1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2018 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include <linux/nvme-fc-driver.h> 43 44 #include "lpfc_hw4.h" 45 #include "lpfc_hw.h" 46 #include "lpfc_sli.h" 47 #include "lpfc_sli4.h" 48 #include "lpfc_nl.h" 49 #include "lpfc_disc.h" 50 #include "lpfc.h" 51 #include "lpfc_scsi.h" 52 #include "lpfc_nvme.h" 53 #include "lpfc_nvmet.h" 54 #include "lpfc_crtn.h" 55 #include "lpfc_logmsg.h" 56 #include "lpfc_compat.h" 57 #include "lpfc_debugfs.h" 58 #include "lpfc_vport.h" 59 #include "lpfc_version.h" 60 61 /* There are only four IOCB completion types. */ 62 typedef enum _lpfc_iocb_type { 63 LPFC_UNKNOWN_IOCB, 64 LPFC_UNSOL_IOCB, 65 LPFC_SOL_IOCB, 66 LPFC_ABORT_IOCB 67 } lpfc_iocb_type; 68 69 70 /* Provide function prototypes local to this module. */ 71 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint32_t); 73 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 74 uint8_t *, uint32_t *); 75 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 76 struct lpfc_iocbq *); 77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 78 struct hbq_dmabuf *); 79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 80 struct hbq_dmabuf *dmabuf); 81 static int lpfc_sli4_fp_handle_cqe(struct lpfc_hba *, struct lpfc_queue *, 82 struct lpfc_cqe *); 83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 84 int); 85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 86 struct lpfc_eqe *eqe, uint32_t qidx); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static int lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, 90 struct lpfc_sli_ring *pring, 91 struct lpfc_iocbq *cmdiocb); 92 93 static IOCB_t * 94 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 95 { 96 return &iocbq->iocb; 97 } 98 99 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 100 /** 101 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 102 * @srcp: Source memory pointer. 103 * @destp: Destination memory pointer. 104 * @cnt: Number of words required to be copied. 105 * Must be a multiple of sizeof(uint64_t) 106 * 107 * This function is used for copying data between driver memory 108 * and the SLI WQ. This function also changes the endianness 109 * of each word if native endianness is different from SLI 110 * endianness. This function can be called with or without 111 * lock. 112 **/ 113 void 114 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 115 { 116 uint64_t *src = srcp; 117 uint64_t *dest = destp; 118 int i; 119 120 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 121 *dest++ = *src++; 122 } 123 #else 124 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 125 #endif 126 127 /** 128 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 129 * @q: The Work Queue to operate on. 130 * @wqe: The work Queue Entry to put on the Work queue. 131 * 132 * This routine will copy the contents of @wqe to the next available entry on 133 * the @q. This function will then ring the Work Queue Doorbell to signal the 134 * HBA to start processing the Work Queue Entry. This function returns 0 if 135 * successful. If no entries are available on @q then this function will return 136 * -ENOMEM. 137 * The caller is expected to hold the hbalock when calling this routine. 138 **/ 139 static int 140 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 141 { 142 union lpfc_wqe *temp_wqe; 143 struct lpfc_register doorbell; 144 uint32_t host_index; 145 uint32_t idx; 146 uint32_t i = 0; 147 uint8_t *tmp; 148 u32 if_type; 149 150 /* sanity check on queue memory */ 151 if (unlikely(!q)) 152 return -ENOMEM; 153 temp_wqe = q->qe[q->host_index].wqe; 154 155 /* If the host has not yet processed the next entry then we are done */ 156 idx = ((q->host_index + 1) % q->entry_count); 157 if (idx == q->hba_index) { 158 q->WQ_overflow++; 159 return -EBUSY; 160 } 161 q->WQ_posted++; 162 /* set consumption flag every once in a while */ 163 if (!((q->host_index + 1) % q->entry_repost)) 164 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 165 else 166 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 167 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 168 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 169 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 170 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 171 /* write to DPP aperture taking advatage of Combined Writes */ 172 tmp = (uint8_t *)temp_wqe; 173 #ifdef __raw_writeq 174 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 175 __raw_writeq(*((uint64_t *)(tmp + i)), 176 q->dpp_regaddr + i); 177 #else 178 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 179 __raw_writel(*((uint32_t *)(tmp + i)), 180 q->dpp_regaddr + i); 181 #endif 182 } 183 /* ensure WQE bcopy and DPP flushed before doorbell write */ 184 wmb(); 185 186 /* Update the host index before invoking device */ 187 host_index = q->host_index; 188 189 q->host_index = idx; 190 191 /* Ring Doorbell */ 192 doorbell.word0 = 0; 193 if (q->db_format == LPFC_DB_LIST_FORMAT) { 194 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 195 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 196 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 197 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 198 q->dpp_id); 199 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 200 q->queue_id); 201 } else { 202 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 203 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 204 205 /* Leave bits <23:16> clear for if_type 6 dpp */ 206 if_type = bf_get(lpfc_sli_intf_if_type, 207 &q->phba->sli4_hba.sli_intf); 208 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 209 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 210 host_index); 211 } 212 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 213 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 214 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 215 } else { 216 return -EINVAL; 217 } 218 writel(doorbell.word0, q->db_regaddr); 219 220 return 0; 221 } 222 223 /** 224 * lpfc_sli4_wq_release - Updates internal hba index for WQ 225 * @q: The Work Queue to operate on. 226 * @index: The index to advance the hba index to. 227 * 228 * This routine will update the HBA index of a queue to reflect consumption of 229 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 230 * an entry the host calls this function to update the queue's internal 231 * pointers. This routine returns the number of entries that were consumed by 232 * the HBA. 233 **/ 234 static uint32_t 235 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 236 { 237 uint32_t released = 0; 238 239 /* sanity check on queue memory */ 240 if (unlikely(!q)) 241 return 0; 242 243 if (q->hba_index == index) 244 return 0; 245 do { 246 q->hba_index = ((q->hba_index + 1) % q->entry_count); 247 released++; 248 } while (q->hba_index != index); 249 return released; 250 } 251 252 /** 253 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 254 * @q: The Mailbox Queue to operate on. 255 * @wqe: The Mailbox Queue Entry to put on the Work queue. 256 * 257 * This routine will copy the contents of @mqe to the next available entry on 258 * the @q. This function will then ring the Work Queue Doorbell to signal the 259 * HBA to start processing the Work Queue Entry. This function returns 0 if 260 * successful. If no entries are available on @q then this function will return 261 * -ENOMEM. 262 * The caller is expected to hold the hbalock when calling this routine. 263 **/ 264 static uint32_t 265 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 266 { 267 struct lpfc_mqe *temp_mqe; 268 struct lpfc_register doorbell; 269 270 /* sanity check on queue memory */ 271 if (unlikely(!q)) 272 return -ENOMEM; 273 temp_mqe = q->qe[q->host_index].mqe; 274 275 /* If the host has not yet processed the next entry then we are done */ 276 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 277 return -ENOMEM; 278 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 279 /* Save off the mailbox pointer for completion */ 280 q->phba->mbox = (MAILBOX_t *)temp_mqe; 281 282 /* Update the host index before invoking device */ 283 q->host_index = ((q->host_index + 1) % q->entry_count); 284 285 /* Ring Doorbell */ 286 doorbell.word0 = 0; 287 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 288 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 289 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 290 return 0; 291 } 292 293 /** 294 * lpfc_sli4_mq_release - Updates internal hba index for MQ 295 * @q: The Mailbox Queue to operate on. 296 * 297 * This routine will update the HBA index of a queue to reflect consumption of 298 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 299 * an entry the host calls this function to update the queue's internal 300 * pointers. This routine returns the number of entries that were consumed by 301 * the HBA. 302 **/ 303 static uint32_t 304 lpfc_sli4_mq_release(struct lpfc_queue *q) 305 { 306 /* sanity check on queue memory */ 307 if (unlikely(!q)) 308 return 0; 309 310 /* Clear the mailbox pointer for completion */ 311 q->phba->mbox = NULL; 312 q->hba_index = ((q->hba_index + 1) % q->entry_count); 313 return 1; 314 } 315 316 /** 317 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 318 * @q: The Event Queue to get the first valid EQE from 319 * 320 * This routine will get the first valid Event Queue Entry from @q, update 321 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 322 * the Queue (no more work to do), or the Queue is full of EQEs that have been 323 * processed, but not popped back to the HBA then this routine will return NULL. 324 **/ 325 static struct lpfc_eqe * 326 lpfc_sli4_eq_get(struct lpfc_queue *q) 327 { 328 struct lpfc_hba *phba; 329 struct lpfc_eqe *eqe; 330 uint32_t idx; 331 332 /* sanity check on queue memory */ 333 if (unlikely(!q)) 334 return NULL; 335 phba = q->phba; 336 eqe = q->qe[q->hba_index].eqe; 337 338 /* If the next EQE is not valid then we are done */ 339 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 340 return NULL; 341 /* If the host has not yet processed the next entry then we are done */ 342 idx = ((q->hba_index + 1) % q->entry_count); 343 if (idx == q->host_index) 344 return NULL; 345 346 q->hba_index = idx; 347 /* if the index wrapped around, toggle the valid bit */ 348 if (phba->sli4_hba.pc_sli4_params.eqav && !q->hba_index) 349 q->qe_valid = (q->qe_valid) ? 0 : 1; 350 351 352 /* 353 * insert barrier for instruction interlock : data from the hardware 354 * must have the valid bit checked before it can be copied and acted 355 * upon. Speculative instructions were allowing a bcopy at the start 356 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 357 * after our return, to copy data before the valid bit check above 358 * was done. As such, some of the copied data was stale. The barrier 359 * ensures the check is before any data is copied. 360 */ 361 mb(); 362 return eqe; 363 } 364 365 /** 366 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 367 * @q: The Event Queue to disable interrupts 368 * 369 **/ 370 inline void 371 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 372 { 373 struct lpfc_register doorbell; 374 375 doorbell.word0 = 0; 376 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 377 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 378 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 379 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 380 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 381 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 382 } 383 384 /** 385 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 386 * @q: The Event Queue to disable interrupts 387 * 388 **/ 389 inline void 390 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 391 { 392 struct lpfc_register doorbell; 393 394 doorbell.word0 = 0; 395 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 396 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 397 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 398 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 399 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 400 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 401 } 402 403 /** 404 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ 405 * @q: The Event Queue that the host has completed processing for. 406 * @arm: Indicates whether the host wants to arms this CQ. 407 * 408 * This routine will mark all Event Queue Entries on @q, from the last 409 * known completed entry to the last entry that was processed, as completed 410 * by clearing the valid bit for each completion queue entry. Then it will 411 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 412 * The internal host index in the @q will be updated by this routine to indicate 413 * that the host has finished processing the entries. The @arm parameter 414 * indicates that the queue should be rearmed when ringing the doorbell. 415 * 416 * This function will return the number of EQEs that were popped. 417 **/ 418 uint32_t 419 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm) 420 { 421 uint32_t released = 0; 422 struct lpfc_hba *phba; 423 struct lpfc_eqe *temp_eqe; 424 struct lpfc_register doorbell; 425 426 /* sanity check on queue memory */ 427 if (unlikely(!q)) 428 return 0; 429 phba = q->phba; 430 431 /* while there are valid entries */ 432 while (q->hba_index != q->host_index) { 433 if (!phba->sli4_hba.pc_sli4_params.eqav) { 434 temp_eqe = q->qe[q->host_index].eqe; 435 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 436 } 437 released++; 438 q->host_index = ((q->host_index + 1) % q->entry_count); 439 } 440 if (unlikely(released == 0 && !arm)) 441 return 0; 442 443 /* ring doorbell for number popped */ 444 doorbell.word0 = 0; 445 if (arm) { 446 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 447 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 448 } 449 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 450 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 451 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 452 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 453 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 454 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 455 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 456 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 457 readl(q->phba->sli4_hba.EQDBregaddr); 458 return released; 459 } 460 461 /** 462 * lpfc_sli4_if6_eq_release - Indicates the host has finished processing an EQ 463 * @q: The Event Queue that the host has completed processing for. 464 * @arm: Indicates whether the host wants to arms this CQ. 465 * 466 * This routine will mark all Event Queue Entries on @q, from the last 467 * known completed entry to the last entry that was processed, as completed 468 * by clearing the valid bit for each completion queue entry. Then it will 469 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 470 * The internal host index in the @q will be updated by this routine to indicate 471 * that the host has finished processing the entries. The @arm parameter 472 * indicates that the queue should be rearmed when ringing the doorbell. 473 * 474 * This function will return the number of EQEs that were popped. 475 **/ 476 uint32_t 477 lpfc_sli4_if6_eq_release(struct lpfc_queue *q, bool arm) 478 { 479 uint32_t released = 0; 480 struct lpfc_hba *phba; 481 struct lpfc_eqe *temp_eqe; 482 struct lpfc_register doorbell; 483 484 /* sanity check on queue memory */ 485 if (unlikely(!q)) 486 return 0; 487 phba = q->phba; 488 489 /* while there are valid entries */ 490 while (q->hba_index != q->host_index) { 491 if (!phba->sli4_hba.pc_sli4_params.eqav) { 492 temp_eqe = q->qe[q->host_index].eqe; 493 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 494 } 495 released++; 496 q->host_index = ((q->host_index + 1) % q->entry_count); 497 } 498 if (unlikely(released == 0 && !arm)) 499 return 0; 500 501 /* ring doorbell for number popped */ 502 doorbell.word0 = 0; 503 if (arm) 504 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 505 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, released); 506 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 507 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 508 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 509 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 510 readl(q->phba->sli4_hba.EQDBregaddr); 511 return released; 512 } 513 514 /** 515 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 516 * @q: The Completion Queue to get the first valid CQE from 517 * 518 * This routine will get the first valid Completion Queue Entry from @q, update 519 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 520 * the Queue (no more work to do), or the Queue is full of CQEs that have been 521 * processed, but not popped back to the HBA then this routine will return NULL. 522 **/ 523 static struct lpfc_cqe * 524 lpfc_sli4_cq_get(struct lpfc_queue *q) 525 { 526 struct lpfc_hba *phba; 527 struct lpfc_cqe *cqe; 528 uint32_t idx; 529 530 /* sanity check on queue memory */ 531 if (unlikely(!q)) 532 return NULL; 533 phba = q->phba; 534 cqe = q->qe[q->hba_index].cqe; 535 536 /* If the next CQE is not valid then we are done */ 537 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 538 return NULL; 539 /* If the host has not yet processed the next entry then we are done */ 540 idx = ((q->hba_index + 1) % q->entry_count); 541 if (idx == q->host_index) 542 return NULL; 543 544 q->hba_index = idx; 545 /* if the index wrapped around, toggle the valid bit */ 546 if (phba->sli4_hba.pc_sli4_params.cqav && !q->hba_index) 547 q->qe_valid = (q->qe_valid) ? 0 : 1; 548 549 /* 550 * insert barrier for instruction interlock : data from the hardware 551 * must have the valid bit checked before it can be copied and acted 552 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 553 * instructions allowing action on content before valid bit checked, 554 * add barrier here as well. May not be needed as "content" is a 555 * single 32-bit entity here (vs multi word structure for cq's). 556 */ 557 mb(); 558 return cqe; 559 } 560 561 /** 562 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ 563 * @q: The Completion Queue that the host has completed processing for. 564 * @arm: Indicates whether the host wants to arms this CQ. 565 * 566 * This routine will mark all Completion queue entries on @q, from the last 567 * known completed entry to the last entry that was processed, as completed 568 * by clearing the valid bit for each completion queue entry. Then it will 569 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 570 * The internal host index in the @q will be updated by this routine to indicate 571 * that the host has finished processing the entries. The @arm parameter 572 * indicates that the queue should be rearmed when ringing the doorbell. 573 * 574 * This function will return the number of CQEs that were released. 575 **/ 576 uint32_t 577 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm) 578 { 579 uint32_t released = 0; 580 struct lpfc_hba *phba; 581 struct lpfc_cqe *temp_qe; 582 struct lpfc_register doorbell; 583 584 /* sanity check on queue memory */ 585 if (unlikely(!q)) 586 return 0; 587 phba = q->phba; 588 589 /* while there are valid entries */ 590 while (q->hba_index != q->host_index) { 591 if (!phba->sli4_hba.pc_sli4_params.cqav) { 592 temp_qe = q->qe[q->host_index].cqe; 593 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 594 } 595 released++; 596 q->host_index = ((q->host_index + 1) % q->entry_count); 597 } 598 if (unlikely(released == 0 && !arm)) 599 return 0; 600 601 /* ring doorbell for number popped */ 602 doorbell.word0 = 0; 603 if (arm) 604 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 605 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 606 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 607 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 608 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 609 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 610 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 611 return released; 612 } 613 614 /** 615 * lpfc_sli4_if6_cq_release - Indicates the host has finished processing a CQ 616 * @q: The Completion Queue that the host has completed processing for. 617 * @arm: Indicates whether the host wants to arms this CQ. 618 * 619 * This routine will mark all Completion queue entries on @q, from the last 620 * known completed entry to the last entry that was processed, as completed 621 * by clearing the valid bit for each completion queue entry. Then it will 622 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 623 * The internal host index in the @q will be updated by this routine to indicate 624 * that the host has finished processing the entries. The @arm parameter 625 * indicates that the queue should be rearmed when ringing the doorbell. 626 * 627 * This function will return the number of CQEs that were released. 628 **/ 629 uint32_t 630 lpfc_sli4_if6_cq_release(struct lpfc_queue *q, bool arm) 631 { 632 uint32_t released = 0; 633 struct lpfc_hba *phba; 634 struct lpfc_cqe *temp_qe; 635 struct lpfc_register doorbell; 636 637 /* sanity check on queue memory */ 638 if (unlikely(!q)) 639 return 0; 640 phba = q->phba; 641 642 /* while there are valid entries */ 643 while (q->hba_index != q->host_index) { 644 if (!phba->sli4_hba.pc_sli4_params.cqav) { 645 temp_qe = q->qe[q->host_index].cqe; 646 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 647 } 648 released++; 649 q->host_index = ((q->host_index + 1) % q->entry_count); 650 } 651 if (unlikely(released == 0 && !arm)) 652 return 0; 653 654 /* ring doorbell for number popped */ 655 doorbell.word0 = 0; 656 if (arm) 657 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 658 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, released); 659 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 660 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 661 return released; 662 } 663 664 /** 665 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 666 * @q: The Header Receive Queue to operate on. 667 * @wqe: The Receive Queue Entry to put on the Receive queue. 668 * 669 * This routine will copy the contents of @wqe to the next available entry on 670 * the @q. This function will then ring the Receive Queue Doorbell to signal the 671 * HBA to start processing the Receive Queue Entry. This function returns the 672 * index that the rqe was copied to if successful. If no entries are available 673 * on @q then this function will return -ENOMEM. 674 * The caller is expected to hold the hbalock when calling this routine. 675 **/ 676 int 677 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 678 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 679 { 680 struct lpfc_rqe *temp_hrqe; 681 struct lpfc_rqe *temp_drqe; 682 struct lpfc_register doorbell; 683 int hq_put_index; 684 int dq_put_index; 685 686 /* sanity check on queue memory */ 687 if (unlikely(!hq) || unlikely(!dq)) 688 return -ENOMEM; 689 hq_put_index = hq->host_index; 690 dq_put_index = dq->host_index; 691 temp_hrqe = hq->qe[hq_put_index].rqe; 692 temp_drqe = dq->qe[dq_put_index].rqe; 693 694 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 695 return -EINVAL; 696 if (hq_put_index != dq_put_index) 697 return -EINVAL; 698 /* If the host has not yet processed the next entry then we are done */ 699 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 700 return -EBUSY; 701 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 702 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 703 704 /* Update the host index to point to the next slot */ 705 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 706 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 707 hq->RQ_buf_posted++; 708 709 /* Ring The Header Receive Queue Doorbell */ 710 if (!(hq->host_index % hq->entry_repost)) { 711 doorbell.word0 = 0; 712 if (hq->db_format == LPFC_DB_RING_FORMAT) { 713 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 714 hq->entry_repost); 715 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 716 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 717 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 718 hq->entry_repost); 719 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 720 hq->host_index); 721 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 722 } else { 723 return -EINVAL; 724 } 725 writel(doorbell.word0, hq->db_regaddr); 726 } 727 return hq_put_index; 728 } 729 730 /** 731 * lpfc_sli4_rq_release - Updates internal hba index for RQ 732 * @q: The Header Receive Queue to operate on. 733 * 734 * This routine will update the HBA index of a queue to reflect consumption of 735 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 736 * consumed an entry the host calls this function to update the queue's 737 * internal pointers. This routine returns the number of entries that were 738 * consumed by the HBA. 739 **/ 740 static uint32_t 741 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 742 { 743 /* sanity check on queue memory */ 744 if (unlikely(!hq) || unlikely(!dq)) 745 return 0; 746 747 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 748 return 0; 749 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 750 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 751 return 1; 752 } 753 754 /** 755 * lpfc_cmd_iocb - Get next command iocb entry in the ring 756 * @phba: Pointer to HBA context object. 757 * @pring: Pointer to driver SLI ring object. 758 * 759 * This function returns pointer to next command iocb entry 760 * in the command ring. The caller must hold hbalock to prevent 761 * other threads consume the next command iocb. 762 * SLI-2/SLI-3 provide different sized iocbs. 763 **/ 764 static inline IOCB_t * 765 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 766 { 767 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 768 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 769 } 770 771 /** 772 * lpfc_resp_iocb - Get next response iocb entry in the ring 773 * @phba: Pointer to HBA context object. 774 * @pring: Pointer to driver SLI ring object. 775 * 776 * This function returns pointer to next response iocb entry 777 * in the response ring. The caller must hold hbalock to make sure 778 * that no other thread consume the next response iocb. 779 * SLI-2/SLI-3 provide different sized iocbs. 780 **/ 781 static inline IOCB_t * 782 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 783 { 784 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 785 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 786 } 787 788 /** 789 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 790 * @phba: Pointer to HBA context object. 791 * 792 * This function is called with hbalock held. This function 793 * allocates a new driver iocb object from the iocb pool. If the 794 * allocation is successful, it returns pointer to the newly 795 * allocated iocb object else it returns NULL. 796 **/ 797 struct lpfc_iocbq * 798 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 799 { 800 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 801 struct lpfc_iocbq * iocbq = NULL; 802 803 lockdep_assert_held(&phba->hbalock); 804 805 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 806 if (iocbq) 807 phba->iocb_cnt++; 808 if (phba->iocb_cnt > phba->iocb_max) 809 phba->iocb_max = phba->iocb_cnt; 810 return iocbq; 811 } 812 813 /** 814 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 815 * @phba: Pointer to HBA context object. 816 * @xritag: XRI value. 817 * 818 * This function clears the sglq pointer from the array of acive 819 * sglq's. The xritag that is passed in is used to index into the 820 * array. Before the xritag can be used it needs to be adjusted 821 * by subtracting the xribase. 822 * 823 * Returns sglq ponter = success, NULL = Failure. 824 **/ 825 struct lpfc_sglq * 826 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 827 { 828 struct lpfc_sglq *sglq; 829 830 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 831 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 832 return sglq; 833 } 834 835 /** 836 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 837 * @phba: Pointer to HBA context object. 838 * @xritag: XRI value. 839 * 840 * This function returns the sglq pointer from the array of acive 841 * sglq's. The xritag that is passed in is used to index into the 842 * array. Before the xritag can be used it needs to be adjusted 843 * by subtracting the xribase. 844 * 845 * Returns sglq ponter = success, NULL = Failure. 846 **/ 847 struct lpfc_sglq * 848 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 849 { 850 struct lpfc_sglq *sglq; 851 852 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 853 return sglq; 854 } 855 856 /** 857 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 858 * @phba: Pointer to HBA context object. 859 * @xritag: xri used in this exchange. 860 * @rrq: The RRQ to be cleared. 861 * 862 **/ 863 void 864 lpfc_clr_rrq_active(struct lpfc_hba *phba, 865 uint16_t xritag, 866 struct lpfc_node_rrq *rrq) 867 { 868 struct lpfc_nodelist *ndlp = NULL; 869 870 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 871 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 872 873 /* The target DID could have been swapped (cable swap) 874 * we should use the ndlp from the findnode if it is 875 * available. 876 */ 877 if ((!ndlp) && rrq->ndlp) 878 ndlp = rrq->ndlp; 879 880 if (!ndlp) 881 goto out; 882 883 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 884 rrq->send_rrq = 0; 885 rrq->xritag = 0; 886 rrq->rrq_stop_time = 0; 887 } 888 out: 889 mempool_free(rrq, phba->rrq_pool); 890 } 891 892 /** 893 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 894 * @phba: Pointer to HBA context object. 895 * 896 * This function is called with hbalock held. This function 897 * Checks if stop_time (ratov from setting rrq active) has 898 * been reached, if it has and the send_rrq flag is set then 899 * it will call lpfc_send_rrq. If the send_rrq flag is not set 900 * then it will just call the routine to clear the rrq and 901 * free the rrq resource. 902 * The timer is set to the next rrq that is going to expire before 903 * leaving the routine. 904 * 905 **/ 906 void 907 lpfc_handle_rrq_active(struct lpfc_hba *phba) 908 { 909 struct lpfc_node_rrq *rrq; 910 struct lpfc_node_rrq *nextrrq; 911 unsigned long next_time; 912 unsigned long iflags; 913 LIST_HEAD(send_rrq); 914 915 spin_lock_irqsave(&phba->hbalock, iflags); 916 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 917 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 918 list_for_each_entry_safe(rrq, nextrrq, 919 &phba->active_rrq_list, list) { 920 if (time_after(jiffies, rrq->rrq_stop_time)) 921 list_move(&rrq->list, &send_rrq); 922 else if (time_before(rrq->rrq_stop_time, next_time)) 923 next_time = rrq->rrq_stop_time; 924 } 925 spin_unlock_irqrestore(&phba->hbalock, iflags); 926 if ((!list_empty(&phba->active_rrq_list)) && 927 (!(phba->pport->load_flag & FC_UNLOADING))) 928 mod_timer(&phba->rrq_tmr, next_time); 929 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 930 list_del(&rrq->list); 931 if (!rrq->send_rrq) 932 /* this call will free the rrq */ 933 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 934 else if (lpfc_send_rrq(phba, rrq)) { 935 /* if we send the rrq then the completion handler 936 * will clear the bit in the xribitmap. 937 */ 938 lpfc_clr_rrq_active(phba, rrq->xritag, 939 rrq); 940 } 941 } 942 } 943 944 /** 945 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 946 * @vport: Pointer to vport context object. 947 * @xri: The xri used in the exchange. 948 * @did: The targets DID for this exchange. 949 * 950 * returns NULL = rrq not found in the phba->active_rrq_list. 951 * rrq = rrq for this xri and target. 952 **/ 953 struct lpfc_node_rrq * 954 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 955 { 956 struct lpfc_hba *phba = vport->phba; 957 struct lpfc_node_rrq *rrq; 958 struct lpfc_node_rrq *nextrrq; 959 unsigned long iflags; 960 961 if (phba->sli_rev != LPFC_SLI_REV4) 962 return NULL; 963 spin_lock_irqsave(&phba->hbalock, iflags); 964 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 965 if (rrq->vport == vport && rrq->xritag == xri && 966 rrq->nlp_DID == did){ 967 list_del(&rrq->list); 968 spin_unlock_irqrestore(&phba->hbalock, iflags); 969 return rrq; 970 } 971 } 972 spin_unlock_irqrestore(&phba->hbalock, iflags); 973 return NULL; 974 } 975 976 /** 977 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 978 * @vport: Pointer to vport context object. 979 * @ndlp: Pointer to the lpfc_node_list structure. 980 * If ndlp is NULL Remove all active RRQs for this vport from the 981 * phba->active_rrq_list and clear the rrq. 982 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 983 **/ 984 void 985 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 986 987 { 988 struct lpfc_hba *phba = vport->phba; 989 struct lpfc_node_rrq *rrq; 990 struct lpfc_node_rrq *nextrrq; 991 unsigned long iflags; 992 LIST_HEAD(rrq_list); 993 994 if (phba->sli_rev != LPFC_SLI_REV4) 995 return; 996 if (!ndlp) { 997 lpfc_sli4_vport_delete_els_xri_aborted(vport); 998 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 999 } 1000 spin_lock_irqsave(&phba->hbalock, iflags); 1001 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 1002 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 1003 list_move(&rrq->list, &rrq_list); 1004 spin_unlock_irqrestore(&phba->hbalock, iflags); 1005 1006 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1007 list_del(&rrq->list); 1008 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1009 } 1010 } 1011 1012 /** 1013 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1014 * @phba: Pointer to HBA context object. 1015 * @ndlp: Targets nodelist pointer for this exchange. 1016 * @xritag the xri in the bitmap to test. 1017 * 1018 * This function is called with hbalock held. This function 1019 * returns 0 = rrq not active for this xri 1020 * 1 = rrq is valid for this xri. 1021 **/ 1022 int 1023 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1024 uint16_t xritag) 1025 { 1026 lockdep_assert_held(&phba->hbalock); 1027 if (!ndlp) 1028 return 0; 1029 if (!ndlp->active_rrqs_xri_bitmap) 1030 return 0; 1031 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1032 return 1; 1033 else 1034 return 0; 1035 } 1036 1037 /** 1038 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1039 * @phba: Pointer to HBA context object. 1040 * @ndlp: nodelist pointer for this target. 1041 * @xritag: xri used in this exchange. 1042 * @rxid: Remote Exchange ID. 1043 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1044 * 1045 * This function takes the hbalock. 1046 * The active bit is always set in the active rrq xri_bitmap even 1047 * if there is no slot avaiable for the other rrq information. 1048 * 1049 * returns 0 rrq actived for this xri 1050 * < 0 No memory or invalid ndlp. 1051 **/ 1052 int 1053 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1054 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1055 { 1056 unsigned long iflags; 1057 struct lpfc_node_rrq *rrq; 1058 int empty; 1059 1060 if (!ndlp) 1061 return -EINVAL; 1062 1063 if (!phba->cfg_enable_rrq) 1064 return -EINVAL; 1065 1066 spin_lock_irqsave(&phba->hbalock, iflags); 1067 if (phba->pport->load_flag & FC_UNLOADING) { 1068 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1069 goto out; 1070 } 1071 1072 /* 1073 * set the active bit even if there is no mem available. 1074 */ 1075 if (NLP_CHK_FREE_REQ(ndlp)) 1076 goto out; 1077 1078 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1079 goto out; 1080 1081 if (!ndlp->active_rrqs_xri_bitmap) 1082 goto out; 1083 1084 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1085 goto out; 1086 1087 spin_unlock_irqrestore(&phba->hbalock, iflags); 1088 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 1089 if (!rrq) { 1090 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1091 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1092 " DID:0x%x Send:%d\n", 1093 xritag, rxid, ndlp->nlp_DID, send_rrq); 1094 return -EINVAL; 1095 } 1096 if (phba->cfg_enable_rrq == 1) 1097 rrq->send_rrq = send_rrq; 1098 else 1099 rrq->send_rrq = 0; 1100 rrq->xritag = xritag; 1101 rrq->rrq_stop_time = jiffies + 1102 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1103 rrq->ndlp = ndlp; 1104 rrq->nlp_DID = ndlp->nlp_DID; 1105 rrq->vport = ndlp->vport; 1106 rrq->rxid = rxid; 1107 spin_lock_irqsave(&phba->hbalock, iflags); 1108 empty = list_empty(&phba->active_rrq_list); 1109 list_add_tail(&rrq->list, &phba->active_rrq_list); 1110 phba->hba_flag |= HBA_RRQ_ACTIVE; 1111 if (empty) 1112 lpfc_worker_wake_up(phba); 1113 spin_unlock_irqrestore(&phba->hbalock, iflags); 1114 return 0; 1115 out: 1116 spin_unlock_irqrestore(&phba->hbalock, iflags); 1117 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1118 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1119 " DID:0x%x Send:%d\n", 1120 xritag, rxid, ndlp->nlp_DID, send_rrq); 1121 return -EINVAL; 1122 } 1123 1124 /** 1125 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1126 * @phba: Pointer to HBA context object. 1127 * @piocb: Pointer to the iocbq. 1128 * 1129 * This function is called with the ring lock held. This function 1130 * gets a new driver sglq object from the sglq list. If the 1131 * list is not empty then it is successful, it returns pointer to the newly 1132 * allocated sglq object else it returns NULL. 1133 **/ 1134 static struct lpfc_sglq * 1135 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1136 { 1137 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1138 struct lpfc_sglq *sglq = NULL; 1139 struct lpfc_sglq *start_sglq = NULL; 1140 struct lpfc_scsi_buf *lpfc_cmd; 1141 struct lpfc_nodelist *ndlp; 1142 int found = 0; 1143 1144 lockdep_assert_held(&phba->hbalock); 1145 1146 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1147 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1; 1148 ndlp = lpfc_cmd->rdata->pnode; 1149 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1150 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1151 ndlp = piocbq->context_un.ndlp; 1152 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1153 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1154 ndlp = NULL; 1155 else 1156 ndlp = piocbq->context_un.ndlp; 1157 } else { 1158 ndlp = piocbq->context1; 1159 } 1160 1161 spin_lock(&phba->sli4_hba.sgl_list_lock); 1162 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1163 start_sglq = sglq; 1164 while (!found) { 1165 if (!sglq) 1166 break; 1167 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1168 test_bit(sglq->sli4_lxritag, 1169 ndlp->active_rrqs_xri_bitmap)) { 1170 /* This xri has an rrq outstanding for this DID. 1171 * put it back in the list and get another xri. 1172 */ 1173 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1174 sglq = NULL; 1175 list_remove_head(lpfc_els_sgl_list, sglq, 1176 struct lpfc_sglq, list); 1177 if (sglq == start_sglq) { 1178 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1179 sglq = NULL; 1180 break; 1181 } else 1182 continue; 1183 } 1184 sglq->ndlp = ndlp; 1185 found = 1; 1186 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1187 sglq->state = SGL_ALLOCATED; 1188 } 1189 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1190 return sglq; 1191 } 1192 1193 /** 1194 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1195 * @phba: Pointer to HBA context object. 1196 * @piocb: Pointer to the iocbq. 1197 * 1198 * This function is called with the sgl_list lock held. This function 1199 * gets a new driver sglq object from the sglq list. If the 1200 * list is not empty then it is successful, it returns pointer to the newly 1201 * allocated sglq object else it returns NULL. 1202 **/ 1203 struct lpfc_sglq * 1204 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1205 { 1206 struct list_head *lpfc_nvmet_sgl_list; 1207 struct lpfc_sglq *sglq = NULL; 1208 1209 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1210 1211 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1212 1213 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1214 if (!sglq) 1215 return NULL; 1216 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1217 sglq->state = SGL_ALLOCATED; 1218 return sglq; 1219 } 1220 1221 /** 1222 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1223 * @phba: Pointer to HBA context object. 1224 * 1225 * This function is called with no lock held. This function 1226 * allocates a new driver iocb object from the iocb pool. If the 1227 * allocation is successful, it returns pointer to the newly 1228 * allocated iocb object else it returns NULL. 1229 **/ 1230 struct lpfc_iocbq * 1231 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1232 { 1233 struct lpfc_iocbq * iocbq = NULL; 1234 unsigned long iflags; 1235 1236 spin_lock_irqsave(&phba->hbalock, iflags); 1237 iocbq = __lpfc_sli_get_iocbq(phba); 1238 spin_unlock_irqrestore(&phba->hbalock, iflags); 1239 return iocbq; 1240 } 1241 1242 /** 1243 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1244 * @phba: Pointer to HBA context object. 1245 * @iocbq: Pointer to driver iocb object. 1246 * 1247 * This function is called with hbalock held to release driver 1248 * iocb object to the iocb pool. The iotag in the iocb object 1249 * does not change for each use of the iocb object. This function 1250 * clears all other fields of the iocb object when it is freed. 1251 * The sqlq structure that holds the xritag and phys and virtual 1252 * mappings for the scatter gather list is retrieved from the 1253 * active array of sglq. The get of the sglq pointer also clears 1254 * the entry in the array. If the status of the IO indiactes that 1255 * this IO was aborted then the sglq entry it put on the 1256 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1257 * IO has good status or fails for any other reason then the sglq 1258 * entry is added to the free list (lpfc_els_sgl_list). 1259 **/ 1260 static void 1261 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1262 { 1263 struct lpfc_sglq *sglq; 1264 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1265 unsigned long iflag = 0; 1266 struct lpfc_sli_ring *pring; 1267 1268 lockdep_assert_held(&phba->hbalock); 1269 1270 if (iocbq->sli4_xritag == NO_XRI) 1271 sglq = NULL; 1272 else 1273 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1274 1275 1276 if (sglq) { 1277 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1278 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1279 iflag); 1280 sglq->state = SGL_FREED; 1281 sglq->ndlp = NULL; 1282 list_add_tail(&sglq->list, 1283 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1284 spin_unlock_irqrestore( 1285 &phba->sli4_hba.sgl_list_lock, iflag); 1286 goto out; 1287 } 1288 1289 pring = phba->sli4_hba.els_wq->pring; 1290 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1291 (sglq->state != SGL_XRI_ABORTED)) { 1292 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1293 iflag); 1294 list_add(&sglq->list, 1295 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1296 spin_unlock_irqrestore( 1297 &phba->sli4_hba.sgl_list_lock, iflag); 1298 } else { 1299 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1300 iflag); 1301 sglq->state = SGL_FREED; 1302 sglq->ndlp = NULL; 1303 list_add_tail(&sglq->list, 1304 &phba->sli4_hba.lpfc_els_sgl_list); 1305 spin_unlock_irqrestore( 1306 &phba->sli4_hba.sgl_list_lock, iflag); 1307 1308 /* Check if TXQ queue needs to be serviced */ 1309 if (!list_empty(&pring->txq)) 1310 lpfc_worker_wake_up(phba); 1311 } 1312 } 1313 1314 out: 1315 /* 1316 * Clean all volatile data fields, preserve iotag and node struct. 1317 */ 1318 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1319 iocbq->sli4_lxritag = NO_XRI; 1320 iocbq->sli4_xritag = NO_XRI; 1321 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1322 LPFC_IO_NVME_LS); 1323 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1324 } 1325 1326 1327 /** 1328 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1329 * @phba: Pointer to HBA context object. 1330 * @iocbq: Pointer to driver iocb object. 1331 * 1332 * This function is called with hbalock held to release driver 1333 * iocb object to the iocb pool. The iotag in the iocb object 1334 * does not change for each use of the iocb object. This function 1335 * clears all other fields of the iocb object when it is freed. 1336 **/ 1337 static void 1338 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1339 { 1340 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1341 1342 lockdep_assert_held(&phba->hbalock); 1343 1344 /* 1345 * Clean all volatile data fields, preserve iotag and node struct. 1346 */ 1347 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1348 iocbq->sli4_xritag = NO_XRI; 1349 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1350 } 1351 1352 /** 1353 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1354 * @phba: Pointer to HBA context object. 1355 * @iocbq: Pointer to driver iocb object. 1356 * 1357 * This function is called with hbalock held to release driver 1358 * iocb object to the iocb pool. The iotag in the iocb object 1359 * does not change for each use of the iocb object. This function 1360 * clears all other fields of the iocb object when it is freed. 1361 **/ 1362 static void 1363 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1364 { 1365 lockdep_assert_held(&phba->hbalock); 1366 1367 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1368 phba->iocb_cnt--; 1369 } 1370 1371 /** 1372 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1373 * @phba: Pointer to HBA context object. 1374 * @iocbq: Pointer to driver iocb object. 1375 * 1376 * This function is called with no lock held to release the iocb to 1377 * iocb pool. 1378 **/ 1379 void 1380 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1381 { 1382 unsigned long iflags; 1383 1384 /* 1385 * Clean all volatile data fields, preserve iotag and node struct. 1386 */ 1387 spin_lock_irqsave(&phba->hbalock, iflags); 1388 __lpfc_sli_release_iocbq(phba, iocbq); 1389 spin_unlock_irqrestore(&phba->hbalock, iflags); 1390 } 1391 1392 /** 1393 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1394 * @phba: Pointer to HBA context object. 1395 * @iocblist: List of IOCBs. 1396 * @ulpstatus: ULP status in IOCB command field. 1397 * @ulpWord4: ULP word-4 in IOCB command field. 1398 * 1399 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1400 * on the list by invoking the complete callback function associated with the 1401 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1402 * fields. 1403 **/ 1404 void 1405 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1406 uint32_t ulpstatus, uint32_t ulpWord4) 1407 { 1408 struct lpfc_iocbq *piocb; 1409 1410 while (!list_empty(iocblist)) { 1411 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1412 if (!piocb->iocb_cmpl) 1413 lpfc_sli_release_iocbq(phba, piocb); 1414 else { 1415 piocb->iocb.ulpStatus = ulpstatus; 1416 piocb->iocb.un.ulpWord[4] = ulpWord4; 1417 (piocb->iocb_cmpl) (phba, piocb, piocb); 1418 } 1419 } 1420 return; 1421 } 1422 1423 /** 1424 * lpfc_sli_iocb_cmd_type - Get the iocb type 1425 * @iocb_cmnd: iocb command code. 1426 * 1427 * This function is called by ring event handler function to get the iocb type. 1428 * This function translates the iocb command to an iocb command type used to 1429 * decide the final disposition of each completed IOCB. 1430 * The function returns 1431 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1432 * LPFC_SOL_IOCB if it is a solicited iocb completion 1433 * LPFC_ABORT_IOCB if it is an abort iocb 1434 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1435 * 1436 * The caller is not required to hold any lock. 1437 **/ 1438 static lpfc_iocb_type 1439 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1440 { 1441 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1442 1443 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1444 return 0; 1445 1446 switch (iocb_cmnd) { 1447 case CMD_XMIT_SEQUENCE_CR: 1448 case CMD_XMIT_SEQUENCE_CX: 1449 case CMD_XMIT_BCAST_CN: 1450 case CMD_XMIT_BCAST_CX: 1451 case CMD_ELS_REQUEST_CR: 1452 case CMD_ELS_REQUEST_CX: 1453 case CMD_CREATE_XRI_CR: 1454 case CMD_CREATE_XRI_CX: 1455 case CMD_GET_RPI_CN: 1456 case CMD_XMIT_ELS_RSP_CX: 1457 case CMD_GET_RPI_CR: 1458 case CMD_FCP_IWRITE_CR: 1459 case CMD_FCP_IWRITE_CX: 1460 case CMD_FCP_IREAD_CR: 1461 case CMD_FCP_IREAD_CX: 1462 case CMD_FCP_ICMND_CR: 1463 case CMD_FCP_ICMND_CX: 1464 case CMD_FCP_TSEND_CX: 1465 case CMD_FCP_TRSP_CX: 1466 case CMD_FCP_TRECEIVE_CX: 1467 case CMD_FCP_AUTO_TRSP_CX: 1468 case CMD_ADAPTER_MSG: 1469 case CMD_ADAPTER_DUMP: 1470 case CMD_XMIT_SEQUENCE64_CR: 1471 case CMD_XMIT_SEQUENCE64_CX: 1472 case CMD_XMIT_BCAST64_CN: 1473 case CMD_XMIT_BCAST64_CX: 1474 case CMD_ELS_REQUEST64_CR: 1475 case CMD_ELS_REQUEST64_CX: 1476 case CMD_FCP_IWRITE64_CR: 1477 case CMD_FCP_IWRITE64_CX: 1478 case CMD_FCP_IREAD64_CR: 1479 case CMD_FCP_IREAD64_CX: 1480 case CMD_FCP_ICMND64_CR: 1481 case CMD_FCP_ICMND64_CX: 1482 case CMD_FCP_TSEND64_CX: 1483 case CMD_FCP_TRSP64_CX: 1484 case CMD_FCP_TRECEIVE64_CX: 1485 case CMD_GEN_REQUEST64_CR: 1486 case CMD_GEN_REQUEST64_CX: 1487 case CMD_XMIT_ELS_RSP64_CX: 1488 case DSSCMD_IWRITE64_CR: 1489 case DSSCMD_IWRITE64_CX: 1490 case DSSCMD_IREAD64_CR: 1491 case DSSCMD_IREAD64_CX: 1492 type = LPFC_SOL_IOCB; 1493 break; 1494 case CMD_ABORT_XRI_CN: 1495 case CMD_ABORT_XRI_CX: 1496 case CMD_CLOSE_XRI_CN: 1497 case CMD_CLOSE_XRI_CX: 1498 case CMD_XRI_ABORTED_CX: 1499 case CMD_ABORT_MXRI64_CN: 1500 case CMD_XMIT_BLS_RSP64_CX: 1501 type = LPFC_ABORT_IOCB; 1502 break; 1503 case CMD_RCV_SEQUENCE_CX: 1504 case CMD_RCV_ELS_REQ_CX: 1505 case CMD_RCV_SEQUENCE64_CX: 1506 case CMD_RCV_ELS_REQ64_CX: 1507 case CMD_ASYNC_STATUS: 1508 case CMD_IOCB_RCV_SEQ64_CX: 1509 case CMD_IOCB_RCV_ELS64_CX: 1510 case CMD_IOCB_RCV_CONT64_CX: 1511 case CMD_IOCB_RET_XRI64_CX: 1512 type = LPFC_UNSOL_IOCB; 1513 break; 1514 case CMD_IOCB_XMIT_MSEQ64_CR: 1515 case CMD_IOCB_XMIT_MSEQ64_CX: 1516 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1517 case CMD_IOCB_RCV_ELS_LIST64_CX: 1518 case CMD_IOCB_CLOSE_EXTENDED_CN: 1519 case CMD_IOCB_ABORT_EXTENDED_CN: 1520 case CMD_IOCB_RET_HBQE64_CN: 1521 case CMD_IOCB_FCP_IBIDIR64_CR: 1522 case CMD_IOCB_FCP_IBIDIR64_CX: 1523 case CMD_IOCB_FCP_ITASKMGT64_CX: 1524 case CMD_IOCB_LOGENTRY_CN: 1525 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1526 printk("%s - Unhandled SLI-3 Command x%x\n", 1527 __func__, iocb_cmnd); 1528 type = LPFC_UNKNOWN_IOCB; 1529 break; 1530 default: 1531 type = LPFC_UNKNOWN_IOCB; 1532 break; 1533 } 1534 1535 return type; 1536 } 1537 1538 /** 1539 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1540 * @phba: Pointer to HBA context object. 1541 * 1542 * This function is called from SLI initialization code 1543 * to configure every ring of the HBA's SLI interface. The 1544 * caller is not required to hold any lock. This function issues 1545 * a config_ring mailbox command for each ring. 1546 * This function returns zero if successful else returns a negative 1547 * error code. 1548 **/ 1549 static int 1550 lpfc_sli_ring_map(struct lpfc_hba *phba) 1551 { 1552 struct lpfc_sli *psli = &phba->sli; 1553 LPFC_MBOXQ_t *pmb; 1554 MAILBOX_t *pmbox; 1555 int i, rc, ret = 0; 1556 1557 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1558 if (!pmb) 1559 return -ENOMEM; 1560 pmbox = &pmb->u.mb; 1561 phba->link_state = LPFC_INIT_MBX_CMDS; 1562 for (i = 0; i < psli->num_rings; i++) { 1563 lpfc_config_ring(phba, i, pmb); 1564 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1565 if (rc != MBX_SUCCESS) { 1566 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1567 "0446 Adapter failed to init (%d), " 1568 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1569 "ring %d\n", 1570 rc, pmbox->mbxCommand, 1571 pmbox->mbxStatus, i); 1572 phba->link_state = LPFC_HBA_ERROR; 1573 ret = -ENXIO; 1574 break; 1575 } 1576 } 1577 mempool_free(pmb, phba->mbox_mem_pool); 1578 return ret; 1579 } 1580 1581 /** 1582 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1583 * @phba: Pointer to HBA context object. 1584 * @pring: Pointer to driver SLI ring object. 1585 * @piocb: Pointer to the driver iocb object. 1586 * 1587 * This function is called with hbalock held. The function adds the 1588 * new iocb to txcmplq of the given ring. This function always returns 1589 * 0. If this function is called for ELS ring, this function checks if 1590 * there is a vport associated with the ELS command. This function also 1591 * starts els_tmofunc timer if this is an ELS command. 1592 **/ 1593 static int 1594 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1595 struct lpfc_iocbq *piocb) 1596 { 1597 lockdep_assert_held(&phba->hbalock); 1598 1599 BUG_ON(!piocb); 1600 1601 list_add_tail(&piocb->list, &pring->txcmplq); 1602 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1603 1604 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1605 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1606 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1607 BUG_ON(!piocb->vport); 1608 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1609 mod_timer(&piocb->vport->els_tmofunc, 1610 jiffies + 1611 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1612 } 1613 1614 return 0; 1615 } 1616 1617 /** 1618 * lpfc_sli_ringtx_get - Get first element of the txq 1619 * @phba: Pointer to HBA context object. 1620 * @pring: Pointer to driver SLI ring object. 1621 * 1622 * This function is called with hbalock held to get next 1623 * iocb in txq of the given ring. If there is any iocb in 1624 * the txq, the function returns first iocb in the list after 1625 * removing the iocb from the list, else it returns NULL. 1626 **/ 1627 struct lpfc_iocbq * 1628 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1629 { 1630 struct lpfc_iocbq *cmd_iocb; 1631 1632 lockdep_assert_held(&phba->hbalock); 1633 1634 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1635 return cmd_iocb; 1636 } 1637 1638 /** 1639 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1640 * @phba: Pointer to HBA context object. 1641 * @pring: Pointer to driver SLI ring object. 1642 * 1643 * This function is called with hbalock held and the caller must post the 1644 * iocb without releasing the lock. If the caller releases the lock, 1645 * iocb slot returned by the function is not guaranteed to be available. 1646 * The function returns pointer to the next available iocb slot if there 1647 * is available slot in the ring, else it returns NULL. 1648 * If the get index of the ring is ahead of the put index, the function 1649 * will post an error attention event to the worker thread to take the 1650 * HBA to offline state. 1651 **/ 1652 static IOCB_t * 1653 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1654 { 1655 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1656 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1657 1658 lockdep_assert_held(&phba->hbalock); 1659 1660 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1661 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1662 pring->sli.sli3.next_cmdidx = 0; 1663 1664 if (unlikely(pring->sli.sli3.local_getidx == 1665 pring->sli.sli3.next_cmdidx)) { 1666 1667 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1668 1669 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1670 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1671 "0315 Ring %d issue: portCmdGet %d " 1672 "is bigger than cmd ring %d\n", 1673 pring->ringno, 1674 pring->sli.sli3.local_getidx, 1675 max_cmd_idx); 1676 1677 phba->link_state = LPFC_HBA_ERROR; 1678 /* 1679 * All error attention handlers are posted to 1680 * worker thread 1681 */ 1682 phba->work_ha |= HA_ERATT; 1683 phba->work_hs = HS_FFER3; 1684 1685 lpfc_worker_wake_up(phba); 1686 1687 return NULL; 1688 } 1689 1690 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1691 return NULL; 1692 } 1693 1694 return lpfc_cmd_iocb(phba, pring); 1695 } 1696 1697 /** 1698 * lpfc_sli_next_iotag - Get an iotag for the iocb 1699 * @phba: Pointer to HBA context object. 1700 * @iocbq: Pointer to driver iocb object. 1701 * 1702 * This function gets an iotag for the iocb. If there is no unused iotag and 1703 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1704 * array and assigns a new iotag. 1705 * The function returns the allocated iotag if successful, else returns zero. 1706 * Zero is not a valid iotag. 1707 * The caller is not required to hold any lock. 1708 **/ 1709 uint16_t 1710 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1711 { 1712 struct lpfc_iocbq **new_arr; 1713 struct lpfc_iocbq **old_arr; 1714 size_t new_len; 1715 struct lpfc_sli *psli = &phba->sli; 1716 uint16_t iotag; 1717 1718 spin_lock_irq(&phba->hbalock); 1719 iotag = psli->last_iotag; 1720 if(++iotag < psli->iocbq_lookup_len) { 1721 psli->last_iotag = iotag; 1722 psli->iocbq_lookup[iotag] = iocbq; 1723 spin_unlock_irq(&phba->hbalock); 1724 iocbq->iotag = iotag; 1725 return iotag; 1726 } else if (psli->iocbq_lookup_len < (0xffff 1727 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1728 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1729 spin_unlock_irq(&phba->hbalock); 1730 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 1731 GFP_KERNEL); 1732 if (new_arr) { 1733 spin_lock_irq(&phba->hbalock); 1734 old_arr = psli->iocbq_lookup; 1735 if (new_len <= psli->iocbq_lookup_len) { 1736 /* highly unprobable case */ 1737 kfree(new_arr); 1738 iotag = psli->last_iotag; 1739 if(++iotag < psli->iocbq_lookup_len) { 1740 psli->last_iotag = iotag; 1741 psli->iocbq_lookup[iotag] = iocbq; 1742 spin_unlock_irq(&phba->hbalock); 1743 iocbq->iotag = iotag; 1744 return iotag; 1745 } 1746 spin_unlock_irq(&phba->hbalock); 1747 return 0; 1748 } 1749 if (psli->iocbq_lookup) 1750 memcpy(new_arr, old_arr, 1751 ((psli->last_iotag + 1) * 1752 sizeof (struct lpfc_iocbq *))); 1753 psli->iocbq_lookup = new_arr; 1754 psli->iocbq_lookup_len = new_len; 1755 psli->last_iotag = iotag; 1756 psli->iocbq_lookup[iotag] = iocbq; 1757 spin_unlock_irq(&phba->hbalock); 1758 iocbq->iotag = iotag; 1759 kfree(old_arr); 1760 return iotag; 1761 } 1762 } else 1763 spin_unlock_irq(&phba->hbalock); 1764 1765 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1766 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1767 psli->last_iotag); 1768 1769 return 0; 1770 } 1771 1772 /** 1773 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1774 * @phba: Pointer to HBA context object. 1775 * @pring: Pointer to driver SLI ring object. 1776 * @iocb: Pointer to iocb slot in the ring. 1777 * @nextiocb: Pointer to driver iocb object which need to be 1778 * posted to firmware. 1779 * 1780 * This function is called with hbalock held to post a new iocb to 1781 * the firmware. This function copies the new iocb to ring iocb slot and 1782 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1783 * a completion call back for this iocb else the function will free the 1784 * iocb object. 1785 **/ 1786 static void 1787 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1788 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1789 { 1790 lockdep_assert_held(&phba->hbalock); 1791 /* 1792 * Set up an iotag 1793 */ 1794 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1795 1796 1797 if (pring->ringno == LPFC_ELS_RING) { 1798 lpfc_debugfs_slow_ring_trc(phba, 1799 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1800 *(((uint32_t *) &nextiocb->iocb) + 4), 1801 *(((uint32_t *) &nextiocb->iocb) + 6), 1802 *(((uint32_t *) &nextiocb->iocb) + 7)); 1803 } 1804 1805 /* 1806 * Issue iocb command to adapter 1807 */ 1808 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1809 wmb(); 1810 pring->stats.iocb_cmd++; 1811 1812 /* 1813 * If there is no completion routine to call, we can release the 1814 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1815 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1816 */ 1817 if (nextiocb->iocb_cmpl) 1818 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1819 else 1820 __lpfc_sli_release_iocbq(phba, nextiocb); 1821 1822 /* 1823 * Let the HBA know what IOCB slot will be the next one the 1824 * driver will put a command into. 1825 */ 1826 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1827 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1828 } 1829 1830 /** 1831 * lpfc_sli_update_full_ring - Update the chip attention register 1832 * @phba: Pointer to HBA context object. 1833 * @pring: Pointer to driver SLI ring object. 1834 * 1835 * The caller is not required to hold any lock for calling this function. 1836 * This function updates the chip attention bits for the ring to inform firmware 1837 * that there are pending work to be done for this ring and requests an 1838 * interrupt when there is space available in the ring. This function is 1839 * called when the driver is unable to post more iocbs to the ring due 1840 * to unavailability of space in the ring. 1841 **/ 1842 static void 1843 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1844 { 1845 int ringno = pring->ringno; 1846 1847 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1848 1849 wmb(); 1850 1851 /* 1852 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1853 * The HBA will tell us when an IOCB entry is available. 1854 */ 1855 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1856 readl(phba->CAregaddr); /* flush */ 1857 1858 pring->stats.iocb_cmd_full++; 1859 } 1860 1861 /** 1862 * lpfc_sli_update_ring - Update chip attention register 1863 * @phba: Pointer to HBA context object. 1864 * @pring: Pointer to driver SLI ring object. 1865 * 1866 * This function updates the chip attention register bit for the 1867 * given ring to inform HBA that there is more work to be done 1868 * in this ring. The caller is not required to hold any lock. 1869 **/ 1870 static void 1871 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1872 { 1873 int ringno = pring->ringno; 1874 1875 /* 1876 * Tell the HBA that there is work to do in this ring. 1877 */ 1878 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1879 wmb(); 1880 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1881 readl(phba->CAregaddr); /* flush */ 1882 } 1883 } 1884 1885 /** 1886 * lpfc_sli_resume_iocb - Process iocbs in the txq 1887 * @phba: Pointer to HBA context object. 1888 * @pring: Pointer to driver SLI ring object. 1889 * 1890 * This function is called with hbalock held to post pending iocbs 1891 * in the txq to the firmware. This function is called when driver 1892 * detects space available in the ring. 1893 **/ 1894 static void 1895 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1896 { 1897 IOCB_t *iocb; 1898 struct lpfc_iocbq *nextiocb; 1899 1900 lockdep_assert_held(&phba->hbalock); 1901 1902 /* 1903 * Check to see if: 1904 * (a) there is anything on the txq to send 1905 * (b) link is up 1906 * (c) link attention events can be processed (fcp ring only) 1907 * (d) IOCB processing is not blocked by the outstanding mbox command. 1908 */ 1909 1910 if (lpfc_is_link_up(phba) && 1911 (!list_empty(&pring->txq)) && 1912 (pring->ringno != LPFC_FCP_RING || 1913 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1914 1915 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1916 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1917 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1918 1919 if (iocb) 1920 lpfc_sli_update_ring(phba, pring); 1921 else 1922 lpfc_sli_update_full_ring(phba, pring); 1923 } 1924 1925 return; 1926 } 1927 1928 /** 1929 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1930 * @phba: Pointer to HBA context object. 1931 * @hbqno: HBQ number. 1932 * 1933 * This function is called with hbalock held to get the next 1934 * available slot for the given HBQ. If there is free slot 1935 * available for the HBQ it will return pointer to the next available 1936 * HBQ entry else it will return NULL. 1937 **/ 1938 static struct lpfc_hbq_entry * 1939 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1940 { 1941 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1942 1943 lockdep_assert_held(&phba->hbalock); 1944 1945 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1946 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1947 hbqp->next_hbqPutIdx = 0; 1948 1949 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1950 uint32_t raw_index = phba->hbq_get[hbqno]; 1951 uint32_t getidx = le32_to_cpu(raw_index); 1952 1953 hbqp->local_hbqGetIdx = getidx; 1954 1955 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1956 lpfc_printf_log(phba, KERN_ERR, 1957 LOG_SLI | LOG_VPORT, 1958 "1802 HBQ %d: local_hbqGetIdx " 1959 "%u is > than hbqp->entry_count %u\n", 1960 hbqno, hbqp->local_hbqGetIdx, 1961 hbqp->entry_count); 1962 1963 phba->link_state = LPFC_HBA_ERROR; 1964 return NULL; 1965 } 1966 1967 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1968 return NULL; 1969 } 1970 1971 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1972 hbqp->hbqPutIdx; 1973 } 1974 1975 /** 1976 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1977 * @phba: Pointer to HBA context object. 1978 * 1979 * This function is called with no lock held to free all the 1980 * hbq buffers while uninitializing the SLI interface. It also 1981 * frees the HBQ buffers returned by the firmware but not yet 1982 * processed by the upper layers. 1983 **/ 1984 void 1985 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1986 { 1987 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1988 struct hbq_dmabuf *hbq_buf; 1989 unsigned long flags; 1990 int i, hbq_count; 1991 1992 hbq_count = lpfc_sli_hbq_count(); 1993 /* Return all memory used by all HBQs */ 1994 spin_lock_irqsave(&phba->hbalock, flags); 1995 for (i = 0; i < hbq_count; ++i) { 1996 list_for_each_entry_safe(dmabuf, next_dmabuf, 1997 &phba->hbqs[i].hbq_buffer_list, list) { 1998 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1999 list_del(&hbq_buf->dbuf.list); 2000 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2001 } 2002 phba->hbqs[i].buffer_count = 0; 2003 } 2004 2005 /* Mark the HBQs not in use */ 2006 phba->hbq_in_use = 0; 2007 spin_unlock_irqrestore(&phba->hbalock, flags); 2008 } 2009 2010 /** 2011 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2012 * @phba: Pointer to HBA context object. 2013 * @hbqno: HBQ number. 2014 * @hbq_buf: Pointer to HBQ buffer. 2015 * 2016 * This function is called with the hbalock held to post a 2017 * hbq buffer to the firmware. If the function finds an empty 2018 * slot in the HBQ, it will post the buffer. The function will return 2019 * pointer to the hbq entry if it successfully post the buffer 2020 * else it will return NULL. 2021 **/ 2022 static int 2023 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2024 struct hbq_dmabuf *hbq_buf) 2025 { 2026 lockdep_assert_held(&phba->hbalock); 2027 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2028 } 2029 2030 /** 2031 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2032 * @phba: Pointer to HBA context object. 2033 * @hbqno: HBQ number. 2034 * @hbq_buf: Pointer to HBQ buffer. 2035 * 2036 * This function is called with the hbalock held to post a hbq buffer to the 2037 * firmware. If the function finds an empty slot in the HBQ, it will post the 2038 * buffer and place it on the hbq_buffer_list. The function will return zero if 2039 * it successfully post the buffer else it will return an error. 2040 **/ 2041 static int 2042 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2043 struct hbq_dmabuf *hbq_buf) 2044 { 2045 struct lpfc_hbq_entry *hbqe; 2046 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2047 2048 lockdep_assert_held(&phba->hbalock); 2049 /* Get next HBQ entry slot to use */ 2050 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2051 if (hbqe) { 2052 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2053 2054 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2055 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2056 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2057 hbqe->bde.tus.f.bdeFlags = 0; 2058 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2059 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2060 /* Sync SLIM */ 2061 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2062 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2063 /* flush */ 2064 readl(phba->hbq_put + hbqno); 2065 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2066 return 0; 2067 } else 2068 return -ENOMEM; 2069 } 2070 2071 /** 2072 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2073 * @phba: Pointer to HBA context object. 