1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 74 struct lpfc_iocbq *); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe); 86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 90 struct lpfc_queue *cq, 91 struct lpfc_cqe *cqe); 92 93 union lpfc_wqe128 lpfc_iread_cmd_template; 94 union lpfc_wqe128 lpfc_iwrite_cmd_template; 95 union lpfc_wqe128 lpfc_icmnd_cmd_template; 96 97 static IOCB_t * 98 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 99 { 100 return &iocbq->iocb; 101 } 102 103 /* Setup WQE templates for IOs */ 104 void lpfc_wqe_cmd_template(void) 105 { 106 union lpfc_wqe128 *wqe; 107 108 /* IREAD template */ 109 wqe = &lpfc_iread_cmd_template; 110 memset(wqe, 0, sizeof(union lpfc_wqe128)); 111 112 /* Word 0, 1, 2 - BDE is variable */ 113 114 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 115 116 /* Word 4 - total_xfer_len is variable */ 117 118 /* Word 5 - is zero */ 119 120 /* Word 6 - ctxt_tag, xri_tag is variable */ 121 122 /* Word 7 */ 123 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 124 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 125 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 126 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 127 128 /* Word 8 - abort_tag is variable */ 129 130 /* Word 9 - reqtag is variable */ 131 132 /* Word 10 - dbde, wqes is variable */ 133 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 134 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 135 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 136 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 137 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 138 139 /* Word 11 - pbde is variable */ 140 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 141 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 142 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 143 144 /* Word 12 - is zero */ 145 146 /* Word 13, 14, 15 - PBDE is variable */ 147 148 /* IWRITE template */ 149 wqe = &lpfc_iwrite_cmd_template; 150 memset(wqe, 0, sizeof(union lpfc_wqe128)); 151 152 /* Word 0, 1, 2 - BDE is variable */ 153 154 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 155 156 /* Word 4 - total_xfer_len is variable */ 157 158 /* Word 5 - initial_xfer_len is variable */ 159 160 /* Word 6 - ctxt_tag, xri_tag is variable */ 161 162 /* Word 7 */ 163 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 164 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 165 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 166 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 167 168 /* Word 8 - abort_tag is variable */ 169 170 /* Word 9 - reqtag is variable */ 171 172 /* Word 10 - dbde, wqes is variable */ 173 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 174 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 175 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 176 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 177 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 178 179 /* Word 11 - pbde is variable */ 180 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 181 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 182 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 183 184 /* Word 12 - is zero */ 185 186 /* Word 13, 14, 15 - PBDE is variable */ 187 188 /* ICMND template */ 189 wqe = &lpfc_icmnd_cmd_template; 190 memset(wqe, 0, sizeof(union lpfc_wqe128)); 191 192 /* Word 0, 1, 2 - BDE is variable */ 193 194 /* Word 3 - payload_offset_len is variable */ 195 196 /* Word 4, 5 - is zero */ 197 198 /* Word 6 - ctxt_tag, xri_tag is variable */ 199 200 /* Word 7 */ 201 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 202 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 203 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 204 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 205 206 /* Word 8 - abort_tag is variable */ 207 208 /* Word 9 - reqtag is variable */ 209 210 /* Word 10 - dbde, wqes is variable */ 211 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 212 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 213 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 214 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 215 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 216 217 /* Word 11 */ 218 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 219 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 220 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 221 222 /* Word 12, 13, 14, 15 - is zero */ 223 } 224 225 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 226 /** 227 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 228 * @srcp: Source memory pointer. 229 * @destp: Destination memory pointer. 230 * @cnt: Number of words required to be copied. 231 * Must be a multiple of sizeof(uint64_t) 232 * 233 * This function is used for copying data between driver memory 234 * and the SLI WQ. This function also changes the endianness 235 * of each word if native endianness is different from SLI 236 * endianness. This function can be called with or without 237 * lock. 238 **/ 239 static void 240 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 241 { 242 uint64_t *src = srcp; 243 uint64_t *dest = destp; 244 int i; 245 246 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 247 *dest++ = *src++; 248 } 249 #else 250 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 251 #endif 252 253 /** 254 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 255 * @q: The Work Queue to operate on. 256 * @wqe: The work Queue Entry to put on the Work queue. 257 * 258 * This routine will copy the contents of @wqe to the next available entry on 259 * the @q. This function will then ring the Work Queue Doorbell to signal the 260 * HBA to start processing the Work Queue Entry. This function returns 0 if 261 * successful. If no entries are available on @q then this function will return 262 * -ENOMEM. 263 * The caller is expected to hold the hbalock when calling this routine. 264 **/ 265 static int 266 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 267 { 268 union lpfc_wqe *temp_wqe; 269 struct lpfc_register doorbell; 270 uint32_t host_index; 271 uint32_t idx; 272 uint32_t i = 0; 273 uint8_t *tmp; 274 u32 if_type; 275 276 /* sanity check on queue memory */ 277 if (unlikely(!q)) 278 return -ENOMEM; 279 280 temp_wqe = lpfc_sli4_qe(q, q->host_index); 281 282 /* If the host has not yet processed the next entry then we are done */ 283 idx = ((q->host_index + 1) % q->entry_count); 284 if (idx == q->hba_index) { 285 q->WQ_overflow++; 286 return -EBUSY; 287 } 288 q->WQ_posted++; 289 /* set consumption flag every once in a while */ 290 if (!((q->host_index + 1) % q->notify_interval)) 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 292 else 293 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 294 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 295 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 296 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 297 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 298 /* write to DPP aperture taking advatage of Combined Writes */ 299 tmp = (uint8_t *)temp_wqe; 300 #ifdef __raw_writeq 301 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 302 __raw_writeq(*((uint64_t *)(tmp + i)), 303 q->dpp_regaddr + i); 304 #else 305 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 306 __raw_writel(*((uint32_t *)(tmp + i)), 307 q->dpp_regaddr + i); 308 #endif 309 } 310 /* ensure WQE bcopy and DPP flushed before doorbell write */ 311 wmb(); 312 313 /* Update the host index before invoking device */ 314 host_index = q->host_index; 315 316 q->host_index = idx; 317 318 /* Ring Doorbell */ 319 doorbell.word0 = 0; 320 if (q->db_format == LPFC_DB_LIST_FORMAT) { 321 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 322 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 323 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 324 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 325 q->dpp_id); 326 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 327 q->queue_id); 328 } else { 329 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 330 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 331 332 /* Leave bits <23:16> clear for if_type 6 dpp */ 333 if_type = bf_get(lpfc_sli_intf_if_type, 334 &q->phba->sli4_hba.sli_intf); 335 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 336 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 337 host_index); 338 } 339 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 340 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 341 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 342 } else { 343 return -EINVAL; 344 } 345 writel(doorbell.word0, q->db_regaddr); 346 347 return 0; 348 } 349 350 /** 351 * lpfc_sli4_wq_release - Updates internal hba index for WQ 352 * @q: The Work Queue to operate on. 353 * @index: The index to advance the hba index to. 354 * 355 * This routine will update the HBA index of a queue to reflect consumption of 356 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 357 * an entry the host calls this function to update the queue's internal 358 * pointers. 359 **/ 360 static void 361 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 362 { 363 /* sanity check on queue memory */ 364 if (unlikely(!q)) 365 return; 366 367 q->hba_index = index; 368 } 369 370 /** 371 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 372 * @q: The Mailbox Queue to operate on. 373 * @mqe: The Mailbox Queue Entry to put on the Work queue. 374 * 375 * This routine will copy the contents of @mqe to the next available entry on 376 * the @q. This function will then ring the Work Queue Doorbell to signal the 377 * HBA to start processing the Work Queue Entry. This function returns 0 if 378 * successful. If no entries are available on @q then this function will return 379 * -ENOMEM. 380 * The caller is expected to hold the hbalock when calling this routine. 381 **/ 382 static uint32_t 383 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 384 { 385 struct lpfc_mqe *temp_mqe; 386 struct lpfc_register doorbell; 387 388 /* sanity check on queue memory */ 389 if (unlikely(!q)) 390 return -ENOMEM; 391 temp_mqe = lpfc_sli4_qe(q, q->host_index); 392 393 /* If the host has not yet processed the next entry then we are done */ 394 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 395 return -ENOMEM; 396 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 397 /* Save off the mailbox pointer for completion */ 398 q->phba->mbox = (MAILBOX_t *)temp_mqe; 399 400 /* Update the host index before invoking device */ 401 q->host_index = ((q->host_index + 1) % q->entry_count); 402 403 /* Ring Doorbell */ 404 doorbell.word0 = 0; 405 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 406 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 407 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 408 return 0; 409 } 410 411 /** 412 * lpfc_sli4_mq_release - Updates internal hba index for MQ 413 * @q: The Mailbox Queue to operate on. 414 * 415 * This routine will update the HBA index of a queue to reflect consumption of 416 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 417 * an entry the host calls this function to update the queue's internal 418 * pointers. This routine returns the number of entries that were consumed by 419 * the HBA. 420 **/ 421 static uint32_t 422 lpfc_sli4_mq_release(struct lpfc_queue *q) 423 { 424 /* sanity check on queue memory */ 425 if (unlikely(!q)) 426 return 0; 427 428 /* Clear the mailbox pointer for completion */ 429 q->phba->mbox = NULL; 430 q->hba_index = ((q->hba_index + 1) % q->entry_count); 431 return 1; 432 } 433 434 /** 435 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 436 * @q: The Event Queue to get the first valid EQE from 437 * 438 * This routine will get the first valid Event Queue Entry from @q, update 439 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 440 * the Queue (no more work to do), or the Queue is full of EQEs that have been 441 * processed, but not popped back to the HBA then this routine will return NULL. 442 **/ 443 static struct lpfc_eqe * 444 lpfc_sli4_eq_get(struct lpfc_queue *q) 445 { 446 struct lpfc_eqe *eqe; 447 448 /* sanity check on queue memory */ 449 if (unlikely(!q)) 450 return NULL; 451 eqe = lpfc_sli4_qe(q, q->host_index); 452 453 /* If the next EQE is not valid then we are done */ 454 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 455 return NULL; 456 457 /* 458 * insert barrier for instruction interlock : data from the hardware 459 * must have the valid bit checked before it can be copied and acted 460 * upon. Speculative instructions were allowing a bcopy at the start 461 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 462 * after our return, to copy data before the valid bit check above 463 * was done. As such, some of the copied data was stale. The barrier 464 * ensures the check is before any data is copied. 465 */ 466 mb(); 467 return eqe; 468 } 469 470 /** 471 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 472 * @q: The Event Queue to disable interrupts 473 * 474 **/ 475 void 476 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 477 { 478 struct lpfc_register doorbell; 479 480 doorbell.word0 = 0; 481 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 482 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 483 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 484 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 485 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 486 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 487 } 488 489 /** 490 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 491 * @q: The Event Queue to disable interrupts 492 * 493 **/ 494 void 495 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 496 { 497 struct lpfc_register doorbell; 498 499 doorbell.word0 = 0; 500 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 501 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 502 } 503 504 /** 505 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 506 * @phba: adapter with EQ 507 * @q: The Event Queue that the host has completed processing for. 508 * @count: Number of elements that have been consumed 509 * @arm: Indicates whether the host wants to arms this CQ. 510 * 511 * This routine will notify the HBA, by ringing the doorbell, that count 512 * number of EQEs have been processed. The @arm parameter indicates whether 513 * the queue should be rearmed when ringing the doorbell. 514 **/ 515 void 516 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 517 uint32_t count, bool arm) 518 { 519 struct lpfc_register doorbell; 520 521 /* sanity check on queue memory */ 522 if (unlikely(!q || (count == 0 && !arm))) 523 return; 524 525 /* ring doorbell for number popped */ 526 doorbell.word0 = 0; 527 if (arm) { 528 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 529 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 530 } 531 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 532 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 533 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 534 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 535 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 536 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 537 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 538 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 539 readl(q->phba->sli4_hba.EQDBregaddr); 540 } 541 542 /** 543 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 544 * @phba: adapter with EQ 545 * @q: The Event Queue that the host has completed processing for. 546 * @count: Number of elements that have been consumed 547 * @arm: Indicates whether the host wants to arms this CQ. 548 * 549 * This routine will notify the HBA, by ringing the doorbell, that count 550 * number of EQEs have been processed. The @arm parameter indicates whether 551 * the queue should be rearmed when ringing the doorbell. 552 **/ 553 void 554 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 555 uint32_t count, bool arm) 556 { 557 struct lpfc_register doorbell; 558 559 /* sanity check on queue memory */ 560 if (unlikely(!q || (count == 0 && !arm))) 561 return; 562 563 /* ring doorbell for number popped */ 564 doorbell.word0 = 0; 565 if (arm) 566 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 567 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 568 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 569 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 570 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 571 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 572 readl(q->phba->sli4_hba.EQDBregaddr); 573 } 574 575 static void 576 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 577 struct lpfc_eqe *eqe) 578 { 579 if (!phba->sli4_hba.pc_sli4_params.eqav) 580 bf_set_le32(lpfc_eqe_valid, eqe, 0); 581 582 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 583 584 /* if the index wrapped around, toggle the valid bit */ 585 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 586 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 587 } 588 589 static void 590 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 591 { 592 struct lpfc_eqe *eqe = NULL; 593 u32 eq_count = 0, cq_count = 0; 594 struct lpfc_cqe *cqe = NULL; 595 struct lpfc_queue *cq = NULL, *childq = NULL; 596 int cqid = 0; 597 598 /* walk all the EQ entries and drop on the floor */ 599 eqe = lpfc_sli4_eq_get(eq); 600 while (eqe) { 601 /* Get the reference to the corresponding CQ */ 602 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 603 cq = NULL; 604 605 list_for_each_entry(childq, &eq->child_list, list) { 606 if (childq->queue_id == cqid) { 607 cq = childq; 608 break; 609 } 610 } 611 /* If CQ is valid, iterate through it and drop all the CQEs */ 612 if (cq) { 613 cqe = lpfc_sli4_cq_get(cq); 614 while (cqe) { 615 __lpfc_sli4_consume_cqe(phba, cq, cqe); 616 cq_count++; 617 cqe = lpfc_sli4_cq_get(cq); 618 } 619 /* Clear and re-arm the CQ */ 620 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 621 LPFC_QUEUE_REARM); 622 cq_count = 0; 623 } 624 __lpfc_sli4_consume_eqe(phba, eq, eqe); 625 eq_count++; 626 eqe = lpfc_sli4_eq_get(eq); 627 } 628 629 /* Clear and re-arm the EQ */ 630 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 631 } 632 633 static int 634 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 635 uint8_t rearm) 636 { 637 struct lpfc_eqe *eqe; 638 int count = 0, consumed = 0; 639 640 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 641 goto rearm_and_exit; 642 643 eqe = lpfc_sli4_eq_get(eq); 644 while (eqe) { 645 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 646 __lpfc_sli4_consume_eqe(phba, eq, eqe); 647 648 consumed++; 649 if (!(++count % eq->max_proc_limit)) 650 break; 651 652 if (!(count % eq->notify_interval)) { 653 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 654 LPFC_QUEUE_NOARM); 655 consumed = 0; 656 } 657 658 eqe = lpfc_sli4_eq_get(eq); 659 } 660 eq->EQ_processed += count; 661 662 /* Track the max number of EQEs processed in 1 intr */ 663 if (count > eq->EQ_max_eqe) 664 eq->EQ_max_eqe = count; 665 666 xchg(&eq->queue_claimed, 0); 667 668 rearm_and_exit: 669 /* Always clear the EQ. */ 670 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 671 672 return count; 673 } 674 675 /** 676 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 677 * @q: The Completion Queue to get the first valid CQE from 678 * 679 * This routine will get the first valid Completion Queue Entry from @q, update 680 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 681 * the Queue (no more work to do), or the Queue is full of CQEs that have been 682 * processed, but not popped back to the HBA then this routine will return NULL. 683 **/ 684 static struct lpfc_cqe * 685 lpfc_sli4_cq_get(struct lpfc_queue *q) 686 { 687 struct lpfc_cqe *cqe; 688 689 /* sanity check on queue memory */ 690 if (unlikely(!q)) 691 return NULL; 692 cqe = lpfc_sli4_qe(q, q->host_index); 693 694 /* If the next CQE is not valid then we are done */ 695 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 696 return NULL; 697 698 /* 699 * insert barrier for instruction interlock : data from the hardware 700 * must have the valid bit checked before it can be copied and acted 701 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 702 * instructions allowing action on content before valid bit checked, 703 * add barrier here as well. May not be needed as "content" is a 704 * single 32-bit entity here (vs multi word structure for cq's). 705 */ 706 mb(); 707 return cqe; 708 } 709 710 static void 711 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 712 struct lpfc_cqe *cqe) 713 { 714 if (!phba->sli4_hba.pc_sli4_params.cqav) 715 bf_set_le32(lpfc_cqe_valid, cqe, 0); 716 717 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 718 719 /* if the index wrapped around, toggle the valid bit */ 720 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 721 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 722 } 723 724 /** 725 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 726 * @phba: the adapter with the CQ 727 * @q: The Completion Queue that the host has completed processing for. 728 * @count: the number of elements that were consumed 729 * @arm: Indicates whether the host wants to arms this CQ. 730 * 731 * This routine will notify the HBA, by ringing the doorbell, that the 732 * CQEs have been processed. The @arm parameter specifies whether the 733 * queue should be rearmed when ringing the doorbell. 734 **/ 735 void 736 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 737 uint32_t count, bool arm) 738 { 739 struct lpfc_register doorbell; 740 741 /* sanity check on queue memory */ 742 if (unlikely(!q || (count == 0 && !arm))) 743 return; 744 745 /* ring doorbell for number popped */ 746 doorbell.word0 = 0; 747 if (arm) 748 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 749 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 750 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 751 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 752 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 753 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 754 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 755 } 756 757 /** 758 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 759 * @phba: the adapter with the CQ 760 * @q: The Completion Queue that the host has completed processing for. 761 * @count: the number of elements that were consumed 762 * @arm: Indicates whether the host wants to arms this CQ. 763 * 764 * This routine will notify the HBA, by ringing the doorbell, that the 765 * CQEs have been processed. The @arm parameter specifies whether the 766 * queue should be rearmed when ringing the doorbell. 767 **/ 768 void 769 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 770 uint32_t count, bool arm) 771 { 772 struct lpfc_register doorbell; 773 774 /* sanity check on queue memory */ 775 if (unlikely(!q || (count == 0 && !arm))) 776 return; 777 778 /* ring doorbell for number popped */ 779 doorbell.word0 = 0; 780 if (arm) 781 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 782 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 783 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 784 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 785 } 786 787 /* 788 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 789 * 790 * This routine will copy the contents of @wqe to the next available entry on 791 * the @q. This function will then ring the Receive Queue Doorbell to signal the 792 * HBA to start processing the Receive Queue Entry. This function returns the 793 * index that the rqe was copied to if successful. If no entries are available 794 * on @q then this function will return -ENOMEM. 795 * The caller is expected to hold the hbalock when calling this routine. 796 **/ 797 int 798 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 799 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 800 { 801 struct lpfc_rqe *temp_hrqe; 802 struct lpfc_rqe *temp_drqe; 803 struct lpfc_register doorbell; 804 int hq_put_index; 805 int dq_put_index; 806 807 /* sanity check on queue memory */ 808 if (unlikely(!hq) || unlikely(!dq)) 809 return -ENOMEM; 810 hq_put_index = hq->host_index; 811 dq_put_index = dq->host_index; 812 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 813 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 814 815 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 816 return -EINVAL; 817 if (hq_put_index != dq_put_index) 818 return -EINVAL; 819 /* If the host has not yet processed the next entry then we are done */ 820 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 821 return -EBUSY; 822 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 823 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 824 825 /* Update the host index to point to the next slot */ 826 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 827 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 828 hq->RQ_buf_posted++; 829 830 /* Ring The Header Receive Queue Doorbell */ 831 if (!(hq->host_index % hq->notify_interval)) { 832 doorbell.word0 = 0; 833 if (hq->db_format == LPFC_DB_RING_FORMAT) { 834 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 835 hq->notify_interval); 836 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 837 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 838 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 839 hq->notify_interval); 840 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 841 hq->host_index); 842 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 843 } else { 844 return -EINVAL; 845 } 846 writel(doorbell.word0, hq->db_regaddr); 847 } 848 return hq_put_index; 849 } 850 851 /* 852 * lpfc_sli4_rq_release - Updates internal hba index for RQ 853 * 854 * This routine will update the HBA index of a queue to reflect consumption of 855 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 856 * consumed an entry the host calls this function to update the queue's 857 * internal pointers. This routine returns the number of entries that were 858 * consumed by the HBA. 859 **/ 860 static uint32_t 861 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 862 { 863 /* sanity check on queue memory */ 864 if (unlikely(!hq) || unlikely(!dq)) 865 return 0; 866 867 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 868 return 0; 869 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 870 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 871 return 1; 872 } 873 874 /** 875 * lpfc_cmd_iocb - Get next command iocb entry in the ring 876 * @phba: Pointer to HBA context object. 877 * @pring: Pointer to driver SLI ring object. 878 * 879 * This function returns pointer to next command iocb entry 880 * in the command ring. The caller must hold hbalock to prevent 881 * other threads consume the next command iocb. 882 * SLI-2/SLI-3 provide different sized iocbs. 883 **/ 884 static inline IOCB_t * 885 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 886 { 887 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 888 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 889 } 890 891 /** 892 * lpfc_resp_iocb - Get next response iocb entry in the ring 893 * @phba: Pointer to HBA context object. 894 * @pring: Pointer to driver SLI ring object. 895 * 896 * This function returns pointer to next response iocb entry 897 * in the response ring. The caller must hold hbalock to make sure 898 * that no other thread consume the next response iocb. 899 * SLI-2/SLI-3 provide different sized iocbs. 900 **/ 901 static inline IOCB_t * 902 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 903 { 904 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 905 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 906 } 907 908 /** 909 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 910 * @phba: Pointer to HBA context object. 911 * 912 * This function is called with hbalock held. This function 913 * allocates a new driver iocb object from the iocb pool. If the 914 * allocation is successful, it returns pointer to the newly 915 * allocated iocb object else it returns NULL. 916 **/ 917 struct lpfc_iocbq * 918 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 919 { 920 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 921 struct lpfc_iocbq * iocbq = NULL; 922 923 lockdep_assert_held(&phba->hbalock); 924 925 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 926 if (iocbq) 927 phba->iocb_cnt++; 928 if (phba->iocb_cnt > phba->iocb_max) 929 phba->iocb_max = phba->iocb_cnt; 930 return iocbq; 931 } 932 933 /** 934 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 935 * @phba: Pointer to HBA context object. 936 * @xritag: XRI value. 937 * 938 * This function clears the sglq pointer from the array of active 939 * sglq's. The xritag that is passed in is used to index into the 940 * array. Before the xritag can be used it needs to be adjusted 941 * by subtracting the xribase. 942 * 943 * Returns sglq ponter = success, NULL = Failure. 944 **/ 945 struct lpfc_sglq * 946 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 947 { 948 struct lpfc_sglq *sglq; 949 950 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 951 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 952 return sglq; 953 } 954 955 /** 956 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 957 * @phba: Pointer to HBA context object. 958 * @xritag: XRI value. 959 * 960 * This function returns the sglq pointer from the array of active 961 * sglq's. The xritag that is passed in is used to index into the 962 * array. Before the xritag can be used it needs to be adjusted 963 * by subtracting the xribase. 964 * 965 * Returns sglq ponter = success, NULL = Failure. 966 **/ 967 struct lpfc_sglq * 968 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 969 { 970 struct lpfc_sglq *sglq; 971 972 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 973 return sglq; 974 } 975 976 /** 977 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 978 * @phba: Pointer to HBA context object. 979 * @xritag: xri used in this exchange. 980 * @rrq: The RRQ to be cleared. 981 * 982 **/ 983 void 984 lpfc_clr_rrq_active(struct lpfc_hba *phba, 985 uint16_t xritag, 986 struct lpfc_node_rrq *rrq) 987 { 988 struct lpfc_nodelist *ndlp = NULL; 989 990 /* Lookup did to verify if did is still active on this vport */ 991 if (rrq->vport) 992 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 993 994 if (!ndlp) 995 goto out; 996 997 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 998 rrq->send_rrq = 0; 999 rrq->xritag = 0; 1000 rrq->rrq_stop_time = 0; 1001 } 1002 out: 1003 mempool_free(rrq, phba->rrq_pool); 1004 } 1005 1006 /** 1007 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1008 * @phba: Pointer to HBA context object. 1009 * 1010 * This function is called with hbalock held. This function 1011 * Checks if stop_time (ratov from setting rrq active) has 1012 * been reached, if it has and the send_rrq flag is set then 1013 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1014 * then it will just call the routine to clear the rrq and 1015 * free the rrq resource. 1016 * The timer is set to the next rrq that is going to expire before 1017 * leaving the routine. 1018 * 1019 **/ 1020 void 1021 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1022 { 1023 struct lpfc_node_rrq *rrq; 1024 struct lpfc_node_rrq *nextrrq; 1025 unsigned long next_time; 1026 unsigned long iflags; 1027 LIST_HEAD(send_rrq); 1028 1029 spin_lock_irqsave(&phba->hbalock, iflags); 1030 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1031 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1032 list_for_each_entry_safe(rrq, nextrrq, 1033 &phba->active_rrq_list, list) { 1034 if (time_after(jiffies, rrq->rrq_stop_time)) 1035 list_move(&rrq->list, &send_rrq); 1036 else if (time_before(rrq->rrq_stop_time, next_time)) 1037 next_time = rrq->rrq_stop_time; 1038 } 1039 spin_unlock_irqrestore(&phba->hbalock, iflags); 1040 if ((!list_empty(&phba->active_rrq_list)) && 1041 (!(phba->pport->load_flag & FC_UNLOADING))) 1042 mod_timer(&phba->rrq_tmr, next_time); 1043 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1044 list_del(&rrq->list); 1045 if (!rrq->send_rrq) { 1046 /* this call will free the rrq */ 1047 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1048 } else if (lpfc_send_rrq(phba, rrq)) { 1049 /* if we send the rrq then the completion handler 1050 * will clear the bit in the xribitmap. 1051 */ 1052 lpfc_clr_rrq_active(phba, rrq->xritag, 1053 rrq); 1054 } 1055 } 1056 } 1057 1058 /** 1059 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1060 * @vport: Pointer to vport context object. 1061 * @xri: The xri used in the exchange. 1062 * @did: The targets DID for this exchange. 1063 * 1064 * returns NULL = rrq not found in the phba->active_rrq_list. 1065 * rrq = rrq for this xri and target. 1066 **/ 1067 struct lpfc_node_rrq * 1068 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1069 { 1070 struct lpfc_hba *phba = vport->phba; 1071 struct lpfc_node_rrq *rrq; 1072 struct lpfc_node_rrq *nextrrq; 1073 unsigned long iflags; 1074 1075 if (phba->sli_rev != LPFC_SLI_REV4) 1076 return NULL; 1077 spin_lock_irqsave(&phba->hbalock, iflags); 1078 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1079 if (rrq->vport == vport && rrq->xritag == xri && 1080 rrq->nlp_DID == did){ 1081 list_del(&rrq->list); 1082 spin_unlock_irqrestore(&phba->hbalock, iflags); 1083 return rrq; 1084 } 1085 } 1086 spin_unlock_irqrestore(&phba->hbalock, iflags); 1087 return NULL; 1088 } 1089 1090 /** 1091 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1092 * @vport: Pointer to vport context object. 1093 * @ndlp: Pointer to the lpfc_node_list structure. 1094 * If ndlp is NULL Remove all active RRQs for this vport from the 1095 * phba->active_rrq_list and clear the rrq. 1096 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1097 **/ 1098 void 1099 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1100 1101 { 1102 struct lpfc_hba *phba = vport->phba; 1103 struct lpfc_node_rrq *rrq; 1104 struct lpfc_node_rrq *nextrrq; 1105 unsigned long iflags; 1106 LIST_HEAD(rrq_list); 1107 1108 if (phba->sli_rev != LPFC_SLI_REV4) 1109 return; 1110 if (!ndlp) { 1111 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1112 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1113 } 1114 spin_lock_irqsave(&phba->hbalock, iflags); 1115 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1116 if (rrq->vport != vport) 1117 continue; 1118 1119 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1120 list_move(&rrq->list, &rrq_list); 1121 1122 } 1123 spin_unlock_irqrestore(&phba->hbalock, iflags); 1124 1125 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1126 list_del(&rrq->list); 1127 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1128 } 1129 } 1130 1131 /** 1132 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1133 * @phba: Pointer to HBA context object. 1134 * @ndlp: Targets nodelist pointer for this exchange. 1135 * @xritag: the xri in the bitmap to test. 1136 * 1137 * This function returns: 1138 * 0 = rrq not active for this xri 1139 * 1 = rrq is valid for this xri. 1140 **/ 1141 int 1142 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1143 uint16_t xritag) 1144 { 1145 if (!ndlp) 1146 return 0; 1147 if (!ndlp->active_rrqs_xri_bitmap) 1148 return 0; 1149 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1150 return 1; 1151 else 1152 return 0; 1153 } 1154 1155 /** 1156 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1157 * @phba: Pointer to HBA context object. 1158 * @ndlp: nodelist pointer for this target. 1159 * @xritag: xri used in this exchange. 1160 * @rxid: Remote Exchange ID. 1161 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1162 * 1163 * This function takes the hbalock. 1164 * The active bit is always set in the active rrq xri_bitmap even 1165 * if there is no slot avaiable for the other rrq information. 1166 * 1167 * returns 0 rrq actived for this xri 1168 * < 0 No memory or invalid ndlp. 1169 **/ 1170 int 1171 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1172 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1173 { 1174 unsigned long iflags; 1175 struct lpfc_node_rrq *rrq; 1176 int empty; 1177 1178 if (!ndlp) 1179 return -EINVAL; 1180 1181 if (!phba->cfg_enable_rrq) 1182 return -EINVAL; 1183 1184 spin_lock_irqsave(&phba->hbalock, iflags); 1185 if (phba->pport->load_flag & FC_UNLOADING) { 1186 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1187 goto out; 1188 } 1189 1190 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1191 goto out; 1192 1193 if (!ndlp->active_rrqs_xri_bitmap) 1194 goto out; 1195 1196 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1197 goto out; 1198 1199 spin_unlock_irqrestore(&phba->hbalock, iflags); 1200 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1201 if (!rrq) { 1202 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1203 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1204 " DID:0x%x Send:%d\n", 1205 xritag, rxid, ndlp->nlp_DID, send_rrq); 1206 return -EINVAL; 1207 } 1208 if (phba->cfg_enable_rrq == 1) 1209 rrq->send_rrq = send_rrq; 1210 else 1211 rrq->send_rrq = 0; 1212 rrq->xritag = xritag; 1213 rrq->rrq_stop_time = jiffies + 1214 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1215 rrq->nlp_DID = ndlp->nlp_DID; 1216 rrq->vport = ndlp->vport; 1217 rrq->rxid = rxid; 1218 spin_lock_irqsave(&phba->hbalock, iflags); 1219 empty = list_empty(&phba->active_rrq_list); 1220 list_add_tail(&rrq->list, &phba->active_rrq_list); 1221 phba->hba_flag |= HBA_RRQ_ACTIVE; 1222 if (empty) 1223 lpfc_worker_wake_up(phba); 1224 spin_unlock_irqrestore(&phba->hbalock, iflags); 1225 return 0; 1226 out: 1227 spin_unlock_irqrestore(&phba->hbalock, iflags); 1228 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1229 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1230 " DID:0x%x Send:%d\n", 1231 xritag, rxid, ndlp->nlp_DID, send_rrq); 1232 return -EINVAL; 1233 } 1234 1235 /** 1236 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1237 * @phba: Pointer to HBA context object. 1238 * @piocbq: Pointer to the iocbq. 1239 * 1240 * The driver calls this function with either the nvme ls ring lock 1241 * or the fc els ring lock held depending on the iocb usage. This function 1242 * gets a new driver sglq object from the sglq list. If the list is not empty 1243 * then it is successful, it returns pointer to the newly allocated sglq 1244 * object else it returns NULL. 1245 **/ 1246 static struct lpfc_sglq * 1247 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1248 { 1249 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1250 struct lpfc_sglq *sglq = NULL; 1251 struct lpfc_sglq *start_sglq = NULL; 1252 struct lpfc_io_buf *lpfc_cmd; 1253 struct lpfc_nodelist *ndlp; 1254 struct lpfc_sli_ring *pring = NULL; 1255 int found = 0; 1256 1257 if (piocbq->iocb_flag & LPFC_IO_NVME_LS) 1258 pring = phba->sli4_hba.nvmels_wq->pring; 1259 else 1260 pring = lpfc_phba_elsring(phba); 1261 1262 lockdep_assert_held(&pring->ring_lock); 1263 1264 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1265 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1266 ndlp = lpfc_cmd->rdata->pnode; 1267 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1268 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1269 ndlp = piocbq->context_un.ndlp; 1270 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1271 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1272 ndlp = NULL; 1273 else 1274 ndlp = piocbq->context_un.ndlp; 1275 } else { 1276 ndlp = piocbq->context1; 1277 } 1278 1279 spin_lock(&phba->sli4_hba.sgl_list_lock); 1280 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1281 start_sglq = sglq; 1282 while (!found) { 1283 if (!sglq) 1284 break; 1285 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1286 test_bit(sglq->sli4_lxritag, 1287 ndlp->active_rrqs_xri_bitmap)) { 1288 /* This xri has an rrq outstanding for this DID. 1289 * put it back in the list and get another xri. 1290 */ 1291 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1292 sglq = NULL; 1293 list_remove_head(lpfc_els_sgl_list, sglq, 1294 struct lpfc_sglq, list); 1295 if (sglq == start_sglq) { 1296 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1297 sglq = NULL; 1298 break; 1299 } else 1300 continue; 1301 } 1302 sglq->ndlp = ndlp; 1303 found = 1; 1304 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1305 sglq->state = SGL_ALLOCATED; 1306 } 1307 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1308 return sglq; 1309 } 1310 1311 /** 1312 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1313 * @phba: Pointer to HBA context object. 1314 * @piocbq: Pointer to the iocbq. 1315 * 1316 * This function is called with the sgl_list lock held. This function 1317 * gets a new driver sglq object from the sglq list. If the 1318 * list is not empty then it is successful, it returns pointer to the newly 1319 * allocated sglq object else it returns NULL. 1320 **/ 1321 struct lpfc_sglq * 1322 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1323 { 1324 struct list_head *lpfc_nvmet_sgl_list; 1325 struct lpfc_sglq *sglq = NULL; 1326 1327 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1328 1329 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1330 1331 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1332 if (!sglq) 1333 return NULL; 1334 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1335 sglq->state = SGL_ALLOCATED; 1336 return sglq; 1337 } 1338 1339 /** 1340 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1341 * @phba: Pointer to HBA context object. 1342 * 1343 * This function is called with no lock held. This function 1344 * allocates a new driver iocb object from the iocb pool. If the 1345 * allocation is successful, it returns pointer to the newly 1346 * allocated iocb object else it returns NULL. 1347 **/ 1348 struct lpfc_iocbq * 1349 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1350 { 1351 struct lpfc_iocbq * iocbq = NULL; 1352 unsigned long iflags; 1353 1354 spin_lock_irqsave(&phba->hbalock, iflags); 1355 iocbq = __lpfc_sli_get_iocbq(phba); 1356 spin_unlock_irqrestore(&phba->hbalock, iflags); 1357 return iocbq; 1358 } 1359 1360 /** 1361 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1362 * @phba: Pointer to HBA context object. 1363 * @iocbq: Pointer to driver iocb object. 1364 * 1365 * This function is called to release the driver iocb object 1366 * to the iocb pool. The iotag in the iocb object 1367 * does not change for each use of the iocb object. This function 1368 * clears all other fields of the iocb object when it is freed. 1369 * The sqlq structure that holds the xritag and phys and virtual 1370 * mappings for the scatter gather list is retrieved from the 1371 * active array of sglq. The get of the sglq pointer also clears 1372 * the entry in the array. If the status of the IO indiactes that 1373 * this IO was aborted then the sglq entry it put on the 1374 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1375 * IO has good status or fails for any other reason then the sglq 1376 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1377 * asserted held in the code path calling this routine. 1378 **/ 1379 static void 1380 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1381 { 1382 struct lpfc_sglq *sglq; 1383 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1384 unsigned long iflag = 0; 1385 struct lpfc_sli_ring *pring; 1386 1387 if (iocbq->sli4_xritag == NO_XRI) 1388 sglq = NULL; 1389 else 1390 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1391 1392 1393 if (sglq) { 1394 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1395 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1396 iflag); 1397 sglq->state = SGL_FREED; 1398 sglq->ndlp = NULL; 1399 list_add_tail(&sglq->list, 1400 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1401 spin_unlock_irqrestore( 1402 &phba->sli4_hba.sgl_list_lock, iflag); 1403 goto out; 1404 } 1405 1406 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1407 (sglq->state != SGL_XRI_ABORTED)) { 1408 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1409 iflag); 1410 1411 /* Check if we can get a reference on ndlp */ 1412 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1413 sglq->ndlp = NULL; 1414 1415 list_add(&sglq->list, 1416 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1417 spin_unlock_irqrestore( 1418 &phba->sli4_hba.sgl_list_lock, iflag); 1419 } else { 1420 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1421 iflag); 1422 sglq->state = SGL_FREED; 1423 sglq->ndlp = NULL; 1424 list_add_tail(&sglq->list, 1425 &phba->sli4_hba.lpfc_els_sgl_list); 1426 spin_unlock_irqrestore( 1427 &phba->sli4_hba.sgl_list_lock, iflag); 1428 pring = lpfc_phba_elsring(phba); 1429 /* Check if TXQ queue needs to be serviced */ 1430 if (pring && (!list_empty(&pring->txq))) 1431 lpfc_worker_wake_up(phba); 1432 } 1433 } 1434 1435 out: 1436 /* 1437 * Clean all volatile data fields, preserve iotag and node struct. 1438 */ 1439 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1440 iocbq->sli4_lxritag = NO_XRI; 1441 iocbq->sli4_xritag = NO_XRI; 1442 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1443 LPFC_IO_NVME_LS); 1444 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1445 } 1446 1447 1448 /** 1449 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1450 * @phba: Pointer to HBA context object. 1451 * @iocbq: Pointer to driver iocb object. 1452 * 1453 * This function is called to release the driver iocb object to the 1454 * iocb pool. The iotag in the iocb object does not change for each 1455 * use of the iocb object. This function clears all other fields of 1456 * the iocb object when it is freed. The hbalock is asserted held in 1457 * the code path calling this routine. 1458 **/ 1459 static void 1460 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1461 { 1462 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1463 1464 /* 1465 * Clean all volatile data fields, preserve iotag and node struct. 1466 */ 1467 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1468 iocbq->sli4_xritag = NO_XRI; 1469 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1470 } 1471 1472 /** 1473 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1474 * @phba: Pointer to HBA context object. 1475 * @iocbq: Pointer to driver iocb object. 1476 * 1477 * This function is called with hbalock held to release driver 1478 * iocb object to the iocb pool. The iotag in the iocb object 1479 * does not change for each use of the iocb object. This function 1480 * clears all other fields of the iocb object when it is freed. 1481 **/ 1482 static void 1483 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1484 { 1485 lockdep_assert_held(&phba->hbalock); 1486 1487 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1488 phba->iocb_cnt--; 1489 } 1490 1491 /** 1492 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1493 * @phba: Pointer to HBA context object. 1494 * @iocbq: Pointer to driver iocb object. 1495 * 1496 * This function is called with no lock held to release the iocb to 1497 * iocb pool. 1498 **/ 1499 void 1500 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1501 { 1502 unsigned long iflags; 1503 1504 /* 1505 * Clean all volatile data fields, preserve iotag and node struct. 1506 */ 1507 spin_lock_irqsave(&phba->hbalock, iflags); 1508 __lpfc_sli_release_iocbq(phba, iocbq); 1509 spin_unlock_irqrestore(&phba->hbalock, iflags); 1510 } 1511 1512 /** 1513 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1514 * @phba: Pointer to HBA context object. 1515 * @iocblist: List of IOCBs. 1516 * @ulpstatus: ULP status in IOCB command field. 1517 * @ulpWord4: ULP word-4 in IOCB command field. 1518 * 1519 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1520 * on the list by invoking the complete callback function associated with the 1521 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1522 * fields. 1523 **/ 1524 void 1525 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1526 uint32_t ulpstatus, uint32_t ulpWord4) 1527 { 1528 struct lpfc_iocbq *piocb; 1529 1530 while (!list_empty(iocblist)) { 1531 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1532 if (piocb->wqe_cmpl) { 1533 if (piocb->iocb_flag & LPFC_IO_NVME) 1534 lpfc_nvme_cancel_iocb(phba, piocb, 1535 ulpstatus, ulpWord4); 1536 else 1537 lpfc_sli_release_iocbq(phba, piocb); 1538 1539 } else if (piocb->iocb_cmpl) { 1540 piocb->iocb.ulpStatus = ulpstatus; 1541 piocb->iocb.un.ulpWord[4] = ulpWord4; 1542 (piocb->iocb_cmpl) (phba, piocb, piocb); 1543 } else { 1544 lpfc_sli_release_iocbq(phba, piocb); 1545 } 1546 } 1547 return; 1548 } 1549 1550 /** 1551 * lpfc_sli_iocb_cmd_type - Get the iocb type 1552 * @iocb_cmnd: iocb command code. 1553 * 1554 * This function is called by ring event handler function to get the iocb type. 1555 * This function translates the iocb command to an iocb command type used to 1556 * decide the final disposition of each completed IOCB. 1557 * The function returns 1558 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1559 * LPFC_SOL_IOCB if it is a solicited iocb completion 1560 * LPFC_ABORT_IOCB if it is an abort iocb 1561 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1562 * 1563 * The caller is not required to hold any lock. 1564 **/ 1565 static lpfc_iocb_type 1566 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1567 { 1568 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1569 1570 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1571 return 0; 1572 1573 switch (iocb_cmnd) { 1574 case CMD_XMIT_SEQUENCE_CR: 1575 case CMD_XMIT_SEQUENCE_CX: 1576 case CMD_XMIT_BCAST_CN: 1577 case CMD_XMIT_BCAST_CX: 1578 case CMD_ELS_REQUEST_CR: 1579 case CMD_ELS_REQUEST_CX: 1580 case CMD_CREATE_XRI_CR: 1581 case CMD_CREATE_XRI_CX: 1582 case CMD_GET_RPI_CN: 1583 case CMD_XMIT_ELS_RSP_CX: 1584 case CMD_GET_RPI_CR: 1585 case CMD_FCP_IWRITE_CR: 1586 case CMD_FCP_IWRITE_CX: 1587 case CMD_FCP_IREAD_CR: 1588 case CMD_FCP_IREAD_CX: 1589 case CMD_FCP_ICMND_CR: 1590 case CMD_FCP_ICMND_CX: 1591 case CMD_FCP_TSEND_CX: 1592 case CMD_FCP_TRSP_CX: 1593 case CMD_FCP_TRECEIVE_CX: 1594 case CMD_FCP_AUTO_TRSP_CX: 1595 case CMD_ADAPTER_MSG: 1596 case CMD_ADAPTER_DUMP: 1597 case CMD_XMIT_SEQUENCE64_CR: 1598 case CMD_XMIT_SEQUENCE64_CX: 1599 case CMD_XMIT_BCAST64_CN: 1600 case CMD_XMIT_BCAST64_CX: 1601 case CMD_ELS_REQUEST64_CR: 1602 case CMD_ELS_REQUEST64_CX: 1603 case CMD_FCP_IWRITE64_CR: 1604 case CMD_FCP_IWRITE64_CX: 1605 case CMD_FCP_IREAD64_CR: 1606 case CMD_FCP_IREAD64_CX: 1607 case CMD_FCP_ICMND64_CR: 1608 case CMD_FCP_ICMND64_CX: 1609 case CMD_FCP_TSEND64_CX: 1610 case CMD_FCP_TRSP64_CX: 1611 case CMD_FCP_TRECEIVE64_CX: 1612 case CMD_GEN_REQUEST64_CR: 1613 case CMD_GEN_REQUEST64_CX: 1614 case CMD_XMIT_ELS_RSP64_CX: 1615 case DSSCMD_IWRITE64_CR: 1616 case DSSCMD_IWRITE64_CX: 1617 case DSSCMD_IREAD64_CR: 1618 case DSSCMD_IREAD64_CX: 1619 case CMD_SEND_FRAME: 1620 type = LPFC_SOL_IOCB; 1621 break; 1622 case CMD_ABORT_XRI_CN: 1623 case CMD_ABORT_XRI_CX: 1624 case CMD_CLOSE_XRI_CN: 1625 case CMD_CLOSE_XRI_CX: 1626 case CMD_XRI_ABORTED_CX: 1627 case CMD_ABORT_MXRI64_CN: 1628 case CMD_XMIT_BLS_RSP64_CX: 1629 type = LPFC_ABORT_IOCB; 1630 break; 1631 case CMD_RCV_SEQUENCE_CX: 1632 case CMD_RCV_ELS_REQ_CX: 1633 case CMD_RCV_SEQUENCE64_CX: 1634 case CMD_RCV_ELS_REQ64_CX: 1635 case CMD_ASYNC_STATUS: 1636 case CMD_IOCB_RCV_SEQ64_CX: 1637 case CMD_IOCB_RCV_ELS64_CX: 1638 case CMD_IOCB_RCV_CONT64_CX: 1639 case CMD_IOCB_RET_XRI64_CX: 1640 type = LPFC_UNSOL_IOCB; 1641 break; 1642 case CMD_IOCB_XMIT_MSEQ64_CR: 1643 case CMD_IOCB_XMIT_MSEQ64_CX: 1644 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1645 case CMD_IOCB_RCV_ELS_LIST64_CX: 1646 case CMD_IOCB_CLOSE_EXTENDED_CN: 1647 case CMD_IOCB_ABORT_EXTENDED_CN: 1648 case CMD_IOCB_RET_HBQE64_CN: 1649 case CMD_IOCB_FCP_IBIDIR64_CR: 1650 case CMD_IOCB_FCP_IBIDIR64_CX: 1651 case CMD_IOCB_FCP_ITASKMGT64_CX: 1652 case CMD_IOCB_LOGENTRY_CN: 1653 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1654 printk("%s - Unhandled SLI-3 Command x%x\n", 1655 __func__, iocb_cmnd); 1656 type = LPFC_UNKNOWN_IOCB; 1657 break; 1658 default: 1659 type = LPFC_UNKNOWN_IOCB; 1660 break; 1661 } 1662 1663 return type; 1664 } 1665 1666 /** 1667 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1668 * @phba: Pointer to HBA context object. 1669 * 1670 * This function is called from SLI initialization code 1671 * to configure every ring of the HBA's SLI interface. The 1672 * caller is not required to hold any lock. This function issues 1673 * a config_ring mailbox command for each ring. 1674 * This function returns zero if successful else returns a negative 1675 * error code. 1676 **/ 1677 static int 1678 lpfc_sli_ring_map(struct lpfc_hba *phba) 1679 { 1680 struct lpfc_sli *psli = &phba->sli; 1681 LPFC_MBOXQ_t *pmb; 1682 MAILBOX_t *pmbox; 1683 int i, rc, ret = 0; 1684 1685 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1686 if (!pmb) 1687 return -ENOMEM; 1688 pmbox = &pmb->u.mb; 1689 phba->link_state = LPFC_INIT_MBX_CMDS; 1690 for (i = 0; i < psli->num_rings; i++) { 1691 lpfc_config_ring(phba, i, pmb); 1692 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1693 if (rc != MBX_SUCCESS) { 1694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1695 "0446 Adapter failed to init (%d), " 1696 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1697 "ring %d\n", 1698 rc, pmbox->mbxCommand, 1699 pmbox->mbxStatus, i); 1700 phba->link_state = LPFC_HBA_ERROR; 1701 ret = -ENXIO; 1702 break; 1703 } 1704 } 1705 mempool_free(pmb, phba->mbox_mem_pool); 1706 return ret; 1707 } 1708 1709 /** 1710 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1711 * @phba: Pointer to HBA context object. 1712 * @pring: Pointer to driver SLI ring object. 1713 * @piocb: Pointer to the driver iocb object. 1714 * 1715 * The driver calls this function with the hbalock held for SLI3 ports or 1716 * the ring lock held for SLI4 ports. The function adds the 1717 * new iocb to txcmplq of the given ring. This function always returns 1718 * 0. If this function is called for ELS ring, this function checks if 1719 * there is a vport associated with the ELS command. This function also 1720 * starts els_tmofunc timer if this is an ELS command. 1721 **/ 1722 static int 1723 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1724 struct lpfc_iocbq *piocb) 1725 { 1726 if (phba->sli_rev == LPFC_SLI_REV4) 1727 lockdep_assert_held(&pring->ring_lock); 1728 else 1729 lockdep_assert_held(&phba->hbalock); 1730 1731 BUG_ON(!piocb); 1732 1733 list_add_tail(&piocb->list, &pring->txcmplq); 1734 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1735 pring->txcmplq_cnt++; 1736 1737 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1738 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1739 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1740 BUG_ON(!piocb->vport); 1741 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1742 mod_timer(&piocb->vport->els_tmofunc, 1743 jiffies + 1744 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1745 } 1746 1747 return 0; 1748 } 1749 1750 /** 1751 * lpfc_sli_ringtx_get - Get first element of the txq 1752 * @phba: Pointer to HBA context object. 1753 * @pring: Pointer to driver SLI ring object. 1754 * 1755 * This function is called with hbalock held to get next 1756 * iocb in txq of the given ring. If there is any iocb in 1757 * the txq, the function returns first iocb in the list after 1758 * removing the iocb from the list, else it returns NULL. 1759 **/ 1760 struct lpfc_iocbq * 1761 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1762 { 1763 struct lpfc_iocbq *cmd_iocb; 1764 1765 lockdep_assert_held(&phba->hbalock); 1766 1767 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1768 return cmd_iocb; 1769 } 1770 1771 /** 1772 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1773 * @phba: Pointer to HBA context object. 1774 * @cmdiocb: Pointer to driver command iocb object. 1775 * @cmf_cmpl: Pointer to completed WCQE. 1776 * 1777 * This routine will inform the driver of any BW adjustments we need 1778 * to make. These changes will be picked up during the next CMF 1779 * timer interrupt. In addition, any BW changes will be logged 1780 * with LOG_CGN_MGMT. 1781 **/ 1782 static void 1783 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1784 struct lpfc_wcqe_complete *cmf_cmpl) 1785 { 1786 union lpfc_wqe128 *wqe; 1787 uint32_t status, info; 1788 uint64_t bw, bwdif, slop; 1789 uint64_t pcent, bwpcent; 1790 int asig, afpin, sigcnt, fpincnt; 1791 int wsigmax, wfpinmax, cg, tdp; 1792 char *s; 1793 1794 /* First check for error */ 1795 status = bf_get(lpfc_wcqe_c_status, cmf_cmpl); 1796 if (status) { 1797 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1798 "6211 CMF_SYNC_WQE Error " 1799 "req_tag x%x status x%x hwstatus x%x " 1800 "tdatap x%x parm x%x\n", 1801 bf_get(lpfc_wcqe_c_request_tag, cmf_cmpl), 1802 bf_get(lpfc_wcqe_c_status, cmf_cmpl), 1803 bf_get(lpfc_wcqe_c_hw_status, cmf_cmpl), 1804 cmf_cmpl->total_data_placed, 1805 cmf_cmpl->parameter); 1806 goto out; 1807 } 1808 1809 /* Gather congestion information on a successful cmpl */ 1810 info = cmf_cmpl->parameter; 1811 phba->cmf_active_info = info; 1812 1813 /* See if firmware info count is valid or has changed */ 1814 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1815 info = 0; 1816 else 1817 phba->cmf_info_per_interval = info; 1818 1819 tdp = bf_get(lpfc_wcqe_c_cmf_bw, cmf_cmpl); 1820 cg = bf_get(lpfc_wcqe_c_cmf_cg, cmf_cmpl); 1821 1822 /* Get BW requirement from firmware */ 1823 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1824 if (!bw) { 1825 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1826 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1827 bf_get(lpfc_wcqe_c_request_tag, cmf_cmpl)); 1828 goto out; 1829 } 1830 1831 /* Gather information needed for logging if a BW change is required */ 1832 wqe = &cmdiocb->wqe; 1833 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1834 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1835 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1836 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1837 if (phba->cmf_max_bytes_per_interval != bw || 1838 (asig || afpin || sigcnt || fpincnt)) { 1839 /* Are we increasing or decreasing BW */ 1840 if (phba->cmf_max_bytes_per_interval < bw) { 1841 bwdif = bw - phba->cmf_max_bytes_per_interval; 1842 s = "Increase"; 1843 } else { 1844 bwdif = phba->cmf_max_bytes_per_interval - bw; 1845 s = "Decrease"; 1846 } 1847 1848 /* What is the change percentage */ 1849 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1850 pcent = div64_u64(bwdif * 100 + slop, 1851 phba->cmf_link_byte_count); 1852 bwpcent = div64_u64(bw * 100 + slop, 1853 phba->cmf_link_byte_count); 1854 if (asig) { 1855 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1856 "6237 BW Threshold %lld%% (%lld): " 1857 "%lld%% %s: Signal Alarm: cg:%d " 1858 "Info:%u\n", 1859 bwpcent, bw, pcent, s, cg, 1860 phba->cmf_active_info); 1861 } else if (afpin) { 1862 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1863 "6238 BW Threshold %lld%% (%lld): " 1864 "%lld%% %s: FPIN Alarm: cg:%d " 1865 "Info:%u\n", 1866 bwpcent, bw, pcent, s, cg, 1867 phba->cmf_active_info); 1868 } else if (sigcnt) { 1869 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1870 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1871 "6239 BW Threshold %lld%% (%lld): " 1872 "%lld%% %s: Signal Warning: " 1873 "Cnt %d Max %d: cg:%d Info:%u\n", 1874 bwpcent, bw, pcent, s, sigcnt, 1875 wsigmax, cg, phba->cmf_active_info); 1876 } else if (fpincnt) { 1877 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1878 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1879 "6240 BW Threshold %lld%% (%lld): " 1880 "%lld%% %s: FPIN Warning: " 1881 "Cnt %d Max %d: cg:%d Info:%u\n", 1882 bwpcent, bw, pcent, s, fpincnt, 1883 wfpinmax, cg, phba->cmf_active_info); 1884 } else { 1885 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1886 "6241 BW Threshold %lld%% (%lld): " 1887 "CMF %lld%% %s: cg:%d Info:%u\n", 1888 bwpcent, bw, pcent, s, cg, 1889 phba->cmf_active_info); 1890 } 1891 } else if (info) { 1892 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1893 "6246 Info Threshold %u\n", info); 1894 } 1895 1896 /* Save BW change to be picked up during next timer interrupt */ 1897 phba->cmf_last_sync_bw = bw; 1898 out: 1899 lpfc_sli_release_iocbq(phba, cmdiocb); 1900 } 1901 1902 /** 1903 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1904 * @phba: Pointer to HBA context object. 1905 * @ms: ms to set in WQE interval, 0 means use init op 1906 * @total: Total rcv bytes for this interval 1907 * 1908 * This routine is called every CMF timer interrupt. Its purpose is 1909 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1910 * that may indicate we have congestion (FPINs or Signals). Upon 1911 * completion, the firmware will indicate any BW restrictions the 1912 * driver may need to take. 1913 **/ 1914 int 1915 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1916 { 1917 union lpfc_wqe128 *wqe; 1918 struct lpfc_iocbq *sync_buf; 1919 unsigned long iflags; 1920 u32 ret_val; 1921 u32 atot, wtot, max; 1922 1923 /* First address any alarm / warning activity */ 1924 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1925 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1926 1927 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1928 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1929 phba->link_state == LPFC_LINK_DOWN) 1930 return 0; 1931 1932 spin_lock_irqsave(&phba->hbalock, iflags); 1933 sync_buf = __lpfc_sli_get_iocbq(phba); 1934 if (!sync_buf) { 1935 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1936 "6213 No available WQEs for CMF_SYNC_WQE\n"); 1937 ret_val = ENOMEM; 1938 goto out_unlock; 1939 } 1940 1941 wqe = &sync_buf->wqe; 1942 1943 /* WQEs are reused. Clear stale data and set key fields to zero */ 1944 memset(wqe, 0, sizeof(*wqe)); 1945 1946 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1947 if (!ms) { 1948 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1949 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1950 phba->fc_eventTag); 1951 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1952 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1953 goto initpath; 1954 } 1955 1956 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1957 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1958 1959 /* Check for alarms / warnings */ 1960 if (atot) { 1961 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1962 /* We hit an Signal alarm condition */ 1963 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1964 } else { 1965 /* We hit a FPIN alarm condition */ 1966 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1967 } 1968 } else if (wtot) { 1969 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1970 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1971 /* We hit an Signal warning condition */ 1972 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1973 lpfc_acqe_cgn_frequency; 1974 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1975 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1976 } else { 1977 /* We hit a FPIN warning condition */ 1978 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1979 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1980 } 1981 } 1982 1983 /* Update total read blocks during previous timer interval */ 1984 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 1985 1986 initpath: 1987 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 1988 wqe->cmf_sync.event_tag = phba->fc_eventTag; 1989 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 1990 1991 /* Setup reqtag to match the wqe completion. */ 1992 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 1993 1994 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 1995 1996 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 1997 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 1998 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 1999 2000 sync_buf->vport = phba->pport; 2001 sync_buf->wqe_cmpl = lpfc_cmf_sync_cmpl; 2002 sync_buf->iocb_cmpl = NULL; 2003 sync_buf->context1 = NULL; 2004 sync_buf->context2 = NULL; 2005 sync_buf->context3 = NULL; 2006 sync_buf->sli4_xritag = NO_XRI; 2007 2008 sync_buf->iocb_flag |= LPFC_IO_CMF; 2009 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2010 if (ret_val) 2011 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2012 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2013 ret_val); 2014 out_unlock: 2015 spin_unlock_irqrestore(&phba->hbalock, iflags); 2016 return ret_val; 2017 } 2018 2019 /** 2020 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2021 * @phba: Pointer to HBA context object. 2022 * @pring: Pointer to driver SLI ring object. 2023 * 2024 * This function is called with hbalock held and the caller must post the 2025 * iocb without releasing the lock. If the caller releases the lock, 2026 * iocb slot returned by the function is not guaranteed to be available. 2027 * The function returns pointer to the next available iocb slot if there 2028 * is available slot in the ring, else it returns NULL. 2029 * If the get index of the ring is ahead of the put index, the function 2030 * will post an error attention event to the worker thread to take the 2031 * HBA to offline state. 2032 **/ 2033 static IOCB_t * 2034 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2035 { 2036 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2037 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2038 2039 lockdep_assert_held(&phba->hbalock); 2040 2041 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2042 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2043 pring->sli.sli3.next_cmdidx = 0; 2044 2045 if (unlikely(pring->sli.sli3.local_getidx == 2046 pring->sli.sli3.next_cmdidx)) { 2047 2048 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2049 2050 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2051 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2052 "0315 Ring %d issue: portCmdGet %d " 2053 "is bigger than cmd ring %d\n", 2054 pring->ringno, 2055 pring->sli.sli3.local_getidx, 2056 max_cmd_idx); 2057 2058 phba->link_state = LPFC_HBA_ERROR; 2059 /* 2060 * All error attention handlers are posted to 2061 * worker thread 2062 */ 2063 phba->work_ha |= HA_ERATT; 2064 phba->work_hs = HS_FFER3; 2065 2066 lpfc_worker_wake_up(phba); 2067 2068 return NULL; 2069 } 2070 2071 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2072 return NULL; 2073 } 2074 2075 return lpfc_cmd_iocb(phba, pring); 2076 } 2077 2078 /** 2079 * lpfc_sli_next_iotag - Get an iotag for the iocb 2080 * @phba: Pointer to HBA context object. 2081 * @iocbq: Pointer to driver iocb object. 2082 * 2083 * This function gets an iotag for the iocb. If there is no unused iotag and 2084 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2085 * array and assigns a new iotag. 2086 * The function returns the allocated iotag if successful, else returns zero. 2087 * Zero is not a valid iotag. 2088 * The caller is not required to hold any lock. 2089 **/ 2090 uint16_t 2091 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2092 { 2093 struct lpfc_iocbq **new_arr; 2094 struct lpfc_iocbq **old_arr; 2095 size_t new_len; 2096 struct lpfc_sli *psli = &phba->sli; 2097 uint16_t iotag; 2098 2099 spin_lock_irq(&phba->hbalock); 2100 iotag = psli->last_iotag; 2101 if(++iotag < psli->iocbq_lookup_len) { 2102 psli->last_iotag = iotag; 2103 psli->iocbq_lookup[iotag] = iocbq; 2104 spin_unlock_irq(&phba->hbalock); 2105 iocbq->iotag = iotag; 2106 return iotag; 2107 } else if (psli->iocbq_lookup_len < (0xffff 2108 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2109 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2110 spin_unlock_irq(&phba->hbalock); 2111 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2112 GFP_KERNEL); 2113 if (new_arr) { 2114 spin_lock_irq(&phba->hbalock); 2115 old_arr = psli->iocbq_lookup; 2116 if (new_len <= psli->iocbq_lookup_len) { 2117 /* highly unprobable case */ 2118 kfree(new_arr); 2119 iotag = psli->last_iotag; 2120 if(++iotag < psli->iocbq_lookup_len) { 2121 psli->last_iotag = iotag; 2122 psli->iocbq_lookup[iotag] = iocbq; 2123 spin_unlock_irq(&phba->hbalock); 2124 iocbq->iotag = iotag; 2125 return iotag; 2126 } 2127 spin_unlock_irq(&phba->hbalock); 2128 return 0; 2129 } 2130 if (psli->iocbq_lookup) 2131 memcpy(new_arr, old_arr, 2132 ((psli->last_iotag + 1) * 2133 sizeof (struct lpfc_iocbq *))); 2134 psli->iocbq_lookup = new_arr; 2135 psli->iocbq_lookup_len = new_len; 2136 psli->last_iotag = iotag; 2137 psli->iocbq_lookup[iotag] = iocbq; 2138 spin_unlock_irq(&phba->hbalock); 2139 iocbq->iotag = iotag; 2140 kfree(old_arr); 2141 return iotag; 2142 } 2143 } else 2144 spin_unlock_irq(&phba->hbalock); 2145 2146 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2147 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2148 psli->last_iotag); 2149 2150 return 0; 2151 } 2152 2153 /** 2154 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2155 * @phba: Pointer to HBA context object. 2156 * @pring: Pointer to driver SLI ring object. 2157 * @iocb: Pointer to iocb slot in the ring. 2158 * @nextiocb: Pointer to driver iocb object which need to be 2159 * posted to firmware. 2160 * 2161 * This function is called to post a new iocb to the firmware. This 2162 * function copies the new iocb to ring iocb slot and updates the 2163 * ring pointers. It adds the new iocb to txcmplq if there is 2164 * a completion call back for this iocb else the function will free the 2165 * iocb object. The hbalock is asserted held in the code path calling 2166 * this routine. 2167 **/ 2168 static void 2169 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2170 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2171 { 2172 /* 2173 * Set up an iotag 2174 */ 2175 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 2176 2177 2178 if (pring->ringno == LPFC_ELS_RING) { 2179 lpfc_debugfs_slow_ring_trc(phba, 2180 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2181 *(((uint32_t *) &nextiocb->iocb) + 4), 2182 *(((uint32_t *) &nextiocb->iocb) + 6), 2183 *(((uint32_t *) &nextiocb->iocb) + 7)); 2184 } 2185 2186 /* 2187 * Issue iocb command to adapter 2188 */ 2189 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2190 wmb(); 2191 pring->stats.iocb_cmd++; 2192 2193 /* 2194 * If there is no completion routine to call, we can release the 2195 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2196 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 2197 */ 2198 if (nextiocb->iocb_cmpl) 2199 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2200 else 2201 __lpfc_sli_release_iocbq(phba, nextiocb); 2202 2203 /* 2204 * Let the HBA know what IOCB slot will be the next one the 2205 * driver will put a command into. 2206 */ 2207 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2208 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2209 } 2210 2211 /** 2212 * lpfc_sli_update_full_ring - Update the chip attention register 2213 * @phba: Pointer to HBA context object. 2214 * @pring: Pointer to driver SLI ring object. 2215 * 2216 * The caller is not required to hold any lock for calling this function. 2217 * This function updates the chip attention bits for the ring to inform firmware 2218 * that there are pending work to be done for this ring and requests an 2219 * interrupt when there is space available in the ring. This function is 2220 * called when the driver is unable to post more iocbs to the ring due 2221 * to unavailability of space in the ring. 2222 **/ 2223 static void 2224 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2225 { 2226 int ringno = pring->ringno; 2227 2228 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2229 2230 wmb(); 2231 2232 /* 2233 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2234 * The HBA will tell us when an IOCB entry is available. 2235 */ 2236 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2237 readl(phba->CAregaddr); /* flush */ 2238 2239 pring->stats.iocb_cmd_full++; 2240 } 2241 2242 /** 2243 * lpfc_sli_update_ring - Update chip attention register 2244 * @phba: Pointer to HBA context object. 2245 * @pring: Pointer to driver SLI ring object. 2246 * 2247 * This function updates the chip attention register bit for the 2248 * given ring to inform HBA that there is more work to be done 2249 * in this ring. The caller is not required to hold any lock. 2250 **/ 2251 static void 2252 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2253 { 2254 int ringno = pring->ringno; 2255 2256 /* 2257 * Tell the HBA that there is work to do in this ring. 2258 */ 2259 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2260 wmb(); 2261 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2262 readl(phba->CAregaddr); /* flush */ 2263 } 2264 } 2265 2266 /** 2267 * lpfc_sli_resume_iocb - Process iocbs in the txq 2268 * @phba: Pointer to HBA context object. 2269 * @pring: Pointer to driver SLI ring object. 2270 * 2271 * This function is called with hbalock held to post pending iocbs 2272 * in the txq to the firmware. This function is called when driver 2273 * detects space available in the ring. 2274 **/ 2275 static void 2276 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2277 { 2278 IOCB_t *iocb; 2279 struct lpfc_iocbq *nextiocb; 2280 2281 lockdep_assert_held(&phba->hbalock); 2282 2283 /* 2284 * Check to see if: 2285 * (a) there is anything on the txq to send 2286 * (b) link is up 2287 * (c) link attention events can be processed (fcp ring only) 2288 * (d) IOCB processing is not blocked by the outstanding mbox command. 2289 */ 2290 2291 if (lpfc_is_link_up(phba) && 2292 (!list_empty(&pring->txq)) && 2293 (pring->ringno != LPFC_FCP_RING || 2294 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2295 2296 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2297 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2298 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2299 2300 if (iocb) 2301 lpfc_sli_update_ring(phba, pring); 2302 else 2303 lpfc_sli_update_full_ring(phba, pring); 2304 } 2305 2306 return; 2307 } 2308 2309 /** 2310 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2311 * @phba: Pointer to HBA context object. 2312 * @hbqno: HBQ number. 2313 * 2314 * This function is called with hbalock held to get the next 2315 * available slot for the given HBQ. If there is free slot 2316 * available for the HBQ it will return pointer to the next available 2317 * HBQ entry else it will return NULL. 2318 **/ 2319 static struct lpfc_hbq_entry * 2320 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2321 { 2322 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2323 2324 lockdep_assert_held(&phba->hbalock); 2325 2326 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2327 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2328 hbqp->next_hbqPutIdx = 0; 2329 2330 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2331 uint32_t raw_index = phba->hbq_get[hbqno]; 2332 uint32_t getidx = le32_to_cpu(raw_index); 2333 2334 hbqp->local_hbqGetIdx = getidx; 2335 2336 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2337 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2338 "1802 HBQ %d: local_hbqGetIdx " 2339 "%u is > than hbqp->entry_count %u\n", 2340 hbqno, hbqp->local_hbqGetIdx, 2341 hbqp->entry_count); 2342 2343 phba->link_state = LPFC_HBA_ERROR; 2344 return NULL; 2345 } 2346 2347 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2348 return NULL; 2349 } 2350 2351 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2352 hbqp->hbqPutIdx; 2353 } 2354 2355 /** 2356 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2357 * @phba: Pointer to HBA context object. 2358 * 2359 * This function is called with no lock held to free all the 2360 * hbq buffers while uninitializing the SLI interface. It also 2361 * frees the HBQ buffers returned by the firmware but not yet 2362 * processed by the upper layers. 2363 **/ 2364 void 2365 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2366 { 2367 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2368 struct hbq_dmabuf *hbq_buf; 2369 unsigned long flags; 2370 int i, hbq_count; 2371 2372 hbq_count = lpfc_sli_hbq_count(); 2373 /* Return all memory used by all HBQs */ 2374 spin_lock_irqsave(&phba->hbalock, flags); 2375 for (i = 0; i < hbq_count; ++i) { 2376 list_for_each_entry_safe(dmabuf, next_dmabuf, 2377 &phba->hbqs[i].hbq_buffer_list, list) { 2378 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2379 list_del(&hbq_buf->dbuf.list); 2380 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2381 } 2382 phba->hbqs[i].buffer_count = 0; 2383 } 2384 2385 /* Mark the HBQs not in use */ 2386 phba->hbq_in_use = 0; 2387 spin_unlock_irqrestore(&phba->hbalock, flags); 2388 } 2389 2390 /** 2391 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2392 * @phba: Pointer to HBA context object. 2393 * @hbqno: HBQ number. 2394 * @hbq_buf: Pointer to HBQ buffer. 2395 * 2396 * This function is called with the hbalock held to post a 2397 * hbq buffer to the firmware. If the function finds an empty 2398 * slot in the HBQ, it will post the buffer. The function will return 2399 * pointer to the hbq entry if it successfully post the buffer 2400 * else it will return NULL. 2401 **/ 2402 static int 2403 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2404 struct hbq_dmabuf *hbq_buf) 2405 { 2406 lockdep_assert_held(&phba->hbalock); 2407 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2408 } 2409 2410 /** 2411 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2412 * @phba: Pointer to HBA context object. 2413 * @hbqno: HBQ number. 2414 * @hbq_buf: Pointer to HBQ buffer. 2415 * 2416 * This function is called with the hbalock held to post a hbq buffer to the 2417 * firmware. If the function finds an empty slot in the HBQ, it will post the 2418 * buffer and place it on the hbq_buffer_list. The function will return zero if 2419 * it successfully post the buffer else it will return an error. 2420 **/ 2421 static int 2422 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2423 struct hbq_dmabuf *hbq_buf) 2424 { 2425 struct lpfc_hbq_entry *hbqe; 2426 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2427 2428 lockdep_assert_held(&phba->hbalock); 2429 /* Get next HBQ entry slot to use */ 2430 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2431 if (hbqe) { 2432 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2433 2434 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2435 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2436 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2437 hbqe->bde.tus.f.bdeFlags = 0; 2438 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2439 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2440 /* Sync SLIM */ 2441 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2442 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2443 /* flush */ 2444 readl(phba->hbq_put + hbqno); 2445 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2446 return 0; 2447 } else 2448 return -ENOMEM; 2449 } 2450 2451 /** 2452 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2453 * @phba: Pointer to HBA context object. 2454 * @hbqno: HBQ number. 2455 * @hbq_buf: Pointer to HBQ buffer. 2456 * 2457 * This function is called with the hbalock held to post an RQE to the SLI4 2458 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2459 * the hbq_buffer_list and return zero, otherwise it will return an error. 2460 **/ 2461 static int 2462 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2463 struct hbq_dmabuf *hbq_buf) 2464 { 2465 int rc; 2466 struct lpfc_rqe hrqe; 2467 struct lpfc_rqe drqe; 2468 struct lpfc_queue *hrq; 2469 struct lpfc_queue *drq; 2470 2471 if (hbqno != LPFC_ELS_HBQ) 2472 return 1; 2473 hrq = phba->sli4_hba.hdr_rq; 2474 drq = phba->sli4_hba.dat_rq; 2475 2476 lockdep_assert_held(&phba->hbalock); 2477 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2478 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2479 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2480 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2481 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2482 if (rc < 0) 2483 return rc; 2484 hbq_buf->tag = (rc | (hbqno << 16)); 2485 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2486 return 0; 2487 } 2488 2489 /* HBQ for ELS and CT traffic. */ 2490 static struct lpfc_hbq_init lpfc_els_hbq = { 2491 .rn = 1, 2492 .entry_count = 256, 2493 .mask_count = 0, 2494 .profile = 0, 2495 .ring_mask = (1 << LPFC_ELS_RING), 2496 .buffer_count = 0, 2497 .init_count = 40, 2498 .add_count = 40, 2499 }; 2500 2501 /* Array of HBQs */ 2502 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2503 &lpfc_els_hbq, 2504 }; 2505 2506 /** 2507 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2508 * @phba: Pointer to HBA context object. 2509 * @hbqno: HBQ number. 2510 * @count: Number of HBQ buffers to be posted. 2511 * 2512 * This function is called with no lock held to post more hbq buffers to the 2513 * given HBQ. The function returns the number of HBQ buffers successfully 2514 * posted. 2515 **/ 2516 static int 2517 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2518 { 2519 uint32_t i, posted = 0; 2520 unsigned long flags; 2521 struct hbq_dmabuf *hbq_buffer; 2522 LIST_HEAD(hbq_buf_list); 2523 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2524 return 0; 2525 2526 if ((phba->hbqs[hbqno].buffer_count + count) > 2527 lpfc_hbq_defs[hbqno]->entry_count) 2528 count = lpfc_hbq_defs[hbqno]->entry_count - 2529 phba->hbqs[hbqno].buffer_count; 2530 if (!count) 2531 return 0; 2532 /* Allocate HBQ entries */ 2533 for (i = 0; i < count; i++) { 2534 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2535 if (!hbq_buffer) 2536 break; 2537 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2538 } 2539 /* Check whether HBQ is still in use */ 2540 spin_lock_irqsave(&phba->hbalock, flags); 2541 if (!phba->hbq_in_use) 2542 goto err; 2543 while (!list_empty(&hbq_buf_list)) { 2544 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2545 dbuf.list); 2546 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2547 (hbqno << 16)); 2548 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2549 phba->hbqs[hbqno].buffer_count++; 2550 posted++; 2551 } else 2552 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2553 } 2554 spin_unlock_irqrestore(&phba->hbalock, flags); 2555 return posted; 2556 err: 2557 spin_unlock_irqrestore(&phba->hbalock, flags); 2558 while (!list_empty(&hbq_buf_list)) { 2559 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2560 dbuf.list); 2561 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2562 } 2563 return 0; 2564 } 2565 2566 /** 2567 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2568 * @phba: Pointer to HBA context object. 2569 * @qno: HBQ number. 2570 * 2571 * This function posts more buffers to the HBQ. This function 2572 * is called with no lock held. The function returns the number of HBQ entries 2573 * successfully allocated. 2574 **/ 2575 int 2576 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2577 { 2578 if (phba->sli_rev == LPFC_SLI_REV4) 2579 return 0; 2580 else 2581 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2582 lpfc_hbq_defs[qno]->add_count); 2583 } 2584 2585 /** 2586 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2587 * @phba: Pointer to HBA context object. 2588 * @qno: HBQ queue number. 2589 * 2590 * This function is called from SLI initialization code path with 2591 * no lock held to post initial HBQ buffers to firmware. The 2592 * function returns the number of HBQ entries successfully allocated. 2593 **/ 2594 static int 2595 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2596 { 2597 if (phba->sli_rev == LPFC_SLI_REV4) 2598 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2599 lpfc_hbq_defs[qno]->entry_count); 2600 else 2601 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2602 lpfc_hbq_defs[qno]->init_count); 2603 } 2604 2605 /* 2606 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2607 * 2608 * This function removes the first hbq buffer on an hbq list and returns a 2609 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2610 **/ 2611 static struct hbq_dmabuf * 2612 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2613 { 2614 struct lpfc_dmabuf *d_buf; 2615 2616 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2617 if (!d_buf) 2618 return NULL; 2619 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2620 } 2621 2622 /** 2623 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2624 * @phba: Pointer to HBA context object. 2625 * @hrq: HBQ number. 2626 * 2627 * This function removes the first RQ buffer on an RQ buffer list and returns a 2628 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2629 **/ 2630 static struct rqb_dmabuf * 2631 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2632 { 2633 struct lpfc_dmabuf *h_buf; 2634 struct lpfc_rqb *rqbp; 2635 2636 rqbp = hrq->rqbp; 2637 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2638 struct lpfc_dmabuf, list); 2639 if (!h_buf) 2640 return NULL; 2641 rqbp->buffer_count--; 2642 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2643 } 2644 2645 /** 2646 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2647 * @phba: Pointer to HBA context object. 2648 * @tag: Tag of the hbq buffer. 2649 * 2650 * This function searches for the hbq buffer associated with the given tag in 2651 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2652 * otherwise it returns NULL. 2653 **/ 2654 static struct hbq_dmabuf * 2655 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2656 { 2657 struct lpfc_dmabuf *d_buf; 2658 struct hbq_dmabuf *hbq_buf; 2659 uint32_t hbqno; 2660 2661 hbqno = tag >> 16; 2662 if (hbqno >= LPFC_MAX_HBQS) 2663 return NULL; 2664 2665 spin_lock_irq(&phba->hbalock); 2666 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2667 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2668 if (hbq_buf->tag == tag) { 2669 spin_unlock_irq(&phba->hbalock); 2670 return hbq_buf; 2671 } 2672 } 2673 spin_unlock_irq(&phba->hbalock); 2674 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2675 "1803 Bad hbq tag. Data: x%x x%x\n", 2676 tag, phba->hbqs[tag >> 16].buffer_count); 2677 return NULL; 2678 } 2679 2680 /** 2681 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2682 * @phba: Pointer to HBA context object. 2683 * @hbq_buffer: Pointer to HBQ buffer. 2684 * 2685 * This function is called with hbalock. This function gives back 2686 * the hbq buffer to firmware. If the HBQ does not have space to 2687 * post the buffer, it will free the buffer. 2688 **/ 2689 void 2690 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2691 { 2692 uint32_t hbqno; 2693 2694 if (hbq_buffer) { 2695 hbqno = hbq_buffer->tag >> 16; 2696 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2697 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2698 } 2699 } 2700 2701 /** 2702 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2703 * @mbxCommand: mailbox command code. 2704 * 2705 * This function is called by the mailbox event handler function to verify 2706 * that the completed mailbox command is a legitimate mailbox command. If the 2707 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2708 * and the mailbox event handler will take the HBA offline. 2709 **/ 2710 static int 2711 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2712 { 2713 uint8_t ret; 2714 2715 switch (mbxCommand) { 2716 case MBX_LOAD_SM: 2717 case MBX_READ_NV: 2718 case MBX_WRITE_NV: 2719 case MBX_WRITE_VPARMS: 2720 case MBX_RUN_BIU_DIAG: 2721 case MBX_INIT_LINK: 2722 case MBX_DOWN_LINK: 2723 case MBX_CONFIG_LINK: 2724 case MBX_CONFIG_RING: 2725 case MBX_RESET_RING: 2726 case MBX_READ_CONFIG: 2727 case MBX_READ_RCONFIG: 2728 case MBX_READ_SPARM: 2729 case MBX_READ_STATUS: 2730 case MBX_READ_RPI: 2731 case MBX_READ_XRI: 2732 case MBX_READ_REV: 2733 case MBX_READ_LNK_STAT: 2734 case MBX_REG_LOGIN: 2735 case MBX_UNREG_LOGIN: 2736 case MBX_CLEAR_LA: 2737 case MBX_DUMP_MEMORY: 2738 case MBX_DUMP_CONTEXT: 2739 case MBX_RUN_DIAGS: 2740 case MBX_RESTART: 2741 case MBX_UPDATE_CFG: 2742 case MBX_DOWN_LOAD: 2743 case MBX_DEL_LD_ENTRY: 2744 case MBX_RUN_PROGRAM: 2745 case MBX_SET_MASK: 2746 case MBX_SET_VARIABLE: 2747 case MBX_UNREG_D_ID: 2748 case MBX_KILL_BOARD: 2749 case MBX_CONFIG_FARP: 2750 case MBX_BEACON: 2751 case MBX_LOAD_AREA: 2752 case MBX_RUN_BIU_DIAG64: 2753 case MBX_CONFIG_PORT: 2754 case MBX_READ_SPARM64: 2755 case MBX_READ_RPI64: 2756 case MBX_REG_LOGIN64: 2757 case MBX_READ_TOPOLOGY: 2758 case MBX_WRITE_WWN: 2759 case MBX_SET_DEBUG: 2760 case MBX_LOAD_EXP_ROM: 2761 case MBX_ASYNCEVT_ENABLE: 2762 case MBX_REG_VPI: 2763 case MBX_UNREG_VPI: 2764 case MBX_HEARTBEAT: 2765 case MBX_PORT_CAPABILITIES: 2766 case MBX_PORT_IOV_CONTROL: 2767 case MBX_SLI4_CONFIG: 2768 case MBX_SLI4_REQ_FTRS: 2769 case MBX_REG_FCFI: 2770 case MBX_UNREG_FCFI: 2771 case MBX_REG_VFI: 2772 case MBX_UNREG_VFI: 2773 case MBX_INIT_VPI: 2774 case MBX_INIT_VFI: 2775 case MBX_RESUME_RPI: 2776 case MBX_READ_EVENT_LOG_STATUS: 2777 case MBX_READ_EVENT_LOG: 2778 case MBX_SECURITY_MGMT: 2779 case MBX_AUTH_PORT: 2780 case MBX_ACCESS_VDATA: 2781 ret = mbxCommand; 2782 break; 2783 default: 2784 ret = MBX_SHUTDOWN; 2785 break; 2786 } 2787 return ret; 2788 } 2789 2790 /** 2791 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2792 * @phba: Pointer to HBA context object. 2793 * @pmboxq: Pointer to mailbox command. 2794 * 2795 * This is completion handler function for mailbox commands issued from 2796 * lpfc_sli_issue_mbox_wait function. This function is called by the 2797 * mailbox event handler function with no lock held. This function 2798 * will wake up thread waiting on the wait queue pointed by context1 2799 * of the mailbox. 2800 **/ 2801 void 2802 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2803 { 2804 unsigned long drvr_flag; 2805 struct completion *pmbox_done; 2806 2807 /* 2808 * If pmbox_done is empty, the driver thread gave up waiting and 2809 * continued running. 2810 */ 2811 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2812 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2813 pmbox_done = (struct completion *)pmboxq->context3; 2814 if (pmbox_done) 2815 complete(pmbox_done); 2816 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2817 return; 2818 } 2819 2820 static void 2821 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2822 { 2823 unsigned long iflags; 2824 2825 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2826 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2827 spin_lock_irqsave(&ndlp->lock, iflags); 2828 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2829 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2830 spin_unlock_irqrestore(&ndlp->lock, iflags); 2831 } 2832 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2833 } 2834 2835 /** 2836 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2837 * @phba: Pointer to HBA context object. 2838 * @pmb: Pointer to mailbox object. 2839 * 2840 * This function is the default mailbox completion handler. It 2841 * frees the memory resources associated with the completed mailbox 2842 * command. If the completed command is a REG_LOGIN mailbox command, 2843 * this function will issue a UREG_LOGIN to re-claim the RPI. 2844 **/ 2845 void 2846 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2847 { 2848 struct lpfc_vport *vport = pmb->vport; 2849 struct lpfc_dmabuf *mp; 2850 struct lpfc_nodelist *ndlp; 2851 struct Scsi_Host *shost; 2852 uint16_t rpi, vpi; 2853 int rc; 2854 2855 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2856 2857 if (mp) { 2858 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2859 kfree(mp); 2860 } 2861 2862 /* 2863 * If a REG_LOGIN succeeded after node is destroyed or node 2864 * is in re-discovery driver need to cleanup the RPI. 2865 */ 2866 if (!(phba->pport->load_flag & FC_UNLOADING) && 2867 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2868 !pmb->u.mb.mbxStatus) { 2869 rpi = pmb->u.mb.un.varWords[0]; 2870 vpi = pmb->u.mb.un.varRegLogin.vpi; 2871 if (phba->sli_rev == LPFC_SLI_REV4) 2872 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2873 lpfc_unreg_login(phba, vpi, rpi, pmb); 2874 pmb->vport = vport; 2875 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2876 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2877 if (rc != MBX_NOT_FINISHED) 2878 return; 2879 } 2880 2881 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2882 !(phba->pport->load_flag & FC_UNLOADING) && 2883 !pmb->u.mb.mbxStatus) { 2884 shost = lpfc_shost_from_vport(vport); 2885 spin_lock_irq(shost->host_lock); 2886 vport->vpi_state |= LPFC_VPI_REGISTERED; 2887 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2888 spin_unlock_irq(shost->host_lock); 2889 } 2890 2891 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2892 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2893 lpfc_nlp_put(ndlp); 2894 pmb->ctx_buf = NULL; 2895 pmb->ctx_ndlp = NULL; 2896 } 2897 2898 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2899 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2900 2901 /* Check to see if there are any deferred events to process */ 2902 if (ndlp) { 2903 lpfc_printf_vlog( 2904 vport, 2905 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2906 "1438 UNREG cmpl deferred mbox x%x " 2907 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2908 ndlp->nlp_rpi, ndlp->nlp_DID, 2909 ndlp->nlp_flag, ndlp->nlp_defer_did, 2910 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2911 2912 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2913 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2914 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2915 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2916 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2917 } else { 2918 __lpfc_sli_rpi_release(vport, ndlp); 2919 } 2920 2921 /* The unreg_login mailbox is complete and had a 2922 * reference that has to be released. The PLOGI 2923 * got its own ref. 2924 */ 2925 lpfc_nlp_put(ndlp); 2926 pmb->ctx_ndlp = NULL; 2927 } 2928 } 2929 2930 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2931 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2932 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2933 lpfc_nlp_put(ndlp); 2934 } 2935 2936 /* Check security permission status on INIT_LINK mailbox command */ 2937 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2938 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2939 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2940 "2860 SLI authentication is required " 2941 "for INIT_LINK but has not done yet\n"); 2942 2943 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2944 lpfc_sli4_mbox_cmd_free(phba, pmb); 2945 else 2946 mempool_free(pmb, phba->mbox_mem_pool); 2947 } 2948 /** 2949 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2950 * @phba: Pointer to HBA context object. 2951 * @pmb: Pointer to mailbox object. 2952 * 2953 * This function is the unreg rpi mailbox completion handler. It 2954 * frees the memory resources associated with the completed mailbox 2955 * command. An additional reference is put on the ndlp to prevent 2956 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2957 * the unreg mailbox command completes, this routine puts the 2958 * reference back. 2959 * 2960 **/ 2961 void 2962 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2963 { 2964 struct lpfc_vport *vport = pmb->vport; 2965 struct lpfc_nodelist *ndlp; 2966 2967 ndlp = pmb->ctx_ndlp; 2968 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2969 if (phba->sli_rev == LPFC_SLI_REV4 && 2970 (bf_get(lpfc_sli_intf_if_type, 2971 &phba->sli4_hba.sli_intf) >= 2972 LPFC_SLI_INTF_IF_TYPE_2)) { 2973 if (ndlp) { 2974 lpfc_printf_vlog( 2975 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2976 "0010 UNREG_LOGIN vpi:%x " 2977 "rpi:%x DID:%x defer x%x flg x%x " 2978 "x%px\n", 2979 vport->vpi, ndlp->nlp_rpi, 2980 ndlp->nlp_DID, ndlp->nlp_defer_did, 2981 ndlp->nlp_flag, 2982 ndlp); 2983 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2984 2985 /* Check to see if there are any deferred 2986 * events to process 2987 */ 2988 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2989 (ndlp->nlp_defer_did != 2990 NLP_EVT_NOTHING_PENDING)) { 2991 lpfc_printf_vlog( 2992 vport, KERN_INFO, LOG_DISCOVERY, 2993 "4111 UNREG cmpl deferred " 2994 "clr x%x on " 2995 "NPort x%x Data: x%x x%px\n", 2996 ndlp->nlp_rpi, ndlp->nlp_DID, 2997 ndlp->nlp_defer_did, ndlp); 2998 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2999 ndlp->nlp_defer_did = 3000 NLP_EVT_NOTHING_PENDING; 3001 lpfc_issue_els_plogi( 3002 vport, ndlp->nlp_DID, 0); 3003 } else { 3004 __lpfc_sli_rpi_release(vport, ndlp); 3005 } 3006 lpfc_nlp_put(ndlp); 3007 } 3008 } 3009 } 3010 3011 mempool_free(pmb, phba->mbox_mem_pool); 3012 } 3013 3014 /** 3015 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3016 * @phba: Pointer to HBA context object. 