spin_lock_irq(&phba->hbalock);
7014 	ras_fwlog->state = ACTIVE;
7015 	spin_unlock_irq(&phba->hbalock);
7016 	mempool_free(pmb, phba->mbox_mem_pool);
7017 
7018 	return;
7019 
7020 disable_ras:
7021 	/* Free RAS DMA memory */
7022 	lpfc_sli4_ras_dma_free(phba);
7023 	mempool_free(pmb, phba->mbox_mem_pool);
7024 }
7025 
7026 /**
7027  * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
7028  * @phba: pointer to lpfc hba data structure.
7029  * @fwlog_level: Logging verbosity level.
7030  * @fwlog_enable: Enable/Disable logging.
7031  *
7032  * Initialize memory and post mailbox command to enable FW logging in host
7033  * memory.
7034  **/
7035 int
7036 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
7037 			 uint32_t fwlog_level,
7038 			 uint32_t fwlog_enable)
7039 {
7040 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
7041 	struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
7042 	struct lpfc_dmabuf *dmabuf;
7043 	LPFC_MBOXQ_t *mbox;
7044 	uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
7045 	int rc = 0;
7046 
7047 	spin_lock_irq(&phba->hbalock);
7048 	ras_fwlog->state = INACTIVE;
7049 	spin_unlock_irq(&phba->hbalock);
7050 
7051 	fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
7052 			  phba->cfg_ras_fwlog_buffsize);
7053 	fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
7054 
7055 	/*
7056 	 * If re-enabling FW logging support use earlier allocated
7057 	 * DMA buffers while posting MBX command.
7058 	 **/
7059 	if (!ras_fwlog->lwpd.virt) {
7060 		rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
7061 		if (rc) {
7062 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7063 					"6189 FW Log Memory Allocation Failed");
7064 			return rc;
7065 		}
7066 	}
7067 
7068 	/* Setup Mailbox command */
7069 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7070 	if (!mbox) {
7071 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7072 				"6190 RAS MBX Alloc Failed");
7073 		rc = -ENOMEM;
7074 		goto mem_free;
7075 	}
7076 
7077 	ras_fwlog->fw_loglevel = fwlog_level;
7078 	len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
7079 		sizeof(struct lpfc_sli4_cfg_mhdr));
7080 
7081 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
7082 			 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
7083 			 len, LPFC_SLI4_MBX_EMBED);
7084 
7085 	mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
7086 	bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
7087 	       fwlog_enable);
7088 	bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
7089 	       ras_fwlog->fw_loglevel);
7090 	bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
7091 	       ras_fwlog->fw_buffcount);
7092 	bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
7093 	       LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
7094 
7095 	/* Update DMA buffer address */
7096 	list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
7097 		memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
7098 
7099 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
7100 			putPaddrLow(dmabuf->phys);
7101 
7102 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
7103 			putPaddrHigh(dmabuf->phys);
7104 	}
7105 
7106 	/* Update LPWD address */
7107 	mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
7108 	mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
7109 
7110 	spin_lock_irq(&phba->hbalock);
7111 	ras_fwlog->state = REG_INPROGRESS;
7112 	spin_unlock_irq(&phba->hbalock);
7113 	mbox->vport = phba->pport;
7114 	mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
7115 
7116 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
7117 
7118 	if (rc == MBX_NOT_FINISHED) {
7119 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7120 				"6191 FW-Log Mailbox failed. "
7121 				"status %d mbxStatus : x%x", rc,
7122 				bf_get(lpfc_mqe_status, &mbox->u.mqe));
7123 		mempool_free(mbox, phba->mbox_mem_pool);
7124 		rc = -EIO;
7125 		goto mem_free;
7126 	} else
7127 		rc = 0;
7128 mem_free:
7129 	if (rc)
7130 		lpfc_sli4_ras_dma_free(phba);
7131 
7132 	return rc;
7133 }
7134 
7135 /**
7136  * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
7137  * @phba: Pointer to HBA context object.
7138  *
7139  * Check if RAS is supported on the adapter and initialize it.
7140  **/
7141 void
7142 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
7143 {
7144 	/* Check RAS FW Log needs to be enabled or not */
7145 	if (lpfc_check_fwlog_support(phba))
7146 		return;
7147 
7148 	lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
7149 				 LPFC_RAS_ENABLE_LOGGING);
7150 }
7151 
7152 /**
7153  * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
7154  * @phba: Pointer to HBA context object.
7155  *
7156  * This function allocates all SLI4 resource identifiers.
7157  **/
7158 int
7159 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
7160 {
7161 	int i, rc, error = 0;
7162 	uint16_t count, base;
7163 	unsigned long longs;
7164 
7165 	if (!phba->sli4_hba.rpi_hdrs_in_use)
7166 		phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
7167 	if (phba->sli4_hba.extents_in_use) {
7168 		/*
7169 		 * The port supports resource extents. The XRI, VPI, VFI, RPI
7170 		 * resource extent count must be read and allocated before
7171 		 * provisioning the resource id arrays.
7172 		 */
7173 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
7174 		    LPFC_IDX_RSRC_RDY) {
7175 			/*
7176 			 * Extent-based resources are set - the driver could
7177 			 * be in a port reset. Figure out if any corrective
7178 			 * actions need to be taken.
7179 			 */
7180 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7181 						 LPFC_RSC_TYPE_FCOE_VFI);
7182 			if (rc != 0)
7183 				error++;
7184 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7185 						 LPFC_RSC_TYPE_FCOE_VPI);
7186 			if (rc != 0)
7187 				error++;
7188 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7189 						 LPFC_RSC_TYPE_FCOE_XRI);
7190 			if (rc != 0)
7191 				error++;
7192 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7193 						 LPFC_RSC_TYPE_FCOE_RPI);
7194 			if (rc != 0)
7195 				error++;
7196 
7197 			/*
7198 			 * It's possible that the number of resources
7199 			 * provided to this port instance changed between
7200 			 * resets.  Detect this condition and reallocate
7201 			 * resources.  Otherwise, there is no action.
7202 			 */
7203 			if (error) {
7204 				lpfc_printf_log(phba, KERN_INFO,
7205 						LOG_MBOX | LOG_INIT,
7206 						"2931 Detected extent resource "
7207 						"change.  Reallocating all "
7208 						"extents.\n");
7209 				rc = lpfc_sli4_dealloc_extent(phba,
7210 						 LPFC_RSC_TYPE_FCOE_VFI);
7211 				rc = lpfc_sli4_dealloc_extent(phba,
7212 						 LPFC_RSC_TYPE_FCOE_VPI);
7213 				rc = lpfc_sli4_dealloc_extent(phba,
7214 						 LPFC_RSC_TYPE_FCOE_XRI);
7215 				rc = lpfc_sli4_dealloc_extent(phba,
7216 						 LPFC_RSC_TYPE_FCOE_RPI);
7217 			} else
7218 				return 0;
7219 		}
7220 
7221 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
7222 		if (unlikely(rc))
7223 			goto err_exit;
7224 
7225 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
7226 		if (unlikely(rc))
7227 			goto err_exit;
7228 
7229 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
7230 		if (unlikely(rc))
7231 			goto err_exit;
7232 
7233 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
7234 		if (unlikely(rc))
7235 			goto err_exit;
7236 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
7237 		       LPFC_IDX_RSRC_RDY);
7238 		return rc;
7239 	} else {
7240 		/*
7241 		 * The port does not support resource extents.  The XRI, VPI,
7242 		 * VFI, RPI resource ids were determined from READ_CONFIG.
7243 		 * Just allocate the bitmasks and provision the resource id
7244 		 * arrays.  If a port reset is active, the resources don't
7245 		 * need any action - just exit.
7246 		 */
7247 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
7248 		    LPFC_IDX_RSRC_RDY) {
7249 			lpfc_sli4_dealloc_resource_identifiers(phba);
7250 			lpfc_sli4_remove_rpis(phba);
7251 		}
7252 		/* RPIs. */
7253 		count = phba->sli4_hba.max_cfg_param.max_rpi;
7254 		if (count <= 0) {
7255 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7256 					"3279 Invalid provisioning of "
7257 					"rpi:%d\n", count);
7258 			rc = -EINVAL;
7259 			goto err_exit;
7260 		}
7261 		base = phba->sli4_hba.max_cfg_param.rpi_base;
7262 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7263 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
7264 						   sizeof(unsigned long),
7265 						   GFP_KERNEL);
7266 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
7267 			rc = -ENOMEM;
7268 			goto err_exit;
7269 		}
7270 		phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
7271 						 GFP_KERNEL);
7272 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
7273 			rc = -ENOMEM;
7274 			goto free_rpi_bmask;
7275 		}
7276 
7277 		for (i = 0; i < count; i++)
7278 			phba->sli4_hba.rpi_ids[i] = base + i;
7279 
7280 		/* VPIs. */
7281 		count = phba->sli4_hba.max_cfg_param.max_vpi;
7282 		if (count <= 0) {
7283 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7284 					"3280 Invalid provisioning of "
7285 					"vpi:%d\n", count);
7286 			rc = -EINVAL;
7287 			goto free_rpi_ids;
7288 		}
7289 		base = phba->sli4_hba.max_cfg_param.vpi_base;
7290 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7291 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
7292 					  GFP_KERNEL);
7293 		if (unlikely(!phba->vpi_bmask)) {
7294 			rc = -ENOMEM;
7295 			goto free_rpi_ids;
7296 		}
7297 		phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
7298 					GFP_KERNEL);
7299 		if (unlikely(!phba->vpi_ids)) {
7300 			rc = -ENOMEM;
7301 			goto free_vpi_bmask;
7302 		}
7303 
7304 		for (i = 0; i < count; i++)
7305 			phba->vpi_ids[i] = base + i;
7306 
7307 		/* XRIs. */
7308 		count = phba->sli4_hba.max_cfg_param.max_xri;
7309 		if (count <= 0) {
7310 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7311 					"3281 Invalid provisioning of "
7312 					"xri:%d\n", count);
7313 			rc = -EINVAL;
7314 			goto free_vpi_ids;
7315 		}
7316 		base = phba->sli4_hba.max_cfg_param.xri_base;
7317 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7318 		phba->sli4_hba.xri_bmask = kcalloc(longs,
7319 						   sizeof(unsigned long),
7320 						   GFP_KERNEL);
7321 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
7322 			rc = -ENOMEM;
7323 			goto free_vpi_ids;
7324 		}
7325 		phba->sli4_hba.max_cfg_param.xri_used = 0;
7326 		phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
7327 						 GFP_KERNEL);
7328 		if (unlikely(!phba->sli4_hba.xri_ids)) {
7329 			rc = -ENOMEM;
7330 			goto free_xri_bmask;
7331 		}
7332 
7333 		for (i = 0; i < count; i++)
7334 			phba->sli4_hba.xri_ids[i] = base + i;
7335 
7336 		/* VFIs. */
7337 		count = phba->sli4_hba.max_cfg_param.max_vfi;
7338 		if (count <= 0) {
7339 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7340 					"3282 Invalid provisioning of "
7341 					"vfi:%d\n", count);
7342 			rc = -EINVAL;
7343 			goto free_xri_ids;
7344 		}
7345 		base = phba->sli4_hba.max_cfg_param.vfi_base;
7346 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7347 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
7348 						   sizeof(unsigned long),
7349 						   GFP_KERNEL);
7350 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
7351 			rc = -ENOMEM;
7352 			goto free_xri_ids;
7353 		}
7354 		phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
7355 						 GFP_KERNEL);
7356 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
7357 			rc = -ENOMEM;
7358 			goto free_vfi_bmask;
7359 		}
7360 
7361 		for (i = 0; i < count; i++)
7362 			phba->sli4_hba.vfi_ids[i] = base + i;
7363 
7364 		/*
7365 		 * Mark all resources ready.  An HBA reset doesn't need
7366 		 * to reset the initialization.
7367 		 */
7368 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
7369 		       LPFC_IDX_RSRC_RDY);
7370 		return 0;
7371 	}
7372 
7373  free_vfi_bmask:
7374 	kfree(phba->sli4_hba.vfi_bmask);
7375 	phba->sli4_hba.vfi_bmask = NULL;
7376  free_xri_ids:
7377 	kfree(phba->sli4_hba.xri_ids);
7378 	phba->sli4_hba.xri_ids = NULL;
7379  free_xri_bmask:
7380 	kfree(phba->sli4_hba.xri_bmask);
7381 	phba->sli4_hba.xri_bmask = NULL;
7382  free_vpi_ids:
7383 	kfree(phba->vpi_ids);
7384 	phba->vpi_ids = NULL;
7385  free_vpi_bmask:
7386 	kfree(phba->vpi_bmask);
7387 	phba->vpi_bmask = NULL;
7388  free_rpi_ids:
7389 	kfree(phba->sli4_hba.rpi_ids);
7390 	phba->sli4_hba.rpi_ids = NULL;
7391  free_rpi_bmask:
7392 	kfree(phba->sli4_hba.rpi_bmask);
7393 	phba->sli4_hba.rpi_bmask = NULL;
7394  err_exit:
7395 	return rc;
7396 }
7397 
7398 /**
7399  * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
7400  * @phba: Pointer to HBA context object.
7401  *
7402  * This function allocates the number of elements for the specified
7403  * resource type.
7404  **/
7405 int
7406 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
7407 {
7408 	if (phba->sli4_hba.extents_in_use) {
7409 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
7410 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
7411 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
7412 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
7413 	} else {
7414 		kfree(phba->vpi_bmask);
7415 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
7416 		kfree(phba->vpi_ids);
7417 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7418 		kfree(phba->sli4_hba.xri_bmask);
7419 		kfree(phba->sli4_hba.xri_ids);
7420 		kfree(phba->sli4_hba.vfi_bmask);
7421 		kfree(phba->sli4_hba.vfi_ids);
7422 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7423 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7424 	}
7425 
7426 	return 0;
7427 }
7428 
7429 /**
7430  * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
7431  * @phba: Pointer to HBA context object.
7432  * @type: The resource extent type.
7433  * @extnt_cnt: buffer to hold port extent count response
7434  * @extnt_size: buffer to hold port extent size response.
7435  *
7436  * This function calls the port to read the host allocated extents
7437  * for a particular type.
7438  **/
7439 int
7440 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
7441 			       uint16_t *extnt_cnt, uint16_t *extnt_size)
7442 {
7443 	bool emb;
7444 	int rc = 0;
7445 	uint16_t curr_blks = 0;
7446 	uint32_t req_len, emb_len;
7447 	uint32_t alloc_len, mbox_tmo;
7448 	struct list_head *blk_list_head;
7449 	struct lpfc_rsrc_blks *rsrc_blk;
7450 	LPFC_MBOXQ_t *mbox;
7451 	void *virtaddr = NULL;
7452 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
7453 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
7454 	union  lpfc_sli4_cfg_shdr *shdr;
7455 
7456 	switch (type) {
7457 	case LPFC_RSC_TYPE_FCOE_VPI:
7458 		blk_list_head = &phba->lpfc_vpi_blk_list;
7459 		break;
7460 	case LPFC_RSC_TYPE_FCOE_XRI:
7461 		blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
7462 		break;
7463 	case LPFC_RSC_TYPE_FCOE_VFI:
7464 		blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
7465 		break;
7466 	case LPFC_RSC_TYPE_FCOE_RPI:
7467 		blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
7468 		break;
7469 	default:
7470 		return -EIO;
7471 	}
7472 
7473 	/* Count the number of extents currently allocatd for this type. */
7474 	list_for_each_entry(rsrc_blk, blk_list_head, list) {
7475 		if (curr_blks == 0) {
7476 			/*
7477 			 * The GET_ALLOCATED mailbox does not return the size,
7478 			 * just the count.  The size should be just the size
7479 			 * stored in the current allocated block and all sizes
7480 			 * for an extent type are the same so set the return
7481 			 * value now.
7482 			 */
7483 			*extnt_size = rsrc_blk->rsrc_size;
7484 		}
7485 		curr_blks++;
7486 	}
7487 
7488 	/*
7489 	 * Calculate the size of an embedded mailbox.  The uint32_t
7490 	 * accounts for extents-specific word.
7491 	 */
7492 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
7493 		sizeof(uint32_t);
7494 
7495 	/*
7496 	 * Presume the allocation and response will fit into an embedded
7497 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
7498 	 */
7499 	emb = LPFC_SLI4_MBX_EMBED;
7500 	req_len = emb_len;
7501 	if (req_len > emb_len) {
7502 		req_len = curr_blks * sizeof(uint16_t) +
7503 			sizeof(union lpfc_sli4_cfg_shdr) +
7504 			sizeof(uint32_t);
7505 		emb = LPFC_SLI4_MBX_NEMBED;
7506 	}
7507 
7508 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7509 	if (!mbox)
7510 		return -ENOMEM;
7511 	memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
7512 
7513 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7514 				     LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
7515 				     req_len, emb);
7516 	if (alloc_len < req_len) {
7517 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7518 			"2983 Allocated DMA memory size (x%x) is "
7519 			"less than the requested DMA memory "
7520 			"size (x%x)\n", alloc_len, req_len);
7521 		rc = -ENOMEM;
7522 		goto err_exit;
7523 	}
7524 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
7525 	if (unlikely(rc)) {
7526 		rc = -EIO;
7527 		goto err_exit;
7528 	}
7529 
7530 	if (!phba->sli4_hba.intr_enable)
7531 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
7532 	else {
7533 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
7534 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
7535 	}
7536 
7537 	if (unlikely(rc)) {
7538 		rc = -EIO;
7539 		goto err_exit;
7540 	}
7541 
7542 	/*
7543 	 * Figure out where the response is located.  Then get local pointers
7544 	 * to the response data.  The port does not guarantee to respond to
7545 	 * all extents counts request so update the local variable with the
7546 	 * allocated count from the port.
7547 	 */
7548 	if (emb == LPFC_SLI4_MBX_EMBED) {
7549 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
7550 		shdr = &rsrc_ext->header.cfg_shdr;
7551 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
7552 	} else {
7553 		virtaddr = mbox->sge_array->addr[0];
7554 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
7555 		shdr = &n_rsrc->cfg_shdr;
7556 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
7557 	}
7558 
7559 	if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
7560 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7561 			"2984 Failed to read allocated resources "
7562 			"for type %d - Status 0x%x Add'l Status 0x%x.\n",
7563 			type,
7564 			bf_get(lpfc_mbox_hdr_status, &shdr->response),
7565 			bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
7566 		rc = -EIO;
7567 		goto err_exit;
7568 	}
7569  err_exit:
7570 	lpfc_sli4_mbox_cmd_free(phba, mbox);
7571 	return rc;
7572 }
7573 
7574 /**
7575  * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
7576  * @phba: pointer to lpfc hba data structure.
7577  * @sgl_list: linked link of sgl buffers to post
7578  * @cnt: number of linked list buffers
7579  *
7580  * This routine walks the list of buffers that have been allocated and
7581  * repost them to the port by using SGL block post. This is needed after a
7582  * pci_function_reset/warm_start or start. It attempts to construct blocks
7583  * of buffer sgls which contains contiguous xris and uses the non-embedded
7584  * SGL block post mailbox commands to post them to the port. For single
7585  * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
7586  * mailbox command for posting.
7587  *
7588  * Returns: 0 = success, non-zero failure.
7589  **/
7590 static int
7591 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
7592 			  struct list_head *sgl_list, int cnt)
7593 {
7594 	struct lpfc_sglq *sglq_entry = NULL;
7595 	struct lpfc_sglq *sglq_entry_next = NULL;
7596 	struct lpfc_sglq *sglq_entry_first = NULL;
7597 	int status, total_cnt;
7598 	int post_cnt = 0, num_posted = 0, block_cnt = 0;
7599 	int last_xritag = NO_XRI;
7600 	LIST_HEAD(prep_sgl_list);
7601 	LIST_HEAD(blck_sgl_list);
7602 	LIST_HEAD(allc_sgl_list);
7603 	LIST_HEAD(post_sgl_list);
7604 	LIST_HEAD(free_sgl_list);
7605 
7606 	spin_lock_irq(&phba->hbalock);
7607 	spin_lock(&phba->sli4_hba.sgl_list_lock);
7608 	list_splice_init(sgl_list, &allc_sgl_list);
7609 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
7610 	spin_unlock_irq(&phba->hbalock);
7611 
7612 	total_cnt = cnt;
7613 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
7614 				 &allc_sgl_list, list) {
7615 		list_del_init(&sglq_entry->list);
7616 		block_cnt++;
7617 		if ((last_xritag != NO_XRI) &&
7618 		    (sglq_entry->sli4_xritag != last_xritag + 1)) {
7619 			/* a hole in xri block, form a sgl posting block */
7620 			list_splice_init(&prep_sgl_list, &blck_sgl_list);
7621 			post_cnt = block_cnt - 1;
7622 			/* prepare list for next posting block */
7623 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
7624 			block_cnt = 1;
7625 		} else {
7626 			/* prepare list for next posting block */
7627 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
7628 			/* enough sgls for non-embed sgl mbox command */
7629 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
7630 				list_splice_init(&prep_sgl_list,
7631 						 &blck_sgl_list);
7632 				post_cnt = block_cnt;
7633 				block_cnt = 0;
7634 			}
7635 		}
7636 		num_posted++;
7637 
7638 		/* keep track of last sgl's xritag */
7639 		last_xritag = sglq_entry->sli4_xritag;
7640 
7641 		/* end of repost sgl list condition for buffers */
7642 		if (num_posted == total_cnt) {
7643 			if (post_cnt == 0) {
7644 				list_splice_init(&prep_sgl_list,
7645 						 &blck_sgl_list);
7646 				post_cnt = block_cnt;
7647 			} else if (block_cnt == 1) {
7648 				status = lpfc_sli4_post_sgl(phba,
7649 						sglq_entry->phys, 0,
7650 						sglq_entry->sli4_xritag);
7651 				if (!status) {
7652 					/* successful, put sgl to posted list */
7653 					list_add_tail(&sglq_entry->list,
7654 						      &post_sgl_list);
7655 				} else {
7656 					/* Failure, put sgl to free list */
7657 					lpfc_printf_log(phba, KERN_WARNING,
7658 						LOG_SLI,
7659 						"3159 Failed to post "
7660 						"sgl, xritag:x%x\n",
7661 						sglq_entry->sli4_xritag);
7662 					list_add_tail(&sglq_entry->list,
7663 						      &free_sgl_list);
7664 					total_cnt--;
7665 				}
7666 			}
7667 		}
7668 
7669 		/* continue until a nembed page worth of sgls */
7670 		if (post_cnt == 0)
7671 			continue;
7672 
7673 		/* post the buffer list sgls as a block */
7674 		status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
7675 						 post_cnt);
7676 
7677 		if (!status) {
7678 			/* success, put sgl list to posted sgl list */
7679 			list_splice_init(&blck_sgl_list, &post_sgl_list);
7680 		} else {
7681 			/* Failure, put sgl list to free sgl list */
7682 			sglq_entry_first = list_first_entry(&blck_sgl_list,
7683 							    struct lpfc_sglq,
7684 							    list);
7685 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7686 					"3160 Failed to post sgl-list, "
7687 					"xritag:x%x-x%x\n",
7688 					sglq_entry_first->sli4_xritag,
7689 					(sglq_entry_first->sli4_xritag +
7690 					 post_cnt - 1));
7691 			list_splice_init(&blck_sgl_list, &free_sgl_list);
7692 			total_cnt -= post_cnt;
7693 		}
7694 
7695 		/* don't reset xirtag due to hole in xri block */
7696 		if (block_cnt == 0)
7697 			last_xritag = NO_XRI;
7698 
7699 		/* reset sgl post count for next round of posting */
7700 		post_cnt = 0;
7701 	}
7702 
7703 	/* free the sgls failed to post */
7704 	lpfc_free_sgl_list(phba, &free_sgl_list);
7705 
7706 	/* push sgls posted to the available list */
7707 	if (!list_empty(&post_sgl_list)) {
7708 		spin_lock_irq(&phba->hbalock);
7709 		spin_lock(&phba->sli4_hba.sgl_list_lock);
7710 		list_splice_init(&post_sgl_list, sgl_list);
7711 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
7712 		spin_unlock_irq(&phba->hbalock);
7713 	} else {
7714 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7715 				"3161 Failure to post sgl to port.\n");
7716 		return -EIO;
7717 	}
7718 
7719 	/* return the number of XRIs actually posted */
7720 	return total_cnt;
7721 }
7722 
7723 /**
7724  * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7725  * @phba: pointer to lpfc hba data structure.
7726  *
7727  * This routine walks the list of nvme buffers that have been allocated and
7728  * repost them to the port by using SGL block post. This is needed after a
7729  * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7730  * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7731  * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7732  *
7733  * Returns: 0 = success, non-zero failure.
7734  **/
7735 static int
7736 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7737 {
7738 	LIST_HEAD(post_nblist);
7739 	int num_posted, rc = 0;
7740 
7741 	/* get all NVME buffers need to repost to a local list */
7742 	lpfc_io_buf_flush(phba, &post_nblist);
7743 
7744 	/* post the list of nvme buffer sgls to port if available */
7745 	if (!list_empty(&post_nblist)) {
7746 		num_posted = lpfc_sli4_post_io_sgl_list(
7747 			phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7748 		/* failed to post any nvme buffer, return error */
7749 		if (num_posted == 0)
7750 			rc = -EIO;
7751 	}
7752 	return rc;
7753 }
7754 
7755 static void
7756 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7757 {
7758 	uint32_t len;
7759 
7760 	len = sizeof(struct lpfc_mbx_set_host_data) -
7761 		sizeof(struct lpfc_sli4_cfg_mhdr);
7762 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7763 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7764 			 LPFC_SLI4_MBX_EMBED);
7765 
7766 	mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7767 	mbox->u.mqe.un.set_host_data.param_len =
7768 					LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7769 	snprintf(mbox->u.mqe.un.set_host_data.un.data,
7770 		 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7771 		 "Linux %s v"LPFC_DRIVER_VERSION,
7772 		 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7773 }
7774 
7775 int
7776 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7777 		    struct lpfc_queue *drq, int count, int idx)
7778 {
7779 	int rc, i;
7780 	struct lpfc_rqe hrqe;
7781 	struct lpfc_rqe drqe;
7782 	struct lpfc_rqb *rqbp;
7783 	unsigned long flags;
7784 	struct rqb_dmabuf *rqb_buffer;
7785 	LIST_HEAD(rqb_buf_list);
7786 
7787 	rqbp = hrq->rqbp;
7788 	for (i = 0; i < count; i++) {
7789 		spin_lock_irqsave(&phba->hbalock, flags);
7790 		/* IF RQ is already full, don't bother */
7791 		if (rqbp->buffer_count + i >= rqbp->entry_count - 1) {
7792 			spin_unlock_irqrestore(&phba->hbalock, flags);
7793 			break;
7794 		}
7795 		spin_unlock_irqrestore(&phba->hbalock, flags);
7796 
7797 		rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7798 		if (!rqb_buffer)
7799 			break;
7800 		rqb_buffer->hrq = hrq;
7801 		rqb_buffer->drq = drq;
7802 		rqb_buffer->idx = idx;
7803 		list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7804 	}
7805 
7806 	spin_lock_irqsave(&phba->hbalock, flags);
7807 	while (!list_empty(&rqb_buf_list)) {
7808 		list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7809 				 hbuf.list);
7810 
7811 		hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7812 		hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7813 		drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7814 		drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7815 		rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7816 		if (rc < 0) {
7817 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7818 					"6421 Cannot post to HRQ %d: %x %x %x "
7819 					"DRQ %x %x\n",
7820 					hrq->queue_id,
7821 					hrq->host_index,
7822 					hrq->hba_index,
7823 					hrq->entry_count,
7824 					drq->host_index,
7825 					drq->hba_index);
7826 			rqbp->rqb_free_buffer(phba, rqb_buffer);
7827 		} else {
7828 			list_add_tail(&rqb_buffer->hbuf.list,
7829 				      &rqbp->rqb_buffer_list);
7830 			rqbp->buffer_count++;
7831 		}
7832 	}
7833 	spin_unlock_irqrestore(&phba->hbalock, flags);
7834 	return 1;
7835 }
7836 
7837 static void
7838 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
7839 {
7840 	union lpfc_sli4_cfg_shdr *shdr;
7841 	u32 shdr_status, shdr_add_status;
7842 
7843 	shdr = (union lpfc_sli4_cfg_shdr *)
7844 		&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
7845 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
7846 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
7847 	if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) {
7848 		lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX,
7849 				"4622 SET_FEATURE (x%x) mbox failed, "
7850 				"status x%x add_status x%x, mbx status x%x\n",
7851 				LPFC_SET_LD_SIGNAL, shdr_status,
7852 				shdr_add_status, pmb->u.mb.mbxStatus);
7853 		phba->degrade_activate_threshold = 0;
7854 		phba->degrade_deactivate_threshold = 0;
7855 		phba->fec_degrade_interval = 0;
7856 		goto out;
7857 	}
7858 
7859 	phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7;
7860 	phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8;
7861 	phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10;
7862 
7863 	lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT,
7864 			"4624 Success: da x%x dd x%x interval x%x\n",
7865 			phba->degrade_activate_threshold,
7866 			phba->degrade_deactivate_threshold,
7867 			phba->fec_degrade_interval);
7868 out:
7869 	mempool_free(pmb, phba->mbox_mem_pool);
7870 }
7871 
7872 int
7873 lpfc_read_lds_params(struct lpfc_hba *phba)
7874 {
7875 	LPFC_MBOXQ_t *mboxq;
7876 	int rc;
7877 
7878 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7879 	if (!mboxq)
7880 		return -ENOMEM;
7881 
7882 	lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL);
7883 	mboxq->vport = phba->pport;
7884 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params;
7885 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
7886 	if (rc == MBX_NOT_FINISHED) {
7887 		mempool_free(mboxq, phba->mbox_mem_pool);
7888 		return -EIO;
7889 	}
7890 	return 0;
7891 }
7892 
7893 static void
7894 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
7895 {
7896 	struct lpfc_vport *vport = pmb->vport;
7897 	union lpfc_sli4_cfg_shdr *shdr;
7898 	u32 shdr_status, shdr_add_status;
7899 	u32 sig, acqe;
7900 
7901 	/* Two outcomes. (1) Set featurs was successul and EDC negotiation
7902 	 * is done. (2) Mailbox failed and send FPIN support only.
7903 	 */
7904 	shdr = (union lpfc_sli4_cfg_shdr *)
7905 		&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
7906 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
7907 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
7908 	if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) {
7909 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
7910 				"2516 CGN SET_FEATURE mbox failed with "
7911 				"status x%x add_status x%x, mbx status x%x "
7912 				"Reset Congestion to FPINs only\n",
7913 				shdr_status, shdr_add_status,
7914 				pmb->u.mb.mbxStatus);
7915 		/* If there is a mbox error, move on to RDF */
7916 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
7917 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM;
7918 		goto out;
7919 	}
7920 
7921 	/* Zero out Congestion Signal ACQE counter */
7922 	phba->cgn_acqe_cnt = 0;
7923 
7924 	acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq,
7925 		      &pmb->u.mqe.un.set_feature);
7926 	sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq,
7927 		     &pmb->u.mqe.un.set_feature);
7928 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7929 			"4620 SET_FEATURES Success: Freq: %ds %dms "
7930 			" Reg: x%x x%x\n", acqe, sig,
7931 			phba->cgn_reg_signal, phba->cgn_reg_fpin);
7932 out:
7933 	mempool_free(pmb, phba->mbox_mem_pool);
7934 
7935 	/* Register for FPIN events from the fabric now that the
7936 	 * EDC common_set_features has completed.
7937 	 */
7938 	lpfc_issue_els_rdf(vport, 0);
7939 }
7940 
7941 int
7942 lpfc_config_cgn_signal(struct lpfc_hba *phba)
7943 {
7944 	LPFC_MBOXQ_t *mboxq;
7945 	u32 rc;
7946 
7947 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7948 	if (!mboxq)
7949 		goto out_rdf;
7950 
7951 	lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL);
7952 	mboxq->vport = phba->pport;
7953 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs;
7954 
7955 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7956 			"4621 SET_FEATURES: FREQ sig x%x acqe x%x: "
7957 			"Reg: x%x x%x\n",
7958 			phba->cgn_sig_freq, lpfc_acqe_cgn_frequency,
7959 			phba->cgn_reg_signal, phba->cgn_reg_fpin);
7960 
7961 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
7962 	if (rc == MBX_NOT_FINISHED)
7963 		goto out;
7964 	return 0;
7965 
7966 out:
7967 	mempool_free(mboxq, phba->mbox_mem_pool);
7968 out_rdf:
7969 	/* If there is a mbox error, move on to RDF */
7970 	phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM;
7971 	phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
7972 	lpfc_issue_els_rdf(phba->pport, 0);
7973 	return -EIO;
7974 }
7975 
7976 /**
7977  * lpfc_init_idle_stat_hb - Initialize idle_stat tracking
7978  * @phba: pointer to lpfc hba data structure.
7979  *
7980  * This routine initializes the per-cq idle_stat to dynamically dictate
7981  * polling decisions.
7982  *
7983  * Return codes:
7984  *   None
7985  **/
7986 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba)
7987 {
7988 	int i;
7989 	struct lpfc_sli4_hdw_queue *hdwq;
7990 	struct lpfc_queue *cq;
7991 	struct lpfc_idle_stat *idle_stat;
7992 	u64 wall;
7993 
7994 	for_each_present_cpu(i) {
7995 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
7996 		cq = hdwq->io_cq;
7997 
7998 		/* Skip if we've already handled this cq's primary CPU */
7999 		if (cq->chann != i)
8000 			continue;
8001 
8002 		idle_stat = &phba->sli4_hba.idle_stat[i];
8003 
8004 		idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1);
8005 		idle_stat->prev_wall = wall;
8006 
8007 		if (phba->nvmet_support ||
8008 		    phba->cmf_active_mode != LPFC_CFG_OFF)
8009 			cq->poll_mode = LPFC_QUEUE_WORK;
8010 		else
8011 			cq->poll_mode = LPFC_IRQ_POLL;
8012 	}
8013 
8014 	if (!phba->nvmet_support)
8015 		schedule_delayed_work(&phba->idle_stat_delay_work,
8016 				      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
8017 }
8018 
8019 static void lpfc_sli4_dip(struct lpfc_hba *phba)
8020 {
8021 	uint32_t if_type;
8022 
8023 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
8024 	if (if_type == LPFC_SLI_INTF_IF_TYPE_2 ||
8025 	    if_type == LPFC_SLI_INTF_IF_TYPE_6) {
8026 		struct lpfc_register reg_data;
8027 
8028 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
8029 			       &reg_data.word0))
8030 			return;
8031 
8032 		if (bf_get(lpfc_sliport_status_dip, &reg_data))
8033 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8034 					"2904 Firmware Dump Image Present"
8035 					" on Adapter");
8036 	}
8037 }
8038 
8039 /**
8040  * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor
8041  * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8042  * @entries: Number of rx_info_entry objects to allocate in ring
8043  *
8044  * Return:
8045  * 0 - Success
8046  * ENOMEM - Failure to kmalloc
8047  **/
8048 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor,
8049 				u32 entries)
8050 {
8051 	rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry),
8052 					 GFP_KERNEL);
8053 	if (!rx_monitor->ring)
8054 		return -ENOMEM;
8055 
8056 	rx_monitor->head_idx = 0;
8057 	rx_monitor->tail_idx = 0;
8058 	spin_lock_init(&rx_monitor->lock);
8059 	rx_monitor->entries = entries;
8060 
8061 	return 0;
8062 }
8063 
8064 /**
8065  * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor
8066  * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8067  **/
8068 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor)
8069 {
8070 	spin_lock(&rx_monitor->lock);
8071 	kfree(rx_monitor->ring);
8072 	rx_monitor->ring = NULL;
8073 	rx_monitor->entries = 0;
8074 	rx_monitor->head_idx = 0;
8075 	rx_monitor->tail_idx = 0;
8076 	spin_unlock(&rx_monitor->lock);
8077 }
8078 
8079 /**
8080  * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring
8081  * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8082  * @entry: Pointer to rx_info_entry
8083  *
8084  * Used to insert an rx_info_entry into rx_monitor's ring.  Note that this is a
8085  * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr.
8086  *
8087  * This is called from lpfc_cmf_timer, which is in timer/softirq context.
8088  *
8089  * In cases of old data overflow, we do a best effort of FIFO order.
8090  **/
8091 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor,
8092 			    struct rx_info_entry *entry)
8093 {
8094 	struct rx_info_entry *ring = rx_monitor->ring;
8095 	u32 *head_idx = &rx_monitor->head_idx;
8096 	u32 *tail_idx = &rx_monitor->tail_idx;
8097 	spinlock_t *ring_lock = &rx_monitor->lock;
8098 	u32 ring_size = rx_monitor->entries;
8099 
8100 	spin_lock(ring_lock);
8101 	memcpy(&ring[*tail_idx], entry, sizeof(*entry));
8102 	*tail_idx = (*tail_idx + 1) % ring_size;
8103 
8104 	/* Best effort of FIFO saved data */
8105 	if (*tail_idx == *head_idx)
8106 		*head_idx = (*head_idx + 1) % ring_size;
8107 
8108 	spin_unlock(ring_lock);
8109 }
8110 
8111 /**
8112  * lpfc_rx_monitor_report - Read out rx_monitor's ring
8113  * @phba: Pointer to lpfc_hba object
8114  * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8115  * @buf: Pointer to char buffer that will contain rx monitor info data
8116  * @buf_len: Length buf including null char
8117  * @max_read_entries: Maximum number of entries to read out of ring
8118  *
8119  * Used to dump/read what's in rx_monitor's ring buffer.
8120  *
8121  * If buf is NULL || buf_len == 0, then it is implied that we want to log the
8122  * information to kmsg instead of filling out buf.
8123  *
8124  * Return:
8125  * Number of entries read out of the ring
8126  **/
8127 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba,
8128 			   struct lpfc_rx_info_monitor *rx_monitor, char *buf,
8129 			   u32 buf_len, u32 max_read_entries)
8130 {
8131 	struct rx_info_entry *ring = rx_monitor->ring;
8132 	struct rx_info_entry *entry;
8133 	u32 *head_idx = &rx_monitor->head_idx;
8134 	u32 *tail_idx = &rx_monitor->tail_idx;
8135 	spinlock_t *ring_lock = &rx_monitor->lock;
8136 	u32 ring_size = rx_monitor->entries;
8137 	u32 cnt = 0;
8138 	char tmp[DBG_LOG_STR_SZ] = {0};
8139 	bool log_to_kmsg = (!buf || !buf_len) ? true : false;
8140 
8141 	if (!log_to_kmsg) {
8142 		/* clear the buffer to be sure */
8143 		memset(buf, 0, buf_len);
8144 
8145 		scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s"
8146 					"%-8s%-8s%-8s%-16s\n",
8147 					"MaxBPI", "Tot_Data_CMF",
8148 					"Tot_Data_Cmd", "Tot_Data_Cmpl",
8149 					"Lat(us)", "Avg_IO", "Max_IO", "Bsy",
8150 					"IO_cnt", "Info", "BWutil(ms)");
8151 	}
8152 
8153 	/* Needs to be _bh because record is called from timer interrupt
8154 	 * context
8155 	 */
8156 	spin_lock_bh(ring_lock);
8157 	while (*head_idx != *tail_idx) {
8158 		entry = &ring[*head_idx];
8159 
8160 		/* Read out this entry's data. */
8161 		if (!log_to_kmsg) {
8162 			/* If !log_to_kmsg, then store to buf. */
8163 			scnprintf(tmp, sizeof(tmp),
8164 				  "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu"
8165 				  "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n",
8166 				  *head_idx, entry->max_bytes_per_interval,
8167 				  entry->cmf_bytes, entry->total_bytes,
8168 				  entry->rcv_bytes, entry->avg_io_latency,
8169 				  entry->avg_io_size, entry->max_read_cnt,
8170 				  entry->cmf_busy, entry->io_cnt,
8171 				  entry->cmf_info, entry->timer_utilization,
8172 				  entry->timer_interval);
8173 
8174 			/* Check for buffer overflow */
8175 			if ((strlen(buf) + strlen(tmp)) >= buf_len)
8176 				break;
8177 
8178 			/* Append entry's data to buffer */
8179 			strlcat(buf, tmp, buf_len);
8180 		} else {
8181 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
8182 					"4410 %02u: MBPI %llu Xmit %llu "
8183 					"Cmpl %llu Lat %llu ASz %llu Info %02u "
8184 					"BWUtil %u Int %u slot %u\n",
8185 					cnt, entry->max_bytes_per_interval,
8186 					entry->total_bytes, entry->rcv_bytes,
8187 					entry->avg_io_latency,
8188 					entry->avg_io_size, entry->cmf_info,
8189 					entry->timer_utilization,
8190 					entry->timer_interval, *head_idx);
8191 		}
8192 
8193 		*head_idx = (*head_idx + 1) % ring_size;
8194 
8195 		/* Don't feed more than max_read_entries */
8196 		cnt++;
8197 		if (cnt >= max_read_entries)
8198 			break;
8199 	}
8200 	spin_unlock_bh(ring_lock);
8201 
8202 	return cnt;
8203 }
8204 
8205 /**
8206  * lpfc_cmf_setup - Initialize idle_stat tracking
8207  * @phba: Pointer to HBA context object.
8208  *
8209  * This is called from HBA setup during driver load or when the HBA
8210  * comes online. this does all the initialization to support CMF and MI.
8211  **/
8212 static int
8213 lpfc_cmf_setup(struct lpfc_hba *phba)
8214 {
8215 	LPFC_MBOXQ_t *mboxq;
8216 	struct lpfc_dmabuf *mp;
8217 	struct lpfc_pc_sli4_params *sli4_params;
8218 	int rc, cmf, mi_ver;
8219 
8220 	rc = lpfc_sli4_refresh_params(phba);
8221 	if (unlikely(rc))
8222 		return rc;
8223 
8224 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8225 	if (!mboxq)
8226 		return -ENOMEM;
8227 
8228 	sli4_params = &phba->sli4_hba.pc_sli4_params;
8229 
8230 	/* Always try to enable MI feature if we can */
8231 	if (sli4_params->mi_ver) {
8232 		lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI);
8233 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8234 		mi_ver = bf_get(lpfc_mbx_set_feature_mi,
8235 				 &mboxq->u.mqe.un.set_feature);
8236 
8237 		if (rc == MBX_SUCCESS) {
8238 			if (mi_ver) {
8239 				lpfc_printf_log(phba,
8240 						KERN_WARNING, LOG_CGN_MGMT,
8241 						"6215 MI is enabled\n");
8242 				sli4_params->mi_ver = mi_ver;
8243 			} else {
8244 				lpfc_printf_log(phba,
8245 						KERN_WARNING, LOG_CGN_MGMT,
8246 						"6338 MI is disabled\n");
8247 				sli4_params->mi_ver = 0;
8248 			}
8249 		} else {
8250 			/* mi_ver is already set from GET_SLI4_PARAMETERS */
8251 			lpfc_printf_log(phba, KERN_INFO,
8252 					LOG_CGN_MGMT | LOG_INIT,
8253 					"6245 Enable MI Mailbox x%x (x%x/x%x) "
8254 					"failed, rc:x%x mi:x%x\n",
8255 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8256 					lpfc_sli_config_mbox_subsys_get
8257 						(phba, mboxq),
8258 					lpfc_sli_config_mbox_opcode_get
8259 						(phba, mboxq),
8260 					rc, sli4_params->mi_ver);
8261 		}
8262 	} else {
8263 		lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8264 				"6217 MI is disabled\n");
8265 	}
8266 
8267 	/* Ensure FDMI is enabled for MI if enable_mi is set */
8268 	if (sli4_params->mi_ver)
8269 		phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT;
8270 
8271 	/* Always try to enable CMF feature if we can */
8272 	if (sli4_params->cmf) {
8273 		lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF);
8274 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8275 		cmf = bf_get(lpfc_mbx_set_feature_cmf,
8276 			     &mboxq->u.mqe.un.set_feature);
8277 		if (rc == MBX_SUCCESS && cmf) {
8278 			lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8279 					"6218 CMF is enabled: mode %d\n",
8280 					phba->cmf_active_mode);
8281 		} else {
8282 			lpfc_printf_log(phba, KERN_WARNING,
8283 					LOG_CGN_MGMT | LOG_INIT,
8284 					"6219 Enable CMF Mailbox x%x (x%x/x%x) "
8285 					"failed, rc:x%x dd:x%x\n",
8286 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8287 					lpfc_sli_config_mbox_subsys_get
8288 						(phba, mboxq),
8289 					lpfc_sli_config_mbox_opcode_get
8290 						(phba, mboxq),
8291 					rc, cmf);
8292 			sli4_params->cmf = 0;
8293 			phba->cmf_active_mode = LPFC_CFG_OFF;
8294 			goto no_cmf;
8295 		}
8296 
8297 		/* Allocate Congestion Information Buffer */
8298 		if (!phba->cgn_i) {
8299 			mp = kmalloc(sizeof(*mp), GFP_KERNEL);
8300 			if (mp)
8301 				mp->virt = dma_alloc_coherent
8302 						(&phba->pcidev->dev,
8303 						sizeof(struct lpfc_cgn_info),
8304 						&mp->phys, GFP_KERNEL);
8305 			if (!mp || !mp->virt) {
8306 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8307 						"2640 Failed to alloc memory "
8308 						"for Congestion Info\n");
8309 				kfree(mp);
8310 				sli4_params->cmf = 0;
8311 				phba->cmf_active_mode = LPFC_CFG_OFF;
8312 				goto no_cmf;
8313 			}
8314 			phba->cgn_i = mp;
8315 
8316 			/* initialize congestion buffer info */
8317 			lpfc_init_congestion_buf(phba);
8318 			lpfc_init_congestion_stat(phba);
8319 
8320 			/* Zero out Congestion Signal counters */
8321 			atomic64_set(&phba->cgn_acqe_stat.alarm, 0);
8322 			atomic64_set(&phba->cgn_acqe_stat.warn, 0);
8323 		}
8324 
8325 		rc = lpfc_sli4_cgn_params_read(phba);
8326 		if (rc < 0) {
8327 			lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
8328 					"6242 Error reading Cgn Params (%d)\n",
8329 					rc);
8330 			/* Ensure CGN Mode is off */
8331 			sli4_params->cmf = 0;
8332 		} else if (!rc) {
8333 			lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
8334 					"6243 CGN Event empty object.\n");
8335 			/* Ensure CGN Mode is off */
8336 			sli4_params->cmf = 0;
8337 		}
8338 	} else {
8339 no_cmf:
8340 		lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8341 				"6220 CMF is disabled\n");
8342 	}
8343 
8344 	/* Only register congestion buffer with firmware if BOTH
8345 	 * CMF and E2E are enabled.
8346 	 */
8347 	if (sli4_params->cmf && sli4_params->mi_ver) {
8348 		rc = lpfc_reg_congestion_buf(phba);
8349 		if (rc) {
8350 			dma_free_coherent(&phba->pcidev->dev,
8351 					  sizeof(struct lpfc_cgn_info),
8352 					  phba->cgn_i->virt, phba->cgn_i->phys);
8353 			kfree(phba->cgn_i);
8354 			phba->cgn_i = NULL;
8355 			/* Ensure CGN Mode is off */
8356 			phba->cmf_active_mode = LPFC_CFG_OFF;
8357 			return 0;
8358 		}
8359 	}
8360 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8361 			"6470 Setup MI version %d CMF %d mode %d\n",
8362 			sli4_params->mi_ver, sli4_params->cmf,
8363 			phba->cmf_active_mode);
8364 
8365 	mempool_free(mboxq, phba->mbox_mem_pool);
8366 
8367 	/* Initialize atomic counters */
8368 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
8369 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
8370 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
8371 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
8372 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
8373 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
8374 	atomic64_set(&phba->cgn_latency_evt, 0);
8375 
8376 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
8377 
8378 	/* Allocate RX Monitor Buffer */
8379 	if (!phba->rx_monitor) {
8380 		phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor),
8381 					   GFP_KERNEL);
8382 
8383 		if (!phba->rx_monitor) {
8384 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8385 					"2644 Failed to alloc memory "
8386 					"for RX Monitor Buffer\n");
8387 			return -ENOMEM;
8388 		}
8389 
8390 		/* Instruct the rx_monitor object to instantiate its ring */
8391 		if (lpfc_rx_monitor_create_ring(phba->rx_monitor,
8392 						LPFC_MAX_RXMONITOR_ENTRY)) {
8393 			kfree(phba->rx_monitor);
8394 			phba->rx_monitor = NULL;
8395 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8396 					"2645 Failed to alloc memory "
8397 					"for RX Monitor's Ring\n");
8398 			return -ENOMEM;
8399 		}
8400 	}
8401 
8402 	return 0;
8403 }
8404 
8405 static int
8406 lpfc_set_host_tm(struct lpfc_hba *phba)
8407 {
8408 	LPFC_MBOXQ_t *mboxq;
8409 	uint32_t len, rc;
8410 	struct timespec64 cur_time;
8411 	struct tm broken;
8412 	uint32_t month, day, year;
8413 	uint32_t hour, minute, second;
8414 	struct lpfc_mbx_set_host_date_time *tm;
8415 
8416 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8417 	if (!mboxq)
8418 		return -ENOMEM;
8419 
8420 	len = sizeof(struct lpfc_mbx_set_host_data) -
8421 		sizeof(struct lpfc_sli4_cfg_mhdr);
8422 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
8423 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
8424 			 LPFC_SLI4_MBX_EMBED);
8425 
8426 	mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME;
8427 	mboxq->u.mqe.un.set_host_data.param_len =
8428 			sizeof(struct lpfc_mbx_set_host_date_time);
8429 	tm = &mboxq->u.mqe.un.set_host_data.un.tm;
8430 	ktime_get_real_ts64(&cur_time);
8431 	time64_to_tm(cur_time.tv_sec, 0, &broken);
8432 	month = broken.tm_mon + 1;
8433 	day = broken.tm_mday;
8434 	year = broken.tm_year - 100;
8435 	hour = broken.tm_hour;
8436 	minute = broken.tm_min;
8437 	second = broken.tm_sec;
8438 	bf_set(lpfc_mbx_set_host_month, tm, month);
8439 	bf_set(lpfc_mbx_set_host_day, tm, day);
8440 	bf_set(lpfc_mbx_set_host_year, tm, year);
8441 	bf_set(lpfc_mbx_set_host_hour, tm, hour);
8442 	bf_set(lpfc_mbx_set_host_min, tm, minute);
8443 	bf_set(lpfc_mbx_set_host_sec, tm, second);
8444 
8445 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8446 	mempool_free(mboxq, phba->mbox_mem_pool);
8447 	return rc;
8448 }
8449 
8450 /**
8451  * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
8452  * @phba: Pointer to HBA context object.
8453  *
8454  * This function is the main SLI4 device initialization PCI function. This
8455  * function is called by the HBA initialization code, HBA reset code and
8456  * HBA error attention handler code. Caller is not required to hold any
8457  * locks.
8458  **/
8459 int
8460 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
8461 {
8462 	int rc, i, cnt, len, dd;
8463 	LPFC_MBOXQ_t *mboxq;
8464 	struct lpfc_mqe *mqe;
8465 	uint8_t *vpd;
8466 	uint32_t vpd_size;
8467 	uint32_t ftr_rsp = 0;
8468 	struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
8469 	struct lpfc_vport *vport = phba->pport;
8470 	struct lpfc_dmabuf *mp;
8471 	struct lpfc_rqb *rqbp;
8472 	u32 flg;
8473 
8474 	/* Perform a PCI function reset to start from clean */
8475 	rc = lpfc_pci_function_reset(phba);
8476 	if (unlikely(rc))
8477 		return -ENODEV;
8478 
8479 	/* Check the HBA Host Status Register for readyness */
8480 	rc = lpfc_sli4_post_status_check(phba);
8481 	if (unlikely(rc))
8482 		return -ENODEV;
8483 	else {
8484 		spin_lock_irq(&phba->hbalock);
8485 		phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
8486 		flg = phba->sli.sli_flag;
8487 		spin_unlock_irq(&phba->hbalock);
8488 		/* Allow a little time after setting SLI_ACTIVE for any polled
8489 		 * MBX commands to complete via BSG.
8490 		 */
8491 		for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) {
8492 			msleep(20);
8493 			spin_lock_irq(&phba->hbalock);
8494 			flg = phba->sli.sli_flag;
8495 			spin_unlock_irq(&phba->hbalock);
8496 		}
8497 	}
8498 
8499 	lpfc_sli4_dip(phba);
8500 
8501 	/*
8502 	 * Allocate a single mailbox container for initializing the
8503 	 * port.
8504 	 */
8505 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8506 	if (!mboxq)
8507 		return -ENOMEM;
8508 
8509 	/* Issue READ_REV to collect vpd and FW information. */
8510 	vpd_size = SLI4_PAGE_SIZE;
8511 	vpd = kzalloc(vpd_size, GFP_KERNEL);
8512 	if (!vpd) {
8513 		rc = -ENOMEM;
8514 		goto out_free_mbox;
8515 	}
8516 
8517 	rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
8518 	if (unlikely(rc)) {
8519 		kfree(vpd);
8520 		goto out_free_mbox;
8521 	}
8522 
8523 	mqe = &mboxq->u.mqe;
8524 	phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
8525 	if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
8526 		phba->hba_flag |= HBA_FCOE_MODE;
8527 		phba->fcp_embed_io = 0;	/* SLI4 FC support only */
8528 	} else {
8529 		phba->hba_flag &= ~HBA_FCOE_MODE;
8530 	}
8531 
8532 	if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
8533 		LPFC_DCBX_CEE_MODE)
8534 		phba->hba_flag |= HBA_FIP_SUPPORT;
8535 	else
8536 		phba->hba_flag &= ~HBA_FIP_SUPPORT;
8537 
8538 	phba->hba_flag &= ~HBA_IOQ_FLUSH;
8539 
8540 	if (phba->sli_rev != LPFC_SLI_REV4) {
8541 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8542 			"0376 READ_REV Error. SLI Level %d "
8543 			"FCoE enabled %d\n",
8544 			phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
8545 		rc = -EIO;
8546 		kfree(vpd);
8547 		goto out_free_mbox;
8548 	}
8549 
8550 	rc = lpfc_set_host_tm(phba);
8551 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
8552 			"6468 Set host date / time: Status x%x:\n", rc);
8553 
8554 	/*
8555 	 * Continue initialization with default values even if driver failed
8556 	 * to read FCoE param config regions, only read parameters if the
8557 	 * board is FCoE
8558 	 */
8559 	if (phba->hba_flag & HBA_FCOE_MODE &&
8560 	    lpfc_sli4_read_fcoe_params(phba))
8561 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
8562 			"2570 Failed to read FCoE parameters\n");
8563 
8564 	/*
8565 	 * Retrieve sli4 device physical port name, failure of doing it
8566 	 * is considered as non-fatal.
8567 	 */
8568 	rc = lpfc_sli4_retrieve_pport_name(phba);
8569 	if (!rc)
8570 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8571 				"3080 Successful retrieving SLI4 device "
8572 				"physical port name: %s.\n", phba->Port);
8573 
8574 	rc = lpfc_sli4_get_ctl_attr(phba);
8575 	if (!rc)
8576 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8577 				"8351 Successful retrieving SLI4 device "
8578 				"CTL ATTR\n");
8579 
8580 	/*
8581 	 * Evaluate the read rev and vpd data. Populate the driver
8582 	 * state with the results. If this routine fails, the failure
8583 	 * is not fatal as the driver will use generic values.
8584 	 */
8585 	rc = lpfc_parse_vpd(phba, vpd, vpd_size);
8586 	if (unlikely(!rc)) {
8587 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8588 				"0377 Error %d parsing vpd. "
8589 				"Using defaults.\n", rc);
8590 		rc = 0;
8591 	}
8592 	kfree(vpd);
8593 
8594 	/* Save information as VPD data */
8595 	phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
8596 	phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
8597 
8598 	/*
8599 	 * This is because first G7 ASIC doesn't support the standard
8600 	 * 0x5a NVME cmd descriptor type/subtype
8601 	 */
8602 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8603 			LPFC_SLI_INTF_IF_TYPE_6) &&
8604 	    (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
8605 	    (phba->vpd.rev.smRev == 0) &&
8606 	    (phba->cfg_nvme_embed_cmd == 1))
8607 		phba->cfg_nvme_embed_cmd = 0;
8608 
8609 	phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
8610 	phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
8611 					 &mqe->un.read_rev);
8612 	phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
8613 				       &mqe->un.read_rev);
8614 	phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
8615 					    &mqe->un.read_rev);
8616 	phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
8617 					   &mqe->un.read_rev);
8618 	phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
8619 	memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
8620 	phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
8621 	memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
8622 	phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
8623 	memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
8624 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8625 			"(%d):0380 READ_REV Status x%x "
8626 			"fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
8627 			mboxq->vport ? mboxq->vport->vpi : 0,
8628 			bf_get(lpfc_mqe_status, mqe),
8629 			phba->vpd.rev.opFwName,
8630 			phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
8631 			phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
8632 
8633 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8634 	    LPFC_SLI_INTF_IF_TYPE_0) {
8635 		lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
8636 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8637 		if (rc == MBX_SUCCESS) {
8638 			phba->hba_flag |= HBA_RECOVERABLE_UE;
8639 			/* Set 1Sec interval to detect UE */
8640 			phba->eratt_poll_interval = 1;
8641 			phba->sli4_hba.ue_to_sr = bf_get(
8642 					lpfc_mbx_set_feature_UESR,
8643 					&mboxq->u.mqe.un.set_feature);
8644 			phba->sli4_hba.ue_to_rp = bf_get(
8645 					lpfc_mbx_set_feature_UERP,
8646 					&mboxq->u.mqe.un.set_feature);
8647 		}
8648 	}
8649 
8650 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
8651 		/* Enable MDS Diagnostics only if the SLI Port supports it */
8652 		lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
8653 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8654 		if (rc != MBX_SUCCESS)
8655 			phba->mds_diags_support = 0;
8656 	}
8657 
8658 	/*
8659 	 * Discover the port's supported feature set and match it against the
8660 	 * hosts requests.
8661 	 */
8662 	lpfc_request_features(phba, mboxq);
8663 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8664 	if (unlikely(rc)) {
8665 		rc = -EIO;
8666 		goto out_free_mbox;
8667 	}
8668 
8669 	/* Disable VMID if app header is not supported */
8670 	if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr,
8671 						  &mqe->un.req_ftrs))) {
8672 		bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0);
8673 		phba->cfg_vmid_app_header = 0;
8674 		lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI,
8675 				"1242 vmid feature not supported\n");
8676 	}
8677 
8678 	/*
8679 	 * The port must support FCP initiator mode as this is the
8680 	 * only mode running in the host.
8681 	 */
8682 	if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
8683 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8684 				"0378 No support for fcpi mode.\n");
8685 		ftr_rsp++;
8686 	}
8687 
8688 	/* Performance Hints are ONLY for FCoE */
8689 	if (phba->hba_flag & HBA_FCOE_MODE) {
8690 		if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
8691 			phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
8692 		else
8693 			phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
8694 	}
8695 
8696 	/*
8697 	 * If the port cannot support the host's requested features
8698 	 * then turn off the global config parameters to disable the
8699 	 * feature in the driver.  This is not a fatal error.
8700 	 */
8701 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8702 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
8703 			phba->cfg_enable_bg = 0;
8704 			phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
8705 			ftr_rsp++;
8706 		}
8707 	}
8708 
8709 	if (phba->max_vpi && phba->cfg_enable_npiv &&
8710 	    !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
8711 		ftr_rsp++;
8712 
8713 	if (ftr_rsp) {
8714 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8715 				"0379 Feature Mismatch Data: x%08x %08x "
8716 				"x%x x%x x%x\n", mqe->un.req_ftrs.word2,
8717 				mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
8718 				phba->cfg_enable_npiv, phba->max_vpi);
8719 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
8720 			phba->cfg_enable_bg = 0;
8721 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
8722 			phba->cfg_enable_npiv = 0;
8723 	}
8724 
8725 	/* These SLI3 features are assumed in SLI4 */
8726 	spin_lock_irq(&phba->hbalock);
8727 	phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
8728 	spin_unlock_irq(&phba->hbalock);
8729 
8730 	/* Always try to enable dual dump feature if we can */
8731 	lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP);
8732 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8733 	dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature);
8734 	if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP))
8735 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8736 				"6448 Dual Dump is enabled\n");
8737 	else
8738 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT,
8739 				"6447 Dual Dump Mailbox x%x (x%x/x%x) failed, "
8740 				"rc:x%x dd:x%x\n",
8741 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8742 				lpfc_sli_config_mbox_subsys_get(
8743 					phba, mboxq),
8744 				lpfc_sli_config_mbox_opcode_get(
8745 					phba, mboxq),
8746 				rc, dd);
8747 	/*
8748 	 * Allocate all resources (xri,rpi,vpi,vfi) now.  Subsequent
8749 	 * calls depends on these resources to complete port setup.
8750 	 */
8751 	rc = lpfc_sli4_alloc_resource_identifiers(phba);
8752 	if (rc) {
8753 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8754 				"2920 Failed to alloc Resource IDs "
8755 				"rc = x%x\n", rc);
8756 		goto out_free_mbox;
8757 	}
8758 
8759 	lpfc_set_host_data(phba, mboxq);
8760 
8761 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8762 	if (rc) {
8763 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8764 				"2134 Failed to set host os driver version %x",
8765 				rc);
8766 	}
8767 
8768 	/* Read the port's service parameters. */
8769 	rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
8770 	if (rc) {
8771 		phba->link_state = LPFC_HBA_ERROR;
8772 		rc = -ENOMEM;
8773 		goto out_free_mbox;
8774 	}
8775 
8776 	mboxq->vport = vport;
8777 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8778 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
8779 	if (rc == MBX_SUCCESS) {
8780 		memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
8781 		rc = 0;
8782 	}
8783 
8784 	/*
8785 	 * This memory was allocated by the lpfc_read_sparam routine but is
8786 	 * no longer needed.  It is released and ctx_buf NULLed to prevent
8787 	 * unintended pointer access as the mbox is reused.
8788 	 */
8789 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
8790 	kfree(mp);
8791 	mboxq->ctx_buf = NULL;
8792 	if (unlikely(rc)) {
8793 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8794 				"0382 READ_SPARAM command failed "
8795 				"status %d, mbxStatus x%x\n",
8796 				rc, bf_get(lpfc_mqe_status, mqe));
8797 		phba->link_state = LPFC_HBA_ERROR;
8798 		rc = -EIO;
8799 		goto out_free_mbox;
8800 	}
8801 
8802 	lpfc_update_vport_wwn(vport);
8803 
8804 	/* Update the fc_host data structures with new wwn. */
8805 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
8806 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
8807 
8808 	/* Create all the SLI4 queues */
8809 	rc = lpfc_sli4_queue_create(phba);
8810 	if (rc) {
8811 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8812 				"3089 Failed to allocate queues\n");
8813 		rc = -ENODEV;
8814 		goto out_free_mbox;
8815 	}
8816 	/* Set up all the queues to the device */
8817 	rc = lpfc_sli4_queue_setup(phba);
8818 	if (unlikely(rc)) {
8819 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8820 				"0381 Error %d during queue setup.\n ", rc);
8821 		goto out_stop_timers;
8822 	}
8823 	/* Initialize the driver internal SLI layer lists. */
8824 	lpfc_sli4_setup(phba);
8825 	lpfc_sli4_queue_init(phba);
8826 
8827 	/* update host els xri-sgl sizes and mappings */
8828 	rc = lpfc_sli4_els_sgl_update(phba);
8829 	if (unlikely(rc)) {
8830 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8831 				"1400 Failed to update xri-sgl size and "
8832 				"mapping: %d\n", rc);
8833 		goto out_destroy_queue;
8834 	}
8835 
8836 	/* register the els sgl pool to the port */
8837 	rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
8838 				       phba->sli4_hba.els_xri_cnt);
8839 	if (unlikely(rc < 0)) {
8840 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8841 				"0582 Error %d during els sgl post "
8842 				"operation\n", rc);
8843 		rc = -ENODEV;
8844 		goto out_destroy_queue;
8845 	}
8846 	phba->sli4_hba.els_xri_cnt = rc;
8847 
8848 	if (phba->nvmet_support) {
8849 		/* update host nvmet xri-sgl sizes and mappings */
8850 		rc = lpfc_sli4_nvmet_sgl_update(phba);
8851 		if (unlikely(rc)) {
8852 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8853 					"6308 Failed to update nvmet-sgl size "
8854 					"and mapping: %d\n", rc);
8855 			goto out_destroy_queue;
8856 		}
8857 
8858 		/* register the nvmet sgl pool to the port */
8859 		rc = lpfc_sli4_repost_sgl_list(
8860 			phba,
8861 			&phba->sli4_hba.lpfc_nvmet_sgl_list,
8862 			phba->sli4_hba.nvmet_xri_cnt);
8863 		if (unlikely(rc < 0)) {
8864 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8865 					"3117 Error %d during nvmet "
8866 					"sgl post\n", rc);
8867 			rc = -ENODEV;
8868 			goto out_destroy_queue;
8869 		}
8870 		phba->sli4_hba.nvmet_xri_cnt = rc;
8871 
8872 		/* We allocate an iocbq for every receive context SGL.
8873 		 * The additional allocation is for abort and ls handling.
8874 		 */
8875 		cnt = phba->sli4_hba.nvmet_xri_cnt +
8876 			phba->sli4_hba.max_cfg_param.max_xri;
8877 	} else {
8878 		/* update host common xri-sgl sizes and mappings */
8879 		rc = lpfc_sli4_io_sgl_update(phba);
8880 		if (unlikely(rc)) {
8881 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8882 					"6082 Failed to update nvme-sgl size "
8883 					"and mapping: %d\n", rc);
8884 			goto out_destroy_queue;
8885 		}
8886 
8887 		/* register the allocated common sgl pool to the port */
8888 		rc = lpfc_sli4_repost_io_sgl_list(phba);
8889 		if (unlikely(rc)) {
8890 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8891 					"6116 Error %d during nvme sgl post "
8892 					"operation\n", rc);
8893 			/* Some NVME buffers were moved to abort nvme list */
8894 			/* A pci function reset will repost them */
8895 			rc = -ENODEV;
8896 			goto out_destroy_queue;
8897 		}
8898 		/* Each lpfc_io_buf job structure has an iocbq element.
8899 		 * This cnt provides for abort, els, ct and ls requests.
8900 		 */
8901 		cnt = phba->sli4_hba.max_cfg_param.max_xri;
8902 	}
8903 
8904 	if (!phba->sli.iocbq_lookup) {
8905 		/* Initialize and populate the iocb list per host */
8906 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8907 				"2821 initialize iocb list with %d entries\n",
8908 				cnt);
8909 		rc = lpfc_init_iocb_list(phba, cnt);
8910 		if (rc) {
8911 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8912 					"1413 Failed to init iocb list.\n");
8913 			goto out_destroy_queue;
8914 		}
8915 	}
8916 
8917 	if (phba->nvmet_support)
8918 		lpfc_nvmet_create_targetport(phba);
8919 
8920 	if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
8921 		/* Post initial buffers to all RQs created */
8922 		for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
8923 			rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
8924 			INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
8925 			rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
8926 			rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
8927 			rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
8928 			rqbp->buffer_count = 0;
8929 
8930 			lpfc_post_rq_buffer(
8931 				phba, phba->sli4_hba.nvmet_mrq_hdr[i],
8932 				phba->sli4_hba.nvmet_mrq_data[i],
8933 				phba->cfg_nvmet_mrq_post, i);
8934 		}
8935 	}
8936 
8937 	/* Post the rpi header region to the device. */
8938 	rc = lpfc_sli4_post_all_rpi_hdrs(phba);
8939 	if (unlikely(rc)) {
8940 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8941 				"0393 Error %d during rpi post operation\n",
8942 				rc);
8943 		rc = -ENODEV;
8944 		goto out_free_iocblist;
8945 	}
8946 	lpfc_sli4_node_prep(phba);
8947 
8948 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
8949 		if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
8950 			/*
8951 			 * The FC Port needs to register FCFI (index 0)
8952 			 */
8953 			lpfc_reg_fcfi(phba, mboxq);
8954 			mboxq->vport = phba->pport;
8955 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8956 			if (rc != MBX_SUCCESS)
8957 				goto out_unset_queue;
8958 			rc = 0;
8959 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
8960 						&mboxq->u.mqe.un.reg_fcfi);
8961 		} else {
8962 			/* We are a NVME Target mode with MRQ > 1 */
8963 
8964 			/* First register the FCFI */
8965 			lpfc_reg_fcfi_mrq(phba, mboxq, 0);
8966 			mboxq->vport = phba->pport;
8967 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8968 			if (rc != MBX_SUCCESS)
8969 				goto out_unset_queue;
8970 			rc = 0;
8971 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
8972 						&mboxq->u.mqe.un.reg_fcfi_mrq);
8973 
8974 			/* Next register the MRQs */
8975 			lpfc_reg_fcfi_mrq(phba, mboxq, 1);
8976 			mboxq->vport = phba->pport;
8977 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8978 			if (rc != MBX_SUCCESS)
8979 				goto out_unset_queue;
8980 			rc = 0;
8981 		}
8982 		/* Check if the port is configured to be disabled */
8983 		lpfc_sli_read_link_ste(phba);
8984 	}
8985 
8986 	/* Don't post more new bufs if repost already recovered
8987 	 * the nvme sgls.