2074 * @hbqno: HBQ number. 2075 * @hbq_buf: Pointer to HBQ buffer. 2076 * 2077 * This function is called with the hbalock held to post an RQE to the SLI4 2078 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2079 * the hbq_buffer_list and return zero, otherwise it will return an error. 2080 **/ 2081 static int 2082 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2083 struct hbq_dmabuf *hbq_buf) 2084 { 2085 int rc; 2086 struct lpfc_rqe hrqe; 2087 struct lpfc_rqe drqe; 2088 struct lpfc_queue *hrq; 2089 struct lpfc_queue *drq; 2090 2091 if (hbqno != LPFC_ELS_HBQ) 2092 return 1; 2093 hrq = phba->sli4_hba.hdr_rq; 2094 drq = phba->sli4_hba.dat_rq; 2095 2096 lockdep_assert_held(&phba->hbalock); 2097 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2098 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2099 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2100 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2101 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2102 if (rc < 0) 2103 return rc; 2104 hbq_buf->tag = (rc | (hbqno << 16)); 2105 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2106 return 0; 2107 } 2108 2109 /* HBQ for ELS and CT traffic. */ 2110 static struct lpfc_hbq_init lpfc_els_hbq = { 2111 .rn = 1, 2112 .entry_count = 256, 2113 .mask_count = 0, 2114 .profile = 0, 2115 .ring_mask = (1 << LPFC_ELS_RING), 2116 .buffer_count = 0, 2117 .init_count = 40, 2118 .add_count = 40, 2119 }; 2120 2121 /* Array of HBQs */ 2122 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2123 &lpfc_els_hbq, 2124 }; 2125 2126 /** 2127 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2128 * @phba: Pointer to HBA context object. 2129 * @hbqno: HBQ number. 2130 * @count: Number of HBQ buffers to be posted. 2131 * 2132 * This function is called with no lock held to post more hbq buffers to the 2133 * given HBQ. The function returns the number of HBQ buffers successfully 2134 * posted. 2135 **/ 2136 static int 2137 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2138 { 2139 uint32_t i, posted = 0; 2140 unsigned long flags; 2141 struct hbq_dmabuf *hbq_buffer; 2142 LIST_HEAD(hbq_buf_list); 2143 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2144 return 0; 2145 2146 if ((phba->hbqs[hbqno].buffer_count + count) > 2147 lpfc_hbq_defs[hbqno]->entry_count) 2148 count = lpfc_hbq_defs[hbqno]->entry_count - 2149 phba->hbqs[hbqno].buffer_count; 2150 if (!count) 2151 return 0; 2152 /* Allocate HBQ entries */ 2153 for (i = 0; i < count; i++) { 2154 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2155 if (!hbq_buffer) 2156 break; 2157 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2158 } 2159 /* Check whether HBQ is still in use */ 2160 spin_lock_irqsave(&phba->hbalock, flags); 2161 if (!phba->hbq_in_use) 2162 goto err; 2163 while (!list_empty(&hbq_buf_list)) { 2164 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2165 dbuf.list); 2166 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2167 (hbqno << 16)); 2168 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2169 phba->hbqs[hbqno].buffer_count++; 2170 posted++; 2171 } else 2172 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2173 } 2174 spin_unlock_irqrestore(&phba->hbalock, flags); 2175 return posted; 2176 err: 2177 spin_unlock_irqrestore(&phba->hbalock, flags); 2178 while (!list_empty(&hbq_buf_list)) { 2179 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2180 dbuf.list); 2181 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2182 } 2183 return 0; 2184 } 2185 2186 /** 2187 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2188 * @phba: Pointer to HBA context object. 2189 * @qno: HBQ number. 2190 * 2191 * This function posts more buffers to the HBQ. This function 2192 * is called with no lock held. The function returns the number of HBQ entries 2193 * successfully allocated. 2194 **/ 2195 int 2196 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2197 { 2198 if (phba->sli_rev == LPFC_SLI_REV4) 2199 return 0; 2200 else 2201 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2202 lpfc_hbq_defs[qno]->add_count); 2203 } 2204 2205 /** 2206 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2207 * @phba: Pointer to HBA context object. 2208 * @qno: HBQ queue number. 2209 * 2210 * This function is called from SLI initialization code path with 2211 * no lock held to post initial HBQ buffers to firmware. The 2212 * function returns the number of HBQ entries successfully allocated. 2213 **/ 2214 static int 2215 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2216 { 2217 if (phba->sli_rev == LPFC_SLI_REV4) 2218 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2219 lpfc_hbq_defs[qno]->entry_count); 2220 else 2221 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2222 lpfc_hbq_defs[qno]->init_count); 2223 } 2224 2225 /** 2226 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2227 * @phba: Pointer to HBA context object. 2228 * @hbqno: HBQ number. 2229 * 2230 * This function removes the first hbq buffer on an hbq list and returns a 2231 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2232 **/ 2233 static struct hbq_dmabuf * 2234 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2235 { 2236 struct lpfc_dmabuf *d_buf; 2237 2238 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2239 if (!d_buf) 2240 return NULL; 2241 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2242 } 2243 2244 /** 2245 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2246 * @phba: Pointer to HBA context object. 2247 * @hbqno: HBQ number. 2248 * 2249 * This function removes the first RQ buffer on an RQ buffer list and returns a 2250 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2251 **/ 2252 static struct rqb_dmabuf * 2253 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2254 { 2255 struct lpfc_dmabuf *h_buf; 2256 struct lpfc_rqb *rqbp; 2257 2258 rqbp = hrq->rqbp; 2259 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2260 struct lpfc_dmabuf, list); 2261 if (!h_buf) 2262 return NULL; 2263 rqbp->buffer_count--; 2264 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2265 } 2266 2267 /** 2268 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2269 * @phba: Pointer to HBA context object. 2270 * @tag: Tag of the hbq buffer. 2271 * 2272 * This function searches for the hbq buffer associated with the given tag in 2273 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2274 * otherwise it returns NULL. 2275 **/ 2276 static struct hbq_dmabuf * 2277 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2278 { 2279 struct lpfc_dmabuf *d_buf; 2280 struct hbq_dmabuf *hbq_buf; 2281 uint32_t hbqno; 2282 2283 hbqno = tag >> 16; 2284 if (hbqno >= LPFC_MAX_HBQS) 2285 return NULL; 2286 2287 spin_lock_irq(&phba->hbalock); 2288 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2289 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2290 if (hbq_buf->tag == tag) { 2291 spin_unlock_irq(&phba->hbalock); 2292 return hbq_buf; 2293 } 2294 } 2295 spin_unlock_irq(&phba->hbalock); 2296 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2297 "1803 Bad hbq tag. Data: x%x x%x\n", 2298 tag, phba->hbqs[tag >> 16].buffer_count); 2299 return NULL; 2300 } 2301 2302 /** 2303 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2304 * @phba: Pointer to HBA context object. 2305 * @hbq_buffer: Pointer to HBQ buffer. 2306 * 2307 * This function is called with hbalock. This function gives back 2308 * the hbq buffer to firmware. If the HBQ does not have space to 2309 * post the buffer, it will free the buffer. 2310 **/ 2311 void 2312 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2313 { 2314 uint32_t hbqno; 2315 2316 if (hbq_buffer) { 2317 hbqno = hbq_buffer->tag >> 16; 2318 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2319 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2320 } 2321 } 2322 2323 /** 2324 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2325 * @mbxCommand: mailbox command code. 2326 * 2327 * This function is called by the mailbox event handler function to verify 2328 * that the completed mailbox command is a legitimate mailbox command. If the 2329 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2330 * and the mailbox event handler will take the HBA offline. 2331 **/ 2332 static int 2333 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2334 { 2335 uint8_t ret; 2336 2337 switch (mbxCommand) { 2338 case MBX_LOAD_SM: 2339 case MBX_READ_NV: 2340 case MBX_WRITE_NV: 2341 case MBX_WRITE_VPARMS: 2342 case MBX_RUN_BIU_DIAG: 2343 case MBX_INIT_LINK: 2344 case MBX_DOWN_LINK: 2345 case MBX_CONFIG_LINK: 2346 case MBX_CONFIG_RING: 2347 case MBX_RESET_RING: 2348 case MBX_READ_CONFIG: 2349 case MBX_READ_RCONFIG: 2350 case MBX_READ_SPARM: 2351 case MBX_READ_STATUS: 2352 case MBX_READ_RPI: 2353 case MBX_READ_XRI: 2354 case MBX_READ_REV: 2355 case MBX_READ_LNK_STAT: 2356 case MBX_REG_LOGIN: 2357 case MBX_UNREG_LOGIN: 2358 case MBX_CLEAR_LA: 2359 case MBX_DUMP_MEMORY: 2360 case MBX_DUMP_CONTEXT: 2361 case MBX_RUN_DIAGS: 2362 case MBX_RESTART: 2363 case MBX_UPDATE_CFG: 2364 case MBX_DOWN_LOAD: 2365 case MBX_DEL_LD_ENTRY: 2366 case MBX_RUN_PROGRAM: 2367 case MBX_SET_MASK: 2368 case MBX_SET_VARIABLE: 2369 case MBX_UNREG_D_ID: 2370 case MBX_KILL_BOARD: 2371 case MBX_CONFIG_FARP: 2372 case MBX_BEACON: 2373 case MBX_LOAD_AREA: 2374 case MBX_RUN_BIU_DIAG64: 2375 case MBX_CONFIG_PORT: 2376 case MBX_READ_SPARM64: 2377 case MBX_READ_RPI64: 2378 case MBX_REG_LOGIN64: 2379 case MBX_READ_TOPOLOGY: 2380 case MBX_WRITE_WWN: 2381 case MBX_SET_DEBUG: 2382 case MBX_LOAD_EXP_ROM: 2383 case MBX_ASYNCEVT_ENABLE: 2384 case MBX_REG_VPI: 2385 case MBX_UNREG_VPI: 2386 case MBX_HEARTBEAT: 2387 case MBX_PORT_CAPABILITIES: 2388 case MBX_PORT_IOV_CONTROL: 2389 case MBX_SLI4_CONFIG: 2390 case MBX_SLI4_REQ_FTRS: 2391 case MBX_REG_FCFI: 2392 case MBX_UNREG_FCFI: 2393 case MBX_REG_VFI: 2394 case MBX_UNREG_VFI: 2395 case MBX_INIT_VPI: 2396 case MBX_INIT_VFI: 2397 case MBX_RESUME_RPI: 2398 case MBX_READ_EVENT_LOG_STATUS: 2399 case MBX_READ_EVENT_LOG: 2400 case MBX_SECURITY_MGMT: 2401 case MBX_AUTH_PORT: 2402 case MBX_ACCESS_VDATA: 2403 ret = mbxCommand; 2404 break; 2405 default: 2406 ret = MBX_SHUTDOWN; 2407 break; 2408 } 2409 return ret; 2410 } 2411 2412 /** 2413 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2414 * @phba: Pointer to HBA context object. 2415 * @pmboxq: Pointer to mailbox command. 2416 * 2417 * This is completion handler function for mailbox commands issued from 2418 * lpfc_sli_issue_mbox_wait function. This function is called by the 2419 * mailbox event handler function with no lock held. This function 2420 * will wake up thread waiting on the wait queue pointed by context1 2421 * of the mailbox. 2422 **/ 2423 void 2424 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2425 { 2426 unsigned long drvr_flag; 2427 struct completion *pmbox_done; 2428 2429 /* 2430 * If pmbox_done is empty, the driver thread gave up waiting and 2431 * continued running. 2432 */ 2433 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2434 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2435 pmbox_done = (struct completion *)pmboxq->context3; 2436 if (pmbox_done) 2437 complete(pmbox_done); 2438 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2439 return; 2440 } 2441 2442 2443 /** 2444 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2445 * @phba: Pointer to HBA context object. 2446 * @pmb: Pointer to mailbox object. 2447 * 2448 * This function is the default mailbox completion handler. It 2449 * frees the memory resources associated with the completed mailbox 2450 * command. If the completed command is a REG_LOGIN mailbox command, 2451 * this function will issue a UREG_LOGIN to re-claim the RPI. 2452 **/ 2453 void 2454 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2455 { 2456 struct lpfc_vport *vport = pmb->vport; 2457 struct lpfc_dmabuf *mp; 2458 struct lpfc_nodelist *ndlp; 2459 struct Scsi_Host *shost; 2460 uint16_t rpi, vpi; 2461 int rc; 2462 2463 mp = (struct lpfc_dmabuf *) (pmb->context1); 2464 2465 if (mp) { 2466 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2467 kfree(mp); 2468 } 2469 2470 /* 2471 * If a REG_LOGIN succeeded after node is destroyed or node 2472 * is in re-discovery driver need to cleanup the RPI. 2473 */ 2474 if (!(phba->pport->load_flag & FC_UNLOADING) && 2475 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2476 !pmb->u.mb.mbxStatus) { 2477 rpi = pmb->u.mb.un.varWords[0]; 2478 vpi = pmb->u.mb.un.varRegLogin.vpi; 2479 lpfc_unreg_login(phba, vpi, rpi, pmb); 2480 pmb->vport = vport; 2481 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2482 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2483 if (rc != MBX_NOT_FINISHED) 2484 return; 2485 } 2486 2487 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2488 !(phba->pport->load_flag & FC_UNLOADING) && 2489 !pmb->u.mb.mbxStatus) { 2490 shost = lpfc_shost_from_vport(vport); 2491 spin_lock_irq(shost->host_lock); 2492 vport->vpi_state |= LPFC_VPI_REGISTERED; 2493 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2494 spin_unlock_irq(shost->host_lock); 2495 } 2496 2497 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2498 ndlp = (struct lpfc_nodelist *)pmb->context2; 2499 lpfc_nlp_put(ndlp); 2500 pmb->context2 = NULL; 2501 } 2502 2503 /* Check security permission status on INIT_LINK mailbox command */ 2504 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2505 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2506 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2507 "2860 SLI authentication is required " 2508 "for INIT_LINK but has not done yet\n"); 2509 2510 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2511 lpfc_sli4_mbox_cmd_free(phba, pmb); 2512 else 2513 mempool_free(pmb, phba->mbox_mem_pool); 2514 } 2515 /** 2516 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2517 * @phba: Pointer to HBA context object. 2518 * @pmb: Pointer to mailbox object. 2519 * 2520 * This function is the unreg rpi mailbox completion handler. It 2521 * frees the memory resources associated with the completed mailbox 2522 * command. An additional refrenece is put on the ndlp to prevent 2523 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2524 * the unreg mailbox command completes, this routine puts the 2525 * reference back. 2526 * 2527 **/ 2528 void 2529 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2530 { 2531 struct lpfc_vport *vport = pmb->vport; 2532 struct lpfc_nodelist *ndlp; 2533 2534 ndlp = pmb->context1; 2535 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2536 if (phba->sli_rev == LPFC_SLI_REV4 && 2537 (bf_get(lpfc_sli_intf_if_type, 2538 &phba->sli4_hba.sli_intf) >= 2539 LPFC_SLI_INTF_IF_TYPE_2)) { 2540 if (ndlp) { 2541 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 2542 "0010 UNREG_LOGIN vpi:%x " 2543 "rpi:%x DID:%x map:%x %p\n", 2544 vport->vpi, ndlp->nlp_rpi, 2545 ndlp->nlp_DID, 2546 ndlp->nlp_usg_map, ndlp); 2547 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2548 lpfc_nlp_put(ndlp); 2549 } 2550 } 2551 } 2552 2553 mempool_free(pmb, phba->mbox_mem_pool); 2554 } 2555 2556 /** 2557 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2558 * @phba: Pointer to HBA context object. 2559 * 2560 * This function is called with no lock held. This function processes all 2561 * the completed mailbox commands and gives it to upper layers. The interrupt 2562 * service routine processes mailbox completion interrupt and adds completed 2563 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2564 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2565 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2566 * function returns the mailbox commands to the upper layer by calling the 2567 * completion handler function of each mailbox. 2568 **/ 2569 int 2570 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2571 { 2572 MAILBOX_t *pmbox; 2573 LPFC_MBOXQ_t *pmb; 2574 int rc; 2575 LIST_HEAD(cmplq); 2576 2577 phba->sli.slistat.mbox_event++; 2578 2579 /* Get all completed mailboxe buffers into the cmplq */ 2580 spin_lock_irq(&phba->hbalock); 2581 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2582 spin_unlock_irq(&phba->hbalock); 2583 2584 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2585 do { 2586 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2587 if (pmb == NULL) 2588 break; 2589 2590 pmbox = &pmb->u.mb; 2591 2592 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2593 if (pmb->vport) { 2594 lpfc_debugfs_disc_trc(pmb->vport, 2595 LPFC_DISC_TRC_MBOX_VPORT, 2596 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2597 (uint32_t)pmbox->mbxCommand, 2598 pmbox->un.varWords[0], 2599 pmbox->un.varWords[1]); 2600 } 2601 else { 2602 lpfc_debugfs_disc_trc(phba->pport, 2603 LPFC_DISC_TRC_MBOX, 2604 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2605 (uint32_t)pmbox->mbxCommand, 2606 pmbox->un.varWords[0], 2607 pmbox->un.varWords[1]); 2608 } 2609 } 2610 2611 /* 2612 * It is a fatal error if unknown mbox command completion. 2613 */ 2614 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2615 MBX_SHUTDOWN) { 2616 /* Unknown mailbox command compl */ 2617 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2618 "(%d):0323 Unknown Mailbox command " 2619 "x%x (x%x/x%x) Cmpl\n", 2620 pmb->vport ? pmb->vport->vpi : 0, 2621 pmbox->mbxCommand, 2622 lpfc_sli_config_mbox_subsys_get(phba, 2623 pmb), 2624 lpfc_sli_config_mbox_opcode_get(phba, 2625 pmb)); 2626 phba->link_state = LPFC_HBA_ERROR; 2627 phba->work_hs = HS_FFER3; 2628 lpfc_handle_eratt(phba); 2629 continue; 2630 } 2631 2632 if (pmbox->mbxStatus) { 2633 phba->sli.slistat.mbox_stat_err++; 2634 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2635 /* Mbox cmd cmpl error - RETRYing */ 2636 lpfc_printf_log(phba, KERN_INFO, 2637 LOG_MBOX | LOG_SLI, 2638 "(%d):0305 Mbox cmd cmpl " 2639 "error - RETRYing Data: x%x " 2640 "(x%x/x%x) x%x x%x x%x\n", 2641 pmb->vport ? pmb->vport->vpi : 0, 2642 pmbox->mbxCommand, 2643 lpfc_sli_config_mbox_subsys_get(phba, 2644 pmb), 2645 lpfc_sli_config_mbox_opcode_get(phba, 2646 pmb), 2647 pmbox->mbxStatus, 2648 pmbox->un.varWords[0], 2649 pmb->vport->port_state); 2650 pmbox->mbxStatus = 0; 2651 pmbox->mbxOwner = OWN_HOST; 2652 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2653 if (rc != MBX_NOT_FINISHED) 2654 continue; 2655 } 2656 } 2657 2658 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2659 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2660 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p " 2661 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2662 "x%x x%x x%x\n", 2663 pmb->vport ? pmb->vport->vpi : 0, 2664 pmbox->mbxCommand, 2665 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2666 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2667 pmb->mbox_cmpl, 2668 *((uint32_t *) pmbox), 2669 pmbox->un.varWords[0], 2670 pmbox->un.varWords[1], 2671 pmbox->un.varWords[2], 2672 pmbox->un.varWords[3], 2673 pmbox->un.varWords[4], 2674 pmbox->un.varWords[5], 2675 pmbox->un.varWords[6], 2676 pmbox->un.varWords[7], 2677 pmbox->un.varWords[8], 2678 pmbox->un.varWords[9], 2679 pmbox->un.varWords[10]); 2680 2681 if (pmb->mbox_cmpl) 2682 pmb->mbox_cmpl(phba,pmb); 2683 } while (1); 2684 return 0; 2685 } 2686 2687 /** 2688 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2689 * @phba: Pointer to HBA context object. 2690 * @pring: Pointer to driver SLI ring object. 2691 * @tag: buffer tag. 2692 * 2693 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2694 * is set in the tag the buffer is posted for a particular exchange, 2695 * the function will return the buffer without replacing the buffer. 2696 * If the buffer is for unsolicited ELS or CT traffic, this function 2697 * returns the buffer and also posts another buffer to the firmware. 2698 **/ 2699 static struct lpfc_dmabuf * 2700 lpfc_sli_get_buff(struct lpfc_hba *phba, 2701 struct lpfc_sli_ring *pring, 2702 uint32_t tag) 2703 { 2704 struct hbq_dmabuf *hbq_entry; 2705 2706 if (tag & QUE_BUFTAG_BIT) 2707 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2708 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2709 if (!hbq_entry) 2710 return NULL; 2711 return &hbq_entry->dbuf; 2712 } 2713 2714 /** 2715 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2716 * @phba: Pointer to HBA context object. 2717 * @pring: Pointer to driver SLI ring object. 2718 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2719 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2720 * @fch_type: the type for the first frame of the sequence. 2721 * 2722 * This function is called with no lock held. This function uses the r_ctl and 2723 * type of the received sequence to find the correct callback function to call 2724 * to process the sequence. 2725 **/ 2726 static int 2727 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2728 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2729 uint32_t fch_type) 2730 { 2731 int i; 2732 2733 switch (fch_type) { 2734 case FC_TYPE_NVME: 2735 lpfc_nvmet_unsol_ls_event(phba, pring, saveq); 2736 return 1; 2737 default: 2738 break; 2739 } 2740 2741 /* unSolicited Responses */ 2742 if (pring->prt[0].profile) { 2743 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2744 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2745 saveq); 2746 return 1; 2747 } 2748 /* We must search, based on rctl / type 2749 for the right routine */ 2750 for (i = 0; i < pring->num_mask; i++) { 2751 if ((pring->prt[i].rctl == fch_r_ctl) && 2752 (pring->prt[i].type == fch_type)) { 2753 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2754 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2755 (phba, pring, saveq); 2756 return 1; 2757 } 2758 } 2759 return 0; 2760 } 2761 2762 /** 2763 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2764 * @phba: Pointer to HBA context object. 2765 * @pring: Pointer to driver SLI ring object. 2766 * @saveq: Pointer to the unsolicited iocb. 2767 * 2768 * This function is called with no lock held by the ring event handler 2769 * when there is an unsolicited iocb posted to the response ring by the 2770 * firmware. This function gets the buffer associated with the iocbs 2771 * and calls the event handler for the ring. This function handles both 2772 * qring buffers and hbq buffers. 2773 * When the function returns 1 the caller can free the iocb object otherwise 2774 * upper layer functions will free the iocb objects. 2775 **/ 2776 static int 2777 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2778 struct lpfc_iocbq *saveq) 2779 { 2780 IOCB_t * irsp; 2781 WORD5 * w5p; 2782 uint32_t Rctl, Type; 2783 struct lpfc_iocbq *iocbq; 2784 struct lpfc_dmabuf *dmzbuf; 2785 2786 irsp = &(saveq->iocb); 2787 2788 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2789 if (pring->lpfc_sli_rcv_async_status) 2790 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2791 else 2792 lpfc_printf_log(phba, 2793 KERN_WARNING, 2794 LOG_SLI, 2795 "0316 Ring %d handler: unexpected " 2796 "ASYNC_STATUS iocb received evt_code " 2797 "0x%x\n", 2798 pring->ringno, 2799 irsp->un.asyncstat.evt_code); 2800 return 1; 2801 } 2802 2803 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2804 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2805 if (irsp->ulpBdeCount > 0) { 2806 dmzbuf = lpfc_sli_get_buff(phba, pring, 2807 irsp->un.ulpWord[3]); 2808 lpfc_in_buf_free(phba, dmzbuf); 2809 } 2810 2811 if (irsp->ulpBdeCount > 1) { 2812 dmzbuf = lpfc_sli_get_buff(phba, pring, 2813 irsp->unsli3.sli3Words[3]); 2814 lpfc_in_buf_free(phba, dmzbuf); 2815 } 2816 2817 if (irsp->ulpBdeCount > 2) { 2818 dmzbuf = lpfc_sli_get_buff(phba, pring, 2819 irsp->unsli3.sli3Words[7]); 2820 lpfc_in_buf_free(phba, dmzbuf); 2821 } 2822 2823 return 1; 2824 } 2825 2826 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 2827 if (irsp->ulpBdeCount != 0) { 2828 saveq->context2 = lpfc_sli_get_buff(phba, pring, 2829 irsp->un.ulpWord[3]); 2830 if (!saveq->context2) 2831 lpfc_printf_log(phba, 2832 KERN_ERR, 2833 LOG_SLI, 2834 "0341 Ring %d Cannot find buffer for " 2835 "an unsolicited iocb. tag 0x%x\n", 2836 pring->ringno, 2837 irsp->un.ulpWord[3]); 2838 } 2839 if (irsp->ulpBdeCount == 2) { 2840 saveq->context3 = lpfc_sli_get_buff(phba, pring, 2841 irsp->unsli3.sli3Words[7]); 2842 if (!saveq->context3) 2843 lpfc_printf_log(phba, 2844 KERN_ERR, 2845 LOG_SLI, 2846 "0342 Ring %d Cannot find buffer for an" 2847 " unsolicited iocb. tag 0x%x\n", 2848 pring->ringno, 2849 irsp->unsli3.sli3Words[7]); 2850 } 2851 list_for_each_entry(iocbq, &saveq->list, list) { 2852 irsp = &(iocbq->iocb); 2853 if (irsp->ulpBdeCount != 0) { 2854 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 2855 irsp->un.ulpWord[3]); 2856 if (!iocbq->context2) 2857 lpfc_printf_log(phba, 2858 KERN_ERR, 2859 LOG_SLI, 2860 "0343 Ring %d Cannot find " 2861 "buffer for an unsolicited iocb" 2862 ". tag 0x%x\n", pring->ringno, 2863 irsp->un.ulpWord[3]); 2864 } 2865 if (irsp->ulpBdeCount == 2) { 2866 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 2867 irsp->unsli3.sli3Words[7]); 2868 if (!iocbq->context3) 2869 lpfc_printf_log(phba, 2870 KERN_ERR, 2871 LOG_SLI, 2872 "0344 Ring %d Cannot find " 2873 "buffer for an unsolicited " 2874 "iocb. tag 0x%x\n", 2875 pring->ringno, 2876 irsp->unsli3.sli3Words[7]); 2877 } 2878 } 2879 } 2880 if (irsp->ulpBdeCount != 0 && 2881 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 2882 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 2883 int found = 0; 2884 2885 /* search continue save q for same XRI */ 2886 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 2887 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 2888 saveq->iocb.unsli3.rcvsli3.ox_id) { 2889 list_add_tail(&saveq->list, &iocbq->list); 2890 found = 1; 2891 break; 2892 } 2893 } 2894 if (!found) 2895 list_add_tail(&saveq->clist, 2896 &pring->iocb_continue_saveq); 2897 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 2898 list_del_init(&iocbq->clist); 2899 saveq = iocbq; 2900 irsp = &(saveq->iocb); 2901 } else 2902 return 0; 2903 } 2904 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 2905 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 2906 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 2907 Rctl = FC_RCTL_ELS_REQ; 2908 Type = FC_TYPE_ELS; 2909 } else { 2910 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 2911 Rctl = w5p->hcsw.Rctl; 2912 Type = w5p->hcsw.Type; 2913 2914 /* Firmware Workaround */ 2915 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 2916 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 2917 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 2918 Rctl = FC_RCTL_ELS_REQ; 2919 Type = FC_TYPE_ELS; 2920 w5p->hcsw.Rctl = Rctl; 2921 w5p->hcsw.Type = Type; 2922 } 2923 } 2924 2925 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 2926 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2927 "0313 Ring %d handler: unexpected Rctl x%x " 2928 "Type x%x received\n", 2929 pring->ringno, Rctl, Type); 2930 2931 return 1; 2932 } 2933 2934 /** 2935 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 2936 * @phba: Pointer to HBA context object. 2937 * @pring: Pointer to driver SLI ring object. 2938 * @prspiocb: Pointer to response iocb object. 2939 * 2940 * This function looks up the iocb_lookup table to get the command iocb 2941 * corresponding to the given response iocb using the iotag of the 2942 * response iocb. This function is called with the hbalock held 2943 * for sli3 devices or the ring_lock for sli4 devices. 2944 * This function returns the command iocb object if it finds the command 2945 * iocb else returns NULL. 2946 **/ 2947 static struct lpfc_iocbq * 2948 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 2949 struct lpfc_sli_ring *pring, 2950 struct lpfc_iocbq *prspiocb) 2951 { 2952 struct lpfc_iocbq *cmd_iocb = NULL; 2953 uint16_t iotag; 2954 lockdep_assert_held(&phba->hbalock); 2955 2956 iotag = prspiocb->iocb.ulpIoTag; 2957 2958 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2959 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2960 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2961 /* remove from txcmpl queue list */ 2962 list_del_init(&cmd_iocb->list); 2963 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2964 return cmd_iocb; 2965 } 2966 } 2967 2968 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2969 "0317 iotag x%x is out of " 2970 "range: max iotag x%x wd0 x%x\n", 2971 iotag, phba->sli.last_iotag, 2972 *(((uint32_t *) &prspiocb->iocb) + 7)); 2973 return NULL; 2974 } 2975 2976 /** 2977 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 2978 * @phba: Pointer to HBA context object. 2979 * @pring: Pointer to driver SLI ring object. 2980 * @iotag: IOCB tag. 2981 * 2982 * This function looks up the iocb_lookup table to get the command iocb 2983 * corresponding to the given iotag. This function is called with the 2984 * hbalock held. 2985 * This function returns the command iocb object if it finds the command 2986 * iocb else returns NULL. 2987 **/ 2988 static struct lpfc_iocbq * 2989 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 2990 struct lpfc_sli_ring *pring, uint16_t iotag) 2991 { 2992 struct lpfc_iocbq *cmd_iocb = NULL; 2993 2994 lockdep_assert_held(&phba->hbalock); 2995 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2996 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2997 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2998 /* remove from txcmpl queue list */ 2999 list_del_init(&cmd_iocb->list); 3000 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3001 return cmd_iocb; 3002 } 3003 } 3004 3005 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3006 "0372 iotag x%x lookup error: max iotag (x%x) " 3007 "iocb_flag x%x\n", 3008 iotag, phba->sli.last_iotag, 3009 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3010 return NULL; 3011 } 3012 3013 /** 3014 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3015 * @phba: Pointer to HBA context object. 3016 * @pring: Pointer to driver SLI ring object. 3017 * @saveq: Pointer to the response iocb to be processed. 3018 * 3019 * This function is called by the ring event handler for non-fcp 3020 * rings when there is a new response iocb in the response ring. 3021 * The caller is not required to hold any locks. This function 3022 * gets the command iocb associated with the response iocb and 3023 * calls the completion handler for the command iocb. If there 3024 * is no completion handler, the function will free the resources 3025 * associated with command iocb. If the response iocb is for 3026 * an already aborted command iocb, the status of the completion 3027 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3028 * This function always returns 1. 3029 **/ 3030 static int 3031 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3032 struct lpfc_iocbq *saveq) 3033 { 3034 struct lpfc_iocbq *cmdiocbp; 3035 int rc = 1; 3036 unsigned long iflag; 3037 3038 /* Based on the iotag field, get the cmd IOCB from the txcmplq */ 3039 if (phba->sli_rev == LPFC_SLI_REV4) 3040 spin_lock_irqsave(&pring->ring_lock, iflag); 3041 else 3042 spin_lock_irqsave(&phba->hbalock, iflag); 3043 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3044 if (phba->sli_rev == LPFC_SLI_REV4) 3045 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3046 else 3047 spin_unlock_irqrestore(&phba->hbalock, iflag); 3048 3049 if (cmdiocbp) { 3050 if (cmdiocbp->iocb_cmpl) { 3051 /* 3052 * If an ELS command failed send an event to mgmt 3053 * application. 3054 */ 3055 if (saveq->iocb.ulpStatus && 3056 (pring->ringno == LPFC_ELS_RING) && 3057 (cmdiocbp->iocb.ulpCommand == 3058 CMD_ELS_REQUEST64_CR)) 3059 lpfc_send_els_failure_event(phba, 3060 cmdiocbp, saveq); 3061 3062 /* 3063 * Post all ELS completions to the worker thread. 3064 * All other are passed to the completion callback. 3065 */ 3066 if (pring->ringno == LPFC_ELS_RING) { 3067 if ((phba->sli_rev < LPFC_SLI_REV4) && 3068 (cmdiocbp->iocb_flag & 3069 LPFC_DRIVER_ABORTED)) { 3070 spin_lock_irqsave(&phba->hbalock, 3071 iflag); 3072 cmdiocbp->iocb_flag &= 3073 ~LPFC_DRIVER_ABORTED; 3074 spin_unlock_irqrestore(&phba->hbalock, 3075 iflag); 3076 saveq->iocb.ulpStatus = 3077 IOSTAT_LOCAL_REJECT; 3078 saveq->iocb.un.ulpWord[4] = 3079 IOERR_SLI_ABORTED; 3080 3081 /* Firmware could still be in progress 3082 * of DMAing payload, so don't free data 3083 * buffer till after a hbeat. 3084 */ 3085 spin_lock_irqsave(&phba->hbalock, 3086 iflag); 3087 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3088 spin_unlock_irqrestore(&phba->hbalock, 3089 iflag); 3090 } 3091 if (phba->sli_rev == LPFC_SLI_REV4) { 3092 if (saveq->iocb_flag & 3093 LPFC_EXCHANGE_BUSY) { 3094 /* Set cmdiocb flag for the 3095 * exchange busy so sgl (xri) 3096 * will not be released until 3097 * the abort xri is received 3098 * from hba. 3099 */ 3100 spin_lock_irqsave( 3101 &phba->hbalock, iflag); 3102 cmdiocbp->iocb_flag |= 3103 LPFC_EXCHANGE_BUSY; 3104 spin_unlock_irqrestore( 3105 &phba->hbalock, iflag); 3106 } 3107 if (cmdiocbp->iocb_flag & 3108 LPFC_DRIVER_ABORTED) { 3109 /* 3110 * Clear LPFC_DRIVER_ABORTED 3111 * bit in case it was driver 3112 * initiated abort. 3113 */ 3114 spin_lock_irqsave( 3115 &phba->hbalock, iflag); 3116 cmdiocbp->iocb_flag &= 3117 ~LPFC_DRIVER_ABORTED; 3118 spin_unlock_irqrestore( 3119 &phba->hbalock, iflag); 3120 cmdiocbp->iocb.ulpStatus = 3121 IOSTAT_LOCAL_REJECT; 3122 cmdiocbp->iocb.un.ulpWord[4] = 3123 IOERR_ABORT_REQUESTED; 3124 /* 3125 * For SLI4, irsiocb contains 3126 * NO_XRI in sli_xritag, it 3127 * shall not affect releasing 3128 * sgl (xri) process. 3129 */ 3130 saveq->iocb.ulpStatus = 3131 IOSTAT_LOCAL_REJECT; 3132 saveq->iocb.un.ulpWord[4] = 3133 IOERR_SLI_ABORTED; 3134 spin_lock_irqsave( 3135 &phba->hbalock, iflag); 3136 saveq->iocb_flag |= 3137 LPFC_DELAY_MEM_FREE; 3138 spin_unlock_irqrestore( 3139 &phba->hbalock, iflag); 3140 } 3141 } 3142 } 3143 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3144 } else 3145 lpfc_sli_release_iocbq(phba, cmdiocbp); 3146 } else { 3147 /* 3148 * Unknown initiating command based on the response iotag. 3149 * This could be the case on the ELS ring because of 3150 * lpfc_els_abort(). 3151 */ 3152 if (pring->ringno != LPFC_ELS_RING) { 3153 /* 3154 * Ring <ringno> handler: unexpected completion IoTag 3155 * <IoTag> 3156 */ 3157 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3158 "0322 Ring %d handler: " 3159 "unexpected completion IoTag x%x " 3160 "Data: x%x x%x x%x x%x\n", 3161 pring->ringno, 3162 saveq->iocb.ulpIoTag, 3163 saveq->iocb.ulpStatus, 3164 saveq->iocb.un.ulpWord[4], 3165 saveq->iocb.ulpCommand, 3166 saveq->iocb.ulpContext); 3167 } 3168 } 3169 3170 return rc; 3171 } 3172 3173 /** 3174 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3175 * @phba: Pointer to HBA context object. 3176 * @pring: Pointer to driver SLI ring object. 3177 * 3178 * This function is called from the iocb ring event handlers when 3179 * put pointer is ahead of the get pointer for a ring. This function signal 3180 * an error attention condition to the worker thread and the worker 3181 * thread will transition the HBA to offline state. 3182 **/ 3183 static void 3184 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3185 { 3186 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3187 /* 3188 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3189 * rsp ring <portRspMax> 3190 */ 3191 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3192 "0312 Ring %d handler: portRspPut %d " 3193 "is bigger than rsp ring %d\n", 3194 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3195 pring->sli.sli3.numRiocb); 3196 3197 phba->link_state = LPFC_HBA_ERROR; 3198 3199 /* 3200 * All error attention handlers are posted to 3201 * worker thread 3202 */ 3203 phba->work_ha |= HA_ERATT; 3204 phba->work_hs = HS_FFER3; 3205 3206 lpfc_worker_wake_up(phba); 3207 3208 return; 3209 } 3210 3211 /** 3212 * lpfc_poll_eratt - Error attention polling timer timeout handler 3213 * @ptr: Pointer to address of HBA context object. 3214 * 3215 * This function is invoked by the Error Attention polling timer when the 3216 * timer times out. It will check the SLI Error Attention register for 3217 * possible attention events. If so, it will post an Error Attention event 3218 * and wake up worker thread to process it. Otherwise, it will set up the 3219 * Error Attention polling timer for the next poll. 3220 **/ 3221 void lpfc_poll_eratt(struct timer_list *t) 3222 { 3223 struct lpfc_hba *phba; 3224 uint32_t eratt = 0; 3225 uint64_t sli_intr, cnt; 3226 3227 phba = from_timer(phba, t, eratt_poll); 3228 3229 /* Here we will also keep track of interrupts per sec of the hba */ 3230 sli_intr = phba->sli.slistat.sli_intr; 3231 3232 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3233 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3234 sli_intr); 3235 else 3236 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3237 3238 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3239 do_div(cnt, phba->eratt_poll_interval); 3240 phba->sli.slistat.sli_ips = cnt; 3241 3242 phba->sli.slistat.sli_prev_intr = sli_intr; 3243 3244 /* Check chip HA register for error event */ 3245 eratt = lpfc_sli_check_eratt(phba); 3246 3247 if (eratt) 3248 /* Tell the worker thread there is work to do */ 3249 lpfc_worker_wake_up(phba); 3250 else 3251 /* Restart the timer for next eratt poll */ 3252 mod_timer(&phba->eratt_poll, 3253 jiffies + 3254 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3255 return; 3256 } 3257 3258 3259 /** 3260 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3261 * @phba: Pointer to HBA context object. 3262 * @pring: Pointer to driver SLI ring object. 3263 * @mask: Host attention register mask for this ring. 3264 * 3265 * This function is called from the interrupt context when there is a ring 3266 * event for the fcp ring. The caller does not hold any lock. 3267 * The function processes each response iocb in the response ring until it 3268 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3269 * LE bit set. The function will call the completion handler of the command iocb 3270 * if the response iocb indicates a completion for a command iocb or it is 3271 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3272 * function if this is an unsolicited iocb. 3273 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3274 * to check it explicitly. 3275 */ 3276 int 3277 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3278 struct lpfc_sli_ring *pring, uint32_t mask) 3279 { 3280 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3281 IOCB_t *irsp = NULL; 3282 IOCB_t *entry = NULL; 3283 struct lpfc_iocbq *cmdiocbq = NULL; 3284 struct lpfc_iocbq rspiocbq; 3285 uint32_t status; 3286 uint32_t portRspPut, portRspMax; 3287 int rc = 1; 3288 lpfc_iocb_type type; 3289 unsigned long iflag; 3290 uint32_t rsp_cmpl = 0; 3291 3292 spin_lock_irqsave(&phba->hbalock, iflag); 3293 pring->stats.iocb_event++; 3294 3295 /* 3296 * The next available response entry should never exceed the maximum 3297 * entries. If it does, treat it as an adapter hardware error. 3298 */ 3299 portRspMax = pring->sli.sli3.numRiocb; 3300 portRspPut = le32_to_cpu(pgp->rspPutInx); 3301 if (unlikely(portRspPut >= portRspMax)) { 3302 lpfc_sli_rsp_pointers_error(phba, pring); 3303 spin_unlock_irqrestore(&phba->hbalock, iflag); 3304 return 1; 3305 } 3306 if (phba->fcp_ring_in_use) { 3307 spin_unlock_irqrestore(&phba->hbalock, iflag); 3308 return 1; 3309 } else 3310 phba->fcp_ring_in_use = 1; 3311 3312 rmb(); 3313 while (pring->sli.sli3.rspidx != portRspPut) { 3314 /* 3315 * Fetch an entry off the ring and copy it into a local data 3316 * structure. The copy involves a byte-swap since the 3317 * network byte order and pci byte orders are different. 3318 */ 3319 entry = lpfc_resp_iocb(phba, pring); 3320 phba->last_completion_time = jiffies; 3321 3322 if (++pring->sli.sli3.rspidx >= portRspMax) 3323 pring->sli.sli3.rspidx = 0; 3324 3325 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3326 (uint32_t *) &rspiocbq.iocb, 3327 phba->iocb_rsp_size); 3328 INIT_LIST_HEAD(&(rspiocbq.list)); 3329 irsp = &rspiocbq.iocb; 3330 3331 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3332 pring->stats.iocb_rsp++; 3333 rsp_cmpl++; 3334 3335 if (unlikely(irsp->ulpStatus)) { 3336 /* 3337 * If resource errors reported from HBA, reduce 3338 * queuedepths of the SCSI device. 3339 */ 3340 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3341 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3342 IOERR_NO_RESOURCES)) { 3343 spin_unlock_irqrestore(&phba->hbalock, iflag); 3344 phba->lpfc_rampdown_queue_depth(phba); 3345 spin_lock_irqsave(&phba->hbalock, iflag); 3346 } 3347 3348 /* Rsp ring <ringno> error: IOCB */ 3349 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3350 "0336 Rsp Ring %d error: IOCB Data: " 3351 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3352 pring->ringno, 3353 irsp->un.ulpWord[0], 3354 irsp->un.ulpWord[1], 3355 irsp->un.ulpWord[2], 3356 irsp->un.ulpWord[3], 3357 irsp->un.ulpWord[4], 3358 irsp->un.ulpWord[5], 3359 *(uint32_t *)&irsp->un1, 3360 *((uint32_t *)&irsp->un1 + 1)); 3361 } 3362 3363 switch (type) { 3364 case LPFC_ABORT_IOCB: 3365 case LPFC_SOL_IOCB: 3366 /* 3367 * Idle exchange closed via ABTS from port. No iocb 3368 * resources need to be recovered. 3369 */ 3370 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3371 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3372 "0333 IOCB cmd 0x%x" 3373 " processed. Skipping" 3374 " completion\n", 3375 irsp->ulpCommand); 3376 break; 3377 } 3378 3379 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3380 &rspiocbq); 3381 if (unlikely(!cmdiocbq)) 3382 break; 3383 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3384 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3385 if (cmdiocbq->iocb_cmpl) { 3386 spin_unlock_irqrestore(&phba->hbalock, iflag); 3387 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3388 &rspiocbq); 3389 spin_lock_irqsave(&phba->hbalock, iflag); 3390 } 3391 break; 3392 case LPFC_UNSOL_IOCB: 3393 spin_unlock_irqrestore(&phba->hbalock, iflag); 3394 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3395 spin_lock_irqsave(&phba->hbalock, iflag); 3396 break; 3397 default: 3398 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3399 char adaptermsg[LPFC_MAX_ADPTMSG]; 3400 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3401 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3402 MAX_MSG_DATA); 3403 dev_warn(&((phba->pcidev)->dev), 3404 "lpfc%d: %s\n", 3405 phba->brd_no, adaptermsg); 3406 } else { 3407 /* Unknown IOCB command */ 3408 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3409 "0334 Unknown IOCB command " 3410 "Data: x%x, x%x x%x x%x x%x\n", 3411 type, irsp->ulpCommand, 3412 irsp->ulpStatus, 3413 irsp->ulpIoTag, 3414 irsp->ulpContext); 3415 } 3416 break; 3417 } 3418 3419 /* 3420 * The response IOCB has been processed. Update the ring 3421 * pointer in SLIM. If the port response put pointer has not 3422 * been updated, sync the pgp->rspPutInx and fetch the new port 3423 * response put pointer. 3424 */ 3425 writel(pring->sli.sli3.rspidx, 3426 &phba->host_gp[pring->ringno].rspGetInx); 3427 3428 if (pring->sli.sli3.rspidx == portRspPut) 3429 portRspPut = le32_to_cpu(pgp->rspPutInx); 3430 } 3431 3432 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3433 pring->stats.iocb_rsp_full++; 3434 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3435 writel(status, phba->CAregaddr); 3436 readl(phba->CAregaddr); 3437 } 3438 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3439 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3440 pring->stats.iocb_cmd_empty++; 3441 3442 /* Force update of the local copy of cmdGetInx */ 3443 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3444 lpfc_sli_resume_iocb(phba, pring); 3445 3446 if ((pring->lpfc_sli_cmd_available)) 3447 (pring->lpfc_sli_cmd_available) (phba, pring); 3448 3449 } 3450 3451 phba->fcp_ring_in_use = 0; 3452 spin_unlock_irqrestore(&phba->hbalock, iflag); 3453 return rc; 3454 } 3455 3456 /** 3457 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3458 * @phba: Pointer to HBA context object. 3459 * @pring: Pointer to driver SLI ring object. 3460 * @rspiocbp: Pointer to driver response IOCB object. 3461 * 3462 * This function is called from the worker thread when there is a slow-path 3463 * response IOCB to process. This function chains all the response iocbs until 3464 * seeing the iocb with the LE bit set. The function will call 3465 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3466 * completion of a command iocb. The function will call the 3467 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3468 * The function frees the resources or calls the completion handler if this 3469 * iocb is an abort completion. The function returns NULL when the response 3470 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3471 * this function shall chain the iocb on to the iocb_continueq and return the 3472 * response iocb passed in. 3473 **/ 3474 static struct lpfc_iocbq * 3475 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3476 struct lpfc_iocbq *rspiocbp) 3477 { 3478 struct lpfc_iocbq *saveq; 3479 struct lpfc_iocbq *cmdiocbp; 3480 struct lpfc_iocbq *next_iocb; 3481 IOCB_t *irsp = NULL; 3482 uint32_t free_saveq; 3483 uint8_t iocb_cmd_type; 3484 lpfc_iocb_type type; 3485 unsigned long iflag; 3486 int rc; 3487 3488 spin_lock_irqsave(&phba->hbalock, iflag); 3489 /* First add the response iocb to the countinueq list */ 3490 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3491 pring->iocb_continueq_cnt++; 3492 3493 /* Now, determine whether the list is completed for processing */ 3494 irsp = &rspiocbp->iocb; 3495 if (irsp->ulpLe) { 3496 /* 3497 * By default, the driver expects to free all resources 3498 * associated with this iocb completion. 3499 */ 3500 free_saveq = 1; 3501 saveq = list_get_first(&pring->iocb_continueq, 3502 struct lpfc_iocbq, list); 3503 irsp = &(saveq->iocb); 3504 list_del_init(&pring->iocb_continueq); 3505 pring->iocb_continueq_cnt = 0; 3506 3507 pring->stats.iocb_rsp++; 3508 3509 /* 3510 * If resource errors reported from HBA, reduce 3511 * queuedepths of the SCSI device. 3512 */ 3513 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3514 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3515 IOERR_NO_RESOURCES)) { 3516 spin_unlock_irqrestore(&phba->hbalock, iflag); 3517 phba->lpfc_rampdown_queue_depth(phba); 3518 spin_lock_irqsave(&phba->hbalock, iflag); 3519 } 3520 3521 if (irsp->ulpStatus) { 3522 /* Rsp ring <ringno> error: IOCB */ 3523 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3524 "0328 Rsp Ring %d error: " 3525 "IOCB Data: " 3526 "x%x x%x x%x x%x " 3527 "x%x x%x x%x x%x " 3528 "x%x x%x x%x x%x " 3529 "x%x x%x x%x x%x\n", 3530 pring->ringno, 3531 irsp->un.ulpWord[0], 3532 irsp->un.ulpWord[1], 3533 irsp->un.ulpWord[2], 3534 irsp->un.ulpWord[3], 3535 irsp->un.ulpWord[4], 3536 irsp->un.ulpWord[5], 3537 *(((uint32_t *) irsp) + 6), 3538 *(((uint32_t *) irsp) + 7), 3539 *(((uint32_t *) irsp) + 8), 3540 *(((uint32_t *) irsp) + 9), 3541 *(((uint32_t *) irsp) + 10), 3542 *(((uint32_t *) irsp) + 11), 3543 *(((uint32_t *) irsp) + 12), 3544 *(((uint32_t *) irsp) + 13), 3545 *(((uint32_t *) irsp) + 14), 3546 *(((uint32_t *) irsp) + 15)); 3547 } 3548 3549 /* 3550 * Fetch the IOCB command type and call the correct completion 3551 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3552 * get freed back to the lpfc_iocb_list by the discovery 3553 * kernel thread. 3554 */ 3555 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3556 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3557 switch (type) { 3558 case LPFC_SOL_IOCB: 3559 spin_unlock_irqrestore(&phba->hbalock, iflag); 3560 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3561 spin_lock_irqsave(&phba->hbalock, iflag); 3562 break; 3563 3564 case LPFC_UNSOL_IOCB: 3565 spin_unlock_irqrestore(&phba->hbalock, iflag); 3566 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3567 spin_lock_irqsave(&phba->hbalock, iflag); 3568 if (!rc) 3569 free_saveq = 0; 3570 break; 3571 3572 case LPFC_ABORT_IOCB: 3573 cmdiocbp = NULL; 3574 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) 3575 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3576 saveq); 3577 if (cmdiocbp) { 3578 /* Call the specified completion routine */ 3579 if (cmdiocbp->iocb_cmpl) { 3580 spin_unlock_irqrestore(&phba->hbalock, 3581 iflag); 3582 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3583 saveq); 3584 spin_lock_irqsave(&phba->hbalock, 3585 iflag); 3586 } else 3587 __lpfc_sli_release_iocbq(phba, 3588 cmdiocbp); 3589 } 3590 break; 3591 3592 case LPFC_UNKNOWN_IOCB: 3593 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3594 char adaptermsg[LPFC_MAX_ADPTMSG]; 3595 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3596 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3597 MAX_MSG_DATA); 3598 dev_warn(&((phba->pcidev)->dev), 3599 "lpfc%d: %s\n", 3600 phba->brd_no, adaptermsg); 3601 } else { 3602 /* Unknown IOCB command */ 3603 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3604 "0335 Unknown IOCB " 3605 "command Data: x%x " 3606 "x%x x%x x%x\n", 3607 irsp->ulpCommand, 3608 irsp->ulpStatus, 3609 irsp->ulpIoTag, 3610 irsp->ulpContext); 3611 } 3612 break; 3613 } 3614 3615 if (free_saveq) { 3616 list_for_each_entry_safe(rspiocbp, next_iocb, 3617 &saveq->list, list) { 3618 list_del_init(&rspiocbp->list); 3619 __lpfc_sli_release_iocbq(phba, rspiocbp); 3620 } 3621 __lpfc_sli_release_iocbq(phba, saveq); 3622 } 3623 rspiocbp = NULL; 3624 } 3625 spin_unlock_irqrestore(&phba->hbalock, iflag); 3626 return rspiocbp; 3627 } 3628 3629 /** 3630 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3631 * @phba: Pointer to HBA context object. 3632 * @pring: Pointer to driver SLI ring object. 3633 * @mask: Host attention register mask for this ring. 3634 * 3635 * This routine wraps the actual slow_ring event process routine from the 3636 * API jump table function pointer from the lpfc_hba struct. 3637 **/ 3638 void 3639 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3640 struct lpfc_sli_ring *pring, uint32_t mask) 3641 { 3642 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3643 } 3644 3645 /** 3646 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3647 * @phba: Pointer to HBA context object. 3648 * @pring: Pointer to driver SLI ring object. 3649 * @mask: Host attention register mask for this ring. 3650 * 3651 * This function is called from the worker thread when there is a ring event 3652 * for non-fcp rings. The caller does not hold any lock. The function will 3653 * remove each response iocb in the response ring and calls the handle 3654 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3655 **/ 3656 static void 3657 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3658 struct lpfc_sli_ring *pring, uint32_t mask) 3659 { 3660 struct lpfc_pgp *pgp; 3661 IOCB_t *entry; 3662 IOCB_t *irsp = NULL; 3663 struct lpfc_iocbq *rspiocbp = NULL; 3664 uint32_t portRspPut, portRspMax; 3665 unsigned long iflag; 3666 uint32_t status; 3667 3668 pgp = &phba->port_gp[pring->ringno]; 3669 spin_lock_irqsave(&phba->hbalock, iflag); 3670 pring->stats.iocb_event++; 3671 3672 /* 3673 * The next available response entry should never exceed the maximum 3674 * entries. If it does, treat it as an adapter hardware error. 3675 */ 3676 portRspMax = pring->sli.sli3.numRiocb; 3677 portRspPut = le32_to_cpu(pgp->rspPutInx); 3678 if (portRspPut >= portRspMax) { 3679 /* 3680 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3681 * rsp ring <portRspMax> 3682 */ 3683 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3684 "0303 Ring %d handler: portRspPut %d " 3685 "is bigger than rsp ring %d\n", 3686 pring->ringno, portRspPut, portRspMax); 3687 3688 phba->link_state = LPFC_HBA_ERROR; 3689 spin_unlock_irqrestore(&phba->hbalock, iflag); 3690 3691 phba->work_hs = HS_FFER3; 3692 lpfc_handle_eratt(phba); 3693 3694 return; 3695 } 3696 3697 rmb(); 3698 while (pring->sli.sli3.rspidx != portRspPut) { 3699 /* 3700 * Build a completion list and call the appropriate handler. 3701 * The process is to get the next available response iocb, get 3702 * a free iocb from the list, copy the response data into the 3703 * free iocb, insert to the continuation list, and update the 3704 * next response index to slim. This process makes response 3705 * iocb's in the ring available to DMA as fast as possible but 3706 * pays a penalty for a copy operation. Since the iocb is 3707 * only 32 bytes, this penalty is considered small relative to 3708 * the PCI reads for register values and a slim write. When 3709 * the ulpLe field is set, the entire Command has been 3710 * received. 3711 */ 3712 entry = lpfc_resp_iocb(phba, pring); 3713 3714 phba->last_completion_time = jiffies; 3715 rspiocbp = __lpfc_sli_get_iocbq(phba); 3716 if (rspiocbp == NULL) { 3717 printk(KERN_ERR "%s: out of buffers! Failing " 3718 "completion.\n", __func__); 3719 break; 3720 } 3721 3722 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3723 phba->iocb_rsp_size); 3724 irsp = &rspiocbp->iocb; 3725 3726 if (++pring->sli.sli3.rspidx >= portRspMax) 3727 pring->sli.sli3.rspidx = 0; 3728 3729 if (pring->ringno == LPFC_ELS_RING) { 3730 lpfc_debugfs_slow_ring_trc(phba, 3731 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3732 *(((uint32_t *) irsp) + 4), 3733 *(((uint32_t *) irsp) + 6), 3734 *(((uint32_t *) irsp) + 7)); 3735 } 3736 3737 writel(pring->sli.sli3.rspidx, 3738 &phba->host_gp[pring->ringno].rspGetInx); 3739 3740 spin_unlock_irqrestore(&phba->hbalock, iflag); 3741 /* Handle the response IOCB */ 3742 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3743 spin_lock_irqsave(&phba->hbalock, iflag); 3744 3745 /* 3746 * If the port response put pointer has not been updated, sync 3747 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3748 * response put pointer. 3749 */ 3750 if (pring->sli.sli3.rspidx == portRspPut) { 3751 portRspPut = le32_to_cpu(pgp->rspPutInx); 3752 } 3753 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3754 3755 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3756 /* At least one response entry has been freed */ 3757 pring->stats.iocb_rsp_full++; 3758 /* SET RxRE_RSP in Chip Att register */ 3759 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3760 writel(status, phba->CAregaddr); 3761 readl(phba->CAregaddr); /* flush */ 3762 } 3763 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3764 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3765 pring->stats.iocb_cmd_empty++; 3766 3767 /* Force update of the local copy of cmdGetInx */ 3768 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3769 lpfc_sli_resume_iocb(phba, pring); 3770 3771 if ((pring->lpfc_sli_cmd_available)) 3772 (pring->lpfc_sli_cmd_available) (phba, pring); 3773 3774 } 3775 3776 spin_unlock_irqrestore(&phba->hbalock, iflag); 3777 return; 3778 } 3779 3780 /** 3781 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3782 * @phba: Pointer to HBA context object. 3783 * @pring: Pointer to driver SLI ring object. 3784 * @mask: Host attention register mask for this ring. 3785 * 3786 * This function is called from the worker thread when there is a pending 3787 * ELS response iocb on the driver internal slow-path response iocb worker 3788 * queue. The caller does not hold any lock. The function will remove each 3789 * response iocb from the response worker queue and calls the handle 3790 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3791 **/ 3792 static void 3793 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 3794 struct lpfc_sli_ring *pring, uint32_t mask) 3795 { 3796 struct lpfc_iocbq *irspiocbq; 3797 struct hbq_dmabuf *dmabuf; 3798 struct lpfc_cq_event *cq_event; 3799 unsigned long iflag; 3800 3801 spin_lock_irqsave(&phba->hbalock, iflag); 3802 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 3803 spin_unlock_irqrestore(&phba->hbalock, iflag); 3804 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 3805 /* Get the response iocb from the head of work queue */ 3806 spin_lock_irqsave(&phba->hbalock, iflag); 3807 list_remove_head(&phba->sli4_hba.sp_queue_event, 3808 cq_event, struct lpfc_cq_event, list); 3809 spin_unlock_irqrestore(&phba->hbalock, iflag); 3810 3811 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 3812 case CQE_CODE_COMPL_WQE: 3813 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 3814 cq_event); 3815 /* Translate ELS WCQE to response IOCBQ */ 3816 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 3817 irspiocbq); 3818 if (irspiocbq) 3819 lpfc_sli_sp_handle_rspiocb(phba, pring, 3820 irspiocbq); 3821 break; 3822 case CQE_CODE_RECEIVE: 3823 case CQE_CODE_RECEIVE_V1: 3824 dmabuf = container_of(cq_event, struct hbq_dmabuf, 3825 cq_event); 3826 lpfc_sli4_handle_received_buffer(phba, dmabuf); 3827 break; 3828 default: 3829 break; 3830 } 3831 } 3832 } 3833 3834 /** 3835 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 3836 * @phba: Pointer to HBA context object. 3837 * @pring: Pointer to driver SLI ring object. 3838 * 3839 * This function aborts all iocbs in the given ring and frees all the iocb 3840 * objects in txq. This function issues an abort iocb for all the iocb commands 3841 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3842 * the return of this function. The caller is not required to hold any locks. 3843 **/ 3844 void 3845 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3846 { 3847 LIST_HEAD(completions); 3848 struct lpfc_iocbq *iocb, *next_iocb; 3849 3850 if (pring->ringno == LPFC_ELS_RING) { 3851 lpfc_fabric_abort_hba(phba); 3852 } 3853 3854 /* Error everything on txq and txcmplq 3855 * First do the txq. 3856 */ 3857 if (phba->sli_rev >= LPFC_SLI_REV4) { 3858 spin_lock_irq(&pring->ring_lock); 3859 list_splice_init(&pring->txq, &completions); 3860 pring->txq_cnt = 0; 3861 spin_unlock_irq(&pring->ring_lock); 3862 3863 spin_lock_irq(&phba->hbalock); 3864 /* Next issue ABTS for everything on the txcmplq */ 3865 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3866 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3867 spin_unlock_irq(&phba->hbalock); 3868 } else { 3869 spin_lock_irq(&phba->hbalock); 3870 list_splice_init(&pring->txq, &completions); 3871 pring->txq_cnt = 0; 3872 3873 /* Next issue ABTS for everything on the txcmplq */ 3874 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3875 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3876 spin_unlock_irq(&phba->hbalock); 3877 } 3878 3879 /* Cancel all the IOCBs from the completions list */ 3880 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 3881 IOERR_SLI_ABORTED); 3882 } 3883 3884 /** 3885 * lpfc_sli_abort_wqe_ring - Abort all iocbs in the ring 3886 * @phba: Pointer to HBA context object. 3887 * @pring: Pointer to driver SLI ring object. 3888 * 3889 * This function aborts all iocbs in the given ring and frees all the iocb 3890 * objects in txq. This function issues an abort iocb for all the iocb commands 3891 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3892 * the return of this function. The caller is not required to hold any locks. 3893 **/ 3894 void 3895 lpfc_sli_abort_wqe_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3896 { 3897 LIST_HEAD(completions); 3898 struct lpfc_iocbq *iocb, *next_iocb; 3899 3900 if (pring->ringno == LPFC_ELS_RING) 3901 lpfc_fabric_abort_hba(phba); 3902 3903 spin_lock_irq(&phba->hbalock); 3904 /* Next issue ABTS for everything on the txcmplq */ 3905 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3906 lpfc_sli4_abort_nvme_io(phba, pring, iocb); 3907 spin_unlock_irq(&phba->hbalock); 3908 } 3909 3910 3911 /** 3912 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 3913 * @phba: Pointer to HBA context object. 3914 * @pring: Pointer to driver SLI ring object. 3915 * 3916 * This function aborts all iocbs in FCP rings and frees all the iocb 3917 * objects in txq. This function issues an abort iocb for all the iocb commands 3918 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3919 * the return of this function. The caller is not required to hold any locks. 3920 **/ 3921 void 3922 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 3923 { 3924 struct lpfc_sli *psli = &phba->sli; 3925 struct lpfc_sli_ring *pring; 3926 uint32_t i; 3927 3928 /* Look on all the FCP Rings for the iotag */ 3929 if (phba->sli_rev >= LPFC_SLI_REV4) { 3930 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3931 pring = phba->sli4_hba.fcp_wq[i]->pring; 3932 lpfc_sli_abort_iocb_ring(phba, pring); 3933 } 3934 } else { 3935 pring = &psli->sli3_ring[LPFC_FCP_RING]; 3936 lpfc_sli_abort_iocb_ring(phba, pring); 3937 } 3938 } 3939 3940 /** 3941 * lpfc_sli_abort_nvme_rings - Abort all wqes in all NVME rings 3942 * @phba: Pointer to HBA context object. 3943 * 3944 * This function aborts all wqes in NVME rings. This function issues an 3945 * abort wqe for all the outstanding IO commands in txcmplq. The iocbs in 3946 * the txcmplq is not guaranteed to complete before the return of this 3947 * function. The caller is not required to hold any locks. 3948 **/ 3949 void 3950 lpfc_sli_abort_nvme_rings(struct lpfc_hba *phba) 3951 { 3952 struct lpfc_sli_ring *pring; 3953 uint32_t i; 3954 3955 if (phba->sli_rev < LPFC_SLI_REV4) 3956 return; 3957 3958 /* Abort all IO on each NVME ring. */ 3959 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 3960 pring = phba->sli4_hba.nvme_wq[i]->pring; 3961 lpfc_sli_abort_wqe_ring(phba, pring); 3962 } 3963 } 3964 3965 3966 /** 3967 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring 3968 * @phba: Pointer to HBA context object. 3969 * 3970 * This function flushes all iocbs in the fcp ring and frees all the iocb 3971 * objects in txq and txcmplq. This function will not issue abort iocbs 3972 * for all the iocb commands in txcmplq, they will just be returned with 3973 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3974 * slot has been permanently disabled. 3975 **/ 3976 void 3977 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba) 3978 { 3979 LIST_HEAD(txq); 3980 LIST_HEAD(txcmplq); 3981 struct lpfc_sli *psli = &phba->sli; 3982 struct lpfc_sli_ring *pring; 3983 uint32_t i; 3984 struct lpfc_iocbq *piocb, *next_iocb; 3985 3986 spin_lock_irq(&phba->hbalock); 3987 /* Indicate the I/O queues are flushed */ 3988 phba->hba_flag |= HBA_FCP_IOQ_FLUSH; 3989 spin_unlock_irq(&phba->hbalock); 3990 3991 /* Look on all the FCP Rings for the iotag */ 3992 if (phba->sli_rev >= LPFC_SLI_REV4) { 3993 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3994 pring = phba->sli4_hba.fcp_wq[i]->pring; 3995 3996 spin_lock_irq(&pring->ring_lock); 3997 /* Retrieve everything on txq */ 3998 list_splice_init(&pring->txq, &txq); 3999 list_for_each_entry_safe(piocb, next_iocb, 4000 &pring->txcmplq, list) 4001 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4002 /* Retrieve everything on the txcmplq */ 4003 list_splice_init(&pring->txcmplq, &txcmplq); 4004 pring->txq_cnt = 0; 4005 pring->txcmplq_cnt = 0; 4006 spin_unlock_irq(&pring->ring_lock); 4007 4008 /* Flush the txq */ 4009 lpfc_sli_cancel_iocbs(phba, &txq, 4010 IOSTAT_LOCAL_REJECT, 4011 IOERR_SLI_DOWN); 4012 /* Flush the txcmpq */ 4013 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4014 IOSTAT_LOCAL_REJECT, 4015 IOERR_SLI_DOWN); 4016 } 4017 } else { 4018 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4019 4020 spin_lock_irq(&phba->hbalock); 4021 /* Retrieve everything on txq */ 4022 list_splice_init(&pring->txq, &txq); 4023 list_for_each_entry_safe(piocb, next_iocb, 4024 &pring->txcmplq, list) 4025 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4026 /* Retrieve everything on the txcmplq */ 4027 list_splice_init(&pring->txcmplq, &txcmplq); 4028 pring->txq_cnt = 0; 4029 pring->txcmplq_cnt = 0; 4030 spin_unlock_irq(&phba->hbalock); 4031 4032 /* Flush the txq */ 4033 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4034 IOERR_SLI_DOWN); 4035 /* Flush the txcmpq */ 4036 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4037 IOERR_SLI_DOWN); 4038 } 4039 } 4040 4041 /** 4042 * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings 4043 * @phba: Pointer to HBA context object. 4044 * 4045 * This function flushes all wqes in the nvme rings and frees all resources 4046 * in the txcmplq. This function does not issue abort wqes for the IO 4047 * commands in txcmplq, they will just be returned with 4048 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4049 * slot has been permanently disabled. 4050 **/ 4051 void 4052 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba) 4053 { 4054 LIST_HEAD(txcmplq); 4055 struct lpfc_sli_ring *pring; 4056 uint32_t i; 4057 struct lpfc_iocbq *piocb, *next_iocb; 4058 4059 if (phba->sli_rev < LPFC_SLI_REV4) 4060 return; 4061 4062 /* Hint to other driver operations that a flush is in progress. */ 4063 spin_lock_irq(&phba->hbalock); 4064 phba->hba_flag |= HBA_NVME_IOQ_FLUSH; 4065 spin_unlock_irq(&phba->hbalock); 4066 4067 /* Cycle through all NVME rings and complete each IO with 4068 * a local driver reason code. This is a flush so no 4069 * abort exchange to FW. 4070 */ 4071 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 4072 pring = phba->sli4_hba.nvme_wq[i]->pring; 4073 4074 spin_lock_irq(&pring->ring_lock); 4075 list_for_each_entry_safe(piocb, next_iocb, 4076 &pring->txcmplq, list) 4077 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4078 /* Retrieve everything on the txcmplq */ 4079 list_splice_init(&pring->txcmplq, &txcmplq); 4080 pring->txcmplq_cnt = 0; 4081 spin_unlock_irq(&pring->ring_lock); 4082 4083 /* Flush the txcmpq &&&PAE */ 4084 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4085 IOSTAT_LOCAL_REJECT, 4086 IOERR_SLI_DOWN); 4087 } 4088 } 4089 4090 /** 4091 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4092 * @phba: Pointer to HBA context object. 4093 * @mask: Bit mask to be checked. 4094 * 4095 * This function reads the host status register and compares 4096 * with the provided bit mask to check if HBA completed 4097 * the restart. This function will wait in a loop for the 4098 * HBA to complete restart. If the HBA does not restart within 4099 * 15 iterations, the function will reset the HBA again. The 4100 * function returns 1 when HBA fail to restart otherwise returns 4101 * zero. 4102 **/ 4103 static int 4104 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4105 { 4106 uint32_t status; 4107 int i = 0; 4108 int retval = 0; 4109 4110 /* Read the HBA Host Status Register */ 4111 if (lpfc_readl(phba->HSregaddr, &status)) 4112 return 1; 4113 4114 /* 4115 * Check status register every 100ms for 5 retries, then every 4116 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4117 * every 2.5 sec for 4. 4118 * Break our of the loop if errors occurred during init. 4119 */ 4120 while (((status & mask) != mask) && 4121 !(status & HS_FFERM) && 4122 i++ < 20) { 4123 4124 if (i <= 5) 4125 msleep(10); 4126 else if (i <= 10) 4127 msleep(500); 4128 else 4129 msleep(2500); 4130 4131 if (i == 15) { 4132 /* Do post */ 4133 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4134 lpfc_sli_brdrestart(phba); 4135 } 4136 /* Read the HBA Host Status Register */ 4137 if (lpfc_readl(phba->HSregaddr, &status)) { 4138 retval = 1; 4139 break; 4140 } 4141 } 4142 4143 /* Check to see if any errors occurred during init */ 4144 if ((status & HS_FFERM) || (i >= 20)) { 4145 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4146 "2751 Adapter failed to restart, " 4147 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4148 status, 4149 readl(phba->MBslimaddr + 0xa8), 4150 readl(phba->MBslimaddr + 0xac)); 4151 phba->link_state = LPFC_HBA_ERROR; 4152 retval = 1; 4153 } 4154 4155 return retval; 4156 } 4157 4158 /** 4159 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4160 * @phba: Pointer to HBA context object. 4161 * @mask: Bit mask to be checked. 