3017 * 3018 * This function is called with no lock held. This function processes all 3019 * the completed mailbox commands and gives it to upper layers. The interrupt 3020 * service routine processes mailbox completion interrupt and adds completed 3021 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3022 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3023 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3024 * function returns the mailbox commands to the upper layer by calling the 3025 * completion handler function of each mailbox. 3026 **/ 3027 int 3028 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3029 { 3030 MAILBOX_t *pmbox; 3031 LPFC_MBOXQ_t *pmb; 3032 int rc; 3033 LIST_HEAD(cmplq); 3034 3035 phba->sli.slistat.mbox_event++; 3036 3037 /* Get all completed mailboxe buffers into the cmplq */ 3038 spin_lock_irq(&phba->hbalock); 3039 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3040 spin_unlock_irq(&phba->hbalock); 3041 3042 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3043 do { 3044 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3045 if (pmb == NULL) 3046 break; 3047 3048 pmbox = &pmb->u.mb; 3049 3050 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3051 if (pmb->vport) { 3052 lpfc_debugfs_disc_trc(pmb->vport, 3053 LPFC_DISC_TRC_MBOX_VPORT, 3054 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3055 (uint32_t)pmbox->mbxCommand, 3056 pmbox->un.varWords[0], 3057 pmbox->un.varWords[1]); 3058 } 3059 else { 3060 lpfc_debugfs_disc_trc(phba->pport, 3061 LPFC_DISC_TRC_MBOX, 3062 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3063 (uint32_t)pmbox->mbxCommand, 3064 pmbox->un.varWords[0], 3065 pmbox->un.varWords[1]); 3066 } 3067 } 3068 3069 /* 3070 * It is a fatal error if unknown mbox command completion. 3071 */ 3072 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3073 MBX_SHUTDOWN) { 3074 /* Unknown mailbox command compl */ 3075 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3076 "(%d):0323 Unknown Mailbox command " 3077 "x%x (x%x/x%x) Cmpl\n", 3078 pmb->vport ? pmb->vport->vpi : 3079 LPFC_VPORT_UNKNOWN, 3080 pmbox->mbxCommand, 3081 lpfc_sli_config_mbox_subsys_get(phba, 3082 pmb), 3083 lpfc_sli_config_mbox_opcode_get(phba, 3084 pmb)); 3085 phba->link_state = LPFC_HBA_ERROR; 3086 phba->work_hs = HS_FFER3; 3087 lpfc_handle_eratt(phba); 3088 continue; 3089 } 3090 3091 if (pmbox->mbxStatus) { 3092 phba->sli.slistat.mbox_stat_err++; 3093 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3094 /* Mbox cmd cmpl error - RETRYing */ 3095 lpfc_printf_log(phba, KERN_INFO, 3096 LOG_MBOX | LOG_SLI, 3097 "(%d):0305 Mbox cmd cmpl " 3098 "error - RETRYing Data: x%x " 3099 "(x%x/x%x) x%x x%x x%x\n", 3100 pmb->vport ? pmb->vport->vpi : 3101 LPFC_VPORT_UNKNOWN, 3102 pmbox->mbxCommand, 3103 lpfc_sli_config_mbox_subsys_get(phba, 3104 pmb), 3105 lpfc_sli_config_mbox_opcode_get(phba, 3106 pmb), 3107 pmbox->mbxStatus, 3108 pmbox->un.varWords[0], 3109 pmb->vport ? pmb->vport->port_state : 3110 LPFC_VPORT_UNKNOWN); 3111 pmbox->mbxStatus = 0; 3112 pmbox->mbxOwner = OWN_HOST; 3113 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3114 if (rc != MBX_NOT_FINISHED) 3115 continue; 3116 } 3117 } 3118 3119 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3120 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3121 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3122 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3123 "x%x x%x x%x\n", 3124 pmb->vport ? pmb->vport->vpi : 0, 3125 pmbox->mbxCommand, 3126 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3127 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3128 pmb->mbox_cmpl, 3129 *((uint32_t *) pmbox), 3130 pmbox->un.varWords[0], 3131 pmbox->un.varWords[1], 3132 pmbox->un.varWords[2], 3133 pmbox->un.varWords[3], 3134 pmbox->un.varWords[4], 3135 pmbox->un.varWords[5], 3136 pmbox->un.varWords[6], 3137 pmbox->un.varWords[7], 3138 pmbox->un.varWords[8], 3139 pmbox->un.varWords[9], 3140 pmbox->un.varWords[10]); 3141 3142 if (pmb->mbox_cmpl) 3143 pmb->mbox_cmpl(phba,pmb); 3144 } while (1); 3145 return 0; 3146 } 3147 3148 /** 3149 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3150 * @phba: Pointer to HBA context object. 3151 * @pring: Pointer to driver SLI ring object. 3152 * @tag: buffer tag. 3153 * 3154 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3155 * is set in the tag the buffer is posted for a particular exchange, 3156 * the function will return the buffer without replacing the buffer. 3157 * If the buffer is for unsolicited ELS or CT traffic, this function 3158 * returns the buffer and also posts another buffer to the firmware. 3159 **/ 3160 static struct lpfc_dmabuf * 3161 lpfc_sli_get_buff(struct lpfc_hba *phba, 3162 struct lpfc_sli_ring *pring, 3163 uint32_t tag) 3164 { 3165 struct hbq_dmabuf *hbq_entry; 3166 3167 if (tag & QUE_BUFTAG_BIT) 3168 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3169 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3170 if (!hbq_entry) 3171 return NULL; 3172 return &hbq_entry->dbuf; 3173 } 3174 3175 /** 3176 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3177 * containing a NVME LS request. 3178 * @phba: pointer to lpfc hba data structure. 3179 * @piocb: pointer to the iocbq struct representing the sequence starting 3180 * frame. 3181 * 3182 * This routine initially validates the NVME LS, validates there is a login 3183 * with the port that sent the LS, and then calls the appropriate nvme host 3184 * or target LS request handler. 3185 **/ 3186 static void 3187 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3188 { 3189 struct lpfc_nodelist *ndlp; 3190 struct lpfc_dmabuf *d_buf; 3191 struct hbq_dmabuf *nvmebuf; 3192 struct fc_frame_header *fc_hdr; 3193 struct lpfc_async_xchg_ctx *axchg = NULL; 3194 char *failwhy = NULL; 3195 uint32_t oxid, sid, did, fctl, size; 3196 int ret = 1; 3197 3198 d_buf = piocb->context2; 3199 3200 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3201 fc_hdr = nvmebuf->hbuf.virt; 3202 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3203 sid = sli4_sid_from_fc_hdr(fc_hdr); 3204 did = sli4_did_from_fc_hdr(fc_hdr); 3205 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3206 fc_hdr->fh_f_ctl[1] << 8 | 3207 fc_hdr->fh_f_ctl[2]); 3208 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3209 3210 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3211 oxid, size, sid); 3212 3213 if (phba->pport->load_flag & FC_UNLOADING) { 3214 failwhy = "Driver Unloading"; 3215 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3216 failwhy = "NVME FC4 Disabled"; 3217 } else if (!phba->nvmet_support && !phba->pport->localport) { 3218 failwhy = "No Localport"; 3219 } else if (phba->nvmet_support && !phba->targetport) { 3220 failwhy = "No Targetport"; 3221 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3222 failwhy = "Bad NVME LS R_CTL"; 3223 } else if (unlikely((fctl & 0x00FF0000) != 3224 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3225 failwhy = "Bad NVME LS F_CTL"; 3226 } else { 3227 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3228 if (!axchg) 3229 failwhy = "No CTX memory"; 3230 } 3231 3232 if (unlikely(failwhy)) { 3233 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3234 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3235 sid, oxid, failwhy); 3236 goto out_fail; 3237 } 3238 3239 /* validate the source of the LS is logged in */ 3240 ndlp = lpfc_findnode_did(phba->pport, sid); 3241 if (!ndlp || 3242 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3243 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3244 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3245 "6216 NVME Unsol rcv: No ndlp: " 3246 "NPort_ID x%x oxid x%x\n", 3247 sid, oxid); 3248 goto out_fail; 3249 } 3250 3251 axchg->phba = phba; 3252 axchg->ndlp = ndlp; 3253 axchg->size = size; 3254 axchg->oxid = oxid; 3255 axchg->sid = sid; 3256 axchg->wqeq = NULL; 3257 axchg->state = LPFC_NVME_STE_LS_RCV; 3258 axchg->entry_cnt = 1; 3259 axchg->rqb_buffer = (void *)nvmebuf; 3260 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3261 axchg->payload = nvmebuf->dbuf.virt; 3262 INIT_LIST_HEAD(&axchg->list); 3263 3264 if (phba->nvmet_support) { 3265 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3266 spin_lock_irq(&ndlp->lock); 3267 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3268 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3269 spin_unlock_irq(&ndlp->lock); 3270 3271 /* This reference is a single occurrence to hold the 3272 * node valid until the nvmet transport calls 3273 * host_release. 3274 */ 3275 if (!lpfc_nlp_get(ndlp)) 3276 goto out_fail; 3277 3278 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3279 "6206 NVMET unsol ls_req ndlp x%px " 3280 "DID x%x xflags x%x refcnt %d\n", 3281 ndlp, ndlp->nlp_DID, 3282 ndlp->fc4_xpt_flags, 3283 kref_read(&ndlp->kref)); 3284 } else { 3285 spin_unlock_irq(&ndlp->lock); 3286 } 3287 } else { 3288 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3289 } 3290 3291 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3292 if (!ret) 3293 return; 3294 3295 out_fail: 3296 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3297 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3298 "NVMe%s handler failed %d\n", 3299 did, sid, oxid, 3300 (phba->nvmet_support) ? "T" : "I", ret); 3301 3302 /* recycle receive buffer */ 3303 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3304 3305 /* If start of new exchange, abort it */ 3306 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3307 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3308 3309 if (ret) 3310 kfree(axchg); 3311 } 3312 3313 /** 3314 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3315 * @phba: Pointer to HBA context object. 3316 * @pring: Pointer to driver SLI ring object. 3317 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3318 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3319 * @fch_type: the type for the first frame of the sequence. 3320 * 3321 * This function is called with no lock held. This function uses the r_ctl and 3322 * type of the received sequence to find the correct callback function to call 3323 * to process the sequence. 3324 **/ 3325 static int 3326 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3327 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3328 uint32_t fch_type) 3329 { 3330 int i; 3331 3332 switch (fch_type) { 3333 case FC_TYPE_NVME: 3334 lpfc_nvme_unsol_ls_handler(phba, saveq); 3335 return 1; 3336 default: 3337 break; 3338 } 3339 3340 /* unSolicited Responses */ 3341 if (pring->prt[0].profile) { 3342 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3343 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3344 saveq); 3345 return 1; 3346 } 3347 /* We must search, based on rctl / type 3348 for the right routine */ 3349 for (i = 0; i < pring->num_mask; i++) { 3350 if ((pring->prt[i].rctl == fch_r_ctl) && 3351 (pring->prt[i].type == fch_type)) { 3352 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3353 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3354 (phba, pring, saveq); 3355 return 1; 3356 } 3357 } 3358 return 0; 3359 } 3360 3361 /** 3362 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3363 * @phba: Pointer to HBA context object. 3364 * @pring: Pointer to driver SLI ring object. 3365 * @saveq: Pointer to the unsolicited iocb. 3366 * 3367 * This function is called with no lock held by the ring event handler 3368 * when there is an unsolicited iocb posted to the response ring by the 3369 * firmware. This function gets the buffer associated with the iocbs 3370 * and calls the event handler for the ring. This function handles both 3371 * qring buffers and hbq buffers. 3372 * When the function returns 1 the caller can free the iocb object otherwise 3373 * upper layer functions will free the iocb objects. 3374 **/ 3375 static int 3376 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3377 struct lpfc_iocbq *saveq) 3378 { 3379 IOCB_t * irsp; 3380 WORD5 * w5p; 3381 uint32_t Rctl, Type; 3382 struct lpfc_iocbq *iocbq; 3383 struct lpfc_dmabuf *dmzbuf; 3384 3385 irsp = &(saveq->iocb); 3386 3387 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3388 if (pring->lpfc_sli_rcv_async_status) 3389 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3390 else 3391 lpfc_printf_log(phba, 3392 KERN_WARNING, 3393 LOG_SLI, 3394 "0316 Ring %d handler: unexpected " 3395 "ASYNC_STATUS iocb received evt_code " 3396 "0x%x\n", 3397 pring->ringno, 3398 irsp->un.asyncstat.evt_code); 3399 return 1; 3400 } 3401 3402 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3403 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3404 if (irsp->ulpBdeCount > 0) { 3405 dmzbuf = lpfc_sli_get_buff(phba, pring, 3406 irsp->un.ulpWord[3]); 3407 lpfc_in_buf_free(phba, dmzbuf); 3408 } 3409 3410 if (irsp->ulpBdeCount > 1) { 3411 dmzbuf = lpfc_sli_get_buff(phba, pring, 3412 irsp->unsli3.sli3Words[3]); 3413 lpfc_in_buf_free(phba, dmzbuf); 3414 } 3415 3416 if (irsp->ulpBdeCount > 2) { 3417 dmzbuf = lpfc_sli_get_buff(phba, pring, 3418 irsp->unsli3.sli3Words[7]); 3419 lpfc_in_buf_free(phba, dmzbuf); 3420 } 3421 3422 return 1; 3423 } 3424 3425 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3426 if (irsp->ulpBdeCount != 0) { 3427 saveq->context2 = lpfc_sli_get_buff(phba, pring, 3428 irsp->un.ulpWord[3]); 3429 if (!saveq->context2) 3430 lpfc_printf_log(phba, 3431 KERN_ERR, 3432 LOG_SLI, 3433 "0341 Ring %d Cannot find buffer for " 3434 "an unsolicited iocb. tag 0x%x\n", 3435 pring->ringno, 3436 irsp->un.ulpWord[3]); 3437 } 3438 if (irsp->ulpBdeCount == 2) { 3439 saveq->context3 = lpfc_sli_get_buff(phba, pring, 3440 irsp->unsli3.sli3Words[7]); 3441 if (!saveq->context3) 3442 lpfc_printf_log(phba, 3443 KERN_ERR, 3444 LOG_SLI, 3445 "0342 Ring %d Cannot find buffer for an" 3446 " unsolicited iocb. tag 0x%x\n", 3447 pring->ringno, 3448 irsp->unsli3.sli3Words[7]); 3449 } 3450 list_for_each_entry(iocbq, &saveq->list, list) { 3451 irsp = &(iocbq->iocb); 3452 if (irsp->ulpBdeCount != 0) { 3453 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 3454 irsp->un.ulpWord[3]); 3455 if (!iocbq->context2) 3456 lpfc_printf_log(phba, 3457 KERN_ERR, 3458 LOG_SLI, 3459 "0343 Ring %d Cannot find " 3460 "buffer for an unsolicited iocb" 3461 ". tag 0x%x\n", pring->ringno, 3462 irsp->un.ulpWord[3]); 3463 } 3464 if (irsp->ulpBdeCount == 2) { 3465 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 3466 irsp->unsli3.sli3Words[7]); 3467 if (!iocbq->context3) 3468 lpfc_printf_log(phba, 3469 KERN_ERR, 3470 LOG_SLI, 3471 "0344 Ring %d Cannot find " 3472 "buffer for an unsolicited " 3473 "iocb. tag 0x%x\n", 3474 pring->ringno, 3475 irsp->unsli3.sli3Words[7]); 3476 } 3477 } 3478 } 3479 if (irsp->ulpBdeCount != 0 && 3480 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3481 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3482 int found = 0; 3483 3484 /* search continue save q for same XRI */ 3485 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3486 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3487 saveq->iocb.unsli3.rcvsli3.ox_id) { 3488 list_add_tail(&saveq->list, &iocbq->list); 3489 found = 1; 3490 break; 3491 } 3492 } 3493 if (!found) 3494 list_add_tail(&saveq->clist, 3495 &pring->iocb_continue_saveq); 3496 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3497 list_del_init(&iocbq->clist); 3498 saveq = iocbq; 3499 irsp = &(saveq->iocb); 3500 } else 3501 return 0; 3502 } 3503 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3504 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3505 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3506 Rctl = FC_RCTL_ELS_REQ; 3507 Type = FC_TYPE_ELS; 3508 } else { 3509 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3510 Rctl = w5p->hcsw.Rctl; 3511 Type = w5p->hcsw.Type; 3512 3513 /* Firmware Workaround */ 3514 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3515 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3516 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3517 Rctl = FC_RCTL_ELS_REQ; 3518 Type = FC_TYPE_ELS; 3519 w5p->hcsw.Rctl = Rctl; 3520 w5p->hcsw.Type = Type; 3521 } 3522 } 3523 3524 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3525 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3526 "0313 Ring %d handler: unexpected Rctl x%x " 3527 "Type x%x received\n", 3528 pring->ringno, Rctl, Type); 3529 3530 return 1; 3531 } 3532 3533 /** 3534 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3535 * @phba: Pointer to HBA context object. 3536 * @pring: Pointer to driver SLI ring object. 3537 * @prspiocb: Pointer to response iocb object. 3538 * 3539 * This function looks up the iocb_lookup table to get the command iocb 3540 * corresponding to the given response iocb using the iotag of the 3541 * response iocb. The driver calls this function with the hbalock held 3542 * for SLI3 ports or the ring lock held for SLI4 ports. 3543 * This function returns the command iocb object if it finds the command 3544 * iocb else returns NULL. 3545 **/ 3546 static struct lpfc_iocbq * 3547 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3548 struct lpfc_sli_ring *pring, 3549 struct lpfc_iocbq *prspiocb) 3550 { 3551 struct lpfc_iocbq *cmd_iocb = NULL; 3552 uint16_t iotag; 3553 spinlock_t *temp_lock = NULL; 3554 unsigned long iflag = 0; 3555 3556 if (phba->sli_rev == LPFC_SLI_REV4) 3557 temp_lock = &pring->ring_lock; 3558 else 3559 temp_lock = &phba->hbalock; 3560 3561 spin_lock_irqsave(temp_lock, iflag); 3562 iotag = prspiocb->iocb.ulpIoTag; 3563 3564 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3565 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3566 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3567 /* remove from txcmpl queue list */ 3568 list_del_init(&cmd_iocb->list); 3569 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3570 pring->txcmplq_cnt--; 3571 spin_unlock_irqrestore(temp_lock, iflag); 3572 return cmd_iocb; 3573 } 3574 } 3575 3576 spin_unlock_irqrestore(temp_lock, iflag); 3577 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3578 "0317 iotag x%x is out of " 3579 "range: max iotag x%x wd0 x%x\n", 3580 iotag, phba->sli.last_iotag, 3581 *(((uint32_t *) &prspiocb->iocb) + 7)); 3582 return NULL; 3583 } 3584 3585 /** 3586 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3587 * @phba: Pointer to HBA context object. 3588 * @pring: Pointer to driver SLI ring object. 3589 * @iotag: IOCB tag. 3590 * 3591 * This function looks up the iocb_lookup table to get the command iocb 3592 * corresponding to the given iotag. The driver calls this function with 3593 * the ring lock held because this function is an SLI4 port only helper. 3594 * This function returns the command iocb object if it finds the command 3595 * iocb else returns NULL. 3596 **/ 3597 static struct lpfc_iocbq * 3598 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3599 struct lpfc_sli_ring *pring, uint16_t iotag) 3600 { 3601 struct lpfc_iocbq *cmd_iocb = NULL; 3602 spinlock_t *temp_lock = NULL; 3603 unsigned long iflag = 0; 3604 3605 if (phba->sli_rev == LPFC_SLI_REV4) 3606 temp_lock = &pring->ring_lock; 3607 else 3608 temp_lock = &phba->hbalock; 3609 3610 spin_lock_irqsave(temp_lock, iflag); 3611 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3612 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3613 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3614 /* remove from txcmpl queue list */ 3615 list_del_init(&cmd_iocb->list); 3616 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3617 pring->txcmplq_cnt--; 3618 spin_unlock_irqrestore(temp_lock, iflag); 3619 return cmd_iocb; 3620 } 3621 } 3622 3623 spin_unlock_irqrestore(temp_lock, iflag); 3624 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3625 "0372 iotag x%x lookup error: max iotag (x%x) " 3626 "iocb_flag x%x\n", 3627 iotag, phba->sli.last_iotag, 3628 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3629 return NULL; 3630 } 3631 3632 /** 3633 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3634 * @phba: Pointer to HBA context object. 3635 * @pring: Pointer to driver SLI ring object. 3636 * @saveq: Pointer to the response iocb to be processed. 3637 * 3638 * This function is called by the ring event handler for non-fcp 3639 * rings when there is a new response iocb in the response ring. 3640 * The caller is not required to hold any locks. This function 3641 * gets the command iocb associated with the response iocb and 3642 * calls the completion handler for the command iocb. If there 3643 * is no completion handler, the function will free the resources 3644 * associated with command iocb. If the response iocb is for 3645 * an already aborted command iocb, the status of the completion 3646 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3647 * This function always returns 1. 3648 **/ 3649 static int 3650 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3651 struct lpfc_iocbq *saveq) 3652 { 3653 struct lpfc_iocbq *cmdiocbp; 3654 int rc = 1; 3655 unsigned long iflag; 3656 3657 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3658 if (cmdiocbp) { 3659 if (cmdiocbp->iocb_cmpl) { 3660 /* 3661 * If an ELS command failed send an event to mgmt 3662 * application. 3663 */ 3664 if (saveq->iocb.ulpStatus && 3665 (pring->ringno == LPFC_ELS_RING) && 3666 (cmdiocbp->iocb.ulpCommand == 3667 CMD_ELS_REQUEST64_CR)) 3668 lpfc_send_els_failure_event(phba, 3669 cmdiocbp, saveq); 3670 3671 /* 3672 * Post all ELS completions to the worker thread. 3673 * All other are passed to the completion callback. 3674 */ 3675 if (pring->ringno == LPFC_ELS_RING) { 3676 if ((phba->sli_rev < LPFC_SLI_REV4) && 3677 (cmdiocbp->iocb_flag & 3678 LPFC_DRIVER_ABORTED)) { 3679 spin_lock_irqsave(&phba->hbalock, 3680 iflag); 3681 cmdiocbp->iocb_flag &= 3682 ~LPFC_DRIVER_ABORTED; 3683 spin_unlock_irqrestore(&phba->hbalock, 3684 iflag); 3685 saveq->iocb.ulpStatus = 3686 IOSTAT_LOCAL_REJECT; 3687 saveq->iocb.un.ulpWord[4] = 3688 IOERR_SLI_ABORTED; 3689 3690 /* Firmware could still be in progress 3691 * of DMAing payload, so don't free data 3692 * buffer till after a hbeat. 3693 */ 3694 spin_lock_irqsave(&phba->hbalock, 3695 iflag); 3696 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3697 spin_unlock_irqrestore(&phba->hbalock, 3698 iflag); 3699 } 3700 if (phba->sli_rev == LPFC_SLI_REV4) { 3701 if (saveq->iocb_flag & 3702 LPFC_EXCHANGE_BUSY) { 3703 /* Set cmdiocb flag for the 3704 * exchange busy so sgl (xri) 3705 * will not be released until 3706 * the abort xri is received 3707 * from hba. 3708 */ 3709 spin_lock_irqsave( 3710 &phba->hbalock, iflag); 3711 cmdiocbp->iocb_flag |= 3712 LPFC_EXCHANGE_BUSY; 3713 spin_unlock_irqrestore( 3714 &phba->hbalock, iflag); 3715 } 3716 if (cmdiocbp->iocb_flag & 3717 LPFC_DRIVER_ABORTED) { 3718 /* 3719 * Clear LPFC_DRIVER_ABORTED 3720 * bit in case it was driver 3721 * initiated abort. 3722 */ 3723 spin_lock_irqsave( 3724 &phba->hbalock, iflag); 3725 cmdiocbp->iocb_flag &= 3726 ~LPFC_DRIVER_ABORTED; 3727 spin_unlock_irqrestore( 3728 &phba->hbalock, iflag); 3729 cmdiocbp->iocb.ulpStatus = 3730 IOSTAT_LOCAL_REJECT; 3731 cmdiocbp->iocb.un.ulpWord[4] = 3732 IOERR_ABORT_REQUESTED; 3733 /* 3734 * For SLI4, irsiocb contains 3735 * NO_XRI in sli_xritag, it 3736 * shall not affect releasing 3737 * sgl (xri) process. 3738 */ 3739 saveq->iocb.ulpStatus = 3740 IOSTAT_LOCAL_REJECT; 3741 saveq->iocb.un.ulpWord[4] = 3742 IOERR_SLI_ABORTED; 3743 spin_lock_irqsave( 3744 &phba->hbalock, iflag); 3745 saveq->iocb_flag |= 3746 LPFC_DELAY_MEM_FREE; 3747 spin_unlock_irqrestore( 3748 &phba->hbalock, iflag); 3749 } 3750 } 3751 } 3752 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3753 } else 3754 lpfc_sli_release_iocbq(phba, cmdiocbp); 3755 } else { 3756 /* 3757 * Unknown initiating command based on the response iotag. 3758 * This could be the case on the ELS ring because of 3759 * lpfc_els_abort(). 3760 */ 3761 if (pring->ringno != LPFC_ELS_RING) { 3762 /* 3763 * Ring <ringno> handler: unexpected completion IoTag 3764 * <IoTag> 3765 */ 3766 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3767 "0322 Ring %d handler: " 3768 "unexpected completion IoTag x%x " 3769 "Data: x%x x%x x%x x%x\n", 3770 pring->ringno, 3771 saveq->iocb.ulpIoTag, 3772 saveq->iocb.ulpStatus, 3773 saveq->iocb.un.ulpWord[4], 3774 saveq->iocb.ulpCommand, 3775 saveq->iocb.ulpContext); 3776 } 3777 } 3778 3779 return rc; 3780 } 3781 3782 /** 3783 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3784 * @phba: Pointer to HBA context object. 3785 * @pring: Pointer to driver SLI ring object. 3786 * 3787 * This function is called from the iocb ring event handlers when 3788 * put pointer is ahead of the get pointer for a ring. This function signal 3789 * an error attention condition to the worker thread and the worker 3790 * thread will transition the HBA to offline state. 3791 **/ 3792 static void 3793 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3794 { 3795 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3796 /* 3797 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3798 * rsp ring <portRspMax> 3799 */ 3800 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3801 "0312 Ring %d handler: portRspPut %d " 3802 "is bigger than rsp ring %d\n", 3803 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3804 pring->sli.sli3.numRiocb); 3805 3806 phba->link_state = LPFC_HBA_ERROR; 3807 3808 /* 3809 * All error attention handlers are posted to 3810 * worker thread 3811 */ 3812 phba->work_ha |= HA_ERATT; 3813 phba->work_hs = HS_FFER3; 3814 3815 lpfc_worker_wake_up(phba); 3816 3817 return; 3818 } 3819 3820 /** 3821 * lpfc_poll_eratt - Error attention polling timer timeout handler 3822 * @t: Context to fetch pointer to address of HBA context object from. 3823 * 3824 * This function is invoked by the Error Attention polling timer when the 3825 * timer times out. It will check the SLI Error Attention register for 3826 * possible attention events. If so, it will post an Error Attention event 3827 * and wake up worker thread to process it. Otherwise, it will set up the 3828 * Error Attention polling timer for the next poll. 3829 **/ 3830 void lpfc_poll_eratt(struct timer_list *t) 3831 { 3832 struct lpfc_hba *phba; 3833 uint32_t eratt = 0; 3834 uint64_t sli_intr, cnt; 3835 3836 phba = from_timer(phba, t, eratt_poll); 3837 3838 /* Here we will also keep track of interrupts per sec of the hba */ 3839 sli_intr = phba->sli.slistat.sli_intr; 3840 3841 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3842 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3843 sli_intr); 3844 else 3845 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3846 3847 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3848 do_div(cnt, phba->eratt_poll_interval); 3849 phba->sli.slistat.sli_ips = cnt; 3850 3851 phba->sli.slistat.sli_prev_intr = sli_intr; 3852 3853 /* Check chip HA register for error event */ 3854 eratt = lpfc_sli_check_eratt(phba); 3855 3856 if (eratt) 3857 /* Tell the worker thread there is work to do */ 3858 lpfc_worker_wake_up(phba); 3859 else 3860 /* Restart the timer for next eratt poll */ 3861 mod_timer(&phba->eratt_poll, 3862 jiffies + 3863 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3864 return; 3865 } 3866 3867 3868 /** 3869 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3870 * @phba: Pointer to HBA context object. 3871 * @pring: Pointer to driver SLI ring object. 3872 * @mask: Host attention register mask for this ring. 3873 * 3874 * This function is called from the interrupt context when there is a ring 3875 * event for the fcp ring. The caller does not hold any lock. 3876 * The function processes each response iocb in the response ring until it 3877 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3878 * LE bit set. The function will call the completion handler of the command iocb 3879 * if the response iocb indicates a completion for a command iocb or it is 3880 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3881 * function if this is an unsolicited iocb. 3882 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3883 * to check it explicitly. 3884 */ 3885 int 3886 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3887 struct lpfc_sli_ring *pring, uint32_t mask) 3888 { 3889 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3890 IOCB_t *irsp = NULL; 3891 IOCB_t *entry = NULL; 3892 struct lpfc_iocbq *cmdiocbq = NULL; 3893 struct lpfc_iocbq rspiocbq; 3894 uint32_t status; 3895 uint32_t portRspPut, portRspMax; 3896 int rc = 1; 3897 lpfc_iocb_type type; 3898 unsigned long iflag; 3899 uint32_t rsp_cmpl = 0; 3900 3901 spin_lock_irqsave(&phba->hbalock, iflag); 3902 pring->stats.iocb_event++; 3903 3904 /* 3905 * The next available response entry should never exceed the maximum 3906 * entries. If it does, treat it as an adapter hardware error. 3907 */ 3908 portRspMax = pring->sli.sli3.numRiocb; 3909 portRspPut = le32_to_cpu(pgp->rspPutInx); 3910 if (unlikely(portRspPut >= portRspMax)) { 3911 lpfc_sli_rsp_pointers_error(phba, pring); 3912 spin_unlock_irqrestore(&phba->hbalock, iflag); 3913 return 1; 3914 } 3915 if (phba->fcp_ring_in_use) { 3916 spin_unlock_irqrestore(&phba->hbalock, iflag); 3917 return 1; 3918 } else 3919 phba->fcp_ring_in_use = 1; 3920 3921 rmb(); 3922 while (pring->sli.sli3.rspidx != portRspPut) { 3923 /* 3924 * Fetch an entry off the ring and copy it into a local data 3925 * structure. The copy involves a byte-swap since the 3926 * network byte order and pci byte orders are different. 3927 */ 3928 entry = lpfc_resp_iocb(phba, pring); 3929 phba->last_completion_time = jiffies; 3930 3931 if (++pring->sli.sli3.rspidx >= portRspMax) 3932 pring->sli.sli3.rspidx = 0; 3933 3934 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3935 (uint32_t *) &rspiocbq.iocb, 3936 phba->iocb_rsp_size); 3937 INIT_LIST_HEAD(&(rspiocbq.list)); 3938 irsp = &rspiocbq.iocb; 3939 3940 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3941 pring->stats.iocb_rsp++; 3942 rsp_cmpl++; 3943 3944 if (unlikely(irsp->ulpStatus)) { 3945 /* 3946 * If resource errors reported from HBA, reduce 3947 * queuedepths of the SCSI device. 3948 */ 3949 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3950 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3951 IOERR_NO_RESOURCES)) { 3952 spin_unlock_irqrestore(&phba->hbalock, iflag); 3953 phba->lpfc_rampdown_queue_depth(phba); 3954 spin_lock_irqsave(&phba->hbalock, iflag); 3955 } 3956 3957 /* Rsp ring <ringno> error: IOCB */ 3958 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3959 "0336 Rsp Ring %d error: IOCB Data: " 3960 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3961 pring->ringno, 3962 irsp->un.ulpWord[0], 3963 irsp->un.ulpWord[1], 3964 irsp->un.ulpWord[2], 3965 irsp->un.ulpWord[3], 3966 irsp->un.ulpWord[4], 3967 irsp->un.ulpWord[5], 3968 *(uint32_t *)&irsp->un1, 3969 *((uint32_t *)&irsp->un1 + 1)); 3970 } 3971 3972 switch (type) { 3973 case LPFC_ABORT_IOCB: 3974 case LPFC_SOL_IOCB: 3975 /* 3976 * Idle exchange closed via ABTS from port. No iocb 3977 * resources need to be recovered. 3978 */ 3979 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3980 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3981 "0333 IOCB cmd 0x%x" 3982 " processed. Skipping" 3983 " completion\n", 3984 irsp->ulpCommand); 3985 break; 3986 } 3987 3988 spin_unlock_irqrestore(&phba->hbalock, iflag); 3989 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3990 &rspiocbq); 3991 spin_lock_irqsave(&phba->hbalock, iflag); 3992 if (unlikely(!cmdiocbq)) 3993 break; 3994 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3995 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3996 if (cmdiocbq->iocb_cmpl) { 3997 spin_unlock_irqrestore(&phba->hbalock, iflag); 3998 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3999 &rspiocbq); 4000 spin_lock_irqsave(&phba->hbalock, iflag); 4001 } 4002 break; 4003 case LPFC_UNSOL_IOCB: 4004 spin_unlock_irqrestore(&phba->hbalock, iflag); 4005 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4006 spin_lock_irqsave(&phba->hbalock, iflag); 4007 break; 4008 default: 4009 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4010 char adaptermsg[LPFC_MAX_ADPTMSG]; 4011 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4012 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4013 MAX_MSG_DATA); 4014 dev_warn(&((phba->pcidev)->dev), 4015 "lpfc%d: %s\n", 4016 phba->brd_no, adaptermsg); 4017 } else { 4018 /* Unknown IOCB command */ 4019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4020 "0334 Unknown IOCB command " 4021 "Data: x%x, x%x x%x x%x x%x\n", 4022 type, irsp->ulpCommand, 4023 irsp->ulpStatus, 4024 irsp->ulpIoTag, 4025 irsp->ulpContext); 4026 } 4027 break; 4028 } 4029 4030 /* 4031 * The response IOCB has been processed. Update the ring 4032 * pointer in SLIM. If the port response put pointer has not 4033 * been updated, sync the pgp->rspPutInx and fetch the new port 4034 * response put pointer. 4035 */ 4036 writel(pring->sli.sli3.rspidx, 4037 &phba->host_gp[pring->ringno].rspGetInx); 4038 4039 if (pring->sli.sli3.rspidx == portRspPut) 4040 portRspPut = le32_to_cpu(pgp->rspPutInx); 4041 } 4042 4043 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4044 pring->stats.iocb_rsp_full++; 4045 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4046 writel(status, phba->CAregaddr); 4047 readl(phba->CAregaddr); 4048 } 4049 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4050 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4051 pring->stats.iocb_cmd_empty++; 4052 4053 /* Force update of the local copy of cmdGetInx */ 4054 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4055 lpfc_sli_resume_iocb(phba, pring); 4056 4057 if ((pring->lpfc_sli_cmd_available)) 4058 (pring->lpfc_sli_cmd_available) (phba, pring); 4059 4060 } 4061 4062 phba->fcp_ring_in_use = 0; 4063 spin_unlock_irqrestore(&phba->hbalock, iflag); 4064 return rc; 4065 } 4066 4067 /** 4068 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4069 * @phba: Pointer to HBA context object. 4070 * @pring: Pointer to driver SLI ring object. 4071 * @rspiocbp: Pointer to driver response IOCB object. 4072 * 4073 * This function is called from the worker thread when there is a slow-path 4074 * response IOCB to process. This function chains all the response iocbs until 4075 * seeing the iocb with the LE bit set. The function will call 4076 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4077 * completion of a command iocb. The function will call the 4078 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4079 * The function frees the resources or calls the completion handler if this 4080 * iocb is an abort completion. The function returns NULL when the response 4081 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4082 * this function shall chain the iocb on to the iocb_continueq and return the 4083 * response iocb passed in. 4084 **/ 4085 static struct lpfc_iocbq * 4086 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4087 struct lpfc_iocbq *rspiocbp) 4088 { 4089 struct lpfc_iocbq *saveq; 4090 struct lpfc_iocbq *cmdiocbp; 4091 struct lpfc_iocbq *next_iocb; 4092 IOCB_t *irsp = NULL; 4093 uint32_t free_saveq; 4094 uint8_t iocb_cmd_type; 4095 lpfc_iocb_type type; 4096 unsigned long iflag; 4097 int rc; 4098 4099 spin_lock_irqsave(&phba->hbalock, iflag); 4100 /* First add the response iocb to the countinueq list */ 4101 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 4102 pring->iocb_continueq_cnt++; 4103 4104 /* Now, determine whether the list is completed for processing */ 4105 irsp = &rspiocbp->iocb; 4106 if (irsp->ulpLe) { 4107 /* 4108 * By default, the driver expects to free all resources 4109 * associated with this iocb completion. 4110 */ 4111 free_saveq = 1; 4112 saveq = list_get_first(&pring->iocb_continueq, 4113 struct lpfc_iocbq, list); 4114 irsp = &(saveq->iocb); 4115 list_del_init(&pring->iocb_continueq); 4116 pring->iocb_continueq_cnt = 0; 4117 4118 pring->stats.iocb_rsp++; 4119 4120 /* 4121 * If resource errors reported from HBA, reduce 4122 * queuedepths of the SCSI device. 4123 */ 4124 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4125 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4126 IOERR_NO_RESOURCES)) { 4127 spin_unlock_irqrestore(&phba->hbalock, iflag); 4128 phba->lpfc_rampdown_queue_depth(phba); 4129 spin_lock_irqsave(&phba->hbalock, iflag); 4130 } 4131 4132 if (irsp->ulpStatus) { 4133 /* Rsp ring <ringno> error: IOCB */ 4134 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4135 "0328 Rsp Ring %d error: " 4136 "IOCB Data: " 4137 "x%x x%x x%x x%x " 4138 "x%x x%x x%x x%x " 4139 "x%x x%x x%x x%x " 4140 "x%x x%x x%x x%x\n", 4141 pring->ringno, 4142 irsp->un.ulpWord[0], 4143 irsp->un.ulpWord[1], 4144 irsp->un.ulpWord[2], 4145 irsp->un.ulpWord[3], 4146 irsp->un.ulpWord[4], 4147 irsp->un.ulpWord[5], 4148 *(((uint32_t *) irsp) + 6), 4149 *(((uint32_t *) irsp) + 7), 4150 *(((uint32_t *) irsp) + 8), 4151 *(((uint32_t *) irsp) + 9), 4152 *(((uint32_t *) irsp) + 10), 4153 *(((uint32_t *) irsp) + 11), 4154 *(((uint32_t *) irsp) + 12), 4155 *(((uint32_t *) irsp) + 13), 4156 *(((uint32_t *) irsp) + 14), 4157 *(((uint32_t *) irsp) + 15)); 4158 } 4159 4160 /* 4161 * Fetch the IOCB command type and call the correct completion 4162 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4163 * get freed back to the lpfc_iocb_list by the discovery 4164 * kernel thread. 4165 */ 4166 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 4167 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 4168 switch (type) { 4169 case LPFC_SOL_IOCB: 4170 spin_unlock_irqrestore(&phba->hbalock, iflag); 4171 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4172 spin_lock_irqsave(&phba->hbalock, iflag); 4173 break; 4174 4175 case LPFC_UNSOL_IOCB: 4176 spin_unlock_irqrestore(&phba->hbalock, iflag); 4177 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4178 spin_lock_irqsave(&phba->hbalock, iflag); 4179 if (!rc) 4180 free_saveq = 0; 4181 break; 4182 4183 case LPFC_ABORT_IOCB: 4184 cmdiocbp = NULL; 4185 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { 4186 spin_unlock_irqrestore(&phba->hbalock, iflag); 4187 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 4188 saveq); 4189 spin_lock_irqsave(&phba->hbalock, iflag); 4190 } 4191 if (cmdiocbp) { 4192 /* Call the specified completion routine */ 4193 if (cmdiocbp->iocb_cmpl) { 4194 spin_unlock_irqrestore(&phba->hbalock, 4195 iflag); 4196 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 4197 saveq); 4198 spin_lock_irqsave(&phba->hbalock, 4199 iflag); 4200 } else 4201 __lpfc_sli_release_iocbq(phba, 4202 cmdiocbp); 4203 } 4204 break; 4205 4206 case LPFC_UNKNOWN_IOCB: 4207 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4208 char adaptermsg[LPFC_MAX_ADPTMSG]; 4209 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4210 memcpy(&adaptermsg[0], (uint8_t *)irsp, 4211 MAX_MSG_DATA); 4212 dev_warn(&((phba->pcidev)->dev), 4213 "lpfc%d: %s\n", 4214 phba->brd_no, adaptermsg); 4215 } else { 4216 /* Unknown IOCB command */ 4217 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4218 "0335 Unknown IOCB " 4219 "command Data: x%x " 4220 "x%x x%x x%x\n", 4221 irsp->ulpCommand, 4222 irsp->ulpStatus, 4223 irsp->ulpIoTag, 4224 irsp->ulpContext); 4225 } 4226 break; 4227 } 4228 4229 if (free_saveq) { 4230 list_for_each_entry_safe(rspiocbp, next_iocb, 4231 &saveq->list, list) { 4232 list_del_init(&rspiocbp->list); 4233 __lpfc_sli_release_iocbq(phba, rspiocbp); 4234 } 4235 __lpfc_sli_release_iocbq(phba, saveq); 4236 } 4237 rspiocbp = NULL; 4238 } 4239 spin_unlock_irqrestore(&phba->hbalock, iflag); 4240 return rspiocbp; 4241 } 4242 4243 /** 4244 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4245 * @phba: Pointer to HBA context object. 4246 * @pring: Pointer to driver SLI ring object. 4247 * @mask: Host attention register mask for this ring. 4248 * 4249 * This routine wraps the actual slow_ring event process routine from the 4250 * API jump table function pointer from the lpfc_hba struct. 4251 **/ 4252 void 4253 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4254 struct lpfc_sli_ring *pring, uint32_t mask) 4255 { 4256 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4257 } 4258 4259 /** 4260 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4261 * @phba: Pointer to HBA context object. 4262 * @pring: Pointer to driver SLI ring object. 4263 * @mask: Host attention register mask for this ring. 4264 * 4265 * This function is called from the worker thread when there is a ring event 4266 * for non-fcp rings. The caller does not hold any lock. The function will 4267 * remove each response iocb in the response ring and calls the handle 4268 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4269 **/ 4270 static void 4271 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4272 struct lpfc_sli_ring *pring, uint32_t mask) 4273 { 4274 struct lpfc_pgp *pgp; 4275 IOCB_t *entry; 4276 IOCB_t *irsp = NULL; 4277 struct lpfc_iocbq *rspiocbp = NULL; 4278 uint32_t portRspPut, portRspMax; 4279 unsigned long iflag; 4280 uint32_t status; 4281 4282 pgp = &phba->port_gp[pring->ringno]; 4283 spin_lock_irqsave(&phba->hbalock, iflag); 4284 pring->stats.iocb_event++; 4285 4286 /* 4287 * The next available response entry should never exceed the maximum 4288 * entries. If it does, treat it as an adapter hardware error. 4289 */ 4290 portRspMax = pring->sli.sli3.numRiocb; 4291 portRspPut = le32_to_cpu(pgp->rspPutInx); 4292 if (portRspPut >= portRspMax) { 4293 /* 4294 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4295 * rsp ring <portRspMax> 4296 */ 4297 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4298 "0303 Ring %d handler: portRspPut %d " 4299 "is bigger than rsp ring %d\n", 4300 pring->ringno, portRspPut, portRspMax); 4301 4302 phba->link_state = LPFC_HBA_ERROR; 4303 spin_unlock_irqrestore(&phba->hbalock, iflag); 4304 4305 phba->work_hs = HS_FFER3; 4306 lpfc_handle_eratt(phba); 4307 4308 return; 4309 } 4310 4311 rmb(); 4312 while (pring->sli.sli3.rspidx != portRspPut) { 4313 /* 4314 * Build a completion list and call the appropriate handler. 4315 * The process is to get the next available response iocb, get 4316 * a free iocb from the list, copy the response data into the 4317 * free iocb, insert to the continuation list, and update the 4318 * next response index to slim. This process makes response 4319 * iocb's in the ring available to DMA as fast as possible but 4320 * pays a penalty for a copy operation. Since the iocb is 4321 * only 32 bytes, this penalty is considered small relative to 4322 * the PCI reads for register values and a slim write. When 4323 * the ulpLe field is set, the entire Command has been 4324 * received. 4325 */ 4326 entry = lpfc_resp_iocb(phba, pring); 4327 4328 phba->last_completion_time = jiffies; 4329 rspiocbp = __lpfc_sli_get_iocbq(phba); 4330 if (rspiocbp == NULL) { 4331 printk(KERN_ERR "%s: out of buffers! Failing " 4332 "completion.\n", __func__); 4333 break; 4334 } 4335 4336 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4337 phba->iocb_rsp_size); 4338 irsp = &rspiocbp->iocb; 4339 4340 if (++pring->sli.sli3.rspidx >= portRspMax) 4341 pring->sli.sli3.rspidx = 0; 4342 4343 if (pring->ringno == LPFC_ELS_RING) { 4344 lpfc_debugfs_slow_ring_trc(phba, 4345 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4346 *(((uint32_t *) irsp) + 4), 4347 *(((uint32_t *) irsp) + 6), 4348 *(((uint32_t *) irsp) + 7)); 4349 } 4350 4351 writel(pring->sli.sli3.rspidx, 4352 &phba->host_gp[pring->ringno].rspGetInx); 4353 4354 spin_unlock_irqrestore(&phba->hbalock, iflag); 4355 /* Handle the response IOCB */ 4356 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4357 spin_lock_irqsave(&phba->hbalock, iflag); 4358 4359 /* 4360 * If the port response put pointer has not been updated, sync 4361 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4362 * response put pointer. 4363 */ 4364 if (pring->sli.sli3.rspidx == portRspPut) { 4365 portRspPut = le32_to_cpu(pgp->rspPutInx); 4366 } 4367 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4368 4369 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4370 /* At least one response entry has been freed */ 4371 pring->stats.iocb_rsp_full++; 4372 /* SET RxRE_RSP in Chip Att register */ 4373 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4374 writel(status, phba->CAregaddr); 4375 readl(phba->CAregaddr); /* flush */ 4376 } 4377 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4378 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4379 pring->stats.iocb_cmd_empty++; 4380 4381 /* Force update of the local copy of cmdGetInx */ 4382 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4383 lpfc_sli_resume_iocb(phba, pring); 4384 4385 if ((pring->lpfc_sli_cmd_available)) 4386 (pring->lpfc_sli_cmd_available) (phba, pring); 4387 4388 } 4389 4390 spin_unlock_irqrestore(&phba->hbalock, iflag); 4391 return; 4392 } 4393 4394 /** 4395 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4396 * @phba: Pointer to HBA context object. 4397 * @pring: Pointer to driver SLI ring object. 4398 * @mask: Host attention register mask for this ring. 4399 * 4400 * This function is called from the worker thread when there is a pending 4401 * ELS response iocb on the driver internal slow-path response iocb worker 4402 * queue. The caller does not hold any lock. The function will remove each 4403 * response iocb from the response worker queue and calls the handle 4404 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4405 **/ 4406 static void 4407 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4408 struct lpfc_sli_ring *pring, uint32_t mask) 4409 { 4410 struct lpfc_iocbq *irspiocbq; 4411 struct hbq_dmabuf *dmabuf; 4412 struct lpfc_cq_event *cq_event; 4413 unsigned long iflag; 4414 int count = 0; 4415 4416 spin_lock_irqsave(&phba->hbalock, iflag); 4417 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4418 spin_unlock_irqrestore(&phba->hbalock, iflag); 4419 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4420 /* Get the response iocb from the head of work queue */ 4421 spin_lock_irqsave(&phba->hbalock, iflag); 4422 list_remove_head(&phba->sli4_hba.sp_queue_event, 4423 cq_event, struct lpfc_cq_event, list); 4424 spin_unlock_irqrestore(&phba->hbalock, iflag); 4425 4426 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4427 case CQE_CODE_COMPL_WQE: 4428 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4429 cq_event); 4430 /* Translate ELS WCQE to response IOCBQ */ 4431 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 4432 irspiocbq); 4433 if (irspiocbq) 4434 lpfc_sli_sp_handle_rspiocb(phba, pring, 4435 irspiocbq); 4436 count++; 4437 break; 4438 case CQE_CODE_RECEIVE: 4439 case CQE_CODE_RECEIVE_V1: 4440 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4441 cq_event); 4442 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4443 count++; 4444 break; 4445 default: 4446 break; 4447 } 4448 4449 /* Limit the number of events to 64 to avoid soft lockups */ 4450 if (count == 64) 4451 break; 4452 } 4453 } 4454 4455 /** 4456 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4457 * @phba: Pointer to HBA context object. 4458 * @pring: Pointer to driver SLI ring object. 4459 * 4460 * This function aborts all iocbs in the given ring and frees all the iocb 4461 * objects in txq. This function issues an abort iocb for all the iocb commands 4462 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4463 * the return of this function. The caller is not required to hold any locks. 4464 **/ 4465 void 4466 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4467 { 4468 LIST_HEAD(completions); 4469 struct lpfc_iocbq *iocb, *next_iocb; 4470 4471 if (pring->ringno == LPFC_ELS_RING) { 4472 lpfc_fabric_abort_hba(phba); 4473 } 4474 4475 /* Error everything on txq and txcmplq 4476 * First do the txq. 4477 */ 4478 if (phba->sli_rev >= LPFC_SLI_REV4) { 4479 spin_lock_irq(&pring->ring_lock); 4480 list_splice_init(&pring->txq, &completions); 4481 pring->txq_cnt = 0; 4482 spin_unlock_irq(&pring->ring_lock); 4483 4484 spin_lock_irq(&phba->hbalock); 4485 /* Next issue ABTS for everything on the txcmplq */ 4486 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4487 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4488 spin_unlock_irq(&phba->hbalock); 4489 } else { 4490 spin_lock_irq(&phba->hbalock); 4491 list_splice_init(&pring->txq, &completions); 4492 pring->txq_cnt = 0; 4493 4494 /* Next issue ABTS for everything on the txcmplq */ 4495 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4496 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4497 spin_unlock_irq(&phba->hbalock); 4498 } 4499 /* Make sure HBA is alive */ 4500 lpfc_issue_hb_tmo(phba); 4501 4502 /* Cancel all the IOCBs from the completions list */ 4503 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 4504 IOERR_SLI_ABORTED); 4505 } 4506 4507 /** 4508 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4509 * @phba: Pointer to HBA context object. 4510 * 4511 * This function aborts all iocbs in FCP rings and frees all the iocb 4512 * objects in txq. This function issues an abort iocb for all the iocb commands 4513 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4514 * the return of this function. The caller is not required to hold any locks. 4515 **/ 4516 void 4517 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4518 { 4519 struct lpfc_sli *psli = &phba->sli; 4520 struct lpfc_sli_ring *pring; 4521 uint32_t i; 4522 4523 /* Look on all the FCP Rings for the iotag */ 4524 if (phba->sli_rev >= LPFC_SLI_REV4) { 4525 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4526 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4527 lpfc_sli_abort_iocb_ring(phba, pring); 4528 } 4529 } else { 4530 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4531 lpfc_sli_abort_iocb_ring(phba, pring); 4532 } 4533 } 4534 4535 /** 4536 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4537 * @phba: Pointer to HBA context object. 4538 * 4539 * This function flushes all iocbs in the IO ring and frees all the iocb 4540 * objects in txq and txcmplq. This function will not issue abort iocbs 4541 * for all the iocb commands in txcmplq, they will just be returned with 4542 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4543 * slot has been permanently disabled. 4544 **/ 4545 void 4546 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4547 { 4548 LIST_HEAD(txq); 4549 LIST_HEAD(txcmplq); 4550 struct lpfc_sli *psli = &phba->sli; 4551 struct lpfc_sli_ring *pring; 4552 uint32_t i; 4553 struct lpfc_iocbq *piocb, *next_iocb; 4554 4555 spin_lock_irq(&phba->hbalock); 4556 if (phba->hba_flag & HBA_IOQ_FLUSH || 4557 !phba->sli4_hba.hdwq) { 4558 spin_unlock_irq(&phba->hbalock); 4559 return; 4560 } 4561 /* Indicate the I/O queues are flushed */ 4562 phba->hba_flag |= HBA_IOQ_FLUSH; 4563 spin_unlock_irq(&phba->hbalock); 4564 4565 /* Look on all the FCP Rings for the iotag */ 4566 if (phba->sli_rev >= LPFC_SLI_REV4) { 4567 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4568 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4569 4570 spin_lock_irq(&pring->ring_lock); 4571 /* Retrieve everything on txq */ 4572 list_splice_init(&pring->txq, &txq); 4573 list_for_each_entry_safe(piocb, next_iocb, 4574 &pring->txcmplq, list) 4575 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4576 /* Retrieve everything on the txcmplq */ 4577 list_splice_init(&pring->txcmplq, &txcmplq); 4578 pring->txq_cnt = 0; 4579 pring->txcmplq_cnt = 0; 4580 spin_unlock_irq(&pring->ring_lock); 4581 4582 /* Flush the txq */ 4583 lpfc_sli_cancel_iocbs(phba, &txq, 4584 IOSTAT_LOCAL_REJECT, 4585 IOERR_SLI_DOWN); 4586 /* Flush the txcmpq */ 4587 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4588 IOSTAT_LOCAL_REJECT, 4589 IOERR_SLI_DOWN); 4590 } 4591 } else { 4592 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4593 4594 spin_lock_irq(&phba->hbalock); 4595 /* Retrieve everything on txq */ 4596 list_splice_init(&pring->txq, &txq); 4597 list_for_each_entry_safe(piocb, next_iocb, 4598 &pring->txcmplq, list) 4599 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4600 /* Retrieve everything on the txcmplq */ 4601 list_splice_init(&pring->txcmplq, &txcmplq); 4602 pring->txq_cnt = 0; 4603 pring->txcmplq_cnt = 0; 4604 spin_unlock_irq(&phba->hbalock); 4605 4606 /* Flush the txq */ 4607 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4608 IOERR_SLI_DOWN); 4609 /* Flush the txcmpq */ 4610 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4611 IOERR_SLI_DOWN); 4612 } 4613 } 4614 4615 /** 4616 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4617 * @phba: Pointer to HBA context object. 4618 * @mask: Bit mask to be checked. 4619 * 4620 * This function reads the host status register and compares 4621 * with the provided bit mask to check if HBA completed 4622 * the restart. This function will wait in a loop for the 4623 * HBA to complete restart. If the HBA does not restart within 4624 * 15 iterations, the function will reset the HBA again. The 4625 * function returns 1 when HBA fail to restart otherwise returns 4626 * zero. 4627 **/ 4628 static int 4629 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4630 { 4631 uint32_t status; 4632 int i = 0; 4633 int retval = 0; 4634 4635 /* Read the HBA Host Status Register */ 4636 if (lpfc_readl(phba->HSregaddr, &status)) 4637 return 1; 4638 4639 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4640 4641 /* 4642 * Check status register every 100ms for 5 retries, then every 4643 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4644 * every 2.5 sec for 4. 4645 * Break our of the loop if errors occurred during init. 4646 */ 4647 while (((status & mask) != mask) && 4648 !(status & HS_FFERM) && 4649 i++ < 20) { 4650 4651 if (i <= 5) 4652 msleep(10); 4653 else if (i <= 10) 4654 msleep(500); 4655 else 4656 msleep(2500); 4657 4658 if (i == 15) { 4659 /* Do post */ 4660 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4661 lpfc_sli_brdrestart(phba); 4662 } 4663 /* Read the HBA Host Status Register */ 4664 if (lpfc_readl(phba->HSregaddr, &status)) { 4665 retval = 1; 4666 break; 4667 } 4668 } 4669 4670 /* Check to see if any errors occurred during init */ 4671 if ((status & HS_FFERM) || (i >= 20)) { 4672 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4673 "2751 Adapter failed to restart, " 4674 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4675 status, 4676 readl(phba->MBslimaddr + 0xa8), 4677 readl(phba->MBslimaddr + 0xac)); 4678 phba->link_state = LPFC_HBA_ERROR; 4679 retval = 1; 4680 } 4681 4682 return retval; 4683 } 4684 4685 /** 4686 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4687 * @phba: Pointer to HBA context object. 4688 * @mask: Bit mask to be checked. 4689 * 4690 * This function checks the host status register to check if HBA is 4691 * ready. This function will wait in a loop for the HBA to be ready 4692 * If the HBA is not ready , the function will will reset the HBA PCI 4693 * function again. The function returns 1 when HBA fail to be ready 4694 * otherwise returns zero. 4695 **/ 4696 static int 4697 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4698 { 4699 uint32_t status; 4700 int retval = 0; 4701 4702 /* Read the HBA Host Status Register */ 4703 status = lpfc_sli4_post_status_check(phba); 4704 4705 if (status) { 4706 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4707 lpfc_sli_brdrestart(phba); 4708 status = lpfc_sli4_post_status_check(phba); 4709 } 4710 4711 /* Check to see if any errors occurred during init */ 4712 if (status) { 4713 phba->link_state = LPFC_HBA_ERROR; 4714 retval = 1; 4715 } else 4716 phba->sli4_hba.intr_enable = 0; 4717 4718 phba->hba_flag &= ~HBA_SETUP; 4719 return retval; 4720 } 4721 4722 /** 4723 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4724 * @phba: Pointer to HBA context object. 4725 * @mask: Bit mask to be checked. 4726 * 4727 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4728 * from the API jump table function pointer from the lpfc_hba struct. 4729 **/ 4730 int 4731 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4732 { 4733 return phba->lpfc_sli_brdready(phba, mask); 4734 } 4735 4736 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4737 4738 /** 4739 * lpfc_reset_barrier - Make HBA ready for HBA reset 4740 * @phba: Pointer to HBA context object. 4741 * 4742 * This function is called before resetting an HBA. This function is called 4743 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4744 **/ 4745 void lpfc_reset_barrier(struct lpfc_hba *phba) 4746 { 4747 uint32_t __iomem *resp_buf; 4748 uint32_t __iomem *mbox_buf; 4749 volatile uint32_t mbox; 4750 uint32_t hc_copy, ha_copy, resp_data; 4751 int i; 4752 uint8_t hdrtype; 4753 4754 lockdep_assert_held(&phba->hbalock); 4755 4756 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4757 if (hdrtype != 0x80 || 4758 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4759 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4760 return; 4761 4762 /* 4763 * Tell the other part of the chip to suspend temporarily all 4764 * its DMA activity. 4765 */ 4766 resp_buf = phba->MBslimaddr; 4767 4768 /* Disable the error attention */ 4769 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4770 return; 4771 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4772 readl(phba->HCregaddr); /* flush */ 4773 phba->link_flag |= LS_IGNORE_ERATT; 4774 4775 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4776 return; 4777 if (ha_copy & HA_ERATT) { 4778 /* Clear Chip error bit */ 4779 writel(HA_ERATT, phba->HAregaddr); 4780 phba->pport->stopped = 1; 4781 } 4782 4783 mbox = 0; 4784 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4785 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4786 4787 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4788 mbox_buf = phba->MBslimaddr; 4789 writel(mbox, mbox_buf); 4790 4791 for (i = 0; i < 50; i++) { 4792 if (lpfc_readl((resp_buf + 1), &resp_data)) 4793 return; 4794 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4795 mdelay(1); 4796 else 4797 break; 4798 } 4799 resp_data = 0; 4800 if (lpfc_readl((resp_buf + 1), &resp_data)) 4801 return; 4802 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4803 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4804 phba->pport->stopped) 4805 goto restore_hc; 4806 else 4807 goto clear_errat; 4808 } 4809 4810 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4811 resp_data = 0; 4812 for (i = 0; i < 500; i++) { 4813 if (lpfc_readl(resp_buf, &resp_data)) 4814 return; 4815 if (resp_data != mbox) 4816 mdelay(1); 4817 else 4818 break; 4819 } 4820 4821 clear_errat: 4822 4823 while (++i < 500) { 4824 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4825 return; 4826 if (!(ha_copy & HA_ERATT)) 4827 mdelay(1); 4828 else 4829 break; 4830 } 4831 4832 if (readl(phba->HAregaddr) & HA_ERATT) { 4833 writel(HA_ERATT, phba->HAregaddr); 4834 phba->pport->stopped = 1; 4835 } 4836 4837 restore_hc: 4838 phba->link_flag &= ~LS_IGNORE_ERATT; 4839 writel(hc_copy, phba->HCregaddr); 4840 readl(phba->HCregaddr); /* flush */ 4841 } 4842 4843 /** 4844 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4845 * @phba: Pointer to HBA context object. 4846 * 4847 * This function issues a kill_board mailbox command and waits for 4848 * the error attention interrupt. This function is called for stopping 4849 * the firmware processing. The caller is not required to hold any 4850 * locks. This function calls lpfc_hba_down_post function to free 4851 * any pending commands after the kill. The function will return 1 when it 4852 * fails to kill the board else will return 0. 4853 **/ 4854 int 4855 lpfc_sli_brdkill(struct lpfc_hba *phba) 4856 { 4857 struct lpfc_sli *psli; 4858 LPFC_MBOXQ_t *pmb; 4859 uint32_t status; 4860 uint32_t ha_copy; 4861 int retval; 4862 int i = 0; 4863 4864 psli = &phba->sli; 4865 4866 /* Kill HBA */ 4867 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4868 "0329 Kill HBA Data: x%x x%x\n", 4869 phba->pport->port_state, psli->sli_flag); 4870 4871 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4872 if (!pmb) 4873 return 1; 4874 4875 /* Disable the error attention */ 4876 spin_lock_irq(&phba->hbalock); 4877 if (lpfc_readl(phba->HCregaddr, &status)) { 4878 spin_unlock_irq(&phba->hbalock); 4879 mempool_free(pmb, phba->mbox_mem_pool); 4880 return 1; 4881 } 4882 status &= ~HC_ERINT_ENA; 4883 writel(status, phba->HCregaddr); 4884 readl(phba->HCregaddr); /* flush */ 4885 phba->link_flag |= LS_IGNORE_ERATT; 4886 spin_unlock_irq(&phba->hbalock); 4887 4888 lpfc_kill_board(phba, pmb); 4889 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4890 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4891 4892 if (retval != MBX_SUCCESS) { 4893 if (retval != MBX_BUSY) 4894 mempool_free(pmb, phba->mbox_mem_pool); 4895 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4896 "2752 KILL_BOARD command failed retval %d\n", 4897 retval); 4898 spin_lock_irq(&phba->hbalock); 4899 phba->link_flag &= ~LS_IGNORE_ERATT; 4900 spin_unlock_irq(&phba->hbalock); 4901 return 1; 4902 } 4903 4904 spin_lock_irq(&phba->hbalock); 4905 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4906 spin_unlock_irq(&phba->hbalock); 4907 4908 mempool_free(pmb, phba->mbox_mem_pool); 4909 4910 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4911 * attention every 100ms for 3 seconds. If we don't get ERATT after 4912 * 3 seconds we still set HBA_ERROR state because the status of the 4913 * board is now undefined. 4914 */ 4915 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4916 return 1; 4917 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4918 mdelay(100); 4919 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4920 return 1; 4921 } 4922 4923 del_timer_sync(&psli->mbox_tmo); 4924 if (ha_copy & HA_ERATT) { 4925 writel(HA_ERATT, phba->HAregaddr); 4926 phba->pport->stopped = 1; 4927 } 4928 spin_lock_irq(&phba->hbalock); 4929 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4930 psli->mbox_active = NULL; 4931 phba->link_flag &= ~LS_IGNORE_ERATT; 4932 spin_unlock_irq(&phba->hbalock); 4933 4934 lpfc_hba_down_post(phba); 4935 phba->link_state = LPFC_HBA_ERROR; 4936 4937 return ha_copy & HA_ERATT ? 0 : 1; 4938 } 4939 4940 /** 4941 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4942 * @phba: Pointer to HBA context object. 4943 * 4944 * This function resets the HBA by writing HC_INITFF to the control 4945 * register. After the HBA resets, this function resets all the iocb ring 4946 * indices. This function disables PCI layer parity checking during 4947 * the reset. 4948 * This function returns 0 always. 4949 * The caller is not required to hold any locks. 4950 **/ 4951 int 4952 lpfc_sli_brdreset(struct lpfc_hba *phba) 4953 { 4954 struct lpfc_sli *psli; 4955 struct lpfc_sli_ring *pring; 4956 uint16_t cfg_value; 4957 int i; 4958 4959 psli = &phba->sli; 4960 4961 /* Reset HBA */ 4962 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4963 "0325 Reset HBA Data: x%x x%x\n", 4964 (phba->pport) ? phba->pport->port_state : 0, 4965 psli->sli_flag); 4966 4967 /* perform board reset */ 4968 phba->fc_eventTag = 0; 4969 phba->link_events = 0; 4970 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4971 if (phba->pport) { 4972 phba->pport->fc_myDID = 0; 4973 phba->pport->fc_prevDID = 0; 4974 } 4975 4976 /* Turn off parity checking and serr during the physical reset */ 4977 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 4978 return -EIO; 4979 4980 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4981 (cfg_value & 4982 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4983 4984 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4985 4986 /* Now toggle INITFF bit in the Host Control Register */ 4987 writel(HC_INITFF, phba->HCregaddr); 4988 mdelay(1); 4989 readl(phba->HCregaddr); /* flush */ 4990 writel(0, phba->HCregaddr); 4991 readl(phba->HCregaddr); /* flush */ 4992 4993 /* Restore PCI cmd register */ 4994 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4995 4996 /* Initialize relevant SLI info */ 4997 for (i = 0; i < psli->num_rings; i++) { 4998 pring = &psli->sli3_ring[i]; 4999 pring->flag = 0; 5000 pring->sli.sli3.rspidx = 0; 5001 pring->sli.sli3.next_cmdidx = 0; 5002 pring->sli.sli3.local_getidx = 0; 5003 pring->sli.sli3.cmdidx = 0; 5004 pring->missbufcnt = 0; 5005 } 5006 5007 phba->link_state = LPFC_WARM_START; 5008 return 0; 5009 } 5010 5011 /** 5012 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5013 * @phba: Pointer to HBA context object. 5014 * 5015 * This function resets a SLI4 HBA. This function disables PCI layer parity 5016 * checking during resets the device. The caller is not required to hold 5017 * any locks. 5018 * 5019 * This function returns 0 on success else returns negative error code. 5020 **/ 5021 int 5022 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5023 { 5024 struct lpfc_sli *psli = &phba->sli; 5025 uint16_t cfg_value; 5026 int rc = 0; 5027 5028 /* Reset HBA */ 5029 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5030 "0295 Reset HBA Data: x%x x%x x%x\n", 5031 phba->pport->port_state, psli->sli_flag, 5032 phba->hba_flag); 5033 5034 /* perform board reset */ 5035 phba->fc_eventTag = 0; 5036 phba->link_events = 0; 5037 phba->pport->fc_myDID = 0; 5038 phba->pport->fc_prevDID = 0; 5039 phba->hba_flag &= ~HBA_SETUP; 5040 5041 spin_lock_irq(&phba->hbalock); 5042 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5043 phba->fcf.fcf_flag = 0; 5044 spin_unlock_irq(&phba->hbalock); 5045 5046 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 5047 if (phba->hba_flag & HBA_FW_DUMP_OP) { 5048 phba->hba_flag &= ~HBA_FW_DUMP_OP; 5049 return rc; 5050 } 5051 5052 /* Now physically reset the device */ 5053 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5054 "0389 Performing PCI function reset!\n"); 5055 5056 /* Turn off parity checking and serr during the physical reset */ 5057 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5058 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5059 "3205 PCI read Config failed\n"); 5060 return -EIO; 5061 } 5062 5063 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5064 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5065 5066 /* Perform FCoE PCI function reset before freeing queue memory */ 5067 rc = lpfc_pci_function_reset(phba); 5068 5069 /* Restore PCI cmd register */ 5070 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5071 5072 return rc; 5073 } 5074 5075 /** 5076 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5077 * @phba: Pointer to HBA context object. 5078 * 5079 * This function is called in the SLI initialization code path to 5080 * restart the HBA. The caller is not required to hold any lock. 5081 * This function writes MBX_RESTART mailbox command to the SLIM and 5082 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5083 * function to free any pending commands. The function enables 5084 * POST only during the first initialization. The function returns zero. 5085 * The function does not guarantee completion of MBX_RESTART mailbox 5086 * command before the return of this function. 5087 **/ 5088 static int 5089 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5090 { 5091 MAILBOX_t *mb; 5092 struct lpfc_sli *psli; 5093 volatile uint32_t word0; 5094 void __iomem *to_slim; 5095 uint32_t hba_aer_enabled; 5096 5097 spin_lock_irq(&phba->hbalock); 5098 5099 /* Take PCIe device Advanced Error Reporting (AER) state */ 5100 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5101 5102 psli = &phba->sli; 5103 5104 /* Restart HBA */ 5105 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5106 "0337 Restart HBA Data: x%x x%x\n", 5107 (phba->pport) ? phba->pport->port_state : 0, 5108 psli->sli_flag); 5109 5110 word0 = 0; 5111 mb = (MAILBOX_t *) &word0; 5112 mb->mbxCommand = MBX_RESTART; 5113 mb->mbxHc = 1; 5114 5115 lpfc_reset_barrier(phba); 5116 5117 to_slim = phba->MBslimaddr; 5118 writel(*(uint32_t *) mb, to_slim); 5119 readl(to_slim); /* flush */ 5120 5121 /* Only skip post after fc_ffinit is completed */ 5122 if (phba->pport && phba->pport->port_state) 5123 word0 = 1; /* This is really setting up word1 */ 5124 else 5125 word0 = 0; /* This is really setting up word1 */ 5126 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5127 writel(*(uint32_t *) mb, to_slim); 5128 readl(to_slim); /* flush */ 5129 5130 lpfc_sli_brdreset(phba); 5131 if (phba->pport) 5132 phba->pport->stopped = 0; 5133 phba->link_state = LPFC_INIT_START; 5134 phba->hba_flag = 0; 5135 spin_unlock_irq(&phba->hbalock); 5136 5137 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5138 psli->stats_start = ktime_get_seconds(); 5139 5140 /* Give the INITFF and Post time to settle. */ 5141 mdelay(100); 5142 5143 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5144 if (hba_aer_enabled) 5145 pci_disable_pcie_error_reporting(phba->pcidev); 5146 5147 lpfc_hba_down_post(phba); 5148 5149 return 0; 5150 } 5151 5152 /** 5153 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5154 * @phba: Pointer to HBA context object. 5155 * 5156 * This function is called in the SLI initialization code path to restart 5157 * a SLI4 HBA. The caller is not required to hold any lock. 5158 * At the end of the function, it calls lpfc_hba_down_post function to 5159 * free any pending commands. 5160 **/ 5161 static int 5162 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5163 { 5164 struct lpfc_sli *psli = &phba->sli; 5165 uint32_t hba_aer_enabled; 5166 int rc; 5167 5168 /* Restart HBA */ 5169 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5170 "0296 Restart HBA Data: x%x x%x\n", 5171 phba->pport->port_state, psli->sli_flag); 5172 5173 /* Take PCIe device Advanced Error Reporting (AER) state */ 5174 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5175 5176 rc = lpfc_sli4_brdreset(phba); 5177 if (rc) { 5178 phba->link_state = LPFC_HBA_ERROR; 5179 goto hba_down_queue; 5180 } 5181 5182 spin_lock_irq(&phba->hbalock); 5183 phba->pport->stopped = 0; 5184 phba->link_state = LPFC_INIT_START; 5185 phba->hba_flag = 0; 5186 spin_unlock_irq(&phba->hbalock); 5187 5188 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5189 psli->stats_start = ktime_get_seconds(); 5190 5191 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5192 if (hba_aer_enabled) 5193 pci_disable_pcie_error_reporting(phba->pcidev); 5194 5195 hba_down_queue: 5196 lpfc_hba_down_post(phba); 5197 lpfc_sli4_queue_destroy(phba); 5198 5199 return rc; 5200 } 5201 5202 /** 5203 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5204 * @phba: Pointer to HBA context object. 5205 * 5206 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5207 * API jump table function pointer from the lpfc_hba struct. 5208 **/ 5209 int 5210 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5211 { 5212 return phba->lpfc_sli_brdrestart(phba); 5213 } 5214 5215 /** 5216 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5217 * @phba: Pointer to HBA context object. 5218 * 5219 * This function is called after a HBA restart to wait for successful 5220 * restart of the HBA. Successful restart of the HBA is indicated by 5221 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5222 * iteration, the function will restart the HBA again. The function returns 5223 * zero if HBA successfully restarted else returns negative error code. 5224 **/ 5225 int 5226 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5227 { 5228 uint32_t status, i = 0; 5229 5230 /* Read the HBA Host Status Register */ 5231 if (lpfc_readl(phba->HSregaddr, &status)) 5232 return -EIO; 5233 5234 /* Check status register to see what current state is */ 5235 i = 0; 5236 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5237 5238 /* Check every 10ms for 10 retries, then every 100ms for 90 5239 * retries, then every 1 sec for 50 retires for a total of 5240 * ~60 seconds before reset the board again and check every 5241 * 1 sec for 50 retries. The up to 60 seconds before the 5242 * board ready is required by the Falcon FIPS zeroization 5243 * complete, and any reset the board in between shall cause 5244 * restart of zeroization, further delay the board ready. 5245 */ 5246 if (i++ >= 200) { 5247 /* Adapter failed to init, timeout, status reg 5248 <status> */ 5249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5250 "0436 Adapter failed to init, " 5251 "timeout, status reg x%x, " 5252 "FW Data: A8 x%x AC x%x\n", status, 5253 readl(phba->MBslimaddr + 0xa8), 5254 readl(phba->MBslimaddr + 0xac)); 5255 phba->link_state = LPFC_HBA_ERROR; 5256 return -ETIMEDOUT; 5257 } 5258 5259 /* Check to see if any errors occurred during init */ 5260 if (status & HS_FFERM) { 5261 /* ERROR: During chipset initialization */ 5262 /* Adapter failed to init, chipset, status reg 5263 <status> */ 5264 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5265 "0437 Adapter failed to init, " 5266 "chipset, status reg x%x, " 5267 "FW Data: A8 x%x AC x%x\n", status, 5268 readl(phba->MBslimaddr + 0xa8), 5269 readl(phba->MBslimaddr + 0xac)); 5270 phba->link_state = LPFC_HBA_ERROR; 5271 return -EIO; 5272 } 5273 5274 if (i <= 10) 5275 msleep(10); 5276 else if (i <= 100) 5277 msleep(100); 5278 else 5279 msleep(1000); 5280 5281 if (i == 150) { 5282 /* Do post */ 5283 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5284 lpfc_sli_brdrestart(phba); 5285 } 5286 /* Read the HBA Host Status Register */ 5287 if (lpfc_readl(phba->HSregaddr, &status)) 5288 return -EIO; 5289 } 5290 5291 /* Check to see if any errors occurred during init */ 5292 if (status & HS_FFERM) { 5293 /* ERROR: During chipset initialization */ 5294 /* Adapter failed to init, chipset, status reg <status> */ 5295 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5296 "0438 Adapter failed to init, chipset, " 5297 "status reg x%x, " 5298 "FW Data: A8 x%x AC x%x\n", status, 5299 readl(phba->MBslimaddr + 0xa8), 5300 readl(phba->MBslimaddr + 0xac)); 5301 phba->link_state = LPFC_HBA_ERROR; 5302 return -EIO; 5303 } 5304 5305 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5306 5307 /* Clear all interrupt enable conditions */ 5308 writel(0, phba->HCregaddr); 5309 readl(phba->HCregaddr); /* flush */ 5310 5311 /* setup host attn register */ 5312 writel(0xffffffff, phba->HAregaddr); 5313 readl(phba->HAregaddr); /* flush */ 5314 return 0; 5315 } 5316 5317 /** 5318 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5319 * 5320 * This function calculates and returns the number of HBQs required to be 5321 * configured. 5322 **/ 5323 int 5324 lpfc_sli_hbq_count(void) 5325 { 5326 return ARRAY_SIZE(lpfc_hbq_defs); 5327 } 5328 5329 /** 5330 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5331 * 5332 * This function adds the number of hbq entries in every HBQ to get 5333 * the total number of hbq entries required for the HBA and returns 5334 * the total count. 5335 **/ 5336 static int 5337 lpfc_sli_hbq_entry_count(void) 5338 { 5339 int hbq_count = lpfc_sli_hbq_count(); 5340 int count = 0; 5341 int i; 5342 5343 for (i = 0; i < hbq_count; ++i) 5344 count += lpfc_hbq_defs[i]->entry_count; 5345 return count; 5346 } 5347 5348 /** 5349 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5350 * 5351 * This function calculates amount of memory required for all hbq entries 5352 * to be configured and returns the total memory required. 5353 **/ 5354 int 5355 lpfc_sli_hbq_size(void) 5356 { 5357 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5358 } 5359 5360 /** 5361 * lpfc_sli_hbq_setup - configure and initialize HBQs 5362 * @phba: Pointer to HBA context object. 5363 * 5364 * This function is called during the SLI initialization to configure 5365 * all the HBQs and post buffers to the HBQ. The caller is not 5366 * required to hold any locks. This function will return zero if successful 5367 * else it will return negative error code. 5368 **/ 5369 static int 5370 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5371 { 5372 int hbq_count = lpfc_sli_hbq_count(); 5373 LPFC_MBOXQ_t *pmb; 5374 MAILBOX_t *pmbox; 5375 uint32_t hbqno; 5376 uint32_t hbq_entry_index; 5377 5378 /* Get a Mailbox buffer to setup mailbox 5379 * commands for HBA initialization 5380 */ 5381 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5382 5383 if (!pmb) 5384 return -ENOMEM; 5385 5386 pmbox = &pmb->u.mb; 5387 5388 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5389 phba->link_state = LPFC_INIT_MBX_CMDS; 5390 phba->hbq_in_use = 1; 5391 5392 hbq_entry_index = 0; 5393 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5394 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5395 phba->hbqs[hbqno].hbqPutIdx = 0; 5396 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5397 phba->hbqs[hbqno].entry_count = 5398 lpfc_hbq_defs[hbqno]->entry_count; 5399 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5400 hbq_entry_index, pmb); 5401 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5402 5403 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5404 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5405 mbxStatus <status>, ring <num> */ 5406 5407 lpfc_printf_log(phba, KERN_ERR, 5408 LOG_SLI | LOG_VPORT, 5409 "1805 Adapter failed to init. " 5410 "Data: x%x x%x x%x\n", 5411 pmbox->mbxCommand, 5412 pmbox->mbxStatus, hbqno); 5413 5414 phba->link_state = LPFC_HBA_ERROR; 5415 mempool_free(pmb, phba->mbox_mem_pool); 5416 return -ENXIO; 5417 } 5418 } 5419 phba->hbq_count = hbq_count; 5420 5421 mempool_free(pmb, phba->mbox_mem_pool); 5422 5423 /* Initially populate or replenish the HBQs */ 5424 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5425 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5426 return 0; 5427 } 5428 5429 /** 5430 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5431 * @phba: Pointer to HBA context object. 5432 * 5433 * This function is called during the SLI initialization to configure 5434 * all the HBQs and post buffers to the HBQ. The caller is not 5435 * required to hold any locks. This function will return zero if successful 5436 * else it will return negative error code. 5437 **/ 5438 static int 5439 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5440 { 5441 phba->hbq_in_use = 1; 5442 /** 5443 * Specific case when the MDS diagnostics is enabled and supported. 5444 * The receive buffer count is truncated to manage the incoming 5445 * traffic. 5446 **/ 5447 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5448 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5449 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5450 else 5451 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5452 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5453 phba->hbq_count = 1; 5454 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5455 /* Initially populate or replenish the HBQs */ 5456 return 0; 5457 } 5458 5459 /** 5460 * lpfc_sli_config_port - Issue config port mailbox command 5461 * @phba: Pointer to HBA context object. 5462 * @sli_mode: sli mode - 2/3 5463 * 5464 * This function is called by the sli initialization code path 5465 * to issue config_port mailbox command. This function restarts the 5466 * HBA firmware and issues a config_port mailbox command to configure 5467 * the SLI interface in the sli mode specified by sli_mode 5468 * variable. The caller is not required to hold any locks. 5469 * The function returns 0 if successful, else returns negative error 5470 * code. 5471 **/ 5472 int 5473 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5474 { 5475 LPFC_MBOXQ_t *pmb; 5476 uint32_t resetcount = 0, rc = 0, done = 0; 5477 5478 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5479 if (!pmb) { 5480 phba->link_state = LPFC_HBA_ERROR; 5481 return -ENOMEM; 5482 } 5483 5484 phba->sli_rev = sli_mode; 5485 while (resetcount < 2 && !done) { 5486 spin_lock_irq(&phba->hbalock); 5487 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5488 spin_unlock_irq(&phba->hbalock); 5489 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5490 lpfc_sli_brdrestart(phba); 5491 rc = lpfc_sli_chipset_init(phba); 5492 if (rc) 5493 break; 5494 5495 spin_lock_irq(&phba->hbalock); 5496 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5497 spin_unlock_irq(&phba->hbalock); 5498 resetcount++; 5499 5500 /* Call pre CONFIG_PORT mailbox command initialization. A 5501 * value of 0 means the call was successful. Any other 5502 * nonzero value is a failure, but if ERESTART is returned, 5503 * the driver may reset the HBA and try again. 5504 */ 5505 rc = lpfc_config_port_prep(phba); 5506 if (rc == -ERESTART) { 5507 phba->link_state = LPFC_LINK_UNKNOWN; 5508 continue; 5509 } else if (rc) 5510 break; 5511 5512 phba->link_state = LPFC_INIT_MBX_CMDS; 5513 lpfc_config_port(phba, pmb); 5514 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5515 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5516 LPFC_SLI3_HBQ_ENABLED | 5517 LPFC_SLI3_CRP_ENABLED | 5518 LPFC_SLI3_DSS_ENABLED); 5519 if (rc != MBX_SUCCESS) { 5520 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5521 "0442 Adapter failed to init, mbxCmd x%x " 5522 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5523 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5524 spin_lock_irq(&phba->hbalock); 5525 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5526 spin_unlock_irq(&phba->hbalock); 5527 rc = -ENXIO; 5528 } else { 5529 /* Allow asynchronous mailbox command to go through */ 5530 spin_lock_irq(&phba->hbalock); 5531 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5532 spin_unlock_irq(&phba->hbalock); 5533 done = 1; 5534 5535 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5536 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5537 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5538 "3110 Port did not grant ASABT\n"); 5539 } 5540 } 5541 if (!done) { 5542 rc = -EINVAL; 5543 goto do_prep_failed; 5544 } 5545 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5546 if (!pmb->u.mb.un.varCfgPort.cMA) { 5547 rc = -ENXIO; 5548 goto do_prep_failed; 5549 } 5550 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5551 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5552 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5553 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5554 phba->max_vpi : phba->max_vports; 5555 5556 } else 5557 phba->max_vpi = 0; 5558 if (pmb->u.mb.un.varCfgPort.gerbm) 5559 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5560 if (pmb->u.mb.un.varCfgPort.gcrp) 5561 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5562 5563 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5564 phba->port_gp = phba->mbox->us.s3_pgp.port; 5565 5566 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5567 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5568 phba->cfg_enable_bg = 0; 5569 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5570 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5571 "0443 Adapter did not grant " 5572 "BlockGuard\n"); 5573 } 5574 } 5575 } else { 5576 phba->hbq_get = NULL; 5577 phba->port_gp = phba->mbox->us.s2.port; 5578 phba->max_vpi = 0; 5579 } 5580 do_prep_failed: 5581 mempool_free(pmb, phba->mbox_mem_pool); 5582 return rc; 5583 } 5584 5585 5586 /** 5587 * lpfc_sli_hba_setup - SLI initialization function 5588 * @phba: Pointer to HBA context object. 5589 * 5590 * This function is the main SLI initialization function. This function 5591 * is called by the HBA initialization code, HBA reset code and HBA 5592 * error attention handler code. Caller is not required to hold any 5593 * locks. This function issues config_port mailbox command to configure 5594 * the SLI, setup iocb rings and HBQ rings. In the end the function 5595 * calls the config_port_post function to issue init_link mailbox 5596 * command and to start the discovery. The function will return zero 5597 * if successful, else it will return negative error code. 5598 **/ 5599 int 5600 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5601 { 5602 uint32_t rc; 5603 int i; 5604 int longs; 5605 5606 /* Enable ISR already does config_port because of config_msi mbx */ 5607 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5608 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5609 if (rc) 5610 return -EIO; 5611 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5612 } 5613 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5614 5615 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5616 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5617 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5618 if (!rc) { 5619 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5620 "2709 This device supports " 5621 "Advanced Error Reporting (AER)\n"); 5622 spin_lock_irq(&phba->hbalock); 5623 phba->hba_flag |= HBA_AER_ENABLED; 5624 spin_unlock_irq(&phba->hbalock); 5625 } else { 5626 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5627 "2708 This device does not support " 5628 "Advanced Error Reporting (AER): %d\n", 5629 rc); 5630 phba->cfg_aer_support = 0; 5631 } 5632 } 5633 5634 if (phba->sli_rev == 3) { 5635 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5636 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5637 } else { 5638 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5639 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5640 phba->sli3_options = 0; 5641 } 5642 5643 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5644 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5645 phba->sli_rev, phba->max_vpi); 5646 rc = lpfc_sli_ring_map(phba); 5647 5648 if (rc) 5649 goto lpfc_sli_hba_setup_error; 5650 5651 /* Initialize VPIs. */ 5652 if (phba->sli_rev == LPFC_SLI_REV3) { 5653 /* 5654 * The VPI bitmask and physical ID array are allocated 5655 * and initialized once only - at driver load. A port 5656 * reset doesn't need to reinitialize this memory. 5657 */ 5658 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5659 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5660 phba->vpi_bmask = kcalloc(longs, 5661 sizeof(unsigned long), 5662 GFP_KERNEL); 5663 if (!phba->vpi_bmask) { 5664 rc = -ENOMEM; 5665 goto lpfc_sli_hba_setup_error; 5666 } 5667 5668 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5669 sizeof(uint16_t), 5670 GFP_KERNEL); 5671 if (!phba->vpi_ids) { 5672 kfree(phba->vpi_bmask); 5673 rc = -ENOMEM; 5674 goto lpfc_sli_hba_setup_error; 5675 } 5676 for (i = 0; i < phba->max_vpi; i++) 5677 phba->vpi_ids[i] = i; 5678 } 5679 } 5680 5681 /* Init HBQs */ 5682 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5683 rc = lpfc_sli_hbq_setup(phba); 5684 if (rc) 5685 goto lpfc_sli_hba_setup_error; 5686 } 5687 spin_lock_irq(&phba->hbalock); 5688 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5689 spin_unlock_irq(&phba->hbalock); 5690 5691 rc = lpfc_config_port_post(phba); 5692 if (rc) 5693 goto lpfc_sli_hba_setup_error; 5694 5695 return rc; 5696 5697 lpfc_sli_hba_setup_error: 5698 phba->link_state = LPFC_HBA_ERROR; 5699 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5700 "0445 Firmware initialization failed\n"); 5701 return rc; 5702 } 5703 5704 /** 5705 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5706 * @phba: Pointer to HBA context object. 5707 * 5708 * This function issue a dump mailbox command to read config region 5709 * 23 and parse the records in the region and populate driver 5710 * data structure. 5711 **/ 5712 static int 5713 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5714 { 5715 LPFC_MBOXQ_t *mboxq; 5716 struct lpfc_dmabuf *mp; 5717 struct lpfc_mqe *mqe; 5718 uint32_t data_length; 5719 int rc; 5720 5721 /* Program the default value of vlan_id and fc_map */ 5722 phba->valid_vlan = 0; 5723 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5724 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5725 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5726 5727 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5728 if (!mboxq) 5729 return -ENOMEM; 5730 5731 mqe = &mboxq->u.mqe; 5732 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5733 rc = -ENOMEM; 5734 goto out_free_mboxq; 5735 } 5736 5737 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5738 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5739 5740 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5741 "(%d):2571 Mailbox cmd x%x Status x%x " 5742 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5743 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5744 "CQ: x%x x%x x%x x%x\n", 5745 mboxq->vport ? mboxq->vport->vpi : 0, 5746 bf_get(lpfc_mqe_command, mqe), 5747 bf_get(lpfc_mqe_status, mqe), 5748 mqe->un.mb_words[0], mqe->un.mb_words[1], 5749 mqe->un.mb_words[2], mqe->un.mb_words[3], 5750 mqe->un.mb_words[4], mqe->un.mb_words[5], 5751 mqe->un.mb_words[6], mqe->un.mb_words[7], 5752 mqe->un.mb_words[8], mqe->un.mb_words[9], 5753 mqe->un.mb_words[10], mqe->un.mb_words[11], 5754 mqe->un.mb_words[12], mqe->un.mb_words[13], 5755 mqe->un.mb_words[14], mqe->un.mb_words[15], 5756 mqe->un.mb_words[16], mqe->un.mb_words[50], 5757 mboxq->mcqe.word0, 5758 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5759 mboxq->mcqe.trailer); 5760 5761 if (rc) { 5762 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5763 kfree(mp); 5764 rc = -EIO; 5765 goto out_free_mboxq; 5766 } 5767 data_length = mqe->un.mb_words[5]; 5768 if (data_length > DMP_RGN23_SIZE) { 5769 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5770 kfree(mp); 5771 rc = -EIO; 5772 goto out_free_mboxq; 5773 } 5774 5775 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5776 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5777 kfree(mp); 5778 rc = 0; 5779 5780 out_free_mboxq: 5781 mempool_free(mboxq, phba->mbox_mem_pool); 5782 return rc; 5783 } 5784 5785 /** 5786 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5787 * @phba: pointer to lpfc hba data structure. 5788 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5789 * @vpd: pointer to the memory to hold resulting port vpd data. 5790 * @vpd_size: On input, the number of bytes allocated to @vpd. 5791 * On output, the number of data bytes in @vpd. 5792 * 5793 * This routine executes a READ_REV SLI4 mailbox command. In 5794 * addition, this routine gets the port vpd data. 5795 * 5796 * Return codes 5797 * 0 - successful 5798 * -ENOMEM - could not allocated memory. 5799 **/ 5800 static int 5801 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5802 uint8_t *vpd, uint32_t *vpd_size) 5803 { 5804 int rc = 0; 5805 uint32_t dma_size; 5806 struct lpfc_dmabuf *dmabuf; 5807 struct lpfc_mqe *mqe; 5808 5809 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5810 if (!dmabuf) 5811 return -ENOMEM; 5812 5813 /* 5814 * Get a DMA buffer for the vpd data resulting from the READ_REV 5815 * mailbox command. 5816 */ 5817 dma_size = *vpd_size; 5818 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5819 &dmabuf->phys, GFP_KERNEL); 5820 if (!dmabuf->virt) { 5821 kfree(dmabuf); 5822 return -ENOMEM; 5823 } 5824 5825 /* 5826 * The SLI4 implementation of READ_REV conflicts at word1, 5827 * bits 31:16 and SLI4 adds vpd functionality not present 5828 * in SLI3. This code corrects the conflicts. 5829 */ 5830 lpfc_read_rev(phba, mboxq); 5831 mqe = &mboxq->u.mqe; 5832 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5833 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5834 mqe->un.read_rev.word1 &= 0x0000FFFF; 5835 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5836 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5837 5838 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5839 if (rc) { 5840 dma_free_coherent(&phba->pcidev->dev, dma_size, 5841 dmabuf->virt, dmabuf->phys); 5842 kfree(dmabuf); 5843 return -EIO; 5844 } 5845 5846 /* 5847 * The available vpd length cannot be bigger than the 5848 * DMA buffer passed to the port. Catch the less than 5849 * case and update the caller's size. 5850 */ 5851 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5852 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5853 5854 memcpy(vpd, dmabuf->virt, *vpd_size); 5855 5856 dma_free_coherent(&phba->pcidev->dev, dma_size, 5857 dmabuf->virt, dmabuf->phys); 5858 kfree(dmabuf); 5859 return 0; 5860 } 5861 5862 /** 5863 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5864 * @phba: pointer to lpfc hba data structure. 5865 * 5866 * This routine retrieves SLI4 device physical port name this PCI function 5867 * is attached to. 5868 * 5869 * Return codes 5870 * 0 - successful 5871 * otherwise - failed to retrieve controller attributes 5872 **/ 5873 static int 5874 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5875 { 5876 LPFC_MBOXQ_t *mboxq; 5877 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5878 struct lpfc_controller_attribute *cntl_attr; 5879 void *virtaddr = NULL; 5880 uint32_t alloclen, reqlen; 5881 uint32_t shdr_status, shdr_add_status; 5882 union lpfc_sli4_cfg_shdr *shdr; 5883 int rc; 5884 5885 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5886 if (!mboxq) 5887 return -ENOMEM; 5888 5889 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5890 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5891 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5892 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5893 LPFC_SLI4_MBX_NEMBED); 5894 5895 if (alloclen < reqlen) { 5896 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5897 "3084 Allocated DMA memory size (%d) is " 5898 "less than the requested DMA memory size " 5899 "(%d)\n", alloclen, reqlen); 5900 rc = -ENOMEM; 5901 goto out_free_mboxq; 5902 } 5903 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5904 virtaddr = mboxq->sge_array->addr[0]; 5905 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5906 shdr = &mbx_cntl_attr->cfg_shdr; 5907 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5908 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5909 if (shdr_status || shdr_add_status || rc) { 5910 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5911 "3085 Mailbox x%x (x%x/x%x) failed, " 5912 "rc:x%x, status:x%x, add_status:x%x\n", 5913 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5914 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5915 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5916 rc, shdr_status, shdr_add_status); 5917 rc = -ENXIO; 5918 goto out_free_mboxq; 5919 } 5920 5921 cntl_attr = &mbx_cntl_attr->cntl_attr; 5922 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5923 phba->sli4_hba.lnk_info.lnk_tp = 5924 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5925 phba->sli4_hba.lnk_info.lnk_no = 5926 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5927 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 5928 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 5929 5930 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5931 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5932 sizeof(phba->BIOSVersion)); 5933 5934 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5935 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 5936 "flash_id: x%02x, asic_rev: x%02x\n", 5937 phba->sli4_hba.lnk_info.lnk_tp, 5938 phba->sli4_hba.lnk_info.lnk_no, 5939 phba->BIOSVersion, phba->sli4_hba.flash_id, 5940 phba->sli4_hba.asic_rev); 5941 out_free_mboxq: 5942 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5943 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5944 else 5945 mempool_free(mboxq, phba->mbox_mem_pool); 5946 return rc; 5947 } 5948 5949 /** 5950 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5951 * @phba: pointer to lpfc hba data structure. 