8988 	 */
8989 	if (phba->nvmet_support == 0) {
8990 		if (phba->sli4_hba.io_xri_cnt == 0) {
8991 			len = lpfc_new_io_buf(
8992 					      phba, phba->sli4_hba.io_xri_max);
8993 			if (len == 0) {
8994 				rc = -ENOMEM;
8995 				goto out_unset_queue;
8996 			}
8997 
8998 			if (phba->cfg_xri_rebalancing)
8999 				lpfc_create_multixri_pools(phba);
9000 		}
9001 	} else {
9002 		phba->cfg_xri_rebalancing = 0;
9003 	}
9004 
9005 	/* Allow asynchronous mailbox command to go through */
9006 	spin_lock_irq(&phba->hbalock);
9007 	phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9008 	spin_unlock_irq(&phba->hbalock);
9009 
9010 	/* Post receive buffers to the device */
9011 	lpfc_sli4_rb_setup(phba);
9012 
9013 	/* Reset HBA FCF states after HBA reset */
9014 	phba->fcf.fcf_flag = 0;
9015 	phba->fcf.current_rec.flag = 0;
9016 
9017 	/* Start the ELS watchdog timer */
9018 	mod_timer(&vport->els_tmofunc,
9019 		  jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
9020 
9021 	/* Start heart beat timer */
9022 	mod_timer(&phba->hb_tmofunc,
9023 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
9024 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
9025 	phba->last_completion_time = jiffies;
9026 
9027 	/* start eq_delay heartbeat */
9028 	if (phba->cfg_auto_imax)
9029 		queue_delayed_work(phba->wq, &phba->eq_delay_work,
9030 				   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
9031 
9032 	/* start per phba idle_stat_delay heartbeat */
9033 	lpfc_init_idle_stat_hb(phba);
9034 
9035 	/* Start error attention (ERATT) polling timer */
9036 	mod_timer(&phba->eratt_poll,
9037 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
9038 
9039 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
9040 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
9041 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
9042 		if (!rc) {
9043 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9044 					"2829 This device supports "
9045 					"Advanced Error Reporting (AER)\n");
9046 			spin_lock_irq(&phba->hbalock);
9047 			phba->hba_flag |= HBA_AER_ENABLED;
9048 			spin_unlock_irq(&phba->hbalock);
9049 		} else {
9050 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9051 					"2830 This device does not support "
9052 					"Advanced Error Reporting (AER)\n");
9053 			phba->cfg_aer_support = 0;
9054 		}
9055 		rc = 0;
9056 	}
9057 
9058 	/*
9059 	 * The port is ready, set the host's link state to LINK_DOWN
9060 	 * in preparation for link interrupts.
9061 	 */
9062 	spin_lock_irq(&phba->hbalock);
9063 	phba->link_state = LPFC_LINK_DOWN;
9064 
9065 	/* Check if physical ports are trunked */
9066 	if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
9067 		phba->trunk_link.link0.state = LPFC_LINK_DOWN;
9068 	if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
9069 		phba->trunk_link.link1.state = LPFC_LINK_DOWN;
9070 	if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
9071 		phba->trunk_link.link2.state = LPFC_LINK_DOWN;
9072 	if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
9073 		phba->trunk_link.link3.state = LPFC_LINK_DOWN;
9074 	spin_unlock_irq(&phba->hbalock);
9075 
9076 	/* Arm the CQs and then EQs on device */
9077 	lpfc_sli4_arm_cqeq_intr(phba);
9078 
9079 	/* Indicate device interrupt mode */
9080 	phba->sli4_hba.intr_enable = 1;
9081 
9082 	/* Setup CMF after HBA is initialized */
9083 	lpfc_cmf_setup(phba);
9084 
9085 	if (!(phba->hba_flag & HBA_FCOE_MODE) &&
9086 	    (phba->hba_flag & LINK_DISABLED)) {
9087 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9088 				"3103 Adapter Link is disabled.\n");
9089 		lpfc_down_link(phba, mboxq);
9090 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
9091 		if (rc != MBX_SUCCESS) {
9092 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9093 					"3104 Adapter failed to issue "
9094 					"DOWN_LINK mbox cmd, rc:x%x\n", rc);
9095 			goto out_io_buff_free;
9096 		}
9097 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
9098 		/* don't perform init_link on SLI4 FC port loopback test */
9099 		if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
9100 			rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
9101 			if (rc)
9102 				goto out_io_buff_free;
9103 		}
9104 	}
9105 	mempool_free(mboxq, phba->mbox_mem_pool);
9106 
9107 	/* Enable RAS FW log support */
9108 	lpfc_sli4_ras_setup(phba);
9109 
9110 	phba->hba_flag |= HBA_SETUP;
9111 	return rc;
9112 
9113 out_io_buff_free:
9114 	/* Free allocated IO Buffers */
9115 	lpfc_io_free(phba);
9116 out_unset_queue:
9117 	/* Unset all the queues set up in this routine when error out */
9118 	lpfc_sli4_queue_unset(phba);
9119 out_free_iocblist:
9120 	lpfc_free_iocb_list(phba);
9121 out_destroy_queue:
9122 	lpfc_sli4_queue_destroy(phba);
9123 out_stop_timers:
9124 	lpfc_stop_hba_timers(phba);
9125 out_free_mbox:
9126 	mempool_free(mboxq, phba->mbox_mem_pool);
9127 	return rc;
9128 }
9129 
9130 /**
9131  * lpfc_mbox_timeout - Timeout call back function for mbox timer
9132  * @t: Context to fetch pointer to hba structure from.
9133  *
9134  * This is the callback function for mailbox timer. The mailbox
9135  * timer is armed when a new mailbox command is issued and the timer
9136  * is deleted when the mailbox complete. The function is called by
9137  * the kernel timer code when a mailbox does not complete within
9138  * expected time. This function wakes up the worker thread to
9139  * process the mailbox timeout and returns. All the processing is
9140  * done by the worker thread function lpfc_mbox_timeout_handler.
9141  **/
9142 void
9143 lpfc_mbox_timeout(struct timer_list *t)
9144 {
9145 	struct lpfc_hba  *phba = from_timer(phba, t, sli.mbox_tmo);
9146 	unsigned long iflag;
9147 	uint32_t tmo_posted;
9148 
9149 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
9150 	tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
9151 	if (!tmo_posted)
9152 		phba->pport->work_port_events |= WORKER_MBOX_TMO;
9153 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
9154 
9155 	if (!tmo_posted)
9156 		lpfc_worker_wake_up(phba);
9157 	return;
9158 }
9159 
9160 /**
9161  * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
9162  *                                    are pending
9163  * @phba: Pointer to HBA context object.
9164  *
9165  * This function checks if any mailbox completions are present on the mailbox
9166  * completion queue.
9167  **/
9168 static bool
9169 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
9170 {
9171 
9172 	uint32_t idx;
9173 	struct lpfc_queue *mcq;
9174 	struct lpfc_mcqe *mcqe;
9175 	bool pending_completions = false;
9176 	uint8_t	qe_valid;
9177 
9178 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
9179 		return false;
9180 
9181 	/* Check for completions on mailbox completion queue */
9182 
9183 	mcq = phba->sli4_hba.mbx_cq;
9184 	idx = mcq->hba_index;
9185 	qe_valid = mcq->qe_valid;
9186 	while (bf_get_le32(lpfc_cqe_valid,
9187 	       (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
9188 		mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
9189 		if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
9190 		    (!bf_get_le32(lpfc_trailer_async, mcqe))) {
9191 			pending_completions = true;
9192 			break;
9193 		}
9194 		idx = (idx + 1) % mcq->entry_count;
9195 		if (mcq->hba_index == idx)
9196 			break;
9197 
9198 		/* if the index wrapped around, toggle the valid bit */
9199 		if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
9200 			qe_valid = (qe_valid) ? 0 : 1;
9201 	}
9202 	return pending_completions;
9203 
9204 }
9205 
9206 /**
9207  * lpfc_sli4_process_missed_mbox_completions - process mbox completions
9208  *					      that were missed.
9209  * @phba: Pointer to HBA context object.
9210  *
9211  * For sli4, it is possible to miss an interrupt. As such mbox completions
9212  * maybe missed causing erroneous mailbox timeouts to occur. This function
9213  * checks to see if mbox completions are on the mailbox completion queue
9214  * and will process all the completions associated with the eq for the
9215  * mailbox completion queue.
9216  **/
9217 static bool
9218 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
9219 {
9220 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
9221 	uint32_t eqidx;
9222 	struct lpfc_queue *fpeq = NULL;
9223 	struct lpfc_queue *eq;
9224 	bool mbox_pending;
9225 
9226 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
9227 		return false;
9228 
9229 	/* Find the EQ associated with the mbox CQ */
9230 	if (sli4_hba->hdwq) {
9231 		for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
9232 			eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
9233 			if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
9234 				fpeq = eq;
9235 				break;
9236 			}
9237 		}
9238 	}
9239 	if (!fpeq)
9240 		return false;
9241 
9242 	/* Turn off interrupts from this EQ */
9243 
9244 	sli4_hba->sli4_eq_clr_intr(fpeq);
9245 
9246 	/* Check to see if a mbox completion is pending */
9247 
9248 	mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
9249 
9250 	/*
9251 	 * If a mbox completion is pending, process all the events on EQ
9252 	 * associated with the mbox completion queue (this could include
9253 	 * mailbox commands, async events, els commands, receive queue data
9254 	 * and fcp commands)
9255 	 */
9256 
9257 	if (mbox_pending)
9258 		/* process and rearm the EQ */
9259 		lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
9260 	else
9261 		/* Always clear and re-arm the EQ */
9262 		sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
9263 
9264 	return mbox_pending;
9265 
9266 }
9267 
9268 /**
9269  * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
9270  * @phba: Pointer to HBA context object.
9271  *
9272  * This function is called from worker thread when a mailbox command times out.
9273  * The caller is not required to hold any locks. This function will reset the
9274  * HBA and recover all the pending commands.
9275  **/
9276 void
9277 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
9278 {
9279 	LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
9280 	MAILBOX_t *mb = NULL;
9281 
9282 	struct lpfc_sli *psli = &phba->sli;
9283 
9284 	/* If the mailbox completed, process the completion */
9285 	lpfc_sli4_process_missed_mbox_completions(phba);
9286 
9287 	if (!(psli->sli_flag & LPFC_SLI_ACTIVE))
9288 		return;
9289 
9290 	if (pmbox != NULL)
9291 		mb = &pmbox->u.mb;
9292 	/* Check the pmbox pointer first.  There is a race condition
9293 	 * between the mbox timeout handler getting executed in the
9294 	 * worklist and the mailbox actually completing. When this
9295 	 * race condition occurs, the mbox_active will be NULL.
9296 	 */
9297 	spin_lock_irq(&phba->hbalock);
9298 	if (pmbox == NULL) {
9299 		lpfc_printf_log(phba, KERN_WARNING,
9300 				LOG_MBOX | LOG_SLI,
9301 				"0353 Active Mailbox cleared - mailbox timeout "
9302 				"exiting\n");
9303 		spin_unlock_irq(&phba->hbalock);
9304 		return;
9305 	}
9306 
9307 	/* Mbox cmd <mbxCommand> timeout */
9308 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9309 			"0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
9310 			mb->mbxCommand,
9311 			phba->pport->port_state,
9312 			phba->sli.sli_flag,
9313 			phba->sli.mbox_active);
9314 	spin_unlock_irq(&phba->hbalock);
9315 
9316 	/* Setting state unknown so lpfc_sli_abort_iocb_ring
9317 	 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
9318 	 * it to fail all outstanding SCSI IO.
9319 	 */
9320 	spin_lock_irq(&phba->pport->work_port_lock);
9321 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
9322 	spin_unlock_irq(&phba->pport->work_port_lock);
9323 	spin_lock_irq(&phba->hbalock);
9324 	phba->link_state = LPFC_LINK_UNKNOWN;
9325 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
9326 	spin_unlock_irq(&phba->hbalock);
9327 
9328 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9329 			"0345 Resetting board due to mailbox timeout\n");
9330 
9331 	/* Reset the HBA device */
9332 	lpfc_reset_hba(phba);
9333 }
9334 
9335 /**
9336  * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
9337  * @phba: Pointer to HBA context object.
9338  * @pmbox: Pointer to mailbox object.
9339  * @flag: Flag indicating how the mailbox need to be processed.
9340  *
9341  * This function is called by discovery code and HBA management code
9342  * to submit a mailbox command to firmware with SLI-3 interface spec. This
9343  * function gets the hbalock to protect the data structures.
9344  * The mailbox command can be submitted in polling mode, in which case
9345  * this function will wait in a polling loop for the completion of the
9346  * mailbox.
9347  * If the mailbox is submitted in no_wait mode (not polling) the
9348  * function will submit the command and returns immediately without waiting
9349  * for the mailbox completion. The no_wait is supported only when HBA
9350  * is in SLI2/SLI3 mode - interrupts are enabled.
9351  * The SLI interface allows only one mailbox pending at a time. If the
9352  * mailbox is issued in polling mode and there is already a mailbox
9353  * pending, then the function will return an error. If the mailbox is issued
9354  * in NO_WAIT mode and there is a mailbox pending already, the function
9355  * will return MBX_BUSY after queuing the mailbox into mailbox queue.
9356  * The sli layer owns the mailbox object until the completion of mailbox
9357  * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
9358  * return codes the caller owns the mailbox command after the return of
9359  * the function.
9360  **/
9361 static int
9362 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
9363 		       uint32_t flag)
9364 {
9365 	MAILBOX_t *mbx;
9366 	struct lpfc_sli *psli = &phba->sli;
9367 	uint32_t status, evtctr;
9368 	uint32_t ha_copy, hc_copy;
9369 	int i;
9370 	unsigned long timeout;
9371 	unsigned long drvr_flag = 0;
9372 	uint32_t word0, ldata;
9373 	void __iomem *to_slim;
9374 	int processing_queue = 0;
9375 
9376 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
9377 	if (!pmbox) {
9378 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9379 		/* processing mbox queue from intr_handler */
9380 		if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9381 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9382 			return MBX_SUCCESS;
9383 		}
9384 		processing_queue = 1;
9385 		pmbox = lpfc_mbox_get(phba);
9386 		if (!pmbox) {
9387 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9388 			return MBX_SUCCESS;
9389 		}
9390 	}
9391 
9392 	if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
9393 		pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
9394 		if(!pmbox->vport) {
9395 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9396 			lpfc_printf_log(phba, KERN_ERR,
9397 					LOG_MBOX | LOG_VPORT,
9398 					"1806 Mbox x%x failed. No vport\n",
9399 					pmbox->u.mb.mbxCommand);
9400 			dump_stack();
9401 			goto out_not_finished;
9402 		}
9403 	}
9404 
9405 	/* If the PCI channel is in offline state, do not post mbox. */
9406 	if (unlikely(pci_channel_offline(phba->pcidev))) {
9407 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9408 		goto out_not_finished;
9409 	}
9410 
9411 	/* If HBA has a deferred error attention, fail the iocb. */
9412 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
9413 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9414 		goto out_not_finished;
9415 	}
9416 
9417 	psli = &phba->sli;
9418 
9419 	mbx = &pmbox->u.mb;
9420 	status = MBX_SUCCESS;
9421 
9422 	if (phba->link_state == LPFC_HBA_ERROR) {
9423 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9424 
9425 		/* Mbox command <mbxCommand> cannot issue */
9426 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9427 				"(%d):0311 Mailbox command x%x cannot "
9428 				"issue Data: x%x x%x\n",
9429 				pmbox->vport ? pmbox->vport->vpi : 0,
9430 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
9431 		goto out_not_finished;
9432 	}
9433 
9434 	if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
9435 		if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
9436 			!(hc_copy & HC_MBINT_ENA)) {
9437 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9438 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9439 				"(%d):2528 Mailbox command x%x cannot "
9440 				"issue Data: x%x x%x\n",
9441 				pmbox->vport ? pmbox->vport->vpi : 0,
9442 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
9443 			goto out_not_finished;
9444 		}
9445 	}
9446 
9447 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9448 		/* Polling for a mbox command when another one is already active
9449 		 * is not allowed in SLI. Also, the driver must have established
9450 		 * SLI2 mode to queue and process multiple mbox commands.
9451 		 */
9452 
9453 		if (flag & MBX_POLL) {
9454 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9455 
9456 			/* Mbox command <mbxCommand> cannot issue */
9457 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9458 					"(%d):2529 Mailbox command x%x "
9459 					"cannot issue Data: x%x x%x\n",
9460 					pmbox->vport ? pmbox->vport->vpi : 0,
9461 					pmbox->u.mb.mbxCommand,
9462 					psli->sli_flag, flag);
9463 			goto out_not_finished;
9464 		}
9465 
9466 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
9467 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9468 			/* Mbox command <mbxCommand> cannot issue */
9469 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9470 					"(%d):2530 Mailbox command x%x "
9471 					"cannot issue Data: x%x x%x\n",
9472 					pmbox->vport ? pmbox->vport->vpi : 0,
9473 					pmbox->u.mb.mbxCommand,
9474 					psli->sli_flag, flag);
9475 			goto out_not_finished;
9476 		}
9477 
9478 		/* Another mailbox command is still being processed, queue this
9479 		 * command to be processed later.
9480 		 */
9481 		lpfc_mbox_put(phba, pmbox);
9482 
9483 		/* Mbox cmd issue - BUSY */
9484 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9485 				"(%d):0308 Mbox cmd issue - BUSY Data: "
9486 				"x%x x%x x%x x%x\n",
9487 				pmbox->vport ? pmbox->vport->vpi : 0xffffff,
9488 				mbx->mbxCommand,
9489 				phba->pport ? phba->pport->port_state : 0xff,
9490 				psli->sli_flag, flag);
9491 
9492 		psli->slistat.mbox_busy++;
9493 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9494 
9495 		if (pmbox->vport) {
9496 			lpfc_debugfs_disc_trc(pmbox->vport,
9497 				LPFC_DISC_TRC_MBOX_VPORT,
9498 				"MBOX Bsy vport:  cmd:x%x mb:x%x x%x",
9499 				(uint32_t)mbx->mbxCommand,
9500 				mbx->un.varWords[0], mbx->un.varWords[1]);
9501 		}
9502 		else {
9503 			lpfc_debugfs_disc_trc(phba->pport,
9504 				LPFC_DISC_TRC_MBOX,
9505 				"MBOX Bsy:        cmd:x%x mb:x%x x%x",
9506 				(uint32_t)mbx->mbxCommand,
9507 				mbx->un.varWords[0], mbx->un.varWords[1]);
9508 		}
9509 
9510 		return MBX_BUSY;
9511 	}
9512 
9513 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9514 
9515 	/* If we are not polling, we MUST be in SLI2 mode */
9516 	if (flag != MBX_POLL) {
9517 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
9518 		    (mbx->mbxCommand != MBX_KILL_BOARD)) {
9519 			psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9520 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9521 			/* Mbox command <mbxCommand> cannot issue */
9522 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9523 					"(%d):2531 Mailbox command x%x "
9524 					"cannot issue Data: x%x x%x\n",
9525 					pmbox->vport ? pmbox->vport->vpi : 0,
9526 					pmbox->u.mb.mbxCommand,
9527 					psli->sli_flag, flag);
9528 			goto out_not_finished;
9529 		}
9530 		/* timeout active mbox command */
9531 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
9532 					   1000);
9533 		mod_timer(&psli->mbox_tmo, jiffies + timeout);
9534 	}
9535 
9536 	/* Mailbox cmd <cmd> issue */
9537 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9538 			"(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
9539 			"x%x\n",
9540 			pmbox->vport ? pmbox->vport->vpi : 0,
9541 			mbx->mbxCommand,
9542 			phba->pport ? phba->pport->port_state : 0xff,
9543 			psli->sli_flag, flag);
9544 
9545 	if (mbx->mbxCommand != MBX_HEARTBEAT) {
9546 		if (pmbox->vport) {
9547 			lpfc_debugfs_disc_trc(pmbox->vport,
9548 				LPFC_DISC_TRC_MBOX_VPORT,
9549 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
9550 				(uint32_t)mbx->mbxCommand,
9551 				mbx->un.varWords[0], mbx->un.varWords[1]);
9552 		}
9553 		else {
9554 			lpfc_debugfs_disc_trc(phba->pport,
9555 				LPFC_DISC_TRC_MBOX,
9556 				"MBOX Send:       cmd:x%x mb:x%x x%x",
9557 				(uint32_t)mbx->mbxCommand,
9558 				mbx->un.varWords[0], mbx->un.varWords[1]);
9559 		}
9560 	}
9561 
9562 	psli->slistat.mbox_cmd++;
9563 	evtctr = psli->slistat.mbox_event;
9564 
9565 	/* next set own bit for the adapter and copy over command word */
9566 	mbx->mbxOwner = OWN_CHIP;
9567 
9568 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9569 		/* Populate mbox extension offset word. */
9570 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
9571 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
9572 				= (uint8_t *)phba->mbox_ext
9573 				  - (uint8_t *)phba->mbox;
9574 		}
9575 
9576 		/* Copy the mailbox extension data */
9577 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
9578 			lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
9579 					      (uint8_t *)phba->mbox_ext,
9580 					      pmbox->in_ext_byte_len);
9581 		}
9582 		/* Copy command data to host SLIM area */
9583 		lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
9584 	} else {
9585 		/* Populate mbox extension offset word. */
9586 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
9587 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
9588 				= MAILBOX_HBA_EXT_OFFSET;
9589 
9590 		/* Copy the mailbox extension data */
9591 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
9592 			lpfc_memcpy_to_slim(phba->MBslimaddr +
9593 				MAILBOX_HBA_EXT_OFFSET,
9594 				pmbox->ctx_buf, pmbox->in_ext_byte_len);
9595 
9596 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
9597 			/* copy command data into host mbox for cmpl */
9598 			lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
9599 					      MAILBOX_CMD_SIZE);
9600 
9601 		/* First copy mbox command data to HBA SLIM, skip past first
9602 		   word */
9603 		to_slim = phba->MBslimaddr + sizeof (uint32_t);
9604 		lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
9605 			    MAILBOX_CMD_SIZE - sizeof (uint32_t));
9606 
9607 		/* Next copy over first word, with mbxOwner set */
9608 		ldata = *((uint32_t *)mbx);
9609 		to_slim = phba->MBslimaddr;
9610 		writel(ldata, to_slim);
9611 		readl(to_slim); /* flush */
9612 
9613 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
9614 			/* switch over to host mailbox */
9615 			psli->sli_flag |= LPFC_SLI_ACTIVE;
9616 	}
9617 
9618 	wmb();
9619 
9620 	switch (flag) {
9621 	case MBX_NOWAIT:
9622 		/* Set up reference to mailbox command */
9623 		psli->mbox_active = pmbox;
9624 		/* Interrupt board to do it */
9625 		writel(CA_MBATT, phba->CAregaddr);
9626 		readl(phba->CAregaddr); /* flush */
9627 		/* Don't wait for it to finish, just return */
9628 		break;
9629 
9630 	case MBX_POLL:
9631 		/* Set up null reference to mailbox command */
9632 		psli->mbox_active = NULL;
9633 		/* Interrupt board to do it */
9634 		writel(CA_MBATT, phba->CAregaddr);
9635 		readl(phba->CAregaddr); /* flush */
9636 
9637 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9638 			/* First read mbox status word */
9639 			word0 = *((uint32_t *)phba->mbox);
9640 			word0 = le32_to_cpu(word0);
9641 		} else {
9642 			/* First read mbox status word */
9643 			if (lpfc_readl(phba->MBslimaddr, &word0)) {
9644 				spin_unlock_irqrestore(&phba->hbalock,
9645 						       drvr_flag);
9646 				goto out_not_finished;
9647 			}
9648 		}
9649 
9650 		/* Read the HBA Host Attention Register */
9651 		if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
9652 			spin_unlock_irqrestore(&phba->hbalock,
9653 						       drvr_flag);
9654 			goto out_not_finished;
9655 		}
9656 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
9657 							1000) + jiffies;
9658 		i = 0;
9659 		/* Wait for command to complete */
9660 		while (((word0 & OWN_CHIP) == OWN_CHIP) ||
9661 		       (!(ha_copy & HA_MBATT) &&
9662 			(phba->link_state > LPFC_WARM_START))) {
9663 			if (time_after(jiffies, timeout)) {
9664 				psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9665 				spin_unlock_irqrestore(&phba->hbalock,
9666 						       drvr_flag);
9667 				goto out_not_finished;
9668 			}
9669 
9670 			/* Check if we took a mbox interrupt while we were
9671 			   polling */
9672 			if (((word0 & OWN_CHIP) != OWN_CHIP)
9673 			    && (evtctr != psli->slistat.mbox_event))
9674 				break;
9675 
9676 			if (i++ > 10) {
9677 				spin_unlock_irqrestore(&phba->hbalock,
9678 						       drvr_flag);
9679 				msleep(1);
9680 				spin_lock_irqsave(&phba->hbalock, drvr_flag);
9681 			}
9682 
9683 			if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9684 				/* First copy command data */
9685 				word0 = *((uint32_t *)phba->mbox);
9686 				word0 = le32_to_cpu(word0);
9687 				if (mbx->mbxCommand == MBX_CONFIG_PORT) {
9688 					MAILBOX_t *slimmb;
9689 					uint32_t slimword0;
9690 					/* Check real SLIM for any errors */
9691 					slimword0 = readl(phba->MBslimaddr);
9692 					slimmb = (MAILBOX_t *) & slimword0;
9693 					if (((slimword0 & OWN_CHIP) != OWN_CHIP)
9694 					    && slimmb->mbxStatus) {
9695 						psli->sli_flag &=
9696 						    ~LPFC_SLI_ACTIVE;
9697 						word0 = slimword0;
9698 					}
9699 				}
9700 			} else {
9701 				/* First copy command data */
9702 				word0 = readl(phba->MBslimaddr);
9703 			}
9704 			/* Read the HBA Host Attention Register */
9705 			if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
9706 				spin_unlock_irqrestore(&phba->hbalock,
9707 						       drvr_flag);
9708 				goto out_not_finished;
9709 			}
9710 		}
9711 
9712 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9713 			/* copy results back to user */
9714 			lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
9715 						MAILBOX_CMD_SIZE);
9716 			/* Copy the mailbox extension data */
9717 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
9718 				lpfc_sli_pcimem_bcopy(phba->mbox_ext,
9719 						      pmbox->ctx_buf,
9720 						      pmbox->out_ext_byte_len);
9721 			}
9722 		} else {
9723 			/* First copy command data */
9724 			lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
9725 						MAILBOX_CMD_SIZE);
9726 			/* Copy the mailbox extension data */
9727 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
9728 				lpfc_memcpy_from_slim(
9729 					pmbox->ctx_buf,
9730 					phba->MBslimaddr +
9731 					MAILBOX_HBA_EXT_OFFSET,
9732 					pmbox->out_ext_byte_len);
9733 			}
9734 		}
9735 
9736 		writel(HA_MBATT, phba->HAregaddr);
9737 		readl(phba->HAregaddr); /* flush */
9738 
9739 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9740 		status = mbx->mbxStatus;
9741 	}
9742 
9743 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9744 	return status;
9745 
9746 out_not_finished:
9747 	if (processing_queue) {
9748 		pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
9749 		lpfc_mbox_cmpl_put(phba, pmbox);
9750 	}
9751 	return MBX_NOT_FINISHED;
9752 }
9753 
9754 /**
9755  * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
9756  * @phba: Pointer to HBA context object.
9757  *
9758  * The function blocks the posting of SLI4 asynchronous mailbox commands from
9759  * the driver internal pending mailbox queue. It will then try to wait out the
9760  * possible outstanding mailbox command before return.
9761  *
9762  * Returns:
9763  * 	0 - the outstanding mailbox command completed; otherwise, the wait for
9764  * 	the outstanding mailbox command timed out.
9765  **/
9766 static int
9767 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
9768 {
9769 	struct lpfc_sli *psli = &phba->sli;
9770 	LPFC_MBOXQ_t *mboxq;
9771 	int rc = 0;
9772 	unsigned long timeout = 0;
9773 	u32 sli_flag;
9774 	u8 cmd, subsys, opcode;
9775 
9776 	/* Mark the asynchronous mailbox command posting as blocked */
9777 	spin_lock_irq(&phba->hbalock);
9778 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
9779 	/* Determine how long we might wait for the active mailbox
9780 	 * command to be gracefully completed by firmware.
9781 	 */
9782 	if (phba->sli.mbox_active)
9783 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
9784 						phba->sli.mbox_active) *
9785 						1000) + jiffies;
9786 	spin_unlock_irq(&phba->hbalock);
9787 
9788 	/* Make sure the mailbox is really active */
9789 	if (timeout)
9790 		lpfc_sli4_process_missed_mbox_completions(phba);
9791 
9792 	/* Wait for the outstanding mailbox command to complete */
9793 	while (phba->sli.mbox_active) {
9794 		/* Check active mailbox complete status every 2ms */
9795 		msleep(2);
9796 		if (time_after(jiffies, timeout)) {
9797 			/* Timeout, mark the outstanding cmd not complete */
9798 
9799 			/* Sanity check sli.mbox_active has not completed or
9800 			 * cancelled from another context during last 2ms sleep,
9801 			 * so take hbalock to be sure before logging.
9802 			 */
9803 			spin_lock_irq(&phba->hbalock);
9804 			if (phba->sli.mbox_active) {
9805 				mboxq = phba->sli.mbox_active;
9806 				cmd = mboxq->u.mb.mbxCommand;
9807 				subsys = lpfc_sli_config_mbox_subsys_get(phba,
9808 									 mboxq);
9809 				opcode = lpfc_sli_config_mbox_opcode_get(phba,
9810 									 mboxq);
9811 				sli_flag = psli->sli_flag;
9812 				spin_unlock_irq(&phba->hbalock);
9813 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9814 						"2352 Mailbox command x%x "
9815 						"(x%x/x%x) sli_flag x%x could "
9816 						"not complete\n",
9817 						cmd, subsys, opcode,
9818 						sli_flag);
9819 			} else {
9820 				spin_unlock_irq(&phba->hbalock);
9821 			}
9822 
9823 			rc = 1;
9824 			break;
9825 		}
9826 	}
9827 
9828 	/* Can not cleanly block async mailbox command, fails it */
9829 	if (rc) {
9830 		spin_lock_irq(&phba->hbalock);
9831 		psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9832 		spin_unlock_irq(&phba->hbalock);
9833 	}
9834 	return rc;
9835 }
9836 
9837 /**
9838  * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
9839  * @phba: Pointer to HBA context object.
9840  *
9841  * The function unblocks and resume posting of SLI4 asynchronous mailbox
9842  * commands from the driver internal pending mailbox queue. It makes sure
9843  * that there is no outstanding mailbox command before resuming posting
9844  * asynchronous mailbox commands. If, for any reason, there is outstanding
9845  * mailbox command, it will try to wait it out before resuming asynchronous
9846  * mailbox command posting.
9847  **/
9848 static void
9849 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
9850 {
9851 	struct lpfc_sli *psli = &phba->sli;
9852 
9853 	spin_lock_irq(&phba->hbalock);
9854 	if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9855 		/* Asynchronous mailbox posting is not blocked, do nothing */
9856 		spin_unlock_irq(&phba->hbalock);
9857 		return;
9858 	}
9859 
9860 	/* Outstanding synchronous mailbox command is guaranteed to be done,
9861 	 * successful or timeout, after timing-out the outstanding mailbox
9862 	 * command shall always be removed, so just unblock posting async
9863 	 * mailbox command and resume
9864 	 */
9865 	psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9866 	spin_unlock_irq(&phba->hbalock);
9867 
9868 	/* wake up worker thread to post asynchronous mailbox command */
9869 	lpfc_worker_wake_up(phba);
9870 }
9871 
9872 /**
9873  * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
9874  * @phba: Pointer to HBA context object.
9875  * @mboxq: Pointer to mailbox object.
9876  *
9877  * The function waits for the bootstrap mailbox register ready bit from
9878  * port for twice the regular mailbox command timeout value.
9879  *
9880  *      0 - no timeout on waiting for bootstrap mailbox register ready.
9881  *      MBXERR_ERROR - wait for bootstrap mailbox register timed out.
9882  **/
9883 static int
9884 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
9885 {
9886 	uint32_t db_ready;
9887 	unsigned long timeout;
9888 	struct lpfc_register bmbx_reg;
9889 
9890 	timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
9891 				   * 1000) + jiffies;
9892 
9893 	do {
9894 		bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
9895 		db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
9896 		if (!db_ready)
9897 			mdelay(2);
9898 
9899 		if (time_after(jiffies, timeout))
9900 			return MBXERR_ERROR;
9901 	} while (!db_ready);
9902 
9903 	return 0;
9904 }
9905 
9906 /**
9907  * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
9908  * @phba: Pointer to HBA context object.
9909  * @mboxq: Pointer to mailbox object.
9910  *
9911  * The function posts a mailbox to the port.  The mailbox is expected
9912  * to be comletely filled in and ready for the port to operate on it.
9913  * This routine executes a synchronous completion operation on the
9914  * mailbox by polling for its completion.
9915  *
9916  * The caller must not be holding any locks when calling this routine.
9917  *
9918  * Returns:
9919  *	MBX_SUCCESS - mailbox posted successfully
9920  *	Any of the MBX error values.
9921  **/
9922 static int
9923 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
9924 {
9925 	int rc = MBX_SUCCESS;
9926 	unsigned long iflag;
9927 	uint32_t mcqe_status;
9928 	uint32_t mbx_cmnd;
9929 	struct lpfc_sli *psli = &phba->sli;
9930 	struct lpfc_mqe *mb = &mboxq->u.mqe;
9931 	struct lpfc_bmbx_create *mbox_rgn;
9932 	struct dma_address *dma_address;
9933 
9934 	/*
9935 	 * Only one mailbox can be active to the bootstrap mailbox region
9936 	 * at a time and there is no queueing provided.
9937 	 */
9938 	spin_lock_irqsave(&phba->hbalock, iflag);
9939 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9940 		spin_unlock_irqrestore(&phba->hbalock, iflag);
9941 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9942 				"(%d):2532 Mailbox command x%x (x%x/x%x) "
9943 				"cannot issue Data: x%x x%x\n",
9944 				mboxq->vport ? mboxq->vport->vpi : 0,
9945 				mboxq->u.mb.mbxCommand,
9946 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9947 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9948 				psli->sli_flag, MBX_POLL);
9949 		return MBXERR_ERROR;
9950 	}
9951 	/* The server grabs the token and owns it until release */
9952 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9953 	phba->sli.mbox_active = mboxq;
9954 	spin_unlock_irqrestore(&phba->hbalock, iflag);
9955 
9956 	/* wait for bootstrap mbox register for readyness */
9957 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9958 	if (rc)
9959 		goto exit;
9960 	/*
9961 	 * Initialize the bootstrap memory region to avoid stale data areas
9962 	 * in the mailbox post.  Then copy the caller's mailbox contents to
9963 	 * the bmbx mailbox region.
9964 	 */
9965 	mbx_cmnd = bf_get(lpfc_mqe_command, mb);
9966 	memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
9967 	lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
9968 			       sizeof(struct lpfc_mqe));
9969 
9970 	/* Post the high mailbox dma address to the port and wait for ready. */
9971 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9972 	writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
9973 
9974 	/* wait for bootstrap mbox register for hi-address write done */
9975 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9976 	if (rc)
9977 		goto exit;
9978 
9979 	/* Post the low mailbox dma address to the port. */
9980 	writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
9981 
9982 	/* wait for bootstrap mbox register for low address write done */
9983 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9984 	if (rc)
9985 		goto exit;
9986 
9987 	/*
9988 	 * Read the CQ to ensure the mailbox has completed.
9989 	 * If so, update the mailbox status so that the upper layers
9990 	 * can complete the request normally.
9991 	 */
9992 	lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
9993 			       sizeof(struct lpfc_mqe));
9994 	mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
9995 	lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
9996 			       sizeof(struct lpfc_mcqe));
9997 	mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
9998 	/*
9999 	 * When the CQE status indicates a failure and the mailbox status
10000 	 * indicates success then copy the CQE status into the mailbox status
10001 	 * (and prefix it with x4000).
10002 	 */
10003 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
10004 		if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
10005 			bf_set(lpfc_mqe_status, mb,
10006 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
10007 		rc = MBXERR_ERROR;
10008 	} else
10009 		lpfc_sli4_swap_str(phba, mboxq);
10010 
10011 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
10012 			"(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
10013 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
10014 			" x%x x%x CQ: x%x x%x x%x x%x\n",
10015 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
10016 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10017 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10018 			bf_get(lpfc_mqe_status, mb),
10019 			mb->un.mb_words[0], mb->un.mb_words[1],
10020 			mb->un.mb_words[2], mb->un.mb_words[3],
10021 			mb->un.mb_words[4], mb->un.mb_words[5],
10022 			mb->un.mb_words[6], mb->un.mb_words[7],
10023 			mb->un.mb_words[8], mb->un.mb_words[9],
10024 			mb->un.mb_words[10], mb->un.mb_words[11],
10025 			mb->un.mb_words[12], mboxq->mcqe.word0,
10026 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
10027 			mboxq->mcqe.trailer);
10028 exit:
10029 	/* We are holding the token, no needed for lock when release */
10030 	spin_lock_irqsave(&phba->hbalock, iflag);
10031 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10032 	phba->sli.mbox_active = NULL;
10033 	spin_unlock_irqrestore(&phba->hbalock, iflag);
10034 	return rc;
10035 }
10036 
10037 /**
10038  * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
10039  * @phba: Pointer to HBA context object.
10040  * @mboxq: Pointer to mailbox object.
10041  * @flag: Flag indicating how the mailbox need to be processed.
10042  *
10043  * This function is called by discovery code and HBA management code to submit
10044  * a mailbox command to firmware with SLI-4 interface spec.
10045  *
10046  * Return codes the caller owns the mailbox command after the return of the
10047  * function.
10048  **/
10049 static int
10050 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
10051 		       uint32_t flag)
10052 {
10053 	struct lpfc_sli *psli = &phba->sli;
10054 	unsigned long iflags;
10055 	int rc;
10056 
10057 	/* dump from issue mailbox command if setup */
10058 	lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
10059 
10060 	rc = lpfc_mbox_dev_check(phba);
10061 	if (unlikely(rc)) {
10062 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10063 				"(%d):2544 Mailbox command x%x (x%x/x%x) "
10064 				"cannot issue Data: x%x x%x\n",
10065 				mboxq->vport ? mboxq->vport->vpi : 0,
10066 				mboxq->u.mb.mbxCommand,
10067 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10068 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10069 				psli->sli_flag, flag);
10070 		goto out_not_finished;
10071 	}
10072 
10073 	/* Detect polling mode and jump to a handler */
10074 	if (!phba->sli4_hba.intr_enable) {
10075 		if (flag == MBX_POLL)
10076 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
10077 		else
10078 			rc = -EIO;
10079 		if (rc != MBX_SUCCESS)
10080 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
10081 					"(%d):2541 Mailbox command x%x "
10082 					"(x%x/x%x) failure: "
10083 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
10084 					"Data: x%x x%x\n",
10085 					mboxq->vport ? mboxq->vport->vpi : 0,
10086 					mboxq->u.mb.mbxCommand,
10087 					lpfc_sli_config_mbox_subsys_get(phba,
10088 									mboxq),
10089 					lpfc_sli_config_mbox_opcode_get(phba,
10090 									mboxq),
10091 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
10092 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
10093 					bf_get(lpfc_mcqe_ext_status,
10094 					       &mboxq->mcqe),
10095 					psli->sli_flag, flag);
10096 		return rc;
10097 	} else if (flag == MBX_POLL) {
10098 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
10099 				"(%d):2542 Try to issue mailbox command "
10100 				"x%x (x%x/x%x) synchronously ahead of async "
10101 				"mailbox command queue: x%x x%x\n",
10102 				mboxq->vport ? mboxq->vport->vpi : 0,
10103 				mboxq->u.mb.mbxCommand,
10104 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10105 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10106 				psli->sli_flag, flag);
10107 		/* Try to block the asynchronous mailbox posting */
10108 		rc = lpfc_sli4_async_mbox_block(phba);
10109 		if (!rc) {
10110 			/* Successfully blocked, now issue sync mbox cmd */
10111 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
10112 			if (rc != MBX_SUCCESS)
10113 				lpfc_printf_log(phba, KERN_WARNING,
10114 					LOG_MBOX | LOG_SLI,
10115 					"(%d):2597 Sync Mailbox command "
10116 					"x%x (x%x/x%x) failure: "
10117 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
10118 					"Data: x%x x%x\n",
10119 					mboxq->vport ? mboxq->vport->vpi : 0,
10120 					mboxq->u.mb.mbxCommand,
10121 					lpfc_sli_config_mbox_subsys_get(phba,
10122 									mboxq),
10123 					lpfc_sli_config_mbox_opcode_get(phba,
10124 									mboxq),
10125 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
10126 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
10127 					bf_get(lpfc_mcqe_ext_status,
10128 					       &mboxq->mcqe),
10129 					psli->sli_flag, flag);
10130 			/* Unblock the async mailbox posting afterward */
10131 			lpfc_sli4_async_mbox_unblock(phba);
10132 		}
10133 		return rc;
10134 	}
10135 
10136 	/* Now, interrupt mode asynchronous mailbox command */
10137 	rc = lpfc_mbox_cmd_check(phba, mboxq);
10138 	if (rc) {
10139 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10140 				"(%d):2543 Mailbox command x%x (x%x/x%x) "
10141 				"cannot issue Data: x%x x%x\n",
10142 				mboxq->vport ? mboxq->vport->vpi : 0,
10143 				mboxq->u.mb.mbxCommand,
10144 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10145 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10146 				psli->sli_flag, flag);
10147 		goto out_not_finished;
10148 	}
10149 
10150 	/* Put the mailbox command to the driver internal FIFO */
10151 	psli->slistat.mbox_busy++;
10152 	spin_lock_irqsave(&phba->hbalock, iflags);
10153 	lpfc_mbox_put(phba, mboxq);
10154 	spin_unlock_irqrestore(&phba->hbalock, iflags);
10155 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
10156 			"(%d):0354 Mbox cmd issue - Enqueue Data: "
10157 			"x%x (x%x/x%x) x%x x%x x%x\n",
10158 			mboxq->vport ? mboxq->vport->vpi : 0xffffff,
10159 			bf_get(lpfc_mqe_command, &mboxq->u.mqe),
10160 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10161 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10162 			phba->pport->port_state,
10163 			psli->sli_flag, MBX_NOWAIT);
10164 	/* Wake up worker thread to transport mailbox command from head */
10165 	lpfc_worker_wake_up(phba);
10166 
10167 	return MBX_BUSY;
10168 
10169 out_not_finished:
10170 	return MBX_NOT_FINISHED;
10171 }
10172 
10173 /**
10174  * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
10175  * @phba: Pointer to HBA context object.
10176  *
10177  * This function is called by worker thread to send a mailbox command to
10178  * SLI4 HBA firmware.
10179  *
10180  **/
10181 int
10182 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
10183 {
10184 	struct lpfc_sli *psli = &phba->sli;
10185 	LPFC_MBOXQ_t *mboxq;
10186 	int rc = MBX_SUCCESS;
10187 	unsigned long iflags;
10188 	struct lpfc_mqe *mqe;
10189 	uint32_t mbx_cmnd;
10190 
10191 	/* Check interrupt mode before post async mailbox command */
10192 	if (unlikely(!phba->sli4_hba.intr_enable))
10193 		return MBX_NOT_FINISHED;
10194 
10195 	/* Check for mailbox command service token */
10196 	spin_lock_irqsave(&phba->hbalock, iflags);
10197 	if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
10198 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10199 		return MBX_NOT_FINISHED;
10200 	}
10201 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
10202 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10203 		return MBX_NOT_FINISHED;
10204 	}
10205 	if (unlikely(phba->sli.mbox_active)) {
10206 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10207 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10208 				"0384 There is pending active mailbox cmd\n");
10209 		return MBX_NOT_FINISHED;
10210 	}
10211 	/* Take the mailbox command service token */
10212 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
10213 
10214 	/* Get the next mailbox command from head of queue */
10215 	mboxq = lpfc_mbox_get(phba);
10216 
10217 	/* If no more mailbox command waiting for post, we're done */
10218 	if (!mboxq) {
10219 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10220 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10221 		return MBX_SUCCESS;
10222 	}
10223 	phba->sli.mbox_active = mboxq;
10224 	spin_unlock_irqrestore(&phba->hbalock, iflags);
10225 
10226 	/* Check device readiness for posting mailbox command */
10227 	rc = lpfc_mbox_dev_check(phba);
10228 	if (unlikely(rc))
10229 		/* Driver clean routine will clean up pending mailbox */
10230 		goto out_not_finished;
10231 
10232 	/* Prepare the mbox command to be posted */
10233 	mqe = &mboxq->u.mqe;
10234 	mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
10235 
10236 	/* Start timer for the mbox_tmo and log some mailbox post messages */
10237 	mod_timer(&psli->mbox_tmo, (jiffies +
10238 		  msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
10239 
10240 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
10241 			"(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
10242 			"x%x x%x\n",
10243 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
10244 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10245 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10246 			phba->pport->port_state, psli->sli_flag);
10247 
10248 	if (mbx_cmnd != MBX_HEARTBEAT) {
10249 		if (mboxq->vport) {
10250 			lpfc_debugfs_disc_trc(mboxq->vport,
10251 				LPFC_DISC_TRC_MBOX_VPORT,
10252 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
10253 				mbx_cmnd, mqe->un.mb_words[0],
10254 				mqe->un.mb_words[1]);
10255 		} else {
10256 			lpfc_debugfs_disc_trc(phba->pport,
10257 				LPFC_DISC_TRC_MBOX,
10258 				"MBOX Send: cmd:x%x mb:x%x x%x",
10259 				mbx_cmnd, mqe->un.mb_words[0],
10260 				mqe->un.mb_words[1]);
10261 		}
10262 	}
10263 	psli->slistat.mbox_cmd++;
10264 
10265 	/* Post the mailbox command to the port */
10266 	rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
10267 	if (rc != MBX_SUCCESS) {
10268 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10269 				"(%d):2533 Mailbox command x%x (x%x/x%x) "
10270 				"cannot issue Data: x%x x%x\n",
10271 				mboxq->vport ? mboxq->vport->vpi : 0,
10272 				mboxq->u.mb.mbxCommand,
10273 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10274 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10275 				psli->sli_flag, MBX_NOWAIT);
10276 		goto out_not_finished;
10277 	}
10278 
10279 	return rc;
10280 
10281 out_not_finished:
10282 	spin_lock_irqsave(&phba->hbalock, iflags);
10283 	if (phba->sli.mbox_active) {
10284 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
10285 		__lpfc_mbox_cmpl_put(phba, mboxq);
10286 		/* Release the token */
10287 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10288 		phba->sli.mbox_active = NULL;
10289 	}
10290 	spin_unlock_irqrestore(&phba->hbalock, iflags);
10291 
10292 	return MBX_NOT_FINISHED;
10293 }
10294 
10295 /**
10296  * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
10297  * @phba: Pointer to HBA context object.
10298  * @pmbox: Pointer to mailbox object.
10299  * @flag: Flag indicating how the mailbox need to be processed.
10300  *
10301  * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
10302  * the API jump table function pointer from the lpfc_hba struct.
10303  *
10304  * Return codes the caller owns the mailbox command after the return of the
10305  * function.
10306  **/
10307 int
10308 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
10309 {
10310 	return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
10311 }
10312 
10313 /**
10314  * lpfc_mbox_api_table_setup - Set up mbox api function jump table
10315  * @phba: The hba struct for which this call is being executed.
10316  * @dev_grp: The HBA PCI-Device group number.
10317  *
10318  * This routine sets up the mbox interface API function jump table in @phba
10319  * struct.
10320  * Returns: 0 - success, -ENODEV - failure.
10321  **/
10322 int
10323 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
10324 {
10325 
10326 	switch (dev_grp) {
10327 	case LPFC_PCI_DEV_LP:
10328 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
10329 		phba->lpfc_sli_handle_slow_ring_event =
10330 				lpfc_sli_handle_slow_ring_event_s3;
10331 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
10332 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
10333 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
10334 		break;
10335 	case LPFC_PCI_DEV_OC:
10336 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
10337 		phba->lpfc_sli_handle_slow_ring_event =
10338 				lpfc_sli_handle_slow_ring_event_s4;
10339 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
10340 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
10341 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
10342 		break;
10343 	default:
10344 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10345 				"1420 Invalid HBA PCI-device group: 0x%x\n",
10346 				dev_grp);
10347 		return -ENODEV;
10348 	}
10349 	return 0;
10350 }
10351 
10352 /**
10353  * __lpfc_sli_ringtx_put - Add an iocb to the txq
10354  * @phba: Pointer to HBA context object.
10355  * @pring: Pointer to driver SLI ring object.
10356  * @piocb: Pointer to address of newly added command iocb.
10357  *
10358  * This function is called with hbalock held for SLI3 ports or
10359  * the ring lock held for SLI4 ports to add a command
10360  * iocb to the txq when SLI layer cannot submit the command iocb
10361  * to the ring.
10362  **/
10363 void
10364 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10365 		    struct lpfc_iocbq *piocb)
10366 {
10367 	if (phba->sli_rev == LPFC_SLI_REV4)
10368 		lockdep_assert_held(&pring->ring_lock);
10369 	else
10370 		lockdep_assert_held(&phba->hbalock);
10371 	/* Insert the caller's iocb in the txq tail for later processing. */
10372 	list_add_tail(&piocb->list, &pring->txq);
10373 }
10374 
10375 /**
10376  * lpfc_sli_next_iocb - Get the next iocb in the txq
10377  * @phba: Pointer to HBA context object.
10378  * @pring: Pointer to driver SLI ring object.
10379  * @piocb: Pointer to address of newly added command iocb.
10380  *
10381  * This function is called with hbalock held before a new
10382  * iocb is submitted to the firmware. This function checks
10383  * txq to flush the iocbs in txq to Firmware before
10384  * submitting new iocbs to the Firmware.
10385  * If there are iocbs in the txq which need to be submitted
10386  * to firmware, lpfc_sli_next_iocb returns the first element
10387  * of the txq after dequeuing it from txq.
10388  * If there is no iocb in the txq then the function will return
10389  * *piocb and *piocb is set to NULL. Caller needs to check
10390  * *piocb to find if there are more commands in the txq.
10391  **/
10392 static struct lpfc_iocbq *
10393 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10394 		   struct lpfc_iocbq **piocb)
10395 {
10396 	struct lpfc_iocbq * nextiocb;
10397 
10398 	lockdep_assert_held(&phba->hbalock);
10399 
10400 	nextiocb = lpfc_sli_ringtx_get(phba, pring);
10401 	if (!nextiocb) {
10402 		nextiocb = *piocb;
10403 		*piocb = NULL;
10404 	}
10405 
10406 	return nextiocb;
10407 }
10408 
10409 /**
10410  * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
10411  * @phba: Pointer to HBA context object.
10412  * @ring_number: SLI ring number to issue iocb on.
10413  * @piocb: Pointer to command iocb.
10414  * @flag: Flag indicating if this command can be put into txq.
10415  *
10416  * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
10417  * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
10418  * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
10419  * flag is turned on, the function returns IOCB_ERROR. When the link is down,
10420  * this function allows only iocbs for posting buffers. This function finds
10421  * next available slot in the command ring and posts the command to the
10422  * available slot and writes the port attention register to request HBA start
10423  * processing new iocb. If there is no slot available in the ring and
10424  * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
10425  * the function returns IOCB_BUSY.
10426  *
10427  * This function is called with hbalock held. The function will return success
10428  * after it successfully submit the iocb to firmware or after adding to the
10429  * txq.
10430  **/
10431 static int
10432 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
10433 		    struct lpfc_iocbq *piocb, uint32_t flag)
10434 {
10435 	struct lpfc_iocbq *nextiocb;
10436 	IOCB_t *iocb;
10437 	struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
10438 
10439 	lockdep_assert_held(&phba->hbalock);
10440 
10441 	if (piocb->cmd_cmpl && (!piocb->vport) &&
10442 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
10443 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
10444 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10445 				"1807 IOCB x%x failed. No vport\n",
10446 				piocb->iocb.ulpCommand);
10447 		dump_stack();
10448 		return IOCB_ERROR;
10449 	}
10450 
10451 
10452 	/* If the PCI channel is in offline state, do not post iocbs. */
10453 	if (unlikely(pci_channel_offline(phba->pcidev)))
10454 		return IOCB_ERROR;
10455 
10456 	/* If HBA has a deferred error attention, fail the iocb. */
10457 	if (unlikely(phba->hba_flag & DEFER_ERATT))
10458 		return IOCB_ERROR;
10459 
10460 	/*
10461 	 * We should never get an IOCB if we are in a < LINK_DOWN state
10462 	 */
10463 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
10464 		return IOCB_ERROR;
10465 
10466 	/*
10467 	 * Check to see if we are blocking IOCB processing because of a
10468 	 * outstanding event.
10469 	 */
10470 	if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
10471 		goto iocb_busy;
10472 
10473 	if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
10474 		/*
10475 		 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
10476 		 * can be issued if the link is not up.
10477 		 */
10478 		switch (piocb->iocb.ulpCommand) {
10479 		case CMD_QUE_RING_BUF_CN:
10480 		case CMD_QUE_RING_BUF64_CN:
10481 			/*
10482 			 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
10483 			 * completion, cmd_cmpl MUST be 0.
10484 			 */
10485 			if (piocb->cmd_cmpl)
10486 				piocb->cmd_cmpl = NULL;
10487 			fallthrough;
10488 		case CMD_CREATE_XRI_CR:
10489 		case CMD_CLOSE_XRI_CN:
10490 		case CMD_CLOSE_XRI_CX:
10491 			break;
10492 		default:
10493 			goto iocb_busy;
10494 		}
10495 
10496 	/*
10497 	 * For FCP commands, we must be in a state where we can process link
10498 	 * attention events.
10499 	 */
10500 	} else if (unlikely(pring->ringno == LPFC_FCP_RING &&
10501 			    !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
10502 		goto iocb_busy;
10503 	}
10504 
10505 	while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
10506 	       (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
10507 		lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
10508 
10509 	if (iocb)
10510 		lpfc_sli_update_ring(phba, pring);
10511 	else
10512 		lpfc_sli_update_full_ring(phba, pring);
10513 
10514 	if (!piocb)
10515 		return IOCB_SUCCESS;
10516 
10517 	goto out_busy;
10518 
10519  iocb_busy:
10520 	pring->stats.iocb_cmd_delay++;
10521 
10522  out_busy:
10523 
10524 	if (!(flag & SLI_IOCB_RET_IOCB)) {
10525 		__lpfc_sli_ringtx_put(phba, pring, piocb);
10526 		return IOCB_SUCCESS;
10527 	}
10528 
10529 	return IOCB_BUSY;
10530 }
10531 
10532 /**
10533  * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb
10534  * @phba: Pointer to HBA context object.
10535  * @ring_number: SLI ring number to issue wqe on.
10536  * @piocb: Pointer to command iocb.
10537  * @flag: Flag indicating if this command can be put into txq.
10538  *
10539  * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to
10540  * send  an iocb command to an HBA with SLI-3 interface spec.
10541  *
10542  * This function takes the hbalock before invoking the lockless version.
10543  * The function will return success after it successfully submit the wqe to
10544  * firmware or after adding to the txq.
10545  **/
10546 static int
10547 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number,
10548 			   struct lpfc_iocbq *piocb, uint32_t flag)
10549 {
10550 	unsigned long iflags;
10551 	int rc;
10552 
10553 	spin_lock_irqsave(&phba->hbalock, iflags);
10554 	rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag);
10555 	spin_unlock_irqrestore(&phba->hbalock, iflags);
10556 
10557 	return rc;
10558 }
10559 
10560 /**
10561  * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe
10562  * @phba: Pointer to HBA context object.
10563  * @ring_number: SLI ring number to issue wqe on.
10564  * @piocb: Pointer to command iocb.
10565  * @flag: Flag indicating if this command can be put into txq.
10566  *
10567  * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue
10568  * an wqe command to an HBA with SLI-4 interface spec.
10569  *
10570  * This function is a lockless version. The function will return success
10571  * after it successfully submit the wqe to firmware or after adding to the
10572  * txq.
10573  **/
10574 static int
10575 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number,
10576 			   struct lpfc_iocbq *piocb, uint32_t flag)
10577 {
10578 	struct lpfc_io_buf *lpfc_cmd = piocb->io_buf;
10579 
10580 	lpfc_prep_embed_io(phba, lpfc_cmd);
10581 	return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb);
10582 }
10583 
10584 void
10585 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd)
10586 {
10587 	struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq;
10588 	union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe;
10589 	struct sli4_sge *sgl;
10590 
10591 	/* 128 byte wqe support here */
10592 	sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
10593 
10594 	if (phba->fcp_embed_io) {
10595 		struct fcp_cmnd *fcp_cmnd;
10596 		u32 *ptr;
10597 
10598 		fcp_cmnd = lpfc_cmd->fcp_cmnd;
10599 
10600 		/* Word 0-2 - FCP_CMND */
10601 		wqe->generic.bde.tus.f.bdeFlags =
10602 			BUFF_TYPE_BDE_IMMED;
10603 		wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
10604 		wqe->generic.bde.addrHigh = 0;
10605 		wqe->generic.bde.addrLow =  88;  /* Word 22 */
10606 
10607 		bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10608 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
10609 
10610 		/* Word 22-29  FCP CMND Payload */
10611 		ptr = &wqe->words[22];
10612 		memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
10613 	} else {
10614 		/* Word 0-2 - Inline BDE */
10615 		wqe->generic.bde.tus.f.bdeFlags =  BUFF_TYPE_BDE_64;
10616 		wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd);
10617 		wqe->generic.bde.addrHigh = sgl->addr_hi;
10618 		wqe->generic.bde.addrLow =  sgl->addr_lo;
10619 
10620 		/* Word 10 */
10621 		bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
10622 		bf_set(wqe_wqes, &wqe->generic.wqe_com, 0);
10623 	}
10624 
10625 	/* add the VMID tags as per switch response */
10626 	if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) {
10627 		if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) {
10628 			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
10629 			bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
10630 					(piocb->vmid_tag.cs_ctl_vmid));
10631 		} else if (phba->cfg_vmid_app_header) {
10632 			bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1);
10633 			bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10634 			wqe->words[31] = piocb->vmid_tag.app_id;
10635 		}
10636 	}
10637 }
10638 
10639 /**
10640  * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
10641  * @phba: Pointer to HBA context object.
10642  * @ring_number: SLI ring number to issue iocb on.
10643  * @piocb: Pointer to command iocb.
10644  * @flag: Flag indicating if this command can be put into txq.
10645  *
10646  * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
10647  * an iocb command to an HBA with SLI-4 interface spec.
10648  *
10649  * This function is called with ringlock held. The function will return success
10650  * after it successfully submit the iocb to firmware or after adding to the
10651  * txq.
10652  **/
10653 static int
10654 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
10655 			 struct lpfc_iocbq *piocb, uint32_t flag)
10656 {
10657 	struct lpfc_sglq *sglq;
10658 	union lpfc_wqe128 *wqe;
10659 	struct lpfc_queue *wq;
10660 	struct lpfc_sli_ring *pring;
10661 	u32 ulp_command = get_job_cmnd(phba, piocb);
10662 
10663 	/* Get the WQ */
10664 	if ((piocb->cmd_flag & LPFC_IO_FCP) ||
10665 	    (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) {
10666 		wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
10667 	} else {
10668 		wq = phba->sli4_hba.els_wq;
10669 	}
10670 
10671 	/* Get corresponding ring */
10672 	pring = wq->pring;
10673 
10674 	/*
10675 	 * The WQE can be either 64 or 128 bytes,
10676 	 */
10677 
10678 	lockdep_assert_held(&pring->ring_lock);
10679 	wqe = &piocb->wqe;
10680 	if (piocb->sli4_xritag == NO_XRI) {
10681 		if (ulp_command == CMD_ABORT_XRI_CX)
10682 			sglq = NULL;
10683 		else {
10684 			sglq = __lpfc_sli_get_els_sglq(phba, piocb);
10685 			if (!sglq) {
10686 				if (!(flag & SLI_IOCB_RET_IOCB)) {
10687 					__lpfc_sli_ringtx_put(phba,
10688 							pring,
10689 							piocb);
10690 					return IOCB_SUCCESS;
10691 				} else {
10692 					return IOCB_BUSY;
10693 				}
10694 			}
10695 		}
10696 	} else if (piocb->cmd_flag &  LPFC_IO_FCP) {
10697 		/* These IO's already have an XRI and a mapped sgl. */
10698 		sglq = NULL;
10699 	}
10700 	else {
10701 		/*
10702 		 * This is a continuation of a commandi,(CX) so this
10703 		 * sglq is on the active list
10704 		 */
10705 		sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
10706 		if (!sglq)
10707 			return IOCB_ERROR;
10708 	}
10709 
10710 	if (sglq) {
10711 		piocb->sli4_lxritag = sglq->sli4_lxritag;
10712 		piocb->sli4_xritag = sglq->sli4_xritag;
10713 
10714 		/* ABTS sent by initiator to CT exchange, the
10715 		 * RX_ID field will be filled with the newly
10716 		 * allocated responder XRI.
10717 		 */
10718 		if (ulp_command == CMD_XMIT_BLS_RSP64_CX &&
10719 		    piocb->abort_bls == LPFC_ABTS_UNSOL_INT)
10720 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
10721 			       piocb->sli4_xritag);
10722 
10723 		bf_set(wqe_xri_tag, &wqe->generic.wqe_com,
10724 		       piocb->sli4_xritag);
10725 
10726 		if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI)
10727 			return IOCB_ERROR;
10728 	}
10729 
10730 	if (lpfc_sli4_wq_put(wq, wqe))
10731 		return IOCB_ERROR;
10732 
10733 	lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
10734 
10735 	return 0;
10736 }
10737 
10738 /*
10739  * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o
10740  *
10741  * This routine wraps the actual fcp i/o function for issusing WQE for sli-4
10742  * or IOCB for sli-3  function.
10743  * pointer from the lpfc_hba struct.
10744  *
10745  * Return codes:
10746  * IOCB_ERROR - Error
10747  * IOCB_SUCCESS - Success
10748  * IOCB_BUSY - Busy
10749  **/
10750 int
10751 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number,
10752 		      struct lpfc_iocbq *piocb, uint32_t flag)
10753 {
10754 	return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag);
10755 }
10756 
10757 /*
10758  * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
10759  *
10760  * This routine wraps the actual lockless version for issusing IOCB function
10761  * pointer from the lpfc_hba struct.
10762  *
10763  * Return codes:
10764  * IOCB_ERROR - Error
10765  * IOCB_SUCCESS - Success
10766  * IOCB_BUSY - Busy
10767  **/
10768 int
10769 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10770 		struct lpfc_iocbq *piocb, uint32_t flag)
10771 {
10772 	return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10773 }
10774 
10775 static void
10776 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq,
10777 			       struct lpfc_vport *vport,
10778 			       struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did,
10779 			       u32 elscmd, u8 tmo, u8 expect_rsp)
10780 {
10781 	struct lpfc_hba *phba = vport->phba;
10782 	IOCB_t *cmd;
10783 
10784 	cmd = &cmdiocbq->iocb;
10785 	memset(cmd, 0, sizeof(*cmd));
10786 
10787 	cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
10788 	cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys);
10789 	cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
10790 
10791 	if (expect_rsp) {
10792 		cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64));
10793 		cmd->un.elsreq64.remoteID = did; /* DID */
10794 		cmd->ulpCommand = CMD_ELS_REQUEST64_CR;
10795 		cmd->ulpTimeout = tmo;
10796 	} else {
10797 		cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64);
10798 		cmd->un.genreq64.xmit_els_remoteID = did; /* DID */
10799 		cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX;
10800 		cmd->ulpPU = PARM_NPIV_DID;
10801 	}
10802 	cmd->ulpBdeCount = 1;
10803 	cmd->ulpLe = 1;
10804 	cmd->ulpClass = CLASS3;
10805 
10806 	/* If we have NPIV enabled, we want to send ELS traffic by VPI. */
10807 	if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) {
10808 		if (expect_rsp) {
10809 			cmd->un.elsreq64.myID = vport->fc_myDID;
10810 
10811 			/* For ELS_REQUEST64_CR, use the VPI by default */
10812 			cmd->ulpContext = phba->vpi_ids[vport->vpi];
10813 		}
10814 
10815 		cmd->ulpCt_h = 0;
10816 		/* The CT field must be 0=INVALID_RPI for the ECHO cmd */
10817 		if (elscmd == ELS_CMD_ECHO)
10818 			cmd->ulpCt_l = 0; /* context = invalid RPI */
10819 		else
10820 			cmd->ulpCt_l = 1; /* context = VPI */
10821 	}
10822 }
10823 
10824 static void
10825 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq,
10826 			       struct lpfc_vport *vport,
10827 			       struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did,
10828 			       u32 elscmd, u8 tmo, u8 expect_rsp)
10829 {
10830 	struct lpfc_hba  *phba = vport->phba;
10831 	union lpfc_wqe128 *wqe;
10832 	struct ulp_bde64_le *bde;
10833 	u8 els_id;
10834 
10835 	wqe = &cmdiocbq->wqe;
10836 	memset(wqe, 0, sizeof(*wqe));
10837 
10838 	/* Word 0 - 2 BDE */
10839 	bde = (struct ulp_bde64_le *)&wqe->generic.bde;
10840 	bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys));
10841 	bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys));
10842 	bde->type_size = cpu_to_le32(cmd_size);
10843 	bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64);
10844 
10845 	if (expect_rsp) {
10846 		bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE);
10847 
10848 		/* Transfer length */
10849 		wqe->els_req.payload_len = cmd_size;
10850 		wqe->els_req.max_response_payload_len = FCELSSIZE;
10851 
10852 		/* DID */
10853 		bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did);
10854 
10855 		/* Word 11 - ELS_ID */
10856 		switch (elscmd) {
10857 		case ELS_CMD_PLOGI:
10858 			els_id = LPFC_ELS_ID_PLOGI;
10859 			break;
10860 		case ELS_CMD_FLOGI:
10861 			els_id = LPFC_ELS_ID_FLOGI;
10862 			break;
10863 		case ELS_CMD_LOGO:
10864 			els_id = LPFC_ELS_ID_LOGO;
10865 			break;
10866 		case ELS_CMD_FDISC:
10867 			if (!vport->fc_myDID) {
10868 				els_id = LPFC_ELS_ID_FDISC;
10869 				break;
10870 			}
10871 			fallthrough;
10872 		default:
10873 			els_id = LPFC_ELS_ID_DEFAULT;
10874 			break;
10875 		}
10876 
10877 		bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
10878 	} else {
10879 		/* DID */
10880 		bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did);
10881 
10882 		/* Transfer length */
10883 		wqe->xmit_els_rsp.response_payload_len = cmd_size;
10884 
10885 		bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com,
10886 		       CMD_XMIT_ELS_RSP64_WQE);
10887 	}
10888 
10889 	bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo);
10890 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag);
10891 	bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3);
10892 
10893 	/* If we have NPIV enabled, we want to send ELS traffic by VPI.
10894 	 * For SLI4, since the driver controls VPIs we also want to include
10895 	 * all ELS pt2pt protocol traffic as well.