4162 * 4163 * This function checks the host status register to check if HBA is 4164 * ready. This function will wait in a loop for the HBA to be ready 4165 * If the HBA is not ready , the function will will reset the HBA PCI 4166 * function again. The function returns 1 when HBA fail to be ready 4167 * otherwise returns zero. 4168 **/ 4169 static int 4170 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4171 { 4172 uint32_t status; 4173 int retval = 0; 4174 4175 /* Read the HBA Host Status Register */ 4176 status = lpfc_sli4_post_status_check(phba); 4177 4178 if (status) { 4179 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4180 lpfc_sli_brdrestart(phba); 4181 status = lpfc_sli4_post_status_check(phba); 4182 } 4183 4184 /* Check to see if any errors occurred during init */ 4185 if (status) { 4186 phba->link_state = LPFC_HBA_ERROR; 4187 retval = 1; 4188 } else 4189 phba->sli4_hba.intr_enable = 0; 4190 4191 return retval; 4192 } 4193 4194 /** 4195 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4196 * @phba: Pointer to HBA context object. 4197 * @mask: Bit mask to be checked. 4198 * 4199 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4200 * from the API jump table function pointer from the lpfc_hba struct. 4201 **/ 4202 int 4203 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4204 { 4205 return phba->lpfc_sli_brdready(phba, mask); 4206 } 4207 4208 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4209 4210 /** 4211 * lpfc_reset_barrier - Make HBA ready for HBA reset 4212 * @phba: Pointer to HBA context object. 4213 * 4214 * This function is called before resetting an HBA. This function is called 4215 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4216 **/ 4217 void lpfc_reset_barrier(struct lpfc_hba *phba) 4218 { 4219 uint32_t __iomem *resp_buf; 4220 uint32_t __iomem *mbox_buf; 4221 volatile uint32_t mbox; 4222 uint32_t hc_copy, ha_copy, resp_data; 4223 int i; 4224 uint8_t hdrtype; 4225 4226 lockdep_assert_held(&phba->hbalock); 4227 4228 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4229 if (hdrtype != 0x80 || 4230 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4231 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4232 return; 4233 4234 /* 4235 * Tell the other part of the chip to suspend temporarily all 4236 * its DMA activity. 4237 */ 4238 resp_buf = phba->MBslimaddr; 4239 4240 /* Disable the error attention */ 4241 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4242 return; 4243 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4244 readl(phba->HCregaddr); /* flush */ 4245 phba->link_flag |= LS_IGNORE_ERATT; 4246 4247 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4248 return; 4249 if (ha_copy & HA_ERATT) { 4250 /* Clear Chip error bit */ 4251 writel(HA_ERATT, phba->HAregaddr); 4252 phba->pport->stopped = 1; 4253 } 4254 4255 mbox = 0; 4256 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4257 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4258 4259 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4260 mbox_buf = phba->MBslimaddr; 4261 writel(mbox, mbox_buf); 4262 4263 for (i = 0; i < 50; i++) { 4264 if (lpfc_readl((resp_buf + 1), &resp_data)) 4265 return; 4266 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4267 mdelay(1); 4268 else 4269 break; 4270 } 4271 resp_data = 0; 4272 if (lpfc_readl((resp_buf + 1), &resp_data)) 4273 return; 4274 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4275 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4276 phba->pport->stopped) 4277 goto restore_hc; 4278 else 4279 goto clear_errat; 4280 } 4281 4282 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4283 resp_data = 0; 4284 for (i = 0; i < 500; i++) { 4285 if (lpfc_readl(resp_buf, &resp_data)) 4286 return; 4287 if (resp_data != mbox) 4288 mdelay(1); 4289 else 4290 break; 4291 } 4292 4293 clear_errat: 4294 4295 while (++i < 500) { 4296 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4297 return; 4298 if (!(ha_copy & HA_ERATT)) 4299 mdelay(1); 4300 else 4301 break; 4302 } 4303 4304 if (readl(phba->HAregaddr) & HA_ERATT) { 4305 writel(HA_ERATT, phba->HAregaddr); 4306 phba->pport->stopped = 1; 4307 } 4308 4309 restore_hc: 4310 phba->link_flag &= ~LS_IGNORE_ERATT; 4311 writel(hc_copy, phba->HCregaddr); 4312 readl(phba->HCregaddr); /* flush */ 4313 } 4314 4315 /** 4316 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4317 * @phba: Pointer to HBA context object. 4318 * 4319 * This function issues a kill_board mailbox command and waits for 4320 * the error attention interrupt. This function is called for stopping 4321 * the firmware processing. The caller is not required to hold any 4322 * locks. This function calls lpfc_hba_down_post function to free 4323 * any pending commands after the kill. The function will return 1 when it 4324 * fails to kill the board else will return 0. 4325 **/ 4326 int 4327 lpfc_sli_brdkill(struct lpfc_hba *phba) 4328 { 4329 struct lpfc_sli *psli; 4330 LPFC_MBOXQ_t *pmb; 4331 uint32_t status; 4332 uint32_t ha_copy; 4333 int retval; 4334 int i = 0; 4335 4336 psli = &phba->sli; 4337 4338 /* Kill HBA */ 4339 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4340 "0329 Kill HBA Data: x%x x%x\n", 4341 phba->pport->port_state, psli->sli_flag); 4342 4343 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4344 if (!pmb) 4345 return 1; 4346 4347 /* Disable the error attention */ 4348 spin_lock_irq(&phba->hbalock); 4349 if (lpfc_readl(phba->HCregaddr, &status)) { 4350 spin_unlock_irq(&phba->hbalock); 4351 mempool_free(pmb, phba->mbox_mem_pool); 4352 return 1; 4353 } 4354 status &= ~HC_ERINT_ENA; 4355 writel(status, phba->HCregaddr); 4356 readl(phba->HCregaddr); /* flush */ 4357 phba->link_flag |= LS_IGNORE_ERATT; 4358 spin_unlock_irq(&phba->hbalock); 4359 4360 lpfc_kill_board(phba, pmb); 4361 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4362 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4363 4364 if (retval != MBX_SUCCESS) { 4365 if (retval != MBX_BUSY) 4366 mempool_free(pmb, phba->mbox_mem_pool); 4367 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4368 "2752 KILL_BOARD command failed retval %d\n", 4369 retval); 4370 spin_lock_irq(&phba->hbalock); 4371 phba->link_flag &= ~LS_IGNORE_ERATT; 4372 spin_unlock_irq(&phba->hbalock); 4373 return 1; 4374 } 4375 4376 spin_lock_irq(&phba->hbalock); 4377 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4378 spin_unlock_irq(&phba->hbalock); 4379 4380 mempool_free(pmb, phba->mbox_mem_pool); 4381 4382 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4383 * attention every 100ms for 3 seconds. If we don't get ERATT after 4384 * 3 seconds we still set HBA_ERROR state because the status of the 4385 * board is now undefined. 4386 */ 4387 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4388 return 1; 4389 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4390 mdelay(100); 4391 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4392 return 1; 4393 } 4394 4395 del_timer_sync(&psli->mbox_tmo); 4396 if (ha_copy & HA_ERATT) { 4397 writel(HA_ERATT, phba->HAregaddr); 4398 phba->pport->stopped = 1; 4399 } 4400 spin_lock_irq(&phba->hbalock); 4401 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4402 psli->mbox_active = NULL; 4403 phba->link_flag &= ~LS_IGNORE_ERATT; 4404 spin_unlock_irq(&phba->hbalock); 4405 4406 lpfc_hba_down_post(phba); 4407 phba->link_state = LPFC_HBA_ERROR; 4408 4409 return ha_copy & HA_ERATT ? 0 : 1; 4410 } 4411 4412 /** 4413 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4414 * @phba: Pointer to HBA context object. 4415 * 4416 * This function resets the HBA by writing HC_INITFF to the control 4417 * register. After the HBA resets, this function resets all the iocb ring 4418 * indices. This function disables PCI layer parity checking during 4419 * the reset. 4420 * This function returns 0 always. 4421 * The caller is not required to hold any locks. 4422 **/ 4423 int 4424 lpfc_sli_brdreset(struct lpfc_hba *phba) 4425 { 4426 struct lpfc_sli *psli; 4427 struct lpfc_sli_ring *pring; 4428 uint16_t cfg_value; 4429 int i; 4430 4431 psli = &phba->sli; 4432 4433 /* Reset HBA */ 4434 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4435 "0325 Reset HBA Data: x%x x%x\n", 4436 (phba->pport) ? phba->pport->port_state : 0, 4437 psli->sli_flag); 4438 4439 /* perform board reset */ 4440 phba->fc_eventTag = 0; 4441 phba->link_events = 0; 4442 if (phba->pport) { 4443 phba->pport->fc_myDID = 0; 4444 phba->pport->fc_prevDID = 0; 4445 } 4446 4447 /* Turn off parity checking and serr during the physical reset */ 4448 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4449 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4450 (cfg_value & 4451 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4452 4453 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4454 4455 /* Now toggle INITFF bit in the Host Control Register */ 4456 writel(HC_INITFF, phba->HCregaddr); 4457 mdelay(1); 4458 readl(phba->HCregaddr); /* flush */ 4459 writel(0, phba->HCregaddr); 4460 readl(phba->HCregaddr); /* flush */ 4461 4462 /* Restore PCI cmd register */ 4463 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4464 4465 /* Initialize relevant SLI info */ 4466 for (i = 0; i < psli->num_rings; i++) { 4467 pring = &psli->sli3_ring[i]; 4468 pring->flag = 0; 4469 pring->sli.sli3.rspidx = 0; 4470 pring->sli.sli3.next_cmdidx = 0; 4471 pring->sli.sli3.local_getidx = 0; 4472 pring->sli.sli3.cmdidx = 0; 4473 pring->missbufcnt = 0; 4474 } 4475 4476 phba->link_state = LPFC_WARM_START; 4477 return 0; 4478 } 4479 4480 /** 4481 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4482 * @phba: Pointer to HBA context object. 4483 * 4484 * This function resets a SLI4 HBA. This function disables PCI layer parity 4485 * checking during resets the device. The caller is not required to hold 4486 * any locks. 4487 * 4488 * This function returns 0 always. 4489 **/ 4490 int 4491 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4492 { 4493 struct lpfc_sli *psli = &phba->sli; 4494 uint16_t cfg_value; 4495 int rc = 0; 4496 4497 /* Reset HBA */ 4498 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4499 "0295 Reset HBA Data: x%x x%x x%x\n", 4500 phba->pport->port_state, psli->sli_flag, 4501 phba->hba_flag); 4502 4503 /* perform board reset */ 4504 phba->fc_eventTag = 0; 4505 phba->link_events = 0; 4506 phba->pport->fc_myDID = 0; 4507 phba->pport->fc_prevDID = 0; 4508 4509 spin_lock_irq(&phba->hbalock); 4510 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4511 phba->fcf.fcf_flag = 0; 4512 spin_unlock_irq(&phba->hbalock); 4513 4514 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4515 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4516 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4517 return rc; 4518 } 4519 4520 /* Now physically reset the device */ 4521 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4522 "0389 Performing PCI function reset!\n"); 4523 4524 /* Turn off parity checking and serr during the physical reset */ 4525 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4526 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4527 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4528 4529 /* Perform FCoE PCI function reset before freeing queue memory */ 4530 rc = lpfc_pci_function_reset(phba); 4531 4532 /* Restore PCI cmd register */ 4533 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4534 4535 return rc; 4536 } 4537 4538 /** 4539 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4540 * @phba: Pointer to HBA context object. 4541 * 4542 * This function is called in the SLI initialization code path to 4543 * restart the HBA. The caller is not required to hold any lock. 4544 * This function writes MBX_RESTART mailbox command to the SLIM and 4545 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4546 * function to free any pending commands. The function enables 4547 * POST only during the first initialization. The function returns zero. 4548 * The function does not guarantee completion of MBX_RESTART mailbox 4549 * command before the return of this function. 4550 **/ 4551 static int 4552 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4553 { 4554 MAILBOX_t *mb; 4555 struct lpfc_sli *psli; 4556 volatile uint32_t word0; 4557 void __iomem *to_slim; 4558 uint32_t hba_aer_enabled; 4559 4560 spin_lock_irq(&phba->hbalock); 4561 4562 /* Take PCIe device Advanced Error Reporting (AER) state */ 4563 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4564 4565 psli = &phba->sli; 4566 4567 /* Restart HBA */ 4568 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4569 "0337 Restart HBA Data: x%x x%x\n", 4570 (phba->pport) ? phba->pport->port_state : 0, 4571 psli->sli_flag); 4572 4573 word0 = 0; 4574 mb = (MAILBOX_t *) &word0; 4575 mb->mbxCommand = MBX_RESTART; 4576 mb->mbxHc = 1; 4577 4578 lpfc_reset_barrier(phba); 4579 4580 to_slim = phba->MBslimaddr; 4581 writel(*(uint32_t *) mb, to_slim); 4582 readl(to_slim); /* flush */ 4583 4584 /* Only skip post after fc_ffinit is completed */ 4585 if (phba->pport && phba->pport->port_state) 4586 word0 = 1; /* This is really setting up word1 */ 4587 else 4588 word0 = 0; /* This is really setting up word1 */ 4589 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4590 writel(*(uint32_t *) mb, to_slim); 4591 readl(to_slim); /* flush */ 4592 4593 lpfc_sli_brdreset(phba); 4594 if (phba->pport) 4595 phba->pport->stopped = 0; 4596 phba->link_state = LPFC_INIT_START; 4597 phba->hba_flag = 0; 4598 spin_unlock_irq(&phba->hbalock); 4599 4600 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4601 psli->stats_start = ktime_get_seconds(); 4602 4603 /* Give the INITFF and Post time to settle. */ 4604 mdelay(100); 4605 4606 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4607 if (hba_aer_enabled) 4608 pci_disable_pcie_error_reporting(phba->pcidev); 4609 4610 lpfc_hba_down_post(phba); 4611 4612 return 0; 4613 } 4614 4615 /** 4616 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4617 * @phba: Pointer to HBA context object. 4618 * 4619 * This function is called in the SLI initialization code path to restart 4620 * a SLI4 HBA. The caller is not required to hold any lock. 4621 * At the end of the function, it calls lpfc_hba_down_post function to 4622 * free any pending commands. 4623 **/ 4624 static int 4625 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4626 { 4627 struct lpfc_sli *psli = &phba->sli; 4628 uint32_t hba_aer_enabled; 4629 int rc; 4630 4631 /* Restart HBA */ 4632 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4633 "0296 Restart HBA Data: x%x x%x\n", 4634 phba->pport->port_state, psli->sli_flag); 4635 4636 /* Take PCIe device Advanced Error Reporting (AER) state */ 4637 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4638 4639 rc = lpfc_sli4_brdreset(phba); 4640 4641 spin_lock_irq(&phba->hbalock); 4642 phba->pport->stopped = 0; 4643 phba->link_state = LPFC_INIT_START; 4644 phba->hba_flag = 0; 4645 spin_unlock_irq(&phba->hbalock); 4646 4647 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4648 psli->stats_start = ktime_get_seconds(); 4649 4650 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4651 if (hba_aer_enabled) 4652 pci_disable_pcie_error_reporting(phba->pcidev); 4653 4654 lpfc_hba_down_post(phba); 4655 lpfc_sli4_queue_destroy(phba); 4656 4657 return rc; 4658 } 4659 4660 /** 4661 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4662 * @phba: Pointer to HBA context object. 4663 * 4664 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4665 * API jump table function pointer from the lpfc_hba struct. 4666 **/ 4667 int 4668 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4669 { 4670 return phba->lpfc_sli_brdrestart(phba); 4671 } 4672 4673 /** 4674 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4675 * @phba: Pointer to HBA context object. 4676 * 4677 * This function is called after a HBA restart to wait for successful 4678 * restart of the HBA. Successful restart of the HBA is indicated by 4679 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4680 * iteration, the function will restart the HBA again. The function returns 4681 * zero if HBA successfully restarted else returns negative error code. 4682 **/ 4683 int 4684 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4685 { 4686 uint32_t status, i = 0; 4687 4688 /* Read the HBA Host Status Register */ 4689 if (lpfc_readl(phba->HSregaddr, &status)) 4690 return -EIO; 4691 4692 /* Check status register to see what current state is */ 4693 i = 0; 4694 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4695 4696 /* Check every 10ms for 10 retries, then every 100ms for 90 4697 * retries, then every 1 sec for 50 retires for a total of 4698 * ~60 seconds before reset the board again and check every 4699 * 1 sec for 50 retries. The up to 60 seconds before the 4700 * board ready is required by the Falcon FIPS zeroization 4701 * complete, and any reset the board in between shall cause 4702 * restart of zeroization, further delay the board ready. 4703 */ 4704 if (i++ >= 200) { 4705 /* Adapter failed to init, timeout, status reg 4706 <status> */ 4707 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4708 "0436 Adapter failed to init, " 4709 "timeout, status reg x%x, " 4710 "FW Data: A8 x%x AC x%x\n", status, 4711 readl(phba->MBslimaddr + 0xa8), 4712 readl(phba->MBslimaddr + 0xac)); 4713 phba->link_state = LPFC_HBA_ERROR; 4714 return -ETIMEDOUT; 4715 } 4716 4717 /* Check to see if any errors occurred during init */ 4718 if (status & HS_FFERM) { 4719 /* ERROR: During chipset initialization */ 4720 /* Adapter failed to init, chipset, status reg 4721 <status> */ 4722 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4723 "0437 Adapter failed to init, " 4724 "chipset, status reg x%x, " 4725 "FW Data: A8 x%x AC x%x\n", status, 4726 readl(phba->MBslimaddr + 0xa8), 4727 readl(phba->MBslimaddr + 0xac)); 4728 phba->link_state = LPFC_HBA_ERROR; 4729 return -EIO; 4730 } 4731 4732 if (i <= 10) 4733 msleep(10); 4734 else if (i <= 100) 4735 msleep(100); 4736 else 4737 msleep(1000); 4738 4739 if (i == 150) { 4740 /* Do post */ 4741 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4742 lpfc_sli_brdrestart(phba); 4743 } 4744 /* Read the HBA Host Status Register */ 4745 if (lpfc_readl(phba->HSregaddr, &status)) 4746 return -EIO; 4747 } 4748 4749 /* Check to see if any errors occurred during init */ 4750 if (status & HS_FFERM) { 4751 /* ERROR: During chipset initialization */ 4752 /* Adapter failed to init, chipset, status reg <status> */ 4753 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4754 "0438 Adapter failed to init, chipset, " 4755 "status reg x%x, " 4756 "FW Data: A8 x%x AC x%x\n", status, 4757 readl(phba->MBslimaddr + 0xa8), 4758 readl(phba->MBslimaddr + 0xac)); 4759 phba->link_state = LPFC_HBA_ERROR; 4760 return -EIO; 4761 } 4762 4763 /* Clear all interrupt enable conditions */ 4764 writel(0, phba->HCregaddr); 4765 readl(phba->HCregaddr); /* flush */ 4766 4767 /* setup host attn register */ 4768 writel(0xffffffff, phba->HAregaddr); 4769 readl(phba->HAregaddr); /* flush */ 4770 return 0; 4771 } 4772 4773 /** 4774 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4775 * 4776 * This function calculates and returns the number of HBQs required to be 4777 * configured. 4778 **/ 4779 int 4780 lpfc_sli_hbq_count(void) 4781 { 4782 return ARRAY_SIZE(lpfc_hbq_defs); 4783 } 4784 4785 /** 4786 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4787 * 4788 * This function adds the number of hbq entries in every HBQ to get 4789 * the total number of hbq entries required for the HBA and returns 4790 * the total count. 4791 **/ 4792 static int 4793 lpfc_sli_hbq_entry_count(void) 4794 { 4795 int hbq_count = lpfc_sli_hbq_count(); 4796 int count = 0; 4797 int i; 4798 4799 for (i = 0; i < hbq_count; ++i) 4800 count += lpfc_hbq_defs[i]->entry_count; 4801 return count; 4802 } 4803 4804 /** 4805 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4806 * 4807 * This function calculates amount of memory required for all hbq entries 4808 * to be configured and returns the total memory required. 4809 **/ 4810 int 4811 lpfc_sli_hbq_size(void) 4812 { 4813 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4814 } 4815 4816 /** 4817 * lpfc_sli_hbq_setup - configure and initialize HBQs 4818 * @phba: Pointer to HBA context object. 4819 * 4820 * This function is called during the SLI initialization to configure 4821 * all the HBQs and post buffers to the HBQ. The caller is not 4822 * required to hold any locks. This function will return zero if successful 4823 * else it will return negative error code. 4824 **/ 4825 static int 4826 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4827 { 4828 int hbq_count = lpfc_sli_hbq_count(); 4829 LPFC_MBOXQ_t *pmb; 4830 MAILBOX_t *pmbox; 4831 uint32_t hbqno; 4832 uint32_t hbq_entry_index; 4833 4834 /* Get a Mailbox buffer to setup mailbox 4835 * commands for HBA initialization 4836 */ 4837 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4838 4839 if (!pmb) 4840 return -ENOMEM; 4841 4842 pmbox = &pmb->u.mb; 4843 4844 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4845 phba->link_state = LPFC_INIT_MBX_CMDS; 4846 phba->hbq_in_use = 1; 4847 4848 hbq_entry_index = 0; 4849 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4850 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4851 phba->hbqs[hbqno].hbqPutIdx = 0; 4852 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4853 phba->hbqs[hbqno].entry_count = 4854 lpfc_hbq_defs[hbqno]->entry_count; 4855 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4856 hbq_entry_index, pmb); 4857 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4858 4859 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4860 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4861 mbxStatus <status>, ring <num> */ 4862 4863 lpfc_printf_log(phba, KERN_ERR, 4864 LOG_SLI | LOG_VPORT, 4865 "1805 Adapter failed to init. " 4866 "Data: x%x x%x x%x\n", 4867 pmbox->mbxCommand, 4868 pmbox->mbxStatus, hbqno); 4869 4870 phba->link_state = LPFC_HBA_ERROR; 4871 mempool_free(pmb, phba->mbox_mem_pool); 4872 return -ENXIO; 4873 } 4874 } 4875 phba->hbq_count = hbq_count; 4876 4877 mempool_free(pmb, phba->mbox_mem_pool); 4878 4879 /* Initially populate or replenish the HBQs */ 4880 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 4881 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 4882 return 0; 4883 } 4884 4885 /** 4886 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 4887 * @phba: Pointer to HBA context object. 4888 * 4889 * This function is called during the SLI initialization to configure 4890 * all the HBQs and post buffers to the HBQ. The caller is not 4891 * required to hold any locks. This function will return zero if successful 4892 * else it will return negative error code. 4893 **/ 4894 static int 4895 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 4896 { 4897 phba->hbq_in_use = 1; 4898 phba->hbqs[LPFC_ELS_HBQ].entry_count = 4899 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 4900 phba->hbq_count = 1; 4901 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 4902 /* Initially populate or replenish the HBQs */ 4903 return 0; 4904 } 4905 4906 /** 4907 * lpfc_sli_config_port - Issue config port mailbox command 4908 * @phba: Pointer to HBA context object. 4909 * @sli_mode: sli mode - 2/3 4910 * 4911 * This function is called by the sli initialization code path 4912 * to issue config_port mailbox command. This function restarts the 4913 * HBA firmware and issues a config_port mailbox command to configure 4914 * the SLI interface in the sli mode specified by sli_mode 4915 * variable. The caller is not required to hold any locks. 4916 * The function returns 0 if successful, else returns negative error 4917 * code. 4918 **/ 4919 int 4920 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 4921 { 4922 LPFC_MBOXQ_t *pmb; 4923 uint32_t resetcount = 0, rc = 0, done = 0; 4924 4925 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4926 if (!pmb) { 4927 phba->link_state = LPFC_HBA_ERROR; 4928 return -ENOMEM; 4929 } 4930 4931 phba->sli_rev = sli_mode; 4932 while (resetcount < 2 && !done) { 4933 spin_lock_irq(&phba->hbalock); 4934 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 4935 spin_unlock_irq(&phba->hbalock); 4936 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4937 lpfc_sli_brdrestart(phba); 4938 rc = lpfc_sli_chipset_init(phba); 4939 if (rc) 4940 break; 4941 4942 spin_lock_irq(&phba->hbalock); 4943 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4944 spin_unlock_irq(&phba->hbalock); 4945 resetcount++; 4946 4947 /* Call pre CONFIG_PORT mailbox command initialization. A 4948 * value of 0 means the call was successful. Any other 4949 * nonzero value is a failure, but if ERESTART is returned, 4950 * the driver may reset the HBA and try again. 4951 */ 4952 rc = lpfc_config_port_prep(phba); 4953 if (rc == -ERESTART) { 4954 phba->link_state = LPFC_LINK_UNKNOWN; 4955 continue; 4956 } else if (rc) 4957 break; 4958 4959 phba->link_state = LPFC_INIT_MBX_CMDS; 4960 lpfc_config_port(phba, pmb); 4961 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 4962 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 4963 LPFC_SLI3_HBQ_ENABLED | 4964 LPFC_SLI3_CRP_ENABLED | 4965 LPFC_SLI3_BG_ENABLED | 4966 LPFC_SLI3_DSS_ENABLED); 4967 if (rc != MBX_SUCCESS) { 4968 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4969 "0442 Adapter failed to init, mbxCmd x%x " 4970 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 4971 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 4972 spin_lock_irq(&phba->hbalock); 4973 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 4974 spin_unlock_irq(&phba->hbalock); 4975 rc = -ENXIO; 4976 } else { 4977 /* Allow asynchronous mailbox command to go through */ 4978 spin_lock_irq(&phba->hbalock); 4979 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 4980 spin_unlock_irq(&phba->hbalock); 4981 done = 1; 4982 4983 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 4984 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 4985 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 4986 "3110 Port did not grant ASABT\n"); 4987 } 4988 } 4989 if (!done) { 4990 rc = -EINVAL; 4991 goto do_prep_failed; 4992 } 4993 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 4994 if (!pmb->u.mb.un.varCfgPort.cMA) { 4995 rc = -ENXIO; 4996 goto do_prep_failed; 4997 } 4998 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 4999 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5000 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5001 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5002 phba->max_vpi : phba->max_vports; 5003 5004 } else 5005 phba->max_vpi = 0; 5006 phba->fips_level = 0; 5007 phba->fips_spec_rev = 0; 5008 if (pmb->u.mb.un.varCfgPort.gdss) { 5009 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED; 5010 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level; 5011 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev; 5012 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5013 "2850 Security Crypto Active. FIPS x%d " 5014 "(Spec Rev: x%d)", 5015 phba->fips_level, phba->fips_spec_rev); 5016 } 5017 if (pmb->u.mb.un.varCfgPort.sec_err) { 5018 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5019 "2856 Config Port Security Crypto " 5020 "Error: x%x ", 5021 pmb->u.mb.un.varCfgPort.sec_err); 5022 } 5023 if (pmb->u.mb.un.varCfgPort.gerbm) 5024 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5025 if (pmb->u.mb.un.varCfgPort.gcrp) 5026 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5027 5028 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5029 phba->port_gp = phba->mbox->us.s3_pgp.port; 5030 5031 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5032 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5033 phba->cfg_enable_bg = 0; 5034 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5035 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5036 "0443 Adapter did not grant " 5037 "BlockGuard\n"); 5038 } 5039 } 5040 } else { 5041 phba->hbq_get = NULL; 5042 phba->port_gp = phba->mbox->us.s2.port; 5043 phba->max_vpi = 0; 5044 } 5045 do_prep_failed: 5046 mempool_free(pmb, phba->mbox_mem_pool); 5047 return rc; 5048 } 5049 5050 5051 /** 5052 * lpfc_sli_hba_setup - SLI initialization function 5053 * @phba: Pointer to HBA context object. 5054 * 5055 * This function is the main SLI initialization function. This function 5056 * is called by the HBA initialization code, HBA reset code and HBA 5057 * error attention handler code. Caller is not required to hold any 5058 * locks. This function issues config_port mailbox command to configure 5059 * the SLI, setup iocb rings and HBQ rings. In the end the function 5060 * calls the config_port_post function to issue init_link mailbox 5061 * command and to start the discovery. The function will return zero 5062 * if successful, else it will return negative error code. 5063 **/ 5064 int 5065 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5066 { 5067 uint32_t rc; 5068 int mode = 3, i; 5069 int longs; 5070 5071 switch (phba->cfg_sli_mode) { 5072 case 2: 5073 if (phba->cfg_enable_npiv) { 5074 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5075 "1824 NPIV enabled: Override sli_mode " 5076 "parameter (%d) to auto (0).\n", 5077 phba->cfg_sli_mode); 5078 break; 5079 } 5080 mode = 2; 5081 break; 5082 case 0: 5083 case 3: 5084 break; 5085 default: 5086 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5087 "1819 Unrecognized sli_mode parameter: %d.\n", 5088 phba->cfg_sli_mode); 5089 5090 break; 5091 } 5092 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5093 5094 rc = lpfc_sli_config_port(phba, mode); 5095 5096 if (rc && phba->cfg_sli_mode == 3) 5097 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5098 "1820 Unable to select SLI-3. " 5099 "Not supported by adapter.\n"); 5100 if (rc && mode != 2) 5101 rc = lpfc_sli_config_port(phba, 2); 5102 else if (rc && mode == 2) 5103 rc = lpfc_sli_config_port(phba, 3); 5104 if (rc) 5105 goto lpfc_sli_hba_setup_error; 5106 5107 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5108 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5109 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5110 if (!rc) { 5111 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5112 "2709 This device supports " 5113 "Advanced Error Reporting (AER)\n"); 5114 spin_lock_irq(&phba->hbalock); 5115 phba->hba_flag |= HBA_AER_ENABLED; 5116 spin_unlock_irq(&phba->hbalock); 5117 } else { 5118 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5119 "2708 This device does not support " 5120 "Advanced Error Reporting (AER): %d\n", 5121 rc); 5122 phba->cfg_aer_support = 0; 5123 } 5124 } 5125 5126 if (phba->sli_rev == 3) { 5127 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5128 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5129 } else { 5130 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5131 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5132 phba->sli3_options = 0; 5133 } 5134 5135 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5136 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5137 phba->sli_rev, phba->max_vpi); 5138 rc = lpfc_sli_ring_map(phba); 5139 5140 if (rc) 5141 goto lpfc_sli_hba_setup_error; 5142 5143 /* Initialize VPIs. */ 5144 if (phba->sli_rev == LPFC_SLI_REV3) { 5145 /* 5146 * The VPI bitmask and physical ID array are allocated 5147 * and initialized once only - at driver load. A port 5148 * reset doesn't need to reinitialize this memory. 5149 */ 5150 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5151 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5152 phba->vpi_bmask = kcalloc(longs, 5153 sizeof(unsigned long), 5154 GFP_KERNEL); 5155 if (!phba->vpi_bmask) { 5156 rc = -ENOMEM; 5157 goto lpfc_sli_hba_setup_error; 5158 } 5159 5160 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5161 sizeof(uint16_t), 5162 GFP_KERNEL); 5163 if (!phba->vpi_ids) { 5164 kfree(phba->vpi_bmask); 5165 rc = -ENOMEM; 5166 goto lpfc_sli_hba_setup_error; 5167 } 5168 for (i = 0; i < phba->max_vpi; i++) 5169 phba->vpi_ids[i] = i; 5170 } 5171 } 5172 5173 /* Init HBQs */ 5174 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5175 rc = lpfc_sli_hbq_setup(phba); 5176 if (rc) 5177 goto lpfc_sli_hba_setup_error; 5178 } 5179 spin_lock_irq(&phba->hbalock); 5180 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5181 spin_unlock_irq(&phba->hbalock); 5182 5183 rc = lpfc_config_port_post(phba); 5184 if (rc) 5185 goto lpfc_sli_hba_setup_error; 5186 5187 return rc; 5188 5189 lpfc_sli_hba_setup_error: 5190 phba->link_state = LPFC_HBA_ERROR; 5191 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5192 "0445 Firmware initialization failed\n"); 5193 return rc; 5194 } 5195 5196 /** 5197 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5198 * @phba: Pointer to HBA context object. 5199 * @mboxq: mailbox pointer. 5200 * This function issue a dump mailbox command to read config region 5201 * 23 and parse the records in the region and populate driver 5202 * data structure. 5203 **/ 5204 static int 5205 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5206 { 5207 LPFC_MBOXQ_t *mboxq; 5208 struct lpfc_dmabuf *mp; 5209 struct lpfc_mqe *mqe; 5210 uint32_t data_length; 5211 int rc; 5212 5213 /* Program the default value of vlan_id and fc_map */ 5214 phba->valid_vlan = 0; 5215 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5216 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5217 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5218 5219 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5220 if (!mboxq) 5221 return -ENOMEM; 5222 5223 mqe = &mboxq->u.mqe; 5224 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5225 rc = -ENOMEM; 5226 goto out_free_mboxq; 5227 } 5228 5229 mp = (struct lpfc_dmabuf *) mboxq->context1; 5230 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5231 5232 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5233 "(%d):2571 Mailbox cmd x%x Status x%x " 5234 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5235 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5236 "CQ: x%x x%x x%x x%x\n", 5237 mboxq->vport ? mboxq->vport->vpi : 0, 5238 bf_get(lpfc_mqe_command, mqe), 5239 bf_get(lpfc_mqe_status, mqe), 5240 mqe->un.mb_words[0], mqe->un.mb_words[1], 5241 mqe->un.mb_words[2], mqe->un.mb_words[3], 5242 mqe->un.mb_words[4], mqe->un.mb_words[5], 5243 mqe->un.mb_words[6], mqe->un.mb_words[7], 5244 mqe->un.mb_words[8], mqe->un.mb_words[9], 5245 mqe->un.mb_words[10], mqe->un.mb_words[11], 5246 mqe->un.mb_words[12], mqe->un.mb_words[13], 5247 mqe->un.mb_words[14], mqe->un.mb_words[15], 5248 mqe->un.mb_words[16], mqe->un.mb_words[50], 5249 mboxq->mcqe.word0, 5250 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5251 mboxq->mcqe.trailer); 5252 5253 if (rc) { 5254 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5255 kfree(mp); 5256 rc = -EIO; 5257 goto out_free_mboxq; 5258 } 5259 data_length = mqe->un.mb_words[5]; 5260 if (data_length > DMP_RGN23_SIZE) { 5261 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5262 kfree(mp); 5263 rc = -EIO; 5264 goto out_free_mboxq; 5265 } 5266 5267 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5268 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5269 kfree(mp); 5270 rc = 0; 5271 5272 out_free_mboxq: 5273 mempool_free(mboxq, phba->mbox_mem_pool); 5274 return rc; 5275 } 5276 5277 /** 5278 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5279 * @phba: pointer to lpfc hba data structure. 5280 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5281 * @vpd: pointer to the memory to hold resulting port vpd data. 5282 * @vpd_size: On input, the number of bytes allocated to @vpd. 5283 * On output, the number of data bytes in @vpd. 5284 * 5285 * This routine executes a READ_REV SLI4 mailbox command. In 5286 * addition, this routine gets the port vpd data. 5287 * 5288 * Return codes 5289 * 0 - successful 5290 * -ENOMEM - could not allocated memory. 5291 **/ 5292 static int 5293 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5294 uint8_t *vpd, uint32_t *vpd_size) 5295 { 5296 int rc = 0; 5297 uint32_t dma_size; 5298 struct lpfc_dmabuf *dmabuf; 5299 struct lpfc_mqe *mqe; 5300 5301 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5302 if (!dmabuf) 5303 return -ENOMEM; 5304 5305 /* 5306 * Get a DMA buffer for the vpd data resulting from the READ_REV 5307 * mailbox command. 5308 */ 5309 dma_size = *vpd_size; 5310 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size, 5311 &dmabuf->phys, GFP_KERNEL); 5312 if (!dmabuf->virt) { 5313 kfree(dmabuf); 5314 return -ENOMEM; 5315 } 5316 5317 /* 5318 * The SLI4 implementation of READ_REV conflicts at word1, 5319 * bits 31:16 and SLI4 adds vpd functionality not present 5320 * in SLI3. This code corrects the conflicts. 5321 */ 5322 lpfc_read_rev(phba, mboxq); 5323 mqe = &mboxq->u.mqe; 5324 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5325 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5326 mqe->un.read_rev.word1 &= 0x0000FFFF; 5327 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5328 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5329 5330 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5331 if (rc) { 5332 dma_free_coherent(&phba->pcidev->dev, dma_size, 5333 dmabuf->virt, dmabuf->phys); 5334 kfree(dmabuf); 5335 return -EIO; 5336 } 5337 5338 /* 5339 * The available vpd length cannot be bigger than the 5340 * DMA buffer passed to the port. Catch the less than 5341 * case and update the caller's size. 5342 */ 5343 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5344 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5345 5346 memcpy(vpd, dmabuf->virt, *vpd_size); 5347 5348 dma_free_coherent(&phba->pcidev->dev, dma_size, 5349 dmabuf->virt, dmabuf->phys); 5350 kfree(dmabuf); 5351 return 0; 5352 } 5353 5354 /** 5355 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5356 * @phba: pointer to lpfc hba data structure. 5357 * 5358 * This routine retrieves SLI4 device physical port name this PCI function 5359 * is attached to. 5360 * 5361 * Return codes 5362 * 0 - successful 5363 * otherwise - failed to retrieve physical port name 5364 **/ 5365 static int 5366 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5367 { 5368 LPFC_MBOXQ_t *mboxq; 5369 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5370 struct lpfc_controller_attribute *cntl_attr; 5371 struct lpfc_mbx_get_port_name *get_port_name; 5372 void *virtaddr = NULL; 5373 uint32_t alloclen, reqlen; 5374 uint32_t shdr_status, shdr_add_status; 5375 union lpfc_sli4_cfg_shdr *shdr; 5376 char cport_name = 0; 5377 int rc; 5378 5379 /* We assume nothing at this point */ 5380 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5381 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5382 5383 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5384 if (!mboxq) 5385 return -ENOMEM; 5386 /* obtain link type and link number via READ_CONFIG */ 5387 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5388 lpfc_sli4_read_config(phba); 5389 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5390 goto retrieve_ppname; 5391 5392 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5393 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5394 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5395 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5396 LPFC_SLI4_MBX_NEMBED); 5397 if (alloclen < reqlen) { 5398 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5399 "3084 Allocated DMA memory size (%d) is " 5400 "less than the requested DMA memory size " 5401 "(%d)\n", alloclen, reqlen); 5402 rc = -ENOMEM; 5403 goto out_free_mboxq; 5404 } 5405 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5406 virtaddr = mboxq->sge_array->addr[0]; 5407 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5408 shdr = &mbx_cntl_attr->cfg_shdr; 5409 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5410 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5411 if (shdr_status || shdr_add_status || rc) { 5412 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5413 "3085 Mailbox x%x (x%x/x%x) failed, " 5414 "rc:x%x, status:x%x, add_status:x%x\n", 5415 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5416 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5417 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5418 rc, shdr_status, shdr_add_status); 5419 rc = -ENXIO; 5420 goto out_free_mboxq; 5421 } 5422 cntl_attr = &mbx_cntl_attr->cntl_attr; 5423 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5424 phba->sli4_hba.lnk_info.lnk_tp = 5425 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5426 phba->sli4_hba.lnk_info.lnk_no = 5427 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5428 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5429 "3086 lnk_type:%d, lnk_numb:%d\n", 5430 phba->sli4_hba.lnk_info.lnk_tp, 5431 phba->sli4_hba.lnk_info.lnk_no); 5432 5433 retrieve_ppname: 5434 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5435 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5436 sizeof(struct lpfc_mbx_get_port_name) - 5437 sizeof(struct lpfc_sli4_cfg_mhdr), 5438 LPFC_SLI4_MBX_EMBED); 5439 get_port_name = &mboxq->u.mqe.un.get_port_name; 5440 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5441 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5442 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5443 phba->sli4_hba.lnk_info.lnk_tp); 5444 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5445 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5446 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5447 if (shdr_status || shdr_add_status || rc) { 5448 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5449 "3087 Mailbox x%x (x%x/x%x) failed: " 5450 "rc:x%x, status:x%x, add_status:x%x\n", 5451 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5452 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5453 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5454 rc, shdr_status, shdr_add_status); 5455 rc = -ENXIO; 5456 goto out_free_mboxq; 5457 } 5458 switch (phba->sli4_hba.lnk_info.lnk_no) { 5459 case LPFC_LINK_NUMBER_0: 5460 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5461 &get_port_name->u.response); 5462 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5463 break; 5464 case LPFC_LINK_NUMBER_1: 5465 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5466 &get_port_name->u.response); 5467 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5468 break; 5469 case LPFC_LINK_NUMBER_2: 5470 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5471 &get_port_name->u.response); 5472 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5473 break; 5474 case LPFC_LINK_NUMBER_3: 5475 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5476 &get_port_name->u.response); 5477 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5478 break; 5479 default: 5480 break; 5481 } 5482 5483 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5484 phba->Port[0] = cport_name; 5485 phba->Port[1] = '\0'; 5486 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5487 "3091 SLI get port name: %s\n", phba->Port); 5488 } 5489 5490 out_free_mboxq: 5491 if (rc != MBX_TIMEOUT) { 5492 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5493 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5494 else 5495 mempool_free(mboxq, phba->mbox_mem_pool); 5496 } 5497 return rc; 5498 } 5499 5500 /** 5501 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5502 * @phba: pointer to lpfc hba data structure. 5503 * 5504 * This routine is called to explicitly arm the SLI4 device's completion and 5505 * event queues 5506 **/ 5507 static void 5508 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5509 { 5510 int qidx; 5511 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 5512 5513 sli4_hba->sli4_cq_release(sli4_hba->mbx_cq, LPFC_QUEUE_REARM); 5514 sli4_hba->sli4_cq_release(sli4_hba->els_cq, LPFC_QUEUE_REARM); 5515 if (sli4_hba->nvmels_cq) 5516 sli4_hba->sli4_cq_release(sli4_hba->nvmels_cq, 5517 LPFC_QUEUE_REARM); 5518 5519 if (sli4_hba->fcp_cq) 5520 for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++) 5521 sli4_hba->sli4_cq_release(sli4_hba->fcp_cq[qidx], 5522 LPFC_QUEUE_REARM); 5523 5524 if (sli4_hba->nvme_cq) 5525 for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) 5526 sli4_hba->sli4_cq_release(sli4_hba->nvme_cq[qidx], 5527 LPFC_QUEUE_REARM); 5528 5529 if (phba->cfg_fof) 5530 sli4_hba->sli4_cq_release(sli4_hba->oas_cq, LPFC_QUEUE_REARM); 5531 5532 if (sli4_hba->hba_eq) 5533 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) 5534 sli4_hba->sli4_eq_release(sli4_hba->hba_eq[qidx], 5535 LPFC_QUEUE_REARM); 5536 5537 if (phba->nvmet_support) { 5538 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5539 sli4_hba->sli4_cq_release( 5540 sli4_hba->nvmet_cqset[qidx], 5541 LPFC_QUEUE_REARM); 5542 } 5543 } 5544 5545 if (phba->cfg_fof) 5546 sli4_hba->sli4_eq_release(sli4_hba->fof_eq, LPFC_QUEUE_REARM); 5547 } 5548 5549 /** 5550 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5551 * @phba: Pointer to HBA context object. 5552 * @type: The resource extent type. 5553 * @extnt_count: buffer to hold port available extent count. 5554 * @extnt_size: buffer to hold element count per extent. 5555 * 5556 * This function calls the port and retrievs the number of available 5557 * extents and their size for a particular extent type. 5558 * 5559 * Returns: 0 if successful. Nonzero otherwise. 5560 **/ 5561 int 5562 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5563 uint16_t *extnt_count, uint16_t *extnt_size) 5564 { 5565 int rc = 0; 5566 uint32_t length; 5567 uint32_t mbox_tmo; 5568 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5569 LPFC_MBOXQ_t *mbox; 5570 5571 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5572 if (!mbox) 5573 return -ENOMEM; 5574 5575 /* Find out how many extents are available for this resource type */ 5576 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5577 sizeof(struct lpfc_sli4_cfg_mhdr)); 5578 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5579 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5580 length, LPFC_SLI4_MBX_EMBED); 5581 5582 /* Send an extents count of 0 - the GET doesn't use it. */ 5583 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5584 LPFC_SLI4_MBX_EMBED); 5585 if (unlikely(rc)) { 5586 rc = -EIO; 5587 goto err_exit; 5588 } 5589 5590 if (!phba->sli4_hba.intr_enable) 5591 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5592 else { 5593 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5594 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5595 } 5596 if (unlikely(rc)) { 5597 rc = -EIO; 5598 goto err_exit; 5599 } 5600 5601 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5602 if (bf_get(lpfc_mbox_hdr_status, 5603 &rsrc_info->header.cfg_shdr.response)) { 5604 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5605 "2930 Failed to get resource extents " 5606 "Status 0x%x Add'l Status 0x%x\n", 5607 bf_get(lpfc_mbox_hdr_status, 5608 &rsrc_info->header.cfg_shdr.response), 5609 bf_get(lpfc_mbox_hdr_add_status, 5610 &rsrc_info->header.cfg_shdr.response)); 5611 rc = -EIO; 5612 goto err_exit; 5613 } 5614 5615 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5616 &rsrc_info->u.rsp); 5617 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5618 &rsrc_info->u.rsp); 5619 5620 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5621 "3162 Retrieved extents type-%d from port: count:%d, " 5622 "size:%d\n", type, *extnt_count, *extnt_size); 5623 5624 err_exit: 5625 mempool_free(mbox, phba->mbox_mem_pool); 5626 return rc; 5627 } 5628 5629 /** 5630 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5631 * @phba: Pointer to HBA context object. 5632 * @type: The extent type to check. 5633 * 5634 * This function reads the current available extents from the port and checks 5635 * if the extent count or extent size has changed since the last access. 5636 * Callers use this routine post port reset to understand if there is a 5637 * extent reprovisioning requirement. 5638 * 5639 * Returns: 5640 * -Error: error indicates problem. 5641 * 1: Extent count or size has changed. 5642 * 0: No changes. 5643 **/ 5644 static int 5645 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5646 { 5647 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5648 uint16_t size_diff, rsrc_ext_size; 5649 int rc = 0; 5650 struct lpfc_rsrc_blks *rsrc_entry; 5651 struct list_head *rsrc_blk_list = NULL; 5652 5653 size_diff = 0; 5654 curr_ext_cnt = 0; 5655 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5656 &rsrc_ext_cnt, 5657 &rsrc_ext_size); 5658 if (unlikely(rc)) 5659 return -EIO; 5660 5661 switch (type) { 5662 case LPFC_RSC_TYPE_FCOE_RPI: 5663 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5664 break; 5665 case LPFC_RSC_TYPE_FCOE_VPI: 5666 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5667 break; 5668 case LPFC_RSC_TYPE_FCOE_XRI: 5669 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5670 break; 5671 case LPFC_RSC_TYPE_FCOE_VFI: 5672 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5673 break; 5674 default: 5675 break; 5676 } 5677 5678 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5679 curr_ext_cnt++; 5680 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5681 size_diff++; 5682 } 5683 5684 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5685 rc = 1; 5686 5687 return rc; 5688 } 5689 5690 /** 5691 * lpfc_sli4_cfg_post_extnts - 5692 * @phba: Pointer to HBA context object. 5693 * @extnt_cnt - number of available extents. 5694 * @type - the extent type (rpi, xri, vfi, vpi). 5695 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5696 * @mbox - pointer to the caller's allocated mailbox structure. 5697 * 5698 * This function executes the extents allocation request. It also 5699 * takes care of the amount of memory needed to allocate or get the 5700 * allocated extents. It is the caller's responsibility to evaluate 5701 * the response. 5702 * 5703 * Returns: 5704 * -Error: Error value describes the condition found. 5705 * 0: if successful 5706 **/ 5707 static int 5708 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5709 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5710 { 5711 int rc = 0; 5712 uint32_t req_len; 5713 uint32_t emb_len; 5714 uint32_t alloc_len, mbox_tmo; 5715 5716 /* Calculate the total requested length of the dma memory */ 5717 req_len = extnt_cnt * sizeof(uint16_t); 5718 5719 /* 5720 * Calculate the size of an embedded mailbox. The uint32_t 5721 * accounts for extents-specific word. 5722 */ 5723 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5724 sizeof(uint32_t); 5725 5726 /* 5727 * Presume the allocation and response will fit into an embedded 5728 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5729 */ 5730 *emb = LPFC_SLI4_MBX_EMBED; 5731 if (req_len > emb_len) { 5732 req_len = extnt_cnt * sizeof(uint16_t) + 5733 sizeof(union lpfc_sli4_cfg_shdr) + 5734 sizeof(uint32_t); 5735 *emb = LPFC_SLI4_MBX_NEMBED; 5736 } 5737 5738 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5739 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5740 req_len, *emb); 5741 if (alloc_len < req_len) { 5742 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5743 "2982 Allocated DMA memory size (x%x) is " 5744 "less than the requested DMA memory " 5745 "size (x%x)\n", alloc_len, req_len); 5746 return -ENOMEM; 5747 } 5748 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5749 if (unlikely(rc)) 5750 return -EIO; 5751 5752 if (!phba->sli4_hba.intr_enable) 5753 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5754 else { 5755 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5756 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5757 } 5758 5759 if (unlikely(rc)) 5760 rc = -EIO; 5761 return rc; 5762 } 5763 5764 /** 5765 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5766 * @phba: Pointer to HBA context object. 5767 * @type: The resource extent type to allocate. 5768 * 5769 * This function allocates the number of elements for the specified 5770 * resource type. 5771 **/ 5772 static int 5773 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5774 { 5775 bool emb = false; 5776 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5777 uint16_t rsrc_id, rsrc_start, j, k; 5778 uint16_t *ids; 5779 int i, rc; 5780 unsigned long longs; 5781 unsigned long *bmask; 5782 struct lpfc_rsrc_blks *rsrc_blks; 5783 LPFC_MBOXQ_t *mbox; 5784 uint32_t length; 5785 struct lpfc_id_range *id_array = NULL; 5786 void *virtaddr = NULL; 5787 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5788 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5789 struct list_head *ext_blk_list; 5790 5791 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5792 &rsrc_cnt, 5793 &rsrc_size); 5794 if (unlikely(rc)) 5795 return -EIO; 5796 5797 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5798 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5799 "3009 No available Resource Extents " 5800 "for resource type 0x%x: Count: 0x%x, " 5801 "Size 0x%x\n", type, rsrc_cnt, 5802 rsrc_size); 5803 return -ENOMEM; 5804 } 5805 5806 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5807 "2903 Post resource extents type-0x%x: " 5808 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5809 5810 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5811 if (!mbox) 5812 return -ENOMEM; 5813 5814 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5815 if (unlikely(rc)) { 5816 rc = -EIO; 5817 goto err_exit; 5818 } 5819 5820 /* 5821 * Figure out where the response is located. Then get local pointers 5822 * to the response data. The port does not guarantee to respond to 5823 * all extents counts request so update the local variable with the 5824 * allocated count from the port. 5825 */ 5826 if (emb == LPFC_SLI4_MBX_EMBED) { 5827 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5828 id_array = &rsrc_ext->u.rsp.id[0]; 5829 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5830 } else { 5831 virtaddr = mbox->sge_array->addr[0]; 5832 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5833 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5834 id_array = &n_rsrc->id; 5835 } 5836 5837 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5838 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5839 5840 /* 5841 * Based on the resource size and count, correct the base and max 5842 * resource values. 5843 */ 5844 length = sizeof(struct lpfc_rsrc_blks); 5845 switch (type) { 5846 case LPFC_RSC_TYPE_FCOE_RPI: 5847 phba->sli4_hba.rpi_bmask = kcalloc(longs, 5848 sizeof(unsigned long), 5849 GFP_KERNEL); 5850 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5851 rc = -ENOMEM; 5852 goto err_exit; 5853 } 5854 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 5855 sizeof(uint16_t), 5856 GFP_KERNEL); 5857 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5858 kfree(phba->sli4_hba.rpi_bmask); 5859 rc = -ENOMEM; 5860 goto err_exit; 5861 } 5862 5863 /* 5864 * The next_rpi was initialized with the maximum available 5865 * count but the port may allocate a smaller number. Catch 5866 * that case and update the next_rpi. 5867 */ 5868 phba->sli4_hba.next_rpi = rsrc_id_cnt; 5869 5870 /* Initialize local ptrs for common extent processing later. */ 5871 bmask = phba->sli4_hba.rpi_bmask; 5872 ids = phba->sli4_hba.rpi_ids; 5873 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5874 break; 5875 case LPFC_RSC_TYPE_FCOE_VPI: 5876 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 5877 GFP_KERNEL); 5878 if (unlikely(!phba->vpi_bmask)) { 5879 rc = -ENOMEM; 5880 goto err_exit; 5881 } 5882 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 5883 GFP_KERNEL); 5884 if (unlikely(!phba->vpi_ids)) { 5885 kfree(phba->vpi_bmask); 5886 rc = -ENOMEM; 5887 goto err_exit; 5888 } 5889 5890 /* Initialize local ptrs for common extent processing later. */ 5891 bmask = phba->vpi_bmask; 5892 ids = phba->vpi_ids; 5893 ext_blk_list = &phba->lpfc_vpi_blk_list; 5894 break; 5895 case LPFC_RSC_TYPE_FCOE_XRI: 5896 phba->sli4_hba.xri_bmask = kcalloc(longs, 5897 sizeof(unsigned long), 5898 GFP_KERNEL); 5899 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5900 rc = -ENOMEM; 5901 goto err_exit; 5902 } 5903 phba->sli4_hba.max_cfg_param.xri_used = 0; 5904 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 5905 sizeof(uint16_t), 5906 GFP_KERNEL); 5907 if (unlikely(!phba->sli4_hba.xri_ids)) { 5908 kfree(phba->sli4_hba.xri_bmask); 5909 rc = -ENOMEM; 5910 goto err_exit; 5911 } 5912 5913 /* Initialize local ptrs for common extent processing later. */ 5914 bmask = phba->sli4_hba.xri_bmask; 5915 ids = phba->sli4_hba.xri_ids; 5916 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5917 break; 5918 case LPFC_RSC_TYPE_FCOE_VFI: 5919 phba->sli4_hba.vfi_bmask = kcalloc(longs, 5920 sizeof(unsigned long), 5921 GFP_KERNEL); 5922 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5923 rc = -ENOMEM; 5924 goto err_exit; 5925 } 5926 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 5927 sizeof(uint16_t), 5928 GFP_KERNEL); 5929 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5930 kfree(phba->sli4_hba.vfi_bmask); 5931 rc = -ENOMEM; 5932 goto err_exit; 5933 } 5934 5935 /* Initialize local ptrs for common extent processing later. */ 5936 bmask = phba->sli4_hba.vfi_bmask; 5937 ids = phba->sli4_hba.vfi_ids; 5938 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5939 break; 5940 default: 5941 /* Unsupported Opcode. Fail call. */ 5942 id_array = NULL; 5943 bmask = NULL; 5944 ids = NULL; 5945 ext_blk_list = NULL; 5946 goto err_exit; 5947 } 5948 5949 /* 5950 * Complete initializing the extent configuration with the 5951 * allocated ids assigned to this function. The bitmask serves 5952 * as an index into the array and manages the available ids. The 5953 * array just stores the ids communicated to the port via the wqes. 5954 */ 5955 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 5956 if ((i % 2) == 0) 5957 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 5958 &id_array[k]); 5959 else 5960 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 5961 &id_array[k]); 5962 5963 rsrc_blks = kzalloc(length, GFP_KERNEL); 5964 if (unlikely(!rsrc_blks)) { 5965 rc = -ENOMEM; 5966 kfree(bmask); 5967 kfree(ids); 5968 goto err_exit; 5969 } 5970 rsrc_blks->rsrc_start = rsrc_id; 5971 rsrc_blks->rsrc_size = rsrc_size; 5972 list_add_tail(&rsrc_blks->list, ext_blk_list); 5973 rsrc_start = rsrc_id; 5974 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 5975 phba->sli4_hba.scsi_xri_start = rsrc_start + 5976 lpfc_sli4_get_iocb_cnt(phba); 5977 phba->sli4_hba.nvme_xri_start = 5978 phba->sli4_hba.scsi_xri_start + 5979 phba->sli4_hba.scsi_xri_max; 5980 } 5981 5982 while (rsrc_id < (rsrc_start + rsrc_size)) { 5983 ids[j] = rsrc_id; 5984 rsrc_id++; 5985 j++; 5986 } 5987 /* Entire word processed. Get next word.*/ 5988 if ((i % 2) == 1) 5989 k++; 5990 } 5991 err_exit: 5992 lpfc_sli4_mbox_cmd_free(phba, mbox); 5993 return rc; 5994 } 5995 5996 5997 5998 /** 5999 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6000 * @phba: Pointer to HBA context object. 6001 * @type: the extent's type. 6002 * 6003 * This function deallocates all extents of a particular resource type. 6004 * SLI4 does not allow for deallocating a particular extent range. It 6005 * is the caller's responsibility to release all kernel memory resources. 6006 **/ 6007 static int 6008 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6009 { 6010 int rc; 6011 uint32_t length, mbox_tmo = 0; 6012 LPFC_MBOXQ_t *mbox; 6013 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6014 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6015 6016 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6017 if (!mbox) 6018 return -ENOMEM; 6019 6020 /* 6021 * This function sends an embedded mailbox because it only sends the 6022 * the resource type. All extents of this type are released by the 6023 * port. 6024 */ 6025 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6026 sizeof(struct lpfc_sli4_cfg_mhdr)); 6027 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6028 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6029 length, LPFC_SLI4_MBX_EMBED); 6030 6031 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6032 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6033 LPFC_SLI4_MBX_EMBED); 6034 if (unlikely(rc)) { 6035 rc = -EIO; 6036 goto out_free_mbox; 6037 } 6038 if (!phba->sli4_hba.intr_enable) 6039 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6040 else { 6041 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6042 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6043 } 6044 if (unlikely(rc)) { 6045 rc = -EIO; 6046 goto out_free_mbox; 6047 } 6048 6049 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6050 if (bf_get(lpfc_mbox_hdr_status, 6051 &dealloc_rsrc->header.cfg_shdr.response)) { 6052 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6053 "2919 Failed to release resource extents " 6054 "for type %d - Status 0x%x Add'l Status 0x%x. " 6055 "Resource memory not released.\n", 6056 type, 6057 bf_get(lpfc_mbox_hdr_status, 6058 &dealloc_rsrc->header.cfg_shdr.response), 6059 bf_get(lpfc_mbox_hdr_add_status, 6060 &dealloc_rsrc->header.cfg_shdr.response)); 6061 rc = -EIO; 6062 goto out_free_mbox; 6063 } 6064 6065 /* Release kernel memory resources for the specific type. */ 6066 switch (type) { 6067 case LPFC_RSC_TYPE_FCOE_VPI: 6068 kfree(phba->vpi_bmask); 6069 kfree(phba->vpi_ids); 6070 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6071 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6072 &phba->lpfc_vpi_blk_list, list) { 6073 list_del_init(&rsrc_blk->list); 6074 kfree(rsrc_blk); 6075 } 6076 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6077 break; 6078 case LPFC_RSC_TYPE_FCOE_XRI: 6079 kfree(phba->sli4_hba.xri_bmask); 6080 kfree(phba->sli4_hba.xri_ids); 6081 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6082 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6083 list_del_init(&rsrc_blk->list); 6084 kfree(rsrc_blk); 6085 } 6086 break; 6087 case LPFC_RSC_TYPE_FCOE_VFI: 6088 kfree(phba->sli4_hba.vfi_bmask); 6089 kfree(phba->sli4_hba.vfi_ids); 6090 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6091 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6092 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6093 list_del_init(&rsrc_blk->list); 6094 kfree(rsrc_blk); 6095 } 6096 break; 6097 case LPFC_RSC_TYPE_FCOE_RPI: 6098 /* RPI bitmask and physical id array are cleaned up earlier. */ 6099 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6100 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6101 list_del_init(&rsrc_blk->list); 6102 kfree(rsrc_blk); 6103 } 6104 break; 6105 default: 6106 break; 6107 } 6108 6109 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6110 6111 out_free_mbox: 6112 mempool_free(mbox, phba->mbox_mem_pool); 6113 return rc; 6114 } 6115 6116 static void 6117 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6118 uint32_t feature) 6119 { 6120 uint32_t len; 6121 6122 len = sizeof(struct lpfc_mbx_set_feature) - 6123 sizeof(struct lpfc_sli4_cfg_mhdr); 6124 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6125 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6126 LPFC_SLI4_MBX_EMBED); 6127 6128 switch (feature) { 6129 case LPFC_SET_UE_RECOVERY: 6130 bf_set(lpfc_mbx_set_feature_UER, 6131 &mbox->u.mqe.un.set_feature, 1); 6132 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6133 mbox->u.mqe.un.set_feature.param_len = 8; 6134 break; 6135 case LPFC_SET_MDS_DIAGS: 6136 bf_set(lpfc_mbx_set_feature_mds, 6137 &mbox->u.mqe.un.set_feature, 1); 6138 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6139 &mbox->u.mqe.un.set_feature, 1); 6140 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6141 mbox->u.mqe.un.set_feature.param_len = 8; 6142 break; 6143 } 6144 6145 return; 6146 } 6147 6148 /** 6149 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 6150 * @phba: Pointer to HBA context object. 6151 * 6152 * This function allocates all SLI4 resource identifiers. 6153 **/ 6154 int 6155 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 6156 { 6157 int i, rc, error = 0; 6158 uint16_t count, base; 6159 unsigned long longs; 6160 6161 if (!phba->sli4_hba.rpi_hdrs_in_use) 6162 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 6163 if (phba->sli4_hba.extents_in_use) { 6164 /* 6165 * The port supports resource extents. The XRI, VPI, VFI, RPI 6166 * resource extent count must be read and allocated before 6167 * provisioning the resource id arrays. 6168 */ 6169 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6170 LPFC_IDX_RSRC_RDY) { 6171 /* 6172 * Extent-based resources are set - the driver could 6173 * be in a port reset. Figure out if any corrective 6174 * actions need to be taken. 6175 */ 6176 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6177 LPFC_RSC_TYPE_FCOE_VFI); 6178 if (rc != 0) 6179 error++; 6180 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6181 LPFC_RSC_TYPE_FCOE_VPI); 6182 if (rc != 0) 6183 error++; 6184 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6185 LPFC_RSC_TYPE_FCOE_XRI); 6186 if (rc != 0) 6187 error++; 6188 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6189 LPFC_RSC_TYPE_FCOE_RPI); 6190 if (rc != 0) 6191 error++; 6192 6193 /* 6194 * It's possible that the number of resources 6195 * provided to this port instance changed between 6196 * resets. Detect this condition and reallocate 6197 * resources. Otherwise, there is no action. 6198 */ 6199 if (error) { 6200 lpfc_printf_log(phba, KERN_INFO, 6201 LOG_MBOX | LOG_INIT, 6202 "2931 Detected extent resource " 6203 "change. Reallocating all " 6204 "extents.\n"); 6205 rc = lpfc_sli4_dealloc_extent(phba, 6206 LPFC_RSC_TYPE_FCOE_VFI); 6207 rc = lpfc_sli4_dealloc_extent(phba, 6208 LPFC_RSC_TYPE_FCOE_VPI); 6209 rc = lpfc_sli4_dealloc_extent(phba, 6210 LPFC_RSC_TYPE_FCOE_XRI); 6211 rc = lpfc_sli4_dealloc_extent(phba, 6212 LPFC_RSC_TYPE_FCOE_RPI); 6213 } else 6214 return 0; 6215 } 6216 6217 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6218 if (unlikely(rc)) 6219 goto err_exit; 6220 6221 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6222 if (unlikely(rc)) 6223 goto err_exit; 6224 6225 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6226 if (unlikely(rc)) 6227 goto err_exit; 6228 6229 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6230 if (unlikely(rc)) 6231 goto err_exit; 6232 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6233 LPFC_IDX_RSRC_RDY); 6234 return rc; 6235 } else { 6236 /* 6237 * The port does not support resource extents. The XRI, VPI, 6238 * VFI, RPI resource ids were determined from READ_CONFIG. 6239 * Just allocate the bitmasks and provision the resource id 6240 * arrays. If a port reset is active, the resources don't 6241 * need any action - just exit. 6242 */ 6243 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6244 LPFC_IDX_RSRC_RDY) { 6245 lpfc_sli4_dealloc_resource_identifiers(phba); 6246 lpfc_sli4_remove_rpis(phba); 6247 } 6248 /* RPIs. */ 6249 count = phba->sli4_hba.max_cfg_param.max_rpi; 6250 if (count <= 0) { 6251 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6252 "3279 Invalid provisioning of " 6253 "rpi:%d\n", count); 6254 rc = -EINVAL; 6255 goto err_exit; 6256 } 6257 base = phba->sli4_hba.max_cfg_param.rpi_base; 6258 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6259 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6260 sizeof(unsigned long), 6261 GFP_KERNEL); 6262 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6263 rc = -ENOMEM; 6264 goto err_exit; 6265 } 6266 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 6267 GFP_KERNEL); 6268 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6269 rc = -ENOMEM; 6270 goto free_rpi_bmask; 6271 } 6272 6273 for (i = 0; i < count; i++) 6274 phba->sli4_hba.rpi_ids[i] = base + i; 6275 6276 /* VPIs. */ 6277 count = phba->sli4_hba.max_cfg_param.max_vpi; 6278 if (count <= 0) { 6279 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6280 "3280 Invalid provisioning of " 6281 "vpi:%d\n", count); 6282 rc = -EINVAL; 6283 goto free_rpi_ids; 6284 } 6285 base = phba->sli4_hba.max_cfg_param.vpi_base; 6286 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6287 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6288 GFP_KERNEL); 6289 if (unlikely(!phba->vpi_bmask)) { 6290 rc = -ENOMEM; 6291 goto free_rpi_ids; 6292 } 6293 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 6294 GFP_KERNEL); 6295 if (unlikely(!phba->vpi_ids)) { 6296 rc = -ENOMEM; 6297 goto free_vpi_bmask; 6298 } 6299 6300 for (i = 0; i < count; i++) 6301 phba->vpi_ids[i] = base + i; 6302 6303 /* XRIs. */ 6304 count = phba->sli4_hba.max_cfg_param.max_xri; 6305 if (count <= 0) { 6306 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6307 "3281 Invalid provisioning of " 6308 "xri:%d\n", count); 6309 rc = -EINVAL; 6310 goto free_vpi_ids; 6311 } 6312 base = phba->sli4_hba.max_cfg_param.xri_base; 6313 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6314 phba->sli4_hba.xri_bmask = kcalloc(longs, 6315 sizeof(unsigned long), 6316 GFP_KERNEL); 6317 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6318 rc = -ENOMEM; 6319 goto free_vpi_ids; 6320 } 6321 phba->sli4_hba.max_cfg_param.xri_used = 0; 6322 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 6323 GFP_KERNEL); 6324 if (unlikely(!phba->sli4_hba.xri_ids)) { 6325 rc = -ENOMEM; 6326 goto free_xri_bmask; 6327 } 6328 6329 for (i = 0; i < count; i++) 6330 phba->sli4_hba.xri_ids[i] = base + i; 6331 6332 /* VFIs. */ 6333 count = phba->sli4_hba.max_cfg_param.max_vfi; 6334 if (count <= 0) { 6335 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6336 "3282 Invalid provisioning of " 6337 "vfi:%d\n", count); 6338 rc = -EINVAL; 6339 goto free_xri_ids; 6340 } 6341 base = phba->sli4_hba.max_cfg_param.vfi_base; 6342 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6343 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6344 sizeof(unsigned long), 6345 GFP_KERNEL); 6346 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6347 rc = -ENOMEM; 6348 goto free_xri_ids; 6349 } 6350 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 6351 GFP_KERNEL); 6352 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6353 rc = -ENOMEM; 6354 goto free_vfi_bmask; 6355 } 6356 6357 for (i = 0; i < count; i++) 6358 phba->sli4_hba.vfi_ids[i] = base + i; 6359 6360 /* 6361 * Mark all resources ready. An HBA reset doesn't need 6362 * to reset the initialization. 