5952 * 5953 * This routine retrieves SLI4 device physical port name this PCI function 5954 * is attached to. 5955 * 5956 * Return codes 5957 * 0 - successful 5958 * otherwise - failed to retrieve physical port name 5959 **/ 5960 static int 5961 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5962 { 5963 LPFC_MBOXQ_t *mboxq; 5964 struct lpfc_mbx_get_port_name *get_port_name; 5965 uint32_t shdr_status, shdr_add_status; 5966 union lpfc_sli4_cfg_shdr *shdr; 5967 char cport_name = 0; 5968 int rc; 5969 5970 /* We assume nothing at this point */ 5971 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5972 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5973 5974 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5975 if (!mboxq) 5976 return -ENOMEM; 5977 /* obtain link type and link number via READ_CONFIG */ 5978 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5979 lpfc_sli4_read_config(phba); 5980 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5981 goto retrieve_ppname; 5982 5983 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5984 rc = lpfc_sli4_get_ctl_attr(phba); 5985 if (rc) 5986 goto out_free_mboxq; 5987 5988 retrieve_ppname: 5989 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5990 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5991 sizeof(struct lpfc_mbx_get_port_name) - 5992 sizeof(struct lpfc_sli4_cfg_mhdr), 5993 LPFC_SLI4_MBX_EMBED); 5994 get_port_name = &mboxq->u.mqe.un.get_port_name; 5995 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5996 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5997 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5998 phba->sli4_hba.lnk_info.lnk_tp); 5999 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6000 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6001 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6002 if (shdr_status || shdr_add_status || rc) { 6003 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6004 "3087 Mailbox x%x (x%x/x%x) failed: " 6005 "rc:x%x, status:x%x, add_status:x%x\n", 6006 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6007 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6008 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6009 rc, shdr_status, shdr_add_status); 6010 rc = -ENXIO; 6011 goto out_free_mboxq; 6012 } 6013 switch (phba->sli4_hba.lnk_info.lnk_no) { 6014 case LPFC_LINK_NUMBER_0: 6015 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6016 &get_port_name->u.response); 6017 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6018 break; 6019 case LPFC_LINK_NUMBER_1: 6020 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6021 &get_port_name->u.response); 6022 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6023 break; 6024 case LPFC_LINK_NUMBER_2: 6025 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6026 &get_port_name->u.response); 6027 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6028 break; 6029 case LPFC_LINK_NUMBER_3: 6030 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6031 &get_port_name->u.response); 6032 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6033 break; 6034 default: 6035 break; 6036 } 6037 6038 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6039 phba->Port[0] = cport_name; 6040 phba->Port[1] = '\0'; 6041 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6042 "3091 SLI get port name: %s\n", phba->Port); 6043 } 6044 6045 out_free_mboxq: 6046 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6047 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6048 else 6049 mempool_free(mboxq, phba->mbox_mem_pool); 6050 return rc; 6051 } 6052 6053 /** 6054 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6055 * @phba: pointer to lpfc hba data structure. 6056 * 6057 * This routine is called to explicitly arm the SLI4 device's completion and 6058 * event queues 6059 **/ 6060 static void 6061 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6062 { 6063 int qidx; 6064 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6065 struct lpfc_sli4_hdw_queue *qp; 6066 struct lpfc_queue *eq; 6067 6068 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6069 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6070 if (sli4_hba->nvmels_cq) 6071 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6072 LPFC_QUEUE_REARM); 6073 6074 if (sli4_hba->hdwq) { 6075 /* Loop thru all Hardware Queues */ 6076 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6077 qp = &sli4_hba->hdwq[qidx]; 6078 /* ARM the corresponding CQ */ 6079 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6080 LPFC_QUEUE_REARM); 6081 } 6082 6083 /* Loop thru all IRQ vectors */ 6084 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6085 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6086 /* ARM the corresponding EQ */ 6087 sli4_hba->sli4_write_eq_db(phba, eq, 6088 0, LPFC_QUEUE_REARM); 6089 } 6090 } 6091 6092 if (phba->nvmet_support) { 6093 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6094 sli4_hba->sli4_write_cq_db(phba, 6095 sli4_hba->nvmet_cqset[qidx], 0, 6096 LPFC_QUEUE_REARM); 6097 } 6098 } 6099 } 6100 6101 /** 6102 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6103 * @phba: Pointer to HBA context object. 6104 * @type: The resource extent type. 6105 * @extnt_count: buffer to hold port available extent count. 6106 * @extnt_size: buffer to hold element count per extent. 6107 * 6108 * This function calls the port and retrievs the number of available 6109 * extents and their size for a particular extent type. 6110 * 6111 * Returns: 0 if successful. Nonzero otherwise. 6112 **/ 6113 int 6114 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6115 uint16_t *extnt_count, uint16_t *extnt_size) 6116 { 6117 int rc = 0; 6118 uint32_t length; 6119 uint32_t mbox_tmo; 6120 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6121 LPFC_MBOXQ_t *mbox; 6122 6123 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6124 if (!mbox) 6125 return -ENOMEM; 6126 6127 /* Find out how many extents are available for this resource type */ 6128 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6129 sizeof(struct lpfc_sli4_cfg_mhdr)); 6130 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6131 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6132 length, LPFC_SLI4_MBX_EMBED); 6133 6134 /* Send an extents count of 0 - the GET doesn't use it. */ 6135 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6136 LPFC_SLI4_MBX_EMBED); 6137 if (unlikely(rc)) { 6138 rc = -EIO; 6139 goto err_exit; 6140 } 6141 6142 if (!phba->sli4_hba.intr_enable) 6143 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6144 else { 6145 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6146 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6147 } 6148 if (unlikely(rc)) { 6149 rc = -EIO; 6150 goto err_exit; 6151 } 6152 6153 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6154 if (bf_get(lpfc_mbox_hdr_status, 6155 &rsrc_info->header.cfg_shdr.response)) { 6156 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6157 "2930 Failed to get resource extents " 6158 "Status 0x%x Add'l Status 0x%x\n", 6159 bf_get(lpfc_mbox_hdr_status, 6160 &rsrc_info->header.cfg_shdr.response), 6161 bf_get(lpfc_mbox_hdr_add_status, 6162 &rsrc_info->header.cfg_shdr.response)); 6163 rc = -EIO; 6164 goto err_exit; 6165 } 6166 6167 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6168 &rsrc_info->u.rsp); 6169 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6170 &rsrc_info->u.rsp); 6171 6172 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6173 "3162 Retrieved extents type-%d from port: count:%d, " 6174 "size:%d\n", type, *extnt_count, *extnt_size); 6175 6176 err_exit: 6177 mempool_free(mbox, phba->mbox_mem_pool); 6178 return rc; 6179 } 6180 6181 /** 6182 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6183 * @phba: Pointer to HBA context object. 6184 * @type: The extent type to check. 6185 * 6186 * This function reads the current available extents from the port and checks 6187 * if the extent count or extent size has changed since the last access. 6188 * Callers use this routine post port reset to understand if there is a 6189 * extent reprovisioning requirement. 6190 * 6191 * Returns: 6192 * -Error: error indicates problem. 6193 * 1: Extent count or size has changed. 6194 * 0: No changes. 6195 **/ 6196 static int 6197 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6198 { 6199 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6200 uint16_t size_diff, rsrc_ext_size; 6201 int rc = 0; 6202 struct lpfc_rsrc_blks *rsrc_entry; 6203 struct list_head *rsrc_blk_list = NULL; 6204 6205 size_diff = 0; 6206 curr_ext_cnt = 0; 6207 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6208 &rsrc_ext_cnt, 6209 &rsrc_ext_size); 6210 if (unlikely(rc)) 6211 return -EIO; 6212 6213 switch (type) { 6214 case LPFC_RSC_TYPE_FCOE_RPI: 6215 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6216 break; 6217 case LPFC_RSC_TYPE_FCOE_VPI: 6218 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6219 break; 6220 case LPFC_RSC_TYPE_FCOE_XRI: 6221 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6222 break; 6223 case LPFC_RSC_TYPE_FCOE_VFI: 6224 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6225 break; 6226 default: 6227 break; 6228 } 6229 6230 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6231 curr_ext_cnt++; 6232 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6233 size_diff++; 6234 } 6235 6236 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6237 rc = 1; 6238 6239 return rc; 6240 } 6241 6242 /** 6243 * lpfc_sli4_cfg_post_extnts - 6244 * @phba: Pointer to HBA context object. 6245 * @extnt_cnt: number of available extents. 6246 * @type: the extent type (rpi, xri, vfi, vpi). 6247 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6248 * @mbox: pointer to the caller's allocated mailbox structure. 6249 * 6250 * This function executes the extents allocation request. It also 6251 * takes care of the amount of memory needed to allocate or get the 6252 * allocated extents. It is the caller's responsibility to evaluate 6253 * the response. 6254 * 6255 * Returns: 6256 * -Error: Error value describes the condition found. 6257 * 0: if successful 6258 **/ 6259 static int 6260 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6261 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6262 { 6263 int rc = 0; 6264 uint32_t req_len; 6265 uint32_t emb_len; 6266 uint32_t alloc_len, mbox_tmo; 6267 6268 /* Calculate the total requested length of the dma memory */ 6269 req_len = extnt_cnt * sizeof(uint16_t); 6270 6271 /* 6272 * Calculate the size of an embedded mailbox. The uint32_t 6273 * accounts for extents-specific word. 6274 */ 6275 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6276 sizeof(uint32_t); 6277 6278 /* 6279 * Presume the allocation and response will fit into an embedded 6280 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6281 */ 6282 *emb = LPFC_SLI4_MBX_EMBED; 6283 if (req_len > emb_len) { 6284 req_len = extnt_cnt * sizeof(uint16_t) + 6285 sizeof(union lpfc_sli4_cfg_shdr) + 6286 sizeof(uint32_t); 6287 *emb = LPFC_SLI4_MBX_NEMBED; 6288 } 6289 6290 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6291 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6292 req_len, *emb); 6293 if (alloc_len < req_len) { 6294 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6295 "2982 Allocated DMA memory size (x%x) is " 6296 "less than the requested DMA memory " 6297 "size (x%x)\n", alloc_len, req_len); 6298 return -ENOMEM; 6299 } 6300 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6301 if (unlikely(rc)) 6302 return -EIO; 6303 6304 if (!phba->sli4_hba.intr_enable) 6305 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6306 else { 6307 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6308 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6309 } 6310 6311 if (unlikely(rc)) 6312 rc = -EIO; 6313 return rc; 6314 } 6315 6316 /** 6317 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6318 * @phba: Pointer to HBA context object. 6319 * @type: The resource extent type to allocate. 6320 * 6321 * This function allocates the number of elements for the specified 6322 * resource type. 6323 **/ 6324 static int 6325 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6326 { 6327 bool emb = false; 6328 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6329 uint16_t rsrc_id, rsrc_start, j, k; 6330 uint16_t *ids; 6331 int i, rc; 6332 unsigned long longs; 6333 unsigned long *bmask; 6334 struct lpfc_rsrc_blks *rsrc_blks; 6335 LPFC_MBOXQ_t *mbox; 6336 uint32_t length; 6337 struct lpfc_id_range *id_array = NULL; 6338 void *virtaddr = NULL; 6339 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6340 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6341 struct list_head *ext_blk_list; 6342 6343 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6344 &rsrc_cnt, 6345 &rsrc_size); 6346 if (unlikely(rc)) 6347 return -EIO; 6348 6349 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6350 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6351 "3009 No available Resource Extents " 6352 "for resource type 0x%x: Count: 0x%x, " 6353 "Size 0x%x\n", type, rsrc_cnt, 6354 rsrc_size); 6355 return -ENOMEM; 6356 } 6357 6358 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6359 "2903 Post resource extents type-0x%x: " 6360 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6361 6362 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6363 if (!mbox) 6364 return -ENOMEM; 6365 6366 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6367 if (unlikely(rc)) { 6368 rc = -EIO; 6369 goto err_exit; 6370 } 6371 6372 /* 6373 * Figure out where the response is located. Then get local pointers 6374 * to the response data. The port does not guarantee to respond to 6375 * all extents counts request so update the local variable with the 6376 * allocated count from the port. 6377 */ 6378 if (emb == LPFC_SLI4_MBX_EMBED) { 6379 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6380 id_array = &rsrc_ext->u.rsp.id[0]; 6381 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6382 } else { 6383 virtaddr = mbox->sge_array->addr[0]; 6384 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6385 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6386 id_array = &n_rsrc->id; 6387 } 6388 6389 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6390 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6391 6392 /* 6393 * Based on the resource size and count, correct the base and max 6394 * resource values. 6395 */ 6396 length = sizeof(struct lpfc_rsrc_blks); 6397 switch (type) { 6398 case LPFC_RSC_TYPE_FCOE_RPI: 6399 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6400 sizeof(unsigned long), 6401 GFP_KERNEL); 6402 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6403 rc = -ENOMEM; 6404 goto err_exit; 6405 } 6406 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6407 sizeof(uint16_t), 6408 GFP_KERNEL); 6409 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6410 kfree(phba->sli4_hba.rpi_bmask); 6411 rc = -ENOMEM; 6412 goto err_exit; 6413 } 6414 6415 /* 6416 * The next_rpi was initialized with the maximum available 6417 * count but the port may allocate a smaller number. Catch 6418 * that case and update the next_rpi. 6419 */ 6420 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6421 6422 /* Initialize local ptrs for common extent processing later. */ 6423 bmask = phba->sli4_hba.rpi_bmask; 6424 ids = phba->sli4_hba.rpi_ids; 6425 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6426 break; 6427 case LPFC_RSC_TYPE_FCOE_VPI: 6428 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6429 GFP_KERNEL); 6430 if (unlikely(!phba->vpi_bmask)) { 6431 rc = -ENOMEM; 6432 goto err_exit; 6433 } 6434 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6435 GFP_KERNEL); 6436 if (unlikely(!phba->vpi_ids)) { 6437 kfree(phba->vpi_bmask); 6438 rc = -ENOMEM; 6439 goto err_exit; 6440 } 6441 6442 /* Initialize local ptrs for common extent processing later. */ 6443 bmask = phba->vpi_bmask; 6444 ids = phba->vpi_ids; 6445 ext_blk_list = &phba->lpfc_vpi_blk_list; 6446 break; 6447 case LPFC_RSC_TYPE_FCOE_XRI: 6448 phba->sli4_hba.xri_bmask = kcalloc(longs, 6449 sizeof(unsigned long), 6450 GFP_KERNEL); 6451 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6452 rc = -ENOMEM; 6453 goto err_exit; 6454 } 6455 phba->sli4_hba.max_cfg_param.xri_used = 0; 6456 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6457 sizeof(uint16_t), 6458 GFP_KERNEL); 6459 if (unlikely(!phba->sli4_hba.xri_ids)) { 6460 kfree(phba->sli4_hba.xri_bmask); 6461 rc = -ENOMEM; 6462 goto err_exit; 6463 } 6464 6465 /* Initialize local ptrs for common extent processing later. */ 6466 bmask = phba->sli4_hba.xri_bmask; 6467 ids = phba->sli4_hba.xri_ids; 6468 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6469 break; 6470 case LPFC_RSC_TYPE_FCOE_VFI: 6471 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6472 sizeof(unsigned long), 6473 GFP_KERNEL); 6474 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6475 rc = -ENOMEM; 6476 goto err_exit; 6477 } 6478 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6479 sizeof(uint16_t), 6480 GFP_KERNEL); 6481 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6482 kfree(phba->sli4_hba.vfi_bmask); 6483 rc = -ENOMEM; 6484 goto err_exit; 6485 } 6486 6487 /* Initialize local ptrs for common extent processing later. */ 6488 bmask = phba->sli4_hba.vfi_bmask; 6489 ids = phba->sli4_hba.vfi_ids; 6490 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6491 break; 6492 default: 6493 /* Unsupported Opcode. Fail call. */ 6494 id_array = NULL; 6495 bmask = NULL; 6496 ids = NULL; 6497 ext_blk_list = NULL; 6498 goto err_exit; 6499 } 6500 6501 /* 6502 * Complete initializing the extent configuration with the 6503 * allocated ids assigned to this function. The bitmask serves 6504 * as an index into the array and manages the available ids. The 6505 * array just stores the ids communicated to the port via the wqes. 6506 */ 6507 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6508 if ((i % 2) == 0) 6509 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6510 &id_array[k]); 6511 else 6512 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6513 &id_array[k]); 6514 6515 rsrc_blks = kzalloc(length, GFP_KERNEL); 6516 if (unlikely(!rsrc_blks)) { 6517 rc = -ENOMEM; 6518 kfree(bmask); 6519 kfree(ids); 6520 goto err_exit; 6521 } 6522 rsrc_blks->rsrc_start = rsrc_id; 6523 rsrc_blks->rsrc_size = rsrc_size; 6524 list_add_tail(&rsrc_blks->list, ext_blk_list); 6525 rsrc_start = rsrc_id; 6526 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6527 phba->sli4_hba.io_xri_start = rsrc_start + 6528 lpfc_sli4_get_iocb_cnt(phba); 6529 } 6530 6531 while (rsrc_id < (rsrc_start + rsrc_size)) { 6532 ids[j] = rsrc_id; 6533 rsrc_id++; 6534 j++; 6535 } 6536 /* Entire word processed. Get next word.*/ 6537 if ((i % 2) == 1) 6538 k++; 6539 } 6540 err_exit: 6541 lpfc_sli4_mbox_cmd_free(phba, mbox); 6542 return rc; 6543 } 6544 6545 6546 6547 /** 6548 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6549 * @phba: Pointer to HBA context object. 6550 * @type: the extent's type. 6551 * 6552 * This function deallocates all extents of a particular resource type. 6553 * SLI4 does not allow for deallocating a particular extent range. It 6554 * is the caller's responsibility to release all kernel memory resources. 6555 **/ 6556 static int 6557 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6558 { 6559 int rc; 6560 uint32_t length, mbox_tmo = 0; 6561 LPFC_MBOXQ_t *mbox; 6562 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6563 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6564 6565 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6566 if (!mbox) 6567 return -ENOMEM; 6568 6569 /* 6570 * This function sends an embedded mailbox because it only sends the 6571 * the resource type. All extents of this type are released by the 6572 * port. 6573 */ 6574 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6575 sizeof(struct lpfc_sli4_cfg_mhdr)); 6576 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6577 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6578 length, LPFC_SLI4_MBX_EMBED); 6579 6580 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6581 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6582 LPFC_SLI4_MBX_EMBED); 6583 if (unlikely(rc)) { 6584 rc = -EIO; 6585 goto out_free_mbox; 6586 } 6587 if (!phba->sli4_hba.intr_enable) 6588 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6589 else { 6590 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6591 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6592 } 6593 if (unlikely(rc)) { 6594 rc = -EIO; 6595 goto out_free_mbox; 6596 } 6597 6598 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6599 if (bf_get(lpfc_mbox_hdr_status, 6600 &dealloc_rsrc->header.cfg_shdr.response)) { 6601 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6602 "2919 Failed to release resource extents " 6603 "for type %d - Status 0x%x Add'l Status 0x%x. " 6604 "Resource memory not released.\n", 6605 type, 6606 bf_get(lpfc_mbox_hdr_status, 6607 &dealloc_rsrc->header.cfg_shdr.response), 6608 bf_get(lpfc_mbox_hdr_add_status, 6609 &dealloc_rsrc->header.cfg_shdr.response)); 6610 rc = -EIO; 6611 goto out_free_mbox; 6612 } 6613 6614 /* Release kernel memory resources for the specific type. */ 6615 switch (type) { 6616 case LPFC_RSC_TYPE_FCOE_VPI: 6617 kfree(phba->vpi_bmask); 6618 kfree(phba->vpi_ids); 6619 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6620 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6621 &phba->lpfc_vpi_blk_list, list) { 6622 list_del_init(&rsrc_blk->list); 6623 kfree(rsrc_blk); 6624 } 6625 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6626 break; 6627 case LPFC_RSC_TYPE_FCOE_XRI: 6628 kfree(phba->sli4_hba.xri_bmask); 6629 kfree(phba->sli4_hba.xri_ids); 6630 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6631 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6632 list_del_init(&rsrc_blk->list); 6633 kfree(rsrc_blk); 6634 } 6635 break; 6636 case LPFC_RSC_TYPE_FCOE_VFI: 6637 kfree(phba->sli4_hba.vfi_bmask); 6638 kfree(phba->sli4_hba.vfi_ids); 6639 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6640 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6641 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6642 list_del_init(&rsrc_blk->list); 6643 kfree(rsrc_blk); 6644 } 6645 break; 6646 case LPFC_RSC_TYPE_FCOE_RPI: 6647 /* RPI bitmask and physical id array are cleaned up earlier. */ 6648 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6649 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6650 list_del_init(&rsrc_blk->list); 6651 kfree(rsrc_blk); 6652 } 6653 break; 6654 default: 6655 break; 6656 } 6657 6658 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6659 6660 out_free_mbox: 6661 mempool_free(mbox, phba->mbox_mem_pool); 6662 return rc; 6663 } 6664 6665 static void 6666 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6667 uint32_t feature) 6668 { 6669 uint32_t len; 6670 u32 sig_freq = 0; 6671 6672 len = sizeof(struct lpfc_mbx_set_feature) - 6673 sizeof(struct lpfc_sli4_cfg_mhdr); 6674 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6675 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6676 LPFC_SLI4_MBX_EMBED); 6677 6678 switch (feature) { 6679 case LPFC_SET_UE_RECOVERY: 6680 bf_set(lpfc_mbx_set_feature_UER, 6681 &mbox->u.mqe.un.set_feature, 1); 6682 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6683 mbox->u.mqe.un.set_feature.param_len = 8; 6684 break; 6685 case LPFC_SET_MDS_DIAGS: 6686 bf_set(lpfc_mbx_set_feature_mds, 6687 &mbox->u.mqe.un.set_feature, 1); 6688 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6689 &mbox->u.mqe.un.set_feature, 1); 6690 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6691 mbox->u.mqe.un.set_feature.param_len = 8; 6692 break; 6693 case LPFC_SET_CGN_SIGNAL: 6694 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6695 sig_freq = 0; 6696 else 6697 sig_freq = phba->cgn_sig_freq; 6698 6699 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6700 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6701 &mbox->u.mqe.un.set_feature, sig_freq); 6702 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6703 &mbox->u.mqe.un.set_feature, sig_freq); 6704 } 6705 6706 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6707 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6708 &mbox->u.mqe.un.set_feature, sig_freq); 6709 6710 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6711 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6712 sig_freq = 0; 6713 else 6714 sig_freq = lpfc_acqe_cgn_frequency; 6715 6716 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6717 &mbox->u.mqe.un.set_feature, sig_freq); 6718 6719 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6720 mbox->u.mqe.un.set_feature.param_len = 12; 6721 break; 6722 case LPFC_SET_DUAL_DUMP: 6723 bf_set(lpfc_mbx_set_feature_dd, 6724 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6725 bf_set(lpfc_mbx_set_feature_ddquery, 6726 &mbox->u.mqe.un.set_feature, 0); 6727 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6728 mbox->u.mqe.un.set_feature.param_len = 4; 6729 break; 6730 case LPFC_SET_ENABLE_MI: 6731 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6732 mbox->u.mqe.un.set_feature.param_len = 4; 6733 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6734 phba->pport->cfg_lun_queue_depth); 6735 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6736 phba->sli4_hba.pc_sli4_params.mi_ver); 6737 break; 6738 case LPFC_SET_ENABLE_CMF: 6739 bf_set(lpfc_mbx_set_feature_dd, &mbox->u.mqe.un.set_feature, 1); 6740 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6741 mbox->u.mqe.un.set_feature.param_len = 4; 6742 bf_set(lpfc_mbx_set_feature_cmf, 6743 &mbox->u.mqe.un.set_feature, 1); 6744 break; 6745 } 6746 return; 6747 } 6748 6749 /** 6750 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6751 * @phba: Pointer to HBA context object. 6752 * 6753 * Disable FW logging into host memory on the adapter. To 6754 * be done before reading logs from the host memory. 6755 **/ 6756 void 6757 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6758 { 6759 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6760 6761 spin_lock_irq(&phba->hbalock); 6762 ras_fwlog->state = INACTIVE; 6763 spin_unlock_irq(&phba->hbalock); 6764 6765 /* Disable FW logging to host memory */ 6766 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6767 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6768 6769 /* Wait 10ms for firmware to stop using DMA buffer */ 6770 usleep_range(10 * 1000, 20 * 1000); 6771 } 6772 6773 /** 6774 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6775 * @phba: Pointer to HBA context object. 6776 * 6777 * This function is called to free memory allocated for RAS FW logging 6778 * support in the driver. 6779 **/ 6780 void 6781 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6782 { 6783 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6784 struct lpfc_dmabuf *dmabuf, *next; 6785 6786 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6787 list_for_each_entry_safe(dmabuf, next, 6788 &ras_fwlog->fwlog_buff_list, 6789 list) { 6790 list_del(&dmabuf->list); 6791 dma_free_coherent(&phba->pcidev->dev, 6792 LPFC_RAS_MAX_ENTRY_SIZE, 6793 dmabuf->virt, dmabuf->phys); 6794 kfree(dmabuf); 6795 } 6796 } 6797 6798 if (ras_fwlog->lwpd.virt) { 6799 dma_free_coherent(&phba->pcidev->dev, 6800 sizeof(uint32_t) * 2, 6801 ras_fwlog->lwpd.virt, 6802 ras_fwlog->lwpd.phys); 6803 ras_fwlog->lwpd.virt = NULL; 6804 } 6805 6806 spin_lock_irq(&phba->hbalock); 6807 ras_fwlog->state = INACTIVE; 6808 spin_unlock_irq(&phba->hbalock); 6809 } 6810 6811 /** 6812 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6813 * @phba: Pointer to HBA context object. 6814 * @fwlog_buff_count: Count of buffers to be created. 6815 * 6816 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6817 * to update FW log is posted to the adapter. 6818 * Buffer count is calculated based on module param ras_fwlog_buffsize 6819 * Size of each buffer posted to FW is 64K. 6820 **/ 6821 6822 static int 6823 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6824 uint32_t fwlog_buff_count) 6825 { 6826 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6827 struct lpfc_dmabuf *dmabuf; 6828 int rc = 0, i = 0; 6829 6830 /* Initialize List */ 6831 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6832 6833 /* Allocate memory for the LWPD */ 6834 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6835 sizeof(uint32_t) * 2, 6836 &ras_fwlog->lwpd.phys, 6837 GFP_KERNEL); 6838 if (!ras_fwlog->lwpd.virt) { 6839 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6840 "6185 LWPD Memory Alloc Failed\n"); 6841 6842 return -ENOMEM; 6843 } 6844 6845 ras_fwlog->fw_buffcount = fwlog_buff_count; 6846 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6847 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6848 GFP_KERNEL); 6849 if (!dmabuf) { 6850 rc = -ENOMEM; 6851 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6852 "6186 Memory Alloc failed FW logging"); 6853 goto free_mem; 6854 } 6855 6856 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6857 LPFC_RAS_MAX_ENTRY_SIZE, 6858 &dmabuf->phys, GFP_KERNEL); 6859 if (!dmabuf->virt) { 6860 kfree(dmabuf); 6861 rc = -ENOMEM; 6862 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6863 "6187 DMA Alloc Failed FW logging"); 6864 goto free_mem; 6865 } 6866 dmabuf->buffer_tag = i; 6867 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6868 } 6869 6870 free_mem: 6871 if (rc) 6872 lpfc_sli4_ras_dma_free(phba); 6873 6874 return rc; 6875 } 6876 6877 /** 6878 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6879 * @phba: pointer to lpfc hba data structure. 6880 * @pmb: pointer to the driver internal queue element for mailbox command. 6881 * 6882 * Completion handler for driver's RAS MBX command to the device. 6883 **/ 6884 static void 6885 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6886 { 6887 MAILBOX_t *mb; 6888 union lpfc_sli4_cfg_shdr *shdr; 6889 uint32_t shdr_status, shdr_add_status; 6890 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6891 6892 mb = &pmb->u.mb; 6893 6894 shdr = (union lpfc_sli4_cfg_shdr *) 6895 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6896 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6897 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6898 6899 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6900 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6901 "6188 FW LOG mailbox " 6902 "completed with status x%x add_status x%x," 6903 " mbx status x%x\n", 6904 shdr_status, shdr_add_status, mb->mbxStatus); 6905 6906 ras_fwlog->ras_hwsupport = false; 6907 goto disable_ras; 6908 } 6909 6910 spin_lock_irq(&phba->hbalock); 6911 ras_fwlog->state = ACTIVE; 6912 spin_unlock_irq(&phba->hbalock); 6913 mempool_free(pmb, phba->mbox_mem_pool); 6914 6915 return; 6916 6917 disable_ras: 6918 /* Free RAS DMA memory */ 6919 lpfc_sli4_ras_dma_free(phba); 6920 mempool_free(pmb, phba->mbox_mem_pool); 6921 } 6922 6923 /** 6924 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6925 * @phba: pointer to lpfc hba data structure. 6926 * @fwlog_level: Logging verbosity level. 6927 * @fwlog_enable: Enable/Disable logging. 6928 * 6929 * Initialize memory and post mailbox command to enable FW logging in host 6930 * memory. 6931 **/ 6932 int 6933 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6934 uint32_t fwlog_level, 6935 uint32_t fwlog_enable) 6936 { 6937 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6938 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6939 struct lpfc_dmabuf *dmabuf; 6940 LPFC_MBOXQ_t *mbox; 6941 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6942 int rc = 0; 6943 6944 spin_lock_irq(&phba->hbalock); 6945 ras_fwlog->state = INACTIVE; 6946 spin_unlock_irq(&phba->hbalock); 6947 6948 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6949 phba->cfg_ras_fwlog_buffsize); 6950 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6951 6952 /* 6953 * If re-enabling FW logging support use earlier allocated 6954 * DMA buffers while posting MBX command. 6955 **/ 6956 if (!ras_fwlog->lwpd.virt) { 6957 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6958 if (rc) { 6959 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6960 "6189 FW Log Memory Allocation Failed"); 6961 return rc; 6962 } 6963 } 6964 6965 /* Setup Mailbox command */ 6966 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6967 if (!mbox) { 6968 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6969 "6190 RAS MBX Alloc Failed"); 6970 rc = -ENOMEM; 6971 goto mem_free; 6972 } 6973 6974 ras_fwlog->fw_loglevel = fwlog_level; 6975 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6976 sizeof(struct lpfc_sli4_cfg_mhdr)); 6977 6978 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6979 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6980 len, LPFC_SLI4_MBX_EMBED); 6981 6982 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6983 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6984 fwlog_enable); 6985 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6986 ras_fwlog->fw_loglevel); 6987 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6988 ras_fwlog->fw_buffcount); 6989 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6990 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6991 6992 /* Update DMA buffer address */ 6993 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6994 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6995 6996 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6997 putPaddrLow(dmabuf->phys); 6998 6999 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7000 putPaddrHigh(dmabuf->phys); 7001 } 7002 7003 /* Update LPWD address */ 7004 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7005 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7006 7007 spin_lock_irq(&phba->hbalock); 7008 ras_fwlog->state = REG_INPROGRESS; 7009 spin_unlock_irq(&phba->hbalock); 7010 mbox->vport = phba->pport; 7011 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7012 7013 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7014 7015 if (rc == MBX_NOT_FINISHED) { 7016 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7017 "6191 FW-Log Mailbox failed. " 7018 "status %d mbxStatus : x%x", rc, 7019 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7020 mempool_free(mbox, phba->mbox_mem_pool); 7021 rc = -EIO; 7022 goto mem_free; 7023 } else 7024 rc = 0; 7025 mem_free: 7026 if (rc) 7027 lpfc_sli4_ras_dma_free(phba); 7028 7029 return rc; 7030 } 7031 7032 /** 7033 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7034 * @phba: Pointer to HBA context object. 7035 * 7036 * Check if RAS is supported on the adapter and initialize it. 7037 **/ 7038 void 7039 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7040 { 7041 /* Check RAS FW Log needs to be enabled or not */ 7042 if (lpfc_check_fwlog_support(phba)) 7043 return; 7044 7045 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7046 LPFC_RAS_ENABLE_LOGGING); 7047 } 7048 7049 /** 7050 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7051 * @phba: Pointer to HBA context object. 7052 * 7053 * This function allocates all SLI4 resource identifiers. 7054 **/ 7055 int 7056 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7057 { 7058 int i, rc, error = 0; 7059 uint16_t count, base; 7060 unsigned long longs; 7061 7062 if (!phba->sli4_hba.rpi_hdrs_in_use) 7063 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7064 if (phba->sli4_hba.extents_in_use) { 7065 /* 7066 * The port supports resource extents. The XRI, VPI, VFI, RPI 7067 * resource extent count must be read and allocated before 7068 * provisioning the resource id arrays. 7069 */ 7070 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7071 LPFC_IDX_RSRC_RDY) { 7072 /* 7073 * Extent-based resources are set - the driver could 7074 * be in a port reset. Figure out if any corrective 7075 * actions need to be taken. 7076 */ 7077 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7078 LPFC_RSC_TYPE_FCOE_VFI); 7079 if (rc != 0) 7080 error++; 7081 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7082 LPFC_RSC_TYPE_FCOE_VPI); 7083 if (rc != 0) 7084 error++; 7085 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7086 LPFC_RSC_TYPE_FCOE_XRI); 7087 if (rc != 0) 7088 error++; 7089 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7090 LPFC_RSC_TYPE_FCOE_RPI); 7091 if (rc != 0) 7092 error++; 7093 7094 /* 7095 * It's possible that the number of resources 7096 * provided to this port instance changed between 7097 * resets. Detect this condition and reallocate 7098 * resources. Otherwise, there is no action. 7099 */ 7100 if (error) { 7101 lpfc_printf_log(phba, KERN_INFO, 7102 LOG_MBOX | LOG_INIT, 7103 "2931 Detected extent resource " 7104 "change. Reallocating all " 7105 "extents.\n"); 7106 rc = lpfc_sli4_dealloc_extent(phba, 7107 LPFC_RSC_TYPE_FCOE_VFI); 7108 rc = lpfc_sli4_dealloc_extent(phba, 7109 LPFC_RSC_TYPE_FCOE_VPI); 7110 rc = lpfc_sli4_dealloc_extent(phba, 7111 LPFC_RSC_TYPE_FCOE_XRI); 7112 rc = lpfc_sli4_dealloc_extent(phba, 7113 LPFC_RSC_TYPE_FCOE_RPI); 7114 } else 7115 return 0; 7116 } 7117 7118 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7119 if (unlikely(rc)) 7120 goto err_exit; 7121 7122 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7123 if (unlikely(rc)) 7124 goto err_exit; 7125 7126 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7127 if (unlikely(rc)) 7128 goto err_exit; 7129 7130 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7131 if (unlikely(rc)) 7132 goto err_exit; 7133 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7134 LPFC_IDX_RSRC_RDY); 7135 return rc; 7136 } else { 7137 /* 7138 * The port does not support resource extents. The XRI, VPI, 7139 * VFI, RPI resource ids were determined from READ_CONFIG. 7140 * Just allocate the bitmasks and provision the resource id 7141 * arrays. If a port reset is active, the resources don't 7142 * need any action - just exit. 7143 */ 7144 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7145 LPFC_IDX_RSRC_RDY) { 7146 lpfc_sli4_dealloc_resource_identifiers(phba); 7147 lpfc_sli4_remove_rpis(phba); 7148 } 7149 /* RPIs. */ 7150 count = phba->sli4_hba.max_cfg_param.max_rpi; 7151 if (count <= 0) { 7152 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7153 "3279 Invalid provisioning of " 7154 "rpi:%d\n", count); 7155 rc = -EINVAL; 7156 goto err_exit; 7157 } 7158 base = phba->sli4_hba.max_cfg_param.rpi_base; 7159 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7160 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7161 sizeof(unsigned long), 7162 GFP_KERNEL); 7163 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7164 rc = -ENOMEM; 7165 goto err_exit; 7166 } 7167 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7168 GFP_KERNEL); 7169 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7170 rc = -ENOMEM; 7171 goto free_rpi_bmask; 7172 } 7173 7174 for (i = 0; i < count; i++) 7175 phba->sli4_hba.rpi_ids[i] = base + i; 7176 7177 /* VPIs. */ 7178 count = phba->sli4_hba.max_cfg_param.max_vpi; 7179 if (count <= 0) { 7180 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7181 "3280 Invalid provisioning of " 7182 "vpi:%d\n", count); 7183 rc = -EINVAL; 7184 goto free_rpi_ids; 7185 } 7186 base = phba->sli4_hba.max_cfg_param.vpi_base; 7187 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7188 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7189 GFP_KERNEL); 7190 if (unlikely(!phba->vpi_bmask)) { 7191 rc = -ENOMEM; 7192 goto free_rpi_ids; 7193 } 7194 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7195 GFP_KERNEL); 7196 if (unlikely(!phba->vpi_ids)) { 7197 rc = -ENOMEM; 7198 goto free_vpi_bmask; 7199 } 7200 7201 for (i = 0; i < count; i++) 7202 phba->vpi_ids[i] = base + i; 7203 7204 /* XRIs. */ 7205 count = phba->sli4_hba.max_cfg_param.max_xri; 7206 if (count <= 0) { 7207 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7208 "3281 Invalid provisioning of " 7209 "xri:%d\n", count); 7210 rc = -EINVAL; 7211 goto free_vpi_ids; 7212 } 7213 base = phba->sli4_hba.max_cfg_param.xri_base; 7214 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7215 phba->sli4_hba.xri_bmask = kcalloc(longs, 7216 sizeof(unsigned long), 7217 GFP_KERNEL); 7218 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7219 rc = -ENOMEM; 7220 goto free_vpi_ids; 7221 } 7222 phba->sli4_hba.max_cfg_param.xri_used = 0; 7223 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7224 GFP_KERNEL); 7225 if (unlikely(!phba->sli4_hba.xri_ids)) { 7226 rc = -ENOMEM; 7227 goto free_xri_bmask; 7228 } 7229 7230 for (i = 0; i < count; i++) 7231 phba->sli4_hba.xri_ids[i] = base + i; 7232 7233 /* VFIs. */ 7234 count = phba->sli4_hba.max_cfg_param.max_vfi; 7235 if (count <= 0) { 7236 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7237 "3282 Invalid provisioning of " 7238 "vfi:%d\n", count); 7239 rc = -EINVAL; 7240 goto free_xri_ids; 7241 } 7242 base = phba->sli4_hba.max_cfg_param.vfi_base; 7243 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7244 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7245 sizeof(unsigned long), 7246 GFP_KERNEL); 7247 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7248 rc = -ENOMEM; 7249 goto free_xri_ids; 7250 } 7251 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7252 GFP_KERNEL); 7253 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7254 rc = -ENOMEM; 7255 goto free_vfi_bmask; 7256 } 7257 7258 for (i = 0; i < count; i++) 7259 phba->sli4_hba.vfi_ids[i] = base + i; 7260 7261 /* 7262 * Mark all resources ready. An HBA reset doesn't need 7263 * to reset the initialization. 7264 */ 7265 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7266 LPFC_IDX_RSRC_RDY); 7267 return 0; 7268 } 7269 7270 free_vfi_bmask: 7271 kfree(phba->sli4_hba.vfi_bmask); 7272 phba->sli4_hba.vfi_bmask = NULL; 7273 free_xri_ids: 7274 kfree(phba->sli4_hba.xri_ids); 7275 phba->sli4_hba.xri_ids = NULL; 7276 free_xri_bmask: 7277 kfree(phba->sli4_hba.xri_bmask); 7278 phba->sli4_hba.xri_bmask = NULL; 7279 free_vpi_ids: 7280 kfree(phba->vpi_ids); 7281 phba->vpi_ids = NULL; 7282 free_vpi_bmask: 7283 kfree(phba->vpi_bmask); 7284 phba->vpi_bmask = NULL; 7285 free_rpi_ids: 7286 kfree(phba->sli4_hba.rpi_ids); 7287 phba->sli4_hba.rpi_ids = NULL; 7288 free_rpi_bmask: 7289 kfree(phba->sli4_hba.rpi_bmask); 7290 phba->sli4_hba.rpi_bmask = NULL; 7291 err_exit: 7292 return rc; 7293 } 7294 7295 /** 7296 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7297 * @phba: Pointer to HBA context object. 7298 * 7299 * This function allocates the number of elements for the specified 7300 * resource type. 7301 **/ 7302 int 7303 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7304 { 7305 if (phba->sli4_hba.extents_in_use) { 7306 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7307 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7308 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7309 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7310 } else { 7311 kfree(phba->vpi_bmask); 7312 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7313 kfree(phba->vpi_ids); 7314 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7315 kfree(phba->sli4_hba.xri_bmask); 7316 kfree(phba->sli4_hba.xri_ids); 7317 kfree(phba->sli4_hba.vfi_bmask); 7318 kfree(phba->sli4_hba.vfi_ids); 7319 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7320 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7321 } 7322 7323 return 0; 7324 } 7325 7326 /** 7327 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7328 * @phba: Pointer to HBA context object. 7329 * @type: The resource extent type. 7330 * @extnt_cnt: buffer to hold port extent count response 7331 * @extnt_size: buffer to hold port extent size response. 7332 * 7333 * This function calls the port to read the host allocated extents 7334 * for a particular type. 7335 **/ 7336 int 7337 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7338 uint16_t *extnt_cnt, uint16_t *extnt_size) 7339 { 7340 bool emb; 7341 int rc = 0; 7342 uint16_t curr_blks = 0; 7343 uint32_t req_len, emb_len; 7344 uint32_t alloc_len, mbox_tmo; 7345 struct list_head *blk_list_head; 7346 struct lpfc_rsrc_blks *rsrc_blk; 7347 LPFC_MBOXQ_t *mbox; 7348 void *virtaddr = NULL; 7349 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7350 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7351 union lpfc_sli4_cfg_shdr *shdr; 7352 7353 switch (type) { 7354 case LPFC_RSC_TYPE_FCOE_VPI: 7355 blk_list_head = &phba->lpfc_vpi_blk_list; 7356 break; 7357 case LPFC_RSC_TYPE_FCOE_XRI: 7358 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7359 break; 7360 case LPFC_RSC_TYPE_FCOE_VFI: 7361 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7362 break; 7363 case LPFC_RSC_TYPE_FCOE_RPI: 7364 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7365 break; 7366 default: 7367 return -EIO; 7368 } 7369 7370 /* Count the number of extents currently allocatd for this type. */ 7371 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7372 if (curr_blks == 0) { 7373 /* 7374 * The GET_ALLOCATED mailbox does not return the size, 7375 * just the count. The size should be just the size 7376 * stored in the current allocated block and all sizes 7377 * for an extent type are the same so set the return 7378 * value now. 7379 */ 7380 *extnt_size = rsrc_blk->rsrc_size; 7381 } 7382 curr_blks++; 7383 } 7384 7385 /* 7386 * Calculate the size of an embedded mailbox. The uint32_t 7387 * accounts for extents-specific word. 7388 */ 7389 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7390 sizeof(uint32_t); 7391 7392 /* 7393 * Presume the allocation and response will fit into an embedded 7394 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7395 */ 7396 emb = LPFC_SLI4_MBX_EMBED; 7397 req_len = emb_len; 7398 if (req_len > emb_len) { 7399 req_len = curr_blks * sizeof(uint16_t) + 7400 sizeof(union lpfc_sli4_cfg_shdr) + 7401 sizeof(uint32_t); 7402 emb = LPFC_SLI4_MBX_NEMBED; 7403 } 7404 7405 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7406 if (!mbox) 7407 return -ENOMEM; 7408 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7409 7410 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7411 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7412 req_len, emb); 7413 if (alloc_len < req_len) { 7414 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7415 "2983 Allocated DMA memory size (x%x) is " 7416 "less than the requested DMA memory " 7417 "size (x%x)\n", alloc_len, req_len); 7418 rc = -ENOMEM; 7419 goto err_exit; 7420 } 7421 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7422 if (unlikely(rc)) { 7423 rc = -EIO; 7424 goto err_exit; 7425 } 7426 7427 if (!phba->sli4_hba.intr_enable) 7428 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7429 else { 7430 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7431 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7432 } 7433 7434 if (unlikely(rc)) { 7435 rc = -EIO; 7436 goto err_exit; 7437 } 7438 7439 /* 7440 * Figure out where the response is located. Then get local pointers 7441 * to the response data. The port does not guarantee to respond to 7442 * all extents counts request so update the local variable with the 7443 * allocated count from the port. 7444 */ 7445 if (emb == LPFC_SLI4_MBX_EMBED) { 7446 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7447 shdr = &rsrc_ext->header.cfg_shdr; 7448 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7449 } else { 7450 virtaddr = mbox->sge_array->addr[0]; 7451 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7452 shdr = &n_rsrc->cfg_shdr; 7453 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7454 } 7455 7456 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7457 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7458 "2984 Failed to read allocated resources " 7459 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7460 type, 7461 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7462 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7463 rc = -EIO; 7464 goto err_exit; 7465 } 7466 err_exit: 7467 lpfc_sli4_mbox_cmd_free(phba, mbox); 7468 return rc; 7469 } 7470 7471 /** 7472 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7473 * @phba: pointer to lpfc hba data structure. 7474 * @sgl_list: linked link of sgl buffers to post 7475 * @cnt: number of linked list buffers 7476 * 7477 * This routine walks the list of buffers that have been allocated and 7478 * repost them to the port by using SGL block post. This is needed after a 7479 * pci_function_reset/warm_start or start. It attempts to construct blocks 7480 * of buffer sgls which contains contiguous xris and uses the non-embedded 7481 * SGL block post mailbox commands to post them to the port. For single 7482 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7483 * mailbox command for posting. 7484 * 7485 * Returns: 0 = success, non-zero failure. 7486 **/ 7487 static int 7488 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7489 struct list_head *sgl_list, int cnt) 7490 { 7491 struct lpfc_sglq *sglq_entry = NULL; 7492 struct lpfc_sglq *sglq_entry_next = NULL; 7493 struct lpfc_sglq *sglq_entry_first = NULL; 7494 int status, total_cnt; 7495 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7496 int last_xritag = NO_XRI; 7497 LIST_HEAD(prep_sgl_list); 7498 LIST_HEAD(blck_sgl_list); 7499 LIST_HEAD(allc_sgl_list); 7500 LIST_HEAD(post_sgl_list); 7501 LIST_HEAD(free_sgl_list); 7502 7503 spin_lock_irq(&phba->hbalock); 7504 spin_lock(&phba->sli4_hba.sgl_list_lock); 7505 list_splice_init(sgl_list, &allc_sgl_list); 7506 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7507 spin_unlock_irq(&phba->hbalock); 7508 7509 total_cnt = cnt; 7510 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7511 &allc_sgl_list, list) { 7512 list_del_init(&sglq_entry->list); 7513 block_cnt++; 7514 if ((last_xritag != NO_XRI) && 7515 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7516 /* a hole in xri block, form a sgl posting block */ 7517 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7518 post_cnt = block_cnt - 1; 7519 /* prepare list for next posting block */ 7520 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7521 block_cnt = 1; 7522 } else { 7523 /* prepare list for next posting block */ 7524 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7525 /* enough sgls for non-embed sgl mbox command */ 7526 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7527 list_splice_init(&prep_sgl_list, 7528 &blck_sgl_list); 7529 post_cnt = block_cnt; 7530 block_cnt = 0; 7531 } 7532 } 7533 num_posted++; 7534 7535 /* keep track of last sgl's xritag */ 7536 last_xritag = sglq_entry->sli4_xritag; 7537 7538 /* end of repost sgl list condition for buffers */ 7539 if (num_posted == total_cnt) { 7540 if (post_cnt == 0) { 7541 list_splice_init(&prep_sgl_list, 7542 &blck_sgl_list); 7543 post_cnt = block_cnt; 7544 } else if (block_cnt == 1) { 7545 status = lpfc_sli4_post_sgl(phba, 7546 sglq_entry->phys, 0, 7547 sglq_entry->sli4_xritag); 7548 if (!status) { 7549 /* successful, put sgl to posted list */ 7550 list_add_tail(&sglq_entry->list, 7551 &post_sgl_list); 7552 } else { 7553 /* Failure, put sgl to free list */ 7554 lpfc_printf_log(phba, KERN_WARNING, 7555 LOG_SLI, 7556 "3159 Failed to post " 7557 "sgl, xritag:x%x\n", 7558 sglq_entry->sli4_xritag); 7559 list_add_tail(&sglq_entry->list, 7560 &free_sgl_list); 7561 total_cnt--; 7562 } 7563 } 7564 } 7565 7566 /* continue until a nembed page worth of sgls */ 7567 if (post_cnt == 0) 7568 continue; 7569 7570 /* post the buffer list sgls as a block */ 7571 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7572 post_cnt); 7573 7574 if (!status) { 7575 /* success, put sgl list to posted sgl list */ 7576 list_splice_init(&blck_sgl_list, &post_sgl_list); 7577 } else { 7578 /* Failure, put sgl list to free sgl list */ 7579 sglq_entry_first = list_first_entry(&blck_sgl_list, 7580 struct lpfc_sglq, 7581 list); 7582 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7583 "3160 Failed to post sgl-list, " 7584 "xritag:x%x-x%x\n", 7585 sglq_entry_first->sli4_xritag, 7586 (sglq_entry_first->sli4_xritag + 7587 post_cnt - 1)); 7588 list_splice_init(&blck_sgl_list, &free_sgl_list); 7589 total_cnt -= post_cnt; 7590 } 7591 7592 /* don't reset xirtag due to hole in xri block */ 7593 if (block_cnt == 0) 7594 last_xritag = NO_XRI; 7595 7596 /* reset sgl post count for next round of posting */ 7597 post_cnt = 0; 7598 } 7599 7600 /* free the sgls failed to post */ 7601 lpfc_free_sgl_list(phba, &free_sgl_list); 7602 7603 /* push sgls posted to the available list */ 7604 if (!list_empty(&post_sgl_list)) { 7605 spin_lock_irq(&phba->hbalock); 7606 spin_lock(&phba->sli4_hba.sgl_list_lock); 7607 list_splice_init(&post_sgl_list, sgl_list); 7608 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7609 spin_unlock_irq(&phba->hbalock); 7610 } else { 7611 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7612 "3161 Failure to post sgl to port.\n"); 7613 return -EIO; 7614 } 7615 7616 /* return the number of XRIs actually posted */ 7617 return total_cnt; 7618 } 7619 7620 /** 7621 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7622 * @phba: pointer to lpfc hba data structure. 7623 * 7624 * This routine walks the list of nvme buffers that have been allocated and 7625 * repost them to the port by using SGL block post. This is needed after a 7626 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7627 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7628 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7629 * 7630 * Returns: 0 = success, non-zero failure. 7631 **/ 7632 static int 7633 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7634 { 7635 LIST_HEAD(post_nblist); 7636 int num_posted, rc = 0; 7637 7638 /* get all NVME buffers need to repost to a local list */ 7639 lpfc_io_buf_flush(phba, &post_nblist); 7640 7641 /* post the list of nvme buffer sgls to port if available */ 7642 if (!list_empty(&post_nblist)) { 7643 num_posted = lpfc_sli4_post_io_sgl_list( 7644 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7645 /* failed to post any nvme buffer, return error */ 7646 if (num_posted == 0) 7647 rc = -EIO; 7648 } 7649 return rc; 7650 } 7651 7652 static void 7653 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7654 { 7655 uint32_t len; 7656 7657 len = sizeof(struct lpfc_mbx_set_host_data) - 7658 sizeof(struct lpfc_sli4_cfg_mhdr); 7659 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7660 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7661 LPFC_SLI4_MBX_EMBED); 7662 7663 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7664 mbox->u.mqe.un.set_host_data.param_len = 7665 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7666 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7667 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7668 "Linux %s v"LPFC_DRIVER_VERSION, 7669 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7670 } 7671 7672 int 7673 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7674 struct lpfc_queue *drq, int count, int idx) 7675 { 7676 int rc, i; 7677 struct lpfc_rqe hrqe; 7678 struct lpfc_rqe drqe; 7679 struct lpfc_rqb *rqbp; 7680 unsigned long flags; 7681 struct rqb_dmabuf *rqb_buffer; 7682 LIST_HEAD(rqb_buf_list); 7683 7684 rqbp = hrq->rqbp; 7685 for (i = 0; i < count; i++) { 7686 spin_lock_irqsave(&phba->hbalock, flags); 7687 /* IF RQ is already full, don't bother */ 7688 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7689 spin_unlock_irqrestore(&phba->hbalock, flags); 7690 break; 7691 } 7692 spin_unlock_irqrestore(&phba->hbalock, flags); 7693 7694 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7695 if (!rqb_buffer) 7696 break; 7697 rqb_buffer->hrq = hrq; 7698 rqb_buffer->drq = drq; 7699 rqb_buffer->idx = idx; 7700 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7701 } 7702 7703 spin_lock_irqsave(&phba->hbalock, flags); 7704 while (!list_empty(&rqb_buf_list)) { 7705 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7706 hbuf.list); 7707 7708 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7709 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7710 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7711 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7712 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7713 if (rc < 0) { 7714 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7715 "6421 Cannot post to HRQ %d: %x %x %x " 7716 "DRQ %x %x\n", 7717 hrq->queue_id, 7718 hrq->host_index, 7719 hrq->hba_index, 7720 hrq->entry_count, 7721 drq->host_index, 7722 drq->hba_index); 7723 rqbp->rqb_free_buffer(phba, rqb_buffer); 7724 } else { 7725 list_add_tail(&rqb_buffer->hbuf.list, 7726 &rqbp->rqb_buffer_list); 7727 rqbp->buffer_count++; 7728 } 7729 } 7730 spin_unlock_irqrestore(&phba->hbalock, flags); 7731 return 1; 7732 } 7733 7734 static void 7735 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7736 { 7737 struct lpfc_vport *vport = pmb->vport; 7738 union lpfc_sli4_cfg_shdr *shdr; 7739 u32 shdr_status, shdr_add_status; 7740 u32 sig, acqe; 7741 7742 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7743 * is done. (2) Mailbox failed and send FPIN support only. 7744 */ 7745 shdr = (union lpfc_sli4_cfg_shdr *) 7746 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7747 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7748 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7749 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7750 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7751 "2516 CGN SET_FEATURE mbox failed with " 7752 "status x%x add_status x%x, mbx status x%x " 7753 "Reset Congestion to FPINs only\n", 7754 shdr_status, shdr_add_status, 7755 pmb->u.mb.mbxStatus); 7756 /* If there is a mbox error, move on to RDF */ 7757 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7758 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7759 goto out; 7760 } 7761 7762 /* Zero out Congestion Signal ACQE counter */ 7763 phba->cgn_acqe_cnt = 0; 7764 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 7765 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 7766 7767 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7768 &pmb->u.mqe.un.set_feature); 7769 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7770 &pmb->u.mqe.un.set_feature); 7771 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7772 "4620 SET_FEATURES Success: Freq: %ds %dms " 7773 " Reg: x%x x%x\n", acqe, sig, 7774 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7775 out: 7776 mempool_free(pmb, phba->mbox_mem_pool); 7777 7778 /* Register for FPIN events from the fabric now that the 7779 * EDC common_set_features has completed. 7780 */ 7781 lpfc_issue_els_rdf(vport, 0); 7782 } 7783 7784 int 7785 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7786 { 7787 LPFC_MBOXQ_t *mboxq; 7788 u32 rc; 7789 7790 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7791 if (!mboxq) 7792 goto out_rdf; 7793 7794 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7795 mboxq->vport = phba->pport; 7796 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7797 7798 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7799 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7800 "Reg: x%x x%x\n", 7801 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7802 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7803 7804 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7805 if (rc == MBX_NOT_FINISHED) 7806 goto out; 7807 return 0; 7808 7809 out: 7810 mempool_free(mboxq, phba->mbox_mem_pool); 7811 out_rdf: 7812 /* If there is a mbox error, move on to RDF */ 7813 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7814 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7815 lpfc_issue_els_rdf(phba->pport, 0); 7816 return -EIO; 7817 } 7818 7819 /** 7820 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7821 * @phba: pointer to lpfc hba data structure. 7822 * 7823 * This routine initializes the per-cq idle_stat to dynamically dictate 7824 * polling decisions. 7825 * 7826 * Return codes: 7827 * None 7828 **/ 7829 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7830 { 7831 int i; 7832 struct lpfc_sli4_hdw_queue *hdwq; 7833 struct lpfc_queue *cq; 7834 struct lpfc_idle_stat *idle_stat; 7835 u64 wall; 7836 7837 for_each_present_cpu(i) { 7838 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7839 cq = hdwq->io_cq; 7840 7841 /* Skip if we've already handled this cq's primary CPU */ 7842 if (cq->chann != i) 7843 continue; 7844 7845 idle_stat = &phba->sli4_hba.idle_stat[i]; 7846 7847 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7848 idle_stat->prev_wall = wall; 7849 7850 if (phba->nvmet_support || 7851 phba->cmf_active_mode != LPFC_CFG_OFF) 7852 cq->poll_mode = LPFC_QUEUE_WORK; 7853 else 7854 cq->poll_mode = LPFC_IRQ_POLL; 7855 } 7856 7857 if (!phba->nvmet_support) 7858 schedule_delayed_work(&phba->idle_stat_delay_work, 7859 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7860 } 7861 7862 static void lpfc_sli4_dip(struct lpfc_hba *phba) 7863 { 7864 uint32_t if_type; 7865 7866 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 7867 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 7868 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 7869 struct lpfc_register reg_data; 7870 7871 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7872 ®_data.word0)) 7873 return; 7874 7875 if (bf_get(lpfc_sliport_status_dip, ®_data)) 7876 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7877 "2904 Firmware Dump Image Present" 7878 " on Adapter"); 7879 } 7880 } 7881 7882 /** 7883 * lpfc_cmf_setup - Initialize idle_stat tracking 7884 * @phba: Pointer to HBA context object. 7885 * 7886 * This is called from HBA setup during driver load or when the HBA 7887 * comes online. this does all the initialization to support CMF and MI. 7888 **/ 7889 static int 7890 lpfc_cmf_setup(struct lpfc_hba *phba) 7891 { 7892 LPFC_MBOXQ_t *mboxq; 7893 struct lpfc_mqe *mqe; 7894 struct lpfc_dmabuf *mp; 7895 struct lpfc_pc_sli4_params *sli4_params; 7896 struct lpfc_sli4_parameters *mbx_sli4_parameters; 7897 int length; 7898 int rc, cmf, mi_ver; 7899 7900 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7901 if (!mboxq) 7902 return -ENOMEM; 7903 mqe = &mboxq->u.mqe; 7904 7905 /* Read the port's SLI4 Config Parameters */ 7906 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 7907 sizeof(struct lpfc_sli4_cfg_mhdr)); 7908 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 7909 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 7910 length, LPFC_SLI4_MBX_EMBED); 7911 7912 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7913 if (unlikely(rc)) { 7914 mempool_free(mboxq, phba->mbox_mem_pool); 7915 return rc; 7916 } 7917 7918 /* Gather info on CMF and MI support */ 7919 sli4_params = &phba->sli4_hba.pc_sli4_params; 7920 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 7921 sli4_params->mi_ver = bf_get(cfg_mi_ver, mbx_sli4_parameters); 7922 sli4_params->cmf = bf_get(cfg_cmf, mbx_sli4_parameters); 7923 7924 /* Are we forcing MI off via module parameter? */ 7925 if (!phba->cfg_enable_mi) 7926 sli4_params->mi_ver = 0; 7927 7928 /* Always try to enable MI feature if we can */ 7929 if (sli4_params->mi_ver) { 7930 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 7931 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7932 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 7933 &mboxq->u.mqe.un.set_feature); 7934 7935 if (rc == MBX_SUCCESS) { 7936 if (mi_ver) { 7937 lpfc_printf_log(phba, 7938 KERN_WARNING, LOG_CGN_MGMT, 7939 "6215 MI is enabled\n"); 7940 sli4_params->mi_ver = mi_ver; 7941 } else { 7942 lpfc_printf_log(phba, 7943 KERN_WARNING, LOG_CGN_MGMT, 7944 "6338 MI is disabled\n"); 7945 sli4_params->mi_ver = 0; 7946 } 7947 } else { 7948 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 7949 lpfc_printf_log(phba, KERN_INFO, 7950 LOG_CGN_MGMT | LOG_INIT, 7951 "6245 Enable MI Mailbox x%x (x%x/x%x) " 7952 "failed, rc:x%x mi:x%x\n", 7953 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7954 lpfc_sli_config_mbox_subsys_get 7955 (phba, mboxq), 7956 lpfc_sli_config_mbox_opcode_get 7957 (phba, mboxq), 7958 rc, sli4_params->mi_ver); 7959 } 7960 } else { 7961 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 7962 "6217 MI is disabled\n"); 7963 } 7964 7965 /* Ensure FDMI is enabled for MI if enable_mi is set */ 7966 if (sli4_params->mi_ver) 7967 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 7968 7969 /* Always try to enable CMF feature if we can */ 7970 if (sli4_params->cmf) { 7971 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 7972 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7973 cmf = bf_get(lpfc_mbx_set_feature_cmf, 7974 &mboxq->u.mqe.un.set_feature); 7975 if (rc == MBX_SUCCESS && cmf) { 7976 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 7977 "6218 CMF is enabled: mode %d\n", 7978 phba->cmf_active_mode); 7979 } else { 7980 lpfc_printf_log(phba, KERN_WARNING, 7981 LOG_CGN_MGMT | LOG_INIT, 7982 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 7983 "failed, rc:x%x dd:x%x\n", 7984 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7985 lpfc_sli_config_mbox_subsys_get 7986 (phba, mboxq), 7987 lpfc_sli_config_mbox_opcode_get 7988 (phba, mboxq), 7989 rc, cmf); 7990 sli4_params->cmf = 0; 7991 phba->cmf_active_mode = LPFC_CFG_OFF; 7992 goto no_cmf; 7993 } 7994 7995 /* Allocate Congestion Information Buffer */ 7996 if (!phba->cgn_i) { 7997 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 7998 if (mp) 7999 mp->virt = dma_alloc_coherent 8000 (&phba->pcidev->dev, 8001 sizeof(struct lpfc_cgn_info), 8002 &mp->phys, GFP_KERNEL); 8003 if (!mp || !mp->virt) { 8004 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8005 "2640 Failed to alloc memory " 8006 "for Congestion Info\n"); 8007 kfree(mp); 8008 sli4_params->cmf = 0; 8009 phba->cmf_active_mode = LPFC_CFG_OFF; 8010 goto no_cmf; 8011 } 8012 phba->cgn_i = mp; 8013 8014 /* initialize congestion buffer info */ 8015 lpfc_init_congestion_buf(phba); 8016 lpfc_init_congestion_stat(phba); 8017 } 8018 8019 rc = lpfc_sli4_cgn_params_read(phba); 8020 if (rc < 0) { 8021 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8022 "6242 Error reading Cgn Params (%d)\n", 8023 rc); 8024 /* Ensure CGN Mode is off */ 8025 sli4_params->cmf = 0; 8026 } else if (!rc) { 8027 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8028 "6243 CGN Event empty object.\n"); 8029 /* Ensure CGN Mode is off */ 8030 sli4_params->cmf = 0; 8031 } 8032 } else { 8033 no_cmf: 8034 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8035 "6220 CMF is disabled\n"); 8036 } 8037 8038 /* Only register congestion buffer with firmware if BOTH 8039 * CMF and E2E are enabled. 8040 */ 8041 if (sli4_params->cmf && sli4_params->mi_ver) { 8042 rc = lpfc_reg_congestion_buf(phba); 8043 if (rc) { 8044 dma_free_coherent(&phba->pcidev->dev, 8045 sizeof(struct lpfc_cgn_info), 8046 phba->cgn_i->virt, phba->cgn_i->phys); 8047 kfree(phba->cgn_i); 8048 phba->cgn_i = NULL; 8049 /* Ensure CGN Mode is off */ 8050 phba->cmf_active_mode = LPFC_CFG_OFF; 8051 return 0; 8052 } 8053 } 8054 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8055 "6470 Setup MI version %d CMF %d mode %d\n", 8056 sli4_params->mi_ver, sli4_params->cmf, 8057 phba->cmf_active_mode); 8058 8059 mempool_free(mboxq, phba->mbox_mem_pool); 8060 8061 /* Initialize atomic counters */ 8062 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8063 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8064 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8065 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8066 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8067 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8068 atomic64_set(&phba->cgn_latency_evt, 0); 8069 8070 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8071 8072 /* Allocate RX Monitor Buffer */ 8073 if (!phba->rxtable) { 8074 phba->rxtable = kmalloc_array(LPFC_MAX_RXMONITOR_ENTRY, 8075 sizeof(struct rxtable_entry), 8076 GFP_KERNEL); 8077 if (!phba->rxtable) { 8078 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8079 "2644 Failed to alloc memory " 8080 "for RX Monitor Buffer\n"); 8081 return -ENOMEM; 8082 } 8083 } 8084 atomic_set(&phba->rxtable_idx_head, 0); 8085 atomic_set(&phba->rxtable_idx_tail, 0); 8086 return 0; 8087 } 8088 8089 static int 8090 lpfc_set_host_tm(struct lpfc_hba *phba) 8091 { 8092 LPFC_MBOXQ_t *mboxq; 8093 uint32_t len, rc; 8094 struct timespec64 cur_time; 8095 struct tm broken; 8096 uint32_t month, day, year; 8097 uint32_t hour, minute, second; 8098 struct lpfc_mbx_set_host_date_time *tm; 8099 8100 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8101 if (!mboxq) 8102 return -ENOMEM; 8103 8104 len = sizeof(struct lpfc_mbx_set_host_data) - 8105 sizeof(struct lpfc_sli4_cfg_mhdr); 8106 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8107 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8108 LPFC_SLI4_MBX_EMBED); 8109 8110 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8111 mboxq->u.mqe.un.set_host_data.param_len = 8112 sizeof(struct lpfc_mbx_set_host_date_time); 8113 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8114 ktime_get_real_ts64(&cur_time); 8115 time64_to_tm(cur_time.tv_sec, 0, &broken); 8116 month = broken.tm_mon + 1; 8117 day = broken.tm_mday; 8118 year = broken.tm_year - 100; 8119 hour = broken.tm_hour; 8120 minute = broken.tm_min; 8121 second = broken.tm_sec; 8122 bf_set(lpfc_mbx_set_host_month, tm, month); 8123 bf_set(lpfc_mbx_set_host_day, tm, day); 8124 bf_set(lpfc_mbx_set_host_year, tm, year); 8125 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8126 bf_set(lpfc_mbx_set_host_min, tm, minute); 8127 bf_set(lpfc_mbx_set_host_sec, tm, second); 8128 8129 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8130 mempool_free(mboxq, phba->mbox_mem_pool); 8131 return rc; 8132 } 8133 8134 /** 8135 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8136 * @phba: Pointer to HBA context object. 8137 * 8138 * This function is the main SLI4 device initialization PCI function. This 8139 * function is called by the HBA initialization code, HBA reset code and 8140 * HBA error attention handler code. Caller is not required to hold any 8141 * locks. 8142 **/ 8143 int 8144 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8145 { 8146 int rc, i, cnt, len, dd; 8147 LPFC_MBOXQ_t *mboxq; 8148 struct lpfc_mqe *mqe; 8149 uint8_t *vpd; 8150 uint32_t vpd_size; 8151 uint32_t ftr_rsp = 0; 8152 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8153 struct lpfc_vport *vport = phba->pport; 8154 struct lpfc_dmabuf *mp; 8155 struct lpfc_rqb *rqbp; 8156 8157 /* Perform a PCI function reset to start from clean */ 8158 rc = lpfc_pci_function_reset(phba); 8159 if (unlikely(rc)) 8160 return -ENODEV; 8161 8162 /* Check the HBA Host Status Register for readyness */ 8163 rc = lpfc_sli4_post_status_check(phba); 8164 if (unlikely(rc)) 8165 return -ENODEV; 8166 else { 8167 spin_lock_irq(&phba->hbalock); 8168 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8169 spin_unlock_irq(&phba->hbalock); 8170 } 8171 8172 lpfc_sli4_dip(phba); 8173 8174 /* 8175 * Allocate a single mailbox container for initializing the 8176 * port. 8177 */ 8178 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8179 if (!mboxq) 8180 return -ENOMEM; 8181 8182 /* Issue READ_REV to collect vpd and FW information. */ 8183 vpd_size = SLI4_PAGE_SIZE; 8184 vpd = kzalloc(vpd_size, GFP_KERNEL); 8185 if (!vpd) { 8186 rc = -ENOMEM; 8187 goto out_free_mbox; 8188 } 8189 8190 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8191 if (unlikely(rc)) { 8192 kfree(vpd); 8193 goto out_free_mbox; 8194 } 8195 8196 mqe = &mboxq->u.mqe; 8197 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8198 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8199 phba->hba_flag |= HBA_FCOE_MODE; 8200 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8201 } else { 8202 phba->hba_flag &= ~HBA_FCOE_MODE; 8203 } 8204 8205 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8206 LPFC_DCBX_CEE_MODE) 8207 phba->hba_flag |= HBA_FIP_SUPPORT; 8208 else 8209 phba->hba_flag &= ~HBA_FIP_SUPPORT; 8210 8211 phba->hba_flag &= ~HBA_IOQ_FLUSH; 8212 8213 if (phba->sli_rev != LPFC_SLI_REV4) { 8214 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8215 "0376 READ_REV Error. SLI Level %d " 8216 "FCoE enabled %d\n", 8217 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 8218 rc = -EIO; 8219 kfree(vpd); 8220 goto out_free_mbox; 8221 } 8222 8223 rc = lpfc_set_host_tm(phba); 8224 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8225 "6468 Set host date / time: Status x%x:\n", rc); 8226 8227 /* 8228 * Continue initialization with default values even if driver failed 8229 * to read FCoE param config regions, only read parameters if the 8230 * board is FCoE 8231 */ 8232 if (phba->hba_flag & HBA_FCOE_MODE && 8233 lpfc_sli4_read_fcoe_params(phba)) 8234 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8235 "2570 Failed to read FCoE parameters\n"); 8236 8237 /* 8238 * Retrieve sli4 device physical port name, failure of doing it 8239 * is considered as non-fatal. 8240 */ 8241 rc = lpfc_sli4_retrieve_pport_name(phba); 8242 if (!rc) 8243 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8244 "3080 Successful retrieving SLI4 device " 8245 "physical port name: %s.\n", phba->Port); 8246 8247 rc = lpfc_sli4_get_ctl_attr(phba); 8248 if (!rc) 8249 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8250 "8351 Successful retrieving SLI4 device " 8251 "CTL ATTR\n"); 8252 8253 /* 8254 * Evaluate the read rev and vpd data. Populate the driver 8255 * state with the results. If this routine fails, the failure 8256 * is not fatal as the driver will use generic values. 8257 */ 8258 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8259 if (unlikely(!rc)) { 8260 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8261 "0377 Error %d parsing vpd. " 8262 "Using defaults.\n", rc); 8263 rc = 0; 8264 } 8265 kfree(vpd); 8266 8267 /* Save information as VPD data */ 8268 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8269 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8270 8271 /* 8272 * This is because first G7 ASIC doesn't support the standard 8273 * 0x5a NVME cmd descriptor type/subtype 8274 */ 8275 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8276 LPFC_SLI_INTF_IF_TYPE_6) && 8277 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8278 (phba->vpd.rev.smRev == 0) && 8279 (phba->cfg_nvme_embed_cmd == 1)) 8280 phba->cfg_nvme_embed_cmd = 0; 8281 8282 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8283 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8284 &mqe->un.read_rev); 8285 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8286 &mqe->un.read_rev); 8287 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8288 &mqe->un.read_rev); 8289 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8290 &mqe->un.read_rev); 8291 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8292 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8293 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8294 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8295 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8296 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8297 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8298 "(%d):0380 READ_REV Status x%x " 8299 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8300 mboxq->vport ? mboxq->vport->vpi : 0, 8301 bf_get(lpfc_mqe_status, mqe), 8302 phba->vpd.rev.opFwName, 8303 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8304 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8305 8306 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8307 LPFC_SLI_INTF_IF_TYPE_0) { 8308 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8309 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8310 if (rc == MBX_SUCCESS) { 8311 phba->hba_flag |= HBA_RECOVERABLE_UE; 8312 /* Set 1Sec interval to detect UE */ 8313 phba->eratt_poll_interval = 1; 8314 phba->sli4_hba.ue_to_sr = bf_get( 8315 lpfc_mbx_set_feature_UESR, 8316 &mboxq->u.mqe.un.set_feature); 8317 phba->sli4_hba.ue_to_rp = bf_get( 8318 lpfc_mbx_set_feature_UERP, 8319 &mboxq->u.mqe.un.set_feature); 8320 } 8321 } 8322 8323 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8324 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8325 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8326 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8327 if (rc != MBX_SUCCESS) 8328 phba->mds_diags_support = 0; 8329 } 8330 8331 /* 8332 * Discover the port's supported feature set and match it against the 8333 * hosts requests. 8334 */ 8335 lpfc_request_features(phba, mboxq); 8336 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8337 if (unlikely(rc)) { 8338 rc = -EIO; 8339 goto out_free_mbox; 8340 } 8341 8342 /* Disable VMID if app header is not supported */ 8343 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8344 &mqe->un.req_ftrs))) { 8345 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8346 phba->cfg_vmid_app_header = 0; 8347 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8348 "1242 vmid feature not supported\n"); 8349 } 8350 8351 /* 8352 * The port must support FCP initiator mode as this is the 8353 * only mode running in the host. 8354 */ 8355 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8356 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8357 "0378 No support for fcpi mode.\n"); 8358 ftr_rsp++; 8359 } 8360 8361 /* Performance Hints are ONLY for FCoE */ 8362 if (phba->hba_flag & HBA_FCOE_MODE) { 8363 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8364 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8365 else 8366 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8367 } 8368 8369 /* 8370 * If the port cannot support the host's requested features 8371 * then turn off the global config parameters to disable the 8372 * feature in the driver. This is not a fatal error. 8373 */ 8374 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8375 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8376 phba->cfg_enable_bg = 0; 8377 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8378 ftr_rsp++; 8379 } 8380 } 8381 8382 if (phba->max_vpi && phba->cfg_enable_npiv && 8383 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8384 ftr_rsp++; 8385 8386 if (ftr_rsp) { 8387 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8388 "0379 Feature Mismatch Data: x%08x %08x " 8389 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8390 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8391 phba->cfg_enable_npiv, phba->max_vpi); 8392 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8393 phba->cfg_enable_bg = 0; 8394 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8395 phba->cfg_enable_npiv = 0; 8396 } 8397 8398 /* These SLI3 features are assumed in SLI4 */ 8399 spin_lock_irq(&phba->hbalock); 8400 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8401 spin_unlock_irq(&phba->hbalock); 8402 8403 /* Always try to enable dual dump feature if we can */ 8404 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8405 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8406 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8407 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8408 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8409 "6448 Dual Dump is enabled\n"); 8410 else 8411 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8412 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8413 "rc:x%x dd:x%x\n", 8414 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8415 lpfc_sli_config_mbox_subsys_get( 8416 phba, mboxq), 8417 lpfc_sli_config_mbox_opcode_get( 8418 phba, mboxq), 8419 rc, dd); 8420 /* 8421 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8422 * calls depends on these resources to complete port setup. 8423 */ 8424 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8425 if (rc) { 8426 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8427 "2920 Failed to alloc Resource IDs " 8428 "rc = x%x\n", rc); 8429 goto out_free_mbox; 8430 } 8431 8432 lpfc_set_host_data(phba, mboxq); 8433 8434 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8435 if (rc) { 8436 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8437 "2134 Failed to set host os driver version %x", 8438 rc); 8439 } 8440 8441 /* Read the port's service parameters. */ 8442 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8443 if (rc) { 8444 phba->link_state = LPFC_HBA_ERROR; 8445 rc = -ENOMEM; 8446 goto out_free_mbox; 8447 } 8448 8449 mboxq->vport = vport; 8450 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8451 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 8452 if (rc == MBX_SUCCESS) { 8453 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8454 rc = 0; 8455 } 8456 8457 /* 8458 * This memory was allocated by the lpfc_read_sparam routine. Release 8459 * it to the mbuf pool. 8460 */ 8461 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8462 kfree(mp); 8463 mboxq->ctx_buf = NULL; 8464 if (unlikely(rc)) { 8465 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8466 "0382 READ_SPARAM command failed " 8467 "status %d, mbxStatus x%x\n", 8468 rc, bf_get(lpfc_mqe_status, mqe)); 8469 phba->link_state = LPFC_HBA_ERROR; 8470 rc = -EIO; 8471 goto out_free_mbox; 8472 } 8473 8474 lpfc_update_vport_wwn(vport); 8475 8476 /* Update the fc_host data structures with new wwn. */ 8477 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8478 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8479 8480 /* Create all the SLI4 queues */ 8481 rc = lpfc_sli4_queue_create(phba); 8482 if (rc) { 8483 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8484 "3089 Failed to allocate queues\n"); 8485 rc = -ENODEV; 8486 goto out_free_mbox; 8487 } 8488 /* Set up all the queues to the device */ 8489 rc = lpfc_sli4_queue_setup(phba); 8490 if (unlikely(rc)) { 8491 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8492 "0381 Error %d during queue setup.\n ", rc); 8493 goto out_stop_timers; 8494 } 8495 /* Initialize the driver internal SLI layer lists. */ 8496 lpfc_sli4_setup(phba); 8497 lpfc_sli4_queue_init(phba); 8498 8499 /* update host els xri-sgl sizes and mappings */ 8500 rc = lpfc_sli4_els_sgl_update(phba); 8501 if (unlikely(rc)) { 8502 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8503 "1400 Failed to update xri-sgl size and " 8504 "mapping: %d\n", rc); 8505 goto out_destroy_queue; 8506 } 8507 8508 /* register the els sgl pool to the port */ 8509 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8510 phba->sli4_hba.els_xri_cnt); 8511 if (unlikely(rc < 0)) { 8512 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8513 "0582 Error %d during els sgl post " 8514 "operation\n", rc); 8515 rc = -ENODEV; 8516 goto out_destroy_queue; 8517 } 8518 phba->sli4_hba.els_xri_cnt = rc; 8519 8520 if (phba->nvmet_support) { 8521 /* update host nvmet xri-sgl sizes and mappings */ 8522 rc = lpfc_sli4_nvmet_sgl_update(phba); 8523 if (unlikely(rc)) { 8524 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8525 "6308 Failed to update nvmet-sgl size " 8526 "and mapping: %d\n", rc); 8527 goto out_destroy_queue; 8528 } 8529 8530 /* register the nvmet sgl pool to the port */ 8531 rc = lpfc_sli4_repost_sgl_list( 8532 phba, 8533 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8534 phba->sli4_hba.nvmet_xri_cnt); 8535 if (unlikely(rc < 0)) { 8536 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8537 "3117 Error %d during nvmet " 8538 "sgl post\n", rc); 8539 rc = -ENODEV; 8540 goto out_destroy_queue; 8541 } 8542 phba->sli4_hba.nvmet_xri_cnt = rc; 8543 8544 /* We allocate an iocbq for every receive context SGL. 8545 * The additional allocation is for abort and ls handling. 8546 */ 8547 cnt = phba->sli4_hba.nvmet_xri_cnt + 8548 phba->sli4_hba.max_cfg_param.max_xri; 8549 } else { 8550 /* update host common xri-sgl sizes and mappings */ 8551 rc = lpfc_sli4_io_sgl_update(phba); 8552 if (unlikely(rc)) { 8553 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8554 "6082 Failed to update nvme-sgl size " 8555 "and mapping: %d\n", rc); 8556 goto out_destroy_queue; 8557 } 8558 8559 /* register the allocated common sgl pool to the port */ 8560 rc = lpfc_sli4_repost_io_sgl_list(phba); 8561 if (unlikely(rc)) { 8562 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8563 "6116 Error %d during nvme sgl post " 8564 "operation\n", rc); 8565 /* Some NVME buffers were moved to abort nvme list */ 8566 /* A pci function reset will repost them */ 8567 rc = -ENODEV; 8568 goto out_destroy_queue; 8569 } 8570 /* Each lpfc_io_buf job structure has an iocbq element. 8571 * This cnt provides for abort, els, ct and ls requests. 8572 */ 8573 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8574 } 8575 8576 if (!phba->sli.iocbq_lookup) { 8577 /* Initialize and populate the iocb list per host */ 8578 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8579 "2821 initialize iocb list with %d entries\n", 8580 cnt); 8581 rc = lpfc_init_iocb_list(phba, cnt); 8582 if (rc) { 8583 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8584 "1413 Failed to init iocb list.\n"); 8585 goto out_destroy_queue; 8586 } 8587 } 8588 8589 if (phba->nvmet_support) 8590 lpfc_nvmet_create_targetport(phba); 8591 8592 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8593 /* Post initial buffers to all RQs created */ 8594 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8595 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8596 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8597 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8598 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8599 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8600 rqbp->buffer_count = 0; 8601 8602 lpfc_post_rq_buffer( 8603 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8604 phba->sli4_hba.nvmet_mrq_data[i], 8605 phba->cfg_nvmet_mrq_post, i); 8606 } 8607 } 8608 8609 /* Post the rpi header region to the device. */ 8610 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8611 if (unlikely(rc)) { 8612 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8613 "0393 Error %d during rpi post operation\n", 8614 rc); 8615 rc = -ENODEV; 8616 goto out_free_iocblist; 8617 } 8618 lpfc_sli4_node_prep(phba); 8619 8620 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 8621 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8622 /* 8623 * The FC Port needs to register FCFI (index 0) 8624 */ 8625 lpfc_reg_fcfi(phba, mboxq); 8626 mboxq->vport = phba->pport; 8627 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8628 if (rc != MBX_SUCCESS) 8629 goto out_unset_queue; 8630 rc = 0; 8631 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8632 &mboxq->u.mqe.un.reg_fcfi); 8633 } else { 8634 /* We are a NVME Target mode with MRQ > 1 */ 8635 8636 /* First register the FCFI */ 8637 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8638 mboxq->vport = phba->pport; 8639 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8640 if (rc != MBX_SUCCESS) 8641 goto out_unset_queue; 8642 rc = 0; 8643 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8644 &mboxq->u.mqe.un.reg_fcfi_mrq); 8645 8646 /* Next register the MRQs */ 8647 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8648 mboxq->vport = phba->pport; 8649 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8650 if (rc != MBX_SUCCESS) 8651 goto out_unset_queue; 8652 rc = 0; 8653 } 8654 /* Check if the port is configured to be disabled */ 8655 lpfc_sli_read_link_ste(phba); 8656 } 8657 8658 /* Don't post more new bufs if repost already recovered 8659 * the nvme sgls. 8660 */ 8661 if (phba->nvmet_support == 0) { 8662 if (phba->sli4_hba.io_xri_cnt == 0) { 8663 len = lpfc_new_io_buf( 8664 phba, phba->sli4_hba.io_xri_max); 8665 if (len == 0) { 8666 rc = -ENOMEM; 8667 goto out_unset_queue; 8668 } 8669 8670 if (phba->cfg_xri_rebalancing) 8671 lpfc_create_multixri_pools(phba); 8672 } 8673 } else { 8674 phba->cfg_xri_rebalancing = 0; 8675 } 8676 8677 /* Allow asynchronous mailbox command to go through */ 8678 spin_lock_irq(&phba->hbalock); 8679 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8680 spin_unlock_irq(&phba->hbalock); 8681 8682 /* Post receive buffers to the device */ 8683 lpfc_sli4_rb_setup(phba); 8684 8685 /* Reset HBA FCF states after HBA reset */ 8686 phba->fcf.fcf_flag = 0; 8687 phba->fcf.current_rec.flag = 0; 8688 8689 /* Start the ELS watchdog timer */ 8690 mod_timer(&vport->els_tmofunc, 8691 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 8692 8693 /* Start heart beat timer */ 8694 mod_timer(&phba->hb_tmofunc, 8695 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 8696 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 8697 phba->last_completion_time = jiffies; 8698 8699 /* start eq_delay heartbeat */ 8700 if (phba->cfg_auto_imax) 8701 queue_delayed_work(phba->wq, &phba->eq_delay_work, 8702 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 8703 8704 /* start per phba idle_stat_delay heartbeat */ 8705 lpfc_init_idle_stat_hb(phba); 8706 8707 /* Start error attention (ERATT) polling timer */ 8708 mod_timer(&phba->eratt_poll, 8709 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 8710 8711 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 8712 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 8713 rc = pci_enable_pcie_error_reporting(phba->pcidev); 8714 if (!rc) { 8715 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8716 "2829 This device supports " 8717 "Advanced Error Reporting (AER)\n"); 8718 spin_lock_irq(&phba->hbalock); 8719 phba->hba_flag |= HBA_AER_ENABLED; 8720 spin_unlock_irq(&phba->hbalock); 8721 } else { 8722 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8723 "2830 This device does not support " 8724 "Advanced Error Reporting (AER)\n"); 8725 phba->cfg_aer_support = 0; 8726 } 8727 rc = 0; 8728 } 8729 8730 /* 8731 * The port is ready, set the host's link state to LINK_DOWN 8732 * in preparation for link interrupts. 8733 */ 8734 spin_lock_irq(&phba->hbalock); 8735 phba->link_state = LPFC_LINK_DOWN; 8736 8737 /* Check if physical ports are trunked */ 8738 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 8739 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 8740 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 8741 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 8742 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 8743 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 8744 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 8745 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 8746 spin_unlock_irq(&phba->hbalock); 8747 8748 /* Arm the CQs and then EQs on device */ 8749 lpfc_sli4_arm_cqeq_intr(phba); 8750 8751 /* Indicate device interrupt mode */ 8752 phba->sli4_hba.intr_enable = 1; 8753 8754 /* Setup CMF after HBA is initialized */ 8755 lpfc_cmf_setup(phba); 8756 8757 if (!(phba->hba_flag & HBA_FCOE_MODE) && 8758 (phba->hba_flag & LINK_DISABLED)) { 8759 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8760 "3103 Adapter Link is disabled.\n"); 8761 lpfc_down_link(phba, mboxq); 8762 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8763 if (rc != MBX_SUCCESS) { 8764 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8765 "3104 Adapter failed to issue " 8766 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 8767 goto out_io_buff_free; 8768 } 8769 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 8770 /* don't perform init_link on SLI4 FC port loopback test */ 8771 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 8772 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 8773 if (rc) 8774 goto out_io_buff_free; 8775 } 8776 } 8777 mempool_free(mboxq, phba->mbox_mem_pool); 8778 8779 phba->hba_flag |= HBA_SETUP; 8780 return rc; 8781 8782 out_io_buff_free: 8783 /* Free allocated IO Buffers */ 8784 lpfc_io_free(phba); 8785 out_unset_queue: 8786 /* Unset all the queues set up in this routine when error out */ 8787 lpfc_sli4_queue_unset(phba); 8788 out_free_iocblist: 8789 lpfc_free_iocb_list(phba); 8790 out_destroy_queue: 8791 lpfc_sli4_queue_destroy(phba); 8792 out_stop_timers: 8793 lpfc_stop_hba_timers(phba); 8794 out_free_mbox: 8795 mempool_free(mboxq, phba->mbox_mem_pool); 8796 return rc; 8797 } 8798 8799 /** 8800 * lpfc_mbox_timeout - Timeout call back function for mbox timer 8801 * @t: Context to fetch pointer to hba structure from. 8802 * 8803 * This is the callback function for mailbox timer. The mailbox 8804 * timer is armed when a new mailbox command is issued and the timer 8805 * is deleted when the mailbox complete. The function is called by 8806 * the kernel timer code when a mailbox does not complete within 8807 * expected time. This function wakes up the worker thread to 8808 * process the mailbox timeout and returns. All the processing is 8809 * done by the worker thread function lpfc_mbox_timeout_handler. 8810 **/ 8811 void 8812 lpfc_mbox_timeout(struct timer_list *t) 8813 { 8814 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 8815 unsigned long iflag; 8816 uint32_t tmo_posted; 8817 8818 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 8819 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 8820 if (!tmo_posted) 8821 phba->pport->work_port_events |= WORKER_MBOX_TMO; 8822 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 8823 8824 if (!tmo_posted) 8825 lpfc_worker_wake_up(phba); 8826 return; 8827 } 8828 8829 /** 8830 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 8831 * are pending 8832 * @phba: Pointer to HBA context object. 8833 * 8834 * This function checks if any mailbox completions are present on the mailbox 8835 * completion queue. 8836 **/ 8837 static bool 8838 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 8839 { 8840 8841 uint32_t idx; 8842 struct lpfc_queue *mcq; 8843 struct lpfc_mcqe *mcqe; 8844 bool pending_completions = false; 8845 uint8_t qe_valid; 8846 8847 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8848 return false; 8849 8850 /* Check for completions on mailbox completion queue */ 8851 8852 mcq = phba->sli4_hba.mbx_cq; 8853 idx = mcq->hba_index; 8854 qe_valid = mcq->qe_valid; 8855 while (bf_get_le32(lpfc_cqe_valid, 8856 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8857 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8858 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8859 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8860 pending_completions = true; 8861 break; 8862 } 8863 idx = (idx + 1) % mcq->entry_count; 8864 if (mcq->hba_index == idx) 8865 break; 8866 8867 /* if the index wrapped around, toggle the valid bit */ 8868 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8869 qe_valid = (qe_valid) ? 0 : 1; 8870 } 8871 return pending_completions; 8872 8873 } 8874 8875 /** 8876 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8877 * that were missed. 8878 * @phba: Pointer to HBA context object. 8879 * 8880 * For sli4, it is possible to miss an interrupt. As such mbox completions 8881 * maybe missed causing erroneous mailbox timeouts to occur. This function 8882 * checks to see if mbox completions are on the mailbox completion queue 8883 * and will process all the completions associated with the eq for the 8884 * mailbox completion queue. 8885 **/ 8886 static bool 8887 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8888 { 8889 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8890 uint32_t eqidx; 8891 struct lpfc_queue *fpeq = NULL; 8892 struct lpfc_queue *eq; 8893 bool mbox_pending; 8894 8895 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8896 return false; 8897 8898 /* Find the EQ associated with the mbox CQ */ 8899 if (sli4_hba->hdwq) { 8900 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8901 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8902 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8903 fpeq = eq; 8904 break; 8905 } 8906 } 8907 } 8908 if (!fpeq) 8909 return false; 8910 8911 /* Turn off interrupts from this EQ */ 8912 8913 sli4_hba->sli4_eq_clr_intr(fpeq); 8914 8915 /* Check to see if a mbox completion is pending */ 8916 8917 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8918 8919 /* 8920 * If a mbox completion is pending, process all the events on EQ 8921 * associated with the mbox completion queue (this could include 8922 * mailbox commands, async events, els commands, receive queue data 8923 * and fcp commands) 8924 */ 8925 8926 if (mbox_pending) 8927 /* process and rearm the EQ */ 8928 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 8929 else 8930 /* Always clear and re-arm the EQ */ 8931 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 8932 8933 return mbox_pending; 8934 8935 } 8936 8937 /** 8938 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 8939 * @phba: Pointer to HBA context object. 