10896 	 */
10897 	if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) ||
10898 	    (vport->fc_flag & FC_PT2PT)) {
10899 		if (expect_rsp) {
10900 			bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID);
10901 
10902 			/* For ELS_REQUEST64_WQE, use the VPI by default */
10903 			bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
10904 			       phba->vpi_ids[vport->vpi]);
10905 		}
10906 
10907 		/* The CT field must be 0=INVALID_RPI for the ECHO cmd */
10908 		if (elscmd == ELS_CMD_ECHO)
10909 			bf_set(wqe_ct, &wqe->generic.wqe_com, 0);
10910 		else
10911 			bf_set(wqe_ct, &wqe->generic.wqe_com, 1);
10912 	}
10913 }
10914 
10915 void
10916 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
10917 			  struct lpfc_vport *vport, struct lpfc_dmabuf *bmp,
10918 			  u16 cmd_size, u32 did, u32 elscmd, u8 tmo,
10919 			  u8 expect_rsp)
10920 {
10921 	phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did,
10922 					  elscmd, tmo, expect_rsp);
10923 }
10924 
10925 static void
10926 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp,
10927 			   u16 rpi, u32 num_entry, u8 tmo)
10928 {
10929 	IOCB_t *cmd;
10930 
10931 	cmd = &cmdiocbq->iocb;
10932 	memset(cmd, 0, sizeof(*cmd));
10933 
10934 	cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
10935 	cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys);
10936 	cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
10937 	cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64);
10938 
10939 	cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL;
10940 	cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT;
10941 	cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA);
10942 
10943 	cmd->ulpContext = rpi;
10944 	cmd->ulpClass = CLASS3;
10945 	cmd->ulpCommand = CMD_GEN_REQUEST64_CR;
10946 	cmd->ulpBdeCount = 1;
10947 	cmd->ulpLe = 1;
10948 	cmd->ulpOwner = OWN_CHIP;
10949 	cmd->ulpTimeout = tmo;
10950 }
10951 
10952 static void
10953 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp,
10954 			   u16 rpi, u32 num_entry, u8 tmo)
10955 {
10956 	union lpfc_wqe128 *cmdwqe;
10957 	struct ulp_bde64_le *bde, *bpl;
10958 	u32 xmit_len = 0, total_len = 0, size, type, i;
10959 
10960 	cmdwqe = &cmdiocbq->wqe;
10961 	memset(cmdwqe, 0, sizeof(*cmdwqe));
10962 
10963 	/* Calculate total_len and xmit_len */
10964 	bpl = (struct ulp_bde64_le *)bmp->virt;
10965 	for (i = 0; i < num_entry; i++) {
10966 		size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK;
10967 		total_len += size;
10968 	}
10969 	for (i = 0; i < num_entry; i++) {
10970 		size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK;
10971 		type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK;
10972 		if (type != ULP_BDE64_TYPE_BDE_64)
10973 			break;
10974 		xmit_len += size;
10975 	}
10976 
10977 	/* Words 0 - 2 */
10978 	bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde;
10979 	bde->addr_low = bpl->addr_low;
10980 	bde->addr_high = bpl->addr_high;
10981 	bde->type_size = cpu_to_le32(xmit_len);
10982 	bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64);
10983 
10984 	/* Word 3 */
10985 	cmdwqe->gen_req.request_payload_len = xmit_len;
10986 
10987 	/* Word 5 */
10988 	bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT);
10989 	bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL);
10990 	bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1);
10991 	bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1);
10992 
10993 	/* Word 6 */
10994 	bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi);
10995 
10996 	/* Word 7 */
10997 	bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo);
10998 	bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3);
10999 	bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR);
11000 	bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI);
11001 
11002 	/* Word 12 */
11003 	cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len;
11004 }
11005 
11006 void
11007 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
11008 		      struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo)
11009 {
11010 	phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo);
11011 }
11012 
11013 static void
11014 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq,
11015 			      struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
11016 			      u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
11017 {
11018 	IOCB_t *icmd;
11019 
11020 	icmd = &cmdiocbq->iocb;
11021 	memset(icmd, 0, sizeof(*icmd));
11022 
11023 	icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
11024 	icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys);
11025 	icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
11026 	icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64));
11027 	icmd->un.xseq64.w5.hcsw.Fctl = LA;
11028 	if (last_seq)
11029 		icmd->un.xseq64.w5.hcsw.Fctl |= LS;
11030 	icmd->un.xseq64.w5.hcsw.Dfctl = 0;
11031 	icmd->un.xseq64.w5.hcsw.Rctl = rctl;
11032 	icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT;
11033 
11034 	icmd->ulpBdeCount = 1;
11035 	icmd->ulpLe = 1;
11036 	icmd->ulpClass = CLASS3;
11037 
11038 	switch (cr_cx_cmd) {
11039 	case CMD_XMIT_SEQUENCE64_CR:
11040 		icmd->ulpContext = rpi;
11041 		icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR;
11042 		break;
11043 	case CMD_XMIT_SEQUENCE64_CX:
11044 		icmd->ulpContext = ox_id;
11045 		icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX;
11046 		break;
11047 	default:
11048 		break;
11049 	}
11050 }
11051 
11052 static void
11053 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq,
11054 			      struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
11055 			      u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
11056 {
11057 	union lpfc_wqe128 *wqe;
11058 	struct ulp_bde64 *bpl;
11059 
11060 	wqe = &cmdiocbq->wqe;
11061 	memset(wqe, 0, sizeof(*wqe));
11062 
11063 	/* Words 0 - 2 */
11064 	bpl = (struct ulp_bde64 *)bmp->virt;
11065 	wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh;
11066 	wqe->xmit_sequence.bde.addrLow = bpl->addrLow;
11067 	wqe->xmit_sequence.bde.tus.w = bpl->tus.w;
11068 
11069 	/* Word 5 */
11070 	bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq);
11071 	bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1);
11072 	bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0);
11073 	bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl);
11074 	bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT);
11075 
11076 	/* Word 6 */
11077 	bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi);
11078 
11079 	bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com,
11080 	       CMD_XMIT_SEQUENCE64_WQE);
11081 
11082 	/* Word 7 */
11083 	bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3);
11084 
11085 	/* Word 9 */
11086 	bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id);
11087 
11088 	/* Word 12 */
11089 	if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK))
11090 		wqe->xmit_sequence.xmit_len = full_size;
11091 	else
11092 		wqe->xmit_sequence.xmit_len =
11093 			wqe->xmit_sequence.bde.tus.f.bdeSize;
11094 }
11095 
11096 void
11097 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
11098 			 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
11099 			 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
11100 {
11101 	phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry,
11102 					 rctl, last_seq, cr_cx_cmd);
11103 }
11104 
11105 static void
11106 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context,
11107 			     u16 iotag, u8 ulp_class, u16 cqid, bool ia,
11108 			     bool wqec)
11109 {
11110 	IOCB_t *icmd = NULL;
11111 
11112 	icmd = &cmdiocbq->iocb;
11113 	memset(icmd, 0, sizeof(*icmd));
11114 
11115 	/* Word 5 */
11116 	icmd->un.acxri.abortContextTag = ulp_context;
11117 	icmd->un.acxri.abortIoTag = iotag;
11118 
11119 	if (ia) {
11120 		/* Word 7 */
11121 		icmd->ulpCommand = CMD_CLOSE_XRI_CN;
11122 	} else {
11123 		/* Word 3 */
11124 		icmd->un.acxri.abortType = ABORT_TYPE_ABTS;
11125 
11126 		/* Word 7 */
11127 		icmd->ulpClass = ulp_class;
11128 		icmd->ulpCommand = CMD_ABORT_XRI_CN;
11129 	}
11130 
11131 	/* Word 7 */
11132 	icmd->ulpLe = 1;
11133 }
11134 
11135 static void
11136 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context,
11137 			     u16 iotag, u8 ulp_class, u16 cqid, bool ia,
11138 			     bool wqec)
11139 {
11140 	union lpfc_wqe128 *wqe;
11141 
11142 	wqe = &cmdiocbq->wqe;
11143 	memset(wqe, 0, sizeof(*wqe));
11144 
11145 	/* Word 3 */
11146 	bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
11147 	if (ia)
11148 		bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
11149 	else
11150 		bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
11151 
11152 	/* Word 7 */
11153 	bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE);
11154 
11155 	/* Word 8 */
11156 	wqe->abort_cmd.wqe_com.abort_tag = ulp_context;
11157 
11158 	/* Word 9 */
11159 	bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag);
11160 
11161 	/* Word 10 */
11162 	bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
11163 
11164 	/* Word 11 */
11165 	if (wqec)
11166 		bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1);
11167 	bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid);
11168 	bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND);
11169 }
11170 
11171 void
11172 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
11173 			u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid,
11174 			bool ia, bool wqec)
11175 {
11176 	phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class,
11177 					cqid, ia, wqec);
11178 }
11179 
11180 /**
11181  * lpfc_sli_api_table_setup - Set up sli api function jump table
11182  * @phba: The hba struct for which this call is being executed.
11183  * @dev_grp: The HBA PCI-Device group number.
11184  *
11185  * This routine sets up the SLI interface API function jump table in @phba
11186  * struct.
11187  * Returns: 0 - success, -ENODEV - failure.
11188  **/
11189 int
11190 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
11191 {
11192 
11193 	switch (dev_grp) {
11194 	case LPFC_PCI_DEV_LP:
11195 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
11196 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
11197 		phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3;
11198 		phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3;
11199 		phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3;
11200 		phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3;
11201 		phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3;
11202 		break;
11203 	case LPFC_PCI_DEV_OC:
11204 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
11205 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
11206 		phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4;
11207 		phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4;
11208 		phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4;
11209 		phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4;
11210 		phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4;
11211 		break;
11212 	default:
11213 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11214 				"1419 Invalid HBA PCI-device group: 0x%x\n",
11215 				dev_grp);
11216 		return -ENODEV;
11217 	}
11218 	return 0;
11219 }
11220 
11221 /**
11222  * lpfc_sli4_calc_ring - Calculates which ring to use
11223  * @phba: Pointer to HBA context object.
11224  * @piocb: Pointer to command iocb.
11225  *
11226  * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
11227  * hba_wqidx, thus we need to calculate the corresponding ring.
11228  * Since ABORTS must go on the same WQ of the command they are
11229  * aborting, we use command's hba_wqidx.
11230  */
11231 struct lpfc_sli_ring *
11232 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
11233 {
11234 	struct lpfc_io_buf *lpfc_cmd;
11235 
11236 	if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
11237 		if (unlikely(!phba->sli4_hba.hdwq))
11238 			return NULL;
11239 		/*
11240 		 * for abort iocb hba_wqidx should already
11241 		 * be setup based on what work queue we used.
11242 		 */
11243 		if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) {
11244 			lpfc_cmd = piocb->io_buf;
11245 			piocb->hba_wqidx = lpfc_cmd->hdwq_no;
11246 		}
11247 		return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
11248 	} else {
11249 		if (unlikely(!phba->sli4_hba.els_wq))
11250 			return NULL;
11251 		piocb->hba_wqidx = 0;
11252 		return phba->sli4_hba.els_wq->pring;
11253 	}
11254 }
11255 
11256 /**
11257  * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
11258  * @phba: Pointer to HBA context object.
11259  * @ring_number: Ring number
11260  * @piocb: Pointer to command iocb.
11261  * @flag: Flag indicating if this command can be put into txq.
11262  *
11263  * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
11264  * function. This function gets the hbalock and calls
11265  * __lpfc_sli_issue_iocb function and will return the error returned
11266  * by __lpfc_sli_issue_iocb function. This wrapper is used by
11267  * functions which do not hold hbalock.
11268  **/
11269 int
11270 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
11271 		    struct lpfc_iocbq *piocb, uint32_t flag)
11272 {
11273 	struct lpfc_sli_ring *pring;
11274 	struct lpfc_queue *eq;
11275 	unsigned long iflags;
11276 	int rc;
11277 
11278 	/* If the PCI channel is in offline state, do not post iocbs. */
11279 	if (unlikely(pci_channel_offline(phba->pcidev)))
11280 		return IOCB_ERROR;
11281 
11282 	if (phba->sli_rev == LPFC_SLI_REV4) {
11283 		lpfc_sli_prep_wqe(phba, piocb);
11284 
11285 		eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq;
11286 
11287 		pring = lpfc_sli4_calc_ring(phba, piocb);
11288 		if (unlikely(pring == NULL))
11289 			return IOCB_ERROR;
11290 
11291 		spin_lock_irqsave(&pring->ring_lock, iflags);
11292 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
11293 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
11294 
11295 		lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH);
11296 	} else {
11297 		/* For now, SLI2/3 will still use hbalock */
11298 		spin_lock_irqsave(&phba->hbalock, iflags);
11299 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
11300 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11301 	}
11302 	return rc;
11303 }
11304 
11305 /**
11306  * lpfc_extra_ring_setup - Extra ring setup function
11307  * @phba: Pointer to HBA context object.
11308  *
11309  * This function is called while driver attaches with the
11310  * HBA to setup the extra ring. The extra ring is used
11311  * only when driver needs to support target mode functionality
11312  * or IP over FC functionalities.
11313  *
11314  * This function is called with no lock held. SLI3 only.
11315  **/
11316 static int
11317 lpfc_extra_ring_setup( struct lpfc_hba *phba)
11318 {
11319 	struct lpfc_sli *psli;
11320 	struct lpfc_sli_ring *pring;
11321 
11322 	psli = &phba->sli;
11323 
11324 	/* Adjust cmd/rsp ring iocb entries more evenly */
11325 
11326 	/* Take some away from the FCP ring */
11327 	pring = &psli->sli3_ring[LPFC_FCP_RING];
11328 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11329 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11330 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11331 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11332 
11333 	/* and give them to the extra ring */
11334 	pring = &psli->sli3_ring[LPFC_EXTRA_RING];
11335 
11336 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11337 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11338 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11339 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11340 
11341 	/* Setup default profile for this ring */
11342 	pring->iotag_max = 4096;
11343 	pring->num_mask = 1;
11344 	pring->prt[0].profile = 0;      /* Mask 0 */
11345 	pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
11346 	pring->prt[0].type = phba->cfg_multi_ring_type;
11347 	pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
11348 	return 0;
11349 }
11350 
11351 static void
11352 lpfc_sli_post_recovery_event(struct lpfc_hba *phba,
11353 			     struct lpfc_nodelist *ndlp)
11354 {
11355 	unsigned long iflags;
11356 	struct lpfc_work_evt  *evtp = &ndlp->recovery_evt;
11357 
11358 	spin_lock_irqsave(&phba->hbalock, iflags);
11359 	if (!list_empty(&evtp->evt_listp)) {
11360 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11361 		return;
11362 	}
11363 
11364 	/* Incrementing the reference count until the queued work is done. */
11365 	evtp->evt_arg1  = lpfc_nlp_get(ndlp);
11366 	if (!evtp->evt_arg1) {
11367 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11368 		return;
11369 	}
11370 	evtp->evt = LPFC_EVT_RECOVER_PORT;
11371 	list_add_tail(&evtp->evt_listp, &phba->work_list);
11372 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11373 
11374 	lpfc_worker_wake_up(phba);
11375 }
11376 
11377 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
11378  * @phba: Pointer to HBA context object.
11379  * @iocbq: Pointer to iocb object.
11380  *
11381  * The async_event handler calls this routine when it receives
11382  * an ASYNC_STATUS_CN event from the port.  The port generates
11383  * this event when an Abort Sequence request to an rport fails
11384  * twice in succession.  The abort could be originated by the
11385  * driver or by the port.  The ABTS could have been for an ELS
11386  * or FCP IO.  The port only generates this event when an ABTS
11387  * fails to complete after one retry.
11388  */
11389 static void
11390 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
11391 			  struct lpfc_iocbq *iocbq)
11392 {
11393 	struct lpfc_nodelist *ndlp = NULL;
11394 	uint16_t rpi = 0, vpi = 0;
11395 	struct lpfc_vport *vport = NULL;
11396 
11397 	/* The rpi in the ulpContext is vport-sensitive. */
11398 	vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
11399 	rpi = iocbq->iocb.ulpContext;
11400 
11401 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11402 			"3092 Port generated ABTS async event "
11403 			"on vpi %d rpi %d status 0x%x\n",
11404 			vpi, rpi, iocbq->iocb.ulpStatus);
11405 
11406 	vport = lpfc_find_vport_by_vpid(phba, vpi);
11407 	if (!vport)
11408 		goto err_exit;
11409 	ndlp = lpfc_findnode_rpi(vport, rpi);
11410 	if (!ndlp)
11411 		goto err_exit;
11412 
11413 	if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
11414 		lpfc_sli_abts_recover_port(vport, ndlp);
11415 	return;
11416 
11417  err_exit:
11418 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11419 			"3095 Event Context not found, no "
11420 			"action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
11421 			vpi, rpi, iocbq->iocb.ulpStatus,
11422 			iocbq->iocb.ulpContext);
11423 }
11424 
11425 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
11426  * @phba: pointer to HBA context object.
11427  * @ndlp: nodelist pointer for the impacted rport.
11428  * @axri: pointer to the wcqe containing the failed exchange.
11429  *
11430  * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
11431  * port.  The port generates this event when an abort exchange request to an
11432  * rport fails twice in succession with no reply.  The abort could be originated
11433  * by the driver or by the port.  The ABTS could have been for an ELS or FCP IO.
11434  */
11435 void
11436 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
11437 			   struct lpfc_nodelist *ndlp,
11438 			   struct sli4_wcqe_xri_aborted *axri)
11439 {
11440 	uint32_t ext_status = 0;
11441 
11442 	if (!ndlp) {
11443 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11444 				"3115 Node Context not found, driver "
11445 				"ignoring abts err event\n");
11446 		return;
11447 	}
11448 
11449 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11450 			"3116 Port generated FCP XRI ABORT event on "
11451 			"vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
11452 			ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
11453 			bf_get(lpfc_wcqe_xa_xri, axri),
11454 			bf_get(lpfc_wcqe_xa_status, axri),
11455 			axri->parameter);
11456 
11457 	/*
11458 	 * Catch the ABTS protocol failure case.  Older OCe FW releases returned
11459 	 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
11460 	 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
11461 	 */
11462 	ext_status = axri->parameter & IOERR_PARAM_MASK;
11463 	if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
11464 	    ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
11465 		lpfc_sli_post_recovery_event(phba, ndlp);
11466 }
11467 
11468 /**
11469  * lpfc_sli_async_event_handler - ASYNC iocb handler function
11470  * @phba: Pointer to HBA context object.
11471  * @pring: Pointer to driver SLI ring object.
11472  * @iocbq: Pointer to iocb object.
11473  *
11474  * This function is called by the slow ring event handler
11475  * function when there is an ASYNC event iocb in the ring.
11476  * This function is called with no lock held.
11477  * Currently this function handles only temperature related
11478  * ASYNC events. The function decodes the temperature sensor
11479  * event message and posts events for the management applications.
11480  **/
11481 static void
11482 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
11483 	struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
11484 {
11485 	IOCB_t *icmd;
11486 	uint16_t evt_code;
11487 	struct temp_event temp_event_data;
11488 	struct Scsi_Host *shost;
11489 	uint32_t *iocb_w;
11490 
11491 	icmd = &iocbq->iocb;
11492 	evt_code = icmd->un.asyncstat.evt_code;
11493 
11494 	switch (evt_code) {
11495 	case ASYNC_TEMP_WARN:
11496 	case ASYNC_TEMP_SAFE:
11497 		temp_event_data.data = (uint32_t) icmd->ulpContext;
11498 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
11499 		if (evt_code == ASYNC_TEMP_WARN) {
11500 			temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
11501 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11502 				"0347 Adapter is very hot, please take "
11503 				"corrective action. temperature : %d Celsius\n",
11504 				(uint32_t) icmd->ulpContext);
11505 		} else {
11506 			temp_event_data.event_code = LPFC_NORMAL_TEMP;
11507 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11508 				"0340 Adapter temperature is OK now. "
11509 				"temperature : %d Celsius\n",
11510 				(uint32_t) icmd->ulpContext);
11511 		}
11512 
11513 		/* Send temperature change event to applications */
11514 		shost = lpfc_shost_from_vport(phba->pport);
11515 		fc_host_post_vendor_event(shost, fc_get_event_number(),
11516 			sizeof(temp_event_data), (char *) &temp_event_data,
11517 			LPFC_NL_VENDOR_ID);
11518 		break;
11519 	case ASYNC_STATUS_CN:
11520 		lpfc_sli_abts_err_handler(phba, iocbq);
11521 		break;
11522 	default:
11523 		iocb_w = (uint32_t *) icmd;
11524 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11525 			"0346 Ring %d handler: unexpected ASYNC_STATUS"
11526 			" evt_code 0x%x\n"
11527 			"W0  0x%08x W1  0x%08x W2  0x%08x W3  0x%08x\n"
11528 			"W4  0x%08x W5  0x%08x W6  0x%08x W7  0x%08x\n"
11529 			"W8  0x%08x W9  0x%08x W10 0x%08x W11 0x%08x\n"
11530 			"W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
11531 			pring->ringno, icmd->un.asyncstat.evt_code,
11532 			iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
11533 			iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
11534 			iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
11535 			iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
11536 
11537 		break;
11538 	}
11539 }
11540 
11541 
11542 /**
11543  * lpfc_sli4_setup - SLI ring setup function
11544  * @phba: Pointer to HBA context object.
11545  *
11546  * lpfc_sli_setup sets up rings of the SLI interface with
11547  * number of iocbs per ring and iotags. This function is
11548  * called while driver attach to the HBA and before the
11549  * interrupts are enabled. So there is no need for locking.
11550  *
11551  * This function always returns 0.
11552  **/
11553 int
11554 lpfc_sli4_setup(struct lpfc_hba *phba)
11555 {
11556 	struct lpfc_sli_ring *pring;
11557 
11558 	pring = phba->sli4_hba.els_wq->pring;
11559 	pring->num_mask = LPFC_MAX_RING_MASK;
11560 	pring->prt[0].profile = 0;	/* Mask 0 */
11561 	pring->prt[0].rctl = FC_RCTL_ELS_REQ;
11562 	pring->prt[0].type = FC_TYPE_ELS;
11563 	pring->prt[0].lpfc_sli_rcv_unsol_event =
11564 	    lpfc_els_unsol_event;
11565 	pring->prt[1].profile = 0;	/* Mask 1 */
11566 	pring->prt[1].rctl = FC_RCTL_ELS_REP;
11567 	pring->prt[1].type = FC_TYPE_ELS;
11568 	pring->prt[1].lpfc_sli_rcv_unsol_event =
11569 	    lpfc_els_unsol_event;
11570 	pring->prt[2].profile = 0;	/* Mask 2 */
11571 	/* NameServer Inquiry */
11572 	pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
11573 	/* NameServer */
11574 	pring->prt[2].type = FC_TYPE_CT;
11575 	pring->prt[2].lpfc_sli_rcv_unsol_event =
11576 	    lpfc_ct_unsol_event;
11577 	pring->prt[3].profile = 0;	/* Mask 3 */
11578 	/* NameServer response */
11579 	pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
11580 	/* NameServer */
11581 	pring->prt[3].type = FC_TYPE_CT;
11582 	pring->prt[3].lpfc_sli_rcv_unsol_event =
11583 	    lpfc_ct_unsol_event;
11584 	return 0;
11585 }
11586 
11587 /**
11588  * lpfc_sli_setup - SLI ring setup function
11589  * @phba: Pointer to HBA context object.
11590  *
11591  * lpfc_sli_setup sets up rings of the SLI interface with
11592  * number of iocbs per ring and iotags. This function is
11593  * called while driver attach to the HBA and before the
11594  * interrupts are enabled. So there is no need for locking.
11595  *
11596  * This function always returns 0. SLI3 only.
11597  **/
11598 int
11599 lpfc_sli_setup(struct lpfc_hba *phba)
11600 {
11601 	int i, totiocbsize = 0;
11602 	struct lpfc_sli *psli = &phba->sli;
11603 	struct lpfc_sli_ring *pring;
11604 
11605 	psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
11606 	psli->sli_flag = 0;
11607 
11608 	psli->iocbq_lookup = NULL;
11609 	psli->iocbq_lookup_len = 0;
11610 	psli->last_iotag = 0;
11611 
11612 	for (i = 0; i < psli->num_rings; i++) {
11613 		pring = &psli->sli3_ring[i];
11614 		switch (i) {
11615 		case LPFC_FCP_RING:	/* ring 0 - FCP */
11616 			/* numCiocb and numRiocb are used in config_port */
11617 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
11618 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
11619 			pring->sli.sli3.numCiocb +=
11620 				SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11621 			pring->sli.sli3.numRiocb +=
11622 				SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11623 			pring->sli.sli3.numCiocb +=
11624 				SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11625 			pring->sli.sli3.numRiocb +=
11626 				SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11627 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11628 							SLI3_IOCB_CMD_SIZE :
11629 							SLI2_IOCB_CMD_SIZE;
11630 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11631 							SLI3_IOCB_RSP_SIZE :
11632 							SLI2_IOCB_RSP_SIZE;
11633 			pring->iotag_ctr = 0;
11634 			pring->iotag_max =
11635 			    (phba->cfg_hba_queue_depth * 2);
11636 			pring->fast_iotag = pring->iotag_max;
11637 			pring->num_mask = 0;
11638 			break;
11639 		case LPFC_EXTRA_RING:	/* ring 1 - EXTRA */
11640 			/* numCiocb and numRiocb are used in config_port */
11641 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
11642 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
11643 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11644 							SLI3_IOCB_CMD_SIZE :
11645 							SLI2_IOCB_CMD_SIZE;
11646 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11647 							SLI3_IOCB_RSP_SIZE :
11648 							SLI2_IOCB_RSP_SIZE;
11649 			pring->iotag_max = phba->cfg_hba_queue_depth;
11650 			pring->num_mask = 0;
11651 			break;
11652 		case LPFC_ELS_RING:	/* ring 2 - ELS / CT */
11653 			/* numCiocb and numRiocb are used in config_port */
11654 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
11655 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
11656 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11657 							SLI3_IOCB_CMD_SIZE :
11658 							SLI2_IOCB_CMD_SIZE;
11659 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11660 							SLI3_IOCB_RSP_SIZE :
11661 							SLI2_IOCB_RSP_SIZE;
11662 			pring->fast_iotag = 0;
11663 			pring->iotag_ctr = 0;
11664 			pring->iotag_max = 4096;
11665 			pring->lpfc_sli_rcv_async_status =
11666 				lpfc_sli_async_event_handler;
11667 			pring->num_mask = LPFC_MAX_RING_MASK;
11668 			pring->prt[0].profile = 0;	/* Mask 0 */
11669 			pring->prt[0].rctl = FC_RCTL_ELS_REQ;
11670 			pring->prt[0].type = FC_TYPE_ELS;
11671 			pring->prt[0].lpfc_sli_rcv_unsol_event =
11672 			    lpfc_els_unsol_event;
11673 			pring->prt[1].profile = 0;	/* Mask 1 */
11674 			pring->prt[1].rctl = FC_RCTL_ELS_REP;
11675 			pring->prt[1].type = FC_TYPE_ELS;
11676 			pring->prt[1].lpfc_sli_rcv_unsol_event =
11677 			    lpfc_els_unsol_event;
11678 			pring->prt[2].profile = 0;	/* Mask 2 */
11679 			/* NameServer Inquiry */
11680 			pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
11681 			/* NameServer */
11682 			pring->prt[2].type = FC_TYPE_CT;
11683 			pring->prt[2].lpfc_sli_rcv_unsol_event =
11684 			    lpfc_ct_unsol_event;
11685 			pring->prt[3].profile = 0;	/* Mask 3 */
11686 			/* NameServer response */
11687 			pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
11688 			/* NameServer */
11689 			pring->prt[3].type = FC_TYPE_CT;
11690 			pring->prt[3].lpfc_sli_rcv_unsol_event =
11691 			    lpfc_ct_unsol_event;
11692 			break;
11693 		}
11694 		totiocbsize += (pring->sli.sli3.numCiocb *
11695 			pring->sli.sli3.sizeCiocb) +
11696 			(pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
11697 	}
11698 	if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
11699 		/* Too many cmd / rsp ring entries in SLI2 SLIM */
11700 		printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
11701 		       "SLI2 SLIM Data: x%x x%lx\n",
11702 		       phba->brd_no, totiocbsize,
11703 		       (unsigned long) MAX_SLIM_IOCB_SIZE);
11704 	}
11705 	if (phba->cfg_multi_ring_support == 2)
11706 		lpfc_extra_ring_setup(phba);
11707 
11708 	return 0;
11709 }
11710 
11711 /**
11712  * lpfc_sli4_queue_init - Queue initialization function
11713  * @phba: Pointer to HBA context object.
11714  *
11715  * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
11716  * ring. This function also initializes ring indices of each ring.
11717  * This function is called during the initialization of the SLI
11718  * interface of an HBA.
11719  * This function is called with no lock held and always returns
11720  * 1.
11721  **/
11722 void
11723 lpfc_sli4_queue_init(struct lpfc_hba *phba)
11724 {
11725 	struct lpfc_sli *psli;
11726 	struct lpfc_sli_ring *pring;
11727 	int i;
11728 
11729 	psli = &phba->sli;
11730 	spin_lock_irq(&phba->hbalock);
11731 	INIT_LIST_HEAD(&psli->mboxq);
11732 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
11733 	/* Initialize list headers for txq and txcmplq as double linked lists */
11734 	for (i = 0; i < phba->cfg_hdw_queue; i++) {
11735 		pring = phba->sli4_hba.hdwq[i].io_wq->pring;
11736 		pring->flag = 0;
11737 		pring->ringno = LPFC_FCP_RING;
11738 		pring->txcmplq_cnt = 0;
11739 		INIT_LIST_HEAD(&pring->txq);
11740 		INIT_LIST_HEAD(&pring->txcmplq);
11741 		INIT_LIST_HEAD(&pring->iocb_continueq);
11742 		spin_lock_init(&pring->ring_lock);
11743 	}
11744 	pring = phba->sli4_hba.els_wq->pring;
11745 	pring->flag = 0;
11746 	pring->ringno = LPFC_ELS_RING;
11747 	pring->txcmplq_cnt = 0;
11748 	INIT_LIST_HEAD(&pring->txq);
11749 	INIT_LIST_HEAD(&pring->txcmplq);
11750 	INIT_LIST_HEAD(&pring->iocb_continueq);
11751 	spin_lock_init(&pring->ring_lock);
11752 
11753 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11754 		pring = phba->sli4_hba.nvmels_wq->pring;
11755 		pring->flag = 0;
11756 		pring->ringno = LPFC_ELS_RING;
11757 		pring->txcmplq_cnt = 0;
11758 		INIT_LIST_HEAD(&pring->txq);
11759 		INIT_LIST_HEAD(&pring->txcmplq);
11760 		INIT_LIST_HEAD(&pring->iocb_continueq);
11761 		spin_lock_init(&pring->ring_lock);
11762 	}
11763 
11764 	spin_unlock_irq(&phba->hbalock);
11765 }
11766 
11767 /**
11768  * lpfc_sli_queue_init - Queue initialization function
11769  * @phba: Pointer to HBA context object.
11770  *
11771  * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
11772  * ring. This function also initializes ring indices of each ring.
11773  * This function is called during the initialization of the SLI
11774  * interface of an HBA.
11775  * This function is called with no lock held and always returns
11776  * 1.
11777  **/
11778 void
11779 lpfc_sli_queue_init(struct lpfc_hba *phba)
11780 {
11781 	struct lpfc_sli *psli;
11782 	struct lpfc_sli_ring *pring;
11783 	int i;
11784 
11785 	psli = &phba->sli;
11786 	spin_lock_irq(&phba->hbalock);
11787 	INIT_LIST_HEAD(&psli->mboxq);
11788 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
11789 	/* Initialize list headers for txq and txcmplq as double linked lists */
11790 	for (i = 0; i < psli->num_rings; i++) {
11791 		pring = &psli->sli3_ring[i];
11792 		pring->ringno = i;
11793 		pring->sli.sli3.next_cmdidx  = 0;
11794 		pring->sli.sli3.local_getidx = 0;
11795 		pring->sli.sli3.cmdidx = 0;
11796 		INIT_LIST_HEAD(&pring->iocb_continueq);
11797 		INIT_LIST_HEAD(&pring->iocb_continue_saveq);
11798 		INIT_LIST_HEAD(&pring->postbufq);
11799 		pring->flag = 0;
11800 		INIT_LIST_HEAD(&pring->txq);
11801 		INIT_LIST_HEAD(&pring->txcmplq);
11802 		spin_lock_init(&pring->ring_lock);
11803 	}
11804 	spin_unlock_irq(&phba->hbalock);
11805 }
11806 
11807 /**
11808  * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
11809  * @phba: Pointer to HBA context object.
11810  *
11811  * This routine flushes the mailbox command subsystem. It will unconditionally
11812  * flush all the mailbox commands in the three possible stages in the mailbox
11813  * command sub-system: pending mailbox command queue; the outstanding mailbox
11814  * command; and completed mailbox command queue. It is caller's responsibility
11815  * to make sure that the driver is in the proper state to flush the mailbox
11816  * command sub-system. Namely, the posting of mailbox commands into the
11817  * pending mailbox command queue from the various clients must be stopped;
11818  * either the HBA is in a state that it will never works on the outstanding
11819  * mailbox command (such as in EEH or ERATT conditions) or the outstanding
11820  * mailbox command has been completed.
11821  **/
11822 static void
11823 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
11824 {
11825 	LIST_HEAD(completions);
11826 	struct lpfc_sli *psli = &phba->sli;
11827 	LPFC_MBOXQ_t *pmb;
11828 	unsigned long iflag;
11829 
11830 	/* Disable softirqs, including timers from obtaining phba->hbalock */
11831 	local_bh_disable();
11832 
11833 	/* Flush all the mailbox commands in the mbox system */
11834 	spin_lock_irqsave(&phba->hbalock, iflag);
11835 
11836 	/* The pending mailbox command queue */
11837 	list_splice_init(&phba->sli.mboxq, &completions);
11838 	/* The outstanding active mailbox command */
11839 	if (psli->mbox_active) {
11840 		list_add_tail(&psli->mbox_active->list, &completions);
11841 		psli->mbox_active = NULL;
11842 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
11843 	}
11844 	/* The completed mailbox command queue */
11845 	list_splice_init(&phba->sli.mboxq_cmpl, &completions);
11846 	spin_unlock_irqrestore(&phba->hbalock, iflag);
11847 
11848 	/* Enable softirqs again, done with phba->hbalock */
11849 	local_bh_enable();
11850 
11851 	/* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
11852 	while (!list_empty(&completions)) {
11853 		list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
11854 		pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
11855 		if (pmb->mbox_cmpl)
11856 			pmb->mbox_cmpl(phba, pmb);
11857 	}
11858 }
11859 
11860 /**
11861  * lpfc_sli_host_down - Vport cleanup function
11862  * @vport: Pointer to virtual port object.
11863  *
11864  * lpfc_sli_host_down is called to clean up the resources
11865  * associated with a vport before destroying virtual
11866  * port data structures.
11867  * This function does following operations:
11868  * - Free discovery resources associated with this virtual
11869  *   port.
11870  * - Free iocbs associated with this virtual port in
11871  *   the txq.
11872  * - Send abort for all iocb commands associated with this
11873  *   vport in txcmplq.
11874  *
11875  * This function is called with no lock held and always returns 1.
11876  **/
11877 int
11878 lpfc_sli_host_down(struct lpfc_vport *vport)
11879 {
11880 	LIST_HEAD(completions);
11881 	struct lpfc_hba *phba = vport->phba;
11882 	struct lpfc_sli *psli = &phba->sli;
11883 	struct lpfc_queue *qp = NULL;
11884 	struct lpfc_sli_ring *pring;
11885 	struct lpfc_iocbq *iocb, *next_iocb;
11886 	int i;
11887 	unsigned long flags = 0;
11888 	uint16_t prev_pring_flag;
11889 
11890 	lpfc_cleanup_discovery_resources(vport);
11891 
11892 	spin_lock_irqsave(&phba->hbalock, flags);
11893 
11894 	/*
11895 	 * Error everything on the txq since these iocbs
11896 	 * have not been given to the FW yet.
11897 	 * Also issue ABTS for everything on the txcmplq
11898 	 */
11899 	if (phba->sli_rev != LPFC_SLI_REV4) {
11900 		for (i = 0; i < psli->num_rings; i++) {
11901 			pring = &psli->sli3_ring[i];
11902 			prev_pring_flag = pring->flag;
11903 			/* Only slow rings */
11904 			if (pring->ringno == LPFC_ELS_RING) {
11905 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11906 				/* Set the lpfc data pending flag */
11907 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11908 			}
11909 			list_for_each_entry_safe(iocb, next_iocb,
11910 						 &pring->txq, list) {
11911 				if (iocb->vport != vport)
11912 					continue;
11913 				list_move_tail(&iocb->list, &completions);
11914 			}
11915 			list_for_each_entry_safe(iocb, next_iocb,
11916 						 &pring->txcmplq, list) {
11917 				if (iocb->vport != vport)
11918 					continue;
11919 				lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11920 							   NULL);
11921 			}
11922 			pring->flag = prev_pring_flag;
11923 		}
11924 	} else {
11925 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11926 			pring = qp->pring;
11927 			if (!pring)
11928 				continue;
11929 			if (pring == phba->sli4_hba.els_wq->pring) {
11930 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11931 				/* Set the lpfc data pending flag */
11932 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11933 			}
11934 			prev_pring_flag = pring->flag;
11935 			spin_lock(&pring->ring_lock);
11936 			list_for_each_entry_safe(iocb, next_iocb,
11937 						 &pring->txq, list) {
11938 				if (iocb->vport != vport)
11939 					continue;
11940 				list_move_tail(&iocb->list, &completions);
11941 			}
11942 			spin_unlock(&pring->ring_lock);
11943 			list_for_each_entry_safe(iocb, next_iocb,
11944 						 &pring->txcmplq, list) {
11945 				if (iocb->vport != vport)
11946 					continue;
11947 				lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11948 							   NULL);
11949 			}
11950 			pring->flag = prev_pring_flag;
11951 		}
11952 	}
11953 	spin_unlock_irqrestore(&phba->hbalock, flags);
11954 
11955 	/* Make sure HBA is alive */
11956 	lpfc_issue_hb_tmo(phba);
11957 
11958 	/* Cancel all the IOCBs from the completions list */
11959 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
11960 			      IOERR_SLI_DOWN);
11961 	return 1;
11962 }
11963 
11964 /**
11965  * lpfc_sli_hba_down - Resource cleanup function for the HBA
11966  * @phba: Pointer to HBA context object.
11967  *
11968  * This function cleans up all iocb, buffers, mailbox commands
11969  * while shutting down the HBA. This function is called with no
11970  * lock held and always returns 1.
11971  * This function does the following to cleanup driver resources:
11972  * - Free discovery resources for each virtual port
11973  * - Cleanup any pending fabric iocbs
11974  * - Iterate through the iocb txq and free each entry
11975  *   in the list.
11976  * - Free up any buffer posted to the HBA
11977  * - Free mailbox commands in the mailbox queue.
11978  **/
11979 int
11980 lpfc_sli_hba_down(struct lpfc_hba *phba)
11981 {
11982 	LIST_HEAD(completions);
11983 	struct lpfc_sli *psli = &phba->sli;
11984 	struct lpfc_queue *qp = NULL;
11985 	struct lpfc_sli_ring *pring;
11986 	struct lpfc_dmabuf *buf_ptr;
11987 	unsigned long flags = 0;
11988 	int i;
11989 
11990 	/* Shutdown the mailbox command sub-system */
11991 	lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
11992 
11993 	lpfc_hba_down_prep(phba);
11994 
11995 	/* Disable softirqs, including timers from obtaining phba->hbalock */
11996 	local_bh_disable();
11997 
11998 	lpfc_fabric_abort_hba(phba);
11999 
12000 	spin_lock_irqsave(&phba->hbalock, flags);
12001 
12002 	/*
12003 	 * Error everything on the txq since these iocbs
12004 	 * have not been given to the FW yet.
12005 	 */
12006 	if (phba->sli_rev != LPFC_SLI_REV4) {
12007 		for (i = 0; i < psli->num_rings; i++) {
12008 			pring = &psli->sli3_ring[i];
12009 			/* Only slow rings */
12010 			if (pring->ringno == LPFC_ELS_RING) {
12011 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
12012 				/* Set the lpfc data pending flag */
12013 				set_bit(LPFC_DATA_READY, &phba->data_flags);
12014 			}
12015 			list_splice_init(&pring->txq, &completions);
12016 		}
12017 	} else {
12018 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
12019 			pring = qp->pring;
12020 			if (!pring)
12021 				continue;
12022 			spin_lock(&pring->ring_lock);
12023 			list_splice_init(&pring->txq, &completions);
12024 			spin_unlock(&pring->ring_lock);
12025 			if (pring == phba->sli4_hba.els_wq->pring) {
12026 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
12027 				/* Set the lpfc data pending flag */
12028 				set_bit(LPFC_DATA_READY, &phba->data_flags);
12029 			}
12030 		}
12031 	}
12032 	spin_unlock_irqrestore(&phba->hbalock, flags);
12033 
12034 	/* Cancel all the IOCBs from the completions list */
12035 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
12036 			      IOERR_SLI_DOWN);
12037 
12038 	spin_lock_irqsave(&phba->hbalock, flags);
12039 	list_splice_init(&phba->elsbuf, &completions);
12040 	phba->elsbuf_cnt = 0;
12041 	phba->elsbuf_prev_cnt = 0;
12042 	spin_unlock_irqrestore(&phba->hbalock, flags);
12043 
12044 	while (!list_empty(&completions)) {
12045 		list_remove_head(&completions, buf_ptr,
12046 			struct lpfc_dmabuf, list);
12047 		lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
12048 		kfree(buf_ptr);
12049 	}
12050 
12051 	/* Enable softirqs again, done with phba->hbalock */
12052 	local_bh_enable();
12053 
12054 	/* Return any active mbox cmds */
12055 	del_timer_sync(&psli->mbox_tmo);
12056 
12057 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
12058 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
12059 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
12060 
12061 	return 1;
12062 }
12063 
12064 /**
12065  * lpfc_sli_pcimem_bcopy - SLI memory copy function
12066  * @srcp: Source memory pointer.
12067  * @destp: Destination memory pointer.
12068  * @cnt: Number of words required to be copied.
12069  *
12070  * This function is used for copying data between driver memory
12071  * and the SLI memory. This function also changes the endianness
12072  * of each word if native endianness is different from SLI
12073  * endianness. This function can be called with or without
12074  * lock.
12075  **/
12076 void
12077 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
12078 {
12079 	uint32_t *src = srcp;
12080 	uint32_t *dest = destp;
12081 	uint32_t ldata;
12082 	int i;
12083 
12084 	for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
12085 		ldata = *src;
12086 		ldata = le32_to_cpu(ldata);
12087 		*dest = ldata;
12088 		src++;
12089 		dest++;
12090 	}
12091 }
12092 
12093 
12094 /**
12095  * lpfc_sli_bemem_bcopy - SLI memory copy function
12096  * @srcp: Source memory pointer.
12097  * @destp: Destination memory pointer.
12098  * @cnt: Number of words required to be copied.
12099  *
12100  * This function is used for copying data between a data structure
12101  * with big endian representation to local endianness.
12102  * This function can be called with or without lock.
12103  **/
12104 void
12105 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
12106 {
12107 	uint32_t *src = srcp;
12108 	uint32_t *dest = destp;
12109 	uint32_t ldata;
12110 	int i;
12111 
12112 	for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
12113 		ldata = *src;
12114 		ldata = be32_to_cpu(ldata);
12115 		*dest = ldata;
12116 		src++;
12117 		dest++;
12118 	}
12119 }
12120 
12121 /**
12122  * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
12123  * @phba: Pointer to HBA context object.
12124  * @pring: Pointer to driver SLI ring object.
12125  * @mp: Pointer to driver buffer object.
12126  *
12127  * This function is called with no lock held.
12128  * It always return zero after adding the buffer to the postbufq
12129  * buffer list.
12130  **/
12131 int
12132 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12133 			 struct lpfc_dmabuf *mp)
12134 {
12135 	/* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
12136 	   later */
12137 	spin_lock_irq(&phba->hbalock);
12138 	list_add_tail(&mp->list, &pring->postbufq);
12139 	pring->postbufq_cnt++;
12140 	spin_unlock_irq(&phba->hbalock);
12141 	return 0;
12142 }
12143 
12144 /**
12145  * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
12146  * @phba: Pointer to HBA context object.
12147  *
12148  * When HBQ is enabled, buffers are searched based on tags. This function
12149  * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
12150  * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
12151  * does not conflict with tags of buffer posted for unsolicited events.
12152  * The function returns the allocated tag. The function is called with
12153  * no locks held.
12154  **/
12155 uint32_t
12156 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
12157 {
12158 	spin_lock_irq(&phba->hbalock);
12159 	phba->buffer_tag_count++;
12160 	/*
12161 	 * Always set the QUE_BUFTAG_BIT to distiguish between
12162 	 * a tag assigned by HBQ.
12163 	 */
12164 	phba->buffer_tag_count |= QUE_BUFTAG_BIT;
12165 	spin_unlock_irq(&phba->hbalock);
12166 	return phba->buffer_tag_count;
12167 }
12168 
12169 /**
12170  * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
12171  * @phba: Pointer to HBA context object.
12172  * @pring: Pointer to driver SLI ring object.
12173  * @tag: Buffer tag.
12174  *
12175  * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
12176  * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
12177  * iocb is posted to the response ring with the tag of the buffer.
12178  * This function searches the pring->postbufq list using the tag
12179  * to find buffer associated with CMD_IOCB_RET_XRI64_CX
12180  * iocb. If the buffer is found then lpfc_dmabuf object of the
12181  * buffer is returned to the caller else NULL is returned.
12182  * This function is called with no lock held.
12183  **/
12184 struct lpfc_dmabuf *
12185 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12186 			uint32_t tag)
12187 {
12188 	struct lpfc_dmabuf *mp, *next_mp;
12189 	struct list_head *slp = &pring->postbufq;
12190 
12191 	/* Search postbufq, from the beginning, looking for a match on tag */
12192 	spin_lock_irq(&phba->hbalock);
12193 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
12194 		if (mp->buffer_tag == tag) {
12195 			list_del_init(&mp->list);
12196 			pring->postbufq_cnt--;
12197 			spin_unlock_irq(&phba->hbalock);
12198 			return mp;
12199 		}
12200 	}
12201 
12202 	spin_unlock_irq(&phba->hbalock);
12203 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12204 			"0402 Cannot find virtual addr for buffer tag on "
12205 			"ring %d Data x%lx x%px x%px x%x\n",
12206 			pring->ringno, (unsigned long) tag,
12207 			slp->next, slp->prev, pring->postbufq_cnt);
12208 
12209 	return NULL;
12210 }
12211 
12212 /**
12213  * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
12214  * @phba: Pointer to HBA context object.
12215  * @pring: Pointer to driver SLI ring object.
12216  * @phys: DMA address of the buffer.
12217  *
12218  * This function searches the buffer list using the dma_address
12219  * of unsolicited event to find the driver's lpfc_dmabuf object
12220  * corresponding to the dma_address. The function returns the
12221  * lpfc_dmabuf object if a buffer is found else it returns NULL.
12222  * This function is called by the ct and els unsolicited event
12223  * handlers to get the buffer associated with the unsolicited
12224  * event.
12225  *
12226  * This function is called with no lock held.
12227  **/
12228 struct lpfc_dmabuf *
12229 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12230 			 dma_addr_t phys)
12231 {
12232 	struct lpfc_dmabuf *mp, *next_mp;
12233 	struct list_head *slp = &pring->postbufq;
12234 
12235 	/* Search postbufq, from the beginning, looking for a match on phys */
12236 	spin_lock_irq(&phba->hbalock);
12237 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
12238 		if (mp->phys == phys) {
12239 			list_del_init(&mp->list);
12240 			pring->postbufq_cnt--;
12241 			spin_unlock_irq(&phba->hbalock);
12242 			return mp;
12243 		}
12244 	}
12245 
12246 	spin_unlock_irq(&phba->hbalock);
12247 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12248 			"0410 Cannot find virtual addr for mapped buf on "
12249 			"ring %d Data x%llx x%px x%px x%x\n",
12250 			pring->ringno, (unsigned long long)phys,
12251 			slp->next, slp->prev, pring->postbufq_cnt);
12252 	return NULL;
12253 }
12254 
12255 /**
12256  * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
12257  * @phba: Pointer to HBA context object.
12258  * @cmdiocb: Pointer to driver command iocb object.
12259  * @rspiocb: Pointer to driver response iocb object.
12260  *
12261  * This function is the completion handler for the abort iocbs for
12262  * ELS commands. This function is called from the ELS ring event
12263  * handler with no lock held. This function frees memory resources
12264  * associated with the abort iocb.
12265  **/
12266 static void
12267 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12268 			struct lpfc_iocbq *rspiocb)
12269 {
12270 	u32 ulp_status = get_job_ulpstatus(phba, rspiocb);
12271 	u32 ulp_word4 = get_job_word4(phba, rspiocb);
12272 	u8 cmnd = get_job_cmnd(phba, cmdiocb);
12273 
12274 	if (ulp_status) {
12275 		/*
12276 		 * Assume that the port already completed and returned, or
12277 		 * will return the iocb. Just Log the message.
12278 		 */
12279 		if (phba->sli_rev < LPFC_SLI_REV4) {
12280 			if (cmnd == CMD_ABORT_XRI_CX &&
12281 			    ulp_status == IOSTAT_LOCAL_REJECT &&
12282 			    ulp_word4 == IOERR_ABORT_REQUESTED) {
12283 				goto release_iocb;
12284 			}
12285 		}
12286 
12287 		lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
12288 				"0327 Cannot abort els iocb x%px "
12289 				"with io cmd xri %x abort tag : x%x, "
12290 				"abort status %x abort code %x\n",
12291 				cmdiocb, get_job_abtsiotag(phba, cmdiocb),
12292 				(phba->sli_rev == LPFC_SLI_REV4) ?
12293 				get_wqe_reqtag(cmdiocb) :
12294 				cmdiocb->iocb.un.acxri.abortContextTag,
12295 				ulp_status, ulp_word4);
12296 
12297 	}
12298 release_iocb:
12299 	lpfc_sli_release_iocbq(phba, cmdiocb);
12300 	return;
12301 }
12302 
12303 /**
12304  * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
12305  * @phba: Pointer to HBA context object.
12306  * @cmdiocb: Pointer to driver command iocb object.
12307  * @rspiocb: Pointer to driver response iocb object.
12308  *
12309  * The function is called from SLI ring event handler with no
12310  * lock held. This function is the completion handler for ELS commands
12311  * which are aborted. The function frees memory resources used for
12312  * the aborted ELS commands.
12313  **/
12314 void
12315 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12316 		     struct lpfc_iocbq *rspiocb)
12317 {
12318 	struct lpfc_nodelist *ndlp = cmdiocb->ndlp;
12319 	IOCB_t *irsp;
12320 	LPFC_MBOXQ_t *mbox;
12321 	u32 ulp_command, ulp_status, ulp_word4, iotag;
12322 
12323 	ulp_command = get_job_cmnd(phba, cmdiocb);
12324 	ulp_status = get_job_ulpstatus(phba, rspiocb);
12325 	ulp_word4 = get_job_word4(phba, rspiocb);
12326 
12327 	if (phba->sli_rev == LPFC_SLI_REV4) {
12328 		iotag = get_wqe_reqtag(cmdiocb);
12329 	} else {
12330 		irsp = &rspiocb->iocb;
12331 		iotag = irsp->ulpIoTag;
12332 
12333 		/* It is possible a PLOGI_RJT for NPIV ports to get aborted.
12334 		 * The MBX_REG_LOGIN64 mbox command is freed back to the
12335 		 * mbox_mem_pool here.
12336 		 */
12337 		if (cmdiocb->context_un.mbox) {
12338 			mbox = cmdiocb->context_un.mbox;
12339 			lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED);
12340 			cmdiocb->context_un.mbox = NULL;
12341 		}
12342 	}
12343 
12344 	/* ELS cmd tag <ulpIoTag> completes */
12345 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
12346 			"0139 Ignoring ELS cmd code x%x completion Data: "
12347 			"x%x x%x x%x x%px\n",
12348 			ulp_command, ulp_status, ulp_word4, iotag,
12349 			cmdiocb->ndlp);
12350 	/*
12351 	 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp
12352 	 * if exchange is busy.
12353 	 */
12354 	if (ulp_command == CMD_GEN_REQUEST64_CR)
12355 		lpfc_ct_free_iocb(phba, cmdiocb);
12356 	else
12357 		lpfc_els_free_iocb(phba, cmdiocb);
12358 
12359 	lpfc_nlp_put(ndlp);
12360 }
12361 
12362 /**
12363  * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
12364  * @phba: Pointer to HBA context object.
12365  * @pring: Pointer to driver SLI ring object.
12366  * @cmdiocb: Pointer to driver command iocb object.
12367  * @cmpl: completion function.
12368  *
12369  * This function issues an abort iocb for the provided command iocb. In case
12370  * of unloading, the abort iocb will not be issued to commands on the ELS
12371  * ring. Instead, the callback function shall be changed to those commands
12372  * so that nothing happens when them finishes. This function is called with
12373  * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS
12374  * when the command iocb is an abort request.
12375  *
12376  **/
12377 int
12378 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12379 			   struct lpfc_iocbq *cmdiocb, void *cmpl)
12380 {
12381 	struct lpfc_vport *vport = cmdiocb->vport;
12382 	struct lpfc_iocbq *abtsiocbp;
12383 	int retval = IOCB_ERROR;
12384 	unsigned long iflags;
12385 	struct lpfc_nodelist *ndlp = NULL;
12386 	u32 ulp_command = get_job_cmnd(phba, cmdiocb);
12387 	u16 ulp_context, iotag;
12388 	bool ia;
12389 
12390 	/*
12391 	 * There are certain command types we don't want to abort.  And we
12392 	 * don't want to abort commands that are already in the process of
12393 	 * being aborted.
12394 	 */
12395 	if (ulp_command == CMD_ABORT_XRI_WQE ||
12396 	    ulp_command == CMD_ABORT_XRI_CN ||
12397 	    ulp_command == CMD_CLOSE_XRI_CN ||
12398 	    cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED)
12399 		return IOCB_ABORTING;
12400 
12401 	if (!pring) {
12402 		if (cmdiocb->cmd_flag & LPFC_IO_FABRIC)
12403 			cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl;
12404 		else
12405 			cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl;
12406 		return retval;
12407 	}
12408 
12409 	/*
12410 	 * If we're unloading, don't abort iocb on the ELS ring, but change
12411 	 * the callback so that nothing happens when it finishes.
12412 	 */
12413 	if ((vport->load_flag & FC_UNLOADING) &&
12414 	    pring->ringno == LPFC_ELS_RING) {
12415 		if (cmdiocb->cmd_flag & LPFC_IO_FABRIC)
12416 			cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl;
12417 		else
12418 			cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl;
12419 		return retval;
12420 	}
12421 
12422 	/* issue ABTS for this IOCB based on iotag */
12423 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
12424 	if (abtsiocbp == NULL)
12425 		return IOCB_NORESOURCE;
12426 
12427 	/* This signals the response to set the correct status
12428 	 * before calling the completion handler
12429 	 */
12430 	cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED;
12431 
12432 	if (phba->sli_rev == LPFC_SLI_REV4) {
12433 		ulp_context = cmdiocb->sli4_xritag;
12434 		iotag = abtsiocbp->iotag;
12435 	} else {
12436 		iotag = cmdiocb->iocb.ulpIoTag;
12437 		if (pring->ringno == LPFC_ELS_RING) {
12438 			ndlp = cmdiocb->ndlp;
12439 			ulp_context = ndlp->nlp_rpi;
12440 		} else {
12441 			ulp_context = cmdiocb->iocb.ulpContext;
12442 		}
12443 	}
12444 
12445 	if (phba->link_state < LPFC_LINK_UP ||
12446 	    (phba->sli_rev == LPFC_SLI_REV4 &&
12447 	     phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) ||
12448 	    (phba->link_flag & LS_EXTERNAL_LOOPBACK))
12449 		ia = true;
12450 	else
12451 		ia = false;
12452 
12453 	lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag,
12454 				cmdiocb->iocb.ulpClass,
12455 				LPFC_WQE_CQ_ID_DEFAULT, ia, false);
12456 
12457 	abtsiocbp->vport = vport;
12458 
12459 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
12460 	abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
12461 	if (cmdiocb->cmd_flag & LPFC_IO_FCP)
12462 		abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX);
12463 
12464 	if (cmdiocb->cmd_flag & LPFC_IO_FOF)
12465 		abtsiocbp->cmd_flag |= LPFC_IO_FOF;
12466 
12467 	if (cmpl)
12468 		abtsiocbp->cmd_cmpl = cmpl;
12469 	else
12470 		abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl;
12471 	abtsiocbp->vport = vport;
12472 
12473 	if (phba->sli_rev == LPFC_SLI_REV4) {
12474 		pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
12475 		if (unlikely(pring == NULL))
12476 			goto abort_iotag_exit;
12477 		/* Note: both hbalock and ring_lock need to be set here */
12478 		spin_lock_irqsave(&pring->ring_lock, iflags);
12479 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
12480 			abtsiocbp, 0);
12481 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
12482 	} else {
12483 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
12484 			abtsiocbp, 0);
12485 	}
12486 
12487 abort_iotag_exit:
12488 
12489 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
12490 			 "0339 Abort IO XRI x%x, Original iotag x%x, "
12491 			 "abort tag x%x Cmdjob : x%px Abortjob : x%px "
12492 			 "retval x%x\n",
12493 			 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ?
12494 			 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp,
12495 			 retval);
12496 	if (retval) {
12497 		cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED;
12498 		__lpfc_sli_release_iocbq(phba, abtsiocbp);
12499 	}
12500 
12501 	/*
12502 	 * Caller to this routine should check for IOCB_ERROR
12503 	 * and handle it properly.  This routine no longer removes
12504 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
12505 	 */
12506 	return retval;
12507 }
12508 
12509 /**
12510  * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
12511  * @phba: pointer to lpfc HBA data structure.
12512  *
12513  * This routine will abort all pending and outstanding iocbs to an HBA.
12514  **/
12515 void
12516 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
12517 {
12518 	struct lpfc_sli *psli = &phba->sli;
12519 	struct lpfc_sli_ring *pring;
12520 	struct lpfc_queue *qp = NULL;
12521 	int i;
12522 
12523 	if (phba->sli_rev != LPFC_SLI_REV4) {
12524 		for (i = 0; i < psli->num_rings; i++) {
12525 			pring = &psli->sli3_ring[i];
12526 			lpfc_sli_abort_iocb_ring(phba, pring);
12527 		}
12528 		return;
12529 	}
12530 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
12531 		pring = qp->pring;
12532 		if (!pring)
12533 			continue;
12534 		lpfc_sli_abort_iocb_ring(phba, pring);
12535 	}
12536 }
12537 
12538 /**
12539  * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts
12540  * @iocbq: Pointer to iocb object.
12541  * @vport: Pointer to driver virtual port object.
12542  *
12543  * This function acts as an iocb filter for functions which abort FCP iocbs.
12544  *
12545  * Return values
12546  * -ENODEV, if a null iocb or vport ptr is encountered
12547  * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as
12548  *          driver already started the abort process, or is an abort iocb itself
12549  * 0, passes criteria for aborting the FCP I/O iocb
12550  **/
12551 static int
12552 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq,
12553 				     struct lpfc_vport *vport)
12554 {
12555 	u8 ulp_command;
12556 
12557 	/* No null ptr vports */
12558 	if (!iocbq || iocbq->vport != vport)
12559 		return -ENODEV;
12560 
12561 	/* iocb must be for FCP IO, already exists on the TX cmpl queue,
12562 	 * can't be premarked as driver aborted, nor be an ABORT iocb itself
12563 	 */
12564 	ulp_command = get_job_cmnd(vport->phba, iocbq);
12565 	if (!(iocbq->cmd_flag & LPFC_IO_FCP) ||
12566 	    !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) ||
12567 	    (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) ||
12568 	    (ulp_command == CMD_ABORT_XRI_CN ||
12569 	     ulp_command == CMD_CLOSE_XRI_CN ||
12570 	     ulp_command == CMD_ABORT_XRI_WQE))
12571 		return -EINVAL;
12572 
12573 	return 0;
12574 }
12575 
12576 /**
12577  * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target
12578  * @iocbq: Pointer to driver iocb object.
12579  * @vport: Pointer to driver virtual port object.
12580  * @tgt_id: SCSI ID of the target.
12581  * @lun_id: LUN ID of the scsi device.
12582  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
12583  *
12584  * This function acts as an iocb filter for validating a lun/SCSI target/SCSI
12585  * host.
12586  *
12587  * It will return
12588  * 0 if the filtering criteria is met for the given iocb and will return
12589  * 1 if the filtering criteria is not met.
12590  * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
12591  * given iocb is for the SCSI device specified by vport, tgt_id and
12592  * lun_id parameter.
12593  * If ctx_cmd == LPFC_CTX_TGT,  the function returns 0 only if the
12594  * given iocb is for the SCSI target specified by vport and tgt_id
12595  * parameters.
12596  * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
12597  * given iocb is for the SCSI host associated with the given vport.
12598  * This function is called with no locks held.
12599  **/
12600 static int
12601 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
12602 			   uint16_t tgt_id, uint64_t lun_id,
12603 			   lpfc_ctx_cmd ctx_cmd)
12604 {
12605 	struct lpfc_io_buf *lpfc_cmd;
12606 	int rc = 1;
12607 
12608 	lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
12609 
12610 	if (lpfc_cmd->pCmd == NULL)
12611 		return rc;
12612 
12613 	switch (ctx_cmd) {
12614 	case LPFC_CTX_LUN:
12615 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
12616 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
12617 		    (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
12618 			rc = 0;
12619 		break;
12620 	case LPFC_CTX_TGT:
12621 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
12622 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
12623 			rc = 0;
12624 		break;
12625 	case LPFC_CTX_HOST:
12626 		rc = 0;
12627 		break;
12628 	default:
12629 		printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
12630 			__func__, ctx_cmd);
12631 		break;
12632 	}
12633 
12634 	return rc;
12635 }
12636 
12637 /**
12638  * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
12639  * @vport: Pointer to virtual port.
12640  * @tgt_id: SCSI ID of the target.
12641  * @lun_id: LUN ID of the scsi device.
12642  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12643  *
12644  * This function returns number of FCP commands pending for the vport.
12645  * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
12646  * commands pending on the vport associated with SCSI device specified
12647  * by tgt_id and lun_id parameters.
12648  * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
12649  * commands pending on the vport associated with SCSI target specified
12650  * by tgt_id parameter.
12651  * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
12652  * commands pending on the vport.
12653  * This function returns the number of iocbs which satisfy the filter.
12654  * This function is called without any lock held.
12655  **/
12656 int
12657 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
12658 		  lpfc_ctx_cmd ctx_cmd)
12659 {
12660 	struct lpfc_hba *phba = vport->phba;
12661 	struct lpfc_iocbq *iocbq;
12662 	int sum, i;
12663 	unsigned long iflags;
12664 	u8 ulp_command;
12665 
12666 	spin_lock_irqsave(&phba->hbalock, iflags);
12667 	for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
12668 		iocbq = phba->sli.iocbq_lookup[i];
12669 
12670 		if (!iocbq || iocbq->vport != vport)
12671 			continue;
12672 		if (!(iocbq->cmd_flag & LPFC_IO_FCP) ||
12673 		    !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ))
12674 			continue;
12675 
12676 		/* Include counting outstanding aborts */
12677 		ulp_command = get_job_cmnd(phba, iocbq);
12678 		if (ulp_command == CMD_ABORT_XRI_CN ||
12679 		    ulp_command == CMD_CLOSE_XRI_CN ||
12680 		    ulp_command == CMD_ABORT_XRI_WQE) {
12681 			sum++;
12682 			continue;
12683 		}
12684 
12685 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12686 					       ctx_cmd) == 0)
12687 			sum++;
12688 	}
12689 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12690 
12691 	return sum;
12692 }
12693 
12694 /**
12695  * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
12696  * @phba: Pointer to HBA context object
12697  * @cmdiocb: Pointer to command iocb object.
12698  * @rspiocb: Pointer to response iocb object.
12699  *
12700  * This function is called when an aborted FCP iocb completes. This
12701  * function is called by the ring event handler with no lock held.
12702  * This function frees the iocb.
12703  **/
12704 void
12705 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12706 			struct lpfc_iocbq *rspiocb)
12707 {
12708 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12709 			"3096 ABORT_XRI_CX completing on rpi x%x "
12710 			"original iotag x%x, abort cmd iotag x%x "
12711 			"status 0x%x, reason 0x%x\n",
12712 			(phba->sli_rev == LPFC_SLI_REV4) ?
12713 			cmdiocb->sli4_xritag :
12714 			cmdiocb->iocb.un.acxri.abortContextTag,
12715 			get_job_abtsiotag(phba, cmdiocb),
12716 			cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb),
12717 			get_job_word4(phba, rspiocb));
12718 	lpfc_sli_release_iocbq(phba, cmdiocb);
12719 	return;
12720 }
12721 
12722 /**
12723  * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
12724  * @vport: Pointer to virtual port.
12725  * @tgt_id: SCSI ID of the target.
12726  * @lun_id: LUN ID of the scsi device.
12727  * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12728  *
12729  * This function sends an abort command for every SCSI command
12730  * associated with the given virtual port pending on the ring
12731  * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then
12732  * lpfc_sli_validate_fcp_iocb function.  The ordering for validation before
12733  * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort
12734  * followed by lpfc_sli_validate_fcp_iocb.
12735  *
12736  * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
12737  * FCP iocbs associated with lun specified by tgt_id and lun_id
12738  * parameters
12739  * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
12740  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
12741  * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
12742  * FCP iocbs associated with virtual port.
12743  * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4
12744  * lpfc_sli4_calc_ring is used.
12745  * This function returns number of iocbs it failed to abort.
12746  * This function is called with no locks held.
12747  **/
12748 int
12749 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id,
12750 		    lpfc_ctx_cmd abort_cmd)
12751 {
12752 	struct lpfc_hba *phba = vport->phba;
12753 	struct lpfc_sli_ring *pring = NULL;
12754 	struct lpfc_iocbq *iocbq;
12755 	int errcnt = 0, ret_val = 0;
12756 	unsigned long iflags;
12757 	int i;
12758 
12759 	/* all I/Os are in process of being flushed */
12760 	if (phba->hba_flag & HBA_IOQ_FLUSH)
12761 		return errcnt;
12762 
12763 	for (i = 1; i <= phba->sli.last_iotag; i++) {
12764 		iocbq = phba->sli.iocbq_lookup[i];
12765 
12766 		if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport))
12767 			continue;
12768 
12769 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12770 					       abort_cmd) != 0)
12771 			continue;
12772 
12773 		spin_lock_irqsave(&phba->hbalock, iflags);
12774 		if (phba->sli_rev == LPFC_SLI_REV3) {
12775 			pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12776 		} else if (phba->sli_rev == LPFC_SLI_REV4) {
12777 			pring = lpfc_sli4_calc_ring(phba, iocbq);
12778 		}
12779 		ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq,
12780 						     lpfc_sli_abort_fcp_cmpl);
12781 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12782 		if (ret_val != IOCB_SUCCESS)
12783 			errcnt++;
12784 	}
12785 
12786 	return errcnt;
12787 }
12788 
12789 /**
12790  * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
12791  * @vport: Pointer to virtual port.
12792  * @pring: Pointer to driver SLI ring object.
12793  * @tgt_id: SCSI ID of the target.
12794  * @lun_id: LUN ID of the scsi device.
12795  * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12796  *
12797  * This function sends an abort command for every SCSI command
12798  * associated with the given virtual port pending on the ring
12799  * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then
12800  * lpfc_sli_validate_fcp_iocb function.  The ordering for validation before
12801  * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort
12802  * followed by lpfc_sli_validate_fcp_iocb.
12803  *
12804  * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
12805  * FCP iocbs associated with lun specified by tgt_id and lun_id
12806  * parameters
12807  * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
12808  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
12809  * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
12810  * FCP iocbs associated with virtual port.
12811  * This function returns number of iocbs it aborted .
12812  * This function is called with no locks held right after a taskmgmt
12813  * command is sent.
12814  **/
12815 int
12816 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
12817 			uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
12818 {
12819 	struct lpfc_hba *phba = vport->phba;
12820 	struct lpfc_io_buf *lpfc_cmd;
12821 	struct lpfc_iocbq *abtsiocbq;
12822 	struct lpfc_nodelist *ndlp = NULL;
12823 	struct lpfc_iocbq *iocbq;
12824 	int sum, i, ret_val;
12825 	unsigned long iflags;
12826 	struct lpfc_sli_ring *pring_s4 = NULL;
12827 	u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT;
12828 	bool ia;
12829 
12830 	spin_lock_irqsave(&phba->hbalock, iflags);
12831 
12832 	/* all I/Os are in process of being flushed */
12833 	if (phba->hba_flag & HBA_IOQ_FLUSH) {
12834 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12835 		return 0;
12836 	}
12837 	sum = 0;
12838 
12839 	for (i = 1; i <= phba->sli.last_iotag; i++) {
12840 		iocbq = phba->sli.iocbq_lookup[i];
12841 
12842 		if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport))
12843 			continue;
12844 
12845 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12846 					       cmd) != 0)
12847 			continue;
12848 
12849 		/* Guard against IO completion being called at same time */
12850 		lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
12851 		spin_lock(&lpfc_cmd->buf_lock);
12852 
12853 		if (!lpfc_cmd->pCmd) {
12854 			spin_unlock(&lpfc_cmd->buf_lock);
12855 			continue;
12856 		}
12857 
12858 		if (phba->sli_rev == LPFC_SLI_REV4) {
12859 			pring_s4 =
12860 			    phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
12861 			if (!pring_s4) {
12862 				spin_unlock(&lpfc_cmd->buf_lock);
12863 				continue;
12864 			}
12865 			/* Note: both hbalock and ring_lock must be set here */
12866 			spin_lock(&pring_s4->ring_lock);
12867 		}
12868 
12869 		/*
12870 		 * If the iocbq is already being aborted, don't take a second
12871 		 * action, but do count it.