6363 */ 6364 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6365 LPFC_IDX_RSRC_RDY); 6366 return 0; 6367 } 6368 6369 free_vfi_bmask: 6370 kfree(phba->sli4_hba.vfi_bmask); 6371 phba->sli4_hba.vfi_bmask = NULL; 6372 free_xri_ids: 6373 kfree(phba->sli4_hba.xri_ids); 6374 phba->sli4_hba.xri_ids = NULL; 6375 free_xri_bmask: 6376 kfree(phba->sli4_hba.xri_bmask); 6377 phba->sli4_hba.xri_bmask = NULL; 6378 free_vpi_ids: 6379 kfree(phba->vpi_ids); 6380 phba->vpi_ids = NULL; 6381 free_vpi_bmask: 6382 kfree(phba->vpi_bmask); 6383 phba->vpi_bmask = NULL; 6384 free_rpi_ids: 6385 kfree(phba->sli4_hba.rpi_ids); 6386 phba->sli4_hba.rpi_ids = NULL; 6387 free_rpi_bmask: 6388 kfree(phba->sli4_hba.rpi_bmask); 6389 phba->sli4_hba.rpi_bmask = NULL; 6390 err_exit: 6391 return rc; 6392 } 6393 6394 /** 6395 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6396 * @phba: Pointer to HBA context object. 6397 * 6398 * This function allocates the number of elements for the specified 6399 * resource type. 6400 **/ 6401 int 6402 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 6403 { 6404 if (phba->sli4_hba.extents_in_use) { 6405 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6406 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6407 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6408 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6409 } else { 6410 kfree(phba->vpi_bmask); 6411 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6412 kfree(phba->vpi_ids); 6413 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6414 kfree(phba->sli4_hba.xri_bmask); 6415 kfree(phba->sli4_hba.xri_ids); 6416 kfree(phba->sli4_hba.vfi_bmask); 6417 kfree(phba->sli4_hba.vfi_ids); 6418 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6419 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6420 } 6421 6422 return 0; 6423 } 6424 6425 /** 6426 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 6427 * @phba: Pointer to HBA context object. 6428 * @type: The resource extent type. 6429 * @extnt_count: buffer to hold port extent count response 6430 * @extnt_size: buffer to hold port extent size response. 6431 * 6432 * This function calls the port to read the host allocated extents 6433 * for a particular type. 6434 **/ 6435 int 6436 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 6437 uint16_t *extnt_cnt, uint16_t *extnt_size) 6438 { 6439 bool emb; 6440 int rc = 0; 6441 uint16_t curr_blks = 0; 6442 uint32_t req_len, emb_len; 6443 uint32_t alloc_len, mbox_tmo; 6444 struct list_head *blk_list_head; 6445 struct lpfc_rsrc_blks *rsrc_blk; 6446 LPFC_MBOXQ_t *mbox; 6447 void *virtaddr = NULL; 6448 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6449 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6450 union lpfc_sli4_cfg_shdr *shdr; 6451 6452 switch (type) { 6453 case LPFC_RSC_TYPE_FCOE_VPI: 6454 blk_list_head = &phba->lpfc_vpi_blk_list; 6455 break; 6456 case LPFC_RSC_TYPE_FCOE_XRI: 6457 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6458 break; 6459 case LPFC_RSC_TYPE_FCOE_VFI: 6460 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6461 break; 6462 case LPFC_RSC_TYPE_FCOE_RPI: 6463 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6464 break; 6465 default: 6466 return -EIO; 6467 } 6468 6469 /* Count the number of extents currently allocatd for this type. */ 6470 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6471 if (curr_blks == 0) { 6472 /* 6473 * The GET_ALLOCATED mailbox does not return the size, 6474 * just the count. The size should be just the size 6475 * stored in the current allocated block and all sizes 6476 * for an extent type are the same so set the return 6477 * value now. 6478 */ 6479 *extnt_size = rsrc_blk->rsrc_size; 6480 } 6481 curr_blks++; 6482 } 6483 6484 /* 6485 * Calculate the size of an embedded mailbox. The uint32_t 6486 * accounts for extents-specific word. 6487 */ 6488 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6489 sizeof(uint32_t); 6490 6491 /* 6492 * Presume the allocation and response will fit into an embedded 6493 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6494 */ 6495 emb = LPFC_SLI4_MBX_EMBED; 6496 req_len = emb_len; 6497 if (req_len > emb_len) { 6498 req_len = curr_blks * sizeof(uint16_t) + 6499 sizeof(union lpfc_sli4_cfg_shdr) + 6500 sizeof(uint32_t); 6501 emb = LPFC_SLI4_MBX_NEMBED; 6502 } 6503 6504 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6505 if (!mbox) 6506 return -ENOMEM; 6507 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6508 6509 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6510 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6511 req_len, emb); 6512 if (alloc_len < req_len) { 6513 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6514 "2983 Allocated DMA memory size (x%x) is " 6515 "less than the requested DMA memory " 6516 "size (x%x)\n", alloc_len, req_len); 6517 rc = -ENOMEM; 6518 goto err_exit; 6519 } 6520 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6521 if (unlikely(rc)) { 6522 rc = -EIO; 6523 goto err_exit; 6524 } 6525 6526 if (!phba->sli4_hba.intr_enable) 6527 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6528 else { 6529 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6530 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6531 } 6532 6533 if (unlikely(rc)) { 6534 rc = -EIO; 6535 goto err_exit; 6536 } 6537 6538 /* 6539 * Figure out where the response is located. Then get local pointers 6540 * to the response data. The port does not guarantee to respond to 6541 * all extents counts request so update the local variable with the 6542 * allocated count from the port. 6543 */ 6544 if (emb == LPFC_SLI4_MBX_EMBED) { 6545 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6546 shdr = &rsrc_ext->header.cfg_shdr; 6547 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6548 } else { 6549 virtaddr = mbox->sge_array->addr[0]; 6550 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6551 shdr = &n_rsrc->cfg_shdr; 6552 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6553 } 6554 6555 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 6556 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6557 "2984 Failed to read allocated resources " 6558 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 6559 type, 6560 bf_get(lpfc_mbox_hdr_status, &shdr->response), 6561 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 6562 rc = -EIO; 6563 goto err_exit; 6564 } 6565 err_exit: 6566 lpfc_sli4_mbox_cmd_free(phba, mbox); 6567 return rc; 6568 } 6569 6570 /** 6571 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 6572 * @phba: pointer to lpfc hba data structure. 6573 * @pring: Pointer to driver SLI ring object. 6574 * @sgl_list: linked link of sgl buffers to post 6575 * @cnt: number of linked list buffers 6576 * 6577 * This routine walks the list of buffers that have been allocated and 6578 * repost them to the port by using SGL block post. This is needed after a 6579 * pci_function_reset/warm_start or start. It attempts to construct blocks 6580 * of buffer sgls which contains contiguous xris and uses the non-embedded 6581 * SGL block post mailbox commands to post them to the port. For single 6582 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 6583 * mailbox command for posting. 6584 * 6585 * Returns: 0 = success, non-zero failure. 6586 **/ 6587 static int 6588 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 6589 struct list_head *sgl_list, int cnt) 6590 { 6591 struct lpfc_sglq *sglq_entry = NULL; 6592 struct lpfc_sglq *sglq_entry_next = NULL; 6593 struct lpfc_sglq *sglq_entry_first = NULL; 6594 int status, total_cnt; 6595 int post_cnt = 0, num_posted = 0, block_cnt = 0; 6596 int last_xritag = NO_XRI; 6597 LIST_HEAD(prep_sgl_list); 6598 LIST_HEAD(blck_sgl_list); 6599 LIST_HEAD(allc_sgl_list); 6600 LIST_HEAD(post_sgl_list); 6601 LIST_HEAD(free_sgl_list); 6602 6603 spin_lock_irq(&phba->hbalock); 6604 spin_lock(&phba->sli4_hba.sgl_list_lock); 6605 list_splice_init(sgl_list, &allc_sgl_list); 6606 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6607 spin_unlock_irq(&phba->hbalock); 6608 6609 total_cnt = cnt; 6610 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 6611 &allc_sgl_list, list) { 6612 list_del_init(&sglq_entry->list); 6613 block_cnt++; 6614 if ((last_xritag != NO_XRI) && 6615 (sglq_entry->sli4_xritag != last_xritag + 1)) { 6616 /* a hole in xri block, form a sgl posting block */ 6617 list_splice_init(&prep_sgl_list, &blck_sgl_list); 6618 post_cnt = block_cnt - 1; 6619 /* prepare list for next posting block */ 6620 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6621 block_cnt = 1; 6622 } else { 6623 /* prepare list for next posting block */ 6624 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6625 /* enough sgls for non-embed sgl mbox command */ 6626 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 6627 list_splice_init(&prep_sgl_list, 6628 &blck_sgl_list); 6629 post_cnt = block_cnt; 6630 block_cnt = 0; 6631 } 6632 } 6633 num_posted++; 6634 6635 /* keep track of last sgl's xritag */ 6636 last_xritag = sglq_entry->sli4_xritag; 6637 6638 /* end of repost sgl list condition for buffers */ 6639 if (num_posted == total_cnt) { 6640 if (post_cnt == 0) { 6641 list_splice_init(&prep_sgl_list, 6642 &blck_sgl_list); 6643 post_cnt = block_cnt; 6644 } else if (block_cnt == 1) { 6645 status = lpfc_sli4_post_sgl(phba, 6646 sglq_entry->phys, 0, 6647 sglq_entry->sli4_xritag); 6648 if (!status) { 6649 /* successful, put sgl to posted list */ 6650 list_add_tail(&sglq_entry->list, 6651 &post_sgl_list); 6652 } else { 6653 /* Failure, put sgl to free list */ 6654 lpfc_printf_log(phba, KERN_WARNING, 6655 LOG_SLI, 6656 "3159 Failed to post " 6657 "sgl, xritag:x%x\n", 6658 sglq_entry->sli4_xritag); 6659 list_add_tail(&sglq_entry->list, 6660 &free_sgl_list); 6661 total_cnt--; 6662 } 6663 } 6664 } 6665 6666 /* continue until a nembed page worth of sgls */ 6667 if (post_cnt == 0) 6668 continue; 6669 6670 /* post the buffer list sgls as a block */ 6671 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 6672 post_cnt); 6673 6674 if (!status) { 6675 /* success, put sgl list to posted sgl list */ 6676 list_splice_init(&blck_sgl_list, &post_sgl_list); 6677 } else { 6678 /* Failure, put sgl list to free sgl list */ 6679 sglq_entry_first = list_first_entry(&blck_sgl_list, 6680 struct lpfc_sglq, 6681 list); 6682 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6683 "3160 Failed to post sgl-list, " 6684 "xritag:x%x-x%x\n", 6685 sglq_entry_first->sli4_xritag, 6686 (sglq_entry_first->sli4_xritag + 6687 post_cnt - 1)); 6688 list_splice_init(&blck_sgl_list, &free_sgl_list); 6689 total_cnt -= post_cnt; 6690 } 6691 6692 /* don't reset xirtag due to hole in xri block */ 6693 if (block_cnt == 0) 6694 last_xritag = NO_XRI; 6695 6696 /* reset sgl post count for next round of posting */ 6697 post_cnt = 0; 6698 } 6699 6700 /* free the sgls failed to post */ 6701 lpfc_free_sgl_list(phba, &free_sgl_list); 6702 6703 /* push sgls posted to the available list */ 6704 if (!list_empty(&post_sgl_list)) { 6705 spin_lock_irq(&phba->hbalock); 6706 spin_lock(&phba->sli4_hba.sgl_list_lock); 6707 list_splice_init(&post_sgl_list, sgl_list); 6708 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6709 spin_unlock_irq(&phba->hbalock); 6710 } else { 6711 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6712 "3161 Failure to post sgl to port.\n"); 6713 return -EIO; 6714 } 6715 6716 /* return the number of XRIs actually posted */ 6717 return total_cnt; 6718 } 6719 6720 void 6721 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 6722 { 6723 uint32_t len; 6724 6725 len = sizeof(struct lpfc_mbx_set_host_data) - 6726 sizeof(struct lpfc_sli4_cfg_mhdr); 6727 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6728 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 6729 LPFC_SLI4_MBX_EMBED); 6730 6731 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 6732 mbox->u.mqe.un.set_host_data.param_len = 6733 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 6734 snprintf(mbox->u.mqe.un.set_host_data.data, 6735 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 6736 "Linux %s v"LPFC_DRIVER_VERSION, 6737 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 6738 } 6739 6740 int 6741 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 6742 struct lpfc_queue *drq, int count, int idx) 6743 { 6744 int rc, i; 6745 struct lpfc_rqe hrqe; 6746 struct lpfc_rqe drqe; 6747 struct lpfc_rqb *rqbp; 6748 unsigned long flags; 6749 struct rqb_dmabuf *rqb_buffer; 6750 LIST_HEAD(rqb_buf_list); 6751 6752 spin_lock_irqsave(&phba->hbalock, flags); 6753 rqbp = hrq->rqbp; 6754 for (i = 0; i < count; i++) { 6755 /* IF RQ is already full, don't bother */ 6756 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) 6757 break; 6758 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 6759 if (!rqb_buffer) 6760 break; 6761 rqb_buffer->hrq = hrq; 6762 rqb_buffer->drq = drq; 6763 rqb_buffer->idx = idx; 6764 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 6765 } 6766 while (!list_empty(&rqb_buf_list)) { 6767 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 6768 hbuf.list); 6769 6770 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 6771 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 6772 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 6773 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 6774 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 6775 if (rc < 0) { 6776 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6777 "6421 Cannot post to HRQ %d: %x %x %x " 6778 "DRQ %x %x\n", 6779 hrq->queue_id, 6780 hrq->host_index, 6781 hrq->hba_index, 6782 hrq->entry_count, 6783 drq->host_index, 6784 drq->hba_index); 6785 rqbp->rqb_free_buffer(phba, rqb_buffer); 6786 } else { 6787 list_add_tail(&rqb_buffer->hbuf.list, 6788 &rqbp->rqb_buffer_list); 6789 rqbp->buffer_count++; 6790 } 6791 } 6792 spin_unlock_irqrestore(&phba->hbalock, flags); 6793 return 1; 6794 } 6795 6796 /** 6797 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 6798 * @phba: Pointer to HBA context object. 6799 * 6800 * This function is the main SLI4 device initialization PCI function. This 6801 * function is called by the HBA initialization code, HBA reset code and 6802 * HBA error attention handler code. Caller is not required to hold any 6803 * locks. 6804 **/ 6805 int 6806 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 6807 { 6808 int rc, i, cnt; 6809 LPFC_MBOXQ_t *mboxq; 6810 struct lpfc_mqe *mqe; 6811 uint8_t *vpd; 6812 uint32_t vpd_size; 6813 uint32_t ftr_rsp = 0; 6814 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 6815 struct lpfc_vport *vport = phba->pport; 6816 struct lpfc_dmabuf *mp; 6817 struct lpfc_rqb *rqbp; 6818 6819 /* Perform a PCI function reset to start from clean */ 6820 rc = lpfc_pci_function_reset(phba); 6821 if (unlikely(rc)) 6822 return -ENODEV; 6823 6824 /* Check the HBA Host Status Register for readyness */ 6825 rc = lpfc_sli4_post_status_check(phba); 6826 if (unlikely(rc)) 6827 return -ENODEV; 6828 else { 6829 spin_lock_irq(&phba->hbalock); 6830 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 6831 spin_unlock_irq(&phba->hbalock); 6832 } 6833 6834 /* 6835 * Allocate a single mailbox container for initializing the 6836 * port. 6837 */ 6838 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6839 if (!mboxq) 6840 return -ENOMEM; 6841 6842 /* Issue READ_REV to collect vpd and FW information. */ 6843 vpd_size = SLI4_PAGE_SIZE; 6844 vpd = kzalloc(vpd_size, GFP_KERNEL); 6845 if (!vpd) { 6846 rc = -ENOMEM; 6847 goto out_free_mbox; 6848 } 6849 6850 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 6851 if (unlikely(rc)) { 6852 kfree(vpd); 6853 goto out_free_mbox; 6854 } 6855 6856 mqe = &mboxq->u.mqe; 6857 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 6858 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 6859 phba->hba_flag |= HBA_FCOE_MODE; 6860 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 6861 } else { 6862 phba->hba_flag &= ~HBA_FCOE_MODE; 6863 } 6864 6865 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 6866 LPFC_DCBX_CEE_MODE) 6867 phba->hba_flag |= HBA_FIP_SUPPORT; 6868 else 6869 phba->hba_flag &= ~HBA_FIP_SUPPORT; 6870 6871 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH; 6872 6873 if (phba->sli_rev != LPFC_SLI_REV4) { 6874 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6875 "0376 READ_REV Error. SLI Level %d " 6876 "FCoE enabled %d\n", 6877 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 6878 rc = -EIO; 6879 kfree(vpd); 6880 goto out_free_mbox; 6881 } 6882 6883 /* 6884 * Continue initialization with default values even if driver failed 6885 * to read FCoE param config regions, only read parameters if the 6886 * board is FCoE 6887 */ 6888 if (phba->hba_flag & HBA_FCOE_MODE && 6889 lpfc_sli4_read_fcoe_params(phba)) 6890 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 6891 "2570 Failed to read FCoE parameters\n"); 6892 6893 /* 6894 * Retrieve sli4 device physical port name, failure of doing it 6895 * is considered as non-fatal. 6896 */ 6897 rc = lpfc_sli4_retrieve_pport_name(phba); 6898 if (!rc) 6899 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6900 "3080 Successful retrieving SLI4 device " 6901 "physical port name: %s.\n", phba->Port); 6902 6903 /* 6904 * Evaluate the read rev and vpd data. Populate the driver 6905 * state with the results. If this routine fails, the failure 6906 * is not fatal as the driver will use generic values. 6907 */ 6908 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 6909 if (unlikely(!rc)) { 6910 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6911 "0377 Error %d parsing vpd. " 6912 "Using defaults.\n", rc); 6913 rc = 0; 6914 } 6915 kfree(vpd); 6916 6917 /* Save information as VPD data */ 6918 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 6919 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 6920 6921 /* 6922 * This is because first G7 ASIC doesn't support the standard 6923 * 0x5a NVME cmd descriptor type/subtype 6924 */ 6925 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 6926 LPFC_SLI_INTF_IF_TYPE_6) && 6927 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 6928 (phba->vpd.rev.smRev == 0) && 6929 (phba->cfg_nvme_embed_cmd == 1)) 6930 phba->cfg_nvme_embed_cmd = 0; 6931 6932 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 6933 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 6934 &mqe->un.read_rev); 6935 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 6936 &mqe->un.read_rev); 6937 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 6938 &mqe->un.read_rev); 6939 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 6940 &mqe->un.read_rev); 6941 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 6942 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 6943 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 6944 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 6945 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 6946 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 6947 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6948 "(%d):0380 READ_REV Status x%x " 6949 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 6950 mboxq->vport ? mboxq->vport->vpi : 0, 6951 bf_get(lpfc_mqe_status, mqe), 6952 phba->vpd.rev.opFwName, 6953 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 6954 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 6955 6956 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */ 6957 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3); 6958 if (phba->pport->cfg_lun_queue_depth > rc) { 6959 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6960 "3362 LUN queue depth changed from %d to %d\n", 6961 phba->pport->cfg_lun_queue_depth, rc); 6962 phba->pport->cfg_lun_queue_depth = rc; 6963 } 6964 6965 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 6966 LPFC_SLI_INTF_IF_TYPE_0) { 6967 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 6968 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6969 if (rc == MBX_SUCCESS) { 6970 phba->hba_flag |= HBA_RECOVERABLE_UE; 6971 /* Set 1Sec interval to detect UE */ 6972 phba->eratt_poll_interval = 1; 6973 phba->sli4_hba.ue_to_sr = bf_get( 6974 lpfc_mbx_set_feature_UESR, 6975 &mboxq->u.mqe.un.set_feature); 6976 phba->sli4_hba.ue_to_rp = bf_get( 6977 lpfc_mbx_set_feature_UERP, 6978 &mboxq->u.mqe.un.set_feature); 6979 } 6980 } 6981 6982 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 6983 /* Enable MDS Diagnostics only if the SLI Port supports it */ 6984 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 6985 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6986 if (rc != MBX_SUCCESS) 6987 phba->mds_diags_support = 0; 6988 } 6989 6990 /* 6991 * Discover the port's supported feature set and match it against the 6992 * hosts requests. 6993 */ 6994 lpfc_request_features(phba, mboxq); 6995 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6996 if (unlikely(rc)) { 6997 rc = -EIO; 6998 goto out_free_mbox; 6999 } 7000 7001 /* 7002 * The port must support FCP initiator mode as this is the 7003 * only mode running in the host. 7004 */ 7005 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 7006 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7007 "0378 No support for fcpi mode.\n"); 7008 ftr_rsp++; 7009 } 7010 7011 /* Performance Hints are ONLY for FCoE */ 7012 if (phba->hba_flag & HBA_FCOE_MODE) { 7013 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 7014 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 7015 else 7016 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 7017 } 7018 7019 /* 7020 * If the port cannot support the host's requested features 7021 * then turn off the global config parameters to disable the 7022 * feature in the driver. This is not a fatal error. 7023 */ 7024 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 7025 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 7026 phba->cfg_enable_bg = 0; 7027 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 7028 ftr_rsp++; 7029 } 7030 } 7031 7032 if (phba->max_vpi && phba->cfg_enable_npiv && 7033 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7034 ftr_rsp++; 7035 7036 if (ftr_rsp) { 7037 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7038 "0379 Feature Mismatch Data: x%08x %08x " 7039 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 7040 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 7041 phba->cfg_enable_npiv, phba->max_vpi); 7042 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 7043 phba->cfg_enable_bg = 0; 7044 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7045 phba->cfg_enable_npiv = 0; 7046 } 7047 7048 /* These SLI3 features are assumed in SLI4 */ 7049 spin_lock_irq(&phba->hbalock); 7050 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 7051 spin_unlock_irq(&phba->hbalock); 7052 7053 /* 7054 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 7055 * calls depends on these resources to complete port setup. 7056 */ 7057 rc = lpfc_sli4_alloc_resource_identifiers(phba); 7058 if (rc) { 7059 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7060 "2920 Failed to alloc Resource IDs " 7061 "rc = x%x\n", rc); 7062 goto out_free_mbox; 7063 } 7064 7065 lpfc_set_host_data(phba, mboxq); 7066 7067 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7068 if (rc) { 7069 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7070 "2134 Failed to set host os driver version %x", 7071 rc); 7072 } 7073 7074 /* Read the port's service parameters. */ 7075 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 7076 if (rc) { 7077 phba->link_state = LPFC_HBA_ERROR; 7078 rc = -ENOMEM; 7079 goto out_free_mbox; 7080 } 7081 7082 mboxq->vport = vport; 7083 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7084 mp = (struct lpfc_dmabuf *) mboxq->context1; 7085 if (rc == MBX_SUCCESS) { 7086 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 7087 rc = 0; 7088 } 7089 7090 /* 7091 * This memory was allocated by the lpfc_read_sparam routine. Release 7092 * it to the mbuf pool. 7093 */ 7094 lpfc_mbuf_free(phba, mp->virt, mp->phys); 7095 kfree(mp); 7096 mboxq->context1 = NULL; 7097 if (unlikely(rc)) { 7098 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7099 "0382 READ_SPARAM command failed " 7100 "status %d, mbxStatus x%x\n", 7101 rc, bf_get(lpfc_mqe_status, mqe)); 7102 phba->link_state = LPFC_HBA_ERROR; 7103 rc = -EIO; 7104 goto out_free_mbox; 7105 } 7106 7107 lpfc_update_vport_wwn(vport); 7108 7109 /* Update the fc_host data structures with new wwn. */ 7110 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 7111 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 7112 7113 /* Create all the SLI4 queues */ 7114 rc = lpfc_sli4_queue_create(phba); 7115 if (rc) { 7116 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7117 "3089 Failed to allocate queues\n"); 7118 rc = -ENODEV; 7119 goto out_free_mbox; 7120 } 7121 /* Set up all the queues to the device */ 7122 rc = lpfc_sli4_queue_setup(phba); 7123 if (unlikely(rc)) { 7124 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7125 "0381 Error %d during queue setup.\n ", rc); 7126 goto out_stop_timers; 7127 } 7128 /* Initialize the driver internal SLI layer lists. */ 7129 lpfc_sli4_setup(phba); 7130 lpfc_sli4_queue_init(phba); 7131 7132 /* update host els xri-sgl sizes and mappings */ 7133 rc = lpfc_sli4_els_sgl_update(phba); 7134 if (unlikely(rc)) { 7135 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7136 "1400 Failed to update xri-sgl size and " 7137 "mapping: %d\n", rc); 7138 goto out_destroy_queue; 7139 } 7140 7141 /* register the els sgl pool to the port */ 7142 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 7143 phba->sli4_hba.els_xri_cnt); 7144 if (unlikely(rc < 0)) { 7145 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7146 "0582 Error %d during els sgl post " 7147 "operation\n", rc); 7148 rc = -ENODEV; 7149 goto out_destroy_queue; 7150 } 7151 phba->sli4_hba.els_xri_cnt = rc; 7152 7153 if (phba->nvmet_support) { 7154 /* update host nvmet xri-sgl sizes and mappings */ 7155 rc = lpfc_sli4_nvmet_sgl_update(phba); 7156 if (unlikely(rc)) { 7157 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7158 "6308 Failed to update nvmet-sgl size " 7159 "and mapping: %d\n", rc); 7160 goto out_destroy_queue; 7161 } 7162 7163 /* register the nvmet sgl pool to the port */ 7164 rc = lpfc_sli4_repost_sgl_list( 7165 phba, 7166 &phba->sli4_hba.lpfc_nvmet_sgl_list, 7167 phba->sli4_hba.nvmet_xri_cnt); 7168 if (unlikely(rc < 0)) { 7169 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7170 "3117 Error %d during nvmet " 7171 "sgl post\n", rc); 7172 rc = -ENODEV; 7173 goto out_destroy_queue; 7174 } 7175 phba->sli4_hba.nvmet_xri_cnt = rc; 7176 7177 cnt = phba->cfg_iocb_cnt * 1024; 7178 /* We need 1 iocbq for every SGL, for IO processing */ 7179 cnt += phba->sli4_hba.nvmet_xri_cnt; 7180 } else { 7181 /* update host scsi xri-sgl sizes and mappings */ 7182 rc = lpfc_sli4_scsi_sgl_update(phba); 7183 if (unlikely(rc)) { 7184 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7185 "6309 Failed to update scsi-sgl size " 7186 "and mapping: %d\n", rc); 7187 goto out_destroy_queue; 7188 } 7189 7190 /* update host nvme xri-sgl sizes and mappings */ 7191 rc = lpfc_sli4_nvme_sgl_update(phba); 7192 if (unlikely(rc)) { 7193 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7194 "6082 Failed to update nvme-sgl size " 7195 "and mapping: %d\n", rc); 7196 goto out_destroy_queue; 7197 } 7198 7199 cnt = phba->cfg_iocb_cnt * 1024; 7200 } 7201 7202 if (!phba->sli.iocbq_lookup) { 7203 /* Initialize and populate the iocb list per host */ 7204 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7205 "2821 initialize iocb list %d total %d\n", 7206 phba->cfg_iocb_cnt, cnt); 7207 rc = lpfc_init_iocb_list(phba, cnt); 7208 if (rc) { 7209 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7210 "1413 Failed to init iocb list.\n"); 7211 goto out_destroy_queue; 7212 } 7213 } 7214 7215 if (phba->nvmet_support) 7216 lpfc_nvmet_create_targetport(phba); 7217 7218 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 7219 /* Post initial buffers to all RQs created */ 7220 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 7221 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 7222 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 7223 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 7224 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 7225 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 7226 rqbp->buffer_count = 0; 7227 7228 lpfc_post_rq_buffer( 7229 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 7230 phba->sli4_hba.nvmet_mrq_data[i], 7231 phba->cfg_nvmet_mrq_post, i); 7232 } 7233 } 7234 7235 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 7236 /* register the allocated scsi sgl pool to the port */ 7237 rc = lpfc_sli4_repost_scsi_sgl_list(phba); 7238 if (unlikely(rc)) { 7239 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7240 "0383 Error %d during scsi sgl post " 7241 "operation\n", rc); 7242 /* Some Scsi buffers were moved to abort scsi list */ 7243 /* A pci function reset will repost them */ 7244 rc = -ENODEV; 7245 goto out_destroy_queue; 7246 } 7247 } 7248 7249 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 7250 (phba->nvmet_support == 0)) { 7251 7252 /* register the allocated nvme sgl pool to the port */ 7253 rc = lpfc_repost_nvme_sgl_list(phba); 7254 if (unlikely(rc)) { 7255 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7256 "6116 Error %d during nvme sgl post " 7257 "operation\n", rc); 7258 /* Some NVME buffers were moved to abort nvme list */ 7259 /* A pci function reset will repost them */ 7260 rc = -ENODEV; 7261 goto out_destroy_queue; 7262 } 7263 } 7264 7265 /* Post the rpi header region to the device. */ 7266 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7267 if (unlikely(rc)) { 7268 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7269 "0393 Error %d during rpi post operation\n", 7270 rc); 7271 rc = -ENODEV; 7272 goto out_destroy_queue; 7273 } 7274 lpfc_sli4_node_prep(phba); 7275 7276 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7277 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7278 /* 7279 * The FC Port needs to register FCFI (index 0) 7280 */ 7281 lpfc_reg_fcfi(phba, mboxq); 7282 mboxq->vport = phba->pport; 7283 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7284 if (rc != MBX_SUCCESS) 7285 goto out_unset_queue; 7286 rc = 0; 7287 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7288 &mboxq->u.mqe.un.reg_fcfi); 7289 } else { 7290 /* We are a NVME Target mode with MRQ > 1 */ 7291 7292 /* First register the FCFI */ 7293 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 7294 mboxq->vport = phba->pport; 7295 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7296 if (rc != MBX_SUCCESS) 7297 goto out_unset_queue; 7298 rc = 0; 7299 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 7300 &mboxq->u.mqe.un.reg_fcfi_mrq); 7301 7302 /* Next register the MRQs */ 7303 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 7304 mboxq->vport = phba->pport; 7305 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7306 if (rc != MBX_SUCCESS) 7307 goto out_unset_queue; 7308 rc = 0; 7309 } 7310 /* Check if the port is configured to be disabled */ 7311 lpfc_sli_read_link_ste(phba); 7312 } 7313 7314 /* Arm the CQs and then EQs on device */ 7315 lpfc_sli4_arm_cqeq_intr(phba); 7316 7317 /* Indicate device interrupt mode */ 7318 phba->sli4_hba.intr_enable = 1; 7319 7320 /* Allow asynchronous mailbox command to go through */ 7321 spin_lock_irq(&phba->hbalock); 7322 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7323 spin_unlock_irq(&phba->hbalock); 7324 7325 /* Post receive buffers to the device */ 7326 lpfc_sli4_rb_setup(phba); 7327 7328 /* Reset HBA FCF states after HBA reset */ 7329 phba->fcf.fcf_flag = 0; 7330 phba->fcf.current_rec.flag = 0; 7331 7332 /* Start the ELS watchdog timer */ 7333 mod_timer(&vport->els_tmofunc, 7334 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 7335 7336 /* Start heart beat timer */ 7337 mod_timer(&phba->hb_tmofunc, 7338 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 7339 phba->hb_outstanding = 0; 7340 phba->last_completion_time = jiffies; 7341 7342 /* Start error attention (ERATT) polling timer */ 7343 mod_timer(&phba->eratt_poll, 7344 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 7345 7346 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 7347 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 7348 rc = pci_enable_pcie_error_reporting(phba->pcidev); 7349 if (!rc) { 7350 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7351 "2829 This device supports " 7352 "Advanced Error Reporting (AER)\n"); 7353 spin_lock_irq(&phba->hbalock); 7354 phba->hba_flag |= HBA_AER_ENABLED; 7355 spin_unlock_irq(&phba->hbalock); 7356 } else { 7357 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7358 "2830 This device does not support " 7359 "Advanced Error Reporting (AER)\n"); 7360 phba->cfg_aer_support = 0; 7361 } 7362 rc = 0; 7363 } 7364 7365 /* 7366 * The port is ready, set the host's link state to LINK_DOWN 7367 * in preparation for link interrupts. 7368 */ 7369 spin_lock_irq(&phba->hbalock); 7370 phba->link_state = LPFC_LINK_DOWN; 7371 spin_unlock_irq(&phba->hbalock); 7372 if (!(phba->hba_flag & HBA_FCOE_MODE) && 7373 (phba->hba_flag & LINK_DISABLED)) { 7374 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7375 "3103 Adapter Link is disabled.\n"); 7376 lpfc_down_link(phba, mboxq); 7377 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7378 if (rc != MBX_SUCCESS) { 7379 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7380 "3104 Adapter failed to issue " 7381 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 7382 goto out_unset_queue; 7383 } 7384 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 7385 /* don't perform init_link on SLI4 FC port loopback test */ 7386 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 7387 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 7388 if (rc) 7389 goto out_unset_queue; 7390 } 7391 } 7392 mempool_free(mboxq, phba->mbox_mem_pool); 7393 return rc; 7394 out_unset_queue: 7395 /* Unset all the queues set up in this routine when error out */ 7396 lpfc_sli4_queue_unset(phba); 7397 out_destroy_queue: 7398 lpfc_free_iocb_list(phba); 7399 lpfc_sli4_queue_destroy(phba); 7400 out_stop_timers: 7401 lpfc_stop_hba_timers(phba); 7402 out_free_mbox: 7403 mempool_free(mboxq, phba->mbox_mem_pool); 7404 return rc; 7405 } 7406 7407 /** 7408 * lpfc_mbox_timeout - Timeout call back function for mbox timer 7409 * @ptr: context object - pointer to hba structure. 7410 * 7411 * This is the callback function for mailbox timer. The mailbox 7412 * timer is armed when a new mailbox command is issued and the timer 7413 * is deleted when the mailbox complete. The function is called by 7414 * the kernel timer code when a mailbox does not complete within 7415 * expected time. This function wakes up the worker thread to 7416 * process the mailbox timeout and returns. All the processing is 7417 * done by the worker thread function lpfc_mbox_timeout_handler. 7418 **/ 7419 void 7420 lpfc_mbox_timeout(struct timer_list *t) 7421 { 7422 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 7423 unsigned long iflag; 7424 uint32_t tmo_posted; 7425 7426 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 7427 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 7428 if (!tmo_posted) 7429 phba->pport->work_port_events |= WORKER_MBOX_TMO; 7430 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 7431 7432 if (!tmo_posted) 7433 lpfc_worker_wake_up(phba); 7434 return; 7435 } 7436 7437 /** 7438 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 7439 * are pending 7440 * @phba: Pointer to HBA context object. 7441 * 7442 * This function checks if any mailbox completions are present on the mailbox 7443 * completion queue. 7444 **/ 7445 static bool 7446 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 7447 { 7448 7449 uint32_t idx; 7450 struct lpfc_queue *mcq; 7451 struct lpfc_mcqe *mcqe; 7452 bool pending_completions = false; 7453 uint8_t qe_valid; 7454 7455 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7456 return false; 7457 7458 /* Check for completions on mailbox completion queue */ 7459 7460 mcq = phba->sli4_hba.mbx_cq; 7461 idx = mcq->hba_index; 7462 qe_valid = mcq->qe_valid; 7463 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe) == qe_valid) { 7464 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe; 7465 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 7466 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 7467 pending_completions = true; 7468 break; 7469 } 7470 idx = (idx + 1) % mcq->entry_count; 7471 if (mcq->hba_index == idx) 7472 break; 7473 7474 /* if the index wrapped around, toggle the valid bit */ 7475 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 7476 qe_valid = (qe_valid) ? 0 : 1; 7477 } 7478 return pending_completions; 7479 7480 } 7481 7482 /** 7483 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 7484 * that were missed. 7485 * @phba: Pointer to HBA context object. 7486 * 7487 * For sli4, it is possible to miss an interrupt. As such mbox completions 7488 * maybe missed causing erroneous mailbox timeouts to occur. This function 7489 * checks to see if mbox completions are on the mailbox completion queue 7490 * and will process all the completions associated with the eq for the 7491 * mailbox completion queue. 7492 **/ 7493 bool 7494 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 7495 { 7496 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 7497 uint32_t eqidx; 7498 struct lpfc_queue *fpeq = NULL; 7499 struct lpfc_eqe *eqe; 7500 bool mbox_pending; 7501 7502 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7503 return false; 7504 7505 /* Find the eq associated with the mcq */ 7506 7507 if (sli4_hba->hba_eq) 7508 for (eqidx = 0; eqidx < phba->io_channel_irqs; eqidx++) 7509 if (sli4_hba->hba_eq[eqidx]->queue_id == 7510 sli4_hba->mbx_cq->assoc_qid) { 7511 fpeq = sli4_hba->hba_eq[eqidx]; 7512 break; 7513 } 7514 if (!fpeq) 7515 return false; 7516 7517 /* Turn off interrupts from this EQ */ 7518 7519 sli4_hba->sli4_eq_clr_intr(fpeq); 7520 7521 /* Check to see if a mbox completion is pending */ 7522 7523 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 7524 7525 /* 7526 * If a mbox completion is pending, process all the events on EQ 7527 * associated with the mbox completion queue (this could include 7528 * mailbox commands, async events, els commands, receive queue data 7529 * and fcp commands) 7530 */ 7531 7532 if (mbox_pending) 7533 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 7534 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx); 7535 fpeq->EQ_processed++; 7536 } 7537 7538 /* Always clear and re-arm the EQ */ 7539 7540 sli4_hba->sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 7541 7542 return mbox_pending; 7543 7544 } 7545 7546 /** 7547 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 7548 * @phba: Pointer to HBA context object. 7549 * 7550 * This function is called from worker thread when a mailbox command times out. 7551 * The caller is not required to hold any locks. This function will reset the 7552 * HBA and recover all the pending commands. 7553 **/ 7554 void 7555 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 7556 { 7557 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 7558 MAILBOX_t *mb = NULL; 7559 7560 struct lpfc_sli *psli = &phba->sli; 7561 7562 /* If the mailbox completed, process the completion and return */ 7563 if (lpfc_sli4_process_missed_mbox_completions(phba)) 7564 return; 7565 7566 if (pmbox != NULL) 7567 mb = &pmbox->u.mb; 7568 /* Check the pmbox pointer first. There is a race condition 7569 * between the mbox timeout handler getting executed in the 7570 * worklist and the mailbox actually completing. When this 7571 * race condition occurs, the mbox_active will be NULL. 7572 */ 7573 spin_lock_irq(&phba->hbalock); 7574 if (pmbox == NULL) { 7575 lpfc_printf_log(phba, KERN_WARNING, 7576 LOG_MBOX | LOG_SLI, 7577 "0353 Active Mailbox cleared - mailbox timeout " 7578 "exiting\n"); 7579 spin_unlock_irq(&phba->hbalock); 7580 return; 7581 } 7582 7583 /* Mbox cmd <mbxCommand> timeout */ 7584 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7585 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n", 7586 mb->mbxCommand, 7587 phba->pport->port_state, 7588 phba->sli.sli_flag, 7589 phba->sli.mbox_active); 7590 spin_unlock_irq(&phba->hbalock); 7591 7592 /* Setting state unknown so lpfc_sli_abort_iocb_ring 7593 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 7594 * it to fail all outstanding SCSI IO. 7595 */ 7596 spin_lock_irq(&phba->pport->work_port_lock); 7597 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 7598 spin_unlock_irq(&phba->pport->work_port_lock); 7599 spin_lock_irq(&phba->hbalock); 7600 phba->link_state = LPFC_LINK_UNKNOWN; 7601 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 7602 spin_unlock_irq(&phba->hbalock); 7603 7604 lpfc_sli_abort_fcp_rings(phba); 7605 7606 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7607 "0345 Resetting board due to mailbox timeout\n"); 7608 7609 /* Reset the HBA device */ 7610 lpfc_reset_hba(phba); 7611 } 7612 7613 /** 7614 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 7615 * @phba: Pointer to HBA context object. 7616 * @pmbox: Pointer to mailbox object. 7617 * @flag: Flag indicating how the mailbox need to be processed. 7618 * 7619 * This function is called by discovery code and HBA management code 7620 * to submit a mailbox command to firmware with SLI-3 interface spec. This 7621 * function gets the hbalock to protect the data structures. 7622 * The mailbox command can be submitted in polling mode, in which case 7623 * this function will wait in a polling loop for the completion of the 7624 * mailbox. 7625 * If the mailbox is submitted in no_wait mode (not polling) the 7626 * function will submit the command and returns immediately without waiting 7627 * for the mailbox completion. The no_wait is supported only when HBA 7628 * is in SLI2/SLI3 mode - interrupts are enabled. 7629 * The SLI interface allows only one mailbox pending at a time. If the 7630 * mailbox is issued in polling mode and there is already a mailbox 7631 * pending, then the function will return an error. If the mailbox is issued 7632 * in NO_WAIT mode and there is a mailbox pending already, the function 7633 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 7634 * The sli layer owns the mailbox object until the completion of mailbox 7635 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 7636 * return codes the caller owns the mailbox command after the return of 7637 * the function. 7638 **/ 7639 static int 7640 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 7641 uint32_t flag) 7642 { 7643 MAILBOX_t *mbx; 7644 struct lpfc_sli *psli = &phba->sli; 7645 uint32_t status, evtctr; 7646 uint32_t ha_copy, hc_copy; 7647 int i; 7648 unsigned long timeout; 7649 unsigned long drvr_flag = 0; 7650 uint32_t word0, ldata; 7651 void __iomem *to_slim; 7652 int processing_queue = 0; 7653 7654 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7655 if (!pmbox) { 7656 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7657 /* processing mbox queue from intr_handler */ 7658 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7659 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7660 return MBX_SUCCESS; 7661 } 7662 processing_queue = 1; 7663 pmbox = lpfc_mbox_get(phba); 7664 if (!pmbox) { 7665 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7666 return MBX_SUCCESS; 7667 } 7668 } 7669 7670 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 7671 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 7672 if(!pmbox->vport) { 7673 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7674 lpfc_printf_log(phba, KERN_ERR, 7675 LOG_MBOX | LOG_VPORT, 7676 "1806 Mbox x%x failed. No vport\n", 7677 pmbox->u.mb.mbxCommand); 7678 dump_stack(); 7679 goto out_not_finished; 7680 } 7681 } 7682 7683 /* If the PCI channel is in offline state, do not post mbox. */ 7684 if (unlikely(pci_channel_offline(phba->pcidev))) { 7685 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7686 goto out_not_finished; 7687 } 7688 7689 /* If HBA has a deferred error attention, fail the iocb. */ 7690 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 7691 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7692 goto out_not_finished; 7693 } 7694 7695 psli = &phba->sli; 7696 7697 mbx = &pmbox->u.mb; 7698 status = MBX_SUCCESS; 7699 7700 if (phba->link_state == LPFC_HBA_ERROR) { 7701 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7702 7703 /* Mbox command <mbxCommand> cannot issue */ 7704 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7705 "(%d):0311 Mailbox command x%x cannot " 7706 "issue Data: x%x x%x\n", 7707 pmbox->vport ? pmbox->vport->vpi : 0, 7708 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7709 goto out_not_finished; 7710 } 7711 7712 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 7713 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 7714 !(hc_copy & HC_MBINT_ENA)) { 7715 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7716 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7717 "(%d):2528 Mailbox command x%x cannot " 7718 "issue Data: x%x x%x\n", 7719 pmbox->vport ? pmbox->vport->vpi : 0, 7720 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7721 goto out_not_finished; 7722 } 7723 } 7724 7725 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7726 /* Polling for a mbox command when another one is already active 7727 * is not allowed in SLI. Also, the driver must have established 7728 * SLI2 mode to queue and process multiple mbox commands. 7729 */ 7730 7731 if (flag & MBX_POLL) { 7732 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7733 7734 /* Mbox command <mbxCommand> cannot issue */ 7735 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7736 "(%d):2529 Mailbox command x%x " 7737 "cannot issue Data: x%x x%x\n", 7738 pmbox->vport ? pmbox->vport->vpi : 0, 7739 pmbox->u.mb.mbxCommand, 7740 psli->sli_flag, flag); 7741 goto out_not_finished; 7742 } 7743 7744 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 7745 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7746 /* Mbox command <mbxCommand> cannot issue */ 7747 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7748 "(%d):2530 Mailbox command x%x " 7749 "cannot issue Data: x%x x%x\n", 7750 pmbox->vport ? pmbox->vport->vpi : 0, 7751 pmbox->u.mb.mbxCommand, 7752 psli->sli_flag, flag); 7753 goto out_not_finished; 7754 } 7755 7756 /* Another mailbox command is still being processed, queue this 7757 * command to be processed later. 7758 */ 7759 lpfc_mbox_put(phba, pmbox); 7760 7761 /* Mbox cmd issue - BUSY */ 7762 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7763 "(%d):0308 Mbox cmd issue - BUSY Data: " 7764 "x%x x%x x%x x%x\n", 7765 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 7766 mbx->mbxCommand, 7767 phba->pport ? phba->pport->port_state : 0xff, 7768 psli->sli_flag, flag); 7769 7770 psli->slistat.mbox_busy++; 7771 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7772 7773 if (pmbox->vport) { 7774 lpfc_debugfs_disc_trc(pmbox->vport, 7775 LPFC_DISC_TRC_MBOX_VPORT, 7776 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 7777 (uint32_t)mbx->mbxCommand, 7778 mbx->un.varWords[0], mbx->un.varWords[1]); 7779 } 7780 else { 7781 lpfc_debugfs_disc_trc(phba->pport, 7782 LPFC_DISC_TRC_MBOX, 7783 "MBOX Bsy: cmd:x%x mb:x%x x%x", 7784 (uint32_t)mbx->mbxCommand, 7785 mbx->un.varWords[0], mbx->un.varWords[1]); 7786 } 7787 7788 return MBX_BUSY; 7789 } 7790 7791 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7792 7793 /* If we are not polling, we MUST be in SLI2 mode */ 7794 if (flag != MBX_POLL) { 7795 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 7796 (mbx->mbxCommand != MBX_KILL_BOARD)) { 7797 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7798 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7799 /* Mbox command <mbxCommand> cannot issue */ 7800 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7801 "(%d):2531 Mailbox command x%x " 7802 "cannot issue Data: x%x x%x\n", 7803 pmbox->vport ? pmbox->vport->vpi : 0, 7804 pmbox->u.mb.mbxCommand, 7805 psli->sli_flag, flag); 7806 goto out_not_finished; 7807 } 7808 /* timeout active mbox command */ 7809 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7810 1000); 7811 mod_timer(&psli->mbox_tmo, jiffies + timeout); 7812 } 7813 7814 /* Mailbox cmd <cmd> issue */ 7815 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7816 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 7817 "x%x\n", 7818 pmbox->vport ? pmbox->vport->vpi : 0, 7819 mbx->mbxCommand, 7820 phba->pport ? phba->pport->port_state : 0xff, 7821 psli->sli_flag, flag); 7822 7823 if (mbx->mbxCommand != MBX_HEARTBEAT) { 7824 if (pmbox->vport) { 7825 lpfc_debugfs_disc_trc(pmbox->vport, 7826 LPFC_DISC_TRC_MBOX_VPORT, 7827 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7828 (uint32_t)mbx->mbxCommand, 7829 mbx->un.varWords[0], mbx->un.varWords[1]); 7830 } 7831 else { 7832 lpfc_debugfs_disc_trc(phba->pport, 7833 LPFC_DISC_TRC_MBOX, 7834 "MBOX Send: cmd:x%x mb:x%x x%x", 7835 (uint32_t)mbx->mbxCommand, 7836 mbx->un.varWords[0], mbx->un.varWords[1]); 7837 } 7838 } 7839 7840 psli->slistat.mbox_cmd++; 7841 evtctr = psli->slistat.mbox_event; 7842 7843 /* next set own bit for the adapter and copy over command word */ 7844 mbx->mbxOwner = OWN_CHIP; 7845 7846 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7847 /* Populate mbox extension offset word. */ 7848 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 7849 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7850 = (uint8_t *)phba->mbox_ext 7851 - (uint8_t *)phba->mbox; 7852 } 7853 7854 /* Copy the mailbox extension data */ 7855 if (pmbox->in_ext_byte_len && pmbox->context2) { 7856 lpfc_sli_pcimem_bcopy(pmbox->context2, 7857 (uint8_t *)phba->mbox_ext, 7858 pmbox->in_ext_byte_len); 7859 } 7860 /* Copy command data to host SLIM area */ 7861 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 7862 } else { 7863 /* Populate mbox extension offset word. */ 7864 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 7865 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7866 = MAILBOX_HBA_EXT_OFFSET; 7867 7868 /* Copy the mailbox extension data */ 7869 if (pmbox->in_ext_byte_len && pmbox->context2) 7870 lpfc_memcpy_to_slim(phba->MBslimaddr + 7871 MAILBOX_HBA_EXT_OFFSET, 7872 pmbox->context2, pmbox->in_ext_byte_len); 7873 7874 if (mbx->mbxCommand == MBX_CONFIG_PORT) 7875 /* copy command data into host mbox for cmpl */ 7876 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 7877 MAILBOX_CMD_SIZE); 7878 7879 /* First copy mbox command data to HBA SLIM, skip past first 7880 word */ 7881 to_slim = phba->MBslimaddr + sizeof (uint32_t); 7882 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 7883 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 7884 7885 /* Next copy over first word, with mbxOwner set */ 7886 ldata = *((uint32_t *)mbx); 7887 to_slim = phba->MBslimaddr; 7888 writel(ldata, to_slim); 7889 readl(to_slim); /* flush */ 7890 7891 if (mbx->mbxCommand == MBX_CONFIG_PORT) 7892 /* switch over to host mailbox */ 7893 psli->sli_flag |= LPFC_SLI_ACTIVE; 7894 } 7895 7896 wmb(); 7897 7898 switch (flag) { 7899 case MBX_NOWAIT: 7900 /* Set up reference to mailbox command */ 7901 psli->mbox_active = pmbox; 7902 /* Interrupt board to do it */ 7903 writel(CA_MBATT, phba->CAregaddr); 7904 readl(phba->CAregaddr); /* flush */ 7905 /* Don't wait for it to finish, just return */ 7906 break; 7907 7908 case MBX_POLL: 7909 /* Set up null reference to mailbox command */ 7910 psli->mbox_active = NULL; 7911 /* Interrupt board to do it */ 7912 writel(CA_MBATT, phba->CAregaddr); 7913 readl(phba->CAregaddr); /* flush */ 7914 7915 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7916 /* First read mbox status word */ 7917 word0 = *((uint32_t *)phba->mbox); 7918 word0 = le32_to_cpu(word0); 7919 } else { 7920 /* First read mbox status word */ 7921 if (lpfc_readl(phba->MBslimaddr, &word0)) { 7922 spin_unlock_irqrestore(&phba->hbalock, 7923 drvr_flag); 7924 goto out_not_finished; 7925 } 7926 } 7927 7928 /* Read the HBA Host Attention Register */ 7929 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7930 spin_unlock_irqrestore(&phba->hbalock, 7931 drvr_flag); 7932 goto out_not_finished; 7933 } 7934 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7935 1000) + jiffies; 7936 i = 0; 7937 /* Wait for command to complete */ 7938 while (((word0 & OWN_CHIP) == OWN_CHIP) || 7939 (!(ha_copy & HA_MBATT) && 7940 (phba->link_state > LPFC_WARM_START))) { 7941 if (time_after(jiffies, timeout)) { 7942 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7943 spin_unlock_irqrestore(&phba->hbalock, 7944 drvr_flag); 7945 goto out_not_finished; 7946 } 7947 7948 /* Check if we took a mbox interrupt while we were 7949 polling */ 7950 if (((word0 & OWN_CHIP) != OWN_CHIP) 7951 && (evtctr != psli->slistat.mbox_event)) 7952 break; 7953 7954 if (i++ > 10) { 7955 spin_unlock_irqrestore(&phba->hbalock, 7956 drvr_flag); 7957 msleep(1); 7958 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7959 } 7960 7961 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7962 /* First copy command data */ 7963 word0 = *((uint32_t *)phba->mbox); 7964 word0 = le32_to_cpu(word0); 7965 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7966 MAILBOX_t *slimmb; 7967 uint32_t slimword0; 7968 /* Check real SLIM for any errors */ 7969 slimword0 = readl(phba->MBslimaddr); 7970 slimmb = (MAILBOX_t *) & slimword0; 7971 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 7972 && slimmb->mbxStatus) { 7973 psli->sli_flag &= 7974 ~LPFC_SLI_ACTIVE; 7975 word0 = slimword0; 7976 } 7977 } 7978 } else { 7979 /* First copy command data */ 7980 word0 = readl(phba->MBslimaddr); 7981 } 7982 /* Read the HBA Host Attention Register */ 7983 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7984 spin_unlock_irqrestore(&phba->hbalock, 7985 drvr_flag); 7986 goto out_not_finished; 7987 } 7988 } 7989 7990 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7991 /* copy results back to user */ 7992 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 7993 MAILBOX_CMD_SIZE); 7994 /* Copy the mailbox extension data */ 7995 if (pmbox->out_ext_byte_len && pmbox->context2) { 7996 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 7997 pmbox->context2, 7998 pmbox->out_ext_byte_len); 7999 } 8000 } else { 8001 /* First copy command data */ 8002 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 8003 MAILBOX_CMD_SIZE); 8004 /* Copy the mailbox extension data */ 8005 if (pmbox->out_ext_byte_len && pmbox->context2) { 8006 lpfc_memcpy_from_slim(pmbox->context2, 8007 phba->MBslimaddr + 8008 MAILBOX_HBA_EXT_OFFSET, 8009 pmbox->out_ext_byte_len); 8010 } 8011 } 8012 8013 writel(HA_MBATT, phba->HAregaddr); 8014 readl(phba->HAregaddr); /* flush */ 8015 8016 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8017 status = mbx->mbxStatus; 8018 } 8019 8020 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8021 return status; 8022 8023 out_not_finished: 8024 if (processing_queue) { 8025 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 8026 lpfc_mbox_cmpl_put(phba, pmbox); 8027 } 8028 return MBX_NOT_FINISHED; 8029 } 8030 8031 /** 8032 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 8033 * @phba: Pointer to HBA context object. 8034 * 8035 * The function blocks the posting of SLI4 asynchronous mailbox commands from 8036 * the driver internal pending mailbox queue. It will then try to wait out the 8037 * possible outstanding mailbox command before return. 8038 * 8039 * Returns: 8040 * 0 - the outstanding mailbox command completed; otherwise, the wait for 8041 * the outstanding mailbox command timed out. 8042 **/ 8043 static int 8044 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 8045 { 8046 struct lpfc_sli *psli = &phba->sli; 8047 int rc = 0; 8048 unsigned long timeout = 0; 8049 8050 /* Mark the asynchronous mailbox command posting as blocked */ 8051 spin_lock_irq(&phba->hbalock); 8052 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 8053 /* Determine how long we might wait for the active mailbox 8054 * command to be gracefully completed by firmware. 8055 */ 8056 if (phba->sli.mbox_active) 8057 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 8058 phba->sli.mbox_active) * 8059 1000) + jiffies; 8060 spin_unlock_irq(&phba->hbalock); 8061 8062 /* Make sure the mailbox is really active */ 8063 if (timeout) 8064 lpfc_sli4_process_missed_mbox_completions(phba); 8065 8066 /* Wait for the outstnading mailbox command to complete */ 8067 while (phba->sli.mbox_active) { 8068 /* Check active mailbox complete status every 2ms */ 8069 msleep(2); 8070 if (time_after(jiffies, timeout)) { 8071 /* Timeout, marked the outstanding cmd not complete */ 8072 rc = 1; 8073 break; 8074 } 8075 } 8076 8077 /* Can not cleanly block async mailbox command, fails it */ 8078 if (rc) { 8079 spin_lock_irq(&phba->hbalock); 8080 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8081 spin_unlock_irq(&phba->hbalock); 8082 } 8083 return rc; 8084 } 8085 8086 /** 8087 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 8088 * @phba: Pointer to HBA context object. 8089 * 8090 * The function unblocks and resume posting of SLI4 asynchronous mailbox 8091 * commands from the driver internal pending mailbox queue. It makes sure 8092 * that there is no outstanding mailbox command before resuming posting 8093 * asynchronous mailbox commands. If, for any reason, there is outstanding 8094 * mailbox command, it will try to wait it out before resuming asynchronous 8095 * mailbox command posting. 8096 **/ 8097 static void 8098 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 8099 { 8100 struct lpfc_sli *psli = &phba->sli; 8101 8102 spin_lock_irq(&phba->hbalock); 8103 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8104 /* Asynchronous mailbox posting is not blocked, do nothing */ 8105 spin_unlock_irq(&phba->hbalock); 8106 return; 8107 } 8108 8109 /* Outstanding synchronous mailbox command is guaranteed to be done, 8110 * successful or timeout, after timing-out the outstanding mailbox 8111 * command shall always be removed, so just unblock posting async 8112 * mailbox command and resume 8113 */ 8114 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8115 spin_unlock_irq(&phba->hbalock); 8116 8117 /* wake up worker thread to post asynchronlous mailbox command */ 8118 lpfc_worker_wake_up(phba); 8119 } 8120 8121 /** 8122 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 8123 * @phba: Pointer to HBA context object. 8124 * @mboxq: Pointer to mailbox object. 8125 * 8126 * The function waits for the bootstrap mailbox register ready bit from 8127 * port for twice the regular mailbox command timeout value. 8128 * 8129 * 0 - no timeout on waiting for bootstrap mailbox register ready. 8130 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 8131 **/ 8132 static int 8133 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8134 { 8135 uint32_t db_ready; 8136 unsigned long timeout; 8137 struct lpfc_register bmbx_reg; 8138 8139 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 8140 * 1000) + jiffies; 8141 8142 do { 8143 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 8144 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 8145 if (!db_ready) 8146 msleep(2); 8147 8148 if (time_after(jiffies, timeout)) 8149 return MBXERR_ERROR; 8150 } while (!db_ready); 8151 8152 return 0; 8153 } 8154 8155 /** 8156 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 8157 * @phba: Pointer to HBA context object. 8158 * @mboxq: Pointer to mailbox object. 8159 * 8160 * The function posts a mailbox to the port. The mailbox is expected 8161 * to be comletely filled in and ready for the port to operate on it. 8162 * This routine executes a synchronous completion operation on the 8163 * mailbox by polling for its completion. 8164 * 8165 * The caller must not be holding any locks when calling this routine. 8166 * 8167 * Returns: 8168 * MBX_SUCCESS - mailbox posted successfully 8169 * Any of the MBX error values. 8170 **/ 8171 static int 8172 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8173 { 8174 int rc = MBX_SUCCESS; 8175 unsigned long iflag; 8176 uint32_t mcqe_status; 8177 uint32_t mbx_cmnd; 8178 struct lpfc_sli *psli = &phba->sli; 8179 struct lpfc_mqe *mb = &mboxq->u.mqe; 8180 struct lpfc_bmbx_create *mbox_rgn; 8181 struct dma_address *dma_address; 8182 8183 /* 8184 * Only one mailbox can be active to the bootstrap mailbox region 8185 * at a time and there is no queueing provided. 8186 */ 8187 spin_lock_irqsave(&phba->hbalock, iflag); 8188 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8189 spin_unlock_irqrestore(&phba->hbalock, iflag); 8190 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8191 "(%d):2532 Mailbox command x%x (x%x/x%x) " 8192 "cannot issue Data: x%x x%x\n", 8193 mboxq->vport ? mboxq->vport->vpi : 0, 8194 mboxq->u.mb.mbxCommand, 8195 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8196 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8197 psli->sli_flag, MBX_POLL); 8198 return MBXERR_ERROR; 8199 } 8200 /* The server grabs the token and owns it until release */ 8201 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8202 phba->sli.mbox_active = mboxq; 8203 spin_unlock_irqrestore(&phba->hbalock, iflag); 8204 8205 /* wait for bootstrap mbox register for readyness */ 8206 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8207 if (rc) 8208 goto exit; 8209 8210 /* 8211 * Initialize the bootstrap memory region to avoid stale data areas 8212 * in the mailbox post. Then copy the caller's mailbox contents to 8213 * the bmbx mailbox region. 8214 */ 8215 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 8216 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 8217 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 8218 sizeof(struct lpfc_mqe)); 8219 8220 /* Post the high mailbox dma address to the port and wait for ready. */ 8221 dma_address = &phba->sli4_hba.bmbx.dma_address; 8222 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 8223 8224 /* wait for bootstrap mbox register for hi-address write done */ 8225 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8226 if (rc) 8227 goto exit; 8228 8229 /* Post the low mailbox dma address to the port. */ 8230 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 8231 8232 /* wait for bootstrap mbox register for low address write done */ 8233 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8234 if (rc) 8235 goto exit; 8236 8237 /* 8238 * Read the CQ to ensure the mailbox has completed. 8239 * If so, update the mailbox status so that the upper layers 8240 * can complete the request normally. 8241 */ 8242 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 8243 sizeof(struct lpfc_mqe)); 8244 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 8245 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 8246 sizeof(struct lpfc_mcqe)); 8247 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 8248 /* 8249 * When the CQE status indicates a failure and the mailbox status 8250 * indicates success then copy the CQE status into the mailbox status 8251 * (and prefix it with x4000). 8252 */ 8253 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 8254 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 8255 bf_set(lpfc_mqe_status, mb, 8256 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 8257 rc = MBXERR_ERROR; 8258 } else 8259 lpfc_sli4_swap_str(phba, mboxq); 8260 8261 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8262 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 8263 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 8264 " x%x x%x CQ: x%x x%x x%x x%x\n", 8265 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8266 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8267 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8268 bf_get(lpfc_mqe_status, mb), 8269 mb->un.mb_words[0], mb->un.mb_words[1], 8270 mb->un.mb_words[2], mb->un.mb_words[3], 8271 mb->un.mb_words[4], mb->un.mb_words[5], 8272 mb->un.mb_words[6], mb->un.mb_words[7], 8273 mb->un.mb_words[8], mb->un.mb_words[9], 8274 mb->un.mb_words[10], mb->un.mb_words[11], 8275 mb->un.mb_words[12], mboxq->mcqe.word0, 8276 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 8277 mboxq->mcqe.trailer); 8278 exit: 8279 /* We are holding the token, no needed for lock when release */ 8280 spin_lock_irqsave(&phba->hbalock, iflag); 8281 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8282 phba->sli.mbox_active = NULL; 8283 spin_unlock_irqrestore(&phba->hbalock, iflag); 8284 return rc; 8285 } 8286 8287 /** 8288 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 8289 * @phba: Pointer to HBA context object. 8290 * @pmbox: Pointer to mailbox object. 8291 * @flag: Flag indicating how the mailbox need to be processed. 8292 * 8293 * This function is called by discovery code and HBA management code to submit 8294 * a mailbox command to firmware with SLI-4 interface spec. 8295 * 8296 * Return codes the caller owns the mailbox command after the return of the 8297 * function. 