8940 * 8941 * This function is called from worker thread when a mailbox command times out. 8942 * The caller is not required to hold any locks. This function will reset the 8943 * HBA and recover all the pending commands. 8944 **/ 8945 void 8946 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 8947 { 8948 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 8949 MAILBOX_t *mb = NULL; 8950 8951 struct lpfc_sli *psli = &phba->sli; 8952 8953 /* If the mailbox completed, process the completion */ 8954 lpfc_sli4_process_missed_mbox_completions(phba); 8955 8956 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 8957 return; 8958 8959 if (pmbox != NULL) 8960 mb = &pmbox->u.mb; 8961 /* Check the pmbox pointer first. There is a race condition 8962 * between the mbox timeout handler getting executed in the 8963 * worklist and the mailbox actually completing. When this 8964 * race condition occurs, the mbox_active will be NULL. 8965 */ 8966 spin_lock_irq(&phba->hbalock); 8967 if (pmbox == NULL) { 8968 lpfc_printf_log(phba, KERN_WARNING, 8969 LOG_MBOX | LOG_SLI, 8970 "0353 Active Mailbox cleared - mailbox timeout " 8971 "exiting\n"); 8972 spin_unlock_irq(&phba->hbalock); 8973 return; 8974 } 8975 8976 /* Mbox cmd <mbxCommand> timeout */ 8977 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8978 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 8979 mb->mbxCommand, 8980 phba->pport->port_state, 8981 phba->sli.sli_flag, 8982 phba->sli.mbox_active); 8983 spin_unlock_irq(&phba->hbalock); 8984 8985 /* Setting state unknown so lpfc_sli_abort_iocb_ring 8986 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 8987 * it to fail all outstanding SCSI IO. 8988 */ 8989 spin_lock_irq(&phba->pport->work_port_lock); 8990 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 8991 spin_unlock_irq(&phba->pport->work_port_lock); 8992 spin_lock_irq(&phba->hbalock); 8993 phba->link_state = LPFC_LINK_UNKNOWN; 8994 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 8995 spin_unlock_irq(&phba->hbalock); 8996 8997 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8998 "0345 Resetting board due to mailbox timeout\n"); 8999 9000 /* Reset the HBA device */ 9001 lpfc_reset_hba(phba); 9002 } 9003 9004 /** 9005 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9006 * @phba: Pointer to HBA context object. 9007 * @pmbox: Pointer to mailbox object. 9008 * @flag: Flag indicating how the mailbox need to be processed. 9009 * 9010 * This function is called by discovery code and HBA management code 9011 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9012 * function gets the hbalock to protect the data structures. 9013 * The mailbox command can be submitted in polling mode, in which case 9014 * this function will wait in a polling loop for the completion of the 9015 * mailbox. 9016 * If the mailbox is submitted in no_wait mode (not polling) the 9017 * function will submit the command and returns immediately without waiting 9018 * for the mailbox completion. The no_wait is supported only when HBA 9019 * is in SLI2/SLI3 mode - interrupts are enabled. 9020 * The SLI interface allows only one mailbox pending at a time. If the 9021 * mailbox is issued in polling mode and there is already a mailbox 9022 * pending, then the function will return an error. If the mailbox is issued 9023 * in NO_WAIT mode and there is a mailbox pending already, the function 9024 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9025 * The sli layer owns the mailbox object until the completion of mailbox 9026 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9027 * return codes the caller owns the mailbox command after the return of 9028 * the function. 9029 **/ 9030 static int 9031 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9032 uint32_t flag) 9033 { 9034 MAILBOX_t *mbx; 9035 struct lpfc_sli *psli = &phba->sli; 9036 uint32_t status, evtctr; 9037 uint32_t ha_copy, hc_copy; 9038 int i; 9039 unsigned long timeout; 9040 unsigned long drvr_flag = 0; 9041 uint32_t word0, ldata; 9042 void __iomem *to_slim; 9043 int processing_queue = 0; 9044 9045 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9046 if (!pmbox) { 9047 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9048 /* processing mbox queue from intr_handler */ 9049 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9050 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9051 return MBX_SUCCESS; 9052 } 9053 processing_queue = 1; 9054 pmbox = lpfc_mbox_get(phba); 9055 if (!pmbox) { 9056 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9057 return MBX_SUCCESS; 9058 } 9059 } 9060 9061 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9062 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9063 if(!pmbox->vport) { 9064 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9065 lpfc_printf_log(phba, KERN_ERR, 9066 LOG_MBOX | LOG_VPORT, 9067 "1806 Mbox x%x failed. No vport\n", 9068 pmbox->u.mb.mbxCommand); 9069 dump_stack(); 9070 goto out_not_finished; 9071 } 9072 } 9073 9074 /* If the PCI channel is in offline state, do not post mbox. */ 9075 if (unlikely(pci_channel_offline(phba->pcidev))) { 9076 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9077 goto out_not_finished; 9078 } 9079 9080 /* If HBA has a deferred error attention, fail the iocb. */ 9081 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 9082 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9083 goto out_not_finished; 9084 } 9085 9086 psli = &phba->sli; 9087 9088 mbx = &pmbox->u.mb; 9089 status = MBX_SUCCESS; 9090 9091 if (phba->link_state == LPFC_HBA_ERROR) { 9092 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9093 9094 /* Mbox command <mbxCommand> cannot issue */ 9095 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9096 "(%d):0311 Mailbox command x%x cannot " 9097 "issue Data: x%x x%x\n", 9098 pmbox->vport ? pmbox->vport->vpi : 0, 9099 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9100 goto out_not_finished; 9101 } 9102 9103 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9104 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9105 !(hc_copy & HC_MBINT_ENA)) { 9106 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9107 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9108 "(%d):2528 Mailbox command x%x cannot " 9109 "issue Data: x%x x%x\n", 9110 pmbox->vport ? pmbox->vport->vpi : 0, 9111 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9112 goto out_not_finished; 9113 } 9114 } 9115 9116 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9117 /* Polling for a mbox command when another one is already active 9118 * is not allowed in SLI. Also, the driver must have established 9119 * SLI2 mode to queue and process multiple mbox commands. 9120 */ 9121 9122 if (flag & MBX_POLL) { 9123 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9124 9125 /* Mbox command <mbxCommand> cannot issue */ 9126 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9127 "(%d):2529 Mailbox command x%x " 9128 "cannot issue Data: x%x x%x\n", 9129 pmbox->vport ? pmbox->vport->vpi : 0, 9130 pmbox->u.mb.mbxCommand, 9131 psli->sli_flag, flag); 9132 goto out_not_finished; 9133 } 9134 9135 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9136 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9137 /* Mbox command <mbxCommand> cannot issue */ 9138 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9139 "(%d):2530 Mailbox command x%x " 9140 "cannot issue Data: x%x x%x\n", 9141 pmbox->vport ? pmbox->vport->vpi : 0, 9142 pmbox->u.mb.mbxCommand, 9143 psli->sli_flag, flag); 9144 goto out_not_finished; 9145 } 9146 9147 /* Another mailbox command is still being processed, queue this 9148 * command to be processed later. 9149 */ 9150 lpfc_mbox_put(phba, pmbox); 9151 9152 /* Mbox cmd issue - BUSY */ 9153 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9154 "(%d):0308 Mbox cmd issue - BUSY Data: " 9155 "x%x x%x x%x x%x\n", 9156 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9157 mbx->mbxCommand, 9158 phba->pport ? phba->pport->port_state : 0xff, 9159 psli->sli_flag, flag); 9160 9161 psli->slistat.mbox_busy++; 9162 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9163 9164 if (pmbox->vport) { 9165 lpfc_debugfs_disc_trc(pmbox->vport, 9166 LPFC_DISC_TRC_MBOX_VPORT, 9167 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9168 (uint32_t)mbx->mbxCommand, 9169 mbx->un.varWords[0], mbx->un.varWords[1]); 9170 } 9171 else { 9172 lpfc_debugfs_disc_trc(phba->pport, 9173 LPFC_DISC_TRC_MBOX, 9174 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9175 (uint32_t)mbx->mbxCommand, 9176 mbx->un.varWords[0], mbx->un.varWords[1]); 9177 } 9178 9179 return MBX_BUSY; 9180 } 9181 9182 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9183 9184 /* If we are not polling, we MUST be in SLI2 mode */ 9185 if (flag != MBX_POLL) { 9186 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9187 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9188 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9189 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9190 /* Mbox command <mbxCommand> cannot issue */ 9191 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9192 "(%d):2531 Mailbox command x%x " 9193 "cannot issue Data: x%x x%x\n", 9194 pmbox->vport ? pmbox->vport->vpi : 0, 9195 pmbox->u.mb.mbxCommand, 9196 psli->sli_flag, flag); 9197 goto out_not_finished; 9198 } 9199 /* timeout active mbox command */ 9200 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9201 1000); 9202 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9203 } 9204 9205 /* Mailbox cmd <cmd> issue */ 9206 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9207 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9208 "x%x\n", 9209 pmbox->vport ? pmbox->vport->vpi : 0, 9210 mbx->mbxCommand, 9211 phba->pport ? phba->pport->port_state : 0xff, 9212 psli->sli_flag, flag); 9213 9214 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9215 if (pmbox->vport) { 9216 lpfc_debugfs_disc_trc(pmbox->vport, 9217 LPFC_DISC_TRC_MBOX_VPORT, 9218 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9219 (uint32_t)mbx->mbxCommand, 9220 mbx->un.varWords[0], mbx->un.varWords[1]); 9221 } 9222 else { 9223 lpfc_debugfs_disc_trc(phba->pport, 9224 LPFC_DISC_TRC_MBOX, 9225 "MBOX Send: cmd:x%x mb:x%x x%x", 9226 (uint32_t)mbx->mbxCommand, 9227 mbx->un.varWords[0], mbx->un.varWords[1]); 9228 } 9229 } 9230 9231 psli->slistat.mbox_cmd++; 9232 evtctr = psli->slistat.mbox_event; 9233 9234 /* next set own bit for the adapter and copy over command word */ 9235 mbx->mbxOwner = OWN_CHIP; 9236 9237 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9238 /* Populate mbox extension offset word. */ 9239 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9240 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9241 = (uint8_t *)phba->mbox_ext 9242 - (uint8_t *)phba->mbox; 9243 } 9244 9245 /* Copy the mailbox extension data */ 9246 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 9247 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 9248 (uint8_t *)phba->mbox_ext, 9249 pmbox->in_ext_byte_len); 9250 } 9251 /* Copy command data to host SLIM area */ 9252 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9253 } else { 9254 /* Populate mbox extension offset word. */ 9255 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9256 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9257 = MAILBOX_HBA_EXT_OFFSET; 9258 9259 /* Copy the mailbox extension data */ 9260 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 9261 lpfc_memcpy_to_slim(phba->MBslimaddr + 9262 MAILBOX_HBA_EXT_OFFSET, 9263 pmbox->ctx_buf, pmbox->in_ext_byte_len); 9264 9265 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9266 /* copy command data into host mbox for cmpl */ 9267 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9268 MAILBOX_CMD_SIZE); 9269 9270 /* First copy mbox command data to HBA SLIM, skip past first 9271 word */ 9272 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9273 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9274 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9275 9276 /* Next copy over first word, with mbxOwner set */ 9277 ldata = *((uint32_t *)mbx); 9278 to_slim = phba->MBslimaddr; 9279 writel(ldata, to_slim); 9280 readl(to_slim); /* flush */ 9281 9282 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9283 /* switch over to host mailbox */ 9284 psli->sli_flag |= LPFC_SLI_ACTIVE; 9285 } 9286 9287 wmb(); 9288 9289 switch (flag) { 9290 case MBX_NOWAIT: 9291 /* Set up reference to mailbox command */ 9292 psli->mbox_active = pmbox; 9293 /* Interrupt board to do it */ 9294 writel(CA_MBATT, phba->CAregaddr); 9295 readl(phba->CAregaddr); /* flush */ 9296 /* Don't wait for it to finish, just return */ 9297 break; 9298 9299 case MBX_POLL: 9300 /* Set up null reference to mailbox command */ 9301 psli->mbox_active = NULL; 9302 /* Interrupt board to do it */ 9303 writel(CA_MBATT, phba->CAregaddr); 9304 readl(phba->CAregaddr); /* flush */ 9305 9306 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9307 /* First read mbox status word */ 9308 word0 = *((uint32_t *)phba->mbox); 9309 word0 = le32_to_cpu(word0); 9310 } else { 9311 /* First read mbox status word */ 9312 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9313 spin_unlock_irqrestore(&phba->hbalock, 9314 drvr_flag); 9315 goto out_not_finished; 9316 } 9317 } 9318 9319 /* Read the HBA Host Attention Register */ 9320 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9321 spin_unlock_irqrestore(&phba->hbalock, 9322 drvr_flag); 9323 goto out_not_finished; 9324 } 9325 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9326 1000) + jiffies; 9327 i = 0; 9328 /* Wait for command to complete */ 9329 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9330 (!(ha_copy & HA_MBATT) && 9331 (phba->link_state > LPFC_WARM_START))) { 9332 if (time_after(jiffies, timeout)) { 9333 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9334 spin_unlock_irqrestore(&phba->hbalock, 9335 drvr_flag); 9336 goto out_not_finished; 9337 } 9338 9339 /* Check if we took a mbox interrupt while we were 9340 polling */ 9341 if (((word0 & OWN_CHIP) != OWN_CHIP) 9342 && (evtctr != psli->slistat.mbox_event)) 9343 break; 9344 9345 if (i++ > 10) { 9346 spin_unlock_irqrestore(&phba->hbalock, 9347 drvr_flag); 9348 msleep(1); 9349 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9350 } 9351 9352 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9353 /* First copy command data */ 9354 word0 = *((uint32_t *)phba->mbox); 9355 word0 = le32_to_cpu(word0); 9356 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9357 MAILBOX_t *slimmb; 9358 uint32_t slimword0; 9359 /* Check real SLIM for any errors */ 9360 slimword0 = readl(phba->MBslimaddr); 9361 slimmb = (MAILBOX_t *) & slimword0; 9362 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9363 && slimmb->mbxStatus) { 9364 psli->sli_flag &= 9365 ~LPFC_SLI_ACTIVE; 9366 word0 = slimword0; 9367 } 9368 } 9369 } else { 9370 /* First copy command data */ 9371 word0 = readl(phba->MBslimaddr); 9372 } 9373 /* Read the HBA Host Attention Register */ 9374 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9375 spin_unlock_irqrestore(&phba->hbalock, 9376 drvr_flag); 9377 goto out_not_finished; 9378 } 9379 } 9380 9381 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9382 /* copy results back to user */ 9383 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9384 MAILBOX_CMD_SIZE); 9385 /* Copy the mailbox extension data */ 9386 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9387 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9388 pmbox->ctx_buf, 9389 pmbox->out_ext_byte_len); 9390 } 9391 } else { 9392 /* First copy command data */ 9393 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9394 MAILBOX_CMD_SIZE); 9395 /* Copy the mailbox extension data */ 9396 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9397 lpfc_memcpy_from_slim( 9398 pmbox->ctx_buf, 9399 phba->MBslimaddr + 9400 MAILBOX_HBA_EXT_OFFSET, 9401 pmbox->out_ext_byte_len); 9402 } 9403 } 9404 9405 writel(HA_MBATT, phba->HAregaddr); 9406 readl(phba->HAregaddr); /* flush */ 9407 9408 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9409 status = mbx->mbxStatus; 9410 } 9411 9412 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9413 return status; 9414 9415 out_not_finished: 9416 if (processing_queue) { 9417 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9418 lpfc_mbox_cmpl_put(phba, pmbox); 9419 } 9420 return MBX_NOT_FINISHED; 9421 } 9422 9423 /** 9424 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9425 * @phba: Pointer to HBA context object. 9426 * 9427 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9428 * the driver internal pending mailbox queue. It will then try to wait out the 9429 * possible outstanding mailbox command before return. 9430 * 9431 * Returns: 9432 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9433 * the outstanding mailbox command timed out. 9434 **/ 9435 static int 9436 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9437 { 9438 struct lpfc_sli *psli = &phba->sli; 9439 LPFC_MBOXQ_t *mboxq; 9440 int rc = 0; 9441 unsigned long timeout = 0; 9442 u32 sli_flag; 9443 u8 cmd, subsys, opcode; 9444 9445 /* Mark the asynchronous mailbox command posting as blocked */ 9446 spin_lock_irq(&phba->hbalock); 9447 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9448 /* Determine how long we might wait for the active mailbox 9449 * command to be gracefully completed by firmware. 9450 */ 9451 if (phba->sli.mbox_active) 9452 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9453 phba->sli.mbox_active) * 9454 1000) + jiffies; 9455 spin_unlock_irq(&phba->hbalock); 9456 9457 /* Make sure the mailbox is really active */ 9458 if (timeout) 9459 lpfc_sli4_process_missed_mbox_completions(phba); 9460 9461 /* Wait for the outstanding mailbox command to complete */ 9462 while (phba->sli.mbox_active) { 9463 /* Check active mailbox complete status every 2ms */ 9464 msleep(2); 9465 if (time_after(jiffies, timeout)) { 9466 /* Timeout, mark the outstanding cmd not complete */ 9467 9468 /* Sanity check sli.mbox_active has not completed or 9469 * cancelled from another context during last 2ms sleep, 9470 * so take hbalock to be sure before logging. 9471 */ 9472 spin_lock_irq(&phba->hbalock); 9473 if (phba->sli.mbox_active) { 9474 mboxq = phba->sli.mbox_active; 9475 cmd = mboxq->u.mb.mbxCommand; 9476 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9477 mboxq); 9478 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9479 mboxq); 9480 sli_flag = psli->sli_flag; 9481 spin_unlock_irq(&phba->hbalock); 9482 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9483 "2352 Mailbox command x%x " 9484 "(x%x/x%x) sli_flag x%x could " 9485 "not complete\n", 9486 cmd, subsys, opcode, 9487 sli_flag); 9488 } else { 9489 spin_unlock_irq(&phba->hbalock); 9490 } 9491 9492 rc = 1; 9493 break; 9494 } 9495 } 9496 9497 /* Can not cleanly block async mailbox command, fails it */ 9498 if (rc) { 9499 spin_lock_irq(&phba->hbalock); 9500 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9501 spin_unlock_irq(&phba->hbalock); 9502 } 9503 return rc; 9504 } 9505 9506 /** 9507 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9508 * @phba: Pointer to HBA context object. 9509 * 9510 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9511 * commands from the driver internal pending mailbox queue. It makes sure 9512 * that there is no outstanding mailbox command before resuming posting 9513 * asynchronous mailbox commands. If, for any reason, there is outstanding 9514 * mailbox command, it will try to wait it out before resuming asynchronous 9515 * mailbox command posting. 9516 **/ 9517 static void 9518 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9519 { 9520 struct lpfc_sli *psli = &phba->sli; 9521 9522 spin_lock_irq(&phba->hbalock); 9523 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9524 /* Asynchronous mailbox posting is not blocked, do nothing */ 9525 spin_unlock_irq(&phba->hbalock); 9526 return; 9527 } 9528 9529 /* Outstanding synchronous mailbox command is guaranteed to be done, 9530 * successful or timeout, after timing-out the outstanding mailbox 9531 * command shall always be removed, so just unblock posting async 9532 * mailbox command and resume 9533 */ 9534 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9535 spin_unlock_irq(&phba->hbalock); 9536 9537 /* wake up worker thread to post asynchronous mailbox command */ 9538 lpfc_worker_wake_up(phba); 9539 } 9540 9541 /** 9542 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9543 * @phba: Pointer to HBA context object. 9544 * @mboxq: Pointer to mailbox object. 9545 * 9546 * The function waits for the bootstrap mailbox register ready bit from 9547 * port for twice the regular mailbox command timeout value. 9548 * 9549 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9550 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 9551 **/ 9552 static int 9553 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9554 { 9555 uint32_t db_ready; 9556 unsigned long timeout; 9557 struct lpfc_register bmbx_reg; 9558 9559 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9560 * 1000) + jiffies; 9561 9562 do { 9563 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9564 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9565 if (!db_ready) 9566 mdelay(2); 9567 9568 if (time_after(jiffies, timeout)) 9569 return MBXERR_ERROR; 9570 } while (!db_ready); 9571 9572 return 0; 9573 } 9574 9575 /** 9576 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9577 * @phba: Pointer to HBA context object. 9578 * @mboxq: Pointer to mailbox object. 9579 * 9580 * The function posts a mailbox to the port. The mailbox is expected 9581 * to be comletely filled in and ready for the port to operate on it. 9582 * This routine executes a synchronous completion operation on the 9583 * mailbox by polling for its completion. 9584 * 9585 * The caller must not be holding any locks when calling this routine. 9586 * 9587 * Returns: 9588 * MBX_SUCCESS - mailbox posted successfully 9589 * Any of the MBX error values. 9590 **/ 9591 static int 9592 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9593 { 9594 int rc = MBX_SUCCESS; 9595 unsigned long iflag; 9596 uint32_t mcqe_status; 9597 uint32_t mbx_cmnd; 9598 struct lpfc_sli *psli = &phba->sli; 9599 struct lpfc_mqe *mb = &mboxq->u.mqe; 9600 struct lpfc_bmbx_create *mbox_rgn; 9601 struct dma_address *dma_address; 9602 9603 /* 9604 * Only one mailbox can be active to the bootstrap mailbox region 9605 * at a time and there is no queueing provided. 9606 */ 9607 spin_lock_irqsave(&phba->hbalock, iflag); 9608 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9609 spin_unlock_irqrestore(&phba->hbalock, iflag); 9610 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9611 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9612 "cannot issue Data: x%x x%x\n", 9613 mboxq->vport ? mboxq->vport->vpi : 0, 9614 mboxq->u.mb.mbxCommand, 9615 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9616 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9617 psli->sli_flag, MBX_POLL); 9618 return MBXERR_ERROR; 9619 } 9620 /* The server grabs the token and owns it until release */ 9621 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9622 phba->sli.mbox_active = mboxq; 9623 spin_unlock_irqrestore(&phba->hbalock, iflag); 9624 9625 /* wait for bootstrap mbox register for readyness */ 9626 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9627 if (rc) 9628 goto exit; 9629 /* 9630 * Initialize the bootstrap memory region to avoid stale data areas 9631 * in the mailbox post. Then copy the caller's mailbox contents to 9632 * the bmbx mailbox region. 9633 */ 9634 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9635 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9636 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9637 sizeof(struct lpfc_mqe)); 9638 9639 /* Post the high mailbox dma address to the port and wait for ready. */ 9640 dma_address = &phba->sli4_hba.bmbx.dma_address; 9641 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9642 9643 /* wait for bootstrap mbox register for hi-address write done */ 9644 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9645 if (rc) 9646 goto exit; 9647 9648 /* Post the low mailbox dma address to the port. */ 9649 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9650 9651 /* wait for bootstrap mbox register for low address write done */ 9652 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9653 if (rc) 9654 goto exit; 9655 9656 /* 9657 * Read the CQ to ensure the mailbox has completed. 9658 * If so, update the mailbox status so that the upper layers 9659 * can complete the request normally. 9660 */ 9661 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9662 sizeof(struct lpfc_mqe)); 9663 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9664 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9665 sizeof(struct lpfc_mcqe)); 9666 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9667 /* 9668 * When the CQE status indicates a failure and the mailbox status 9669 * indicates success then copy the CQE status into the mailbox status 9670 * (and prefix it with x4000). 9671 */ 9672 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9673 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9674 bf_set(lpfc_mqe_status, mb, 9675 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9676 rc = MBXERR_ERROR; 9677 } else 9678 lpfc_sli4_swap_str(phba, mboxq); 9679 9680 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9681 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 9682 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 9683 " x%x x%x CQ: x%x x%x x%x x%x\n", 9684 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9685 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9686 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9687 bf_get(lpfc_mqe_status, mb), 9688 mb->un.mb_words[0], mb->un.mb_words[1], 9689 mb->un.mb_words[2], mb->un.mb_words[3], 9690 mb->un.mb_words[4], mb->un.mb_words[5], 9691 mb->un.mb_words[6], mb->un.mb_words[7], 9692 mb->un.mb_words[8], mb->un.mb_words[9], 9693 mb->un.mb_words[10], mb->un.mb_words[11], 9694 mb->un.mb_words[12], mboxq->mcqe.word0, 9695 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 9696 mboxq->mcqe.trailer); 9697 exit: 9698 /* We are holding the token, no needed for lock when release */ 9699 spin_lock_irqsave(&phba->hbalock, iflag); 9700 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9701 phba->sli.mbox_active = NULL; 9702 spin_unlock_irqrestore(&phba->hbalock, iflag); 9703 return rc; 9704 } 9705 9706 /** 9707 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 9708 * @phba: Pointer to HBA context object. 9709 * @mboxq: Pointer to mailbox object. 9710 * @flag: Flag indicating how the mailbox need to be processed. 9711 * 9712 * This function is called by discovery code and HBA management code to submit 9713 * a mailbox command to firmware with SLI-4 interface spec. 9714 * 9715 * Return codes the caller owns the mailbox command after the return of the 9716 * function. 9717 **/ 9718 static int 9719 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 9720 uint32_t flag) 9721 { 9722 struct lpfc_sli *psli = &phba->sli; 9723 unsigned long iflags; 9724 int rc; 9725 9726 /* dump from issue mailbox command if setup */ 9727 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 9728 9729 rc = lpfc_mbox_dev_check(phba); 9730 if (unlikely(rc)) { 9731 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9732 "(%d):2544 Mailbox command x%x (x%x/x%x) " 9733 "cannot issue Data: x%x x%x\n", 9734 mboxq->vport ? mboxq->vport->vpi : 0, 9735 mboxq->u.mb.mbxCommand, 9736 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9737 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9738 psli->sli_flag, flag); 9739 goto out_not_finished; 9740 } 9741 9742 /* Detect polling mode and jump to a handler */ 9743 if (!phba->sli4_hba.intr_enable) { 9744 if (flag == MBX_POLL) 9745 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9746 else 9747 rc = -EIO; 9748 if (rc != MBX_SUCCESS) 9749 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9750 "(%d):2541 Mailbox command x%x " 9751 "(x%x/x%x) failure: " 9752 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9753 "Data: x%x x%x\n,", 9754 mboxq->vport ? mboxq->vport->vpi : 0, 9755 mboxq->u.mb.mbxCommand, 9756 lpfc_sli_config_mbox_subsys_get(phba, 9757 mboxq), 9758 lpfc_sli_config_mbox_opcode_get(phba, 9759 mboxq), 9760 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9761 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9762 bf_get(lpfc_mcqe_ext_status, 9763 &mboxq->mcqe), 9764 psli->sli_flag, flag); 9765 return rc; 9766 } else if (flag == MBX_POLL) { 9767 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9768 "(%d):2542 Try to issue mailbox command " 9769 "x%x (x%x/x%x) synchronously ahead of async " 9770 "mailbox command queue: x%x x%x\n", 9771 mboxq->vport ? mboxq->vport->vpi : 0, 9772 mboxq->u.mb.mbxCommand, 9773 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9774 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9775 psli->sli_flag, flag); 9776 /* Try to block the asynchronous mailbox posting */ 9777 rc = lpfc_sli4_async_mbox_block(phba); 9778 if (!rc) { 9779 /* Successfully blocked, now issue sync mbox cmd */ 9780 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9781 if (rc != MBX_SUCCESS) 9782 lpfc_printf_log(phba, KERN_WARNING, 9783 LOG_MBOX | LOG_SLI, 9784 "(%d):2597 Sync Mailbox command " 9785 "x%x (x%x/x%x) failure: " 9786 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9787 "Data: x%x x%x\n,", 9788 mboxq->vport ? mboxq->vport->vpi : 0, 9789 mboxq->u.mb.mbxCommand, 9790 lpfc_sli_config_mbox_subsys_get(phba, 9791 mboxq), 9792 lpfc_sli_config_mbox_opcode_get(phba, 9793 mboxq), 9794 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9795 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9796 bf_get(lpfc_mcqe_ext_status, 9797 &mboxq->mcqe), 9798 psli->sli_flag, flag); 9799 /* Unblock the async mailbox posting afterward */ 9800 lpfc_sli4_async_mbox_unblock(phba); 9801 } 9802 return rc; 9803 } 9804 9805 /* Now, interrupt mode asynchronous mailbox command */ 9806 rc = lpfc_mbox_cmd_check(phba, mboxq); 9807 if (rc) { 9808 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9809 "(%d):2543 Mailbox command x%x (x%x/x%x) " 9810 "cannot issue Data: x%x x%x\n", 9811 mboxq->vport ? mboxq->vport->vpi : 0, 9812 mboxq->u.mb.mbxCommand, 9813 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9814 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9815 psli->sli_flag, flag); 9816 goto out_not_finished; 9817 } 9818 9819 /* Put the mailbox command to the driver internal FIFO */ 9820 psli->slistat.mbox_busy++; 9821 spin_lock_irqsave(&phba->hbalock, iflags); 9822 lpfc_mbox_put(phba, mboxq); 9823 spin_unlock_irqrestore(&phba->hbalock, iflags); 9824 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9825 "(%d):0354 Mbox cmd issue - Enqueue Data: " 9826 "x%x (x%x/x%x) x%x x%x x%x\n", 9827 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 9828 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 9829 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9830 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9831 phba->pport->port_state, 9832 psli->sli_flag, MBX_NOWAIT); 9833 /* Wake up worker thread to transport mailbox command from head */ 9834 lpfc_worker_wake_up(phba); 9835 9836 return MBX_BUSY; 9837 9838 out_not_finished: 9839 return MBX_NOT_FINISHED; 9840 } 9841 9842 /** 9843 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 9844 * @phba: Pointer to HBA context object. 9845 * 9846 * This function is called by worker thread to send a mailbox command to 9847 * SLI4 HBA firmware. 9848 * 9849 **/ 9850 int 9851 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 9852 { 9853 struct lpfc_sli *psli = &phba->sli; 9854 LPFC_MBOXQ_t *mboxq; 9855 int rc = MBX_SUCCESS; 9856 unsigned long iflags; 9857 struct lpfc_mqe *mqe; 9858 uint32_t mbx_cmnd; 9859 9860 /* Check interrupt mode before post async mailbox command */ 9861 if (unlikely(!phba->sli4_hba.intr_enable)) 9862 return MBX_NOT_FINISHED; 9863 9864 /* Check for mailbox command service token */ 9865 spin_lock_irqsave(&phba->hbalock, iflags); 9866 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9867 spin_unlock_irqrestore(&phba->hbalock, iflags); 9868 return MBX_NOT_FINISHED; 9869 } 9870 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9871 spin_unlock_irqrestore(&phba->hbalock, iflags); 9872 return MBX_NOT_FINISHED; 9873 } 9874 if (unlikely(phba->sli.mbox_active)) { 9875 spin_unlock_irqrestore(&phba->hbalock, iflags); 9876 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9877 "0384 There is pending active mailbox cmd\n"); 9878 return MBX_NOT_FINISHED; 9879 } 9880 /* Take the mailbox command service token */ 9881 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9882 9883 /* Get the next mailbox command from head of queue */ 9884 mboxq = lpfc_mbox_get(phba); 9885 9886 /* If no more mailbox command waiting for post, we're done */ 9887 if (!mboxq) { 9888 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9889 spin_unlock_irqrestore(&phba->hbalock, iflags); 9890 return MBX_SUCCESS; 9891 } 9892 phba->sli.mbox_active = mboxq; 9893 spin_unlock_irqrestore(&phba->hbalock, iflags); 9894 9895 /* Check device readiness for posting mailbox command */ 9896 rc = lpfc_mbox_dev_check(phba); 9897 if (unlikely(rc)) 9898 /* Driver clean routine will clean up pending mailbox */ 9899 goto out_not_finished; 9900 9901 /* Prepare the mbox command to be posted */ 9902 mqe = &mboxq->u.mqe; 9903 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9904 9905 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9906 mod_timer(&psli->mbox_tmo, (jiffies + 9907 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9908 9909 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9910 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9911 "x%x x%x\n", 9912 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9913 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9914 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9915 phba->pport->port_state, psli->sli_flag); 9916 9917 if (mbx_cmnd != MBX_HEARTBEAT) { 9918 if (mboxq->vport) { 9919 lpfc_debugfs_disc_trc(mboxq->vport, 9920 LPFC_DISC_TRC_MBOX_VPORT, 9921 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9922 mbx_cmnd, mqe->un.mb_words[0], 9923 mqe->un.mb_words[1]); 9924 } else { 9925 lpfc_debugfs_disc_trc(phba->pport, 9926 LPFC_DISC_TRC_MBOX, 9927 "MBOX Send: cmd:x%x mb:x%x x%x", 9928 mbx_cmnd, mqe->un.mb_words[0], 9929 mqe->un.mb_words[1]); 9930 } 9931 } 9932 psli->slistat.mbox_cmd++; 9933 9934 /* Post the mailbox command to the port */ 9935 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 9936 if (rc != MBX_SUCCESS) { 9937 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9938 "(%d):2533 Mailbox command x%x (x%x/x%x) " 9939 "cannot issue Data: x%x x%x\n", 9940 mboxq->vport ? mboxq->vport->vpi : 0, 9941 mboxq->u.mb.mbxCommand, 9942 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9943 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9944 psli->sli_flag, MBX_NOWAIT); 9945 goto out_not_finished; 9946 } 9947 9948 return rc; 9949 9950 out_not_finished: 9951 spin_lock_irqsave(&phba->hbalock, iflags); 9952 if (phba->sli.mbox_active) { 9953 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 9954 __lpfc_mbox_cmpl_put(phba, mboxq); 9955 /* Release the token */ 9956 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9957 phba->sli.mbox_active = NULL; 9958 } 9959 spin_unlock_irqrestore(&phba->hbalock, iflags); 9960 9961 return MBX_NOT_FINISHED; 9962 } 9963 9964 /** 9965 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 9966 * @phba: Pointer to HBA context object. 9967 * @pmbox: Pointer to mailbox object. 9968 * @flag: Flag indicating how the mailbox need to be processed. 9969 * 9970 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 9971 * the API jump table function pointer from the lpfc_hba struct. 9972 * 9973 * Return codes the caller owns the mailbox command after the return of the 9974 * function. 9975 **/ 9976 int 9977 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 9978 { 9979 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 9980 } 9981 9982 /** 9983 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 9984 * @phba: The hba struct for which this call is being executed. 9985 * @dev_grp: The HBA PCI-Device group number. 9986 * 9987 * This routine sets up the mbox interface API function jump table in @phba 9988 * struct. 9989 * Returns: 0 - success, -ENODEV - failure. 9990 **/ 9991 int 9992 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9993 { 9994 9995 switch (dev_grp) { 9996 case LPFC_PCI_DEV_LP: 9997 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 9998 phba->lpfc_sli_handle_slow_ring_event = 9999 lpfc_sli_handle_slow_ring_event_s3; 10000 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10001 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10002 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10003 break; 10004 case LPFC_PCI_DEV_OC: 10005 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10006 phba->lpfc_sli_handle_slow_ring_event = 10007 lpfc_sli_handle_slow_ring_event_s4; 10008 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10009 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10010 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10011 break; 10012 default: 10013 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10014 "1420 Invalid HBA PCI-device group: 0x%x\n", 10015 dev_grp); 10016 return -ENODEV; 10017 } 10018 return 0; 10019 } 10020 10021 /** 10022 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10023 * @phba: Pointer to HBA context object. 10024 * @pring: Pointer to driver SLI ring object. 10025 * @piocb: Pointer to address of newly added command iocb. 10026 * 10027 * This function is called with hbalock held for SLI3 ports or 10028 * the ring lock held for SLI4 ports to add a command 10029 * iocb to the txq when SLI layer cannot submit the command iocb 10030 * to the ring. 10031 **/ 10032 void 10033 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10034 struct lpfc_iocbq *piocb) 10035 { 10036 if (phba->sli_rev == LPFC_SLI_REV4) 10037 lockdep_assert_held(&pring->ring_lock); 10038 else 10039 lockdep_assert_held(&phba->hbalock); 10040 /* Insert the caller's iocb in the txq tail for later processing. */ 10041 list_add_tail(&piocb->list, &pring->txq); 10042 } 10043 10044 /** 10045 * lpfc_sli_next_iocb - Get the next iocb in the txq 10046 * @phba: Pointer to HBA context object. 10047 * @pring: Pointer to driver SLI ring object. 10048 * @piocb: Pointer to address of newly added command iocb. 10049 * 10050 * This function is called with hbalock held before a new 10051 * iocb is submitted to the firmware. This function checks 10052 * txq to flush the iocbs in txq to Firmware before 10053 * submitting new iocbs to the Firmware. 10054 * If there are iocbs in the txq which need to be submitted 10055 * to firmware, lpfc_sli_next_iocb returns the first element 10056 * of the txq after dequeuing it from txq. 10057 * If there is no iocb in the txq then the function will return 10058 * *piocb and *piocb is set to NULL. Caller needs to check 10059 * *piocb to find if there are more commands in the txq. 10060 **/ 10061 static struct lpfc_iocbq * 10062 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10063 struct lpfc_iocbq **piocb) 10064 { 10065 struct lpfc_iocbq * nextiocb; 10066 10067 lockdep_assert_held(&phba->hbalock); 10068 10069 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10070 if (!nextiocb) { 10071 nextiocb = *piocb; 10072 *piocb = NULL; 10073 } 10074 10075 return nextiocb; 10076 } 10077 10078 /** 10079 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10080 * @phba: Pointer to HBA context object. 10081 * @ring_number: SLI ring number to issue iocb on. 10082 * @piocb: Pointer to command iocb. 10083 * @flag: Flag indicating if this command can be put into txq. 10084 * 10085 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10086 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10087 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10088 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10089 * this function allows only iocbs for posting buffers. This function finds 10090 * next available slot in the command ring and posts the command to the 10091 * available slot and writes the port attention register to request HBA start 10092 * processing new iocb. If there is no slot available in the ring and 10093 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10094 * the function returns IOCB_BUSY. 10095 * 10096 * This function is called with hbalock held. The function will return success 10097 * after it successfully submit the iocb to firmware or after adding to the 10098 * txq. 10099 **/ 10100 static int 10101 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10102 struct lpfc_iocbq *piocb, uint32_t flag) 10103 { 10104 struct lpfc_iocbq *nextiocb; 10105 IOCB_t *iocb; 10106 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10107 10108 lockdep_assert_held(&phba->hbalock); 10109 10110 if (piocb->iocb_cmpl && (!piocb->vport) && 10111 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10112 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10113 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10114 "1807 IOCB x%x failed. No vport\n", 10115 piocb->iocb.ulpCommand); 10116 dump_stack(); 10117 return IOCB_ERROR; 10118 } 10119 10120 10121 /* If the PCI channel is in offline state, do not post iocbs. */ 10122 if (unlikely(pci_channel_offline(phba->pcidev))) 10123 return IOCB_ERROR; 10124 10125 /* If HBA has a deferred error attention, fail the iocb. */ 10126 if (unlikely(phba->hba_flag & DEFER_ERATT)) 10127 return IOCB_ERROR; 10128 10129 /* 10130 * We should never get an IOCB if we are in a < LINK_DOWN state 10131 */ 10132 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10133 return IOCB_ERROR; 10134 10135 /* 10136 * Check to see if we are blocking IOCB processing because of a 10137 * outstanding event. 10138 */ 10139 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10140 goto iocb_busy; 10141 10142 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10143 /* 10144 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10145 * can be issued if the link is not up. 10146 */ 10147 switch (piocb->iocb.ulpCommand) { 10148 case CMD_GEN_REQUEST64_CR: 10149 case CMD_GEN_REQUEST64_CX: 10150 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 10151 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 10152 FC_RCTL_DD_UNSOL_CMD) || 10153 (piocb->iocb.un.genreq64.w5.hcsw.Type != 10154 MENLO_TRANSPORT_TYPE)) 10155 10156 goto iocb_busy; 10157 break; 10158 case CMD_QUE_RING_BUF_CN: 10159 case CMD_QUE_RING_BUF64_CN: 10160 /* 10161 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10162 * completion, iocb_cmpl MUST be 0. 10163 */ 10164 if (piocb->iocb_cmpl) 10165 piocb->iocb_cmpl = NULL; 10166 fallthrough; 10167 case CMD_CREATE_XRI_CR: 10168 case CMD_CLOSE_XRI_CN: 10169 case CMD_CLOSE_XRI_CX: 10170 break; 10171 default: 10172 goto iocb_busy; 10173 } 10174 10175 /* 10176 * For FCP commands, we must be in a state where we can process link 10177 * attention events. 10178 */ 10179 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10180 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10181 goto iocb_busy; 10182 } 10183 10184 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10185 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10186 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10187 10188 if (iocb) 10189 lpfc_sli_update_ring(phba, pring); 10190 else 10191 lpfc_sli_update_full_ring(phba, pring); 10192 10193 if (!piocb) 10194 return IOCB_SUCCESS; 10195 10196 goto out_busy; 10197 10198 iocb_busy: 10199 pring->stats.iocb_cmd_delay++; 10200 10201 out_busy: 10202 10203 if (!(flag & SLI_IOCB_RET_IOCB)) { 10204 __lpfc_sli_ringtx_put(phba, pring, piocb); 10205 return IOCB_SUCCESS; 10206 } 10207 10208 return IOCB_BUSY; 10209 } 10210 10211 /** 10212 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 10213 * @phba: Pointer to HBA context object. 10214 * @piocbq: Pointer to command iocb. 10215 * @sglq: Pointer to the scatter gather queue object. 10216 * 10217 * This routine converts the bpl or bde that is in the IOCB 10218 * to a sgl list for the sli4 hardware. The physical address 10219 * of the bpl/bde is converted back to a virtual address. 10220 * If the IOCB contains a BPL then the list of BDE's is 10221 * converted to sli4_sge's. If the IOCB contains a single 10222 * BDE then it is converted to a single sli_sge. 10223 * The IOCB is still in cpu endianess so the contents of 10224 * the bpl can be used without byte swapping. 10225 * 10226 * Returns valid XRI = Success, NO_XRI = Failure. 10227 **/ 10228 static uint16_t 10229 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 10230 struct lpfc_sglq *sglq) 10231 { 10232 uint16_t xritag = NO_XRI; 10233 struct ulp_bde64 *bpl = NULL; 10234 struct ulp_bde64 bde; 10235 struct sli4_sge *sgl = NULL; 10236 struct lpfc_dmabuf *dmabuf; 10237 IOCB_t *icmd; 10238 int numBdes = 0; 10239 int i = 0; 10240 uint32_t offset = 0; /* accumulated offset in the sg request list */ 10241 int inbound = 0; /* number of sg reply entries inbound from firmware */ 10242 10243 if (!piocbq || !sglq) 10244 return xritag; 10245 10246 sgl = (struct sli4_sge *)sglq->sgl; 10247 icmd = &piocbq->iocb; 10248 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 10249 return sglq->sli4_xritag; 10250 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 10251 numBdes = icmd->un.genreq64.bdl.bdeSize / 10252 sizeof(struct ulp_bde64); 10253 /* The addrHigh and addrLow fields within the IOCB 10254 * have not been byteswapped yet so there is no 10255 * need to swap them back. 10256 */ 10257 if (piocbq->context3) 10258 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 10259 else 10260 return xritag; 10261 10262 bpl = (struct ulp_bde64 *)dmabuf->virt; 10263 if (!bpl) 10264 return xritag; 10265 10266 for (i = 0; i < numBdes; i++) { 10267 /* Should already be byte swapped. */ 10268 sgl->addr_hi = bpl->addrHigh; 10269 sgl->addr_lo = bpl->addrLow; 10270 10271 sgl->word2 = le32_to_cpu(sgl->word2); 10272 if ((i+1) == numBdes) 10273 bf_set(lpfc_sli4_sge_last, sgl, 1); 10274 else 10275 bf_set(lpfc_sli4_sge_last, sgl, 0); 10276 /* swap the size field back to the cpu so we 10277 * can assign it to the sgl. 10278 */ 10279 bde.tus.w = le32_to_cpu(bpl->tus.w); 10280 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 10281 /* The offsets in the sgl need to be accumulated 10282 * separately for the request and reply lists. 10283 * The request is always first, the reply follows. 10284 */ 10285 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 10286 /* add up the reply sg entries */ 10287 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 10288 inbound++; 10289 /* first inbound? reset the offset */ 10290 if (inbound == 1) 10291 offset = 0; 10292 bf_set(lpfc_sli4_sge_offset, sgl, offset); 10293 bf_set(lpfc_sli4_sge_type, sgl, 10294 LPFC_SGE_TYPE_DATA); 10295 offset += bde.tus.f.bdeSize; 10296 } 10297 sgl->word2 = cpu_to_le32(sgl->word2); 10298 bpl++; 10299 sgl++; 10300 } 10301 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 10302 /* The addrHigh and addrLow fields of the BDE have not 10303 * been byteswapped yet so they need to be swapped 10304 * before putting them in the sgl. 10305 */ 10306 sgl->addr_hi = 10307 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 10308 sgl->addr_lo = 10309 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 10310 sgl->word2 = le32_to_cpu(sgl->word2); 10311 bf_set(lpfc_sli4_sge_last, sgl, 1); 10312 sgl->word2 = cpu_to_le32(sgl->word2); 10313 sgl->sge_len = 10314 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 10315 } 10316 return sglq->sli4_xritag; 10317 } 10318 10319 /** 10320 * lpfc_sli4_iocb2wqe - Convert the IOCB to a work queue entry. 10321 * @phba: Pointer to HBA context object. 10322 * @iocbq: Pointer to command iocb. 10323 * @wqe: Pointer to the work queue entry. 10324 * 10325 * This routine converts the iocb command to its Work Queue Entry 10326 * equivalent. The wqe pointer should not have any fields set when 10327 * this routine is called because it will memcpy over them. 10328 * This routine does not set the CQ_ID or the WQEC bits in the 10329 * wqe. 10330 * 10331 * Returns: 0 = Success, IOCB_ERROR = Failure. 10332 **/ 10333 static int 10334 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 10335 union lpfc_wqe128 *wqe) 10336 { 10337 uint32_t xmit_len = 0, total_len = 0; 10338 uint8_t ct = 0; 10339 uint32_t fip; 10340 uint32_t abort_tag; 10341 uint8_t command_type = ELS_COMMAND_NON_FIP; 10342 uint8_t cmnd; 10343 uint16_t xritag; 10344 uint16_t abrt_iotag; 10345 struct lpfc_iocbq *abrtiocbq; 10346 struct ulp_bde64 *bpl = NULL; 10347 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 10348 int numBdes, i; 10349 struct ulp_bde64 bde; 10350 struct lpfc_nodelist *ndlp; 10351 uint32_t *pcmd; 10352 uint32_t if_type; 10353 10354 fip = phba->hba_flag & HBA_FIP_SUPPORT; 10355 /* The fcp commands will set command type */ 10356 if (iocbq->iocb_flag & LPFC_IO_FCP) 10357 command_type = FCP_COMMAND; 10358 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 10359 command_type = ELS_COMMAND_FIP; 10360 else 10361 command_type = ELS_COMMAND_NON_FIP; 10362 10363 if (phba->fcp_embed_io) 10364 memset(wqe, 0, sizeof(union lpfc_wqe128)); 10365 /* Some of the fields are in the right position already */ 10366 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 10367 /* The ct field has moved so reset */ 10368 wqe->generic.wqe_com.word7 = 0; 10369 wqe->generic.wqe_com.word10 = 0; 10370 10371 abort_tag = (uint32_t) iocbq->iotag; 10372 xritag = iocbq->sli4_xritag; 10373 /* words0-2 bpl convert bde */ 10374 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 10375 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 10376 sizeof(struct ulp_bde64); 10377 bpl = (struct ulp_bde64 *) 10378 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 10379 if (!bpl) 10380 return IOCB_ERROR; 10381 10382 /* Should already be byte swapped. */ 10383 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 10384 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 10385 /* swap the size field back to the cpu so we 10386 * can assign it to the sgl. 10387 */ 10388 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 10389 xmit_len = wqe->generic.bde.tus.f.bdeSize; 10390 total_len = 0; 10391 for (i = 0; i < numBdes; i++) { 10392 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 10393 total_len += bde.tus.f.bdeSize; 10394 } 10395 } else 10396 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 10397 10398 iocbq->iocb.ulpIoTag = iocbq->iotag; 10399 cmnd = iocbq->iocb.ulpCommand; 10400 10401 switch (iocbq->iocb.ulpCommand) { 10402 case CMD_ELS_REQUEST64_CR: 10403 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 10404 ndlp = iocbq->context_un.ndlp; 10405 else 10406 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10407 if (!iocbq->iocb.ulpLe) { 10408 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10409 "2007 Only Limited Edition cmd Format" 10410 " supported 0x%x\n", 10411 iocbq->iocb.ulpCommand); 10412 return IOCB_ERROR; 10413 } 10414 10415 wqe->els_req.payload_len = xmit_len; 10416 /* Els_reguest64 has a TMO */ 10417 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 10418 iocbq->iocb.ulpTimeout); 10419 /* Need a VF for word 4 set the vf bit*/ 10420 bf_set(els_req64_vf, &wqe->els_req, 0); 10421 /* And a VFID for word 12 */ 10422 bf_set(els_req64_vfid, &wqe->els_req, 0); 10423 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 10424 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10425 iocbq->iocb.ulpContext); 10426 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 10427 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 10428 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 10429 if (command_type == ELS_COMMAND_FIP) 10430 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 10431 >> LPFC_FIP_ELS_ID_SHIFT); 10432 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 10433 iocbq->context2)->virt); 10434 if_type = bf_get(lpfc_sli_intf_if_type, 10435 &phba->sli4_hba.sli_intf); 10436 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10437 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 10438 *pcmd == ELS_CMD_SCR || 10439 *pcmd == ELS_CMD_RDF || 10440 *pcmd == ELS_CMD_EDC || 10441 *pcmd == ELS_CMD_RSCN_XMT || 10442 *pcmd == ELS_CMD_FDISC || 10443 *pcmd == ELS_CMD_LOGO || 10444 *pcmd == ELS_CMD_QFPA || 10445 *pcmd == ELS_CMD_UVEM || 10446 *pcmd == ELS_CMD_PLOGI)) { 10447 bf_set(els_req64_sp, &wqe->els_req, 1); 10448 bf_set(els_req64_sid, &wqe->els_req, 10449 iocbq->vport->fc_myDID); 10450 if ((*pcmd == ELS_CMD_FLOGI) && 10451 !(phba->fc_topology == 10452 LPFC_TOPOLOGY_LOOP)) 10453 bf_set(els_req64_sid, &wqe->els_req, 0); 10454 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 10455 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10456 phba->vpi_ids[iocbq->vport->vpi]); 10457 } else if (pcmd && iocbq->context1) { 10458 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 10459 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10460 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10461 } 10462 } 10463 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 10464 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10465 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10466 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 10467 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 10468 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 10469 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 10470 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 10471 wqe->els_req.max_response_payload_len = total_len - xmit_len; 10472 break; 10473 case CMD_XMIT_SEQUENCE64_CX: 10474 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 10475 iocbq->iocb.un.ulpWord[3]); 10476 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 10477 iocbq->iocb.unsli3.rcvsli3.ox_id); 10478 /* The entire sequence is transmitted for this IOCB */ 10479 xmit_len = total_len; 10480 cmnd = CMD_XMIT_SEQUENCE64_CR; 10481 if (phba->link_flag & LS_LOOPBACK_MODE) 10482 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 10483 fallthrough; 10484 case CMD_XMIT_SEQUENCE64_CR: 10485 /* word3 iocb=io_tag32 wqe=reserved */ 10486 wqe->xmit_sequence.rsvd3 = 0; 10487 /* word4 relative_offset memcpy */ 10488 /* word5 r_ctl/df_ctl memcpy */ 10489 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 10490 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 10491 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 10492 LPFC_WQE_IOD_WRITE); 10493 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 10494 LPFC_WQE_LENLOC_WORD12); 10495 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 10496 wqe->xmit_sequence.xmit_len = xmit_len; 10497 command_type = OTHER_COMMAND; 10498 break; 10499 case CMD_XMIT_BCAST64_CN: 10500 /* word3 iocb=iotag32 wqe=seq_payload_len */ 10501 wqe->xmit_bcast64.seq_payload_len = xmit_len; 10502 /* word4 iocb=rsvd wqe=rsvd */ 10503 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 10504 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 10505 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 10506 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10507 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 10508 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 10509 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 10510 LPFC_WQE_LENLOC_WORD3); 10511 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 10512 break; 10513 case CMD_FCP_IWRITE64_CR: 10514 command_type = FCP_COMMAND_DATA_OUT; 10515 /* word3 iocb=iotag wqe=payload_offset_len */ 10516 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 10517 bf_set(payload_offset_len, &wqe->fcp_iwrite, 10518 xmit_len + sizeof(struct fcp_rsp)); 10519 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 10520 0); 10521 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 10522 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 10523 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 10524 iocbq->iocb.ulpFCP2Rcvy); 10525 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 10526 /* Always open the exchange */ 10527 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 10528 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 10529 LPFC_WQE_LENLOC_WORD4); 10530 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 10531 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 10532 if (iocbq->iocb_flag & LPFC_IO_OAS) { 10533 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 10534 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10535 if (iocbq->priority) { 10536 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10537 (iocbq->priority << 1)); 10538 } else { 10539 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10540 (phba->cfg_XLanePriority << 1)); 10541 } 10542 } 10543 /* Note, word 10 is already initialized to 0 */ 10544 10545 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 10546 if (phba->cfg_enable_pbde) 10547 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 10548 else 10549 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 10550 10551 if (phba->fcp_embed_io) { 10552 struct lpfc_io_buf *lpfc_cmd; 10553 struct sli4_sge *sgl; 10554 struct fcp_cmnd *fcp_cmnd; 10555 uint32_t *ptr; 10556 10557 /* 128 byte wqe support here */ 10558 10559 lpfc_cmd = iocbq->context1; 10560 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10561 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10562 10563 /* Word 0-2 - FCP_CMND */ 10564 wqe->generic.bde.tus.f.bdeFlags = 10565 BUFF_TYPE_BDE_IMMED; 10566 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10567 wqe->generic.bde.addrHigh = 0; 10568 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10569 10570 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10571 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10572 10573 /* Word 22-29 FCP CMND Payload */ 10574 ptr = &wqe->words[22]; 10575 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10576 } 10577 break; 10578 case CMD_FCP_IREAD64_CR: 10579 /* word3 iocb=iotag wqe=payload_offset_len */ 10580 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 10581 bf_set(payload_offset_len, &wqe->fcp_iread, 10582 xmit_len + sizeof(struct fcp_rsp)); 10583 bf_set(cmd_buff_len, &wqe->fcp_iread, 10584 0); 10585 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 10586 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 10587 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 10588 iocbq->iocb.ulpFCP2Rcvy); 10589 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 10590 /* Always open the exchange */ 10591 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 10592 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 10593 LPFC_WQE_LENLOC_WORD4); 10594 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 10595 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 10596 if (iocbq->iocb_flag & LPFC_IO_OAS) { 10597 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 10598 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 10599 if (iocbq->priority) { 10600 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 10601 (iocbq->priority << 1)); 10602 } else { 10603 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 10604 (phba->cfg_XLanePriority << 1)); 10605 } 10606 } 10607 /* Note, word 10 is already initialized to 0 */ 10608 10609 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 10610 if (phba->cfg_enable_pbde) 10611 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 10612 else 10613 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 10614 10615 if (phba->fcp_embed_io) { 10616 struct lpfc_io_buf *lpfc_cmd; 10617 struct sli4_sge *sgl; 10618 struct fcp_cmnd *fcp_cmnd; 10619 uint32_t *ptr; 10620 10621 /* 128 byte wqe support here */ 10622 10623 lpfc_cmd = iocbq->context1; 10624 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10625 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10626 10627 /* Word 0-2 - FCP_CMND */ 10628 wqe->generic.bde.tus.f.bdeFlags = 10629 BUFF_TYPE_BDE_IMMED; 10630 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10631 wqe->generic.bde.addrHigh = 0; 10632 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10633 10634 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 10635 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 10636 10637 /* Word 22-29 FCP CMND Payload */ 10638 ptr = &wqe->words[22]; 10639 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10640 } 10641 break; 10642 case CMD_FCP_ICMND64_CR: 10643 /* word3 iocb=iotag wqe=payload_offset_len */ 10644 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 10645 bf_set(payload_offset_len, &wqe->fcp_icmd, 10646 xmit_len + sizeof(struct fcp_rsp)); 10647 bf_set(cmd_buff_len, &wqe->fcp_icmd, 10648 0); 10649 /* word3 iocb=IO_TAG wqe=reserved */ 10650 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 10651 /* Always open the exchange */ 10652 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 10653 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 10654 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 10655 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 10656 LPFC_WQE_LENLOC_NONE); 10657 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 10658 iocbq->iocb.ulpFCP2Rcvy); 10659 if (iocbq->iocb_flag & LPFC_IO_OAS) { 10660 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 10661 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 10662 if (iocbq->priority) { 10663 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 10664 (iocbq->priority << 1)); 10665 } else { 10666 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 10667 (phba->cfg_XLanePriority << 1)); 10668 } 10669 } 10670 /* Note, word 10 is already initialized to 0 */ 10671 10672 if (phba->fcp_embed_io) { 10673 struct lpfc_io_buf *lpfc_cmd; 10674 struct sli4_sge *sgl; 10675 struct fcp_cmnd *fcp_cmnd; 10676 uint32_t *ptr; 10677 10678 /* 128 byte wqe support here */ 10679 10680 lpfc_cmd = iocbq->context1; 10681 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10682 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10683 10684 /* Word 0-2 - FCP_CMND */ 10685 wqe->generic.bde.tus.f.bdeFlags = 10686 BUFF_TYPE_BDE_IMMED; 10687 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10688 wqe->generic.bde.addrHigh = 0; 10689 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10690 10691 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 10692 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 10693 10694 /* Word 22-29 FCP CMND Payload */ 10695 ptr = &wqe->words[22]; 10696 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10697 } 10698 break; 10699 case CMD_GEN_REQUEST64_CR: 10700 /* For this command calculate the xmit length of the 10701 * request bde. 10702 */ 10703 xmit_len = 0; 10704 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 10705 sizeof(struct ulp_bde64); 10706 for (i = 0; i < numBdes; i++) { 10707 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 10708 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 10709 break; 10710 xmit_len += bde.tus.f.bdeSize; 10711 } 10712 /* word3 iocb=IO_TAG wqe=request_payload_len */ 10713 wqe->gen_req.request_payload_len = xmit_len; 10714 /* word4 iocb=parameter wqe=relative_offset memcpy */ 10715 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 10716 /* word6 context tag copied in memcpy */ 10717 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 10718 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 10719 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10720 "2015 Invalid CT %x command 0x%x\n", 10721 ct, iocbq->iocb.ulpCommand); 10722 return IOCB_ERROR; 10723 } 10724 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 10725 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 10726 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 10727 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 10728 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 10729 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 10730 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 10731 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 10732 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 10733 command_type = OTHER_COMMAND; 10734 break; 10735 case CMD_XMIT_ELS_RSP64_CX: 10736 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10737 /* words0-2 BDE memcpy */ 10738 /* word3 iocb=iotag32 wqe=response_payload_len */ 10739 wqe->xmit_els_rsp.response_payload_len = xmit_len; 10740 /* word4 */ 10741 wqe->xmit_els_rsp.word4 = 0; 10742 /* word5 iocb=rsvd wge=did */ 10743 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 10744 iocbq->iocb.un.xseq64.xmit_els_remoteID); 10745 10746 if_type = bf_get(lpfc_sli_intf_if_type, 10747 &phba->sli4_hba.sli_intf); 10748 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10749 if (iocbq->vport->fc_flag & FC_PT2PT) { 10750 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10751 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10752 iocbq->vport->fc_myDID); 10753 if (iocbq->vport->fc_myDID == Fabric_DID) { 10754 bf_set(wqe_els_did, 10755 &wqe->xmit_els_rsp.wqe_dest, 0); 10756 } 10757 } 10758 } 10759 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 10760 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10761 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 10762 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 10763 iocbq->iocb.unsli3.rcvsli3.ox_id); 10764 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 10765 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10766 phba->vpi_ids[iocbq->vport->vpi]); 10767 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 10768 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 10769 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 10770 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 10771 LPFC_WQE_LENLOC_WORD3); 10772 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 10773 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 10774 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10775 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 10776 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10777 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10778 iocbq->vport->fc_myDID); 10779 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 10780 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10781 phba->vpi_ids[phba->pport->vpi]); 10782 } 10783 command_type = OTHER_COMMAND; 10784 break; 10785 case CMD_CLOSE_XRI_CN: 10786 case CMD_ABORT_XRI_CN: 10787 case CMD_ABORT_XRI_CX: 10788 /* words 0-2 memcpy should be 0 rserved */ 10789 /* port will send abts */ 10790 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 10791 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 10792 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 10793 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 10794 } else 10795 fip = 0; 10796 10797 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 10798 /* 10799 * The link is down, or the command was ELS_FIP 10800 * so the fw does not need to send abts 10801 * on the wire. 10802 */ 10803 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 10804 else 10805 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 10806 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 10807 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 10808 wqe->abort_cmd.rsrvd5 = 0; 10809 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 10810 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10811 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 10812 /* 10813 * The abort handler will send us CMD_ABORT_XRI_CN or 10814 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 10815 */ 10816 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10817 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 10818 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 10819 LPFC_WQE_LENLOC_NONE); 10820 cmnd = CMD_ABORT_XRI_CX; 10821 command_type = OTHER_COMMAND; 10822 xritag = 0; 10823 break; 10824 case CMD_XMIT_BLS_RSP64_CX: 10825 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10826 /* As BLS ABTS RSP WQE is very different from other WQEs, 10827 * we re-construct this WQE here based on information in 10828 * iocbq from scratch. 10829 */ 10830 memset(wqe, 0, sizeof(*wqe)); 10831 /* OX_ID is invariable to who sent ABTS to CT exchange */ 10832 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 10833 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 10834 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 10835 LPFC_ABTS_UNSOL_INT) { 10836 /* ABTS sent by initiator to CT exchange, the 10837 * RX_ID field will be filled with the newly 10838 * allocated responder XRI. 10839 */ 10840 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10841 iocbq->sli4_xritag); 10842 } else { 10843 /* ABTS sent by responder to CT exchange, the 10844 * RX_ID field will be filled with the responder 10845 * RX_ID from ABTS. 10846 */ 10847 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10848 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 10849 } 10850 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 10851 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 10852 10853 /* Use CT=VPI */ 10854 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 10855 ndlp->nlp_DID); 10856 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 10857 iocbq->iocb.ulpContext); 10858 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 10859 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 10860 phba->vpi_ids[phba->pport->vpi]); 10861 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 10862 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 10863 LPFC_WQE_LENLOC_NONE); 10864 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 10865 command_type = OTHER_COMMAND; 10866 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 10867 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 10868 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 10869 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 10870 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 10871 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 10872 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 10873 } 10874 10875 break; 10876 case CMD_SEND_FRAME: 10877 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); 10878 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ 10879 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ 10880 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); 10881 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); 10882 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10883 bf_set(wqe_xc, &wqe->generic.wqe_com, 1); 10884 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); 10885 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10886 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10887 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10888 return 0; 10889 case CMD_XRI_ABORTED_CX: 10890 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 10891 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 10892 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 10893 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 10894 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 10895 default: 10896 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10897 "2014 Invalid command 0x%x\n", 10898 iocbq->iocb.ulpCommand); 10899 return IOCB_ERROR; 10900 } 10901 10902 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 10903 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 10904 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 10905 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 10906 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 10907 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 10908 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 10909 LPFC_IO_DIF_INSERT); 10910 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10911 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10912 wqe->generic.wqe_com.abort_tag = abort_tag; 10913 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 10914 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 10915 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 10916 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10917 return 0; 10918 } 10919 10920 /** 10921 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10922 * @phba: Pointer to HBA context object. 10923 * @ring_number: SLI ring number to issue wqe on. 10924 * @piocb: Pointer to command iocb. 10925 * @flag: Flag indicating if this command can be put into txq. 10926 * 10927 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10928 * send an iocb command to an HBA with SLI-4 interface spec. 10929 * 10930 * This function takes the hbalock before invoking the lockless version. 10931 * The function will return success after it successfully submit the wqe to 10932 * firmware or after adding to the txq. 10933 **/ 10934 static int 10935 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10936 struct lpfc_iocbq *piocb, uint32_t flag) 10937 { 10938 unsigned long iflags; 10939 int rc; 10940 10941 spin_lock_irqsave(&phba->hbalock, iflags); 10942 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10943 spin_unlock_irqrestore(&phba->hbalock, iflags); 10944 10945 return rc; 10946 } 10947 10948 /** 10949 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10950 * @phba: Pointer to HBA context object. 10951 * @ring_number: SLI ring number to issue wqe on. 10952 * @piocb: Pointer to command iocb. 10953 * @flag: Flag indicating if this command can be put into txq. 10954 * 10955 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10956 * an wqe command to an HBA with SLI-4 interface spec. 10957 * 10958 * This function is a lockless version. The function will return success 10959 * after it successfully submit the wqe to firmware or after adding to the 10960 * txq. 10961 **/ 10962 static int 10963 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10964 struct lpfc_iocbq *piocb, uint32_t flag) 10965 { 10966 int rc; 10967 struct lpfc_io_buf *lpfc_cmd = 10968 (struct lpfc_io_buf *)piocb->context1; 10969 union lpfc_wqe128 *wqe = &piocb->wqe; 10970 struct sli4_sge *sgl; 10971 10972 /* 128 byte wqe support here */ 10973 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10974 10975 if (phba->fcp_embed_io) { 10976 struct fcp_cmnd *fcp_cmnd; 10977 u32 *ptr; 10978 10979 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10980 10981 /* Word 0-2 - FCP_CMND */ 10982 wqe->generic.bde.tus.f.bdeFlags = 10983 BUFF_TYPE_BDE_IMMED; 10984 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10985 wqe->generic.bde.addrHigh = 0; 10986 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10987 10988 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10989 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10990 10991 /* Word 22-29 FCP CMND Payload */ 10992 ptr = &wqe->words[22]; 10993 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10994 } else { 10995 /* Word 0-2 - Inline BDE */ 10996 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10997 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10998 wqe->generic.bde.addrHigh = sgl->addr_hi; 10999 wqe->generic.bde.addrLow = sgl->addr_lo; 11000 11001 /* Word 10 */ 11002 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 11003 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 11004 } 11005 11006 /* add the VMID tags as per switch response */ 11007 if (unlikely(piocb->iocb_flag & LPFC_IO_VMID)) { 11008 if (phba->pport->vmid_priority_tagging) { 11009 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 11010 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 11011 (piocb->vmid_tag.cs_ctl_vmid)); 11012 } else { 11013 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 11014 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 11015 wqe->words[31] = piocb->vmid_tag.app_id; 11016 } 11017 } 11018 rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 11019 return rc; 11020 } 11021 11022 /** 11023 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 11024 * @phba: Pointer to HBA context object. 11025 * @ring_number: SLI ring number to issue iocb on. 11026 * @piocb: Pointer to command iocb. 11027 * @flag: Flag indicating if this command can be put into txq. 11028 * 11029 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 11030 * an iocb command to an HBA with SLI-4 interface spec. 11031 * 11032 * This function is called with ringlock held. The function will return success 11033 * after it successfully submit the iocb to firmware or after adding to the 11034 * txq. 11035 **/ 11036 static int 11037 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 11038 struct lpfc_iocbq *piocb, uint32_t flag) 11039 { 11040 struct lpfc_sglq *sglq; 11041 union lpfc_wqe128 wqe; 11042 struct lpfc_queue *wq; 11043 struct lpfc_sli_ring *pring; 11044 11045 /* Get the WQ */ 11046 if ((piocb->iocb_flag & LPFC_IO_FCP) || 11047 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 11048 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 11049 } else { 11050 wq = phba->sli4_hba.els_wq; 11051 } 11052 11053 /* Get corresponding ring */ 11054 pring = wq->pring; 11055 11056 /* 11057 * The WQE can be either 64 or 128 bytes, 11058 */ 11059 11060 lockdep_assert_held(&pring->ring_lock); 11061 11062 if (piocb->sli4_xritag == NO_XRI) { 11063 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 11064 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 11065 sglq = NULL; 11066 else { 11067 if (!list_empty(&pring->txq)) { 11068 if (!(flag & SLI_IOCB_RET_IOCB)) { 11069 __lpfc_sli_ringtx_put(phba, 11070 pring, piocb); 11071 return IOCB_SUCCESS; 11072 } else { 11073 return IOCB_BUSY; 11074 } 11075 } else { 11076 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 11077 if (!sglq) { 11078 if (!(flag & SLI_IOCB_RET_IOCB)) { 11079 __lpfc_sli_ringtx_put(phba, 11080 pring, 11081 piocb); 11082 return IOCB_SUCCESS; 11083 } else 11084 return IOCB_BUSY; 11085 } 11086 } 11087 } 11088 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 11089 /* These IO's already have an XRI and a mapped sgl. */ 11090 sglq = NULL; 11091 } 11092 else { 11093 /* 11094 * This is a continuation of a commandi,(CX) so this 11095 * sglq is on the active list 11096 */ 11097 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 11098 if (!sglq) 11099 return IOCB_ERROR; 11100 } 11101 11102 if (sglq) { 11103 piocb->sli4_lxritag = sglq->sli4_lxritag; 11104 piocb->sli4_xritag = sglq->sli4_xritag; 11105 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 11106 return IOCB_ERROR; 11107 } 11108 11109 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 11110 return IOCB_ERROR; 11111 11112 if (lpfc_sli4_wq_put(wq, &wqe)) 11113 return IOCB_ERROR; 11114 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 11115 11116 return 0; 11117 } 11118 11119 /* 11120 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 11121 * 11122 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 11123 * or IOCB for sli-3 function. 11124 * pointer from the lpfc_hba struct. 11125 * 11126 * Return codes: 11127 * IOCB_ERROR - Error 11128 * IOCB_SUCCESS - Success 11129 * IOCB_BUSY - Busy 11130 **/ 11131 int 11132 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 11133 struct lpfc_iocbq *piocb, uint32_t flag) 11134 { 11135 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 11136 } 11137 11138 /* 11139 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 11140 * 11141 * This routine wraps the actual lockless version for issusing IOCB function 11142 * pointer from the lpfc_hba struct. 11143 * 11144 * Return codes: 11145 * IOCB_ERROR - Error 11146 * IOCB_SUCCESS - Success 11147 * IOCB_BUSY - Busy 11148 **/ 11149 int 11150 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11151 struct lpfc_iocbq *piocb, uint32_t flag) 11152 { 11153 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11154 } 11155 11156 /** 11157 * lpfc_sli_api_table_setup - Set up sli api function jump table 11158 * @phba: The hba struct for which this call is being executed. 11159 * @dev_grp: The HBA PCI-Device group number. 11160 * 11161 * This routine sets up the SLI interface API function jump table in @phba 11162 * struct. 11163 * Returns: 0 - success, -ENODEV - failure. 11164 **/ 11165 int 11166 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11167 { 11168 11169 switch (dev_grp) { 11170 case LPFC_PCI_DEV_LP: 11171 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11172 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11173 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11174 break; 11175 case LPFC_PCI_DEV_OC: 11176 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11177 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11178 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11179 break; 11180 default: 11181 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11182 "1419 Invalid HBA PCI-device group: 0x%x\n", 11183 dev_grp); 11184 return -ENODEV; 11185 } 11186 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 11187 return 0; 11188 } 11189 11190 /** 11191 * lpfc_sli4_calc_ring - Calculates which ring to use 11192 * @phba: Pointer to HBA context object. 11193 * @piocb: Pointer to command iocb. 11194 * 11195 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11196 * hba_wqidx, thus we need to calculate the corresponding ring. 11197 * Since ABORTS must go on the same WQ of the command they are 11198 * aborting, we use command's hba_wqidx. 11199 */ 11200 struct lpfc_sli_ring * 11201 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11202 { 11203 struct lpfc_io_buf *lpfc_cmd; 11204 11205 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11206 if (unlikely(!phba->sli4_hba.hdwq)) 11207 return NULL; 11208 /* 11209 * for abort iocb hba_wqidx should already 11210 * be setup based on what work queue we used. 11211 */ 11212 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 11213 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 11214 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11215 } 11216 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11217 } else { 11218 if (unlikely(!phba->sli4_hba.els_wq)) 11219 return NULL; 11220 piocb->hba_wqidx = 0; 11221 return phba->sli4_hba.els_wq->pring; 11222 } 11223 } 11224 11225 /** 11226 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11227 * @phba: Pointer to HBA context object. 11228 * @ring_number: Ring number 11229 * @piocb: Pointer to command iocb. 11230 * @flag: Flag indicating if this command can be put into txq. 11231 * 11232 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11233 * function. This function gets the hbalock and calls 11234 * __lpfc_sli_issue_iocb function and will return the error returned 11235 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11236 * functions which do not hold hbalock. 11237 **/ 11238 int 11239 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11240 struct lpfc_iocbq *piocb, uint32_t flag) 11241 { 11242 struct lpfc_sli_ring *pring; 11243 struct lpfc_queue *eq; 11244 unsigned long iflags; 11245 int rc; 11246 11247 if (phba->sli_rev == LPFC_SLI_REV4) { 11248 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11249 11250 pring = lpfc_sli4_calc_ring(phba, piocb); 11251 if (unlikely(pring == NULL)) 11252 return IOCB_ERROR; 11253 11254 spin_lock_irqsave(&pring->ring_lock, iflags); 11255 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11256 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11257 11258 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 11259 } else { 11260 /* For now, SLI2/3 will still use hbalock */ 11261 spin_lock_irqsave(&phba->hbalock, iflags); 11262 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11263 spin_unlock_irqrestore(&phba->hbalock, iflags); 11264 } 11265 return rc; 11266 } 11267 11268 /** 11269 * lpfc_extra_ring_setup - Extra ring setup function 11270 * @phba: Pointer to HBA context object. 11271 * 11272 * This function is called while driver attaches with the 11273 * HBA to setup the extra ring. The extra ring is used 11274 * only when driver needs to support target mode functionality 11275 * or IP over FC functionalities. 11276 * 11277 * This function is called with no lock held. SLI3 only. 11278 **/ 11279 static int 11280 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11281 { 11282 struct lpfc_sli *psli; 11283 struct lpfc_sli_ring *pring; 11284 11285 psli = &phba->sli; 11286 11287 /* Adjust cmd/rsp ring iocb entries more evenly */ 11288 11289 /* Take some away from the FCP ring */ 11290 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11291 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11292 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11293 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11294 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11295 11296 /* and give them to the extra ring */ 11297 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11298 11299 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11300 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11301 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11302 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11303 11304 /* Setup default profile for this ring */ 11305 pring->iotag_max = 4096; 11306 pring->num_mask = 1; 11307 pring->prt[0].profile = 0; /* Mask 0 */ 11308 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11309 pring->prt[0].type = phba->cfg_multi_ring_type; 11310 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11311 return 0; 11312 } 11313 11314 static void 11315 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11316 struct lpfc_nodelist *ndlp) 11317 { 11318 unsigned long iflags; 11319 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11320 11321 spin_lock_irqsave(&phba->hbalock, iflags); 11322 if (!list_empty(&evtp->evt_listp)) { 11323 spin_unlock_irqrestore(&phba->hbalock, iflags); 11324 return; 11325 } 11326 11327 /* Incrementing the reference count until the queued work is done. */ 11328 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 11329 if (!evtp->evt_arg1) { 11330 spin_unlock_irqrestore(&phba->hbalock, iflags); 11331 return; 11332 } 11333 evtp->evt = LPFC_EVT_RECOVER_PORT; 11334 list_add_tail(&evtp->evt_listp, &phba->work_list); 11335 spin_unlock_irqrestore(&phba->hbalock, iflags); 11336 11337 lpfc_worker_wake_up(phba); 11338 } 11339 11340 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11341 * @phba: Pointer to HBA context object. 11342 * @iocbq: Pointer to iocb object. 11343 * 11344 * The async_event handler calls this routine when it receives 11345 * an ASYNC_STATUS_CN event from the port. The port generates 11346 * this event when an Abort Sequence request to an rport fails 11347 * twice in succession. The abort could be originated by the 11348 * driver or by the port. The ABTS could have been for an ELS 11349 * or FCP IO. The port only generates this event when an ABTS 11350 * fails to complete after one retry. 11351 */ 11352 static void 11353 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11354 struct lpfc_iocbq *iocbq) 11355 { 11356 struct lpfc_nodelist *ndlp = NULL; 11357 uint16_t rpi = 0, vpi = 0; 11358 struct lpfc_vport *vport = NULL; 11359 11360 /* The rpi in the ulpContext is vport-sensitive. */ 11361 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11362 rpi = iocbq->iocb.ulpContext; 11363 11364 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11365 "3092 Port generated ABTS async event " 11366 "on vpi %d rpi %d status 0x%x\n", 11367 vpi, rpi, iocbq->iocb.ulpStatus); 11368 11369 vport = lpfc_find_vport_by_vpid(phba, vpi); 11370 if (!vport) 11371 goto err_exit; 11372 ndlp = lpfc_findnode_rpi(vport, rpi); 11373 if (!ndlp) 11374 goto err_exit; 11375 11376 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11377 lpfc_sli_abts_recover_port(vport, ndlp); 11378 return; 11379 11380 err_exit: 11381 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11382 "3095 Event Context not found, no " 11383 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11384 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 11385 vpi, rpi); 11386 } 11387 11388 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11389 * @phba: pointer to HBA context object. 11390 * @ndlp: nodelist pointer for the impacted rport. 11391 * @axri: pointer to the wcqe containing the failed exchange. 11392 * 11393 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11394 * port. The port generates this event when an abort exchange request to an 11395 * rport fails twice in succession with no reply. The abort could be originated 11396 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11397 */ 11398 void 11399 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11400 struct lpfc_nodelist *ndlp, 11401 struct sli4_wcqe_xri_aborted *axri) 11402 { 11403 uint32_t ext_status = 0; 11404 11405 if (!ndlp) { 11406 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11407 "3115 Node Context not found, driver " 11408 "ignoring abts err event\n"); 11409 return; 11410 } 11411 11412 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11413 "3116 Port generated FCP XRI ABORT event on " 11414 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11415 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11416 bf_get(lpfc_wcqe_xa_xri, axri), 11417 bf_get(lpfc_wcqe_xa_status, axri), 11418 axri->parameter); 11419 11420 /* 11421 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11422 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11423 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11424 */ 11425 ext_status = axri->parameter & IOERR_PARAM_MASK; 11426 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11427 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11428 lpfc_sli_post_recovery_event(phba, ndlp); 11429 } 11430 11431 /** 11432 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11433 * @phba: Pointer to HBA context object. 11434 * @pring: Pointer to driver SLI ring object. 11435 * @iocbq: Pointer to iocb object. 11436 * 11437 * This function is called by the slow ring event handler 11438 * function when there is an ASYNC event iocb in the ring. 11439 * This function is called with no lock held. 11440 * Currently this function handles only temperature related 11441 * ASYNC events. The function decodes the temperature sensor 11442 * event message and posts events for the management applications. 11443 **/ 11444 static void 11445 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11446 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11447 { 11448 IOCB_t *icmd; 11449 uint16_t evt_code; 11450 struct temp_event temp_event_data; 11451 struct Scsi_Host *shost; 11452 uint32_t *iocb_w; 11453 11454 icmd = &iocbq->iocb; 11455 evt_code = icmd->un.asyncstat.evt_code; 11456 11457 switch (evt_code) { 11458 case ASYNC_TEMP_WARN: 11459 case ASYNC_TEMP_SAFE: 11460 temp_event_data.data = (uint32_t) icmd->ulpContext; 11461 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11462 if (evt_code == ASYNC_TEMP_WARN) { 11463 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11464 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11465 "0347 Adapter is very hot, please take " 11466 "corrective action. temperature : %d Celsius\n", 11467 (uint32_t) icmd->ulpContext); 11468 } else { 11469 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11470 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11471 "0340 Adapter temperature is OK now. " 11472 "temperature : %d Celsius\n", 11473 (uint32_t) icmd->ulpContext); 11474 } 11475 11476 /* Send temperature change event to applications */ 11477 shost = lpfc_shost_from_vport(phba->pport); 11478 fc_host_post_vendor_event(shost, fc_get_event_number(), 11479 sizeof(temp_event_data), (char *) &temp_event_data, 11480 LPFC_NL_VENDOR_ID); 11481 break; 11482 case ASYNC_STATUS_CN: 11483 lpfc_sli_abts_err_handler(phba, iocbq); 11484 break; 11485 default: 11486 iocb_w = (uint32_t *) icmd; 11487 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11488 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11489 " evt_code 0x%x\n" 11490 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11491 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11492 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11493 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11494 pring->ringno, icmd->un.asyncstat.evt_code, 11495 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11496 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11497 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11498 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11499 11500 break; 11501 } 11502 } 11503 11504 11505 /** 11506 * lpfc_sli4_setup - SLI ring setup function 11507 * @phba: Pointer to HBA context object. 11508 * 11509 * lpfc_sli_setup sets up rings of the SLI interface with 11510 * number of iocbs per ring and iotags. This function is 11511 * called while driver attach to the HBA and before the 11512 * interrupts are enabled. So there is no need for locking. 11513 * 11514 * This function always returns 0. 11515 **/ 11516 int 11517 lpfc_sli4_setup(struct lpfc_hba *phba) 11518 { 11519 struct lpfc_sli_ring *pring; 11520 11521 pring = phba->sli4_hba.els_wq->pring; 11522 pring->num_mask = LPFC_MAX_RING_MASK; 11523 pring->prt[0].profile = 0; /* Mask 0 */ 11524 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11525 pring->prt[0].type = FC_TYPE_ELS; 11526 pring->prt[0].lpfc_sli_rcv_unsol_event = 11527 lpfc_els_unsol_event; 11528 pring->prt[1].profile = 0; /* Mask 1 */ 11529 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11530 pring->prt[1].type = FC_TYPE_ELS; 11531 pring->prt[1].lpfc_sli_rcv_unsol_event = 11532 lpfc_els_unsol_event; 11533 pring->prt[2].profile = 0; /* Mask 2 */ 11534 /* NameServer Inquiry */ 11535 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11536 /* NameServer */ 11537 pring->prt[2].type = FC_TYPE_CT; 11538 pring->prt[2].lpfc_sli_rcv_unsol_event = 11539 lpfc_ct_unsol_event; 11540 pring->prt[3].profile = 0; /* Mask 3 */ 11541 /* NameServer response */ 11542 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11543 /* NameServer */ 11544 pring->prt[3].type = FC_TYPE_CT; 11545 pring->prt[3].lpfc_sli_rcv_unsol_event = 11546 lpfc_ct_unsol_event; 11547 return 0; 11548 } 11549 11550 /** 11551 * lpfc_sli_setup - SLI ring setup function 11552 * @phba: Pointer to HBA context object. 11553 * 11554 * lpfc_sli_setup sets up rings of the SLI interface with 11555 * number of iocbs per ring and iotags. This function is 11556 * called while driver attach to the HBA and before the 11557 * interrupts are enabled. So there is no need for locking. 