12872 		 */
12873 		if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) ||
12874 		    !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) {
12875 			if (phba->sli_rev == LPFC_SLI_REV4)
12876 				spin_unlock(&pring_s4->ring_lock);
12877 			spin_unlock(&lpfc_cmd->buf_lock);
12878 			continue;
12879 		}
12880 
12881 		/* issue ABTS for this IOCB based on iotag */
12882 		abtsiocbq = __lpfc_sli_get_iocbq(phba);
12883 		if (!abtsiocbq) {
12884 			if (phba->sli_rev == LPFC_SLI_REV4)
12885 				spin_unlock(&pring_s4->ring_lock);
12886 			spin_unlock(&lpfc_cmd->buf_lock);
12887 			continue;
12888 		}
12889 
12890 		if (phba->sli_rev == LPFC_SLI_REV4) {
12891 			iotag = abtsiocbq->iotag;
12892 			ulp_context = iocbq->sli4_xritag;
12893 			cqid = lpfc_cmd->hdwq->io_cq_map;
12894 		} else {
12895 			iotag = iocbq->iocb.ulpIoTag;
12896 			if (pring->ringno == LPFC_ELS_RING) {
12897 				ndlp = iocbq->ndlp;
12898 				ulp_context = ndlp->nlp_rpi;
12899 			} else {
12900 				ulp_context = iocbq->iocb.ulpContext;
12901 			}
12902 		}
12903 
12904 		ndlp = lpfc_cmd->rdata->pnode;
12905 
12906 		if (lpfc_is_link_up(phba) &&
12907 		    (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) &&
12908 		    !(phba->link_flag & LS_EXTERNAL_LOOPBACK))
12909 			ia = false;
12910 		else
12911 			ia = true;
12912 
12913 		lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag,
12914 					iocbq->iocb.ulpClass, cqid,
12915 					ia, false);
12916 
12917 		abtsiocbq->vport = vport;
12918 
12919 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
12920 		abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
12921 		if (iocbq->cmd_flag & LPFC_IO_FCP)
12922 			abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX;
12923 		if (iocbq->cmd_flag & LPFC_IO_FOF)
12924 			abtsiocbq->cmd_flag |= LPFC_IO_FOF;
12925 
12926 		/* Setup callback routine and issue the command. */
12927 		abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl;
12928 
12929 		/*
12930 		 * Indicate the IO is being aborted by the driver and set
12931 		 * the caller's flag into the aborted IO.
12932 		 */
12933 		iocbq->cmd_flag |= LPFC_DRIVER_ABORTED;
12934 
12935 		if (phba->sli_rev == LPFC_SLI_REV4) {
12936 			ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
12937 							abtsiocbq, 0);
12938 			spin_unlock(&pring_s4->ring_lock);
12939 		} else {
12940 			ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
12941 							abtsiocbq, 0);
12942 		}
12943 
12944 		spin_unlock(&lpfc_cmd->buf_lock);
12945 
12946 		if (ret_val == IOCB_ERROR)
12947 			__lpfc_sli_release_iocbq(phba, abtsiocbq);
12948 		else
12949 			sum++;
12950 	}
12951 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12952 	return sum;
12953 }
12954 
12955 /**
12956  * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
12957  * @phba: Pointer to HBA context object.
12958  * @cmdiocbq: Pointer to command iocb.
12959  * @rspiocbq: Pointer to response iocb.
12960  *
12961  * This function is the completion handler for iocbs issued using
12962  * lpfc_sli_issue_iocb_wait function. This function is called by the
12963  * ring event handler function without any lock held. This function
12964  * can be called from both worker thread context and interrupt
12965  * context. This function also can be called from other thread which
12966  * cleans up the SLI layer objects.
12967  * This function copy the contents of the response iocb to the
12968  * response iocb memory object provided by the caller of
12969  * lpfc_sli_issue_iocb_wait and then wakes up the thread which
12970  * sleeps for the iocb completion.
12971  **/
12972 static void
12973 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
12974 			struct lpfc_iocbq *cmdiocbq,
12975 			struct lpfc_iocbq *rspiocbq)
12976 {
12977 	wait_queue_head_t *pdone_q;
12978 	unsigned long iflags;
12979 	struct lpfc_io_buf *lpfc_cmd;
12980 	size_t offset = offsetof(struct lpfc_iocbq, wqe);
12981 
12982 	spin_lock_irqsave(&phba->hbalock, iflags);
12983 	if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) {
12984 
12985 		/*
12986 		 * A time out has occurred for the iocb.  If a time out
12987 		 * completion handler has been supplied, call it.  Otherwise,
12988 		 * just free the iocbq.
12989 		 */
12990 
12991 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12992 		cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl;
12993 		cmdiocbq->wait_cmd_cmpl = NULL;
12994 		if (cmdiocbq->cmd_cmpl)
12995 			cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL);
12996 		else
12997 			lpfc_sli_release_iocbq(phba, cmdiocbq);
12998 		return;
12999 	}
13000 
13001 	/* Copy the contents of the local rspiocb into the caller's buffer. */
13002 	cmdiocbq->cmd_flag |= LPFC_IO_WAKE;
13003 	if (cmdiocbq->rsp_iocb && rspiocbq)
13004 		memcpy((char *)cmdiocbq->rsp_iocb + offset,
13005 		       (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset);
13006 
13007 	/* Set the exchange busy flag for task management commands */
13008 	if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) &&
13009 	    !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) {
13010 		lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
13011 					cur_iocbq);
13012 		if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY))
13013 			lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
13014 		else
13015 			lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
13016 	}
13017 
13018 	pdone_q = cmdiocbq->context_un.wait_queue;
13019 	if (pdone_q)
13020 		wake_up(pdone_q);
13021 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13022 	return;
13023 }
13024 
13025 /**
13026  * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
13027  * @phba: Pointer to HBA context object..
13028  * @piocbq: Pointer to command iocb.
13029  * @flag: Flag to test.
13030  *
13031  * This routine grabs the hbalock and then test the cmd_flag to
13032  * see if the passed in flag is set.
13033  * Returns:
13034  * 1 if flag is set.
13035  * 0 if flag is not set.
13036  **/
13037 static int
13038 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
13039 		 struct lpfc_iocbq *piocbq, uint32_t flag)
13040 {
13041 	unsigned long iflags;
13042 	int ret;
13043 
13044 	spin_lock_irqsave(&phba->hbalock, iflags);
13045 	ret = piocbq->cmd_flag & flag;
13046 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13047 	return ret;
13048 
13049 }
13050 
13051 /**
13052  * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
13053  * @phba: Pointer to HBA context object..
13054  * @ring_number: Ring number
13055  * @piocb: Pointer to command iocb.
13056  * @prspiocbq: Pointer to response iocb.
13057  * @timeout: Timeout in number of seconds.
13058  *
13059  * This function issues the iocb to firmware and waits for the
13060  * iocb to complete. The cmd_cmpl field of the shall be used
13061  * to handle iocbs which time out. If the field is NULL, the
13062  * function shall free the iocbq structure.  If more clean up is
13063  * needed, the caller is expected to provide a completion function
13064  * that will provide the needed clean up.  If the iocb command is
13065  * not completed within timeout seconds, the function will either
13066  * free the iocbq structure (if cmd_cmpl == NULL) or execute the
13067  * completion function set in the cmd_cmpl field and then return
13068  * a status of IOCB_TIMEDOUT.  The caller should not free the iocb
13069  * resources if this function returns IOCB_TIMEDOUT.
13070  * The function waits for the iocb completion using an
13071  * non-interruptible wait.
13072  * This function will sleep while waiting for iocb completion.
13073  * So, this function should not be called from any context which
13074  * does not allow sleeping. Due to the same reason, this function
13075  * cannot be called with interrupt disabled.
13076  * This function assumes that the iocb completions occur while
13077  * this function sleep. So, this function cannot be called from
13078  * the thread which process iocb completion for this ring.
13079  * This function clears the cmd_flag of the iocb object before
13080  * issuing the iocb and the iocb completion handler sets this
13081  * flag and wakes this thread when the iocb completes.
13082  * The contents of the response iocb will be copied to prspiocbq
13083  * by the completion handler when the command completes.
13084  * This function returns IOCB_SUCCESS when success.
13085  * This function is called with no lock held.
13086  **/
13087 int
13088 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
13089 			 uint32_t ring_number,
13090 			 struct lpfc_iocbq *piocb,
13091 			 struct lpfc_iocbq *prspiocbq,
13092 			 uint32_t timeout)
13093 {
13094 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
13095 	long timeleft, timeout_req = 0;
13096 	int retval = IOCB_SUCCESS;
13097 	uint32_t creg_val;
13098 	struct lpfc_iocbq *iocb;
13099 	int txq_cnt = 0;
13100 	int txcmplq_cnt = 0;
13101 	struct lpfc_sli_ring *pring;
13102 	unsigned long iflags;
13103 	bool iocb_completed = true;
13104 
13105 	if (phba->sli_rev >= LPFC_SLI_REV4) {
13106 		lpfc_sli_prep_wqe(phba, piocb);
13107 
13108 		pring = lpfc_sli4_calc_ring(phba, piocb);
13109 	} else
13110 		pring = &phba->sli.sli3_ring[ring_number];
13111 	/*
13112 	 * If the caller has provided a response iocbq buffer, then rsp_iocb
13113 	 * is NULL or its an error.
13114 	 */
13115 	if (prspiocbq) {
13116 		if (piocb->rsp_iocb)
13117 			return IOCB_ERROR;
13118 		piocb->rsp_iocb = prspiocbq;
13119 	}
13120 
13121 	piocb->wait_cmd_cmpl = piocb->cmd_cmpl;
13122 	piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait;
13123 	piocb->context_un.wait_queue = &done_q;
13124 	piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
13125 
13126 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
13127 		if (lpfc_readl(phba->HCregaddr, &creg_val))
13128 			return IOCB_ERROR;
13129 		creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
13130 		writel(creg_val, phba->HCregaddr);
13131 		readl(phba->HCregaddr); /* flush */
13132 	}
13133 
13134 	retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
13135 				     SLI_IOCB_RET_IOCB);
13136 	if (retval == IOCB_SUCCESS) {
13137 		timeout_req = msecs_to_jiffies(timeout * 1000);
13138 		timeleft = wait_event_timeout(done_q,
13139 				lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
13140 				timeout_req);
13141 		spin_lock_irqsave(&phba->hbalock, iflags);
13142 		if (!(piocb->cmd_flag & LPFC_IO_WAKE)) {
13143 
13144 			/*
13145 			 * IOCB timed out.  Inform the wake iocb wait
13146 			 * completion function and set local status
13147 			 */
13148 
13149 			iocb_completed = false;
13150 			piocb->cmd_flag |= LPFC_IO_WAKE_TMO;
13151 		}
13152 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13153 		if (iocb_completed) {
13154 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13155 					"0331 IOCB wake signaled\n");
13156 			/* Note: we are not indicating if the IOCB has a success
13157 			 * status or not - that's for the caller to check.
13158 			 * IOCB_SUCCESS means just that the command was sent and
13159 			 * completed. Not that it completed successfully.
13160 			 * */
13161 		} else if (timeleft == 0) {
13162 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13163 					"0338 IOCB wait timeout error - no "
13164 					"wake response Data x%x\n", timeout);
13165 			retval = IOCB_TIMEDOUT;
13166 		} else {
13167 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13168 					"0330 IOCB wake NOT set, "
13169 					"Data x%x x%lx\n",
13170 					timeout, (timeleft / jiffies));
13171 			retval = IOCB_TIMEDOUT;
13172 		}
13173 	} else if (retval == IOCB_BUSY) {
13174 		if (phba->cfg_log_verbose & LOG_SLI) {
13175 			list_for_each_entry(iocb, &pring->txq, list) {
13176 				txq_cnt++;
13177 			}
13178 			list_for_each_entry(iocb, &pring->txcmplq, list) {
13179 				txcmplq_cnt++;
13180 			}
13181 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13182 				"2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
13183 				phba->iocb_cnt, txq_cnt, txcmplq_cnt);
13184 		}
13185 		return retval;
13186 	} else {
13187 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13188 				"0332 IOCB wait issue failed, Data x%x\n",
13189 				retval);
13190 		retval = IOCB_ERROR;
13191 	}
13192 
13193 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
13194 		if (lpfc_readl(phba->HCregaddr, &creg_val))
13195 			return IOCB_ERROR;
13196 		creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
13197 		writel(creg_val, phba->HCregaddr);
13198 		readl(phba->HCregaddr); /* flush */
13199 	}
13200 
13201 	if (prspiocbq)
13202 		piocb->rsp_iocb = NULL;
13203 
13204 	piocb->context_un.wait_queue = NULL;
13205 	piocb->cmd_cmpl = NULL;
13206 	return retval;
13207 }
13208 
13209 /**
13210  * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
13211  * @phba: Pointer to HBA context object.
13212  * @pmboxq: Pointer to driver mailbox object.
13213  * @timeout: Timeout in number of seconds.
13214  *
13215  * This function issues the mailbox to firmware and waits for the
13216  * mailbox command to complete. If the mailbox command is not
13217  * completed within timeout seconds, it returns MBX_TIMEOUT.
13218  * The function waits for the mailbox completion using an
13219  * interruptible wait. If the thread is woken up due to a
13220  * signal, MBX_TIMEOUT error is returned to the caller. Caller
13221  * should not free the mailbox resources, if this function returns
13222  * MBX_TIMEOUT.
13223  * This function will sleep while waiting for mailbox completion.
13224  * So, this function should not be called from any context which
13225  * does not allow sleeping. Due to the same reason, this function
13226  * cannot be called with interrupt disabled.
13227  * This function assumes that the mailbox completion occurs while
13228  * this function sleep. So, this function cannot be called from
13229  * the worker thread which processes mailbox completion.
13230  * This function is called in the context of HBA management
13231  * applications.
13232  * This function returns MBX_SUCCESS when successful.
13233  * This function is called with no lock held.
13234  **/
13235 int
13236 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
13237 			 uint32_t timeout)
13238 {
13239 	struct completion mbox_done;
13240 	int retval;
13241 	unsigned long flag;
13242 
13243 	pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
13244 	/* setup wake call as IOCB callback */
13245 	pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
13246 
13247 	/* setup context3 field to pass wait_queue pointer to wake function  */
13248 	init_completion(&mbox_done);
13249 	pmboxq->context3 = &mbox_done;
13250 	/* now issue the command */
13251 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
13252 	if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
13253 		wait_for_completion_timeout(&mbox_done,
13254 					    msecs_to_jiffies(timeout * 1000));
13255 
13256 		spin_lock_irqsave(&phba->hbalock, flag);
13257 		pmboxq->context3 = NULL;
13258 		/*
13259 		 * if LPFC_MBX_WAKE flag is set the mailbox is completed
13260 		 * else do not free the resources.
13261 		 */
13262 		if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
13263 			retval = MBX_SUCCESS;
13264 		} else {
13265 			retval = MBX_TIMEOUT;
13266 			pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
13267 		}
13268 		spin_unlock_irqrestore(&phba->hbalock, flag);
13269 	}
13270 	return retval;
13271 }
13272 
13273 /**
13274  * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
13275  * @phba: Pointer to HBA context.
13276  * @mbx_action: Mailbox shutdown options.
13277  *
13278  * This function is called to shutdown the driver's mailbox sub-system.
13279  * It first marks the mailbox sub-system is in a block state to prevent
13280  * the asynchronous mailbox command from issued off the pending mailbox
13281  * command queue. If the mailbox command sub-system shutdown is due to
13282  * HBA error conditions such as EEH or ERATT, this routine shall invoke
13283  * the mailbox sub-system flush routine to forcefully bring down the
13284  * mailbox sub-system. Otherwise, if it is due to normal condition (such
13285  * as with offline or HBA function reset), this routine will wait for the
13286  * outstanding mailbox command to complete before invoking the mailbox
13287  * sub-system flush routine to gracefully bring down mailbox sub-system.
13288  **/
13289 void
13290 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
13291 {
13292 	struct lpfc_sli *psli = &phba->sli;
13293 	unsigned long timeout;
13294 
13295 	if (mbx_action == LPFC_MBX_NO_WAIT) {
13296 		/* delay 100ms for port state */
13297 		msleep(100);
13298 		lpfc_sli_mbox_sys_flush(phba);
13299 		return;
13300 	}
13301 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
13302 
13303 	/* Disable softirqs, including timers from obtaining phba->hbalock */
13304 	local_bh_disable();
13305 
13306 	spin_lock_irq(&phba->hbalock);
13307 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13308 
13309 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
13310 		/* Determine how long we might wait for the active mailbox
13311 		 * command to be gracefully completed by firmware.
13312 		 */
13313 		if (phba->sli.mbox_active)
13314 			timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
13315 						phba->sli.mbox_active) *
13316 						1000) + jiffies;
13317 		spin_unlock_irq(&phba->hbalock);
13318 
13319 		/* Enable softirqs again, done with phba->hbalock */
13320 		local_bh_enable();
13321 
13322 		while (phba->sli.mbox_active) {
13323 			/* Check active mailbox complete status every 2ms */
13324 			msleep(2);
13325 			if (time_after(jiffies, timeout))
13326 				/* Timeout, let the mailbox flush routine to
13327 				 * forcefully release active mailbox command
13328 				 */
13329 				break;
13330 		}
13331 	} else {
13332 		spin_unlock_irq(&phba->hbalock);
13333 
13334 		/* Enable softirqs again, done with phba->hbalock */
13335 		local_bh_enable();
13336 	}
13337 
13338 	lpfc_sli_mbox_sys_flush(phba);
13339 }
13340 
13341 /**
13342  * lpfc_sli_eratt_read - read sli-3 error attention events
13343  * @phba: Pointer to HBA context.
13344  *
13345  * This function is called to read the SLI3 device error attention registers
13346  * for possible error attention events. The caller must hold the hostlock
13347  * with spin_lock_irq().
13348  *
13349  * This function returns 1 when there is Error Attention in the Host Attention
13350  * Register and returns 0 otherwise.
13351  **/
13352 static int
13353 lpfc_sli_eratt_read(struct lpfc_hba *phba)
13354 {
13355 	uint32_t ha_copy;
13356 
13357 	/* Read chip Host Attention (HA) register */
13358 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
13359 		goto unplug_err;
13360 
13361 	if (ha_copy & HA_ERATT) {
13362 		/* Read host status register to retrieve error event */
13363 		if (lpfc_sli_read_hs(phba))
13364 			goto unplug_err;
13365 
13366 		/* Check if there is a deferred error condition is active */
13367 		if ((HS_FFER1 & phba->work_hs) &&
13368 		    ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
13369 		      HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
13370 			phba->hba_flag |= DEFER_ERATT;
13371 			/* Clear all interrupt enable conditions */
13372 			writel(0, phba->HCregaddr);
13373 			readl(phba->HCregaddr);
13374 		}
13375 
13376 		/* Set the driver HA work bitmap */
13377 		phba->work_ha |= HA_ERATT;
13378 		/* Indicate polling handles this ERATT */
13379 		phba->hba_flag |= HBA_ERATT_HANDLED;
13380 		return 1;
13381 	}
13382 	return 0;
13383 
13384 unplug_err:
13385 	/* Set the driver HS work bitmap */
13386 	phba->work_hs |= UNPLUG_ERR;
13387 	/* Set the driver HA work bitmap */
13388 	phba->work_ha |= HA_ERATT;
13389 	/* Indicate polling handles this ERATT */
13390 	phba->hba_flag |= HBA_ERATT_HANDLED;
13391 	return 1;
13392 }
13393 
13394 /**
13395  * lpfc_sli4_eratt_read - read sli-4 error attention events
13396  * @phba: Pointer to HBA context.
13397  *
13398  * This function is called to read the SLI4 device error attention registers
13399  * for possible error attention events. The caller must hold the hostlock
13400  * with spin_lock_irq().
13401  *
13402  * This function returns 1 when there is Error Attention in the Host Attention
13403  * Register and returns 0 otherwise.
13404  **/
13405 static int
13406 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
13407 {
13408 	uint32_t uerr_sta_hi, uerr_sta_lo;
13409 	uint32_t if_type, portsmphr;
13410 	struct lpfc_register portstat_reg;
13411 	u32 logmask;
13412 
13413 	/*
13414 	 * For now, use the SLI4 device internal unrecoverable error
13415 	 * registers for error attention. This can be changed later.
13416 	 */
13417 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
13418 	switch (if_type) {
13419 	case LPFC_SLI_INTF_IF_TYPE_0:
13420 		if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
13421 			&uerr_sta_lo) ||
13422 			lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
13423 			&uerr_sta_hi)) {
13424 			phba->work_hs |= UNPLUG_ERR;
13425 			phba->work_ha |= HA_ERATT;
13426 			phba->hba_flag |= HBA_ERATT_HANDLED;
13427 			return 1;
13428 		}
13429 		if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
13430 		    (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
13431 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13432 					"1423 HBA Unrecoverable error: "
13433 					"uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
13434 					"ue_mask_lo_reg=0x%x, "
13435 					"ue_mask_hi_reg=0x%x\n",
13436 					uerr_sta_lo, uerr_sta_hi,
13437 					phba->sli4_hba.ue_mask_lo,
13438 					phba->sli4_hba.ue_mask_hi);
13439 			phba->work_status[0] = uerr_sta_lo;
13440 			phba->work_status[1] = uerr_sta_hi;
13441 			phba->work_ha |= HA_ERATT;
13442 			phba->hba_flag |= HBA_ERATT_HANDLED;
13443 			return 1;
13444 		}
13445 		break;
13446 	case LPFC_SLI_INTF_IF_TYPE_2:
13447 	case LPFC_SLI_INTF_IF_TYPE_6:
13448 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
13449 			&portstat_reg.word0) ||
13450 			lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
13451 			&portsmphr)){
13452 			phba->work_hs |= UNPLUG_ERR;
13453 			phba->work_ha |= HA_ERATT;
13454 			phba->hba_flag |= HBA_ERATT_HANDLED;
13455 			return 1;
13456 		}
13457 		if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
13458 			phba->work_status[0] =
13459 				readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
13460 			phba->work_status[1] =
13461 				readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
13462 			logmask = LOG_TRACE_EVENT;
13463 			if (phba->work_status[0] ==
13464 				SLIPORT_ERR1_REG_ERR_CODE_2 &&
13465 			    phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART)
13466 				logmask = LOG_SLI;
13467 			lpfc_printf_log(phba, KERN_ERR, logmask,
13468 					"2885 Port Status Event: "
13469 					"port status reg 0x%x, "
13470 					"port smphr reg 0x%x, "
13471 					"error 1=0x%x, error 2=0x%x\n",
13472 					portstat_reg.word0,
13473 					portsmphr,
13474 					phba->work_status[0],
13475 					phba->work_status[1]);
13476 			phba->work_ha |= HA_ERATT;
13477 			phba->hba_flag |= HBA_ERATT_HANDLED;
13478 			return 1;
13479 		}
13480 		break;
13481 	case LPFC_SLI_INTF_IF_TYPE_1:
13482 	default:
13483 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13484 				"2886 HBA Error Attention on unsupported "
13485 				"if type %d.", if_type);
13486 		return 1;
13487 	}
13488 
13489 	return 0;
13490 }
13491 
13492 /**
13493  * lpfc_sli_check_eratt - check error attention events
13494  * @phba: Pointer to HBA context.
13495  *
13496  * This function is called from timer soft interrupt context to check HBA's
13497  * error attention register bit for error attention events.
13498  *
13499  * This function returns 1 when there is Error Attention in the Host Attention
13500  * Register and returns 0 otherwise.
13501  **/
13502 int
13503 lpfc_sli_check_eratt(struct lpfc_hba *phba)
13504 {
13505 	uint32_t ha_copy;
13506 
13507 	/* If somebody is waiting to handle an eratt, don't process it
13508 	 * here. The brdkill function will do this.
13509 	 */
13510 	if (phba->link_flag & LS_IGNORE_ERATT)
13511 		return 0;
13512 
13513 	/* Check if interrupt handler handles this ERATT */
13514 	spin_lock_irq(&phba->hbalock);
13515 	if (phba->hba_flag & HBA_ERATT_HANDLED) {
13516 		/* Interrupt handler has handled ERATT */
13517 		spin_unlock_irq(&phba->hbalock);
13518 		return 0;
13519 	}
13520 
13521 	/*
13522 	 * If there is deferred error attention, do not check for error
13523 	 * attention
13524 	 */
13525 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13526 		spin_unlock_irq(&phba->hbalock);
13527 		return 0;
13528 	}
13529 
13530 	/* If PCI channel is offline, don't process it */
13531 	if (unlikely(pci_channel_offline(phba->pcidev))) {
13532 		spin_unlock_irq(&phba->hbalock);
13533 		return 0;
13534 	}
13535 
13536 	switch (phba->sli_rev) {
13537 	case LPFC_SLI_REV2:
13538 	case LPFC_SLI_REV3:
13539 		/* Read chip Host Attention (HA) register */
13540 		ha_copy = lpfc_sli_eratt_read(phba);
13541 		break;
13542 	case LPFC_SLI_REV4:
13543 		/* Read device Uncoverable Error (UERR) registers */
13544 		ha_copy = lpfc_sli4_eratt_read(phba);
13545 		break;
13546 	default:
13547 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13548 				"0299 Invalid SLI revision (%d)\n",
13549 				phba->sli_rev);
13550 		ha_copy = 0;
13551 		break;
13552 	}
13553 	spin_unlock_irq(&phba->hbalock);
13554 
13555 	return ha_copy;
13556 }
13557 
13558 /**
13559  * lpfc_intr_state_check - Check device state for interrupt handling
13560  * @phba: Pointer to HBA context.
13561  *
13562  * This inline routine checks whether a device or its PCI slot is in a state
13563  * that the interrupt should be handled.
13564  *
13565  * This function returns 0 if the device or the PCI slot is in a state that
13566  * interrupt should be handled, otherwise -EIO.
13567  */
13568 static inline int
13569 lpfc_intr_state_check(struct lpfc_hba *phba)
13570 {
13571 	/* If the pci channel is offline, ignore all the interrupts */
13572 	if (unlikely(pci_channel_offline(phba->pcidev)))
13573 		return -EIO;
13574 
13575 	/* Update device level interrupt statistics */
13576 	phba->sli.slistat.sli_intr++;
13577 
13578 	/* Ignore all interrupts during initialization. */
13579 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
13580 		return -EIO;
13581 
13582 	return 0;
13583 }
13584 
13585 /**
13586  * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
13587  * @irq: Interrupt number.
13588  * @dev_id: The device context pointer.
13589  *
13590  * This function is directly called from the PCI layer as an interrupt
13591  * service routine when device with SLI-3 interface spec is enabled with
13592  * MSI-X multi-message interrupt mode and there are slow-path events in
13593  * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
13594  * interrupt mode, this function is called as part of the device-level
13595  * interrupt handler. When the PCI slot is in error recovery or the HBA
13596  * is undergoing initialization, the interrupt handler will not process
13597  * the interrupt. The link attention and ELS ring attention events are
13598  * handled by the worker thread. The interrupt handler signals the worker
13599  * thread and returns for these events. This function is called without
13600  * any lock held. It gets the hbalock to access and update SLI data
13601  * structures.
13602  *
13603  * This function returns IRQ_HANDLED when interrupt is handled else it
13604  * returns IRQ_NONE.
13605  **/
13606 irqreturn_t
13607 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
13608 {
13609 	struct lpfc_hba  *phba;
13610 	uint32_t ha_copy, hc_copy;
13611 	uint32_t work_ha_copy;
13612 	unsigned long status;
13613 	unsigned long iflag;
13614 	uint32_t control;
13615 
13616 	MAILBOX_t *mbox, *pmbox;
13617 	struct lpfc_vport *vport;
13618 	struct lpfc_nodelist *ndlp;
13619 	struct lpfc_dmabuf *mp;
13620 	LPFC_MBOXQ_t *pmb;
13621 	int rc;
13622 
13623 	/*
13624 	 * Get the driver's phba structure from the dev_id and
13625 	 * assume the HBA is not interrupting.
13626 	 */
13627 	phba = (struct lpfc_hba *)dev_id;
13628 
13629 	if (unlikely(!phba))
13630 		return IRQ_NONE;
13631 
13632 	/*
13633 	 * Stuff needs to be attented to when this function is invoked as an
13634 	 * individual interrupt handler in MSI-X multi-message interrupt mode
13635 	 */
13636 	if (phba->intr_type == MSIX) {
13637 		/* Check device state for handling interrupt */
13638 		if (lpfc_intr_state_check(phba))
13639 			return IRQ_NONE;
13640 		/* Need to read HA REG for slow-path events */
13641 		spin_lock_irqsave(&phba->hbalock, iflag);
13642 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
13643 			goto unplug_error;
13644 		/* If somebody is waiting to handle an eratt don't process it
13645 		 * here. The brdkill function will do this.
13646 		 */
13647 		if (phba->link_flag & LS_IGNORE_ERATT)
13648 			ha_copy &= ~HA_ERATT;
13649 		/* Check the need for handling ERATT in interrupt handler */
13650 		if (ha_copy & HA_ERATT) {
13651 			if (phba->hba_flag & HBA_ERATT_HANDLED)
13652 				/* ERATT polling has handled ERATT */
13653 				ha_copy &= ~HA_ERATT;
13654 			else
13655 				/* Indicate interrupt handler handles ERATT */
13656 				phba->hba_flag |= HBA_ERATT_HANDLED;
13657 		}
13658 
13659 		/*
13660 		 * If there is deferred error attention, do not check for any
13661 		 * interrupt.
13662 		 */
13663 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13664 			spin_unlock_irqrestore(&phba->hbalock, iflag);
13665 			return IRQ_NONE;
13666 		}
13667 
13668 		/* Clear up only attention source related to slow-path */
13669 		if (lpfc_readl(phba->HCregaddr, &hc_copy))
13670 			goto unplug_error;
13671 
13672 		writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
13673 			HC_LAINT_ENA | HC_ERINT_ENA),
13674 			phba->HCregaddr);
13675 		writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
13676 			phba->HAregaddr);
13677 		writel(hc_copy, phba->HCregaddr);
13678 		readl(phba->HAregaddr); /* flush */
13679 		spin_unlock_irqrestore(&phba->hbalock, iflag);
13680 	} else
13681 		ha_copy = phba->ha_copy;
13682 
13683 	work_ha_copy = ha_copy & phba->work_ha_mask;
13684 
13685 	if (work_ha_copy) {
13686 		if (work_ha_copy & HA_LATT) {
13687 			if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
13688 				/*
13689 				 * Turn off Link Attention interrupts
13690 				 * until CLEAR_LA done
13691 				 */
13692 				spin_lock_irqsave(&phba->hbalock, iflag);
13693 				phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
13694 				if (lpfc_readl(phba->HCregaddr, &control))
13695 					goto unplug_error;
13696 				control &= ~HC_LAINT_ENA;
13697 				writel(control, phba->HCregaddr);
13698 				readl(phba->HCregaddr); /* flush */
13699 				spin_unlock_irqrestore(&phba->hbalock, iflag);
13700 			}
13701 			else
13702 				work_ha_copy &= ~HA_LATT;
13703 		}
13704 
13705 		if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
13706 			/*
13707 			 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
13708 			 * the only slow ring.
13709 			 */
13710 			status = (work_ha_copy &
13711 				(HA_RXMASK  << (4*LPFC_ELS_RING)));
13712 			status >>= (4*LPFC_ELS_RING);
13713 			if (status & HA_RXMASK) {
13714 				spin_lock_irqsave(&phba->hbalock, iflag);
13715 				if (lpfc_readl(phba->HCregaddr, &control))
13716 					goto unplug_error;
13717 
13718 				lpfc_debugfs_slow_ring_trc(phba,
13719 				"ISR slow ring:   ctl:x%x stat:x%x isrcnt:x%x",
13720 				control, status,
13721 				(uint32_t)phba->sli.slistat.sli_intr);
13722 
13723 				if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
13724 					lpfc_debugfs_slow_ring_trc(phba,
13725 						"ISR Disable ring:"
13726 						"pwork:x%x hawork:x%x wait:x%x",
13727 						phba->work_ha, work_ha_copy,
13728 						(uint32_t)((unsigned long)
13729 						&phba->work_waitq));
13730 
13731 					control &=
13732 					    ~(HC_R0INT_ENA << LPFC_ELS_RING);
13733 					writel(control, phba->HCregaddr);
13734 					readl(phba->HCregaddr); /* flush */
13735 				}
13736 				else {
13737 					lpfc_debugfs_slow_ring_trc(phba,
13738 						"ISR slow ring:   pwork:"
13739 						"x%x hawork:x%x wait:x%x",
13740 						phba->work_ha, work_ha_copy,
13741 						(uint32_t)((unsigned long)
13742 						&phba->work_waitq));
13743 				}
13744 				spin_unlock_irqrestore(&phba->hbalock, iflag);
13745 			}
13746 		}
13747 		spin_lock_irqsave(&phba->hbalock, iflag);
13748 		if (work_ha_copy & HA_ERATT) {
13749 			if (lpfc_sli_read_hs(phba))
13750 				goto unplug_error;
13751 			/*
13752 			 * Check if there is a deferred error condition
13753 			 * is active
13754 			 */
13755 			if ((HS_FFER1 & phba->work_hs) &&
13756 				((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
13757 				  HS_FFER6 | HS_FFER7 | HS_FFER8) &
13758 				  phba->work_hs)) {
13759 				phba->hba_flag |= DEFER_ERATT;
13760 				/* Clear all interrupt enable conditions */
13761 				writel(0, phba->HCregaddr);
13762 				readl(phba->HCregaddr);
13763 			}
13764 		}
13765 
13766 		if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
13767 			pmb = phba->sli.mbox_active;
13768 			pmbox = &pmb->u.mb;
13769 			mbox = phba->mbox;
13770 			vport = pmb->vport;
13771 
13772 			/* First check out the status word */
13773 			lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
13774 			if (pmbox->mbxOwner != OWN_HOST) {
13775 				spin_unlock_irqrestore(&phba->hbalock, iflag);
13776 				/*
13777 				 * Stray Mailbox Interrupt, mbxCommand <cmd>
13778 				 * mbxStatus <status>
13779 				 */
13780 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13781 						"(%d):0304 Stray Mailbox "
13782 						"Interrupt mbxCommand x%x "
13783 						"mbxStatus x%x\n",
13784 						(vport ? vport->vpi : 0),
13785 						pmbox->mbxCommand,
13786 						pmbox->mbxStatus);
13787 				/* clear mailbox attention bit */
13788 				work_ha_copy &= ~HA_MBATT;
13789 			} else {
13790 				phba->sli.mbox_active = NULL;
13791 				spin_unlock_irqrestore(&phba->hbalock, iflag);
13792 				phba->last_completion_time = jiffies;
13793 				del_timer(&phba->sli.mbox_tmo);
13794 				if (pmb->mbox_cmpl) {
13795 					lpfc_sli_pcimem_bcopy(mbox, pmbox,
13796 							MAILBOX_CMD_SIZE);
13797 					if (pmb->out_ext_byte_len &&
13798 						pmb->ctx_buf)
13799 						lpfc_sli_pcimem_bcopy(
13800 						phba->mbox_ext,
13801 						pmb->ctx_buf,
13802 						pmb->out_ext_byte_len);
13803 				}
13804 				if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13805 					pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13806 
13807 					lpfc_debugfs_disc_trc(vport,
13808 						LPFC_DISC_TRC_MBOX_VPORT,
13809 						"MBOX dflt rpi: : "
13810 						"status:x%x rpi:x%x",
13811 						(uint32_t)pmbox->mbxStatus,
13812 						pmbox->un.varWords[0], 0);
13813 
13814 					if (!pmbox->mbxStatus) {
13815 						mp = (struct lpfc_dmabuf *)
13816 							(pmb->ctx_buf);
13817 						ndlp = (struct lpfc_nodelist *)
13818 							pmb->ctx_ndlp;
13819 
13820 						/* Reg_LOGIN of dflt RPI was
13821 						 * successful. new lets get
13822 						 * rid of the RPI using the
13823 						 * same mbox buffer.
13824 						 */
13825 						lpfc_unreg_login(phba,
13826 							vport->vpi,
13827 							pmbox->un.varWords[0],
13828 							pmb);
13829 						pmb->mbox_cmpl =
13830 							lpfc_mbx_cmpl_dflt_rpi;
13831 						pmb->ctx_buf = mp;
13832 						pmb->ctx_ndlp = ndlp;
13833 						pmb->vport = vport;
13834 						rc = lpfc_sli_issue_mbox(phba,
13835 								pmb,
13836 								MBX_NOWAIT);
13837 						if (rc != MBX_BUSY)
13838 							lpfc_printf_log(phba,
13839 							KERN_ERR,
13840 							LOG_TRACE_EVENT,
13841 							"0350 rc should have"
13842 							"been MBX_BUSY\n");
13843 						if (rc != MBX_NOT_FINISHED)
13844 							goto send_current_mbox;
13845 					}
13846 				}
13847 				spin_lock_irqsave(
13848 						&phba->pport->work_port_lock,
13849 						iflag);
13850 				phba->pport->work_port_events &=
13851 					~WORKER_MBOX_TMO;
13852 				spin_unlock_irqrestore(
13853 						&phba->pport->work_port_lock,
13854 						iflag);
13855 
13856 				/* Do NOT queue MBX_HEARTBEAT to the worker
13857 				 * thread for processing.
13858 				 */
13859 				if (pmbox->mbxCommand == MBX_HEARTBEAT) {
13860 					/* Process mbox now */
13861 					phba->sli.mbox_active = NULL;
13862 					phba->sli.sli_flag &=
13863 						~LPFC_SLI_MBOX_ACTIVE;
13864 					if (pmb->mbox_cmpl)
13865 						pmb->mbox_cmpl(phba, pmb);
13866 				} else {
13867 					/* Queue to worker thread to process */
13868 					lpfc_mbox_cmpl_put(phba, pmb);
13869 				}
13870 			}
13871 		} else
13872 			spin_unlock_irqrestore(&phba->hbalock, iflag);
13873 
13874 		if ((work_ha_copy & HA_MBATT) &&
13875 		    (phba->sli.mbox_active == NULL)) {
13876 send_current_mbox:
13877 			/* Process next mailbox command if there is one */
13878 			do {
13879 				rc = lpfc_sli_issue_mbox(phba, NULL,
13880 							 MBX_NOWAIT);
13881 			} while (rc == MBX_NOT_FINISHED);
13882 			if (rc != MBX_SUCCESS)
13883 				lpfc_printf_log(phba, KERN_ERR,
13884 						LOG_TRACE_EVENT,
13885 						"0349 rc should be "
13886 						"MBX_SUCCESS\n");
13887 		}
13888 
13889 		spin_lock_irqsave(&phba->hbalock, iflag);
13890 		phba->work_ha |= work_ha_copy;
13891 		spin_unlock_irqrestore(&phba->hbalock, iflag);
13892 		lpfc_worker_wake_up(phba);
13893 	}
13894 	return IRQ_HANDLED;
13895 unplug_error:
13896 	spin_unlock_irqrestore(&phba->hbalock, iflag);
13897 	return IRQ_HANDLED;
13898 
13899 } /* lpfc_sli_sp_intr_handler */
13900 
13901 /**
13902  * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
13903  * @irq: Interrupt number.
13904  * @dev_id: The device context pointer.
13905  *
13906  * This function is directly called from the PCI layer as an interrupt
13907  * service routine when device with SLI-3 interface spec is enabled with
13908  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
13909  * ring event in the HBA. However, when the device is enabled with either
13910  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
13911  * device-level interrupt handler. When the PCI slot is in error recovery
13912  * or the HBA is undergoing initialization, the interrupt handler will not
13913  * process the interrupt. The SCSI FCP fast-path ring event are handled in
13914  * the intrrupt context. This function is called without any lock held.
13915  * It gets the hbalock to access and update SLI data structures.
13916  *
13917  * This function returns IRQ_HANDLED when interrupt is handled else it
13918  * returns IRQ_NONE.
13919  **/
13920 irqreturn_t
13921 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
13922 {
13923 	struct lpfc_hba  *phba;
13924 	uint32_t ha_copy;
13925 	unsigned long status;
13926 	unsigned long iflag;
13927 	struct lpfc_sli_ring *pring;
13928 
13929 	/* Get the driver's phba structure from the dev_id and
13930 	 * assume the HBA is not interrupting.
13931 	 */
13932 	phba = (struct lpfc_hba *) dev_id;
13933 
13934 	if (unlikely(!phba))
13935 		return IRQ_NONE;
13936 
13937 	/*
13938 	 * Stuff needs to be attented to when this function is invoked as an
13939 	 * individual interrupt handler in MSI-X multi-message interrupt mode
13940 	 */
13941 	if (phba->intr_type == MSIX) {
13942 		/* Check device state for handling interrupt */
13943 		if (lpfc_intr_state_check(phba))
13944 			return IRQ_NONE;
13945 		/* Need to read HA REG for FCP ring and other ring events */
13946 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
13947 			return IRQ_HANDLED;
13948 		/* Clear up only attention source related to fast-path */
13949 		spin_lock_irqsave(&phba->hbalock, iflag);
13950 		/*
13951 		 * If there is deferred error attention, do not check for
13952 		 * any interrupt.
13953 		 */
13954 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13955 			spin_unlock_irqrestore(&phba->hbalock, iflag);
13956 			return IRQ_NONE;
13957 		}
13958 		writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
13959 			phba->HAregaddr);
13960 		readl(phba->HAregaddr); /* flush */
13961 		spin_unlock_irqrestore(&phba->hbalock, iflag);
13962 	} else
13963 		ha_copy = phba->ha_copy;
13964 
13965 	/*
13966 	 * Process all events on FCP ring. Take the optimized path for FCP IO.
13967 	 */
13968 	ha_copy &= ~(phba->work_ha_mask);
13969 
13970 	status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
13971 	status >>= (4*LPFC_FCP_RING);
13972 	pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
13973 	if (status & HA_RXMASK)
13974 		lpfc_sli_handle_fast_ring_event(phba, pring, status);
13975 
13976 	if (phba->cfg_multi_ring_support == 2) {
13977 		/*
13978 		 * Process all events on extra ring. Take the optimized path
13979 		 * for extra ring IO.
13980 		 */
13981 		status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
13982 		status >>= (4*LPFC_EXTRA_RING);
13983 		if (status & HA_RXMASK) {
13984 			lpfc_sli_handle_fast_ring_event(phba,
13985 					&phba->sli.sli3_ring[LPFC_EXTRA_RING],
13986 					status);
13987 		}
13988 	}
13989 	return IRQ_HANDLED;
13990 }  /* lpfc_sli_fp_intr_handler */
13991 
13992 /**
13993  * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
13994  * @irq: Interrupt number.
13995  * @dev_id: The device context pointer.
13996  *
13997  * This function is the HBA device-level interrupt handler to device with
13998  * SLI-3 interface spec, called from the PCI layer when either MSI or
13999  * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
14000  * requires driver attention. This function invokes the slow-path interrupt
14001  * attention handling function and fast-path interrupt attention handling
14002  * function in turn to process the relevant HBA attention events. This
14003  * function is called without any lock held. It gets the hbalock to access
14004  * and update SLI data structures.
14005  *
14006  * This function returns IRQ_HANDLED when interrupt is handled, else it
14007  * returns IRQ_NONE.
14008  **/
14009 irqreturn_t
14010 lpfc_sli_intr_handler(int irq, void *dev_id)
14011 {
14012 	struct lpfc_hba  *phba;
14013 	irqreturn_t sp_irq_rc, fp_irq_rc;
14014 	unsigned long status1, status2;
14015 	uint32_t hc_copy;
14016 
14017 	/*
14018 	 * Get the driver's phba structure from the dev_id and
14019 	 * assume the HBA is not interrupting.
14020 	 */
14021 	phba = (struct lpfc_hba *) dev_id;
14022 
14023 	if (unlikely(!phba))
14024 		return IRQ_NONE;
14025 
14026 	/* Check device state for handling interrupt */
14027 	if (lpfc_intr_state_check(phba))
14028 		return IRQ_NONE;
14029 
14030 	spin_lock(&phba->hbalock);
14031 	if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
14032 		spin_unlock(&phba->hbalock);
14033 		return IRQ_HANDLED;
14034 	}
14035 
14036 	if (unlikely(!phba->ha_copy)) {
14037 		spin_unlock(&phba->hbalock);
14038 		return IRQ_NONE;
14039 	} else if (phba->ha_copy & HA_ERATT) {
14040 		if (phba->hba_flag & HBA_ERATT_HANDLED)
14041 			/* ERATT polling has handled ERATT */
14042 			phba->ha_copy &= ~HA_ERATT;
14043 		else
14044 			/* Indicate interrupt handler handles ERATT */
14045 			phba->hba_flag |= HBA_ERATT_HANDLED;
14046 	}
14047 
14048 	/*
14049 	 * If there is deferred error attention, do not check for any interrupt.
14050 	 */
14051 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
14052 		spin_unlock(&phba->hbalock);
14053 		return IRQ_NONE;
14054 	}
14055 
14056 	/* Clear attention sources except link and error attentions */
14057 	if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
14058 		spin_unlock(&phba->hbalock);
14059 		return IRQ_HANDLED;
14060 	}
14061 	writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
14062 		| HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
14063 		phba->HCregaddr);
14064 	writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
14065 	writel(hc_copy, phba->HCregaddr);
14066 	readl(phba->HAregaddr); /* flush */
14067 	spin_unlock(&phba->hbalock);
14068 
14069 	/*
14070 	 * Invokes slow-path host attention interrupt handling as appropriate.
14071 	 */
14072 
14073 	/* status of events with mailbox and link attention */
14074 	status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
14075 
14076 	/* status of events with ELS ring */
14077 	status2 = (phba->ha_copy & (HA_RXMASK  << (4*LPFC_ELS_RING)));
14078 	status2 >>= (4*LPFC_ELS_RING);
14079 
14080 	if (status1 || (status2 & HA_RXMASK))
14081 		sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
14082 	else
14083 		sp_irq_rc = IRQ_NONE;
14084 
14085 	/*
14086 	 * Invoke fast-path host attention interrupt handling as appropriate.
14087 	 */
14088 
14089 	/* status of events with FCP ring */
14090 	status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
14091 	status1 >>= (4*LPFC_FCP_RING);
14092 
14093 	/* status of events with extra ring */
14094 	if (phba->cfg_multi_ring_support == 2) {
14095 		status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
14096 		status2 >>= (4*LPFC_EXTRA_RING);
14097 	} else
14098 		status2 = 0;
14099 
14100 	if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
14101 		fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
14102 	else
14103 		fp_irq_rc = IRQ_NONE;
14104 
14105 	/* Return device-level interrupt handling status */
14106 	return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
14107 }  /* lpfc_sli_intr_handler */
14108 
14109 /**
14110  * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
14111  * @phba: pointer to lpfc hba data structure.
14112  *
14113  * This routine is invoked by the worker thread to process all the pending
14114  * SLI4 els abort xri events.
14115  **/
14116 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
14117 {
14118 	struct lpfc_cq_event *cq_event;
14119 	unsigned long iflags;
14120 
14121 	/* First, declare the els xri abort event has been handled */
14122 	spin_lock_irqsave(&phba->hbalock, iflags);
14123 	phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
14124 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14125 
14126 	/* Now, handle all the els xri abort events */
14127 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
14128 	while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
14129 		/* Get the first event from the head of the event queue */
14130 		list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
14131 				 cq_event, struct lpfc_cq_event, list);
14132 		spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
14133 				       iflags);
14134 		/* Notify aborted XRI for ELS work queue */
14135 		lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
14136 
14137 		/* Free the event processed back to the free pool */
14138 		lpfc_sli4_cq_event_release(phba, cq_event);
14139 		spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
14140 				  iflags);
14141 	}
14142 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
14143 }
14144 
14145 /**
14146  * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe
14147  * @phba: Pointer to HBA context object.
14148  * @irspiocbq: Pointer to work-queue completion queue entry.
14149  *
14150  * This routine handles an ELS work-queue completion event and construct
14151  * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common
14152  * discovery engine to handle.
14153  *
14154  * Return: Pointer to the receive IOCBQ, NULL otherwise.
14155  **/
14156 static struct lpfc_iocbq *
14157 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba,
14158 				  struct lpfc_iocbq *irspiocbq)
14159 {
14160 	struct lpfc_sli_ring *pring;
14161 	struct lpfc_iocbq *cmdiocbq;
14162 	struct lpfc_wcqe_complete *wcqe;
14163 	unsigned long iflags;
14164 
14165 	pring = lpfc_phba_elsring(phba);
14166 	if (unlikely(!pring))
14167 		return NULL;
14168 
14169 	wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
14170 	spin_lock_irqsave(&pring->ring_lock, iflags);
14171 	pring->stats.iocb_event++;
14172 	/* Look up the ELS command IOCB and create pseudo response IOCB */
14173 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
14174 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
14175 	if (unlikely(!cmdiocbq)) {
14176 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
14177 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14178 				"0386 ELS complete with no corresponding "
14179 				"cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
14180 				wcqe->word0, wcqe->total_data_placed,
14181 				wcqe->parameter, wcqe->word3);
14182 		lpfc_sli_release_iocbq(phba, irspiocbq);
14183 		return NULL;
14184 	}
14185 
14186 	memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128));
14187 	memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe));
14188 
14189 	/* Put the iocb back on the txcmplq */
14190 	lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
14191 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
14192 
14193 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
14194 		spin_lock_irqsave(&phba->hbalock, iflags);
14195 		irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY;
14196 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14197 	}
14198 
14199 	return irspiocbq;
14200 }
14201 
14202 inline struct lpfc_cq_event *
14203 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
14204 {
14205 	struct lpfc_cq_event *cq_event;
14206 
14207 	/* Allocate a new internal CQ_EVENT entry */
14208 	cq_event = lpfc_sli4_cq_event_alloc(phba);
14209 	if (!cq_event) {
14210 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14211 				"0602 Failed to alloc CQ_EVENT entry\n");
14212 		return NULL;
14213 	}
14214 
14215 	/* Move the CQE into the event */
14216 	memcpy(&cq_event->cqe, entry, size);
14217 	return cq_event;
14218 }
14219 
14220 /**
14221  * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event
14222  * @phba: Pointer to HBA context object.
14223  * @mcqe: Pointer to mailbox completion queue entry.
14224  *
14225  * This routine process a mailbox completion queue entry with asynchronous
14226  * event.
14227  *
14228  * Return: true if work posted to worker thread, otherwise false.
14229  **/
14230 static bool
14231 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
14232 {
14233 	struct lpfc_cq_event *cq_event;
14234 	unsigned long iflags;
14235 
14236 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14237 			"0392 Async Event: word0:x%x, word1:x%x, "
14238 			"word2:x%x, word3:x%x\n", mcqe->word0,
14239 			mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
14240 
14241 	cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
14242 	if (!cq_event)
14243 		return false;
14244 
14245 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
14246 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
14247 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
14248 
14249 	/* Set the async event flag */
14250 	spin_lock_irqsave(&phba->hbalock, iflags);
14251 	phba->hba_flag |= ASYNC_EVENT;
14252 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14253 
14254 	return true;
14255 }
14256 
14257 /**
14258  * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
14259  * @phba: Pointer to HBA context object.
14260  * @mcqe: Pointer to mailbox completion queue entry.
14261  *
14262  * This routine process a mailbox completion queue entry with mailbox
14263  * completion event.
14264  *
14265  * Return: true if work posted to worker thread, otherwise false.
14266  **/
14267 static bool
14268 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
14269 {
14270 	uint32_t mcqe_status;
14271 	MAILBOX_t *mbox, *pmbox;
14272 	struct lpfc_mqe *mqe;
14273 	struct lpfc_vport *vport;
14274 	struct lpfc_nodelist *ndlp;
14275 	struct lpfc_dmabuf *mp;
14276 	unsigned long iflags;
14277 	LPFC_MBOXQ_t *pmb;
14278 	bool workposted = false;
14279 	int rc;
14280 
14281 	/* If not a mailbox complete MCQE, out by checking mailbox consume */
14282 	if (!bf_get(lpfc_trailer_completed, mcqe))
14283 		goto out_no_mqe_complete;
14284 
14285 	/* Get the reference to the active mbox command */
14286 	spin_lock_irqsave(&phba->hbalock, iflags);
14287 	pmb = phba->sli.mbox_active;
14288 	if (unlikely(!pmb)) {
14289 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14290 				"1832 No pending MBOX command to handle\n");
14291 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14292 		goto out_no_mqe_complete;
14293 	}
14294 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14295 	mqe = &pmb->u.mqe;
14296 	pmbox = (MAILBOX_t *)&pmb->u.mqe;
14297 	mbox = phba->mbox;
14298 	vport = pmb->vport;
14299 
14300 	/* Reset heartbeat timer */
14301 	phba->last_completion_time = jiffies;
14302 	del_timer(&phba->sli.mbox_tmo);
14303 
14304 	/* Move mbox data to caller's mailbox region, do endian swapping */
14305 	if (pmb->mbox_cmpl && mbox)
14306 		lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
14307 
14308 	/*
14309 	 * For mcqe errors, conditionally move a modified error code to
14310 	 * the mbox so that the error will not be missed.
14311 	 */
14312 	mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
14313 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
14314 		if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
14315 			bf_set(lpfc_mqe_status, mqe,
14316 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
14317 	}
14318 	if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
14319 		pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
14320 		lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
14321 				      "MBOX dflt rpi: status:x%x rpi:x%x",
14322 				      mcqe_status,
14323 				      pmbox->un.varWords[0], 0);
14324 		if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
14325 			mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
14326 			ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
14327 
14328 			/* Reg_LOGIN of dflt RPI was successful. Mark the
14329 			 * node as having an UNREG_LOGIN in progress to stop
14330 			 * an unsolicited PLOGI from the same NPortId from
14331 			 * starting another mailbox transaction.
14332 			 */
14333 			spin_lock_irqsave(&ndlp->lock, iflags);
14334 			ndlp->nlp_flag |= NLP_UNREG_INP;
14335 			spin_unlock_irqrestore(&ndlp->lock, iflags);
14336 			lpfc_unreg_login(phba, vport->vpi,
14337 					 pmbox->un.varWords[0], pmb);
14338 			pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
14339 			pmb->ctx_buf = mp;
14340 
14341 			/* No reference taken here.  This is a default
14342 			 * RPI reg/immediate unreg cycle. The reference was
14343 			 * taken in the reg rpi path and is released when
14344 			 * this mailbox completes.
14345 			 */
14346 			pmb->ctx_ndlp = ndlp;
14347 			pmb->vport = vport;
14348 			rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
14349 			if (rc != MBX_BUSY)
14350 				lpfc_printf_log(phba, KERN_ERR,
14351 						LOG_TRACE_EVENT,
14352 						"0385 rc should "
14353 						"have been MBX_BUSY\n");
14354 			if (rc != MBX_NOT_FINISHED)
14355 				goto send_current_mbox;
14356 		}
14357 	}
14358 	spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
14359 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
14360 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
14361 
14362 	/* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */
14363 	if (pmbox->mbxCommand == MBX_HEARTBEAT) {
14364 		spin_lock_irqsave(&phba->hbalock, iflags);
14365 		/* Release the mailbox command posting token */
14366 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
14367 		phba->sli.mbox_active = NULL;
14368 		if (bf_get(lpfc_trailer_consumed, mcqe))
14369 			lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14370 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14371 
14372 		/* Post the next mbox command, if there is one */
14373 		lpfc_sli4_post_async_mbox(phba);
14374 
14375 		/* Process cmpl now */
14376 		if (pmb->mbox_cmpl)
14377 			pmb->mbox_cmpl(phba, pmb);
14378 		return false;
14379 	}
14380 
14381 	/* There is mailbox completion work to queue to the worker thread */
14382 	spin_lock_irqsave(&phba->hbalock, iflags);
14383 	__lpfc_mbox_cmpl_put(phba, pmb);
14384 	phba->work_ha |= HA_MBATT;
14385 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14386 	workposted = true;
14387 
14388 send_current_mbox:
14389 	spin_lock_irqsave(&phba->hbalock, iflags);
14390 	/* Release the mailbox command posting token */
14391 	phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
14392 	/* Setting active mailbox pointer need to be in sync to flag clear */
14393 	phba->sli.mbox_active = NULL;
14394 	if (bf_get(lpfc_trailer_consumed, mcqe))
14395 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14396 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14397 	/* Wake up worker thread to post the next pending mailbox command */
14398 	lpfc_worker_wake_up(phba);
14399 	return workposted;
14400 
14401 out_no_mqe_complete:
14402 	spin_lock_irqsave(&phba->hbalock, iflags);
14403 	if (bf_get(lpfc_trailer_consumed, mcqe))
14404 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14405 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14406 	return false;
14407 }
14408 
14409 /**
14410  * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
14411  * @phba: Pointer to HBA context object.
14412  * @cq: Pointer to associated CQ
14413  * @cqe: Pointer to mailbox completion queue entry.
14414  *
14415  * This routine process a mailbox completion queue entry, it invokes the
14416  * proper mailbox complete handling or asynchronous event handling routine
14417  * according to the MCQE's async bit.
14418  *
14419  * Return: true if work posted to worker thread, otherwise false.
14420  **/
14421 static bool
14422 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14423 			 struct lpfc_cqe *cqe)
14424 {
14425 	struct lpfc_mcqe mcqe;
14426 	bool workposted;
14427 
14428 	cq->CQ_mbox++;
14429 
14430 	/* Copy the mailbox MCQE and convert endian order as needed */
14431 	lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
14432 
14433 	/* Invoke the proper event handling routine */
14434 	if (!bf_get(lpfc_trailer_async, &mcqe))
14435 		workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
14436 	else
14437 		workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
14438 	return workposted;
14439 }
14440 
14441 /**
14442  * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
14443  * @phba: Pointer to HBA context object.
14444  * @cq: Pointer to associated CQ
14445  * @wcqe: Pointer to work-queue completion queue entry.
14446  *
14447  * This routine handles an ELS work-queue completion event.
14448  *
14449  * Return: true if work posted to worker thread, otherwise false.
14450  **/
14451 static bool
14452 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14453 			     struct lpfc_wcqe_complete *wcqe)
14454 {
14455 	struct lpfc_iocbq *irspiocbq;
14456 	unsigned long iflags;
14457 	struct lpfc_sli_ring *pring = cq->pring;
14458 	int txq_cnt = 0;
14459 	int txcmplq_cnt = 0;
14460 
14461 	/* Check for response status */
14462 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
14463 		/* Log the error status */
14464 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14465 				"0357 ELS CQE error: status=x%x: "
14466 				"CQE: %08x %08x %08x %08x\n",
14467 				bf_get(lpfc_wcqe_c_status, wcqe),
14468 				wcqe->word0, wcqe->total_data_placed,
14469 				wcqe->parameter, wcqe->word3);
14470 	}
14471 
14472 	/* Get an irspiocbq for later ELS response processing use */
14473 	irspiocbq = lpfc_sli_get_iocbq(phba);
14474 	if (!irspiocbq) {
14475 		if (!list_empty(&pring->txq))
14476 			txq_cnt++;
14477 		if (!list_empty(&pring->txcmplq))
14478 			txcmplq_cnt++;
14479 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14480 			"0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
14481 			"els_txcmplq_cnt=%d\n",
14482 			txq_cnt, phba->iocb_cnt,
14483 			txcmplq_cnt);
14484 		return false;
14485 	}
14486 
14487 	/* Save off the slow-path queue event for work thread to process */
14488 	memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
14489 	spin_lock_irqsave(&phba->hbalock, iflags);
14490 	list_add_tail(&irspiocbq->cq_event.list,
14491 		      &phba->sli4_hba.sp_queue_event);
14492 	phba->hba_flag |= HBA_SP_QUEUE_EVT;
14493 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14494 
14495 	return true;
14496 }
14497 
14498 /**
14499  * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
14500  * @phba: Pointer to HBA context object.
14501  * @wcqe: Pointer to work-queue completion queue entry.
14502  *
14503  * This routine handles slow-path WQ entry consumed event by invoking the
14504  * proper WQ release routine to the slow-path WQ.
14505  **/
14506 static void
14507 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
14508 			     struct lpfc_wcqe_release *wcqe)
14509 {
14510 	/* sanity check on queue memory */
14511 	if (unlikely(!phba->sli4_hba.els_wq))
14512 		return;
14513 	/* Check for the slow-path ELS work queue */
14514 	if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
14515 		lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
14516 				     bf_get(lpfc_wcqe_r_wqe_index, wcqe));
14517 	else
14518 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14519 				"2579 Slow-path wqe consume event carries "
14520 				"miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
14521 				bf_get(lpfc_wcqe_r_wqe_index, wcqe),
14522 				phba->sli4_hba.els_wq->queue_id);
14523 }
14524 
14525 /**
14526  * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
14527  * @phba: Pointer to HBA context object.
14528  * @cq: Pointer to a WQ completion queue.
14529  * @wcqe: Pointer to work-queue completion queue entry.
14530  *
14531  * This routine handles an XRI abort event.
14532  *
14533  * Return: true if work posted to worker thread, otherwise false.
14534  **/
14535 static bool
14536 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
14537 				   struct lpfc_queue *cq,
14538 				   struct sli4_wcqe_xri_aborted *wcqe)
14539 {
14540 	bool workposted = false;
14541 	struct lpfc_cq_event *cq_event;
14542 	unsigned long iflags;
14543 
14544 	switch (cq->subtype) {
14545 	case LPFC_IO:
14546 		lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
14547 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14548 			/* Notify aborted XRI for NVME work queue */
14549 			if (phba->nvmet_support)
14550 				lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
14551 		}
14552 		workposted = false;
14553 		break;
14554 	case LPFC_NVME_LS: /* NVME LS uses ELS resources */
14555 	case LPFC_ELS:
14556 		cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe));
14557 		if (!cq_event) {
14558 			workposted = false;
14559 			break;
14560 		}
14561 		cq_event->hdwq = cq->hdwq;
14562 		spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
14563 				  iflags);
14564 		list_add_tail(&cq_event->list,
14565 			      &phba->sli4_hba.sp_els_xri_aborted_work_queue);
14566 		/* Set the els xri abort event flag */
14567 		phba->hba_flag |= ELS_XRI_ABORT_EVENT;
14568 		spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
14569 				       iflags);
14570 		workposted = true;
14571 		break;
14572 	default:
14573 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14574 				"0603 Invalid CQ subtype %d: "
14575 				"%08x %08x %08x %08x\n",
14576 				cq->subtype, wcqe->word0, wcqe->parameter,
14577 				wcqe->word2, wcqe->word3);
14578 		workposted = false;
14579 		break;
14580 	}
14581 	return workposted;
14582 }
14583 
14584 #define FC_RCTL_MDS_DIAGS	0xF4
14585 
14586 /**
14587  * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
14588  * @phba: Pointer to HBA context object.
14589  * @rcqe: Pointer to receive-queue completion queue entry.
14590  *
14591  * This routine process a receive-queue completion queue entry.
14592  *
14593  * Return: true if work posted to worker thread, otherwise false.
14594  **/
14595 static bool
14596 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
14597 {
14598 	bool workposted = false;
14599 	struct fc_frame_header *fc_hdr;
14600 	struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
14601 	struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
14602 	struct lpfc_nvmet_tgtport *tgtp;
14603 	struct hbq_dmabuf *dma_buf;
14604 	uint32_t status, rq_id;
14605 	unsigned long iflags;
14606 
14607 	/* sanity check on queue memory */
14608 	if (unlikely(!hrq) || unlikely(!drq))
14609 		return workposted;
14610 
14611 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
14612 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
14613 	else
14614 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
14615 	if (rq_id != hrq->queue_id)
14616 		goto out;
14617 
14618 	status = bf_get(lpfc_rcqe_status, rcqe);
14619 	switch (status) {
14620 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
14621 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14622 				"2537 Receive Frame Truncated!!\n");
14623 		fallthrough;
14624 	case FC_STATUS_RQ_SUCCESS:
14625 		spin_lock_irqsave(&phba->hbalock, iflags);
14626 		lpfc_sli4_rq_release(hrq, drq);
14627 		dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
14628 		if (!dma_buf) {
14629 			hrq->RQ_no_buf_found++;
14630 			spin_unlock_irqrestore(&phba->hbalock, iflags);
14631 			goto out;
14632 		}
14633 		hrq->RQ_rcv_buf++;
14634 		hrq->RQ_buf_posted--;
14635 		memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
14636 
14637 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
14638 
14639 		if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
14640 		    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
14641 			spin_unlock_irqrestore(&phba->hbalock, iflags);
14642 			/* Handle MDS Loopback frames */
14643 			if  (!(phba->pport->load_flag & FC_UNLOADING))
14644 				lpfc_sli4_handle_mds_loopback(phba->pport,
14645 							      dma_buf);
14646 			else
14647 				lpfc_in_buf_free(phba, &dma_buf->dbuf);
14648 			break;
14649 		}
14650 
14651 		/* save off the frame for the work thread to process */
14652 		list_add_tail(&dma_buf->cq_event.list,
14653 			      &phba->sli4_hba.sp_queue_event);
14654 		/* Frame received */
14655 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
14656 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14657 		workposted = true;
14658 		break;
14659 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
14660 		if (phba->nvmet_support) {
14661 			tgtp = phba->targetport->private;
14662 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14663 					"6402 RQE Error x%x, posted %d err_cnt "
14664 					"%d: %x %x %x\n",
14665 					status, hrq->RQ_buf_posted,
14666 					hrq->RQ_no_posted_buf,
14667 					atomic_read(&tgtp->rcv_fcp_cmd_in),
14668 					atomic_read(&tgtp->rcv_fcp_cmd_out),
14669 					atomic_read(&tgtp->xmt_fcp_release));
14670 		}
14671 		fallthrough;
14672 
14673 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
14674 		hrq->RQ_no_posted_buf++;
14675 		/* Post more buffers if possible */
14676 		spin_lock_irqsave(&phba->hbalock, iflags);
14677 		phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
14678 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14679 		workposted = true;
14680 		break;
14681 	}
14682 out:
14683 	return workposted;
14684 }
14685 
14686 /**
14687  * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
14688  * @phba: Pointer to HBA context object.
14689  * @cq: Pointer to the completion queue.
14690  * @cqe: Pointer to a completion queue entry.
14691  *
14692  * This routine process a slow-path work-queue or receive queue completion queue
14693  * entry.
14694  *
14695  * Return: true if work posted to worker thread, otherwise false.
14696  **/
14697 static bool
14698 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14699 			 struct lpfc_cqe *cqe)
14700 {
14701 	struct lpfc_cqe cqevt;
14702 	bool workposted = false;
14703 
14704 	/* Copy the work queue CQE and convert endian order if needed */
14705 	lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
14706 
14707 	/* Check and process for different type of WCQE and dispatch */
14708 	switch (bf_get(lpfc_cqe_code, &cqevt)) {
14709 	case CQE_CODE_COMPL_WQE:
14710 		/* Process the WQ/RQ complete event */
14711 		phba->last_completion_time = jiffies;
14712 		workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
14713 				(struct lpfc_wcqe_complete *)&cqevt);
14714 		break;
14715 	case CQE_CODE_RELEASE_WQE:
14716 		/* Process the WQ release event */
14717 		lpfc_sli4_sp_handle_rel_wcqe(phba,
14718 				(struct lpfc_wcqe_release *)&cqevt);
14719 		break;
14720 	case CQE_CODE_XRI_ABORTED:
14721 		/* Process the WQ XRI abort event */
14722 		phba->last_completion_time = jiffies;
14723 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14724 				(struct sli4_wcqe_xri_aborted *)&cqevt);
14725 		break;
14726 	case CQE_CODE_RECEIVE:
14727 	case CQE_CODE_RECEIVE_V1:
14728 		/* Process the RQ event */
14729 		phba->last_completion_time = jiffies;
14730 		workposted = lpfc_sli4_sp_handle_rcqe(phba,
14731 				(struct lpfc_rcqe *)&cqevt);
14732 		break;
14733 	default:
14734 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14735 				"0388 Not a valid WCQE code: x%x\n",
14736 				bf_get(lpfc_cqe_code, &cqevt));
14737 		break;
14738 	}
14739 	return workposted;
14740 }
14741 
14742 /**
14743  * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
14744  * @phba: Pointer to HBA context object.
14745  * @eqe: Pointer to fast-path event queue entry.
14746  * @speq: Pointer to slow-path event queue.
14747  *
14748  * This routine process a event queue entry from the slow-path event queue.
14749  * It will check the MajorCode and MinorCode to determine this is for a
14750  * completion event on a completion queue, if not, an error shall be logged
14751  * and just return. Otherwise, it will get to the corresponding completion
14752  * queue and process all the entries on that completion queue, rearm the
14753  * completion queue, and then return.