8298 **/ 8299 static int 8300 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 8301 uint32_t flag) 8302 { 8303 struct lpfc_sli *psli = &phba->sli; 8304 unsigned long iflags; 8305 int rc; 8306 8307 /* dump from issue mailbox command if setup */ 8308 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 8309 8310 rc = lpfc_mbox_dev_check(phba); 8311 if (unlikely(rc)) { 8312 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8313 "(%d):2544 Mailbox command x%x (x%x/x%x) " 8314 "cannot issue Data: x%x x%x\n", 8315 mboxq->vport ? mboxq->vport->vpi : 0, 8316 mboxq->u.mb.mbxCommand, 8317 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8318 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8319 psli->sli_flag, flag); 8320 goto out_not_finished; 8321 } 8322 8323 /* Detect polling mode and jump to a handler */ 8324 if (!phba->sli4_hba.intr_enable) { 8325 if (flag == MBX_POLL) 8326 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8327 else 8328 rc = -EIO; 8329 if (rc != MBX_SUCCESS) 8330 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8331 "(%d):2541 Mailbox command x%x " 8332 "(x%x/x%x) failure: " 8333 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8334 "Data: x%x x%x\n,", 8335 mboxq->vport ? mboxq->vport->vpi : 0, 8336 mboxq->u.mb.mbxCommand, 8337 lpfc_sli_config_mbox_subsys_get(phba, 8338 mboxq), 8339 lpfc_sli_config_mbox_opcode_get(phba, 8340 mboxq), 8341 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8342 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8343 bf_get(lpfc_mcqe_ext_status, 8344 &mboxq->mcqe), 8345 psli->sli_flag, flag); 8346 return rc; 8347 } else if (flag == MBX_POLL) { 8348 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8349 "(%d):2542 Try to issue mailbox command " 8350 "x%x (x%x/x%x) synchronously ahead of async " 8351 "mailbox command queue: x%x x%x\n", 8352 mboxq->vport ? mboxq->vport->vpi : 0, 8353 mboxq->u.mb.mbxCommand, 8354 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8355 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8356 psli->sli_flag, flag); 8357 /* Try to block the asynchronous mailbox posting */ 8358 rc = lpfc_sli4_async_mbox_block(phba); 8359 if (!rc) { 8360 /* Successfully blocked, now issue sync mbox cmd */ 8361 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8362 if (rc != MBX_SUCCESS) 8363 lpfc_printf_log(phba, KERN_WARNING, 8364 LOG_MBOX | LOG_SLI, 8365 "(%d):2597 Sync Mailbox command " 8366 "x%x (x%x/x%x) failure: " 8367 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8368 "Data: x%x x%x\n,", 8369 mboxq->vport ? mboxq->vport->vpi : 0, 8370 mboxq->u.mb.mbxCommand, 8371 lpfc_sli_config_mbox_subsys_get(phba, 8372 mboxq), 8373 lpfc_sli_config_mbox_opcode_get(phba, 8374 mboxq), 8375 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8376 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8377 bf_get(lpfc_mcqe_ext_status, 8378 &mboxq->mcqe), 8379 psli->sli_flag, flag); 8380 /* Unblock the async mailbox posting afterward */ 8381 lpfc_sli4_async_mbox_unblock(phba); 8382 } 8383 return rc; 8384 } 8385 8386 /* Now, interrupt mode asynchrous mailbox command */ 8387 rc = lpfc_mbox_cmd_check(phba, mboxq); 8388 if (rc) { 8389 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8390 "(%d):2543 Mailbox command x%x (x%x/x%x) " 8391 "cannot issue Data: x%x x%x\n", 8392 mboxq->vport ? mboxq->vport->vpi : 0, 8393 mboxq->u.mb.mbxCommand, 8394 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8395 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8396 psli->sli_flag, flag); 8397 goto out_not_finished; 8398 } 8399 8400 /* Put the mailbox command to the driver internal FIFO */ 8401 psli->slistat.mbox_busy++; 8402 spin_lock_irqsave(&phba->hbalock, iflags); 8403 lpfc_mbox_put(phba, mboxq); 8404 spin_unlock_irqrestore(&phba->hbalock, iflags); 8405 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8406 "(%d):0354 Mbox cmd issue - Enqueue Data: " 8407 "x%x (x%x/x%x) x%x x%x x%x\n", 8408 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 8409 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8410 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8411 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8412 phba->pport->port_state, 8413 psli->sli_flag, MBX_NOWAIT); 8414 /* Wake up worker thread to transport mailbox command from head */ 8415 lpfc_worker_wake_up(phba); 8416 8417 return MBX_BUSY; 8418 8419 out_not_finished: 8420 return MBX_NOT_FINISHED; 8421 } 8422 8423 /** 8424 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 8425 * @phba: Pointer to HBA context object. 8426 * 8427 * This function is called by worker thread to send a mailbox command to 8428 * SLI4 HBA firmware. 8429 * 8430 **/ 8431 int 8432 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 8433 { 8434 struct lpfc_sli *psli = &phba->sli; 8435 LPFC_MBOXQ_t *mboxq; 8436 int rc = MBX_SUCCESS; 8437 unsigned long iflags; 8438 struct lpfc_mqe *mqe; 8439 uint32_t mbx_cmnd; 8440 8441 /* Check interrupt mode before post async mailbox command */ 8442 if (unlikely(!phba->sli4_hba.intr_enable)) 8443 return MBX_NOT_FINISHED; 8444 8445 /* Check for mailbox command service token */ 8446 spin_lock_irqsave(&phba->hbalock, iflags); 8447 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8448 spin_unlock_irqrestore(&phba->hbalock, iflags); 8449 return MBX_NOT_FINISHED; 8450 } 8451 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8452 spin_unlock_irqrestore(&phba->hbalock, iflags); 8453 return MBX_NOT_FINISHED; 8454 } 8455 if (unlikely(phba->sli.mbox_active)) { 8456 spin_unlock_irqrestore(&phba->hbalock, iflags); 8457 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8458 "0384 There is pending active mailbox cmd\n"); 8459 return MBX_NOT_FINISHED; 8460 } 8461 /* Take the mailbox command service token */ 8462 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8463 8464 /* Get the next mailbox command from head of queue */ 8465 mboxq = lpfc_mbox_get(phba); 8466 8467 /* If no more mailbox command waiting for post, we're done */ 8468 if (!mboxq) { 8469 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8470 spin_unlock_irqrestore(&phba->hbalock, iflags); 8471 return MBX_SUCCESS; 8472 } 8473 phba->sli.mbox_active = mboxq; 8474 spin_unlock_irqrestore(&phba->hbalock, iflags); 8475 8476 /* Check device readiness for posting mailbox command */ 8477 rc = lpfc_mbox_dev_check(phba); 8478 if (unlikely(rc)) 8479 /* Driver clean routine will clean up pending mailbox */ 8480 goto out_not_finished; 8481 8482 /* Prepare the mbox command to be posted */ 8483 mqe = &mboxq->u.mqe; 8484 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 8485 8486 /* Start timer for the mbox_tmo and log some mailbox post messages */ 8487 mod_timer(&psli->mbox_tmo, (jiffies + 8488 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 8489 8490 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8491 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 8492 "x%x x%x\n", 8493 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8494 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8495 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8496 phba->pport->port_state, psli->sli_flag); 8497 8498 if (mbx_cmnd != MBX_HEARTBEAT) { 8499 if (mboxq->vport) { 8500 lpfc_debugfs_disc_trc(mboxq->vport, 8501 LPFC_DISC_TRC_MBOX_VPORT, 8502 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8503 mbx_cmnd, mqe->un.mb_words[0], 8504 mqe->un.mb_words[1]); 8505 } else { 8506 lpfc_debugfs_disc_trc(phba->pport, 8507 LPFC_DISC_TRC_MBOX, 8508 "MBOX Send: cmd:x%x mb:x%x x%x", 8509 mbx_cmnd, mqe->un.mb_words[0], 8510 mqe->un.mb_words[1]); 8511 } 8512 } 8513 psli->slistat.mbox_cmd++; 8514 8515 /* Post the mailbox command to the port */ 8516 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 8517 if (rc != MBX_SUCCESS) { 8518 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8519 "(%d):2533 Mailbox command x%x (x%x/x%x) " 8520 "cannot issue Data: x%x x%x\n", 8521 mboxq->vport ? mboxq->vport->vpi : 0, 8522 mboxq->u.mb.mbxCommand, 8523 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8524 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8525 psli->sli_flag, MBX_NOWAIT); 8526 goto out_not_finished; 8527 } 8528 8529 return rc; 8530 8531 out_not_finished: 8532 spin_lock_irqsave(&phba->hbalock, iflags); 8533 if (phba->sli.mbox_active) { 8534 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 8535 __lpfc_mbox_cmpl_put(phba, mboxq); 8536 /* Release the token */ 8537 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8538 phba->sli.mbox_active = NULL; 8539 } 8540 spin_unlock_irqrestore(&phba->hbalock, iflags); 8541 8542 return MBX_NOT_FINISHED; 8543 } 8544 8545 /** 8546 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 8547 * @phba: Pointer to HBA context object. 8548 * @pmbox: Pointer to mailbox object. 8549 * @flag: Flag indicating how the mailbox need to be processed. 8550 * 8551 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 8552 * the API jump table function pointer from the lpfc_hba struct. 8553 * 8554 * Return codes the caller owns the mailbox command after the return of the 8555 * function. 8556 **/ 8557 int 8558 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 8559 { 8560 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 8561 } 8562 8563 /** 8564 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 8565 * @phba: The hba struct for which this call is being executed. 8566 * @dev_grp: The HBA PCI-Device group number. 8567 * 8568 * This routine sets up the mbox interface API function jump table in @phba 8569 * struct. 8570 * Returns: 0 - success, -ENODEV - failure. 8571 **/ 8572 int 8573 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8574 { 8575 8576 switch (dev_grp) { 8577 case LPFC_PCI_DEV_LP: 8578 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 8579 phba->lpfc_sli_handle_slow_ring_event = 8580 lpfc_sli_handle_slow_ring_event_s3; 8581 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 8582 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 8583 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 8584 break; 8585 case LPFC_PCI_DEV_OC: 8586 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 8587 phba->lpfc_sli_handle_slow_ring_event = 8588 lpfc_sli_handle_slow_ring_event_s4; 8589 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 8590 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 8591 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 8592 break; 8593 default: 8594 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8595 "1420 Invalid HBA PCI-device group: 0x%x\n", 8596 dev_grp); 8597 return -ENODEV; 8598 break; 8599 } 8600 return 0; 8601 } 8602 8603 /** 8604 * __lpfc_sli_ringtx_put - Add an iocb to the txq 8605 * @phba: Pointer to HBA context object. 8606 * @pring: Pointer to driver SLI ring object. 8607 * @piocb: Pointer to address of newly added command iocb. 8608 * 8609 * This function is called with hbalock held to add a command 8610 * iocb to the txq when SLI layer cannot submit the command iocb 8611 * to the ring. 8612 **/ 8613 void 8614 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8615 struct lpfc_iocbq *piocb) 8616 { 8617 lockdep_assert_held(&phba->hbalock); 8618 /* Insert the caller's iocb in the txq tail for later processing. */ 8619 list_add_tail(&piocb->list, &pring->txq); 8620 } 8621 8622 /** 8623 * lpfc_sli_next_iocb - Get the next iocb in the txq 8624 * @phba: Pointer to HBA context object. 8625 * @pring: Pointer to driver SLI ring object. 8626 * @piocb: Pointer to address of newly added command iocb. 8627 * 8628 * This function is called with hbalock held before a new 8629 * iocb is submitted to the firmware. This function checks 8630 * txq to flush the iocbs in txq to Firmware before 8631 * submitting new iocbs to the Firmware. 8632 * If there are iocbs in the txq which need to be submitted 8633 * to firmware, lpfc_sli_next_iocb returns the first element 8634 * of the txq after dequeuing it from txq. 8635 * If there is no iocb in the txq then the function will return 8636 * *piocb and *piocb is set to NULL. Caller needs to check 8637 * *piocb to find if there are more commands in the txq. 8638 **/ 8639 static struct lpfc_iocbq * 8640 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8641 struct lpfc_iocbq **piocb) 8642 { 8643 struct lpfc_iocbq * nextiocb; 8644 8645 lockdep_assert_held(&phba->hbalock); 8646 8647 nextiocb = lpfc_sli_ringtx_get(phba, pring); 8648 if (!nextiocb) { 8649 nextiocb = *piocb; 8650 *piocb = NULL; 8651 } 8652 8653 return nextiocb; 8654 } 8655 8656 /** 8657 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 8658 * @phba: Pointer to HBA context object. 8659 * @ring_number: SLI ring number to issue iocb on. 8660 * @piocb: Pointer to command iocb. 8661 * @flag: Flag indicating if this command can be put into txq. 8662 * 8663 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 8664 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 8665 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 8666 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 8667 * this function allows only iocbs for posting buffers. This function finds 8668 * next available slot in the command ring and posts the command to the 8669 * available slot and writes the port attention register to request HBA start 8670 * processing new iocb. If there is no slot available in the ring and 8671 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 8672 * the function returns IOCB_BUSY. 8673 * 8674 * This function is called with hbalock held. The function will return success 8675 * after it successfully submit the iocb to firmware or after adding to the 8676 * txq. 8677 **/ 8678 static int 8679 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 8680 struct lpfc_iocbq *piocb, uint32_t flag) 8681 { 8682 struct lpfc_iocbq *nextiocb; 8683 IOCB_t *iocb; 8684 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 8685 8686 lockdep_assert_held(&phba->hbalock); 8687 8688 if (piocb->iocb_cmpl && (!piocb->vport) && 8689 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 8690 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 8691 lpfc_printf_log(phba, KERN_ERR, 8692 LOG_SLI | LOG_VPORT, 8693 "1807 IOCB x%x failed. No vport\n", 8694 piocb->iocb.ulpCommand); 8695 dump_stack(); 8696 return IOCB_ERROR; 8697 } 8698 8699 8700 /* If the PCI channel is in offline state, do not post iocbs. */ 8701 if (unlikely(pci_channel_offline(phba->pcidev))) 8702 return IOCB_ERROR; 8703 8704 /* If HBA has a deferred error attention, fail the iocb. */ 8705 if (unlikely(phba->hba_flag & DEFER_ERATT)) 8706 return IOCB_ERROR; 8707 8708 /* 8709 * We should never get an IOCB if we are in a < LINK_DOWN state 8710 */ 8711 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 8712 return IOCB_ERROR; 8713 8714 /* 8715 * Check to see if we are blocking IOCB processing because of a 8716 * outstanding event. 8717 */ 8718 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 8719 goto iocb_busy; 8720 8721 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 8722 /* 8723 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 8724 * can be issued if the link is not up. 8725 */ 8726 switch (piocb->iocb.ulpCommand) { 8727 case CMD_GEN_REQUEST64_CR: 8728 case CMD_GEN_REQUEST64_CX: 8729 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 8730 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 8731 FC_RCTL_DD_UNSOL_CMD) || 8732 (piocb->iocb.un.genreq64.w5.hcsw.Type != 8733 MENLO_TRANSPORT_TYPE)) 8734 8735 goto iocb_busy; 8736 break; 8737 case CMD_QUE_RING_BUF_CN: 8738 case CMD_QUE_RING_BUF64_CN: 8739 /* 8740 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 8741 * completion, iocb_cmpl MUST be 0. 8742 */ 8743 if (piocb->iocb_cmpl) 8744 piocb->iocb_cmpl = NULL; 8745 /*FALLTHROUGH*/ 8746 case CMD_CREATE_XRI_CR: 8747 case CMD_CLOSE_XRI_CN: 8748 case CMD_CLOSE_XRI_CX: 8749 break; 8750 default: 8751 goto iocb_busy; 8752 } 8753 8754 /* 8755 * For FCP commands, we must be in a state where we can process link 8756 * attention events. 8757 */ 8758 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 8759 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 8760 goto iocb_busy; 8761 } 8762 8763 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 8764 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 8765 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 8766 8767 if (iocb) 8768 lpfc_sli_update_ring(phba, pring); 8769 else 8770 lpfc_sli_update_full_ring(phba, pring); 8771 8772 if (!piocb) 8773 return IOCB_SUCCESS; 8774 8775 goto out_busy; 8776 8777 iocb_busy: 8778 pring->stats.iocb_cmd_delay++; 8779 8780 out_busy: 8781 8782 if (!(flag & SLI_IOCB_RET_IOCB)) { 8783 __lpfc_sli_ringtx_put(phba, pring, piocb); 8784 return IOCB_SUCCESS; 8785 } 8786 8787 return IOCB_BUSY; 8788 } 8789 8790 /** 8791 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 8792 * @phba: Pointer to HBA context object. 8793 * @piocb: Pointer to command iocb. 8794 * @sglq: Pointer to the scatter gather queue object. 8795 * 8796 * This routine converts the bpl or bde that is in the IOCB 8797 * to a sgl list for the sli4 hardware. The physical address 8798 * of the bpl/bde is converted back to a virtual address. 8799 * If the IOCB contains a BPL then the list of BDE's is 8800 * converted to sli4_sge's. If the IOCB contains a single 8801 * BDE then it is converted to a single sli_sge. 8802 * The IOCB is still in cpu endianess so the contents of 8803 * the bpl can be used without byte swapping. 8804 * 8805 * Returns valid XRI = Success, NO_XRI = Failure. 8806 **/ 8807 static uint16_t 8808 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 8809 struct lpfc_sglq *sglq) 8810 { 8811 uint16_t xritag = NO_XRI; 8812 struct ulp_bde64 *bpl = NULL; 8813 struct ulp_bde64 bde; 8814 struct sli4_sge *sgl = NULL; 8815 struct lpfc_dmabuf *dmabuf; 8816 IOCB_t *icmd; 8817 int numBdes = 0; 8818 int i = 0; 8819 uint32_t offset = 0; /* accumulated offset in the sg request list */ 8820 int inbound = 0; /* number of sg reply entries inbound from firmware */ 8821 8822 if (!piocbq || !sglq) 8823 return xritag; 8824 8825 sgl = (struct sli4_sge *)sglq->sgl; 8826 icmd = &piocbq->iocb; 8827 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 8828 return sglq->sli4_xritag; 8829 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8830 numBdes = icmd->un.genreq64.bdl.bdeSize / 8831 sizeof(struct ulp_bde64); 8832 /* The addrHigh and addrLow fields within the IOCB 8833 * have not been byteswapped yet so there is no 8834 * need to swap them back. 8835 */ 8836 if (piocbq->context3) 8837 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 8838 else 8839 return xritag; 8840 8841 bpl = (struct ulp_bde64 *)dmabuf->virt; 8842 if (!bpl) 8843 return xritag; 8844 8845 for (i = 0; i < numBdes; i++) { 8846 /* Should already be byte swapped. */ 8847 sgl->addr_hi = bpl->addrHigh; 8848 sgl->addr_lo = bpl->addrLow; 8849 8850 sgl->word2 = le32_to_cpu(sgl->word2); 8851 if ((i+1) == numBdes) 8852 bf_set(lpfc_sli4_sge_last, sgl, 1); 8853 else 8854 bf_set(lpfc_sli4_sge_last, sgl, 0); 8855 /* swap the size field back to the cpu so we 8856 * can assign it to the sgl. 8857 */ 8858 bde.tus.w = le32_to_cpu(bpl->tus.w); 8859 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 8860 /* The offsets in the sgl need to be accumulated 8861 * separately for the request and reply lists. 8862 * The request is always first, the reply follows. 8863 */ 8864 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 8865 /* add up the reply sg entries */ 8866 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 8867 inbound++; 8868 /* first inbound? reset the offset */ 8869 if (inbound == 1) 8870 offset = 0; 8871 bf_set(lpfc_sli4_sge_offset, sgl, offset); 8872 bf_set(lpfc_sli4_sge_type, sgl, 8873 LPFC_SGE_TYPE_DATA); 8874 offset += bde.tus.f.bdeSize; 8875 } 8876 sgl->word2 = cpu_to_le32(sgl->word2); 8877 bpl++; 8878 sgl++; 8879 } 8880 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 8881 /* The addrHigh and addrLow fields of the BDE have not 8882 * been byteswapped yet so they need to be swapped 8883 * before putting them in the sgl. 8884 */ 8885 sgl->addr_hi = 8886 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 8887 sgl->addr_lo = 8888 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 8889 sgl->word2 = le32_to_cpu(sgl->word2); 8890 bf_set(lpfc_sli4_sge_last, sgl, 1); 8891 sgl->word2 = cpu_to_le32(sgl->word2); 8892 sgl->sge_len = 8893 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 8894 } 8895 return sglq->sli4_xritag; 8896 } 8897 8898 /** 8899 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 8900 * @phba: Pointer to HBA context object. 8901 * @piocb: Pointer to command iocb. 8902 * @wqe: Pointer to the work queue entry. 8903 * 8904 * This routine converts the iocb command to its Work Queue Entry 8905 * equivalent. The wqe pointer should not have any fields set when 8906 * this routine is called because it will memcpy over them. 8907 * This routine does not set the CQ_ID or the WQEC bits in the 8908 * wqe. 8909 * 8910 * Returns: 0 = Success, IOCB_ERROR = Failure. 8911 **/ 8912 static int 8913 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 8914 union lpfc_wqe128 *wqe) 8915 { 8916 uint32_t xmit_len = 0, total_len = 0; 8917 uint8_t ct = 0; 8918 uint32_t fip; 8919 uint32_t abort_tag; 8920 uint8_t command_type = ELS_COMMAND_NON_FIP; 8921 uint8_t cmnd; 8922 uint16_t xritag; 8923 uint16_t abrt_iotag; 8924 struct lpfc_iocbq *abrtiocbq; 8925 struct ulp_bde64 *bpl = NULL; 8926 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 8927 int numBdes, i; 8928 struct ulp_bde64 bde; 8929 struct lpfc_nodelist *ndlp; 8930 uint32_t *pcmd; 8931 uint32_t if_type; 8932 8933 fip = phba->hba_flag & HBA_FIP_SUPPORT; 8934 /* The fcp commands will set command type */ 8935 if (iocbq->iocb_flag & LPFC_IO_FCP) 8936 command_type = FCP_COMMAND; 8937 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 8938 command_type = ELS_COMMAND_FIP; 8939 else 8940 command_type = ELS_COMMAND_NON_FIP; 8941 8942 if (phba->fcp_embed_io) 8943 memset(wqe, 0, sizeof(union lpfc_wqe128)); 8944 /* Some of the fields are in the right position already */ 8945 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 8946 if (iocbq->iocb.ulpCommand != CMD_SEND_FRAME) { 8947 /* The ct field has moved so reset */ 8948 wqe->generic.wqe_com.word7 = 0; 8949 wqe->generic.wqe_com.word10 = 0; 8950 } 8951 8952 abort_tag = (uint32_t) iocbq->iotag; 8953 xritag = iocbq->sli4_xritag; 8954 /* words0-2 bpl convert bde */ 8955 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8956 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8957 sizeof(struct ulp_bde64); 8958 bpl = (struct ulp_bde64 *) 8959 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 8960 if (!bpl) 8961 return IOCB_ERROR; 8962 8963 /* Should already be byte swapped. */ 8964 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 8965 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 8966 /* swap the size field back to the cpu so we 8967 * can assign it to the sgl. 8968 */ 8969 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 8970 xmit_len = wqe->generic.bde.tus.f.bdeSize; 8971 total_len = 0; 8972 for (i = 0; i < numBdes; i++) { 8973 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8974 total_len += bde.tus.f.bdeSize; 8975 } 8976 } else 8977 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 8978 8979 iocbq->iocb.ulpIoTag = iocbq->iotag; 8980 cmnd = iocbq->iocb.ulpCommand; 8981 8982 switch (iocbq->iocb.ulpCommand) { 8983 case CMD_ELS_REQUEST64_CR: 8984 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 8985 ndlp = iocbq->context_un.ndlp; 8986 else 8987 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8988 if (!iocbq->iocb.ulpLe) { 8989 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8990 "2007 Only Limited Edition cmd Format" 8991 " supported 0x%x\n", 8992 iocbq->iocb.ulpCommand); 8993 return IOCB_ERROR; 8994 } 8995 8996 wqe->els_req.payload_len = xmit_len; 8997 /* Els_reguest64 has a TMO */ 8998 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 8999 iocbq->iocb.ulpTimeout); 9000 /* Need a VF for word 4 set the vf bit*/ 9001 bf_set(els_req64_vf, &wqe->els_req, 0); 9002 /* And a VFID for word 12 */ 9003 bf_set(els_req64_vfid, &wqe->els_req, 0); 9004 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9005 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9006 iocbq->iocb.ulpContext); 9007 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 9008 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 9009 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 9010 if (command_type == ELS_COMMAND_FIP) 9011 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 9012 >> LPFC_FIP_ELS_ID_SHIFT); 9013 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9014 iocbq->context2)->virt); 9015 if_type = bf_get(lpfc_sli_intf_if_type, 9016 &phba->sli4_hba.sli_intf); 9017 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9018 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 9019 *pcmd == ELS_CMD_SCR || 9020 *pcmd == ELS_CMD_FDISC || 9021 *pcmd == ELS_CMD_LOGO || 9022 *pcmd == ELS_CMD_PLOGI)) { 9023 bf_set(els_req64_sp, &wqe->els_req, 1); 9024 bf_set(els_req64_sid, &wqe->els_req, 9025 iocbq->vport->fc_myDID); 9026 if ((*pcmd == ELS_CMD_FLOGI) && 9027 !(phba->fc_topology == 9028 LPFC_TOPOLOGY_LOOP)) 9029 bf_set(els_req64_sid, &wqe->els_req, 0); 9030 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 9031 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9032 phba->vpi_ids[iocbq->vport->vpi]); 9033 } else if (pcmd && iocbq->context1) { 9034 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 9035 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9036 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9037 } 9038 } 9039 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 9040 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9041 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 9042 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 9043 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 9044 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 9045 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9046 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 9047 wqe->els_req.max_response_payload_len = total_len - xmit_len; 9048 break; 9049 case CMD_XMIT_SEQUENCE64_CX: 9050 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 9051 iocbq->iocb.un.ulpWord[3]); 9052 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 9053 iocbq->iocb.unsli3.rcvsli3.ox_id); 9054 /* The entire sequence is transmitted for this IOCB */ 9055 xmit_len = total_len; 9056 cmnd = CMD_XMIT_SEQUENCE64_CR; 9057 if (phba->link_flag & LS_LOOPBACK_MODE) 9058 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 9059 case CMD_XMIT_SEQUENCE64_CR: 9060 /* word3 iocb=io_tag32 wqe=reserved */ 9061 wqe->xmit_sequence.rsvd3 = 0; 9062 /* word4 relative_offset memcpy */ 9063 /* word5 r_ctl/df_ctl memcpy */ 9064 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 9065 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 9066 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 9067 LPFC_WQE_IOD_WRITE); 9068 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 9069 LPFC_WQE_LENLOC_WORD12); 9070 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 9071 wqe->xmit_sequence.xmit_len = xmit_len; 9072 command_type = OTHER_COMMAND; 9073 break; 9074 case CMD_XMIT_BCAST64_CN: 9075 /* word3 iocb=iotag32 wqe=seq_payload_len */ 9076 wqe->xmit_bcast64.seq_payload_len = xmit_len; 9077 /* word4 iocb=rsvd wqe=rsvd */ 9078 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 9079 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 9080 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 9081 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9082 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 9083 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 9084 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 9085 LPFC_WQE_LENLOC_WORD3); 9086 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 9087 break; 9088 case CMD_FCP_IWRITE64_CR: 9089 command_type = FCP_COMMAND_DATA_OUT; 9090 /* word3 iocb=iotag wqe=payload_offset_len */ 9091 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9092 bf_set(payload_offset_len, &wqe->fcp_iwrite, 9093 xmit_len + sizeof(struct fcp_rsp)); 9094 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 9095 0); 9096 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9097 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9098 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 9099 iocbq->iocb.ulpFCP2Rcvy); 9100 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 9101 /* Always open the exchange */ 9102 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 9103 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 9104 LPFC_WQE_LENLOC_WORD4); 9105 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 9106 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 9107 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9108 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 9109 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 9110 if (iocbq->priority) { 9111 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9112 (iocbq->priority << 1)); 9113 } else { 9114 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9115 (phba->cfg_XLanePriority << 1)); 9116 } 9117 } 9118 /* Note, word 10 is already initialized to 0 */ 9119 9120 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9121 if (phba->cfg_enable_pbde) 9122 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 9123 else 9124 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 9125 9126 if (phba->fcp_embed_io) { 9127 struct lpfc_scsi_buf *lpfc_cmd; 9128 struct sli4_sge *sgl; 9129 struct fcp_cmnd *fcp_cmnd; 9130 uint32_t *ptr; 9131 9132 /* 128 byte wqe support here */ 9133 9134 lpfc_cmd = iocbq->context1; 9135 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 9136 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9137 9138 /* Word 0-2 - FCP_CMND */ 9139 wqe->generic.bde.tus.f.bdeFlags = 9140 BUFF_TYPE_BDE_IMMED; 9141 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9142 wqe->generic.bde.addrHigh = 0; 9143 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9144 9145 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 9146 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 9147 9148 /* Word 22-29 FCP CMND Payload */ 9149 ptr = &wqe->words[22]; 9150 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9151 } 9152 break; 9153 case CMD_FCP_IREAD64_CR: 9154 /* word3 iocb=iotag wqe=payload_offset_len */ 9155 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9156 bf_set(payload_offset_len, &wqe->fcp_iread, 9157 xmit_len + sizeof(struct fcp_rsp)); 9158 bf_set(cmd_buff_len, &wqe->fcp_iread, 9159 0); 9160 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9161 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9162 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 9163 iocbq->iocb.ulpFCP2Rcvy); 9164 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 9165 /* Always open the exchange */ 9166 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 9167 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 9168 LPFC_WQE_LENLOC_WORD4); 9169 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 9170 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 9171 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9172 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 9173 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 9174 if (iocbq->priority) { 9175 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9176 (iocbq->priority << 1)); 9177 } else { 9178 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9179 (phba->cfg_XLanePriority << 1)); 9180 } 9181 } 9182 /* Note, word 10 is already initialized to 0 */ 9183 9184 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9185 if (phba->cfg_enable_pbde) 9186 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 9187 else 9188 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 9189 9190 if (phba->fcp_embed_io) { 9191 struct lpfc_scsi_buf *lpfc_cmd; 9192 struct sli4_sge *sgl; 9193 struct fcp_cmnd *fcp_cmnd; 9194 uint32_t *ptr; 9195 9196 /* 128 byte wqe support here */ 9197 9198 lpfc_cmd = iocbq->context1; 9199 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 9200 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9201 9202 /* Word 0-2 - FCP_CMND */ 9203 wqe->generic.bde.tus.f.bdeFlags = 9204 BUFF_TYPE_BDE_IMMED; 9205 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9206 wqe->generic.bde.addrHigh = 0; 9207 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9208 9209 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 9210 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 9211 9212 /* Word 22-29 FCP CMND Payload */ 9213 ptr = &wqe->words[22]; 9214 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9215 } 9216 break; 9217 case CMD_FCP_ICMND64_CR: 9218 /* word3 iocb=iotag wqe=payload_offset_len */ 9219 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9220 bf_set(payload_offset_len, &wqe->fcp_icmd, 9221 xmit_len + sizeof(struct fcp_rsp)); 9222 bf_set(cmd_buff_len, &wqe->fcp_icmd, 9223 0); 9224 /* word3 iocb=IO_TAG wqe=reserved */ 9225 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 9226 /* Always open the exchange */ 9227 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 9228 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 9229 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 9230 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 9231 LPFC_WQE_LENLOC_NONE); 9232 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 9233 iocbq->iocb.ulpFCP2Rcvy); 9234 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9235 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 9236 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 9237 if (iocbq->priority) { 9238 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9239 (iocbq->priority << 1)); 9240 } else { 9241 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9242 (phba->cfg_XLanePriority << 1)); 9243 } 9244 } 9245 /* Note, word 10 is already initialized to 0 */ 9246 9247 if (phba->fcp_embed_io) { 9248 struct lpfc_scsi_buf *lpfc_cmd; 9249 struct sli4_sge *sgl; 9250 struct fcp_cmnd *fcp_cmnd; 9251 uint32_t *ptr; 9252 9253 /* 128 byte wqe support here */ 9254 9255 lpfc_cmd = iocbq->context1; 9256 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 9257 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9258 9259 /* Word 0-2 - FCP_CMND */ 9260 wqe->generic.bde.tus.f.bdeFlags = 9261 BUFF_TYPE_BDE_IMMED; 9262 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9263 wqe->generic.bde.addrHigh = 0; 9264 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9265 9266 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 9267 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 9268 9269 /* Word 22-29 FCP CMND Payload */ 9270 ptr = &wqe->words[22]; 9271 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9272 } 9273 break; 9274 case CMD_GEN_REQUEST64_CR: 9275 /* For this command calculate the xmit length of the 9276 * request bde. 9277 */ 9278 xmit_len = 0; 9279 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9280 sizeof(struct ulp_bde64); 9281 for (i = 0; i < numBdes; i++) { 9282 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9283 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 9284 break; 9285 xmit_len += bde.tus.f.bdeSize; 9286 } 9287 /* word3 iocb=IO_TAG wqe=request_payload_len */ 9288 wqe->gen_req.request_payload_len = xmit_len; 9289 /* word4 iocb=parameter wqe=relative_offset memcpy */ 9290 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 9291 /* word6 context tag copied in memcpy */ 9292 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 9293 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9294 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9295 "2015 Invalid CT %x command 0x%x\n", 9296 ct, iocbq->iocb.ulpCommand); 9297 return IOCB_ERROR; 9298 } 9299 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 9300 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 9301 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 9302 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 9303 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 9304 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 9305 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9306 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 9307 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 9308 command_type = OTHER_COMMAND; 9309 break; 9310 case CMD_XMIT_ELS_RSP64_CX: 9311 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9312 /* words0-2 BDE memcpy */ 9313 /* word3 iocb=iotag32 wqe=response_payload_len */ 9314 wqe->xmit_els_rsp.response_payload_len = xmit_len; 9315 /* word4 */ 9316 wqe->xmit_els_rsp.word4 = 0; 9317 /* word5 iocb=rsvd wge=did */ 9318 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 9319 iocbq->iocb.un.xseq64.xmit_els_remoteID); 9320 9321 if_type = bf_get(lpfc_sli_intf_if_type, 9322 &phba->sli4_hba.sli_intf); 9323 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9324 if (iocbq->vport->fc_flag & FC_PT2PT) { 9325 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9326 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9327 iocbq->vport->fc_myDID); 9328 if (iocbq->vport->fc_myDID == Fabric_DID) { 9329 bf_set(wqe_els_did, 9330 &wqe->xmit_els_rsp.wqe_dest, 0); 9331 } 9332 } 9333 } 9334 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 9335 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9336 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 9337 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 9338 iocbq->iocb.unsli3.rcvsli3.ox_id); 9339 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 9340 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9341 phba->vpi_ids[iocbq->vport->vpi]); 9342 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 9343 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 9344 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 9345 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 9346 LPFC_WQE_LENLOC_WORD3); 9347 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 9348 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 9349 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9350 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9351 iocbq->context2)->virt); 9352 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 9353 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9354 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9355 iocbq->vport->fc_myDID); 9356 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 9357 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9358 phba->vpi_ids[phba->pport->vpi]); 9359 } 9360 command_type = OTHER_COMMAND; 9361 break; 9362 case CMD_CLOSE_XRI_CN: 9363 case CMD_ABORT_XRI_CN: 9364 case CMD_ABORT_XRI_CX: 9365 /* words 0-2 memcpy should be 0 rserved */ 9366 /* port will send abts */ 9367 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 9368 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 9369 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 9370 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 9371 } else 9372 fip = 0; 9373 9374 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 9375 /* 9376 * The link is down, or the command was ELS_FIP 9377 * so the fw does not need to send abts 9378 * on the wire. 9379 */ 9380 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 9381 else 9382 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 9383 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 9384 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 9385 wqe->abort_cmd.rsrvd5 = 0; 9386 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 9387 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9388 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 9389 /* 9390 * The abort handler will send us CMD_ABORT_XRI_CN or 9391 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 9392 */ 9393 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 9394 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 9395 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 9396 LPFC_WQE_LENLOC_NONE); 9397 cmnd = CMD_ABORT_XRI_CX; 9398 command_type = OTHER_COMMAND; 9399 xritag = 0; 9400 break; 9401 case CMD_XMIT_BLS_RSP64_CX: 9402 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9403 /* As BLS ABTS RSP WQE is very different from other WQEs, 9404 * we re-construct this WQE here based on information in 9405 * iocbq from scratch. 9406 */ 9407 memset(wqe, 0, sizeof(union lpfc_wqe)); 9408 /* OX_ID is invariable to who sent ABTS to CT exchange */ 9409 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 9410 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 9411 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 9412 LPFC_ABTS_UNSOL_INT) { 9413 /* ABTS sent by initiator to CT exchange, the 9414 * RX_ID field will be filled with the newly 9415 * allocated responder XRI. 9416 */ 9417 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9418 iocbq->sli4_xritag); 9419 } else { 9420 /* ABTS sent by responder to CT exchange, the 9421 * RX_ID field will be filled with the responder 9422 * RX_ID from ABTS. 9423 */ 9424 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9425 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 9426 } 9427 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 9428 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 9429 9430 /* Use CT=VPI */ 9431 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 9432 ndlp->nlp_DID); 9433 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 9434 iocbq->iocb.ulpContext); 9435 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 9436 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 9437 phba->vpi_ids[phba->pport->vpi]); 9438 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 9439 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 9440 LPFC_WQE_LENLOC_NONE); 9441 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 9442 command_type = OTHER_COMMAND; 9443 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 9444 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 9445 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 9446 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 9447 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 9448 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 9449 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 9450 } 9451 9452 break; 9453 case CMD_SEND_FRAME: 9454 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9455 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9456 return 0; 9457 case CMD_XRI_ABORTED_CX: 9458 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 9459 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 9460 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 9461 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 9462 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 9463 default: 9464 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9465 "2014 Invalid command 0x%x\n", 9466 iocbq->iocb.ulpCommand); 9467 return IOCB_ERROR; 9468 break; 9469 } 9470 9471 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 9472 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 9473 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 9474 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 9475 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 9476 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 9477 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 9478 LPFC_IO_DIF_INSERT); 9479 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9480 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9481 wqe->generic.wqe_com.abort_tag = abort_tag; 9482 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 9483 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 9484 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 9485 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 9486 return 0; 9487 } 9488 9489 /** 9490 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 9491 * @phba: Pointer to HBA context object. 9492 * @ring_number: SLI ring number to issue iocb on. 9493 * @piocb: Pointer to command iocb. 9494 * @flag: Flag indicating if this command can be put into txq. 9495 * 9496 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 9497 * an iocb command to an HBA with SLI-4 interface spec. 9498 * 9499 * This function is called with hbalock held. The function will return success 9500 * after it successfully submit the iocb to firmware or after adding to the 9501 * txq. 9502 **/ 9503 static int 9504 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 9505 struct lpfc_iocbq *piocb, uint32_t flag) 9506 { 9507 struct lpfc_sglq *sglq; 9508 union lpfc_wqe128 wqe; 9509 struct lpfc_queue *wq; 9510 struct lpfc_sli_ring *pring; 9511 9512 /* Get the WQ */ 9513 if ((piocb->iocb_flag & LPFC_IO_FCP) || 9514 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 9515 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS))) 9516 wq = phba->sli4_hba.fcp_wq[piocb->hba_wqidx]; 9517 else 9518 wq = phba->sli4_hba.oas_wq; 9519 } else { 9520 wq = phba->sli4_hba.els_wq; 9521 } 9522 9523 /* Get corresponding ring */ 9524 pring = wq->pring; 9525 9526 /* 9527 * The WQE can be either 64 or 128 bytes, 9528 */ 9529 9530 lockdep_assert_held(&phba->hbalock); 9531 9532 if (piocb->sli4_xritag == NO_XRI) { 9533 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 9534 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 9535 sglq = NULL; 9536 else { 9537 if (!list_empty(&pring->txq)) { 9538 if (!(flag & SLI_IOCB_RET_IOCB)) { 9539 __lpfc_sli_ringtx_put(phba, 9540 pring, piocb); 9541 return IOCB_SUCCESS; 9542 } else { 9543 return IOCB_BUSY; 9544 } 9545 } else { 9546 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 9547 if (!sglq) { 9548 if (!(flag & SLI_IOCB_RET_IOCB)) { 9549 __lpfc_sli_ringtx_put(phba, 9550 pring, 9551 piocb); 9552 return IOCB_SUCCESS; 9553 } else 9554 return IOCB_BUSY; 9555 } 9556 } 9557 } 9558 } else if (piocb->iocb_flag & LPFC_IO_FCP) 9559 /* These IO's already have an XRI and a mapped sgl. */ 9560 sglq = NULL; 9561 else { 9562 /* 9563 * This is a continuation of a commandi,(CX) so this 9564 * sglq is on the active list 9565 */ 9566 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 9567 if (!sglq) 9568 return IOCB_ERROR; 9569 } 9570 9571 if (sglq) { 9572 piocb->sli4_lxritag = sglq->sli4_lxritag; 9573 piocb->sli4_xritag = sglq->sli4_xritag; 9574 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 9575 return IOCB_ERROR; 9576 } 9577 9578 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 9579 return IOCB_ERROR; 9580 9581 if (lpfc_sli4_wq_put(wq, &wqe)) 9582 return IOCB_ERROR; 9583 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 9584 9585 return 0; 9586 } 9587 9588 /** 9589 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 9590 * 9591 * This routine wraps the actual lockless version for issusing IOCB function 9592 * pointer from the lpfc_hba struct. 9593 * 9594 * Return codes: 9595 * IOCB_ERROR - Error 9596 * IOCB_SUCCESS - Success 9597 * IOCB_BUSY - Busy 9598 **/ 9599 int 9600 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9601 struct lpfc_iocbq *piocb, uint32_t flag) 9602 { 9603 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9604 } 9605 9606 /** 9607 * lpfc_sli_api_table_setup - Set up sli api function jump table 9608 * @phba: The hba struct for which this call is being executed. 9609 * @dev_grp: The HBA PCI-Device group number. 9610 * 9611 * This routine sets up the SLI interface API function jump table in @phba 9612 * struct. 9613 * Returns: 0 - success, -ENODEV - failure. 9614 **/ 9615 int 9616 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9617 { 9618 9619 switch (dev_grp) { 9620 case LPFC_PCI_DEV_LP: 9621 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 9622 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 9623 break; 9624 case LPFC_PCI_DEV_OC: 9625 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 9626 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 9627 break; 9628 default: 9629 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9630 "1419 Invalid HBA PCI-device group: 0x%x\n", 9631 dev_grp); 9632 return -ENODEV; 9633 break; 9634 } 9635 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 9636 return 0; 9637 } 9638 9639 /** 9640 * lpfc_sli4_calc_ring - Calculates which ring to use 9641 * @phba: Pointer to HBA context object. 9642 * @piocb: Pointer to command iocb. 9643 * 9644 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 9645 * hba_wqidx, thus we need to calculate the corresponding ring. 9646 * Since ABORTS must go on the same WQ of the command they are 9647 * aborting, we use command's hba_wqidx. 9648 */ 9649 struct lpfc_sli_ring * 9650 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 9651 { 9652 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 9653 if (!(phba->cfg_fof) || 9654 (!(piocb->iocb_flag & LPFC_IO_FOF))) { 9655 if (unlikely(!phba->sli4_hba.fcp_wq)) 9656 return NULL; 9657 /* 9658 * for abort iocb hba_wqidx should already 9659 * be setup based on what work queue we used. 9660 */ 9661 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 9662 piocb->hba_wqidx = 9663 lpfc_sli4_scmd_to_wqidx_distr(phba, 9664 piocb->context1); 9665 piocb->hba_wqidx = piocb->hba_wqidx % 9666 phba->cfg_fcp_io_channel; 9667 } 9668 return phba->sli4_hba.fcp_wq[piocb->hba_wqidx]->pring; 9669 } else { 9670 if (unlikely(!phba->sli4_hba.oas_wq)) 9671 return NULL; 9672 piocb->hba_wqidx = 0; 9673 return phba->sli4_hba.oas_wq->pring; 9674 } 9675 } else { 9676 if (unlikely(!phba->sli4_hba.els_wq)) 9677 return NULL; 9678 piocb->hba_wqidx = 0; 9679 return phba->sli4_hba.els_wq->pring; 9680 } 9681 } 9682 9683 /** 9684 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 9685 * @phba: Pointer to HBA context object. 9686 * @pring: Pointer to driver SLI ring object. 9687 * @piocb: Pointer to command iocb. 9688 * @flag: Flag indicating if this command can be put into txq. 9689 * 9690 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 9691 * function. This function gets the hbalock and calls 9692 * __lpfc_sli_issue_iocb function and will return the error returned 9693 * by __lpfc_sli_issue_iocb function. This wrapper is used by 9694 * functions which do not hold hbalock. 9695 **/ 9696 int 9697 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9698 struct lpfc_iocbq *piocb, uint32_t flag) 9699 { 9700 struct lpfc_hba_eq_hdl *hba_eq_hdl; 9701 struct lpfc_sli_ring *pring; 9702 struct lpfc_queue *fpeq; 9703 struct lpfc_eqe *eqe; 9704 unsigned long iflags; 9705 int rc, idx; 9706 9707 if (phba->sli_rev == LPFC_SLI_REV4) { 9708 pring = lpfc_sli4_calc_ring(phba, piocb); 9709 if (unlikely(pring == NULL)) 9710 return IOCB_ERROR; 9711 9712 spin_lock_irqsave(&pring->ring_lock, iflags); 9713 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9714 spin_unlock_irqrestore(&pring->ring_lock, iflags); 9715 9716 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) { 9717 idx = piocb->hba_wqidx; 9718 hba_eq_hdl = &phba->sli4_hba.hba_eq_hdl[idx]; 9719 9720 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) { 9721 9722 /* Get associated EQ with this index */ 9723 fpeq = phba->sli4_hba.hba_eq[idx]; 9724 9725 /* Turn off interrupts from this EQ */ 9726 phba->sli4_hba.sli4_eq_clr_intr(fpeq); 9727 9728 /* 9729 * Process all the events on FCP EQ 9730 */ 9731 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 9732 lpfc_sli4_hba_handle_eqe(phba, 9733 eqe, idx); 9734 fpeq->EQ_processed++; 9735 } 9736 9737 /* Always clear and re-arm the EQ */ 9738 phba->sli4_hba.sli4_eq_release(fpeq, 9739 LPFC_QUEUE_REARM); 9740 } 9741 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 9742 } 9743 } else { 9744 /* For now, SLI2/3 will still use hbalock */ 9745 spin_lock_irqsave(&phba->hbalock, iflags); 9746 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9747 spin_unlock_irqrestore(&phba->hbalock, iflags); 9748 } 9749 return rc; 9750 } 9751 9752 /** 9753 * lpfc_extra_ring_setup - Extra ring setup function 9754 * @phba: Pointer to HBA context object. 9755 * 9756 * This function is called while driver attaches with the 9757 * HBA to setup the extra ring. The extra ring is used 9758 * only when driver needs to support target mode functionality 9759 * or IP over FC functionalities. 9760 * 9761 * This function is called with no lock held. SLI3 only. 9762 **/ 9763 static int 9764 lpfc_extra_ring_setup( struct lpfc_hba *phba) 9765 { 9766 struct lpfc_sli *psli; 9767 struct lpfc_sli_ring *pring; 9768 9769 psli = &phba->sli; 9770 9771 /* Adjust cmd/rsp ring iocb entries more evenly */ 9772 9773 /* Take some away from the FCP ring */ 9774 pring = &psli->sli3_ring[LPFC_FCP_RING]; 9775 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9776 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9777 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9778 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9779 9780 /* and give them to the extra ring */ 9781 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 9782 9783 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9784 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9785 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9786 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9787 9788 /* Setup default profile for this ring */ 9789 pring->iotag_max = 4096; 9790 pring->num_mask = 1; 9791 pring->prt[0].profile = 0; /* Mask 0 */ 9792 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 9793 pring->prt[0].type = phba->cfg_multi_ring_type; 9794 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 9795 return 0; 9796 } 9797 9798 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 9799 * @phba: Pointer to HBA context object. 9800 * @iocbq: Pointer to iocb object. 9801 * 9802 * The async_event handler calls this routine when it receives 9803 * an ASYNC_STATUS_CN event from the port. The port generates 9804 * this event when an Abort Sequence request to an rport fails 9805 * twice in succession. The abort could be originated by the 9806 * driver or by the port. The ABTS could have been for an ELS 9807 * or FCP IO. The port only generates this event when an ABTS 9808 * fails to complete after one retry. 9809 */ 9810 static void 9811 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 9812 struct lpfc_iocbq *iocbq) 9813 { 9814 struct lpfc_nodelist *ndlp = NULL; 9815 uint16_t rpi = 0, vpi = 0; 9816 struct lpfc_vport *vport = NULL; 9817 9818 /* The rpi in the ulpContext is vport-sensitive. */ 9819 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 9820 rpi = iocbq->iocb.ulpContext; 9821 9822 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9823 "3092 Port generated ABTS async event " 9824 "on vpi %d rpi %d status 0x%x\n", 9825 vpi, rpi, iocbq->iocb.ulpStatus); 9826 9827 vport = lpfc_find_vport_by_vpid(phba, vpi); 9828 if (!vport) 9829 goto err_exit; 9830 ndlp = lpfc_findnode_rpi(vport, rpi); 9831 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 9832 goto err_exit; 9833 9834 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 9835 lpfc_sli_abts_recover_port(vport, ndlp); 9836 return; 9837 9838 err_exit: 9839 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9840 "3095 Event Context not found, no " 9841 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 9842 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 9843 vpi, rpi); 9844 } 9845 9846 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 9847 * @phba: pointer to HBA context object. 9848 * @ndlp: nodelist pointer for the impacted rport. 9849 * @axri: pointer to the wcqe containing the failed exchange. 9850 * 9851 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 9852 * port. The port generates this event when an abort exchange request to an 9853 * rport fails twice in succession with no reply. The abort could be originated 9854 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 9855 */ 9856 void 9857 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 9858 struct lpfc_nodelist *ndlp, 9859 struct sli4_wcqe_xri_aborted *axri) 9860 { 9861 struct lpfc_vport *vport; 9862 uint32_t ext_status = 0; 9863 9864 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 9865 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9866 "3115 Node Context not found, driver " 9867 "ignoring abts err event\n"); 9868 return; 9869 } 9870 9871 vport = ndlp->vport; 9872 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9873 "3116 Port generated FCP XRI ABORT event on " 9874 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 9875 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 9876 bf_get(lpfc_wcqe_xa_xri, axri), 9877 bf_get(lpfc_wcqe_xa_status, axri), 9878 axri->parameter); 9879 9880 /* 9881 * Catch the ABTS protocol failure case. Older OCe FW releases returned 9882 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 9883 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 9884 */ 9885 ext_status = axri->parameter & IOERR_PARAM_MASK; 9886 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 9887 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 9888 lpfc_sli_abts_recover_port(vport, ndlp); 9889 } 9890 9891 /** 9892 * lpfc_sli_async_event_handler - ASYNC iocb handler function 9893 * @phba: Pointer to HBA context object. 9894 * @pring: Pointer to driver SLI ring object. 9895 * @iocbq: Pointer to iocb object. 9896 * 9897 * This function is called by the slow ring event handler 9898 * function when there is an ASYNC event iocb in the ring. 9899 * This function is called with no lock held. 9900 * Currently this function handles only temperature related 9901 * ASYNC events. The function decodes the temperature sensor 9902 * event message and posts events for the management applications. 9903 **/ 9904 static void 9905 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 9906 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 9907 { 9908 IOCB_t *icmd; 9909 uint16_t evt_code; 9910 struct temp_event temp_event_data; 9911 struct Scsi_Host *shost; 9912 uint32_t *iocb_w; 9913 9914 icmd = &iocbq->iocb; 9915 evt_code = icmd->un.asyncstat.evt_code; 9916 9917 switch (evt_code) { 9918 case ASYNC_TEMP_WARN: 9919 case ASYNC_TEMP_SAFE: 9920 temp_event_data.data = (uint32_t) icmd->ulpContext; 9921 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 9922 if (evt_code == ASYNC_TEMP_WARN) { 9923 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 9924 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9925 "0347 Adapter is very hot, please take " 9926 "corrective action. temperature : %d Celsius\n", 9927 (uint32_t) icmd->ulpContext); 9928 } else { 9929 temp_event_data.event_code = LPFC_NORMAL_TEMP; 9930 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9931 "0340 Adapter temperature is OK now. " 9932 "temperature : %d Celsius\n", 9933 (uint32_t) icmd->ulpContext); 9934 } 9935 9936 /* Send temperature change event to applications */ 9937 shost = lpfc_shost_from_vport(phba->pport); 9938 fc_host_post_vendor_event(shost, fc_get_event_number(), 9939 sizeof(temp_event_data), (char *) &temp_event_data, 9940 LPFC_NL_VENDOR_ID); 9941 break; 9942 case ASYNC_STATUS_CN: 9943 lpfc_sli_abts_err_handler(phba, iocbq); 9944 break; 9945 default: 9946 iocb_w = (uint32_t *) icmd; 9947 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9948 "0346 Ring %d handler: unexpected ASYNC_STATUS" 9949 " evt_code 0x%x\n" 9950 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 9951 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 9952 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 9953 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 9954 pring->ringno, icmd->un.asyncstat.evt_code, 9955 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 9956 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 9957 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 9958 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 9959 9960 break; 9961 } 9962 } 9963 9964 9965 /** 9966 * lpfc_sli4_setup - SLI ring setup function 9967 * @phba: Pointer to HBA context object. 9968 * 9969 * lpfc_sli_setup sets up rings of the SLI interface with 9970 * number of iocbs per ring and iotags. This function is 9971 * called while driver attach to the HBA and before the 9972 * interrupts are enabled. So there is no need for locking. 9973 * 9974 * This function always returns 0. 9975 **/ 9976 int 9977 lpfc_sli4_setup(struct lpfc_hba *phba) 9978 { 9979 struct lpfc_sli_ring *pring; 9980 9981 pring = phba->sli4_hba.els_wq->pring; 9982 pring->num_mask = LPFC_MAX_RING_MASK; 9983 pring->prt[0].profile = 0; /* Mask 0 */ 9984 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 9985 pring->prt[0].type = FC_TYPE_ELS; 9986 pring->prt[0].lpfc_sli_rcv_unsol_event = 9987 lpfc_els_unsol_event; 9988 pring->prt[1].profile = 0; /* Mask 1 */ 9989 pring->prt[1].rctl = FC_RCTL_ELS_REP; 9990 pring->prt[1].type = FC_TYPE_ELS; 9991 pring->prt[1].lpfc_sli_rcv_unsol_event = 9992 lpfc_els_unsol_event; 9993 pring->prt[2].profile = 0; /* Mask 2 */ 9994 /* NameServer Inquiry */ 9995 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 9996 /* NameServer */ 9997 pring->prt[2].type = FC_TYPE_CT; 9998 pring->prt[2].lpfc_sli_rcv_unsol_event = 9999 lpfc_ct_unsol_event; 10000 pring->prt[3].profile = 0; /* Mask 3 */ 10001 /* NameServer response */ 10002 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10003 /* NameServer */ 10004 pring->prt[3].type = FC_TYPE_CT; 10005 pring->prt[3].lpfc_sli_rcv_unsol_event = 10006 lpfc_ct_unsol_event; 10007 return 0; 10008 } 10009 10010 /** 10011 * lpfc_sli_setup - SLI ring setup function 10012 * @phba: Pointer to HBA context object. 10013 * 10014 * lpfc_sli_setup sets up rings of the SLI interface with 10015 * number of iocbs per ring and iotags. This function is 10016 * called while driver attach to the HBA and before the 10017 * interrupts are enabled. So there is no need for locking. 10018 * 10019 * This function always returns 0. SLI3 only. 10020 **/ 10021 int 10022 lpfc_sli_setup(struct lpfc_hba *phba) 10023 { 10024 int i, totiocbsize = 0; 10025 struct lpfc_sli *psli = &phba->sli; 10026 struct lpfc_sli_ring *pring; 10027 10028 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 10029 psli->sli_flag = 0; 10030 10031 psli->iocbq_lookup = NULL; 10032 psli->iocbq_lookup_len = 0; 10033 psli->last_iotag = 0; 10034 10035 for (i = 0; i < psli->num_rings; i++) { 10036 pring = &psli->sli3_ring[i]; 10037 switch (i) { 10038 case LPFC_FCP_RING: /* ring 0 - FCP */ 10039 /* numCiocb and numRiocb are used in config_port */ 10040 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 10041 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 10042 pring->sli.sli3.numCiocb += 10043 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10044 pring->sli.sli3.numRiocb += 10045 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10046 pring->sli.sli3.numCiocb += 10047 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10048 pring->sli.sli3.numRiocb += 10049 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10050 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10051 SLI3_IOCB_CMD_SIZE : 10052 SLI2_IOCB_CMD_SIZE; 10053 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10054 SLI3_IOCB_RSP_SIZE : 10055 SLI2_IOCB_RSP_SIZE; 10056 pring->iotag_ctr = 0; 10057 pring->iotag_max = 10058 (phba->cfg_hba_queue_depth * 2); 10059 pring->fast_iotag = pring->iotag_max; 10060 pring->num_mask = 0; 10061 break; 10062 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 10063 /* numCiocb and numRiocb are used in config_port */ 10064 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 10065 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 10066 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10067 SLI3_IOCB_CMD_SIZE : 10068 SLI2_IOCB_CMD_SIZE; 10069 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10070 SLI3_IOCB_RSP_SIZE : 10071 SLI2_IOCB_RSP_SIZE; 10072 pring->iotag_max = phba->cfg_hba_queue_depth; 10073 pring->num_mask = 0; 10074 break; 10075 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 10076 /* numCiocb and numRiocb are used in config_port */ 10077 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 10078 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 10079 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10080 SLI3_IOCB_CMD_SIZE : 10081 SLI2_IOCB_CMD_SIZE; 10082 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10083 SLI3_IOCB_RSP_SIZE : 10084 SLI2_IOCB_RSP_SIZE; 10085 pring->fast_iotag = 0; 10086 pring->iotag_ctr = 0; 10087 pring->iotag_max = 4096; 10088 pring->lpfc_sli_rcv_async_status = 10089 lpfc_sli_async_event_handler; 10090 pring->num_mask = LPFC_MAX_RING_MASK; 10091 pring->prt[0].profile = 0; /* Mask 0 */ 10092 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10093 pring->prt[0].type = FC_TYPE_ELS; 10094 pring->prt[0].lpfc_sli_rcv_unsol_event = 10095 lpfc_els_unsol_event; 10096 pring->prt[1].profile = 0; /* Mask 1 */ 10097 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10098 pring->prt[1].type = FC_TYPE_ELS; 10099 pring->prt[1].lpfc_sli_rcv_unsol_event = 10100 lpfc_els_unsol_event; 10101 pring->prt[2].profile = 0; /* Mask 2 */ 10102 /* NameServer Inquiry */ 10103 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10104 /* NameServer */ 10105 pring->prt[2].type = FC_TYPE_CT; 10106 pring->prt[2].lpfc_sli_rcv_unsol_event = 10107 lpfc_ct_unsol_event; 10108 pring->prt[3].profile = 0; /* Mask 3 */ 10109 /* NameServer response */ 10110 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10111 /* NameServer */ 10112 pring->prt[3].type = FC_TYPE_CT; 10113 pring->prt[3].lpfc_sli_rcv_unsol_event = 10114 lpfc_ct_unsol_event; 10115 break; 10116 } 10117 totiocbsize += (pring->sli.sli3.numCiocb * 10118 pring->sli.sli3.sizeCiocb) + 10119 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 10120 } 10121 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 10122 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 10123 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 10124 "SLI2 SLIM Data: x%x x%lx\n", 10125 phba->brd_no, totiocbsize, 10126 (unsigned long) MAX_SLIM_IOCB_SIZE); 10127 } 10128 if (phba->cfg_multi_ring_support == 2) 10129 lpfc_extra_ring_setup(phba); 10130 10131 return 0; 10132 } 10133 10134 /** 10135 * lpfc_sli4_queue_init - Queue initialization function 10136 * @phba: Pointer to HBA context object. 10137 * 10138 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 10139 * ring. This function also initializes ring indices of each ring. 10140 * This function is called during the initialization of the SLI 10141 * interface of an HBA. 10142 * This function is called with no lock held and always returns 10143 * 1. 10144 **/ 10145 void 10146 lpfc_sli4_queue_init(struct lpfc_hba *phba) 10147 { 10148 struct lpfc_sli *psli; 10149 struct lpfc_sli_ring *pring; 10150 int i; 10151 10152 psli = &phba->sli; 10153 spin_lock_irq(&phba->hbalock); 10154 INIT_LIST_HEAD(&psli->mboxq); 10155 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10156 /* Initialize list headers for txq and txcmplq as double linked lists */ 10157 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 10158 pring = phba->sli4_hba.fcp_wq[i]->pring; 10159 pring->flag = 0; 10160 pring->ringno = LPFC_FCP_RING; 10161 INIT_LIST_HEAD(&pring->txq); 10162 INIT_LIST_HEAD(&pring->txcmplq); 10163 INIT_LIST_HEAD(&pring->iocb_continueq); 10164 spin_lock_init(&pring->ring_lock); 10165 } 10166 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 10167 pring = phba->sli4_hba.nvme_wq[i]->pring; 10168 pring->flag = 0; 10169 pring->ringno = LPFC_FCP_RING; 10170 INIT_LIST_HEAD(&pring->txq); 10171 INIT_LIST_HEAD(&pring->txcmplq); 10172 INIT_LIST_HEAD(&pring->iocb_continueq); 10173 spin_lock_init(&pring->ring_lock); 10174 } 10175 pring = phba->sli4_hba.els_wq->pring; 10176 pring->flag = 0; 10177 pring->ringno = LPFC_ELS_RING; 10178 INIT_LIST_HEAD(&pring->txq); 10179 INIT_LIST_HEAD(&pring->txcmplq); 10180 INIT_LIST_HEAD(&pring->iocb_continueq); 10181 spin_lock_init(&pring->ring_lock); 10182 10183 if (phba->cfg_nvme_io_channel) { 10184 pring = phba->sli4_hba.nvmels_wq->pring; 10185 pring->flag = 0; 10186 pring->ringno = LPFC_ELS_RING; 10187 INIT_LIST_HEAD(&pring->txq); 10188 INIT_LIST_HEAD(&pring->txcmplq); 10189 INIT_LIST_HEAD(&pring->iocb_continueq); 10190 spin_lock_init(&pring->ring_lock); 10191 } 10192 10193 if (phba->cfg_fof) { 10194 pring = phba->sli4_hba.oas_wq->pring; 10195 pring->flag = 0; 10196 pring->ringno = LPFC_FCP_RING; 10197 INIT_LIST_HEAD(&pring->txq); 10198 INIT_LIST_HEAD(&pring->txcmplq); 10199 INIT_LIST_HEAD(&pring->iocb_continueq); 10200 spin_lock_init(&pring->ring_lock); 10201 } 10202 10203 spin_unlock_irq(&phba->hbalock); 10204 } 10205 10206 /** 10207 * lpfc_sli_queue_init - Queue initialization function 10208 * @phba: Pointer to HBA context object. 10209 * 10210 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 10211 * ring. This function also initializes ring indices of each ring. 10212 * This function is called during the initialization of the SLI 10213 * interface of an HBA. 10214 * This function is called with no lock held and always returns 10215 * 1. 