11558 * 11559 * This function always returns 0. SLI3 only. 11560 **/ 11561 int 11562 lpfc_sli_setup(struct lpfc_hba *phba) 11563 { 11564 int i, totiocbsize = 0; 11565 struct lpfc_sli *psli = &phba->sli; 11566 struct lpfc_sli_ring *pring; 11567 11568 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11569 psli->sli_flag = 0; 11570 11571 psli->iocbq_lookup = NULL; 11572 psli->iocbq_lookup_len = 0; 11573 psli->last_iotag = 0; 11574 11575 for (i = 0; i < psli->num_rings; i++) { 11576 pring = &psli->sli3_ring[i]; 11577 switch (i) { 11578 case LPFC_FCP_RING: /* ring 0 - FCP */ 11579 /* numCiocb and numRiocb are used in config_port */ 11580 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11581 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11582 pring->sli.sli3.numCiocb += 11583 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11584 pring->sli.sli3.numRiocb += 11585 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11586 pring->sli.sli3.numCiocb += 11587 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11588 pring->sli.sli3.numRiocb += 11589 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11590 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11591 SLI3_IOCB_CMD_SIZE : 11592 SLI2_IOCB_CMD_SIZE; 11593 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11594 SLI3_IOCB_RSP_SIZE : 11595 SLI2_IOCB_RSP_SIZE; 11596 pring->iotag_ctr = 0; 11597 pring->iotag_max = 11598 (phba->cfg_hba_queue_depth * 2); 11599 pring->fast_iotag = pring->iotag_max; 11600 pring->num_mask = 0; 11601 break; 11602 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11603 /* numCiocb and numRiocb are used in config_port */ 11604 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11605 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11606 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11607 SLI3_IOCB_CMD_SIZE : 11608 SLI2_IOCB_CMD_SIZE; 11609 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11610 SLI3_IOCB_RSP_SIZE : 11611 SLI2_IOCB_RSP_SIZE; 11612 pring->iotag_max = phba->cfg_hba_queue_depth; 11613 pring->num_mask = 0; 11614 break; 11615 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11616 /* numCiocb and numRiocb are used in config_port */ 11617 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11618 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11619 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11620 SLI3_IOCB_CMD_SIZE : 11621 SLI2_IOCB_CMD_SIZE; 11622 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11623 SLI3_IOCB_RSP_SIZE : 11624 SLI2_IOCB_RSP_SIZE; 11625 pring->fast_iotag = 0; 11626 pring->iotag_ctr = 0; 11627 pring->iotag_max = 4096; 11628 pring->lpfc_sli_rcv_async_status = 11629 lpfc_sli_async_event_handler; 11630 pring->num_mask = LPFC_MAX_RING_MASK; 11631 pring->prt[0].profile = 0; /* Mask 0 */ 11632 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11633 pring->prt[0].type = FC_TYPE_ELS; 11634 pring->prt[0].lpfc_sli_rcv_unsol_event = 11635 lpfc_els_unsol_event; 11636 pring->prt[1].profile = 0; /* Mask 1 */ 11637 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11638 pring->prt[1].type = FC_TYPE_ELS; 11639 pring->prt[1].lpfc_sli_rcv_unsol_event = 11640 lpfc_els_unsol_event; 11641 pring->prt[2].profile = 0; /* Mask 2 */ 11642 /* NameServer Inquiry */ 11643 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11644 /* NameServer */ 11645 pring->prt[2].type = FC_TYPE_CT; 11646 pring->prt[2].lpfc_sli_rcv_unsol_event = 11647 lpfc_ct_unsol_event; 11648 pring->prt[3].profile = 0; /* Mask 3 */ 11649 /* NameServer response */ 11650 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11651 /* NameServer */ 11652 pring->prt[3].type = FC_TYPE_CT; 11653 pring->prt[3].lpfc_sli_rcv_unsol_event = 11654 lpfc_ct_unsol_event; 11655 break; 11656 } 11657 totiocbsize += (pring->sli.sli3.numCiocb * 11658 pring->sli.sli3.sizeCiocb) + 11659 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11660 } 11661 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11662 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11663 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11664 "SLI2 SLIM Data: x%x x%lx\n", 11665 phba->brd_no, totiocbsize, 11666 (unsigned long) MAX_SLIM_IOCB_SIZE); 11667 } 11668 if (phba->cfg_multi_ring_support == 2) 11669 lpfc_extra_ring_setup(phba); 11670 11671 return 0; 11672 } 11673 11674 /** 11675 * lpfc_sli4_queue_init - Queue initialization function 11676 * @phba: Pointer to HBA context object. 11677 * 11678 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11679 * ring. This function also initializes ring indices of each ring. 11680 * This function is called during the initialization of the SLI 11681 * interface of an HBA. 11682 * This function is called with no lock held and always returns 11683 * 1. 11684 **/ 11685 void 11686 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11687 { 11688 struct lpfc_sli *psli; 11689 struct lpfc_sli_ring *pring; 11690 int i; 11691 11692 psli = &phba->sli; 11693 spin_lock_irq(&phba->hbalock); 11694 INIT_LIST_HEAD(&psli->mboxq); 11695 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11696 /* Initialize list headers for txq and txcmplq as double linked lists */ 11697 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11698 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11699 pring->flag = 0; 11700 pring->ringno = LPFC_FCP_RING; 11701 pring->txcmplq_cnt = 0; 11702 INIT_LIST_HEAD(&pring->txq); 11703 INIT_LIST_HEAD(&pring->txcmplq); 11704 INIT_LIST_HEAD(&pring->iocb_continueq); 11705 spin_lock_init(&pring->ring_lock); 11706 } 11707 pring = phba->sli4_hba.els_wq->pring; 11708 pring->flag = 0; 11709 pring->ringno = LPFC_ELS_RING; 11710 pring->txcmplq_cnt = 0; 11711 INIT_LIST_HEAD(&pring->txq); 11712 INIT_LIST_HEAD(&pring->txcmplq); 11713 INIT_LIST_HEAD(&pring->iocb_continueq); 11714 spin_lock_init(&pring->ring_lock); 11715 11716 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11717 pring = phba->sli4_hba.nvmels_wq->pring; 11718 pring->flag = 0; 11719 pring->ringno = LPFC_ELS_RING; 11720 pring->txcmplq_cnt = 0; 11721 INIT_LIST_HEAD(&pring->txq); 11722 INIT_LIST_HEAD(&pring->txcmplq); 11723 INIT_LIST_HEAD(&pring->iocb_continueq); 11724 spin_lock_init(&pring->ring_lock); 11725 } 11726 11727 spin_unlock_irq(&phba->hbalock); 11728 } 11729 11730 /** 11731 * lpfc_sli_queue_init - Queue initialization function 11732 * @phba: Pointer to HBA context object. 11733 * 11734 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11735 * ring. This function also initializes ring indices of each ring. 11736 * This function is called during the initialization of the SLI 11737 * interface of an HBA. 11738 * This function is called with no lock held and always returns 11739 * 1. 11740 **/ 11741 void 11742 lpfc_sli_queue_init(struct lpfc_hba *phba) 11743 { 11744 struct lpfc_sli *psli; 11745 struct lpfc_sli_ring *pring; 11746 int i; 11747 11748 psli = &phba->sli; 11749 spin_lock_irq(&phba->hbalock); 11750 INIT_LIST_HEAD(&psli->mboxq); 11751 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11752 /* Initialize list headers for txq and txcmplq as double linked lists */ 11753 for (i = 0; i < psli->num_rings; i++) { 11754 pring = &psli->sli3_ring[i]; 11755 pring->ringno = i; 11756 pring->sli.sli3.next_cmdidx = 0; 11757 pring->sli.sli3.local_getidx = 0; 11758 pring->sli.sli3.cmdidx = 0; 11759 INIT_LIST_HEAD(&pring->iocb_continueq); 11760 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11761 INIT_LIST_HEAD(&pring->postbufq); 11762 pring->flag = 0; 11763 INIT_LIST_HEAD(&pring->txq); 11764 INIT_LIST_HEAD(&pring->txcmplq); 11765 spin_lock_init(&pring->ring_lock); 11766 } 11767 spin_unlock_irq(&phba->hbalock); 11768 } 11769 11770 /** 11771 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11772 * @phba: Pointer to HBA context object. 11773 * 11774 * This routine flushes the mailbox command subsystem. It will unconditionally 11775 * flush all the mailbox commands in the three possible stages in the mailbox 11776 * command sub-system: pending mailbox command queue; the outstanding mailbox 11777 * command; and completed mailbox command queue. It is caller's responsibility 11778 * to make sure that the driver is in the proper state to flush the mailbox 11779 * command sub-system. Namely, the posting of mailbox commands into the 11780 * pending mailbox command queue from the various clients must be stopped; 11781 * either the HBA is in a state that it will never works on the outstanding 11782 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11783 * mailbox command has been completed. 11784 **/ 11785 static void 11786 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11787 { 11788 LIST_HEAD(completions); 11789 struct lpfc_sli *psli = &phba->sli; 11790 LPFC_MBOXQ_t *pmb; 11791 unsigned long iflag; 11792 11793 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11794 local_bh_disable(); 11795 11796 /* Flush all the mailbox commands in the mbox system */ 11797 spin_lock_irqsave(&phba->hbalock, iflag); 11798 11799 /* The pending mailbox command queue */ 11800 list_splice_init(&phba->sli.mboxq, &completions); 11801 /* The outstanding active mailbox command */ 11802 if (psli->mbox_active) { 11803 list_add_tail(&psli->mbox_active->list, &completions); 11804 psli->mbox_active = NULL; 11805 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11806 } 11807 /* The completed mailbox command queue */ 11808 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11809 spin_unlock_irqrestore(&phba->hbalock, iflag); 11810 11811 /* Enable softirqs again, done with phba->hbalock */ 11812 local_bh_enable(); 11813 11814 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11815 while (!list_empty(&completions)) { 11816 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11817 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11818 if (pmb->mbox_cmpl) 11819 pmb->mbox_cmpl(phba, pmb); 11820 } 11821 } 11822 11823 /** 11824 * lpfc_sli_host_down - Vport cleanup function 11825 * @vport: Pointer to virtual port object. 11826 * 11827 * lpfc_sli_host_down is called to clean up the resources 11828 * associated with a vport before destroying virtual 11829 * port data structures. 11830 * This function does following operations: 11831 * - Free discovery resources associated with this virtual 11832 * port. 11833 * - Free iocbs associated with this virtual port in 11834 * the txq. 11835 * - Send abort for all iocb commands associated with this 11836 * vport in txcmplq. 11837 * 11838 * This function is called with no lock held and always returns 1. 11839 **/ 11840 int 11841 lpfc_sli_host_down(struct lpfc_vport *vport) 11842 { 11843 LIST_HEAD(completions); 11844 struct lpfc_hba *phba = vport->phba; 11845 struct lpfc_sli *psli = &phba->sli; 11846 struct lpfc_queue *qp = NULL; 11847 struct lpfc_sli_ring *pring; 11848 struct lpfc_iocbq *iocb, *next_iocb; 11849 int i; 11850 unsigned long flags = 0; 11851 uint16_t prev_pring_flag; 11852 11853 lpfc_cleanup_discovery_resources(vport); 11854 11855 spin_lock_irqsave(&phba->hbalock, flags); 11856 11857 /* 11858 * Error everything on the txq since these iocbs 11859 * have not been given to the FW yet. 11860 * Also issue ABTS for everything on the txcmplq 11861 */ 11862 if (phba->sli_rev != LPFC_SLI_REV4) { 11863 for (i = 0; i < psli->num_rings; i++) { 11864 pring = &psli->sli3_ring[i]; 11865 prev_pring_flag = pring->flag; 11866 /* Only slow rings */ 11867 if (pring->ringno == LPFC_ELS_RING) { 11868 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11869 /* Set the lpfc data pending flag */ 11870 set_bit(LPFC_DATA_READY, &phba->data_flags); 11871 } 11872 list_for_each_entry_safe(iocb, next_iocb, 11873 &pring->txq, list) { 11874 if (iocb->vport != vport) 11875 continue; 11876 list_move_tail(&iocb->list, &completions); 11877 } 11878 list_for_each_entry_safe(iocb, next_iocb, 11879 &pring->txcmplq, list) { 11880 if (iocb->vport != vport) 11881 continue; 11882 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11883 NULL); 11884 } 11885 pring->flag = prev_pring_flag; 11886 } 11887 } else { 11888 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11889 pring = qp->pring; 11890 if (!pring) 11891 continue; 11892 if (pring == phba->sli4_hba.els_wq->pring) { 11893 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11894 /* Set the lpfc data pending flag */ 11895 set_bit(LPFC_DATA_READY, &phba->data_flags); 11896 } 11897 prev_pring_flag = pring->flag; 11898 spin_lock(&pring->ring_lock); 11899 list_for_each_entry_safe(iocb, next_iocb, 11900 &pring->txq, list) { 11901 if (iocb->vport != vport) 11902 continue; 11903 list_move_tail(&iocb->list, &completions); 11904 } 11905 spin_unlock(&pring->ring_lock); 11906 list_for_each_entry_safe(iocb, next_iocb, 11907 &pring->txcmplq, list) { 11908 if (iocb->vport != vport) 11909 continue; 11910 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11911 NULL); 11912 } 11913 pring->flag = prev_pring_flag; 11914 } 11915 } 11916 spin_unlock_irqrestore(&phba->hbalock, flags); 11917 11918 /* Make sure HBA is alive */ 11919 lpfc_issue_hb_tmo(phba); 11920 11921 /* Cancel all the IOCBs from the completions list */ 11922 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11923 IOERR_SLI_DOWN); 11924 return 1; 11925 } 11926 11927 /** 11928 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11929 * @phba: Pointer to HBA context object. 11930 * 11931 * This function cleans up all iocb, buffers, mailbox commands 11932 * while shutting down the HBA. This function is called with no 11933 * lock held and always returns 1. 11934 * This function does the following to cleanup driver resources: 11935 * - Free discovery resources for each virtual port 11936 * - Cleanup any pending fabric iocbs 11937 * - Iterate through the iocb txq and free each entry 11938 * in the list. 11939 * - Free up any buffer posted to the HBA 11940 * - Free mailbox commands in the mailbox queue. 11941 **/ 11942 int 11943 lpfc_sli_hba_down(struct lpfc_hba *phba) 11944 { 11945 LIST_HEAD(completions); 11946 struct lpfc_sli *psli = &phba->sli; 11947 struct lpfc_queue *qp = NULL; 11948 struct lpfc_sli_ring *pring; 11949 struct lpfc_dmabuf *buf_ptr; 11950 unsigned long flags = 0; 11951 int i; 11952 11953 /* Shutdown the mailbox command sub-system */ 11954 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11955 11956 lpfc_hba_down_prep(phba); 11957 11958 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11959 local_bh_disable(); 11960 11961 lpfc_fabric_abort_hba(phba); 11962 11963 spin_lock_irqsave(&phba->hbalock, flags); 11964 11965 /* 11966 * Error everything on the txq since these iocbs 11967 * have not been given to the FW yet. 11968 */ 11969 if (phba->sli_rev != LPFC_SLI_REV4) { 11970 for (i = 0; i < psli->num_rings; i++) { 11971 pring = &psli->sli3_ring[i]; 11972 /* Only slow rings */ 11973 if (pring->ringno == LPFC_ELS_RING) { 11974 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11975 /* Set the lpfc data pending flag */ 11976 set_bit(LPFC_DATA_READY, &phba->data_flags); 11977 } 11978 list_splice_init(&pring->txq, &completions); 11979 } 11980 } else { 11981 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11982 pring = qp->pring; 11983 if (!pring) 11984 continue; 11985 spin_lock(&pring->ring_lock); 11986 list_splice_init(&pring->txq, &completions); 11987 spin_unlock(&pring->ring_lock); 11988 if (pring == phba->sli4_hba.els_wq->pring) { 11989 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11990 /* Set the lpfc data pending flag */ 11991 set_bit(LPFC_DATA_READY, &phba->data_flags); 11992 } 11993 } 11994 } 11995 spin_unlock_irqrestore(&phba->hbalock, flags); 11996 11997 /* Cancel all the IOCBs from the completions list */ 11998 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11999 IOERR_SLI_DOWN); 12000 12001 spin_lock_irqsave(&phba->hbalock, flags); 12002 list_splice_init(&phba->elsbuf, &completions); 12003 phba->elsbuf_cnt = 0; 12004 phba->elsbuf_prev_cnt = 0; 12005 spin_unlock_irqrestore(&phba->hbalock, flags); 12006 12007 while (!list_empty(&completions)) { 12008 list_remove_head(&completions, buf_ptr, 12009 struct lpfc_dmabuf, list); 12010 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12011 kfree(buf_ptr); 12012 } 12013 12014 /* Enable softirqs again, done with phba->hbalock */ 12015 local_bh_enable(); 12016 12017 /* Return any active mbox cmds */ 12018 del_timer_sync(&psli->mbox_tmo); 12019 12020 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12021 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12022 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12023 12024 return 1; 12025 } 12026 12027 /** 12028 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12029 * @srcp: Source memory pointer. 12030 * @destp: Destination memory pointer. 12031 * @cnt: Number of words required to be copied. 12032 * 12033 * This function is used for copying data between driver memory 12034 * and the SLI memory. This function also changes the endianness 12035 * of each word if native endianness is different from SLI 12036 * endianness. This function can be called with or without 12037 * lock. 12038 **/ 12039 void 12040 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12041 { 12042 uint32_t *src = srcp; 12043 uint32_t *dest = destp; 12044 uint32_t ldata; 12045 int i; 12046 12047 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12048 ldata = *src; 12049 ldata = le32_to_cpu(ldata); 12050 *dest = ldata; 12051 src++; 12052 dest++; 12053 } 12054 } 12055 12056 12057 /** 12058 * lpfc_sli_bemem_bcopy - SLI memory copy function 12059 * @srcp: Source memory pointer. 12060 * @destp: Destination memory pointer. 12061 * @cnt: Number of words required to be copied. 12062 * 12063 * This function is used for copying data between a data structure 12064 * with big endian representation to local endianness. 12065 * This function can be called with or without lock. 12066 **/ 12067 void 12068 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12069 { 12070 uint32_t *src = srcp; 12071 uint32_t *dest = destp; 12072 uint32_t ldata; 12073 int i; 12074 12075 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12076 ldata = *src; 12077 ldata = be32_to_cpu(ldata); 12078 *dest = ldata; 12079 src++; 12080 dest++; 12081 } 12082 } 12083 12084 /** 12085 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12086 * @phba: Pointer to HBA context object. 12087 * @pring: Pointer to driver SLI ring object. 12088 * @mp: Pointer to driver buffer object. 12089 * 12090 * This function is called with no lock held. 12091 * It always return zero after adding the buffer to the postbufq 12092 * buffer list. 12093 **/ 12094 int 12095 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12096 struct lpfc_dmabuf *mp) 12097 { 12098 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12099 later */ 12100 spin_lock_irq(&phba->hbalock); 12101 list_add_tail(&mp->list, &pring->postbufq); 12102 pring->postbufq_cnt++; 12103 spin_unlock_irq(&phba->hbalock); 12104 return 0; 12105 } 12106 12107 /** 12108 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12109 * @phba: Pointer to HBA context object. 12110 * 12111 * When HBQ is enabled, buffers are searched based on tags. This function 12112 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12113 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12114 * does not conflict with tags of buffer posted for unsolicited events. 12115 * The function returns the allocated tag. The function is called with 12116 * no locks held. 12117 **/ 12118 uint32_t 12119 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12120 { 12121 spin_lock_irq(&phba->hbalock); 12122 phba->buffer_tag_count++; 12123 /* 12124 * Always set the QUE_BUFTAG_BIT to distiguish between 12125 * a tag assigned by HBQ. 12126 */ 12127 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12128 spin_unlock_irq(&phba->hbalock); 12129 return phba->buffer_tag_count; 12130 } 12131 12132 /** 12133 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12134 * @phba: Pointer to HBA context object. 12135 * @pring: Pointer to driver SLI ring object. 12136 * @tag: Buffer tag. 12137 * 12138 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12139 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12140 * iocb is posted to the response ring with the tag of the buffer. 12141 * This function searches the pring->postbufq list using the tag 12142 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12143 * iocb. If the buffer is found then lpfc_dmabuf object of the 12144 * buffer is returned to the caller else NULL is returned. 12145 * This function is called with no lock held. 12146 **/ 12147 struct lpfc_dmabuf * 12148 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12149 uint32_t tag) 12150 { 12151 struct lpfc_dmabuf *mp, *next_mp; 12152 struct list_head *slp = &pring->postbufq; 12153 12154 /* Search postbufq, from the beginning, looking for a match on tag */ 12155 spin_lock_irq(&phba->hbalock); 12156 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12157 if (mp->buffer_tag == tag) { 12158 list_del_init(&mp->list); 12159 pring->postbufq_cnt--; 12160 spin_unlock_irq(&phba->hbalock); 12161 return mp; 12162 } 12163 } 12164 12165 spin_unlock_irq(&phba->hbalock); 12166 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12167 "0402 Cannot find virtual addr for buffer tag on " 12168 "ring %d Data x%lx x%px x%px x%x\n", 12169 pring->ringno, (unsigned long) tag, 12170 slp->next, slp->prev, pring->postbufq_cnt); 12171 12172 return NULL; 12173 } 12174 12175 /** 12176 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12177 * @phba: Pointer to HBA context object. 12178 * @pring: Pointer to driver SLI ring object. 12179 * @phys: DMA address of the buffer. 12180 * 12181 * This function searches the buffer list using the dma_address 12182 * of unsolicited event to find the driver's lpfc_dmabuf object 12183 * corresponding to the dma_address. The function returns the 12184 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12185 * This function is called by the ct and els unsolicited event 12186 * handlers to get the buffer associated with the unsolicited 12187 * event. 12188 * 12189 * This function is called with no lock held. 12190 **/ 12191 struct lpfc_dmabuf * 12192 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12193 dma_addr_t phys) 12194 { 12195 struct lpfc_dmabuf *mp, *next_mp; 12196 struct list_head *slp = &pring->postbufq; 12197 12198 /* Search postbufq, from the beginning, looking for a match on phys */ 12199 spin_lock_irq(&phba->hbalock); 12200 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12201 if (mp->phys == phys) { 12202 list_del_init(&mp->list); 12203 pring->postbufq_cnt--; 12204 spin_unlock_irq(&phba->hbalock); 12205 return mp; 12206 } 12207 } 12208 12209 spin_unlock_irq(&phba->hbalock); 12210 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12211 "0410 Cannot find virtual addr for mapped buf on " 12212 "ring %d Data x%llx x%px x%px x%x\n", 12213 pring->ringno, (unsigned long long)phys, 12214 slp->next, slp->prev, pring->postbufq_cnt); 12215 return NULL; 12216 } 12217 12218 /** 12219 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12220 * @phba: Pointer to HBA context object. 12221 * @cmdiocb: Pointer to driver command iocb object. 12222 * @rspiocb: Pointer to driver response iocb object. 12223 * 12224 * This function is the completion handler for the abort iocbs for 12225 * ELS commands. This function is called from the ELS ring event 12226 * handler with no lock held. This function frees memory resources 12227 * associated with the abort iocb. 12228 **/ 12229 static void 12230 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12231 struct lpfc_iocbq *rspiocb) 12232 { 12233 IOCB_t *irsp = &rspiocb->iocb; 12234 uint16_t abort_iotag, abort_context; 12235 struct lpfc_iocbq *abort_iocb = NULL; 12236 12237 if (irsp->ulpStatus) { 12238 12239 /* 12240 * Assume that the port already completed and returned, or 12241 * will return the iocb. Just Log the message. 12242 */ 12243 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 12244 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 12245 12246 spin_lock_irq(&phba->hbalock); 12247 if (phba->sli_rev < LPFC_SLI_REV4) { 12248 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 12249 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 12250 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 12251 spin_unlock_irq(&phba->hbalock); 12252 goto release_iocb; 12253 } 12254 if (abort_iotag != 0 && 12255 abort_iotag <= phba->sli.last_iotag) 12256 abort_iocb = 12257 phba->sli.iocbq_lookup[abort_iotag]; 12258 } else 12259 /* For sli4 the abort_tag is the XRI, 12260 * so the abort routine puts the iotag of the iocb 12261 * being aborted in the context field of the abort 12262 * IOCB. 12263 */ 12264 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 12265 12266 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12267 "0327 Cannot abort els iocb x%px " 12268 "with tag %x context %x, abort status %x, " 12269 "abort code %x\n", 12270 abort_iocb, abort_iotag, abort_context, 12271 irsp->ulpStatus, irsp->un.ulpWord[4]); 12272 12273 spin_unlock_irq(&phba->hbalock); 12274 } 12275 release_iocb: 12276 lpfc_sli_release_iocbq(phba, cmdiocb); 12277 return; 12278 } 12279 12280 /** 12281 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12282 * @phba: Pointer to HBA context object. 12283 * @cmdiocb: Pointer to driver command iocb object. 12284 * @rspiocb: Pointer to driver response iocb object. 12285 * 12286 * The function is called from SLI ring event handler with no 12287 * lock held. This function is the completion handler for ELS commands 12288 * which are aborted. The function frees memory resources used for 12289 * the aborted ELS commands. 12290 **/ 12291 void 12292 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12293 struct lpfc_iocbq *rspiocb) 12294 { 12295 struct lpfc_nodelist *ndlp = (struct lpfc_nodelist *) cmdiocb->context1; 12296 IOCB_t *irsp = &rspiocb->iocb; 12297 12298 /* ELS cmd tag <ulpIoTag> completes */ 12299 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12300 "0139 Ignoring ELS cmd tag x%x completion Data: " 12301 "x%x x%x x%x\n", 12302 irsp->ulpIoTag, irsp->ulpStatus, 12303 irsp->un.ulpWord[4], irsp->ulpTimeout); 12304 /* 12305 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12306 * if exchange is busy. 12307 */ 12308 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 12309 lpfc_ct_free_iocb(phba, cmdiocb); 12310 else 12311 lpfc_els_free_iocb(phba, cmdiocb); 12312 12313 lpfc_nlp_put(ndlp); 12314 } 12315 12316 /** 12317 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12318 * @phba: Pointer to HBA context object. 12319 * @pring: Pointer to driver SLI ring object. 12320 * @cmdiocb: Pointer to driver command iocb object. 12321 * @cmpl: completion function. 12322 * 12323 * This function issues an abort iocb for the provided command iocb. In case 12324 * of unloading, the abort iocb will not be issued to commands on the ELS 12325 * ring. Instead, the callback function shall be changed to those commands 12326 * so that nothing happens when them finishes. This function is called with 12327 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12328 * when the command iocb is an abort request. 12329 * 12330 **/ 12331 int 12332 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12333 struct lpfc_iocbq *cmdiocb, void *cmpl) 12334 { 12335 struct lpfc_vport *vport = cmdiocb->vport; 12336 struct lpfc_iocbq *abtsiocbp; 12337 IOCB_t *icmd = NULL; 12338 IOCB_t *iabt = NULL; 12339 int retval = IOCB_ERROR; 12340 unsigned long iflags; 12341 struct lpfc_nodelist *ndlp; 12342 12343 /* 12344 * There are certain command types we don't want to abort. And we 12345 * don't want to abort commands that are already in the process of 12346 * being aborted. 12347 */ 12348 icmd = &cmdiocb->iocb; 12349 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 12350 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 12351 cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) 12352 return IOCB_ABORTING; 12353 12354 if (!pring) { 12355 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 12356 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 12357 else 12358 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 12359 return retval; 12360 } 12361 12362 /* 12363 * If we're unloading, don't abort iocb on the ELS ring, but change 12364 * the callback so that nothing happens when it finishes. 12365 */ 12366 if ((vport->load_flag & FC_UNLOADING) && 12367 pring->ringno == LPFC_ELS_RING) { 12368 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 12369 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 12370 else 12371 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 12372 return retval; 12373 } 12374 12375 /* issue ABTS for this IOCB based on iotag */ 12376 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12377 if (abtsiocbp == NULL) 12378 return IOCB_NORESOURCE; 12379 12380 /* This signals the response to set the correct status 12381 * before calling the completion handler 12382 */ 12383 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 12384 12385 iabt = &abtsiocbp->iocb; 12386 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 12387 iabt->un.acxri.abortContextTag = icmd->ulpContext; 12388 if (phba->sli_rev == LPFC_SLI_REV4) { 12389 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 12390 if (pring->ringno == LPFC_ELS_RING) 12391 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 12392 } else { 12393 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 12394 if (pring->ringno == LPFC_ELS_RING) { 12395 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 12396 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 12397 } 12398 } 12399 iabt->ulpLe = 1; 12400 iabt->ulpClass = icmd->ulpClass; 12401 12402 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12403 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12404 if (cmdiocb->iocb_flag & LPFC_IO_FCP) { 12405 abtsiocbp->iocb_flag |= LPFC_IO_FCP; 12406 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 12407 } 12408 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 12409 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 12410 12411 if (phba->link_state >= LPFC_LINK_UP) 12412 iabt->ulpCommand = CMD_ABORT_XRI_CN; 12413 else 12414 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 12415 12416 if (cmpl) 12417 abtsiocbp->iocb_cmpl = cmpl; 12418 else 12419 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 12420 abtsiocbp->vport = vport; 12421 12422 if (phba->sli_rev == LPFC_SLI_REV4) { 12423 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12424 if (unlikely(pring == NULL)) 12425 goto abort_iotag_exit; 12426 /* Note: both hbalock and ring_lock need to be set here */ 12427 spin_lock_irqsave(&pring->ring_lock, iflags); 12428 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12429 abtsiocbp, 0); 12430 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12431 } else { 12432 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12433 abtsiocbp, 0); 12434 } 12435 12436 abort_iotag_exit: 12437 12438 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12439 "0339 Abort xri x%x, original iotag x%x, " 12440 "abort cmd iotag x%x retval x%x\n", 12441 iabt->un.acxri.abortIoTag, 12442 iabt->un.acxri.abortContextTag, 12443 abtsiocbp->iotag, retval); 12444 12445 if (retval) { 12446 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 12447 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12448 } 12449 12450 /* 12451 * Caller to this routine should check for IOCB_ERROR 12452 * and handle it properly. This routine no longer removes 12453 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12454 */ 12455 return retval; 12456 } 12457 12458 /** 12459 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12460 * @phba: pointer to lpfc HBA data structure. 12461 * 12462 * This routine will abort all pending and outstanding iocbs to an HBA. 12463 **/ 12464 void 12465 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12466 { 12467 struct lpfc_sli *psli = &phba->sli; 12468 struct lpfc_sli_ring *pring; 12469 struct lpfc_queue *qp = NULL; 12470 int i; 12471 12472 if (phba->sli_rev != LPFC_SLI_REV4) { 12473 for (i = 0; i < psli->num_rings; i++) { 12474 pring = &psli->sli3_ring[i]; 12475 lpfc_sli_abort_iocb_ring(phba, pring); 12476 } 12477 return; 12478 } 12479 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12480 pring = qp->pring; 12481 if (!pring) 12482 continue; 12483 lpfc_sli_abort_iocb_ring(phba, pring); 12484 } 12485 } 12486 12487 /** 12488 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 12489 * @iocbq: Pointer to driver iocb object. 12490 * @vport: Pointer to driver virtual port object. 12491 * @tgt_id: SCSI ID of the target. 12492 * @lun_id: LUN ID of the scsi device. 12493 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12494 * 12495 * This function acts as an iocb filter for functions which abort or count 12496 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 12497 * 0 if the filtering criteria is met for the given iocb and will return 12498 * 1 if the filtering criteria is not met. 12499 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12500 * given iocb is for the SCSI device specified by vport, tgt_id and 12501 * lun_id parameter. 12502 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12503 * given iocb is for the SCSI target specified by vport and tgt_id 12504 * parameters. 12505 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12506 * given iocb is for the SCSI host associated with the given vport. 12507 * This function is called with no locks held. 12508 **/ 12509 static int 12510 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12511 uint16_t tgt_id, uint64_t lun_id, 12512 lpfc_ctx_cmd ctx_cmd) 12513 { 12514 struct lpfc_io_buf *lpfc_cmd; 12515 IOCB_t *icmd = NULL; 12516 int rc = 1; 12517 12518 if (!iocbq || iocbq->vport != vport) 12519 return rc; 12520 12521 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 12522 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ) || 12523 iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 12524 return rc; 12525 12526 icmd = &iocbq->iocb; 12527 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 12528 icmd->ulpCommand == CMD_CLOSE_XRI_CN) 12529 return rc; 12530 12531 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12532 12533 if (lpfc_cmd->pCmd == NULL) 12534 return rc; 12535 12536 switch (ctx_cmd) { 12537 case LPFC_CTX_LUN: 12538 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12539 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12540 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12541 rc = 0; 12542 break; 12543 case LPFC_CTX_TGT: 12544 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12545 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12546 rc = 0; 12547 break; 12548 case LPFC_CTX_HOST: 12549 rc = 0; 12550 break; 12551 default: 12552 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12553 __func__, ctx_cmd); 12554 break; 12555 } 12556 12557 return rc; 12558 } 12559 12560 /** 12561 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12562 * @vport: Pointer to virtual port. 12563 * @tgt_id: SCSI ID of the target. 12564 * @lun_id: LUN ID of the scsi device. 12565 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12566 * 12567 * This function returns number of FCP commands pending for the vport. 12568 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12569 * commands pending on the vport associated with SCSI device specified 12570 * by tgt_id and lun_id parameters. 12571 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12572 * commands pending on the vport associated with SCSI target specified 12573 * by tgt_id parameter. 12574 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12575 * commands pending on the vport. 12576 * This function returns the number of iocbs which satisfy the filter. 12577 * This function is called without any lock held. 12578 **/ 12579 int 12580 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12581 lpfc_ctx_cmd ctx_cmd) 12582 { 12583 struct lpfc_hba *phba = vport->phba; 12584 struct lpfc_iocbq *iocbq; 12585 int sum, i; 12586 12587 spin_lock_irq(&phba->hbalock); 12588 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12589 iocbq = phba->sli.iocbq_lookup[i]; 12590 12591 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 12592 ctx_cmd) == 0) 12593 sum++; 12594 } 12595 spin_unlock_irq(&phba->hbalock); 12596 12597 return sum; 12598 } 12599 12600 /** 12601 * lpfc_sli4_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12602 * @phba: Pointer to HBA context object 12603 * @cmdiocb: Pointer to command iocb object. 12604 * @wcqe: pointer to the complete wcqe 12605 * 12606 * This function is called when an aborted FCP iocb completes. This 12607 * function is called by the ring event handler with no lock held. 12608 * This function frees the iocb. It is called for sli-4 adapters. 12609 **/ 12610 void 12611 lpfc_sli4_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12612 struct lpfc_wcqe_complete *wcqe) 12613 { 12614 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12615 "3017 ABORT_XRI_CN completing on rpi x%x " 12616 "original iotag x%x, abort cmd iotag x%x " 12617 "status 0x%x, reason 0x%x\n", 12618 cmdiocb->iocb.un.acxri.abortContextTag, 12619 cmdiocb->iocb.un.acxri.abortIoTag, 12620 cmdiocb->iotag, 12621 (bf_get(lpfc_wcqe_c_status, wcqe) 12622 & LPFC_IOCB_STATUS_MASK), 12623 wcqe->parameter); 12624 lpfc_sli_release_iocbq(phba, cmdiocb); 12625 } 12626 12627 /** 12628 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12629 * @phba: Pointer to HBA context object 12630 * @cmdiocb: Pointer to command iocb object. 12631 * @rspiocb: Pointer to response iocb object. 12632 * 12633 * This function is called when an aborted FCP iocb completes. This 12634 * function is called by the ring event handler with no lock held. 12635 * This function frees the iocb. 12636 **/ 12637 void 12638 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12639 struct lpfc_iocbq *rspiocb) 12640 { 12641 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12642 "3096 ABORT_XRI_CN completing on rpi x%x " 12643 "original iotag x%x, abort cmd iotag x%x " 12644 "status 0x%x, reason 0x%x\n", 12645 cmdiocb->iocb.un.acxri.abortContextTag, 12646 cmdiocb->iocb.un.acxri.abortIoTag, 12647 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 12648 rspiocb->iocb.un.ulpWord[4]); 12649 lpfc_sli_release_iocbq(phba, cmdiocb); 12650 return; 12651 } 12652 12653 /** 12654 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12655 * @vport: Pointer to virtual port. 12656 * @tgt_id: SCSI ID of the target. 12657 * @lun_id: LUN ID of the scsi device. 12658 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12659 * 12660 * This function sends an abort command for every SCSI command 12661 * associated with the given virtual port pending on the ring 12662 * filtered by lpfc_sli_validate_fcp_iocb function. 12663 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12664 * FCP iocbs associated with lun specified by tgt_id and lun_id 12665 * parameters 12666 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12667 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12668 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12669 * FCP iocbs associated with virtual port. 12670 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12671 * lpfc_sli4_calc_ring is used. 12672 * This function returns number of iocbs it failed to abort. 12673 * This function is called with no locks held. 12674 **/ 12675 int 12676 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12677 lpfc_ctx_cmd abort_cmd) 12678 { 12679 struct lpfc_hba *phba = vport->phba; 12680 struct lpfc_sli_ring *pring = NULL; 12681 struct lpfc_iocbq *iocbq; 12682 int errcnt = 0, ret_val = 0; 12683 unsigned long iflags; 12684 int i; 12685 void *fcp_cmpl = NULL; 12686 12687 /* all I/Os are in process of being flushed */ 12688 if (phba->hba_flag & HBA_IOQ_FLUSH) 12689 return errcnt; 12690 12691 for (i = 1; i <= phba->sli.last_iotag; i++) { 12692 iocbq = phba->sli.iocbq_lookup[i]; 12693 12694 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12695 abort_cmd) != 0) 12696 continue; 12697 12698 spin_lock_irqsave(&phba->hbalock, iflags); 12699 if (phba->sli_rev == LPFC_SLI_REV3) { 12700 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12701 fcp_cmpl = lpfc_sli_abort_fcp_cmpl; 12702 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12703 pring = lpfc_sli4_calc_ring(phba, iocbq); 12704 fcp_cmpl = lpfc_sli4_abort_fcp_cmpl; 12705 } 12706 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12707 fcp_cmpl); 12708 spin_unlock_irqrestore(&phba->hbalock, iflags); 12709 if (ret_val != IOCB_SUCCESS) 12710 errcnt++; 12711 } 12712 12713 return errcnt; 12714 } 12715 12716 /** 12717 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12718 * @vport: Pointer to virtual port. 12719 * @pring: Pointer to driver SLI ring object. 12720 * @tgt_id: SCSI ID of the target. 12721 * @lun_id: LUN ID of the scsi device. 12722 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12723 * 12724 * This function sends an abort command for every SCSI command 12725 * associated with the given virtual port pending on the ring 12726 * filtered by lpfc_sli_validate_fcp_iocb function. 12727 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12728 * FCP iocbs associated with lun specified by tgt_id and lun_id 12729 * parameters 12730 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12731 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12732 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12733 * FCP iocbs associated with virtual port. 12734 * This function returns number of iocbs it aborted . 12735 * This function is called with no locks held right after a taskmgmt 12736 * command is sent. 12737 **/ 12738 int 12739 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12740 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12741 { 12742 struct lpfc_hba *phba = vport->phba; 12743 struct lpfc_io_buf *lpfc_cmd; 12744 struct lpfc_iocbq *abtsiocbq; 12745 struct lpfc_nodelist *ndlp; 12746 struct lpfc_iocbq *iocbq; 12747 IOCB_t *icmd; 12748 int sum, i, ret_val; 12749 unsigned long iflags; 12750 struct lpfc_sli_ring *pring_s4 = NULL; 12751 12752 spin_lock_irqsave(&phba->hbalock, iflags); 12753 12754 /* all I/Os are in process of being flushed */ 12755 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12756 spin_unlock_irqrestore(&phba->hbalock, iflags); 12757 return 0; 12758 } 12759 sum = 0; 12760 12761 for (i = 1; i <= phba->sli.last_iotag; i++) { 12762 iocbq = phba->sli.iocbq_lookup[i]; 12763 12764 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12765 cmd) != 0) 12766 continue; 12767 12768 /* Guard against IO completion being called at same time */ 12769 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12770 spin_lock(&lpfc_cmd->buf_lock); 12771 12772 if (!lpfc_cmd->pCmd) { 12773 spin_unlock(&lpfc_cmd->buf_lock); 12774 continue; 12775 } 12776 12777 if (phba->sli_rev == LPFC_SLI_REV4) { 12778 pring_s4 = 12779 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12780 if (!pring_s4) { 12781 spin_unlock(&lpfc_cmd->buf_lock); 12782 continue; 12783 } 12784 /* Note: both hbalock and ring_lock must be set here */ 12785 spin_lock(&pring_s4->ring_lock); 12786 } 12787 12788 /* 12789 * If the iocbq is already being aborted, don't take a second 12790 * action, but do count it. 12791 */ 12792 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 12793 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { 12794 if (phba->sli_rev == LPFC_SLI_REV4) 12795 spin_unlock(&pring_s4->ring_lock); 12796 spin_unlock(&lpfc_cmd->buf_lock); 12797 continue; 12798 } 12799 12800 /* issue ABTS for this IOCB based on iotag */ 12801 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12802 if (!abtsiocbq) { 12803 if (phba->sli_rev == LPFC_SLI_REV4) 12804 spin_unlock(&pring_s4->ring_lock); 12805 spin_unlock(&lpfc_cmd->buf_lock); 12806 continue; 12807 } 12808 12809 icmd = &iocbq->iocb; 12810 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 12811 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 12812 if (phba->sli_rev == LPFC_SLI_REV4) 12813 abtsiocbq->iocb.un.acxri.abortIoTag = 12814 iocbq->sli4_xritag; 12815 else 12816 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 12817 abtsiocbq->iocb.ulpLe = 1; 12818 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 12819 abtsiocbq->vport = vport; 12820 12821 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12822 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12823 if (iocbq->iocb_flag & LPFC_IO_FCP) 12824 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 12825 if (iocbq->iocb_flag & LPFC_IO_FOF) 12826 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 12827 12828 ndlp = lpfc_cmd->rdata->pnode; 12829 12830 if (lpfc_is_link_up(phba) && 12831 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 12832 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 12833 else 12834 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 12835 12836 /* Setup callback routine and issue the command. */ 12837 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 12838 12839 /* 12840 * Indicate the IO is being aborted by the driver and set 12841 * the caller's flag into the aborted IO. 12842 */ 12843 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 12844 12845 if (phba->sli_rev == LPFC_SLI_REV4) { 12846 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12847 abtsiocbq, 0); 12848 spin_unlock(&pring_s4->ring_lock); 12849 } else { 12850 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12851 abtsiocbq, 0); 12852 } 12853 12854 spin_unlock(&lpfc_cmd->buf_lock); 12855 12856 if (ret_val == IOCB_ERROR) 12857 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12858 else 12859 sum++; 12860 } 12861 spin_unlock_irqrestore(&phba->hbalock, iflags); 12862 return sum; 12863 } 12864 12865 /** 12866 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12867 * @phba: Pointer to HBA context object. 12868 * @cmdiocbq: Pointer to command iocb. 12869 * @rspiocbq: Pointer to response iocb. 12870 * 12871 * This function is the completion handler for iocbs issued using 12872 * lpfc_sli_issue_iocb_wait function. This function is called by the 12873 * ring event handler function without any lock held. This function 12874 * can be called from both worker thread context and interrupt 12875 * context. This function also can be called from other thread which 12876 * cleans up the SLI layer objects. 12877 * This function copy the contents of the response iocb to the 12878 * response iocb memory object provided by the caller of 12879 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12880 * sleeps for the iocb completion. 12881 **/ 12882 static void 12883 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12884 struct lpfc_iocbq *cmdiocbq, 12885 struct lpfc_iocbq *rspiocbq) 12886 { 12887 wait_queue_head_t *pdone_q; 12888 unsigned long iflags; 12889 struct lpfc_io_buf *lpfc_cmd; 12890 12891 spin_lock_irqsave(&phba->hbalock, iflags); 12892 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 12893 12894 /* 12895 * A time out has occurred for the iocb. If a time out 12896 * completion handler has been supplied, call it. Otherwise, 12897 * just free the iocbq. 12898 */ 12899 12900 spin_unlock_irqrestore(&phba->hbalock, iflags); 12901 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 12902 cmdiocbq->wait_iocb_cmpl = NULL; 12903 if (cmdiocbq->iocb_cmpl) 12904 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 12905 else 12906 lpfc_sli_release_iocbq(phba, cmdiocbq); 12907 return; 12908 } 12909 12910 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 12911 if (cmdiocbq->context2 && rspiocbq) 12912 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 12913 &rspiocbq->iocb, sizeof(IOCB_t)); 12914 12915 /* Set the exchange busy flag for task management commands */ 12916 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 12917 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 12918 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 12919 cur_iocbq); 12920 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) 12921 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 12922 else 12923 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 12924 } 12925 12926 pdone_q = cmdiocbq->context_un.wait_queue; 12927 if (pdone_q) 12928 wake_up(pdone_q); 12929 spin_unlock_irqrestore(&phba->hbalock, iflags); 12930 return; 12931 } 12932 12933 /** 12934 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 12935 * @phba: Pointer to HBA context object.. 12936 * @piocbq: Pointer to command iocb. 12937 * @flag: Flag to test. 12938 * 12939 * This routine grabs the hbalock and then test the iocb_flag to 12940 * see if the passed in flag is set. 12941 * Returns: 12942 * 1 if flag is set. 12943 * 0 if flag is not set. 12944 **/ 12945 static int 12946 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 12947 struct lpfc_iocbq *piocbq, uint32_t flag) 12948 { 12949 unsigned long iflags; 12950 int ret; 12951 12952 spin_lock_irqsave(&phba->hbalock, iflags); 12953 ret = piocbq->iocb_flag & flag; 12954 spin_unlock_irqrestore(&phba->hbalock, iflags); 12955 return ret; 12956 12957 } 12958 12959 /** 12960 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 12961 * @phba: Pointer to HBA context object.. 12962 * @ring_number: Ring number 12963 * @piocb: Pointer to command iocb. 12964 * @prspiocbq: Pointer to response iocb. 12965 * @timeout: Timeout in number of seconds. 12966 * 12967 * This function issues the iocb to firmware and waits for the 12968 * iocb to complete. The iocb_cmpl field of the shall be used 12969 * to handle iocbs which time out. If the field is NULL, the 12970 * function shall free the iocbq structure. If more clean up is 12971 * needed, the caller is expected to provide a completion function 12972 * that will provide the needed clean up. If the iocb command is 12973 * not completed within timeout seconds, the function will either 12974 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 12975 * completion function set in the iocb_cmpl field and then return 12976 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 12977 * resources if this function returns IOCB_TIMEDOUT. 12978 * The function waits for the iocb completion using an 12979 * non-interruptible wait. 12980 * This function will sleep while waiting for iocb completion. 12981 * So, this function should not be called from any context which 12982 * does not allow sleeping. Due to the same reason, this function 12983 * cannot be called with interrupt disabled. 12984 * This function assumes that the iocb completions occur while 12985 * this function sleep. So, this function cannot be called from 12986 * the thread which process iocb completion for this ring. 12987 * This function clears the iocb_flag of the iocb object before 12988 * issuing the iocb and the iocb completion handler sets this 12989 * flag and wakes this thread when the iocb completes. 12990 * The contents of the response iocb will be copied to prspiocbq 12991 * by the completion handler when the command completes. 12992 * This function returns IOCB_SUCCESS when success. 12993 * This function is called with no lock held. 12994 **/ 12995 int 12996 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 12997 uint32_t ring_number, 12998 struct lpfc_iocbq *piocb, 12999 struct lpfc_iocbq *prspiocbq, 13000 uint32_t timeout) 13001 { 13002 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13003 long timeleft, timeout_req = 0; 13004 int retval = IOCB_SUCCESS; 13005 uint32_t creg_val; 13006 struct lpfc_iocbq *iocb; 13007 int txq_cnt = 0; 13008 int txcmplq_cnt = 0; 13009 struct lpfc_sli_ring *pring; 13010 unsigned long iflags; 13011 bool iocb_completed = true; 13012 13013 if (phba->sli_rev >= LPFC_SLI_REV4) 13014 pring = lpfc_sli4_calc_ring(phba, piocb); 13015 else 13016 pring = &phba->sli.sli3_ring[ring_number]; 13017 /* 13018 * If the caller has provided a response iocbq buffer, then context2 13019 * is NULL or its an error. 13020 */ 13021 if (prspiocbq) { 13022 if (piocb->context2) 13023 return IOCB_ERROR; 13024 piocb->context2 = prspiocbq; 13025 } 13026 13027 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 13028 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 13029 piocb->context_un.wait_queue = &done_q; 13030 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13031 13032 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13033 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13034 return IOCB_ERROR; 13035 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13036 writel(creg_val, phba->HCregaddr); 13037 readl(phba->HCregaddr); /* flush */ 13038 } 13039 13040 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13041 SLI_IOCB_RET_IOCB); 13042 if (retval == IOCB_SUCCESS) { 13043 timeout_req = msecs_to_jiffies(timeout * 1000); 13044 timeleft = wait_event_timeout(done_q, 13045 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13046 timeout_req); 13047 spin_lock_irqsave(&phba->hbalock, iflags); 13048 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 13049 13050 /* 13051 * IOCB timed out. Inform the wake iocb wait 13052 * completion function and set local status 13053 */ 13054 13055 iocb_completed = false; 13056 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 13057 } 13058 spin_unlock_irqrestore(&phba->hbalock, iflags); 13059 if (iocb_completed) { 13060 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13061 "0331 IOCB wake signaled\n"); 13062 /* Note: we are not indicating if the IOCB has a success 13063 * status or not - that's for the caller to check. 13064 * IOCB_SUCCESS means just that the command was sent and 13065 * completed. Not that it completed successfully. 13066 * */ 13067 } else if (timeleft == 0) { 13068 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13069 "0338 IOCB wait timeout error - no " 13070 "wake response Data x%x\n", timeout); 13071 retval = IOCB_TIMEDOUT; 13072 } else { 13073 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13074 "0330 IOCB wake NOT set, " 13075 "Data x%x x%lx\n", 13076 timeout, (timeleft / jiffies)); 13077 retval = IOCB_TIMEDOUT; 13078 } 13079 } else if (retval == IOCB_BUSY) { 13080 if (phba->cfg_log_verbose & LOG_SLI) { 13081 list_for_each_entry(iocb, &pring->txq, list) { 13082 txq_cnt++; 13083 } 13084 list_for_each_entry(iocb, &pring->txcmplq, list) { 13085 txcmplq_cnt++; 13086 } 13087 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13088 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13089 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13090 } 13091 return retval; 13092 } else { 13093 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13094 "0332 IOCB wait issue failed, Data x%x\n", 13095 retval); 13096 retval = IOCB_ERROR; 13097 } 13098 13099 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13100 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13101 return IOCB_ERROR; 13102 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13103 writel(creg_val, phba->HCregaddr); 13104 readl(phba->HCregaddr); /* flush */ 13105 } 13106 13107 if (prspiocbq) 13108 piocb->context2 = NULL; 13109 13110 piocb->context_un.wait_queue = NULL; 13111 piocb->iocb_cmpl = NULL; 13112 return retval; 13113 } 13114 13115 /** 13116 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13117 * @phba: Pointer to HBA context object. 13118 * @pmboxq: Pointer to driver mailbox object. 13119 * @timeout: Timeout in number of seconds. 13120 * 13121 * This function issues the mailbox to firmware and waits for the 13122 * mailbox command to complete. If the mailbox command is not 13123 * completed within timeout seconds, it returns MBX_TIMEOUT. 13124 * The function waits for the mailbox completion using an 13125 * interruptible wait. If the thread is woken up due to a 13126 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13127 * should not free the mailbox resources, if this function returns 13128 * MBX_TIMEOUT. 13129 * This function will sleep while waiting for mailbox completion. 13130 * So, this function should not be called from any context which 13131 * does not allow sleeping. Due to the same reason, this function 13132 * cannot be called with interrupt disabled. 13133 * This function assumes that the mailbox completion occurs while 13134 * this function sleep. So, this function cannot be called from 13135 * the worker thread which processes mailbox completion. 13136 * This function is called in the context of HBA management 13137 * applications. 13138 * This function returns MBX_SUCCESS when successful. 13139 * This function is called with no lock held. 13140 **/ 13141 int 13142 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13143 uint32_t timeout) 13144 { 13145 struct completion mbox_done; 13146 int retval; 13147 unsigned long flag; 13148 13149 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13150 /* setup wake call as IOCB callback */ 13151 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13152 13153 /* setup context3 field to pass wait_queue pointer to wake function */ 13154 init_completion(&mbox_done); 13155 pmboxq->context3 = &mbox_done; 13156 /* now issue the command */ 13157 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13158 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13159 wait_for_completion_timeout(&mbox_done, 13160 msecs_to_jiffies(timeout * 1000)); 13161 13162 spin_lock_irqsave(&phba->hbalock, flag); 13163 pmboxq->context3 = NULL; 13164 /* 13165 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13166 * else do not free the resources. 13167 */ 13168 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13169 retval = MBX_SUCCESS; 13170 } else { 13171 retval = MBX_TIMEOUT; 13172 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13173 } 13174 spin_unlock_irqrestore(&phba->hbalock, flag); 13175 } 13176 return retval; 13177 } 13178 13179 /** 13180 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13181 * @phba: Pointer to HBA context. 13182 * @mbx_action: Mailbox shutdown options. 13183 * 13184 * This function is called to shutdown the driver's mailbox sub-system. 13185 * It first marks the mailbox sub-system is in a block state to prevent 13186 * the asynchronous mailbox command from issued off the pending mailbox 13187 * command queue. If the mailbox command sub-system shutdown is due to 13188 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13189 * the mailbox sub-system flush routine to forcefully bring down the 13190 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13191 * as with offline or HBA function reset), this routine will wait for the 13192 * outstanding mailbox command to complete before invoking the mailbox 13193 * sub-system flush routine to gracefully bring down mailbox sub-system. 13194 **/ 13195 void 13196 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13197 { 13198 struct lpfc_sli *psli = &phba->sli; 13199 unsigned long timeout; 13200 13201 if (mbx_action == LPFC_MBX_NO_WAIT) { 13202 /* delay 100ms for port state */ 13203 msleep(100); 13204 lpfc_sli_mbox_sys_flush(phba); 13205 return; 13206 } 13207 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13208 13209 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13210 local_bh_disable(); 13211 13212 spin_lock_irq(&phba->hbalock); 13213 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13214 13215 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13216 /* Determine how long we might wait for the active mailbox 13217 * command to be gracefully completed by firmware. 13218 */ 13219 if (phba->sli.mbox_active) 13220 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13221 phba->sli.mbox_active) * 13222 1000) + jiffies; 13223 spin_unlock_irq(&phba->hbalock); 13224 13225 /* Enable softirqs again, done with phba->hbalock */ 13226 local_bh_enable(); 13227 13228 while (phba->sli.mbox_active) { 13229 /* Check active mailbox complete status every 2ms */ 13230 msleep(2); 13231 if (time_after(jiffies, timeout)) 13232 /* Timeout, let the mailbox flush routine to 13233 * forcefully release active mailbox command 13234 */ 13235 break; 13236 } 13237 } else { 13238 spin_unlock_irq(&phba->hbalock); 13239 13240 /* Enable softirqs again, done with phba->hbalock */ 13241 local_bh_enable(); 13242 } 13243 13244 lpfc_sli_mbox_sys_flush(phba); 13245 } 13246 13247 /** 13248 * lpfc_sli_eratt_read - read sli-3 error attention events 13249 * @phba: Pointer to HBA context. 13250 * 13251 * This function is called to read the SLI3 device error attention registers 13252 * for possible error attention events. The caller must hold the hostlock 13253 * with spin_lock_irq(). 13254 * 13255 * This function returns 1 when there is Error Attention in the Host Attention 13256 * Register and returns 0 otherwise. 13257 **/ 13258 static int 13259 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13260 { 13261 uint32_t ha_copy; 13262 13263 /* Read chip Host Attention (HA) register */ 13264 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13265 goto unplug_err; 13266 13267 if (ha_copy & HA_ERATT) { 13268 /* Read host status register to retrieve error event */ 13269 if (lpfc_sli_read_hs(phba)) 13270 goto unplug_err; 13271 13272 /* Check if there is a deferred error condition is active */ 13273 if ((HS_FFER1 & phba->work_hs) && 13274 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13275 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13276 phba->hba_flag |= DEFER_ERATT; 13277 /* Clear all interrupt enable conditions */ 13278 writel(0, phba->HCregaddr); 13279 readl(phba->HCregaddr); 13280 } 13281 13282 /* Set the driver HA work bitmap */ 13283 phba->work_ha |= HA_ERATT; 13284 /* Indicate polling handles this ERATT */ 13285 phba->hba_flag |= HBA_ERATT_HANDLED; 13286 return 1; 13287 } 13288 return 0; 13289 13290 unplug_err: 13291 /* Set the driver HS work bitmap */ 13292 phba->work_hs |= UNPLUG_ERR; 13293 /* Set the driver HA work bitmap */ 13294 phba->work_ha |= HA_ERATT; 13295 /* Indicate polling handles this ERATT */ 13296 phba->hba_flag |= HBA_ERATT_HANDLED; 13297 return 1; 13298 } 13299 13300 /** 13301 * lpfc_sli4_eratt_read - read sli-4 error attention events 13302 * @phba: Pointer to HBA context. 13303 * 13304 * This function is called to read the SLI4 device error attention registers 13305 * for possible error attention events. The caller must hold the hostlock 13306 * with spin_lock_irq(). 13307 * 13308 * This function returns 1 when there is Error Attention in the Host Attention 13309 * Register and returns 0 otherwise. 13310 **/ 13311 static int 13312 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13313 { 13314 uint32_t uerr_sta_hi, uerr_sta_lo; 13315 uint32_t if_type, portsmphr; 13316 struct lpfc_register portstat_reg; 13317 13318 /* 13319 * For now, use the SLI4 device internal unrecoverable error 13320 * registers for error attention. This can be changed later. 13321 */ 13322 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13323 switch (if_type) { 13324 case LPFC_SLI_INTF_IF_TYPE_0: 13325 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13326 &uerr_sta_lo) || 13327 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13328 &uerr_sta_hi)) { 13329 phba->work_hs |= UNPLUG_ERR; 13330 phba->work_ha |= HA_ERATT; 13331 phba->hba_flag |= HBA_ERATT_HANDLED; 13332 return 1; 13333 } 13334 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13335 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13336 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13337 "1423 HBA Unrecoverable error: " 13338 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13339 "ue_mask_lo_reg=0x%x, " 13340 "ue_mask_hi_reg=0x%x\n", 13341 uerr_sta_lo, uerr_sta_hi, 13342 phba->sli4_hba.ue_mask_lo, 13343 phba->sli4_hba.ue_mask_hi); 13344 phba->work_status[0] = uerr_sta_lo; 13345 phba->work_status[1] = uerr_sta_hi; 13346 phba->work_ha |= HA_ERATT; 13347 phba->hba_flag |= HBA_ERATT_HANDLED; 13348 return 1; 13349 } 13350 break; 13351 case LPFC_SLI_INTF_IF_TYPE_2: 13352 case LPFC_SLI_INTF_IF_TYPE_6: 13353 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13354 &portstat_reg.word0) || 13355 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13356 &portsmphr)){ 13357 phba->work_hs |= UNPLUG_ERR; 13358 phba->work_ha |= HA_ERATT; 13359 phba->hba_flag |= HBA_ERATT_HANDLED; 13360 return 1; 13361 } 13362 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13363 phba->work_status[0] = 13364 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13365 phba->work_status[1] = 13366 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13367 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13368 "2885 Port Status Event: " 13369 "port status reg 0x%x, " 13370 "port smphr reg 0x%x, " 13371 "error 1=0x%x, error 2=0x%x\n", 13372 portstat_reg.word0, 13373 portsmphr, 13374 phba->work_status[0], 13375 phba->work_status[1]); 13376 phba->work_ha |= HA_ERATT; 13377 phba->hba_flag |= HBA_ERATT_HANDLED; 13378 return 1; 13379 } 13380 break; 13381 case LPFC_SLI_INTF_IF_TYPE_1: 13382 default: 13383 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13384 "2886 HBA Error Attention on unsupported " 13385 "if type %d.", if_type); 13386 return 1; 13387 } 13388 13389 return 0; 13390 } 13391 13392 /** 13393 * lpfc_sli_check_eratt - check error attention events 13394 * @phba: Pointer to HBA context. 13395 * 13396 * This function is called from timer soft interrupt context to check HBA's 13397 * error attention register bit for error attention events. 13398 * 13399 * This function returns 1 when there is Error Attention in the Host Attention 13400 * Register and returns 0 otherwise. 13401 **/ 13402 int 13403 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13404 { 13405 uint32_t ha_copy; 13406 13407 /* If somebody is waiting to handle an eratt, don't process it 13408 * here. The brdkill function will do this. 13409 */ 13410 if (phba->link_flag & LS_IGNORE_ERATT) 13411 return 0; 13412 13413 /* Check if interrupt handler handles this ERATT */ 13414 spin_lock_irq(&phba->hbalock); 13415 if (phba->hba_flag & HBA_ERATT_HANDLED) { 13416 /* Interrupt handler has handled ERATT */ 13417 spin_unlock_irq(&phba->hbalock); 13418 return 0; 13419 } 13420 13421 /* 13422 * If there is deferred error attention, do not check for error 13423 * attention 13424 */ 13425 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13426 spin_unlock_irq(&phba->hbalock); 13427 return 0; 13428 } 13429 13430 /* If PCI channel is offline, don't process it */ 13431 if (unlikely(pci_channel_offline(phba->pcidev))) { 13432 spin_unlock_irq(&phba->hbalock); 13433 return 0; 13434 } 13435 13436 switch (phba->sli_rev) { 13437 case LPFC_SLI_REV2: 13438 case LPFC_SLI_REV3: 13439 /* Read chip Host Attention (HA) register */ 13440 ha_copy = lpfc_sli_eratt_read(phba); 13441 break; 13442 case LPFC_SLI_REV4: 13443 /* Read device Uncoverable Error (UERR) registers */ 13444 ha_copy = lpfc_sli4_eratt_read(phba); 13445 break; 13446 default: 13447 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13448 "0299 Invalid SLI revision (%d)\n", 13449 phba->sli_rev); 13450 ha_copy = 0; 13451 break; 13452 } 13453 spin_unlock_irq(&phba->hbalock); 13454 13455 return ha_copy; 13456 } 13457 13458 /** 13459 * lpfc_intr_state_check - Check device state for interrupt handling 13460 * @phba: Pointer to HBA context. 13461 * 13462 * This inline routine checks whether a device or its PCI slot is in a state 13463 * that the interrupt should be handled. 13464 * 13465 * This function returns 0 if the device or the PCI slot is in a state that 13466 * interrupt should be handled, otherwise -EIO. 13467 */ 13468 static inline int 13469 lpfc_intr_state_check(struct lpfc_hba *phba) 13470 { 13471 /* If the pci channel is offline, ignore all the interrupts */ 13472 if (unlikely(pci_channel_offline(phba->pcidev))) 13473 return -EIO; 13474 13475 /* Update device level interrupt statistics */ 13476 phba->sli.slistat.sli_intr++; 13477 13478 /* Ignore all interrupts during initialization. */ 13479 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13480 return -EIO; 13481 13482 return 0; 13483 } 13484 13485 /** 13486 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13487 * @irq: Interrupt number. 13488 * @dev_id: The device context pointer. 13489 * 13490 * This function is directly called from the PCI layer as an interrupt 13491 * service routine when device with SLI-3 interface spec is enabled with 13492 * MSI-X multi-message interrupt mode and there are slow-path events in 13493 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13494 * interrupt mode, this function is called as part of the device-level 13495 * interrupt handler. When the PCI slot is in error recovery or the HBA 13496 * is undergoing initialization, the interrupt handler will not process 13497 * the interrupt. The link attention and ELS ring attention events are 13498 * handled by the worker thread. The interrupt handler signals the worker 13499 * thread and returns for these events. This function is called without 13500 * any lock held. It gets the hbalock to access and update SLI data 13501 * structures. 13502 * 13503 * This function returns IRQ_HANDLED when interrupt is handled else it 13504 * returns IRQ_NONE. 13505 **/ 13506 irqreturn_t 13507 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13508 { 13509 struct lpfc_hba *phba; 13510 uint32_t ha_copy, hc_copy; 13511 uint32_t work_ha_copy; 13512 unsigned long status; 13513 unsigned long iflag; 13514 uint32_t control; 13515 13516 MAILBOX_t *mbox, *pmbox; 13517 struct lpfc_vport *vport; 13518 struct lpfc_nodelist *ndlp; 13519 struct lpfc_dmabuf *mp; 13520 LPFC_MBOXQ_t *pmb; 13521 int rc; 13522 13523 /* 13524 * Get the driver's phba structure from the dev_id and 13525 * assume the HBA is not interrupting. 13526 */ 13527 phba = (struct lpfc_hba *)dev_id; 13528 13529 if (unlikely(!phba)) 13530 return IRQ_NONE; 13531 13532 /* 13533 * Stuff needs to be attented to when this function is invoked as an 13534 * individual interrupt handler in MSI-X multi-message interrupt mode 13535 */ 13536 if (phba->intr_type == MSIX) { 13537 /* Check device state for handling interrupt */ 13538 if (lpfc_intr_state_check(phba)) 13539 return IRQ_NONE; 13540 /* Need to read HA REG for slow-path events */ 13541 spin_lock_irqsave(&phba->hbalock, iflag); 13542 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13543 goto unplug_error; 13544 /* If somebody is waiting to handle an eratt don't process it 13545 * here. The brdkill function will do this. 13546 */ 13547 if (phba->link_flag & LS_IGNORE_ERATT) 13548 ha_copy &= ~HA_ERATT; 13549 /* Check the need for handling ERATT in interrupt handler */ 13550 if (ha_copy & HA_ERATT) { 13551 if (phba->hba_flag & HBA_ERATT_HANDLED) 13552 /* ERATT polling has handled ERATT */ 13553 ha_copy &= ~HA_ERATT; 13554 else 13555 /* Indicate interrupt handler handles ERATT */ 13556 phba->hba_flag |= HBA_ERATT_HANDLED; 13557 } 13558 13559 /* 13560 * If there is deferred error attention, do not check for any 13561 * interrupt. 13562 */ 13563 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13564 spin_unlock_irqrestore(&phba->hbalock, iflag); 13565 return IRQ_NONE; 13566 } 13567 13568 /* Clear up only attention source related to slow-path */ 13569 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13570 goto unplug_error; 13571 13572 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13573 HC_LAINT_ENA | HC_ERINT_ENA), 13574 phba->HCregaddr); 13575 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13576 phba->HAregaddr); 13577 writel(hc_copy, phba->HCregaddr); 13578 readl(phba->HAregaddr); /* flush */ 13579 spin_unlock_irqrestore(&phba->hbalock, iflag); 13580 } else 13581 ha_copy = phba->ha_copy; 13582 13583 work_ha_copy = ha_copy & phba->work_ha_mask; 13584 13585 if (work_ha_copy) { 13586 if (work_ha_copy & HA_LATT) { 13587 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13588 /* 13589 * Turn off Link Attention interrupts 13590 * until CLEAR_LA done 13591 */ 13592 spin_lock_irqsave(&phba->hbalock, iflag); 13593 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13594 if (lpfc_readl(phba->HCregaddr, &control)) 13595 goto unplug_error; 13596 control &= ~HC_LAINT_ENA; 13597 writel(control, phba->HCregaddr); 13598 readl(phba->HCregaddr); /* flush */ 13599 spin_unlock_irqrestore(&phba->hbalock, iflag); 13600 } 13601 else 13602 work_ha_copy &= ~HA_LATT; 13603 } 13604 13605 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13606 /* 13607 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13608 * the only slow ring. 13609 */ 13610 status = (work_ha_copy & 13611 (HA_RXMASK << (4*LPFC_ELS_RING))); 13612 status >>= (4*LPFC_ELS_RING); 13613 if (status & HA_RXMASK) { 13614 spin_lock_irqsave(&phba->hbalock, iflag); 13615 if (lpfc_readl(phba->HCregaddr, &control)) 13616 goto unplug_error; 13617 13618 lpfc_debugfs_slow_ring_trc(phba, 13619 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13620 control, status, 13621 (uint32_t)phba->sli.slistat.sli_intr); 13622 13623 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13624 lpfc_debugfs_slow_ring_trc(phba, 13625 "ISR Disable ring:" 13626 "pwork:x%x hawork:x%x wait:x%x", 13627 phba->work_ha, work_ha_copy, 13628 (uint32_t)((unsigned long) 13629 &phba->work_waitq)); 13630 13631 control &= 13632 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13633 writel(control, phba->HCregaddr); 13634 readl(phba->HCregaddr); /* flush */ 13635 } 13636 else { 13637 lpfc_debugfs_slow_ring_trc(phba, 13638 "ISR slow ring: pwork:" 13639 "x%x hawork:x%x wait:x%x", 13640 phba->work_ha, work_ha_copy, 13641 (uint32_t)((unsigned long) 13642 &phba->work_waitq)); 13643 } 13644 spin_unlock_irqrestore(&phba->hbalock, iflag); 13645 } 13646 } 13647 spin_lock_irqsave(&phba->hbalock, iflag); 13648 if (work_ha_copy & HA_ERATT) { 13649 if (lpfc_sli_read_hs(phba)) 13650 goto unplug_error; 13651 /* 13652 * Check if there is a deferred error condition 13653 * is active 13654 */ 13655 if ((HS_FFER1 & phba->work_hs) && 13656 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13657 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13658 phba->work_hs)) { 13659 phba->hba_flag |= DEFER_ERATT; 13660 /* Clear all interrupt enable conditions */ 13661 writel(0, phba->HCregaddr); 13662 readl(phba->HCregaddr); 13663 } 13664 } 13665 13666 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13667 pmb = phba->sli.mbox_active; 13668 pmbox = &pmb->u.mb; 13669 mbox = phba->mbox; 13670 vport = pmb->vport; 13671 13672 /* First check out the status word */ 13673 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13674 if (pmbox->mbxOwner != OWN_HOST) { 13675 spin_unlock_irqrestore(&phba->hbalock, iflag); 13676 /* 13677 * Stray Mailbox Interrupt, mbxCommand <cmd> 13678 * mbxStatus <status> 13679 */ 13680 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13681 "(%d):0304 Stray Mailbox " 13682 "Interrupt mbxCommand x%x " 13683 "mbxStatus x%x\n", 13684 (vport ? vport->vpi : 0), 13685 pmbox->mbxCommand, 13686 pmbox->mbxStatus); 13687 /* clear mailbox attention bit */ 13688 work_ha_copy &= ~HA_MBATT; 13689 } else { 13690 phba->sli.mbox_active = NULL; 13691 spin_unlock_irqrestore(&phba->hbalock, iflag); 13692 phba->last_completion_time = jiffies; 13693 del_timer(&phba->sli.mbox_tmo); 13694 if (pmb->mbox_cmpl) { 13695 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13696 MAILBOX_CMD_SIZE); 13697 if (pmb->out_ext_byte_len && 13698 pmb->ctx_buf) 13699 lpfc_sli_pcimem_bcopy( 13700 phba->mbox_ext, 13701 pmb->ctx_buf, 13702 pmb->out_ext_byte_len); 13703 } 13704 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13705 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13706 13707 lpfc_debugfs_disc_trc(vport, 13708 LPFC_DISC_TRC_MBOX_VPORT, 13709 "MBOX dflt rpi: : " 13710 "status:x%x rpi:x%x", 13711 (uint32_t)pmbox->mbxStatus, 13712 pmbox->un.varWords[0], 0); 13713 13714 if (!pmbox->mbxStatus) { 13715 mp = (struct lpfc_dmabuf *) 13716 (pmb->ctx_buf); 13717 ndlp = (struct lpfc_nodelist *) 13718 pmb->ctx_ndlp; 13719 13720 /* Reg_LOGIN of dflt RPI was 13721 * successful. new lets get 13722 * rid of the RPI using the 13723 * same mbox buffer. 13724 */ 13725 lpfc_unreg_login(phba, 13726 vport->vpi, 13727 pmbox->un.varWords[0], 13728 pmb); 13729 pmb->mbox_cmpl = 13730 lpfc_mbx_cmpl_dflt_rpi; 13731 pmb->ctx_buf = mp; 13732 pmb->ctx_ndlp = ndlp; 13733 pmb->vport = vport; 13734 rc = lpfc_sli_issue_mbox(phba, 13735 pmb, 13736 MBX_NOWAIT); 13737 if (rc != MBX_BUSY) 13738 lpfc_printf_log(phba, 13739 KERN_ERR, 13740 LOG_TRACE_EVENT, 13741 "0350 rc should have" 13742 "been MBX_BUSY\n"); 13743 if (rc != MBX_NOT_FINISHED) 13744 goto send_current_mbox; 13745 } 13746 } 13747 spin_lock_irqsave( 13748 &phba->pport->work_port_lock, 13749 iflag); 13750 phba->pport->work_port_events &= 13751 ~WORKER_MBOX_TMO; 13752 spin_unlock_irqrestore( 13753 &phba->pport->work_port_lock, 13754 iflag); 13755 13756 /* Do NOT queue MBX_HEARTBEAT to the worker 13757 * thread for processing. 13758 */ 13759 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13760 /* Process mbox now */ 13761 phba->sli.mbox_active = NULL; 13762 phba->sli.sli_flag &= 13763 ~LPFC_SLI_MBOX_ACTIVE; 13764 if (pmb->mbox_cmpl) 13765 pmb->mbox_cmpl(phba, pmb); 13766 } else { 13767 /* Queue to worker thread to process */ 13768 lpfc_mbox_cmpl_put(phba, pmb); 13769 } 13770 } 13771 } else 13772 spin_unlock_irqrestore(&phba->hbalock, iflag); 13773 13774 if ((work_ha_copy & HA_MBATT) && 13775 (phba->sli.mbox_active == NULL)) { 13776 send_current_mbox: 13777 /* Process next mailbox command if there is one */ 13778 do { 13779 rc = lpfc_sli_issue_mbox(phba, NULL, 13780 MBX_NOWAIT); 13781 } while (rc == MBX_NOT_FINISHED); 13782 if (rc != MBX_SUCCESS) 13783 lpfc_printf_log(phba, KERN_ERR, 13784 LOG_TRACE_EVENT, 13785 "0349 rc should be " 13786 "MBX_SUCCESS\n"); 13787 } 13788 13789 spin_lock_irqsave(&phba->hbalock, iflag); 13790 phba->work_ha |= work_ha_copy; 13791 spin_unlock_irqrestore(&phba->hbalock, iflag); 13792 lpfc_worker_wake_up(phba); 13793 } 13794 return IRQ_HANDLED; 13795 unplug_error: 13796 spin_unlock_irqrestore(&phba->hbalock, iflag); 13797 return IRQ_HANDLED; 13798 13799 } /* lpfc_sli_sp_intr_handler */ 13800 13801 /** 13802 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13803 * @irq: Interrupt number. 13804 * @dev_id: The device context pointer. 13805 * 13806 * This function is directly called from the PCI layer as an interrupt 13807 * service routine when device with SLI-3 interface spec is enabled with 13808 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13809 * ring event in the HBA. However, when the device is enabled with either 13810 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13811 * device-level interrupt handler. When the PCI slot is in error recovery 13812 * or the HBA is undergoing initialization, the interrupt handler will not 13813 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13814 * the intrrupt context. This function is called without any lock held. 13815 * It gets the hbalock to access and update SLI data structures. 13816 * 13817 * This function returns IRQ_HANDLED when interrupt is handled else it 13818 * returns IRQ_NONE. 13819 **/ 13820 irqreturn_t 13821 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13822 { 13823 struct lpfc_hba *phba; 13824 uint32_t ha_copy; 13825 unsigned long status; 13826 unsigned long iflag; 13827 struct lpfc_sli_ring *pring; 13828 13829 /* Get the driver's phba structure from the dev_id and 13830 * assume the HBA is not interrupting. 13831 */ 13832 phba = (struct lpfc_hba *) dev_id; 13833 13834 if (unlikely(!phba)) 13835 return IRQ_NONE; 13836 13837 /* 13838 * Stuff needs to be attented to when this function is invoked as an 13839 * individual interrupt handler in MSI-X multi-message interrupt mode 13840 */ 13841 if (phba->intr_type == MSIX) { 13842 /* Check device state for handling interrupt */ 13843 if (lpfc_intr_state_check(phba)) 13844 return IRQ_NONE; 13845 /* Need to read HA REG for FCP ring and other ring events */ 13846 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13847 return IRQ_HANDLED; 13848 /* Clear up only attention source related to fast-path */ 13849 spin_lock_irqsave(&phba->hbalock, iflag); 13850 /* 13851 * If there is deferred error attention, do not check for 13852 * any interrupt. 13853 */ 13854 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13855 spin_unlock_irqrestore(&phba->hbalock, iflag); 13856 return IRQ_NONE; 13857 } 13858 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13859 phba->HAregaddr); 13860 readl(phba->HAregaddr); /* flush */ 13861 spin_unlock_irqrestore(&phba->hbalock, iflag); 13862 } else 13863 ha_copy = phba->ha_copy; 13864 13865 /* 13866 * Process all events on FCP ring. Take the optimized path for FCP IO. 13867 */ 13868 ha_copy &= ~(phba->work_ha_mask); 13869 13870 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13871 status >>= (4*LPFC_FCP_RING); 13872 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13873 if (status & HA_RXMASK) 13874 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13875 13876 if (phba->cfg_multi_ring_support == 2) { 13877 /* 13878 * Process all events on extra ring. Take the optimized path 13879 * for extra ring IO. 13880 */ 13881 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13882 status >>= (4*LPFC_EXTRA_RING); 13883 if (status & HA_RXMASK) { 13884 lpfc_sli_handle_fast_ring_event(phba, 13885 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13886 status); 13887 } 13888 } 13889 return IRQ_HANDLED; 13890 } /* lpfc_sli_fp_intr_handler */ 13891 13892 /** 13893 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 13894 * @irq: Interrupt number. 13895 * @dev_id: The device context pointer. 13896 * 13897 * This function is the HBA device-level interrupt handler to device with 13898 * SLI-3 interface spec, called from the PCI layer when either MSI or 13899 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 13900 * requires driver attention. This function invokes the slow-path interrupt 13901 * attention handling function and fast-path interrupt attention handling 13902 * function in turn to process the relevant HBA attention events. This 13903 * function is called without any lock held. It gets the hbalock to access 13904 * and update SLI data structures. 13905 * 13906 * This function returns IRQ_HANDLED when interrupt is handled, else it 13907 * returns IRQ_NONE. 13908 **/ 13909 irqreturn_t 13910 lpfc_sli_intr_handler(int irq, void *dev_id) 13911 { 13912 struct lpfc_hba *phba; 13913 irqreturn_t sp_irq_rc, fp_irq_rc; 13914 unsigned long status1, status2; 13915 uint32_t hc_copy; 13916 13917 /* 13918 * Get the driver's phba structure from the dev_id and 13919 * assume the HBA is not interrupting. 13920 */ 13921 phba = (struct lpfc_hba *) dev_id; 13922 13923 if (unlikely(!phba)) 13924 return IRQ_NONE; 13925 13926 /* Check device state for handling interrupt */ 13927 if (lpfc_intr_state_check(phba)) 13928 return IRQ_NONE; 13929 13930 spin_lock(&phba->hbalock); 13931 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 13932 spin_unlock(&phba->hbalock); 13933 return IRQ_HANDLED; 13934 } 13935 13936 if (unlikely(!phba->ha_copy)) { 13937 spin_unlock(&phba->hbalock); 13938 return IRQ_NONE; 13939 } else if (phba->ha_copy & HA_ERATT) { 13940 if (phba->hba_flag & HBA_ERATT_HANDLED) 13941 /* ERATT polling has handled ERATT */ 13942 phba->ha_copy &= ~HA_ERATT; 13943 else 13944 /* Indicate interrupt handler handles ERATT */ 13945 phba->hba_flag |= HBA_ERATT_HANDLED; 13946 } 13947 13948 /* 13949 * If there is deferred error attention, do not check for any interrupt. 13950 */ 13951 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13952 spin_unlock(&phba->hbalock); 13953 return IRQ_NONE; 13954 } 13955 13956 /* Clear attention sources except link and error attentions */ 13957 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 13958 spin_unlock(&phba->hbalock); 13959 return IRQ_HANDLED; 13960 } 13961 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 13962 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 13963 phba->HCregaddr); 13964 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 13965 writel(hc_copy, phba->HCregaddr); 13966 readl(phba->HAregaddr); /* flush */ 13967 spin_unlock(&phba->hbalock); 13968 13969 /* 13970 * Invokes slow-path host attention interrupt handling as appropriate. 13971 */ 13972 13973 /* status of events with mailbox and link attention */ 13974 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 13975 13976 /* status of events with ELS ring */ 13977 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 13978 status2 >>= (4*LPFC_ELS_RING); 13979 13980 if (status1 || (status2 & HA_RXMASK)) 13981 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 13982 else 13983 sp_irq_rc = IRQ_NONE; 13984 13985 /* 13986 * Invoke fast-path host attention interrupt handling as appropriate. 13987 */ 13988 13989 /* status of events with FCP ring */ 13990 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13991 status1 >>= (4*LPFC_FCP_RING); 13992 13993 /* status of events with extra ring */ 13994 if (phba->cfg_multi_ring_support == 2) { 13995 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13996 status2 >>= (4*LPFC_EXTRA_RING); 13997 } else 13998 status2 = 0; 13999 14000 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14001 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14002 else 14003 fp_irq_rc = IRQ_NONE; 14004 14005 /* Return device-level interrupt handling status */ 14006 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14007 } /* lpfc_sli_intr_handler */ 14008 14009 /** 14010 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14011 * @phba: pointer to lpfc hba data structure. 14012 * 14013 * This routine is invoked by the worker thread to process all the pending 14014 * SLI4 els abort xri events. 14015 **/ 14016 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14017 { 14018 struct lpfc_cq_event *cq_event; 14019 unsigned long iflags; 14020 14021 /* First, declare the els xri abort event has been handled */ 14022 spin_lock_irqsave(&phba->hbalock, iflags); 14023 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 14024 spin_unlock_irqrestore(&phba->hbalock, iflags); 14025 14026 /* Now, handle all the els xri abort events */ 14027 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14028 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14029 /* Get the first event from the head of the event queue */ 14030 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14031 cq_event, struct lpfc_cq_event, list); 14032 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14033 iflags); 14034 /* Notify aborted XRI for ELS work queue */ 14035 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14036 14037 /* Free the event processed back to the free pool */ 14038 lpfc_sli4_cq_event_release(phba, cq_event); 14039 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14040 iflags); 14041 } 14042 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14043 } 14044 14045 /** 14046 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 14047 * @phba: pointer to lpfc hba data structure 14048 * @pIocbIn: pointer to the rspiocbq 14049 * @pIocbOut: pointer to the cmdiocbq 14050 * @wcqe: pointer to the complete wcqe 14051 * 14052 * This routine transfers the fields of a command iocbq to a response iocbq 14053 * by copying all the IOCB fields from command iocbq and transferring the 14054 * completion status information from the complete wcqe. 14055 **/ 14056 static void 14057 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 14058 struct lpfc_iocbq *pIocbIn, 14059 struct lpfc_iocbq *pIocbOut, 14060 struct lpfc_wcqe_complete *wcqe) 14061 { 14062 int numBdes, i; 14063 unsigned long iflags; 14064 uint32_t status, max_response; 14065 struct lpfc_dmabuf *dmabuf; 14066 struct ulp_bde64 *bpl, bde; 14067 size_t offset = offsetof(struct lpfc_iocbq, iocb); 14068 14069 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 14070 sizeof(struct lpfc_iocbq) - offset); 14071 /* Map WCQE parameters into irspiocb parameters */ 14072 status = bf_get(lpfc_wcqe_c_status, wcqe); 14073 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 14074 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 14075 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 14076 pIocbIn->iocb.un.fcpi.fcpi_parm = 14077 pIocbOut->iocb.un.fcpi.fcpi_parm - 14078 wcqe->total_data_placed; 14079 else 14080 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 14081 else { 14082 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 14083 switch (pIocbOut->iocb.ulpCommand) { 14084 case CMD_ELS_REQUEST64_CR: 14085 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 14086 bpl = (struct ulp_bde64 *)dmabuf->virt; 14087 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 14088 max_response = bde.tus.f.bdeSize; 14089 break; 14090 case CMD_GEN_REQUEST64_CR: 14091 max_response = 0; 14092 if (!pIocbOut->context3) 14093 break; 14094 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 14095 sizeof(struct ulp_bde64); 14096 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 14097 bpl = (struct ulp_bde64 *)dmabuf->virt; 14098 for (i = 0; i < numBdes; i++) { 14099 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 14100 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 14101 max_response += bde.tus.f.bdeSize; 14102 } 14103 break; 14104 default: 14105 max_response = wcqe->total_data_placed; 14106 break; 14107 } 14108 if (max_response < wcqe->total_data_placed) 14109 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 14110 else 14111 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 14112 wcqe->total_data_placed; 14113 } 14114 14115 /* Convert BG errors for completion status */ 14116 if (status == CQE_STATUS_DI_ERROR) { 14117 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 14118 14119 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 14120 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 14121 else 14122 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 14123 14124 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 14125 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 14126 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14127 BGS_GUARD_ERR_MASK; 14128 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 14129 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14130 BGS_APPTAG_ERR_MASK; 14131 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 14132 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14133 BGS_REFTAG_ERR_MASK; 14134 14135 /* Check to see if there was any good data before the error */ 14136 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 14137 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14138 BGS_HI_WATER_MARK_PRESENT_MASK; 14139 pIocbIn->iocb.unsli3.sli3_bg.bghm = 14140 wcqe->total_data_placed; 14141 } 14142 14143 /* 14144 * Set ALL the error bits to indicate we don't know what 14145 * type of error it is. 14146 */ 14147 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 14148 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14149 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 14150 BGS_GUARD_ERR_MASK); 14151 } 14152 14153 /* Pick up HBA exchange busy condition */ 14154 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14155 spin_lock_irqsave(&phba->hbalock, iflags); 14156 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 14157 spin_unlock_irqrestore(&phba->hbalock, iflags); 14158 } 14159 } 14160 14161 /** 14162 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 14163 * @phba: Pointer to HBA context object. 14164 * @irspiocbq: Pointer to work-queue completion queue entry. 14165 * 14166 * This routine handles an ELS work-queue completion event and construct 14167 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 14168 * discovery engine to handle. 14169 * 14170 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14171 **/ 14172 static struct lpfc_iocbq * 14173 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 14174 struct lpfc_iocbq *irspiocbq) 14175 { 14176 struct lpfc_sli_ring *pring; 14177 struct lpfc_iocbq *cmdiocbq; 14178 struct lpfc_wcqe_complete *wcqe; 14179 unsigned long iflags; 14180 14181 pring = lpfc_phba_elsring(phba); 14182 if (unlikely(!pring)) 14183 return NULL; 14184 14185 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14186 pring->stats.iocb_event++; 14187 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14188 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14189 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14190 if (unlikely(!cmdiocbq)) { 14191 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14192 "0386 ELS complete with no corresponding " 14193 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14194 wcqe->word0, wcqe->total_data_placed, 14195 wcqe->parameter, wcqe->word3); 14196 lpfc_sli_release_iocbq(phba, irspiocbq); 14197 return NULL; 14198 } 14199 14200 spin_lock_irqsave(&pring->ring_lock, iflags); 14201 /* Put the iocb back on the txcmplq */ 14202 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14203 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14204 14205 /* Fake the irspiocbq and copy necessary response information */ 14206 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 14207 14208 return irspiocbq; 14209 } 14210 14211 inline struct lpfc_cq_event * 14212 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14213 { 14214 struct lpfc_cq_event *cq_event; 14215 14216 /* Allocate a new internal CQ_EVENT entry */ 14217 cq_event = lpfc_sli4_cq_event_alloc(phba); 14218 if (!cq_event) { 14219 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14220 "0602 Failed to alloc CQ_EVENT entry\n"); 14221 return NULL; 14222 } 14223 14224 /* Move the CQE into the event */ 14225 memcpy(&cq_event->cqe, entry, size); 14226 return cq_event; 14227 } 14228 14229 /** 14230 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14231 * @phba: Pointer to HBA context object. 14232 * @mcqe: Pointer to mailbox completion queue entry. 14233 * 14234 * This routine process a mailbox completion queue entry with asynchronous 14235 * event. 14236 * 14237 * Return: true if work posted to worker thread, otherwise false. 14238 **/ 14239 static bool 14240 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14241 { 14242 struct lpfc_cq_event *cq_event; 14243 unsigned long iflags; 14244 14245 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14246 "0392 Async Event: word0:x%x, word1:x%x, " 14247 "word2:x%x, word3:x%x\n", mcqe->word0, 14248 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14249 14250 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14251 if (!cq_event) 14252 return false; 14253 14254 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14255 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14256 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14257 14258 /* Set the async event flag */ 14259 spin_lock_irqsave(&phba->hbalock, iflags); 14260 phba->hba_flag |= ASYNC_EVENT; 14261 spin_unlock_irqrestore(&phba->hbalock, iflags); 14262 14263 return true; 14264 } 14265 14266 /** 14267 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14268 * @phba: Pointer to HBA context object. 14269 * @mcqe: Pointer to mailbox completion queue entry. 14270 * 14271 * This routine process a mailbox completion queue entry with mailbox 14272 * completion event. 14273 * 14274 * Return: true if work posted to worker thread, otherwise false. 14275 **/ 14276 static bool 14277 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14278 { 14279 uint32_t mcqe_status; 14280 MAILBOX_t *mbox, *pmbox; 14281 struct lpfc_mqe *mqe; 14282 struct lpfc_vport *vport; 14283 struct lpfc_nodelist *ndlp; 14284 struct lpfc_dmabuf *mp; 14285 unsigned long iflags; 14286 LPFC_MBOXQ_t *pmb; 14287 bool workposted = false; 14288 int rc; 14289 14290 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14291 if (!bf_get(lpfc_trailer_completed, mcqe)) 14292 goto out_no_mqe_complete; 14293 14294 /* Get the reference to the active mbox command */ 14295 spin_lock_irqsave(&phba->hbalock, iflags); 14296 pmb = phba->sli.mbox_active; 14297 if (unlikely(!pmb)) { 14298 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14299 "1832 No pending MBOX command to handle\n"); 14300 spin_unlock_irqrestore(&phba->hbalock, iflags); 14301 goto out_no_mqe_complete; 14302 } 14303 spin_unlock_irqrestore(&phba->hbalock, iflags); 14304 mqe = &pmb->u.mqe; 14305 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14306 mbox = phba->mbox; 14307 vport = pmb->vport; 14308 14309 /* Reset heartbeat timer */ 14310 phba->last_completion_time = jiffies; 14311 del_timer(&phba->sli.mbox_tmo); 14312 14313 /* Move mbox data to caller's mailbox region, do endian swapping */ 14314 if (pmb->mbox_cmpl && mbox) 14315 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14316 14317 /* 14318 * For mcqe errors, conditionally move a modified error code to 14319 * the mbox so that the error will not be missed. 14320 */ 14321 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14322 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14323 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14324 bf_set(lpfc_mqe_status, mqe, 14325 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14326 } 14327 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14328 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14329 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14330 "MBOX dflt rpi: status:x%x rpi:x%x", 14331 mcqe_status, 14332 pmbox->un.varWords[0], 0); 14333 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14334 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 14335 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 14336 14337 /* Reg_LOGIN of dflt RPI was successful. Mark the 14338 * node as having an UNREG_LOGIN in progress to stop 14339 * an unsolicited PLOGI from the same NPortId from 14340 * starting another mailbox transaction. 