14754  *
14755  **/
14756 static void
14757 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
14758 	struct lpfc_queue *speq)
14759 {
14760 	struct lpfc_queue *cq = NULL, *childq;
14761 	uint16_t cqid;
14762 	int ret = 0;
14763 
14764 	/* Get the reference to the corresponding CQ */
14765 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14766 
14767 	list_for_each_entry(childq, &speq->child_list, list) {
14768 		if (childq->queue_id == cqid) {
14769 			cq = childq;
14770 			break;
14771 		}
14772 	}
14773 	if (unlikely(!cq)) {
14774 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
14775 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14776 					"0365 Slow-path CQ identifier "
14777 					"(%d) does not exist\n", cqid);
14778 		return;
14779 	}
14780 
14781 	/* Save EQ associated with this CQ */
14782 	cq->assoc_qp = speq;
14783 
14784 	if (is_kdump_kernel())
14785 		ret = queue_work(phba->wq, &cq->spwork);
14786 	else
14787 		ret = queue_work_on(cq->chann, phba->wq, &cq->spwork);
14788 
14789 	if (!ret)
14790 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14791 				"0390 Cannot schedule queue work "
14792 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14793 				cqid, cq->queue_id, raw_smp_processor_id());
14794 }
14795 
14796 /**
14797  * __lpfc_sli4_process_cq - Process elements of a CQ
14798  * @phba: Pointer to HBA context object.
14799  * @cq: Pointer to CQ to be processed
14800  * @handler: Routine to process each cqe
14801  * @delay: Pointer to usdelay to set in case of rescheduling of the handler
14802  * @poll_mode: Polling mode we were called from
14803  *
14804  * This routine processes completion queue entries in a CQ. While a valid
14805  * queue element is found, the handler is called. During processing checks
14806  * are made for periodic doorbell writes to let the hardware know of
14807  * element consumption.
14808  *
14809  * If the max limit on cqes to process is hit, or there are no more valid
14810  * entries, the loop stops. If we processed a sufficient number of elements,
14811  * meaning there is sufficient load, rather than rearming and generating
14812  * another interrupt, a cq rescheduling delay will be set. A delay of 0
14813  * indicates no rescheduling.
14814  *
14815  * Returns True if work scheduled, False otherwise.
14816  **/
14817 static bool
14818 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
14819 	bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
14820 			struct lpfc_cqe *), unsigned long *delay,
14821 			enum lpfc_poll_mode poll_mode)
14822 {
14823 	struct lpfc_cqe *cqe;
14824 	bool workposted = false;
14825 	int count = 0, consumed = 0;
14826 	bool arm = true;
14827 
14828 	/* default - no reschedule */
14829 	*delay = 0;
14830 
14831 	if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
14832 		goto rearm_and_exit;
14833 
14834 	/* Process all the entries to the CQ */
14835 	cq->q_flag = 0;
14836 	cqe = lpfc_sli4_cq_get(cq);
14837 	while (cqe) {
14838 		workposted |= handler(phba, cq, cqe);
14839 		__lpfc_sli4_consume_cqe(phba, cq, cqe);
14840 
14841 		consumed++;
14842 		if (!(++count % cq->max_proc_limit))
14843 			break;
14844 
14845 		if (!(count % cq->notify_interval)) {
14846 			phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14847 						LPFC_QUEUE_NOARM);
14848 			consumed = 0;
14849 			cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK;
14850 		}
14851 
14852 		if (count == LPFC_NVMET_CQ_NOTIFY)
14853 			cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
14854 
14855 		cqe = lpfc_sli4_cq_get(cq);
14856 	}
14857 	if (count >= phba->cfg_cq_poll_threshold) {
14858 		*delay = 1;
14859 		arm = false;
14860 	}
14861 
14862 	/* Note: complete the irq_poll softirq before rearming CQ */
14863 	if (poll_mode == LPFC_IRQ_POLL)
14864 		irq_poll_complete(&cq->iop);
14865 
14866 	/* Track the max number of CQEs processed in 1 EQ */
14867 	if (count > cq->CQ_max_cqe)
14868 		cq->CQ_max_cqe = count;
14869 
14870 	cq->assoc_qp->EQ_cqe_cnt += count;
14871 
14872 	/* Catch the no cq entry condition */
14873 	if (unlikely(count == 0))
14874 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14875 				"0369 No entry from completion queue "
14876 				"qid=%d\n", cq->queue_id);
14877 
14878 	xchg(&cq->queue_claimed, 0);
14879 
14880 rearm_and_exit:
14881 	phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14882 			arm ?  LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
14883 
14884 	return workposted;
14885 }
14886 
14887 /**
14888  * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
14889  * @cq: pointer to CQ to process
14890  *
14891  * This routine calls the cq processing routine with a handler specific
14892  * to the type of queue bound to it.
14893  *
14894  * The CQ routine returns two values: the first is the calling status,
14895  * which indicates whether work was queued to the  background discovery
14896  * thread. If true, the routine should wakeup the discovery thread;
14897  * the second is the delay parameter. If non-zero, rather than rearming
14898  * the CQ and yet another interrupt, the CQ handler should be queued so
14899  * that it is processed in a subsequent polling action. The value of
14900  * the delay indicates when to reschedule it.
14901  **/
14902 static void
14903 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
14904 {
14905 	struct lpfc_hba *phba = cq->phba;
14906 	unsigned long delay;
14907 	bool workposted = false;
14908 	int ret = 0;
14909 
14910 	/* Process and rearm the CQ */
14911 	switch (cq->type) {
14912 	case LPFC_MCQ:
14913 		workposted |= __lpfc_sli4_process_cq(phba, cq,
14914 						lpfc_sli4_sp_handle_mcqe,
14915 						&delay, LPFC_QUEUE_WORK);
14916 		break;
14917 	case LPFC_WCQ:
14918 		if (cq->subtype == LPFC_IO)
14919 			workposted |= __lpfc_sli4_process_cq(phba, cq,
14920 						lpfc_sli4_fp_handle_cqe,
14921 						&delay, LPFC_QUEUE_WORK);
14922 		else
14923 			workposted |= __lpfc_sli4_process_cq(phba, cq,
14924 						lpfc_sli4_sp_handle_cqe,
14925 						&delay, LPFC_QUEUE_WORK);
14926 		break;
14927 	default:
14928 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14929 				"0370 Invalid completion queue type (%d)\n",
14930 				cq->type);
14931 		return;
14932 	}
14933 
14934 	if (delay) {
14935 		if (is_kdump_kernel())
14936 			ret = queue_delayed_work(phba->wq, &cq->sched_spwork,
14937 						delay);
14938 		else
14939 			ret = queue_delayed_work_on(cq->chann, phba->wq,
14940 						&cq->sched_spwork, delay);
14941 		if (!ret)
14942 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14943 				"0394 Cannot schedule queue work "
14944 				"for cqid=%d on CPU %d\n",
14945 				cq->queue_id, cq->chann);
14946 	}
14947 
14948 	/* wake up worker thread if there are works to be done */
14949 	if (workposted)
14950 		lpfc_worker_wake_up(phba);
14951 }
14952 
14953 /**
14954  * lpfc_sli4_sp_process_cq - slow-path work handler when started by
14955  *   interrupt
14956  * @work: pointer to work element
14957  *
14958  * translates from the work handler and calls the slow-path handler.
14959  **/
14960 static void
14961 lpfc_sli4_sp_process_cq(struct work_struct *work)
14962 {
14963 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
14964 
14965 	__lpfc_sli4_sp_process_cq(cq);
14966 }
14967 
14968 /**
14969  * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
14970  * @work: pointer to work element
14971  *
14972  * translates from the work handler and calls the slow-path handler.
14973  **/
14974 static void
14975 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
14976 {
14977 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
14978 					struct lpfc_queue, sched_spwork);
14979 
14980 	__lpfc_sli4_sp_process_cq(cq);
14981 }
14982 
14983 /**
14984  * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
14985  * @phba: Pointer to HBA context object.
14986  * @cq: Pointer to associated CQ
14987  * @wcqe: Pointer to work-queue completion queue entry.
14988  *
14989  * This routine process a fast-path work queue completion entry from fast-path
14990  * event queue for FCP command response completion.
14991  **/
14992 static void
14993 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14994 			     struct lpfc_wcqe_complete *wcqe)
14995 {
14996 	struct lpfc_sli_ring *pring = cq->pring;
14997 	struct lpfc_iocbq *cmdiocbq;
14998 	unsigned long iflags;
14999 
15000 	/* Check for response status */
15001 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
15002 		/* If resource errors reported from HBA, reduce queue
15003 		 * depth of the SCSI device.
15004 		 */
15005 		if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
15006 		     IOSTAT_LOCAL_REJECT)) &&
15007 		    ((wcqe->parameter & IOERR_PARAM_MASK) ==
15008 		     IOERR_NO_RESOURCES))
15009 			phba->lpfc_rampdown_queue_depth(phba);
15010 
15011 		/* Log the cmpl status */
15012 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
15013 				"0373 FCP CQE cmpl: status=x%x: "
15014 				"CQE: %08x %08x %08x %08x\n",
15015 				bf_get(lpfc_wcqe_c_status, wcqe),
15016 				wcqe->word0, wcqe->total_data_placed,
15017 				wcqe->parameter, wcqe->word3);
15018 	}
15019 
15020 	/* Look up the FCP command IOCB and create pseudo response IOCB */
15021 	spin_lock_irqsave(&pring->ring_lock, iflags);
15022 	pring->stats.iocb_event++;
15023 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
15024 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
15025 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
15026 	if (unlikely(!cmdiocbq)) {
15027 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15028 				"0374 FCP complete with no corresponding "
15029 				"cmdiocb: iotag (%d)\n",
15030 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
15031 		return;
15032 	}
15033 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
15034 	cmdiocbq->isr_timestamp = cq->isr_timestamp;
15035 #endif
15036 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
15037 		spin_lock_irqsave(&phba->hbalock, iflags);
15038 		cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY;
15039 		spin_unlock_irqrestore(&phba->hbalock, iflags);
15040 	}
15041 
15042 	if (cmdiocbq->cmd_cmpl) {
15043 		/* For FCP the flag is cleared in cmd_cmpl */
15044 		if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) &&
15045 		    cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) {
15046 			spin_lock_irqsave(&phba->hbalock, iflags);
15047 			cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
15048 			spin_unlock_irqrestore(&phba->hbalock, iflags);
15049 		}
15050 
15051 		/* Pass the cmd_iocb and the wcqe to the upper layer */
15052 		memcpy(&cmdiocbq->wcqe_cmpl, wcqe,
15053 		       sizeof(struct lpfc_wcqe_complete));
15054 		cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq);
15055 	} else {
15056 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15057 				"0375 FCP cmdiocb not callback function "
15058 				"iotag: (%d)\n",
15059 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
15060 	}
15061 }
15062 
15063 /**
15064  * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
15065  * @phba: Pointer to HBA context object.
15066  * @cq: Pointer to completion queue.
15067  * @wcqe: Pointer to work-queue completion queue entry.
15068  *
15069  * This routine handles an fast-path WQ entry consumed event by invoking the
15070  * proper WQ release routine to the slow-path WQ.
15071  **/
15072 static void
15073 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15074 			     struct lpfc_wcqe_release *wcqe)
15075 {
15076 	struct lpfc_queue *childwq;
15077 	bool wqid_matched = false;
15078 	uint16_t hba_wqid;
15079 
15080 	/* Check for fast-path FCP work queue release */
15081 	hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
15082 	list_for_each_entry(childwq, &cq->child_list, list) {
15083 		if (childwq->queue_id == hba_wqid) {
15084 			lpfc_sli4_wq_release(childwq,
15085 					bf_get(lpfc_wcqe_r_wqe_index, wcqe));
15086 			if (childwq->q_flag & HBA_NVMET_WQFULL)
15087 				lpfc_nvmet_wqfull_process(phba, childwq);
15088 			wqid_matched = true;
15089 			break;
15090 		}
15091 	}
15092 	/* Report warning log message if no match found */
15093 	if (wqid_matched != true)
15094 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15095 				"2580 Fast-path wqe consume event carries "
15096 				"miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
15097 }
15098 
15099 /**
15100  * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
15101  * @phba: Pointer to HBA context object.
15102  * @cq: Pointer to completion queue.
15103  * @rcqe: Pointer to receive-queue completion queue entry.
15104  *
15105  * This routine process a receive-queue completion queue entry.
15106  *
15107  * Return: true if work posted to worker thread, otherwise false.
15108  **/
15109 static bool
15110 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15111 			    struct lpfc_rcqe *rcqe)
15112 {
15113 	bool workposted = false;
15114 	struct lpfc_queue *hrq;
15115 	struct lpfc_queue *drq;
15116 	struct rqb_dmabuf *dma_buf;
15117 	struct fc_frame_header *fc_hdr;
15118 	struct lpfc_nvmet_tgtport *tgtp;
15119 	uint32_t status, rq_id;
15120 	unsigned long iflags;
15121 	uint32_t fctl, idx;
15122 
15123 	if ((phba->nvmet_support == 0) ||
15124 	    (phba->sli4_hba.nvmet_cqset == NULL))
15125 		return workposted;
15126 
15127 	idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
15128 	hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
15129 	drq = phba->sli4_hba.nvmet_mrq_data[idx];
15130 
15131 	/* sanity check on queue memory */
15132 	if (unlikely(!hrq) || unlikely(!drq))
15133 		return workposted;
15134 
15135 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
15136 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
15137 	else
15138 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
15139 
15140 	if ((phba->nvmet_support == 0) ||
15141 	    (rq_id != hrq->queue_id))
15142 		return workposted;
15143 
15144 	status = bf_get(lpfc_rcqe_status, rcqe);
15145 	switch (status) {
15146 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
15147 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15148 				"6126 Receive Frame Truncated!!\n");
15149 		fallthrough;
15150 	case FC_STATUS_RQ_SUCCESS:
15151 		spin_lock_irqsave(&phba->hbalock, iflags);
15152 		lpfc_sli4_rq_release(hrq, drq);
15153 		dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
15154 		if (!dma_buf) {
15155 			hrq->RQ_no_buf_found++;
15156 			spin_unlock_irqrestore(&phba->hbalock, iflags);
15157 			goto out;
15158 		}
15159 		spin_unlock_irqrestore(&phba->hbalock, iflags);
15160 		hrq->RQ_rcv_buf++;
15161 		hrq->RQ_buf_posted--;
15162 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
15163 
15164 		/* Just some basic sanity checks on FCP Command frame */
15165 		fctl = (fc_hdr->fh_f_ctl[0] << 16 |
15166 			fc_hdr->fh_f_ctl[1] << 8 |
15167 			fc_hdr->fh_f_ctl[2]);
15168 		if (((fctl &
15169 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
15170 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
15171 		    (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
15172 			goto drop;
15173 
15174 		if (fc_hdr->fh_type == FC_TYPE_FCP) {
15175 			dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
15176 			lpfc_nvmet_unsol_fcp_event(
15177 				phba, idx, dma_buf, cq->isr_timestamp,
15178 				cq->q_flag & HBA_NVMET_CQ_NOTIFY);
15179 			return false;
15180 		}
15181 drop:
15182 		lpfc_rq_buf_free(phba, &dma_buf->hbuf);
15183 		break;
15184 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
15185 		if (phba->nvmet_support) {
15186 			tgtp = phba->targetport->private;
15187 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15188 					"6401 RQE Error x%x, posted %d err_cnt "
15189 					"%d: %x %x %x\n",
15190 					status, hrq->RQ_buf_posted,
15191 					hrq->RQ_no_posted_buf,
15192 					atomic_read(&tgtp->rcv_fcp_cmd_in),
15193 					atomic_read(&tgtp->rcv_fcp_cmd_out),
15194 					atomic_read(&tgtp->xmt_fcp_release));
15195 		}
15196 		fallthrough;
15197 
15198 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
15199 		hrq->RQ_no_posted_buf++;
15200 		/* Post more buffers if possible */
15201 		break;
15202 	}
15203 out:
15204 	return workposted;
15205 }
15206 
15207 /**
15208  * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
15209  * @phba: adapter with cq
15210  * @cq: Pointer to the completion queue.
15211  * @cqe: Pointer to fast-path completion queue entry.
15212  *
15213  * This routine process a fast-path work queue completion entry from fast-path
15214  * event queue for FCP command response completion.
15215  *
15216  * Return: true if work posted to worker thread, otherwise false.
15217  **/
15218 static bool
15219 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15220 			 struct lpfc_cqe *cqe)
15221 {
15222 	struct lpfc_wcqe_release wcqe;
15223 	bool workposted = false;
15224 
15225 	/* Copy the work queue CQE and convert endian order if needed */
15226 	lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
15227 
15228 	/* Check and process for different type of WCQE and dispatch */
15229 	switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
15230 	case CQE_CODE_COMPL_WQE:
15231 	case CQE_CODE_NVME_ERSP:
15232 		cq->CQ_wq++;
15233 		/* Process the WQ complete event */
15234 		phba->last_completion_time = jiffies;
15235 		if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
15236 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
15237 				(struct lpfc_wcqe_complete *)&wcqe);
15238 		break;
15239 	case CQE_CODE_RELEASE_WQE:
15240 		cq->CQ_release_wqe++;
15241 		/* Process the WQ release event */
15242 		lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
15243 				(struct lpfc_wcqe_release *)&wcqe);
15244 		break;
15245 	case CQE_CODE_XRI_ABORTED:
15246 		cq->CQ_xri_aborted++;
15247 		/* Process the WQ XRI abort event */
15248 		phba->last_completion_time = jiffies;
15249 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
15250 				(struct sli4_wcqe_xri_aborted *)&wcqe);
15251 		break;
15252 	case CQE_CODE_RECEIVE_V1:
15253 	case CQE_CODE_RECEIVE:
15254 		phba->last_completion_time = jiffies;
15255 		if (cq->subtype == LPFC_NVMET) {
15256 			workposted = lpfc_sli4_nvmet_handle_rcqe(
15257 				phba, cq, (struct lpfc_rcqe *)&wcqe);
15258 		}
15259 		break;
15260 	default:
15261 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15262 				"0144 Not a valid CQE code: x%x\n",
15263 				bf_get(lpfc_wcqe_c_code, &wcqe));
15264 		break;
15265 	}
15266 	return workposted;
15267 }
15268 
15269 /**
15270  * lpfc_sli4_sched_cq_work - Schedules cq work
15271  * @phba: Pointer to HBA context object.
15272  * @cq: Pointer to CQ
15273  * @cqid: CQ ID
15274  *
15275  * This routine checks the poll mode of the CQ corresponding to
15276  * cq->chann, then either schedules a softirq or queue_work to complete
15277  * cq work.
15278  *
15279  * queue_work path is taken if in NVMET mode, or if poll_mode is in
15280  * LPFC_QUEUE_WORK mode.  Otherwise, softirq path is taken.
15281  *
15282  **/
15283 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba,
15284 				    struct lpfc_queue *cq, uint16_t cqid)
15285 {
15286 	int ret = 0;
15287 
15288 	switch (cq->poll_mode) {
15289 	case LPFC_IRQ_POLL:
15290 		/* CGN mgmt is mutually exclusive from softirq processing */
15291 		if (phba->cmf_active_mode == LPFC_CFG_OFF) {
15292 			irq_poll_sched(&cq->iop);
15293 			break;
15294 		}
15295 		fallthrough;
15296 	case LPFC_QUEUE_WORK:
15297 	default:
15298 		if (is_kdump_kernel())
15299 			ret = queue_work(phba->wq, &cq->irqwork);
15300 		else
15301 			ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork);
15302 		if (!ret)
15303 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15304 					"0383 Cannot schedule queue work "
15305 					"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
15306 					cqid, cq->queue_id,
15307 					raw_smp_processor_id());
15308 	}
15309 }
15310 
15311 /**
15312  * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
15313  * @phba: Pointer to HBA context object.
15314  * @eq: Pointer to the queue structure.
15315  * @eqe: Pointer to fast-path event queue entry.
15316  *
15317  * This routine process a event queue entry from the fast-path event queue.
15318  * It will check the MajorCode and MinorCode to determine this is for a
15319  * completion event on a completion queue, if not, an error shall be logged
15320  * and just return. Otherwise, it will get to the corresponding completion
15321  * queue and process all the entries on the completion queue, rearm the
15322  * completion queue, and then return.
15323  **/
15324 static void
15325 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
15326 			 struct lpfc_eqe *eqe)
15327 {
15328 	struct lpfc_queue *cq = NULL;
15329 	uint32_t qidx = eq->hdwq;
15330 	uint16_t cqid, id;
15331 
15332 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
15333 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15334 				"0366 Not a valid completion "
15335 				"event: majorcode=x%x, minorcode=x%x\n",
15336 				bf_get_le32(lpfc_eqe_major_code, eqe),
15337 				bf_get_le32(lpfc_eqe_minor_code, eqe));
15338 		return;
15339 	}
15340 
15341 	/* Get the reference to the corresponding CQ */
15342 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
15343 
15344 	/* Use the fast lookup method first */
15345 	if (cqid <= phba->sli4_hba.cq_max) {
15346 		cq = phba->sli4_hba.cq_lookup[cqid];
15347 		if (cq)
15348 			goto  work_cq;
15349 	}
15350 
15351 	/* Next check for NVMET completion */
15352 	if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
15353 		id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
15354 		if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
15355 			/* Process NVMET unsol rcv */
15356 			cq = phba->sli4_hba.nvmet_cqset[cqid - id];
15357 			goto  process_cq;
15358 		}
15359 	}
15360 
15361 	if (phba->sli4_hba.nvmels_cq &&
15362 	    (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
15363 		/* Process NVME unsol rcv */
15364 		cq = phba->sli4_hba.nvmels_cq;
15365 	}
15366 
15367 	/* Otherwise this is a Slow path event */
15368 	if (cq == NULL) {
15369 		lpfc_sli4_sp_handle_eqe(phba, eqe,
15370 					phba->sli4_hba.hdwq[qidx].hba_eq);
15371 		return;
15372 	}
15373 
15374 process_cq:
15375 	if (unlikely(cqid != cq->queue_id)) {
15376 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15377 				"0368 Miss-matched fast-path completion "
15378 				"queue identifier: eqcqid=%d, fcpcqid=%d\n",
15379 				cqid, cq->queue_id);
15380 		return;
15381 	}
15382 
15383 work_cq:
15384 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
15385 	if (phba->ktime_on)
15386 		cq->isr_timestamp = ktime_get_ns();
15387 	else
15388 		cq->isr_timestamp = 0;
15389 #endif
15390 	lpfc_sli4_sched_cq_work(phba, cq, cqid);
15391 }
15392 
15393 /**
15394  * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
15395  * @cq: Pointer to CQ to be processed
15396  * @poll_mode: Enum lpfc_poll_state to determine poll mode
15397  *
15398  * This routine calls the cq processing routine with the handler for
15399  * fast path CQEs.
15400  *
15401  * The CQ routine returns two values: the first is the calling status,
15402  * which indicates whether work was queued to the  background discovery
15403  * thread. If true, the routine should wakeup the discovery thread;
15404  * the second is the delay parameter. If non-zero, rather than rearming
15405  * the CQ and yet another interrupt, the CQ handler should be queued so
15406  * that it is processed in a subsequent polling action. The value of
15407  * the delay indicates when to reschedule it.
15408  **/
15409 static void
15410 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq,
15411 			   enum lpfc_poll_mode poll_mode)
15412 {
15413 	struct lpfc_hba *phba = cq->phba;
15414 	unsigned long delay;
15415 	bool workposted = false;
15416 	int ret = 0;
15417 
15418 	/* process and rearm the CQ */
15419 	workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
15420 					     &delay, poll_mode);
15421 
15422 	if (delay) {
15423 		if (is_kdump_kernel())
15424 			ret = queue_delayed_work(phba->wq, &cq->sched_irqwork,
15425 						delay);
15426 		else
15427 			ret = queue_delayed_work_on(cq->chann, phba->wq,
15428 						&cq->sched_irqwork, delay);
15429 		if (!ret)
15430 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15431 					"0367 Cannot schedule queue work "
15432 					"for cqid=%d on CPU %d\n",
15433 					cq->queue_id, cq->chann);
15434 	}
15435 
15436 	/* wake up worker thread if there are works to be done */
15437 	if (workposted)
15438 		lpfc_worker_wake_up(phba);
15439 }
15440 
15441 /**
15442  * lpfc_sli4_hba_process_cq - fast-path work handler when started by
15443  *   interrupt
15444  * @work: pointer to work element
15445  *
15446  * translates from the work handler and calls the fast-path handler.
15447  **/
15448 static void
15449 lpfc_sli4_hba_process_cq(struct work_struct *work)
15450 {
15451 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
15452 
15453 	__lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
15454 }
15455 
15456 /**
15457  * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer
15458  * @work: pointer to work element
15459  *
15460  * translates from the work handler and calls the fast-path handler.
15461  **/
15462 static void
15463 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
15464 {
15465 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
15466 					struct lpfc_queue, sched_irqwork);
15467 
15468 	__lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
15469 }
15470 
15471 /**
15472  * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
15473  * @irq: Interrupt number.
15474  * @dev_id: The device context pointer.
15475  *
15476  * This function is directly called from the PCI layer as an interrupt
15477  * service routine when device with SLI-4 interface spec is enabled with
15478  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
15479  * ring event in the HBA. However, when the device is enabled with either
15480  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
15481  * device-level interrupt handler. When the PCI slot is in error recovery
15482  * or the HBA is undergoing initialization, the interrupt handler will not
15483  * process the interrupt. The SCSI FCP fast-path ring event are handled in
15484  * the intrrupt context. This function is called without any lock held.
15485  * It gets the hbalock to access and update SLI data structures. Note that,
15486  * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
15487  * equal to that of FCP CQ index.
15488  *
15489  * The link attention and ELS ring attention events are handled
15490  * by the worker thread. The interrupt handler signals the worker thread
15491  * and returns for these events. This function is called without any lock
15492  * held. It gets the hbalock to access and update SLI data structures.
15493  *
15494  * This function returns IRQ_HANDLED when interrupt is handled else it
15495  * returns IRQ_NONE.
15496  **/
15497 irqreturn_t
15498 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
15499 {
15500 	struct lpfc_hba *phba;
15501 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
15502 	struct lpfc_queue *fpeq;
15503 	unsigned long iflag;
15504 	int ecount = 0;
15505 	int hba_eqidx;
15506 	struct lpfc_eq_intr_info *eqi;
15507 
15508 	/* Get the driver's phba structure from the dev_id */
15509 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
15510 	phba = hba_eq_hdl->phba;
15511 	hba_eqidx = hba_eq_hdl->idx;
15512 
15513 	if (unlikely(!phba))
15514 		return IRQ_NONE;
15515 	if (unlikely(!phba->sli4_hba.hdwq))
15516 		return IRQ_NONE;
15517 
15518 	/* Get to the EQ struct associated with this vector */
15519 	fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
15520 	if (unlikely(!fpeq))
15521 		return IRQ_NONE;
15522 
15523 	/* Check device state for handling interrupt */
15524 	if (unlikely(lpfc_intr_state_check(phba))) {
15525 		/* Check again for link_state with lock held */
15526 		spin_lock_irqsave(&phba->hbalock, iflag);
15527 		if (phba->link_state < LPFC_LINK_DOWN)
15528 			/* Flush, clear interrupt, and rearm the EQ */
15529 			lpfc_sli4_eqcq_flush(phba, fpeq);
15530 		spin_unlock_irqrestore(&phba->hbalock, iflag);
15531 		return IRQ_NONE;
15532 	}
15533 
15534 	eqi = this_cpu_ptr(phba->sli4_hba.eq_info);
15535 	eqi->icnt++;
15536 
15537 	fpeq->last_cpu = raw_smp_processor_id();
15538 
15539 	if (eqi->icnt > LPFC_EQD_ISR_TRIGGER &&
15540 	    fpeq->q_flag & HBA_EQ_DELAY_CHK &&
15541 	    phba->cfg_auto_imax &&
15542 	    fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
15543 	    phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
15544 		lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
15545 
15546 	/* process and rearm the EQ */
15547 	ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
15548 
15549 	if (unlikely(ecount == 0)) {
15550 		fpeq->EQ_no_entry++;
15551 		if (phba->intr_type == MSIX)
15552 			/* MSI-X treated interrupt served as no EQ share INT */
15553 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15554 					"0358 MSI-X interrupt with no EQE\n");
15555 		else
15556 			/* Non MSI-X treated on interrupt as EQ share INT */
15557 			return IRQ_NONE;
15558 	}
15559 
15560 	return IRQ_HANDLED;
15561 } /* lpfc_sli4_hba_intr_handler */
15562 
15563 /**
15564  * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
15565  * @irq: Interrupt number.
15566  * @dev_id: The device context pointer.
15567  *
15568  * This function is the device-level interrupt handler to device with SLI-4
15569  * interface spec, called from the PCI layer when either MSI or Pin-IRQ
15570  * interrupt mode is enabled and there is an event in the HBA which requires
15571  * driver attention. This function invokes the slow-path interrupt attention
15572  * handling function and fast-path interrupt attention handling function in
15573  * turn to process the relevant HBA attention events. This function is called
15574  * without any lock held. It gets the hbalock to access and update SLI data
15575  * structures.
15576  *
15577  * This function returns IRQ_HANDLED when interrupt is handled, else it
15578  * returns IRQ_NONE.
15579  **/
15580 irqreturn_t
15581 lpfc_sli4_intr_handler(int irq, void *dev_id)
15582 {
15583 	struct lpfc_hba  *phba;
15584 	irqreturn_t hba_irq_rc;
15585 	bool hba_handled = false;
15586 	int qidx;
15587 
15588 	/* Get the driver's phba structure from the dev_id */
15589 	phba = (struct lpfc_hba *)dev_id;
15590 
15591 	if (unlikely(!phba))
15592 		return IRQ_NONE;
15593 
15594 	/*
15595 	 * Invoke fast-path host attention interrupt handling as appropriate.
15596 	 */
15597 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
15598 		hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
15599 					&phba->sli4_hba.hba_eq_hdl[qidx]);
15600 		if (hba_irq_rc == IRQ_HANDLED)
15601 			hba_handled |= true;
15602 	}
15603 
15604 	return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
15605 } /* lpfc_sli4_intr_handler */
15606 
15607 void lpfc_sli4_poll_hbtimer(struct timer_list *t)
15608 {
15609 	struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer);
15610 	struct lpfc_queue *eq;
15611 	int i = 0;
15612 
15613 	rcu_read_lock();
15614 
15615 	list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list)
15616 		i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH);
15617 	if (!list_empty(&phba->poll_list))
15618 		mod_timer(&phba->cpuhp_poll_timer,
15619 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
15620 
15621 	rcu_read_unlock();
15622 }
15623 
15624 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path)
15625 {
15626 	struct lpfc_hba *phba = eq->phba;
15627 	int i = 0;
15628 
15629 	/*
15630 	 * Unlocking an irq is one of the entry point to check
15631 	 * for re-schedule, but we are good for io submission
15632 	 * path as midlayer does a get_cpu to glue us in. Flush
15633 	 * out the invalidate queue so we can see the updated
15634 	 * value for flag.
15635 	 */
15636 	smp_rmb();
15637 
15638 	if (READ_ONCE(eq->mode) == LPFC_EQ_POLL)
15639 		/* We will not likely get the completion for the caller
15640 		 * during this iteration but i guess that's fine.
15641 		 * Future io's coming on this eq should be able to
15642 		 * pick it up.  As for the case of single io's, they
15643 		 * will be handled through a sched from polling timer
15644 		 * function which is currently triggered every 1msec.
15645 		 */
15646 		i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM);
15647 
15648 	return i;
15649 }
15650 
15651 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq)
15652 {
15653 	struct lpfc_hba *phba = eq->phba;
15654 
15655 	/* kickstart slowpath processing if needed */
15656 	if (list_empty(&phba->poll_list))
15657 		mod_timer(&phba->cpuhp_poll_timer,
15658 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
15659 
15660 	list_add_rcu(&eq->_poll_list, &phba->poll_list);
15661 	synchronize_rcu();
15662 }
15663 
15664 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq)
15665 {
15666 	struct lpfc_hba *phba = eq->phba;
15667 
15668 	/* Disable slowpath processing for this eq.  Kick start the eq
15669 	 * by RE-ARMING the eq's ASAP
15670 	 */
15671 	list_del_rcu(&eq->_poll_list);
15672 	synchronize_rcu();
15673 
15674 	if (list_empty(&phba->poll_list))
15675 		del_timer_sync(&phba->cpuhp_poll_timer);
15676 }
15677 
15678 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba)
15679 {
15680 	struct lpfc_queue *eq, *next;
15681 
15682 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list)
15683 		list_del(&eq->_poll_list);
15684 
15685 	INIT_LIST_HEAD(&phba->poll_list);
15686 	synchronize_rcu();
15687 }
15688 
15689 static inline void
15690 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode)
15691 {
15692 	if (mode == eq->mode)
15693 		return;
15694 	/*
15695 	 * currently this function is only called during a hotplug
15696 	 * event and the cpu on which this function is executing
15697 	 * is going offline.  By now the hotplug has instructed
15698 	 * the scheduler to remove this cpu from cpu active mask.
15699 	 * So we don't need to work about being put aside by the
15700 	 * scheduler for a high priority process.  Yes, the inte-
15701 	 * rrupts could come but they are known to retire ASAP.
15702 	 */
15703 
15704 	/* Disable polling in the fastpath */
15705 	WRITE_ONCE(eq->mode, mode);
15706 	/* flush out the store buffer */
15707 	smp_wmb();
15708 
15709 	/*
15710 	 * Add this eq to the polling list and start polling. For
15711 	 * a grace period both interrupt handler and poller will
15712 	 * try to process the eq _but_ that's fine.  We have a
15713 	 * synchronization mechanism in place (queue_claimed) to
15714 	 * deal with it.  This is just a draining phase for int-
15715 	 * errupt handler (not eq's) as we have guranteed through
15716 	 * barrier that all the CPUs have seen the new CQ_POLLED
15717 	 * state. which will effectively disable the REARMING of
15718 	 * the EQ.  The whole idea is eq's die off eventually as
15719 	 * we are not rearming EQ's anymore.
15720 	 */
15721 	mode ? lpfc_sli4_add_to_poll_list(eq) :
15722 	       lpfc_sli4_remove_from_poll_list(eq);
15723 }
15724 
15725 void lpfc_sli4_start_polling(struct lpfc_queue *eq)
15726 {
15727 	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL);
15728 }
15729 
15730 void lpfc_sli4_stop_polling(struct lpfc_queue *eq)
15731 {
15732 	struct lpfc_hba *phba = eq->phba;
15733 
15734 	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT);
15735 
15736 	/* Kick start for the pending io's in h/w.
15737 	 * Once we switch back to interrupt processing on a eq
15738 	 * the io path completion will only arm eq's when it
15739 	 * receives a completion.  But since eq's are in disa-
15740 	 * rmed state it doesn't receive a completion.  This
15741 	 * creates a deadlock scenaro.
15742 	 */
15743 	phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM);
15744 }
15745 
15746 /**
15747  * lpfc_sli4_queue_free - free a queue structure and associated memory
15748  * @queue: The queue structure to free.
15749  *
15750  * This function frees a queue structure and the DMAable memory used for
15751  * the host resident queue. This function must be called after destroying the
15752  * queue on the HBA.
15753  **/
15754 void
15755 lpfc_sli4_queue_free(struct lpfc_queue *queue)
15756 {
15757 	struct lpfc_dmabuf *dmabuf;
15758 
15759 	if (!queue)
15760 		return;
15761 
15762 	if (!list_empty(&queue->wq_list))
15763 		list_del(&queue->wq_list);
15764 
15765 	while (!list_empty(&queue->page_list)) {
15766 		list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
15767 				 list);
15768 		dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
15769 				  dmabuf->virt, dmabuf->phys);
15770 		kfree(dmabuf);
15771 	}
15772 	if (queue->rqbp) {
15773 		lpfc_free_rq_buffer(queue->phba, queue);
15774 		kfree(queue->rqbp);
15775 	}
15776 
15777 	if (!list_empty(&queue->cpu_list))
15778 		list_del(&queue->cpu_list);
15779 
15780 	kfree(queue);
15781 	return;
15782 }
15783 
15784 /**
15785  * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
15786  * @phba: The HBA that this queue is being created on.
15787  * @page_size: The size of a queue page
15788  * @entry_size: The size of each queue entry for this queue.
15789  * @entry_count: The number of entries that this queue will handle.
15790  * @cpu: The cpu that will primarily utilize this queue.
15791  *
15792  * This function allocates a queue structure and the DMAable memory used for
15793  * the host resident queue. This function must be called before creating the
15794  * queue on the HBA.
15795  **/
15796 struct lpfc_queue *
15797 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
15798 		      uint32_t entry_size, uint32_t entry_count, int cpu)
15799 {
15800 	struct lpfc_queue *queue;
15801 	struct lpfc_dmabuf *dmabuf;
15802 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15803 	uint16_t x, pgcnt;
15804 
15805 	if (!phba->sli4_hba.pc_sli4_params.supported)
15806 		hw_page_size = page_size;
15807 
15808 	pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
15809 
15810 	/* If needed, Adjust page count to match the max the adapter supports */
15811 	if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
15812 		pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
15813 
15814 	queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
15815 			     GFP_KERNEL, cpu_to_node(cpu));
15816 	if (!queue)
15817 		return NULL;
15818 
15819 	INIT_LIST_HEAD(&queue->list);
15820 	INIT_LIST_HEAD(&queue->_poll_list);
15821 	INIT_LIST_HEAD(&queue->wq_list);
15822 	INIT_LIST_HEAD(&queue->wqfull_list);
15823 	INIT_LIST_HEAD(&queue->page_list);
15824 	INIT_LIST_HEAD(&queue->child_list);
15825 	INIT_LIST_HEAD(&queue->cpu_list);
15826 
15827 	/* Set queue parameters now.  If the system cannot provide memory
15828 	 * resources, the free routine needs to know what was allocated.
15829 	 */
15830 	queue->page_count = pgcnt;
15831 	queue->q_pgs = (void **)&queue[1];
15832 	queue->entry_cnt_per_pg = hw_page_size / entry_size;
15833 	queue->entry_size = entry_size;
15834 	queue->entry_count = entry_count;
15835 	queue->page_size = hw_page_size;
15836 	queue->phba = phba;
15837 
15838 	for (x = 0; x < queue->page_count; x++) {
15839 		dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
15840 				      dev_to_node(&phba->pcidev->dev));
15841 		if (!dmabuf)
15842 			goto out_fail;
15843 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
15844 						  hw_page_size, &dmabuf->phys,
15845 						  GFP_KERNEL);
15846 		if (!dmabuf->virt) {
15847 			kfree(dmabuf);
15848 			goto out_fail;
15849 		}
15850 		dmabuf->buffer_tag = x;
15851 		list_add_tail(&dmabuf->list, &queue->page_list);
15852 		/* use lpfc_sli4_qe to index a paritcular entry in this page */
15853 		queue->q_pgs[x] = dmabuf->virt;
15854 	}
15855 	INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
15856 	INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
15857 	INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
15858 	INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
15859 
15860 	/* notify_interval will be set during q creation */
15861 
15862 	return queue;
15863 out_fail:
15864 	lpfc_sli4_queue_free(queue);
15865 	return NULL;
15866 }
15867 
15868 /**
15869  * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
15870  * @phba: HBA structure that indicates port to create a queue on.
15871  * @pci_barset: PCI BAR set flag.
15872  *
15873  * This function shall perform iomap of the specified PCI BAR address to host
15874  * memory address if not already done so and return it. The returned host
15875  * memory address can be NULL.
15876  */
15877 static void __iomem *
15878 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
15879 {
15880 	if (!phba->pcidev)
15881 		return NULL;
15882 
15883 	switch (pci_barset) {
15884 	case WQ_PCI_BAR_0_AND_1:
15885 		return phba->pci_bar0_memmap_p;
15886 	case WQ_PCI_BAR_2_AND_3:
15887 		return phba->pci_bar2_memmap_p;
15888 	case WQ_PCI_BAR_4_AND_5:
15889 		return phba->pci_bar4_memmap_p;
15890 	default:
15891 		break;
15892 	}
15893 	return NULL;
15894 }
15895 
15896 /**
15897  * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
15898  * @phba: HBA structure that EQs are on.
15899  * @startq: The starting EQ index to modify
15900  * @numq: The number of EQs (consecutive indexes) to modify
15901  * @usdelay: amount of delay
15902  *
15903  * This function revises the EQ delay on 1 or more EQs. The EQ delay
15904  * is set either by writing to a register (if supported by the SLI Port)
15905  * or by mailbox command. The mailbox command allows several EQs to be
15906  * updated at once.
15907  *
15908  * The @phba struct is used to send a mailbox command to HBA. The @startq
15909  * is used to get the starting EQ index to change. The @numq value is
15910  * used to specify how many consecutive EQ indexes, starting at EQ index,
15911  * are to be changed. This function is asynchronous and will wait for any
15912  * mailbox commands to finish before returning.
15913  *
15914  * On success this function will return a zero. If unable to allocate
15915  * enough memory this function will return -ENOMEM. If a mailbox command
15916  * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
15917  * have had their delay multipler changed.
15918  **/
15919 void
15920 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
15921 			 uint32_t numq, uint32_t usdelay)
15922 {
15923 	struct lpfc_mbx_modify_eq_delay *eq_delay;
15924 	LPFC_MBOXQ_t *mbox;
15925 	struct lpfc_queue *eq;
15926 	int cnt = 0, rc, length;
15927 	uint32_t shdr_status, shdr_add_status;
15928 	uint32_t dmult;
15929 	int qidx;
15930 	union lpfc_sli4_cfg_shdr *shdr;
15931 
15932 	if (startq >= phba->cfg_irq_chann)
15933 		return;
15934 
15935 	if (usdelay > 0xFFFF) {
15936 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
15937 				"6429 usdelay %d too large. Scaled down to "
15938 				"0xFFFF.\n", usdelay);
15939 		usdelay = 0xFFFF;
15940 	}
15941 
15942 	/* set values by EQ_DELAY register if supported */
15943 	if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
15944 		for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
15945 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
15946 			if (!eq)
15947 				continue;
15948 
15949 			lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
15950 
15951 			if (++cnt >= numq)
15952 				break;
15953 		}
15954 		return;
15955 	}
15956 
15957 	/* Otherwise, set values by mailbox cmd */
15958 
15959 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15960 	if (!mbox) {
15961 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15962 				"6428 Failed allocating mailbox cmd buffer."
15963 				" EQ delay was not set.\n");
15964 		return;
15965 	}
15966 	length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
15967 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15968 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15969 			 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
15970 			 length, LPFC_SLI4_MBX_EMBED);
15971 	eq_delay = &mbox->u.mqe.un.eq_delay;
15972 
15973 	/* Calculate delay multiper from maximum interrupt per second */
15974 	dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
15975 	if (dmult)
15976 		dmult--;
15977 	if (dmult > LPFC_DMULT_MAX)
15978 		dmult = LPFC_DMULT_MAX;
15979 
15980 	for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
15981 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
15982 		if (!eq)
15983 			continue;
15984 		eq->q_mode = usdelay;
15985 		eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
15986 		eq_delay->u.request.eq[cnt].phase = 0;
15987 		eq_delay->u.request.eq[cnt].delay_multi = dmult;
15988 
15989 		if (++cnt >= numq)
15990 			break;
15991 	}
15992 	eq_delay->u.request.num_eq = cnt;
15993 
15994 	mbox->vport = phba->pport;
15995 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15996 	mbox->ctx_ndlp = NULL;
15997 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15998 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
15999 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16000 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16001 	if (shdr_status || shdr_add_status || rc) {
16002 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16003 				"2512 MODIFY_EQ_DELAY mailbox failed with "
16004 				"status x%x add_status x%x, mbx status x%x\n",
16005 				shdr_status, shdr_add_status, rc);
16006 	}
16007 	mempool_free(mbox, phba->mbox_mem_pool);
16008 	return;
16009 }
16010 
16011 /**
16012  * lpfc_eq_create - Create an Event Queue on the HBA
16013  * @phba: HBA structure that indicates port to create a queue on.
16014  * @eq: The queue structure to use to create the event queue.
16015  * @imax: The maximum interrupt per second limit.
16016  *
16017  * This function creates an event queue, as detailed in @eq, on a port,
16018  * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
16019  *
16020  * The @phba struct is used to send mailbox command to HBA. The @eq struct
16021  * is used to get the entry count and entry size that are necessary to
16022  * determine the number of pages to allocate and use for this queue. This
16023  * function will send the EQ_CREATE mailbox command to the HBA to setup the
16024  * event queue. This function is asynchronous and will wait for the mailbox
16025  * command to finish before continuing.
16026  *
16027  * On success this function will return a zero. If unable to allocate enough
16028  * memory this function will return -ENOMEM. If the queue create mailbox command
16029  * fails this function will return -ENXIO.
16030  **/
16031 int
16032 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
16033 {
16034 	struct lpfc_mbx_eq_create *eq_create;
16035 	LPFC_MBOXQ_t *mbox;
16036 	int rc, length, status = 0;
16037 	struct lpfc_dmabuf *dmabuf;
16038 	uint32_t shdr_status, shdr_add_status;
16039 	union lpfc_sli4_cfg_shdr *shdr;
16040 	uint16_t dmult;
16041 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16042 
16043 	/* sanity check on queue memory */
16044 	if (!eq)
16045 		return -ENODEV;
16046 	if (!phba->sli4_hba.pc_sli4_params.supported)
16047 		hw_page_size = SLI4_PAGE_SIZE;
16048 
16049 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16050 	if (!mbox)
16051 		return -ENOMEM;
16052 	length = (sizeof(struct lpfc_mbx_eq_create) -
16053 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16054 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16055 			 LPFC_MBOX_OPCODE_EQ_CREATE,
16056 			 length, LPFC_SLI4_MBX_EMBED);
16057 	eq_create = &mbox->u.mqe.un.eq_create;
16058 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
16059 	bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
16060 	       eq->page_count);
16061 	bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
16062 	       LPFC_EQE_SIZE);
16063 	bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
16064 
16065 	/* Use version 2 of CREATE_EQ if eqav is set */
16066 	if (phba->sli4_hba.pc_sli4_params.eqav) {
16067 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
16068 		       LPFC_Q_CREATE_VERSION_2);
16069 		bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
16070 		       phba->sli4_hba.pc_sli4_params.eqav);
16071 	}
16072 
16073 	/* don't setup delay multiplier using EQ_CREATE */
16074 	dmult = 0;
16075 	bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
16076 	       dmult);
16077 	switch (eq->entry_count) {
16078 	default:
16079 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16080 				"0360 Unsupported EQ count. (%d)\n",
16081 				eq->entry_count);
16082 		if (eq->entry_count < 256) {
16083 			status = -EINVAL;
16084 			goto out;
16085 		}
16086 		fallthrough;	/* otherwise default to smallest count */
16087 	case 256:
16088 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16089 		       LPFC_EQ_CNT_256);
16090 		break;
16091 	case 512:
16092 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16093 		       LPFC_EQ_CNT_512);
16094 		break;
16095 	case 1024:
16096 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16097 		       LPFC_EQ_CNT_1024);
16098 		break;
16099 	case 2048:
16100 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16101 		       LPFC_EQ_CNT_2048);
16102 		break;
16103 	case 4096:
16104 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16105 		       LPFC_EQ_CNT_4096);
16106 		break;
16107 	}
16108 	list_for_each_entry(dmabuf, &eq->page_list, list) {
16109 		memset(dmabuf->virt, 0, hw_page_size);
16110 		eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16111 					putPaddrLow(dmabuf->phys);
16112 		eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16113 					putPaddrHigh(dmabuf->phys);
16114 	}
16115 	mbox->vport = phba->pport;
16116 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16117 	mbox->ctx_buf = NULL;
16118 	mbox->ctx_ndlp = NULL;
16119 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16120 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16121 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16122 	if (shdr_status || shdr_add_status || rc) {
16123 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16124 				"2500 EQ_CREATE mailbox failed with "
16125 				"status x%x add_status x%x, mbx status x%x\n",
16126 				shdr_status, shdr_add_status, rc);
16127 		status = -ENXIO;
16128 	}
16129 	eq->type = LPFC_EQ;
16130 	eq->subtype = LPFC_NONE;
16131 	eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
16132 	if (eq->queue_id == 0xFFFF)
16133 		status = -ENXIO;
16134 	eq->host_index = 0;
16135 	eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
16136 	eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
16137 out:
16138 	mempool_free(mbox, phba->mbox_mem_pool);
16139 	return status;
16140 }
16141 
16142 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget)
16143 {
16144 	struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop);
16145 
16146 	__lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL);
16147 
16148 	return 1;
16149 }
16150 
16151 /**
16152  * lpfc_cq_create - Create a Completion Queue on the HBA
16153  * @phba: HBA structure that indicates port to create a queue on.
16154  * @cq: The queue structure to use to create the completion queue.
16155  * @eq: The event queue to bind this completion queue to.
16156  * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
16157  * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16158  *
16159  * This function creates a completion queue, as detailed in @wq, on a port,
16160  * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
16161  *
16162  * The @phba struct is used to send mailbox command to HBA. The @cq struct
16163  * is used to get the entry count and entry size that are necessary to
16164  * determine the number of pages to allocate and use for this queue. The @eq
16165  * is used to indicate which event queue to bind this completion queue to. This
16166  * function will send the CQ_CREATE mailbox command to the HBA to setup the
16167  * completion queue. This function is asynchronous and will wait for the mailbox
16168  * command to finish before continuing.
16169  *
16170  * On success this function will return a zero. If unable to allocate enough
16171  * memory this function will return -ENOMEM. If the queue create mailbox command
16172  * fails this function will return -ENXIO.
16173  **/
16174 int
16175 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
16176 	       struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
16177 {
16178 	struct lpfc_mbx_cq_create *cq_create;
16179 	struct lpfc_dmabuf *dmabuf;
16180 	LPFC_MBOXQ_t *mbox;
16181 	int rc, length, status = 0;
16182 	uint32_t shdr_status, shdr_add_status;
16183 	union lpfc_sli4_cfg_shdr *shdr;
16184 
16185 	/* sanity check on queue memory */
16186 	if (!cq || !eq)
16187 		return -ENODEV;
16188 
16189 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16190 	if (!mbox)
16191 		return -ENOMEM;
16192 	length = (sizeof(struct lpfc_mbx_cq_create) -
16193 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16194 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16195 			 LPFC_MBOX_OPCODE_CQ_CREATE,
16196 			 length, LPFC_SLI4_MBX_EMBED);
16197 	cq_create = &mbox->u.mqe.un.cq_create;
16198 	shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
16199 	bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
16200 		    cq->page_count);
16201 	bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
16202 	bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
16203 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16204 	       phba->sli4_hba.pc_sli4_params.cqv);
16205 	if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
16206 		bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
16207 		       (cq->page_size / SLI4_PAGE_SIZE));
16208 		bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
16209 		       eq->queue_id);
16210 		bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
16211 		       phba->sli4_hba.pc_sli4_params.cqav);
16212 	} else {
16213 		bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
16214 		       eq->queue_id);
16215 	}
16216 	switch (cq->entry_count) {
16217 	case 2048:
16218 	case 4096:
16219 		if (phba->sli4_hba.pc_sli4_params.cqv ==
16220 		    LPFC_Q_CREATE_VERSION_2) {
16221 			cq_create->u.request.context.lpfc_cq_context_count =
16222 				cq->entry_count;
16223 			bf_set(lpfc_cq_context_count,
16224 			       &cq_create->u.request.context,
16225 			       LPFC_CQ_CNT_WORD7);
16226 			break;
16227 		}
16228 		fallthrough;
16229 	default:
16230 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16231 				"0361 Unsupported CQ count: "
16232 				"entry cnt %d sz %d pg cnt %d\n",
16233 				cq->entry_count, cq->entry_size,
16234 				cq->page_count);
16235 		if (cq->entry_count < 256) {
16236 			status = -EINVAL;
16237 			goto out;
16238 		}
16239 		fallthrough;	/* otherwise default to smallest count */
16240 	case 256:
16241 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16242 		       LPFC_CQ_CNT_256);
16243 		break;
16244 	case 512:
16245 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16246 		       LPFC_CQ_CNT_512);
16247 		break;
16248 	case 1024:
16249 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16250 		       LPFC_CQ_CNT_1024);
16251 		break;
16252 	}
16253 	list_for_each_entry(dmabuf, &cq->page_list, list) {
16254 		memset(dmabuf->virt, 0, cq->page_size);
16255 		cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16256 					putPaddrLow(dmabuf->phys);
16257 		cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16258 					putPaddrHigh(dmabuf->phys);
16259 	}
16260 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16261 
16262 	/* The IOCTL status is embedded in the mailbox subheader. */
16263 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16264 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16265 	if (shdr_status || shdr_add_status || rc) {
16266 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16267 				"2501 CQ_CREATE mailbox failed with "
16268 				"status x%x add_status x%x, mbx status x%x\n",
16269 				shdr_status, shdr_add_status, rc);
16270 		status = -ENXIO;
16271 		goto out;
16272 	}
16273 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
16274 	if (cq->queue_id == 0xFFFF) {
16275 		status = -ENXIO;
16276 		goto out;
16277 	}
16278 	/* link the cq onto the parent eq child list */
16279 	list_add_tail(&cq->list, &eq->child_list);
16280 	/* Set up completion queue's type and subtype */
16281 	cq->type = type;
16282 	cq->subtype = subtype;
16283 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
16284 	cq->assoc_qid = eq->queue_id;
16285 	cq->assoc_qp = eq;
16286 	cq->host_index = 0;
16287 	cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
16288 	cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
16289 
16290 	if (cq->queue_id > phba->sli4_hba.cq_max)
16291 		phba->sli4_hba.cq_max = cq->queue_id;
16292 
16293 	irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler);
16294 out:
16295 	mempool_free(mbox, phba->mbox_mem_pool);
16296 	return status;
16297 }
16298 
16299 /**
16300  * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
16301  * @phba: HBA structure that indicates port to create a queue on.
16302  * @cqp: The queue structure array to use to create the completion queues.
16303  * @hdwq: The hardware queue array  with the EQ to bind completion queues to.
16304  * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
16305  * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16306  *
16307  * This function creates a set of  completion queue, s to support MRQ
16308  * as detailed in @cqp, on a port,
16309  * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
16310  *
16311  * The @phba struct is used to send mailbox command to HBA. The @cq struct
16312  * is used to get the entry count and entry size that are necessary to
16313  * determine the number of pages to allocate and use for this queue. The @eq
16314  * is used to indicate which event queue to bind this completion queue to. This
16315  * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
16316  * completion queue. This function is asynchronous and will wait for the mailbox
16317  * command to finish before continuing.
16318  *
16319  * On success this function will return a zero. If unable to allocate enough
16320  * memory this function will return -ENOMEM. If the queue create mailbox command
16321  * fails this function will return -ENXIO.
16322  **/
16323 int
16324 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
16325 		   struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
16326 		   uint32_t subtype)
16327 {
16328 	struct lpfc_queue *cq;
16329 	struct lpfc_queue *eq;
16330 	struct lpfc_mbx_cq_create_set *cq_set;
16331 	struct lpfc_dmabuf *dmabuf;
16332 	LPFC_MBOXQ_t *mbox;
16333 	int rc, length, alloclen, status = 0;
16334 	int cnt, idx, numcq, page_idx = 0;
16335 	uint32_t shdr_status, shdr_add_status;
16336 	union lpfc_sli4_cfg_shdr *shdr;
16337 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16338 
16339 	/* sanity check on queue memory */
16340 	numcq = phba->cfg_nvmet_mrq;
16341 	if (!cqp || !hdwq || !numcq)
16342 		return -ENODEV;
16343 
16344 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16345 	if (!mbox)
16346 		return -ENOMEM;
16347 
16348 	length = sizeof(struct lpfc_mbx_cq_create_set);
16349 	length += ((numcq * cqp[0]->page_count) *
16350 		   sizeof(struct dma_address));
16351 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16352 			LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
16353 			LPFC_SLI4_MBX_NEMBED);
16354 	if (alloclen < length) {
16355 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16356 				"3098 Allocated DMA memory size (%d) is "
16357 				"less than the requested DMA memory size "
16358 				"(%d)\n", alloclen, length);
16359 		status = -ENOMEM;
16360 		goto out;
16361 	}
16362 	cq_set = mbox->sge_array->addr[0];
16363 	shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
16364 	bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
16365 
16366 	for (idx = 0; idx < numcq; idx++) {
16367 		cq = cqp[idx];
16368 		eq = hdwq[idx].hba_eq;
16369 		if (!cq || !eq) {
16370 			status = -ENOMEM;
16371 			goto out;
16372 		}
16373 		if (!phba->sli4_hba.pc_sli4_params.supported)
16374 			hw_page_size = cq->page_size;
16375 
16376 		switch (idx) {
16377 		case 0:
16378 			bf_set(lpfc_mbx_cq_create_set_page_size,
16379 			       &cq_set->u.request,
16380 			       (hw_page_size / SLI4_PAGE_SIZE));
16381 			bf_set(lpfc_mbx_cq_create_set_num_pages,
16382 			       &cq_set->u.request, cq->page_count);
16383 			bf_set(lpfc_mbx_cq_create_set_evt,
16384 			       &cq_set->u.request, 1);
16385 			bf_set(lpfc_mbx_cq_create_set_valid,
16386 			       &cq_set->u.request, 1);
16387 			bf_set(lpfc_mbx_cq_create_set_cqe_size,
16388 			       &cq_set->u.request, 0);
16389 			bf_set(lpfc_mbx_cq_create_set_num_cq,
16390 			       &cq_set->u.request, numcq);
16391 			bf_set(lpfc_mbx_cq_create_set_autovalid,
16392 			       &cq_set->u.request,
16393 			       phba->sli4_hba.pc_sli4_params.cqav);
16394 			switch (cq->entry_count) {
16395 			case 2048:
16396 			case 4096:
16397 				if (phba->sli4_hba.pc_sli4_params.cqv ==
16398 				    LPFC_Q_CREATE_VERSION_2) {
16399 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16400 					       &cq_set->u.request,
16401 						cq->entry_count);
16402 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16403 					       &cq_set->u.request,
16404 					       LPFC_CQ_CNT_WORD7);
16405 					break;
16406 				}
16407 				fallthrough;
16408 			default:
16409 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16410 						"3118 Bad CQ count. (%d)\n",
16411 						cq->entry_count);
16412 				if (cq->entry_count < 256) {
16413 					status = -EINVAL;
16414 					goto out;
16415 				}
16416 				fallthrough;	/* otherwise default to smallest */
16417 			case 256:
16418 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16419 				       &cq_set->u.request, LPFC_CQ_CNT_256);
16420 				break;
16421 			case 512:
16422 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16423 				       &cq_set->u.request, LPFC_CQ_CNT_512);
16424 				break;
16425 			case 1024:
16426 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16427 				       &cq_set->u.request, LPFC_CQ_CNT_1024);
16428 				break;
16429 			}
16430 			bf_set(lpfc_mbx_cq_create_set_eq_id0,
16431 			       &cq_set->u.request, eq->queue_id);
16432 			break;
16433 		case 1:
16434 			bf_set(lpfc_mbx_cq_create_set_eq_id1,
16435 			       &cq_set->u.request, eq->queue_id);
16436 			break;
16437 		case 2:
16438 			bf_set(lpfc_mbx_cq_create_set_eq_id2,
16439 			       &cq_set->u.request, eq->queue_id);
16440 			break;
16441 		case 3:
16442 			bf_set(lpfc_mbx_cq_create_set_eq_id3,
16443 			       &cq_set->u.request, eq->queue_id);
16444 			break;
16445 		case 4:
16446 			bf_set(lpfc_mbx_cq_create_set_eq_id4,
16447 			       &cq_set->u.request, eq->queue_id);
16448 			break;
16449 		case 5:
16450 			bf_set(lpfc_mbx_cq_create_set_eq_id5,
16451 			       &cq_set->u.request, eq->queue_id);
16452 			break;
16453 		case 6:
16454 			bf_set(lpfc_mbx_cq_create_set_eq_id6,
16455 			       &cq_set->u.request, eq->queue_id);
16456 			break;
16457 		case 7:
16458 			bf_set(lpfc_mbx_cq_create_set_eq_id7,
16459 			       &cq_set->u.request, eq->queue_id);
16460 			break;
16461 		case 8:
16462 			bf_set(lpfc_mbx_cq_create_set_eq_id8,
16463 			       &cq_set->u.request, eq->queue_id);
16464 			break;
16465 		case 9:
16466 			bf_set(lpfc_mbx_cq_create_set_eq_id9,
16467 			       &cq_set->u.request, eq->queue_id);
16468 			break;
16469 		case 10:
16470 			bf_set(lpfc_mbx_cq_create_set_eq_id10,
16471 			       &cq_set->u.request, eq->queue_id);
16472 			break;
16473 		case 11:
16474 			bf_set(lpfc_mbx_cq_create_set_eq_id11,
16475 			       &cq_set->u.request, eq->queue_id);
16476 			break;
16477 		case 12:
16478 			bf_set(lpfc_mbx_cq_create_set_eq_id12,
16479 			       &cq_set->u.request, eq->queue_id);
16480 			break;
16481 		case 13:
16482 			bf_set(lpfc_mbx_cq_create_set_eq_id13,
16483 			       &cq_set->u.request, eq->queue_id);
16484 			break;
16485 		case 14:
16486 			bf_set(lpfc_mbx_cq_create_set_eq_id14,
16487 			       &cq_set->u.request, eq->queue_id);
16488 			break;
16489 		case 15:
16490 			bf_set(lpfc_mbx_cq_create_set_eq_id15,
16491 			       &cq_set->u.request, eq->queue_id);
16492 			break;
16493 		}
16494 
16495 		/* link the cq onto the parent eq child list */
16496 		list_add_tail(&cq->list, &eq->child_list);
16497 		/* Set up completion queue's type and subtype */
16498 		cq->type = type;
16499 		cq->subtype = subtype;
16500 		cq->assoc_qid = eq->queue_id;
16501 		cq->assoc_qp = eq;
16502 		cq->host_index = 0;
16503 		cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
16504 		cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
16505 					 cq->entry_count);
16506 		cq->chann = idx;
16507 
16508 		rc = 0;
16509 		list_for_each_entry(dmabuf, &cq->page_list, list) {
16510 			memset(dmabuf->virt, 0, hw_page_size);
16511 			cnt = page_idx + dmabuf->buffer_tag;
16512 			cq_set->u.request.page[cnt].addr_lo =
16513 					putPaddrLow(dmabuf->phys);
16514 			cq_set->u.request.page[cnt].addr_hi =
16515 					putPaddrHigh(dmabuf->phys);
16516 			rc++;
16517 		}
16518 		page_idx += rc;
16519 	}
16520 
16521 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16522 
16523 	/* The IOCTL status is embedded in the mailbox subheader. */
16524 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16525 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16526 	if (shdr_status || shdr_add_status || rc) {
16527 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16528 				"3119 CQ_CREATE_SET mailbox failed with "
16529 				"status x%x add_status x%x, mbx status x%x\n",
16530 				shdr_status, shdr_add_status, rc);
16531 		status = -ENXIO;
16532 		goto out;
16533 	}
16534 	rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
16535 	if (rc == 0xFFFF) {
16536 		status = -ENXIO;
16537 		goto out;
16538 	}
16539 
16540 	for (idx = 0; idx < numcq; idx++) {
16541 		cq = cqp[idx];
16542 		cq->queue_id = rc + idx;
16543 		if (cq->queue_id > phba->sli4_hba.cq_max)
16544 			phba->sli4_hba.cq_max = cq->queue_id;
16545 	}
16546 
16547 out:
16548 	lpfc_sli4_mbox_cmd_free(phba, mbox);
16549 	return status;
16550 }
16551 
16552 /**
16553  * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
16554  * @phba: HBA structure that indicates port to create a queue on.
16555  * @mq: The queue structure to use to create the mailbox queue.
16556  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
16557  * @cq: The completion queue to associate with this cq.
16558  *
16559  * This function provides failback (fb) functionality when the
16560  * mq_create_ext fails on older FW generations.  It's purpose is identical
16561  * to mq_create_ext otherwise.
16562  *
16563  * This routine cannot fail as all attributes were previously accessed and
16564  * initialized in mq_create_ext.
16565  **/
16566 static void
16567 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
16568 		       LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
16569 {
16570 	struct lpfc_mbx_mq_create *mq_create;
16571 	struct lpfc_dmabuf *dmabuf;
16572 	int length;
16573 
16574 	length = (sizeof(struct lpfc_mbx_mq_create) -
16575 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16576 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16577 			 LPFC_MBOX_OPCODE_MQ_CREATE,
16578 			 length, LPFC_SLI4_MBX_EMBED);
16579 	mq_create = &mbox->u.mqe.un.mq_create;
16580 	bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
16581 	       mq->page_count);
16582 	bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
16583 	       cq->queue_id);
16584 	bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
16585 	switch (mq->entry_count) {
16586 	case 16:
16587 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16588 		       LPFC_MQ_RING_SIZE_16);
16589 		break;
16590 	case 32:
16591 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16592 		       LPFC_MQ_RING_SIZE_32);
16593 		break;
16594 	case 64:
16595 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16596 		       LPFC_MQ_RING_SIZE_64);
16597 		break;
16598 	case 128:
16599 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16600 		       LPFC_MQ_RING_SIZE_128);
16601 		break;
16602 	}
16603 	list_for_each_entry(dmabuf, &mq->page_list, list) {
16604 		mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16605 			putPaddrLow(dmabuf->phys);
16606 		mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16607 			putPaddrHigh(dmabuf->phys);
16608 	}
16609 }
16610 
16611 /**
16612  * lpfc_mq_create - Create a mailbox Queue on the HBA
16613  * @phba: HBA structure that indicates port to create a queue on.
16614  * @mq: The queue structure to use to create the mailbox queue.
16615  * @cq: The completion queue to associate with this cq.
16616  * @subtype: The queue's subtype.
16617  *
16618  * This function creates a mailbox queue, as detailed in @mq, on a port,
16619  * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
16620  *
16621  * The @phba struct is used to send mailbox command to HBA. The @cq struct
16622  * is used to get the entry count and entry size that are necessary to
16623  * determine the number of pages to allocate and use for this queue. This
16624  * function will send the MQ_CREATE mailbox command to the HBA to setup the
16625  * mailbox queue. This function is asynchronous and will wait for the mailbox
16626  * command to finish before continuing.
16627  *
16628  * On success this function will return a zero. If unable to allocate enough
16629  * memory this function will return -ENOMEM. If the queue create mailbox command
16630  * fails this function will return -ENXIO.
16631  **/
16632 int32_t
16633 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
16634 	       struct lpfc_queue *cq, uint32_t subtype)
16635 {
16636 	struct lpfc_mbx_mq_create *mq_create;
16637 	struct lpfc_mbx_mq_create_ext *mq_create_ext;
16638 	struct lpfc_dmabuf *dmabuf;
16639 	LPFC_MBOXQ_t *mbox;
16640 	int rc, length, status = 0;
16641 	uint32_t shdr_status, shdr_add_status;
16642 	union lpfc_sli4_cfg_shdr *shdr;
16643 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16644 
16645 	/* sanity check on queue memory */
16646 	if (!mq || !cq)
16647 		return -ENODEV;
16648 	if (!phba->sli4_hba.pc_sli4_params.supported)
16649 		hw_page_size = SLI4_PAGE_SIZE;
16650 
16651 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16652 	if (!mbox)
16653 		return -ENOMEM;
16654 	length = (sizeof(struct lpfc_mbx_mq_create_ext) -
16655 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16656 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16657 			 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
16658 			 length, LPFC_SLI4_MBX_EMBED);
16659 
16660 	mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
16661 	shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
16662 	bf_set(lpfc_mbx_mq_create_ext_num_pages,
16663 	       &mq_create_ext->u.request, mq->page_count);
16664 	bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
16665 	       &mq_create_ext->u.request, 1);
16666 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
16667 	       &mq_create_ext->u.request, 1);
16668 	bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
16669 	       &mq_create_ext->u.request, 1);
16670 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
16671 	       &mq_create_ext->u.request, 1);
16672 	bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
16673 	       &mq_create_ext->u.request, 1);
16674 	bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
16675 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16676 	       phba->sli4_hba.pc_sli4_params.mqv);
16677 	if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
16678 		bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
16679 		       cq->queue_id);
16680 	else
16681 		bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
16682 		       cq->queue_id);
16683 	switch (mq->entry_count) {
16684 	default:
16685 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16686 				"0362 Unsupported MQ count. (%d)\n",
16687 				mq->entry_count);
16688 		if (mq->entry_count < 16) {
16689 			status = -EINVAL;
16690 			goto out;
16691 		}
16692 		fallthrough;	/* otherwise default to smallest count */
16693 	case 16:
16694 		bf_set(lpfc_mq_context_ring_size,
16695 		       &mq_create_ext->u.request.context,
16696 		       LPFC_MQ_RING_SIZE_16);
16697 		break;
16698 	case 32:
16699 		bf_set(lpfc_mq_context_ring_size,
16700 		       &mq_create_ext->u.request.context,
16701 		       LPFC_MQ_RING_SIZE_32);
16702 		break;
16703 	case 64:
16704 		bf_set(lpfc_mq_context_ring_size,
16705 		       &mq_create_ext->u.request.context,
16706 		       LPFC_MQ_RING_SIZE_64);
16707 		break;
16708 	case 128:
16709 		bf_set(lpfc_mq_context_ring_size,
16710 		       &mq_create_ext->u.request.context,
16711 		       LPFC_MQ_RING_SIZE_128);
16712 		break;
16713 	}
16714 	list_for_each_entry(dmabuf, &mq->page_list, list) {
16715 		memset(dmabuf->virt, 0, hw_page_size);
16716 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
16717 					putPaddrLow(dmabuf->phys);
16718 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
16719 					putPaddrHigh(dmabuf->phys);
16720 	}
16721 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16722 	mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
16723 			      &mq_create_ext->u.response);
16724 	if (rc != MBX_SUCCESS) {
16725 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16726 				"2795 MQ_CREATE_EXT failed with "
16727 				"status x%x. Failback to MQ_CREATE.\n",
16728 				rc);
16729 		lpfc_mq_create_fb_init(phba, mq, mbox, cq);
16730 		mq_create = &mbox->u.mqe.un.mq_create;
16731 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16732 		shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
16733 		mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
16734 				      &mq_create->u.response);
16735 	}
16736 
16737 	/* The IOCTL status is embedded in the mailbox subheader. */
16738 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16739 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16740 	if (shdr_status || shdr_add_status || rc) {
16741 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16742 				"2502 MQ_CREATE mailbox failed with "
16743 				"status x%x add_status x%x, mbx status x%x\n",
16744 				shdr_status, shdr_add_status, rc);
16745 		status = -ENXIO;
16746 		goto out;
16747 	}
16748 	if (mq->queue_id == 0xFFFF) {
16749 		status = -ENXIO;
16750 		goto out;
16751 	}
16752 	mq->type = LPFC_MQ;
16753 	mq->assoc_qid = cq->queue_id;
16754 	mq->subtype = subtype;
16755 	mq->host_index = 0;
16756 	mq->hba_index = 0;
16757 
16758 	/* link the mq onto the parent cq child list */
16759 	list_add_tail(&mq->list, &cq->child_list);
16760 out:
16761 	mempool_free(mbox, phba->mbox_mem_pool);
16762 	return status;
16763 }
16764 
16765 /**
16766  * lpfc_wq_create - Create a Work Queue on the HBA
16767  * @phba: HBA structure that indicates port to create a queue on.