10216 **/ 10217 void 10218 lpfc_sli_queue_init(struct lpfc_hba *phba) 10219 { 10220 struct lpfc_sli *psli; 10221 struct lpfc_sli_ring *pring; 10222 int i; 10223 10224 psli = &phba->sli; 10225 spin_lock_irq(&phba->hbalock); 10226 INIT_LIST_HEAD(&psli->mboxq); 10227 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10228 /* Initialize list headers for txq and txcmplq as double linked lists */ 10229 for (i = 0; i < psli->num_rings; i++) { 10230 pring = &psli->sli3_ring[i]; 10231 pring->ringno = i; 10232 pring->sli.sli3.next_cmdidx = 0; 10233 pring->sli.sli3.local_getidx = 0; 10234 pring->sli.sli3.cmdidx = 0; 10235 INIT_LIST_HEAD(&pring->iocb_continueq); 10236 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 10237 INIT_LIST_HEAD(&pring->postbufq); 10238 pring->flag = 0; 10239 INIT_LIST_HEAD(&pring->txq); 10240 INIT_LIST_HEAD(&pring->txcmplq); 10241 spin_lock_init(&pring->ring_lock); 10242 } 10243 spin_unlock_irq(&phba->hbalock); 10244 } 10245 10246 /** 10247 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 10248 * @phba: Pointer to HBA context object. 10249 * 10250 * This routine flushes the mailbox command subsystem. It will unconditionally 10251 * flush all the mailbox commands in the three possible stages in the mailbox 10252 * command sub-system: pending mailbox command queue; the outstanding mailbox 10253 * command; and completed mailbox command queue. It is caller's responsibility 10254 * to make sure that the driver is in the proper state to flush the mailbox 10255 * command sub-system. Namely, the posting of mailbox commands into the 10256 * pending mailbox command queue from the various clients must be stopped; 10257 * either the HBA is in a state that it will never works on the outstanding 10258 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 10259 * mailbox command has been completed. 10260 **/ 10261 static void 10262 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 10263 { 10264 LIST_HEAD(completions); 10265 struct lpfc_sli *psli = &phba->sli; 10266 LPFC_MBOXQ_t *pmb; 10267 unsigned long iflag; 10268 10269 /* Flush all the mailbox commands in the mbox system */ 10270 spin_lock_irqsave(&phba->hbalock, iflag); 10271 /* The pending mailbox command queue */ 10272 list_splice_init(&phba->sli.mboxq, &completions); 10273 /* The outstanding active mailbox command */ 10274 if (psli->mbox_active) { 10275 list_add_tail(&psli->mbox_active->list, &completions); 10276 psli->mbox_active = NULL; 10277 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10278 } 10279 /* The completed mailbox command queue */ 10280 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 10281 spin_unlock_irqrestore(&phba->hbalock, iflag); 10282 10283 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 10284 while (!list_empty(&completions)) { 10285 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 10286 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 10287 if (pmb->mbox_cmpl) 10288 pmb->mbox_cmpl(phba, pmb); 10289 } 10290 } 10291 10292 /** 10293 * lpfc_sli_host_down - Vport cleanup function 10294 * @vport: Pointer to virtual port object. 10295 * 10296 * lpfc_sli_host_down is called to clean up the resources 10297 * associated with a vport before destroying virtual 10298 * port data structures. 10299 * This function does following operations: 10300 * - Free discovery resources associated with this virtual 10301 * port. 10302 * - Free iocbs associated with this virtual port in 10303 * the txq. 10304 * - Send abort for all iocb commands associated with this 10305 * vport in txcmplq. 10306 * 10307 * This function is called with no lock held and always returns 1. 10308 **/ 10309 int 10310 lpfc_sli_host_down(struct lpfc_vport *vport) 10311 { 10312 LIST_HEAD(completions); 10313 struct lpfc_hba *phba = vport->phba; 10314 struct lpfc_sli *psli = &phba->sli; 10315 struct lpfc_queue *qp = NULL; 10316 struct lpfc_sli_ring *pring; 10317 struct lpfc_iocbq *iocb, *next_iocb; 10318 int i; 10319 unsigned long flags = 0; 10320 uint16_t prev_pring_flag; 10321 10322 lpfc_cleanup_discovery_resources(vport); 10323 10324 spin_lock_irqsave(&phba->hbalock, flags); 10325 10326 /* 10327 * Error everything on the txq since these iocbs 10328 * have not been given to the FW yet. 10329 * Also issue ABTS for everything on the txcmplq 10330 */ 10331 if (phba->sli_rev != LPFC_SLI_REV4) { 10332 for (i = 0; i < psli->num_rings; i++) { 10333 pring = &psli->sli3_ring[i]; 10334 prev_pring_flag = pring->flag; 10335 /* Only slow rings */ 10336 if (pring->ringno == LPFC_ELS_RING) { 10337 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10338 /* Set the lpfc data pending flag */ 10339 set_bit(LPFC_DATA_READY, &phba->data_flags); 10340 } 10341 list_for_each_entry_safe(iocb, next_iocb, 10342 &pring->txq, list) { 10343 if (iocb->vport != vport) 10344 continue; 10345 list_move_tail(&iocb->list, &completions); 10346 } 10347 list_for_each_entry_safe(iocb, next_iocb, 10348 &pring->txcmplq, list) { 10349 if (iocb->vport != vport) 10350 continue; 10351 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10352 } 10353 pring->flag = prev_pring_flag; 10354 } 10355 } else { 10356 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10357 pring = qp->pring; 10358 if (!pring) 10359 continue; 10360 if (pring == phba->sli4_hba.els_wq->pring) { 10361 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10362 /* Set the lpfc data pending flag */ 10363 set_bit(LPFC_DATA_READY, &phba->data_flags); 10364 } 10365 prev_pring_flag = pring->flag; 10366 spin_lock_irq(&pring->ring_lock); 10367 list_for_each_entry_safe(iocb, next_iocb, 10368 &pring->txq, list) { 10369 if (iocb->vport != vport) 10370 continue; 10371 list_move_tail(&iocb->list, &completions); 10372 } 10373 spin_unlock_irq(&pring->ring_lock); 10374 list_for_each_entry_safe(iocb, next_iocb, 10375 &pring->txcmplq, list) { 10376 if (iocb->vport != vport) 10377 continue; 10378 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10379 } 10380 pring->flag = prev_pring_flag; 10381 } 10382 } 10383 spin_unlock_irqrestore(&phba->hbalock, flags); 10384 10385 /* Cancel all the IOCBs from the completions list */ 10386 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10387 IOERR_SLI_DOWN); 10388 return 1; 10389 } 10390 10391 /** 10392 * lpfc_sli_hba_down - Resource cleanup function for the HBA 10393 * @phba: Pointer to HBA context object. 10394 * 10395 * This function cleans up all iocb, buffers, mailbox commands 10396 * while shutting down the HBA. This function is called with no 10397 * lock held and always returns 1. 10398 * This function does the following to cleanup driver resources: 10399 * - Free discovery resources for each virtual port 10400 * - Cleanup any pending fabric iocbs 10401 * - Iterate through the iocb txq and free each entry 10402 * in the list. 10403 * - Free up any buffer posted to the HBA 10404 * - Free mailbox commands in the mailbox queue. 10405 **/ 10406 int 10407 lpfc_sli_hba_down(struct lpfc_hba *phba) 10408 { 10409 LIST_HEAD(completions); 10410 struct lpfc_sli *psli = &phba->sli; 10411 struct lpfc_queue *qp = NULL; 10412 struct lpfc_sli_ring *pring; 10413 struct lpfc_dmabuf *buf_ptr; 10414 unsigned long flags = 0; 10415 int i; 10416 10417 /* Shutdown the mailbox command sub-system */ 10418 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 10419 10420 lpfc_hba_down_prep(phba); 10421 10422 lpfc_fabric_abort_hba(phba); 10423 10424 spin_lock_irqsave(&phba->hbalock, flags); 10425 10426 /* 10427 * Error everything on the txq since these iocbs 10428 * have not been given to the FW yet. 10429 */ 10430 if (phba->sli_rev != LPFC_SLI_REV4) { 10431 for (i = 0; i < psli->num_rings; i++) { 10432 pring = &psli->sli3_ring[i]; 10433 /* Only slow rings */ 10434 if (pring->ringno == LPFC_ELS_RING) { 10435 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10436 /* Set the lpfc data pending flag */ 10437 set_bit(LPFC_DATA_READY, &phba->data_flags); 10438 } 10439 list_splice_init(&pring->txq, &completions); 10440 } 10441 } else { 10442 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10443 pring = qp->pring; 10444 if (!pring) 10445 continue; 10446 spin_lock_irq(&pring->ring_lock); 10447 list_splice_init(&pring->txq, &completions); 10448 spin_unlock_irq(&pring->ring_lock); 10449 if (pring == phba->sli4_hba.els_wq->pring) { 10450 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10451 /* Set the lpfc data pending flag */ 10452 set_bit(LPFC_DATA_READY, &phba->data_flags); 10453 } 10454 } 10455 } 10456 spin_unlock_irqrestore(&phba->hbalock, flags); 10457 10458 /* Cancel all the IOCBs from the completions list */ 10459 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10460 IOERR_SLI_DOWN); 10461 10462 spin_lock_irqsave(&phba->hbalock, flags); 10463 list_splice_init(&phba->elsbuf, &completions); 10464 phba->elsbuf_cnt = 0; 10465 phba->elsbuf_prev_cnt = 0; 10466 spin_unlock_irqrestore(&phba->hbalock, flags); 10467 10468 while (!list_empty(&completions)) { 10469 list_remove_head(&completions, buf_ptr, 10470 struct lpfc_dmabuf, list); 10471 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 10472 kfree(buf_ptr); 10473 } 10474 10475 /* Return any active mbox cmds */ 10476 del_timer_sync(&psli->mbox_tmo); 10477 10478 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 10479 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 10480 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 10481 10482 return 1; 10483 } 10484 10485 /** 10486 * lpfc_sli_pcimem_bcopy - SLI memory copy function 10487 * @srcp: Source memory pointer. 10488 * @destp: Destination memory pointer. 10489 * @cnt: Number of words required to be copied. 10490 * 10491 * This function is used for copying data between driver memory 10492 * and the SLI memory. This function also changes the endianness 10493 * of each word if native endianness is different from SLI 10494 * endianness. This function can be called with or without 10495 * lock. 10496 **/ 10497 void 10498 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 10499 { 10500 uint32_t *src = srcp; 10501 uint32_t *dest = destp; 10502 uint32_t ldata; 10503 int i; 10504 10505 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 10506 ldata = *src; 10507 ldata = le32_to_cpu(ldata); 10508 *dest = ldata; 10509 src++; 10510 dest++; 10511 } 10512 } 10513 10514 10515 /** 10516 * lpfc_sli_bemem_bcopy - SLI memory copy function 10517 * @srcp: Source memory pointer. 10518 * @destp: Destination memory pointer. 10519 * @cnt: Number of words required to be copied. 10520 * 10521 * This function is used for copying data between a data structure 10522 * with big endian representation to local endianness. 10523 * This function can be called with or without lock. 10524 **/ 10525 void 10526 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 10527 { 10528 uint32_t *src = srcp; 10529 uint32_t *dest = destp; 10530 uint32_t ldata; 10531 int i; 10532 10533 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 10534 ldata = *src; 10535 ldata = be32_to_cpu(ldata); 10536 *dest = ldata; 10537 src++; 10538 dest++; 10539 } 10540 } 10541 10542 /** 10543 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 10544 * @phba: Pointer to HBA context object. 10545 * @pring: Pointer to driver SLI ring object. 10546 * @mp: Pointer to driver buffer object. 10547 * 10548 * This function is called with no lock held. 10549 * It always return zero after adding the buffer to the postbufq 10550 * buffer list. 10551 **/ 10552 int 10553 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10554 struct lpfc_dmabuf *mp) 10555 { 10556 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 10557 later */ 10558 spin_lock_irq(&phba->hbalock); 10559 list_add_tail(&mp->list, &pring->postbufq); 10560 pring->postbufq_cnt++; 10561 spin_unlock_irq(&phba->hbalock); 10562 return 0; 10563 } 10564 10565 /** 10566 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 10567 * @phba: Pointer to HBA context object. 10568 * 10569 * When HBQ is enabled, buffers are searched based on tags. This function 10570 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 10571 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 10572 * does not conflict with tags of buffer posted for unsolicited events. 10573 * The function returns the allocated tag. The function is called with 10574 * no locks held. 10575 **/ 10576 uint32_t 10577 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 10578 { 10579 spin_lock_irq(&phba->hbalock); 10580 phba->buffer_tag_count++; 10581 /* 10582 * Always set the QUE_BUFTAG_BIT to distiguish between 10583 * a tag assigned by HBQ. 10584 */ 10585 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 10586 spin_unlock_irq(&phba->hbalock); 10587 return phba->buffer_tag_count; 10588 } 10589 10590 /** 10591 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 10592 * @phba: Pointer to HBA context object. 10593 * @pring: Pointer to driver SLI ring object. 10594 * @tag: Buffer tag. 10595 * 10596 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 10597 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 10598 * iocb is posted to the response ring with the tag of the buffer. 10599 * This function searches the pring->postbufq list using the tag 10600 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 10601 * iocb. If the buffer is found then lpfc_dmabuf object of the 10602 * buffer is returned to the caller else NULL is returned. 10603 * This function is called with no lock held. 10604 **/ 10605 struct lpfc_dmabuf * 10606 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10607 uint32_t tag) 10608 { 10609 struct lpfc_dmabuf *mp, *next_mp; 10610 struct list_head *slp = &pring->postbufq; 10611 10612 /* Search postbufq, from the beginning, looking for a match on tag */ 10613 spin_lock_irq(&phba->hbalock); 10614 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 10615 if (mp->buffer_tag == tag) { 10616 list_del_init(&mp->list); 10617 pring->postbufq_cnt--; 10618 spin_unlock_irq(&phba->hbalock); 10619 return mp; 10620 } 10621 } 10622 10623 spin_unlock_irq(&phba->hbalock); 10624 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10625 "0402 Cannot find virtual addr for buffer tag on " 10626 "ring %d Data x%lx x%p x%p x%x\n", 10627 pring->ringno, (unsigned long) tag, 10628 slp->next, slp->prev, pring->postbufq_cnt); 10629 10630 return NULL; 10631 } 10632 10633 /** 10634 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 10635 * @phba: Pointer to HBA context object. 10636 * @pring: Pointer to driver SLI ring object. 10637 * @phys: DMA address of the buffer. 10638 * 10639 * This function searches the buffer list using the dma_address 10640 * of unsolicited event to find the driver's lpfc_dmabuf object 10641 * corresponding to the dma_address. The function returns the 10642 * lpfc_dmabuf object if a buffer is found else it returns NULL. 10643 * This function is called by the ct and els unsolicited event 10644 * handlers to get the buffer associated with the unsolicited 10645 * event. 10646 * 10647 * This function is called with no lock held. 10648 **/ 10649 struct lpfc_dmabuf * 10650 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10651 dma_addr_t phys) 10652 { 10653 struct lpfc_dmabuf *mp, *next_mp; 10654 struct list_head *slp = &pring->postbufq; 10655 10656 /* Search postbufq, from the beginning, looking for a match on phys */ 10657 spin_lock_irq(&phba->hbalock); 10658 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 10659 if (mp->phys == phys) { 10660 list_del_init(&mp->list); 10661 pring->postbufq_cnt--; 10662 spin_unlock_irq(&phba->hbalock); 10663 return mp; 10664 } 10665 } 10666 10667 spin_unlock_irq(&phba->hbalock); 10668 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10669 "0410 Cannot find virtual addr for mapped buf on " 10670 "ring %d Data x%llx x%p x%p x%x\n", 10671 pring->ringno, (unsigned long long)phys, 10672 slp->next, slp->prev, pring->postbufq_cnt); 10673 return NULL; 10674 } 10675 10676 /** 10677 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 10678 * @phba: Pointer to HBA context object. 10679 * @cmdiocb: Pointer to driver command iocb object. 10680 * @rspiocb: Pointer to driver response iocb object. 10681 * 10682 * This function is the completion handler for the abort iocbs for 10683 * ELS commands. This function is called from the ELS ring event 10684 * handler with no lock held. This function frees memory resources 10685 * associated with the abort iocb. 10686 **/ 10687 static void 10688 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10689 struct lpfc_iocbq *rspiocb) 10690 { 10691 IOCB_t *irsp = &rspiocb->iocb; 10692 uint16_t abort_iotag, abort_context; 10693 struct lpfc_iocbq *abort_iocb = NULL; 10694 10695 if (irsp->ulpStatus) { 10696 10697 /* 10698 * Assume that the port already completed and returned, or 10699 * will return the iocb. Just Log the message. 10700 */ 10701 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 10702 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 10703 10704 spin_lock_irq(&phba->hbalock); 10705 if (phba->sli_rev < LPFC_SLI_REV4) { 10706 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 10707 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 10708 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 10709 spin_unlock_irq(&phba->hbalock); 10710 goto release_iocb; 10711 } 10712 if (abort_iotag != 0 && 10713 abort_iotag <= phba->sli.last_iotag) 10714 abort_iocb = 10715 phba->sli.iocbq_lookup[abort_iotag]; 10716 } else 10717 /* For sli4 the abort_tag is the XRI, 10718 * so the abort routine puts the iotag of the iocb 10719 * being aborted in the context field of the abort 10720 * IOCB. 10721 */ 10722 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 10723 10724 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 10725 "0327 Cannot abort els iocb %p " 10726 "with tag %x context %x, abort status %x, " 10727 "abort code %x\n", 10728 abort_iocb, abort_iotag, abort_context, 10729 irsp->ulpStatus, irsp->un.ulpWord[4]); 10730 10731 spin_unlock_irq(&phba->hbalock); 10732 } 10733 release_iocb: 10734 lpfc_sli_release_iocbq(phba, cmdiocb); 10735 return; 10736 } 10737 10738 /** 10739 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 10740 * @phba: Pointer to HBA context object. 10741 * @cmdiocb: Pointer to driver command iocb object. 10742 * @rspiocb: Pointer to driver response iocb object. 10743 * 10744 * The function is called from SLI ring event handler with no 10745 * lock held. This function is the completion handler for ELS commands 10746 * which are aborted. The function frees memory resources used for 10747 * the aborted ELS commands. 10748 **/ 10749 static void 10750 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10751 struct lpfc_iocbq *rspiocb) 10752 { 10753 IOCB_t *irsp = &rspiocb->iocb; 10754 10755 /* ELS cmd tag <ulpIoTag> completes */ 10756 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 10757 "0139 Ignoring ELS cmd tag x%x completion Data: " 10758 "x%x x%x x%x\n", 10759 irsp->ulpIoTag, irsp->ulpStatus, 10760 irsp->un.ulpWord[4], irsp->ulpTimeout); 10761 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 10762 lpfc_ct_free_iocb(phba, cmdiocb); 10763 else 10764 lpfc_els_free_iocb(phba, cmdiocb); 10765 return; 10766 } 10767 10768 /** 10769 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 10770 * @phba: Pointer to HBA context object. 10771 * @pring: Pointer to driver SLI ring object. 10772 * @cmdiocb: Pointer to driver command iocb object. 10773 * 10774 * This function issues an abort iocb for the provided command iocb down to 10775 * the port. Other than the case the outstanding command iocb is an abort 10776 * request, this function issues abort out unconditionally. This function is 10777 * called with hbalock held. The function returns 0 when it fails due to 10778 * memory allocation failure or when the command iocb is an abort request. 10779 **/ 10780 static int 10781 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10782 struct lpfc_iocbq *cmdiocb) 10783 { 10784 struct lpfc_vport *vport = cmdiocb->vport; 10785 struct lpfc_iocbq *abtsiocbp; 10786 IOCB_t *icmd = NULL; 10787 IOCB_t *iabt = NULL; 10788 int retval; 10789 unsigned long iflags; 10790 struct lpfc_nodelist *ndlp; 10791 10792 lockdep_assert_held(&phba->hbalock); 10793 10794 /* 10795 * There are certain command types we don't want to abort. And we 10796 * don't want to abort commands that are already in the process of 10797 * being aborted. 10798 */ 10799 icmd = &cmdiocb->iocb; 10800 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 10801 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 10802 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10803 return 0; 10804 10805 /* issue ABTS for this IOCB based on iotag */ 10806 abtsiocbp = __lpfc_sli_get_iocbq(phba); 10807 if (abtsiocbp == NULL) 10808 return 0; 10809 10810 /* This signals the response to set the correct status 10811 * before calling the completion handler 10812 */ 10813 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 10814 10815 iabt = &abtsiocbp->iocb; 10816 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 10817 iabt->un.acxri.abortContextTag = icmd->ulpContext; 10818 if (phba->sli_rev == LPFC_SLI_REV4) { 10819 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 10820 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 10821 } else { 10822 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 10823 if (pring->ringno == LPFC_ELS_RING) { 10824 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 10825 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 10826 } 10827 } 10828 iabt->ulpLe = 1; 10829 iabt->ulpClass = icmd->ulpClass; 10830 10831 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10832 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 10833 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 10834 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 10835 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 10836 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 10837 10838 if (phba->link_state >= LPFC_LINK_UP) 10839 iabt->ulpCommand = CMD_ABORT_XRI_CN; 10840 else 10841 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 10842 10843 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 10844 abtsiocbp->vport = vport; 10845 10846 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 10847 "0339 Abort xri x%x, original iotag x%x, " 10848 "abort cmd iotag x%x\n", 10849 iabt->un.acxri.abortIoTag, 10850 iabt->un.acxri.abortContextTag, 10851 abtsiocbp->iotag); 10852 10853 if (phba->sli_rev == LPFC_SLI_REV4) { 10854 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 10855 if (unlikely(pring == NULL)) 10856 return 0; 10857 /* Note: both hbalock and ring_lock need to be set here */ 10858 spin_lock_irqsave(&pring->ring_lock, iflags); 10859 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10860 abtsiocbp, 0); 10861 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10862 } else { 10863 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10864 abtsiocbp, 0); 10865 } 10866 10867 if (retval) 10868 __lpfc_sli_release_iocbq(phba, abtsiocbp); 10869 10870 /* 10871 * Caller to this routine should check for IOCB_ERROR 10872 * and handle it properly. This routine no longer removes 10873 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10874 */ 10875 return retval; 10876 } 10877 10878 /** 10879 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 10880 * @phba: Pointer to HBA context object. 10881 * @pring: Pointer to driver SLI ring object. 10882 * @cmdiocb: Pointer to driver command iocb object. 10883 * 10884 * This function issues an abort iocb for the provided command iocb. In case 10885 * of unloading, the abort iocb will not be issued to commands on the ELS 10886 * ring. Instead, the callback function shall be changed to those commands 10887 * so that nothing happens when them finishes. This function is called with 10888 * hbalock held. The function returns 0 when the command iocb is an abort 10889 * request. 10890 **/ 10891 int 10892 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10893 struct lpfc_iocbq *cmdiocb) 10894 { 10895 struct lpfc_vport *vport = cmdiocb->vport; 10896 int retval = IOCB_ERROR; 10897 IOCB_t *icmd = NULL; 10898 10899 lockdep_assert_held(&phba->hbalock); 10900 10901 /* 10902 * There are certain command types we don't want to abort. And we 10903 * don't want to abort commands that are already in the process of 10904 * being aborted. 10905 */ 10906 icmd = &cmdiocb->iocb; 10907 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 10908 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 10909 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10910 return 0; 10911 10912 if (!pring) { 10913 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 10914 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 10915 else 10916 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 10917 goto abort_iotag_exit; 10918 } 10919 10920 /* 10921 * If we're unloading, don't abort iocb on the ELS ring, but change 10922 * the callback so that nothing happens when it finishes. 10923 */ 10924 if ((vport->load_flag & FC_UNLOADING) && 10925 (pring->ringno == LPFC_ELS_RING)) { 10926 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 10927 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 10928 else 10929 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 10930 goto abort_iotag_exit; 10931 } 10932 10933 /* Now, we try to issue the abort to the cmdiocb out */ 10934 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 10935 10936 abort_iotag_exit: 10937 /* 10938 * Caller to this routine should check for IOCB_ERROR 10939 * and handle it properly. This routine no longer removes 10940 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10941 */ 10942 return retval; 10943 } 10944 10945 /** 10946 * lpfc_sli4_abort_nvme_io - Issue abort for a command iocb 10947 * @phba: Pointer to HBA context object. 10948 * @pring: Pointer to driver SLI ring object. 10949 * @cmdiocb: Pointer to driver command iocb object. 10950 * 10951 * This function issues an abort iocb for the provided command iocb down to 10952 * the port. Other than the case the outstanding command iocb is an abort 10953 * request, this function issues abort out unconditionally. This function is 10954 * called with hbalock held. The function returns 0 when it fails due to 10955 * memory allocation failure or when the command iocb is an abort request. 10956 **/ 10957 static int 10958 lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10959 struct lpfc_iocbq *cmdiocb) 10960 { 10961 struct lpfc_vport *vport = cmdiocb->vport; 10962 struct lpfc_iocbq *abtsiocbp; 10963 union lpfc_wqe128 *abts_wqe; 10964 int retval; 10965 10966 /* 10967 * There are certain command types we don't want to abort. And we 10968 * don't want to abort commands that are already in the process of 10969 * being aborted. 10970 */ 10971 if (cmdiocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 10972 cmdiocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN || 10973 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10974 return 0; 10975 10976 /* issue ABTS for this io based on iotag */ 10977 abtsiocbp = __lpfc_sli_get_iocbq(phba); 10978 if (abtsiocbp == NULL) 10979 return 0; 10980 10981 /* This signals the response to set the correct status 10982 * before calling the completion handler 10983 */ 10984 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 10985 10986 /* Complete prepping the abort wqe and issue to the FW. */ 10987 abts_wqe = &abtsiocbp->wqe; 10988 bf_set(abort_cmd_ia, &abts_wqe->abort_cmd, 0); 10989 bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG); 10990 10991 /* Explicitly set reserved fields to zero.*/ 10992 abts_wqe->abort_cmd.rsrvd4 = 0; 10993 abts_wqe->abort_cmd.rsrvd5 = 0; 10994 10995 /* WQE Common - word 6. Context is XRI tag. Set 0. */ 10996 bf_set(wqe_xri_tag, &abts_wqe->abort_cmd.wqe_com, 0); 10997 bf_set(wqe_ctxt_tag, &abts_wqe->abort_cmd.wqe_com, 0); 10998 10999 /* word 7 */ 11000 bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0); 11001 bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 11002 bf_set(wqe_class, &abts_wqe->abort_cmd.wqe_com, 11003 cmdiocb->iocb.ulpClass); 11004 11005 /* word 8 - tell the FW to abort the IO associated with this 11006 * outstanding exchange ID. 11007 */ 11008 abts_wqe->abort_cmd.wqe_com.abort_tag = cmdiocb->sli4_xritag; 11009 11010 /* word 9 - this is the iotag for the abts_wqe completion. */ 11011 bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com, 11012 abtsiocbp->iotag); 11013 11014 /* word 10 */ 11015 bf_set(wqe_wqid, &abts_wqe->abort_cmd.wqe_com, cmdiocb->hba_wqidx); 11016 bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1); 11017 bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 11018 11019 /* word 11 */ 11020 bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11021 bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1); 11022 bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 11023 11024 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11025 abtsiocbp->iocb_flag |= LPFC_IO_NVME; 11026 abtsiocbp->vport = vport; 11027 abtsiocbp->wqe_cmpl = lpfc_nvme_abort_fcreq_cmpl; 11028 retval = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abtsiocbp); 11029 if (retval) { 11030 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 11031 "6147 Failed abts issue_wqe with status x%x " 11032 "for oxid x%x\n", 11033 retval, cmdiocb->sli4_xritag); 11034 lpfc_sli_release_iocbq(phba, abtsiocbp); 11035 return retval; 11036 } 11037 11038 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 11039 "6148 Drv Abort NVME Request Issued for " 11040 "ox_id x%x on reqtag x%x\n", 11041 cmdiocb->sli4_xritag, 11042 abtsiocbp->iotag); 11043 11044 return retval; 11045 } 11046 11047 /** 11048 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 11049 * @phba: pointer to lpfc HBA data structure. 11050 * 11051 * This routine will abort all pending and outstanding iocbs to an HBA. 11052 **/ 11053 void 11054 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 11055 { 11056 struct lpfc_sli *psli = &phba->sli; 11057 struct lpfc_sli_ring *pring; 11058 struct lpfc_queue *qp = NULL; 11059 int i; 11060 11061 if (phba->sli_rev != LPFC_SLI_REV4) { 11062 for (i = 0; i < psli->num_rings; i++) { 11063 pring = &psli->sli3_ring[i]; 11064 lpfc_sli_abort_iocb_ring(phba, pring); 11065 } 11066 return; 11067 } 11068 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11069 pring = qp->pring; 11070 if (!pring) 11071 continue; 11072 lpfc_sli_abort_iocb_ring(phba, pring); 11073 } 11074 } 11075 11076 /** 11077 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 11078 * @iocbq: Pointer to driver iocb object. 11079 * @vport: Pointer to driver virtual port object. 11080 * @tgt_id: SCSI ID of the target. 11081 * @lun_id: LUN ID of the scsi device. 11082 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 11083 * 11084 * This function acts as an iocb filter for functions which abort or count 11085 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 11086 * 0 if the filtering criteria is met for the given iocb and will return 11087 * 1 if the filtering criteria is not met. 11088 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 11089 * given iocb is for the SCSI device specified by vport, tgt_id and 11090 * lun_id parameter. 11091 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 11092 * given iocb is for the SCSI target specified by vport and tgt_id 11093 * parameters. 11094 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 11095 * given iocb is for the SCSI host associated with the given vport. 11096 * This function is called with no locks held. 11097 **/ 11098 static int 11099 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 11100 uint16_t tgt_id, uint64_t lun_id, 11101 lpfc_ctx_cmd ctx_cmd) 11102 { 11103 struct lpfc_scsi_buf *lpfc_cmd; 11104 int rc = 1; 11105 11106 if (iocbq->vport != vport) 11107 return rc; 11108 11109 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 11110 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) 11111 return rc; 11112 11113 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 11114 11115 if (lpfc_cmd->pCmd == NULL) 11116 return rc; 11117 11118 switch (ctx_cmd) { 11119 case LPFC_CTX_LUN: 11120 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11121 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 11122 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 11123 rc = 0; 11124 break; 11125 case LPFC_CTX_TGT: 11126 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11127 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 11128 rc = 0; 11129 break; 11130 case LPFC_CTX_HOST: 11131 rc = 0; 11132 break; 11133 default: 11134 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 11135 __func__, ctx_cmd); 11136 break; 11137 } 11138 11139 return rc; 11140 } 11141 11142 /** 11143 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 11144 * @vport: Pointer to virtual port. 11145 * @tgt_id: SCSI ID of the target. 11146 * @lun_id: LUN ID of the scsi device. 11147 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11148 * 11149 * This function returns number of FCP commands pending for the vport. 11150 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 11151 * commands pending on the vport associated with SCSI device specified 11152 * by tgt_id and lun_id parameters. 11153 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 11154 * commands pending on the vport associated with SCSI target specified 11155 * by tgt_id parameter. 11156 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 11157 * commands pending on the vport. 11158 * This function returns the number of iocbs which satisfy the filter. 11159 * This function is called without any lock held. 11160 **/ 11161 int 11162 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 11163 lpfc_ctx_cmd ctx_cmd) 11164 { 11165 struct lpfc_hba *phba = vport->phba; 11166 struct lpfc_iocbq *iocbq; 11167 int sum, i; 11168 11169 spin_lock_irq(&phba->hbalock); 11170 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 11171 iocbq = phba->sli.iocbq_lookup[i]; 11172 11173 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 11174 ctx_cmd) == 0) 11175 sum++; 11176 } 11177 spin_unlock_irq(&phba->hbalock); 11178 11179 return sum; 11180 } 11181 11182 /** 11183 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11184 * @phba: Pointer to HBA context object 11185 * @cmdiocb: Pointer to command iocb object. 11186 * @rspiocb: Pointer to response iocb object. 11187 * 11188 * This function is called when an aborted FCP iocb completes. This 11189 * function is called by the ring event handler with no lock held. 11190 * This function frees the iocb. 11191 **/ 11192 void 11193 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11194 struct lpfc_iocbq *rspiocb) 11195 { 11196 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11197 "3096 ABORT_XRI_CN completing on rpi x%x " 11198 "original iotag x%x, abort cmd iotag x%x " 11199 "status 0x%x, reason 0x%x\n", 11200 cmdiocb->iocb.un.acxri.abortContextTag, 11201 cmdiocb->iocb.un.acxri.abortIoTag, 11202 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 11203 rspiocb->iocb.un.ulpWord[4]); 11204 lpfc_sli_release_iocbq(phba, cmdiocb); 11205 return; 11206 } 11207 11208 /** 11209 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 11210 * @vport: Pointer to virtual port. 11211 * @pring: Pointer to driver SLI ring object. 11212 * @tgt_id: SCSI ID of the target. 11213 * @lun_id: LUN ID of the scsi device. 11214 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11215 * 11216 * This function sends an abort command for every SCSI command 11217 * associated with the given virtual port pending on the ring 11218 * filtered by lpfc_sli_validate_fcp_iocb function. 11219 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 11220 * FCP iocbs associated with lun specified by tgt_id and lun_id 11221 * parameters 11222 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 11223 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11224 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 11225 * FCP iocbs associated with virtual port. 11226 * This function returns number of iocbs it failed to abort. 11227 * This function is called with no locks held. 11228 **/ 11229 int 11230 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11231 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 11232 { 11233 struct lpfc_hba *phba = vport->phba; 11234 struct lpfc_iocbq *iocbq; 11235 struct lpfc_iocbq *abtsiocb; 11236 struct lpfc_sli_ring *pring_s4; 11237 IOCB_t *cmd = NULL; 11238 int errcnt = 0, ret_val = 0; 11239 int i; 11240 11241 /* all I/Os are in process of being flushed */ 11242 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) 11243 return errcnt; 11244 11245 for (i = 1; i <= phba->sli.last_iotag; i++) { 11246 iocbq = phba->sli.iocbq_lookup[i]; 11247 11248 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11249 abort_cmd) != 0) 11250 continue; 11251 11252 /* 11253 * If the iocbq is already being aborted, don't take a second 11254 * action, but do count it. 11255 */ 11256 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11257 continue; 11258 11259 /* issue ABTS for this IOCB based on iotag */ 11260 abtsiocb = lpfc_sli_get_iocbq(phba); 11261 if (abtsiocb == NULL) { 11262 errcnt++; 11263 continue; 11264 } 11265 11266 /* indicate the IO is being aborted by the driver. */ 11267 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11268 11269 cmd = &iocbq->iocb; 11270 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11271 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 11272 if (phba->sli_rev == LPFC_SLI_REV4) 11273 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 11274 else 11275 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 11276 abtsiocb->iocb.ulpLe = 1; 11277 abtsiocb->iocb.ulpClass = cmd->ulpClass; 11278 abtsiocb->vport = vport; 11279 11280 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11281 abtsiocb->hba_wqidx = iocbq->hba_wqidx; 11282 if (iocbq->iocb_flag & LPFC_IO_FCP) 11283 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 11284 if (iocbq->iocb_flag & LPFC_IO_FOF) 11285 abtsiocb->iocb_flag |= LPFC_IO_FOF; 11286 11287 if (lpfc_is_link_up(phba)) 11288 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11289 else 11290 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11291 11292 /* Setup callback routine and issue the command. */ 11293 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11294 if (phba->sli_rev == LPFC_SLI_REV4) { 11295 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq); 11296 if (!pring_s4) 11297 continue; 11298 ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11299 abtsiocb, 0); 11300 } else 11301 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 11302 abtsiocb, 0); 11303 if (ret_val == IOCB_ERROR) { 11304 lpfc_sli_release_iocbq(phba, abtsiocb); 11305 errcnt++; 11306 continue; 11307 } 11308 } 11309 11310 return errcnt; 11311 } 11312 11313 /** 11314 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 11315 * @vport: Pointer to virtual port. 11316 * @pring: Pointer to driver SLI ring object. 11317 * @tgt_id: SCSI ID of the target. 11318 * @lun_id: LUN ID of the scsi device. 11319 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11320 * 11321 * This function sends an abort command for every SCSI command 11322 * associated with the given virtual port pending on the ring 11323 * filtered by lpfc_sli_validate_fcp_iocb function. 11324 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 11325 * FCP iocbs associated with lun specified by tgt_id and lun_id 11326 * parameters 11327 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 11328 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11329 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 11330 * FCP iocbs associated with virtual port. 11331 * This function returns number of iocbs it aborted . 11332 * This function is called with no locks held right after a taskmgmt 11333 * command is sent. 11334 **/ 11335 int 11336 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11337 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 11338 { 11339 struct lpfc_hba *phba = vport->phba; 11340 struct lpfc_scsi_buf *lpfc_cmd; 11341 struct lpfc_iocbq *abtsiocbq; 11342 struct lpfc_nodelist *ndlp; 11343 struct lpfc_iocbq *iocbq; 11344 IOCB_t *icmd; 11345 int sum, i, ret_val; 11346 unsigned long iflags; 11347 struct lpfc_sli_ring *pring_s4; 11348 11349 spin_lock_irqsave(&phba->hbalock, iflags); 11350 11351 /* all I/Os are in process of being flushed */ 11352 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) { 11353 spin_unlock_irqrestore(&phba->hbalock, iflags); 11354 return 0; 11355 } 11356 sum = 0; 11357 11358 for (i = 1; i <= phba->sli.last_iotag; i++) { 11359 iocbq = phba->sli.iocbq_lookup[i]; 11360 11361 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11362 cmd) != 0) 11363 continue; 11364 11365 /* 11366 * If the iocbq is already being aborted, don't take a second 11367 * action, but do count it. 11368 */ 11369 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11370 continue; 11371 11372 /* issue ABTS for this IOCB based on iotag */ 11373 abtsiocbq = __lpfc_sli_get_iocbq(phba); 11374 if (abtsiocbq == NULL) 11375 continue; 11376 11377 icmd = &iocbq->iocb; 11378 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11379 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 11380 if (phba->sli_rev == LPFC_SLI_REV4) 11381 abtsiocbq->iocb.un.acxri.abortIoTag = 11382 iocbq->sli4_xritag; 11383 else 11384 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 11385 abtsiocbq->iocb.ulpLe = 1; 11386 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 11387 abtsiocbq->vport = vport; 11388 11389 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11390 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 11391 if (iocbq->iocb_flag & LPFC_IO_FCP) 11392 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 11393 if (iocbq->iocb_flag & LPFC_IO_FOF) 11394 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 11395 11396 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 11397 ndlp = lpfc_cmd->rdata->pnode; 11398 11399 if (lpfc_is_link_up(phba) && 11400 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 11401 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11402 else 11403 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11404 11405 /* Setup callback routine and issue the command. */ 11406 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11407 11408 /* 11409 * Indicate the IO is being aborted by the driver and set 11410 * the caller's flag into the aborted IO. 11411 */ 11412 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11413 11414 if (phba->sli_rev == LPFC_SLI_REV4) { 11415 pring_s4 = lpfc_sli4_calc_ring(phba, abtsiocbq); 11416 if (!pring_s4) 11417 continue; 11418 /* Note: both hbalock and ring_lock must be set here */ 11419 spin_lock(&pring_s4->ring_lock); 11420 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11421 abtsiocbq, 0); 11422 spin_unlock(&pring_s4->ring_lock); 11423 } else { 11424 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 11425 abtsiocbq, 0); 11426 } 11427 11428 11429 if (ret_val == IOCB_ERROR) 11430 __lpfc_sli_release_iocbq(phba, abtsiocbq); 11431 else 11432 sum++; 11433 } 11434 spin_unlock_irqrestore(&phba->hbalock, iflags); 11435 return sum; 11436 } 11437 11438 /** 11439 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 11440 * @phba: Pointer to HBA context object. 11441 * @cmdiocbq: Pointer to command iocb. 11442 * @rspiocbq: Pointer to response iocb. 11443 * 11444 * This function is the completion handler for iocbs issued using 11445 * lpfc_sli_issue_iocb_wait function. This function is called by the 11446 * ring event handler function without any lock held. This function 11447 * can be called from both worker thread context and interrupt 11448 * context. This function also can be called from other thread which 11449 * cleans up the SLI layer objects. 11450 * This function copy the contents of the response iocb to the 11451 * response iocb memory object provided by the caller of 11452 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 11453 * sleeps for the iocb completion. 11454 **/ 11455 static void 11456 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 11457 struct lpfc_iocbq *cmdiocbq, 11458 struct lpfc_iocbq *rspiocbq) 11459 { 11460 wait_queue_head_t *pdone_q; 11461 unsigned long iflags; 11462 struct lpfc_scsi_buf *lpfc_cmd; 11463 11464 spin_lock_irqsave(&phba->hbalock, iflags); 11465 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 11466 11467 /* 11468 * A time out has occurred for the iocb. If a time out 11469 * completion handler has been supplied, call it. Otherwise, 11470 * just free the iocbq. 11471 */ 11472 11473 spin_unlock_irqrestore(&phba->hbalock, iflags); 11474 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 11475 cmdiocbq->wait_iocb_cmpl = NULL; 11476 if (cmdiocbq->iocb_cmpl) 11477 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 11478 else 11479 lpfc_sli_release_iocbq(phba, cmdiocbq); 11480 return; 11481 } 11482 11483 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 11484 if (cmdiocbq->context2 && rspiocbq) 11485 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 11486 &rspiocbq->iocb, sizeof(IOCB_t)); 11487 11488 /* Set the exchange busy flag for task management commands */ 11489 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 11490 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 11491 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf, 11492 cur_iocbq); 11493 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY; 11494 } 11495 11496 pdone_q = cmdiocbq->context_un.wait_queue; 11497 if (pdone_q) 11498 wake_up(pdone_q); 11499 spin_unlock_irqrestore(&phba->hbalock, iflags); 11500 return; 11501 } 11502 11503 /** 11504 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 11505 * @phba: Pointer to HBA context object.. 11506 * @piocbq: Pointer to command iocb. 11507 * @flag: Flag to test. 11508 * 11509 * This routine grabs the hbalock and then test the iocb_flag to 11510 * see if the passed in flag is set. 11511 * Returns: 11512 * 1 if flag is set. 11513 * 0 if flag is not set. 11514 **/ 11515 static int 11516 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 11517 struct lpfc_iocbq *piocbq, uint32_t flag) 11518 { 11519 unsigned long iflags; 11520 int ret; 11521 11522 spin_lock_irqsave(&phba->hbalock, iflags); 11523 ret = piocbq->iocb_flag & flag; 11524 spin_unlock_irqrestore(&phba->hbalock, iflags); 11525 return ret; 11526 11527 } 11528 11529 /** 11530 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 11531 * @phba: Pointer to HBA context object.. 11532 * @pring: Pointer to sli ring. 11533 * @piocb: Pointer to command iocb. 11534 * @prspiocbq: Pointer to response iocb. 11535 * @timeout: Timeout in number of seconds. 11536 * 11537 * This function issues the iocb to firmware and waits for the 11538 * iocb to complete. The iocb_cmpl field of the shall be used 11539 * to handle iocbs which time out. If the field is NULL, the 11540 * function shall free the iocbq structure. If more clean up is 11541 * needed, the caller is expected to provide a completion function 11542 * that will provide the needed clean up. If the iocb command is 11543 * not completed within timeout seconds, the function will either 11544 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 11545 * completion function set in the iocb_cmpl field and then return 11546 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 11547 * resources if this function returns IOCB_TIMEDOUT. 11548 * The function waits for the iocb completion using an 11549 * non-interruptible wait. 11550 * This function will sleep while waiting for iocb completion. 11551 * So, this function should not be called from any context which 11552 * does not allow sleeping. Due to the same reason, this function 11553 * cannot be called with interrupt disabled. 11554 * This function assumes that the iocb completions occur while 11555 * this function sleep. So, this function cannot be called from 11556 * the thread which process iocb completion for this ring. 11557 * This function clears the iocb_flag of the iocb object before 11558 * issuing the iocb and the iocb completion handler sets this 11559 * flag and wakes this thread when the iocb completes. 11560 * The contents of the response iocb will be copied to prspiocbq 11561 * by the completion handler when the command completes. 11562 * This function returns IOCB_SUCCESS when success. 11563 * This function is called with no lock held. 11564 **/ 11565 int 11566 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 11567 uint32_t ring_number, 11568 struct lpfc_iocbq *piocb, 11569 struct lpfc_iocbq *prspiocbq, 11570 uint32_t timeout) 11571 { 11572 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 11573 long timeleft, timeout_req = 0; 11574 int retval = IOCB_SUCCESS; 11575 uint32_t creg_val; 11576 struct lpfc_iocbq *iocb; 11577 int txq_cnt = 0; 11578 int txcmplq_cnt = 0; 11579 struct lpfc_sli_ring *pring; 11580 unsigned long iflags; 11581 bool iocb_completed = true; 11582 11583 if (phba->sli_rev >= LPFC_SLI_REV4) 11584 pring = lpfc_sli4_calc_ring(phba, piocb); 11585 else 11586 pring = &phba->sli.sli3_ring[ring_number]; 11587 /* 11588 * If the caller has provided a response iocbq buffer, then context2 11589 * is NULL or its an error. 11590 */ 11591 if (prspiocbq) { 11592 if (piocb->context2) 11593 return IOCB_ERROR; 11594 piocb->context2 = prspiocbq; 11595 } 11596 11597 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 11598 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 11599 piocb->context_un.wait_queue = &done_q; 11600 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 11601 11602 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11603 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11604 return IOCB_ERROR; 11605 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 11606 writel(creg_val, phba->HCregaddr); 11607 readl(phba->HCregaddr); /* flush */ 11608 } 11609 11610 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 11611 SLI_IOCB_RET_IOCB); 11612 if (retval == IOCB_SUCCESS) { 11613 timeout_req = msecs_to_jiffies(timeout * 1000); 11614 timeleft = wait_event_timeout(done_q, 11615 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 11616 timeout_req); 11617 spin_lock_irqsave(&phba->hbalock, iflags); 11618 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 11619 11620 /* 11621 * IOCB timed out. Inform the wake iocb wait 11622 * completion function and set local status 11623 */ 11624 11625 iocb_completed = false; 11626 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 11627 } 11628 spin_unlock_irqrestore(&phba->hbalock, iflags); 11629 if (iocb_completed) { 11630 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11631 "0331 IOCB wake signaled\n"); 11632 /* Note: we are not indicating if the IOCB has a success 11633 * status or not - that's for the caller to check. 11634 * IOCB_SUCCESS means just that the command was sent and 11635 * completed. Not that it completed successfully. 11636 * */ 11637 } else if (timeleft == 0) { 11638 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11639 "0338 IOCB wait timeout error - no " 11640 "wake response Data x%x\n", timeout); 11641 retval = IOCB_TIMEDOUT; 11642 } else { 11643 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11644 "0330 IOCB wake NOT set, " 11645 "Data x%x x%lx\n", 11646 timeout, (timeleft / jiffies)); 11647 retval = IOCB_TIMEDOUT; 11648 } 11649 } else if (retval == IOCB_BUSY) { 11650 if (phba->cfg_log_verbose & LOG_SLI) { 11651 list_for_each_entry(iocb, &pring->txq, list) { 11652 txq_cnt++; 11653 } 11654 list_for_each_entry(iocb, &pring->txcmplq, list) { 11655 txcmplq_cnt++; 11656 } 11657 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11658 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 11659 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 11660 } 11661 return retval; 11662 } else { 11663 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11664 "0332 IOCB wait issue failed, Data x%x\n", 11665 retval); 11666 retval = IOCB_ERROR; 11667 } 11668 11669 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11670 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11671 return IOCB_ERROR; 11672 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 11673 writel(creg_val, phba->HCregaddr); 11674 readl(phba->HCregaddr); /* flush */ 11675 } 11676 11677 if (prspiocbq) 11678 piocb->context2 = NULL; 11679 11680 piocb->context_un.wait_queue = NULL; 11681 piocb->iocb_cmpl = NULL; 11682 return retval; 11683 } 11684 11685 /** 11686 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 11687 * @phba: Pointer to HBA context object. 11688 * @pmboxq: Pointer to driver mailbox object. 11689 * @timeout: Timeout in number of seconds. 11690 * 11691 * This function issues the mailbox to firmware and waits for the 11692 * mailbox command to complete. If the mailbox command is not 11693 * completed within timeout seconds, it returns MBX_TIMEOUT. 11694 * The function waits for the mailbox completion using an 11695 * interruptible wait. If the thread is woken up due to a 11696 * signal, MBX_TIMEOUT error is returned to the caller. Caller 11697 * should not free the mailbox resources, if this function returns 11698 * MBX_TIMEOUT. 11699 * This function will sleep while waiting for mailbox completion. 11700 * So, this function should not be called from any context which 11701 * does not allow sleeping. Due to the same reason, this function 11702 * cannot be called with interrupt disabled. 11703 * This function assumes that the mailbox completion occurs while 11704 * this function sleep. So, this function cannot be called from 11705 * the worker thread which processes mailbox completion. 11706 * This function is called in the context of HBA management 11707 * applications. 11708 * This function returns MBX_SUCCESS when successful. 11709 * This function is called with no lock held. 11710 **/ 11711 int 11712 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 11713 uint32_t timeout) 11714 { 11715 struct completion mbox_done; 11716 int retval; 11717 unsigned long flag; 11718 11719 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 11720 /* setup wake call as IOCB callback */ 11721 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 11722 11723 /* setup context3 field to pass wait_queue pointer to wake function */ 11724 init_completion(&mbox_done); 11725 pmboxq->context3 = &mbox_done; 11726 /* now issue the command */ 11727 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 11728 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 11729 wait_for_completion_timeout(&mbox_done, 11730 msecs_to_jiffies(timeout * 1000)); 11731 11732 spin_lock_irqsave(&phba->hbalock, flag); 11733 pmboxq->context3 = NULL; 11734 /* 11735 * if LPFC_MBX_WAKE flag is set the mailbox is completed 11736 * else do not free the resources. 11737 */ 11738 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 11739 retval = MBX_SUCCESS; 11740 } else { 11741 retval = MBX_TIMEOUT; 11742 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 11743 } 11744 spin_unlock_irqrestore(&phba->hbalock, flag); 11745 } 11746 return retval; 11747 } 11748 11749 /** 11750 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 11751 * @phba: Pointer to HBA context. 11752 * 11753 * This function is called to shutdown the driver's mailbox sub-system. 11754 * It first marks the mailbox sub-system is in a block state to prevent 11755 * the asynchronous mailbox command from issued off the pending mailbox 11756 * command queue. If the mailbox command sub-system shutdown is due to 11757 * HBA error conditions such as EEH or ERATT, this routine shall invoke 11758 * the mailbox sub-system flush routine to forcefully bring down the 11759 * mailbox sub-system. Otherwise, if it is due to normal condition (such 11760 * as with offline or HBA function reset), this routine will wait for the 11761 * outstanding mailbox command to complete before invoking the mailbox 11762 * sub-system flush routine to gracefully bring down mailbox sub-system. 11763 **/ 11764 void 11765 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 11766 { 11767 struct lpfc_sli *psli = &phba->sli; 11768 unsigned long timeout; 11769 11770 if (mbx_action == LPFC_MBX_NO_WAIT) { 11771 /* delay 100ms for port state */ 11772 msleep(100); 11773 lpfc_sli_mbox_sys_flush(phba); 11774 return; 11775 } 11776 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 11777 11778 spin_lock_irq(&phba->hbalock); 11779 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 11780 11781 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 11782 /* Determine how long we might wait for the active mailbox 11783 * command to be gracefully completed by firmware. 11784 */ 11785 if (phba->sli.mbox_active) 11786 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 11787 phba->sli.mbox_active) * 11788 1000) + jiffies; 11789 spin_unlock_irq(&phba->hbalock); 11790 11791 while (phba->sli.mbox_active) { 11792 /* Check active mailbox complete status every 2ms */ 11793 msleep(2); 11794 if (time_after(jiffies, timeout)) 11795 /* Timeout, let the mailbox flush routine to 11796 * forcefully release active mailbox command 11797 */ 11798 break; 11799 } 11800 } else 11801 spin_unlock_irq(&phba->hbalock); 11802 11803 lpfc_sli_mbox_sys_flush(phba); 11804 } 11805 11806 /** 11807 * lpfc_sli_eratt_read - read sli-3 error attention events 11808 * @phba: Pointer to HBA context. 11809 * 11810 * This function is called to read the SLI3 device error attention registers 11811 * for possible error attention events. The caller must hold the hostlock 11812 * with spin_lock_irq(). 11813 * 11814 * This function returns 1 when there is Error Attention in the Host Attention 11815 * Register and returns 0 otherwise. 11816 **/ 11817 static int 11818 lpfc_sli_eratt_read(struct lpfc_hba *phba) 11819 { 11820 uint32_t ha_copy; 11821 11822 /* Read chip Host Attention (HA) register */ 11823 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11824 goto unplug_err; 11825 11826 if (ha_copy & HA_ERATT) { 11827 /* Read host status register to retrieve error event */ 11828 if (lpfc_sli_read_hs(phba)) 11829 goto unplug_err; 11830 11831 /* Check if there is a deferred error condition is active */ 11832 if ((HS_FFER1 & phba->work_hs) && 11833 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 11834 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 11835 phba->hba_flag |= DEFER_ERATT; 11836 /* Clear all interrupt enable conditions */ 11837 writel(0, phba->HCregaddr); 11838 readl(phba->HCregaddr); 11839 } 11840 11841 /* Set the driver HA work bitmap */ 11842 phba->work_ha |= HA_ERATT; 11843 /* Indicate polling handles this ERATT */ 11844 phba->hba_flag |= HBA_ERATT_HANDLED; 11845 return 1; 11846 } 11847 return 0; 11848 11849 unplug_err: 11850 /* Set the driver HS work bitmap */ 11851 phba->work_hs |= UNPLUG_ERR; 11852 /* Set the driver HA work bitmap */ 11853 phba->work_ha |= HA_ERATT; 11854 /* Indicate polling handles this ERATT */ 11855 phba->hba_flag |= HBA_ERATT_HANDLED; 11856 return 1; 11857 } 11858 11859 /** 11860 * lpfc_sli4_eratt_read - read sli-4 error attention events 11861 * @phba: Pointer to HBA context. 11862 * 11863 * This function is called to read the SLI4 device error attention registers 11864 * for possible error attention events. The caller must hold the hostlock 11865 * with spin_lock_irq(). 11866 * 11867 * This function returns 1 when there is Error Attention in the Host Attention 11868 * Register and returns 0 otherwise. 11869 **/ 11870 static int 11871 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 11872 { 11873 uint32_t uerr_sta_hi, uerr_sta_lo; 11874 uint32_t if_type, portsmphr; 11875 struct lpfc_register portstat_reg; 11876 11877 /* 11878 * For now, use the SLI4 device internal unrecoverable error 11879 * registers for error attention. This can be changed later. 11880 */ 11881 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11882 switch (if_type) { 11883 case LPFC_SLI_INTF_IF_TYPE_0: 11884 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 11885 &uerr_sta_lo) || 11886 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 11887 &uerr_sta_hi)) { 11888 phba->work_hs |= UNPLUG_ERR; 11889 phba->work_ha |= HA_ERATT; 11890 phba->hba_flag |= HBA_ERATT_HANDLED; 11891 return 1; 11892 } 11893 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 11894 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 11895 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11896 "1423 HBA Unrecoverable error: " 11897 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 11898 "ue_mask_lo_reg=0x%x, " 11899 "ue_mask_hi_reg=0x%x\n", 11900 uerr_sta_lo, uerr_sta_hi, 11901 phba->sli4_hba.ue_mask_lo, 11902 phba->sli4_hba.ue_mask_hi); 11903 phba->work_status[0] = uerr_sta_lo; 11904 phba->work_status[1] = uerr_sta_hi; 11905 phba->work_ha |= HA_ERATT; 11906 phba->hba_flag |= HBA_ERATT_HANDLED; 11907 return 1; 11908 } 11909 break; 11910 case LPFC_SLI_INTF_IF_TYPE_2: 11911 case LPFC_SLI_INTF_IF_TYPE_6: 11912 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 11913 &portstat_reg.word0) || 11914 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 11915 &portsmphr)){ 11916 phba->work_hs |= UNPLUG_ERR; 11917 phba->work_ha |= HA_ERATT; 11918 phba->hba_flag |= HBA_ERATT_HANDLED; 11919 return 1; 11920 } 11921 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 11922 phba->work_status[0] = 11923 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 11924 phba->work_status[1] = 11925 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 11926 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11927 "2885 Port Status Event: " 11928 "port status reg 0x%x, " 11929 "port smphr reg 0x%x, " 11930 "error 1=0x%x, error 2=0x%x\n", 11931 portstat_reg.word0, 11932 portsmphr, 11933 phba->work_status[0], 11934 phba->work_status[1]); 11935 phba->work_ha |= HA_ERATT; 11936 phba->hba_flag |= HBA_ERATT_HANDLED; 11937 return 1; 11938 } 11939 break; 11940 case LPFC_SLI_INTF_IF_TYPE_1: 11941 default: 11942 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11943 "2886 HBA Error Attention on unsupported " 11944 "if type %d.", if_type); 11945 return 1; 11946 } 11947 11948 return 0; 11949 } 11950 11951 /** 11952 * lpfc_sli_check_eratt - check error attention events 11953 * @phba: Pointer to HBA context. 11954 * 11955 * This function is called from timer soft interrupt context to check HBA's 11956 * error attention register bit for error attention events. 11957 * 11958 * This function returns 1 when there is Error Attention in the Host Attention 11959 * Register and returns 0 otherwise. 11960 **/ 11961 int 11962 lpfc_sli_check_eratt(struct lpfc_hba *phba) 11963 { 11964 uint32_t ha_copy; 11965 11966 /* If somebody is waiting to handle an eratt, don't process it 11967 * here. The brdkill function will do this. 11968 */ 11969 if (phba->link_flag & LS_IGNORE_ERATT) 11970 return 0; 11971 11972 /* Check if interrupt handler handles this ERATT */ 11973 spin_lock_irq(&phba->hbalock); 11974 if (phba->hba_flag & HBA_ERATT_HANDLED) { 11975 /* Interrupt handler has handled ERATT */ 11976 spin_unlock_irq(&phba->hbalock); 11977 return 0; 11978 } 11979 11980 /* 11981 * If there is deferred error attention, do not check for error 11982 * attention 11983 */ 11984 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11985 spin_unlock_irq(&phba->hbalock); 11986 return 0; 11987 } 11988 11989 /* If PCI channel is offline, don't process it */ 11990 if (unlikely(pci_channel_offline(phba->pcidev))) { 11991 spin_unlock_irq(&phba->hbalock); 11992 return 0; 11993 } 11994 11995 switch (phba->sli_rev) { 11996 case LPFC_SLI_REV2: 11997 case LPFC_SLI_REV3: 11998 /* Read chip Host Attention (HA) register */ 11999 ha_copy = lpfc_sli_eratt_read(phba); 12000 break; 12001 case LPFC_SLI_REV4: 12002 /* Read device Uncoverable Error (UERR) registers */ 12003 ha_copy = lpfc_sli4_eratt_read(phba); 12004 break; 12005 default: 12006 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12007 "0299 Invalid SLI revision (%d)\n", 12008 phba->sli_rev); 12009 ha_copy = 0; 12010 break; 12011 } 12012 spin_unlock_irq(&phba->hbalock); 12013 12014 return ha_copy; 12015 } 12016 12017 /** 12018 * lpfc_intr_state_check - Check device state for interrupt handling 12019 * @phba: Pointer to HBA context. 12020 * 12021 * This inline routine checks whether a device or its PCI slot is in a state 12022 * that the interrupt should be handled. 12023 * 12024 * This function returns 0 if the device or the PCI slot is in a state that 12025 * interrupt should be handled, otherwise -EIO. 12026 */ 12027 static inline int 12028 lpfc_intr_state_check(struct lpfc_hba *phba) 12029 { 12030 /* If the pci channel is offline, ignore all the interrupts */ 12031 if (unlikely(pci_channel_offline(phba->pcidev))) 12032 return -EIO; 12033 12034 /* Update device level interrupt statistics */ 12035 phba->sli.slistat.sli_intr++; 12036 12037 /* Ignore all interrupts during initialization. */ 12038 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 12039 return -EIO; 12040 12041 return 0; 12042 } 12043 12044 /** 12045 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 12046 * @irq: Interrupt number. 12047 * @dev_id: The device context pointer. 12048 * 12049 * This function is directly called from the PCI layer as an interrupt 12050 * service routine when device with SLI-3 interface spec is enabled with 12051 * MSI-X multi-message interrupt mode and there are slow-path events in 12052 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 12053 * interrupt mode, this function is called as part of the device-level 12054 * interrupt handler. When the PCI slot is in error recovery or the HBA 12055 * is undergoing initialization, the interrupt handler will not process 12056 * the interrupt. The link attention and ELS ring attention events are 12057 * handled by the worker thread. The interrupt handler signals the worker 12058 * thread and returns for these events. This function is called without 12059 * any lock held. It gets the hbalock to access and update SLI data 12060 * structures. 12061 * 12062 * This function returns IRQ_HANDLED when interrupt is handled else it 12063 * returns IRQ_NONE. 12064 **/ 12065 irqreturn_t 12066 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 12067 { 12068 struct lpfc_hba *phba; 12069 uint32_t ha_copy, hc_copy; 12070 uint32_t work_ha_copy; 12071 unsigned long status; 12072 unsigned long iflag; 12073 uint32_t control; 12074 12075 MAILBOX_t *mbox, *pmbox; 12076 struct lpfc_vport *vport; 12077 struct lpfc_nodelist *ndlp; 12078 struct lpfc_dmabuf *mp; 12079 LPFC_MBOXQ_t *pmb; 12080 int rc; 12081 12082 /* 12083 * Get the driver's phba structure from the dev_id and 12084 * assume the HBA is not interrupting. 12085 */ 12086 phba = (struct lpfc_hba *)dev_id; 12087 12088 if (unlikely(!phba)) 12089 return IRQ_NONE; 12090 12091 /* 12092 * Stuff needs to be attented to when this function is invoked as an 12093 * individual interrupt handler in MSI-X multi-message interrupt mode 12094 */ 12095 if (phba->intr_type == MSIX) { 12096 /* Check device state for handling interrupt */ 12097 if (lpfc_intr_state_check(phba)) 12098 return IRQ_NONE; 12099 /* Need to read HA REG for slow-path events */ 12100 spin_lock_irqsave(&phba->hbalock, iflag); 12101 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12102 goto unplug_error; 12103 /* If somebody is waiting to handle an eratt don't process it 12104 * here. The brdkill function will do this. 12105 */ 12106 if (phba->link_flag & LS_IGNORE_ERATT) 12107 ha_copy &= ~HA_ERATT; 12108 /* Check the need for handling ERATT in interrupt handler */ 12109 if (ha_copy & HA_ERATT) { 12110 if (phba->hba_flag & HBA_ERATT_HANDLED) 12111 /* ERATT polling has handled ERATT */ 12112 ha_copy &= ~HA_ERATT; 12113 else 12114 /* Indicate interrupt handler handles ERATT */ 12115 phba->hba_flag |= HBA_ERATT_HANDLED; 12116 } 12117 12118 /* 12119 * If there is deferred error attention, do not check for any 12120 * interrupt. 