14341 */ 14342 spin_lock_irqsave(&ndlp->lock, iflags); 14343 ndlp->nlp_flag |= NLP_UNREG_INP; 14344 spin_unlock_irqrestore(&ndlp->lock, iflags); 14345 lpfc_unreg_login(phba, vport->vpi, 14346 pmbox->un.varWords[0], pmb); 14347 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14348 pmb->ctx_buf = mp; 14349 14350 /* No reference taken here. This is a default 14351 * RPI reg/immediate unreg cycle. The reference was 14352 * taken in the reg rpi path and is released when 14353 * this mailbox completes. 14354 */ 14355 pmb->ctx_ndlp = ndlp; 14356 pmb->vport = vport; 14357 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14358 if (rc != MBX_BUSY) 14359 lpfc_printf_log(phba, KERN_ERR, 14360 LOG_TRACE_EVENT, 14361 "0385 rc should " 14362 "have been MBX_BUSY\n"); 14363 if (rc != MBX_NOT_FINISHED) 14364 goto send_current_mbox; 14365 } 14366 } 14367 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14368 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14369 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14370 14371 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14372 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14373 spin_lock_irqsave(&phba->hbalock, iflags); 14374 /* Release the mailbox command posting token */ 14375 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14376 phba->sli.mbox_active = NULL; 14377 if (bf_get(lpfc_trailer_consumed, mcqe)) 14378 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14379 spin_unlock_irqrestore(&phba->hbalock, iflags); 14380 14381 /* Post the next mbox command, if there is one */ 14382 lpfc_sli4_post_async_mbox(phba); 14383 14384 /* Process cmpl now */ 14385 if (pmb->mbox_cmpl) 14386 pmb->mbox_cmpl(phba, pmb); 14387 return false; 14388 } 14389 14390 /* There is mailbox completion work to queue to the worker thread */ 14391 spin_lock_irqsave(&phba->hbalock, iflags); 14392 __lpfc_mbox_cmpl_put(phba, pmb); 14393 phba->work_ha |= HA_MBATT; 14394 spin_unlock_irqrestore(&phba->hbalock, iflags); 14395 workposted = true; 14396 14397 send_current_mbox: 14398 spin_lock_irqsave(&phba->hbalock, iflags); 14399 /* Release the mailbox command posting token */ 14400 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14401 /* Setting active mailbox pointer need to be in sync to flag clear */ 14402 phba->sli.mbox_active = NULL; 14403 if (bf_get(lpfc_trailer_consumed, mcqe)) 14404 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14405 spin_unlock_irqrestore(&phba->hbalock, iflags); 14406 /* Wake up worker thread to post the next pending mailbox command */ 14407 lpfc_worker_wake_up(phba); 14408 return workposted; 14409 14410 out_no_mqe_complete: 14411 spin_lock_irqsave(&phba->hbalock, iflags); 14412 if (bf_get(lpfc_trailer_consumed, mcqe)) 14413 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14414 spin_unlock_irqrestore(&phba->hbalock, iflags); 14415 return false; 14416 } 14417 14418 /** 14419 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14420 * @phba: Pointer to HBA context object. 14421 * @cq: Pointer to associated CQ 14422 * @cqe: Pointer to mailbox completion queue entry. 14423 * 14424 * This routine process a mailbox completion queue entry, it invokes the 14425 * proper mailbox complete handling or asynchronous event handling routine 14426 * according to the MCQE's async bit. 14427 * 14428 * Return: true if work posted to worker thread, otherwise false. 14429 **/ 14430 static bool 14431 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14432 struct lpfc_cqe *cqe) 14433 { 14434 struct lpfc_mcqe mcqe; 14435 bool workposted; 14436 14437 cq->CQ_mbox++; 14438 14439 /* Copy the mailbox MCQE and convert endian order as needed */ 14440 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14441 14442 /* Invoke the proper event handling routine */ 14443 if (!bf_get(lpfc_trailer_async, &mcqe)) 14444 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14445 else 14446 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14447 return workposted; 14448 } 14449 14450 /** 14451 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14452 * @phba: Pointer to HBA context object. 14453 * @cq: Pointer to associated CQ 14454 * @wcqe: Pointer to work-queue completion queue entry. 14455 * 14456 * This routine handles an ELS work-queue completion event. 14457 * 14458 * Return: true if work posted to worker thread, otherwise false. 14459 **/ 14460 static bool 14461 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14462 struct lpfc_wcqe_complete *wcqe) 14463 { 14464 struct lpfc_iocbq *irspiocbq; 14465 unsigned long iflags; 14466 struct lpfc_sli_ring *pring = cq->pring; 14467 int txq_cnt = 0; 14468 int txcmplq_cnt = 0; 14469 14470 /* Check for response status */ 14471 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14472 /* Log the error status */ 14473 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14474 "0357 ELS CQE error: status=x%x: " 14475 "CQE: %08x %08x %08x %08x\n", 14476 bf_get(lpfc_wcqe_c_status, wcqe), 14477 wcqe->word0, wcqe->total_data_placed, 14478 wcqe->parameter, wcqe->word3); 14479 } 14480 14481 /* Get an irspiocbq for later ELS response processing use */ 14482 irspiocbq = lpfc_sli_get_iocbq(phba); 14483 if (!irspiocbq) { 14484 if (!list_empty(&pring->txq)) 14485 txq_cnt++; 14486 if (!list_empty(&pring->txcmplq)) 14487 txcmplq_cnt++; 14488 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14489 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14490 "els_txcmplq_cnt=%d\n", 14491 txq_cnt, phba->iocb_cnt, 14492 txcmplq_cnt); 14493 return false; 14494 } 14495 14496 /* Save off the slow-path queue event for work thread to process */ 14497 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14498 spin_lock_irqsave(&phba->hbalock, iflags); 14499 list_add_tail(&irspiocbq->cq_event.list, 14500 &phba->sli4_hba.sp_queue_event); 14501 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14502 spin_unlock_irqrestore(&phba->hbalock, iflags); 14503 14504 return true; 14505 } 14506 14507 /** 14508 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14509 * @phba: Pointer to HBA context object. 14510 * @wcqe: Pointer to work-queue completion queue entry. 14511 * 14512 * This routine handles slow-path WQ entry consumed event by invoking the 14513 * proper WQ release routine to the slow-path WQ. 14514 **/ 14515 static void 14516 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14517 struct lpfc_wcqe_release *wcqe) 14518 { 14519 /* sanity check on queue memory */ 14520 if (unlikely(!phba->sli4_hba.els_wq)) 14521 return; 14522 /* Check for the slow-path ELS work queue */ 14523 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14524 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14525 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14526 else 14527 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14528 "2579 Slow-path wqe consume event carries " 14529 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14530 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14531 phba->sli4_hba.els_wq->queue_id); 14532 } 14533 14534 /** 14535 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14536 * @phba: Pointer to HBA context object. 14537 * @cq: Pointer to a WQ completion queue. 14538 * @wcqe: Pointer to work-queue completion queue entry. 14539 * 14540 * This routine handles an XRI abort event. 14541 * 14542 * Return: true if work posted to worker thread, otherwise false. 14543 **/ 14544 static bool 14545 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14546 struct lpfc_queue *cq, 14547 struct sli4_wcqe_xri_aborted *wcqe) 14548 { 14549 bool workposted = false; 14550 struct lpfc_cq_event *cq_event; 14551 unsigned long iflags; 14552 14553 switch (cq->subtype) { 14554 case LPFC_IO: 14555 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14556 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14557 /* Notify aborted XRI for NVME work queue */ 14558 if (phba->nvmet_support) 14559 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14560 } 14561 workposted = false; 14562 break; 14563 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14564 case LPFC_ELS: 14565 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14566 if (!cq_event) { 14567 workposted = false; 14568 break; 14569 } 14570 cq_event->hdwq = cq->hdwq; 14571 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14572 iflags); 14573 list_add_tail(&cq_event->list, 14574 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14575 /* Set the els xri abort event flag */ 14576 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 14577 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14578 iflags); 14579 workposted = true; 14580 break; 14581 default: 14582 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14583 "0603 Invalid CQ subtype %d: " 14584 "%08x %08x %08x %08x\n", 14585 cq->subtype, wcqe->word0, wcqe->parameter, 14586 wcqe->word2, wcqe->word3); 14587 workposted = false; 14588 break; 14589 } 14590 return workposted; 14591 } 14592 14593 #define FC_RCTL_MDS_DIAGS 0xF4 14594 14595 /** 14596 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14597 * @phba: Pointer to HBA context object. 14598 * @rcqe: Pointer to receive-queue completion queue entry. 14599 * 14600 * This routine process a receive-queue completion queue entry. 14601 * 14602 * Return: true if work posted to worker thread, otherwise false. 14603 **/ 14604 static bool 14605 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14606 { 14607 bool workposted = false; 14608 struct fc_frame_header *fc_hdr; 14609 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14610 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14611 struct lpfc_nvmet_tgtport *tgtp; 14612 struct hbq_dmabuf *dma_buf; 14613 uint32_t status, rq_id; 14614 unsigned long iflags; 14615 14616 /* sanity check on queue memory */ 14617 if (unlikely(!hrq) || unlikely(!drq)) 14618 return workposted; 14619 14620 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14621 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14622 else 14623 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14624 if (rq_id != hrq->queue_id) 14625 goto out; 14626 14627 status = bf_get(lpfc_rcqe_status, rcqe); 14628 switch (status) { 14629 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14630 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14631 "2537 Receive Frame Truncated!!\n"); 14632 fallthrough; 14633 case FC_STATUS_RQ_SUCCESS: 14634 spin_lock_irqsave(&phba->hbalock, iflags); 14635 lpfc_sli4_rq_release(hrq, drq); 14636 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14637 if (!dma_buf) { 14638 hrq->RQ_no_buf_found++; 14639 spin_unlock_irqrestore(&phba->hbalock, iflags); 14640 goto out; 14641 } 14642 hrq->RQ_rcv_buf++; 14643 hrq->RQ_buf_posted--; 14644 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14645 14646 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14647 14648 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14649 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14650 spin_unlock_irqrestore(&phba->hbalock, iflags); 14651 /* Handle MDS Loopback frames */ 14652 if (!(phba->pport->load_flag & FC_UNLOADING)) 14653 lpfc_sli4_handle_mds_loopback(phba->pport, 14654 dma_buf); 14655 else 14656 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14657 break; 14658 } 14659 14660 /* save off the frame for the work thread to process */ 14661 list_add_tail(&dma_buf->cq_event.list, 14662 &phba->sli4_hba.sp_queue_event); 14663 /* Frame received */ 14664 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14665 spin_unlock_irqrestore(&phba->hbalock, iflags); 14666 workposted = true; 14667 break; 14668 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14669 if (phba->nvmet_support) { 14670 tgtp = phba->targetport->private; 14671 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14672 "6402 RQE Error x%x, posted %d err_cnt " 14673 "%d: %x %x %x\n", 14674 status, hrq->RQ_buf_posted, 14675 hrq->RQ_no_posted_buf, 14676 atomic_read(&tgtp->rcv_fcp_cmd_in), 14677 atomic_read(&tgtp->rcv_fcp_cmd_out), 14678 atomic_read(&tgtp->xmt_fcp_release)); 14679 } 14680 fallthrough; 14681 14682 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14683 hrq->RQ_no_posted_buf++; 14684 /* Post more buffers if possible */ 14685 spin_lock_irqsave(&phba->hbalock, iflags); 14686 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14687 spin_unlock_irqrestore(&phba->hbalock, iflags); 14688 workposted = true; 14689 break; 14690 } 14691 out: 14692 return workposted; 14693 } 14694 14695 /** 14696 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14697 * @phba: Pointer to HBA context object. 14698 * @cq: Pointer to the completion queue. 14699 * @cqe: Pointer to a completion queue entry. 14700 * 14701 * This routine process a slow-path work-queue or receive queue completion queue 14702 * entry. 14703 * 14704 * Return: true if work posted to worker thread, otherwise false. 14705 **/ 14706 static bool 14707 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14708 struct lpfc_cqe *cqe) 14709 { 14710 struct lpfc_cqe cqevt; 14711 bool workposted = false; 14712 14713 /* Copy the work queue CQE and convert endian order if needed */ 14714 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14715 14716 /* Check and process for different type of WCQE and dispatch */ 14717 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14718 case CQE_CODE_COMPL_WQE: 14719 /* Process the WQ/RQ complete event */ 14720 phba->last_completion_time = jiffies; 14721 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14722 (struct lpfc_wcqe_complete *)&cqevt); 14723 break; 14724 case CQE_CODE_RELEASE_WQE: 14725 /* Process the WQ release event */ 14726 lpfc_sli4_sp_handle_rel_wcqe(phba, 14727 (struct lpfc_wcqe_release *)&cqevt); 14728 break; 14729 case CQE_CODE_XRI_ABORTED: 14730 /* Process the WQ XRI abort event */ 14731 phba->last_completion_time = jiffies; 14732 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14733 (struct sli4_wcqe_xri_aborted *)&cqevt); 14734 break; 14735 case CQE_CODE_RECEIVE: 14736 case CQE_CODE_RECEIVE_V1: 14737 /* Process the RQ event */ 14738 phba->last_completion_time = jiffies; 14739 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14740 (struct lpfc_rcqe *)&cqevt); 14741 break; 14742 default: 14743 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14744 "0388 Not a valid WCQE code: x%x\n", 14745 bf_get(lpfc_cqe_code, &cqevt)); 14746 break; 14747 } 14748 return workposted; 14749 } 14750 14751 /** 14752 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14753 * @phba: Pointer to HBA context object. 14754 * @eqe: Pointer to fast-path event queue entry. 14755 * @speq: Pointer to slow-path event queue. 14756 * 14757 * This routine process a event queue entry from the slow-path event queue. 14758 * It will check the MajorCode and MinorCode to determine this is for a 14759 * completion event on a completion queue, if not, an error shall be logged 14760 * and just return. Otherwise, it will get to the corresponding completion 14761 * queue and process all the entries on that completion queue, rearm the 14762 * completion queue, and then return. 14763 * 14764 **/ 14765 static void 14766 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14767 struct lpfc_queue *speq) 14768 { 14769 struct lpfc_queue *cq = NULL, *childq; 14770 uint16_t cqid; 14771 int ret = 0; 14772 14773 /* Get the reference to the corresponding CQ */ 14774 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14775 14776 list_for_each_entry(childq, &speq->child_list, list) { 14777 if (childq->queue_id == cqid) { 14778 cq = childq; 14779 break; 14780 } 14781 } 14782 if (unlikely(!cq)) { 14783 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14784 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14785 "0365 Slow-path CQ identifier " 14786 "(%d) does not exist\n", cqid); 14787 return; 14788 } 14789 14790 /* Save EQ associated with this CQ */ 14791 cq->assoc_qp = speq; 14792 14793 if (is_kdump_kernel()) 14794 ret = queue_work(phba->wq, &cq->spwork); 14795 else 14796 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14797 14798 if (!ret) 14799 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14800 "0390 Cannot schedule queue work " 14801 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14802 cqid, cq->queue_id, raw_smp_processor_id()); 14803 } 14804 14805 /** 14806 * __lpfc_sli4_process_cq - Process elements of a CQ 14807 * @phba: Pointer to HBA context object. 14808 * @cq: Pointer to CQ to be processed 14809 * @handler: Routine to process each cqe 14810 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14811 * @poll_mode: Polling mode we were called from 14812 * 14813 * This routine processes completion queue entries in a CQ. While a valid 14814 * queue element is found, the handler is called. During processing checks 14815 * are made for periodic doorbell writes to let the hardware know of 14816 * element consumption. 14817 * 14818 * If the max limit on cqes to process is hit, or there are no more valid 14819 * entries, the loop stops. If we processed a sufficient number of elements, 14820 * meaning there is sufficient load, rather than rearming and generating 14821 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14822 * indicates no rescheduling. 14823 * 14824 * Returns True if work scheduled, False otherwise. 14825 **/ 14826 static bool 14827 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14828 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14829 struct lpfc_cqe *), unsigned long *delay, 14830 enum lpfc_poll_mode poll_mode) 14831 { 14832 struct lpfc_cqe *cqe; 14833 bool workposted = false; 14834 int count = 0, consumed = 0; 14835 bool arm = true; 14836 14837 /* default - no reschedule */ 14838 *delay = 0; 14839 14840 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14841 goto rearm_and_exit; 14842 14843 /* Process all the entries to the CQ */ 14844 cq->q_flag = 0; 14845 cqe = lpfc_sli4_cq_get(cq); 14846 while (cqe) { 14847 workposted |= handler(phba, cq, cqe); 14848 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14849 14850 consumed++; 14851 if (!(++count % cq->max_proc_limit)) 14852 break; 14853 14854 if (!(count % cq->notify_interval)) { 14855 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14856 LPFC_QUEUE_NOARM); 14857 consumed = 0; 14858 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14859 } 14860 14861 if (count == LPFC_NVMET_CQ_NOTIFY) 14862 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14863 14864 cqe = lpfc_sli4_cq_get(cq); 14865 } 14866 if (count >= phba->cfg_cq_poll_threshold) { 14867 *delay = 1; 14868 arm = false; 14869 } 14870 14871 /* Note: complete the irq_poll softirq before rearming CQ */ 14872 if (poll_mode == LPFC_IRQ_POLL) 14873 irq_poll_complete(&cq->iop); 14874 14875 /* Track the max number of CQEs processed in 1 EQ */ 14876 if (count > cq->CQ_max_cqe) 14877 cq->CQ_max_cqe = count; 14878 14879 cq->assoc_qp->EQ_cqe_cnt += count; 14880 14881 /* Catch the no cq entry condition */ 14882 if (unlikely(count == 0)) 14883 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14884 "0369 No entry from completion queue " 14885 "qid=%d\n", cq->queue_id); 14886 14887 xchg(&cq->queue_claimed, 0); 14888 14889 rearm_and_exit: 14890 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14891 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14892 14893 return workposted; 14894 } 14895 14896 /** 14897 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14898 * @cq: pointer to CQ to process 14899 * 14900 * This routine calls the cq processing routine with a handler specific 14901 * to the type of queue bound to it. 14902 * 14903 * The CQ routine returns two values: the first is the calling status, 14904 * which indicates whether work was queued to the background discovery 14905 * thread. If true, the routine should wakeup the discovery thread; 14906 * the second is the delay parameter. If non-zero, rather than rearming 14907 * the CQ and yet another interrupt, the CQ handler should be queued so 14908 * that it is processed in a subsequent polling action. The value of 14909 * the delay indicates when to reschedule it. 14910 **/ 14911 static void 14912 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14913 { 14914 struct lpfc_hba *phba = cq->phba; 14915 unsigned long delay; 14916 bool workposted = false; 14917 int ret = 0; 14918 14919 /* Process and rearm the CQ */ 14920 switch (cq->type) { 14921 case LPFC_MCQ: 14922 workposted |= __lpfc_sli4_process_cq(phba, cq, 14923 lpfc_sli4_sp_handle_mcqe, 14924 &delay, LPFC_QUEUE_WORK); 14925 break; 14926 case LPFC_WCQ: 14927 if (cq->subtype == LPFC_IO) 14928 workposted |= __lpfc_sli4_process_cq(phba, cq, 14929 lpfc_sli4_fp_handle_cqe, 14930 &delay, LPFC_QUEUE_WORK); 14931 else 14932 workposted |= __lpfc_sli4_process_cq(phba, cq, 14933 lpfc_sli4_sp_handle_cqe, 14934 &delay, LPFC_QUEUE_WORK); 14935 break; 14936 default: 14937 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14938 "0370 Invalid completion queue type (%d)\n", 14939 cq->type); 14940 return; 14941 } 14942 14943 if (delay) { 14944 if (is_kdump_kernel()) 14945 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14946 delay); 14947 else 14948 ret = queue_delayed_work_on(cq->chann, phba->wq, 14949 &cq->sched_spwork, delay); 14950 if (!ret) 14951 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14952 "0394 Cannot schedule queue work " 14953 "for cqid=%d on CPU %d\n", 14954 cq->queue_id, cq->chann); 14955 } 14956 14957 /* wake up worker thread if there are works to be done */ 14958 if (workposted) 14959 lpfc_worker_wake_up(phba); 14960 } 14961 14962 /** 14963 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14964 * interrupt 14965 * @work: pointer to work element 14966 * 14967 * translates from the work handler and calls the slow-path handler. 14968 **/ 14969 static void 14970 lpfc_sli4_sp_process_cq(struct work_struct *work) 14971 { 14972 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14973 14974 __lpfc_sli4_sp_process_cq(cq); 14975 } 14976 14977 /** 14978 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14979 * @work: pointer to work element 14980 * 14981 * translates from the work handler and calls the slow-path handler. 14982 **/ 14983 static void 14984 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 14985 { 14986 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14987 struct lpfc_queue, sched_spwork); 14988 14989 __lpfc_sli4_sp_process_cq(cq); 14990 } 14991 14992 /** 14993 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 14994 * @phba: Pointer to HBA context object. 14995 * @cq: Pointer to associated CQ 14996 * @wcqe: Pointer to work-queue completion queue entry. 14997 * 14998 * This routine process a fast-path work queue completion entry from fast-path 14999 * event queue for FCP command response completion. 15000 **/ 15001 static void 15002 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15003 struct lpfc_wcqe_complete *wcqe) 15004 { 15005 struct lpfc_sli_ring *pring = cq->pring; 15006 struct lpfc_iocbq *cmdiocbq; 15007 struct lpfc_iocbq irspiocbq; 15008 unsigned long iflags; 15009 15010 /* Check for response status */ 15011 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15012 /* If resource errors reported from HBA, reduce queue 15013 * depth of the SCSI device. 15014 */ 15015 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15016 IOSTAT_LOCAL_REJECT)) && 15017 ((wcqe->parameter & IOERR_PARAM_MASK) == 15018 IOERR_NO_RESOURCES)) 15019 phba->lpfc_rampdown_queue_depth(phba); 15020 15021 /* Log the cmpl status */ 15022 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15023 "0373 FCP CQE cmpl: status=x%x: " 15024 "CQE: %08x %08x %08x %08x\n", 15025 bf_get(lpfc_wcqe_c_status, wcqe), 15026 wcqe->word0, wcqe->total_data_placed, 15027 wcqe->parameter, wcqe->word3); 15028 } 15029 15030 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15031 spin_lock_irqsave(&pring->ring_lock, iflags); 15032 pring->stats.iocb_event++; 15033 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15034 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15035 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15036 if (unlikely(!cmdiocbq)) { 15037 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15038 "0374 FCP complete with no corresponding " 15039 "cmdiocb: iotag (%d)\n", 15040 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15041 return; 15042 } 15043 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15044 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15045 #endif 15046 if (cmdiocbq->iocb_cmpl == NULL) { 15047 if (cmdiocbq->wqe_cmpl) { 15048 /* For FCP the flag is cleared in wqe_cmpl */ 15049 if (!(cmdiocbq->iocb_flag & LPFC_IO_FCP) && 15050 cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 15051 spin_lock_irqsave(&phba->hbalock, iflags); 15052 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 15053 spin_unlock_irqrestore(&phba->hbalock, iflags); 15054 } 15055 15056 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15057 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 15058 return; 15059 } 15060 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15061 "0375 FCP cmdiocb not callback function " 15062 "iotag: (%d)\n", 15063 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15064 return; 15065 } 15066 15067 /* Only SLI4 non-IO commands stil use IOCB */ 15068 /* Fake the irspiocb and copy necessary response information */ 15069 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 15070 15071 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 15072 spin_lock_irqsave(&phba->hbalock, iflags); 15073 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 15074 spin_unlock_irqrestore(&phba->hbalock, iflags); 15075 } 15076 15077 /* Pass the cmd_iocb and the rsp state to the upper layer */ 15078 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 15079 } 15080 15081 /** 15082 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15083 * @phba: Pointer to HBA context object. 15084 * @cq: Pointer to completion queue. 15085 * @wcqe: Pointer to work-queue completion queue entry. 15086 * 15087 * This routine handles an fast-path WQ entry consumed event by invoking the 15088 * proper WQ release routine to the slow-path WQ. 15089 **/ 15090 static void 15091 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15092 struct lpfc_wcqe_release *wcqe) 15093 { 15094 struct lpfc_queue *childwq; 15095 bool wqid_matched = false; 15096 uint16_t hba_wqid; 15097 15098 /* Check for fast-path FCP work queue release */ 15099 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15100 list_for_each_entry(childwq, &cq->child_list, list) { 15101 if (childwq->queue_id == hba_wqid) { 15102 lpfc_sli4_wq_release(childwq, 15103 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15104 if (childwq->q_flag & HBA_NVMET_WQFULL) 15105 lpfc_nvmet_wqfull_process(phba, childwq); 15106 wqid_matched = true; 15107 break; 15108 } 15109 } 15110 /* Report warning log message if no match found */ 15111 if (wqid_matched != true) 15112 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15113 "2580 Fast-path wqe consume event carries " 15114 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15115 } 15116 15117 /** 15118 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15119 * @phba: Pointer to HBA context object. 15120 * @cq: Pointer to completion queue. 15121 * @rcqe: Pointer to receive-queue completion queue entry. 15122 * 15123 * This routine process a receive-queue completion queue entry. 15124 * 15125 * Return: true if work posted to worker thread, otherwise false. 15126 **/ 15127 static bool 15128 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15129 struct lpfc_rcqe *rcqe) 15130 { 15131 bool workposted = false; 15132 struct lpfc_queue *hrq; 15133 struct lpfc_queue *drq; 15134 struct rqb_dmabuf *dma_buf; 15135 struct fc_frame_header *fc_hdr; 15136 struct lpfc_nvmet_tgtport *tgtp; 15137 uint32_t status, rq_id; 15138 unsigned long iflags; 15139 uint32_t fctl, idx; 15140 15141 if ((phba->nvmet_support == 0) || 15142 (phba->sli4_hba.nvmet_cqset == NULL)) 15143 return workposted; 15144 15145 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15146 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15147 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15148 15149 /* sanity check on queue memory */ 15150 if (unlikely(!hrq) || unlikely(!drq)) 15151 return workposted; 15152 15153 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15154 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15155 else 15156 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15157 15158 if ((phba->nvmet_support == 0) || 15159 (rq_id != hrq->queue_id)) 15160 return workposted; 15161 15162 status = bf_get(lpfc_rcqe_status, rcqe); 15163 switch (status) { 15164 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15165 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15166 "6126 Receive Frame Truncated!!\n"); 15167 fallthrough; 15168 case FC_STATUS_RQ_SUCCESS: 15169 spin_lock_irqsave(&phba->hbalock, iflags); 15170 lpfc_sli4_rq_release(hrq, drq); 15171 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15172 if (!dma_buf) { 15173 hrq->RQ_no_buf_found++; 15174 spin_unlock_irqrestore(&phba->hbalock, iflags); 15175 goto out; 15176 } 15177 spin_unlock_irqrestore(&phba->hbalock, iflags); 15178 hrq->RQ_rcv_buf++; 15179 hrq->RQ_buf_posted--; 15180 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15181 15182 /* Just some basic sanity checks on FCP Command frame */ 15183 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15184 fc_hdr->fh_f_ctl[1] << 8 | 15185 fc_hdr->fh_f_ctl[2]); 15186 if (((fctl & 15187 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15188 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15189 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15190 goto drop; 15191 15192 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15193 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15194 lpfc_nvmet_unsol_fcp_event( 15195 phba, idx, dma_buf, cq->isr_timestamp, 15196 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15197 return false; 15198 } 15199 drop: 15200 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15201 break; 15202 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15203 if (phba->nvmet_support) { 15204 tgtp = phba->targetport->private; 15205 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15206 "6401 RQE Error x%x, posted %d err_cnt " 15207 "%d: %x %x %x\n", 15208 status, hrq->RQ_buf_posted, 15209 hrq->RQ_no_posted_buf, 15210 atomic_read(&tgtp->rcv_fcp_cmd_in), 15211 atomic_read(&tgtp->rcv_fcp_cmd_out), 15212 atomic_read(&tgtp->xmt_fcp_release)); 15213 } 15214 fallthrough; 15215 15216 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15217 hrq->RQ_no_posted_buf++; 15218 /* Post more buffers if possible */ 15219 break; 15220 } 15221 out: 15222 return workposted; 15223 } 15224 15225 /** 15226 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15227 * @phba: adapter with cq 15228 * @cq: Pointer to the completion queue. 15229 * @cqe: Pointer to fast-path completion queue entry. 15230 * 15231 * This routine process a fast-path work queue completion entry from fast-path 15232 * event queue for FCP command response completion. 15233 * 15234 * Return: true if work posted to worker thread, otherwise false. 15235 **/ 15236 static bool 15237 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15238 struct lpfc_cqe *cqe) 15239 { 15240 struct lpfc_wcqe_release wcqe; 15241 bool workposted = false; 15242 15243 /* Copy the work queue CQE and convert endian order if needed */ 15244 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15245 15246 /* Check and process for different type of WCQE and dispatch */ 15247 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15248 case CQE_CODE_COMPL_WQE: 15249 case CQE_CODE_NVME_ERSP: 15250 cq->CQ_wq++; 15251 /* Process the WQ complete event */ 15252 phba->last_completion_time = jiffies; 15253 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15254 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15255 (struct lpfc_wcqe_complete *)&wcqe); 15256 break; 15257 case CQE_CODE_RELEASE_WQE: 15258 cq->CQ_release_wqe++; 15259 /* Process the WQ release event */ 15260 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15261 (struct lpfc_wcqe_release *)&wcqe); 15262 break; 15263 case CQE_CODE_XRI_ABORTED: 15264 cq->CQ_xri_aborted++; 15265 /* Process the WQ XRI abort event */ 15266 phba->last_completion_time = jiffies; 15267 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15268 (struct sli4_wcqe_xri_aborted *)&wcqe); 15269 break; 15270 case CQE_CODE_RECEIVE_V1: 15271 case CQE_CODE_RECEIVE: 15272 phba->last_completion_time = jiffies; 15273 if (cq->subtype == LPFC_NVMET) { 15274 workposted = lpfc_sli4_nvmet_handle_rcqe( 15275 phba, cq, (struct lpfc_rcqe *)&wcqe); 15276 } 15277 break; 15278 default: 15279 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15280 "0144 Not a valid CQE code: x%x\n", 15281 bf_get(lpfc_wcqe_c_code, &wcqe)); 15282 break; 15283 } 15284 return workposted; 15285 } 15286 15287 /** 15288 * lpfc_sli4_sched_cq_work - Schedules cq work 15289 * @phba: Pointer to HBA context object. 15290 * @cq: Pointer to CQ 15291 * @cqid: CQ ID 15292 * 15293 * This routine checks the poll mode of the CQ corresponding to 15294 * cq->chann, then either schedules a softirq or queue_work to complete 15295 * cq work. 15296 * 15297 * queue_work path is taken if in NVMET mode, or if poll_mode is in 15298 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 15299 * 15300 **/ 15301 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 15302 struct lpfc_queue *cq, uint16_t cqid) 15303 { 15304 int ret = 0; 15305 15306 switch (cq->poll_mode) { 15307 case LPFC_IRQ_POLL: 15308 /* CGN mgmt is mutually exclusive from softirq processing */ 15309 if (phba->cmf_active_mode == LPFC_CFG_OFF) { 15310 irq_poll_sched(&cq->iop); 15311 break; 15312 } 15313 fallthrough; 15314 case LPFC_QUEUE_WORK: 15315 default: 15316 if (is_kdump_kernel()) 15317 ret = queue_work(phba->wq, &cq->irqwork); 15318 else 15319 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15320 if (!ret) 15321 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15322 "0383 Cannot schedule queue work " 15323 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15324 cqid, cq->queue_id, 15325 raw_smp_processor_id()); 15326 } 15327 } 15328 15329 /** 15330 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15331 * @phba: Pointer to HBA context object. 15332 * @eq: Pointer to the queue structure. 15333 * @eqe: Pointer to fast-path event queue entry. 15334 * 15335 * This routine process a event queue entry from the fast-path event queue. 15336 * It will check the MajorCode and MinorCode to determine this is for a 15337 * completion event on a completion queue, if not, an error shall be logged 15338 * and just return. Otherwise, it will get to the corresponding completion 15339 * queue and process all the entries on the completion queue, rearm the 15340 * completion queue, and then return. 15341 **/ 15342 static void 15343 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15344 struct lpfc_eqe *eqe) 15345 { 15346 struct lpfc_queue *cq = NULL; 15347 uint32_t qidx = eq->hdwq; 15348 uint16_t cqid, id; 15349 15350 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15351 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15352 "0366 Not a valid completion " 15353 "event: majorcode=x%x, minorcode=x%x\n", 15354 bf_get_le32(lpfc_eqe_major_code, eqe), 15355 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15356 return; 15357 } 15358 15359 /* Get the reference to the corresponding CQ */ 15360 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15361 15362 /* Use the fast lookup method first */ 15363 if (cqid <= phba->sli4_hba.cq_max) { 15364 cq = phba->sli4_hba.cq_lookup[cqid]; 15365 if (cq) 15366 goto work_cq; 15367 } 15368 15369 /* Next check for NVMET completion */ 15370 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15371 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15372 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15373 /* Process NVMET unsol rcv */ 15374 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15375 goto process_cq; 15376 } 15377 } 15378 15379 if (phba->sli4_hba.nvmels_cq && 15380 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15381 /* Process NVME unsol rcv */ 15382 cq = phba->sli4_hba.nvmels_cq; 15383 } 15384 15385 /* Otherwise this is a Slow path event */ 15386 if (cq == NULL) { 15387 lpfc_sli4_sp_handle_eqe(phba, eqe, 15388 phba->sli4_hba.hdwq[qidx].hba_eq); 15389 return; 15390 } 15391 15392 process_cq: 15393 if (unlikely(cqid != cq->queue_id)) { 15394 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15395 "0368 Miss-matched fast-path completion " 15396 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15397 cqid, cq->queue_id); 15398 return; 15399 } 15400 15401 work_cq: 15402 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15403 if (phba->ktime_on) 15404 cq->isr_timestamp = ktime_get_ns(); 15405 else 15406 cq->isr_timestamp = 0; 15407 #endif 15408 lpfc_sli4_sched_cq_work(phba, cq, cqid); 15409 } 15410 15411 /** 15412 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15413 * @cq: Pointer to CQ to be processed 15414 * @poll_mode: Enum lpfc_poll_state to determine poll mode 15415 * 15416 * This routine calls the cq processing routine with the handler for 15417 * fast path CQEs. 15418 * 15419 * The CQ routine returns two values: the first is the calling status, 15420 * which indicates whether work was queued to the background discovery 15421 * thread. If true, the routine should wakeup the discovery thread; 15422 * the second is the delay parameter. If non-zero, rather than rearming 15423 * the CQ and yet another interrupt, the CQ handler should be queued so 15424 * that it is processed in a subsequent polling action. The value of 15425 * the delay indicates when to reschedule it. 15426 **/ 15427 static void 15428 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 15429 enum lpfc_poll_mode poll_mode) 15430 { 15431 struct lpfc_hba *phba = cq->phba; 15432 unsigned long delay; 15433 bool workposted = false; 15434 int ret = 0; 15435 15436 /* process and rearm the CQ */ 15437 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15438 &delay, poll_mode); 15439 15440 if (delay) { 15441 if (is_kdump_kernel()) 15442 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15443 delay); 15444 else 15445 ret = queue_delayed_work_on(cq->chann, phba->wq, 15446 &cq->sched_irqwork, delay); 15447 if (!ret) 15448 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15449 "0367 Cannot schedule queue work " 15450 "for cqid=%d on CPU %d\n", 15451 cq->queue_id, cq->chann); 15452 } 15453 15454 /* wake up worker thread if there are works to be done */ 15455 if (workposted) 15456 lpfc_worker_wake_up(phba); 15457 } 15458 15459 /** 15460 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15461 * interrupt 15462 * @work: pointer to work element 15463 * 15464 * translates from the work handler and calls the fast-path handler. 15465 **/ 15466 static void 15467 lpfc_sli4_hba_process_cq(struct work_struct *work) 15468 { 15469 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15470 15471 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15472 } 15473 15474 /** 15475 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15476 * @work: pointer to work element 15477 * 15478 * translates from the work handler and calls the fast-path handler. 15479 **/ 15480 static void 15481 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15482 { 15483 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15484 struct lpfc_queue, sched_irqwork); 15485 15486 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15487 } 15488 15489 /** 15490 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15491 * @irq: Interrupt number. 15492 * @dev_id: The device context pointer. 15493 * 15494 * This function is directly called from the PCI layer as an interrupt 15495 * service routine when device with SLI-4 interface spec is enabled with 15496 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15497 * ring event in the HBA. However, when the device is enabled with either 15498 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15499 * device-level interrupt handler. When the PCI slot is in error recovery 15500 * or the HBA is undergoing initialization, the interrupt handler will not 15501 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15502 * the intrrupt context. This function is called without any lock held. 15503 * It gets the hbalock to access and update SLI data structures. Note that, 15504 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15505 * equal to that of FCP CQ index. 15506 * 15507 * The link attention and ELS ring attention events are handled 15508 * by the worker thread. The interrupt handler signals the worker thread 15509 * and returns for these events. This function is called without any lock 15510 * held. It gets the hbalock to access and update SLI data structures. 15511 * 15512 * This function returns IRQ_HANDLED when interrupt is handled else it 15513 * returns IRQ_NONE. 15514 **/ 15515 irqreturn_t 15516 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15517 { 15518 struct lpfc_hba *phba; 15519 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15520 struct lpfc_queue *fpeq; 15521 unsigned long iflag; 15522 int ecount = 0; 15523 int hba_eqidx; 15524 struct lpfc_eq_intr_info *eqi; 15525 15526 /* Get the driver's phba structure from the dev_id */ 15527 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15528 phba = hba_eq_hdl->phba; 15529 hba_eqidx = hba_eq_hdl->idx; 15530 15531 if (unlikely(!phba)) 15532 return IRQ_NONE; 15533 if (unlikely(!phba->sli4_hba.hdwq)) 15534 return IRQ_NONE; 15535 15536 /* Get to the EQ struct associated with this vector */ 15537 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15538 if (unlikely(!fpeq)) 15539 return IRQ_NONE; 15540 15541 /* Check device state for handling interrupt */ 15542 if (unlikely(lpfc_intr_state_check(phba))) { 15543 /* Check again for link_state with lock held */ 15544 spin_lock_irqsave(&phba->hbalock, iflag); 15545 if (phba->link_state < LPFC_LINK_DOWN) 15546 /* Flush, clear interrupt, and rearm the EQ */ 15547 lpfc_sli4_eqcq_flush(phba, fpeq); 15548 spin_unlock_irqrestore(&phba->hbalock, iflag); 15549 return IRQ_NONE; 15550 } 15551 15552 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15553 eqi->icnt++; 15554 15555 fpeq->last_cpu = raw_smp_processor_id(); 15556 15557 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15558 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15559 phba->cfg_auto_imax && 15560 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15561 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15562 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 15563 15564 /* process and rearm the EQ */ 15565 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 15566 15567 if (unlikely(ecount == 0)) { 15568 fpeq->EQ_no_entry++; 15569 if (phba->intr_type == MSIX) 15570 /* MSI-X treated interrupt served as no EQ share INT */ 15571 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15572 "0358 MSI-X interrupt with no EQE\n"); 15573 else 15574 /* Non MSI-X treated on interrupt as EQ share INT */ 15575 return IRQ_NONE; 15576 } 15577 15578 return IRQ_HANDLED; 15579 } /* lpfc_sli4_hba_intr_handler */ 15580 15581 /** 15582 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15583 * @irq: Interrupt number. 15584 * @dev_id: The device context pointer. 15585 * 15586 * This function is the device-level interrupt handler to device with SLI-4 15587 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15588 * interrupt mode is enabled and there is an event in the HBA which requires 15589 * driver attention. This function invokes the slow-path interrupt attention 15590 * handling function and fast-path interrupt attention handling function in 15591 * turn to process the relevant HBA attention events. This function is called 15592 * without any lock held. It gets the hbalock to access and update SLI data 15593 * structures. 15594 * 15595 * This function returns IRQ_HANDLED when interrupt is handled, else it 15596 * returns IRQ_NONE. 15597 **/ 15598 irqreturn_t 15599 lpfc_sli4_intr_handler(int irq, void *dev_id) 15600 { 15601 struct lpfc_hba *phba; 15602 irqreturn_t hba_irq_rc; 15603 bool hba_handled = false; 15604 int qidx; 15605 15606 /* Get the driver's phba structure from the dev_id */ 15607 phba = (struct lpfc_hba *)dev_id; 15608 15609 if (unlikely(!phba)) 15610 return IRQ_NONE; 15611 15612 /* 15613 * Invoke fast-path host attention interrupt handling as appropriate. 15614 */ 15615 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15616 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15617 &phba->sli4_hba.hba_eq_hdl[qidx]); 15618 if (hba_irq_rc == IRQ_HANDLED) 15619 hba_handled |= true; 15620 } 15621 15622 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15623 } /* lpfc_sli4_intr_handler */ 15624 15625 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15626 { 15627 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15628 struct lpfc_queue *eq; 15629 int i = 0; 15630 15631 rcu_read_lock(); 15632 15633 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15634 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 15635 if (!list_empty(&phba->poll_list)) 15636 mod_timer(&phba->cpuhp_poll_timer, 15637 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15638 15639 rcu_read_unlock(); 15640 } 15641 15642 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 15643 { 15644 struct lpfc_hba *phba = eq->phba; 15645 int i = 0; 15646 15647 /* 15648 * Unlocking an irq is one of the entry point to check 15649 * for re-schedule, but we are good for io submission 15650 * path as midlayer does a get_cpu to glue us in. Flush 15651 * out the invalidate queue so we can see the updated 15652 * value for flag. 15653 */ 15654 smp_rmb(); 15655 15656 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 15657 /* We will not likely get the completion for the caller 15658 * during this iteration but i guess that's fine. 15659 * Future io's coming on this eq should be able to 15660 * pick it up. As for the case of single io's, they 15661 * will be handled through a sched from polling timer 15662 * function which is currently triggered every 1msec. 15663 */ 15664 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 15665 15666 return i; 15667 } 15668 15669 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15670 { 15671 struct lpfc_hba *phba = eq->phba; 15672 15673 /* kickstart slowpath processing if needed */ 15674 if (list_empty(&phba->poll_list)) 15675 mod_timer(&phba->cpuhp_poll_timer, 15676 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15677 15678 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15679 synchronize_rcu(); 15680 } 15681 15682 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15683 { 15684 struct lpfc_hba *phba = eq->phba; 15685 15686 /* Disable slowpath processing for this eq. Kick start the eq 15687 * by RE-ARMING the eq's ASAP 15688 */ 15689 list_del_rcu(&eq->_poll_list); 15690 synchronize_rcu(); 15691 15692 if (list_empty(&phba->poll_list)) 15693 del_timer_sync(&phba->cpuhp_poll_timer); 15694 } 15695 15696 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15697 { 15698 struct lpfc_queue *eq, *next; 15699 15700 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15701 list_del(&eq->_poll_list); 15702 15703 INIT_LIST_HEAD(&phba->poll_list); 15704 synchronize_rcu(); 15705 } 15706 15707 static inline void 15708 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15709 { 15710 if (mode == eq->mode) 15711 return; 15712 /* 15713 * currently this function is only called during a hotplug 15714 * event and the cpu on which this function is executing 15715 * is going offline. By now the hotplug has instructed 15716 * the scheduler to remove this cpu from cpu active mask. 15717 * So we don't need to work about being put aside by the 15718 * scheduler for a high priority process. Yes, the inte- 15719 * rrupts could come but they are known to retire ASAP. 15720 */ 15721 15722 /* Disable polling in the fastpath */ 15723 WRITE_ONCE(eq->mode, mode); 15724 /* flush out the store buffer */ 15725 smp_wmb(); 15726 15727 /* 15728 * Add this eq to the polling list and start polling. For 15729 * a grace period both interrupt handler and poller will 15730 * try to process the eq _but_ that's fine. We have a 15731 * synchronization mechanism in place (queue_claimed) to 15732 * deal with it. This is just a draining phase for int- 15733 * errupt handler (not eq's) as we have guranteed through 15734 * barrier that all the CPUs have seen the new CQ_POLLED 15735 * state. which will effectively disable the REARMING of 15736 * the EQ. The whole idea is eq's die off eventually as 15737 * we are not rearming EQ's anymore. 15738 */ 15739 mode ? lpfc_sli4_add_to_poll_list(eq) : 15740 lpfc_sli4_remove_from_poll_list(eq); 15741 } 15742 15743 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15744 { 15745 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15746 } 15747 15748 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15749 { 15750 struct lpfc_hba *phba = eq->phba; 15751 15752 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15753 15754 /* Kick start for the pending io's in h/w. 15755 * Once we switch back to interrupt processing on a eq 15756 * the io path completion will only arm eq's when it 15757 * receives a completion. But since eq's are in disa- 15758 * rmed state it doesn't receive a completion. This 15759 * creates a deadlock scenaro. 15760 */ 15761 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15762 } 15763 15764 /** 15765 * lpfc_sli4_queue_free - free a queue structure and associated memory 15766 * @queue: The queue structure to free. 15767 * 15768 * This function frees a queue structure and the DMAable memory used for 15769 * the host resident queue. This function must be called after destroying the 15770 * queue on the HBA. 15771 **/ 15772 void 15773 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15774 { 15775 struct lpfc_dmabuf *dmabuf; 15776 15777 if (!queue) 15778 return; 15779 15780 if (!list_empty(&queue->wq_list)) 15781 list_del(&queue->wq_list); 15782 15783 while (!list_empty(&queue->page_list)) { 15784 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15785 list); 15786 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15787 dmabuf->virt, dmabuf->phys); 15788 kfree(dmabuf); 15789 } 15790 if (queue->rqbp) { 15791 lpfc_free_rq_buffer(queue->phba, queue); 15792 kfree(queue->rqbp); 15793 } 15794 15795 if (!list_empty(&queue->cpu_list)) 15796 list_del(&queue->cpu_list); 15797 15798 kfree(queue); 15799 return; 15800 } 15801 15802 /** 15803 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15804 * @phba: The HBA that this queue is being created on. 15805 * @page_size: The size of a queue page 15806 * @entry_size: The size of each queue entry for this queue. 15807 * @entry_count: The number of entries that this queue will handle. 15808 * @cpu: The cpu that will primarily utilize this queue. 15809 * 15810 * This function allocates a queue structure and the DMAable memory used for 15811 * the host resident queue. This function must be called before creating the 15812 * queue on the HBA. 15813 **/ 15814 struct lpfc_queue * 15815 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15816 uint32_t entry_size, uint32_t entry_count, int cpu) 15817 { 15818 struct lpfc_queue *queue; 15819 struct lpfc_dmabuf *dmabuf; 15820 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15821 uint16_t x, pgcnt; 15822 15823 if (!phba->sli4_hba.pc_sli4_params.supported) 15824 hw_page_size = page_size; 15825 15826 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15827 15828 /* If needed, Adjust page count to match the max the adapter supports */ 15829 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15830 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15831 15832 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15833 GFP_KERNEL, cpu_to_node(cpu)); 15834 if (!queue) 15835 return NULL; 15836 15837 INIT_LIST_HEAD(&queue->list); 15838 INIT_LIST_HEAD(&queue->_poll_list); 15839 INIT_LIST_HEAD(&queue->wq_list); 15840 INIT_LIST_HEAD(&queue->wqfull_list); 15841 INIT_LIST_HEAD(&queue->page_list); 15842 INIT_LIST_HEAD(&queue->child_list); 15843 INIT_LIST_HEAD(&queue->cpu_list); 15844 15845 /* Set queue parameters now. If the system cannot provide memory 15846 * resources, the free routine needs to know what was allocated. 15847 */ 15848 queue->page_count = pgcnt; 15849 queue->q_pgs = (void **)&queue[1]; 15850 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15851 queue->entry_size = entry_size; 15852 queue->entry_count = entry_count; 15853 queue->page_size = hw_page_size; 15854 queue->phba = phba; 15855 15856 for (x = 0; x < queue->page_count; x++) { 15857 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15858 dev_to_node(&phba->pcidev->dev)); 15859 if (!dmabuf) 15860 goto out_fail; 15861 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15862 hw_page_size, &dmabuf->phys, 15863 GFP_KERNEL); 15864 if (!dmabuf->virt) { 15865 kfree(dmabuf); 15866 goto out_fail; 15867 } 15868 dmabuf->buffer_tag = x; 15869 list_add_tail(&dmabuf->list, &queue->page_list); 15870 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15871 queue->q_pgs[x] = dmabuf->virt; 15872 } 15873 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15874 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15875 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15876 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15877 15878 /* notify_interval will be set during q creation */ 15879 15880 return queue; 15881 out_fail: 15882 lpfc_sli4_queue_free(queue); 15883 return NULL; 15884 } 15885 15886 /** 15887 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15888 * @phba: HBA structure that indicates port to create a queue on. 15889 * @pci_barset: PCI BAR set flag. 15890 * 15891 * This function shall perform iomap of the specified PCI BAR address to host 15892 * memory address if not already done so and return it. The returned host 15893 * memory address can be NULL. 15894 */ 15895 static void __iomem * 15896 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15897 { 15898 if (!phba->pcidev) 15899 return NULL; 15900 15901 switch (pci_barset) { 15902 case WQ_PCI_BAR_0_AND_1: 15903 return phba->pci_bar0_memmap_p; 15904 case WQ_PCI_BAR_2_AND_3: 15905 return phba->pci_bar2_memmap_p; 15906 case WQ_PCI_BAR_4_AND_5: 15907 return phba->pci_bar4_memmap_p; 15908 default: 15909 break; 15910 } 15911 return NULL; 15912 } 15913 15914 /** 15915 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15916 * @phba: HBA structure that EQs are on. 15917 * @startq: The starting EQ index to modify 15918 * @numq: The number of EQs (consecutive indexes) to modify 15919 * @usdelay: amount of delay 15920 * 15921 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15922 * is set either by writing to a register (if supported by the SLI Port) 15923 * or by mailbox command. The mailbox command allows several EQs to be 15924 * updated at once. 15925 * 15926 * The @phba struct is used to send a mailbox command to HBA. The @startq 15927 * is used to get the starting EQ index to change. The @numq value is 15928 * used to specify how many consecutive EQ indexes, starting at EQ index, 15929 * are to be changed. This function is asynchronous and will wait for any 15930 * mailbox commands to finish before returning. 15931 * 15932 * On success this function will return a zero. If unable to allocate 15933 * enough memory this function will return -ENOMEM. If a mailbox command 15934 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15935 * have had their delay multipler changed. 15936 **/ 15937 void 15938 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15939 uint32_t numq, uint32_t usdelay) 15940 { 15941 struct lpfc_mbx_modify_eq_delay *eq_delay; 15942 LPFC_MBOXQ_t *mbox; 15943 struct lpfc_queue *eq; 15944 int cnt = 0, rc, length; 15945 uint32_t shdr_status, shdr_add_status; 15946 uint32_t dmult; 15947 int qidx; 15948 union lpfc_sli4_cfg_shdr *shdr; 15949 15950 if (startq >= phba->cfg_irq_chann) 15951 return; 15952 15953 if (usdelay > 0xFFFF) { 15954 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15955 "6429 usdelay %d too large. Scaled down to " 15956 "0xFFFF.\n", usdelay); 15957 usdelay = 0xFFFF; 15958 } 15959 15960 /* set values by EQ_DELAY register if supported */ 15961 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15962 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15963 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15964 if (!eq) 15965 continue; 15966 15967 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15968 15969 if (++cnt >= numq) 15970 break; 15971 } 15972 return; 15973 } 15974 15975 /* Otherwise, set values by mailbox cmd */ 15976 15977 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15978 if (!mbox) { 15979 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15980 "6428 Failed allocating mailbox cmd buffer." 15981 " EQ delay was not set.\n"); 15982 return; 15983 } 15984 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15985 sizeof(struct lpfc_sli4_cfg_mhdr)); 15986 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15987 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15988 length, LPFC_SLI4_MBX_EMBED); 15989 eq_delay = &mbox->u.mqe.un.eq_delay; 15990 15991 /* Calculate delay multiper from maximum interrupt per second */ 15992 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15993 if (dmult) 15994 dmult--; 15995 if (dmult > LPFC_DMULT_MAX) 15996 dmult = LPFC_DMULT_MAX; 15997 15998 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15999 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16000 if (!eq) 16001 continue; 16002 eq->q_mode = usdelay; 16003 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16004 eq_delay->u.request.eq[cnt].phase = 0; 16005 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16006 16007 if (++cnt >= numq) 16008 break; 16009 } 16010 eq_delay->u.request.num_eq = cnt; 16011 16012 mbox->vport = phba->pport; 16013 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16014 mbox->ctx_buf = NULL; 16015 mbox->ctx_ndlp = NULL; 16016 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16017 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16018 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16019 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16020 if (shdr_status || shdr_add_status || rc) { 16021 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16022 "2512 MODIFY_EQ_DELAY mailbox failed with " 16023 "status x%x add_status x%x, mbx status x%x\n", 16024 shdr_status, shdr_add_status, rc); 16025 } 16026 mempool_free(mbox, phba->mbox_mem_pool); 16027 return; 16028 } 16029 16030 /** 16031 * lpfc_eq_create - Create an Event Queue on the HBA 16032 * @phba: HBA structure that indicates port to create a queue on. 16033 * @eq: The queue structure to use to create the event queue. 16034 * @imax: The maximum interrupt per second limit. 16035 * 16036 * This function creates an event queue, as detailed in @eq, on a port, 16037 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16038 * 16039 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16040 * is used to get the entry count and entry size that are necessary to 16041 * determine the number of pages to allocate and use for this queue. This 16042 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16043 * event queue. This function is asynchronous and will wait for the mailbox 16044 * command to finish before continuing. 16045 * 16046 * On success this function will return a zero. If unable to allocate enough 16047 * memory this function will return -ENOMEM. If the queue create mailbox command 16048 * fails this function will return -ENXIO. 16049 **/ 16050 int 16051 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16052 { 16053 struct lpfc_mbx_eq_create *eq_create; 16054 LPFC_MBOXQ_t *mbox; 16055 int rc, length, status = 0; 16056 struct lpfc_dmabuf *dmabuf; 16057 uint32_t shdr_status, shdr_add_status; 16058 union lpfc_sli4_cfg_shdr *shdr; 16059 uint16_t dmult; 16060 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16061 16062 /* sanity check on queue memory */ 16063 if (!eq) 16064 return -ENODEV; 16065 if (!phba->sli4_hba.pc_sli4_params.supported) 16066 hw_page_size = SLI4_PAGE_SIZE; 16067 16068 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16069 if (!mbox) 16070 return -ENOMEM; 16071 length = (sizeof(struct lpfc_mbx_eq_create) - 16072 sizeof(struct lpfc_sli4_cfg_mhdr)); 16073 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16074 LPFC_MBOX_OPCODE_EQ_CREATE, 16075 length, LPFC_SLI4_MBX_EMBED); 16076 eq_create = &mbox->u.mqe.un.eq_create; 16077 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16078 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16079 eq->page_count); 16080 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16081 LPFC_EQE_SIZE); 16082 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16083 16084 /* Use version 2 of CREATE_EQ if eqav is set */ 16085 if (phba->sli4_hba.pc_sli4_params.eqav) { 16086 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16087 LPFC_Q_CREATE_VERSION_2); 16088 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16089 phba->sli4_hba.pc_sli4_params.eqav); 16090 } 16091 16092 /* don't setup delay multiplier using EQ_CREATE */ 16093 dmult = 0; 16094 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16095 dmult); 16096 switch (eq->entry_count) { 16097 default: 16098 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16099 "0360 Unsupported EQ count. (%d)\n", 16100 eq->entry_count); 16101 if (eq->entry_count < 256) { 16102 status = -EINVAL; 16103 goto out; 16104 } 16105 fallthrough; /* otherwise default to smallest count */ 16106 case 256: 16107 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16108 LPFC_EQ_CNT_256); 16109 break; 16110 case 512: 16111 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16112 LPFC_EQ_CNT_512); 16113 break; 16114 case 1024: 16115 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16116 LPFC_EQ_CNT_1024); 16117 break; 16118 case 2048: 16119 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16120 LPFC_EQ_CNT_2048); 16121 break; 16122 case 4096: 16123 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16124 LPFC_EQ_CNT_4096); 16125 break; 16126 } 16127 list_for_each_entry(dmabuf, &eq->page_list, list) { 16128 memset(dmabuf->virt, 0, hw_page_size); 16129 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16130 putPaddrLow(dmabuf->phys); 16131 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16132 putPaddrHigh(dmabuf->phys); 16133 } 16134 mbox->vport = phba->pport; 16135 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16136 mbox->ctx_buf = NULL; 16137 mbox->ctx_ndlp = NULL; 16138 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16139 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16140 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16141 if (shdr_status || shdr_add_status || rc) { 16142 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16143 "2500 EQ_CREATE mailbox failed with " 16144 "status x%x add_status x%x, mbx status x%x\n", 16145 shdr_status, shdr_add_status, rc); 16146 status = -ENXIO; 16147 } 16148 eq->type = LPFC_EQ; 16149 eq->subtype = LPFC_NONE; 16150 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16151 if (eq->queue_id == 0xFFFF) 16152 status = -ENXIO; 16153 eq->host_index = 0; 16154 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16155 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16156 out: 16157 mempool_free(mbox, phba->mbox_mem_pool); 16158 return status; 16159 } 16160 16161 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 16162 { 16163 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 16164 16165 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 16166 16167 return 1; 16168 } 16169 16170 /** 16171 * lpfc_cq_create - Create a Completion Queue on the HBA 16172 * @phba: HBA structure that indicates port to create a queue on. 16173 * @cq: The queue structure to use to create the completion queue. 16174 * @eq: The event queue to bind this completion queue to. 16175 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16176 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16177 * 16178 * This function creates a completion queue, as detailed in @wq, on a port, 16179 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16180 * 16181 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16182 * is used to get the entry count and entry size that are necessary to 16183 * determine the number of pages to allocate and use for this queue. The @eq 16184 * is used to indicate which event queue to bind this completion queue to. This 16185 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16186 * completion queue. This function is asynchronous and will wait for the mailbox 16187 * command to finish before continuing. 16188 * 16189 * On success this function will return a zero. If unable to allocate enough 16190 * memory this function will return -ENOMEM. If the queue create mailbox command 16191 * fails this function will return -ENXIO. 16192 **/ 16193 int 16194 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16195 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16196 { 16197 struct lpfc_mbx_cq_create *cq_create; 16198 struct lpfc_dmabuf *dmabuf; 16199 LPFC_MBOXQ_t *mbox; 16200 int rc, length, status = 0; 16201 uint32_t shdr_status, shdr_add_status; 16202 union lpfc_sli4_cfg_shdr *shdr; 16203 16204 /* sanity check on queue memory */ 16205 if (!cq || !eq) 16206 return -ENODEV; 16207 16208 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16209 if (!mbox) 16210 return -ENOMEM; 16211 length = (sizeof(struct lpfc_mbx_cq_create) - 16212 sizeof(struct lpfc_sli4_cfg_mhdr)); 16213 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16214 LPFC_MBOX_OPCODE_CQ_CREATE, 16215 length, LPFC_SLI4_MBX_EMBED); 16216 cq_create = &mbox->u.mqe.un.cq_create; 16217 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16218 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16219 cq->page_count); 16220 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16221 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16222 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16223 phba->sli4_hba.pc_sli4_params.cqv); 16224 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16225 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16226 (cq->page_size / SLI4_PAGE_SIZE)); 16227 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16228 eq->queue_id); 16229 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16230 phba->sli4_hba.pc_sli4_params.cqav); 16231 } else { 16232 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16233 eq->queue_id); 16234 } 16235 switch (cq->entry_count) { 16236 case 2048: 16237 case 4096: 16238 if (phba->sli4_hba.pc_sli4_params.cqv == 16239 LPFC_Q_CREATE_VERSION_2) { 16240 cq_create->u.request.context.lpfc_cq_context_count = 16241 cq->entry_count; 16242 bf_set(lpfc_cq_context_count, 16243 &cq_create->u.request.context, 16244 LPFC_CQ_CNT_WORD7); 16245 break; 16246 } 16247 fallthrough; 16248 default: 16249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16250 "0361 Unsupported CQ count: " 16251 "entry cnt %d sz %d pg cnt %d\n", 16252 cq->entry_count, cq->entry_size, 16253 cq->page_count); 16254 if (cq->entry_count < 256) { 16255 status = -EINVAL; 16256 goto out; 16257 } 16258 fallthrough; /* otherwise default to smallest count */ 16259 case 256: 16260 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16261 LPFC_CQ_CNT_256); 16262 break; 16263 case 512: 16264 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16265 LPFC_CQ_CNT_512); 16266 break; 16267 case 1024: 16268 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16269 LPFC_CQ_CNT_1024); 16270 break; 16271 } 16272 list_for_each_entry(dmabuf, &cq->page_list, list) { 16273 memset(dmabuf->virt, 0, cq->page_size); 16274 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16275 putPaddrLow(dmabuf->phys); 16276 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16277 putPaddrHigh(dmabuf->phys); 16278 } 16279 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16280 16281 /* The IOCTL status is embedded in the mailbox subheader. */ 16282 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16283 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16284 if (shdr_status || shdr_add_status || rc) { 16285 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16286 "2501 CQ_CREATE mailbox failed with " 16287 "status x%x add_status x%x, mbx status x%x\n", 16288 shdr_status, shdr_add_status, rc); 16289 status = -ENXIO; 16290 goto out; 16291 } 16292 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16293 if (cq->queue_id == 0xFFFF) { 16294 status = -ENXIO; 16295 goto out; 16296 } 16297 /* link the cq onto the parent eq child list */ 16298 list_add_tail(&cq->list, &eq->child_list); 16299 /* Set up completion queue's type and subtype */ 16300 cq->type = type; 16301 cq->subtype = subtype; 16302 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16303 cq->assoc_qid = eq->queue_id; 16304 cq->assoc_qp = eq; 16305 cq->host_index = 0; 16306 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16307 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16308 16309 if (cq->queue_id > phba->sli4_hba.cq_max) 16310 phba->sli4_hba.cq_max = cq->queue_id; 16311 16312 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 16313 out: 16314 mempool_free(mbox, phba->mbox_mem_pool); 16315 return status; 16316 } 16317 16318 /** 16319 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16320 * @phba: HBA structure that indicates port to create a queue on. 16321 * @cqp: The queue structure array to use to create the completion queues. 16322 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16323 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16324 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16325 * 16326 * This function creates a set of completion queue, s to support MRQ 16327 * as detailed in @cqp, on a port, 16328 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16329 * 16330 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16331 * is used to get the entry count and entry size that are necessary to 16332 * determine the number of pages to allocate and use for this queue. The @eq 16333 * is used to indicate which event queue to bind this completion queue to. This 16334 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16335 * completion queue. This function is asynchronous and will wait for the mailbox 16336 * command to finish before continuing. 16337 * 16338 * On success this function will return a zero. If unable to allocate enough 16339 * memory this function will return -ENOMEM. If the queue create mailbox command 16340 * fails this function will return -ENXIO. 16341 **/ 16342 int 16343 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16344 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16345 uint32_t subtype) 16346 { 16347 struct lpfc_queue *cq; 16348 struct lpfc_queue *eq; 16349 struct lpfc_mbx_cq_create_set *cq_set; 16350 struct lpfc_dmabuf *dmabuf; 16351 LPFC_MBOXQ_t *mbox; 16352 int rc, length, alloclen, status = 0; 16353 int cnt, idx, numcq, page_idx = 0; 16354 uint32_t shdr_status, shdr_add_status; 16355 union lpfc_sli4_cfg_shdr *shdr; 16356 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16357 16358 /* sanity check on queue memory */ 16359 numcq = phba->cfg_nvmet_mrq; 16360 if (!cqp || !hdwq || !numcq) 16361 return -ENODEV; 16362 16363 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16364 if (!mbox) 16365 return -ENOMEM; 16366 16367 length = sizeof(struct lpfc_mbx_cq_create_set); 16368 length += ((numcq * cqp[0]->page_count) * 16369 sizeof(struct dma_address)); 16370 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16371 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16372 LPFC_SLI4_MBX_NEMBED); 16373 if (alloclen < length) { 16374 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16375 "3098 Allocated DMA memory size (%d) is " 16376 "less than the requested DMA memory size " 16377 "(%d)\n", alloclen, length); 16378 status = -ENOMEM; 16379 goto out; 16380 } 16381 cq_set = mbox->sge_array->addr[0]; 16382 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16383 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16384 16385 for (idx = 0; idx < numcq; idx++) { 16386 cq = cqp[idx]; 16387 eq = hdwq[idx].hba_eq; 16388 if (!cq || !eq) { 16389 status = -ENOMEM; 16390 goto out; 16391 } 16392 if (!phba->sli4_hba.pc_sli4_params.supported) 16393 hw_page_size = cq->page_size; 16394 16395 switch (idx) { 16396 case 0: 16397 bf_set(lpfc_mbx_cq_create_set_page_size, 16398 &cq_set->u.request, 16399 (hw_page_size / SLI4_PAGE_SIZE)); 16400 bf_set(lpfc_mbx_cq_create_set_num_pages, 16401 &cq_set->u.request, cq->page_count); 16402 bf_set(lpfc_mbx_cq_create_set_evt, 16403 &cq_set->u.request, 1); 16404 bf_set(lpfc_mbx_cq_create_set_valid, 16405 &cq_set->u.request, 1); 16406 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16407 &cq_set->u.request, 0); 16408 bf_set(lpfc_mbx_cq_create_set_num_cq, 16409 &cq_set->u.request, numcq); 16410 bf_set(lpfc_mbx_cq_create_set_autovalid, 16411 &cq_set->u.request, 16412 phba->sli4_hba.pc_sli4_params.cqav); 16413 switch (cq->entry_count) { 16414 case 2048: 16415 case 4096: 16416 if (phba->sli4_hba.pc_sli4_params.cqv == 16417 LPFC_Q_CREATE_VERSION_2) { 16418 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16419 &cq_set->u.request, 16420 cq->entry_count); 16421 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16422 &cq_set->u.request, 16423 LPFC_CQ_CNT_WORD7); 16424 break; 16425 } 16426 fallthrough; 16427 default: 16428 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16429 "3118 Bad CQ count. (%d)\n", 16430 cq->entry_count); 16431 if (cq->entry_count < 256) { 16432 status = -EINVAL; 16433 goto out; 16434 } 16435 fallthrough; /* otherwise default to smallest */ 16436 case 256: 16437 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16438 &cq_set->u.request, LPFC_CQ_CNT_256); 16439 break; 16440 case 512: 16441 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16442 &cq_set->u.request, LPFC_CQ_CNT_512); 16443 break; 16444 case 1024: 16445 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16446 &cq_set->u.request, LPFC_CQ_CNT_1024); 16447 break; 16448 } 16449 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16450 &cq_set->u.request, eq->queue_id); 16451 break; 16452 case 1: 16453 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16454 &cq_set->u.request, eq->queue_id); 16455 break; 16456 case 2: 16457 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16458 &cq_set->u.request, eq->queue_id); 16459 break; 16460 case 3: 16461 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16462 &cq_set->u.request, eq->queue_id); 16463 break; 16464 case 4: 16465 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16466 &cq_set->u.request, eq->queue_id); 16467 break; 16468 case 5: 16469 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16470 &cq_set->u.request, eq->queue_id); 16471 break; 16472 case 6: 16473 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16474 &cq_set->u.request, eq->queue_id); 16475 break; 16476 case 7: 16477 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16478 &cq_set->u.request, eq->queue_id); 16479 break; 16480 case 8: 16481 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16482 &cq_set->u.request, eq->queue_id); 16483 break; 16484 case 9: 16485 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16486 &cq_set->u.request, eq->queue_id); 16487 break; 16488 case 10: 16489 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16490 &cq_set->u.request, eq->queue_id); 16491 break; 16492 case 11: 16493 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16494 &cq_set->u.request, eq->queue_id); 16495 break; 16496 case 12: 16497 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16498 &cq_set->u.request, eq->queue_id); 16499 break; 16500 case 13: 16501 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16502 &cq_set->u.request, eq->queue_id); 16503 break; 16504 case 14: 16505 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16506 &cq_set->u.request, eq->queue_id); 16507 break; 16508 case 15: 16509 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16510 &cq_set->u.request, eq->queue_id); 16511 break; 16512 } 16513 16514 /* link the cq onto the parent eq child list */ 16515 list_add_tail(&cq->list, &eq->child_list); 16516 /* Set up completion queue's type and subtype */ 16517 cq->type = type; 16518 cq->subtype = subtype; 16519 cq->assoc_qid = eq->queue_id; 16520 cq->assoc_qp = eq; 16521 cq->host_index = 0; 16522 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16523 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16524 cq->entry_count); 16525 cq->chann = idx; 16526 16527 rc = 0; 16528 list_for_each_entry(dmabuf, &cq->page_list, list) { 16529 memset(dmabuf->virt, 0, hw_page_size); 16530 cnt = page_idx + dmabuf->buffer_tag; 16531 cq_set->u.request.page[cnt].addr_lo = 16532 putPaddrLow(dmabuf->phys); 16533 cq_set->u.request.page[cnt].addr_hi = 16534 putPaddrHigh(dmabuf->phys); 16535 rc++; 16536 } 16537 page_idx += rc; 16538 } 16539 16540 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16541 16542 /* The IOCTL status is embedded in the mailbox subheader. */ 16543 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16544 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16545 if (shdr_status || shdr_add_status || rc) { 16546 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16547 "3119 CQ_CREATE_SET mailbox failed with " 16548 "status x%x add_status x%x, mbx status x%x\n", 16549 shdr_status, shdr_add_status, rc); 16550 status = -ENXIO; 16551 goto out; 16552 } 16553 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16554 if (rc == 0xFFFF) { 16555 status = -ENXIO; 16556 goto out; 16557 } 16558 16559 for (idx = 0; idx < numcq; idx++) { 16560 cq = cqp[idx]; 16561 cq->queue_id = rc + idx; 16562 if (cq->queue_id > phba->sli4_hba.cq_max) 16563 phba->sli4_hba.cq_max = cq->queue_id; 16564 } 16565 16566 out: 16567 lpfc_sli4_mbox_cmd_free(phba, mbox); 16568 return status; 16569 } 16570 16571 /** 16572 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16573 * @phba: HBA structure that indicates port to create a queue on. 16574 * @mq: The queue structure to use to create the mailbox queue. 16575 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16576 * @cq: The completion queue to associate with this cq. 16577 * 16578 * This function provides failback (fb) functionality when the 16579 * mq_create_ext fails on older FW generations. It's purpose is identical 16580 * to mq_create_ext otherwise. 16581 * 16582 * This routine cannot fail as all attributes were previously accessed and 16583 * initialized in mq_create_ext. 16584 **/ 16585 static void 16586 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16587 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16588 { 16589 struct lpfc_mbx_mq_create *mq_create; 16590 struct lpfc_dmabuf *dmabuf; 16591 int length; 16592 16593 length = (sizeof(struct lpfc_mbx_mq_create) - 16594 sizeof(struct lpfc_sli4_cfg_mhdr)); 16595 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16596 LPFC_MBOX_OPCODE_MQ_CREATE, 16597 length, LPFC_SLI4_MBX_EMBED); 16598 mq_create = &mbox->u.mqe.un.mq_create; 16599 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16600 mq->page_count); 16601 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16602 cq->queue_id); 16603 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16604 switch (mq->entry_count) { 16605 case 16: 16606 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16607 LPFC_MQ_RING_SIZE_16); 16608 break; 16609 case 32: 16610 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16611 LPFC_MQ_RING_SIZE_32); 16612 break; 16613 case 64: 16614 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16615 LPFC_MQ_RING_SIZE_64); 16616 break; 16617 case 128: 16618 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16619 LPFC_MQ_RING_SIZE_128); 16620 break; 16621 } 16622 list_for_each_entry(dmabuf, &mq->page_list, list) { 16623 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16624 putPaddrLow(dmabuf->phys); 16625 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16626 putPaddrHigh(dmabuf->phys); 16627 } 16628 } 16629 16630 /** 16631 * lpfc_mq_create - Create a mailbox Queue on the HBA 16632 * @phba: HBA structure that indicates port to create a queue on. 16633 * @mq: The queue structure to use to create the mailbox queue. 16634 * @cq: The completion queue to associate with this cq. 16635 * @subtype: The queue's subtype. 16636 * 16637 * This function creates a mailbox queue, as detailed in @mq, on a port, 16638 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16639 * 16640 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16641 * is used to get the entry count and entry size that are necessary to 16642 * determine the number of pages to allocate and use for this queue. This 16643 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16644 * mailbox queue. This function is asynchronous and will wait for the mailbox 16645 * command to finish before continuing. 16646 * 16647 * On success this function will return a zero. If unable to allocate enough 16648 * memory this function will return -ENOMEM. If the queue create mailbox command 16649 * fails this function will return -ENXIO. 16650 **/ 16651 int32_t 16652 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16653 struct lpfc_queue *cq, uint32_t subtype) 16654 { 16655 struct lpfc_mbx_mq_create *mq_create; 16656 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16657 struct lpfc_dmabuf *dmabuf; 16658 LPFC_MBOXQ_t *mbox; 16659 int rc, length, status = 0; 16660 uint32_t shdr_status, shdr_add_status; 16661 union lpfc_sli4_cfg_shdr *shdr; 16662 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16663 16664 /* sanity check on queue memory */ 16665 if (!mq || !cq) 16666 return -ENODEV; 16667 if (!phba->sli4_hba.pc_sli4_params.supported) 16668 hw_page_size = SLI4_PAGE_SIZE; 16669 16670 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16671 if (!mbox) 16672 return -ENOMEM; 16673 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16674 sizeof(struct lpfc_sli4_cfg_mhdr)); 16675 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16676 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16677 length, LPFC_SLI4_MBX_EMBED); 16678 16679 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16680 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16681 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16682 &mq_create_ext->u.request, mq->page_count); 16683 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16684 &mq_create_ext->u.request, 1); 16685 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16686 &mq_create_ext->u.request, 1); 16687 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16688 &mq_create_ext->u.request, 1); 16689 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16690 &mq_create_ext->u.request, 1); 16691 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16692 &mq_create_ext->u.request, 1); 16693 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16694 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16695 phba->sli4_hba.pc_sli4_params.mqv); 16696 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16697 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16698 cq->queue_id); 16699 else 16700 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16701 cq->queue_id); 16702 switch (mq->entry_count) { 16703 default: 16704 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16705 "0362 Unsupported MQ count. (%d)\n", 16706 mq->entry_count); 16707 if (mq->entry_count < 16) { 16708 status = -EINVAL; 16709 goto out; 16710 } 16711 fallthrough; /* otherwise default to smallest count */ 16712 case 16: 16713 bf_set(lpfc_mq_context_ring_size, 16714 &mq_create_ext->u.request.context, 16715 LPFC_MQ_RING_SIZE_16); 16716 break; 16717 case 32: 16718 bf_set(lpfc_mq_context_ring_size, 16719 &mq_create_ext->u.request.context, 16720 LPFC_MQ_RING_SIZE_32); 16721 break; 16722 case 64: 16723 bf_set(lpfc_mq_context_ring_size, 16724 &mq_create_ext->u.request.context, 16725 LPFC_MQ_RING_SIZE_64); 16726 break; 16727 case 128: 16728 bf_set(lpfc_mq_context_ring_size, 16729 &mq_create_ext->u.request.context, 16730 LPFC_MQ_RING_SIZE_128); 16731 break; 16732 } 16733 list_for_each_entry(dmabuf, &mq->page_list, list) { 16734 memset(dmabuf->virt, 0, hw_page_size); 16735 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16736 putPaddrLow(dmabuf->phys); 16737 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16738 putPaddrHigh(dmabuf->phys); 16739 } 16740 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16741 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16742 &mq_create_ext->u.response); 16743 if (rc != MBX_SUCCESS) { 16744 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16745 "2795 MQ_CREATE_EXT failed with " 16746 "status x%x. Failback to MQ_CREATE.\n", 16747 rc); 16748 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16749 mq_create = &mbox->u.mqe.un.mq_create; 16750 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16751 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16752 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16753 &mq_create->u.response); 16754 } 16755 16756 /* The IOCTL status is embedded in the mailbox subheader. */ 16757 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16758 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16759 if (shdr_status || shdr_add_status || rc) { 16760 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16761 "2502 MQ_CREATE mailbox failed with " 16762 "status x%x add_status x%x, mbx status x%x\n", 16763 shdr_status, shdr_add_status, rc); 16764 status = -ENXIO; 16765 goto out; 16766 } 16767 if (mq->queue_id == 0xFFFF) { 16768 status = -ENXIO; 16769 goto out; 16770 } 16771 mq->type = LPFC_MQ; 16772 mq->assoc_qid = cq->queue_id; 16773 mq->subtype = subtype; 16774 mq->host_index = 0; 16775 mq->hba_index = 0; 16776 16777 /* link the mq onto the parent cq child list */ 16778 list_add_tail(&mq->list, &cq->child_list); 16779 out: 16780 mempool_free(mbox, phba->mbox_mem_pool); 16781 return status; 16782 } 16783 16784 /** 16785 * lpfc_wq_create - Create a Work Queue on the HBA 16786 * @phba: HBA structure that indicates port to create a queue on. 16787 * @wq: The queue structure to use to create the work queue. 16788 * @cq: The completion queue to bind this work queue to. 16789 * @subtype: The subtype of the work queue indicating its functionality. 16790 * 16791 * This function creates a work queue, as detailed in @wq, on a port, described 16792 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16793 * 16794 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16795 * is used to get the entry count and entry size that are necessary to 16796 * determine the number of pages to allocate and use for this queue. The @cq 16797 * is used to indicate which completion queue to bind this work queue to. This 16798 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16799 * work queue. This function is asynchronous and will wait for the mailbox 16800 * command to finish before continuing. 16801 * 16802 * On success this function will return a zero. If unable to allocate enough 16803 * memory this function will return -ENOMEM. If the queue create mailbox command 16804 * fails this function will return -ENXIO. 16805 **/ 16806 int 16807 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16808 struct lpfc_queue *cq, uint32_t subtype) 16809 { 16810 struct lpfc_mbx_wq_create *wq_create; 16811 struct lpfc_dmabuf *dmabuf; 16812 LPFC_MBOXQ_t *mbox; 16813 int rc, length, status = 0; 16814 uint32_t shdr_status, shdr_add_status; 16815 union lpfc_sli4_cfg_shdr *shdr; 16816 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16817 struct dma_address *page; 16818 void __iomem *bar_memmap_p; 16819 uint32_t db_offset; 16820 uint16_t pci_barset; 16821 uint8_t dpp_barset; 16822 uint32_t dpp_offset; 16823 uint8_t wq_create_version; 16824 #ifdef CONFIG_X86 16825 unsigned long pg_addr; 16826 #endif 16827 16828 /* sanity check on queue memory */ 16829 if (!wq || !cq) 16830 return -ENODEV; 16831 if (!phba->sli4_hba.pc_sli4_params.supported) 16832 hw_page_size = wq->page_size; 16833 16834 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16835 if (!mbox) 16836 return -ENOMEM; 16837 length = (sizeof(struct lpfc_mbx_wq_create) - 16838 sizeof(struct lpfc_sli4_cfg_mhdr)); 16839 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16840 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16841 length, LPFC_SLI4_MBX_EMBED); 16842 wq_create = &mbox->u.mqe.un.wq_create; 16843 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16844 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16845 wq->page_count); 16846 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16847 cq->queue_id); 16848 16849 /* wqv is the earliest version supported, NOT the latest */ 16850 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16851 phba->sli4_hba.pc_sli4_params.wqv); 16852 16853 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16854 (wq->page_size > SLI4_PAGE_SIZE)) 16855 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16856 else 16857 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16858 16859 switch (wq_create_version) { 16860 case LPFC_Q_CREATE_VERSION_1: 16861 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16862 wq->entry_count); 16863 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16864 LPFC_Q_CREATE_VERSION_1); 16865 16866 switch (wq->entry_size) { 16867 default: 16868 case 64: 16869 bf_set(lpfc_mbx_wq_create_wqe_size, 16870 &wq_create->u.request_1, 16871 LPFC_WQ_WQE_SIZE_64); 16872 break; 16873 case 128: 16874 bf_set(lpfc_mbx_wq_create_wqe_size, 16875 &wq_create->u.request_1, 16876 LPFC_WQ_WQE_SIZE_128); 16877 break; 16878 } 16879 /* Request DPP by default */ 16880 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16881 bf_set(lpfc_mbx_wq_create_page_size, 16882 &wq_create->u.request_1, 16883 (wq->page_size / SLI4_PAGE_SIZE)); 16884 page = wq_create->u.request_1.page; 16885 break; 16886 default: 16887 page = wq_create->u.request.page; 16888 break; 16889 } 16890 16891 list_for_each_entry(dmabuf, &wq->page_list, list) { 16892 memset(dmabuf->virt, 0, hw_page_size); 16893 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16894 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16895 } 16896 16897 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16898 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16899 16900 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16901 /* The IOCTL status is embedded in the mailbox subheader. */ 16902 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16903 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16904 if (shdr_status || shdr_add_status || rc) { 16905 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16906 "2503 WQ_CREATE mailbox failed with " 16907 "status x%x add_status x%x, mbx status x%x\n", 16908 shdr_status, shdr_add_status, rc); 16909 status = -ENXIO; 16910 goto out; 16911 } 16912 16913 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16914 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16915 &wq_create->u.response); 16916 else 16917 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16918 &wq_create->u.response_1); 16919 16920 if (wq->queue_id == 0xFFFF) { 16921 status = -ENXIO; 16922 goto out; 16923 } 16924 16925 wq->db_format = LPFC_DB_LIST_FORMAT; 16926 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16927 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16928 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16929 &wq_create->u.response); 16930 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16931 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16932 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16933 "3265 WQ[%d] doorbell format " 16934 "not supported: x%x\n", 16935 wq->queue_id, wq->db_format); 16936 status = -EINVAL; 16937 goto out; 16938 } 16939 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16940 &wq_create->u.response); 16941 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16942 pci_barset); 16943 if (!bar_memmap_p) { 16944 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16945 "3263 WQ[%d] failed to memmap " 16946 "pci barset:x%x\n", 16947 wq->queue_id, pci_barset); 16948 status = -ENOMEM; 16949 goto out; 16950 } 16951 db_offset = wq_create->u.response.doorbell_offset; 16952 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 16953 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 16954 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16955 "3252 WQ[%d] doorbell offset " 16956 "not supported: x%x\n", 16957 wq->queue_id, db_offset); 16958 status = -EINVAL; 16959 goto out; 16960 } 16961 wq->db_regaddr = bar_memmap_p + db_offset; 16962 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16963 "3264 WQ[%d]: barset:x%x, offset:x%x, " 16964 "format:x%x\n", wq->queue_id, 16965 pci_barset, db_offset, wq->db_format); 16966 } else 16967 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16968 } else { 16969 /* Check if DPP was honored by the firmware */ 16970 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 16971 &wq_create->u.response_1); 16972 if (wq->dpp_enable) { 16973 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 16974 &wq_create->u.response_1); 16975 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16976 pci_barset); 16977 if (!bar_memmap_p) { 16978 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16979 "3267 WQ[%d] failed to memmap " 16980 "pci barset:x%x\n", 16981 wq->queue_id, pci_barset); 16982 status = -ENOMEM; 16983 goto out; 16984 } 16985 db_offset = wq_create->u.response_1.doorbell_offset; 16986 wq->db_regaddr = bar_memmap_p + db_offset; 16987 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 16988 &wq_create->u.response_1); 16989 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 16990 &wq_create->u.response_1); 16991 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16992 dpp_barset); 16993 if (!bar_memmap_p) { 16994 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16995 "3268 WQ[%d] failed to memmap " 16996 "pci barset:x%x\n", 16997 wq->queue_id, dpp_barset); 16998 status = -ENOMEM; 16999 goto out; 17000 } 17001 dpp_offset = wq_create->u.response_1.dpp_offset; 17002 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17003 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17004 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17005 "dpp_id:x%x dpp_barset:x%x " 17006 "dpp_offset:x%x\n", 17007 wq->queue_id, pci_barset, db_offset, 17008 wq->dpp_id, dpp_barset, dpp_offset); 17009 17010 #ifdef CONFIG_X86 17011 /* Enable combined writes for DPP aperture */ 17012 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17013 rc = set_memory_wc(pg_addr, 1); 17014 if (rc) { 17015 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17016 "3272 Cannot setup Combined " 17017 "Write on WQ[%d] - disable DPP\n", 17018 wq->queue_id); 17019 phba->cfg_enable_dpp = 0; 17020 } 17021 #else 17022 phba->cfg_enable_dpp = 0; 17023 #endif 17024 } else 17025 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17026 } 17027 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17028 if (wq->pring == NULL) { 17029 status = -ENOMEM; 17030 goto out; 17031 } 17032 wq->type = LPFC_WQ; 17033 wq->assoc_qid = cq->queue_id; 17034 wq->subtype = subtype; 17035 wq->host_index = 0; 17036 wq->hba_index = 0; 17037 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17038 17039 /* link the wq onto the parent cq child list */ 17040 list_add_tail(&wq->list, &cq->child_list); 17041 out: 17042 mempool_free(mbox, phba->mbox_mem_pool); 17043 return status; 17044 } 17045 17046 /** 17047 * lpfc_rq_create - Create a Receive Queue on the HBA 17048 * @phba: HBA structure that indicates port to create a queue on. 17049 * @hrq: The queue structure to use to create the header receive queue. 