16768  * @wq: The queue structure to use to create the work queue.
16769  * @cq: The completion queue to bind this work queue to.
16770  * @subtype: The subtype of the work queue indicating its functionality.
16771  *
16772  * This function creates a work queue, as detailed in @wq, on a port, described
16773  * by @phba by sending a WQ_CREATE mailbox command to the HBA.
16774  *
16775  * The @phba struct is used to send mailbox command to HBA. The @wq struct
16776  * is used to get the entry count and entry size that are necessary to
16777  * determine the number of pages to allocate and use for this queue. The @cq
16778  * is used to indicate which completion queue to bind this work queue to. This
16779  * function will send the WQ_CREATE mailbox command to the HBA to setup the
16780  * work queue. This function is asynchronous and will wait for the mailbox
16781  * command to finish before continuing.
16782  *
16783  * On success this function will return a zero. If unable to allocate enough
16784  * memory this function will return -ENOMEM. If the queue create mailbox command
16785  * fails this function will return -ENXIO.
16786  **/
16787 int
16788 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
16789 	       struct lpfc_queue *cq, uint32_t subtype)
16790 {
16791 	struct lpfc_mbx_wq_create *wq_create;
16792 	struct lpfc_dmabuf *dmabuf;
16793 	LPFC_MBOXQ_t *mbox;
16794 	int rc, length, status = 0;
16795 	uint32_t shdr_status, shdr_add_status;
16796 	union lpfc_sli4_cfg_shdr *shdr;
16797 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16798 	struct dma_address *page;
16799 	void __iomem *bar_memmap_p;
16800 	uint32_t db_offset;
16801 	uint16_t pci_barset;
16802 	uint8_t dpp_barset;
16803 	uint32_t dpp_offset;
16804 	uint8_t wq_create_version;
16805 #ifdef CONFIG_X86
16806 	unsigned long pg_addr;
16807 #endif
16808 
16809 	/* sanity check on queue memory */
16810 	if (!wq || !cq)
16811 		return -ENODEV;
16812 	if (!phba->sli4_hba.pc_sli4_params.supported)
16813 		hw_page_size = wq->page_size;
16814 
16815 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16816 	if (!mbox)
16817 		return -ENOMEM;
16818 	length = (sizeof(struct lpfc_mbx_wq_create) -
16819 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16820 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16821 			 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
16822 			 length, LPFC_SLI4_MBX_EMBED);
16823 	wq_create = &mbox->u.mqe.un.wq_create;
16824 	shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
16825 	bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
16826 		    wq->page_count);
16827 	bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
16828 		    cq->queue_id);
16829 
16830 	/* wqv is the earliest version supported, NOT the latest */
16831 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16832 	       phba->sli4_hba.pc_sli4_params.wqv);
16833 
16834 	if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
16835 	    (wq->page_size > SLI4_PAGE_SIZE))
16836 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
16837 	else
16838 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
16839 
16840 	switch (wq_create_version) {
16841 	case LPFC_Q_CREATE_VERSION_1:
16842 		bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
16843 		       wq->entry_count);
16844 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
16845 		       LPFC_Q_CREATE_VERSION_1);
16846 
16847 		switch (wq->entry_size) {
16848 		default:
16849 		case 64:
16850 			bf_set(lpfc_mbx_wq_create_wqe_size,
16851 			       &wq_create->u.request_1,
16852 			       LPFC_WQ_WQE_SIZE_64);
16853 			break;
16854 		case 128:
16855 			bf_set(lpfc_mbx_wq_create_wqe_size,
16856 			       &wq_create->u.request_1,
16857 			       LPFC_WQ_WQE_SIZE_128);
16858 			break;
16859 		}
16860 		/* Request DPP by default */
16861 		bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
16862 		bf_set(lpfc_mbx_wq_create_page_size,
16863 		       &wq_create->u.request_1,
16864 		       (wq->page_size / SLI4_PAGE_SIZE));
16865 		page = wq_create->u.request_1.page;
16866 		break;
16867 	default:
16868 		page = wq_create->u.request.page;
16869 		break;
16870 	}
16871 
16872 	list_for_each_entry(dmabuf, &wq->page_list, list) {
16873 		memset(dmabuf->virt, 0, hw_page_size);
16874 		page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
16875 		page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
16876 	}
16877 
16878 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16879 		bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
16880 
16881 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16882 	/* The IOCTL status is embedded in the mailbox subheader. */
16883 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16884 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16885 	if (shdr_status || shdr_add_status || rc) {
16886 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16887 				"2503 WQ_CREATE mailbox failed with "
16888 				"status x%x add_status x%x, mbx status x%x\n",
16889 				shdr_status, shdr_add_status, rc);
16890 		status = -ENXIO;
16891 		goto out;
16892 	}
16893 
16894 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
16895 		wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
16896 					&wq_create->u.response);
16897 	else
16898 		wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
16899 					&wq_create->u.response_1);
16900 
16901 	if (wq->queue_id == 0xFFFF) {
16902 		status = -ENXIO;
16903 		goto out;
16904 	}
16905 
16906 	wq->db_format = LPFC_DB_LIST_FORMAT;
16907 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
16908 		if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
16909 			wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
16910 					       &wq_create->u.response);
16911 			if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
16912 			    (wq->db_format != LPFC_DB_RING_FORMAT)) {
16913 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16914 						"3265 WQ[%d] doorbell format "
16915 						"not supported: x%x\n",
16916 						wq->queue_id, wq->db_format);
16917 				status = -EINVAL;
16918 				goto out;
16919 			}
16920 			pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
16921 					    &wq_create->u.response);
16922 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16923 								   pci_barset);
16924 			if (!bar_memmap_p) {
16925 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16926 						"3263 WQ[%d] failed to memmap "
16927 						"pci barset:x%x\n",
16928 						wq->queue_id, pci_barset);
16929 				status = -ENOMEM;
16930 				goto out;
16931 			}
16932 			db_offset = wq_create->u.response.doorbell_offset;
16933 			if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
16934 			    (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
16935 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16936 						"3252 WQ[%d] doorbell offset "
16937 						"not supported: x%x\n",
16938 						wq->queue_id, db_offset);
16939 				status = -EINVAL;
16940 				goto out;
16941 			}
16942 			wq->db_regaddr = bar_memmap_p + db_offset;
16943 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16944 					"3264 WQ[%d]: barset:x%x, offset:x%x, "
16945 					"format:x%x\n", wq->queue_id,
16946 					pci_barset, db_offset, wq->db_format);
16947 		} else
16948 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
16949 	} else {
16950 		/* Check if DPP was honored by the firmware */
16951 		wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
16952 				    &wq_create->u.response_1);
16953 		if (wq->dpp_enable) {
16954 			pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
16955 					    &wq_create->u.response_1);
16956 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16957 								   pci_barset);
16958 			if (!bar_memmap_p) {
16959 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16960 						"3267 WQ[%d] failed to memmap "
16961 						"pci barset:x%x\n",
16962 						wq->queue_id, pci_barset);
16963 				status = -ENOMEM;
16964 				goto out;
16965 			}
16966 			db_offset = wq_create->u.response_1.doorbell_offset;
16967 			wq->db_regaddr = bar_memmap_p + db_offset;
16968 			wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
16969 					    &wq_create->u.response_1);
16970 			dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
16971 					    &wq_create->u.response_1);
16972 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16973 								   dpp_barset);
16974 			if (!bar_memmap_p) {
16975 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16976 						"3268 WQ[%d] failed to memmap "
16977 						"pci barset:x%x\n",
16978 						wq->queue_id, dpp_barset);
16979 				status = -ENOMEM;
16980 				goto out;
16981 			}
16982 			dpp_offset = wq_create->u.response_1.dpp_offset;
16983 			wq->dpp_regaddr = bar_memmap_p + dpp_offset;
16984 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16985 					"3271 WQ[%d]: barset:x%x, offset:x%x, "
16986 					"dpp_id:x%x dpp_barset:x%x "
16987 					"dpp_offset:x%x\n",
16988 					wq->queue_id, pci_barset, db_offset,
16989 					wq->dpp_id, dpp_barset, dpp_offset);
16990 
16991 #ifdef CONFIG_X86
16992 			/* Enable combined writes for DPP aperture */
16993 			pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
16994 			rc = set_memory_wc(pg_addr, 1);
16995 			if (rc) {
16996 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16997 					"3272 Cannot setup Combined "
16998 					"Write on WQ[%d] - disable DPP\n",
16999 					wq->queue_id);
17000 				phba->cfg_enable_dpp = 0;
17001 			}
17002 #else
17003 			phba->cfg_enable_dpp = 0;
17004 #endif
17005 		} else
17006 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
17007 	}
17008 	wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
17009 	if (wq->pring == NULL) {
17010 		status = -ENOMEM;
17011 		goto out;
17012 	}
17013 	wq->type = LPFC_WQ;
17014 	wq->assoc_qid = cq->queue_id;
17015 	wq->subtype = subtype;
17016 	wq->host_index = 0;
17017 	wq->hba_index = 0;
17018 	wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
17019 
17020 	/* link the wq onto the parent cq child list */
17021 	list_add_tail(&wq->list, &cq->child_list);
17022 out:
17023 	mempool_free(mbox, phba->mbox_mem_pool);
17024 	return status;
17025 }
17026 
17027 /**
17028  * lpfc_rq_create - Create a Receive Queue on the HBA
17029  * @phba: HBA structure that indicates port to create a queue on.
17030  * @hrq: The queue structure to use to create the header receive queue.
17031  * @drq: The queue structure to use to create the data receive queue.
17032  * @cq: The completion queue to bind this work queue to.
17033  * @subtype: The subtype of the work queue indicating its functionality.
17034  *
17035  * This function creates a receive buffer queue pair , as detailed in @hrq and
17036  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
17037  * to the HBA.
17038  *
17039  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
17040  * struct is used to get the entry count that is necessary to determine the
17041  * number of pages to use for this queue. The @cq is used to indicate which
17042  * completion queue to bind received buffers that are posted to these queues to.
17043  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
17044  * receive queue pair. This function is asynchronous and will wait for the
17045  * mailbox command to finish before continuing.
17046  *
17047  * On success this function will return a zero. If unable to allocate enough
17048  * memory this function will return -ENOMEM. If the queue create mailbox command
17049  * fails this function will return -ENXIO.
17050  **/
17051 int
17052 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
17053 	       struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
17054 {
17055 	struct lpfc_mbx_rq_create *rq_create;
17056 	struct lpfc_dmabuf *dmabuf;
17057 	LPFC_MBOXQ_t *mbox;
17058 	int rc, length, status = 0;
17059 	uint32_t shdr_status, shdr_add_status;
17060 	union lpfc_sli4_cfg_shdr *shdr;
17061 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
17062 	void __iomem *bar_memmap_p;
17063 	uint32_t db_offset;
17064 	uint16_t pci_barset;
17065 
17066 	/* sanity check on queue memory */
17067 	if (!hrq || !drq || !cq)
17068 		return -ENODEV;
17069 	if (!phba->sli4_hba.pc_sli4_params.supported)
17070 		hw_page_size = SLI4_PAGE_SIZE;
17071 
17072 	if (hrq->entry_count != drq->entry_count)
17073 		return -EINVAL;
17074 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17075 	if (!mbox)
17076 		return -ENOMEM;
17077 	length = (sizeof(struct lpfc_mbx_rq_create) -
17078 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17079 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17080 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
17081 			 length, LPFC_SLI4_MBX_EMBED);
17082 	rq_create = &mbox->u.mqe.un.rq_create;
17083 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
17084 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
17085 	       phba->sli4_hba.pc_sli4_params.rqv);
17086 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
17087 		bf_set(lpfc_rq_context_rqe_count_1,
17088 		       &rq_create->u.request.context,
17089 		       hrq->entry_count);
17090 		rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
17091 		bf_set(lpfc_rq_context_rqe_size,
17092 		       &rq_create->u.request.context,
17093 		       LPFC_RQE_SIZE_8);
17094 		bf_set(lpfc_rq_context_page_size,
17095 		       &rq_create->u.request.context,
17096 		       LPFC_RQ_PAGE_SIZE_4096);
17097 	} else {
17098 		switch (hrq->entry_count) {
17099 		default:
17100 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17101 					"2535 Unsupported RQ count. (%d)\n",
17102 					hrq->entry_count);
17103 			if (hrq->entry_count < 512) {
17104 				status = -EINVAL;
17105 				goto out;
17106 			}
17107 			fallthrough;	/* otherwise default to smallest count */
17108 		case 512:
17109 			bf_set(lpfc_rq_context_rqe_count,
17110 			       &rq_create->u.request.context,
17111 			       LPFC_RQ_RING_SIZE_512);
17112 			break;
17113 		case 1024:
17114 			bf_set(lpfc_rq_context_rqe_count,
17115 			       &rq_create->u.request.context,
17116 			       LPFC_RQ_RING_SIZE_1024);
17117 			break;
17118 		case 2048:
17119 			bf_set(lpfc_rq_context_rqe_count,
17120 			       &rq_create->u.request.context,
17121 			       LPFC_RQ_RING_SIZE_2048);
17122 			break;
17123 		case 4096:
17124 			bf_set(lpfc_rq_context_rqe_count,
17125 			       &rq_create->u.request.context,
17126 			       LPFC_RQ_RING_SIZE_4096);
17127 			break;
17128 		}
17129 		bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
17130 		       LPFC_HDR_BUF_SIZE);
17131 	}
17132 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
17133 	       cq->queue_id);
17134 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
17135 	       hrq->page_count);
17136 	list_for_each_entry(dmabuf, &hrq->page_list, list) {
17137 		memset(dmabuf->virt, 0, hw_page_size);
17138 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
17139 					putPaddrLow(dmabuf->phys);
17140 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
17141 					putPaddrHigh(dmabuf->phys);
17142 	}
17143 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
17144 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
17145 
17146 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17147 	/* The IOCTL status is embedded in the mailbox subheader. */
17148 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17149 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17150 	if (shdr_status || shdr_add_status || rc) {
17151 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17152 				"2504 RQ_CREATE mailbox failed with "
17153 				"status x%x add_status x%x, mbx status x%x\n",
17154 				shdr_status, shdr_add_status, rc);
17155 		status = -ENXIO;
17156 		goto out;
17157 	}
17158 	hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17159 	if (hrq->queue_id == 0xFFFF) {
17160 		status = -ENXIO;
17161 		goto out;
17162 	}
17163 
17164 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
17165 		hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
17166 					&rq_create->u.response);
17167 		if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
17168 		    (hrq->db_format != LPFC_DB_RING_FORMAT)) {
17169 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17170 					"3262 RQ [%d] doorbell format not "
17171 					"supported: x%x\n", hrq->queue_id,
17172 					hrq->db_format);
17173 			status = -EINVAL;
17174 			goto out;
17175 		}
17176 
17177 		pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
17178 				    &rq_create->u.response);
17179 		bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
17180 		if (!bar_memmap_p) {
17181 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17182 					"3269 RQ[%d] failed to memmap pci "
17183 					"barset:x%x\n", hrq->queue_id,
17184 					pci_barset);
17185 			status = -ENOMEM;
17186 			goto out;
17187 		}
17188 
17189 		db_offset = rq_create->u.response.doorbell_offset;
17190 		if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
17191 		    (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
17192 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17193 					"3270 RQ[%d] doorbell offset not "
17194 					"supported: x%x\n", hrq->queue_id,
17195 					db_offset);
17196 			status = -EINVAL;
17197 			goto out;
17198 		}
17199 		hrq->db_regaddr = bar_memmap_p + db_offset;
17200 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
17201 				"3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
17202 				"format:x%x\n", hrq->queue_id, pci_barset,
17203 				db_offset, hrq->db_format);
17204 	} else {
17205 		hrq->db_format = LPFC_DB_RING_FORMAT;
17206 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17207 	}
17208 	hrq->type = LPFC_HRQ;
17209 	hrq->assoc_qid = cq->queue_id;
17210 	hrq->subtype = subtype;
17211 	hrq->host_index = 0;
17212 	hrq->hba_index = 0;
17213 	hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17214 
17215 	/* now create the data queue */
17216 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17217 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
17218 			 length, LPFC_SLI4_MBX_EMBED);
17219 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
17220 	       phba->sli4_hba.pc_sli4_params.rqv);
17221 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
17222 		bf_set(lpfc_rq_context_rqe_count_1,
17223 		       &rq_create->u.request.context, hrq->entry_count);
17224 		if (subtype == LPFC_NVMET)
17225 			rq_create->u.request.context.buffer_size =
17226 				LPFC_NVMET_DATA_BUF_SIZE;
17227 		else
17228 			rq_create->u.request.context.buffer_size =
17229 				LPFC_DATA_BUF_SIZE;
17230 		bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
17231 		       LPFC_RQE_SIZE_8);
17232 		bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
17233 		       (PAGE_SIZE/SLI4_PAGE_SIZE));
17234 	} else {
17235 		switch (drq->entry_count) {
17236 		default:
17237 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17238 					"2536 Unsupported RQ count. (%d)\n",
17239 					drq->entry_count);
17240 			if (drq->entry_count < 512) {
17241 				status = -EINVAL;
17242 				goto out;
17243 			}
17244 			fallthrough;	/* otherwise default to smallest count */
17245 		case 512:
17246 			bf_set(lpfc_rq_context_rqe_count,
17247 			       &rq_create->u.request.context,
17248 			       LPFC_RQ_RING_SIZE_512);
17249 			break;
17250 		case 1024:
17251 			bf_set(lpfc_rq_context_rqe_count,
17252 			       &rq_create->u.request.context,
17253 			       LPFC_RQ_RING_SIZE_1024);
17254 			break;
17255 		case 2048:
17256 			bf_set(lpfc_rq_context_rqe_count,
17257 			       &rq_create->u.request.context,
17258 			       LPFC_RQ_RING_SIZE_2048);
17259 			break;
17260 		case 4096:
17261 			bf_set(lpfc_rq_context_rqe_count,
17262 			       &rq_create->u.request.context,
17263 			       LPFC_RQ_RING_SIZE_4096);
17264 			break;
17265 		}
17266 		if (subtype == LPFC_NVMET)
17267 			bf_set(lpfc_rq_context_buf_size,
17268 			       &rq_create->u.request.context,
17269 			       LPFC_NVMET_DATA_BUF_SIZE);
17270 		else
17271 			bf_set(lpfc_rq_context_buf_size,
17272 			       &rq_create->u.request.context,
17273 			       LPFC_DATA_BUF_SIZE);
17274 	}
17275 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
17276 	       cq->queue_id);
17277 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
17278 	       drq->page_count);
17279 	list_for_each_entry(dmabuf, &drq->page_list, list) {
17280 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
17281 					putPaddrLow(dmabuf->phys);
17282 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
17283 					putPaddrHigh(dmabuf->phys);
17284 	}
17285 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
17286 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
17287 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17288 	/* The IOCTL status is embedded in the mailbox subheader. */
17289 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
17290 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17291 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17292 	if (shdr_status || shdr_add_status || rc) {
17293 		status = -ENXIO;
17294 		goto out;
17295 	}
17296 	drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17297 	if (drq->queue_id == 0xFFFF) {
17298 		status = -ENXIO;
17299 		goto out;
17300 	}
17301 	drq->type = LPFC_DRQ;
17302 	drq->assoc_qid = cq->queue_id;
17303 	drq->subtype = subtype;
17304 	drq->host_index = 0;
17305 	drq->hba_index = 0;
17306 	drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17307 
17308 	/* link the header and data RQs onto the parent cq child list */
17309 	list_add_tail(&hrq->list, &cq->child_list);
17310 	list_add_tail(&drq->list, &cq->child_list);
17311 
17312 out:
17313 	mempool_free(mbox, phba->mbox_mem_pool);
17314 	return status;
17315 }
17316 
17317 /**
17318  * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
17319  * @phba: HBA structure that indicates port to create a queue on.
17320  * @hrqp: The queue structure array to use to create the header receive queues.
17321  * @drqp: The queue structure array to use to create the data receive queues.
17322  * @cqp: The completion queue array to bind these receive queues to.
17323  * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
17324  *
17325  * This function creates a receive buffer queue pair , as detailed in @hrq and
17326  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
17327  * to the HBA.
17328  *
17329  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
17330  * struct is used to get the entry count that is necessary to determine the
17331  * number of pages to use for this queue. The @cq is used to indicate which
17332  * completion queue to bind received buffers that are posted to these queues to.
17333  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
17334  * receive queue pair. This function is asynchronous and will wait for the
17335  * mailbox command to finish before continuing.
17336  *
17337  * On success this function will return a zero. If unable to allocate enough
17338  * memory this function will return -ENOMEM. If the queue create mailbox command
17339  * fails this function will return -ENXIO.
17340  **/
17341 int
17342 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
17343 		struct lpfc_queue **drqp, struct lpfc_queue **cqp,
17344 		uint32_t subtype)
17345 {
17346 	struct lpfc_queue *hrq, *drq, *cq;
17347 	struct lpfc_mbx_rq_create_v2 *rq_create;
17348 	struct lpfc_dmabuf *dmabuf;
17349 	LPFC_MBOXQ_t *mbox;
17350 	int rc, length, alloclen, status = 0;
17351 	int cnt, idx, numrq, page_idx = 0;
17352 	uint32_t shdr_status, shdr_add_status;
17353 	union lpfc_sli4_cfg_shdr *shdr;
17354 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
17355 
17356 	numrq = phba->cfg_nvmet_mrq;
17357 	/* sanity check on array memory */
17358 	if (!hrqp || !drqp || !cqp || !numrq)
17359 		return -ENODEV;
17360 	if (!phba->sli4_hba.pc_sli4_params.supported)
17361 		hw_page_size = SLI4_PAGE_SIZE;
17362 
17363 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17364 	if (!mbox)
17365 		return -ENOMEM;
17366 
17367 	length = sizeof(struct lpfc_mbx_rq_create_v2);
17368 	length += ((2 * numrq * hrqp[0]->page_count) *
17369 		   sizeof(struct dma_address));
17370 
17371 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17372 				    LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
17373 				    LPFC_SLI4_MBX_NEMBED);
17374 	if (alloclen < length) {
17375 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17376 				"3099 Allocated DMA memory size (%d) is "
17377 				"less than the requested DMA memory size "
17378 				"(%d)\n", alloclen, length);
17379 		status = -ENOMEM;
17380 		goto out;
17381 	}
17382 
17383 
17384 
17385 	rq_create = mbox->sge_array->addr[0];
17386 	shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
17387 
17388 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
17389 	cnt = 0;
17390 
17391 	for (idx = 0; idx < numrq; idx++) {
17392 		hrq = hrqp[idx];
17393 		drq = drqp[idx];
17394 		cq  = cqp[idx];
17395 
17396 		/* sanity check on queue memory */
17397 		if (!hrq || !drq || !cq) {
17398 			status = -ENODEV;
17399 			goto out;
17400 		}
17401 
17402 		if (hrq->entry_count != drq->entry_count) {
17403 			status = -EINVAL;
17404 			goto out;
17405 		}
17406 
17407 		if (idx == 0) {
17408 			bf_set(lpfc_mbx_rq_create_num_pages,
17409 			       &rq_create->u.request,
17410 			       hrq->page_count);
17411 			bf_set(lpfc_mbx_rq_create_rq_cnt,
17412 			       &rq_create->u.request, (numrq * 2));
17413 			bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
17414 			       1);
17415 			bf_set(lpfc_rq_context_base_cq,
17416 			       &rq_create->u.request.context,
17417 			       cq->queue_id);
17418 			bf_set(lpfc_rq_context_data_size,
17419 			       &rq_create->u.request.context,
17420 			       LPFC_NVMET_DATA_BUF_SIZE);
17421 			bf_set(lpfc_rq_context_hdr_size,
17422 			       &rq_create->u.request.context,
17423 			       LPFC_HDR_BUF_SIZE);
17424 			bf_set(lpfc_rq_context_rqe_count_1,
17425 			       &rq_create->u.request.context,
17426 			       hrq->entry_count);
17427 			bf_set(lpfc_rq_context_rqe_size,
17428 			       &rq_create->u.request.context,
17429 			       LPFC_RQE_SIZE_8);
17430 			bf_set(lpfc_rq_context_page_size,
17431 			       &rq_create->u.request.context,
17432 			       (PAGE_SIZE/SLI4_PAGE_SIZE));
17433 		}
17434 		rc = 0;
17435 		list_for_each_entry(dmabuf, &hrq->page_list, list) {
17436 			memset(dmabuf->virt, 0, hw_page_size);
17437 			cnt = page_idx + dmabuf->buffer_tag;
17438 			rq_create->u.request.page[cnt].addr_lo =
17439 					putPaddrLow(dmabuf->phys);
17440 			rq_create->u.request.page[cnt].addr_hi =
17441 					putPaddrHigh(dmabuf->phys);
17442 			rc++;
17443 		}
17444 		page_idx += rc;
17445 
17446 		rc = 0;
17447 		list_for_each_entry(dmabuf, &drq->page_list, list) {
17448 			memset(dmabuf->virt, 0, hw_page_size);
17449 			cnt = page_idx + dmabuf->buffer_tag;
17450 			rq_create->u.request.page[cnt].addr_lo =
17451 					putPaddrLow(dmabuf->phys);
17452 			rq_create->u.request.page[cnt].addr_hi =
17453 					putPaddrHigh(dmabuf->phys);
17454 			rc++;
17455 		}
17456 		page_idx += rc;
17457 
17458 		hrq->db_format = LPFC_DB_RING_FORMAT;
17459 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17460 		hrq->type = LPFC_HRQ;
17461 		hrq->assoc_qid = cq->queue_id;
17462 		hrq->subtype = subtype;
17463 		hrq->host_index = 0;
17464 		hrq->hba_index = 0;
17465 		hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17466 
17467 		drq->db_format = LPFC_DB_RING_FORMAT;
17468 		drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17469 		drq->type = LPFC_DRQ;
17470 		drq->assoc_qid = cq->queue_id;
17471 		drq->subtype = subtype;
17472 		drq->host_index = 0;
17473 		drq->hba_index = 0;
17474 		drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17475 
17476 		list_add_tail(&hrq->list, &cq->child_list);
17477 		list_add_tail(&drq->list, &cq->child_list);
17478 	}
17479 
17480 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17481 	/* The IOCTL status is embedded in the mailbox subheader. */
17482 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17483 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17484 	if (shdr_status || shdr_add_status || rc) {
17485 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17486 				"3120 RQ_CREATE mailbox failed with "
17487 				"status x%x add_status x%x, mbx status x%x\n",
17488 				shdr_status, shdr_add_status, rc);
17489 		status = -ENXIO;
17490 		goto out;
17491 	}
17492 	rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17493 	if (rc == 0xFFFF) {
17494 		status = -ENXIO;
17495 		goto out;
17496 	}
17497 
17498 	/* Initialize all RQs with associated queue id */
17499 	for (idx = 0; idx < numrq; idx++) {
17500 		hrq = hrqp[idx];
17501 		hrq->queue_id = rc + (2 * idx);
17502 		drq = drqp[idx];
17503 		drq->queue_id = rc + (2 * idx) + 1;
17504 	}
17505 
17506 out:
17507 	lpfc_sli4_mbox_cmd_free(phba, mbox);
17508 	return status;
17509 }
17510 
17511 /**
17512  * lpfc_eq_destroy - Destroy an event Queue on the HBA
17513  * @phba: HBA structure that indicates port to destroy a queue on.
17514  * @eq: The queue structure associated with the queue to destroy.
17515  *
17516  * This function destroys a queue, as detailed in @eq by sending an mailbox
17517  * command, specific to the type of queue, to the HBA.
17518  *
17519  * The @eq struct is used to get the queue ID of the queue to destroy.
17520  *
17521  * On success this function will return a zero. If the queue destroy mailbox
17522  * command fails this function will return -ENXIO.
17523  **/
17524 int
17525 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
17526 {
17527 	LPFC_MBOXQ_t *mbox;
17528 	int rc, length, status = 0;
17529 	uint32_t shdr_status, shdr_add_status;
17530 	union lpfc_sli4_cfg_shdr *shdr;
17531 
17532 	/* sanity check on queue memory */
17533 	if (!eq)
17534 		return -ENODEV;
17535 
17536 	mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
17537 	if (!mbox)
17538 		return -ENOMEM;
17539 	length = (sizeof(struct lpfc_mbx_eq_destroy) -
17540 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17541 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17542 			 LPFC_MBOX_OPCODE_EQ_DESTROY,
17543 			 length, LPFC_SLI4_MBX_EMBED);
17544 	bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
17545 	       eq->queue_id);
17546 	mbox->vport = eq->phba->pport;
17547 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17548 
17549 	rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
17550 	/* The IOCTL status is embedded in the mailbox subheader. */
17551 	shdr = (union lpfc_sli4_cfg_shdr *)
17552 		&mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
17553 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17554 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17555 	if (shdr_status || shdr_add_status || rc) {
17556 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17557 				"2505 EQ_DESTROY mailbox failed with "
17558 				"status x%x add_status x%x, mbx status x%x\n",
17559 				shdr_status, shdr_add_status, rc);
17560 		status = -ENXIO;
17561 	}
17562 
17563 	/* Remove eq from any list */
17564 	list_del_init(&eq->list);
17565 	mempool_free(mbox, eq->phba->mbox_mem_pool);
17566 	return status;
17567 }
17568 
17569 /**
17570  * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
17571  * @phba: HBA structure that indicates port to destroy a queue on.
17572  * @cq: The queue structure associated with the queue to destroy.
17573  *
17574  * This function destroys a queue, as detailed in @cq by sending an mailbox
17575  * command, specific to the type of queue, to the HBA.
17576  *
17577  * The @cq struct is used to get the queue ID of the queue to destroy.
17578  *
17579  * On success this function will return a zero. If the queue destroy mailbox
17580  * command fails this function will return -ENXIO.
17581  **/
17582 int
17583 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
17584 {
17585 	LPFC_MBOXQ_t *mbox;
17586 	int rc, length, status = 0;
17587 	uint32_t shdr_status, shdr_add_status;
17588 	union lpfc_sli4_cfg_shdr *shdr;
17589 
17590 	/* sanity check on queue memory */
17591 	if (!cq)
17592 		return -ENODEV;
17593 	mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
17594 	if (!mbox)
17595 		return -ENOMEM;
17596 	length = (sizeof(struct lpfc_mbx_cq_destroy) -
17597 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17598 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17599 			 LPFC_MBOX_OPCODE_CQ_DESTROY,
17600 			 length, LPFC_SLI4_MBX_EMBED);
17601 	bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
17602 	       cq->queue_id);
17603 	mbox->vport = cq->phba->pport;
17604 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17605 	rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
17606 	/* The IOCTL status is embedded in the mailbox subheader. */
17607 	shdr = (union lpfc_sli4_cfg_shdr *)
17608 		&mbox->u.mqe.un.wq_create.header.cfg_shdr;
17609 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17610 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17611 	if (shdr_status || shdr_add_status || rc) {
17612 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17613 				"2506 CQ_DESTROY mailbox failed with "
17614 				"status x%x add_status x%x, mbx status x%x\n",
17615 				shdr_status, shdr_add_status, rc);
17616 		status = -ENXIO;
17617 	}
17618 	/* Remove cq from any list */
17619 	list_del_init(&cq->list);
17620 	mempool_free(mbox, cq->phba->mbox_mem_pool);
17621 	return status;
17622 }
17623 
17624 /**
17625  * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
17626  * @phba: HBA structure that indicates port to destroy a queue on.
17627  * @mq: The queue structure associated with the queue to destroy.
17628  *
17629  * This function destroys a queue, as detailed in @mq by sending an mailbox
17630  * command, specific to the type of queue, to the HBA.
17631  *
17632  * The @mq struct is used to get the queue ID of the queue to destroy.
17633  *
17634  * On success this function will return a zero. If the queue destroy mailbox
17635  * command fails this function will return -ENXIO.
17636  **/
17637 int
17638 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
17639 {
17640 	LPFC_MBOXQ_t *mbox;
17641 	int rc, length, status = 0;
17642 	uint32_t shdr_status, shdr_add_status;
17643 	union lpfc_sli4_cfg_shdr *shdr;
17644 
17645 	/* sanity check on queue memory */
17646 	if (!mq)
17647 		return -ENODEV;
17648 	mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
17649 	if (!mbox)
17650 		return -ENOMEM;
17651 	length = (sizeof(struct lpfc_mbx_mq_destroy) -
17652 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17653 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17654 			 LPFC_MBOX_OPCODE_MQ_DESTROY,
17655 			 length, LPFC_SLI4_MBX_EMBED);
17656 	bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
17657 	       mq->queue_id);
17658 	mbox->vport = mq->phba->pport;
17659 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17660 	rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
17661 	/* The IOCTL status is embedded in the mailbox subheader. */
17662 	shdr = (union lpfc_sli4_cfg_shdr *)
17663 		&mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
17664 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17665 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17666 	if (shdr_status || shdr_add_status || rc) {
17667 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17668 				"2507 MQ_DESTROY mailbox failed with "
17669 				"status x%x add_status x%x, mbx status x%x\n",
17670 				shdr_status, shdr_add_status, rc);
17671 		status = -ENXIO;
17672 	}
17673 	/* Remove mq from any list */
17674 	list_del_init(&mq->list);
17675 	mempool_free(mbox, mq->phba->mbox_mem_pool);
17676 	return status;
17677 }
17678 
17679 /**
17680  * lpfc_wq_destroy - Destroy a Work Queue on the HBA
17681  * @phba: HBA structure that indicates port to destroy a queue on.
17682  * @wq: The queue structure associated with the queue to destroy.
17683  *
17684  * This function destroys a queue, as detailed in @wq by sending an mailbox
17685  * command, specific to the type of queue, to the HBA.
17686  *
17687  * The @wq struct is used to get the queue ID of the queue to destroy.
17688  *
17689  * On success this function will return a zero. If the queue destroy mailbox
17690  * command fails this function will return -ENXIO.
17691  **/
17692 int
17693 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
17694 {
17695 	LPFC_MBOXQ_t *mbox;
17696 	int rc, length, status = 0;
17697 	uint32_t shdr_status, shdr_add_status;
17698 	union lpfc_sli4_cfg_shdr *shdr;
17699 
17700 	/* sanity check on queue memory */
17701 	if (!wq)
17702 		return -ENODEV;
17703 	mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
17704 	if (!mbox)
17705 		return -ENOMEM;
17706 	length = (sizeof(struct lpfc_mbx_wq_destroy) -
17707 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17708 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17709 			 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
17710 			 length, LPFC_SLI4_MBX_EMBED);
17711 	bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
17712 	       wq->queue_id);
17713 	mbox->vport = wq->phba->pport;
17714 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17715 	rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
17716 	shdr = (union lpfc_sli4_cfg_shdr *)
17717 		&mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
17718 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17719 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17720 	if (shdr_status || shdr_add_status || rc) {
17721 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17722 				"2508 WQ_DESTROY mailbox failed with "
17723 				"status x%x add_status x%x, mbx status x%x\n",
17724 				shdr_status, shdr_add_status, rc);
17725 		status = -ENXIO;
17726 	}
17727 	/* Remove wq from any list */
17728 	list_del_init(&wq->list);
17729 	kfree(wq->pring);
17730 	wq->pring = NULL;
17731 	mempool_free(mbox, wq->phba->mbox_mem_pool);
17732 	return status;
17733 }
17734 
17735 /**
17736  * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
17737  * @phba: HBA structure that indicates port to destroy a queue on.
17738  * @hrq: The queue structure associated with the queue to destroy.
17739  * @drq: The queue structure associated with the queue to destroy.
17740  *
17741  * This function destroys a queue, as detailed in @rq by sending an mailbox
17742  * command, specific to the type of queue, to the HBA.
17743  *
17744  * The @rq struct is used to get the queue ID of the queue to destroy.
17745  *
17746  * On success this function will return a zero. If the queue destroy mailbox
17747  * command fails this function will return -ENXIO.
17748  **/
17749 int
17750 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
17751 		struct lpfc_queue *drq)
17752 {
17753 	LPFC_MBOXQ_t *mbox;
17754 	int rc, length, status = 0;
17755 	uint32_t shdr_status, shdr_add_status;
17756 	union lpfc_sli4_cfg_shdr *shdr;
17757 
17758 	/* sanity check on queue memory */
17759 	if (!hrq || !drq)
17760 		return -ENODEV;
17761 	mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
17762 	if (!mbox)
17763 		return -ENOMEM;
17764 	length = (sizeof(struct lpfc_mbx_rq_destroy) -
17765 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17766 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17767 			 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
17768 			 length, LPFC_SLI4_MBX_EMBED);
17769 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17770 	       hrq->queue_id);
17771 	mbox->vport = hrq->phba->pport;
17772 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17773 	rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
17774 	/* The IOCTL status is embedded in the mailbox subheader. */
17775 	shdr = (union lpfc_sli4_cfg_shdr *)
17776 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17777 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17778 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17779 	if (shdr_status || shdr_add_status || rc) {
17780 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17781 				"2509 RQ_DESTROY mailbox failed with "
17782 				"status x%x add_status x%x, mbx status x%x\n",
17783 				shdr_status, shdr_add_status, rc);
17784 		mempool_free(mbox, hrq->phba->mbox_mem_pool);
17785 		return -ENXIO;
17786 	}
17787 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17788 	       drq->queue_id);
17789 	rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
17790 	shdr = (union lpfc_sli4_cfg_shdr *)
17791 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17792 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17793 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17794 	if (shdr_status || shdr_add_status || rc) {
17795 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17796 				"2510 RQ_DESTROY mailbox failed with "
17797 				"status x%x add_status x%x, mbx status x%x\n",
17798 				shdr_status, shdr_add_status, rc);
17799 		status = -ENXIO;
17800 	}
17801 	list_del_init(&hrq->list);
17802 	list_del_init(&drq->list);
17803 	mempool_free(mbox, hrq->phba->mbox_mem_pool);
17804 	return status;
17805 }
17806 
17807 /**
17808  * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
17809  * @phba: The virtual port for which this call being executed.
17810  * @pdma_phys_addr0: Physical address of the 1st SGL page.
17811  * @pdma_phys_addr1: Physical address of the 2nd SGL page.
17812  * @xritag: the xritag that ties this io to the SGL pages.
17813  *
17814  * This routine will post the sgl pages for the IO that has the xritag
17815  * that is in the iocbq structure. The xritag is assigned during iocbq
17816  * creation and persists for as long as the driver is loaded.
17817  * if the caller has fewer than 256 scatter gather segments to map then
17818  * pdma_phys_addr1 should be 0.
17819  * If the caller needs to map more than 256 scatter gather segment then
17820  * pdma_phys_addr1 should be a valid physical address.
17821  * physical address for SGLs must be 64 byte aligned.
17822  * If you are going to map 2 SGL's then the first one must have 256 entries
17823  * the second sgl can have between 1 and 256 entries.
17824  *
17825  * Return codes:
17826  * 	0 - Success
17827  * 	-ENXIO, -ENOMEM - Failure
17828  **/
17829 int
17830 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
17831 		dma_addr_t pdma_phys_addr0,
17832 		dma_addr_t pdma_phys_addr1,
17833 		uint16_t xritag)
17834 {
17835 	struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
17836 	LPFC_MBOXQ_t *mbox;
17837 	int rc;
17838 	uint32_t shdr_status, shdr_add_status;
17839 	uint32_t mbox_tmo;
17840 	union lpfc_sli4_cfg_shdr *shdr;
17841 
17842 	if (xritag == NO_XRI) {
17843 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17844 				"0364 Invalid param:\n");
17845 		return -EINVAL;
17846 	}
17847 
17848 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17849 	if (!mbox)
17850 		return -ENOMEM;
17851 
17852 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17853 			LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
17854 			sizeof(struct lpfc_mbx_post_sgl_pages) -
17855 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
17856 
17857 	post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
17858 				&mbox->u.mqe.un.post_sgl_pages;
17859 	bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
17860 	bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
17861 
17862 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo	=
17863 				cpu_to_le32(putPaddrLow(pdma_phys_addr0));
17864 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
17865 				cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
17866 
17867 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo	=
17868 				cpu_to_le32(putPaddrLow(pdma_phys_addr1));
17869 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
17870 				cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
17871 	if (!phba->sli4_hba.intr_enable)
17872 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17873 	else {
17874 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17875 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17876 	}
17877 	/* The IOCTL status is embedded in the mailbox subheader. */
17878 	shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
17879 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17880 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17881 	if (!phba->sli4_hba.intr_enable)
17882 		mempool_free(mbox, phba->mbox_mem_pool);
17883 	else if (rc != MBX_TIMEOUT)
17884 		mempool_free(mbox, phba->mbox_mem_pool);
17885 	if (shdr_status || shdr_add_status || rc) {
17886 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17887 				"2511 POST_SGL mailbox failed with "
17888 				"status x%x add_status x%x, mbx status x%x\n",
17889 				shdr_status, shdr_add_status, rc);
17890 	}
17891 	return 0;
17892 }
17893 
17894 /**
17895  * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
17896  * @phba: pointer to lpfc hba data structure.
17897  *
17898  * This routine is invoked to post rpi header templates to the
17899  * HBA consistent with the SLI-4 interface spec.  This routine
17900  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
17901  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
17902  *
17903  * Returns
17904  *	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
17905  *	LPFC_RPI_ALLOC_ERROR if no rpis are available.
17906  **/
17907 static uint16_t
17908 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
17909 {
17910 	unsigned long xri;
17911 
17912 	/*
17913 	 * Fetch the next logical xri.  Because this index is logical,
17914 	 * the driver starts at 0 each time.
17915 	 */
17916 	spin_lock_irq(&phba->hbalock);
17917 	xri = find_first_zero_bit(phba->sli4_hba.xri_bmask,
17918 				 phba->sli4_hba.max_cfg_param.max_xri);
17919 	if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
17920 		spin_unlock_irq(&phba->hbalock);
17921 		return NO_XRI;
17922 	} else {
17923 		set_bit(xri, phba->sli4_hba.xri_bmask);
17924 		phba->sli4_hba.max_cfg_param.xri_used++;
17925 	}
17926 	spin_unlock_irq(&phba->hbalock);
17927 	return xri;
17928 }
17929 
17930 /**
17931  * __lpfc_sli4_free_xri - Release an xri for reuse.
17932  * @phba: pointer to lpfc hba data structure.
17933  * @xri: xri to release.
17934  *
17935  * This routine is invoked to release an xri to the pool of
17936  * available rpis maintained by the driver.
17937  **/
17938 static void
17939 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
17940 {
17941 	if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
17942 		phba->sli4_hba.max_cfg_param.xri_used--;
17943 	}
17944 }
17945 
17946 /**
17947  * lpfc_sli4_free_xri - Release an xri for reuse.
17948  * @phba: pointer to lpfc hba data structure.
17949  * @xri: xri to release.
17950  *
17951  * This routine is invoked to release an xri to the pool of
17952  * available rpis maintained by the driver.
17953  **/
17954 void
17955 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
17956 {
17957 	spin_lock_irq(&phba->hbalock);
17958 	__lpfc_sli4_free_xri(phba, xri);
17959 	spin_unlock_irq(&phba->hbalock);
17960 }
17961 
17962 /**
17963  * lpfc_sli4_next_xritag - Get an xritag for the io
17964  * @phba: Pointer to HBA context object.
17965  *
17966  * This function gets an xritag for the iocb. If there is no unused xritag
17967  * it will return 0xffff.
17968  * The function returns the allocated xritag if successful, else returns zero.
17969  * Zero is not a valid xritag.
17970  * The caller is not required to hold any lock.
17971  **/
17972 uint16_t
17973 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
17974 {
17975 	uint16_t xri_index;
17976 
17977 	xri_index = lpfc_sli4_alloc_xri(phba);
17978 	if (xri_index == NO_XRI)
17979 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
17980 				"2004 Failed to allocate XRI.last XRITAG is %d"
17981 				" Max XRI is %d, Used XRI is %d\n",
17982 				xri_index,
17983 				phba->sli4_hba.max_cfg_param.max_xri,
17984 				phba->sli4_hba.max_cfg_param.xri_used);
17985 	return xri_index;
17986 }
17987 
17988 /**
17989  * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
17990  * @phba: pointer to lpfc hba data structure.
17991  * @post_sgl_list: pointer to els sgl entry list.
17992  * @post_cnt: number of els sgl entries on the list.
17993  *
17994  * This routine is invoked to post a block of driver's sgl pages to the
17995  * HBA using non-embedded mailbox command. No Lock is held. This routine
17996  * is only called when the driver is loading and after all IO has been
17997  * stopped.
17998  **/
17999 static int
18000 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
18001 			    struct list_head *post_sgl_list,
18002 			    int post_cnt)
18003 {
18004 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
18005 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
18006 	struct sgl_page_pairs *sgl_pg_pairs;
18007 	void *viraddr;
18008 	LPFC_MBOXQ_t *mbox;
18009 	uint32_t reqlen, alloclen, pg_pairs;
18010 	uint32_t mbox_tmo;
18011 	uint16_t xritag_start = 0;
18012 	int rc = 0;
18013 	uint32_t shdr_status, shdr_add_status;
18014 	union lpfc_sli4_cfg_shdr *shdr;
18015 
18016 	reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
18017 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
18018 	if (reqlen > SLI4_PAGE_SIZE) {
18019 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18020 				"2559 Block sgl registration required DMA "
18021 				"size (%d) great than a page\n", reqlen);
18022 		return -ENOMEM;
18023 	}
18024 
18025 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18026 	if (!mbox)
18027 		return -ENOMEM;
18028 
18029 	/* Allocate DMA memory and set up the non-embedded mailbox command */
18030 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18031 			 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
18032 			 LPFC_SLI4_MBX_NEMBED);
18033 
18034 	if (alloclen < reqlen) {
18035 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18036 				"0285 Allocated DMA memory size (%d) is "
18037 				"less than the requested DMA memory "
18038 				"size (%d)\n", alloclen, reqlen);
18039 		lpfc_sli4_mbox_cmd_free(phba, mbox);
18040 		return -ENOMEM;
18041 	}
18042 	/* Set up the SGL pages in the non-embedded DMA pages */
18043 	viraddr = mbox->sge_array->addr[0];
18044 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
18045 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
18046 
18047 	pg_pairs = 0;
18048 	list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
18049 		/* Set up the sge entry */
18050 		sgl_pg_pairs->sgl_pg0_addr_lo =
18051 				cpu_to_le32(putPaddrLow(sglq_entry->phys));
18052 		sgl_pg_pairs->sgl_pg0_addr_hi =
18053 				cpu_to_le32(putPaddrHigh(sglq_entry->phys));
18054 		sgl_pg_pairs->sgl_pg1_addr_lo =
18055 				cpu_to_le32(putPaddrLow(0));
18056 		sgl_pg_pairs->sgl_pg1_addr_hi =
18057 				cpu_to_le32(putPaddrHigh(0));
18058 
18059 		/* Keep the first xritag on the list */
18060 		if (pg_pairs == 0)
18061 			xritag_start = sglq_entry->sli4_xritag;
18062 		sgl_pg_pairs++;
18063 		pg_pairs++;
18064 	}
18065 
18066 	/* Complete initialization and perform endian conversion. */
18067 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
18068 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
18069 	sgl->word0 = cpu_to_le32(sgl->word0);
18070 
18071 	if (!phba->sli4_hba.intr_enable)
18072 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
18073 	else {
18074 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
18075 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
18076 	}
18077 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
18078 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18079 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18080 	if (!phba->sli4_hba.intr_enable)
18081 		lpfc_sli4_mbox_cmd_free(phba, mbox);
18082 	else if (rc != MBX_TIMEOUT)
18083 		lpfc_sli4_mbox_cmd_free(phba, mbox);
18084 	if (shdr_status || shdr_add_status || rc) {
18085 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18086 				"2513 POST_SGL_BLOCK mailbox command failed "
18087 				"status x%x add_status x%x mbx status x%x\n",
18088 				shdr_status, shdr_add_status, rc);
18089 		rc = -ENXIO;
18090 	}
18091 	return rc;
18092 }
18093 
18094 /**
18095  * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
18096  * @phba: pointer to lpfc hba data structure.
18097  * @nblist: pointer to nvme buffer list.
18098  * @count: number of scsi buffers on the list.
18099  *
18100  * This routine is invoked to post a block of @count scsi sgl pages from a
18101  * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
18102  * No Lock is held.
18103  *
18104  **/
18105 static int
18106 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
18107 			    int count)
18108 {
18109 	struct lpfc_io_buf *lpfc_ncmd;
18110 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
18111 	struct sgl_page_pairs *sgl_pg_pairs;
18112 	void *viraddr;
18113 	LPFC_MBOXQ_t *mbox;
18114 	uint32_t reqlen, alloclen, pg_pairs;
18115 	uint32_t mbox_tmo;
18116 	uint16_t xritag_start = 0;
18117 	int rc = 0;
18118 	uint32_t shdr_status, shdr_add_status;
18119 	dma_addr_t pdma_phys_bpl1;
18120 	union lpfc_sli4_cfg_shdr *shdr;
18121 
18122 	/* Calculate the requested length of the dma memory */
18123 	reqlen = count * sizeof(struct sgl_page_pairs) +
18124 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
18125 	if (reqlen > SLI4_PAGE_SIZE) {
18126 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
18127 				"6118 Block sgl registration required DMA "
18128 				"size (%d) great than a page\n", reqlen);
18129 		return -ENOMEM;
18130 	}
18131 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18132 	if (!mbox) {
18133 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18134 				"6119 Failed to allocate mbox cmd memory\n");
18135 		return -ENOMEM;
18136 	}
18137 
18138 	/* Allocate DMA memory and set up the non-embedded mailbox command */
18139 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18140 				    LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
18141 				    reqlen, LPFC_SLI4_MBX_NEMBED);
18142 
18143 	if (alloclen < reqlen) {
18144 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18145 				"6120 Allocated DMA memory size (%d) is "
18146 				"less than the requested DMA memory "
18147 				"size (%d)\n", alloclen, reqlen);
18148 		lpfc_sli4_mbox_cmd_free(phba, mbox);
18149 		return -ENOMEM;
18150 	}
18151 
18152 	/* Get the first SGE entry from the non-embedded DMA memory */
18153 	viraddr = mbox->sge_array->addr[0];
18154 
18155 	/* Set up the SGL pages in the non-embedded DMA pages */
18156 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
18157 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
18158 
18159 	pg_pairs = 0;
18160 	list_for_each_entry(lpfc_ncmd, nblist, list) {
18161 		/* Set up the sge entry */
18162 		sgl_pg_pairs->sgl_pg0_addr_lo =
18163 			cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
18164 		sgl_pg_pairs->sgl_pg0_addr_hi =
18165 			cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
18166 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
18167 			pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
18168 						SGL_PAGE_SIZE;
18169 		else
18170 			pdma_phys_bpl1 = 0;
18171 		sgl_pg_pairs->sgl_pg1_addr_lo =
18172 			cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
18173 		sgl_pg_pairs->sgl_pg1_addr_hi =
18174 			cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
18175 		/* Keep the first xritag on the list */
18176 		if (pg_pairs == 0)
18177 			xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
18178 		sgl_pg_pairs++;
18179 		pg_pairs++;
18180 	}
18181 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
18182 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
18183 	/* Perform endian conversion if necessary */
18184 	sgl->word0 = cpu_to_le32(sgl->word0);
18185 
18186 	if (!phba->sli4_hba.intr_enable) {
18187 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
18188 	} else {
18189 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
18190 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
18191 	}
18192 	shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
18193 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18194 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18195 	if (!phba->sli4_hba.intr_enable)
18196 		lpfc_sli4_mbox_cmd_free(phba, mbox);
18197 	else if (rc != MBX_TIMEOUT)
18198 		lpfc_sli4_mbox_cmd_free(phba, mbox);
18199 	if (shdr_status || shdr_add_status || rc) {
18200 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18201 				"6125 POST_SGL_BLOCK mailbox command failed "
18202 				"status x%x add_status x%x mbx status x%x\n",
18203 				shdr_status, shdr_add_status, rc);
18204 		rc = -ENXIO;
18205 	}
18206 	return rc;
18207 }
18208 
18209 /**
18210  * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
18211  * @phba: pointer to lpfc hba data structure.
18212  * @post_nblist: pointer to the nvme buffer list.
18213  * @sb_count: number of nvme buffers.
18214  *
18215  * This routine walks a list of nvme buffers that was passed in. It attempts
18216  * to construct blocks of nvme buffer sgls which contains contiguous xris and
18217  * uses the non-embedded SGL block post mailbox commands to post to the port.
18218  * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
18219  * embedded SGL post mailbox command for posting. The @post_nblist passed in
18220  * must be local list, thus no lock is needed when manipulate the list.
18221  *
18222  * Returns: 0 = failure, non-zero number of successfully posted buffers.
18223  **/
18224 int
18225 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
18226 			   struct list_head *post_nblist, int sb_count)
18227 {
18228 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
18229 	int status, sgl_size;
18230 	int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
18231 	dma_addr_t pdma_phys_sgl1;
18232 	int last_xritag = NO_XRI;
18233 	int cur_xritag;
18234 	LIST_HEAD(prep_nblist);
18235 	LIST_HEAD(blck_nblist);
18236 	LIST_HEAD(nvme_nblist);
18237 
18238 	/* sanity check */
18239 	if (sb_count <= 0)
18240 		return -EINVAL;
18241 
18242 	sgl_size = phba->cfg_sg_dma_buf_size;
18243 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
18244 		list_del_init(&lpfc_ncmd->list);
18245 		block_cnt++;
18246 		if ((last_xritag != NO_XRI) &&
18247 		    (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
18248 			/* a hole in xri block, form a sgl posting block */
18249 			list_splice_init(&prep_nblist, &blck_nblist);
18250 			post_cnt = block_cnt - 1;
18251 			/* prepare list for next posting block */
18252 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
18253 			block_cnt = 1;
18254 		} else {
18255 			/* prepare list for next posting block */
18256 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
18257 			/* enough sgls for non-embed sgl mbox command */
18258 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
18259 				list_splice_init(&prep_nblist, &blck_nblist);
18260 				post_cnt = block_cnt;
18261 				block_cnt = 0;
18262 			}
18263 		}
18264 		num_posting++;
18265 		last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
18266 
18267 		/* end of repost sgl list condition for NVME buffers */
18268 		if (num_posting == sb_count) {
18269 			if (post_cnt == 0) {
18270 				/* last sgl posting block */
18271 				list_splice_init(&prep_nblist, &blck_nblist);
18272 				post_cnt = block_cnt;
18273 			} else if (block_cnt == 1) {
18274 				/* last single sgl with non-contiguous xri */
18275 				if (sgl_size > SGL_PAGE_SIZE)
18276 					pdma_phys_sgl1 =
18277 						lpfc_ncmd->dma_phys_sgl +
18278 						SGL_PAGE_SIZE;
18279 				else
18280 					pdma_phys_sgl1 = 0;
18281 				cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
18282 				status = lpfc_sli4_post_sgl(
18283 						phba, lpfc_ncmd->dma_phys_sgl,
18284 						pdma_phys_sgl1, cur_xritag);
18285 				if (status) {
18286 					/* Post error.  Buffer unavailable. */
18287 					lpfc_ncmd->flags |=
18288 						LPFC_SBUF_NOT_POSTED;
18289 				} else {
18290 					/* Post success. Bffer available. */
18291 					lpfc_ncmd->flags &=
18292 						~LPFC_SBUF_NOT_POSTED;
18293 					lpfc_ncmd->status = IOSTAT_SUCCESS;
18294 					num_posted++;
18295 				}
18296 				/* success, put on NVME buffer sgl list */
18297 				list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
18298 			}
18299 		}
18300 
18301 		/* continue until a nembed page worth of sgls */
18302 		if (post_cnt == 0)
18303 			continue;
18304 
18305 		/* post block of NVME buffer list sgls */
18306 		status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
18307 						     post_cnt);
18308 
18309 		/* don't reset xirtag due to hole in xri block */
18310 		if (block_cnt == 0)
18311 			last_xritag = NO_XRI;
18312 
18313 		/* reset NVME buffer post count for next round of posting */
18314 		post_cnt = 0;
18315 
18316 		/* put posted NVME buffer-sgl posted on NVME buffer sgl list */
18317 		while (!list_empty(&blck_nblist)) {
18318 			list_remove_head(&blck_nblist, lpfc_ncmd,
18319 					 struct lpfc_io_buf, list);
18320 			if (status) {
18321 				/* Post error.  Mark buffer unavailable. */
18322 				lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
18323 			} else {
18324 				/* Post success, Mark buffer available. */
18325 				lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
18326 				lpfc_ncmd->status = IOSTAT_SUCCESS;
18327 				num_posted++;
18328 			}
18329 			list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
18330 		}
18331 	}
18332 	/* Push NVME buffers with sgl posted to the available list */
18333 	lpfc_io_buf_replenish(phba, &nvme_nblist);
18334 
18335 	return num_posted;
18336 }
18337 
18338 /**
18339  * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
18340  * @phba: pointer to lpfc_hba struct that the frame was received on
18341  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18342  *
18343  * This function checks the fields in the @fc_hdr to see if the FC frame is a
18344  * valid type of frame that the LPFC driver will handle. This function will
18345  * return a zero if the frame is a valid frame or a non zero value when the
18346  * frame does not pass the check.
18347  **/
18348 static int
18349 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
18350 {
18351 	/*  make rctl_names static to save stack space */
18352 	struct fc_vft_header *fc_vft_hdr;
18353 	uint32_t *header = (uint32_t *) fc_hdr;
18354 
18355 #define FC_RCTL_MDS_DIAGS	0xF4
18356 
18357 	switch (fc_hdr->fh_r_ctl) {
18358 	case FC_RCTL_DD_UNCAT:		/* uncategorized information */
18359 	case FC_RCTL_DD_SOL_DATA:	/* solicited data */
18360 	case FC_RCTL_DD_UNSOL_CTL:	/* unsolicited control */
18361 	case FC_RCTL_DD_SOL_CTL:	/* solicited control or reply */
18362 	case FC_RCTL_DD_UNSOL_DATA:	/* unsolicited data */
18363 	case FC_RCTL_DD_DATA_DESC:	/* data descriptor */
18364 	case FC_RCTL_DD_UNSOL_CMD:	/* unsolicited command */
18365 	case FC_RCTL_DD_CMD_STATUS:	/* command status */
18366 	case FC_RCTL_ELS_REQ:	/* extended link services request */
18367 	case FC_RCTL_ELS_REP:	/* extended link services reply */
18368 	case FC_RCTL_ELS4_REQ:	/* FC-4 ELS request */
18369 	case FC_RCTL_ELS4_REP:	/* FC-4 ELS reply */
18370 	case FC_RCTL_BA_ABTS: 	/* basic link service abort */
18371 	case FC_RCTL_BA_RMC: 	/* remove connection */
18372 	case FC_RCTL_BA_ACC:	/* basic accept */
18373 	case FC_RCTL_BA_RJT:	/* basic reject */
18374 	case FC_RCTL_BA_PRMT:
18375 	case FC_RCTL_ACK_1:	/* acknowledge_1 */
18376 	case FC_RCTL_ACK_0:	/* acknowledge_0 */
18377 	case FC_RCTL_P_RJT:	/* port reject */
18378 	case FC_RCTL_F_RJT:	/* fabric reject */
18379 	case FC_RCTL_P_BSY:	/* port busy */
18380 	case FC_RCTL_F_BSY:	/* fabric busy to data frame */
18381 	case FC_RCTL_F_BSYL:	/* fabric busy to link control frame */
18382 	case FC_RCTL_LCR:	/* link credit reset */
18383 	case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
18384 	case FC_RCTL_END:	/* end */
18385 		break;
18386 	case FC_RCTL_VFTH:	/* Virtual Fabric tagging Header */
18387 		fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
18388 		fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
18389 		return lpfc_fc_frame_check(phba, fc_hdr);
18390 	case FC_RCTL_BA_NOP:	/* basic link service NOP */
18391 	default:
18392 		goto drop;
18393 	}
18394 
18395 	switch (fc_hdr->fh_type) {
18396 	case FC_TYPE_BLS:
18397 	case FC_TYPE_ELS:
18398 	case FC_TYPE_FCP:
18399 	case FC_TYPE_CT:
18400 	case FC_TYPE_NVME:
18401 		break;
18402 	case FC_TYPE_IP:
18403 	case FC_TYPE_ILS:
18404 	default:
18405 		goto drop;
18406 	}
18407 
18408 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
18409 			"2538 Received frame rctl:x%x, type:x%x, "
18410 			"frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
18411 			fc_hdr->fh_r_ctl, fc_hdr->fh_type,
18412 			be32_to_cpu(header[0]), be32_to_cpu(header[1]),
18413 			be32_to_cpu(header[2]), be32_to_cpu(header[3]),
18414 			be32_to_cpu(header[4]), be32_to_cpu(header[5]),
18415 			be32_to_cpu(header[6]));
18416 	return 0;
18417 drop:
18418 	lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
18419 			"2539 Dropped frame rctl:x%x type:x%x\n",
18420 			fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18421 	return 1;
18422 }
18423 
18424 /**
18425  * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
18426  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18427  *
18428  * This function processes the FC header to retrieve the VFI from the VF
18429  * header, if one exists. This function will return the VFI if one exists
18430  * or 0 if no VSAN Header exists.
18431  **/
18432 static uint32_t
18433 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
18434 {
18435 	struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
18436 
18437 	if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
18438 		return 0;
18439 	return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
18440 }
18441 
18442 /**
18443  * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
18444  * @phba: Pointer to the HBA structure to search for the vport on
18445  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18446  * @fcfi: The FC Fabric ID that the frame came from
18447  * @did: Destination ID to match against
18448  *
18449  * This function searches the @phba for a vport that matches the content of the
18450  * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
18451  * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
18452  * returns the matching vport pointer or NULL if unable to match frame to a
18453  * vport.
18454  **/
18455 static struct lpfc_vport *
18456 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
18457 		       uint16_t fcfi, uint32_t did)
18458 {
18459 	struct lpfc_vport **vports;
18460 	struct lpfc_vport *vport = NULL;
18461 	int i;
18462 
18463 	if (did == Fabric_DID)
18464 		return phba->pport;
18465 	if ((phba->pport->fc_flag & FC_PT2PT) &&
18466 		!(phba->link_state == LPFC_HBA_READY))
18467 		return phba->pport;
18468 
18469 	vports = lpfc_create_vport_work_array(phba);
18470 	if (vports != NULL) {
18471 		for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
18472 			if (phba->fcf.fcfi == fcfi &&
18473 			    vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
18474 			    vports[i]->fc_myDID == did) {
18475 				vport = vports[i];
18476 				break;
18477 			}
18478 		}
18479 	}
18480 	lpfc_destroy_vport_work_array(phba, vports);
18481 	return vport;
18482 }
18483 
18484 /**
18485  * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
18486  * @vport: The vport to work on.
18487  *
18488  * This function updates the receive sequence time stamp for this vport. The
18489  * receive sequence time stamp indicates the time that the last frame of the
18490  * the sequence that has been idle for the longest amount of time was received.
18491  * the driver uses this time stamp to indicate if any received sequences have
18492  * timed out.
18493  **/
18494 static void
18495 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
18496 {
18497 	struct lpfc_dmabuf *h_buf;
18498 	struct hbq_dmabuf *dmabuf = NULL;
18499 
18500 	/* get the oldest sequence on the rcv list */
18501 	h_buf = list_get_first(&vport->rcv_buffer_list,
18502 			       struct lpfc_dmabuf, list);
18503 	if (!h_buf)
18504 		return;
18505 	dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18506 	vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
18507 }
18508 
18509 /**
18510  * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
18511  * @vport: The vport that the received sequences were sent to.
18512  *
18513  * This function cleans up all outstanding received sequences. This is called
18514  * by the driver when a link event or user action invalidates all the received
18515  * sequences.
18516  **/
18517 void
18518 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
18519 {
18520 	struct lpfc_dmabuf *h_buf, *hnext;
18521 	struct lpfc_dmabuf *d_buf, *dnext;
18522 	struct hbq_dmabuf *dmabuf = NULL;
18523 
18524 	/* start with the oldest sequence on the rcv list */
18525 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
18526 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18527 		list_del_init(&dmabuf->hbuf.list);
18528 		list_for_each_entry_safe(d_buf, dnext,
18529 					 &dmabuf->dbuf.list, list) {
18530 			list_del_init(&d_buf->list);
18531 			lpfc_in_buf_free(vport->phba, d_buf);
18532 		}
18533 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
18534 	}
18535 }
18536 
18537 /**
18538  * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
18539  * @vport: The vport that the received sequences were sent to.
18540  *
18541  * This function determines whether any received sequences have timed out by
18542  * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
18543  * indicates that there is at least one timed out sequence this routine will
18544  * go through the received sequences one at a time from most inactive to most
18545  * active to determine which ones need to be cleaned up. Once it has determined
18546  * that a sequence needs to be cleaned up it will simply free up the resources
18547  * without sending an abort.
18548  **/
18549 void
18550 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
18551 {
18552 	struct lpfc_dmabuf *h_buf, *hnext;
18553 	struct lpfc_dmabuf *d_buf, *dnext;
18554 	struct hbq_dmabuf *dmabuf = NULL;
18555 	unsigned long timeout;
18556 	int abort_count = 0;
18557 
18558 	timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
18559 		   vport->rcv_buffer_time_stamp);
18560 	if (list_empty(&vport->rcv_buffer_list) ||
18561 	    time_before(jiffies, timeout))
18562 		return;
18563 	/* start with the oldest sequence on the rcv list */
18564 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
18565 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18566 		timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
18567 			   dmabuf->time_stamp);
18568 		if (time_before(jiffies, timeout))
18569 			break;
18570 		abort_count++;
18571 		list_del_init(&dmabuf->hbuf.list);
18572 		list_for_each_entry_safe(d_buf, dnext,
18573 					 &dmabuf->dbuf.list, list) {
18574 			list_del_init(&d_buf->list);
18575 			lpfc_in_buf_free(vport->phba, d_buf);
18576 		}
18577 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
18578 	}
18579 	if (abort_count)
18580 		lpfc_update_rcv_time_stamp(vport);
18581 }
18582 
18583 /**
18584  * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
18585  * @vport: pointer to a vitural port
18586  * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
18587  *
18588  * This function searches through the existing incomplete sequences that have
18589  * been sent to this @vport. If the frame matches one of the incomplete
18590  * sequences then the dbuf in the @dmabuf is added to the list of frames that
18591  * make up that sequence. If no sequence is found that matches this frame then
18592  * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
18593  * This function returns a pointer to the first dmabuf in the sequence list that
18594  * the frame was linked to.