12121 */ 12122 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12123 spin_unlock_irqrestore(&phba->hbalock, iflag); 12124 return IRQ_NONE; 12125 } 12126 12127 /* Clear up only attention source related to slow-path */ 12128 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 12129 goto unplug_error; 12130 12131 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 12132 HC_LAINT_ENA | HC_ERINT_ENA), 12133 phba->HCregaddr); 12134 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 12135 phba->HAregaddr); 12136 writel(hc_copy, phba->HCregaddr); 12137 readl(phba->HAregaddr); /* flush */ 12138 spin_unlock_irqrestore(&phba->hbalock, iflag); 12139 } else 12140 ha_copy = phba->ha_copy; 12141 12142 work_ha_copy = ha_copy & phba->work_ha_mask; 12143 12144 if (work_ha_copy) { 12145 if (work_ha_copy & HA_LATT) { 12146 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 12147 /* 12148 * Turn off Link Attention interrupts 12149 * until CLEAR_LA done 12150 */ 12151 spin_lock_irqsave(&phba->hbalock, iflag); 12152 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 12153 if (lpfc_readl(phba->HCregaddr, &control)) 12154 goto unplug_error; 12155 control &= ~HC_LAINT_ENA; 12156 writel(control, phba->HCregaddr); 12157 readl(phba->HCregaddr); /* flush */ 12158 spin_unlock_irqrestore(&phba->hbalock, iflag); 12159 } 12160 else 12161 work_ha_copy &= ~HA_LATT; 12162 } 12163 12164 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 12165 /* 12166 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 12167 * the only slow ring. 12168 */ 12169 status = (work_ha_copy & 12170 (HA_RXMASK << (4*LPFC_ELS_RING))); 12171 status >>= (4*LPFC_ELS_RING); 12172 if (status & HA_RXMASK) { 12173 spin_lock_irqsave(&phba->hbalock, iflag); 12174 if (lpfc_readl(phba->HCregaddr, &control)) 12175 goto unplug_error; 12176 12177 lpfc_debugfs_slow_ring_trc(phba, 12178 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 12179 control, status, 12180 (uint32_t)phba->sli.slistat.sli_intr); 12181 12182 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 12183 lpfc_debugfs_slow_ring_trc(phba, 12184 "ISR Disable ring:" 12185 "pwork:x%x hawork:x%x wait:x%x", 12186 phba->work_ha, work_ha_copy, 12187 (uint32_t)((unsigned long) 12188 &phba->work_waitq)); 12189 12190 control &= 12191 ~(HC_R0INT_ENA << LPFC_ELS_RING); 12192 writel(control, phba->HCregaddr); 12193 readl(phba->HCregaddr); /* flush */ 12194 } 12195 else { 12196 lpfc_debugfs_slow_ring_trc(phba, 12197 "ISR slow ring: pwork:" 12198 "x%x hawork:x%x wait:x%x", 12199 phba->work_ha, work_ha_copy, 12200 (uint32_t)((unsigned long) 12201 &phba->work_waitq)); 12202 } 12203 spin_unlock_irqrestore(&phba->hbalock, iflag); 12204 } 12205 } 12206 spin_lock_irqsave(&phba->hbalock, iflag); 12207 if (work_ha_copy & HA_ERATT) { 12208 if (lpfc_sli_read_hs(phba)) 12209 goto unplug_error; 12210 /* 12211 * Check if there is a deferred error condition 12212 * is active 12213 */ 12214 if ((HS_FFER1 & phba->work_hs) && 12215 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12216 HS_FFER6 | HS_FFER7 | HS_FFER8) & 12217 phba->work_hs)) { 12218 phba->hba_flag |= DEFER_ERATT; 12219 /* Clear all interrupt enable conditions */ 12220 writel(0, phba->HCregaddr); 12221 readl(phba->HCregaddr); 12222 } 12223 } 12224 12225 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 12226 pmb = phba->sli.mbox_active; 12227 pmbox = &pmb->u.mb; 12228 mbox = phba->mbox; 12229 vport = pmb->vport; 12230 12231 /* First check out the status word */ 12232 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 12233 if (pmbox->mbxOwner != OWN_HOST) { 12234 spin_unlock_irqrestore(&phba->hbalock, iflag); 12235 /* 12236 * Stray Mailbox Interrupt, mbxCommand <cmd> 12237 * mbxStatus <status> 12238 */ 12239 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12240 LOG_SLI, 12241 "(%d):0304 Stray Mailbox " 12242 "Interrupt mbxCommand x%x " 12243 "mbxStatus x%x\n", 12244 (vport ? vport->vpi : 0), 12245 pmbox->mbxCommand, 12246 pmbox->mbxStatus); 12247 /* clear mailbox attention bit */ 12248 work_ha_copy &= ~HA_MBATT; 12249 } else { 12250 phba->sli.mbox_active = NULL; 12251 spin_unlock_irqrestore(&phba->hbalock, iflag); 12252 phba->last_completion_time = jiffies; 12253 del_timer(&phba->sli.mbox_tmo); 12254 if (pmb->mbox_cmpl) { 12255 lpfc_sli_pcimem_bcopy(mbox, pmbox, 12256 MAILBOX_CMD_SIZE); 12257 if (pmb->out_ext_byte_len && 12258 pmb->context2) 12259 lpfc_sli_pcimem_bcopy( 12260 phba->mbox_ext, 12261 pmb->context2, 12262 pmb->out_ext_byte_len); 12263 } 12264 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12265 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12266 12267 lpfc_debugfs_disc_trc(vport, 12268 LPFC_DISC_TRC_MBOX_VPORT, 12269 "MBOX dflt rpi: : " 12270 "status:x%x rpi:x%x", 12271 (uint32_t)pmbox->mbxStatus, 12272 pmbox->un.varWords[0], 0); 12273 12274 if (!pmbox->mbxStatus) { 12275 mp = (struct lpfc_dmabuf *) 12276 (pmb->context1); 12277 ndlp = (struct lpfc_nodelist *) 12278 pmb->context2; 12279 12280 /* Reg_LOGIN of dflt RPI was 12281 * successful. new lets get 12282 * rid of the RPI using the 12283 * same mbox buffer. 12284 */ 12285 lpfc_unreg_login(phba, 12286 vport->vpi, 12287 pmbox->un.varWords[0], 12288 pmb); 12289 pmb->mbox_cmpl = 12290 lpfc_mbx_cmpl_dflt_rpi; 12291 pmb->context1 = mp; 12292 pmb->context2 = ndlp; 12293 pmb->vport = vport; 12294 rc = lpfc_sli_issue_mbox(phba, 12295 pmb, 12296 MBX_NOWAIT); 12297 if (rc != MBX_BUSY) 12298 lpfc_printf_log(phba, 12299 KERN_ERR, 12300 LOG_MBOX | LOG_SLI, 12301 "0350 rc should have" 12302 "been MBX_BUSY\n"); 12303 if (rc != MBX_NOT_FINISHED) 12304 goto send_current_mbox; 12305 } 12306 } 12307 spin_lock_irqsave( 12308 &phba->pport->work_port_lock, 12309 iflag); 12310 phba->pport->work_port_events &= 12311 ~WORKER_MBOX_TMO; 12312 spin_unlock_irqrestore( 12313 &phba->pport->work_port_lock, 12314 iflag); 12315 lpfc_mbox_cmpl_put(phba, pmb); 12316 } 12317 } else 12318 spin_unlock_irqrestore(&phba->hbalock, iflag); 12319 12320 if ((work_ha_copy & HA_MBATT) && 12321 (phba->sli.mbox_active == NULL)) { 12322 send_current_mbox: 12323 /* Process next mailbox command if there is one */ 12324 do { 12325 rc = lpfc_sli_issue_mbox(phba, NULL, 12326 MBX_NOWAIT); 12327 } while (rc == MBX_NOT_FINISHED); 12328 if (rc != MBX_SUCCESS) 12329 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12330 LOG_SLI, "0349 rc should be " 12331 "MBX_SUCCESS\n"); 12332 } 12333 12334 spin_lock_irqsave(&phba->hbalock, iflag); 12335 phba->work_ha |= work_ha_copy; 12336 spin_unlock_irqrestore(&phba->hbalock, iflag); 12337 lpfc_worker_wake_up(phba); 12338 } 12339 return IRQ_HANDLED; 12340 unplug_error: 12341 spin_unlock_irqrestore(&phba->hbalock, iflag); 12342 return IRQ_HANDLED; 12343 12344 } /* lpfc_sli_sp_intr_handler */ 12345 12346 /** 12347 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 12348 * @irq: Interrupt number. 12349 * @dev_id: The device context pointer. 12350 * 12351 * This function is directly called from the PCI layer as an interrupt 12352 * service routine when device with SLI-3 interface spec is enabled with 12353 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 12354 * ring event in the HBA. However, when the device is enabled with either 12355 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12356 * device-level interrupt handler. When the PCI slot is in error recovery 12357 * or the HBA is undergoing initialization, the interrupt handler will not 12358 * process the interrupt. The SCSI FCP fast-path ring event are handled in 12359 * the intrrupt context. This function is called without any lock held. 12360 * It gets the hbalock to access and update SLI data structures. 12361 * 12362 * This function returns IRQ_HANDLED when interrupt is handled else it 12363 * returns IRQ_NONE. 12364 **/ 12365 irqreturn_t 12366 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 12367 { 12368 struct lpfc_hba *phba; 12369 uint32_t ha_copy; 12370 unsigned long status; 12371 unsigned long iflag; 12372 struct lpfc_sli_ring *pring; 12373 12374 /* Get the driver's phba structure from the dev_id and 12375 * assume the HBA is not interrupting. 12376 */ 12377 phba = (struct lpfc_hba *) dev_id; 12378 12379 if (unlikely(!phba)) 12380 return IRQ_NONE; 12381 12382 /* 12383 * Stuff needs to be attented to when this function is invoked as an 12384 * individual interrupt handler in MSI-X multi-message interrupt mode 12385 */ 12386 if (phba->intr_type == MSIX) { 12387 /* Check device state for handling interrupt */ 12388 if (lpfc_intr_state_check(phba)) 12389 return IRQ_NONE; 12390 /* Need to read HA REG for FCP ring and other ring events */ 12391 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12392 return IRQ_HANDLED; 12393 /* Clear up only attention source related to fast-path */ 12394 spin_lock_irqsave(&phba->hbalock, iflag); 12395 /* 12396 * If there is deferred error attention, do not check for 12397 * any interrupt. 12398 */ 12399 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12400 spin_unlock_irqrestore(&phba->hbalock, iflag); 12401 return IRQ_NONE; 12402 } 12403 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 12404 phba->HAregaddr); 12405 readl(phba->HAregaddr); /* flush */ 12406 spin_unlock_irqrestore(&phba->hbalock, iflag); 12407 } else 12408 ha_copy = phba->ha_copy; 12409 12410 /* 12411 * Process all events on FCP ring. Take the optimized path for FCP IO. 12412 */ 12413 ha_copy &= ~(phba->work_ha_mask); 12414 12415 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12416 status >>= (4*LPFC_FCP_RING); 12417 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12418 if (status & HA_RXMASK) 12419 lpfc_sli_handle_fast_ring_event(phba, pring, status); 12420 12421 if (phba->cfg_multi_ring_support == 2) { 12422 /* 12423 * Process all events on extra ring. Take the optimized path 12424 * for extra ring IO. 12425 */ 12426 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12427 status >>= (4*LPFC_EXTRA_RING); 12428 if (status & HA_RXMASK) { 12429 lpfc_sli_handle_fast_ring_event(phba, 12430 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 12431 status); 12432 } 12433 } 12434 return IRQ_HANDLED; 12435 } /* lpfc_sli_fp_intr_handler */ 12436 12437 /** 12438 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 12439 * @irq: Interrupt number. 12440 * @dev_id: The device context pointer. 12441 * 12442 * This function is the HBA device-level interrupt handler to device with 12443 * SLI-3 interface spec, called from the PCI layer when either MSI or 12444 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 12445 * requires driver attention. This function invokes the slow-path interrupt 12446 * attention handling function and fast-path interrupt attention handling 12447 * function in turn to process the relevant HBA attention events. This 12448 * function is called without any lock held. It gets the hbalock to access 12449 * and update SLI data structures. 12450 * 12451 * This function returns IRQ_HANDLED when interrupt is handled, else it 12452 * returns IRQ_NONE. 12453 **/ 12454 irqreturn_t 12455 lpfc_sli_intr_handler(int irq, void *dev_id) 12456 { 12457 struct lpfc_hba *phba; 12458 irqreturn_t sp_irq_rc, fp_irq_rc; 12459 unsigned long status1, status2; 12460 uint32_t hc_copy; 12461 12462 /* 12463 * Get the driver's phba structure from the dev_id and 12464 * assume the HBA is not interrupting. 12465 */ 12466 phba = (struct lpfc_hba *) dev_id; 12467 12468 if (unlikely(!phba)) 12469 return IRQ_NONE; 12470 12471 /* Check device state for handling interrupt */ 12472 if (lpfc_intr_state_check(phba)) 12473 return IRQ_NONE; 12474 12475 spin_lock(&phba->hbalock); 12476 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 12477 spin_unlock(&phba->hbalock); 12478 return IRQ_HANDLED; 12479 } 12480 12481 if (unlikely(!phba->ha_copy)) { 12482 spin_unlock(&phba->hbalock); 12483 return IRQ_NONE; 12484 } else if (phba->ha_copy & HA_ERATT) { 12485 if (phba->hba_flag & HBA_ERATT_HANDLED) 12486 /* ERATT polling has handled ERATT */ 12487 phba->ha_copy &= ~HA_ERATT; 12488 else 12489 /* Indicate interrupt handler handles ERATT */ 12490 phba->hba_flag |= HBA_ERATT_HANDLED; 12491 } 12492 12493 /* 12494 * If there is deferred error attention, do not check for any interrupt. 12495 */ 12496 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12497 spin_unlock(&phba->hbalock); 12498 return IRQ_NONE; 12499 } 12500 12501 /* Clear attention sources except link and error attentions */ 12502 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 12503 spin_unlock(&phba->hbalock); 12504 return IRQ_HANDLED; 12505 } 12506 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 12507 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 12508 phba->HCregaddr); 12509 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 12510 writel(hc_copy, phba->HCregaddr); 12511 readl(phba->HAregaddr); /* flush */ 12512 spin_unlock(&phba->hbalock); 12513 12514 /* 12515 * Invokes slow-path host attention interrupt handling as appropriate. 12516 */ 12517 12518 /* status of events with mailbox and link attention */ 12519 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 12520 12521 /* status of events with ELS ring */ 12522 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 12523 status2 >>= (4*LPFC_ELS_RING); 12524 12525 if (status1 || (status2 & HA_RXMASK)) 12526 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 12527 else 12528 sp_irq_rc = IRQ_NONE; 12529 12530 /* 12531 * Invoke fast-path host attention interrupt handling as appropriate. 12532 */ 12533 12534 /* status of events with FCP ring */ 12535 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12536 status1 >>= (4*LPFC_FCP_RING); 12537 12538 /* status of events with extra ring */ 12539 if (phba->cfg_multi_ring_support == 2) { 12540 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12541 status2 >>= (4*LPFC_EXTRA_RING); 12542 } else 12543 status2 = 0; 12544 12545 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 12546 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 12547 else 12548 fp_irq_rc = IRQ_NONE; 12549 12550 /* Return device-level interrupt handling status */ 12551 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 12552 } /* lpfc_sli_intr_handler */ 12553 12554 /** 12555 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event 12556 * @phba: pointer to lpfc hba data structure. 12557 * 12558 * This routine is invoked by the worker thread to process all the pending 12559 * SLI4 FCP abort XRI events. 12560 **/ 12561 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba) 12562 { 12563 struct lpfc_cq_event *cq_event; 12564 12565 /* First, declare the fcp xri abort event has been handled */ 12566 spin_lock_irq(&phba->hbalock); 12567 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT; 12568 spin_unlock_irq(&phba->hbalock); 12569 /* Now, handle all the fcp xri abort events */ 12570 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) { 12571 /* Get the first event from the head of the event queue */ 12572 spin_lock_irq(&phba->hbalock); 12573 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 12574 cq_event, struct lpfc_cq_event, list); 12575 spin_unlock_irq(&phba->hbalock); 12576 /* Notify aborted XRI for FCP work queue */ 12577 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12578 /* Free the event processed back to the free pool */ 12579 lpfc_sli4_cq_event_release(phba, cq_event); 12580 } 12581 } 12582 12583 /** 12584 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 12585 * @phba: pointer to lpfc hba data structure. 12586 * 12587 * This routine is invoked by the worker thread to process all the pending 12588 * SLI4 els abort xri events. 12589 **/ 12590 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 12591 { 12592 struct lpfc_cq_event *cq_event; 12593 12594 /* First, declare the els xri abort event has been handled */ 12595 spin_lock_irq(&phba->hbalock); 12596 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 12597 spin_unlock_irq(&phba->hbalock); 12598 /* Now, handle all the els xri abort events */ 12599 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 12600 /* Get the first event from the head of the event queue */ 12601 spin_lock_irq(&phba->hbalock); 12602 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 12603 cq_event, struct lpfc_cq_event, list); 12604 spin_unlock_irq(&phba->hbalock); 12605 /* Notify aborted XRI for ELS work queue */ 12606 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12607 /* Free the event processed back to the free pool */ 12608 lpfc_sli4_cq_event_release(phba, cq_event); 12609 } 12610 } 12611 12612 /** 12613 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 12614 * @phba: pointer to lpfc hba data structure 12615 * @pIocbIn: pointer to the rspiocbq 12616 * @pIocbOut: pointer to the cmdiocbq 12617 * @wcqe: pointer to the complete wcqe 12618 * 12619 * This routine transfers the fields of a command iocbq to a response iocbq 12620 * by copying all the IOCB fields from command iocbq and transferring the 12621 * completion status information from the complete wcqe. 12622 **/ 12623 static void 12624 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 12625 struct lpfc_iocbq *pIocbIn, 12626 struct lpfc_iocbq *pIocbOut, 12627 struct lpfc_wcqe_complete *wcqe) 12628 { 12629 int numBdes, i; 12630 unsigned long iflags; 12631 uint32_t status, max_response; 12632 struct lpfc_dmabuf *dmabuf; 12633 struct ulp_bde64 *bpl, bde; 12634 size_t offset = offsetof(struct lpfc_iocbq, iocb); 12635 12636 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 12637 sizeof(struct lpfc_iocbq) - offset); 12638 /* Map WCQE parameters into irspiocb parameters */ 12639 status = bf_get(lpfc_wcqe_c_status, wcqe); 12640 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 12641 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 12642 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 12643 pIocbIn->iocb.un.fcpi.fcpi_parm = 12644 pIocbOut->iocb.un.fcpi.fcpi_parm - 12645 wcqe->total_data_placed; 12646 else 12647 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12648 else { 12649 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12650 switch (pIocbOut->iocb.ulpCommand) { 12651 case CMD_ELS_REQUEST64_CR: 12652 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12653 bpl = (struct ulp_bde64 *)dmabuf->virt; 12654 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 12655 max_response = bde.tus.f.bdeSize; 12656 break; 12657 case CMD_GEN_REQUEST64_CR: 12658 max_response = 0; 12659 if (!pIocbOut->context3) 12660 break; 12661 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 12662 sizeof(struct ulp_bde64); 12663 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12664 bpl = (struct ulp_bde64 *)dmabuf->virt; 12665 for (i = 0; i < numBdes; i++) { 12666 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 12667 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 12668 max_response += bde.tus.f.bdeSize; 12669 } 12670 break; 12671 default: 12672 max_response = wcqe->total_data_placed; 12673 break; 12674 } 12675 if (max_response < wcqe->total_data_placed) 12676 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 12677 else 12678 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 12679 wcqe->total_data_placed; 12680 } 12681 12682 /* Convert BG errors for completion status */ 12683 if (status == CQE_STATUS_DI_ERROR) { 12684 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 12685 12686 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 12687 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 12688 else 12689 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 12690 12691 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 12692 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 12693 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12694 BGS_GUARD_ERR_MASK; 12695 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 12696 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12697 BGS_APPTAG_ERR_MASK; 12698 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 12699 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12700 BGS_REFTAG_ERR_MASK; 12701 12702 /* Check to see if there was any good data before the error */ 12703 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 12704 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12705 BGS_HI_WATER_MARK_PRESENT_MASK; 12706 pIocbIn->iocb.unsli3.sli3_bg.bghm = 12707 wcqe->total_data_placed; 12708 } 12709 12710 /* 12711 * Set ALL the error bits to indicate we don't know what 12712 * type of error it is. 12713 */ 12714 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 12715 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12716 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 12717 BGS_GUARD_ERR_MASK); 12718 } 12719 12720 /* Pick up HBA exchange busy condition */ 12721 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 12722 spin_lock_irqsave(&phba->hbalock, iflags); 12723 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 12724 spin_unlock_irqrestore(&phba->hbalock, iflags); 12725 } 12726 } 12727 12728 /** 12729 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 12730 * @phba: Pointer to HBA context object. 12731 * @wcqe: Pointer to work-queue completion queue entry. 12732 * 12733 * This routine handles an ELS work-queue completion event and construct 12734 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 12735 * discovery engine to handle. 12736 * 12737 * Return: Pointer to the receive IOCBQ, NULL otherwise. 12738 **/ 12739 static struct lpfc_iocbq * 12740 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 12741 struct lpfc_iocbq *irspiocbq) 12742 { 12743 struct lpfc_sli_ring *pring; 12744 struct lpfc_iocbq *cmdiocbq; 12745 struct lpfc_wcqe_complete *wcqe; 12746 unsigned long iflags; 12747 12748 pring = lpfc_phba_elsring(phba); 12749 if (unlikely(!pring)) 12750 return NULL; 12751 12752 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 12753 spin_lock_irqsave(&pring->ring_lock, iflags); 12754 pring->stats.iocb_event++; 12755 /* Look up the ELS command IOCB and create pseudo response IOCB */ 12756 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 12757 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12758 if (unlikely(!cmdiocbq)) { 12759 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12760 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12761 "0386 ELS complete with no corresponding " 12762 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 12763 wcqe->word0, wcqe->total_data_placed, 12764 wcqe->parameter, wcqe->word3); 12765 lpfc_sli_release_iocbq(phba, irspiocbq); 12766 return NULL; 12767 } 12768 12769 /* Put the iocb back on the txcmplq */ 12770 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 12771 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12772 12773 /* Fake the irspiocbq and copy necessary response information */ 12774 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 12775 12776 return irspiocbq; 12777 } 12778 12779 inline struct lpfc_cq_event * 12780 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 12781 { 12782 struct lpfc_cq_event *cq_event; 12783 12784 /* Allocate a new internal CQ_EVENT entry */ 12785 cq_event = lpfc_sli4_cq_event_alloc(phba); 12786 if (!cq_event) { 12787 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12788 "0602 Failed to alloc CQ_EVENT entry\n"); 12789 return NULL; 12790 } 12791 12792 /* Move the CQE into the event */ 12793 memcpy(&cq_event->cqe, entry, size); 12794 return cq_event; 12795 } 12796 12797 /** 12798 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event 12799 * @phba: Pointer to HBA context object. 12800 * @cqe: Pointer to mailbox completion queue entry. 12801 * 12802 * This routine process a mailbox completion queue entry with asynchrous 12803 * event. 12804 * 12805 * Return: true if work posted to worker thread, otherwise false. 12806 **/ 12807 static bool 12808 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 12809 { 12810 struct lpfc_cq_event *cq_event; 12811 unsigned long iflags; 12812 12813 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12814 "0392 Async Event: word0:x%x, word1:x%x, " 12815 "word2:x%x, word3:x%x\n", mcqe->word0, 12816 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 12817 12818 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 12819 if (!cq_event) 12820 return false; 12821 spin_lock_irqsave(&phba->hbalock, iflags); 12822 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 12823 /* Set the async event flag */ 12824 phba->hba_flag |= ASYNC_EVENT; 12825 spin_unlock_irqrestore(&phba->hbalock, iflags); 12826 12827 return true; 12828 } 12829 12830 /** 12831 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 12832 * @phba: Pointer to HBA context object. 12833 * @cqe: Pointer to mailbox completion queue entry. 12834 * 12835 * This routine process a mailbox completion queue entry with mailbox 12836 * completion event. 12837 * 12838 * Return: true if work posted to worker thread, otherwise false. 12839 **/ 12840 static bool 12841 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 12842 { 12843 uint32_t mcqe_status; 12844 MAILBOX_t *mbox, *pmbox; 12845 struct lpfc_mqe *mqe; 12846 struct lpfc_vport *vport; 12847 struct lpfc_nodelist *ndlp; 12848 struct lpfc_dmabuf *mp; 12849 unsigned long iflags; 12850 LPFC_MBOXQ_t *pmb; 12851 bool workposted = false; 12852 int rc; 12853 12854 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 12855 if (!bf_get(lpfc_trailer_completed, mcqe)) 12856 goto out_no_mqe_complete; 12857 12858 /* Get the reference to the active mbox command */ 12859 spin_lock_irqsave(&phba->hbalock, iflags); 12860 pmb = phba->sli.mbox_active; 12861 if (unlikely(!pmb)) { 12862 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 12863 "1832 No pending MBOX command to handle\n"); 12864 spin_unlock_irqrestore(&phba->hbalock, iflags); 12865 goto out_no_mqe_complete; 12866 } 12867 spin_unlock_irqrestore(&phba->hbalock, iflags); 12868 mqe = &pmb->u.mqe; 12869 pmbox = (MAILBOX_t *)&pmb->u.mqe; 12870 mbox = phba->mbox; 12871 vport = pmb->vport; 12872 12873 /* Reset heartbeat timer */ 12874 phba->last_completion_time = jiffies; 12875 del_timer(&phba->sli.mbox_tmo); 12876 12877 /* Move mbox data to caller's mailbox region, do endian swapping */ 12878 if (pmb->mbox_cmpl && mbox) 12879 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 12880 12881 /* 12882 * For mcqe errors, conditionally move a modified error code to 12883 * the mbox so that the error will not be missed. 12884 */ 12885 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 12886 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 12887 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 12888 bf_set(lpfc_mqe_status, mqe, 12889 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 12890 } 12891 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12892 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12893 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 12894 "MBOX dflt rpi: status:x%x rpi:x%x", 12895 mcqe_status, 12896 pmbox->un.varWords[0], 0); 12897 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 12898 mp = (struct lpfc_dmabuf *)(pmb->context1); 12899 ndlp = (struct lpfc_nodelist *)pmb->context2; 12900 /* Reg_LOGIN of dflt RPI was successful. Now lets get 12901 * RID of the PPI using the same mbox buffer. 12902 */ 12903 lpfc_unreg_login(phba, vport->vpi, 12904 pmbox->un.varWords[0], pmb); 12905 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 12906 pmb->context1 = mp; 12907 pmb->context2 = ndlp; 12908 pmb->vport = vport; 12909 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 12910 if (rc != MBX_BUSY) 12911 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12912 LOG_SLI, "0385 rc should " 12913 "have been MBX_BUSY\n"); 12914 if (rc != MBX_NOT_FINISHED) 12915 goto send_current_mbox; 12916 } 12917 } 12918 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 12919 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12920 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 12921 12922 /* There is mailbox completion work to do */ 12923 spin_lock_irqsave(&phba->hbalock, iflags); 12924 __lpfc_mbox_cmpl_put(phba, pmb); 12925 phba->work_ha |= HA_MBATT; 12926 spin_unlock_irqrestore(&phba->hbalock, iflags); 12927 workposted = true; 12928 12929 send_current_mbox: 12930 spin_lock_irqsave(&phba->hbalock, iflags); 12931 /* Release the mailbox command posting token */ 12932 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 12933 /* Setting active mailbox pointer need to be in sync to flag clear */ 12934 phba->sli.mbox_active = NULL; 12935 spin_unlock_irqrestore(&phba->hbalock, iflags); 12936 /* Wake up worker thread to post the next pending mailbox command */ 12937 lpfc_worker_wake_up(phba); 12938 out_no_mqe_complete: 12939 if (bf_get(lpfc_trailer_consumed, mcqe)) 12940 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 12941 return workposted; 12942 } 12943 12944 /** 12945 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 12946 * @phba: Pointer to HBA context object. 12947 * @cqe: Pointer to mailbox completion queue entry. 12948 * 12949 * This routine process a mailbox completion queue entry, it invokes the 12950 * proper mailbox complete handling or asynchrous event handling routine 12951 * according to the MCQE's async bit. 12952 * 12953 * Return: true if work posted to worker thread, otherwise false. 12954 **/ 12955 static bool 12956 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe) 12957 { 12958 struct lpfc_mcqe mcqe; 12959 bool workposted; 12960 12961 /* Copy the mailbox MCQE and convert endian order as needed */ 12962 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 12963 12964 /* Invoke the proper event handling routine */ 12965 if (!bf_get(lpfc_trailer_async, &mcqe)) 12966 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 12967 else 12968 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 12969 return workposted; 12970 } 12971 12972 /** 12973 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 12974 * @phba: Pointer to HBA context object. 12975 * @cq: Pointer to associated CQ 12976 * @wcqe: Pointer to work-queue completion queue entry. 12977 * 12978 * This routine handles an ELS work-queue completion event. 12979 * 12980 * Return: true if work posted to worker thread, otherwise false. 12981 **/ 12982 static bool 12983 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12984 struct lpfc_wcqe_complete *wcqe) 12985 { 12986 struct lpfc_iocbq *irspiocbq; 12987 unsigned long iflags; 12988 struct lpfc_sli_ring *pring = cq->pring; 12989 int txq_cnt = 0; 12990 int txcmplq_cnt = 0; 12991 int fcp_txcmplq_cnt = 0; 12992 12993 /* Check for response status */ 12994 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 12995 /* Log the error status */ 12996 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12997 "0357 ELS CQE error: status=x%x: " 12998 "CQE: %08x %08x %08x %08x\n", 12999 bf_get(lpfc_wcqe_c_status, wcqe), 13000 wcqe->word0, wcqe->total_data_placed, 13001 wcqe->parameter, wcqe->word3); 13002 } 13003 13004 /* Get an irspiocbq for later ELS response processing use */ 13005 irspiocbq = lpfc_sli_get_iocbq(phba); 13006 if (!irspiocbq) { 13007 if (!list_empty(&pring->txq)) 13008 txq_cnt++; 13009 if (!list_empty(&pring->txcmplq)) 13010 txcmplq_cnt++; 13011 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13012 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 13013 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n", 13014 txq_cnt, phba->iocb_cnt, 13015 fcp_txcmplq_cnt, 13016 txcmplq_cnt); 13017 return false; 13018 } 13019 13020 /* Save off the slow-path queue event for work thread to process */ 13021 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 13022 spin_lock_irqsave(&phba->hbalock, iflags); 13023 list_add_tail(&irspiocbq->cq_event.list, 13024 &phba->sli4_hba.sp_queue_event); 13025 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13026 spin_unlock_irqrestore(&phba->hbalock, iflags); 13027 13028 return true; 13029 } 13030 13031 /** 13032 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 13033 * @phba: Pointer to HBA context object. 13034 * @wcqe: Pointer to work-queue completion queue entry. 13035 * 13036 * This routine handles slow-path WQ entry consumed event by invoking the 13037 * proper WQ release routine to the slow-path WQ. 13038 **/ 13039 static void 13040 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 13041 struct lpfc_wcqe_release *wcqe) 13042 { 13043 /* sanity check on queue memory */ 13044 if (unlikely(!phba->sli4_hba.els_wq)) 13045 return; 13046 /* Check for the slow-path ELS work queue */ 13047 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 13048 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 13049 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13050 else 13051 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13052 "2579 Slow-path wqe consume event carries " 13053 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 13054 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 13055 phba->sli4_hba.els_wq->queue_id); 13056 } 13057 13058 /** 13059 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 13060 * @phba: Pointer to HBA context object. 13061 * @cq: Pointer to a WQ completion queue. 13062 * @wcqe: Pointer to work-queue completion queue entry. 13063 * 13064 * This routine handles an XRI abort event. 13065 * 13066 * Return: true if work posted to worker thread, otherwise false. 13067 **/ 13068 static bool 13069 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 13070 struct lpfc_queue *cq, 13071 struct sli4_wcqe_xri_aborted *wcqe) 13072 { 13073 bool workposted = false; 13074 struct lpfc_cq_event *cq_event; 13075 unsigned long iflags; 13076 13077 switch (cq->subtype) { 13078 case LPFC_FCP: 13079 cq_event = lpfc_cq_event_setup( 13080 phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 13081 if (!cq_event) 13082 return false; 13083 spin_lock_irqsave(&phba->hbalock, iflags); 13084 list_add_tail(&cq_event->list, 13085 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 13086 /* Set the fcp xri abort event flag */ 13087 phba->hba_flag |= FCP_XRI_ABORT_EVENT; 13088 spin_unlock_irqrestore(&phba->hbalock, iflags); 13089 workposted = true; 13090 break; 13091 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 13092 case LPFC_ELS: 13093 cq_event = lpfc_cq_event_setup( 13094 phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 13095 if (!cq_event) 13096 return false; 13097 spin_lock_irqsave(&phba->hbalock, iflags); 13098 list_add_tail(&cq_event->list, 13099 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 13100 /* Set the els xri abort event flag */ 13101 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 13102 spin_unlock_irqrestore(&phba->hbalock, iflags); 13103 workposted = true; 13104 break; 13105 case LPFC_NVME: 13106 /* Notify aborted XRI for NVME work queue */ 13107 if (phba->nvmet_support) 13108 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 13109 else 13110 lpfc_sli4_nvme_xri_aborted(phba, wcqe); 13111 13112 workposted = false; 13113 break; 13114 default: 13115 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13116 "0603 Invalid CQ subtype %d: " 13117 "%08x %08x %08x %08x\n", 13118 cq->subtype, wcqe->word0, wcqe->parameter, 13119 wcqe->word2, wcqe->word3); 13120 workposted = false; 13121 break; 13122 } 13123 return workposted; 13124 } 13125 13126 /** 13127 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 13128 * @phba: Pointer to HBA context object. 13129 * @rcqe: Pointer to receive-queue completion queue entry. 13130 * 13131 * This routine process a receive-queue completion queue entry. 13132 * 13133 * Return: true if work posted to worker thread, otherwise false. 13134 **/ 13135 static bool 13136 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 13137 { 13138 bool workposted = false; 13139 struct fc_frame_header *fc_hdr; 13140 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 13141 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 13142 struct lpfc_nvmet_tgtport *tgtp; 13143 struct hbq_dmabuf *dma_buf; 13144 uint32_t status, rq_id; 13145 unsigned long iflags; 13146 13147 /* sanity check on queue memory */ 13148 if (unlikely(!hrq) || unlikely(!drq)) 13149 return workposted; 13150 13151 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13152 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13153 else 13154 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13155 if (rq_id != hrq->queue_id) 13156 goto out; 13157 13158 status = bf_get(lpfc_rcqe_status, rcqe); 13159 switch (status) { 13160 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13161 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13162 "2537 Receive Frame Truncated!!\n"); 13163 case FC_STATUS_RQ_SUCCESS: 13164 spin_lock_irqsave(&phba->hbalock, iflags); 13165 lpfc_sli4_rq_release(hrq, drq); 13166 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 13167 if (!dma_buf) { 13168 hrq->RQ_no_buf_found++; 13169 spin_unlock_irqrestore(&phba->hbalock, iflags); 13170 goto out; 13171 } 13172 hrq->RQ_rcv_buf++; 13173 hrq->RQ_buf_posted--; 13174 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 13175 13176 /* If a NVME LS event (type 0x28), treat it as Fast path */ 13177 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13178 13179 /* save off the frame for the word thread to process */ 13180 list_add_tail(&dma_buf->cq_event.list, 13181 &phba->sli4_hba.sp_queue_event); 13182 /* Frame received */ 13183 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13184 spin_unlock_irqrestore(&phba->hbalock, iflags); 13185 workposted = true; 13186 break; 13187 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13188 if (phba->nvmet_support) { 13189 tgtp = phba->targetport->private; 13190 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 13191 "6402 RQE Error x%x, posted %d err_cnt " 13192 "%d: %x %x %x\n", 13193 status, hrq->RQ_buf_posted, 13194 hrq->RQ_no_posted_buf, 13195 atomic_read(&tgtp->rcv_fcp_cmd_in), 13196 atomic_read(&tgtp->rcv_fcp_cmd_out), 13197 atomic_read(&tgtp->xmt_fcp_release)); 13198 } 13199 /* fallthrough */ 13200 13201 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13202 hrq->RQ_no_posted_buf++; 13203 /* Post more buffers if possible */ 13204 spin_lock_irqsave(&phba->hbalock, iflags); 13205 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 13206 spin_unlock_irqrestore(&phba->hbalock, iflags); 13207 workposted = true; 13208 break; 13209 } 13210 out: 13211 return workposted; 13212 } 13213 13214 /** 13215 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 13216 * @phba: Pointer to HBA context object. 13217 * @cq: Pointer to the completion queue. 13218 * @wcqe: Pointer to a completion queue entry. 13219 * 13220 * This routine process a slow-path work-queue or receive queue completion queue 13221 * entry. 13222 * 13223 * Return: true if work posted to worker thread, otherwise false. 13224 **/ 13225 static bool 13226 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13227 struct lpfc_cqe *cqe) 13228 { 13229 struct lpfc_cqe cqevt; 13230 bool workposted = false; 13231 13232 /* Copy the work queue CQE and convert endian order if needed */ 13233 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 13234 13235 /* Check and process for different type of WCQE and dispatch */ 13236 switch (bf_get(lpfc_cqe_code, &cqevt)) { 13237 case CQE_CODE_COMPL_WQE: 13238 /* Process the WQ/RQ complete event */ 13239 phba->last_completion_time = jiffies; 13240 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 13241 (struct lpfc_wcqe_complete *)&cqevt); 13242 break; 13243 case CQE_CODE_RELEASE_WQE: 13244 /* Process the WQ release event */ 13245 lpfc_sli4_sp_handle_rel_wcqe(phba, 13246 (struct lpfc_wcqe_release *)&cqevt); 13247 break; 13248 case CQE_CODE_XRI_ABORTED: 13249 /* Process the WQ XRI abort event */ 13250 phba->last_completion_time = jiffies; 13251 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13252 (struct sli4_wcqe_xri_aborted *)&cqevt); 13253 break; 13254 case CQE_CODE_RECEIVE: 13255 case CQE_CODE_RECEIVE_V1: 13256 /* Process the RQ event */ 13257 phba->last_completion_time = jiffies; 13258 workposted = lpfc_sli4_sp_handle_rcqe(phba, 13259 (struct lpfc_rcqe *)&cqevt); 13260 break; 13261 default: 13262 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13263 "0388 Not a valid WCQE code: x%x\n", 13264 bf_get(lpfc_cqe_code, &cqevt)); 13265 break; 13266 } 13267 return workposted; 13268 } 13269 13270 /** 13271 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 13272 * @phba: Pointer to HBA context object. 13273 * @eqe: Pointer to fast-path event queue entry. 13274 * 13275 * This routine process a event queue entry from the slow-path event queue. 13276 * It will check the MajorCode and MinorCode to determine this is for a 13277 * completion event on a completion queue, if not, an error shall be logged 13278 * and just return. Otherwise, it will get to the corresponding completion 13279 * queue and process all the entries on that completion queue, rearm the 13280 * completion queue, and then return. 13281 * 13282 **/ 13283 static void 13284 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13285 struct lpfc_queue *speq) 13286 { 13287 struct lpfc_queue *cq = NULL, *childq; 13288 uint16_t cqid; 13289 13290 /* Get the reference to the corresponding CQ */ 13291 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13292 13293 list_for_each_entry(childq, &speq->child_list, list) { 13294 if (childq->queue_id == cqid) { 13295 cq = childq; 13296 break; 13297 } 13298 } 13299 if (unlikely(!cq)) { 13300 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13301 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13302 "0365 Slow-path CQ identifier " 13303 "(%d) does not exist\n", cqid); 13304 return; 13305 } 13306 13307 /* Save EQ associated with this CQ */ 13308 cq->assoc_qp = speq; 13309 13310 if (!queue_work(phba->wq, &cq->spwork)) 13311 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13312 "0390 Cannot schedule soft IRQ " 13313 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 13314 cqid, cq->queue_id, smp_processor_id()); 13315 } 13316 13317 /** 13318 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 13319 * @phba: Pointer to HBA context object. 13320 * 13321 * This routine process a event queue entry from the slow-path event queue. 13322 * It will check the MajorCode and MinorCode to determine this is for a 13323 * completion event on a completion queue, if not, an error shall be logged 13324 * and just return. Otherwise, it will get to the corresponding completion 13325 * queue and process all the entries on that completion queue, rearm the 13326 * completion queue, and then return. 13327 * 13328 **/ 13329 static void 13330 lpfc_sli4_sp_process_cq(struct work_struct *work) 13331 { 13332 struct lpfc_queue *cq = 13333 container_of(work, struct lpfc_queue, spwork); 13334 struct lpfc_hba *phba = cq->phba; 13335 struct lpfc_cqe *cqe; 13336 bool workposted = false; 13337 int ccount = 0; 13338 13339 /* Process all the entries to the CQ */ 13340 switch (cq->type) { 13341 case LPFC_MCQ: 13342 while ((cqe = lpfc_sli4_cq_get(cq))) { 13343 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe); 13344 if (!(++ccount % cq->entry_repost)) 13345 break; 13346 cq->CQ_mbox++; 13347 } 13348 break; 13349 case LPFC_WCQ: 13350 while ((cqe = lpfc_sli4_cq_get(cq))) { 13351 if (cq->subtype == LPFC_FCP || 13352 cq->subtype == LPFC_NVME) { 13353 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13354 if (phba->ktime_on) 13355 cq->isr_timestamp = ktime_get_ns(); 13356 else 13357 cq->isr_timestamp = 0; 13358 #endif 13359 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, 13360 cqe); 13361 } else { 13362 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq, 13363 cqe); 13364 } 13365 if (!(++ccount % cq->entry_repost)) 13366 break; 13367 } 13368 13369 /* Track the max number of CQEs processed in 1 EQ */ 13370 if (ccount > cq->CQ_max_cqe) 13371 cq->CQ_max_cqe = ccount; 13372 break; 13373 default: 13374 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13375 "0370 Invalid completion queue type (%d)\n", 13376 cq->type); 13377 return; 13378 } 13379 13380 /* Catch the no cq entry condition, log an error */ 13381 if (unlikely(ccount == 0)) 13382 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13383 "0371 No entry from the CQ: identifier " 13384 "(x%x), type (%d)\n", cq->queue_id, cq->type); 13385 13386 /* In any case, flash and re-arm the RCQ */ 13387 phba->sli4_hba.sli4_cq_release(cq, LPFC_QUEUE_REARM); 13388 13389 /* wake up worker thread if there are works to be done */ 13390 if (workposted) 13391 lpfc_worker_wake_up(phba); 13392 } 13393 13394 /** 13395 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 13396 * @phba: Pointer to HBA context object. 13397 * @cq: Pointer to associated CQ 13398 * @wcqe: Pointer to work-queue completion queue entry. 13399 * 13400 * This routine process a fast-path work queue completion entry from fast-path 13401 * event queue for FCP command response completion. 13402 **/ 13403 static void 13404 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13405 struct lpfc_wcqe_complete *wcqe) 13406 { 13407 struct lpfc_sli_ring *pring = cq->pring; 13408 struct lpfc_iocbq *cmdiocbq; 13409 struct lpfc_iocbq irspiocbq; 13410 unsigned long iflags; 13411 13412 /* Check for response status */ 13413 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13414 /* If resource errors reported from HBA, reduce queue 13415 * depth of the SCSI device. 13416 */ 13417 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 13418 IOSTAT_LOCAL_REJECT)) && 13419 ((wcqe->parameter & IOERR_PARAM_MASK) == 13420 IOERR_NO_RESOURCES)) 13421 phba->lpfc_rampdown_queue_depth(phba); 13422 13423 /* Log the error status */ 13424 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13425 "0373 FCP CQE error: status=x%x: " 13426 "CQE: %08x %08x %08x %08x\n", 13427 bf_get(lpfc_wcqe_c_status, wcqe), 13428 wcqe->word0, wcqe->total_data_placed, 13429 wcqe->parameter, wcqe->word3); 13430 } 13431 13432 /* Look up the FCP command IOCB and create pseudo response IOCB */ 13433 spin_lock_irqsave(&pring->ring_lock, iflags); 13434 pring->stats.iocb_event++; 13435 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13436 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13437 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13438 if (unlikely(!cmdiocbq)) { 13439 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13440 "0374 FCP complete with no corresponding " 13441 "cmdiocb: iotag (%d)\n", 13442 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13443 return; 13444 } 13445 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13446 cmdiocbq->isr_timestamp = cq->isr_timestamp; 13447 #endif 13448 if (cmdiocbq->iocb_cmpl == NULL) { 13449 if (cmdiocbq->wqe_cmpl) { 13450 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13451 spin_lock_irqsave(&phba->hbalock, iflags); 13452 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13453 spin_unlock_irqrestore(&phba->hbalock, iflags); 13454 } 13455 13456 /* Pass the cmd_iocb and the wcqe to the upper layer */ 13457 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 13458 return; 13459 } 13460 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13461 "0375 FCP cmdiocb not callback function " 13462 "iotag: (%d)\n", 13463 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13464 return; 13465 } 13466 13467 /* Fake the irspiocb and copy necessary response information */ 13468 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 13469 13470 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13471 spin_lock_irqsave(&phba->hbalock, iflags); 13472 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13473 spin_unlock_irqrestore(&phba->hbalock, iflags); 13474 } 13475 13476 /* Pass the cmd_iocb and the rsp state to the upper layer */ 13477 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 13478 } 13479 13480 /** 13481 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 13482 * @phba: Pointer to HBA context object. 13483 * @cq: Pointer to completion queue. 13484 * @wcqe: Pointer to work-queue completion queue entry. 13485 * 13486 * This routine handles an fast-path WQ entry consumed event by invoking the 13487 * proper WQ release routine to the slow-path WQ. 13488 **/ 13489 static void 13490 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13491 struct lpfc_wcqe_release *wcqe) 13492 { 13493 struct lpfc_queue *childwq; 13494 bool wqid_matched = false; 13495 uint16_t hba_wqid; 13496 13497 /* Check for fast-path FCP work queue release */ 13498 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 13499 list_for_each_entry(childwq, &cq->child_list, list) { 13500 if (childwq->queue_id == hba_wqid) { 13501 lpfc_sli4_wq_release(childwq, 13502 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13503 if (childwq->q_flag & HBA_NVMET_WQFULL) 13504 lpfc_nvmet_wqfull_process(phba, childwq); 13505 wqid_matched = true; 13506 break; 13507 } 13508 } 13509 /* Report warning log message if no match found */ 13510 if (wqid_matched != true) 13511 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13512 "2580 Fast-path wqe consume event carries " 13513 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 13514 } 13515 13516 /** 13517 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 13518 * @phba: Pointer to HBA context object. 13519 * @rcqe: Pointer to receive-queue completion queue entry. 13520 * 13521 * This routine process a receive-queue completion queue entry. 13522 * 13523 * Return: true if work posted to worker thread, otherwise false. 13524 **/ 13525 static bool 13526 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13527 struct lpfc_rcqe *rcqe) 13528 { 13529 bool workposted = false; 13530 struct lpfc_queue *hrq; 13531 struct lpfc_queue *drq; 13532 struct rqb_dmabuf *dma_buf; 13533 struct fc_frame_header *fc_hdr; 13534 struct lpfc_nvmet_tgtport *tgtp; 13535 uint32_t status, rq_id; 13536 unsigned long iflags; 13537 uint32_t fctl, idx; 13538 13539 if ((phba->nvmet_support == 0) || 13540 (phba->sli4_hba.nvmet_cqset == NULL)) 13541 return workposted; 13542 13543 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 13544 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 13545 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 13546 13547 /* sanity check on queue memory */ 13548 if (unlikely(!hrq) || unlikely(!drq)) 13549 return workposted; 13550 13551 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13552 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13553 else 13554 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13555 13556 if ((phba->nvmet_support == 0) || 13557 (rq_id != hrq->queue_id)) 13558 return workposted; 13559 13560 status = bf_get(lpfc_rcqe_status, rcqe); 13561 switch (status) { 13562 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13563 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13564 "6126 Receive Frame Truncated!!\n"); 13565 /* Drop thru */ 13566 case FC_STATUS_RQ_SUCCESS: 13567 spin_lock_irqsave(&phba->hbalock, iflags); 13568 lpfc_sli4_rq_release(hrq, drq); 13569 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 13570 if (!dma_buf) { 13571 hrq->RQ_no_buf_found++; 13572 spin_unlock_irqrestore(&phba->hbalock, iflags); 13573 goto out; 13574 } 13575 spin_unlock_irqrestore(&phba->hbalock, iflags); 13576 hrq->RQ_rcv_buf++; 13577 hrq->RQ_buf_posted--; 13578 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13579 13580 /* Just some basic sanity checks on FCP Command frame */ 13581 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 13582 fc_hdr->fh_f_ctl[1] << 8 | 13583 fc_hdr->fh_f_ctl[2]); 13584 if (((fctl & 13585 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 13586 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 13587 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 13588 goto drop; 13589 13590 if (fc_hdr->fh_type == FC_TYPE_FCP) { 13591 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 13592 lpfc_nvmet_unsol_fcp_event( 13593 phba, idx, dma_buf, 13594 cq->isr_timestamp); 13595 return false; 13596 } 13597 drop: 13598 lpfc_in_buf_free(phba, &dma_buf->dbuf); 13599 break; 13600 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13601 if (phba->nvmet_support) { 13602 tgtp = phba->targetport->private; 13603 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 13604 "6401 RQE Error x%x, posted %d err_cnt " 13605 "%d: %x %x %x\n", 13606 status, hrq->RQ_buf_posted, 13607 hrq->RQ_no_posted_buf, 13608 atomic_read(&tgtp->rcv_fcp_cmd_in), 13609 atomic_read(&tgtp->rcv_fcp_cmd_out), 13610 atomic_read(&tgtp->xmt_fcp_release)); 13611 } 13612 /* fallthrough */ 13613 13614 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13615 hrq->RQ_no_posted_buf++; 13616 /* Post more buffers if possible */ 13617 break; 13618 } 13619 out: 13620 return workposted; 13621 } 13622 13623 /** 13624 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 13625 * @cq: Pointer to the completion queue. 13626 * @eqe: Pointer to fast-path completion queue entry. 13627 * 13628 * This routine process a fast-path work queue completion entry from fast-path 13629 * event queue for FCP command response completion. 13630 **/ 13631 static int 13632 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13633 struct lpfc_cqe *cqe) 13634 { 13635 struct lpfc_wcqe_release wcqe; 13636 bool workposted = false; 13637 13638 /* Copy the work queue CQE and convert endian order if needed */ 13639 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 13640 13641 /* Check and process for different type of WCQE and dispatch */ 13642 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 13643 case CQE_CODE_COMPL_WQE: 13644 case CQE_CODE_NVME_ERSP: 13645 cq->CQ_wq++; 13646 /* Process the WQ complete event */ 13647 phba->last_completion_time = jiffies; 13648 if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME)) 13649 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 13650 (struct lpfc_wcqe_complete *)&wcqe); 13651 if (cq->subtype == LPFC_NVME_LS) 13652 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 13653 (struct lpfc_wcqe_complete *)&wcqe); 13654 break; 13655 case CQE_CODE_RELEASE_WQE: 13656 cq->CQ_release_wqe++; 13657 /* Process the WQ release event */ 13658 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 13659 (struct lpfc_wcqe_release *)&wcqe); 13660 break; 13661 case CQE_CODE_XRI_ABORTED: 13662 cq->CQ_xri_aborted++; 13663 /* Process the WQ XRI abort event */ 13664 phba->last_completion_time = jiffies; 13665 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13666 (struct sli4_wcqe_xri_aborted *)&wcqe); 13667 break; 13668 case CQE_CODE_RECEIVE_V1: 13669 case CQE_CODE_RECEIVE: 13670 phba->last_completion_time = jiffies; 13671 if (cq->subtype == LPFC_NVMET) { 13672 workposted = lpfc_sli4_nvmet_handle_rcqe( 13673 phba, cq, (struct lpfc_rcqe *)&wcqe); 13674 } 13675 break; 13676 default: 13677 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13678 "0144 Not a valid CQE code: x%x\n", 13679 bf_get(lpfc_wcqe_c_code, &wcqe)); 13680 break; 13681 } 13682 return workposted; 13683 } 13684 13685 /** 13686 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 13687 * @phba: Pointer to HBA context object. 13688 * @eqe: Pointer to fast-path event queue entry. 13689 * 13690 * This routine process a event queue entry from the fast-path event queue. 13691 * It will check the MajorCode and MinorCode to determine this is for a 13692 * completion event on a completion queue, if not, an error shall be logged 13693 * and just return. Otherwise, it will get to the corresponding completion 13694 * queue and process all the entries on the completion queue, rearm the 13695 * completion queue, and then return. 13696 **/ 13697 static void 13698 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13699 uint32_t qidx) 13700 { 13701 struct lpfc_queue *cq = NULL; 13702 uint16_t cqid, id; 13703 13704 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 13705 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13706 "0366 Not a valid completion " 13707 "event: majorcode=x%x, minorcode=x%x\n", 13708 bf_get_le32(lpfc_eqe_major_code, eqe), 13709 bf_get_le32(lpfc_eqe_minor_code, eqe)); 13710 return; 13711 } 13712 13713 /* Get the reference to the corresponding CQ */ 13714 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13715 13716 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 13717 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 13718 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 13719 /* Process NVMET unsol rcv */ 13720 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 13721 goto process_cq; 13722 } 13723 } 13724 13725 if (phba->sli4_hba.nvme_cq_map && 13726 (cqid == phba->sli4_hba.nvme_cq_map[qidx])) { 13727 /* Process NVME / NVMET command completion */ 13728 cq = phba->sli4_hba.nvme_cq[qidx]; 13729 goto process_cq; 13730 } 13731 13732 if (phba->sli4_hba.fcp_cq_map && 13733 (cqid == phba->sli4_hba.fcp_cq_map[qidx])) { 13734 /* Process FCP command completion */ 13735 cq = phba->sli4_hba.fcp_cq[qidx]; 13736 goto process_cq; 13737 } 13738 13739 if (phba->sli4_hba.nvmels_cq && 13740 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 13741 /* Process NVME unsol rcv */ 13742 cq = phba->sli4_hba.nvmels_cq; 13743 } 13744 13745 /* Otherwise this is a Slow path event */ 13746 if (cq == NULL) { 13747 lpfc_sli4_sp_handle_eqe(phba, eqe, phba->sli4_hba.hba_eq[qidx]); 13748 return; 13749 } 13750 13751 process_cq: 13752 if (unlikely(cqid != cq->queue_id)) { 13753 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13754 "0368 Miss-matched fast-path completion " 13755 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 13756 cqid, cq->queue_id); 13757 return; 13758 } 13759 13760 /* Save EQ associated with this CQ */ 13761 cq->assoc_qp = phba->sli4_hba.hba_eq[qidx]; 13762 13763 if (!queue_work(phba->wq, &cq->irqwork)) 13764 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13765 "0363 Cannot schedule soft IRQ " 13766 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 13767 cqid, cq->queue_id, smp_processor_id()); 13768 } 13769 13770 /** 13771 * lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 13772 * @phba: Pointer to HBA context object. 13773 * @eqe: Pointer to fast-path event queue entry. 13774 * 13775 * This routine process a event queue entry from the fast-path event queue. 13776 * It will check the MajorCode and MinorCode to determine this is for a 13777 * completion event on a completion queue, if not, an error shall be logged 13778 * and just return. Otherwise, it will get to the corresponding completion 13779 * queue and process all the entries on the completion queue, rearm the 13780 * completion queue, and then return. 13781 **/ 13782 static void 13783 lpfc_sli4_hba_process_cq(struct work_struct *work) 13784 { 13785 struct lpfc_queue *cq = 13786 container_of(work, struct lpfc_queue, irqwork); 13787 struct lpfc_hba *phba = cq->phba; 13788 struct lpfc_cqe *cqe; 13789 bool workposted = false; 13790 int ccount = 0; 13791 13792 /* Process all the entries to the CQ */ 13793 while ((cqe = lpfc_sli4_cq_get(cq))) { 13794 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13795 if (phba->ktime_on) 13796 cq->isr_timestamp = ktime_get_ns(); 13797 else 13798 cq->isr_timestamp = 0; 13799 #endif 13800 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe); 13801 if (!(++ccount % cq->entry_repost)) 13802 break; 13803 } 13804 13805 /* Track the max number of CQEs processed in 1 EQ */ 13806 if (ccount > cq->CQ_max_cqe) 13807 cq->CQ_max_cqe = ccount; 13808 cq->assoc_qp->EQ_cqe_cnt += ccount; 13809 13810 /* Catch the no cq entry condition */ 13811 if (unlikely(ccount == 0)) 13812 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13813 "0369 No entry from fast-path completion " 13814 "queue fcpcqid=%d\n", cq->queue_id); 13815 13816 /* In any case, flash and re-arm the CQ */ 13817 phba->sli4_hba.sli4_cq_release(cq, LPFC_QUEUE_REARM); 13818 13819 /* wake up worker thread if there are works to be done */ 13820 if (workposted) 13821 lpfc_worker_wake_up(phba); 13822 } 13823 13824 static void 13825 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 13826 { 13827 struct lpfc_eqe *eqe; 13828 13829 /* walk all the EQ entries and drop on the floor */ 13830 while ((eqe = lpfc_sli4_eq_get(eq))) 13831 ; 13832 13833 /* Clear and re-arm the EQ */ 13834 phba->sli4_hba.sli4_eq_release(eq, LPFC_QUEUE_REARM); 13835 } 13836 13837 13838 /** 13839 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue 13840 * entry 13841 * @phba: Pointer to HBA context object. 13842 * @eqe: Pointer to fast-path event queue entry. 13843 * 13844 * This routine process a event queue entry from the Flash Optimized Fabric 13845 * event queue. It will check the MajorCode and MinorCode to determine this 13846 * is for a completion event on a completion queue, if not, an error shall be 13847 * logged and just return. Otherwise, it will get to the corresponding 13848 * completion queue and process all the entries on the completion queue, rearm 13849 * the completion queue, and then return. 13850 **/ 13851 static void 13852 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe) 13853 { 13854 struct lpfc_queue *cq; 13855 uint16_t cqid; 13856 13857 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 13858 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13859 "9147 Not a valid completion " 13860 "event: majorcode=x%x, minorcode=x%x\n", 13861 bf_get_le32(lpfc_eqe_major_code, eqe), 13862 bf_get_le32(lpfc_eqe_minor_code, eqe)); 13863 return; 13864 } 13865 13866 /* Get the reference to the corresponding CQ */ 13867 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13868 13869 /* Next check for OAS */ 13870 cq = phba->sli4_hba.oas_cq; 13871 if (unlikely(!cq)) { 13872 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13873 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13874 "9148 OAS completion queue " 13875 "does not exist\n"); 13876 return; 13877 } 13878 13879 if (unlikely(cqid != cq->queue_id)) { 13880 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13881 "9149 Miss-matched fast-path compl " 13882 "queue id: eqcqid=%d, fcpcqid=%d\n", 13883 cqid, cq->queue_id); 13884 return; 13885 } 13886 13887 /* Save EQ associated with this CQ */ 13888 cq->assoc_qp = phba->sli4_hba.fof_eq; 13889 13890 /* CQ work will be processed on CPU affinitized to this IRQ */ 13891 if (!queue_work(phba->wq, &cq->irqwork)) 13892 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13893 "0367 Cannot schedule soft IRQ " 13894 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 13895 cqid, cq->queue_id, smp_processor_id()); 13896 } 13897 13898 /** 13899 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device 13900 * @irq: Interrupt number. 13901 * @dev_id: The device context pointer. 13902 * 13903 * This function is directly called from the PCI layer as an interrupt 13904 * service routine when device with SLI-4 interface spec is enabled with 13905 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric 13906 * IOCB ring event in the HBA. However, when the device is enabled with either 13907 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13908 * device-level interrupt handler. When the PCI slot is in error recovery 13909 * or the HBA is undergoing initialization, the interrupt handler will not 13910 * process the interrupt. The Flash Optimized Fabric ring event are handled in 13911 * the intrrupt context. This function is called without any lock held. 13912 * It gets the hbalock to access and update SLI data structures. Note that, 13913 * the EQ to CQ are one-to-one map such that the EQ index is 13914 * equal to that of CQ index. 13915 * 13916 * This function returns IRQ_HANDLED when interrupt is handled else it 13917 * returns IRQ_NONE. 13918 **/ 13919 irqreturn_t 13920 lpfc_sli4_fof_intr_handler(int irq, void *dev_id) 13921 { 13922 struct lpfc_hba *phba; 13923 struct lpfc_hba_eq_hdl *hba_eq_hdl; 13924 struct lpfc_queue *eq; 13925 struct lpfc_eqe *eqe; 13926 unsigned long iflag; 13927 int ecount = 0; 13928 13929 /* Get the driver's phba structure from the dev_id */ 13930 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 13931 phba = hba_eq_hdl->phba; 13932 13933 if (unlikely(!phba)) 13934 return IRQ_NONE; 13935 13936 /* Get to the EQ struct associated with this vector */ 13937 eq = phba->sli4_hba.fof_eq; 13938 if (unlikely(!eq)) 13939 return IRQ_NONE; 13940 13941 /* Check device state for handling interrupt */ 13942 if (unlikely(lpfc_intr_state_check(phba))) { 13943 /* Check again for link_state with lock held */ 13944 spin_lock_irqsave(&phba->hbalock, iflag); 13945 if (phba->link_state < LPFC_LINK_DOWN) 13946 /* Flush, clear interrupt, and rearm the EQ */ 13947 lpfc_sli4_eq_flush(phba, eq); 13948 spin_unlock_irqrestore(&phba->hbalock, iflag); 13949 return IRQ_NONE; 13950 } 13951 13952 /* 13953 * Process all the event on FCP fast-path EQ 13954 */ 13955 while ((eqe = lpfc_sli4_eq_get(eq))) { 13956 lpfc_sli4_fof_handle_eqe(phba, eqe); 13957 if (!(++ecount % eq->entry_repost)) 13958 break; 13959 eq->EQ_processed++; 13960 } 13961 13962 /* Track the max number of EQEs processed in 1 intr */ 13963 if (ecount > eq->EQ_max_eqe) 13964 eq->EQ_max_eqe = ecount; 13965 13966 13967 if (unlikely(ecount == 0)) { 13968 eq->EQ_no_entry++; 13969 13970 if (phba->intr_type == MSIX) 13971 /* MSI-X treated interrupt served as no EQ share INT */ 13972 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13973 "9145 MSI-X interrupt with no EQE\n"); 13974 else { 13975 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13976 "9146 ISR interrupt with no EQE\n"); 13977 /* Non MSI-X treated on interrupt as EQ share INT */ 13978 return IRQ_NONE; 13979 } 13980 } 13981 /* Always clear and re-arm the fast-path EQ */ 13982 phba->sli4_hba.sli4_eq_release(eq, LPFC_QUEUE_REARM); 13983 return IRQ_HANDLED; 13984 } 13985 13986 /** 13987 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 13988 * @irq: Interrupt number. 13989 * @dev_id: The device context pointer. 13990 * 13991 * This function is directly called from the PCI layer as an interrupt 13992 * service routine when device with SLI-4 interface spec is enabled with 13993 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13994 * ring event in the HBA. However, when the device is enabled with either 13995 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13996 * device-level interrupt handler. When the PCI slot is in error recovery 13997 * or the HBA is undergoing initialization, the interrupt handler will not 13998 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13999 * the intrrupt context. This function is called without any lock held. 14000 * It gets the hbalock to access and update SLI data structures. Note that, 14001 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 14002 * equal to that of FCP CQ index. 14003 * 14004 * The link attention and ELS ring attention events are handled 14005 * by the worker thread. The interrupt handler signals the worker thread 14006 * and returns for these events. This function is called without any lock 14007 * held. It gets the hbalock to access and update SLI data structures. 14008 * 14009 * This function returns IRQ_HANDLED when interrupt is handled else it 14010 * returns IRQ_NONE. 14011 **/ 14012 irqreturn_t 14013 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 14014 { 14015 struct lpfc_hba *phba; 14016 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14017 struct lpfc_queue *fpeq; 14018 struct lpfc_eqe *eqe; 14019 unsigned long iflag; 14020 int ecount = 0; 14021 int hba_eqidx; 14022 14023 /* Get the driver's phba structure from the dev_id */ 14024 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14025 phba = hba_eq_hdl->phba; 14026 hba_eqidx = hba_eq_hdl->idx; 14027 14028 if (unlikely(!phba)) 14029 return IRQ_NONE; 14030 if (unlikely(!phba->sli4_hba.hba_eq)) 14031 return IRQ_NONE; 14032 14033 /* Get to the EQ struct associated with this vector */ 14034 fpeq = phba->sli4_hba.hba_eq[hba_eqidx]; 14035 if (unlikely(!fpeq)) 14036 return IRQ_NONE; 14037 14038 if (lpfc_fcp_look_ahead) { 14039 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) 14040 phba->sli4_hba.sli4_eq_clr_intr(fpeq); 14041 else { 14042 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 14043 return IRQ_NONE; 14044 } 14045 } 14046 14047 /* Check device state for handling interrupt */ 14048 if (unlikely(lpfc_intr_state_check(phba))) { 14049 /* Check again for link_state with lock held */ 14050 spin_lock_irqsave(&phba->hbalock, iflag); 14051 if (phba->link_state < LPFC_LINK_DOWN) 14052 /* Flush, clear interrupt, and rearm the EQ */ 14053 lpfc_sli4_eq_flush(phba, fpeq); 14054 spin_unlock_irqrestore(&phba->hbalock, iflag); 14055 if (lpfc_fcp_look_ahead) 14056 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 14057 return IRQ_NONE; 14058 } 14059 14060 /* 14061 * Process all the event on FCP fast-path EQ 14062 */ 14063 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 14064 lpfc_sli4_hba_handle_eqe(phba, eqe, hba_eqidx); 14065 if (!