17050 * @drq: The queue structure to use to create the data receive queue. 17051 * @cq: The completion queue to bind this work queue to. 17052 * @subtype: The subtype of the work queue indicating its functionality. 17053 * 17054 * This function creates a receive buffer queue pair , as detailed in @hrq and 17055 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17056 * to the HBA. 17057 * 17058 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17059 * struct is used to get the entry count that is necessary to determine the 17060 * number of pages to use for this queue. The @cq is used to indicate which 17061 * completion queue to bind received buffers that are posted to these queues to. 17062 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17063 * receive queue pair. This function is asynchronous and will wait for the 17064 * mailbox command to finish before continuing. 17065 * 17066 * On success this function will return a zero. If unable to allocate enough 17067 * memory this function will return -ENOMEM. If the queue create mailbox command 17068 * fails this function will return -ENXIO. 17069 **/ 17070 int 17071 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17072 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17073 { 17074 struct lpfc_mbx_rq_create *rq_create; 17075 struct lpfc_dmabuf *dmabuf; 17076 LPFC_MBOXQ_t *mbox; 17077 int rc, length, status = 0; 17078 uint32_t shdr_status, shdr_add_status; 17079 union lpfc_sli4_cfg_shdr *shdr; 17080 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17081 void __iomem *bar_memmap_p; 17082 uint32_t db_offset; 17083 uint16_t pci_barset; 17084 17085 /* sanity check on queue memory */ 17086 if (!hrq || !drq || !cq) 17087 return -ENODEV; 17088 if (!phba->sli4_hba.pc_sli4_params.supported) 17089 hw_page_size = SLI4_PAGE_SIZE; 17090 17091 if (hrq->entry_count != drq->entry_count) 17092 return -EINVAL; 17093 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17094 if (!mbox) 17095 return -ENOMEM; 17096 length = (sizeof(struct lpfc_mbx_rq_create) - 17097 sizeof(struct lpfc_sli4_cfg_mhdr)); 17098 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17099 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17100 length, LPFC_SLI4_MBX_EMBED); 17101 rq_create = &mbox->u.mqe.un.rq_create; 17102 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17103 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17104 phba->sli4_hba.pc_sli4_params.rqv); 17105 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17106 bf_set(lpfc_rq_context_rqe_count_1, 17107 &rq_create->u.request.context, 17108 hrq->entry_count); 17109 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17110 bf_set(lpfc_rq_context_rqe_size, 17111 &rq_create->u.request.context, 17112 LPFC_RQE_SIZE_8); 17113 bf_set(lpfc_rq_context_page_size, 17114 &rq_create->u.request.context, 17115 LPFC_RQ_PAGE_SIZE_4096); 17116 } else { 17117 switch (hrq->entry_count) { 17118 default: 17119 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17120 "2535 Unsupported RQ count. (%d)\n", 17121 hrq->entry_count); 17122 if (hrq->entry_count < 512) { 17123 status = -EINVAL; 17124 goto out; 17125 } 17126 fallthrough; /* otherwise default to smallest count */ 17127 case 512: 17128 bf_set(lpfc_rq_context_rqe_count, 17129 &rq_create->u.request.context, 17130 LPFC_RQ_RING_SIZE_512); 17131 break; 17132 case 1024: 17133 bf_set(lpfc_rq_context_rqe_count, 17134 &rq_create->u.request.context, 17135 LPFC_RQ_RING_SIZE_1024); 17136 break; 17137 case 2048: 17138 bf_set(lpfc_rq_context_rqe_count, 17139 &rq_create->u.request.context, 17140 LPFC_RQ_RING_SIZE_2048); 17141 break; 17142 case 4096: 17143 bf_set(lpfc_rq_context_rqe_count, 17144 &rq_create->u.request.context, 17145 LPFC_RQ_RING_SIZE_4096); 17146 break; 17147 } 17148 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17149 LPFC_HDR_BUF_SIZE); 17150 } 17151 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17152 cq->queue_id); 17153 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17154 hrq->page_count); 17155 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17156 memset(dmabuf->virt, 0, hw_page_size); 17157 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17158 putPaddrLow(dmabuf->phys); 17159 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17160 putPaddrHigh(dmabuf->phys); 17161 } 17162 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17163 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17164 17165 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17166 /* The IOCTL status is embedded in the mailbox subheader. */ 17167 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17168 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17169 if (shdr_status || shdr_add_status || rc) { 17170 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17171 "2504 RQ_CREATE mailbox failed with " 17172 "status x%x add_status x%x, mbx status x%x\n", 17173 shdr_status, shdr_add_status, rc); 17174 status = -ENXIO; 17175 goto out; 17176 } 17177 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17178 if (hrq->queue_id == 0xFFFF) { 17179 status = -ENXIO; 17180 goto out; 17181 } 17182 17183 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17184 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17185 &rq_create->u.response); 17186 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17187 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17188 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17189 "3262 RQ [%d] doorbell format not " 17190 "supported: x%x\n", hrq->queue_id, 17191 hrq->db_format); 17192 status = -EINVAL; 17193 goto out; 17194 } 17195 17196 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17197 &rq_create->u.response); 17198 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17199 if (!bar_memmap_p) { 17200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17201 "3269 RQ[%d] failed to memmap pci " 17202 "barset:x%x\n", hrq->queue_id, 17203 pci_barset); 17204 status = -ENOMEM; 17205 goto out; 17206 } 17207 17208 db_offset = rq_create->u.response.doorbell_offset; 17209 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17210 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17211 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17212 "3270 RQ[%d] doorbell offset not " 17213 "supported: x%x\n", hrq->queue_id, 17214 db_offset); 17215 status = -EINVAL; 17216 goto out; 17217 } 17218 hrq->db_regaddr = bar_memmap_p + db_offset; 17219 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17220 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17221 "format:x%x\n", hrq->queue_id, pci_barset, 17222 db_offset, hrq->db_format); 17223 } else { 17224 hrq->db_format = LPFC_DB_RING_FORMAT; 17225 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17226 } 17227 hrq->type = LPFC_HRQ; 17228 hrq->assoc_qid = cq->queue_id; 17229 hrq->subtype = subtype; 17230 hrq->host_index = 0; 17231 hrq->hba_index = 0; 17232 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17233 17234 /* now create the data queue */ 17235 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17236 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17237 length, LPFC_SLI4_MBX_EMBED); 17238 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17239 phba->sli4_hba.pc_sli4_params.rqv); 17240 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17241 bf_set(lpfc_rq_context_rqe_count_1, 17242 &rq_create->u.request.context, hrq->entry_count); 17243 if (subtype == LPFC_NVMET) 17244 rq_create->u.request.context.buffer_size = 17245 LPFC_NVMET_DATA_BUF_SIZE; 17246 else 17247 rq_create->u.request.context.buffer_size = 17248 LPFC_DATA_BUF_SIZE; 17249 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17250 LPFC_RQE_SIZE_8); 17251 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17252 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17253 } else { 17254 switch (drq->entry_count) { 17255 default: 17256 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17257 "2536 Unsupported RQ count. (%d)\n", 17258 drq->entry_count); 17259 if (drq->entry_count < 512) { 17260 status = -EINVAL; 17261 goto out; 17262 } 17263 fallthrough; /* otherwise default to smallest count */ 17264 case 512: 17265 bf_set(lpfc_rq_context_rqe_count, 17266 &rq_create->u.request.context, 17267 LPFC_RQ_RING_SIZE_512); 17268 break; 17269 case 1024: 17270 bf_set(lpfc_rq_context_rqe_count, 17271 &rq_create->u.request.context, 17272 LPFC_RQ_RING_SIZE_1024); 17273 break; 17274 case 2048: 17275 bf_set(lpfc_rq_context_rqe_count, 17276 &rq_create->u.request.context, 17277 LPFC_RQ_RING_SIZE_2048); 17278 break; 17279 case 4096: 17280 bf_set(lpfc_rq_context_rqe_count, 17281 &rq_create->u.request.context, 17282 LPFC_RQ_RING_SIZE_4096); 17283 break; 17284 } 17285 if (subtype == LPFC_NVMET) 17286 bf_set(lpfc_rq_context_buf_size, 17287 &rq_create->u.request.context, 17288 LPFC_NVMET_DATA_BUF_SIZE); 17289 else 17290 bf_set(lpfc_rq_context_buf_size, 17291 &rq_create->u.request.context, 17292 LPFC_DATA_BUF_SIZE); 17293 } 17294 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17295 cq->queue_id); 17296 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17297 drq->page_count); 17298 list_for_each_entry(dmabuf, &drq->page_list, list) { 17299 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17300 putPaddrLow(dmabuf->phys); 17301 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17302 putPaddrHigh(dmabuf->phys); 17303 } 17304 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17305 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17306 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17307 /* The IOCTL status is embedded in the mailbox subheader. */ 17308 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17309 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17310 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17311 if (shdr_status || shdr_add_status || rc) { 17312 status = -ENXIO; 17313 goto out; 17314 } 17315 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17316 if (drq->queue_id == 0xFFFF) { 17317 status = -ENXIO; 17318 goto out; 17319 } 17320 drq->type = LPFC_DRQ; 17321 drq->assoc_qid = cq->queue_id; 17322 drq->subtype = subtype; 17323 drq->host_index = 0; 17324 drq->hba_index = 0; 17325 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17326 17327 /* link the header and data RQs onto the parent cq child list */ 17328 list_add_tail(&hrq->list, &cq->child_list); 17329 list_add_tail(&drq->list, &cq->child_list); 17330 17331 out: 17332 mempool_free(mbox, phba->mbox_mem_pool); 17333 return status; 17334 } 17335 17336 /** 17337 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17338 * @phba: HBA structure that indicates port to create a queue on. 17339 * @hrqp: The queue structure array to use to create the header receive queues. 17340 * @drqp: The queue structure array to use to create the data receive queues. 17341 * @cqp: The completion queue array to bind these receive queues to. 17342 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17343 * 17344 * This function creates a receive buffer queue pair , as detailed in @hrq and 17345 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17346 * to the HBA. 17347 * 17348 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17349 * struct is used to get the entry count that is necessary to determine the 17350 * number of pages to use for this queue. The @cq is used to indicate which 17351 * completion queue to bind received buffers that are posted to these queues to. 17352 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17353 * receive queue pair. This function is asynchronous and will wait for the 17354 * mailbox command to finish before continuing. 17355 * 17356 * On success this function will return a zero. If unable to allocate enough 17357 * memory this function will return -ENOMEM. If the queue create mailbox command 17358 * fails this function will return -ENXIO. 17359 **/ 17360 int 17361 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17362 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17363 uint32_t subtype) 17364 { 17365 struct lpfc_queue *hrq, *drq, *cq; 17366 struct lpfc_mbx_rq_create_v2 *rq_create; 17367 struct lpfc_dmabuf *dmabuf; 17368 LPFC_MBOXQ_t *mbox; 17369 int rc, length, alloclen, status = 0; 17370 int cnt, idx, numrq, page_idx = 0; 17371 uint32_t shdr_status, shdr_add_status; 17372 union lpfc_sli4_cfg_shdr *shdr; 17373 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17374 17375 numrq = phba->cfg_nvmet_mrq; 17376 /* sanity check on array memory */ 17377 if (!hrqp || !drqp || !cqp || !numrq) 17378 return -ENODEV; 17379 if (!phba->sli4_hba.pc_sli4_params.supported) 17380 hw_page_size = SLI4_PAGE_SIZE; 17381 17382 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17383 if (!mbox) 17384 return -ENOMEM; 17385 17386 length = sizeof(struct lpfc_mbx_rq_create_v2); 17387 length += ((2 * numrq * hrqp[0]->page_count) * 17388 sizeof(struct dma_address)); 17389 17390 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17391 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17392 LPFC_SLI4_MBX_NEMBED); 17393 if (alloclen < length) { 17394 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17395 "3099 Allocated DMA memory size (%d) is " 17396 "less than the requested DMA memory size " 17397 "(%d)\n", alloclen, length); 17398 status = -ENOMEM; 17399 goto out; 17400 } 17401 17402 17403 17404 rq_create = mbox->sge_array->addr[0]; 17405 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17406 17407 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17408 cnt = 0; 17409 17410 for (idx = 0; idx < numrq; idx++) { 17411 hrq = hrqp[idx]; 17412 drq = drqp[idx]; 17413 cq = cqp[idx]; 17414 17415 /* sanity check on queue memory */ 17416 if (!hrq || !drq || !cq) { 17417 status = -ENODEV; 17418 goto out; 17419 } 17420 17421 if (hrq->entry_count != drq->entry_count) { 17422 status = -EINVAL; 17423 goto out; 17424 } 17425 17426 if (idx == 0) { 17427 bf_set(lpfc_mbx_rq_create_num_pages, 17428 &rq_create->u.request, 17429 hrq->page_count); 17430 bf_set(lpfc_mbx_rq_create_rq_cnt, 17431 &rq_create->u.request, (numrq * 2)); 17432 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17433 1); 17434 bf_set(lpfc_rq_context_base_cq, 17435 &rq_create->u.request.context, 17436 cq->queue_id); 17437 bf_set(lpfc_rq_context_data_size, 17438 &rq_create->u.request.context, 17439 LPFC_NVMET_DATA_BUF_SIZE); 17440 bf_set(lpfc_rq_context_hdr_size, 17441 &rq_create->u.request.context, 17442 LPFC_HDR_BUF_SIZE); 17443 bf_set(lpfc_rq_context_rqe_count_1, 17444 &rq_create->u.request.context, 17445 hrq->entry_count); 17446 bf_set(lpfc_rq_context_rqe_size, 17447 &rq_create->u.request.context, 17448 LPFC_RQE_SIZE_8); 17449 bf_set(lpfc_rq_context_page_size, 17450 &rq_create->u.request.context, 17451 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17452 } 17453 rc = 0; 17454 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17455 memset(dmabuf->virt, 0, hw_page_size); 17456 cnt = page_idx + dmabuf->buffer_tag; 17457 rq_create->u.request.page[cnt].addr_lo = 17458 putPaddrLow(dmabuf->phys); 17459 rq_create->u.request.page[cnt].addr_hi = 17460 putPaddrHigh(dmabuf->phys); 17461 rc++; 17462 } 17463 page_idx += rc; 17464 17465 rc = 0; 17466 list_for_each_entry(dmabuf, &drq->page_list, list) { 17467 memset(dmabuf->virt, 0, hw_page_size); 17468 cnt = page_idx + dmabuf->buffer_tag; 17469 rq_create->u.request.page[cnt].addr_lo = 17470 putPaddrLow(dmabuf->phys); 17471 rq_create->u.request.page[cnt].addr_hi = 17472 putPaddrHigh(dmabuf->phys); 17473 rc++; 17474 } 17475 page_idx += rc; 17476 17477 hrq->db_format = LPFC_DB_RING_FORMAT; 17478 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17479 hrq->type = LPFC_HRQ; 17480 hrq->assoc_qid = cq->queue_id; 17481 hrq->subtype = subtype; 17482 hrq->host_index = 0; 17483 hrq->hba_index = 0; 17484 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17485 17486 drq->db_format = LPFC_DB_RING_FORMAT; 17487 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17488 drq->type = LPFC_DRQ; 17489 drq->assoc_qid = cq->queue_id; 17490 drq->subtype = subtype; 17491 drq->host_index = 0; 17492 drq->hba_index = 0; 17493 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17494 17495 list_add_tail(&hrq->list, &cq->child_list); 17496 list_add_tail(&drq->list, &cq->child_list); 17497 } 17498 17499 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17500 /* The IOCTL status is embedded in the mailbox subheader. */ 17501 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17502 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17503 if (shdr_status || shdr_add_status || rc) { 17504 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17505 "3120 RQ_CREATE mailbox failed with " 17506 "status x%x add_status x%x, mbx status x%x\n", 17507 shdr_status, shdr_add_status, rc); 17508 status = -ENXIO; 17509 goto out; 17510 } 17511 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17512 if (rc == 0xFFFF) { 17513 status = -ENXIO; 17514 goto out; 17515 } 17516 17517 /* Initialize all RQs with associated queue id */ 17518 for (idx = 0; idx < numrq; idx++) { 17519 hrq = hrqp[idx]; 17520 hrq->queue_id = rc + (2 * idx); 17521 drq = drqp[idx]; 17522 drq->queue_id = rc + (2 * idx) + 1; 17523 } 17524 17525 out: 17526 lpfc_sli4_mbox_cmd_free(phba, mbox); 17527 return status; 17528 } 17529 17530 /** 17531 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17532 * @phba: HBA structure that indicates port to destroy a queue on. 17533 * @eq: The queue structure associated with the queue to destroy. 17534 * 17535 * This function destroys a queue, as detailed in @eq by sending an mailbox 17536 * command, specific to the type of queue, to the HBA. 17537 * 17538 * The @eq struct is used to get the queue ID of the queue to destroy. 17539 * 17540 * On success this function will return a zero. If the queue destroy mailbox 17541 * command fails this function will return -ENXIO. 17542 **/ 17543 int 17544 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17545 { 17546 LPFC_MBOXQ_t *mbox; 17547 int rc, length, status = 0; 17548 uint32_t shdr_status, shdr_add_status; 17549 union lpfc_sli4_cfg_shdr *shdr; 17550 17551 /* sanity check on queue memory */ 17552 if (!eq) 17553 return -ENODEV; 17554 17555 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17556 if (!mbox) 17557 return -ENOMEM; 17558 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17559 sizeof(struct lpfc_sli4_cfg_mhdr)); 17560 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17561 LPFC_MBOX_OPCODE_EQ_DESTROY, 17562 length, LPFC_SLI4_MBX_EMBED); 17563 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17564 eq->queue_id); 17565 mbox->vport = eq->phba->pport; 17566 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17567 17568 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17569 /* The IOCTL status is embedded in the mailbox subheader. */ 17570 shdr = (union lpfc_sli4_cfg_shdr *) 17571 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17572 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17573 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17574 if (shdr_status || shdr_add_status || rc) { 17575 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17576 "2505 EQ_DESTROY mailbox failed with " 17577 "status x%x add_status x%x, mbx status x%x\n", 17578 shdr_status, shdr_add_status, rc); 17579 status = -ENXIO; 17580 } 17581 17582 /* Remove eq from any list */ 17583 list_del_init(&eq->list); 17584 mempool_free(mbox, eq->phba->mbox_mem_pool); 17585 return status; 17586 } 17587 17588 /** 17589 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17590 * @phba: HBA structure that indicates port to destroy a queue on. 17591 * @cq: The queue structure associated with the queue to destroy. 17592 * 17593 * This function destroys a queue, as detailed in @cq by sending an mailbox 17594 * command, specific to the type of queue, to the HBA. 17595 * 17596 * The @cq struct is used to get the queue ID of the queue to destroy. 17597 * 17598 * On success this function will return a zero. If the queue destroy mailbox 17599 * command fails this function will return -ENXIO. 17600 **/ 17601 int 17602 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17603 { 17604 LPFC_MBOXQ_t *mbox; 17605 int rc, length, status = 0; 17606 uint32_t shdr_status, shdr_add_status; 17607 union lpfc_sli4_cfg_shdr *shdr; 17608 17609 /* sanity check on queue memory */ 17610 if (!cq) 17611 return -ENODEV; 17612 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17613 if (!mbox) 17614 return -ENOMEM; 17615 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17616 sizeof(struct lpfc_sli4_cfg_mhdr)); 17617 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17618 LPFC_MBOX_OPCODE_CQ_DESTROY, 17619 length, LPFC_SLI4_MBX_EMBED); 17620 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17621 cq->queue_id); 17622 mbox->vport = cq->phba->pport; 17623 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17624 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17625 /* The IOCTL status is embedded in the mailbox subheader. */ 17626 shdr = (union lpfc_sli4_cfg_shdr *) 17627 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17628 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17629 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17630 if (shdr_status || shdr_add_status || rc) { 17631 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17632 "2506 CQ_DESTROY mailbox failed with " 17633 "status x%x add_status x%x, mbx status x%x\n", 17634 shdr_status, shdr_add_status, rc); 17635 status = -ENXIO; 17636 } 17637 /* Remove cq from any list */ 17638 list_del_init(&cq->list); 17639 mempool_free(mbox, cq->phba->mbox_mem_pool); 17640 return status; 17641 } 17642 17643 /** 17644 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17645 * @phba: HBA structure that indicates port to destroy a queue on. 17646 * @mq: The queue structure associated with the queue to destroy. 17647 * 17648 * This function destroys a queue, as detailed in @mq by sending an mailbox 17649 * command, specific to the type of queue, to the HBA. 17650 * 17651 * The @mq struct is used to get the queue ID of the queue to destroy. 17652 * 17653 * On success this function will return a zero. If the queue destroy mailbox 17654 * command fails this function will return -ENXIO. 17655 **/ 17656 int 17657 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17658 { 17659 LPFC_MBOXQ_t *mbox; 17660 int rc, length, status = 0; 17661 uint32_t shdr_status, shdr_add_status; 17662 union lpfc_sli4_cfg_shdr *shdr; 17663 17664 /* sanity check on queue memory */ 17665 if (!mq) 17666 return -ENODEV; 17667 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17668 if (!mbox) 17669 return -ENOMEM; 17670 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17671 sizeof(struct lpfc_sli4_cfg_mhdr)); 17672 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17673 LPFC_MBOX_OPCODE_MQ_DESTROY, 17674 length, LPFC_SLI4_MBX_EMBED); 17675 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17676 mq->queue_id); 17677 mbox->vport = mq->phba->pport; 17678 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17679 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17680 /* The IOCTL status is embedded in the mailbox subheader. */ 17681 shdr = (union lpfc_sli4_cfg_shdr *) 17682 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17683 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17684 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17685 if (shdr_status || shdr_add_status || rc) { 17686 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17687 "2507 MQ_DESTROY mailbox failed with " 17688 "status x%x add_status x%x, mbx status x%x\n", 17689 shdr_status, shdr_add_status, rc); 17690 status = -ENXIO; 17691 } 17692 /* Remove mq from any list */ 17693 list_del_init(&mq->list); 17694 mempool_free(mbox, mq->phba->mbox_mem_pool); 17695 return status; 17696 } 17697 17698 /** 17699 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17700 * @phba: HBA structure that indicates port to destroy a queue on. 17701 * @wq: The queue structure associated with the queue to destroy. 17702 * 17703 * This function destroys a queue, as detailed in @wq by sending an mailbox 17704 * command, specific to the type of queue, to the HBA. 17705 * 17706 * The @wq struct is used to get the queue ID of the queue to destroy. 17707 * 17708 * On success this function will return a zero. If the queue destroy mailbox 17709 * command fails this function will return -ENXIO. 17710 **/ 17711 int 17712 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17713 { 17714 LPFC_MBOXQ_t *mbox; 17715 int rc, length, status = 0; 17716 uint32_t shdr_status, shdr_add_status; 17717 union lpfc_sli4_cfg_shdr *shdr; 17718 17719 /* sanity check on queue memory */ 17720 if (!wq) 17721 return -ENODEV; 17722 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17723 if (!mbox) 17724 return -ENOMEM; 17725 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17726 sizeof(struct lpfc_sli4_cfg_mhdr)); 17727 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17728 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17729 length, LPFC_SLI4_MBX_EMBED); 17730 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17731 wq->queue_id); 17732 mbox->vport = wq->phba->pport; 17733 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17734 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17735 shdr = (union lpfc_sli4_cfg_shdr *) 17736 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17737 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17738 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17739 if (shdr_status || shdr_add_status || rc) { 17740 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17741 "2508 WQ_DESTROY mailbox failed with " 17742 "status x%x add_status x%x, mbx status x%x\n", 17743 shdr_status, shdr_add_status, rc); 17744 status = -ENXIO; 17745 } 17746 /* Remove wq from any list */ 17747 list_del_init(&wq->list); 17748 kfree(wq->pring); 17749 wq->pring = NULL; 17750 mempool_free(mbox, wq->phba->mbox_mem_pool); 17751 return status; 17752 } 17753 17754 /** 17755 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17756 * @phba: HBA structure that indicates port to destroy a queue on. 17757 * @hrq: The queue structure associated with the queue to destroy. 17758 * @drq: The queue structure associated with the queue to destroy. 17759 * 17760 * This function destroys a queue, as detailed in @rq by sending an mailbox 17761 * command, specific to the type of queue, to the HBA. 17762 * 17763 * The @rq struct is used to get the queue ID of the queue to destroy. 17764 * 17765 * On success this function will return a zero. If the queue destroy mailbox 17766 * command fails this function will return -ENXIO. 17767 **/ 17768 int 17769 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17770 struct lpfc_queue *drq) 17771 { 17772 LPFC_MBOXQ_t *mbox; 17773 int rc, length, status = 0; 17774 uint32_t shdr_status, shdr_add_status; 17775 union lpfc_sli4_cfg_shdr *shdr; 17776 17777 /* sanity check on queue memory */ 17778 if (!hrq || !drq) 17779 return -ENODEV; 17780 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17781 if (!mbox) 17782 return -ENOMEM; 17783 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17784 sizeof(struct lpfc_sli4_cfg_mhdr)); 17785 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17786 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17787 length, LPFC_SLI4_MBX_EMBED); 17788 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17789 hrq->queue_id); 17790 mbox->vport = hrq->phba->pport; 17791 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17792 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17793 /* The IOCTL status is embedded in the mailbox subheader. */ 17794 shdr = (union lpfc_sli4_cfg_shdr *) 17795 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17796 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17797 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17798 if (shdr_status || shdr_add_status || rc) { 17799 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17800 "2509 RQ_DESTROY mailbox failed with " 17801 "status x%x add_status x%x, mbx status x%x\n", 17802 shdr_status, shdr_add_status, rc); 17803 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17804 return -ENXIO; 17805 } 17806 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17807 drq->queue_id); 17808 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17809 shdr = (union lpfc_sli4_cfg_shdr *) 17810 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17811 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17812 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17813 if (shdr_status || shdr_add_status || rc) { 17814 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17815 "2510 RQ_DESTROY mailbox failed with " 17816 "status x%x add_status x%x, mbx status x%x\n", 17817 shdr_status, shdr_add_status, rc); 17818 status = -ENXIO; 17819 } 17820 list_del_init(&hrq->list); 17821 list_del_init(&drq->list); 17822 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17823 return status; 17824 } 17825 17826 /** 17827 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17828 * @phba: The virtual port for which this call being executed. 17829 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17830 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17831 * @xritag: the xritag that ties this io to the SGL pages. 17832 * 17833 * This routine will post the sgl pages for the IO that has the xritag 17834 * that is in the iocbq structure. The xritag is assigned during iocbq 17835 * creation and persists for as long as the driver is loaded. 17836 * if the caller has fewer than 256 scatter gather segments to map then 17837 * pdma_phys_addr1 should be 0. 17838 * If the caller needs to map more than 256 scatter gather segment then 17839 * pdma_phys_addr1 should be a valid physical address. 17840 * physical address for SGLs must be 64 byte aligned. 17841 * If you are going to map 2 SGL's then the first one must have 256 entries 17842 * the second sgl can have between 1 and 256 entries. 17843 * 17844 * Return codes: 17845 * 0 - Success 17846 * -ENXIO, -ENOMEM - Failure 17847 **/ 17848 int 17849 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17850 dma_addr_t pdma_phys_addr0, 17851 dma_addr_t pdma_phys_addr1, 17852 uint16_t xritag) 17853 { 17854 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17855 LPFC_MBOXQ_t *mbox; 17856 int rc; 17857 uint32_t shdr_status, shdr_add_status; 17858 uint32_t mbox_tmo; 17859 union lpfc_sli4_cfg_shdr *shdr; 17860 17861 if (xritag == NO_XRI) { 17862 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17863 "0364 Invalid param:\n"); 17864 return -EINVAL; 17865 } 17866 17867 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17868 if (!mbox) 17869 return -ENOMEM; 17870 17871 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17872 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17873 sizeof(struct lpfc_mbx_post_sgl_pages) - 17874 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17875 17876 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17877 &mbox->u.mqe.un.post_sgl_pages; 17878 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17879 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17880 17881 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17882 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17883 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17884 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17885 17886 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17887 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17888 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17889 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17890 if (!phba->sli4_hba.intr_enable) 17891 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17892 else { 17893 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17894 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17895 } 17896 /* The IOCTL status is embedded in the mailbox subheader. */ 17897 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17898 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17899 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17900 if (!phba->sli4_hba.intr_enable) 17901 mempool_free(mbox, phba->mbox_mem_pool); 17902 else if (rc != MBX_TIMEOUT) 17903 mempool_free(mbox, phba->mbox_mem_pool); 17904 if (shdr_status || shdr_add_status || rc) { 17905 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17906 "2511 POST_SGL mailbox failed with " 17907 "status x%x add_status x%x, mbx status x%x\n", 17908 shdr_status, shdr_add_status, rc); 17909 } 17910 return 0; 17911 } 17912 17913 /** 17914 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17915 * @phba: pointer to lpfc hba data structure. 17916 * 17917 * This routine is invoked to post rpi header templates to the 17918 * HBA consistent with the SLI-4 interface spec. This routine 17919 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17920 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17921 * 17922 * Returns 17923 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17924 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17925 **/ 17926 static uint16_t 17927 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17928 { 17929 unsigned long xri; 17930 17931 /* 17932 * Fetch the next logical xri. Because this index is logical, 17933 * the driver starts at 0 each time. 17934 */ 17935 spin_lock_irq(&phba->hbalock); 17936 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 17937 phba->sli4_hba.max_cfg_param.max_xri, 0); 17938 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17939 spin_unlock_irq(&phba->hbalock); 17940 return NO_XRI; 17941 } else { 17942 set_bit(xri, phba->sli4_hba.xri_bmask); 17943 phba->sli4_hba.max_cfg_param.xri_used++; 17944 } 17945 spin_unlock_irq(&phba->hbalock); 17946 return xri; 17947 } 17948 17949 /** 17950 * __lpfc_sli4_free_xri - Release an xri for reuse. 17951 * @phba: pointer to lpfc hba data structure. 17952 * @xri: xri to release. 17953 * 17954 * This routine is invoked to release an xri to the pool of 17955 * available rpis maintained by the driver. 17956 **/ 17957 static void 17958 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17959 { 17960 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 17961 phba->sli4_hba.max_cfg_param.xri_used--; 17962 } 17963 } 17964 17965 /** 17966 * lpfc_sli4_free_xri - Release an xri for reuse. 17967 * @phba: pointer to lpfc hba data structure. 17968 * @xri: xri to release. 17969 * 17970 * This routine is invoked to release an xri to the pool of 17971 * available rpis maintained by the driver. 17972 **/ 17973 void 17974 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17975 { 17976 spin_lock_irq(&phba->hbalock); 17977 __lpfc_sli4_free_xri(phba, xri); 17978 spin_unlock_irq(&phba->hbalock); 17979 } 17980 17981 /** 17982 * lpfc_sli4_next_xritag - Get an xritag for the io 17983 * @phba: Pointer to HBA context object. 17984 * 17985 * This function gets an xritag for the iocb. If there is no unused xritag 17986 * it will return 0xffff. 17987 * The function returns the allocated xritag if successful, else returns zero. 17988 * Zero is not a valid xritag. 17989 * The caller is not required to hold any lock. 17990 **/ 17991 uint16_t 17992 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 17993 { 17994 uint16_t xri_index; 17995 17996 xri_index = lpfc_sli4_alloc_xri(phba); 17997 if (xri_index == NO_XRI) 17998 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17999 "2004 Failed to allocate XRI.last XRITAG is %d" 18000 " Max XRI is %d, Used XRI is %d\n", 18001 xri_index, 18002 phba->sli4_hba.max_cfg_param.max_xri, 18003 phba->sli4_hba.max_cfg_param.xri_used); 18004 return xri_index; 18005 } 18006 18007 /** 18008 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18009 * @phba: pointer to lpfc hba data structure. 18010 * @post_sgl_list: pointer to els sgl entry list. 18011 * @post_cnt: number of els sgl entries on the list. 18012 * 18013 * This routine is invoked to post a block of driver's sgl pages to the 18014 * HBA using non-embedded mailbox command. No Lock is held. This routine 18015 * is only called when the driver is loading and after all IO has been 18016 * stopped. 18017 **/ 18018 static int 18019 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18020 struct list_head *post_sgl_list, 18021 int post_cnt) 18022 { 18023 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18024 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18025 struct sgl_page_pairs *sgl_pg_pairs; 18026 void *viraddr; 18027 LPFC_MBOXQ_t *mbox; 18028 uint32_t reqlen, alloclen, pg_pairs; 18029 uint32_t mbox_tmo; 18030 uint16_t xritag_start = 0; 18031 int rc = 0; 18032 uint32_t shdr_status, shdr_add_status; 18033 union lpfc_sli4_cfg_shdr *shdr; 18034 18035 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18036 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18037 if (reqlen > SLI4_PAGE_SIZE) { 18038 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18039 "2559 Block sgl registration required DMA " 18040 "size (%d) great than a page\n", reqlen); 18041 return -ENOMEM; 18042 } 18043 18044 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18045 if (!mbox) 18046 return -ENOMEM; 18047 18048 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18049 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18050 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18051 LPFC_SLI4_MBX_NEMBED); 18052 18053 if (alloclen < reqlen) { 18054 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18055 "0285 Allocated DMA memory size (%d) is " 18056 "less than the requested DMA memory " 18057 "size (%d)\n", alloclen, reqlen); 18058 lpfc_sli4_mbox_cmd_free(phba, mbox); 18059 return -ENOMEM; 18060 } 18061 /* Set up the SGL pages in the non-embedded DMA pages */ 18062 viraddr = mbox->sge_array->addr[0]; 18063 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18064 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18065 18066 pg_pairs = 0; 18067 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18068 /* Set up the sge entry */ 18069 sgl_pg_pairs->sgl_pg0_addr_lo = 18070 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18071 sgl_pg_pairs->sgl_pg0_addr_hi = 18072 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18073 sgl_pg_pairs->sgl_pg1_addr_lo = 18074 cpu_to_le32(putPaddrLow(0)); 18075 sgl_pg_pairs->sgl_pg1_addr_hi = 18076 cpu_to_le32(putPaddrHigh(0)); 18077 18078 /* Keep the first xritag on the list */ 18079 if (pg_pairs == 0) 18080 xritag_start = sglq_entry->sli4_xritag; 18081 sgl_pg_pairs++; 18082 pg_pairs++; 18083 } 18084 18085 /* Complete initialization and perform endian conversion. */ 18086 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18087 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18088 sgl->word0 = cpu_to_le32(sgl->word0); 18089 18090 if (!phba->sli4_hba.intr_enable) 18091 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18092 else { 18093 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18094 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18095 } 18096 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18097 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18098 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18099 if (!phba->sli4_hba.intr_enable) 18100 lpfc_sli4_mbox_cmd_free(phba, mbox); 18101 else if (rc != MBX_TIMEOUT) 18102 lpfc_sli4_mbox_cmd_free(phba, mbox); 18103 if (shdr_status || shdr_add_status || rc) { 18104 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18105 "2513 POST_SGL_BLOCK mailbox command failed " 18106 "status x%x add_status x%x mbx status x%x\n", 18107 shdr_status, shdr_add_status, rc); 18108 rc = -ENXIO; 18109 } 18110 return rc; 18111 } 18112 18113 /** 18114 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18115 * @phba: pointer to lpfc hba data structure. 18116 * @nblist: pointer to nvme buffer list. 18117 * @count: number of scsi buffers on the list. 18118 * 18119 * This routine is invoked to post a block of @count scsi sgl pages from a 18120 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18121 * No Lock is held. 18122 * 18123 **/ 18124 static int 18125 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18126 int count) 18127 { 18128 struct lpfc_io_buf *lpfc_ncmd; 18129 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18130 struct sgl_page_pairs *sgl_pg_pairs; 18131 void *viraddr; 18132 LPFC_MBOXQ_t *mbox; 18133 uint32_t reqlen, alloclen, pg_pairs; 18134 uint32_t mbox_tmo; 18135 uint16_t xritag_start = 0; 18136 int rc = 0; 18137 uint32_t shdr_status, shdr_add_status; 18138 dma_addr_t pdma_phys_bpl1; 18139 union lpfc_sli4_cfg_shdr *shdr; 18140 18141 /* Calculate the requested length of the dma memory */ 18142 reqlen = count * sizeof(struct sgl_page_pairs) + 18143 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18144 if (reqlen > SLI4_PAGE_SIZE) { 18145 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18146 "6118 Block sgl registration required DMA " 18147 "size (%d) great than a page\n", reqlen); 18148 return -ENOMEM; 18149 } 18150 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18151 if (!mbox) { 18152 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18153 "6119 Failed to allocate mbox cmd memory\n"); 18154 return -ENOMEM; 18155 } 18156 18157 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18158 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18159 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18160 reqlen, LPFC_SLI4_MBX_NEMBED); 18161 18162 if (alloclen < reqlen) { 18163 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18164 "6120 Allocated DMA memory size (%d) is " 18165 "less than the requested DMA memory " 18166 "size (%d)\n", alloclen, reqlen); 18167 lpfc_sli4_mbox_cmd_free(phba, mbox); 18168 return -ENOMEM; 18169 } 18170 18171 /* Get the first SGE entry from the non-embedded DMA memory */ 18172 viraddr = mbox->sge_array->addr[0]; 18173 18174 /* Set up the SGL pages in the non-embedded DMA pages */ 18175 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18176 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18177 18178 pg_pairs = 0; 18179 list_for_each_entry(lpfc_ncmd, nblist, list) { 18180 /* Set up the sge entry */ 18181 sgl_pg_pairs->sgl_pg0_addr_lo = 18182 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18183 sgl_pg_pairs->sgl_pg0_addr_hi = 18184 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18185 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18186 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18187 SGL_PAGE_SIZE; 18188 else 18189 pdma_phys_bpl1 = 0; 18190 sgl_pg_pairs->sgl_pg1_addr_lo = 18191 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18192 sgl_pg_pairs->sgl_pg1_addr_hi = 18193 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18194 /* Keep the first xritag on the list */ 18195 if (pg_pairs == 0) 18196 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18197 sgl_pg_pairs++; 18198 pg_pairs++; 18199 } 18200 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18201 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18202 /* Perform endian conversion if necessary */ 18203 sgl->word0 = cpu_to_le32(sgl->word0); 18204 18205 if (!phba->sli4_hba.intr_enable) { 18206 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18207 } else { 18208 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18209 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18210 } 18211 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18212 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18213 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18214 if (!phba->sli4_hba.intr_enable) 18215 lpfc_sli4_mbox_cmd_free(phba, mbox); 18216 else if (rc != MBX_TIMEOUT) 18217 lpfc_sli4_mbox_cmd_free(phba, mbox); 18218 if (shdr_status || shdr_add_status || rc) { 18219 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18220 "6125 POST_SGL_BLOCK mailbox command failed " 18221 "status x%x add_status x%x mbx status x%x\n", 18222 shdr_status, shdr_add_status, rc); 18223 rc = -ENXIO; 18224 } 18225 return rc; 18226 } 18227 18228 /** 18229 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18230 * @phba: pointer to lpfc hba data structure. 18231 * @post_nblist: pointer to the nvme buffer list. 18232 * @sb_count: number of nvme buffers. 18233 * 18234 * This routine walks a list of nvme buffers that was passed in. It attempts 18235 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18236 * uses the non-embedded SGL block post mailbox commands to post to the port. 18237 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18238 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18239 * must be local list, thus no lock is needed when manipulate the list. 18240 * 18241 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18242 **/ 18243 int 18244 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18245 struct list_head *post_nblist, int sb_count) 18246 { 18247 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18248 int status, sgl_size; 18249 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18250 dma_addr_t pdma_phys_sgl1; 18251 int last_xritag = NO_XRI; 18252 int cur_xritag; 18253 LIST_HEAD(prep_nblist); 18254 LIST_HEAD(blck_nblist); 18255 LIST_HEAD(nvme_nblist); 18256 18257 /* sanity check */ 18258 if (sb_count <= 0) 18259 return -EINVAL; 18260 18261 sgl_size = phba->cfg_sg_dma_buf_size; 18262 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18263 list_del_init(&lpfc_ncmd->list); 18264 block_cnt++; 18265 if ((last_xritag != NO_XRI) && 18266 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18267 /* a hole in xri block, form a sgl posting block */ 18268 list_splice_init(&prep_nblist, &blck_nblist); 18269 post_cnt = block_cnt - 1; 18270 /* prepare list for next posting block */ 18271 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18272 block_cnt = 1; 18273 } else { 18274 /* prepare list for next posting block */ 18275 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18276 /* enough sgls for non-embed sgl mbox command */ 18277 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18278 list_splice_init(&prep_nblist, &blck_nblist); 18279 post_cnt = block_cnt; 18280 block_cnt = 0; 18281 } 18282 } 18283 num_posting++; 18284 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18285 18286 /* end of repost sgl list condition for NVME buffers */ 18287 if (num_posting == sb_count) { 18288 if (post_cnt == 0) { 18289 /* last sgl posting block */ 18290 list_splice_init(&prep_nblist, &blck_nblist); 18291 post_cnt = block_cnt; 18292 } else if (block_cnt == 1) { 18293 /* last single sgl with non-contiguous xri */ 18294 if (sgl_size > SGL_PAGE_SIZE) 18295 pdma_phys_sgl1 = 18296 lpfc_ncmd->dma_phys_sgl + 18297 SGL_PAGE_SIZE; 18298 else 18299 pdma_phys_sgl1 = 0; 18300 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18301 status = lpfc_sli4_post_sgl( 18302 phba, lpfc_ncmd->dma_phys_sgl, 18303 pdma_phys_sgl1, cur_xritag); 18304 if (status) { 18305 /* Post error. Buffer unavailable. */ 18306 lpfc_ncmd->flags |= 18307 LPFC_SBUF_NOT_POSTED; 18308 } else { 18309 /* Post success. Bffer available. */ 18310 lpfc_ncmd->flags &= 18311 ~LPFC_SBUF_NOT_POSTED; 18312 lpfc_ncmd->status = IOSTAT_SUCCESS; 18313 num_posted++; 18314 } 18315 /* success, put on NVME buffer sgl list */ 18316 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18317 } 18318 } 18319 18320 /* continue until a nembed page worth of sgls */ 18321 if (post_cnt == 0) 18322 continue; 18323 18324 /* post block of NVME buffer list sgls */ 18325 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18326 post_cnt); 18327 18328 /* don't reset xirtag due to hole in xri block */ 18329 if (block_cnt == 0) 18330 last_xritag = NO_XRI; 18331 18332 /* reset NVME buffer post count for next round of posting */ 18333 post_cnt = 0; 18334 18335 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18336 while (!list_empty(&blck_nblist)) { 18337 list_remove_head(&blck_nblist, lpfc_ncmd, 18338 struct lpfc_io_buf, list); 18339 if (status) { 18340 /* Post error. Mark buffer unavailable. */ 18341 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18342 } else { 18343 /* Post success, Mark buffer available. */ 18344 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18345 lpfc_ncmd->status = IOSTAT_SUCCESS; 18346 num_posted++; 18347 } 18348 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18349 } 18350 } 18351 /* Push NVME buffers with sgl posted to the available list */ 18352 lpfc_io_buf_replenish(phba, &nvme_nblist); 18353 18354 return num_posted; 18355 } 18356 18357 /** 18358 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18359 * @phba: pointer to lpfc_hba struct that the frame was received on 18360 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18361 * 18362 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18363 * valid type of frame that the LPFC driver will handle. This function will 18364 * return a zero if the frame is a valid frame or a non zero value when the 18365 * frame does not pass the check. 18366 **/ 18367 static int 18368 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18369 { 18370 /* make rctl_names static to save stack space */ 18371 struct fc_vft_header *fc_vft_hdr; 18372 uint32_t *header = (uint32_t *) fc_hdr; 18373 18374 #define FC_RCTL_MDS_DIAGS 0xF4 18375 18376 switch (fc_hdr->fh_r_ctl) { 18377 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18378 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18379 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18380 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18381 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18382 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18383 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18384 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18385 case FC_RCTL_ELS_REQ: /* extended link services request */ 18386 case FC_RCTL_ELS_REP: /* extended link services reply */ 18387 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18388 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18389 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18390 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18391 case FC_RCTL_BA_RMC: /* remove connection */ 18392 case FC_RCTL_BA_ACC: /* basic accept */ 18393 case FC_RCTL_BA_RJT: /* basic reject */ 18394 case FC_RCTL_BA_PRMT: 18395 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18396 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18397 case FC_RCTL_P_RJT: /* port reject */ 18398 case FC_RCTL_F_RJT: /* fabric reject */ 18399 case FC_RCTL_P_BSY: /* port busy */ 18400 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18401 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18402 case FC_RCTL_LCR: /* link credit reset */ 18403 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18404 case FC_RCTL_END: /* end */ 18405 break; 18406 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18407 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18408 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18409 return lpfc_fc_frame_check(phba, fc_hdr); 18410 default: 18411 goto drop; 18412 } 18413 18414 switch (fc_hdr->fh_type) { 18415 case FC_TYPE_BLS: 18416 case FC_TYPE_ELS: 18417 case FC_TYPE_FCP: 18418 case FC_TYPE_CT: 18419 case FC_TYPE_NVME: 18420 break; 18421 case FC_TYPE_IP: 18422 case FC_TYPE_ILS: 18423 default: 18424 goto drop; 18425 } 18426 18427 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18428 "2538 Received frame rctl:x%x, type:x%x, " 18429 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18430 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18431 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18432 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18433 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18434 be32_to_cpu(header[6])); 18435 return 0; 18436 drop: 18437 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18438 "2539 Dropped frame rctl:x%x type:x%x\n", 18439 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18440 return 1; 18441 } 18442 18443 /** 18444 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18445 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18446 * 18447 * This function processes the FC header to retrieve the VFI from the VF 18448 * header, if one exists. This function will return the VFI if one exists 18449 * or 0 if no VSAN Header exists. 18450 **/ 18451 static uint32_t 18452 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18453 { 18454 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18455 18456 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18457 return 0; 18458 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18459 } 18460 18461 /** 18462 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18463 * @phba: Pointer to the HBA structure to search for the vport on 18464 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18465 * @fcfi: The FC Fabric ID that the frame came from 18466 * @did: Destination ID to match against 18467 * 18468 * This function searches the @phba for a vport that matches the content of the 18469 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18470 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18471 * returns the matching vport pointer or NULL if unable to match frame to a 18472 * vport. 18473 **/ 18474 static struct lpfc_vport * 18475 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18476 uint16_t fcfi, uint32_t did) 18477 { 18478 struct lpfc_vport **vports; 18479 struct lpfc_vport *vport = NULL; 18480 int i; 18481 18482 if (did == Fabric_DID) 18483 return phba->pport; 18484 if ((phba->pport->fc_flag & FC_PT2PT) && 18485 !(phba->link_state == LPFC_HBA_READY)) 18486 return phba->pport; 18487 18488 vports = lpfc_create_vport_work_array(phba); 18489 if (vports != NULL) { 18490 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18491 if (phba->fcf.fcfi == fcfi && 18492 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18493 vports[i]->fc_myDID == did) { 18494 vport = vports[i]; 18495 break; 18496 } 18497 } 18498 } 18499 lpfc_destroy_vport_work_array(phba, vports); 18500 return vport; 18501 } 18502 18503 /** 18504 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18505 * @vport: The vport to work on. 18506 * 18507 * This function updates the receive sequence time stamp for this vport. The 18508 * receive sequence time stamp indicates the time that the last frame of the 18509 * the sequence that has been idle for the longest amount of time was received. 18510 * the driver uses this time stamp to indicate if any received sequences have 18511 * timed out. 18512 **/ 18513 static void 18514 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18515 { 18516 struct lpfc_dmabuf *h_buf; 18517 struct hbq_dmabuf *dmabuf = NULL; 18518 18519 /* get the oldest sequence on the rcv list */ 18520 h_buf = list_get_first(&vport->rcv_buffer_list, 18521 struct lpfc_dmabuf, list); 18522 if (!h_buf) 18523 return; 18524 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18525 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18526 } 18527 18528 /** 18529 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18530 * @vport: The vport that the received sequences were sent to. 18531 * 18532 * This function cleans up all outstanding received sequences. This is called 18533 * by the driver when a link event or user action invalidates all the received 18534 * sequences. 18535 **/ 18536 void 18537 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18538 { 18539 struct lpfc_dmabuf *h_buf, *hnext; 18540 struct lpfc_dmabuf *d_buf, *dnext; 18541 struct hbq_dmabuf *dmabuf = NULL; 18542 18543 /* start with the oldest sequence on the rcv list */ 18544 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18545 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18546 list_del_init(&dmabuf->hbuf.list); 18547 list_for_each_entry_safe(d_buf, dnext, 18548 &dmabuf->dbuf.list, list) { 18549 list_del_init(&d_buf->list); 18550 lpfc_in_buf_free(vport->phba, d_buf); 18551 } 18552 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18553 } 18554 } 18555 18556 /** 18557 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18558 * @vport: The vport that the received sequences were sent to. 18559 * 18560 * This function determines whether any received sequences have timed out by 18561 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18562 * indicates that there is at least one timed out sequence this routine will 18563 * go through the received sequences one at a time from most inactive to most 18564 * active to determine which ones need to be cleaned up. Once it has determined 18565 * that a sequence needs to be cleaned up it will simply free up the resources 18566 * without sending an abort. 18567 **/ 18568 void 18569 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18570 { 18571 struct lpfc_dmabuf *h_buf, *hnext; 18572 struct lpfc_dmabuf *d_buf, *dnext; 18573 struct hbq_dmabuf *dmabuf = NULL; 18574 unsigned long timeout; 18575 int abort_count = 0; 18576 18577 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18578 vport->rcv_buffer_time_stamp); 18579 if (list_empty(&vport->rcv_buffer_list) || 18580 time_before(jiffies, timeout)) 18581 return; 18582 /* start with the oldest sequence on the rcv list */ 18583 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18584 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18585 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18586 dmabuf->time_stamp); 18587 if (time_before(jiffies, timeout)) 18588 break; 18589 abort_count++; 18590 list_del_init(&dmabuf->hbuf.list); 18591 list_for_each_entry_safe(d_buf, dnext, 18592 &dmabuf->dbuf.list, list) { 18593 list_del_init(&d_buf->list); 18594 lpfc_in_buf_free(vport->phba, d_buf); 18595 } 18596 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18597 } 18598 if (abort_count) 18599 lpfc_update_rcv_time_stamp(vport); 18600 } 18601 18602 /** 18603 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18604 * @vport: pointer to a vitural port 18605 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18606 * 18607 * This function searches through the existing incomplete sequences that have 18608 * been sent to this @vport. If the frame matches one of the incomplete 18609 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18610 * make up that sequence. If no sequence is found that matches this frame then 18611 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18612 * This function returns a pointer to the first dmabuf in the sequence list that 18613 * the frame was linked to. 18614 **/ 18615 static struct hbq_dmabuf * 18616 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18617 { 18618 struct fc_frame_header *new_hdr; 18619 struct fc_frame_header *temp_hdr; 18620 struct lpfc_dmabuf *d_buf; 18621 struct lpfc_dmabuf *h_buf; 18622 struct hbq_dmabuf *seq_dmabuf = NULL; 18623 struct hbq_dmabuf *temp_dmabuf = NULL; 18624 uint8_t found = 0; 18625 18626 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18627 dmabuf->time_stamp = jiffies; 18628 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18629 18630 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18631 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18632 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18633 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18634 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18635 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18636 continue; 18637 /* found a pending sequence that matches this frame */ 18638 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18639 break; 18640 } 18641 if (!seq_dmabuf) { 18642 /* 18643 * This indicates first frame received for this sequence. 18644 * Queue the buffer on the vport's rcv_buffer_list. 18645 */ 18646 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18647 lpfc_update_rcv_time_stamp(vport); 18648 return dmabuf; 18649 } 18650 temp_hdr = seq_dmabuf->hbuf.virt; 18651 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18652 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18653 list_del_init(&seq_dmabuf->hbuf.list); 18654 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18655 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18656 lpfc_update_rcv_time_stamp(vport); 18657 return dmabuf; 18658 } 18659 /* move this sequence to the tail to indicate a young sequence */ 18660 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18661 seq_dmabuf->time_stamp = jiffies; 18662 lpfc_update_rcv_time_stamp(vport); 18663 if (list_empty(&seq_dmabuf->dbuf.list)) { 18664 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18665 return seq_dmabuf; 18666 } 18667 /* find the correct place in the sequence to insert this frame */ 18668 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18669 while (!found) { 18670 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18671 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18672 /* 18673 * If the frame's sequence count is greater than the frame on 18674 * the list then insert the frame right after this frame 18675 */ 18676 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18677 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18678 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18679 found = 1; 18680 break; 18681 } 18682 18683 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18684 break; 18685 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18686 } 18687 18688 if (found) 18689 return seq_dmabuf; 18690 return NULL; 18691 } 18692 18693 /** 18694 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18695 * @vport: pointer to a vitural port 18696 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18697 * 18698 * This function tries to abort from the partially assembed sequence, described 18699 * by the information from basic abbort @dmabuf. It checks to see whether such 18700 * partially assembled sequence held by the driver. If so, it shall free up all 18701 * the frames from the partially assembled sequence. 18702 * 18703 * Return 18704 * true -- if there is matching partially assembled sequence present and all 18705 * the frames freed with the sequence; 18706 * false -- if there is no matching partially assembled sequence present so 18707 * nothing got aborted in the lower layer driver 18708 **/ 18709 static bool 18710 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18711 struct hbq_dmabuf *dmabuf) 18712 { 18713 struct fc_frame_header *new_hdr; 18714 struct fc_frame_header *temp_hdr; 18715 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18716 struct hbq_dmabuf *seq_dmabuf = NULL; 18717 18718 /* Use the hdr_buf to find the sequence that matches this frame */ 18719 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18720 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18721 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18722 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18723 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18724 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18725 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18726 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18727 continue; 18728 /* found a pending sequence that matches this frame */ 18729 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18730 break; 18731 } 18732 18733 /* Free up all the frames from the partially assembled sequence */ 18734 if (seq_dmabuf) { 18735 list_for_each_entry_safe(d_buf, n_buf, 18736 &seq_dmabuf->dbuf.list, list) { 18737 list_del_init(&d_buf->list); 18738 lpfc_in_buf_free(vport->phba, d_buf); 18739 } 18740 return true; 18741 } 18742 return false; 18743 } 18744 18745 /** 18746 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18747 * @vport: pointer to a vitural port 18748 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18749 * 18750 * This function tries to abort from the assembed sequence from upper level 18751 * protocol, described by the information from basic abbort @dmabuf. It 18752 * checks to see whether such pending context exists at upper level protocol. 18753 * If so, it shall clean up the pending context. 18754 * 18755 * Return 18756 * true -- if there is matching pending context of the sequence cleaned 18757 * at ulp; 18758 * false -- if there is no matching pending context of the sequence present 18759 * at ulp. 18760 **/ 18761 static bool 18762 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18763 { 18764 struct lpfc_hba *phba = vport->phba; 18765 int handled; 18766 18767 /* Accepting abort at ulp with SLI4 only */ 18768 if (phba->sli_rev < LPFC_SLI_REV4) 18769 return false; 18770 18771 /* Register all caring upper level protocols to attend abort */ 18772 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18773 if (handled) 18774 return true; 18775 18776 return false; 18777 } 18778 18779 /** 18780 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18781 * @phba: Pointer to HBA context object. 18782 * @cmd_iocbq: pointer to the command iocbq structure. 18783 * @rsp_iocbq: pointer to the response iocbq structure. 18784 * 18785 * This function handles the sequence abort response iocb command complete 18786 * event. It properly releases the memory allocated to the sequence abort 18787 * accept iocb. 18788 **/ 18789 static void 18790 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18791 struct lpfc_iocbq *cmd_iocbq, 18792 struct lpfc_iocbq *rsp_iocbq) 18793 { 18794 struct lpfc_nodelist *ndlp; 18795 18796 if (cmd_iocbq) { 18797 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 18798 lpfc_nlp_put(ndlp); 18799 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18800 } 18801 18802 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18803 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18804 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18805 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18806 rsp_iocbq->iocb.ulpStatus, 18807 rsp_iocbq->iocb.un.ulpWord[4]); 18808 } 18809 18810 /** 18811 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18812 * @phba: Pointer to HBA context object. 18813 * @xri: xri id in transaction. 18814 * 18815 * This function validates the xri maps to the known range of XRIs allocated an 18816 * used by the driver. 18817 **/ 18818 uint16_t 18819 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18820 uint16_t xri) 18821 { 18822 uint16_t i; 18823 18824 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18825 if (xri == phba->sli4_hba.xri_ids[i]) 18826 return i; 18827 } 18828 return NO_XRI; 18829 } 18830 18831 /** 18832 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18833 * @vport: pointer to a virtual port. 18834 * @fc_hdr: pointer to a FC frame header. 18835 * @aborted: was the partially assembled receive sequence successfully aborted 18836 * 18837 * This function sends a basic response to a previous unsol sequence abort 18838 * event after aborting the sequence handling. 18839 **/ 18840 void 18841 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18842 struct fc_frame_header *fc_hdr, bool aborted) 18843 { 18844 struct lpfc_hba *phba = vport->phba; 18845 struct lpfc_iocbq *ctiocb = NULL; 18846 struct lpfc_nodelist *ndlp; 18847 uint16_t oxid, rxid, xri, lxri; 18848 uint32_t sid, fctl; 18849 IOCB_t *icmd; 18850 int rc; 18851 18852 if (!lpfc_is_link_up(phba)) 18853 return; 18854 18855 sid = sli4_sid_from_fc_hdr(fc_hdr); 18856 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18857 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18858 18859 ndlp = lpfc_findnode_did(vport, sid); 18860 if (!ndlp) { 18861 ndlp = lpfc_nlp_init(vport, sid); 18862 if (!ndlp) { 18863 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18864 "1268 Failed to allocate ndlp for " 18865 "oxid:x%x SID:x%x\n", oxid, sid); 18866 return; 18867 } 18868 /* Put ndlp onto pport node list */ 18869 lpfc_enqueue_node(vport, ndlp); 18870 } 18871 18872 /* Allocate buffer for rsp iocb */ 18873 ctiocb = lpfc_sli_get_iocbq(phba); 18874 if (!ctiocb) 18875 return; 18876 18877 /* Extract the F_CTL field from FC_HDR */ 18878 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18879 18880 icmd = &ctiocb->iocb; 18881 icmd->un.xseq64.bdl.bdeSize = 0; 18882 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 18883 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 18884 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 18885 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 18886 18887 /* Fill in the rest of iocb fields */ 18888 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 18889 icmd->ulpBdeCount = 0; 18890 icmd->ulpLe = 1; 18891 icmd->ulpClass = CLASS3; 18892 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 18893 ctiocb->context1 = lpfc_nlp_get(ndlp); 18894 if (!ctiocb->context1) { 18895 lpfc_sli_release_iocbq(phba, ctiocb); 18896 return; 18897 } 18898 18899 ctiocb->vport = phba->pport; 18900 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18901 ctiocb->sli4_lxritag = NO_XRI; 18902 ctiocb->sli4_xritag = NO_XRI; 18903 18904 if (fctl & FC_FC_EX_CTX) 18905 /* Exchange responder sent the abort so we 18906 * own the oxid. 18907 */ 18908 xri = oxid; 18909 else 18910 xri = rxid; 18911 lxri = lpfc_sli4_xri_inrange(phba, xri); 18912 if (lxri != NO_XRI) 18913 lpfc_set_rrq_active(phba, ndlp, lxri, 18914 (xri == oxid) ? rxid : oxid, 0); 18915 /* For BA_ABTS from exchange responder, if the logical xri with 18916 * the oxid maps to the FCP XRI range, the port no longer has 18917 * that exchange context, send a BLS_RJT. Override the IOCB for 18918 * a BA_RJT. 18919 */ 18920 if ((fctl & FC_FC_EX_CTX) && 18921 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18922 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18923 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18924 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18925 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18926 } 18927 18928 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18929 * the driver no longer has that exchange, send a BLS_RJT. Override 18930 * the IOCB for a BA_RJT. 18931 */ 18932 if (aborted == false) { 18933 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18934 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18935 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18936 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18937 } 18938 18939 if (fctl & FC_FC_EX_CTX) { 18940 /* ABTS sent by responder to CT exchange, construction 18941 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18942 * field and RX_ID from ABTS for RX_ID field. 18943 */ 18944 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 18945 } else { 18946 /* ABTS sent by initiator to CT exchange, construction 18947 * of BA_ACC will need to allocate a new XRI as for the 18948 * XRI_TAG field. 18949 */ 18950 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 18951 } 18952 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 18953 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 18954 18955 /* Xmit CT abts response on exchange <xid> */ 18956 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 18957 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 18958 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 18959 18960 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 18961 if (rc == IOCB_ERROR) { 18962 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 18963 "2925 Failed to issue CT ABTS RSP x%x on " 18964 "xri x%x, Data x%x\n", 18965 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 18966 phba->link_state); 18967 lpfc_nlp_put(ndlp); 18968 ctiocb->context1 = NULL; 18969 lpfc_sli_release_iocbq(phba, ctiocb); 18970 } 18971 } 18972 18973 /** 18974 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 18975 * @vport: Pointer to the vport on which this sequence was received 18976 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18977 * 18978 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 18979 * receive sequence is only partially assembed by the driver, it shall abort 18980 * the partially assembled frames for the sequence. Otherwise, if the 18981 * unsolicited receive sequence has been completely assembled and passed to 18982 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 18983 * unsolicited sequence has been aborted. After that, it will issue a basic 18984 * accept to accept the abort. 18985 **/ 18986 static void 18987 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 18988 struct hbq_dmabuf *dmabuf) 18989 { 18990 struct lpfc_hba *phba = vport->phba; 18991 struct fc_frame_header fc_hdr; 18992 uint32_t fctl; 18993 bool aborted; 18994 18995 /* Make a copy of fc_hdr before the dmabuf being released */ 18996 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 18997 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 18998 18999 if (fctl & FC_FC_EX_CTX) { 19000 /* ABTS by responder to exchange, no cleanup needed */ 19001 aborted = true; 19002 } else { 19003 /* ABTS by initiator to exchange, need to do cleanup */ 19004 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19005 if (aborted == false) 19006 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19007 } 19008 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19009 19010 if (phba->nvmet_support) { 19011 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19012 return; 19013 } 19014 19015 /* Respond with BA_ACC or BA_RJT accordingly */ 19016 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19017 } 19018 19019 /** 19020 * lpfc_seq_complete - Indicates if a sequence is complete 19021 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19022 * 19023 * This function checks the sequence, starting with the frame described by 19024 * @dmabuf, to see if all the frames associated with this sequence are present. 19025 * the frames associated with this sequence are linked to the @dmabuf using the 19026 * dbuf list. This function looks for two major things. 1) That the first frame 19027 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19028 * set. 3) That there are no holes in the sequence count. The function will 19029 * return 1 when the sequence is complete, otherwise it will return 0. 19030 **/ 19031 static int 19032 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19033 { 19034 struct fc_frame_header *hdr; 19035 struct lpfc_dmabuf *d_buf; 19036 struct hbq_dmabuf *seq_dmabuf; 19037 uint32_t fctl; 19038 int seq_count = 0; 19039 19040 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19041 /* make sure first fame of sequence has a sequence count of zero */ 19042 if (hdr->fh_seq_cnt != seq_count) 19043 return 0; 19044 fctl = (hdr->fh_f_ctl[0] << 16 | 19045 hdr->fh_f_ctl[1] << 8 | 19046 hdr->fh_f_ctl[2]); 19047 /* If last frame of sequence we can return success. */ 19048 if (fctl & FC_FC_END_SEQ) 19049 return 1; 19050 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19051 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19052 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19053 /* If there is a hole in the sequence count then fail. */ 19054 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19055 return 0; 19056 fctl = (hdr->fh_f_ctl[0] << 16 | 19057 hdr->fh_f_ctl[1] << 8 | 19058 hdr->fh_f_ctl[2]); 19059 /* If last frame of sequence we can return success. */ 19060 if (fctl & FC_FC_END_SEQ) 19061 return 1; 19062 } 19063 return 0; 19064 } 19065 19066 /** 19067 * lpfc_prep_seq - Prep sequence for ULP processing 19068 * @vport: Pointer to the vport on which this sequence was received 19069 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19070 * 19071 * This function takes a sequence, described by a list of frames, and creates 19072 * a list of iocbq structures to describe the sequence. This iocbq list will be 19073 * used to issue to the generic unsolicited sequence handler. This routine 19074 * returns a pointer to the first iocbq in the list. If the function is unable 19075 * to allocate an iocbq then it throw out the received frames that were not 19076 * able to be described and return a pointer to the first iocbq. If unable to 19077 * allocate any iocbqs (including the first) this function will return NULL. 19078 **/ 19079 static struct lpfc_iocbq * 19080 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19081 { 19082 struct hbq_dmabuf *hbq_buf; 19083 struct lpfc_dmabuf *d_buf, *n_buf; 19084 struct lpfc_iocbq *first_iocbq, *iocbq; 19085 struct fc_frame_header *fc_hdr; 19086 uint32_t sid; 19087 uint32_t len, tot_len; 19088 struct ulp_bde64 *pbde; 19089 19090 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19091 /* remove from receive buffer list */ 19092 list_del_init(&seq_dmabuf->hbuf.list); 19093 lpfc_update_rcv_time_stamp(vport); 19094 /* get the Remote Port's SID */ 19095 sid = sli4_sid_from_fc_hdr(fc_hdr); 19096 tot_len = 0; 19097 /* Get an iocbq struct to fill in. */ 19098 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19099 if (first_iocbq) { 19100 /* Initialize the first IOCB. */ 19101 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 19102 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 19103 first_iocbq->vport = vport; 19104 19105 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19106 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19107 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 19108 first_iocbq->iocb.un.rcvels.parmRo = 19109 sli4_did_from_fc_hdr(fc_hdr); 19110 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 19111 } else 19112 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 19113 first_iocbq->iocb.ulpContext = NO_XRI; 19114 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 19115 be16_to_cpu(fc_hdr->fh_ox_id); 19116 /* iocbq is prepped for internal consumption. Physical vpi. */ 19117 first_iocbq->iocb.unsli3.rcvsli3.vpi = 19118 vport->phba->vpi_ids[vport->vpi]; 19119 /* put the first buffer into the first IOCBq */ 19120 tot_len = bf_get(lpfc_rcqe_length, 19121 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19122 19123 first_iocbq->context2 = &seq_dmabuf->dbuf; 19124 first_iocbq->context3 = NULL; 19125 first_iocbq->iocb.ulpBdeCount = 1; 19126 if (tot_len > LPFC_DATA_BUF_SIZE) 19127 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 19128 LPFC_DATA_BUF_SIZE; 19129 else 19130 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 19131 19132 first_iocbq->iocb.un.rcvels.remoteID = sid; 19133 19134 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 19135 } 19136 iocbq = first_iocbq; 19137 /* 19138 * Each IOCBq can have two Buffers assigned, so go through the list 19139 * of buffers for this sequence and save two buffers in each IOCBq 19140 */ 19141 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19142 if (!iocbq) { 19143 lpfc_in_buf_free(vport->phba, d_buf); 19144 continue; 19145 } 19146 if (!iocbq->context3) { 19147 iocbq->context3 = d_buf; 19148 iocbq->iocb.ulpBdeCount++; 19149 /* We need to get the size out of the right CQE */ 19150 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19151 len = bf_get(lpfc_rcqe_length, 19152 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19153 pbde = (struct ulp_bde64 *) 19154 &iocbq->iocb.unsli3.sli3Words[4]; 19155 if (len > LPFC_DATA_BUF_SIZE) 19156 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 19157 else 19158 pbde->tus.f.bdeSize = len; 19159 19160 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 19161 tot_len += len; 19162 } else { 19163 iocbq = lpfc_sli_get_iocbq(vport->phba); 19164 if (!iocbq) { 19165 if (first_iocbq) { 19166 first_iocbq->iocb.ulpStatus = 19167 IOSTAT_FCP_RSP_ERROR; 19168 first_iocbq->iocb.un.ulpWord[4] = 19169 IOERR_NO_RESOURCES; 19170 } 19171 lpfc_in_buf_free(vport->phba, d_buf); 19172 continue; 19173 } 19174 /* We need to get the size out of the right CQE */ 19175 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19176 len = bf_get(lpfc_rcqe_length, 19177 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19178 iocbq->context2 = d_buf; 19179 iocbq->context3 = NULL; 19180 iocbq->iocb.ulpBdeCount = 1; 19181 if (len > LPFC_DATA_BUF_SIZE) 19182 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 19183 LPFC_DATA_BUF_SIZE; 19184 else 19185 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 19186 19187 tot_len += len; 19188 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 19189 19190 iocbq->iocb.un.rcvels.remoteID = sid; 19191 list_add_tail(&iocbq->list, &first_iocbq->list); 19192 } 19193 } 19194 /* Free the sequence's header buffer */ 19195 if (!first_iocbq) 19196 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19197 19198 return first_iocbq; 19199 } 19200 19201 static void 19202 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19203 struct hbq_dmabuf *seq_dmabuf) 19204 { 19205 struct fc_frame_header *fc_hdr; 19206 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19207 struct lpfc_hba *phba = vport->phba; 19208 19209 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19210 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19211 if (!iocbq) { 19212 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19213 "2707 Ring %d handler: Failed to allocate " 19214 "iocb Rctl x%x Type x%x received\n", 19215 LPFC_ELS_RING, 19216 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19217 return; 19218 } 19219 if (!lpfc_complete_unsol_iocb(phba, 19220 phba->sli4_hba.els_wq->pring, 19221 iocbq, fc_hdr->fh_r_ctl, 19222 fc_hdr->fh_type)) 19223 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19224 "2540 Ring %d handler: unexpected Rctl " 19225 "x%x Type x%x received\n", 19226 LPFC_ELS_RING, 19227 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19228 19229 /* Free iocb created in lpfc_prep_seq */ 19230 list_for_each_entry_safe(curr_iocb, next_iocb, 19231 &iocbq->list, list) { 19232 list_del_init(&curr_iocb->list); 19233 lpfc_sli_release_iocbq(phba, curr_iocb); 19234 } 19235 lpfc_sli_release_iocbq(phba, iocbq); 19236 } 19237 19238 static void 19239 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19240 struct lpfc_iocbq *rspiocb) 19241 { 19242 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 19243 19244 if (pcmd && pcmd->virt) 19245 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19246 kfree(pcmd); 19247 lpfc_sli_release_iocbq(phba, cmdiocb); 19248 lpfc_drain_txq(phba); 19249 } 19250 19251 static void 19252 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19253 struct hbq_dmabuf *dmabuf) 19254 { 19255 struct fc_frame_header *fc_hdr; 19256 struct lpfc_hba *phba = vport->phba; 19257 struct lpfc_iocbq *iocbq = NULL; 19258 union lpfc_wqe *wqe; 19259 struct lpfc_dmabuf *pcmd = NULL; 19260 uint32_t frame_len; 19261 int rc; 19262 unsigned long iflags; 19263 19264 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19265 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19266 19267 /* Send the received frame back */ 19268 iocbq = lpfc_sli_get_iocbq(phba); 19269 if (!iocbq) { 19270 /* Queue cq event and wakeup worker thread to process it */ 19271 spin_lock_irqsave(&phba->hbalock, iflags); 19272 list_add_tail(&dmabuf->cq_event.list, 19273 &phba->sli4_hba.sp_queue_event); 19274 phba->hba_flag |= HBA_SP_QUEUE_EVT; 19275 spin_unlock_irqrestore(&phba->hbalock, iflags); 19276 lpfc_worker_wake_up(phba); 19277 return; 19278 } 19279 19280 /* Allocate buffer for command payload */ 19281 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19282 if (pcmd) 19283 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19284 &pcmd->phys); 19285 if (!pcmd || !pcmd->virt) 19286 goto exit; 19287 19288 INIT_LIST_HEAD(&pcmd->list); 19289 19290 /* copyin the payload */ 19291 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19292 19293 /* fill in BDE's for command */ 19294 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 19295 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 19296 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 19297 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 19298 19299 iocbq->context2 = pcmd; 19300 iocbq->vport = vport; 19301 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 19302 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 19303 19304 /* 19305 * Setup rest of the iocb as though it were a WQE 19306 * Build the SEND_FRAME WQE 19307 */ 19308 wqe = (union lpfc_wqe *)&iocbq->iocb; 19309 19310 wqe->send_frame.frame_len = frame_len; 19311 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 19312 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 19313 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 19314 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 19315 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 19316 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 19317 19318 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 19319 iocbq->iocb.ulpLe = 1; 19320 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 19321 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19322 if (rc == IOCB_ERROR) 19323 goto exit; 19324 19325 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19326 return; 19327 19328 exit: 19329 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19330 "2023 Unable to process MDS loopback frame\n"); 19331 if (pcmd && pcmd->virt) 19332 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19333 kfree(pcmd); 19334 if (iocbq) 19335 lpfc_sli_release_iocbq(phba, iocbq); 19336 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19337 } 19338 19339 /** 19340 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19341 * @phba: Pointer to HBA context object. 19342 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19343 * 19344 * This function is called with no lock held. This function processes all 19345 * the received buffers and gives it to upper layers when a received buffer 19346 * indicates that it is the final frame in the sequence. The interrupt 19347 * service routine processes received buffers at interrupt contexts. 19348 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19349 * appropriate receive function when the final frame in a sequence is received. 19350 **/ 19351 void 19352 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19353 struct hbq_dmabuf *dmabuf) 19354 { 19355 struct hbq_dmabuf *seq_dmabuf; 19356 struct fc_frame_header *fc_hdr; 19357 struct lpfc_vport *vport; 19358 uint32_t fcfi; 19359 uint32_t did; 19360 19361 /* Process each received buffer */ 19362 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19363 19364 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19365 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19366 vport = phba->pport; 19367 /* Handle MDS Loopback frames */ 19368 if (!(phba->pport->load_flag & FC_UNLOADING)) 19369 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19370 else 19371 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19372 return; 19373 } 19374 19375 /* check to see if this a valid type of frame */ 19376 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19377 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19378 return; 19379 } 19380 19381 if ((bf_get(lpfc_cqe_code, 19382 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19383 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19384 &dmabuf->cq_event.cqe.rcqe_cmpl); 19385 else 19386 fcfi = bf_get(lpfc_rcqe_fcf_id, 19387 &dmabuf->cq_event.cqe.rcqe_cmpl); 19388 19389 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19390 vport = phba->pport; 19391 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19392 "2023 MDS Loopback %d bytes\n", 19393 bf_get(lpfc_rcqe_length, 19394 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19395 /* Handle MDS Loopback frames */ 19396 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19397 return; 19398 } 19399 19400 /* d_id this frame is directed to */ 19401 did = sli4_did_from_fc_hdr(fc_hdr); 19402 19403 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19404 if (!vport) { 19405 /* throw out the frame */ 19406 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19407 return; 19408 } 19409 19410 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19411 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19412 (did != Fabric_DID)) { 19413 /* 19414 * Throw out the frame if we are not pt2pt. 19415 * The pt2pt protocol allows for discovery frames 19416 * to be received without a registered VPI. 19417 */ 19418 if (!(vport->fc_flag & FC_PT2PT) || 19419 (phba->link_state == LPFC_HBA_READY)) { 19420 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19421 return; 19422 } 19423 } 19424 19425 /* Handle the basic abort sequence (BA_ABTS) event */ 19426 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19427 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19428 return; 19429 } 19430 19431 /* Link this frame */ 19432 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19433 if (!seq_dmabuf) { 19434 /* unable to add frame to vport - throw it out */ 19435 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19436 return; 19437 } 19438 /* If not last frame in sequence continue processing frames. */ 19439 if (!lpfc_seq_complete(seq_dmabuf)) 19440 return; 19441 19442 /* Send the complete sequence to the upper layer protocol */ 19443 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19444 } 19445 19446 /** 19447 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19448 * @phba: pointer to lpfc hba data structure. 19449 * 19450 * This routine is invoked to post rpi header templates to the 19451 * HBA consistent with the SLI-4 interface spec. This routine 19452 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19453 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19454 * 19455 * This routine does not require any locks. It's usage is expected 19456 * to be driver load or reset recovery when the driver is 19457 * sequential. 19458 * 19459 * Return codes 19460 * 0 - successful 19461 * -EIO - The mailbox failed to complete successfully. 19462 * When this error occurs, the driver is not guaranteed 19463 * to have any rpi regions posted to the device and 19464 * must either attempt to repost the regions or take a 19465 * fatal error. 19466 **/ 19467 int 19468 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19469 { 19470 struct lpfc_rpi_hdr *rpi_page; 19471 uint32_t rc = 0; 19472 uint16_t lrpi = 0; 19473 19474 /* SLI4 ports that support extents do not require RPI headers. */ 19475 if (!phba->sli4_hba.rpi_hdrs_in_use) 19476 goto exit; 19477 if (phba->sli4_hba.extents_in_use) 19478 return -EIO; 19479 19480 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19481 /* 19482 * Assign the rpi headers a physical rpi only if the driver 19483 * has not initialized those resources. A port reset only 19484 * needs the headers posted. 19485 */ 19486 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19487 LPFC_RPI_RSRC_RDY) 19488 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19489 19490 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19491 if (rc != MBX_SUCCESS) { 19492 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19493 "2008 Error %d posting all rpi " 19494 "headers\n", rc); 19495 rc = -EIO; 19496 break; 19497 } 19498 } 19499 19500 exit: 19501 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19502 LPFC_RPI_RSRC_RDY); 19503 return rc; 19504 } 19505 19506 /** 19507 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19508 * @phba: pointer to lpfc hba data structure. 19509 * @rpi_page: pointer to the rpi memory region. 19510 * 19511 * This routine is invoked to post a single rpi header to the 19512 * HBA consistent with the SLI-4 interface spec. This memory region 19513 * maps up to 64 rpi context regions. 19514 * 19515 * Return codes 19516 * 0 - successful 19517 * -ENOMEM - No available memory 19518 * -EIO - The mailbox failed to complete successfully. 19519 **/ 19520 int 19521 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19522 { 19523 LPFC_MBOXQ_t *mboxq; 19524 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19525 uint32_t rc = 0; 19526 uint32_t shdr_status, shdr_add_status; 19527 union lpfc_sli4_cfg_shdr *shdr; 19528 19529 /* SLI4 ports that support extents do not require RPI headers. */ 19530 if (!phba->sli4_hba.rpi_hdrs_in_use) 19531 return rc; 19532 if (phba->sli4_hba.extents_in_use) 19533 return -EIO; 19534 19535 /* The port is notified of the header region via a mailbox command. */ 19536 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19537 if (!mboxq) { 19538 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19539 "2001 Unable to allocate memory for issuing " 19540 "SLI_CONFIG_SPECIAL mailbox command\n"); 19541 return -ENOMEM; 19542 } 19543 19544 /* Post all rpi memory regions to the port. */ 19545 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19546 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19547 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19548 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19549 sizeof(struct lpfc_sli4_cfg_mhdr), 19550 LPFC_SLI4_MBX_EMBED); 19551 19552 19553 /* Post the physical rpi to the port for this rpi header. */ 19554 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19555 rpi_page->start_rpi); 19556 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19557 hdr_tmpl, rpi_page->page_count); 19558 19559 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19560 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19561 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19562 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19563 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19564 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19565 mempool_free(mboxq, phba->mbox_mem_pool); 19566 if (shdr_status || shdr_add_status || rc) { 19567 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19568 "2514 POST_RPI_HDR mailbox failed with " 19569 "status x%x add_status x%x, mbx status x%x\n", 19570 shdr_status, shdr_add_status, rc); 19571 rc = -ENXIO; 19572 } else { 19573 /* 19574 * The next_rpi stores the next logical module-64 rpi value used 19575 * to post physical rpis in subsequent rpi postings. 19576 */ 19577 spin_lock_irq(&phba->hbalock); 19578 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19579 spin_unlock_irq(&phba->hbalock); 19580 } 19581 return rc; 19582 } 19583 19584 /** 19585 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19586 * @phba: pointer to lpfc hba data structure. 19587 * 19588 * This routine is invoked to post rpi header templates to the 19589 * HBA consistent with the SLI-4 interface spec. This routine 19590 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19591 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19592 * 19593 * Returns 19594 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19595 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19596 **/ 19597 int 19598 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19599 { 19600 unsigned long rpi; 19601 uint16_t max_rpi, rpi_limit; 19602 uint16_t rpi_remaining, lrpi = 0; 19603 struct lpfc_rpi_hdr *rpi_hdr; 19604 unsigned long iflag; 19605 19606 /* 19607 * Fetch the next logical rpi. Because this index is logical, 19608 * the driver starts at 0 each time. 19609 */ 19610 spin_lock_irqsave(&phba->hbalock, iflag); 19611 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19612 rpi_limit = phba->sli4_hba.next_rpi; 19613 19614 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 19615 if (rpi >= rpi_limit) 19616 rpi = LPFC_RPI_ALLOC_ERROR; 19617 else { 19618 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19619 phba->sli4_hba.max_cfg_param.rpi_used++; 19620 phba->sli4_hba.rpi_count++; 19621 } 19622 lpfc_printf_log(phba, KERN_INFO, 19623 LOG_NODE | LOG_DISCOVERY, 19624 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19625 (int) rpi, max_rpi, rpi_limit); 19626 19627 /* 19628 * Don't try to allocate more rpi header regions if the device limit 19629 * has been exhausted. 19630 */ 19631 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19632 (phba->sli4_hba.rpi_count >= max_rpi)) { 19633 spin_unlock_irqrestore(&phba->hbalock, iflag); 19634 return rpi; 19635 } 19636 19637 /* 19638 * RPI header postings are not required for SLI4 ports capable of 19639 * extents. 