18595  **/
18596 static struct hbq_dmabuf *
18597 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
18598 {
18599 	struct fc_frame_header *new_hdr;
18600 	struct fc_frame_header *temp_hdr;
18601 	struct lpfc_dmabuf *d_buf;
18602 	struct lpfc_dmabuf *h_buf;
18603 	struct hbq_dmabuf *seq_dmabuf = NULL;
18604 	struct hbq_dmabuf *temp_dmabuf = NULL;
18605 	uint8_t	found = 0;
18606 
18607 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
18608 	dmabuf->time_stamp = jiffies;
18609 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18610 
18611 	/* Use the hdr_buf to find the sequence that this frame belongs to */
18612 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
18613 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
18614 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
18615 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
18616 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
18617 			continue;
18618 		/* found a pending sequence that matches this frame */
18619 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18620 		break;
18621 	}
18622 	if (!seq_dmabuf) {
18623 		/*
18624 		 * This indicates first frame received for this sequence.
18625 		 * Queue the buffer on the vport's rcv_buffer_list.
18626 		 */
18627 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
18628 		lpfc_update_rcv_time_stamp(vport);
18629 		return dmabuf;
18630 	}
18631 	temp_hdr = seq_dmabuf->hbuf.virt;
18632 	if (be16_to_cpu(new_hdr->fh_seq_cnt) <
18633 		be16_to_cpu(temp_hdr->fh_seq_cnt)) {
18634 		list_del_init(&seq_dmabuf->hbuf.list);
18635 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
18636 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
18637 		lpfc_update_rcv_time_stamp(vport);
18638 		return dmabuf;
18639 	}
18640 	/* move this sequence to the tail to indicate a young sequence */
18641 	list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
18642 	seq_dmabuf->time_stamp = jiffies;
18643 	lpfc_update_rcv_time_stamp(vport);
18644 	if (list_empty(&seq_dmabuf->dbuf.list)) {
18645 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
18646 		return seq_dmabuf;
18647 	}
18648 	/* find the correct place in the sequence to insert this frame */
18649 	d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
18650 	while (!found) {
18651 		temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18652 		temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
18653 		/*
18654 		 * If the frame's sequence count is greater than the frame on
18655 		 * the list then insert the frame right after this frame
18656 		 */
18657 		if (be16_to_cpu(new_hdr->fh_seq_cnt) >
18658 			be16_to_cpu(temp_hdr->fh_seq_cnt)) {
18659 			list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
18660 			found = 1;
18661 			break;
18662 		}
18663 
18664 		if (&d_buf->list == &seq_dmabuf->dbuf.list)
18665 			break;
18666 		d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
18667 	}
18668 
18669 	if (found)
18670 		return seq_dmabuf;
18671 	return NULL;
18672 }
18673 
18674 /**
18675  * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
18676  * @vport: pointer to a vitural port
18677  * @dmabuf: pointer to a dmabuf that describes the FC sequence
18678  *
18679  * This function tries to abort from the partially assembed sequence, described
18680  * by the information from basic abbort @dmabuf. It checks to see whether such
18681  * partially assembled sequence held by the driver. If so, it shall free up all
18682  * the frames from the partially assembled sequence.
18683  *
18684  * Return
18685  * true  -- if there is matching partially assembled sequence present and all
18686  *          the frames freed with the sequence;
18687  * false -- if there is no matching partially assembled sequence present so
18688  *          nothing got aborted in the lower layer driver
18689  **/
18690 static bool
18691 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
18692 			    struct hbq_dmabuf *dmabuf)
18693 {
18694 	struct fc_frame_header *new_hdr;
18695 	struct fc_frame_header *temp_hdr;
18696 	struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
18697 	struct hbq_dmabuf *seq_dmabuf = NULL;
18698 
18699 	/* Use the hdr_buf to find the sequence that matches this frame */
18700 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
18701 	INIT_LIST_HEAD(&dmabuf->hbuf.list);
18702 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18703 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
18704 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
18705 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
18706 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
18707 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
18708 			continue;
18709 		/* found a pending sequence that matches this frame */
18710 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18711 		break;
18712 	}
18713 
18714 	/* Free up all the frames from the partially assembled sequence */
18715 	if (seq_dmabuf) {
18716 		list_for_each_entry_safe(d_buf, n_buf,
18717 					 &seq_dmabuf->dbuf.list, list) {
18718 			list_del_init(&d_buf->list);
18719 			lpfc_in_buf_free(vport->phba, d_buf);
18720 		}
18721 		return true;
18722 	}
18723 	return false;
18724 }
18725 
18726 /**
18727  * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
18728  * @vport: pointer to a vitural port
18729  * @dmabuf: pointer to a dmabuf that describes the FC sequence
18730  *
18731  * This function tries to abort from the assembed sequence from upper level
18732  * protocol, described by the information from basic abbort @dmabuf. It
18733  * checks to see whether such pending context exists at upper level protocol.
18734  * If so, it shall clean up the pending context.
18735  *
18736  * Return
18737  * true  -- if there is matching pending context of the sequence cleaned
18738  *          at ulp;
18739  * false -- if there is no matching pending context of the sequence present
18740  *          at ulp.
18741  **/
18742 static bool
18743 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
18744 {
18745 	struct lpfc_hba *phba = vport->phba;
18746 	int handled;
18747 
18748 	/* Accepting abort at ulp with SLI4 only */
18749 	if (phba->sli_rev < LPFC_SLI_REV4)
18750 		return false;
18751 
18752 	/* Register all caring upper level protocols to attend abort */
18753 	handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
18754 	if (handled)
18755 		return true;
18756 
18757 	return false;
18758 }
18759 
18760 /**
18761  * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
18762  * @phba: Pointer to HBA context object.
18763  * @cmd_iocbq: pointer to the command iocbq structure.
18764  * @rsp_iocbq: pointer to the response iocbq structure.
18765  *
18766  * This function handles the sequence abort response iocb command complete
18767  * event. It properly releases the memory allocated to the sequence abort
18768  * accept iocb.
18769  **/
18770 static void
18771 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
18772 			     struct lpfc_iocbq *cmd_iocbq,
18773 			     struct lpfc_iocbq *rsp_iocbq)
18774 {
18775 	if (cmd_iocbq) {
18776 		lpfc_nlp_put(cmd_iocbq->ndlp);
18777 		lpfc_sli_release_iocbq(phba, cmd_iocbq);
18778 	}
18779 
18780 	/* Failure means BLS ABORT RSP did not get delivered to remote node*/
18781 	if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
18782 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18783 			"3154 BLS ABORT RSP failed, data:  x%x/x%x\n",
18784 			get_job_ulpstatus(phba, rsp_iocbq),
18785 			get_job_word4(phba, rsp_iocbq));
18786 }
18787 
18788 /**
18789  * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
18790  * @phba: Pointer to HBA context object.
18791  * @xri: xri id in transaction.
18792  *
18793  * This function validates the xri maps to the known range of XRIs allocated an
18794  * used by the driver.
18795  **/
18796 uint16_t
18797 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
18798 		      uint16_t xri)
18799 {
18800 	uint16_t i;
18801 
18802 	for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
18803 		if (xri == phba->sli4_hba.xri_ids[i])
18804 			return i;
18805 	}
18806 	return NO_XRI;
18807 }
18808 
18809 /**
18810  * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
18811  * @vport: pointer to a virtual port.
18812  * @fc_hdr: pointer to a FC frame header.
18813  * @aborted: was the partially assembled receive sequence successfully aborted
18814  *
18815  * This function sends a basic response to a previous unsol sequence abort
18816  * event after aborting the sequence handling.
18817  **/
18818 void
18819 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
18820 			struct fc_frame_header *fc_hdr, bool aborted)
18821 {
18822 	struct lpfc_hba *phba = vport->phba;
18823 	struct lpfc_iocbq *ctiocb = NULL;
18824 	struct lpfc_nodelist *ndlp;
18825 	uint16_t oxid, rxid, xri, lxri;
18826 	uint32_t sid, fctl;
18827 	union lpfc_wqe128 *icmd;
18828 	int rc;
18829 
18830 	if (!lpfc_is_link_up(phba))
18831 		return;
18832 
18833 	sid = sli4_sid_from_fc_hdr(fc_hdr);
18834 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
18835 	rxid = be16_to_cpu(fc_hdr->fh_rx_id);
18836 
18837 	ndlp = lpfc_findnode_did(vport, sid);
18838 	if (!ndlp) {
18839 		ndlp = lpfc_nlp_init(vport, sid);
18840 		if (!ndlp) {
18841 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
18842 					 "1268 Failed to allocate ndlp for "
18843 					 "oxid:x%x SID:x%x\n", oxid, sid);
18844 			return;
18845 		}
18846 		/* Put ndlp onto pport node list */
18847 		lpfc_enqueue_node(vport, ndlp);
18848 	}
18849 
18850 	/* Allocate buffer for rsp iocb */
18851 	ctiocb = lpfc_sli_get_iocbq(phba);
18852 	if (!ctiocb)
18853 		return;
18854 
18855 	icmd = &ctiocb->wqe;
18856 
18857 	/* Extract the F_CTL field from FC_HDR */
18858 	fctl = sli4_fctl_from_fc_hdr(fc_hdr);
18859 
18860 	ctiocb->ndlp = lpfc_nlp_get(ndlp);
18861 	if (!ctiocb->ndlp) {
18862 		lpfc_sli_release_iocbq(phba, ctiocb);
18863 		return;
18864 	}
18865 
18866 	ctiocb->vport = phba->pport;
18867 	ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
18868 	ctiocb->sli4_lxritag = NO_XRI;
18869 	ctiocb->sli4_xritag = NO_XRI;
18870 	ctiocb->abort_rctl = FC_RCTL_BA_ACC;
18871 
18872 	if (fctl & FC_FC_EX_CTX)
18873 		/* Exchange responder sent the abort so we
18874 		 * own the oxid.
18875 		 */
18876 		xri = oxid;
18877 	else
18878 		xri = rxid;
18879 	lxri = lpfc_sli4_xri_inrange(phba, xri);
18880 	if (lxri != NO_XRI)
18881 		lpfc_set_rrq_active(phba, ndlp, lxri,
18882 			(xri == oxid) ? rxid : oxid, 0);
18883 	/* For BA_ABTS from exchange responder, if the logical xri with
18884 	 * the oxid maps to the FCP XRI range, the port no longer has
18885 	 * that exchange context, send a BLS_RJT. Override the IOCB for
18886 	 * a BA_RJT.
18887 	 */
18888 	if ((fctl & FC_FC_EX_CTX) &&
18889 	    (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
18890 		ctiocb->abort_rctl = FC_RCTL_BA_RJT;
18891 		bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0);
18892 		bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp,
18893 		       FC_BA_RJT_INV_XID);
18894 		bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp,
18895 		       FC_BA_RJT_UNABLE);
18896 	}
18897 
18898 	/* If BA_ABTS failed to abort a partially assembled receive sequence,
18899 	 * the driver no longer has that exchange, send a BLS_RJT. Override
18900 	 * the IOCB for a BA_RJT.
18901 	 */
18902 	if (aborted == false) {
18903 		ctiocb->abort_rctl = FC_RCTL_BA_RJT;
18904 		bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0);
18905 		bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp,
18906 		       FC_BA_RJT_INV_XID);
18907 		bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp,
18908 		       FC_BA_RJT_UNABLE);
18909 	}
18910 
18911 	if (fctl & FC_FC_EX_CTX) {
18912 		/* ABTS sent by responder to CT exchange, construction
18913 		 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
18914 		 * field and RX_ID from ABTS for RX_ID field.
18915 		 */
18916 		ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP;
18917 		bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid);
18918 	} else {
18919 		/* ABTS sent by initiator to CT exchange, construction
18920 		 * of BA_ACC will need to allocate a new XRI as for the
18921 		 * XRI_TAG field.
18922 		 */
18923 		ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT;
18924 	}
18925 
18926 	/* OX_ID is invariable to who sent ABTS to CT exchange */
18927 	bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid);
18928 	bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid);
18929 
18930 	/* Use CT=VPI */
18931 	bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest,
18932 	       ndlp->nlp_DID);
18933 	bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp,
18934 	       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
18935 	bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX);
18936 
18937 	/* Xmit CT abts response on exchange <xid> */
18938 	lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
18939 			 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
18940 			 ctiocb->abort_rctl, oxid, phba->link_state);
18941 
18942 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
18943 	if (rc == IOCB_ERROR) {
18944 		lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
18945 				 "2925 Failed to issue CT ABTS RSP x%x on "
18946 				 "xri x%x, Data x%x\n",
18947 				 ctiocb->abort_rctl, oxid,
18948 				 phba->link_state);
18949 		lpfc_nlp_put(ndlp);
18950 		ctiocb->ndlp = NULL;
18951 		lpfc_sli_release_iocbq(phba, ctiocb);
18952 	}
18953 }
18954 
18955 /**
18956  * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
18957  * @vport: Pointer to the vport on which this sequence was received
18958  * @dmabuf: pointer to a dmabuf that describes the FC sequence
18959  *
18960  * This function handles an SLI-4 unsolicited abort event. If the unsolicited
18961  * receive sequence is only partially assembed by the driver, it shall abort
18962  * the partially assembled frames for the sequence. Otherwise, if the
18963  * unsolicited receive sequence has been completely assembled and passed to
18964  * the Upper Layer Protocol (ULP), it then mark the per oxid status for the
18965  * unsolicited sequence has been aborted. After that, it will issue a basic
18966  * accept to accept the abort.
18967  **/
18968 static void
18969 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
18970 			     struct hbq_dmabuf *dmabuf)
18971 {
18972 	struct lpfc_hba *phba = vport->phba;
18973 	struct fc_frame_header fc_hdr;
18974 	uint32_t fctl;
18975 	bool aborted;
18976 
18977 	/* Make a copy of fc_hdr before the dmabuf being released */
18978 	memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
18979 	fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
18980 
18981 	if (fctl & FC_FC_EX_CTX) {
18982 		/* ABTS by responder to exchange, no cleanup needed */
18983 		aborted = true;
18984 	} else {
18985 		/* ABTS by initiator to exchange, need to do cleanup */
18986 		aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
18987 		if (aborted == false)
18988 			aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
18989 	}
18990 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
18991 
18992 	if (phba->nvmet_support) {
18993 		lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
18994 		return;
18995 	}
18996 
18997 	/* Respond with BA_ACC or BA_RJT accordingly */
18998 	lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
18999 }
19000 
19001 /**
19002  * lpfc_seq_complete - Indicates if a sequence is complete
19003  * @dmabuf: pointer to a dmabuf that describes the FC sequence
19004  *
19005  * This function checks the sequence, starting with the frame described by
19006  * @dmabuf, to see if all the frames associated with this sequence are present.
19007  * the frames associated with this sequence are linked to the @dmabuf using the
19008  * dbuf list. This function looks for two major things. 1) That the first frame
19009  * has a sequence count of zero. 2) There is a frame with last frame of sequence
19010  * set. 3) That there are no holes in the sequence count. The function will
19011  * return 1 when the sequence is complete, otherwise it will return 0.
19012  **/
19013 static int
19014 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
19015 {
19016 	struct fc_frame_header *hdr;
19017 	struct lpfc_dmabuf *d_buf;
19018 	struct hbq_dmabuf *seq_dmabuf;
19019 	uint32_t fctl;
19020 	int seq_count = 0;
19021 
19022 	hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19023 	/* make sure first fame of sequence has a sequence count of zero */
19024 	if (hdr->fh_seq_cnt != seq_count)
19025 		return 0;
19026 	fctl = (hdr->fh_f_ctl[0] << 16 |
19027 		hdr->fh_f_ctl[1] << 8 |
19028 		hdr->fh_f_ctl[2]);
19029 	/* If last frame of sequence we can return success. */
19030 	if (fctl & FC_FC_END_SEQ)
19031 		return 1;
19032 	list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
19033 		seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19034 		hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19035 		/* If there is a hole in the sequence count then fail. */
19036 		if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
19037 			return 0;
19038 		fctl = (hdr->fh_f_ctl[0] << 16 |
19039 			hdr->fh_f_ctl[1] << 8 |
19040 			hdr->fh_f_ctl[2]);
19041 		/* If last frame of sequence we can return success. */
19042 		if (fctl & FC_FC_END_SEQ)
19043 			return 1;
19044 	}
19045 	return 0;
19046 }
19047 
19048 /**
19049  * lpfc_prep_seq - Prep sequence for ULP processing
19050  * @vport: Pointer to the vport on which this sequence was received
19051  * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence
19052  *
19053  * This function takes a sequence, described by a list of frames, and creates
19054  * a list of iocbq structures to describe the sequence. This iocbq list will be
19055  * used to issue to the generic unsolicited sequence handler. This routine
19056  * returns a pointer to the first iocbq in the list. If the function is unable
19057  * to allocate an iocbq then it throw out the received frames that were not
19058  * able to be described and return a pointer to the first iocbq. If unable to
19059  * allocate any iocbqs (including the first) this function will return NULL.
19060  **/
19061 static struct lpfc_iocbq *
19062 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
19063 {
19064 	struct hbq_dmabuf *hbq_buf;
19065 	struct lpfc_dmabuf *d_buf, *n_buf;
19066 	struct lpfc_iocbq *first_iocbq, *iocbq;
19067 	struct fc_frame_header *fc_hdr;
19068 	uint32_t sid;
19069 	uint32_t len, tot_len;
19070 
19071 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19072 	/* remove from receive buffer list */
19073 	list_del_init(&seq_dmabuf->hbuf.list);
19074 	lpfc_update_rcv_time_stamp(vport);
19075 	/* get the Remote Port's SID */
19076 	sid = sli4_sid_from_fc_hdr(fc_hdr);
19077 	tot_len = 0;
19078 	/* Get an iocbq struct to fill in. */
19079 	first_iocbq = lpfc_sli_get_iocbq(vport->phba);
19080 	if (first_iocbq) {
19081 		/* Initialize the first IOCB. */
19082 		first_iocbq->wcqe_cmpl.total_data_placed = 0;
19083 		bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl,
19084 		       IOSTAT_SUCCESS);
19085 		first_iocbq->vport = vport;
19086 
19087 		/* Check FC Header to see what TYPE of frame we are rcv'ing */
19088 		if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
19089 			bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp,
19090 			       sli4_did_from_fc_hdr(fc_hdr));
19091 		}
19092 
19093 		bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com,
19094 		       NO_XRI);
19095 		bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com,
19096 		       be16_to_cpu(fc_hdr->fh_ox_id));
19097 
19098 		/* put the first buffer into the first iocb */
19099 		tot_len = bf_get(lpfc_rcqe_length,
19100 				 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
19101 
19102 		first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf;
19103 		first_iocbq->bpl_dmabuf = NULL;
19104 		/* Keep track of the BDE count */
19105 		first_iocbq->wcqe_cmpl.word3 = 1;
19106 
19107 		if (tot_len > LPFC_DATA_BUF_SIZE)
19108 			first_iocbq->wqe.gen_req.bde.tus.f.bdeSize =
19109 				LPFC_DATA_BUF_SIZE;
19110 		else
19111 			first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len;
19112 
19113 		first_iocbq->wcqe_cmpl.total_data_placed = tot_len;
19114 		bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest,
19115 		       sid);
19116 	}
19117 	iocbq = first_iocbq;
19118 	/*
19119 	 * Each IOCBq can have two Buffers assigned, so go through the list
19120 	 * of buffers for this sequence and save two buffers in each IOCBq
19121 	 */
19122 	list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
19123 		if (!iocbq) {
19124 			lpfc_in_buf_free(vport->phba, d_buf);
19125 			continue;
19126 		}
19127 		if (!iocbq->bpl_dmabuf) {
19128 			iocbq->bpl_dmabuf = d_buf;
19129 			iocbq->wcqe_cmpl.word3++;
19130 			/* We need to get the size out of the right CQE */
19131 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19132 			len = bf_get(lpfc_rcqe_length,
19133 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
19134 			iocbq->unsol_rcv_len = len;
19135 			iocbq->wcqe_cmpl.total_data_placed += len;
19136 			tot_len += len;
19137 		} else {
19138 			iocbq = lpfc_sli_get_iocbq(vport->phba);
19139 			if (!iocbq) {
19140 				if (first_iocbq) {
19141 					bf_set(lpfc_wcqe_c_status,
19142 					       &first_iocbq->wcqe_cmpl,
19143 					       IOSTAT_SUCCESS);
19144 					first_iocbq->wcqe_cmpl.parameter =
19145 						IOERR_NO_RESOURCES;
19146 				}
19147 				lpfc_in_buf_free(vport->phba, d_buf);
19148 				continue;
19149 			}
19150 			/* We need to get the size out of the right CQE */
19151 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19152 			len = bf_get(lpfc_rcqe_length,
19153 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
19154 			iocbq->cmd_dmabuf = d_buf;
19155 			iocbq->bpl_dmabuf = NULL;
19156 			iocbq->wcqe_cmpl.word3 = 1;
19157 
19158 			if (len > LPFC_DATA_BUF_SIZE)
19159 				iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize =
19160 					LPFC_DATA_BUF_SIZE;
19161 			else
19162 				iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize =
19163 					len;
19164 
19165 			tot_len += len;
19166 			iocbq->wcqe_cmpl.total_data_placed = tot_len;
19167 			bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest,
19168 			       sid);
19169 			list_add_tail(&iocbq->list, &first_iocbq->list);
19170 		}
19171 	}
19172 	/* Free the sequence's header buffer */
19173 	if (!first_iocbq)
19174 		lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf);
19175 
19176 	return first_iocbq;
19177 }
19178 
19179 static void
19180 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
19181 			  struct hbq_dmabuf *seq_dmabuf)
19182 {
19183 	struct fc_frame_header *fc_hdr;
19184 	struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
19185 	struct lpfc_hba *phba = vport->phba;
19186 
19187 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19188 	iocbq = lpfc_prep_seq(vport, seq_dmabuf);
19189 	if (!iocbq) {
19190 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19191 				"2707 Ring %d handler: Failed to allocate "
19192 				"iocb Rctl x%x Type x%x received\n",
19193 				LPFC_ELS_RING,
19194 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
19195 		return;
19196 	}
19197 	if (!lpfc_complete_unsol_iocb(phba,
19198 				      phba->sli4_hba.els_wq->pring,
19199 				      iocbq, fc_hdr->fh_r_ctl,
19200 				      fc_hdr->fh_type)) {
19201 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19202 				"2540 Ring %d handler: unexpected Rctl "
19203 				"x%x Type x%x received\n",
19204 				LPFC_ELS_RING,
19205 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
19206 		lpfc_in_buf_free(phba, &seq_dmabuf->dbuf);
19207 	}
19208 
19209 	/* Free iocb created in lpfc_prep_seq */
19210 	list_for_each_entry_safe(curr_iocb, next_iocb,
19211 				 &iocbq->list, list) {
19212 		list_del_init(&curr_iocb->list);
19213 		lpfc_sli_release_iocbq(phba, curr_iocb);
19214 	}
19215 	lpfc_sli_release_iocbq(phba, iocbq);
19216 }
19217 
19218 static void
19219 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
19220 			    struct lpfc_iocbq *rspiocb)
19221 {
19222 	struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf;
19223 
19224 	if (pcmd && pcmd->virt)
19225 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
19226 	kfree(pcmd);
19227 	lpfc_sli_release_iocbq(phba, cmdiocb);
19228 	lpfc_drain_txq(phba);
19229 }
19230 
19231 static void
19232 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
19233 			      struct hbq_dmabuf *dmabuf)
19234 {
19235 	struct fc_frame_header *fc_hdr;
19236 	struct lpfc_hba *phba = vport->phba;
19237 	struct lpfc_iocbq *iocbq = NULL;
19238 	union  lpfc_wqe128 *pwqe;
19239 	struct lpfc_dmabuf *pcmd = NULL;
19240 	uint32_t frame_len;
19241 	int rc;
19242 	unsigned long iflags;
19243 
19244 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19245 	frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
19246 
19247 	/* Send the received frame back */
19248 	iocbq = lpfc_sli_get_iocbq(phba);
19249 	if (!iocbq) {
19250 		/* Queue cq event and wakeup worker thread to process it */
19251 		spin_lock_irqsave(&phba->hbalock, iflags);
19252 		list_add_tail(&dmabuf->cq_event.list,
19253 			      &phba->sli4_hba.sp_queue_event);
19254 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
19255 		spin_unlock_irqrestore(&phba->hbalock, iflags);
19256 		lpfc_worker_wake_up(phba);
19257 		return;
19258 	}
19259 
19260 	/* Allocate buffer for command payload */
19261 	pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
19262 	if (pcmd)
19263 		pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
19264 					    &pcmd->phys);
19265 	if (!pcmd || !pcmd->virt)
19266 		goto exit;
19267 
19268 	INIT_LIST_HEAD(&pcmd->list);
19269 
19270 	/* copyin the payload */
19271 	memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
19272 
19273 	iocbq->cmd_dmabuf = pcmd;
19274 	iocbq->vport = vport;
19275 	iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK;
19276 	iocbq->cmd_flag |= LPFC_USE_FCPWQIDX;
19277 	iocbq->num_bdes = 0;
19278 
19279 	pwqe = &iocbq->wqe;
19280 	/* fill in BDE's for command */
19281 	pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys);
19282 	pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys);
19283 	pwqe->gen_req.bde.tus.f.bdeSize = frame_len;
19284 	pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
19285 
19286 	pwqe->send_frame.frame_len = frame_len;
19287 	pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr));
19288 	pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1));
19289 	pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2));
19290 	pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3));
19291 	pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4));
19292 	pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5));
19293 
19294 	pwqe->generic.wqe_com.word7 = 0;
19295 	pwqe->generic.wqe_com.word10 = 0;
19296 
19297 	bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME);
19298 	bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */
19299 	bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */
19300 	bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1);
19301 	bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1);
19302 	bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1);
19303 	bf_set(wqe_xc, &pwqe->generic.wqe_com, 1);
19304 	bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA);
19305 	bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
19306 	bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag);
19307 	bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag);
19308 	bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3);
19309 	pwqe->generic.wqe_com.abort_tag = iocbq->iotag;
19310 
19311 	iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl;
19312 
19313 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
19314 	if (rc == IOCB_ERROR)
19315 		goto exit;
19316 
19317 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
19318 	return;
19319 
19320 exit:
19321 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
19322 			"2023 Unable to process MDS loopback frame\n");
19323 	if (pcmd && pcmd->virt)
19324 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
19325 	kfree(pcmd);
19326 	if (iocbq)
19327 		lpfc_sli_release_iocbq(phba, iocbq);
19328 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
19329 }
19330 
19331 /**
19332  * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
19333  * @phba: Pointer to HBA context object.
19334  * @dmabuf: Pointer to a dmabuf that describes the FC sequence.
19335  *
19336  * This function is called with no lock held. This function processes all
19337  * the received buffers and gives it to upper layers when a received buffer
19338  * indicates that it is the final frame in the sequence. The interrupt
19339  * service routine processes received buffers at interrupt contexts.
19340  * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
19341  * appropriate receive function when the final frame in a sequence is received.
19342  **/
19343 void
19344 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
19345 				 struct hbq_dmabuf *dmabuf)
19346 {
19347 	struct hbq_dmabuf *seq_dmabuf;
19348 	struct fc_frame_header *fc_hdr;
19349 	struct lpfc_vport *vport;
19350 	uint32_t fcfi;
19351 	uint32_t did;
19352 
19353 	/* Process each received buffer */
19354 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19355 
19356 	if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
19357 	    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
19358 		vport = phba->pport;
19359 		/* Handle MDS Loopback frames */
19360 		if  (!(phba->pport->load_flag & FC_UNLOADING))
19361 			lpfc_sli4_handle_mds_loopback(vport, dmabuf);
19362 		else
19363 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
19364 		return;
19365 	}
19366 
19367 	/* check to see if this a valid type of frame */
19368 	if (lpfc_fc_frame_check(phba, fc_hdr)) {
19369 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
19370 		return;
19371 	}
19372 
19373 	if ((bf_get(lpfc_cqe_code,
19374 		    &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
19375 		fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
19376 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
19377 	else
19378 		fcfi = bf_get(lpfc_rcqe_fcf_id,
19379 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
19380 
19381 	if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
19382 		vport = phba->pport;
19383 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
19384 				"2023 MDS Loopback %d bytes\n",
19385 				bf_get(lpfc_rcqe_length,
19386 				       &dmabuf->cq_event.cqe.rcqe_cmpl));
19387 		/* Handle MDS Loopback frames */
19388 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
19389 		return;
19390 	}
19391 
19392 	/* d_id this frame is directed to */
19393 	did = sli4_did_from_fc_hdr(fc_hdr);
19394 
19395 	vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
19396 	if (!vport) {
19397 		/* throw out the frame */
19398 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
19399 		return;
19400 	}
19401 
19402 	/* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
19403 	if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
19404 		(did != Fabric_DID)) {
19405 		/*
19406 		 * Throw out the frame if we are not pt2pt.
19407 		 * The pt2pt protocol allows for discovery frames
19408 		 * to be received without a registered VPI.
19409 		 */
19410 		if (!(vport->fc_flag & FC_PT2PT) ||
19411 			(phba->link_state == LPFC_HBA_READY)) {
19412 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
19413 			return;
19414 		}
19415 	}
19416 
19417 	/* Handle the basic abort sequence (BA_ABTS) event */
19418 	if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
19419 		lpfc_sli4_handle_unsol_abort(vport, dmabuf);
19420 		return;
19421 	}
19422 
19423 	/* Link this frame */
19424 	seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
19425 	if (!seq_dmabuf) {
19426 		/* unable to add frame to vport - throw it out */
19427 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
19428 		return;
19429 	}
19430 	/* If not last frame in sequence continue processing frames. */
19431 	if (!lpfc_seq_complete(seq_dmabuf))
19432 		return;
19433 
19434 	/* Send the complete sequence to the upper layer protocol */
19435 	lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
19436 }
19437 
19438 /**
19439  * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
19440  * @phba: pointer to lpfc hba data structure.
19441  *
19442  * This routine is invoked to post rpi header templates to the
19443  * HBA consistent with the SLI-4 interface spec.  This routine
19444  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
19445  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
19446  *
19447  * This routine does not require any locks.  It's usage is expected
19448  * to be driver load or reset recovery when the driver is
19449  * sequential.
19450  *
19451  * Return codes
19452  * 	0 - successful
19453  *      -EIO - The mailbox failed to complete successfully.
19454  * 	When this error occurs, the driver is not guaranteed
19455  *	to have any rpi regions posted to the device and
19456  *	must either attempt to repost the regions or take a
19457  *	fatal error.
19458  **/
19459 int
19460 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
19461 {
19462 	struct lpfc_rpi_hdr *rpi_page;
19463 	uint32_t rc = 0;
19464 	uint16_t lrpi = 0;
19465 
19466 	/* SLI4 ports that support extents do not require RPI headers. */
19467 	if (!phba->sli4_hba.rpi_hdrs_in_use)
19468 		goto exit;
19469 	if (phba->sli4_hba.extents_in_use)
19470 		return -EIO;
19471 
19472 	list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
19473 		/*
19474 		 * Assign the rpi headers a physical rpi only if the driver
19475 		 * has not initialized those resources.  A port reset only
19476 		 * needs the headers posted.
19477 		 */
19478 		if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
19479 		    LPFC_RPI_RSRC_RDY)
19480 			rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
19481 
19482 		rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
19483 		if (rc != MBX_SUCCESS) {
19484 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19485 					"2008 Error %d posting all rpi "
19486 					"headers\n", rc);
19487 			rc = -EIO;
19488 			break;
19489 		}
19490 	}
19491 
19492  exit:
19493 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
19494 	       LPFC_RPI_RSRC_RDY);
19495 	return rc;
19496 }
19497 
19498 /**
19499  * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
19500  * @phba: pointer to lpfc hba data structure.
19501  * @rpi_page:  pointer to the rpi memory region.
19502  *
19503  * This routine is invoked to post a single rpi header to the
19504  * HBA consistent with the SLI-4 interface spec.  This memory region
19505  * maps up to 64 rpi context regions.
19506  *
19507  * Return codes
19508  * 	0 - successful
19509  * 	-ENOMEM - No available memory
19510  *      -EIO - The mailbox failed to complete successfully.
19511  **/
19512 int
19513 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
19514 {
19515 	LPFC_MBOXQ_t *mboxq;
19516 	struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
19517 	uint32_t rc = 0;
19518 	uint32_t shdr_status, shdr_add_status;
19519 	union lpfc_sli4_cfg_shdr *shdr;
19520 
19521 	/* SLI4 ports that support extents do not require RPI headers. */
19522 	if (!phba->sli4_hba.rpi_hdrs_in_use)
19523 		return rc;
19524 	if (phba->sli4_hba.extents_in_use)
19525 		return -EIO;
19526 
19527 	/* The port is notified of the header region via a mailbox command. */
19528 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19529 	if (!mboxq) {
19530 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19531 				"2001 Unable to allocate memory for issuing "
19532 				"SLI_CONFIG_SPECIAL mailbox command\n");
19533 		return -ENOMEM;
19534 	}
19535 
19536 	/* Post all rpi memory regions to the port. */
19537 	hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
19538 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
19539 			 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
19540 			 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
19541 			 sizeof(struct lpfc_sli4_cfg_mhdr),
19542 			 LPFC_SLI4_MBX_EMBED);
19543 
19544 
19545 	/* Post the physical rpi to the port for this rpi header. */
19546 	bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
19547 	       rpi_page->start_rpi);
19548 	bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
19549 	       hdr_tmpl, rpi_page->page_count);
19550 
19551 	hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
19552 	hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
19553 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19554 	shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
19555 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19556 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19557 	mempool_free(mboxq, phba->mbox_mem_pool);
19558 	if (shdr_status || shdr_add_status || rc) {
19559 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19560 				"2514 POST_RPI_HDR mailbox failed with "
19561 				"status x%x add_status x%x, mbx status x%x\n",
19562 				shdr_status, shdr_add_status, rc);
19563 		rc = -ENXIO;
19564 	} else {
19565 		/*
19566 		 * The next_rpi stores the next logical module-64 rpi value used
19567 		 * to post physical rpis in subsequent rpi postings.
19568 		 */
19569 		spin_lock_irq(&phba->hbalock);
19570 		phba->sli4_hba.next_rpi = rpi_page->next_rpi;
19571 		spin_unlock_irq(&phba->hbalock);
19572 	}
19573 	return rc;
19574 }
19575 
19576 /**
19577  * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
19578  * @phba: pointer to lpfc hba data structure.
19579  *
19580  * This routine is invoked to post rpi header templates to the
19581  * HBA consistent with the SLI-4 interface spec.  This routine
19582  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
19583  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
19584  *
19585  * Returns
19586  * 	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
19587  * 	LPFC_RPI_ALLOC_ERROR if no rpis are available.
19588  **/
19589 int
19590 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
19591 {
19592 	unsigned long rpi;
19593 	uint16_t max_rpi, rpi_limit;
19594 	uint16_t rpi_remaining, lrpi = 0;
19595 	struct lpfc_rpi_hdr *rpi_hdr;
19596 	unsigned long iflag;
19597 
19598 	/*
19599 	 * Fetch the next logical rpi.  Because this index is logical,
19600 	 * the  driver starts at 0 each time.
19601 	 */
19602 	spin_lock_irqsave(&phba->hbalock, iflag);
19603 	max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
19604 	rpi_limit = phba->sli4_hba.next_rpi;
19605 
19606 	rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit);
19607 	if (rpi >= rpi_limit)
19608 		rpi = LPFC_RPI_ALLOC_ERROR;
19609 	else {
19610 		set_bit(rpi, phba->sli4_hba.rpi_bmask);
19611 		phba->sli4_hba.max_cfg_param.rpi_used++;
19612 		phba->sli4_hba.rpi_count++;
19613 	}
19614 	lpfc_printf_log(phba, KERN_INFO,
19615 			LOG_NODE | LOG_DISCOVERY,
19616 			"0001 Allocated rpi:x%x max:x%x lim:x%x\n",
19617 			(int) rpi, max_rpi, rpi_limit);
19618 
19619 	/*
19620 	 * Don't try to allocate more rpi header regions if the device limit
19621 	 * has been exhausted.
19622 	 */
19623 	if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
19624 	    (phba->sli4_hba.rpi_count >= max_rpi)) {
19625 		spin_unlock_irqrestore(&phba->hbalock, iflag);
19626 		return rpi;
19627 	}
19628 
19629 	/*
19630 	 * RPI header postings are not required for SLI4 ports capable of
19631 	 * extents.
19632 	 */
19633 	if (!phba->sli4_hba.rpi_hdrs_in_use) {
19634 		spin_unlock_irqrestore(&phba->hbalock, iflag);
19635 		return rpi;
19636 	}
19637 
19638 	/*
19639 	 * If the driver is running low on rpi resources, allocate another
19640 	 * page now.  Note that the next_rpi value is used because
19641 	 * it represents how many are actually in use whereas max_rpi notes
19642 	 * how many are supported max by the device.
19643 	 */
19644 	rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
19645 	spin_unlock_irqrestore(&phba->hbalock, iflag);
19646 	if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
19647 		rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
19648 		if (!rpi_hdr) {
19649 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19650 					"2002 Error Could not grow rpi "
19651 					"count\n");
19652 		} else {
19653 			lrpi = rpi_hdr->start_rpi;
19654 			rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
19655 			lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
19656 		}
19657 	}
19658 
19659 	return rpi;
19660 }
19661 
19662 /**
19663  * __lpfc_sli4_free_rpi - Release an rpi for reuse.
19664  * @phba: pointer to lpfc hba data structure.
19665  * @rpi: rpi to free
19666  *
19667  * This routine is invoked to release an rpi to the pool of
19668  * available rpis maintained by the driver.
19669  **/
19670 static void
19671 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
19672 {
19673 	/*
19674 	 * if the rpi value indicates a prior unreg has already
19675 	 * been done, skip the unreg.
19676 	 */
19677 	if (rpi == LPFC_RPI_ALLOC_ERROR)
19678 		return;
19679 
19680 	if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
19681 		phba->sli4_hba.rpi_count--;
19682 		phba->sli4_hba.max_cfg_param.rpi_used--;
19683 	} else {
19684 		lpfc_printf_log(phba, KERN_INFO,
19685 				LOG_NODE | LOG_DISCOVERY,
19686 				"2016 rpi %x not inuse\n",
19687 				rpi);
19688 	}
19689 }
19690 
19691 /**
19692  * lpfc_sli4_free_rpi - Release an rpi for reuse.
19693  * @phba: pointer to lpfc hba data structure.
19694  * @rpi: rpi to free
19695  *
19696  * This routine is invoked to release an rpi to the pool of
19697  * available rpis maintained by the driver.
19698  **/
19699 void
19700 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
19701 {
19702 	spin_lock_irq(&phba->hbalock);
19703 	__lpfc_sli4_free_rpi(phba, rpi);
19704 	spin_unlock_irq(&phba->hbalock);
19705 }
19706 
19707 /**
19708  * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
19709  * @phba: pointer to lpfc hba data structure.
19710  *
19711  * This routine is invoked to remove the memory region that
19712  * provided rpi via a bitmask.
19713  **/
19714 void
19715 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
19716 {
19717 	kfree(phba->sli4_hba.rpi_bmask);
19718 	kfree(phba->sli4_hba.rpi_ids);
19719 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
19720 }
19721 
19722 /**
19723  * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
19724  * @ndlp: pointer to lpfc nodelist data structure.
19725  * @cmpl: completion call-back.
19726  * @arg: data to load as MBox 'caller buffer information'
19727  *
19728  * This routine is invoked to remove the memory region that
19729  * provided rpi via a bitmask.
19730  **/
19731 int
19732 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
19733 	void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
19734 {
19735 	LPFC_MBOXQ_t *mboxq;
19736 	struct lpfc_hba *phba = ndlp->phba;
19737 	int rc;
19738 
19739 	/* The port is notified of the header region via a mailbox command. */
19740 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19741 	if (!mboxq)
19742 		return -ENOMEM;
19743 
19744 	/* If cmpl assigned, then this nlp_get pairs with
19745 	 * lpfc_mbx_cmpl_resume_rpi.
19746 	 *
19747 	 * Else cmpl is NULL, then this nlp_get pairs with
19748 	 * lpfc_sli_def_mbox_cmpl.
19749 	 */
19750 	if (!lpfc_nlp_get(ndlp)) {
19751 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19752 				"2122 %s: Failed to get nlp ref\n",
19753 				__func__);
19754 		mempool_free(mboxq, phba->mbox_mem_pool);
19755 		return -EIO;
19756 	}
19757 
19758 	/* Post all rpi memory regions to the port. */
19759 	lpfc_resume_rpi(mboxq, ndlp);
19760 	if (cmpl) {
19761 		mboxq->mbox_cmpl = cmpl;
19762 		mboxq->ctx_buf = arg;
19763 	} else
19764 		mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19765 	mboxq->ctx_ndlp = ndlp;
19766 	mboxq->vport = ndlp->vport;
19767 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19768 	if (rc == MBX_NOT_FINISHED) {
19769 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19770 				"2010 Resume RPI Mailbox failed "
19771 				"status %d, mbxStatus x%x\n", rc,
19772 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
19773 		lpfc_nlp_put(ndlp);
19774 		mempool_free(mboxq, phba->mbox_mem_pool);
19775 		return -EIO;
19776 	}
19777 	return 0;
19778 }
19779 
19780 /**
19781  * lpfc_sli4_init_vpi - Initialize a vpi with the port
19782  * @vport: Pointer to the vport for which the vpi is being initialized
19783  *
19784  * This routine is invoked to activate a vpi with the port.
19785  *
19786  * Returns:
19787  *    0 success
19788  *    -Evalue otherwise
19789  **/
19790 int
19791 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
19792 {
19793 	LPFC_MBOXQ_t *mboxq;
19794 	int rc = 0;
19795 	int retval = MBX_SUCCESS;
19796 	uint32_t mbox_tmo;
19797 	struct lpfc_hba *phba = vport->phba;
19798 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19799 	if (!mboxq)
19800 		return -ENOMEM;
19801 	lpfc_init_vpi(phba, mboxq, vport->vpi);
19802 	mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
19803 	rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
19804 	if (rc != MBX_SUCCESS) {
19805 		lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
19806 				"2022 INIT VPI Mailbox failed "
19807 				"status %d, mbxStatus x%x\n", rc,
19808 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
19809 		retval = -EIO;
19810 	}
19811 	if (rc != MBX_TIMEOUT)
19812 		mempool_free(mboxq, vport->phba->mbox_mem_pool);
19813 
19814 	return retval;
19815 }
19816 
19817 /**
19818  * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
19819  * @phba: pointer to lpfc hba data structure.
19820  * @mboxq: Pointer to mailbox object.
19821  *
19822  * This routine is invoked to manually add a single FCF record. The caller
19823  * must pass a completely initialized FCF_Record.  This routine takes
19824  * care of the nonembedded mailbox operations.
19825  **/
19826 static void
19827 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
19828 {
19829 	void *virt_addr;
19830 	union lpfc_sli4_cfg_shdr *shdr;
19831 	uint32_t shdr_status, shdr_add_status;
19832 
19833 	virt_addr = mboxq->sge_array->addr[0];
19834 	/* The IOCTL status is embedded in the mailbox subheader. */
19835 	shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
19836 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19837 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19838 
19839 	if ((shdr_status || shdr_add_status) &&
19840 		(shdr_status != STATUS_FCF_IN_USE))
19841 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19842 			"2558 ADD_FCF_RECORD mailbox failed with "
19843 			"status x%x add_status x%x\n",
19844 			shdr_status, shdr_add_status);
19845 
19846 	lpfc_sli4_mbox_cmd_free(phba, mboxq);
19847 }
19848 
19849 /**
19850  * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
19851  * @phba: pointer to lpfc hba data structure.
19852  * @fcf_record:  pointer to the initialized fcf record to add.
19853  *
19854  * This routine is invoked to manually add a single FCF record. The caller
19855  * must pass a completely initialized FCF_Record.  This routine takes
19856  * care of the nonembedded mailbox operations.
19857  **/
19858 int
19859 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
19860 {
19861 	int rc = 0;
19862 	LPFC_MBOXQ_t *mboxq;
19863 	uint8_t *bytep;
19864 	void *virt_addr;
19865 	struct lpfc_mbx_sge sge;
19866 	uint32_t alloc_len, req_len;
19867 	uint32_t fcfindex;
19868 
19869 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19870 	if (!mboxq) {
19871 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19872 			"2009 Failed to allocate mbox for ADD_FCF cmd\n");
19873 		return -ENOMEM;
19874 	}
19875 
19876 	req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
19877 		  sizeof(uint32_t);
19878 
19879 	/* Allocate DMA memory and set up the non-embedded mailbox command */
19880 	alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
19881 				     LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
19882 				     req_len, LPFC_SLI4_MBX_NEMBED);
19883 	if (alloc_len < req_len) {
19884 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19885 			"2523 Allocated DMA memory size (x%x) is "
19886 			"less than the requested DMA memory "
19887 			"size (x%x)\n", alloc_len, req_len);
19888 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19889 		return -ENOMEM;
19890 	}
19891 
19892 	/*
19893 	 * Get the first SGE entry from the non-embedded DMA memory.  This
19894 	 * routine only uses a single SGE.
19895 	 */
19896 	lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
19897 	virt_addr = mboxq->sge_array->addr[0];
19898 	/*
19899 	 * Configure the FCF record for FCFI 0.  This is the driver's
19900 	 * hardcoded default and gets used in nonFIP mode.
19901 	 */
19902 	fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
19903 	bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
19904 	lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
19905 
19906 	/*
19907 	 * Copy the fcf_index and the FCF Record Data. The data starts after
19908 	 * the FCoE header plus word10. The data copy needs to be endian
19909 	 * correct.
19910 	 */
19911 	bytep += sizeof(uint32_t);
19912 	lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
19913 	mboxq->vport = phba->pport;
19914 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
19915 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19916 	if (rc == MBX_NOT_FINISHED) {
19917 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19918 			"2515 ADD_FCF_RECORD mailbox failed with "
19919 			"status 0x%x\n", rc);
19920 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19921 		rc = -EIO;
19922 	} else
19923 		rc = 0;
19924 
19925 	return rc;
19926 }
19927 
19928 /**
19929  * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
19930  * @phba: pointer to lpfc hba data structure.
19931  * @fcf_record:  pointer to the fcf record to write the default data.
19932  * @fcf_index: FCF table entry index.
19933  *
19934  * This routine is invoked to build the driver's default FCF record.  The
19935  * values used are hardcoded.  This routine handles memory initialization.
19936  *
19937  **/
19938 void
19939 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
19940 				struct fcf_record *fcf_record,
19941 				uint16_t fcf_index)
19942 {
19943 	memset(fcf_record, 0, sizeof(struct fcf_record));
19944 	fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
19945 	fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
19946 	fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
19947 	bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
19948 	bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
19949 	bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
19950 	bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
19951 	bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
19952 	bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
19953 	bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
19954 	bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
19955 	bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
19956 	bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
19957 	bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
19958 	bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
19959 	bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
19960 		LPFC_FCF_FPMA | LPFC_FCF_SPMA);
19961 	/* Set the VLAN bit map */
19962 	if (phba->valid_vlan) {
19963 		fcf_record->vlan_bitmap[phba->vlan_id / 8]
19964 			= 1 << (phba->vlan_id % 8);
19965 	}
19966 }
19967 
19968 /**
19969  * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
19970  * @phba: pointer to lpfc hba data structure.
19971  * @fcf_index: FCF table entry offset.
19972  *
19973  * This routine is invoked to scan the entire FCF table by reading FCF
19974  * record and processing it one at a time starting from the @fcf_index
19975  * for initial FCF discovery or fast FCF failover rediscovery.
19976  *
19977  * Return 0 if the mailbox command is submitted successfully, none 0
19978  * otherwise.
19979  **/
19980 int
19981 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
19982 {
19983 	int rc = 0, error;
19984 	LPFC_MBOXQ_t *mboxq;
19985 
19986 	phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
19987 	phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
19988 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19989 	if (!mboxq) {
19990 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19991 				"2000 Failed to allocate mbox for "
19992 				"READ_FCF cmd\n");
19993 		error = -ENOMEM;
19994 		goto fail_fcf_scan;
19995 	}
19996 	/* Construct the read FCF record mailbox command */
19997 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
19998 	if (rc) {
19999 		error = -EINVAL;
20000 		goto fail_fcf_scan;
20001 	}
20002 	/* Issue the mailbox command asynchronously */
20003 	mboxq->vport = phba->pport;
20004 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
20005 
20006 	spin_lock_irq(&phba->hbalock);
20007 	phba->hba_flag |= FCF_TS_INPROG;
20008 	spin_unlock_irq(&phba->hbalock);
20009 
20010 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20011 	if (rc == MBX_NOT_FINISHED)
20012 		error = -EIO;
20013 	else {
20014 		/* Reset eligible FCF count for new scan */
20015 		if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
20016 			phba->fcf.eligible_fcf_cnt = 0;
20017 		error = 0;
20018 	}
20019 fail_fcf_scan:
20020 	if (error) {
20021 		if (mboxq)
20022 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
20023 		/* FCF scan failed, clear FCF_TS_INPROG flag */
20024 		spin_lock_irq(&phba->hbalock);
20025 		phba->hba_flag &= ~FCF_TS_INPROG;
20026 		spin_unlock_irq(&phba->hbalock);
20027 	}
20028 	return error;
20029 }
20030 
20031 /**
20032  * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
20033  * @phba: pointer to lpfc hba data structure.
20034  * @fcf_index: FCF table entry offset.
20035  *
20036  * This routine is invoked to read an FCF record indicated by @fcf_index
20037  * and to use it for FLOGI roundrobin FCF failover.
20038  *
20039  * Return 0 if the mailbox command is submitted successfully, none 0
20040  * otherwise.
20041  **/
20042 int
20043 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
20044 {
20045 	int rc = 0, error;
20046 	LPFC_MBOXQ_t *mboxq;
20047 
20048 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20049 	if (!mboxq) {
20050 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
20051 				"2763 Failed to allocate mbox for "
20052 				"READ_FCF cmd\n");
20053 		error = -ENOMEM;
20054 		goto fail_fcf_read;
20055 	}
20056 	/* Construct the read FCF record mailbox command */
20057 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
20058 	if (rc) {
20059 		error = -EINVAL;
20060 		goto fail_fcf_read;
20061 	}
20062 	/* Issue the mailbox command asynchronously */
20063 	mboxq->vport = phba->pport;
20064 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
20065 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20066 	if (rc == MBX_NOT_FINISHED)
20067 		error = -EIO;
20068 	else
20069 		error = 0;
20070 
20071 fail_fcf_read:
20072 	if (error && mboxq)
20073 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
20074 	return error;
20075 }
20076 
20077 /**
20078  * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
20079  * @phba: pointer to lpfc hba data structure.
20080  * @fcf_index: FCF table entry offset.
20081  *
20082  * This routine is invoked to read an FCF record indicated by @fcf_index to
20083  * determine whether it's eligible for FLOGI roundrobin failover list.
20084  *
20085  * Return 0 if the mailbox command is submitted successfully, none 0
20086  * otherwise.
20087  **/
20088 int
20089 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
20090 {
20091 	int rc = 0, error;
20092 	LPFC_MBOXQ_t *mboxq;
20093 
20094 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20095 	if (!mboxq) {
20096 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
20097 				"2758 Failed to allocate mbox for "
20098 				"READ_FCF cmd\n");
20099 				error = -ENOMEM;
20100 				goto fail_fcf_read;
20101 	}
20102 	/* Construct the read FCF record mailbox command */
20103 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
20104 	if (rc) {
20105 		error = -EINVAL;
20106 		goto fail_fcf_read;
20107 	}
20108 	/* Issue the mailbox command asynchronously */
20109 	mboxq->vport = phba->pport;
20110 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
20111 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20112 	if (rc == MBX_NOT_FINISHED)
20113 		error = -EIO;
20114 	else
20115 		error = 0;
20116 
20117 fail_fcf_read:
20118 	if (error && mboxq)
20119 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
20120 	return error;
20121 }
20122 
20123 /**
20124  * lpfc_check_next_fcf_pri_level
20125  * @phba: pointer to the lpfc_hba struct for this port.
20126  * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
20127  * routine when the rr_bmask is empty. The FCF indecies are put into the
20128  * rr_bmask based on their priority level. Starting from the highest priority
20129  * to the lowest. The most likely FCF candidate will be in the highest
20130  * priority group. When this routine is called it searches the fcf_pri list for
20131  * next lowest priority group and repopulates the rr_bmask with only those
20132  * fcf_indexes.
20133  * returns:
20134  * 1=success 0=failure
20135  **/
20136 static int
20137 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
20138 {
20139 	uint16_t next_fcf_pri;
20140 	uint16_t last_index;
20141 	struct lpfc_fcf_pri *fcf_pri;
20142 	int rc;
20143 	int ret = 0;
20144 
20145 	last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
20146 			LPFC_SLI4_FCF_TBL_INDX_MAX);
20147 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20148 			"3060 Last IDX %d\n", last_index);
20149 
20150 	/* Verify the priority list has 2 or more entries */
20151 	spin_lock_irq(&phba->hbalock);
20152 	if (list_empty(&phba->fcf.fcf_pri_list) ||
20153 	    list_is_singular(&phba->fcf.fcf_pri_list)) {
20154 		spin_unlock_irq(&phba->hbalock);
20155 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20156 			"3061 Last IDX %d\n", last_index);
20157 		return 0; /* Empty rr list */
20158 	}
20159 	spin_unlock_irq(&phba->hbalock);
20160 
20161 	next_fcf_pri = 0;
20162 	/*
20163 	 * Clear the rr_bmask and set all of the bits that are at this
20164 	 * priority.
20165 	 */
20166 	memset(phba->fcf.fcf_rr_bmask, 0,
20167 			sizeof(*phba->fcf.fcf_rr_bmask));
20168 	spin_lock_irq(&phba->hbalock);
20169 	list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
20170 		if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
20171 			continue;
20172 		/*
20173 		 * the 1st priority that has not FLOGI failed
20174 		 * will be the highest.
20175 		 */
20176 		if (!next_fcf_pri)
20177 			next_fcf_pri = fcf_pri->fcf_rec.priority;
20178 		spin_unlock_irq(&phba->hbalock);
20179 		if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
20180 			rc = lpfc_sli4_fcf_rr_index_set(phba,
20181 						fcf_pri->fcf_rec.fcf_index);
20182 			if (rc)
20183 				return 0;
20184 		}
20185 		spin_lock_irq(&phba->hbalock);
20186 	}
20187 	/*
20188 	 * if next_fcf_pri was not set above and the list is not empty then
20189 	 * we have failed flogis on all of them. So reset flogi failed
20190 	 * and start at the beginning.
20191 	 */
20192 	if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
20193 		list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
20194 			fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
20195 			/*
20196 			 * the 1st priority that has not FLOGI failed
20197 			 * will be the highest.
20198 			 */
20199 			if (!next_fcf_pri)
20200 				next_fcf_pri = fcf_pri->fcf_rec.priority;
20201 			spin_unlock_irq(&phba->hbalock);
20202 			if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
20203 				rc = lpfc_sli4_fcf_rr_index_set(phba,
20204 						fcf_pri->fcf_rec.fcf_index);
20205 				if (rc)
20206 					return 0;
20207 			}
20208 			spin_lock_irq(&phba->hbalock);
20209 		}
20210 	} else
20211 		ret = 1;
20212 	spin_unlock_irq(&phba->hbalock);
20213 
20214 	return ret;
20215 }
20216 /**
20217  * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
20218  * @phba: pointer to lpfc hba data structure.
20219  *
20220  * This routine is to get the next eligible FCF record index in a round
20221  * robin fashion. If the next eligible FCF record index equals to the
20222  * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
20223  * shall be returned, otherwise, the next eligible FCF record's index
20224  * shall be returned.
20225  **/
20226 uint16_t
20227 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
20228 {
20229 	uint16_t next_fcf_index;
20230 
20231 initial_priority:
20232 	/* Search start from next bit of currently registered FCF index */
20233 	next_fcf_index = phba->fcf.current_rec.fcf_indx;
20234 
20235 next_priority:
20236 	/* Determine the next fcf index to check */
20237 	next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
20238 	next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
20239 				       LPFC_SLI4_FCF_TBL_INDX_MAX,
20240 				       next_fcf_index);
20241 
20242 	/* Wrap around condition on phba->fcf.fcf_rr_bmask */
20243 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20244 		/*
20245 		 * If we have wrapped then we need to clear the bits that
20246 		 * have been tested so that we can detect when we should
20247 		 * change the priority level.
20248 		 */
20249 		next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask,
20250 					       LPFC_SLI4_FCF_TBL_INDX_MAX);
20251 	}
20252 
20253 
20254 	/* Check roundrobin failover list empty condition */
20255 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
20256 		next_fcf_index == phba->fcf.current_rec.fcf_indx) {
20257 		/*
20258 		 * If next fcf index is not found check if there are lower
20259 		 * Priority level fcf's in the fcf_priority list.
20260 		 * Set up the rr_bmask with all of the avaiable fcf bits
20261 		 * at that level and continue the selection process.
20262 		 */
20263 		if (lpfc_check_next_fcf_pri_level(phba))
20264 			goto initial_priority;
20265 		lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
20266 				"2844 No roundrobin failover FCF available\n");
20267 
20268 		return LPFC_FCOE_FCF_NEXT_NONE;
20269 	}
20270 
20271 	if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
20272 		phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
20273 		LPFC_FCF_FLOGI_FAILED) {
20274 		if (list_is_singular(&phba->fcf.fcf_pri_list))
20275 			return LPFC_FCOE_FCF_NEXT_NONE;
20276 
20277 		goto next_priority;
20278 	}
20279 
20280 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20281 			"2845 Get next roundrobin failover FCF (x%x)\n",
20282 			next_fcf_index);
20283 
20284 	return next_fcf_index;
20285 }
20286 
20287 /**
20288  * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
20289  * @phba: pointer to lpfc hba data structure.
20290  * @fcf_index: index into the FCF table to 'set'
20291  *
20292  * This routine sets the FCF record index in to the eligible bmask for
20293  * roundrobin failover search. It checks to make sure that the index
20294  * does not go beyond the range of the driver allocated bmask dimension
20295  * before setting the bit.
20296  *
20297  * Returns 0 if the index bit successfully set, otherwise, it returns
20298  * -EINVAL.
20299  **/
20300 int
20301 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
20302 {
20303 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20304 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20305 				"2610 FCF (x%x) reached driver's book "
20306 				"keeping dimension:x%x\n",
20307 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
20308 		return -EINVAL;
20309 	}
20310 	/* Set the eligible FCF record index bmask */
20311 	set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
20312 
20313 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20314 			"2790 Set FCF (x%x) to roundrobin FCF failover "
20315 			"bmask\n", fcf_index);
20316 
20317 	return 0;
20318 }
20319 
20320 /**
20321  * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
20322  * @phba: pointer to lpfc hba data structure.
20323  * @fcf_index: index into the FCF table to 'clear'
20324  *
20325  * This routine clears the FCF record index from the eligible bmask for
20326  * roundrobin failover search. It checks to make sure that the index
20327  * does not go beyond the range of the driver allocated bmask dimension
20328  * before clearing the bit.
20329  **/
20330 void
20331 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
20332 {
20333 	struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
20334 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20335 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20336 				"2762 FCF (x%x) reached driver's book "
20337 				"keeping dimension:x%x\n",
20338 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
20339 		return;
20340 	}
20341 	/* Clear the eligible FCF record index bmask */
20342 	spin_lock_irq(&phba->hbalock);
20343 	list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
20344 				 list) {
20345 		if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
20346 			list_del_init(&fcf_pri->list);
20347 			break;
20348 		}
20349 	}
20350 	spin_unlock_irq(&phba->hbalock);
20351 	clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
20352 
20353 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20354 			"2791 Clear FCF (x%x) from roundrobin failover "
20355 			"bmask\n", fcf_index);
20356 }
20357 
20358 /**
20359  * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
20360  * @phba: pointer to lpfc hba data structure.
20361  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
20362  *
20363  * This routine is the completion routine for the rediscover FCF table mailbox
20364  * command. If the mailbox command returned failure, it will try to stop the
20365  * FCF rediscover wait timer.
20366  **/
20367 static void
20368 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
20369 {
20370 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
20371 	uint32_t shdr_status, shdr_add_status;
20372 
20373 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
20374 
20375 	shdr_status = bf_get(lpfc_mbox_hdr_status,
20376 			     &redisc_fcf->header.cfg_shdr.response);
20377 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
20378 			     &redisc_fcf->header.cfg_shdr.response);
20379 	if (shdr_status || shdr_add_status) {
20380 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20381 				"2746 Requesting for FCF rediscovery failed "
20382 				"status x%x add_status x%x\n",
20383 				shdr_status, shdr_add_status);
20384 		if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
20385 			spin_lock_irq(&phba->hbalock);
20386 			phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
20387 			spin_unlock_irq(&phba->hbalock);
20388 			/*
20389 			 * CVL event triggered FCF rediscover request failed,
20390 			 * last resort to re-try current registered FCF entry.
20391 			 */
20392 			lpfc_retry_pport_discovery(phba);
20393 		} else {
20394 			spin_lock_irq(&phba->hbalock);
20395 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
20396 			spin_unlock_irq(&phba->hbalock);
20397 			/*
20398 			 * DEAD FCF event triggered FCF rediscover request
20399 			 * failed, last resort to fail over as a link down
20400 			 * to FCF registration.
20401 			 */
20402 			lpfc_sli4_fcf_dead_failthrough(phba);
20403 		}
20404 	} else {
20405 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20406 				"2775 Start FCF rediscover quiescent timer\n");
20407 		/*
20408 		 * Start FCF rediscovery wait timer for pending FCF
20409 		 * before rescan FCF record table.
20410 		 */
20411 		lpfc_fcf_redisc_wait_start_timer(phba);
20412 	}
20413 
20414 	mempool_free(mbox, phba->mbox_mem_pool);
20415 }
20416 
20417 /**
20418  * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
20419  * @phba: pointer to lpfc hba data structure.
20420  *
20421  * This routine is invoked to request for rediscovery of the entire FCF table
20422  * by the port.
20423  **/
20424 int
20425 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
20426 {
20427 	LPFC_MBOXQ_t *mbox;
20428 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
20429 	int rc, length;
20430 
20431 	/* Cancel retry delay timers to all vports before FCF rediscover */
20432 	lpfc_cancel_all_vport_retry_delay_timer(phba);
20433 
20434 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20435 	if (!mbox) {
20436 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20437 				"2745 Failed to allocate mbox for "
20438 				"requesting FCF rediscover.\n");
20439 		return -ENOMEM;
20440 	}
20441 
20442 	length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
20443 		  sizeof(struct lpfc_sli4_cfg_mhdr));
20444 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
20445 			 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
20446 			 length, LPFC_SLI4_MBX_EMBED);
20447 
20448 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
20449 	/* Set count to 0 for invalidating the entire FCF database */
20450 	bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
20451 
20452 	/* Issue the mailbox command asynchronously */
20453 	mbox->vport = phba->pport;
20454 	mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
20455 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
20456 
20457 	if (rc == MBX_NOT_FINISHED) {
20458 		mempool_free(mbox, phba->mbox_mem_pool);
20459 		return -EIO;
20460 	}
20461 	return 0;
20462 }
20463 
20464 /**
20465  * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
20466  * @phba: pointer to lpfc hba data structure.
20467  *
20468  * This function is the failover routine as a last resort to the FCF DEAD
20469  * event when driver failed to perform fast FCF failover.
20470  **/
20471 void
20472 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
20473 {
20474 	uint32_t link_state;
20475 
20476 	/*
20477 	 * Last resort as FCF DEAD event failover will treat this as
20478 	 * a link down, but save the link state because we don't want
20479 	 * it to be changed to Link Down unless it is already down.
20480 	 */
20481 	link_state = phba->link_state;
20482 	lpfc_linkdown(phba);
20483 	phba->link_state = link_state;
20484 
20485 	/* Unregister FCF if no devices connected to it */
20486 	lpfc_unregister_unused_fcf(phba);
20487 }
20488 
20489 /**
20490  * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
20491  * @phba: pointer to lpfc hba data structure.
20492  * @rgn23_data: pointer to configure region 23 data.
20493  *
20494  * This function gets SLI3 port configure region 23 data through memory dump
20495  * mailbox command. When it successfully retrieves data, the size of the data
20496  * will be returned, otherwise, 0 will be returned.
20497  **/
20498 static uint32_t
20499 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
20500 {
20501 	LPFC_MBOXQ_t *pmb = NULL;
20502 	MAILBOX_t *mb;
20503 	uint32_t offset = 0;
20504 	int rc;
20505 
20506 	if (!rgn23_data)
20507 		return 0;
20508 
20509 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20510 	if (!pmb) {
20511 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20512 				"2600 failed to allocate mailbox memory\n");
20513 		return 0;
20514 	}
20515 	mb = &pmb->u.mb;
20516 
20517 	do {
20518 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
20519 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
20520 
20521 		if (rc != MBX_SUCCESS) {
20522 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20523 					"2601 failed to read config "
20524 					"region 23, rc 0x%x Status 0x%x\n",
20525 					rc, mb->mbxStatus);
20526 			mb->un.varDmp.word_cnt = 0;
20527 		}
20528 		/*
20529 		 * dump mem may return a zero when finished or we got a
20530 		 * mailbox error, either way we are done.
20531 		 */
20532 		if (mb->un.varDmp.word_cnt == 0)
20533 			break;
20534 
20535 		if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
20536 			mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
20537 
20538 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
20539 				       rgn23_data + offset,
20540 				       mb->un.varDmp.word_cnt);
20541 		offset += mb->un.varDmp.word_cnt;
20542 	} while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
20543 
20544 	mempool_free(pmb, phba->mbox_mem_pool);
20545 	return offset;
20546 }
20547 
20548 /**
20549  * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
20550  * @phba: pointer to lpfc hba data structure.
20551  * @rgn23_data: pointer to configure region 23 data.
20552  *
20553  * This function gets SLI4 port configure region 23 data through memory dump
20554  * mailbox command. When it successfully retrieves data, the size of the data
20555  * will be returned, otherwise, 0 will be returned.
20556  **/
20557 static uint32_t
20558 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
20559 {
20560 	LPFC_MBOXQ_t *mboxq = NULL;
20561 	struct lpfc_dmabuf *mp = NULL;
20562 	struct lpfc_mqe *mqe;
20563 	uint32_t data_length = 0;
20564 	int rc;
20565 
20566 	if (!rgn23_data)
20567 		return 0;
20568 
20569 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20570 	if (!mboxq) {
20571 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20572 				"3105 failed to allocate mailbox memory\n");
20573 		return 0;
20574 	}
20575 
20576 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
20577 		goto out;
20578 	mqe = &mboxq->u.mqe;
20579 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
20580 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
20581 	if (rc)
20582 		goto out;
20583 	data_length = mqe->un.mb_words[5];
20584 	if (data_length == 0)
20585 		goto out;
20586 	if (data_length > DMP_RGN23_SIZE) {
20587 		data_length = 0;
20588 		goto out;
20589 	}
20590 	lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
20591 out:
20592 	lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED);
20593 	return data_length;
20594 }
20595 
20596 /**
20597  * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
20598  * @phba: pointer to lpfc hba data structure.
20599  *
20600  * This function read region 23 and parse TLV for port status to
20601  * decide if the user disaled the port. If the TLV indicates the
20602  * port is disabled, the hba_flag is set accordingly.
20603  **/
20604 void
20605 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
20606 {
20607 	uint8_t *rgn23_data = NULL;
20608 	uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
20609 	uint32_t offset = 0;
20610 
20611 	/* Get adapter Region 23 data */
20612 	rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
20613 	if (!rgn23_data)
20614 		goto out;
20615 
20616 	if (phba->sli_rev < LPFC_SLI_REV4)
20617 		data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
20618 	else {
20619 		if_type = bf_get(lpfc_sli_intf_if_type,
20620 				 &phba->sli4_hba.sli_intf);
20621 		if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
20622 			goto out;
20623 		data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
20624 	}
20625 
20626 	if (!data_size)
20627 		goto out;
20628 
20629 	/* Check the region signature first */
20630 	if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
20631 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20632 			"2619 Config region 23 has bad signature\n");
20633 			goto out;
20634 	}
20635 	offset += 4;
20636 
20637 	/* Check the data structure version */
20638 	if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
20639 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20640 			"2620 Config region 23 has bad version\n");
20641 		goto out;
20642 	}
20643 	offset += 4;
20644 
20645 	/* Parse TLV entries in the region */
20646 	while (offset < data_size) {
20647 		if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
20648 			break;
20649 		/*
20650 		 * If the TLV is not driver specific TLV or driver id is
20651 		 * not linux driver id, skip the record.
20652 		 */
20653 		if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
20654 		    (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
20655 		    (rgn23_data[offset + 3] != 0)) {
20656 			offset += rgn23_data[offset + 1] * 4 + 4;
20657 			continue;
20658 		}
20659 
20660 		/* Driver found a driver specific TLV in the config region */
20661 		sub_tlv_len = rgn23_data[offset + 1] * 4;
20662 		offset += 4;
20663 		tlv_offset = 0;
20664 
20665 		/*
20666 		 * Search for configured port state sub-TLV.