19640 */ 19641 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19642 spin_unlock_irqrestore(&phba->hbalock, iflag); 19643 return rpi; 19644 } 19645 19646 /* 19647 * If the driver is running low on rpi resources, allocate another 19648 * page now. Note that the next_rpi value is used because 19649 * it represents how many are actually in use whereas max_rpi notes 19650 * how many are supported max by the device. 19651 */ 19652 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19653 spin_unlock_irqrestore(&phba->hbalock, iflag); 19654 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19655 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19656 if (!rpi_hdr) { 19657 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19658 "2002 Error Could not grow rpi " 19659 "count\n"); 19660 } else { 19661 lrpi = rpi_hdr->start_rpi; 19662 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19663 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19664 } 19665 } 19666 19667 return rpi; 19668 } 19669 19670 /** 19671 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19672 * @phba: pointer to lpfc hba data structure. 19673 * @rpi: rpi to free 19674 * 19675 * This routine is invoked to release an rpi to the pool of 19676 * available rpis maintained by the driver. 19677 **/ 19678 static void 19679 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19680 { 19681 /* 19682 * if the rpi value indicates a prior unreg has already 19683 * been done, skip the unreg. 19684 */ 19685 if (rpi == LPFC_RPI_ALLOC_ERROR) 19686 return; 19687 19688 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19689 phba->sli4_hba.rpi_count--; 19690 phba->sli4_hba.max_cfg_param.rpi_used--; 19691 } else { 19692 lpfc_printf_log(phba, KERN_INFO, 19693 LOG_NODE | LOG_DISCOVERY, 19694 "2016 rpi %x not inuse\n", 19695 rpi); 19696 } 19697 } 19698 19699 /** 19700 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19701 * @phba: pointer to lpfc hba data structure. 19702 * @rpi: rpi to free 19703 * 19704 * This routine is invoked to release an rpi to the pool of 19705 * available rpis maintained by the driver. 19706 **/ 19707 void 19708 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19709 { 19710 spin_lock_irq(&phba->hbalock); 19711 __lpfc_sli4_free_rpi(phba, rpi); 19712 spin_unlock_irq(&phba->hbalock); 19713 } 19714 19715 /** 19716 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19717 * @phba: pointer to lpfc hba data structure. 19718 * 19719 * This routine is invoked to remove the memory region that 19720 * provided rpi via a bitmask. 19721 **/ 19722 void 19723 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19724 { 19725 kfree(phba->sli4_hba.rpi_bmask); 19726 kfree(phba->sli4_hba.rpi_ids); 19727 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19728 } 19729 19730 /** 19731 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19732 * @ndlp: pointer to lpfc nodelist data structure. 19733 * @cmpl: completion call-back. 19734 * @arg: data to load as MBox 'caller buffer information' 19735 * 19736 * This routine is invoked to remove the memory region that 19737 * provided rpi via a bitmask. 19738 **/ 19739 int 19740 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19741 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19742 { 19743 LPFC_MBOXQ_t *mboxq; 19744 struct lpfc_hba *phba = ndlp->phba; 19745 int rc; 19746 19747 /* The port is notified of the header region via a mailbox command. */ 19748 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19749 if (!mboxq) 19750 return -ENOMEM; 19751 19752 /* If cmpl assigned, then this nlp_get pairs with 19753 * lpfc_mbx_cmpl_resume_rpi. 19754 * 19755 * Else cmpl is NULL, then this nlp_get pairs with 19756 * lpfc_sli_def_mbox_cmpl. 19757 */ 19758 if (!lpfc_nlp_get(ndlp)) { 19759 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19760 "2122 %s: Failed to get nlp ref\n", 19761 __func__); 19762 mempool_free(mboxq, phba->mbox_mem_pool); 19763 return -EIO; 19764 } 19765 19766 /* Post all rpi memory regions to the port. */ 19767 lpfc_resume_rpi(mboxq, ndlp); 19768 if (cmpl) { 19769 mboxq->mbox_cmpl = cmpl; 19770 mboxq->ctx_buf = arg; 19771 } else 19772 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19773 mboxq->ctx_ndlp = ndlp; 19774 mboxq->vport = ndlp->vport; 19775 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19776 if (rc == MBX_NOT_FINISHED) { 19777 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19778 "2010 Resume RPI Mailbox failed " 19779 "status %d, mbxStatus x%x\n", rc, 19780 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19781 lpfc_nlp_put(ndlp); 19782 mempool_free(mboxq, phba->mbox_mem_pool); 19783 return -EIO; 19784 } 19785 return 0; 19786 } 19787 19788 /** 19789 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19790 * @vport: Pointer to the vport for which the vpi is being initialized 19791 * 19792 * This routine is invoked to activate a vpi with the port. 19793 * 19794 * Returns: 19795 * 0 success 19796 * -Evalue otherwise 19797 **/ 19798 int 19799 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19800 { 19801 LPFC_MBOXQ_t *mboxq; 19802 int rc = 0; 19803 int retval = MBX_SUCCESS; 19804 uint32_t mbox_tmo; 19805 struct lpfc_hba *phba = vport->phba; 19806 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19807 if (!mboxq) 19808 return -ENOMEM; 19809 lpfc_init_vpi(phba, mboxq, vport->vpi); 19810 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19811 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19812 if (rc != MBX_SUCCESS) { 19813 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19814 "2022 INIT VPI Mailbox failed " 19815 "status %d, mbxStatus x%x\n", rc, 19816 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19817 retval = -EIO; 19818 } 19819 if (rc != MBX_TIMEOUT) 19820 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19821 19822 return retval; 19823 } 19824 19825 /** 19826 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19827 * @phba: pointer to lpfc hba data structure. 19828 * @mboxq: Pointer to mailbox object. 19829 * 19830 * This routine is invoked to manually add a single FCF record. The caller 19831 * must pass a completely initialized FCF_Record. This routine takes 19832 * care of the nonembedded mailbox operations. 19833 **/ 19834 static void 19835 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19836 { 19837 void *virt_addr; 19838 union lpfc_sli4_cfg_shdr *shdr; 19839 uint32_t shdr_status, shdr_add_status; 19840 19841 virt_addr = mboxq->sge_array->addr[0]; 19842 /* The IOCTL status is embedded in the mailbox subheader. */ 19843 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19844 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19845 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19846 19847 if ((shdr_status || shdr_add_status) && 19848 (shdr_status != STATUS_FCF_IN_USE)) 19849 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19850 "2558 ADD_FCF_RECORD mailbox failed with " 19851 "status x%x add_status x%x\n", 19852 shdr_status, shdr_add_status); 19853 19854 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19855 } 19856 19857 /** 19858 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19859 * @phba: pointer to lpfc hba data structure. 19860 * @fcf_record: pointer to the initialized fcf record to add. 19861 * 19862 * This routine is invoked to manually add a single FCF record. The caller 19863 * must pass a completely initialized FCF_Record. This routine takes 19864 * care of the nonembedded mailbox operations. 19865 **/ 19866 int 19867 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19868 { 19869 int rc = 0; 19870 LPFC_MBOXQ_t *mboxq; 19871 uint8_t *bytep; 19872 void *virt_addr; 19873 struct lpfc_mbx_sge sge; 19874 uint32_t alloc_len, req_len; 19875 uint32_t fcfindex; 19876 19877 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19878 if (!mboxq) { 19879 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19880 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19881 return -ENOMEM; 19882 } 19883 19884 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19885 sizeof(uint32_t); 19886 19887 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19888 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19889 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19890 req_len, LPFC_SLI4_MBX_NEMBED); 19891 if (alloc_len < req_len) { 19892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19893 "2523 Allocated DMA memory size (x%x) is " 19894 "less than the requested DMA memory " 19895 "size (x%x)\n", alloc_len, req_len); 19896 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19897 return -ENOMEM; 19898 } 19899 19900 /* 19901 * Get the first SGE entry from the non-embedded DMA memory. This 19902 * routine only uses a single SGE. 19903 */ 19904 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19905 virt_addr = mboxq->sge_array->addr[0]; 19906 /* 19907 * Configure the FCF record for FCFI 0. This is the driver's 19908 * hardcoded default and gets used in nonFIP mode. 19909 */ 19910 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19911 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19912 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19913 19914 /* 19915 * Copy the fcf_index and the FCF Record Data. The data starts after 19916 * the FCoE header plus word10. The data copy needs to be endian 19917 * correct. 19918 */ 19919 bytep += sizeof(uint32_t); 19920 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19921 mboxq->vport = phba->pport; 19922 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19923 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19924 if (rc == MBX_NOT_FINISHED) { 19925 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19926 "2515 ADD_FCF_RECORD mailbox failed with " 19927 "status 0x%x\n", rc); 19928 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19929 rc = -EIO; 19930 } else 19931 rc = 0; 19932 19933 return rc; 19934 } 19935 19936 /** 19937 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 19938 * @phba: pointer to lpfc hba data structure. 19939 * @fcf_record: pointer to the fcf record to write the default data. 19940 * @fcf_index: FCF table entry index. 19941 * 19942 * This routine is invoked to build the driver's default FCF record. The 19943 * values used are hardcoded. This routine handles memory initialization. 19944 * 19945 **/ 19946 void 19947 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 19948 struct fcf_record *fcf_record, 19949 uint16_t fcf_index) 19950 { 19951 memset(fcf_record, 0, sizeof(struct fcf_record)); 19952 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 19953 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 19954 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 19955 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 19956 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 19957 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 19958 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 19959 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 19960 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 19961 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 19962 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 19963 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 19964 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 19965 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 19966 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 19967 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 19968 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 19969 /* Set the VLAN bit map */ 19970 if (phba->valid_vlan) { 19971 fcf_record->vlan_bitmap[phba->vlan_id / 8] 19972 = 1 << (phba->vlan_id % 8); 19973 } 19974 } 19975 19976 /** 19977 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 19978 * @phba: pointer to lpfc hba data structure. 19979 * @fcf_index: FCF table entry offset. 19980 * 19981 * This routine is invoked to scan the entire FCF table by reading FCF 19982 * record and processing it one at a time starting from the @fcf_index 19983 * for initial FCF discovery or fast FCF failover rediscovery. 19984 * 19985 * Return 0 if the mailbox command is submitted successfully, none 0 19986 * otherwise. 19987 **/ 19988 int 19989 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19990 { 19991 int rc = 0, error; 19992 LPFC_MBOXQ_t *mboxq; 19993 19994 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 19995 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 19996 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19997 if (!mboxq) { 19998 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19999 "2000 Failed to allocate mbox for " 20000 "READ_FCF cmd\n"); 20001 error = -ENOMEM; 20002 goto fail_fcf_scan; 20003 } 20004 /* Construct the read FCF record mailbox command */ 20005 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20006 if (rc) { 20007 error = -EINVAL; 20008 goto fail_fcf_scan; 20009 } 20010 /* Issue the mailbox command asynchronously */ 20011 mboxq->vport = phba->pport; 20012 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20013 20014 spin_lock_irq(&phba->hbalock); 20015 phba->hba_flag |= FCF_TS_INPROG; 20016 spin_unlock_irq(&phba->hbalock); 20017 20018 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20019 if (rc == MBX_NOT_FINISHED) 20020 error = -EIO; 20021 else { 20022 /* Reset eligible FCF count for new scan */ 20023 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20024 phba->fcf.eligible_fcf_cnt = 0; 20025 error = 0; 20026 } 20027 fail_fcf_scan: 20028 if (error) { 20029 if (mboxq) 20030 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20031 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20032 spin_lock_irq(&phba->hbalock); 20033 phba->hba_flag &= ~FCF_TS_INPROG; 20034 spin_unlock_irq(&phba->hbalock); 20035 } 20036 return error; 20037 } 20038 20039 /** 20040 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20041 * @phba: pointer to lpfc hba data structure. 20042 * @fcf_index: FCF table entry offset. 20043 * 20044 * This routine is invoked to read an FCF record indicated by @fcf_index 20045 * and to use it for FLOGI roundrobin FCF failover. 20046 * 20047 * Return 0 if the mailbox command is submitted successfully, none 0 20048 * otherwise. 20049 **/ 20050 int 20051 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20052 { 20053 int rc = 0, error; 20054 LPFC_MBOXQ_t *mboxq; 20055 20056 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20057 if (!mboxq) { 20058 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20059 "2763 Failed to allocate mbox for " 20060 "READ_FCF cmd\n"); 20061 error = -ENOMEM; 20062 goto fail_fcf_read; 20063 } 20064 /* Construct the read FCF record mailbox command */ 20065 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20066 if (rc) { 20067 error = -EINVAL; 20068 goto fail_fcf_read; 20069 } 20070 /* Issue the mailbox command asynchronously */ 20071 mboxq->vport = phba->pport; 20072 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20073 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20074 if (rc == MBX_NOT_FINISHED) 20075 error = -EIO; 20076 else 20077 error = 0; 20078 20079 fail_fcf_read: 20080 if (error && mboxq) 20081 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20082 return error; 20083 } 20084 20085 /** 20086 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20087 * @phba: pointer to lpfc hba data structure. 20088 * @fcf_index: FCF table entry offset. 20089 * 20090 * This routine is invoked to read an FCF record indicated by @fcf_index to 20091 * determine whether it's eligible for FLOGI roundrobin failover list. 20092 * 20093 * Return 0 if the mailbox command is submitted successfully, none 0 20094 * otherwise. 20095 **/ 20096 int 20097 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20098 { 20099 int rc = 0, error; 20100 LPFC_MBOXQ_t *mboxq; 20101 20102 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20103 if (!mboxq) { 20104 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20105 "2758 Failed to allocate mbox for " 20106 "READ_FCF cmd\n"); 20107 error = -ENOMEM; 20108 goto fail_fcf_read; 20109 } 20110 /* Construct the read FCF record mailbox command */ 20111 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20112 if (rc) { 20113 error = -EINVAL; 20114 goto fail_fcf_read; 20115 } 20116 /* Issue the mailbox command asynchronously */ 20117 mboxq->vport = phba->pport; 20118 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20119 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20120 if (rc == MBX_NOT_FINISHED) 20121 error = -EIO; 20122 else 20123 error = 0; 20124 20125 fail_fcf_read: 20126 if (error && mboxq) 20127 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20128 return error; 20129 } 20130 20131 /** 20132 * lpfc_check_next_fcf_pri_level 20133 * @phba: pointer to the lpfc_hba struct for this port. 20134 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20135 * routine when the rr_bmask is empty. The FCF indecies are put into the 20136 * rr_bmask based on their priority level. Starting from the highest priority 20137 * to the lowest. The most likely FCF candidate will be in the highest 20138 * priority group. When this routine is called it searches the fcf_pri list for 20139 * next lowest priority group and repopulates the rr_bmask with only those 20140 * fcf_indexes. 20141 * returns: 20142 * 1=success 0=failure 20143 **/ 20144 static int 20145 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20146 { 20147 uint16_t next_fcf_pri; 20148 uint16_t last_index; 20149 struct lpfc_fcf_pri *fcf_pri; 20150 int rc; 20151 int ret = 0; 20152 20153 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20154 LPFC_SLI4_FCF_TBL_INDX_MAX); 20155 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20156 "3060 Last IDX %d\n", last_index); 20157 20158 /* Verify the priority list has 2 or more entries */ 20159 spin_lock_irq(&phba->hbalock); 20160 if (list_empty(&phba->fcf.fcf_pri_list) || 20161 list_is_singular(&phba->fcf.fcf_pri_list)) { 20162 spin_unlock_irq(&phba->hbalock); 20163 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20164 "3061 Last IDX %d\n", last_index); 20165 return 0; /* Empty rr list */ 20166 } 20167 spin_unlock_irq(&phba->hbalock); 20168 20169 next_fcf_pri = 0; 20170 /* 20171 * Clear the rr_bmask and set all of the bits that are at this 20172 * priority. 20173 */ 20174 memset(phba->fcf.fcf_rr_bmask, 0, 20175 sizeof(*phba->fcf.fcf_rr_bmask)); 20176 spin_lock_irq(&phba->hbalock); 20177 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20178 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20179 continue; 20180 /* 20181 * the 1st priority that has not FLOGI failed 20182 * will be the highest. 20183 */ 20184 if (!next_fcf_pri) 20185 next_fcf_pri = fcf_pri->fcf_rec.priority; 20186 spin_unlock_irq(&phba->hbalock); 20187 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20188 rc = lpfc_sli4_fcf_rr_index_set(phba, 20189 fcf_pri->fcf_rec.fcf_index); 20190 if (rc) 20191 return 0; 20192 } 20193 spin_lock_irq(&phba->hbalock); 20194 } 20195 /* 20196 * if next_fcf_pri was not set above and the list is not empty then 20197 * we have failed flogis on all of them. So reset flogi failed 20198 * and start at the beginning. 20199 */ 20200 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20201 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20202 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20203 /* 20204 * the 1st priority that has not FLOGI failed 20205 * will be the highest. 20206 */ 20207 if (!next_fcf_pri) 20208 next_fcf_pri = fcf_pri->fcf_rec.priority; 20209 spin_unlock_irq(&phba->hbalock); 20210 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20211 rc = lpfc_sli4_fcf_rr_index_set(phba, 20212 fcf_pri->fcf_rec.fcf_index); 20213 if (rc) 20214 return 0; 20215 } 20216 spin_lock_irq(&phba->hbalock); 20217 } 20218 } else 20219 ret = 1; 20220 spin_unlock_irq(&phba->hbalock); 20221 20222 return ret; 20223 } 20224 /** 20225 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20226 * @phba: pointer to lpfc hba data structure. 20227 * 20228 * This routine is to get the next eligible FCF record index in a round 20229 * robin fashion. If the next eligible FCF record index equals to the 20230 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20231 * shall be returned, otherwise, the next eligible FCF record's index 20232 * shall be returned. 20233 **/ 20234 uint16_t 20235 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20236 { 20237 uint16_t next_fcf_index; 20238 20239 initial_priority: 20240 /* Search start from next bit of currently registered FCF index */ 20241 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20242 20243 next_priority: 20244 /* Determine the next fcf index to check */ 20245 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20246 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20247 LPFC_SLI4_FCF_TBL_INDX_MAX, 20248 next_fcf_index); 20249 20250 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20251 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20252 /* 20253 * If we have wrapped then we need to clear the bits that 20254 * have been tested so that we can detect when we should 20255 * change the priority level. 20256 */ 20257 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20258 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 20259 } 20260 20261 20262 /* Check roundrobin failover list empty condition */ 20263 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20264 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20265 /* 20266 * If next fcf index is not found check if there are lower 20267 * Priority level fcf's in the fcf_priority list. 20268 * Set up the rr_bmask with all of the avaiable fcf bits 20269 * at that level and continue the selection process. 20270 */ 20271 if (lpfc_check_next_fcf_pri_level(phba)) 20272 goto initial_priority; 20273 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20274 "2844 No roundrobin failover FCF available\n"); 20275 20276 return LPFC_FCOE_FCF_NEXT_NONE; 20277 } 20278 20279 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20280 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20281 LPFC_FCF_FLOGI_FAILED) { 20282 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20283 return LPFC_FCOE_FCF_NEXT_NONE; 20284 20285 goto next_priority; 20286 } 20287 20288 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20289 "2845 Get next roundrobin failover FCF (x%x)\n", 20290 next_fcf_index); 20291 20292 return next_fcf_index; 20293 } 20294 20295 /** 20296 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20297 * @phba: pointer to lpfc hba data structure. 20298 * @fcf_index: index into the FCF table to 'set' 20299 * 20300 * This routine sets the FCF record index in to the eligible bmask for 20301 * roundrobin failover search. It checks to make sure that the index 20302 * does not go beyond the range of the driver allocated bmask dimension 20303 * before setting the bit. 20304 * 20305 * Returns 0 if the index bit successfully set, otherwise, it returns 20306 * -EINVAL. 20307 **/ 20308 int 20309 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20310 { 20311 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20312 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20313 "2610 FCF (x%x) reached driver's book " 20314 "keeping dimension:x%x\n", 20315 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20316 return -EINVAL; 20317 } 20318 /* Set the eligible FCF record index bmask */ 20319 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20320 20321 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20322 "2790 Set FCF (x%x) to roundrobin FCF failover " 20323 "bmask\n", fcf_index); 20324 20325 return 0; 20326 } 20327 20328 /** 20329 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20330 * @phba: pointer to lpfc hba data structure. 20331 * @fcf_index: index into the FCF table to 'clear' 20332 * 20333 * This routine clears the FCF record index from the eligible bmask for 20334 * roundrobin failover search. It checks to make sure that the index 20335 * does not go beyond the range of the driver allocated bmask dimension 20336 * before clearing the bit. 20337 **/ 20338 void 20339 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20340 { 20341 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20342 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20343 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20344 "2762 FCF (x%x) reached driver's book " 20345 "keeping dimension:x%x\n", 20346 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20347 return; 20348 } 20349 /* Clear the eligible FCF record index bmask */ 20350 spin_lock_irq(&phba->hbalock); 20351 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20352 list) { 20353 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20354 list_del_init(&fcf_pri->list); 20355 break; 20356 } 20357 } 20358 spin_unlock_irq(&phba->hbalock); 20359 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20360 20361 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20362 "2791 Clear FCF (x%x) from roundrobin failover " 20363 "bmask\n", fcf_index); 20364 } 20365 20366 /** 20367 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20368 * @phba: pointer to lpfc hba data structure. 20369 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20370 * 20371 * This routine is the completion routine for the rediscover FCF table mailbox 20372 * command. If the mailbox command returned failure, it will try to stop the 20373 * FCF rediscover wait timer. 20374 **/ 20375 static void 20376 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20377 { 20378 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20379 uint32_t shdr_status, shdr_add_status; 20380 20381 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20382 20383 shdr_status = bf_get(lpfc_mbox_hdr_status, 20384 &redisc_fcf->header.cfg_shdr.response); 20385 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20386 &redisc_fcf->header.cfg_shdr.response); 20387 if (shdr_status || shdr_add_status) { 20388 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20389 "2746 Requesting for FCF rediscovery failed " 20390 "status x%x add_status x%x\n", 20391 shdr_status, shdr_add_status); 20392 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20393 spin_lock_irq(&phba->hbalock); 20394 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20395 spin_unlock_irq(&phba->hbalock); 20396 /* 20397 * CVL event triggered FCF rediscover request failed, 20398 * last resort to re-try current registered FCF entry. 20399 */ 20400 lpfc_retry_pport_discovery(phba); 20401 } else { 20402 spin_lock_irq(&phba->hbalock); 20403 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20404 spin_unlock_irq(&phba->hbalock); 20405 /* 20406 * DEAD FCF event triggered FCF rediscover request 20407 * failed, last resort to fail over as a link down 20408 * to FCF registration. 20409 */ 20410 lpfc_sli4_fcf_dead_failthrough(phba); 20411 } 20412 } else { 20413 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20414 "2775 Start FCF rediscover quiescent timer\n"); 20415 /* 20416 * Start FCF rediscovery wait timer for pending FCF 20417 * before rescan FCF record table. 20418 */ 20419 lpfc_fcf_redisc_wait_start_timer(phba); 20420 } 20421 20422 mempool_free(mbox, phba->mbox_mem_pool); 20423 } 20424 20425 /** 20426 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20427 * @phba: pointer to lpfc hba data structure. 20428 * 20429 * This routine is invoked to request for rediscovery of the entire FCF table 20430 * by the port. 20431 **/ 20432 int 20433 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20434 { 20435 LPFC_MBOXQ_t *mbox; 20436 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20437 int rc, length; 20438 20439 /* Cancel retry delay timers to all vports before FCF rediscover */ 20440 lpfc_cancel_all_vport_retry_delay_timer(phba); 20441 20442 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20443 if (!mbox) { 20444 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20445 "2745 Failed to allocate mbox for " 20446 "requesting FCF rediscover.\n"); 20447 return -ENOMEM; 20448 } 20449 20450 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20451 sizeof(struct lpfc_sli4_cfg_mhdr)); 20452 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20453 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20454 length, LPFC_SLI4_MBX_EMBED); 20455 20456 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20457 /* Set count to 0 for invalidating the entire FCF database */ 20458 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20459 20460 /* Issue the mailbox command asynchronously */ 20461 mbox->vport = phba->pport; 20462 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20463 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20464 20465 if (rc == MBX_NOT_FINISHED) { 20466 mempool_free(mbox, phba->mbox_mem_pool); 20467 return -EIO; 20468 } 20469 return 0; 20470 } 20471 20472 /** 20473 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20474 * @phba: pointer to lpfc hba data structure. 20475 * 20476 * This function is the failover routine as a last resort to the FCF DEAD 20477 * event when driver failed to perform fast FCF failover. 20478 **/ 20479 void 20480 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20481 { 20482 uint32_t link_state; 20483 20484 /* 20485 * Last resort as FCF DEAD event failover will treat this as 20486 * a link down, but save the link state because we don't want 20487 * it to be changed to Link Down unless it is already down. 20488 */ 20489 link_state = phba->link_state; 20490 lpfc_linkdown(phba); 20491 phba->link_state = link_state; 20492 20493 /* Unregister FCF if no devices connected to it */ 20494 lpfc_unregister_unused_fcf(phba); 20495 } 20496 20497 /** 20498 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20499 * @phba: pointer to lpfc hba data structure. 20500 * @rgn23_data: pointer to configure region 23 data. 20501 * 20502 * This function gets SLI3 port configure region 23 data through memory dump 20503 * mailbox command. When it successfully retrieves data, the size of the data 20504 * will be returned, otherwise, 0 will be returned. 20505 **/ 20506 static uint32_t 20507 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20508 { 20509 LPFC_MBOXQ_t *pmb = NULL; 20510 MAILBOX_t *mb; 20511 uint32_t offset = 0; 20512 int rc; 20513 20514 if (!rgn23_data) 20515 return 0; 20516 20517 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20518 if (!pmb) { 20519 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20520 "2600 failed to allocate mailbox memory\n"); 20521 return 0; 20522 } 20523 mb = &pmb->u.mb; 20524 20525 do { 20526 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20527 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20528 20529 if (rc != MBX_SUCCESS) { 20530 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20531 "2601 failed to read config " 20532 "region 23, rc 0x%x Status 0x%x\n", 20533 rc, mb->mbxStatus); 20534 mb->un.varDmp.word_cnt = 0; 20535 } 20536 /* 20537 * dump mem may return a zero when finished or we got a 20538 * mailbox error, either way we are done. 20539 */ 20540 if (mb->un.varDmp.word_cnt == 0) 20541 break; 20542 20543 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20544 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20545 20546 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20547 rgn23_data + offset, 20548 mb->un.varDmp.word_cnt); 20549 offset += mb->un.varDmp.word_cnt; 20550 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20551 20552 mempool_free(pmb, phba->mbox_mem_pool); 20553 return offset; 20554 } 20555 20556 /** 20557 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20558 * @phba: pointer to lpfc hba data structure. 20559 * @rgn23_data: pointer to configure region 23 data. 20560 * 20561 * This function gets SLI4 port configure region 23 data through memory dump 20562 * mailbox command. When it successfully retrieves data, the size of the data 20563 * will be returned, otherwise, 0 will be returned. 20564 **/ 20565 static uint32_t 20566 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20567 { 20568 LPFC_MBOXQ_t *mboxq = NULL; 20569 struct lpfc_dmabuf *mp = NULL; 20570 struct lpfc_mqe *mqe; 20571 uint32_t data_length = 0; 20572 int rc; 20573 20574 if (!rgn23_data) 20575 return 0; 20576 20577 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20578 if (!mboxq) { 20579 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20580 "3105 failed to allocate mailbox memory\n"); 20581 return 0; 20582 } 20583 20584 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20585 goto out; 20586 mqe = &mboxq->u.mqe; 20587 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 20588 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20589 if (rc) 20590 goto out; 20591 data_length = mqe->un.mb_words[5]; 20592 if (data_length == 0) 20593 goto out; 20594 if (data_length > DMP_RGN23_SIZE) { 20595 data_length = 0; 20596 goto out; 20597 } 20598 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20599 out: 20600 mempool_free(mboxq, phba->mbox_mem_pool); 20601 if (mp) { 20602 lpfc_mbuf_free(phba, mp->virt, mp->phys); 20603 kfree(mp); 20604 } 20605 return data_length; 20606 } 20607 20608 /** 20609 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20610 * @phba: pointer to lpfc hba data structure. 20611 * 20612 * This function read region 23 and parse TLV for port status to 20613 * decide if the user disaled the port. If the TLV indicates the 20614 * port is disabled, the hba_flag is set accordingly. 20615 **/ 20616 void 20617 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20618 { 20619 uint8_t *rgn23_data = NULL; 20620 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20621 uint32_t offset = 0; 20622 20623 /* Get adapter Region 23 data */ 20624 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20625 if (!rgn23_data) 20626 goto out; 20627 20628 if (phba->sli_rev < LPFC_SLI_REV4) 20629 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20630 else { 20631 if_type = bf_get(lpfc_sli_intf_if_type, 20632 &phba->sli4_hba.sli_intf); 20633 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20634 goto out; 20635 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20636 } 20637 20638 if (!data_size) 20639 goto out; 20640 20641 /* Check the region signature first */ 20642 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20643 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20644 "2619 Config region 23 has bad signature\n"); 20645 goto out; 20646 } 20647 offset += 4; 20648 20649 /* Check the data structure version */ 20650 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20651 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20652 "2620 Config region 23 has bad version\n"); 20653 goto out; 20654 } 20655 offset += 4; 20656 20657 /* Parse TLV entries in the region */ 20658 while (offset < data_size) { 20659 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20660 break; 20661 /* 20662 * If the TLV is not driver specific TLV or driver id is 20663 * not linux driver id, skip the record. 20664 */ 20665 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20666 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20667 (rgn23_data[offset + 3] != 0)) { 20668 offset += rgn23_data[offset + 1] * 4 + 4; 20669 continue; 20670 } 20671 20672 /* Driver found a driver specific TLV in the config region */ 20673 sub_tlv_len = rgn23_data[offset + 1] * 4; 20674 offset += 4; 20675 tlv_offset = 0; 20676 20677 /* 20678 * Search for configured port state sub-TLV. 20679 */ 20680 while ((offset < data_size) && 20681 (tlv_offset < sub_tlv_len)) { 20682 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20683 offset += 4; 20684 tlv_offset += 4; 20685 break; 20686 } 20687 if (rgn23_data[offset] != PORT_STE_TYPE) { 20688 offset += rgn23_data[offset + 1] * 4 + 4; 20689 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20690 continue; 20691 } 20692 20693 /* This HBA contains PORT_STE configured */ 20694 if (!rgn23_data[offset + 2]) 20695 phba->hba_flag |= LINK_DISABLED; 20696 20697 goto out; 20698 } 20699 } 20700 20701 out: 20702 kfree(rgn23_data); 20703 return; 20704 } 20705 20706 /** 20707 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20708 * @phba: pointer to lpfc hba data structure 20709 * @shdr_status: wr_object rsp's status field 20710 * @shdr_add_status: wr_object rsp's add_status field 20711 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20712 * @shdr_change_status: wr_object rsp's change_status field 20713 * @shdr_csf: wr_object rsp's csf bit 20714 * 20715 * This routine is intended to be called after a firmware write completes. 20716 * It will log next action items to be performed by the user to instantiate 20717 * the newly downloaded firmware or reason for incompatibility. 20718 **/ 20719 static void 20720 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20721 u32 shdr_add_status, u32 shdr_add_status_2, 20722 u32 shdr_change_status, u32 shdr_csf) 20723 { 20724 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20725 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20726 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20727 "change_status x%02x, csf %01x\n", __func__, 20728 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20729 shdr_status, shdr_add_status, shdr_add_status_2, 20730 shdr_change_status, shdr_csf); 20731 20732 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20733 switch (shdr_add_status_2) { 20734 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20735 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20736 "4199 Firmware write failed: " 20737 "image incompatible with flash x%02x\n", 20738 phba->sli4_hba.flash_id); 20739 break; 20740 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20741 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20742 "4200 Firmware write failed: " 20743 "image incompatible with ASIC " 20744 "architecture x%02x\n", 20745 phba->sli4_hba.asic_rev); 20746 break; 20747 default: 20748 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20749 "4210 Firmware write failed: " 20750 "add_status_2 x%02x\n", 20751 shdr_add_status_2); 20752 break; 20753 } 20754 } else if (!shdr_status && !shdr_add_status) { 20755 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20756 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20757 if (shdr_csf) 20758 shdr_change_status = 20759 LPFC_CHANGE_STATUS_PCI_RESET; 20760 } 20761 20762 switch (shdr_change_status) { 20763 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20764 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20765 "3198 Firmware write complete: System " 20766 "reboot required to instantiate\n"); 20767 break; 20768 case (LPFC_CHANGE_STATUS_FW_RESET): 20769 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20770 "3199 Firmware write complete: " 20771 "Firmware reset required to " 20772 "instantiate\n"); 20773 break; 20774 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20775 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20776 "3200 Firmware write complete: Port " 20777 "Migration or PCI Reset required to " 20778 "instantiate\n"); 20779 break; 20780 case (LPFC_CHANGE_STATUS_PCI_RESET): 20781 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20782 "3201 Firmware write complete: PCI " 20783 "Reset required to instantiate\n"); 20784 break; 20785 default: 20786 break; 20787 } 20788 } 20789 } 20790 20791 /** 20792 * lpfc_wr_object - write an object to the firmware 20793 * @phba: HBA structure that indicates port to create a queue on. 20794 * @dmabuf_list: list of dmabufs to write to the port. 20795 * @size: the total byte value of the objects to write to the port. 20796 * @offset: the current offset to be used to start the transfer. 20797 * 20798 * This routine will create a wr_object mailbox command to send to the port. 20799 * the mailbox command will be constructed using the dma buffers described in 20800 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20801 * BDEs that the imbedded mailbox can support. The @offset variable will be 20802 * used to indicate the starting offset of the transfer and will also return 20803 * the offset after the write object mailbox has completed. @size is used to 20804 * determine the end of the object and whether the eof bit should be set. 20805 * 20806 * Return 0 is successful and offset will contain the the new offset to use 20807 * for the next write. 20808 * Return negative value for error cases. 20809 **/ 20810 int 20811 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20812 uint32_t size, uint32_t *offset) 20813 { 20814 struct lpfc_mbx_wr_object *wr_object; 20815 LPFC_MBOXQ_t *mbox; 20816 int rc = 0, i = 0; 20817 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20818 uint32_t shdr_change_status = 0, shdr_csf = 0; 20819 uint32_t mbox_tmo; 20820 struct lpfc_dmabuf *dmabuf; 20821 uint32_t written = 0; 20822 bool check_change_status = false; 20823 20824 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20825 if (!mbox) 20826 return -ENOMEM; 20827 20828 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20829 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20830 sizeof(struct lpfc_mbx_wr_object) - 20831 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20832 20833 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20834 wr_object->u.request.write_offset = *offset; 20835 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20836 wr_object->u.request.object_name[0] = 20837 cpu_to_le32(wr_object->u.request.object_name[0]); 20838 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20839 list_for_each_entry(dmabuf, dmabuf_list, list) { 20840 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20841 break; 20842 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20843 wr_object->u.request.bde[i].addrHigh = 20844 putPaddrHigh(dmabuf->phys); 20845 if (written + SLI4_PAGE_SIZE >= size) { 20846 wr_object->u.request.bde[i].tus.f.bdeSize = 20847 (size - written); 20848 written += (size - written); 20849 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20850 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20851 check_change_status = true; 20852 } else { 20853 wr_object->u.request.bde[i].tus.f.bdeSize = 20854 SLI4_PAGE_SIZE; 20855 written += SLI4_PAGE_SIZE; 20856 } 20857 i++; 20858 } 20859 wr_object->u.request.bde_count = i; 20860 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20861 if (!phba->sli4_hba.intr_enable) 20862 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20863 else { 20864 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20865 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20866 } 20867 /* The IOCTL status is embedded in the mailbox subheader. */ 20868 shdr_status = bf_get(lpfc_mbox_hdr_status, 20869 &wr_object->header.cfg_shdr.response); 20870 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20871 &wr_object->header.cfg_shdr.response); 20872 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20873 &wr_object->header.cfg_shdr.response); 20874 if (check_change_status) { 20875 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20876 &wr_object->u.response); 20877 shdr_csf = bf_get(lpfc_wr_object_csf, 20878 &wr_object->u.response); 20879 } 20880 20881 if (!phba->sli4_hba.intr_enable) 20882 mempool_free(mbox, phba->mbox_mem_pool); 20883 else if (rc != MBX_TIMEOUT) 20884 mempool_free(mbox, phba->mbox_mem_pool); 20885 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20886 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20887 "3025 Write Object mailbox failed with " 20888 "status x%x add_status x%x, add_status_2 x%x, " 20889 "mbx status x%x\n", 20890 shdr_status, shdr_add_status, shdr_add_status_2, 20891 rc); 20892 rc = -ENXIO; 20893 *offset = shdr_add_status; 20894 } else { 20895 *offset += wr_object->u.response.actual_write_length; 20896 } 20897 20898 if (rc || check_change_status) 20899 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20900 shdr_add_status_2, shdr_change_status, 20901 shdr_csf); 20902 return rc; 20903 } 20904 20905 /** 20906 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20907 * @vport: pointer to vport data structure. 20908 * 20909 * This function iterate through the mailboxq and clean up all REG_LOGIN 20910 * and REG_VPI mailbox commands associated with the vport. This function 20911 * is called when driver want to restart discovery of the vport due to 20912 * a Clear Virtual Link event. 20913 **/ 20914 void 20915 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20916 { 20917 struct lpfc_hba *phba = vport->phba; 20918 LPFC_MBOXQ_t *mb, *nextmb; 20919 struct lpfc_dmabuf *mp; 20920 struct lpfc_nodelist *ndlp; 20921 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20922 LIST_HEAD(mbox_cmd_list); 20923 uint8_t restart_loop; 20924 20925 /* Clean up internally queued mailbox commands with the vport */ 20926 spin_lock_irq(&phba->hbalock); 20927 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 20928 if (mb->vport != vport) 20929 continue; 20930 20931 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20932 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20933 continue; 20934 20935 list_move_tail(&mb->list, &mbox_cmd_list); 20936 } 20937 /* Clean up active mailbox command with the vport */ 20938 mb = phba->sli.mbox_active; 20939 if (mb && (mb->vport == vport)) { 20940 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 20941 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 20942 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20943 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20944 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20945 /* Put reference count for delayed processing */ 20946 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 20947 /* Unregister the RPI when mailbox complete */ 20948 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20949 } 20950 } 20951 /* Cleanup any mailbox completions which are not yet processed */ 20952 do { 20953 restart_loop = 0; 20954 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 20955 /* 20956 * If this mailox is already processed or it is 20957 * for another vport ignore it. 20958 */ 20959 if ((mb->vport != vport) || 20960 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 20961 continue; 20962 20963 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20964 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20965 continue; 20966 20967 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20968 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20969 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20970 /* Unregister the RPI when mailbox complete */ 20971 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20972 restart_loop = 1; 20973 spin_unlock_irq(&phba->hbalock); 20974 spin_lock(&ndlp->lock); 20975 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20976 spin_unlock(&ndlp->lock); 20977 spin_lock_irq(&phba->hbalock); 20978 break; 20979 } 20980 } 20981 } while (restart_loop); 20982 20983 spin_unlock_irq(&phba->hbalock); 20984 20985 /* Release the cleaned-up mailbox commands */ 20986 while (!list_empty(&mbox_cmd_list)) { 20987 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 20988 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20989 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 20990 if (mp) { 20991 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 20992 kfree(mp); 20993 } 20994 mb->ctx_buf = NULL; 20995 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20996 mb->ctx_ndlp = NULL; 20997 if (ndlp) { 20998 spin_lock(&ndlp->lock); 20999 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21000 spin_unlock(&ndlp->lock); 21001 lpfc_nlp_put(ndlp); 21002 } 21003 } 21004 mempool_free(mb, phba->mbox_mem_pool); 21005 } 21006 21007 /* Release the ndlp with the cleaned-up active mailbox command */ 21008 if (act_mbx_ndlp) { 21009 spin_lock(&act_mbx_ndlp->lock); 21010 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21011 spin_unlock(&act_mbx_ndlp->lock); 21012 lpfc_nlp_put(act_mbx_ndlp); 21013 } 21014 } 21015 21016 /** 21017 * lpfc_drain_txq - Drain the txq 21018 * @phba: Pointer to HBA context object. 21019 * 21020 * This function attempt to submit IOCBs on the txq 21021 * to the adapter. For SLI4 adapters, the txq contains 21022 * ELS IOCBs that have been deferred because the there 21023 * are no SGLs. This congestion can occur with large 21024 * vport counts during node discovery. 21025 **/ 21026 21027 uint32_t 21028 lpfc_drain_txq(struct lpfc_hba *phba) 21029 { 21030 LIST_HEAD(completions); 21031 struct lpfc_sli_ring *pring; 21032 struct lpfc_iocbq *piocbq = NULL; 21033 unsigned long iflags = 0; 21034 char *fail_msg = NULL; 21035 struct lpfc_sglq *sglq; 21036 union lpfc_wqe128 wqe; 21037 uint32_t txq_cnt = 0; 21038 struct lpfc_queue *wq; 21039 21040 if (phba->link_flag & LS_MDS_LOOPBACK) { 21041 /* MDS WQE are posted only to first WQ*/ 21042 wq = phba->sli4_hba.hdwq[0].io_wq; 21043 if (unlikely(!wq)) 21044 return 0; 21045 pring = wq->pring; 21046 } else { 21047 wq = phba->sli4_hba.els_wq; 21048 if (unlikely(!wq)) 21049 return 0; 21050 pring = lpfc_phba_elsring(phba); 21051 } 21052 21053 if (unlikely(!pring) || list_empty(&pring->txq)) 21054 return 0; 21055 21056 spin_lock_irqsave(&pring->ring_lock, iflags); 21057 list_for_each_entry(piocbq, &pring->txq, list) { 21058 txq_cnt++; 21059 } 21060 21061 if (txq_cnt > pring->txq_max) 21062 pring->txq_max = txq_cnt; 21063 21064 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21065 21066 while (!list_empty(&pring->txq)) { 21067 spin_lock_irqsave(&pring->ring_lock, iflags); 21068 21069 piocbq = lpfc_sli_ringtx_get(phba, pring); 21070 if (!piocbq) { 21071 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21072 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21073 "2823 txq empty and txq_cnt is %d\n ", 21074 txq_cnt); 21075 break; 21076 } 21077 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 21078 if (!sglq) { 21079 __lpfc_sli_ringtx_put(phba, pring, piocbq); 21080 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21081 break; 21082 } 21083 txq_cnt--; 21084 21085 /* The xri and iocb resources secured, 21086 * attempt to issue request 21087 */ 21088 piocbq->sli4_lxritag = sglq->sli4_lxritag; 21089 piocbq->sli4_xritag = sglq->sli4_xritag; 21090 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 21091 fail_msg = "to convert bpl to sgl"; 21092 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 21093 fail_msg = "to convert iocb to wqe"; 21094 else if (lpfc_sli4_wq_put(wq, &wqe)) 21095 fail_msg = " - Wq is full"; 21096 else 21097 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 21098 21099 if (fail_msg) { 21100 /* Failed means we can't issue and need to cancel */ 21101 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21102 "2822 IOCB failed %s iotag 0x%x " 21103 "xri 0x%x\n", 21104 fail_msg, 21105 piocbq->iotag, piocbq->sli4_xritag); 21106 list_add_tail(&piocbq->list, &completions); 21107 } 21108 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21109 } 21110 21111 /* Cancel all the IOCBs that cannot be issued */ 21112 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21113 IOERR_SLI_ABORTED); 21114 21115 return txq_cnt; 21116 } 21117 21118 /** 21119 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21120 * @phba: Pointer to HBA context object. 21121 * @pwqeq: Pointer to command WQE. 21122 * @sglq: Pointer to the scatter gather queue object. 21123 * 21124 * This routine converts the bpl or bde that is in the WQE 21125 * to a sgl list for the sli4 hardware. The physical address 21126 * of the bpl/bde is converted back to a virtual address. 21127 * If the WQE contains a BPL then the list of BDE's is 21128 * converted to sli4_sge's. If the WQE contains a single 21129 * BDE then it is converted to a single sli_sge. 21130 * The WQE is still in cpu endianness so the contents of 21131 * the bpl can be used without byte swapping. 21132 * 21133 * Returns valid XRI = Success, NO_XRI = Failure. 21134 */ 21135 static uint16_t 21136 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21137 struct lpfc_sglq *sglq) 21138 { 21139 uint16_t xritag = NO_XRI; 21140 struct ulp_bde64 *bpl = NULL; 21141 struct ulp_bde64 bde; 21142 struct sli4_sge *sgl = NULL; 21143 struct lpfc_dmabuf *dmabuf; 21144 union lpfc_wqe128 *wqe; 21145 int numBdes = 0; 21146 int i = 0; 21147 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21148 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21149 uint32_t cmd; 21150 21151 if (!pwqeq || !sglq) 21152 return xritag; 21153 21154 sgl = (struct sli4_sge *)sglq->sgl; 21155 wqe = &pwqeq->wqe; 21156 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21157 21158 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21159 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21160 return sglq->sli4_xritag; 21161 numBdes = pwqeq->rsvd2; 21162 if (numBdes) { 21163 /* The addrHigh and addrLow fields within the WQE 21164 * have not been byteswapped yet so there is no 21165 * need to swap them back. 21166 */ 21167 if (pwqeq->context3) 21168 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 21169 else 21170 return xritag; 21171 21172 bpl = (struct ulp_bde64 *)dmabuf->virt; 21173 if (!bpl) 21174 return xritag; 21175 21176 for (i = 0; i < numBdes; i++) { 21177 /* Should already be byte swapped. */ 21178 sgl->addr_hi = bpl->addrHigh; 21179 sgl->addr_lo = bpl->addrLow; 21180 21181 sgl->word2 = le32_to_cpu(sgl->word2); 21182 if ((i+1) == numBdes) 21183 bf_set(lpfc_sli4_sge_last, sgl, 1); 21184 else 21185 bf_set(lpfc_sli4_sge_last, sgl, 0); 21186 /* swap the size field back to the cpu so we 21187 * can assign it to the sgl. 21188 */ 21189 bde.tus.w = le32_to_cpu(bpl->tus.w); 21190 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21191 /* The offsets in the sgl need to be accumulated 21192 * separately for the request and reply lists. 21193 * The request is always first, the reply follows. 21194 */ 21195 switch (cmd) { 21196 case CMD_GEN_REQUEST64_WQE: 21197 /* add up the reply sg entries */ 21198 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21199 inbound++; 21200 /* first inbound? reset the offset */ 21201 if (inbound == 1) 21202 offset = 0; 21203 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21204 bf_set(lpfc_sli4_sge_type, sgl, 21205 LPFC_SGE_TYPE_DATA); 21206 offset += bde.tus.f.bdeSize; 21207 break; 21208 case CMD_FCP_TRSP64_WQE: 21209 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21210 bf_set(lpfc_sli4_sge_type, sgl, 21211 LPFC_SGE_TYPE_DATA); 21212 break; 21213 case CMD_FCP_TSEND64_WQE: 21214 case CMD_FCP_TRECEIVE64_WQE: 21215 bf_set(lpfc_sli4_sge_type, sgl, 21216 bpl->tus.f.bdeFlags); 21217 if (i < 3) 21218 offset = 0; 21219 else 21220 offset += bde.tus.f.bdeSize; 21221 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21222 break; 21223 } 21224 sgl->word2 = cpu_to_le32(sgl->word2); 21225 bpl++; 21226 sgl++; 21227 } 21228 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21229 /* The addrHigh and addrLow fields of the BDE have not 21230 * been byteswapped yet so they need to be swapped 21231 * before putting them in the sgl. 21232 */ 21233 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21234 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21235 sgl->word2 = le32_to_cpu(sgl->word2); 21236 bf_set(lpfc_sli4_sge_last, sgl, 1); 21237 sgl->word2 = cpu_to_le32(sgl->word2); 21238 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21239 } 21240 return sglq->sli4_xritag; 21241 } 21242 21243 /** 21244 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21245 * @phba: Pointer to HBA context object. 21246 * @qp: Pointer to HDW queue. 21247 * @pwqe: Pointer to command WQE. 21248 **/ 21249 int 21250 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21251 struct lpfc_iocbq *pwqe) 21252 { 21253 union lpfc_wqe128 *wqe = &pwqe->wqe; 21254 struct lpfc_async_xchg_ctx *ctxp; 21255 struct lpfc_queue *wq; 21256 struct lpfc_sglq *sglq; 21257 struct lpfc_sli_ring *pring; 21258 unsigned long iflags; 21259 uint32_t ret = 0; 21260 21261 /* NVME_LS and NVME_LS ABTS requests. */ 21262 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 21263 pring = phba->sli4_hba.nvmels_wq->pring; 21264 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21265 qp, wq_access); 21266 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21267 if (!sglq) { 21268 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21269 return WQE_BUSY; 21270 } 21271 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21272 pwqe->sli4_xritag = sglq->sli4_xritag; 21273 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21274 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21275 return WQE_ERROR; 21276 } 21277 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21278 pwqe->sli4_xritag); 21279 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21280 if (ret) { 21281 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21282 return ret; 21283 } 21284 21285 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21286 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21287 21288 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21289 return 0; 21290 } 21291 21292 /* NVME_FCREQ and NVME_ABTS requests */ 21293 if (pwqe->iocb_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21294 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21295 wq = qp->io_wq; 21296 pring = wq->pring; 21297 21298 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21299 21300 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21301 qp, wq_access); 21302 ret = lpfc_sli4_wq_put(wq, wqe); 21303 if (ret) { 21304 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21305 return ret; 21306 } 21307 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21308 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21309 21310 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21311 return 0; 21312 } 21313 21314 /* NVMET requests */ 21315 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 21316 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21317 wq = qp->io_wq; 21318 pring = wq->pring; 21319 21320 ctxp = pwqe->context2; 21321 sglq = ctxp->ctxbuf->sglq; 21322 if (pwqe->sli4_xritag == NO_XRI) { 21323 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21324 pwqe->sli4_xritag = sglq->sli4_xritag; 21325 } 21326 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21327 pwqe->sli4_xritag); 21328 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21329 21330 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21331 qp, wq_access); 21332 ret = lpfc_sli4_wq_put(wq, wqe); 21333 if (ret) { 21334 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21335 return ret; 21336 } 21337 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21338 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21339 21340 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21341 return 0; 21342 } 21343 return WQE_ERROR; 21344 } 21345 21346 /** 21347 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21348 * @phba: Pointer to HBA context object. 21349 * @cmdiocb: Pointer to driver command iocb object. 21350 * @cmpl: completion function. 21351 * 21352 * Fill the appropriate fields for the abort WQE and call 21353 * internal routine lpfc_sli4_issue_wqe to send the WQE 21354 * This function is called with hbalock held and no ring_lock held. 21355 * 21356 * RETURNS 0 - SUCCESS 21357 **/ 21358 21359 int 21360 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21361 void *cmpl) 21362 { 21363 struct lpfc_vport *vport = cmdiocb->vport; 21364 struct lpfc_iocbq *abtsiocb = NULL; 21365 union lpfc_wqe128 *abtswqe; 21366 struct lpfc_io_buf *lpfc_cmd; 21367 int retval = IOCB_ERROR; 21368 u16 xritag = cmdiocb->sli4_xritag; 21369 21370 /* 21371 * The scsi command can not be in txq and it is in flight because the 21372 * pCmd is still pointing at the SCSI command we have to abort. There 21373 * is no need to search the txcmplq. Just send an abort to the FW. 21374 */ 21375 21376 abtsiocb = __lpfc_sli_get_iocbq(phba); 21377 if (!abtsiocb) 21378 return WQE_NORESOURCE; 21379 21380 /* Indicate the IO is being aborted by the driver. */ 21381 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 21382 21383 abtswqe = &abtsiocb->wqe; 21384 memset(abtswqe, 0, sizeof(*abtswqe)); 21385 21386 if (!lpfc_is_link_up(phba)) 21387 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21388 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21389 abtswqe->abort_cmd.rsrvd5 = 0; 21390 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21391 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21392 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21393 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21394 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21395 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21396 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21397 21398 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21399 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21400 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 21401 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 21402 abtsiocb->iocb_flag |= LPFC_IO_FCP; 21403 if (cmdiocb->iocb_flag & LPFC_IO_NVME) 21404 abtsiocb->iocb_flag |= LPFC_IO_NVME; 21405 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 21406 abtsiocb->iocb_flag |= LPFC_IO_FOF; 21407 abtsiocb->vport = vport; 21408 abtsiocb->wqe_cmpl = cmpl; 21409 21410 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21411 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21412 21413 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21414 "0359 Abort xri x%x, original iotag x%x, " 21415 "abort cmd iotag x%x retval x%x\n", 21416 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21417 21418 if (retval) { 21419 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 21420 __lpfc_sli_release_iocbq(phba, abtsiocb); 21421 } 21422 21423 return retval; 21424 } 21425 21426 #ifdef LPFC_MXP_STAT 21427 /** 21428 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21429 * @phba: pointer to lpfc hba data structure. 21430 * @hwqid: belong to which HWQ. 21431 * 21432 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21433 * 15 seconds after a test case is running. 21434 * 21435 * The user should call lpfc_debugfs_multixripools_write before running a test 21436 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21437 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21438 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21439 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21440 **/ 21441 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21442 { 21443 struct lpfc_sli4_hdw_queue *qp; 21444 struct lpfc_multixri_pool *multixri_pool; 21445 struct lpfc_pvt_pool *pvt_pool; 21446 struct lpfc_pbl_pool *pbl_pool; 21447 u32 txcmplq_cnt; 21448 21449 qp = &phba->sli4_hba.hdwq[hwqid]; 21450 multixri_pool = qp->p_multixri_pool; 21451 if (!multixri_pool) 21452 return; 21453 21454 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21455 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21456 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21457 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21458 21459 multixri_pool->stat_pbl_count = pbl_pool->count; 21460 multixri_pool->stat_pvt_count = pvt_pool->count; 21461 multixri_pool->stat_busy_count = txcmplq_cnt; 21462 } 21463 21464 multixri_pool->stat_snapshot_taken++; 21465 } 21466 #endif 21467 21468 /** 21469 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21470 * @phba: pointer to lpfc hba data structure. 21471 * @hwqid: belong to which HWQ. 21472 * 21473 * This routine moves some XRIs from private to public pool when private pool 21474 * is not busy. 21475 **/ 21476 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21477 { 21478 struct lpfc_multixri_pool *multixri_pool; 21479 u32 io_req_count; 21480 u32 prev_io_req_count; 21481 21482 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21483 if (!multixri_pool) 21484 return; 21485 io_req_count = multixri_pool->io_req_count; 21486 prev_io_req_count = multixri_pool->prev_io_req_count; 21487 21488 if (prev_io_req_count != io_req_count) { 21489 /* Private pool is busy */ 21490 multixri_pool->prev_io_req_count = io_req_count; 21491 } else { 21492 /* Private pool is not busy. 21493 * Move XRIs from private to public pool. 21494 */ 21495 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21496 } 21497 } 21498 21499 /** 21500 * lpfc_adjust_high_watermark - Adjust high watermark 21501 * @phba: pointer to lpfc hba data structure. 21502 * @hwqid: belong to which HWQ. 21503 * 21504 * This routine sets high watermark as number of outstanding XRIs, 21505 * but make sure the new value is between xri_limit/2 and xri_limit. 21506 **/ 21507 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21508 { 21509 u32 new_watermark; 21510 u32 watermark_max; 21511 u32 watermark_min; 21512 u32 xri_limit; 21513 u32 txcmplq_cnt; 21514 u32 abts_io_bufs; 21515 struct lpfc_multixri_pool *multixri_pool; 21516 struct lpfc_sli4_hdw_queue *qp; 21517 21518 qp = &phba->sli4_hba.hdwq[hwqid]; 21519 multixri_pool = qp->p_multixri_pool; 21520 if (!multixri_pool) 21521 return; 21522 xri_limit = multixri_pool->xri_limit; 21523 21524 watermark_max = xri_limit; 21525 watermark_min = xri_limit / 2; 21526 21527 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21528 abts_io_bufs = qp->abts_scsi_io_bufs; 21529 abts_io_bufs += qp->abts_nvme_io_bufs; 21530 21531 new_watermark = txcmplq_cnt + abts_io_bufs; 21532 new_watermark = min(watermark_max, new_watermark); 21533 new_watermark = max(watermark_min, new_watermark); 21534 multixri_pool->pvt_pool.high_watermark = new_watermark; 21535 21536 #ifdef LPFC_MXP_STAT 21537 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21538 new_watermark); 21539 #endif 21540 } 21541 21542 /** 21543 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21544 * @phba: pointer to lpfc hba data structure. 21545 * @hwqid: belong to which HWQ. 21546 * 21547 * This routine is called from hearbeat timer when pvt_pool is idle. 21548 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21549 * The first step moves (all - low_watermark) amount of XRIs. 21550 * The second step moves the rest of XRIs. 21551 **/ 21552 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21553 { 21554 struct lpfc_pbl_pool *pbl_pool; 21555 struct lpfc_pvt_pool *pvt_pool; 21556 struct lpfc_sli4_hdw_queue *qp; 21557 struct lpfc_io_buf *lpfc_ncmd; 21558 struct lpfc_io_buf *lpfc_ncmd_next; 21559 unsigned long iflag; 21560 struct list_head tmp_list; 21561 u32 tmp_count; 21562 21563 qp = &phba->sli4_hba.hdwq[hwqid]; 21564 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21565 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21566 tmp_count = 0; 21567 21568 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21569 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21570 21571 if (pvt_pool->count > pvt_pool->low_watermark) { 21572 /* Step 1: move (all - low_watermark) from pvt_pool 21573 * to pbl_pool 21574 */ 21575 21576 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21577 INIT_LIST_HEAD(&tmp_list); 21578 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21579 &pvt_pool->list, list) { 21580 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21581 tmp_count++; 21582 if (tmp_count >= pvt_pool->low_watermark) 21583 break; 21584 } 21585 21586 /* Move all bufs from pvt_pool to pbl_pool */ 21587 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21588 21589 /* Move all bufs from tmp_list to pvt_pool */ 21590 list_splice(&tmp_list, &pvt_pool->list); 21591 21592 pbl_pool->count += (pvt_pool->count - tmp_count); 21593 pvt_pool->count = tmp_count; 21594 } else { 21595 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21596 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21597 pbl_pool->count += pvt_pool->count; 21598 pvt_pool->count = 0; 21599 } 21600 21601 spin_unlock(&pvt_pool->lock); 21602 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21603 } 21604 21605 /** 21606 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21607 * @phba: pointer to lpfc hba data structure 21608 * @qp: pointer to HDW queue 21609 * @pbl_pool: specified public free XRI pool 21610 * @pvt_pool: specified private free XRI pool 21611 * @count: number of XRIs to move 21612 * 21613 * This routine tries to move some free common bufs from the specified pbl_pool 21614 * to the specified pvt_pool. It might move less than count XRIs if there's not 21615 * enough in public pool. 21616 * 21617 * Return: 21618 * true - if XRIs are successfully moved from the specified pbl_pool to the 21619 * specified pvt_pool 21620 * false - if the specified pbl_pool is empty or locked by someone else 21621 **/ 21622 static bool 21623 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21624 struct lpfc_pbl_pool *pbl_pool, 21625 struct lpfc_pvt_pool *pvt_pool, u32 count) 21626 { 21627 struct lpfc_io_buf *lpfc_ncmd; 21628 struct lpfc_io_buf *lpfc_ncmd_next; 21629 unsigned long iflag; 21630 int ret; 21631 21632 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21633 if (ret) { 21634 if (pbl_pool->count) { 21635 /* Move a batch of XRIs from public to private pool */ 21636 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21637 list_for_each_entry_safe(lpfc_ncmd, 21638 lpfc_ncmd_next, 21639 &pbl_pool->list, 21640 list) { 21641 list_move_tail(&lpfc_ncmd->list, 21642 &pvt_pool->list); 21643 pvt_pool->count++; 21644 pbl_pool->count--; 21645 count--; 21646 if (count == 0) 21647 break; 21648 } 21649 21650 spin_unlock(&pvt_pool->lock); 21651 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21652 return true; 21653 } 21654 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21655 } 21656 21657 return false; 21658 } 21659 21660 /** 21661 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21662 * @phba: pointer to lpfc hba data structure. 21663 * @hwqid: belong to which HWQ. 21664 * @count: number of XRIs to move 21665 * 21666 * This routine tries to find some free common bufs in one of public pools with 21667 * Round Robin method. The search always starts from local hwqid, then the next 21668 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21669 * a batch of free common bufs are moved to private pool on hwqid. 21670 * It might move less than count XRIs if there's not enough in public pool. 21671 **/ 21672 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21673 { 21674 struct lpfc_multixri_pool *multixri_pool; 21675 struct lpfc_multixri_pool *next_multixri_pool; 21676 struct lpfc_pvt_pool *pvt_pool; 21677 struct lpfc_pbl_pool *pbl_pool; 21678 struct lpfc_sli4_hdw_queue *qp; 21679 u32 next_hwqid; 21680 u32 hwq_count; 21681 int ret; 21682 21683 qp = &phba->sli4_hba.hdwq[hwqid]; 21684 multixri_pool = qp->p_multixri_pool; 21685 pvt_pool = &multixri_pool->pvt_pool; 21686 pbl_pool = &multixri_pool->pbl_pool; 21687 21688 /* Check if local pbl_pool is available */ 21689 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21690 if (ret) { 21691 #ifdef LPFC_MXP_STAT 21692 multixri_pool->local_pbl_hit_count++; 21693 #endif 21694 return; 21695 } 21696 21697 hwq_count = phba->cfg_hdw_queue; 21698 21699 /* Get the next hwqid which was found last time */ 21700 next_hwqid = multixri_pool->rrb_next_hwqid; 21701 21702 do { 21703 /* Go to next hwq */ 21704 next_hwqid = (next_hwqid + 1) % hwq_count; 21705 21706 next_multixri_pool = 21707 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21708 pbl_pool = &next_multixri_pool->pbl_pool; 21709 21710 /* Check if the public free xri pool is available */ 21711 ret = _lpfc_move_xri_pbl_to_pvt( 21712 phba, qp, pbl_pool, pvt_pool, count); 21713 21714 /* Exit while-loop if success or all hwqid are checked */ 21715 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21716 21717 /* Starting point for the next time */ 21718 multixri_pool->rrb_next_hwqid = next_hwqid; 21719 21720 if (!ret) { 21721 /* stats: all public pools are empty*/ 21722 multixri_pool->pbl_empty_count++; 21723 } 21724 21725 #ifdef LPFC_MXP_STAT 21726 if (ret) { 21727 if (next_hwqid == hwqid) 21728 multixri_pool->local_pbl_hit_count++; 21729 else 21730 multixri_pool->other_pbl_hit_count++; 21731 } 21732 #endif 21733 } 21734 21735 /** 21736 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21737 * @phba: pointer to lpfc hba data structure. 21738 * @hwqid: belong to which HWQ. 21739 * 21740 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21741 * low watermark. 21742 **/ 21743 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21744 { 21745 struct lpfc_multixri_pool *multixri_pool; 21746 struct lpfc_pvt_pool *pvt_pool; 21747 21748 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21749 pvt_pool = &multixri_pool->pvt_pool; 21750 21751 if (pvt_pool->count < pvt_pool->low_watermark) 21752 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21753 } 21754 21755 /** 21756 * lpfc_release_io_buf - Return one IO buf back to free pool 21757 * @phba: pointer to lpfc hba data structure. 21758 * @lpfc_ncmd: IO buf to be returned. 21759 * @qp: belong to which HWQ. 21760 * 21761 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21762 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21763 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21764 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21765 * lpfc_io_buf_list_put. 21766 **/ 21767 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21768 struct lpfc_sli4_hdw_queue *qp) 21769 { 21770 unsigned long iflag; 21771 struct lpfc_pbl_pool *pbl_pool; 21772 struct lpfc_pvt_pool *pvt_pool; 21773 struct lpfc_epd_pool *epd_pool; 21774 u32 txcmplq_cnt; 21775 u32 xri_owned; 21776 u32 xri_limit; 21777 u32 abts_io_bufs; 21778 21779 /* MUST zero fields if buffer is reused by another protocol */ 21780 lpfc_ncmd->nvmeCmd = NULL; 21781 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; 21782 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; 21783 21784 if (phba->cfg_xpsgl && !phba->nvmet_support && 21785 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21786 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21787 21788 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21789 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21790 21791 if (phba->cfg_xri_rebalancing) { 21792 if (lpfc_ncmd->expedite) { 21793 /* Return to expedite pool */ 21794 epd_pool = &phba->epd_pool; 21795 spin_lock_irqsave(&epd_pool->lock, iflag); 21796 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21797 epd_pool->count++; 21798 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21799 return; 21800 } 21801 21802 /* Avoid invalid access if an IO sneaks in and is being rejected 21803 * just _after_ xri pools are destroyed in lpfc_offline. 21804 * Nothing much can be done at this point. 21805 */ 21806 if (!qp->p_multixri_pool) 21807 return; 21808 21809 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21810 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21811 21812 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21813 abts_io_bufs = qp->abts_scsi_io_bufs; 21814 abts_io_bufs += qp->abts_nvme_io_bufs; 21815 21816 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21817 xri_limit = qp->p_multixri_pool->xri_limit; 21818 21819 #ifdef LPFC_MXP_STAT 21820 if (xri_owned <= xri_limit) 21821 qp->p_multixri_pool->below_limit_count++; 21822 else 21823 qp->p_multixri_pool->above_limit_count++; 21824 #endif 21825 21826 /* XRI goes to either public or private free xri pool 21827 * based on watermark and xri_limit 21828 */ 21829 if ((pvt_pool->count < pvt_pool->low_watermark) || 21830 (xri_owned < xri_limit && 21831 pvt_pool->count < pvt_pool->high_watermark)) { 21832 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21833 qp, free_pvt_pool); 21834 list_add_tail(&lpfc_ncmd->list, 21835 &pvt_pool->list); 21836 pvt_pool->count++; 21837 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21838 } else { 21839 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21840 qp, free_pub_pool); 21841 list_add_tail(&lpfc_ncmd->list, 21842 &pbl_pool->list); 21843 pbl_pool->count++; 21844 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21845 } 21846 } else { 21847 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21848 qp, free_xri); 21849 list_add_tail(&lpfc_ncmd->list, 21850 &qp->lpfc_io_buf_list_put); 21851 qp->put_io_bufs++; 21852 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21853 iflag); 21854 } 21855 } 21856 21857 /** 21858 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21859 * @phba: pointer to lpfc hba data structure. 21860 * @qp: pointer to HDW queue 21861 * @pvt_pool: pointer to private pool data structure. 21862 * @ndlp: pointer to lpfc nodelist data structure. 21863 * 21864 * This routine tries to get one free IO buf from private pool. 21865 * 21866 * Return: 21867 * pointer to one free IO buf - if private pool is not empty 21868 * NULL - if private pool is empty 21869 **/ 21870 static struct lpfc_io_buf * 21871 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21872 struct lpfc_sli4_hdw_queue *qp, 21873 struct lpfc_pvt_pool *pvt_pool, 21874 struct lpfc_nodelist *ndlp) 21875 { 21876 struct lpfc_io_buf *lpfc_ncmd; 21877 struct lpfc_io_buf *lpfc_ncmd_next; 21878 unsigned long iflag; 21879 21880 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21881 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21882 &pvt_pool->list, list) { 21883 if (lpfc_test_rrq_active( 21884 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21885 continue; 21886 list_del(&lpfc_ncmd->list); 21887 pvt_pool->count--; 21888 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21889 return lpfc_ncmd; 21890 } 21891 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21892 21893 return NULL; 21894 } 21895 21896 /** 21897 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21898 * @phba: pointer to lpfc hba data structure. 21899 * 21900 * This routine tries to get one free IO buf from expedite pool. 21901 * 21902 * Return: 21903 * pointer to one free IO buf - if expedite pool is not empty 21904 * NULL - if expedite pool is empty 21905 **/ 21906 static struct lpfc_io_buf * 21907 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21908 { 21909 struct lpfc_io_buf *lpfc_ncmd; 21910 struct lpfc_io_buf *lpfc_ncmd_next; 21911 unsigned long iflag; 21912 struct lpfc_epd_pool *epd_pool; 21913 21914 epd_pool = &phba->epd_pool; 21915 lpfc_ncmd = NULL; 21916 21917 spin_lock_irqsave(&epd_pool->lock, iflag); 21918 if (epd_pool->count > 0) { 21919 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21920 &epd_pool->list, list) { 21921 list_del(&lpfc_ncmd->list); 21922 epd_pool->count--; 21923 break; 21924 } 21925 } 21926 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21927 21928 return lpfc_ncmd; 21929 } 21930 21931 /** 21932 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21933 * @phba: pointer to lpfc hba data structure. 21934 * @ndlp: pointer to lpfc nodelist data structure. 21935 * @hwqid: belong to which HWQ 21936 * @expedite: 1 means this request is urgent. 21937 * 21938 * This routine will do the following actions and then return a pointer to 21939 * one free IO buf. 21940 * 21941 * 1. If private free xri count is empty, move some XRIs from public to 21942 * private pool. 21943 * 2. Get one XRI from private free xri pool. 21944 * 3. If we fail to get one from pvt_pool and this is an expedite request, 21945 * get one free xri from expedite pool. 21946 * 21947 * Note: ndlp is only used on SCSI side for RRQ testing. 21948 * The caller should pass NULL for ndlp on NVME side. 21949 * 21950 * Return: 21951 * pointer to one free IO buf - if private pool is not empty 21952 * NULL - if private pool is empty 21953 **/ 21954 static struct lpfc_io_buf * 21955 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 21956 struct lpfc_nodelist *ndlp, 21957 int hwqid, int expedite) 21958 { 21959 struct lpfc_sli4_hdw_queue *qp; 21960 struct lpfc_multixri_pool *multixri_pool; 21961 struct lpfc_pvt_pool *pvt_pool; 21962 struct lpfc_io_buf *lpfc_ncmd; 21963 21964 qp = &phba->sli4_hba.hdwq[hwqid]; 21965 lpfc_ncmd = NULL; 21966 multixri_pool = qp->p_multixri_pool; 21967 pvt_pool = &multixri_pool->pvt_pool; 21968 multixri_pool->io_req_count++; 21969 21970 /* If pvt_pool is empty, move some XRIs from public to private pool */ 21971 if (pvt_pool->count == 0) 21972 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21973 21974 /* Get one XRI from private free xri pool */ 21975 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 21976 21977 if (lpfc_ncmd) { 21978 lpfc_ncmd->hdwq = qp; 21979 lpfc_ncmd->hdwq_no = hwqid; 21980 } else if (expedite) { 21981 /* If we fail to get one from pvt_pool and this is an expedite 21982 * request, get one free xri from expedite pool. 21983 */ 21984 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 21985 } 21986 21987 return lpfc_ncmd; 21988 } 21989 21990 static inline struct lpfc_io_buf * 21991 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 21992 { 21993 struct lpfc_sli4_hdw_queue *qp; 21994 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 21995 21996 qp = &phba->sli4_hba.hdwq[idx]; 21997 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 21998 &qp->lpfc_io_buf_list_get, list) { 21999 if (lpfc_test_rrq_active(phba, ndlp, 22000 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22001 continue; 22002 22003 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22004 continue; 22005 22006 list_del_init(&lpfc_cmd->list); 22007 qp->get_io_bufs--; 22008 lpfc_cmd->hdwq = qp; 22009 lpfc_cmd->hdwq_no = idx; 22010 return lpfc_cmd; 22011 } 22012 return NULL; 22013 } 22014 22015 /** 22016 * lpfc_get_io_buf - Get one IO buffer from free pool 22017 * @phba: The HBA for which this call is being executed. 22018 * @ndlp: pointer to lpfc nodelist data structure. 22019 * @hwqid: belong to which HWQ 22020 * @expedite: 1 means this request is urgent. 22021 * 22022 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22023 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22024 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22025 * 22026 * Note: ndlp is only used on SCSI side for RRQ testing. 22027 * The caller should pass NULL for ndlp on NVME side. 22028 * 22029 * Return codes: 22030 * NULL - Error 22031 * Pointer to lpfc_io_buf - Success 22032 **/ 22033 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22034 struct lpfc_nodelist *ndlp, 22035 u32 hwqid, int expedite) 22036 { 22037 struct lpfc_sli4_hdw_queue *qp; 22038 unsigned long iflag; 22039 struct lpfc_io_buf *lpfc_cmd; 22040 22041 qp = &phba->sli4_hba.hdwq[hwqid]; 22042 lpfc_cmd = NULL; 22043 22044 if (phba->cfg_xri_rebalancing) 22045 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22046 phba, ndlp, hwqid, expedite); 22047 else { 22048 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22049 qp, alloc_xri_get); 22050 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22051 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22052 if (!lpfc_cmd) { 22053 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22054 qp, alloc_xri_put); 22055 list_splice(&qp->lpfc_io_buf_list_put, 22056 &qp->lpfc_io_buf_list_get); 22057 qp->get_io_bufs += qp->put_io_bufs; 22058 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22059 qp->put_io_bufs = 0; 22060 spin_unlock(&qp->io_buf_list_put_lock); 22061 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22062 expedite) 22063 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22064 } 22065 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22066 } 22067 22068 return lpfc_cmd; 22069 } 22070 22071 /** 22072 * lpfc_read_object - Retrieve object data from HBA 22073 * @phba: The HBA for which this call is being executed. 22074 * @rdobject: Pathname of object data we want to read. 22075 * @datap: Pointer to where data will be copied to. 22076 * @datasz: size of data area 22077 * 22078 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22079 * The data will be truncated if datasz is not large enough. 22080 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22081 * Returns the actual bytes read from the object. 22082 */ 22083 int 22084 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22085 uint32_t datasz) 22086 { 22087 struct lpfc_mbx_read_object *read_object; 22088 LPFC_MBOXQ_t *mbox; 22089 int rc, length, eof, j, byte_cnt = 0; 22090 uint32_t shdr_status, shdr_add_status; 22091 union lpfc_sli4_cfg_shdr *shdr; 22092 struct lpfc_dmabuf *pcmd; 22093 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22094 22095 /* sanity check on queue memory */ 22096 if (!datap) 22097 return -ENODEV; 22098 22099 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22100 if (!mbox) 22101 return -ENOMEM; 22102 length = (sizeof(struct lpfc_mbx_read_object) - 22103 sizeof(struct lpfc_sli4_cfg_mhdr)); 22104 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22105 LPFC_MBOX_OPCODE_READ_OBJECT, 22106 length, LPFC_SLI4_MBX_EMBED); 22107 read_object = &mbox->u.mqe.un.read_object; 22108 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22109 22110 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22111 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22112 read_object->u.request.rd_object_offset = 0; 22113 read_object->u.request.rd_object_cnt = 1; 22114 22115 memset((void *)read_object->u.request.rd_object_name, 0, 22116 LPFC_OBJ_NAME_SZ); 22117 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22118 for (j = 0; j < strlen(rdobject); j++) 22119 read_object->u.request.rd_object_name[j] = 22120 cpu_to_le32(rd_object_name[j]); 22121 22122 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22123 if (pcmd) 22124 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22125 if (!pcmd || !pcmd->virt) { 22126 kfree(pcmd); 22127 mempool_free(mbox, phba->mbox_mem_pool); 22128 return -ENOMEM; 22129 } 22130 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22131 read_object->u.request.rd_object_hbuf[0].pa_lo = 22132 putPaddrLow(pcmd->phys); 22133 read_object->u.request.rd_object_hbuf[0].pa_hi = 22134 putPaddrHigh(pcmd->phys); 22135 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22136 22137 mbox->vport = phba->pport; 22138 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22139 mbox->ctx_buf = NULL; 22140 mbox->ctx_ndlp = NULL; 22141 22142 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22143 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22144 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22145 22146 if (shdr_status == STATUS_FAILED && 22147 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22148 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22149 "4674 No port cfg file in FW.\n"); 22150 byte_cnt = -ENOENT; 22151 } else if (shdr_status || shdr_add_status || rc) { 22152 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22153 "2625 READ_OBJECT mailbox failed with " 22154 "status x%x add_status x%x, mbx status x%x\n", 22155 shdr_status, shdr_add_status, rc); 22156 byte_cnt = -ENXIO; 22157 } else { 22158 /* Success */ 22159 length = read_object->u.response.rd_object_actual_rlen; 22160 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22161 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22162 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22163 length, datasz, eof); 22164 22165 /* Detect the port config file exists but is empty */ 22166 if (!length && eof) { 22167 byte_cnt = 0; 22168 goto exit; 22169 } 22170 22171 byte_cnt = length; 22172 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22173 } 22174 22175 exit: 22176 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22177 kfree(pcmd); 22178 mempool_free(mbox, phba->mbox_mem_pool); 22179 return byte_cnt; 22180 } 22181 22182 /** 22183 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22184 * @phba: The HBA for which this call is being executed. 22185 * @lpfc_buf: IO buf structure to append the SGL chunk 22186 * 22187 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22188 * and will allocate an SGL chunk if the pool is empty. 22189 * 22190 * Return codes: 22191 * NULL - Error 22192 * Pointer to sli4_hybrid_sgl - Success 22193 **/ 22194 struct sli4_hybrid_sgl * 22195 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22196 { 22197 struct sli4_hybrid_sgl *list_entry = NULL; 22198 struct sli4_hybrid_sgl *tmp = NULL; 22199 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22200 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22201 struct list_head *buf_list = &hdwq->sgl_list; 22202 unsigned long iflags; 22203 22204 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22205 22206 if (likely(!list_empty(buf_list))) { 22207 /* break off 1 chunk from the sgl_list */ 22208 list_for_each_entry_safe(list_entry, tmp, 22209 buf_list, list_node) { 22210 list_move_tail(&list_entry->list_node, 22211 &lpfc_buf->dma_sgl_xtra_list); 22212 break; 22213 } 22214 } else { 22215 /* allocate more */ 22216 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22217 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22218 cpu_to_node(hdwq->io_wq->chann)); 22219 if (!tmp) { 22220 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22221 "8353 error kmalloc memory for HDWQ " 22222 "%d %s\n", 22223 lpfc_buf->hdwq_no, __func__); 22224 return NULL; 22225 } 22226 22227 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22228 GFP_ATOMIC, &tmp->dma_phys_sgl); 22229 if (!tmp->dma_sgl) { 22230 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22231 "8354 error pool_alloc memory for HDWQ " 22232 "%d %s\n", 22233 lpfc_buf->hdwq_no, __func__); 22234 kfree(tmp); 22235 return NULL; 22236 } 22237 22238 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22239 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22240 } 22241 22242 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22243 struct sli4_hybrid_sgl, 22244 list_node); 22245 22246 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22247 22248 return allocated_sgl; 22249 } 22250 22251 /** 22252 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22253 * @phba: The HBA for which this call is being executed. 22254 * @lpfc_buf: IO buf structure with the SGL chunk 22255 * 22256 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22257 * 22258 * Return codes: 22259 * 0 - Success 22260 * -EINVAL - Error 22261 **/ 22262 int 22263 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22264 { 22265 int rc = 0; 22266 struct sli4_hybrid_sgl *list_entry = NULL; 22267 struct sli4_hybrid_sgl *tmp = NULL; 22268 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22269 struct list_head *buf_list = &hdwq->sgl_list; 22270 unsigned long iflags; 22271 22272 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22273 22274 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22275 list_for_each_entry_safe(list_entry, tmp, 22276 &lpfc_buf->dma_sgl_xtra_list, 22277 list_node) { 22278 list_move_tail(&list_entry->list_node, 22279 buf_list); 22280 } 22281 } else { 22282 rc = -EINVAL; 22283 } 22284 22285 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22286 return rc; 22287 } 22288 22289 /** 22290 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22291 * @phba: phba object 22292 * @hdwq: hdwq to cleanup sgl buff resources on 22293 * 22294 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22295 * 22296 * Return codes: 22297 * None 22298 **/ 22299 void 22300 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22301 struct lpfc_sli4_hdw_queue *hdwq) 22302 { 22303 struct list_head *buf_list = &hdwq->sgl_list; 22304 struct sli4_hybrid_sgl *list_entry = NULL; 22305 struct sli4_hybrid_sgl *tmp = NULL; 22306 unsigned long iflags; 22307 22308 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22309 22310 /* Free sgl pool */ 22311 list_for_each_entry_safe(list_entry, tmp, 22312 buf_list, list_node) { 22313 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22314 list_entry->dma_sgl, 22315 list_entry->dma_phys_sgl); 22316 list_del(&list_entry->list_node); 22317 kfree(list_entry); 22318 } 22319 22320 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22321 } 22322 22323 /** 22324 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22325 * @phba: The HBA for which this call is being executed. 22326 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22327 * 22328 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22329 * and will allocate an CMD/RSP buffer if the pool is empty. 22330 * 22331 * Return codes: 22332 * NULL - Error 22333 * Pointer to fcp_cmd_rsp_buf - Success 22334 **/ 22335 struct fcp_cmd_rsp_buf * 22336 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22337 struct lpfc_io_buf *lpfc_buf) 22338 { 22339 struct fcp_cmd_rsp_buf *list_entry = NULL; 22340 struct fcp_cmd_rsp_buf *tmp = NULL; 22341 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22342 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22343 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22344 unsigned long iflags; 22345 22346 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22347 22348 if (likely(!list_empty(buf_list))) { 22349 /* break off 1 chunk from the list */ 22350 list_for_each_entry_safe(list_entry, tmp, 22351 buf_list, 22352 list_node) { 22353 list_move_tail(&list_entry->list_node, 22354 &lpfc_buf->dma_cmd_rsp_list); 22355 break; 22356 } 22357 } else { 22358 /* allocate more */ 22359 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22360 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22361 cpu_to_node(hdwq->io_wq->chann)); 22362 if (!tmp) { 22363 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22364 "8355 error kmalloc memory for HDWQ " 22365 "%d %s\n", 22366 lpfc_buf->hdwq_no, __func__); 22367 return NULL; 22368 } 22369 22370 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 22371 GFP_ATOMIC, 22372 &tmp->fcp_cmd_rsp_dma_handle); 22373 22374 if (!tmp->fcp_cmnd) { 22375 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22376 "8356 error pool_alloc memory for HDWQ " 22377 "%d %s\n", 22378 lpfc_buf->hdwq_no, __func__); 22379 kfree(tmp); 22380 return NULL; 22381 } 22382 22383 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22384 sizeof(struct fcp_cmnd)); 22385 22386 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22387 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22388 } 22389 22390 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22391 struct fcp_cmd_rsp_buf, 22392 list_node); 22393 22394 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22395 22396 return allocated_buf; 22397 } 22398 22399 /** 22400 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22401 * @phba: The HBA for which this call is being executed. 22402 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22403 * 22404 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22405 * 22406 * Return codes: 22407 * 0 - Success 22408 * -EINVAL - Error 22409 **/ 22410 int 22411 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22412 struct lpfc_io_buf *lpfc_buf) 22413 { 22414 int rc = 0; 22415 struct fcp_cmd_rsp_buf *list_entry = NULL; 22416 struct fcp_cmd_rsp_buf *tmp = NULL; 22417 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22418 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22419 unsigned long iflags; 22420 22421 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22422 22423 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22424 list_for_each_entry_safe(list_entry, tmp, 22425 &lpfc_buf->dma_cmd_rsp_list, 22426 list_node) { 22427 list_move_tail(&list_entry->list_node, 22428 buf_list); 22429 } 22430 } else { 22431 rc = -EINVAL; 22432 } 22433 22434 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22435 return rc; 22436 } 22437 22438 /** 22439 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22440 * @phba: phba object 22441 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22442 * 22443 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22444 * 22445 * Return codes: 22446 * None 22447 **/ 22448 void 22449 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22450 struct lpfc_sli4_hdw_queue *hdwq) 22451 { 22452 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22453 struct fcp_cmd_rsp_buf *list_entry = NULL; 22454 struct fcp_cmd_rsp_buf *tmp = NULL; 22455 unsigned long iflags; 22456 22457 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22458 22459 /* Free cmd_rsp buf pool */ 22460 list_for_each_entry_safe(list_entry, tmp, 22461 buf_list, 22462 list_node) { 22463 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22464 list_entry->fcp_cmnd, 22465 list_entry->fcp_cmd_rsp_dma_handle); 22466 list_del(&list_entry->list_node); 22467 kfree(list_entry); 22468 } 22469 22470 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22471 } 22472