20667 		 */
20668 		while ((offset < data_size) &&
20669 			(tlv_offset < sub_tlv_len)) {
20670 			if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
20671 				offset += 4;
20672 				tlv_offset += 4;
20673 				break;
20674 			}
20675 			if (rgn23_data[offset] != PORT_STE_TYPE) {
20676 				offset += rgn23_data[offset + 1] * 4 + 4;
20677 				tlv_offset += rgn23_data[offset + 1] * 4 + 4;
20678 				continue;
20679 			}
20680 
20681 			/* This HBA contains PORT_STE configured */
20682 			if (!rgn23_data[offset + 2])
20683 				phba->hba_flag |= LINK_DISABLED;
20684 
20685 			goto out;
20686 		}
20687 	}
20688 
20689 out:
20690 	kfree(rgn23_data);
20691 	return;
20692 }
20693 
20694 /**
20695  * lpfc_log_fw_write_cmpl - logs firmware write completion status
20696  * @phba: pointer to lpfc hba data structure
20697  * @shdr_status: wr_object rsp's status field
20698  * @shdr_add_status: wr_object rsp's add_status field
20699  * @shdr_add_status_2: wr_object rsp's add_status_2 field
20700  * @shdr_change_status: wr_object rsp's change_status field
20701  * @shdr_csf: wr_object rsp's csf bit
20702  *
20703  * This routine is intended to be called after a firmware write completes.
20704  * It will log next action items to be performed by the user to instantiate
20705  * the newly downloaded firmware or reason for incompatibility.
20706  **/
20707 static void
20708 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status,
20709 		       u32 shdr_add_status, u32 shdr_add_status_2,
20710 		       u32 shdr_change_status, u32 shdr_csf)
20711 {
20712 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20713 			"4198 %s: flash_id x%02x, asic_rev x%02x, "
20714 			"status x%02x, add_status x%02x, add_status_2 x%02x, "
20715 			"change_status x%02x, csf %01x\n", __func__,
20716 			phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev,
20717 			shdr_status, shdr_add_status, shdr_add_status_2,
20718 			shdr_change_status, shdr_csf);
20719 
20720 	if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) {
20721 		switch (shdr_add_status_2) {
20722 		case LPFC_ADD_STATUS_2_INCOMPAT_FLASH:
20723 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20724 					"4199 Firmware write failed: "
20725 					"image incompatible with flash x%02x\n",
20726 					phba->sli4_hba.flash_id);
20727 			break;
20728 		case LPFC_ADD_STATUS_2_INCORRECT_ASIC:
20729 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20730 					"4200 Firmware write failed: "
20731 					"image incompatible with ASIC "
20732 					"architecture x%02x\n",
20733 					phba->sli4_hba.asic_rev);
20734 			break;
20735 		default:
20736 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20737 					"4210 Firmware write failed: "
20738 					"add_status_2 x%02x\n",
20739 					shdr_add_status_2);
20740 			break;
20741 		}
20742 	} else if (!shdr_status && !shdr_add_status) {
20743 		if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET ||
20744 		    shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) {
20745 			if (shdr_csf)
20746 				shdr_change_status =
20747 						   LPFC_CHANGE_STATUS_PCI_RESET;
20748 		}
20749 
20750 		switch (shdr_change_status) {
20751 		case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
20752 			lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20753 					"3198 Firmware write complete: System "
20754 					"reboot required to instantiate\n");
20755 			break;
20756 		case (LPFC_CHANGE_STATUS_FW_RESET):
20757 			lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20758 					"3199 Firmware write complete: "
20759 					"Firmware reset required to "
20760 					"instantiate\n");
20761 			break;
20762 		case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
20763 			lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20764 					"3200 Firmware write complete: Port "
20765 					"Migration or PCI Reset required to "
20766 					"instantiate\n");
20767 			break;
20768 		case (LPFC_CHANGE_STATUS_PCI_RESET):
20769 			lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20770 					"3201 Firmware write complete: PCI "
20771 					"Reset required to instantiate\n");
20772 			break;
20773 		default:
20774 			break;
20775 		}
20776 	}
20777 }
20778 
20779 /**
20780  * lpfc_wr_object - write an object to the firmware
20781  * @phba: HBA structure that indicates port to create a queue on.
20782  * @dmabuf_list: list of dmabufs to write to the port.
20783  * @size: the total byte value of the objects to write to the port.
20784  * @offset: the current offset to be used to start the transfer.
20785  *
20786  * This routine will create a wr_object mailbox command to send to the port.
20787  * the mailbox command will be constructed using the dma buffers described in
20788  * @dmabuf_list to create a list of BDEs. This routine will fill in as many
20789  * BDEs that the imbedded mailbox can support. The @offset variable will be
20790  * used to indicate the starting offset of the transfer and will also return
20791  * the offset after the write object mailbox has completed. @size is used to
20792  * determine the end of the object and whether the eof bit should be set.
20793  *
20794  * Return 0 is successful and offset will contain the the new offset to use
20795  * for the next write.
20796  * Return negative value for error cases.
20797  **/
20798 int
20799 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
20800 	       uint32_t size, uint32_t *offset)
20801 {
20802 	struct lpfc_mbx_wr_object *wr_object;
20803 	LPFC_MBOXQ_t *mbox;
20804 	int rc = 0, i = 0;
20805 	uint32_t shdr_status, shdr_add_status, shdr_add_status_2;
20806 	uint32_t shdr_change_status = 0, shdr_csf = 0;
20807 	uint32_t mbox_tmo;
20808 	struct lpfc_dmabuf *dmabuf;
20809 	uint32_t written = 0;
20810 	bool check_change_status = false;
20811 
20812 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20813 	if (!mbox)
20814 		return -ENOMEM;
20815 
20816 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
20817 			LPFC_MBOX_OPCODE_WRITE_OBJECT,
20818 			sizeof(struct lpfc_mbx_wr_object) -
20819 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
20820 
20821 	wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
20822 	wr_object->u.request.write_offset = *offset;
20823 	sprintf((uint8_t *)wr_object->u.request.object_name, "/");
20824 	wr_object->u.request.object_name[0] =
20825 		cpu_to_le32(wr_object->u.request.object_name[0]);
20826 	bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
20827 	list_for_each_entry(dmabuf, dmabuf_list, list) {
20828 		if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
20829 			break;
20830 		wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
20831 		wr_object->u.request.bde[i].addrHigh =
20832 			putPaddrHigh(dmabuf->phys);
20833 		if (written + SLI4_PAGE_SIZE >= size) {
20834 			wr_object->u.request.bde[i].tus.f.bdeSize =
20835 				(size - written);
20836 			written += (size - written);
20837 			bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
20838 			bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
20839 			check_change_status = true;
20840 		} else {
20841 			wr_object->u.request.bde[i].tus.f.bdeSize =
20842 				SLI4_PAGE_SIZE;
20843 			written += SLI4_PAGE_SIZE;
20844 		}
20845 		i++;
20846 	}
20847 	wr_object->u.request.bde_count = i;
20848 	bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
20849 	if (!phba->sli4_hba.intr_enable)
20850 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
20851 	else {
20852 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
20853 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
20854 	}
20855 	/* The IOCTL status is embedded in the mailbox subheader. */
20856 	shdr_status = bf_get(lpfc_mbox_hdr_status,
20857 			     &wr_object->header.cfg_shdr.response);
20858 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
20859 				 &wr_object->header.cfg_shdr.response);
20860 	shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2,
20861 				   &wr_object->header.cfg_shdr.response);
20862 	if (check_change_status) {
20863 		shdr_change_status = bf_get(lpfc_wr_object_change_status,
20864 					    &wr_object->u.response);
20865 		shdr_csf = bf_get(lpfc_wr_object_csf,
20866 				  &wr_object->u.response);
20867 	}
20868 
20869 	if (!phba->sli4_hba.intr_enable)
20870 		mempool_free(mbox, phba->mbox_mem_pool);
20871 	else if (rc != MBX_TIMEOUT)
20872 		mempool_free(mbox, phba->mbox_mem_pool);
20873 	if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) {
20874 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20875 				"3025 Write Object mailbox failed with "
20876 				"status x%x add_status x%x, add_status_2 x%x, "
20877 				"mbx status x%x\n",
20878 				shdr_status, shdr_add_status, shdr_add_status_2,
20879 				rc);
20880 		rc = -ENXIO;
20881 		*offset = shdr_add_status;
20882 	} else {
20883 		*offset += wr_object->u.response.actual_write_length;
20884 	}
20885 
20886 	if (rc || check_change_status)
20887 		lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status,
20888 				       shdr_add_status_2, shdr_change_status,
20889 				       shdr_csf);
20890 	return rc;
20891 }
20892 
20893 /**
20894  * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
20895  * @vport: pointer to vport data structure.
20896  *
20897  * This function iterate through the mailboxq and clean up all REG_LOGIN
20898  * and REG_VPI mailbox commands associated with the vport. This function
20899  * is called when driver want to restart discovery of the vport due to
20900  * a Clear Virtual Link event.
20901  **/
20902 void
20903 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
20904 {
20905 	struct lpfc_hba *phba = vport->phba;
20906 	LPFC_MBOXQ_t *mb, *nextmb;
20907 	struct lpfc_nodelist *ndlp;
20908 	struct lpfc_nodelist *act_mbx_ndlp = NULL;
20909 	LIST_HEAD(mbox_cmd_list);
20910 	uint8_t restart_loop;
20911 
20912 	/* Clean up internally queued mailbox commands with the vport */
20913 	spin_lock_irq(&phba->hbalock);
20914 	list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
20915 		if (mb->vport != vport)
20916 			continue;
20917 
20918 		if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
20919 			(mb->u.mb.mbxCommand != MBX_REG_VPI))
20920 			continue;
20921 
20922 		list_move_tail(&mb->list, &mbox_cmd_list);
20923 	}
20924 	/* Clean up active mailbox command with the vport */
20925 	mb = phba->sli.mbox_active;
20926 	if (mb && (mb->vport == vport)) {
20927 		if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
20928 			(mb->u.mb.mbxCommand == MBX_REG_VPI))
20929 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
20930 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
20931 			act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
20932 
20933 			/* This reference is local to this routine.  The
20934 			 * reference is removed at routine exit.
20935 			 */
20936 			act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
20937 
20938 			/* Unregister the RPI when mailbox complete */
20939 			mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
20940 		}
20941 	}
20942 	/* Cleanup any mailbox completions which are not yet processed */
20943 	do {
20944 		restart_loop = 0;
20945 		list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
20946 			/*
20947 			 * If this mailox is already processed or it is
20948 			 * for another vport ignore it.
20949 			 */
20950 			if ((mb->vport != vport) ||
20951 				(mb->mbox_flag & LPFC_MBX_IMED_UNREG))
20952 				continue;
20953 
20954 			if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
20955 				(mb->u.mb.mbxCommand != MBX_REG_VPI))
20956 				continue;
20957 
20958 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
20959 			if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
20960 				ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
20961 				/* Unregister the RPI when mailbox complete */
20962 				mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
20963 				restart_loop = 1;
20964 				spin_unlock_irq(&phba->hbalock);
20965 				spin_lock(&ndlp->lock);
20966 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
20967 				spin_unlock(&ndlp->lock);
20968 				spin_lock_irq(&phba->hbalock);
20969 				break;
20970 			}
20971 		}
20972 	} while (restart_loop);
20973 
20974 	spin_unlock_irq(&phba->hbalock);
20975 
20976 	/* Release the cleaned-up mailbox commands */
20977 	while (!list_empty(&mbox_cmd_list)) {
20978 		list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
20979 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
20980 			ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
20981 			mb->ctx_ndlp = NULL;
20982 			if (ndlp) {
20983 				spin_lock(&ndlp->lock);
20984 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
20985 				spin_unlock(&ndlp->lock);
20986 				lpfc_nlp_put(ndlp);
20987 			}
20988 		}
20989 		lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED);
20990 	}
20991 
20992 	/* Release the ndlp with the cleaned-up active mailbox command */
20993 	if (act_mbx_ndlp) {
20994 		spin_lock(&act_mbx_ndlp->lock);
20995 		act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
20996 		spin_unlock(&act_mbx_ndlp->lock);
20997 		lpfc_nlp_put(act_mbx_ndlp);
20998 	}
20999 }
21000 
21001 /**
21002  * lpfc_drain_txq - Drain the txq
21003  * @phba: Pointer to HBA context object.
21004  *
21005  * This function attempt to submit IOCBs on the txq
21006  * to the adapter.  For SLI4 adapters, the txq contains
21007  * ELS IOCBs that have been deferred because the there
21008  * are no SGLs.  This congestion can occur with large
21009  * vport counts during node discovery.
21010  **/
21011 
21012 uint32_t
21013 lpfc_drain_txq(struct lpfc_hba *phba)
21014 {
21015 	LIST_HEAD(completions);
21016 	struct lpfc_sli_ring *pring;
21017 	struct lpfc_iocbq *piocbq = NULL;
21018 	unsigned long iflags = 0;
21019 	char *fail_msg = NULL;
21020 	uint32_t txq_cnt = 0;
21021 	struct lpfc_queue *wq;
21022 	int ret = 0;
21023 
21024 	if (phba->link_flag & LS_MDS_LOOPBACK) {
21025 		/* MDS WQE are posted only to first WQ*/
21026 		wq = phba->sli4_hba.hdwq[0].io_wq;
21027 		if (unlikely(!wq))
21028 			return 0;
21029 		pring = wq->pring;
21030 	} else {
21031 		wq = phba->sli4_hba.els_wq;
21032 		if (unlikely(!wq))
21033 			return 0;
21034 		pring = lpfc_phba_elsring(phba);
21035 	}
21036 
21037 	if (unlikely(!pring) || list_empty(&pring->txq))
21038 		return 0;
21039 
21040 	spin_lock_irqsave(&pring->ring_lock, iflags);
21041 	list_for_each_entry(piocbq, &pring->txq, list) {
21042 		txq_cnt++;
21043 	}
21044 
21045 	if (txq_cnt > pring->txq_max)
21046 		pring->txq_max = txq_cnt;
21047 
21048 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
21049 
21050 	while (!list_empty(&pring->txq)) {
21051 		spin_lock_irqsave(&pring->ring_lock, iflags);
21052 
21053 		piocbq = lpfc_sli_ringtx_get(phba, pring);
21054 		if (!piocbq) {
21055 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21056 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
21057 				"2823 txq empty and txq_cnt is %d\n ",
21058 				txq_cnt);
21059 			break;
21060 		}
21061 		txq_cnt--;
21062 
21063 		ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0);
21064 
21065 		if (ret && ret != IOCB_BUSY) {
21066 			fail_msg = " - Cannot send IO ";
21067 			piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
21068 		}
21069 		if (fail_msg) {
21070 			piocbq->cmd_flag |= LPFC_DRIVER_ABORTED;
21071 			/* Failed means we can't issue and need to cancel */
21072 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
21073 					"2822 IOCB failed %s iotag 0x%x "
21074 					"xri 0x%x %d flg x%x\n",
21075 					fail_msg, piocbq->iotag,
21076 					piocbq->sli4_xritag, ret,
21077 					piocbq->cmd_flag);
21078 			list_add_tail(&piocbq->list, &completions);
21079 			fail_msg = NULL;
21080 		}
21081 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
21082 		if (txq_cnt == 0 || ret == IOCB_BUSY)
21083 			break;
21084 	}
21085 	/* Cancel all the IOCBs that cannot be issued */
21086 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
21087 			      IOERR_SLI_ABORTED);
21088 
21089 	return txq_cnt;
21090 }
21091 
21092 /**
21093  * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
21094  * @phba: Pointer to HBA context object.
21095  * @pwqeq: Pointer to command WQE.
21096  * @sglq: Pointer to the scatter gather queue object.
21097  *
21098  * This routine converts the bpl or bde that is in the WQE
21099  * to a sgl list for the sli4 hardware. The physical address
21100  * of the bpl/bde is converted back to a virtual address.
21101  * If the WQE contains a BPL then the list of BDE's is
21102  * converted to sli4_sge's. If the WQE contains a single
21103  * BDE then it is converted to a single sli_sge.
21104  * The WQE is still in cpu endianness so the contents of
21105  * the bpl can be used without byte swapping.
21106  *
21107  * Returns valid XRI = Success, NO_XRI = Failure.
21108  */
21109 static uint16_t
21110 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
21111 		 struct lpfc_sglq *sglq)
21112 {
21113 	uint16_t xritag = NO_XRI;
21114 	struct ulp_bde64 *bpl = NULL;
21115 	struct ulp_bde64 bde;
21116 	struct sli4_sge *sgl  = NULL;
21117 	struct lpfc_dmabuf *dmabuf;
21118 	union lpfc_wqe128 *wqe;
21119 	int numBdes = 0;
21120 	int i = 0;
21121 	uint32_t offset = 0; /* accumulated offset in the sg request list */
21122 	int inbound = 0; /* number of sg reply entries inbound from firmware */
21123 	uint32_t cmd;
21124 
21125 	if (!pwqeq || !sglq)
21126 		return xritag;
21127 
21128 	sgl  = (struct sli4_sge *)sglq->sgl;
21129 	wqe = &pwqeq->wqe;
21130 	pwqeq->iocb.ulpIoTag = pwqeq->iotag;
21131 
21132 	cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
21133 	if (cmd == CMD_XMIT_BLS_RSP64_WQE)
21134 		return sglq->sli4_xritag;
21135 	numBdes = pwqeq->num_bdes;
21136 	if (numBdes) {
21137 		/* The addrHigh and addrLow fields within the WQE
21138 		 * have not been byteswapped yet so there is no
21139 		 * need to swap them back.
21140 		 */
21141 		if (pwqeq->bpl_dmabuf)
21142 			dmabuf = pwqeq->bpl_dmabuf;
21143 		else
21144 			return xritag;
21145 
21146 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
21147 		if (!bpl)
21148 			return xritag;
21149 
21150 		for (i = 0; i < numBdes; i++) {
21151 			/* Should already be byte swapped. */
21152 			sgl->addr_hi = bpl->addrHigh;
21153 			sgl->addr_lo = bpl->addrLow;
21154 
21155 			sgl->word2 = le32_to_cpu(sgl->word2);
21156 			if ((i+1) == numBdes)
21157 				bf_set(lpfc_sli4_sge_last, sgl, 1);
21158 			else
21159 				bf_set(lpfc_sli4_sge_last, sgl, 0);
21160 			/* swap the size field back to the cpu so we
21161 			 * can assign it to the sgl.
21162 			 */
21163 			bde.tus.w = le32_to_cpu(bpl->tus.w);
21164 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
21165 			/* The offsets in the sgl need to be accumulated
21166 			 * separately for the request and reply lists.
21167 			 * The request is always first, the reply follows.
21168 			 */
21169 			switch (cmd) {
21170 			case CMD_GEN_REQUEST64_WQE:
21171 				/* add up the reply sg entries */
21172 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
21173 					inbound++;
21174 				/* first inbound? reset the offset */
21175 				if (inbound == 1)
21176 					offset = 0;
21177 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
21178 				bf_set(lpfc_sli4_sge_type, sgl,
21179 					LPFC_SGE_TYPE_DATA);
21180 				offset += bde.tus.f.bdeSize;
21181 				break;
21182 			case CMD_FCP_TRSP64_WQE:
21183 				bf_set(lpfc_sli4_sge_offset, sgl, 0);
21184 				bf_set(lpfc_sli4_sge_type, sgl,
21185 					LPFC_SGE_TYPE_DATA);
21186 				break;
21187 			case CMD_FCP_TSEND64_WQE:
21188 			case CMD_FCP_TRECEIVE64_WQE:
21189 				bf_set(lpfc_sli4_sge_type, sgl,
21190 					bpl->tus.f.bdeFlags);
21191 				if (i < 3)
21192 					offset = 0;
21193 				else
21194 					offset += bde.tus.f.bdeSize;
21195 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
21196 				break;
21197 			}
21198 			sgl->word2 = cpu_to_le32(sgl->word2);
21199 			bpl++;
21200 			sgl++;
21201 		}
21202 	} else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
21203 		/* The addrHigh and addrLow fields of the BDE have not
21204 		 * been byteswapped yet so they need to be swapped
21205 		 * before putting them in the sgl.
21206 		 */
21207 		sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
21208 		sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
21209 		sgl->word2 = le32_to_cpu(sgl->word2);
21210 		bf_set(lpfc_sli4_sge_last, sgl, 1);
21211 		sgl->word2 = cpu_to_le32(sgl->word2);
21212 		sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
21213 	}
21214 	return sglq->sli4_xritag;
21215 }
21216 
21217 /**
21218  * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
21219  * @phba: Pointer to HBA context object.
21220  * @qp: Pointer to HDW queue.
21221  * @pwqe: Pointer to command WQE.
21222  **/
21223 int
21224 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
21225 		    struct lpfc_iocbq *pwqe)
21226 {
21227 	union lpfc_wqe128 *wqe = &pwqe->wqe;
21228 	struct lpfc_async_xchg_ctx *ctxp;
21229 	struct lpfc_queue *wq;
21230 	struct lpfc_sglq *sglq;
21231 	struct lpfc_sli_ring *pring;
21232 	unsigned long iflags;
21233 	uint32_t ret = 0;
21234 
21235 	/* NVME_LS and NVME_LS ABTS requests. */
21236 	if (pwqe->cmd_flag & LPFC_IO_NVME_LS) {
21237 		pring =  phba->sli4_hba.nvmels_wq->pring;
21238 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21239 					  qp, wq_access);
21240 		sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
21241 		if (!sglq) {
21242 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21243 			return WQE_BUSY;
21244 		}
21245 		pwqe->sli4_lxritag = sglq->sli4_lxritag;
21246 		pwqe->sli4_xritag = sglq->sli4_xritag;
21247 		if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
21248 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21249 			return WQE_ERROR;
21250 		}
21251 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
21252 		       pwqe->sli4_xritag);
21253 		ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
21254 		if (ret) {
21255 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21256 			return ret;
21257 		}
21258 
21259 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21260 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
21261 
21262 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
21263 		return 0;
21264 	}
21265 
21266 	/* NVME_FCREQ and NVME_ABTS requests */
21267 	if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) {
21268 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
21269 		wq = qp->io_wq;
21270 		pring = wq->pring;
21271 
21272 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
21273 
21274 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21275 					  qp, wq_access);
21276 		ret = lpfc_sli4_wq_put(wq, wqe);
21277 		if (ret) {
21278 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21279 			return ret;
21280 		}
21281 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21282 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
21283 
21284 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
21285 		return 0;
21286 	}
21287 
21288 	/* NVMET requests */
21289 	if (pwqe->cmd_flag & LPFC_IO_NVMET) {
21290 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
21291 		wq = qp->io_wq;
21292 		pring = wq->pring;
21293 
21294 		ctxp = pwqe->context_un.axchg;
21295 		sglq = ctxp->ctxbuf->sglq;
21296 		if (pwqe->sli4_xritag ==  NO_XRI) {
21297 			pwqe->sli4_lxritag = sglq->sli4_lxritag;
21298 			pwqe->sli4_xritag = sglq->sli4_xritag;
21299 		}
21300 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
21301 		       pwqe->sli4_xritag);
21302 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
21303 
21304 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21305 					  qp, wq_access);
21306 		ret = lpfc_sli4_wq_put(wq, wqe);
21307 		if (ret) {
21308 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21309 			return ret;
21310 		}
21311 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21312 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
21313 
21314 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
21315 		return 0;
21316 	}
21317 	return WQE_ERROR;
21318 }
21319 
21320 /**
21321  * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort
21322  * @phba: Pointer to HBA context object.
21323  * @cmdiocb: Pointer to driver command iocb object.
21324  * @cmpl: completion function.
21325  *
21326  * Fill the appropriate fields for the abort WQE and call
21327  * internal routine lpfc_sli4_issue_wqe to send the WQE
21328  * This function is called with hbalock held and no ring_lock held.
21329  *
21330  * RETURNS 0 - SUCCESS
21331  **/
21332 
21333 int
21334 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
21335 			    void *cmpl)
21336 {
21337 	struct lpfc_vport *vport = cmdiocb->vport;
21338 	struct lpfc_iocbq *abtsiocb = NULL;
21339 	union lpfc_wqe128 *abtswqe;
21340 	struct lpfc_io_buf *lpfc_cmd;
21341 	int retval = IOCB_ERROR;
21342 	u16 xritag = cmdiocb->sli4_xritag;
21343 
21344 	/*
21345 	 * The scsi command can not be in txq and it is in flight because the
21346 	 * pCmd is still pointing at the SCSI command we have to abort. There
21347 	 * is no need to search the txcmplq. Just send an abort to the FW.
21348 	 */
21349 
21350 	abtsiocb = __lpfc_sli_get_iocbq(phba);
21351 	if (!abtsiocb)
21352 		return WQE_NORESOURCE;
21353 
21354 	/* Indicate the IO is being aborted by the driver. */
21355 	cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED;
21356 
21357 	abtswqe = &abtsiocb->wqe;
21358 	memset(abtswqe, 0, sizeof(*abtswqe));
21359 
21360 	if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK))
21361 		bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1);
21362 	bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG);
21363 	abtswqe->abort_cmd.rsrvd5 = 0;
21364 	abtswqe->abort_cmd.wqe_com.abort_tag = xritag;
21365 	bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag);
21366 	bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
21367 	bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0);
21368 	bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1);
21369 	bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
21370 	bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND);
21371 
21372 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
21373 	abtsiocb->hba_wqidx = cmdiocb->hba_wqidx;
21374 	abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX;
21375 	if (cmdiocb->cmd_flag & LPFC_IO_FCP)
21376 		abtsiocb->cmd_flag |= LPFC_IO_FCP;
21377 	if (cmdiocb->cmd_flag & LPFC_IO_NVME)
21378 		abtsiocb->cmd_flag |= LPFC_IO_NVME;
21379 	if (cmdiocb->cmd_flag & LPFC_IO_FOF)
21380 		abtsiocb->cmd_flag |= LPFC_IO_FOF;
21381 	abtsiocb->vport = vport;
21382 	abtsiocb->cmd_cmpl = cmpl;
21383 
21384 	lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq);
21385 	retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb);
21386 
21387 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
21388 			 "0359 Abort xri x%x, original iotag x%x, "
21389 			 "abort cmd iotag x%x retval x%x\n",
21390 			 xritag, cmdiocb->iotag, abtsiocb->iotag, retval);
21391 
21392 	if (retval) {
21393 		cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED;
21394 		__lpfc_sli_release_iocbq(phba, abtsiocb);
21395 	}
21396 
21397 	return retval;
21398 }
21399 
21400 #ifdef LPFC_MXP_STAT
21401 /**
21402  * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
21403  * @phba: pointer to lpfc hba data structure.
21404  * @hwqid: belong to which HWQ.
21405  *
21406  * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
21407  * 15 seconds after a test case is running.
21408  *
21409  * The user should call lpfc_debugfs_multixripools_write before running a test
21410  * case to clear stat_snapshot_taken. Then the user starts a test case. During
21411  * test case is running, stat_snapshot_taken is incremented by 1 every time when
21412  * this routine is called from heartbeat timer. When stat_snapshot_taken is
21413  * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
21414  **/
21415 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
21416 {
21417 	struct lpfc_sli4_hdw_queue *qp;
21418 	struct lpfc_multixri_pool *multixri_pool;
21419 	struct lpfc_pvt_pool *pvt_pool;
21420 	struct lpfc_pbl_pool *pbl_pool;
21421 	u32 txcmplq_cnt;
21422 
21423 	qp = &phba->sli4_hba.hdwq[hwqid];
21424 	multixri_pool = qp->p_multixri_pool;
21425 	if (!multixri_pool)
21426 		return;
21427 
21428 	if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
21429 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
21430 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
21431 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21432 
21433 		multixri_pool->stat_pbl_count = pbl_pool->count;
21434 		multixri_pool->stat_pvt_count = pvt_pool->count;
21435 		multixri_pool->stat_busy_count = txcmplq_cnt;
21436 	}
21437 
21438 	multixri_pool->stat_snapshot_taken++;
21439 }
21440 #endif
21441 
21442 /**
21443  * lpfc_adjust_pvt_pool_count - Adjust private pool count
21444  * @phba: pointer to lpfc hba data structure.
21445  * @hwqid: belong to which HWQ.
21446  *
21447  * This routine moves some XRIs from private to public pool when private pool
21448  * is not busy.
21449  **/
21450 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
21451 {
21452 	struct lpfc_multixri_pool *multixri_pool;
21453 	u32 io_req_count;
21454 	u32 prev_io_req_count;
21455 
21456 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
21457 	if (!multixri_pool)
21458 		return;
21459 	io_req_count = multixri_pool->io_req_count;
21460 	prev_io_req_count = multixri_pool->prev_io_req_count;
21461 
21462 	if (prev_io_req_count != io_req_count) {
21463 		/* Private pool is busy */
21464 		multixri_pool->prev_io_req_count = io_req_count;
21465 	} else {
21466 		/* Private pool is not busy.
21467 		 * Move XRIs from private to public pool.
21468 		 */
21469 		lpfc_move_xri_pvt_to_pbl(phba, hwqid);
21470 	}
21471 }
21472 
21473 /**
21474  * lpfc_adjust_high_watermark - Adjust high watermark
21475  * @phba: pointer to lpfc hba data structure.
21476  * @hwqid: belong to which HWQ.
21477  *
21478  * This routine sets high watermark as number of outstanding XRIs,
21479  * but make sure the new value is between xri_limit/2 and xri_limit.
21480  **/
21481 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
21482 {
21483 	u32 new_watermark;
21484 	u32 watermark_max;
21485 	u32 watermark_min;
21486 	u32 xri_limit;
21487 	u32 txcmplq_cnt;
21488 	u32 abts_io_bufs;
21489 	struct lpfc_multixri_pool *multixri_pool;
21490 	struct lpfc_sli4_hdw_queue *qp;
21491 
21492 	qp = &phba->sli4_hba.hdwq[hwqid];
21493 	multixri_pool = qp->p_multixri_pool;
21494 	if (!multixri_pool)
21495 		return;
21496 	xri_limit = multixri_pool->xri_limit;
21497 
21498 	watermark_max = xri_limit;
21499 	watermark_min = xri_limit / 2;
21500 
21501 	txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21502 	abts_io_bufs = qp->abts_scsi_io_bufs;
21503 	abts_io_bufs += qp->abts_nvme_io_bufs;
21504 
21505 	new_watermark = txcmplq_cnt + abts_io_bufs;
21506 	new_watermark = min(watermark_max, new_watermark);
21507 	new_watermark = max(watermark_min, new_watermark);
21508 	multixri_pool->pvt_pool.high_watermark = new_watermark;
21509 
21510 #ifdef LPFC_MXP_STAT
21511 	multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
21512 					  new_watermark);
21513 #endif
21514 }
21515 
21516 /**
21517  * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
21518  * @phba: pointer to lpfc hba data structure.
21519  * @hwqid: belong to which HWQ.
21520  *
21521  * This routine is called from hearbeat timer when pvt_pool is idle.
21522  * All free XRIs are moved from private to public pool on hwqid with 2 steps.
21523  * The first step moves (all - low_watermark) amount of XRIs.
21524  * The second step moves the rest of XRIs.
21525  **/
21526 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
21527 {
21528 	struct lpfc_pbl_pool *pbl_pool;
21529 	struct lpfc_pvt_pool *pvt_pool;
21530 	struct lpfc_sli4_hdw_queue *qp;
21531 	struct lpfc_io_buf *lpfc_ncmd;
21532 	struct lpfc_io_buf *lpfc_ncmd_next;
21533 	unsigned long iflag;
21534 	struct list_head tmp_list;
21535 	u32 tmp_count;
21536 
21537 	qp = &phba->sli4_hba.hdwq[hwqid];
21538 	pbl_pool = &qp->p_multixri_pool->pbl_pool;
21539 	pvt_pool = &qp->p_multixri_pool->pvt_pool;
21540 	tmp_count = 0;
21541 
21542 	lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
21543 	lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
21544 
21545 	if (pvt_pool->count > pvt_pool->low_watermark) {
21546 		/* Step 1: move (all - low_watermark) from pvt_pool
21547 		 * to pbl_pool
21548 		 */
21549 
21550 		/* Move low watermark of bufs from pvt_pool to tmp_list */
21551 		INIT_LIST_HEAD(&tmp_list);
21552 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21553 					 &pvt_pool->list, list) {
21554 			list_move_tail(&lpfc_ncmd->list, &tmp_list);
21555 			tmp_count++;
21556 			if (tmp_count >= pvt_pool->low_watermark)
21557 				break;
21558 		}
21559 
21560 		/* Move all bufs from pvt_pool to pbl_pool */
21561 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
21562 
21563 		/* Move all bufs from tmp_list to pvt_pool */
21564 		list_splice(&tmp_list, &pvt_pool->list);
21565 
21566 		pbl_pool->count += (pvt_pool->count - tmp_count);
21567 		pvt_pool->count = tmp_count;
21568 	} else {
21569 		/* Step 2: move the rest from pvt_pool to pbl_pool */
21570 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
21571 		pbl_pool->count += pvt_pool->count;
21572 		pvt_pool->count = 0;
21573 	}
21574 
21575 	spin_unlock(&pvt_pool->lock);
21576 	spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21577 }
21578 
21579 /**
21580  * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
21581  * @phba: pointer to lpfc hba data structure
21582  * @qp: pointer to HDW queue
21583  * @pbl_pool: specified public free XRI pool
21584  * @pvt_pool: specified private free XRI pool
21585  * @count: number of XRIs to move
21586  *
21587  * This routine tries to move some free common bufs from the specified pbl_pool
21588  * to the specified pvt_pool. It might move less than count XRIs if there's not
21589  * enough in public pool.
21590  *
21591  * Return:
21592  *   true - if XRIs are successfully moved from the specified pbl_pool to the
21593  *          specified pvt_pool
21594  *   false - if the specified pbl_pool is empty or locked by someone else
21595  **/
21596 static bool
21597 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
21598 			  struct lpfc_pbl_pool *pbl_pool,
21599 			  struct lpfc_pvt_pool *pvt_pool, u32 count)
21600 {
21601 	struct lpfc_io_buf *lpfc_ncmd;
21602 	struct lpfc_io_buf *lpfc_ncmd_next;
21603 	unsigned long iflag;
21604 	int ret;
21605 
21606 	ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
21607 	if (ret) {
21608 		if (pbl_pool->count) {
21609 			/* Move a batch of XRIs from public to private pool */
21610 			lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
21611 			list_for_each_entry_safe(lpfc_ncmd,
21612 						 lpfc_ncmd_next,
21613 						 &pbl_pool->list,
21614 						 list) {
21615 				list_move_tail(&lpfc_ncmd->list,
21616 					       &pvt_pool->list);
21617 				pvt_pool->count++;
21618 				pbl_pool->count--;
21619 				count--;
21620 				if (count == 0)
21621 					break;
21622 			}
21623 
21624 			spin_unlock(&pvt_pool->lock);
21625 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21626 			return true;
21627 		}
21628 		spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21629 	}
21630 
21631 	return false;
21632 }
21633 
21634 /**
21635  * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
21636  * @phba: pointer to lpfc hba data structure.
21637  * @hwqid: belong to which HWQ.
21638  * @count: number of XRIs to move
21639  *
21640  * This routine tries to find some free common bufs in one of public pools with
21641  * Round Robin method. The search always starts from local hwqid, then the next
21642  * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
21643  * a batch of free common bufs are moved to private pool on hwqid.
21644  * It might move less than count XRIs if there's not enough in public pool.
21645  **/
21646 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
21647 {
21648 	struct lpfc_multixri_pool *multixri_pool;
21649 	struct lpfc_multixri_pool *next_multixri_pool;
21650 	struct lpfc_pvt_pool *pvt_pool;
21651 	struct lpfc_pbl_pool *pbl_pool;
21652 	struct lpfc_sli4_hdw_queue *qp;
21653 	u32 next_hwqid;
21654 	u32 hwq_count;
21655 	int ret;
21656 
21657 	qp = &phba->sli4_hba.hdwq[hwqid];
21658 	multixri_pool = qp->p_multixri_pool;
21659 	pvt_pool = &multixri_pool->pvt_pool;
21660 	pbl_pool = &multixri_pool->pbl_pool;
21661 
21662 	/* Check if local pbl_pool is available */
21663 	ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
21664 	if (ret) {
21665 #ifdef LPFC_MXP_STAT
21666 		multixri_pool->local_pbl_hit_count++;
21667 #endif
21668 		return;
21669 	}
21670 
21671 	hwq_count = phba->cfg_hdw_queue;
21672 
21673 	/* Get the next hwqid which was found last time */
21674 	next_hwqid = multixri_pool->rrb_next_hwqid;
21675 
21676 	do {
21677 		/* Go to next hwq */
21678 		next_hwqid = (next_hwqid + 1) % hwq_count;
21679 
21680 		next_multixri_pool =
21681 			phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
21682 		pbl_pool = &next_multixri_pool->pbl_pool;
21683 
21684 		/* Check if the public free xri pool is available */
21685 		ret = _lpfc_move_xri_pbl_to_pvt(
21686 			phba, qp, pbl_pool, pvt_pool, count);
21687 
21688 		/* Exit while-loop if success or all hwqid are checked */
21689 	} while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
21690 
21691 	/* Starting point for the next time */
21692 	multixri_pool->rrb_next_hwqid = next_hwqid;
21693 
21694 	if (!ret) {
21695 		/* stats: all public pools are empty*/
21696 		multixri_pool->pbl_empty_count++;
21697 	}
21698 
21699 #ifdef LPFC_MXP_STAT
21700 	if (ret) {
21701 		if (next_hwqid == hwqid)
21702 			multixri_pool->local_pbl_hit_count++;
21703 		else
21704 			multixri_pool->other_pbl_hit_count++;
21705 	}
21706 #endif
21707 }
21708 
21709 /**
21710  * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
21711  * @phba: pointer to lpfc hba data structure.
21712  * @hwqid: belong to which HWQ.
21713  *
21714  * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
21715  * low watermark.
21716  **/
21717 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
21718 {
21719 	struct lpfc_multixri_pool *multixri_pool;
21720 	struct lpfc_pvt_pool *pvt_pool;
21721 
21722 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
21723 	pvt_pool = &multixri_pool->pvt_pool;
21724 
21725 	if (pvt_pool->count < pvt_pool->low_watermark)
21726 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
21727 }
21728 
21729 /**
21730  * lpfc_release_io_buf - Return one IO buf back to free pool
21731  * @phba: pointer to lpfc hba data structure.
21732  * @lpfc_ncmd: IO buf to be returned.
21733  * @qp: belong to which HWQ.
21734  *
21735  * This routine returns one IO buf back to free pool. If this is an urgent IO,
21736  * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
21737  * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
21738  * xri_limit.  If cfg_xri_rebalancing==0, the IO buf is returned to
21739  * lpfc_io_buf_list_put.
21740  **/
21741 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
21742 			 struct lpfc_sli4_hdw_queue *qp)
21743 {
21744 	unsigned long iflag;
21745 	struct lpfc_pbl_pool *pbl_pool;
21746 	struct lpfc_pvt_pool *pvt_pool;
21747 	struct lpfc_epd_pool *epd_pool;
21748 	u32 txcmplq_cnt;
21749 	u32 xri_owned;
21750 	u32 xri_limit;
21751 	u32 abts_io_bufs;
21752 
21753 	/* MUST zero fields if buffer is reused by another protocol */
21754 	lpfc_ncmd->nvmeCmd = NULL;
21755 	lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL;
21756 
21757 	if (phba->cfg_xpsgl && !phba->nvmet_support &&
21758 	    !list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
21759 		lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
21760 
21761 	if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
21762 		lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
21763 
21764 	if (phba->cfg_xri_rebalancing) {
21765 		if (lpfc_ncmd->expedite) {
21766 			/* Return to expedite pool */
21767 			epd_pool = &phba->epd_pool;
21768 			spin_lock_irqsave(&epd_pool->lock, iflag);
21769 			list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
21770 			epd_pool->count++;
21771 			spin_unlock_irqrestore(&epd_pool->lock, iflag);
21772 			return;
21773 		}
21774 
21775 		/* Avoid invalid access if an IO sneaks in and is being rejected
21776 		 * just _after_ xri pools are destroyed in lpfc_offline.
21777 		 * Nothing much can be done at this point.
21778 		 */
21779 		if (!qp->p_multixri_pool)
21780 			return;
21781 
21782 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
21783 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
21784 
21785 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21786 		abts_io_bufs = qp->abts_scsi_io_bufs;
21787 		abts_io_bufs += qp->abts_nvme_io_bufs;
21788 
21789 		xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
21790 		xri_limit = qp->p_multixri_pool->xri_limit;
21791 
21792 #ifdef LPFC_MXP_STAT
21793 		if (xri_owned <= xri_limit)
21794 			qp->p_multixri_pool->below_limit_count++;
21795 		else
21796 			qp->p_multixri_pool->above_limit_count++;
21797 #endif
21798 
21799 		/* XRI goes to either public or private free xri pool
21800 		 *     based on watermark and xri_limit
21801 		 */
21802 		if ((pvt_pool->count < pvt_pool->low_watermark) ||
21803 		    (xri_owned < xri_limit &&
21804 		     pvt_pool->count < pvt_pool->high_watermark)) {
21805 			lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
21806 						  qp, free_pvt_pool);
21807 			list_add_tail(&lpfc_ncmd->list,
21808 				      &pvt_pool->list);
21809 			pvt_pool->count++;
21810 			spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21811 		} else {
21812 			lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
21813 						  qp, free_pub_pool);
21814 			list_add_tail(&lpfc_ncmd->list,
21815 				      &pbl_pool->list);
21816 			pbl_pool->count++;
21817 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21818 		}
21819 	} else {
21820 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
21821 					  qp, free_xri);
21822 		list_add_tail(&lpfc_ncmd->list,
21823 			      &qp->lpfc_io_buf_list_put);
21824 		qp->put_io_bufs++;
21825 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
21826 				       iflag);
21827 	}
21828 }
21829 
21830 /**
21831  * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
21832  * @phba: pointer to lpfc hba data structure.
21833  * @qp: pointer to HDW queue
21834  * @pvt_pool: pointer to private pool data structure.
21835  * @ndlp: pointer to lpfc nodelist data structure.
21836  *
21837  * This routine tries to get one free IO buf from private pool.
21838  *
21839  * Return:
21840  *   pointer to one free IO buf - if private pool is not empty
21841  *   NULL - if private pool is empty
21842  **/
21843 static struct lpfc_io_buf *
21844 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
21845 				  struct lpfc_sli4_hdw_queue *qp,
21846 				  struct lpfc_pvt_pool *pvt_pool,
21847 				  struct lpfc_nodelist *ndlp)
21848 {
21849 	struct lpfc_io_buf *lpfc_ncmd;
21850 	struct lpfc_io_buf *lpfc_ncmd_next;
21851 	unsigned long iflag;
21852 
21853 	lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
21854 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21855 				 &pvt_pool->list, list) {
21856 		if (lpfc_test_rrq_active(
21857 			phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
21858 			continue;
21859 		list_del(&lpfc_ncmd->list);
21860 		pvt_pool->count--;
21861 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21862 		return lpfc_ncmd;
21863 	}
21864 	spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21865 
21866 	return NULL;
21867 }
21868 
21869 /**
21870  * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
21871  * @phba: pointer to lpfc hba data structure.
21872  *
21873  * This routine tries to get one free IO buf from expedite pool.
21874  *
21875  * Return:
21876  *   pointer to one free IO buf - if expedite pool is not empty
21877  *   NULL - if expedite pool is empty
21878  **/
21879 static struct lpfc_io_buf *
21880 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
21881 {
21882 	struct lpfc_io_buf *lpfc_ncmd;
21883 	struct lpfc_io_buf *lpfc_ncmd_next;
21884 	unsigned long iflag;
21885 	struct lpfc_epd_pool *epd_pool;
21886 
21887 	epd_pool = &phba->epd_pool;
21888 	lpfc_ncmd = NULL;
21889 
21890 	spin_lock_irqsave(&epd_pool->lock, iflag);
21891 	if (epd_pool->count > 0) {
21892 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21893 					 &epd_pool->list, list) {
21894 			list_del(&lpfc_ncmd->list);
21895 			epd_pool->count--;
21896 			break;
21897 		}
21898 	}
21899 	spin_unlock_irqrestore(&epd_pool->lock, iflag);
21900 
21901 	return lpfc_ncmd;
21902 }
21903 
21904 /**
21905  * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
21906  * @phba: pointer to lpfc hba data structure.
21907  * @ndlp: pointer to lpfc nodelist data structure.
21908  * @hwqid: belong to which HWQ
21909  * @expedite: 1 means this request is urgent.
21910  *
21911  * This routine will do the following actions and then return a pointer to
21912  * one free IO buf.
21913  *
21914  * 1. If private free xri count is empty, move some XRIs from public to
21915  *    private pool.
21916  * 2. Get one XRI from private free xri pool.
21917  * 3. If we fail to get one from pvt_pool and this is an expedite request,
21918  *    get one free xri from expedite pool.
21919  *
21920  * Note: ndlp is only used on SCSI side for RRQ testing.
21921  *       The caller should pass NULL for ndlp on NVME side.
21922  *
21923  * Return:
21924  *   pointer to one free IO buf - if private pool is not empty
21925  *   NULL - if private pool is empty
21926  **/
21927 static struct lpfc_io_buf *
21928 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
21929 				    struct lpfc_nodelist *ndlp,
21930 				    int hwqid, int expedite)
21931 {
21932 	struct lpfc_sli4_hdw_queue *qp;
21933 	struct lpfc_multixri_pool *multixri_pool;
21934 	struct lpfc_pvt_pool *pvt_pool;
21935 	struct lpfc_io_buf *lpfc_ncmd;
21936 
21937 	qp = &phba->sli4_hba.hdwq[hwqid];
21938 	lpfc_ncmd = NULL;
21939 	if (!qp) {
21940 		lpfc_printf_log(phba, KERN_INFO,
21941 				LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
21942 				"5556 NULL qp for hwqid  x%x\n", hwqid);
21943 		return lpfc_ncmd;
21944 	}
21945 	multixri_pool = qp->p_multixri_pool;
21946 	if (!multixri_pool) {
21947 		lpfc_printf_log(phba, KERN_INFO,
21948 				LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
21949 				"5557 NULL multixri for hwqid  x%x\n", hwqid);
21950 		return lpfc_ncmd;
21951 	}
21952 	pvt_pool = &multixri_pool->pvt_pool;
21953 	if (!pvt_pool) {
21954 		lpfc_printf_log(phba, KERN_INFO,
21955 				LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
21956 				"5558 NULL pvt_pool for hwqid  x%x\n", hwqid);
21957 		return lpfc_ncmd;
21958 	}
21959 	multixri_pool->io_req_count++;
21960 
21961 	/* If pvt_pool is empty, move some XRIs from public to private pool */
21962 	if (pvt_pool->count == 0)
21963 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
21964 
21965 	/* Get one XRI from private free xri pool */
21966 	lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
21967 
21968 	if (lpfc_ncmd) {
21969 		lpfc_ncmd->hdwq = qp;
21970 		lpfc_ncmd->hdwq_no = hwqid;
21971 	} else if (expedite) {
21972 		/* If we fail to get one from pvt_pool and this is an expedite
21973 		 * request, get one free xri from expedite pool.
21974 		 */
21975 		lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
21976 	}
21977 
21978 	return lpfc_ncmd;
21979 }
21980 
21981 static inline struct lpfc_io_buf *
21982 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
21983 {
21984 	struct lpfc_sli4_hdw_queue *qp;
21985 	struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
21986 
21987 	qp = &phba->sli4_hba.hdwq[idx];
21988 	list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
21989 				 &qp->lpfc_io_buf_list_get, list) {
21990 		if (lpfc_test_rrq_active(phba, ndlp,
21991 					 lpfc_cmd->cur_iocbq.sli4_lxritag))
21992 			continue;
21993 
21994 		if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
21995 			continue;
21996 
21997 		list_del_init(&lpfc_cmd->list);
21998 		qp->get_io_bufs--;
21999 		lpfc_cmd->hdwq = qp;
22000 		lpfc_cmd->hdwq_no = idx;
22001 		return lpfc_cmd;
22002 	}
22003 	return NULL;
22004 }
22005 
22006 /**
22007  * lpfc_get_io_buf - Get one IO buffer from free pool
22008  * @phba: The HBA for which this call is being executed.
22009  * @ndlp: pointer to lpfc nodelist data structure.
22010  * @hwqid: belong to which HWQ
22011  * @expedite: 1 means this request is urgent.
22012  *
22013  * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
22014  * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
22015  * a IO buffer from head of @hdwq io_buf_list and returns to caller.
22016  *
22017  * Note: ndlp is only used on SCSI side for RRQ testing.
22018  *       The caller should pass NULL for ndlp on NVME side.
22019  *
22020  * Return codes:
22021  *   NULL - Error
22022  *   Pointer to lpfc_io_buf - Success
22023  **/
22024 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
22025 				    struct lpfc_nodelist *ndlp,
22026 				    u32 hwqid, int expedite)
22027 {
22028 	struct lpfc_sli4_hdw_queue *qp;
22029 	unsigned long iflag;
22030 	struct lpfc_io_buf *lpfc_cmd;
22031 
22032 	qp = &phba->sli4_hba.hdwq[hwqid];
22033 	lpfc_cmd = NULL;
22034 	if (!qp) {
22035 		lpfc_printf_log(phba, KERN_WARNING,
22036 				LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22037 				"5555 NULL qp for hwqid  x%x\n", hwqid);
22038 		return lpfc_cmd;
22039 	}
22040 
22041 	if (phba->cfg_xri_rebalancing)
22042 		lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
22043 			phba, ndlp, hwqid, expedite);
22044 	else {
22045 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
22046 					  qp, alloc_xri_get);
22047 		if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
22048 			lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
22049 		if (!lpfc_cmd) {
22050 			lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
22051 					  qp, alloc_xri_put);
22052 			list_splice(&qp->lpfc_io_buf_list_put,
22053 				    &qp->lpfc_io_buf_list_get);
22054 			qp->get_io_bufs += qp->put_io_bufs;
22055 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
22056 			qp->put_io_bufs = 0;
22057 			spin_unlock(&qp->io_buf_list_put_lock);
22058 			if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
22059 			    expedite)
22060 				lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
22061 		}
22062 		spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
22063 	}
22064 
22065 	return lpfc_cmd;
22066 }
22067 
22068 /**
22069  * lpfc_read_object - Retrieve object data from HBA
22070  * @phba: The HBA for which this call is being executed.
22071  * @rdobject: Pathname of object data we want to read.
22072  * @datap: Pointer to where data will be copied to.
22073  * @datasz: size of data area
22074  *
22075  * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less.
22076  * The data will be truncated if datasz is not large enough.
22077  * Version 1 is not supported with Embedded mbox cmd, so we must use version 0.
22078  * Returns the actual bytes read from the object.
22079  */
22080 int
22081 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap,
22082 		 uint32_t datasz)
22083 {
22084 	struct lpfc_mbx_read_object *read_object;
22085 	LPFC_MBOXQ_t *mbox;
22086 	int rc, length, eof, j, byte_cnt = 0;
22087 	uint32_t shdr_status, shdr_add_status;
22088 	union lpfc_sli4_cfg_shdr *shdr;
22089 	struct lpfc_dmabuf *pcmd;
22090 	u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0};
22091 
22092 	/* sanity check on queue memory */
22093 	if (!datap)
22094 		return -ENODEV;
22095 
22096 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
22097 	if (!mbox)
22098 		return -ENOMEM;
22099 	length = (sizeof(struct lpfc_mbx_read_object) -
22100 		  sizeof(struct lpfc_sli4_cfg_mhdr));
22101 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
22102 			 LPFC_MBOX_OPCODE_READ_OBJECT,
22103 			 length, LPFC_SLI4_MBX_EMBED);
22104 	read_object = &mbox->u.mqe.un.read_object;
22105 	shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr;
22106 
22107 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0);
22108 	bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz);
22109 	read_object->u.request.rd_object_offset = 0;
22110 	read_object->u.request.rd_object_cnt = 1;
22111 
22112 	memset((void *)read_object->u.request.rd_object_name, 0,
22113 	       LPFC_OBJ_NAME_SZ);
22114 	scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject);
22115 	for (j = 0; j < strlen(rdobject); j++)
22116 		read_object->u.request.rd_object_name[j] =
22117 			cpu_to_le32(rd_object_name[j]);
22118 
22119 	pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL);
22120 	if (pcmd)
22121 		pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys);
22122 	if (!pcmd || !pcmd->virt) {
22123 		kfree(pcmd);
22124 		mempool_free(mbox, phba->mbox_mem_pool);
22125 		return -ENOMEM;
22126 	}
22127 	memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE);
22128 	read_object->u.request.rd_object_hbuf[0].pa_lo =
22129 		putPaddrLow(pcmd->phys);
22130 	read_object->u.request.rd_object_hbuf[0].pa_hi =
22131 		putPaddrHigh(pcmd->phys);
22132 	read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE;
22133 
22134 	mbox->vport = phba->pport;
22135 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
22136 	mbox->ctx_ndlp = NULL;
22137 
22138 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
22139 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
22140 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
22141 
22142 	if (shdr_status == STATUS_FAILED &&
22143 	    shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) {
22144 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
22145 				"4674 No port cfg file in FW.\n");
22146 		byte_cnt = -ENOENT;
22147 	} else if (shdr_status || shdr_add_status || rc) {
22148 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
22149 				"2625 READ_OBJECT mailbox failed with "
22150 				"status x%x add_status x%x, mbx status x%x\n",
22151 				shdr_status, shdr_add_status, rc);
22152 		byte_cnt = -ENXIO;
22153 	} else {
22154 		/* Success */
22155 		length = read_object->u.response.rd_object_actual_rlen;
22156 		eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response);
22157 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT,
22158 				"2626 READ_OBJECT Success len %d:%d, EOF %d\n",
22159 				length, datasz, eof);
22160 
22161 		/* Detect the port config file exists but is empty */
22162 		if (!length && eof) {
22163 			byte_cnt = 0;
22164 			goto exit;
22165 		}
22166 
22167 		byte_cnt = length;
22168 		lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt);
22169 	}
22170 
22171  exit:
22172 	/* This is an embedded SLI4 mailbox with an external buffer allocated.
22173 	 * Free the pcmd and then cleanup with the correct routine.
22174 	 */
22175 	lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys);
22176 	kfree(pcmd);
22177 	lpfc_sli4_mbox_cmd_free(phba, mbox);
22178 	return byte_cnt;
22179 }
22180 
22181 /**
22182  * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
22183  * @phba: The HBA for which this call is being executed.
22184  * @lpfc_buf: IO buf structure to append the SGL chunk
22185  *
22186  * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
22187  * and will allocate an SGL chunk if the pool is empty.
22188  *
22189  * Return codes:
22190  *   NULL - Error
22191  *   Pointer to sli4_hybrid_sgl - Success
22192  **/
22193 struct sli4_hybrid_sgl *
22194 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
22195 {
22196 	struct sli4_hybrid_sgl *list_entry = NULL;
22197 	struct sli4_hybrid_sgl *tmp = NULL;
22198 	struct sli4_hybrid_sgl *allocated_sgl = NULL;
22199 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22200 	struct list_head *buf_list = &hdwq->sgl_list;
22201 	unsigned long iflags;
22202 
22203 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22204 
22205 	if (likely(!list_empty(buf_list))) {
22206 		/* break off 1 chunk from the sgl_list */
22207 		list_for_each_entry_safe(list_entry, tmp,
22208 					 buf_list, list_node) {
22209 			list_move_tail(&list_entry->list_node,
22210 				       &lpfc_buf->dma_sgl_xtra_list);
22211 			break;
22212 		}
22213 	} else {
22214 		/* allocate more */
22215 		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22216 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
22217 				   cpu_to_node(hdwq->io_wq->chann));
22218 		if (!tmp) {
22219 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22220 					"8353 error kmalloc memory for HDWQ "
22221 					"%d %s\n",
22222 					lpfc_buf->hdwq_no, __func__);
22223 			return NULL;
22224 		}
22225 
22226 		tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
22227 					      GFP_ATOMIC, &tmp->dma_phys_sgl);
22228 		if (!tmp->dma_sgl) {
22229 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22230 					"8354 error pool_alloc memory for HDWQ "
22231 					"%d %s\n",
22232 					lpfc_buf->hdwq_no, __func__);
22233 			kfree(tmp);
22234 			return NULL;
22235 		}
22236 
22237 		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22238 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
22239 	}
22240 
22241 	allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
22242 					struct sli4_hybrid_sgl,
22243 					list_node);
22244 
22245 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22246 
22247 	return allocated_sgl;
22248 }
22249 
22250 /**
22251  * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
22252  * @phba: The HBA for which this call is being executed.
22253  * @lpfc_buf: IO buf structure with the SGL chunk
22254  *
22255  * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
22256  *
22257  * Return codes:
22258  *   0 - Success
22259  *   -EINVAL - Error
22260  **/
22261 int
22262 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
22263 {
22264 	int rc = 0;
22265 	struct sli4_hybrid_sgl *list_entry = NULL;
22266 	struct sli4_hybrid_sgl *tmp = NULL;
22267 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22268 	struct list_head *buf_list = &hdwq->sgl_list;
22269 	unsigned long iflags;
22270 
22271 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22272 
22273 	if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
22274 		list_for_each_entry_safe(list_entry, tmp,
22275 					 &lpfc_buf->dma_sgl_xtra_list,
22276 					 list_node) {
22277 			list_move_tail(&list_entry->list_node,
22278 				       buf_list);
22279 		}
22280 	} else {
22281 		rc = -EINVAL;
22282 	}
22283 
22284 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22285 	return rc;
22286 }
22287 
22288 /**
22289  * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
22290  * @phba: phba object
22291  * @hdwq: hdwq to cleanup sgl buff resources on
22292  *
22293  * This routine frees all SGL chunks of hdwq SGL chunk pool.
22294  *
22295  * Return codes:
22296  *   None
22297  **/
22298 void
22299 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
22300 		       struct lpfc_sli4_hdw_queue *hdwq)
22301 {
22302 	struct list_head *buf_list = &hdwq->sgl_list;
22303 	struct sli4_hybrid_sgl *list_entry = NULL;
22304 	struct sli4_hybrid_sgl *tmp = NULL;
22305 	unsigned long iflags;
22306 
22307 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22308 
22309 	/* Free sgl pool */
22310 	list_for_each_entry_safe(list_entry, tmp,
22311 				 buf_list, list_node) {
22312 		dma_pool_free(phba->lpfc_sg_dma_buf_pool,
22313 			      list_entry->dma_sgl,
22314 			      list_entry->dma_phys_sgl);
22315 		list_del(&list_entry->list_node);
22316 		kfree(list_entry);
22317 	}
22318 
22319 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22320 }
22321 
22322 /**
22323  * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
22324  * @phba: The HBA for which this call is being executed.
22325  * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
22326  *
22327  * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
22328  * and will allocate an CMD/RSP buffer if the pool is empty.
22329  *
22330  * Return codes:
22331  *   NULL - Error
22332  *   Pointer to fcp_cmd_rsp_buf - Success
22333  **/
22334 struct fcp_cmd_rsp_buf *
22335 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22336 			      struct lpfc_io_buf *lpfc_buf)
22337 {
22338 	struct fcp_cmd_rsp_buf *list_entry = NULL;
22339 	struct fcp_cmd_rsp_buf *tmp = NULL;
22340 	struct fcp_cmd_rsp_buf *allocated_buf = NULL;
22341 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22342 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22343 	unsigned long iflags;
22344 
22345 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22346 
22347 	if (likely(!list_empty(buf_list))) {
22348 		/* break off 1 chunk from the list */
22349 		list_for_each_entry_safe(list_entry, tmp,
22350 					 buf_list,
22351 					 list_node) {
22352 			list_move_tail(&list_entry->list_node,
22353 				       &lpfc_buf->dma_cmd_rsp_list);
22354 			break;
22355 		}
22356 	} else {
22357 		/* allocate more */
22358 		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22359 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
22360 				   cpu_to_node(hdwq->io_wq->chann));
22361 		if (!tmp) {
22362 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22363 					"8355 error kmalloc memory for HDWQ "
22364 					"%d %s\n",
22365 					lpfc_buf->hdwq_no, __func__);
22366 			return NULL;
22367 		}
22368 
22369 		tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool,
22370 						GFP_ATOMIC,
22371 						&tmp->fcp_cmd_rsp_dma_handle);
22372 
22373 		if (!tmp->fcp_cmnd) {
22374 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22375 					"8356 error pool_alloc memory for HDWQ "
22376 					"%d %s\n",
22377 					lpfc_buf->hdwq_no, __func__);
22378 			kfree(tmp);
22379 			return NULL;
22380 		}
22381 
22382 		tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
22383 				sizeof(struct fcp_cmnd));
22384 
22385 		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22386 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
22387 	}
22388 
22389 	allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
22390 					struct fcp_cmd_rsp_buf,
22391 					list_node);
22392 
22393 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22394 
22395 	return allocated_buf;
22396 }
22397 
22398 /**
22399  * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
22400  * @phba: The HBA for which this call is being executed.
22401  * @lpfc_buf: IO buf structure with the CMD/RSP buf
22402  *
22403  * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
22404  *
22405  * Return codes:
22406  *   0 - Success
22407  *   -EINVAL - Error
22408  **/
22409 int
22410 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22411 			      struct lpfc_io_buf *lpfc_buf)
22412 {
22413 	int rc = 0;
22414 	struct fcp_cmd_rsp_buf *list_entry = NULL;
22415 	struct fcp_cmd_rsp_buf *tmp = NULL;
22416 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22417 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22418 	unsigned long iflags;
22419 
22420 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22421 
22422 	if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
22423 		list_for_each_entry_safe(list_entry, tmp,
22424 					 &lpfc_buf->dma_cmd_rsp_list,
22425 					 list_node) {
22426 			list_move_tail(&list_entry->list_node,
22427 				       buf_list);
22428 		}
22429 	} else {
22430 		rc = -EINVAL;
22431 	}
22432 
22433 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22434 	return rc;
22435 }
22436 
22437 /**
22438  * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
22439  * @phba: phba object
22440  * @hdwq: hdwq to cleanup cmd rsp buff resources on
22441  *
22442  * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
22443  *
22444  * Return codes:
22445  *   None
22446  **/
22447 void
22448 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22449 			       struct lpfc_sli4_hdw_queue *hdwq)
22450 {
22451 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22452 	struct fcp_cmd_rsp_buf *list_entry = NULL;
22453 	struct fcp_cmd_rsp_buf *tmp = NULL;
22454 	unsigned long iflags;
22455 
22456 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22457 
22458 	/* Free cmd_rsp buf pool */
22459 	list_for_each_entry_safe(list_entry, tmp,
22460 				 buf_list,
22461 				 list_node) {
22462 		dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
22463 			      list_entry->fcp_cmnd,
22464 			      list_entry->fcp_cmd_rsp_dma_handle);
22465 		list_del(&list_entry->list_node);
22466 		kfree(list_entry);
22467 	}
22468 
22469 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22470 }
22471 
22472 /**
22473  * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted
22474  * @phba: phba object
22475  * @job: job entry of the command to be posted.
22476  *
22477  * Fill the common fields of the wqe for each of the command.
22478  *
22479  * Return codes:
22480  *	None
22481  **/
22482 void
22483 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job)
22484 {
22485 	u8 cmnd;
22486 	u32 *pcmd;
22487 	u32 if_type = 0;
22488 	u32 fip, abort_tag;
22489 	struct lpfc_nodelist *ndlp = NULL;
22490 	union lpfc_wqe128 *wqe = &job->wqe;
22491 	u8 command_type = ELS_COMMAND_NON_FIP;
22492 
22493 	fip = phba->hba_flag & HBA_FIP_SUPPORT;
22494 	/* The fcp commands will set command type */
22495 	if (job->cmd_flag &  LPFC_IO_FCP)
22496 		command_type = FCP_COMMAND;
22497 	else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK))
22498 		command_type = ELS_COMMAND_FIP;
22499 	else
22500 		command_type = ELS_COMMAND_NON_FIP;
22501 
22502 	abort_tag = job->iotag;
22503 	cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com);
22504 
22505 	switch (cmnd) {
22506 	case CMD_ELS_REQUEST64_WQE:
22507 		ndlp = job->ndlp;
22508 
22509 		if_type = bf_get(lpfc_sli_intf_if_type,
22510 				 &phba->sli4_hba.sli_intf);
22511 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
22512 			pcmd = (u32 *)job->cmd_dmabuf->virt;
22513 			if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
22514 				     *pcmd == ELS_CMD_SCR ||
22515 				     *pcmd == ELS_CMD_RDF ||
22516 				     *pcmd == ELS_CMD_EDC ||
22517 				     *pcmd == ELS_CMD_RSCN_XMT ||
22518 				     *pcmd == ELS_CMD_FDISC ||
22519 				     *pcmd == ELS_CMD_LOGO ||
22520 				     *pcmd == ELS_CMD_QFPA ||
22521 				     *pcmd == ELS_CMD_UVEM ||
22522 				     *pcmd == ELS_CMD_PLOGI)) {
22523 				bf_set(els_req64_sp, &wqe->els_req, 1);
22524 				bf_set(els_req64_sid, &wqe->els_req,
22525 				       job->vport->fc_myDID);
22526 
22527 				if ((*pcmd == ELS_CMD_FLOGI) &&
22528 				    !(phba->fc_topology ==
22529 				      LPFC_TOPOLOGY_LOOP))
22530 					bf_set(els_req64_sid, &wqe->els_req, 0);
22531 
22532 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
22533 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
22534 				       phba->vpi_ids[job->vport->vpi]);
22535 			} else if (pcmd) {
22536 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
22537 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
22538 				       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22539 			}
22540 		}
22541 
22542 		bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
22543 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22544 
22545 		bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
22546 		bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
22547 		bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
22548 		bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
22549 		bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
22550 		break;
22551 	case CMD_XMIT_ELS_RSP64_WQE:
22552 		ndlp = job->ndlp;
22553 
22554 		/* word4 */
22555 		wqe->xmit_els_rsp.word4 = 0;
22556 
22557 		if_type = bf_get(lpfc_sli_intf_if_type,
22558 				 &phba->sli4_hba.sli_intf);
22559 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
22560 			if (job->vport->fc_flag & FC_PT2PT) {
22561 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
22562 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
22563 				       job->vport->fc_myDID);
22564 				if (job->vport->fc_myDID == Fabric_DID) {
22565 					bf_set(wqe_els_did,
22566 					       &wqe->xmit_els_rsp.wqe_dest, 0);
22567 				}
22568 			}
22569 		}
22570 
22571 		bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
22572 		bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
22573 		bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
22574 		bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
22575 		       LPFC_WQE_LENLOC_WORD3);
22576 		bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
22577 
22578 		if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
22579 			bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
22580 			bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
22581 			       job->vport->fc_myDID);
22582 			bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
22583 		}
22584 
22585 		if (phba->sli_rev == LPFC_SLI_REV4) {
22586 			bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
22587 			       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22588 
22589 			if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com))
22590 				bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
22591 				       phba->vpi_ids[job->vport->vpi]);
22592 		}
22593 		command_type = OTHER_COMMAND;
22594 		break;
22595 	case CMD_GEN_REQUEST64_WQE:
22596 		/* Word 10 */
22597 		bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
22598 		bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
22599 		bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
22600 		bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
22601 		bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
22602 		command_type = OTHER_COMMAND;
22603 		break;
22604 	case CMD_XMIT_SEQUENCE64_WQE:
22605 		if (phba->link_flag & LS_LOOPBACK_MODE)
22606 			bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
22607 
22608 		wqe->xmit_sequence.rsvd3 = 0;
22609 		bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
22610 		bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
22611 		bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
22612 		       LPFC_WQE_IOD_WRITE);
22613 		bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
22614 		       LPFC_WQE_LENLOC_WORD12);
22615 		bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
22616 		command_type = OTHER_COMMAND;
22617 		break;
22618 	case CMD_XMIT_BLS_RSP64_WQE:
22619 		bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
22620 		bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
22621 		bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
22622 		bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
22623 		       phba->vpi_ids[phba->pport->vpi]);
22624 		bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
22625 		bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
22626 		       LPFC_WQE_LENLOC_NONE);
22627 		/* Overwrite the pre-set comnd type with OTHER_COMMAND */
22628 		command_type = OTHER_COMMAND;
22629 		break;
22630 	case CMD_FCP_ICMND64_WQE:	/* task mgmt commands */
22631 	case CMD_ABORT_XRI_WQE:		/* abort iotag */
22632 	case CMD_SEND_FRAME:		/* mds loopback */
22633 		/* cases already formatted for sli4 wqe - no chgs necessary */
22634 		return;
22635 	default:
22636 		dump_stack();
22637 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
22638 				"6207 Invalid command 0x%x\n",
22639 				cmnd);
22640 		break;
22641 	}
22642 
22643 	wqe->generic.wqe_com.abort_tag = abort_tag;
22644 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag);
22645 	bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
22646 	bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
22647 }
22648