(++ecount % fpeq->entry_repost)) 14066 break; 14067 fpeq->EQ_processed++; 14068 } 14069 14070 /* Track the max number of EQEs processed in 1 intr */ 14071 if (ecount > fpeq->EQ_max_eqe) 14072 fpeq->EQ_max_eqe = ecount; 14073 14074 /* Always clear and re-arm the fast-path EQ */ 14075 phba->sli4_hba.sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 14076 14077 if (unlikely(ecount == 0)) { 14078 fpeq->EQ_no_entry++; 14079 14080 if (lpfc_fcp_look_ahead) { 14081 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 14082 return IRQ_NONE; 14083 } 14084 14085 if (phba->intr_type == MSIX) 14086 /* MSI-X treated interrupt served as no EQ share INT */ 14087 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14088 "0358 MSI-X interrupt with no EQE\n"); 14089 else 14090 /* Non MSI-X treated on interrupt as EQ share INT */ 14091 return IRQ_NONE; 14092 } 14093 14094 if (lpfc_fcp_look_ahead) 14095 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 14096 14097 return IRQ_HANDLED; 14098 } /* lpfc_sli4_fp_intr_handler */ 14099 14100 /** 14101 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 14102 * @irq: Interrupt number. 14103 * @dev_id: The device context pointer. 14104 * 14105 * This function is the device-level interrupt handler to device with SLI-4 14106 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 14107 * interrupt mode is enabled and there is an event in the HBA which requires 14108 * driver attention. This function invokes the slow-path interrupt attention 14109 * handling function and fast-path interrupt attention handling function in 14110 * turn to process the relevant HBA attention events. This function is called 14111 * without any lock held. It gets the hbalock to access and update SLI data 14112 * structures. 14113 * 14114 * This function returns IRQ_HANDLED when interrupt is handled, else it 14115 * returns IRQ_NONE. 14116 **/ 14117 irqreturn_t 14118 lpfc_sli4_intr_handler(int irq, void *dev_id) 14119 { 14120 struct lpfc_hba *phba; 14121 irqreturn_t hba_irq_rc; 14122 bool hba_handled = false; 14123 int qidx; 14124 14125 /* Get the driver's phba structure from the dev_id */ 14126 phba = (struct lpfc_hba *)dev_id; 14127 14128 if (unlikely(!phba)) 14129 return IRQ_NONE; 14130 14131 /* 14132 * Invoke fast-path host attention interrupt handling as appropriate. 14133 */ 14134 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) { 14135 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 14136 &phba->sli4_hba.hba_eq_hdl[qidx]); 14137 if (hba_irq_rc == IRQ_HANDLED) 14138 hba_handled |= true; 14139 } 14140 14141 if (phba->cfg_fof) { 14142 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq, 14143 &phba->sli4_hba.hba_eq_hdl[qidx]); 14144 if (hba_irq_rc == IRQ_HANDLED) 14145 hba_handled |= true; 14146 } 14147 14148 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 14149 } /* lpfc_sli4_intr_handler */ 14150 14151 /** 14152 * lpfc_sli4_queue_free - free a queue structure and associated memory 14153 * @queue: The queue structure to free. 14154 * 14155 * This function frees a queue structure and the DMAable memory used for 14156 * the host resident queue. This function must be called after destroying the 14157 * queue on the HBA. 14158 **/ 14159 void 14160 lpfc_sli4_queue_free(struct lpfc_queue *queue) 14161 { 14162 struct lpfc_dmabuf *dmabuf; 14163 14164 if (!queue) 14165 return; 14166 14167 while (!list_empty(&queue->page_list)) { 14168 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 14169 list); 14170 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 14171 dmabuf->virt, dmabuf->phys); 14172 kfree(dmabuf); 14173 } 14174 if (queue->rqbp) { 14175 lpfc_free_rq_buffer(queue->phba, queue); 14176 kfree(queue->rqbp); 14177 } 14178 14179 if (!list_empty(&queue->wq_list)) 14180 list_del(&queue->wq_list); 14181 14182 kfree(queue); 14183 return; 14184 } 14185 14186 /** 14187 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 14188 * @phba: The HBA that this queue is being created on. 14189 * @page_size: The size of a queue page 14190 * @entry_size: The size of each queue entry for this queue. 14191 * @entry count: The number of entries that this queue will handle. 14192 * 14193 * This function allocates a queue structure and the DMAable memory used for 14194 * the host resident queue. This function must be called before creating the 14195 * queue on the HBA. 14196 **/ 14197 struct lpfc_queue * 14198 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 14199 uint32_t entry_size, uint32_t entry_count) 14200 { 14201 struct lpfc_queue *queue; 14202 struct lpfc_dmabuf *dmabuf; 14203 int x, total_qe_count; 14204 void *dma_pointer; 14205 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14206 14207 if (!phba->sli4_hba.pc_sli4_params.supported) 14208 hw_page_size = page_size; 14209 14210 queue = kzalloc(sizeof(struct lpfc_queue) + 14211 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL); 14212 if (!queue) 14213 return NULL; 14214 queue->page_count = (ALIGN(entry_size * entry_count, 14215 hw_page_size))/hw_page_size; 14216 14217 /* If needed, Adjust page count to match the max the adapter supports */ 14218 if (queue->page_count > phba->sli4_hba.pc_sli4_params.wqpcnt) 14219 queue->page_count = phba->sli4_hba.pc_sli4_params.wqpcnt; 14220 14221 INIT_LIST_HEAD(&queue->list); 14222 INIT_LIST_HEAD(&queue->wq_list); 14223 INIT_LIST_HEAD(&queue->wqfull_list); 14224 INIT_LIST_HEAD(&queue->page_list); 14225 INIT_LIST_HEAD(&queue->child_list); 14226 14227 /* Set queue parameters now. If the system cannot provide memory 14228 * resources, the free routine needs to know what was allocated. 14229 */ 14230 queue->entry_size = entry_size; 14231 queue->entry_count = entry_count; 14232 queue->page_size = hw_page_size; 14233 queue->phba = phba; 14234 14235 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) { 14236 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 14237 if (!dmabuf) 14238 goto out_fail; 14239 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, 14240 hw_page_size, &dmabuf->phys, 14241 GFP_KERNEL); 14242 if (!dmabuf->virt) { 14243 kfree(dmabuf); 14244 goto out_fail; 14245 } 14246 dmabuf->buffer_tag = x; 14247 list_add_tail(&dmabuf->list, &queue->page_list); 14248 /* initialize queue's entry array */ 14249 dma_pointer = dmabuf->virt; 14250 for (; total_qe_count < entry_count && 14251 dma_pointer < (hw_page_size + dmabuf->virt); 14252 total_qe_count++, dma_pointer += entry_size) { 14253 queue->qe[total_qe_count].address = dma_pointer; 14254 } 14255 } 14256 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 14257 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 14258 14259 /* entry_repost will be set during q creation */ 14260 14261 return queue; 14262 out_fail: 14263 lpfc_sli4_queue_free(queue); 14264 return NULL; 14265 } 14266 14267 /** 14268 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 14269 * @phba: HBA structure that indicates port to create a queue on. 14270 * @pci_barset: PCI BAR set flag. 14271 * 14272 * This function shall perform iomap of the specified PCI BAR address to host 14273 * memory address if not already done so and return it. The returned host 14274 * memory address can be NULL. 14275 */ 14276 static void __iomem * 14277 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 14278 { 14279 if (!phba->pcidev) 14280 return NULL; 14281 14282 switch (pci_barset) { 14283 case WQ_PCI_BAR_0_AND_1: 14284 return phba->pci_bar0_memmap_p; 14285 case WQ_PCI_BAR_2_AND_3: 14286 return phba->pci_bar2_memmap_p; 14287 case WQ_PCI_BAR_4_AND_5: 14288 return phba->pci_bar4_memmap_p; 14289 default: 14290 break; 14291 } 14292 return NULL; 14293 } 14294 14295 /** 14296 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on FCP EQs 14297 * @phba: HBA structure that indicates port to create a queue on. 14298 * @startq: The starting FCP EQ to modify 14299 * 14300 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA. 14301 * The command allows up to LPFC_MAX_EQ_DELAY_EQID_CNT EQ ID's to be 14302 * updated in one mailbox command. 14303 * 14304 * The @phba struct is used to send mailbox command to HBA. The @startq 14305 * is used to get the starting FCP EQ to change. 14306 * This function is asynchronous and will wait for the mailbox 14307 * command to finish before continuing. 14308 * 14309 * On success this function will return a zero. If unable to allocate enough 14310 * memory this function will return -ENOMEM. If the queue create mailbox command 14311 * fails this function will return -ENXIO. 14312 **/ 14313 int 14314 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 14315 uint32_t numq, uint32_t imax) 14316 { 14317 struct lpfc_mbx_modify_eq_delay *eq_delay; 14318 LPFC_MBOXQ_t *mbox; 14319 struct lpfc_queue *eq; 14320 int cnt, rc, length, status = 0; 14321 uint32_t shdr_status, shdr_add_status; 14322 uint32_t result, val; 14323 int qidx; 14324 union lpfc_sli4_cfg_shdr *shdr; 14325 uint16_t dmult; 14326 14327 if (startq >= phba->io_channel_irqs) 14328 return 0; 14329 14330 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14331 if (!mbox) 14332 return -ENOMEM; 14333 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 14334 sizeof(struct lpfc_sli4_cfg_mhdr)); 14335 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14336 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 14337 length, LPFC_SLI4_MBX_EMBED); 14338 eq_delay = &mbox->u.mqe.un.eq_delay; 14339 14340 /* Calculate delay multiper from maximum interrupt per second */ 14341 result = imax / phba->io_channel_irqs; 14342 if (result > LPFC_DMULT_CONST || result == 0) 14343 dmult = 0; 14344 else 14345 dmult = LPFC_DMULT_CONST/result - 1; 14346 if (dmult > LPFC_DMULT_MAX) 14347 dmult = LPFC_DMULT_MAX; 14348 14349 cnt = 0; 14350 for (qidx = startq; qidx < phba->io_channel_irqs; qidx++) { 14351 eq = phba->sli4_hba.hba_eq[qidx]; 14352 if (!eq) 14353 continue; 14354 eq->q_mode = imax; 14355 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 14356 eq_delay->u.request.eq[cnt].phase = 0; 14357 eq_delay->u.request.eq[cnt].delay_multi = dmult; 14358 cnt++; 14359 14360 /* q_mode is only used for auto_imax */ 14361 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 14362 /* Use EQ Delay Register method for q_mode */ 14363 14364 /* Convert for EQ Delay register */ 14365 val = phba->cfg_fcp_imax; 14366 if (val) { 14367 /* First, interrupts per sec per EQ */ 14368 val = phba->cfg_fcp_imax / 14369 phba->io_channel_irqs; 14370 14371 /* us delay between each interrupt */ 14372 val = LPFC_SEC_TO_USEC / val; 14373 } 14374 eq->q_mode = val; 14375 } else { 14376 eq->q_mode = imax; 14377 } 14378 14379 if (cnt >= numq) 14380 break; 14381 } 14382 eq_delay->u.request.num_eq = cnt; 14383 14384 mbox->vport = phba->pport; 14385 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14386 mbox->context1 = NULL; 14387 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14388 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 14389 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14390 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14391 if (shdr_status || shdr_add_status || rc) { 14392 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14393 "2512 MODIFY_EQ_DELAY mailbox failed with " 14394 "status x%x add_status x%x, mbx status x%x\n", 14395 shdr_status, shdr_add_status, rc); 14396 status = -ENXIO; 14397 } 14398 mempool_free(mbox, phba->mbox_mem_pool); 14399 return status; 14400 } 14401 14402 /** 14403 * lpfc_eq_create - Create an Event Queue on the HBA 14404 * @phba: HBA structure that indicates port to create a queue on. 14405 * @eq: The queue structure to use to create the event queue. 14406 * @imax: The maximum interrupt per second limit. 14407 * 14408 * This function creates an event queue, as detailed in @eq, on a port, 14409 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 14410 * 14411 * The @phba struct is used to send mailbox command to HBA. The @eq struct 14412 * is used to get the entry count and entry size that are necessary to 14413 * determine the number of pages to allocate and use for this queue. This 14414 * function will send the EQ_CREATE mailbox command to the HBA to setup the 14415 * event queue. This function is asynchronous and will wait for the mailbox 14416 * command to finish before continuing. 14417 * 14418 * On success this function will return a zero. If unable to allocate enough 14419 * memory this function will return -ENOMEM. If the queue create mailbox command 14420 * fails this function will return -ENXIO. 14421 **/ 14422 int 14423 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 14424 { 14425 struct lpfc_mbx_eq_create *eq_create; 14426 LPFC_MBOXQ_t *mbox; 14427 int rc, length, status = 0; 14428 struct lpfc_dmabuf *dmabuf; 14429 uint32_t shdr_status, shdr_add_status; 14430 union lpfc_sli4_cfg_shdr *shdr; 14431 uint16_t dmult; 14432 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14433 14434 /* sanity check on queue memory */ 14435 if (!eq) 14436 return -ENODEV; 14437 if (!phba->sli4_hba.pc_sli4_params.supported) 14438 hw_page_size = SLI4_PAGE_SIZE; 14439 14440 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14441 if (!mbox) 14442 return -ENOMEM; 14443 length = (sizeof(struct lpfc_mbx_eq_create) - 14444 sizeof(struct lpfc_sli4_cfg_mhdr)); 14445 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14446 LPFC_MBOX_OPCODE_EQ_CREATE, 14447 length, LPFC_SLI4_MBX_EMBED); 14448 eq_create = &mbox->u.mqe.un.eq_create; 14449 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 14450 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 14451 eq->page_count); 14452 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 14453 LPFC_EQE_SIZE); 14454 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 14455 14456 /* Use version 2 of CREATE_EQ if eqav is set */ 14457 if (phba->sli4_hba.pc_sli4_params.eqav) { 14458 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14459 LPFC_Q_CREATE_VERSION_2); 14460 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 14461 phba->sli4_hba.pc_sli4_params.eqav); 14462 } 14463 14464 /* don't setup delay multiplier using EQ_CREATE */ 14465 dmult = 0; 14466 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 14467 dmult); 14468 switch (eq->entry_count) { 14469 default: 14470 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14471 "0360 Unsupported EQ count. (%d)\n", 14472 eq->entry_count); 14473 if (eq->entry_count < 256) 14474 return -EINVAL; 14475 /* otherwise default to smallest count (drop through) */ 14476 case 256: 14477 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14478 LPFC_EQ_CNT_256); 14479 break; 14480 case 512: 14481 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14482 LPFC_EQ_CNT_512); 14483 break; 14484 case 1024: 14485 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14486 LPFC_EQ_CNT_1024); 14487 break; 14488 case 2048: 14489 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14490 LPFC_EQ_CNT_2048); 14491 break; 14492 case 4096: 14493 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14494 LPFC_EQ_CNT_4096); 14495 break; 14496 } 14497 list_for_each_entry(dmabuf, &eq->page_list, list) { 14498 memset(dmabuf->virt, 0, hw_page_size); 14499 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14500 putPaddrLow(dmabuf->phys); 14501 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14502 putPaddrHigh(dmabuf->phys); 14503 } 14504 mbox->vport = phba->pport; 14505 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14506 mbox->context1 = NULL; 14507 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14508 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14509 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14510 if (shdr_status || shdr_add_status || rc) { 14511 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14512 "2500 EQ_CREATE mailbox failed with " 14513 "status x%x add_status x%x, mbx status x%x\n", 14514 shdr_status, shdr_add_status, rc); 14515 status = -ENXIO; 14516 } 14517 eq->type = LPFC_EQ; 14518 eq->subtype = LPFC_NONE; 14519 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 14520 if (eq->queue_id == 0xFFFF) 14521 status = -ENXIO; 14522 eq->host_index = 0; 14523 eq->hba_index = 0; 14524 eq->entry_repost = LPFC_EQ_REPOST; 14525 14526 mempool_free(mbox, phba->mbox_mem_pool); 14527 return status; 14528 } 14529 14530 /** 14531 * lpfc_cq_create - Create a Completion Queue on the HBA 14532 * @phba: HBA structure that indicates port to create a queue on. 14533 * @cq: The queue structure to use to create the completion queue. 14534 * @eq: The event queue to bind this completion queue to. 14535 * 14536 * This function creates a completion queue, as detailed in @wq, on a port, 14537 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 14538 * 14539 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14540 * is used to get the entry count and entry size that are necessary to 14541 * determine the number of pages to allocate and use for this queue. The @eq 14542 * is used to indicate which event queue to bind this completion queue to. This 14543 * function will send the CQ_CREATE mailbox command to the HBA to setup the 14544 * completion queue. This function is asynchronous and will wait for the mailbox 14545 * command to finish before continuing. 14546 * 14547 * On success this function will return a zero. If unable to allocate enough 14548 * memory this function will return -ENOMEM. If the queue create mailbox command 14549 * fails this function will return -ENXIO. 14550 **/ 14551 int 14552 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 14553 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 14554 { 14555 struct lpfc_mbx_cq_create *cq_create; 14556 struct lpfc_dmabuf *dmabuf; 14557 LPFC_MBOXQ_t *mbox; 14558 int rc, length, status = 0; 14559 uint32_t shdr_status, shdr_add_status; 14560 union lpfc_sli4_cfg_shdr *shdr; 14561 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14562 14563 /* sanity check on queue memory */ 14564 if (!cq || !eq) 14565 return -ENODEV; 14566 if (!phba->sli4_hba.pc_sli4_params.supported) 14567 hw_page_size = cq->page_size; 14568 14569 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14570 if (!mbox) 14571 return -ENOMEM; 14572 length = (sizeof(struct lpfc_mbx_cq_create) - 14573 sizeof(struct lpfc_sli4_cfg_mhdr)); 14574 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14575 LPFC_MBOX_OPCODE_CQ_CREATE, 14576 length, LPFC_SLI4_MBX_EMBED); 14577 cq_create = &mbox->u.mqe.un.cq_create; 14578 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 14579 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 14580 cq->page_count); 14581 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 14582 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 14583 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14584 phba->sli4_hba.pc_sli4_params.cqv); 14585 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 14586 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 14587 (cq->page_size / SLI4_PAGE_SIZE)); 14588 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 14589 eq->queue_id); 14590 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 14591 phba->sli4_hba.pc_sli4_params.cqav); 14592 } else { 14593 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 14594 eq->queue_id); 14595 } 14596 switch (cq->entry_count) { 14597 case 2048: 14598 case 4096: 14599 if (phba->sli4_hba.pc_sli4_params.cqv == 14600 LPFC_Q_CREATE_VERSION_2) { 14601 cq_create->u.request.context.lpfc_cq_context_count = 14602 cq->entry_count; 14603 bf_set(lpfc_cq_context_count, 14604 &cq_create->u.request.context, 14605 LPFC_CQ_CNT_WORD7); 14606 break; 14607 } 14608 /* Fall Thru */ 14609 default: 14610 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14611 "0361 Unsupported CQ count: " 14612 "entry cnt %d sz %d pg cnt %d\n", 14613 cq->entry_count, cq->entry_size, 14614 cq->page_count); 14615 if (cq->entry_count < 256) { 14616 status = -EINVAL; 14617 goto out; 14618 } 14619 /* otherwise default to smallest count (drop through) */ 14620 case 256: 14621 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14622 LPFC_CQ_CNT_256); 14623 break; 14624 case 512: 14625 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14626 LPFC_CQ_CNT_512); 14627 break; 14628 case 1024: 14629 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14630 LPFC_CQ_CNT_1024); 14631 break; 14632 } 14633 list_for_each_entry(dmabuf, &cq->page_list, list) { 14634 memset(dmabuf->virt, 0, cq->page_size); 14635 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14636 putPaddrLow(dmabuf->phys); 14637 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14638 putPaddrHigh(dmabuf->phys); 14639 } 14640 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14641 14642 /* The IOCTL status is embedded in the mailbox subheader. */ 14643 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14644 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14645 if (shdr_status || shdr_add_status || rc) { 14646 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14647 "2501 CQ_CREATE mailbox failed with " 14648 "status x%x add_status x%x, mbx status x%x\n", 14649 shdr_status, shdr_add_status, rc); 14650 status = -ENXIO; 14651 goto out; 14652 } 14653 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 14654 if (cq->queue_id == 0xFFFF) { 14655 status = -ENXIO; 14656 goto out; 14657 } 14658 /* link the cq onto the parent eq child list */ 14659 list_add_tail(&cq->list, &eq->child_list); 14660 /* Set up completion queue's type and subtype */ 14661 cq->type = type; 14662 cq->subtype = subtype; 14663 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 14664 cq->assoc_qid = eq->queue_id; 14665 cq->host_index = 0; 14666 cq->hba_index = 0; 14667 cq->entry_repost = LPFC_CQ_REPOST; 14668 14669 out: 14670 mempool_free(mbox, phba->mbox_mem_pool); 14671 return status; 14672 } 14673 14674 /** 14675 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 14676 * @phba: HBA structure that indicates port to create a queue on. 14677 * @cqp: The queue structure array to use to create the completion queues. 14678 * @eqp: The event queue array to bind these completion queues to. 14679 * 14680 * This function creates a set of completion queue, s to support MRQ 14681 * as detailed in @cqp, on a port, 14682 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 14683 * 14684 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14685 * is used to get the entry count and entry size that are necessary to 14686 * determine the number of pages to allocate and use for this queue. The @eq 14687 * is used to indicate which event queue to bind this completion queue to. This 14688 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 14689 * completion queue. This function is asynchronous and will wait for the mailbox 14690 * command to finish before continuing. 14691 * 14692 * On success this function will return a zero. If unable to allocate enough 14693 * memory this function will return -ENOMEM. If the queue create mailbox command 14694 * fails this function will return -ENXIO. 14695 **/ 14696 int 14697 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 14698 struct lpfc_queue **eqp, uint32_t type, uint32_t subtype) 14699 { 14700 struct lpfc_queue *cq; 14701 struct lpfc_queue *eq; 14702 struct lpfc_mbx_cq_create_set *cq_set; 14703 struct lpfc_dmabuf *dmabuf; 14704 LPFC_MBOXQ_t *mbox; 14705 int rc, length, alloclen, status = 0; 14706 int cnt, idx, numcq, page_idx = 0; 14707 uint32_t shdr_status, shdr_add_status; 14708 union lpfc_sli4_cfg_shdr *shdr; 14709 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14710 14711 /* sanity check on queue memory */ 14712 numcq = phba->cfg_nvmet_mrq; 14713 if (!cqp || !eqp || !numcq) 14714 return -ENODEV; 14715 14716 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14717 if (!mbox) 14718 return -ENOMEM; 14719 14720 length = sizeof(struct lpfc_mbx_cq_create_set); 14721 length += ((numcq * cqp[0]->page_count) * 14722 sizeof(struct dma_address)); 14723 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14724 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 14725 LPFC_SLI4_MBX_NEMBED); 14726 if (alloclen < length) { 14727 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14728 "3098 Allocated DMA memory size (%d) is " 14729 "less than the requested DMA memory size " 14730 "(%d)\n", alloclen, length); 14731 status = -ENOMEM; 14732 goto out; 14733 } 14734 cq_set = mbox->sge_array->addr[0]; 14735 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 14736 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 14737 14738 for (idx = 0; idx < numcq; idx++) { 14739 cq = cqp[idx]; 14740 eq = eqp[idx]; 14741 if (!cq || !eq) { 14742 status = -ENOMEM; 14743 goto out; 14744 } 14745 if (!phba->sli4_hba.pc_sli4_params.supported) 14746 hw_page_size = cq->page_size; 14747 14748 switch (idx) { 14749 case 0: 14750 bf_set(lpfc_mbx_cq_create_set_page_size, 14751 &cq_set->u.request, 14752 (hw_page_size / SLI4_PAGE_SIZE)); 14753 bf_set(lpfc_mbx_cq_create_set_num_pages, 14754 &cq_set->u.request, cq->page_count); 14755 bf_set(lpfc_mbx_cq_create_set_evt, 14756 &cq_set->u.request, 1); 14757 bf_set(lpfc_mbx_cq_create_set_valid, 14758 &cq_set->u.request, 1); 14759 bf_set(lpfc_mbx_cq_create_set_cqe_size, 14760 &cq_set->u.request, 0); 14761 bf_set(lpfc_mbx_cq_create_set_num_cq, 14762 &cq_set->u.request, numcq); 14763 bf_set(lpfc_mbx_cq_create_set_autovalid, 14764 &cq_set->u.request, 14765 phba->sli4_hba.pc_sli4_params.cqav); 14766 switch (cq->entry_count) { 14767 case 2048: 14768 case 4096: 14769 if (phba->sli4_hba.pc_sli4_params.cqv == 14770 LPFC_Q_CREATE_VERSION_2) { 14771 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14772 &cq_set->u.request, 14773 cq->entry_count); 14774 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14775 &cq_set->u.request, 14776 LPFC_CQ_CNT_WORD7); 14777 break; 14778 } 14779 /* Fall Thru */ 14780 default: 14781 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14782 "3118 Bad CQ count. (%d)\n", 14783 cq->entry_count); 14784 if (cq->entry_count < 256) { 14785 status = -EINVAL; 14786 goto out; 14787 } 14788 /* otherwise default to smallest (drop thru) */ 14789 case 256: 14790 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14791 &cq_set->u.request, LPFC_CQ_CNT_256); 14792 break; 14793 case 512: 14794 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14795 &cq_set->u.request, LPFC_CQ_CNT_512); 14796 break; 14797 case 1024: 14798 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14799 &cq_set->u.request, LPFC_CQ_CNT_1024); 14800 break; 14801 } 14802 bf_set(lpfc_mbx_cq_create_set_eq_id0, 14803 &cq_set->u.request, eq->queue_id); 14804 break; 14805 case 1: 14806 bf_set(lpfc_mbx_cq_create_set_eq_id1, 14807 &cq_set->u.request, eq->queue_id); 14808 break; 14809 case 2: 14810 bf_set(lpfc_mbx_cq_create_set_eq_id2, 14811 &cq_set->u.request, eq->queue_id); 14812 break; 14813 case 3: 14814 bf_set(lpfc_mbx_cq_create_set_eq_id3, 14815 &cq_set->u.request, eq->queue_id); 14816 break; 14817 case 4: 14818 bf_set(lpfc_mbx_cq_create_set_eq_id4, 14819 &cq_set->u.request, eq->queue_id); 14820 break; 14821 case 5: 14822 bf_set(lpfc_mbx_cq_create_set_eq_id5, 14823 &cq_set->u.request, eq->queue_id); 14824 break; 14825 case 6: 14826 bf_set(lpfc_mbx_cq_create_set_eq_id6, 14827 &cq_set->u.request, eq->queue_id); 14828 break; 14829 case 7: 14830 bf_set(lpfc_mbx_cq_create_set_eq_id7, 14831 &cq_set->u.request, eq->queue_id); 14832 break; 14833 case 8: 14834 bf_set(lpfc_mbx_cq_create_set_eq_id8, 14835 &cq_set->u.request, eq->queue_id); 14836 break; 14837 case 9: 14838 bf_set(lpfc_mbx_cq_create_set_eq_id9, 14839 &cq_set->u.request, eq->queue_id); 14840 break; 14841 case 10: 14842 bf_set(lpfc_mbx_cq_create_set_eq_id10, 14843 &cq_set->u.request, eq->queue_id); 14844 break; 14845 case 11: 14846 bf_set(lpfc_mbx_cq_create_set_eq_id11, 14847 &cq_set->u.request, eq->queue_id); 14848 break; 14849 case 12: 14850 bf_set(lpfc_mbx_cq_create_set_eq_id12, 14851 &cq_set->u.request, eq->queue_id); 14852 break; 14853 case 13: 14854 bf_set(lpfc_mbx_cq_create_set_eq_id13, 14855 &cq_set->u.request, eq->queue_id); 14856 break; 14857 case 14: 14858 bf_set(lpfc_mbx_cq_create_set_eq_id14, 14859 &cq_set->u.request, eq->queue_id); 14860 break; 14861 case 15: 14862 bf_set(lpfc_mbx_cq_create_set_eq_id15, 14863 &cq_set->u.request, eq->queue_id); 14864 break; 14865 } 14866 14867 /* link the cq onto the parent eq child list */ 14868 list_add_tail(&cq->list, &eq->child_list); 14869 /* Set up completion queue's type and subtype */ 14870 cq->type = type; 14871 cq->subtype = subtype; 14872 cq->assoc_qid = eq->queue_id; 14873 cq->host_index = 0; 14874 cq->hba_index = 0; 14875 cq->entry_repost = LPFC_CQ_REPOST; 14876 cq->chann = idx; 14877 14878 rc = 0; 14879 list_for_each_entry(dmabuf, &cq->page_list, list) { 14880 memset(dmabuf->virt, 0, hw_page_size); 14881 cnt = page_idx + dmabuf->buffer_tag; 14882 cq_set->u.request.page[cnt].addr_lo = 14883 putPaddrLow(dmabuf->phys); 14884 cq_set->u.request.page[cnt].addr_hi = 14885 putPaddrHigh(dmabuf->phys); 14886 rc++; 14887 } 14888 page_idx += rc; 14889 } 14890 14891 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14892 14893 /* The IOCTL status is embedded in the mailbox subheader. */ 14894 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14895 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14896 if (shdr_status || shdr_add_status || rc) { 14897 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14898 "3119 CQ_CREATE_SET mailbox failed with " 14899 "status x%x add_status x%x, mbx status x%x\n", 14900 shdr_status, shdr_add_status, rc); 14901 status = -ENXIO; 14902 goto out; 14903 } 14904 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 14905 if (rc == 0xFFFF) { 14906 status = -ENXIO; 14907 goto out; 14908 } 14909 14910 for (idx = 0; idx < numcq; idx++) { 14911 cq = cqp[idx]; 14912 cq->queue_id = rc + idx; 14913 } 14914 14915 out: 14916 lpfc_sli4_mbox_cmd_free(phba, mbox); 14917 return status; 14918 } 14919 14920 /** 14921 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 14922 * @phba: HBA structure that indicates port to create a queue on. 14923 * @mq: The queue structure to use to create the mailbox queue. 14924 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 14925 * @cq: The completion queue to associate with this cq. 14926 * 14927 * This function provides failback (fb) functionality when the 14928 * mq_create_ext fails on older FW generations. It's purpose is identical 14929 * to mq_create_ext otherwise. 14930 * 14931 * This routine cannot fail as all attributes were previously accessed and 14932 * initialized in mq_create_ext. 14933 **/ 14934 static void 14935 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 14936 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 14937 { 14938 struct lpfc_mbx_mq_create *mq_create; 14939 struct lpfc_dmabuf *dmabuf; 14940 int length; 14941 14942 length = (sizeof(struct lpfc_mbx_mq_create) - 14943 sizeof(struct lpfc_sli4_cfg_mhdr)); 14944 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14945 LPFC_MBOX_OPCODE_MQ_CREATE, 14946 length, LPFC_SLI4_MBX_EMBED); 14947 mq_create = &mbox->u.mqe.un.mq_create; 14948 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 14949 mq->page_count); 14950 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 14951 cq->queue_id); 14952 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 14953 switch (mq->entry_count) { 14954 case 16: 14955 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14956 LPFC_MQ_RING_SIZE_16); 14957 break; 14958 case 32: 14959 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14960 LPFC_MQ_RING_SIZE_32); 14961 break; 14962 case 64: 14963 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14964 LPFC_MQ_RING_SIZE_64); 14965 break; 14966 case 128: 14967 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14968 LPFC_MQ_RING_SIZE_128); 14969 break; 14970 } 14971 list_for_each_entry(dmabuf, &mq->page_list, list) { 14972 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14973 putPaddrLow(dmabuf->phys); 14974 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14975 putPaddrHigh(dmabuf->phys); 14976 } 14977 } 14978 14979 /** 14980 * lpfc_mq_create - Create a mailbox Queue on the HBA 14981 * @phba: HBA structure that indicates port to create a queue on. 14982 * @mq: The queue structure to use to create the mailbox queue. 14983 * @cq: The completion queue to associate with this cq. 14984 * @subtype: The queue's subtype. 14985 * 14986 * This function creates a mailbox queue, as detailed in @mq, on a port, 14987 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 14988 * 14989 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14990 * is used to get the entry count and entry size that are necessary to 14991 * determine the number of pages to allocate and use for this queue. This 14992 * function will send the MQ_CREATE mailbox command to the HBA to setup the 14993 * mailbox queue. This function is asynchronous and will wait for the mailbox 14994 * command to finish before continuing. 14995 * 14996 * On success this function will return a zero. If unable to allocate enough 14997 * memory this function will return -ENOMEM. If the queue create mailbox command 14998 * fails this function will return -ENXIO. 14999 **/ 15000 int32_t 15001 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 15002 struct lpfc_queue *cq, uint32_t subtype) 15003 { 15004 struct lpfc_mbx_mq_create *mq_create; 15005 struct lpfc_mbx_mq_create_ext *mq_create_ext; 15006 struct lpfc_dmabuf *dmabuf; 15007 LPFC_MBOXQ_t *mbox; 15008 int rc, length, status = 0; 15009 uint32_t shdr_status, shdr_add_status; 15010 union lpfc_sli4_cfg_shdr *shdr; 15011 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15012 15013 /* sanity check on queue memory */ 15014 if (!mq || !cq) 15015 return -ENODEV; 15016 if (!phba->sli4_hba.pc_sli4_params.supported) 15017 hw_page_size = SLI4_PAGE_SIZE; 15018 15019 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15020 if (!mbox) 15021 return -ENOMEM; 15022 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 15023 sizeof(struct lpfc_sli4_cfg_mhdr)); 15024 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15025 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 15026 length, LPFC_SLI4_MBX_EMBED); 15027 15028 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 15029 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 15030 bf_set(lpfc_mbx_mq_create_ext_num_pages, 15031 &mq_create_ext->u.request, mq->page_count); 15032 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 15033 &mq_create_ext->u.request, 1); 15034 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 15035 &mq_create_ext->u.request, 1); 15036 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 15037 &mq_create_ext->u.request, 1); 15038 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 15039 &mq_create_ext->u.request, 1); 15040 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 15041 &mq_create_ext->u.request, 1); 15042 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 15043 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15044 phba->sli4_hba.pc_sli4_params.mqv); 15045 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 15046 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 15047 cq->queue_id); 15048 else 15049 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 15050 cq->queue_id); 15051 switch (mq->entry_count) { 15052 default: 15053 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15054 "0362 Unsupported MQ count. (%d)\n", 15055 mq->entry_count); 15056 if (mq->entry_count < 16) { 15057 status = -EINVAL; 15058 goto out; 15059 } 15060 /* otherwise default to smallest count (drop through) */ 15061 case 16: 15062 bf_set(lpfc_mq_context_ring_size, 15063 &mq_create_ext->u.request.context, 15064 LPFC_MQ_RING_SIZE_16); 15065 break; 15066 case 32: 15067 bf_set(lpfc_mq_context_ring_size, 15068 &mq_create_ext->u.request.context, 15069 LPFC_MQ_RING_SIZE_32); 15070 break; 15071 case 64: 15072 bf_set(lpfc_mq_context_ring_size, 15073 &mq_create_ext->u.request.context, 15074 LPFC_MQ_RING_SIZE_64); 15075 break; 15076 case 128: 15077 bf_set(lpfc_mq_context_ring_size, 15078 &mq_create_ext->u.request.context, 15079 LPFC_MQ_RING_SIZE_128); 15080 break; 15081 } 15082 list_for_each_entry(dmabuf, &mq->page_list, list) { 15083 memset(dmabuf->virt, 0, hw_page_size); 15084 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 15085 putPaddrLow(dmabuf->phys); 15086 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 15087 putPaddrHigh(dmabuf->phys); 15088 } 15089 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15090 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15091 &mq_create_ext->u.response); 15092 if (rc != MBX_SUCCESS) { 15093 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15094 "2795 MQ_CREATE_EXT failed with " 15095 "status x%x. Failback to MQ_CREATE.\n", 15096 rc); 15097 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 15098 mq_create = &mbox->u.mqe.un.mq_create; 15099 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15100 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 15101 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15102 &mq_create->u.response); 15103 } 15104 15105 /* The IOCTL status is embedded in the mailbox subheader. */ 15106 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15107 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15108 if (shdr_status || shdr_add_status || rc) { 15109 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15110 "2502 MQ_CREATE mailbox failed with " 15111 "status x%x add_status x%x, mbx status x%x\n", 15112 shdr_status, shdr_add_status, rc); 15113 status = -ENXIO; 15114 goto out; 15115 } 15116 if (mq->queue_id == 0xFFFF) { 15117 status = -ENXIO; 15118 goto out; 15119 } 15120 mq->type = LPFC_MQ; 15121 mq->assoc_qid = cq->queue_id; 15122 mq->subtype = subtype; 15123 mq->host_index = 0; 15124 mq->hba_index = 0; 15125 mq->entry_repost = LPFC_MQ_REPOST; 15126 15127 /* link the mq onto the parent cq child list */ 15128 list_add_tail(&mq->list, &cq->child_list); 15129 out: 15130 mempool_free(mbox, phba->mbox_mem_pool); 15131 return status; 15132 } 15133 15134 /** 15135 * lpfc_wq_create - Create a Work Queue on the HBA 15136 * @phba: HBA structure that indicates port to create a queue on. 15137 * @wq: The queue structure to use to create the work queue. 15138 * @cq: The completion queue to bind this work queue to. 15139 * @subtype: The subtype of the work queue indicating its functionality. 15140 * 15141 * This function creates a work queue, as detailed in @wq, on a port, described 15142 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 15143 * 15144 * The @phba struct is used to send mailbox command to HBA. The @wq struct 15145 * is used to get the entry count and entry size that are necessary to 15146 * determine the number of pages to allocate and use for this queue. The @cq 15147 * is used to indicate which completion queue to bind this work queue to. This 15148 * function will send the WQ_CREATE mailbox command to the HBA to setup the 15149 * work queue. This function is asynchronous and will wait for the mailbox 15150 * command to finish before continuing. 15151 * 15152 * On success this function will return a zero. If unable to allocate enough 15153 * memory this function will return -ENOMEM. If the queue create mailbox command 15154 * fails this function will return -ENXIO. 15155 **/ 15156 int 15157 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 15158 struct lpfc_queue *cq, uint32_t subtype) 15159 { 15160 struct lpfc_mbx_wq_create *wq_create; 15161 struct lpfc_dmabuf *dmabuf; 15162 LPFC_MBOXQ_t *mbox; 15163 int rc, length, status = 0; 15164 uint32_t shdr_status, shdr_add_status; 15165 union lpfc_sli4_cfg_shdr *shdr; 15166 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15167 struct dma_address *page; 15168 void __iomem *bar_memmap_p; 15169 uint32_t db_offset; 15170 uint16_t pci_barset; 15171 uint8_t dpp_barset; 15172 uint32_t dpp_offset; 15173 unsigned long pg_addr; 15174 uint8_t wq_create_version; 15175 15176 /* sanity check on queue memory */ 15177 if (!wq || !cq) 15178 return -ENODEV; 15179 if (!phba->sli4_hba.pc_sli4_params.supported) 15180 hw_page_size = wq->page_size; 15181 15182 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15183 if (!mbox) 15184 return -ENOMEM; 15185 length = (sizeof(struct lpfc_mbx_wq_create) - 15186 sizeof(struct lpfc_sli4_cfg_mhdr)); 15187 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15188 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 15189 length, LPFC_SLI4_MBX_EMBED); 15190 wq_create = &mbox->u.mqe.un.wq_create; 15191 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 15192 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 15193 wq->page_count); 15194 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 15195 cq->queue_id); 15196 15197 /* wqv is the earliest version supported, NOT the latest */ 15198 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15199 phba->sli4_hba.pc_sli4_params.wqv); 15200 15201 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 15202 (wq->page_size > SLI4_PAGE_SIZE)) 15203 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15204 else 15205 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15206 15207 15208 if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) 15209 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15210 else 15211 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15212 15213 switch (wq_create_version) { 15214 case LPFC_Q_CREATE_VERSION_1: 15215 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 15216 wq->entry_count); 15217 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15218 LPFC_Q_CREATE_VERSION_1); 15219 15220 switch (wq->entry_size) { 15221 default: 15222 case 64: 15223 bf_set(lpfc_mbx_wq_create_wqe_size, 15224 &wq_create->u.request_1, 15225 LPFC_WQ_WQE_SIZE_64); 15226 break; 15227 case 128: 15228 bf_set(lpfc_mbx_wq_create_wqe_size, 15229 &wq_create->u.request_1, 15230 LPFC_WQ_WQE_SIZE_128); 15231 break; 15232 } 15233 /* Request DPP by default */ 15234 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 15235 bf_set(lpfc_mbx_wq_create_page_size, 15236 &wq_create->u.request_1, 15237 (wq->page_size / SLI4_PAGE_SIZE)); 15238 page = wq_create->u.request_1.page; 15239 break; 15240 default: 15241 page = wq_create->u.request.page; 15242 break; 15243 } 15244 15245 list_for_each_entry(dmabuf, &wq->page_list, list) { 15246 memset(dmabuf->virt, 0, hw_page_size); 15247 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 15248 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 15249 } 15250 15251 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15252 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 15253 15254 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15255 /* The IOCTL status is embedded in the mailbox subheader. */ 15256 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15257 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15258 if (shdr_status || shdr_add_status || rc) { 15259 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15260 "2503 WQ_CREATE mailbox failed with " 15261 "status x%x add_status x%x, mbx status x%x\n", 15262 shdr_status, shdr_add_status, rc); 15263 status = -ENXIO; 15264 goto out; 15265 } 15266 15267 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 15268 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 15269 &wq_create->u.response); 15270 else 15271 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 15272 &wq_create->u.response_1); 15273 15274 if (wq->queue_id == 0xFFFF) { 15275 status = -ENXIO; 15276 goto out; 15277 } 15278 15279 wq->db_format = LPFC_DB_LIST_FORMAT; 15280 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 15281 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15282 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 15283 &wq_create->u.response); 15284 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 15285 (wq->db_format != LPFC_DB_RING_FORMAT)) { 15286 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15287 "3265 WQ[%d] doorbell format " 15288 "not supported: x%x\n", 15289 wq->queue_id, wq->db_format); 15290 status = -EINVAL; 15291 goto out; 15292 } 15293 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 15294 &wq_create->u.response); 15295 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15296 pci_barset); 15297 if (!bar_memmap_p) { 15298 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15299 "3263 WQ[%d] failed to memmap " 15300 "pci barset:x%x\n", 15301 wq->queue_id, pci_barset); 15302 status = -ENOMEM; 15303 goto out; 15304 } 15305 db_offset = wq_create->u.response.doorbell_offset; 15306 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 15307 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 15308 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15309 "3252 WQ[%d] doorbell offset " 15310 "not supported: x%x\n", 15311 wq->queue_id, db_offset); 15312 status = -EINVAL; 15313 goto out; 15314 } 15315 wq->db_regaddr = bar_memmap_p + db_offset; 15316 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15317 "3264 WQ[%d]: barset:x%x, offset:x%x, " 15318 "format:x%x\n", wq->queue_id, 15319 pci_barset, db_offset, wq->db_format); 15320 } else 15321 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15322 } else { 15323 /* Check if DPP was honored by the firmware */ 15324 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 15325 &wq_create->u.response_1); 15326 if (wq->dpp_enable) { 15327 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 15328 &wq_create->u.response_1); 15329 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15330 pci_barset); 15331 if (!bar_memmap_p) { 15332 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15333 "3267 WQ[%d] failed to memmap " 15334 "pci barset:x%x\n", 15335 wq->queue_id, pci_barset); 15336 status = -ENOMEM; 15337 goto out; 15338 } 15339 db_offset = wq_create->u.response_1.doorbell_offset; 15340 wq->db_regaddr = bar_memmap_p + db_offset; 15341 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 15342 &wq_create->u.response_1); 15343 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 15344 &wq_create->u.response_1); 15345 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15346 dpp_barset); 15347 if (!bar_memmap_p) { 15348 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15349 "3268 WQ[%d] failed to memmap " 15350 "pci barset:x%x\n", 15351 wq->queue_id, dpp_barset); 15352 status = -ENOMEM; 15353 goto out; 15354 } 15355 dpp_offset = wq_create->u.response_1.dpp_offset; 15356 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 15357 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15358 "3271 WQ[%d]: barset:x%x, offset:x%x, " 15359 "dpp_id:x%x dpp_barset:x%x " 15360 "dpp_offset:x%x\n", 15361 wq->queue_id, pci_barset, db_offset, 15362 wq->dpp_id, dpp_barset, dpp_offset); 15363 15364 /* Enable combined writes for DPP aperture */ 15365 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 15366 #ifdef CONFIG_X86 15367 rc = set_memory_wc(pg_addr, 1); 15368 if (rc) { 15369 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15370 "3272 Cannot setup Combined " 15371 "Write on WQ[%d] - disable DPP\n", 15372 wq->queue_id); 15373 phba->cfg_enable_dpp = 0; 15374 } 15375 #else 15376 phba->cfg_enable_dpp = 0; 15377 #endif 15378 } else 15379 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15380 } 15381 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 15382 if (wq->pring == NULL) { 15383 status = -ENOMEM; 15384 goto out; 15385 } 15386 wq->type = LPFC_WQ; 15387 wq->assoc_qid = cq->queue_id; 15388 wq->subtype = subtype; 15389 wq->host_index = 0; 15390 wq->hba_index = 0; 15391 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL; 15392 15393 /* link the wq onto the parent cq child list */ 15394 list_add_tail(&wq->list, &cq->child_list); 15395 out: 15396 mempool_free(mbox, phba->mbox_mem_pool); 15397 return status; 15398 } 15399 15400 /** 15401 * lpfc_rq_create - Create a Receive Queue on the HBA 15402 * @phba: HBA structure that indicates port to create a queue on. 15403 * @hrq: The queue structure to use to create the header receive queue. 15404 * @drq: The queue structure to use to create the data receive queue. 15405 * @cq: The completion queue to bind this work queue to. 15406 * 15407 * This function creates a receive buffer queue pair , as detailed in @hrq and 15408 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 15409 * to the HBA. 15410 * 15411 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 15412 * struct is used to get the entry count that is necessary to determine the 15413 * number of pages to use for this queue. The @cq is used to indicate which 15414 * completion queue to bind received buffers that are posted to these queues to. 15415 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 15416 * receive queue pair. This function is asynchronous and will wait for the 15417 * mailbox command to finish before continuing. 15418 * 15419 * On success this function will return a zero. If unable to allocate enough 15420 * memory this function will return -ENOMEM. If the queue create mailbox command 15421 * fails this function will return -ENXIO. 15422 **/ 15423 int 15424 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 15425 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 15426 { 15427 struct lpfc_mbx_rq_create *rq_create; 15428 struct lpfc_dmabuf *dmabuf; 15429 LPFC_MBOXQ_t *mbox; 15430 int rc, length, status = 0; 15431 uint32_t shdr_status, shdr_add_status; 15432 union lpfc_sli4_cfg_shdr *shdr; 15433 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15434 void __iomem *bar_memmap_p; 15435 uint32_t db_offset; 15436 uint16_t pci_barset; 15437 15438 /* sanity check on queue memory */ 15439 if (!hrq || !drq || !cq) 15440 return -ENODEV; 15441 if (!phba->sli4_hba.pc_sli4_params.supported) 15442 hw_page_size = SLI4_PAGE_SIZE; 15443 15444 if (hrq->entry_count != drq->entry_count) 15445 return -EINVAL; 15446 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15447 if (!mbox) 15448 return -ENOMEM; 15449 length = (sizeof(struct lpfc_mbx_rq_create) - 15450 sizeof(struct lpfc_sli4_cfg_mhdr)); 15451 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15452 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15453 length, LPFC_SLI4_MBX_EMBED); 15454 rq_create = &mbox->u.mqe.un.rq_create; 15455 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 15456 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15457 phba->sli4_hba.pc_sli4_params.rqv); 15458 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15459 bf_set(lpfc_rq_context_rqe_count_1, 15460 &rq_create->u.request.context, 15461 hrq->entry_count); 15462 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 15463 bf_set(lpfc_rq_context_rqe_size, 15464 &rq_create->u.request.context, 15465 LPFC_RQE_SIZE_8); 15466 bf_set(lpfc_rq_context_page_size, 15467 &rq_create->u.request.context, 15468 LPFC_RQ_PAGE_SIZE_4096); 15469 } else { 15470 switch (hrq->entry_count) { 15471 default: 15472 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15473 "2535 Unsupported RQ count. (%d)\n", 15474 hrq->entry_count); 15475 if (hrq->entry_count < 512) { 15476 status = -EINVAL; 15477 goto out; 15478 } 15479 /* otherwise default to smallest count (drop through) */ 15480 case 512: 15481 bf_set(lpfc_rq_context_rqe_count, 15482 &rq_create->u.request.context, 15483 LPFC_RQ_RING_SIZE_512); 15484 break; 15485 case 1024: 15486 bf_set(lpfc_rq_context_rqe_count, 15487 &rq_create->u.request.context, 15488 LPFC_RQ_RING_SIZE_1024); 15489 break; 15490 case 2048: 15491 bf_set(lpfc_rq_context_rqe_count, 15492 &rq_create->u.request.context, 15493 LPFC_RQ_RING_SIZE_2048); 15494 break; 15495 case 4096: 15496 bf_set(lpfc_rq_context_rqe_count, 15497 &rq_create->u.request.context, 15498 LPFC_RQ_RING_SIZE_4096); 15499 break; 15500 } 15501 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 15502 LPFC_HDR_BUF_SIZE); 15503 } 15504 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 15505 cq->queue_id); 15506 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 15507 hrq->page_count); 15508 list_for_each_entry(dmabuf, &hrq->page_list, list) { 15509 memset(dmabuf->virt, 0, hw_page_size); 15510 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15511 putPaddrLow(dmabuf->phys); 15512 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15513 putPaddrHigh(dmabuf->phys); 15514 } 15515 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15516 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 15517 15518 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15519 /* The IOCTL status is embedded in the mailbox subheader. */ 15520 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15521 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15522 if (shdr_status || shdr_add_status || rc) { 15523 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15524 "2504 RQ_CREATE mailbox failed with " 15525 "status x%x add_status x%x, mbx status x%x\n", 15526 shdr_status, shdr_add_status, rc); 15527 status = -ENXIO; 15528 goto out; 15529 } 15530 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15531 if (hrq->queue_id == 0xFFFF) { 15532 status = -ENXIO; 15533 goto out; 15534 } 15535 15536 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15537 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 15538 &rq_create->u.response); 15539 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 15540 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 15541 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15542 "3262 RQ [%d] doorbell format not " 15543 "supported: x%x\n", hrq->queue_id, 15544 hrq->db_format); 15545 status = -EINVAL; 15546 goto out; 15547 } 15548 15549 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 15550 &rq_create->u.response); 15551 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 15552 if (!bar_memmap_p) { 15553 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15554 "3269 RQ[%d] failed to memmap pci " 15555 "barset:x%x\n", hrq->queue_id, 15556 pci_barset); 15557 status = -ENOMEM; 15558 goto out; 15559 } 15560 15561 db_offset = rq_create->u.response.doorbell_offset; 15562 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 15563 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 15564 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15565 "3270 RQ[%d] doorbell offset not " 15566 "supported: x%x\n", hrq->queue_id, 15567 db_offset); 15568 status = -EINVAL; 15569 goto out; 15570 } 15571 hrq->db_regaddr = bar_memmap_p + db_offset; 15572 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15573 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 15574 "format:x%x\n", hrq->queue_id, pci_barset, 15575 db_offset, hrq->db_format); 15576 } else { 15577 hrq->db_format = LPFC_DB_RING_FORMAT; 15578 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15579 } 15580 hrq->type = LPFC_HRQ; 15581 hrq->assoc_qid = cq->queue_id; 15582 hrq->subtype = subtype; 15583 hrq->host_index = 0; 15584 hrq->hba_index = 0; 15585 hrq->entry_repost = LPFC_RQ_REPOST; 15586 15587 /* now create the data queue */ 15588 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15589 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15590 length, LPFC_SLI4_MBX_EMBED); 15591 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15592 phba->sli4_hba.pc_sli4_params.rqv); 15593 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15594 bf_set(lpfc_rq_context_rqe_count_1, 15595 &rq_create->u.request.context, hrq->entry_count); 15596 if (subtype == LPFC_NVMET) 15597 rq_create->u.request.context.buffer_size = 15598 LPFC_NVMET_DATA_BUF_SIZE; 15599 else 15600 rq_create->u.request.context.buffer_size = 15601 LPFC_DATA_BUF_SIZE; 15602 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 15603 LPFC_RQE_SIZE_8); 15604 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 15605 (PAGE_SIZE/SLI4_PAGE_SIZE)); 15606 } else { 15607 switch (drq->entry_count) { 15608 default: 15609 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15610 "2536 Unsupported RQ count. (%d)\n", 15611 drq->entry_count); 15612 if (drq->entry_count < 512) { 15613 status = -EINVAL; 15614 goto out; 15615 } 15616 /* otherwise default to smallest count (drop through) */ 15617 case 512: 15618 bf_set(lpfc_rq_context_rqe_count, 15619 &rq_create->u.request.context, 15620 LPFC_RQ_RING_SIZE_512); 15621 break; 15622 case 1024: 15623 bf_set(lpfc_rq_context_rqe_count, 15624 &rq_create->u.request.context, 15625 LPFC_RQ_RING_SIZE_1024); 15626 break; 15627 case 2048: 15628 bf_set(lpfc_rq_context_rqe_count, 15629 &rq_create->u.request.context, 15630 LPFC_RQ_RING_SIZE_2048); 15631 break; 15632 case 4096: 15633 bf_set(lpfc_rq_context_rqe_count, 15634 &rq_create->u.request.context, 15635 LPFC_RQ_RING_SIZE_4096); 15636 break; 15637 } 15638 if (subtype == LPFC_NVMET) 15639 bf_set(lpfc_rq_context_buf_size, 15640 &rq_create->u.request.context, 15641 LPFC_NVMET_DATA_BUF_SIZE); 15642 else 15643 bf_set(lpfc_rq_context_buf_size, 15644 &rq_create->u.request.context, 15645 LPFC_DATA_BUF_SIZE); 15646 } 15647 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 15648 cq->queue_id); 15649 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 15650 drq->page_count); 15651 list_for_each_entry(dmabuf, &drq->page_list, list) { 15652 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15653 putPaddrLow(dmabuf->phys); 15654 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15655 putPaddrHigh(dmabuf->phys); 15656 } 15657 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15658 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 15659 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15660 /* The IOCTL status is embedded in the mailbox subheader. */ 15661 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 15662 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15663 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15664 if (shdr_status || shdr_add_status || rc) { 15665 status = -ENXIO; 15666 goto out; 15667 } 15668 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15669 if (drq->queue_id == 0xFFFF) { 15670 status = -ENXIO; 15671 goto out; 15672 } 15673 drq->type = LPFC_DRQ; 15674 drq->assoc_qid = cq->queue_id; 15675 drq->subtype = subtype; 15676 drq->host_index = 0; 15677 drq->hba_index = 0; 15678 drq->entry_repost = LPFC_RQ_REPOST; 15679 15680 /* link the header and data RQs onto the parent cq child list */ 15681 list_add_tail(&hrq->list, &cq->child_list); 15682 list_add_tail(&drq->list, &cq->child_list); 15683 15684 out: 15685 mempool_free(mbox, phba->mbox_mem_pool); 15686 return status; 15687 } 15688 15689 /** 15690 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 15691 * @phba: HBA structure that indicates port to create a queue on. 15692 * @hrqp: The queue structure array to use to create the header receive queues. 15693 * @drqp: The queue structure array to use to create the data receive queues. 15694 * @cqp: The completion queue array to bind these receive queues to. 15695 * 15696 * This function creates a receive buffer queue pair , as detailed in @hrq and 15697 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 15698 * to the HBA. 15699 * 15700 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 15701 * struct is used to get the entry count that is necessary to determine the 15702 * number of pages to use for this queue. The @cq is used to indicate which 15703 * completion queue to bind received buffers that are posted to these queues to. 15704 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 15705 * receive queue pair. This function is asynchronous and will wait for the 15706 * mailbox command to finish before continuing. 15707 * 15708 * On success this function will return a zero. If unable to allocate enough 15709 * memory this function will return -ENOMEM. If the queue create mailbox command 15710 * fails this function will return -ENXIO. 15711 **/ 15712 int 15713 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 15714 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 15715 uint32_t subtype) 15716 { 15717 struct lpfc_queue *hrq, *drq, *cq; 15718 struct lpfc_mbx_rq_create_v2 *rq_create; 15719 struct lpfc_dmabuf *dmabuf; 15720 LPFC_MBOXQ_t *mbox; 15721 int rc, length, alloclen, status = 0; 15722 int cnt, idx, numrq, page_idx = 0; 15723 uint32_t shdr_status, shdr_add_status; 15724 union lpfc_sli4_cfg_shdr *shdr; 15725 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15726 15727 numrq = phba->cfg_nvmet_mrq; 15728 /* sanity check on array memory */ 15729 if (!hrqp || !drqp || !cqp || !numrq) 15730 return -ENODEV; 15731 if (!phba->sli4_hba.pc_sli4_params.supported) 15732 hw_page_size = SLI4_PAGE_SIZE; 15733 15734 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15735 if (!mbox) 15736 return -ENOMEM; 15737 15738 length = sizeof(struct lpfc_mbx_rq_create_v2); 15739 length += ((2 * numrq * hrqp[0]->page_count) * 15740 sizeof(struct dma_address)); 15741 15742 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15743 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 15744 LPFC_SLI4_MBX_NEMBED); 15745 if (alloclen < length) { 15746 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15747 "3099 Allocated DMA memory size (%d) is " 15748 "less than the requested DMA memory size " 15749 "(%d)\n", alloclen, length); 15750 status = -ENOMEM; 15751 goto out; 15752 } 15753 15754 15755 15756 rq_create = mbox->sge_array->addr[0]; 15757 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 15758 15759 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 15760 cnt = 0; 15761 15762 for (idx = 0; idx < numrq; idx++) { 15763 hrq = hrqp[idx]; 15764 drq = drqp[idx]; 15765 cq = cqp[idx]; 15766 15767 /* sanity check on queue memory */ 15768 if (!hrq || !drq || !cq) { 15769 status = -ENODEV; 15770 goto out; 15771 } 15772 15773 if (hrq->entry_count != drq->entry_count) { 15774 status = -EINVAL; 15775 goto out; 15776 } 15777 15778 if (idx == 0) { 15779 bf_set(lpfc_mbx_rq_create_num_pages, 15780 &rq_create->u.request, 15781 hrq->page_count); 15782 bf_set(lpfc_mbx_rq_create_rq_cnt, 15783 &rq_create->u.request, (numrq * 2)); 15784 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 15785 1); 15786 bf_set(lpfc_rq_context_base_cq, 15787 &rq_create->u.request.context, 15788 cq->queue_id); 15789 bf_set(lpfc_rq_context_data_size, 15790 &rq_create->u.request.context, 15791 LPFC_NVMET_DATA_BUF_SIZE); 15792 bf_set(lpfc_rq_context_hdr_size, 15793 &rq_create->u.request.context, 15794 LPFC_HDR_BUF_SIZE); 15795 bf_set(lpfc_rq_context_rqe_count_1, 15796 &rq_create->u.request.context, 15797 hrq->entry_count); 15798 bf_set(lpfc_rq_context_rqe_size, 15799 &rq_create->u.request.context, 15800 LPFC_RQE_SIZE_8); 15801 bf_set(lpfc_rq_context_page_size, 15802 &rq_create->u.request.context, 15803 (PAGE_SIZE/SLI4_PAGE_SIZE)); 15804 } 15805 rc = 0; 15806 list_for_each_entry(dmabuf, &hrq->page_list, list) { 15807 memset(dmabuf->virt, 0, hw_page_size); 15808 cnt = page_idx + dmabuf->buffer_tag; 15809 rq_create->u.request.page[cnt].addr_lo = 15810 putPaddrLow(dmabuf->phys); 15811 rq_create->u.request.page[cnt].addr_hi = 15812 putPaddrHigh(dmabuf->phys); 15813 rc++; 15814 } 15815 page_idx += rc; 15816 15817 rc = 0; 15818 list_for_each_entry(dmabuf, &drq->page_list, list) { 15819 memset(dmabuf->virt, 0, hw_page_size); 15820 cnt = page_idx + dmabuf->buffer_tag; 15821 rq_create->u.request.page[cnt].addr_lo = 15822 putPaddrLow(dmabuf->phys); 15823 rq_create->u.request.page[cnt].addr_hi = 15824 putPaddrHigh(dmabuf->phys); 15825 rc++; 15826 } 15827 page_idx += rc; 15828 15829 hrq->db_format = LPFC_DB_RING_FORMAT; 15830 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15831 hrq->type = LPFC_HRQ; 15832 hrq->assoc_qid = cq->queue_id; 15833 hrq->subtype = subtype; 15834 hrq->host_index = 0; 15835 hrq->hba_index = 0; 15836 hrq->entry_repost = LPFC_RQ_REPOST; 15837 15838 drq->db_format = LPFC_DB_RING_FORMAT; 15839 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15840 drq->type = LPFC_DRQ; 15841 drq->assoc_qid = cq->queue_id; 15842 drq->subtype = subtype; 15843 drq->host_index = 0; 15844 drq->hba_index = 0; 15845 drq->entry_repost = LPFC_RQ_REPOST; 15846 15847 list_add_tail(&hrq->list, &cq->child_list); 15848 list_add_tail(&drq->list, &cq->child_list); 15849 } 15850 15851 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15852 /* The IOCTL status is embedded in the mailbox subheader. */ 15853 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15854 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15855 if (shdr_status || shdr_add_status || rc) { 15856 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15857 "3120 RQ_CREATE mailbox failed with " 15858 "status x%x add_status x%x, mbx status x%x\n", 15859 shdr_status, shdr_add_status, rc); 15860 status = -ENXIO; 15861 goto out; 15862 } 15863 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15864 if (rc == 0xFFFF) { 15865 status = -ENXIO; 15866 goto out; 15867 } 15868 15869 /* Initialize all RQs with associated queue id */ 15870 for (idx = 0; idx < numrq; idx++) { 15871 hrq = hrqp[idx]; 15872 hrq->queue_id = rc + (2 * idx); 15873 drq = drqp[idx]; 15874 drq->queue_id = rc + (2 * idx) + 1; 15875 } 15876 15877 out: 15878 lpfc_sli4_mbox_cmd_free(phba, mbox); 15879 return status; 15880 } 15881 15882 /** 15883 * lpfc_eq_destroy - Destroy an event Queue on the HBA 15884 * @eq: The queue structure associated with the queue to destroy. 15885 * 15886 * This function destroys a queue, as detailed in @eq by sending an mailbox 15887 * command, specific to the type of queue, to the HBA. 15888 * 15889 * The @eq struct is used to get the queue ID of the queue to destroy. 15890 * 15891 * On success this function will return a zero. If the queue destroy mailbox 15892 * command fails this function will return -ENXIO. 15893 **/ 15894 int 15895 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 15896 { 15897 LPFC_MBOXQ_t *mbox; 15898 int rc, length, status = 0; 15899 uint32_t shdr_status, shdr_add_status; 15900 union lpfc_sli4_cfg_shdr *shdr; 15901 15902 /* sanity check on queue memory */ 15903 if (!eq) 15904 return -ENODEV; 15905 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 15906 if (!mbox) 15907 return -ENOMEM; 15908 length = (sizeof(struct lpfc_mbx_eq_destroy) - 15909 sizeof(struct lpfc_sli4_cfg_mhdr)); 15910 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15911 LPFC_MBOX_OPCODE_EQ_DESTROY, 15912 length, LPFC_SLI4_MBX_EMBED); 15913 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 15914 eq->queue_id); 15915 mbox->vport = eq->phba->pport; 15916 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15917 15918 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 15919 /* The IOCTL status is embedded in the mailbox subheader. */ 15920 shdr = (union lpfc_sli4_cfg_shdr *) 15921 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 15922 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15923 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15924 if (shdr_status || shdr_add_status || rc) { 15925 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15926 "2505 EQ_DESTROY mailbox failed with " 15927 "status x%x add_status x%x, mbx status x%x\n", 15928 shdr_status, shdr_add_status, rc); 15929 status = -ENXIO; 15930 } 15931 15932 /* Remove eq from any list */ 15933 list_del_init(&eq->list); 15934 mempool_free(mbox, eq->phba->mbox_mem_pool); 15935 return status; 15936 } 15937 15938 /** 15939 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 15940 * @cq: The queue structure associated with the queue to destroy. 15941 * 15942 * This function destroys a queue, as detailed in @cq by sending an mailbox 15943 * command, specific to the type of queue, to the HBA. 15944 * 15945 * The @cq struct is used to get the queue ID of the queue to destroy. 15946 * 15947 * On success this function will return a zero. If the queue destroy mailbox 15948 * command fails this function will return -ENXIO. 15949 **/ 15950 int 15951 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 15952 { 15953 LPFC_MBOXQ_t *mbox; 15954 int rc, length, status = 0; 15955 uint32_t shdr_status, shdr_add_status; 15956 union lpfc_sli4_cfg_shdr *shdr; 15957 15958 /* sanity check on queue memory */ 15959 if (!cq) 15960 return -ENODEV; 15961 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 15962 if (!mbox) 15963 return -ENOMEM; 15964 length = (sizeof(struct lpfc_mbx_cq_destroy) - 15965 sizeof(struct lpfc_sli4_cfg_mhdr)); 15966 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15967 LPFC_MBOX_OPCODE_CQ_DESTROY, 15968 length, LPFC_SLI4_MBX_EMBED); 15969 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 15970 cq->queue_id); 15971 mbox->vport = cq->phba->pport; 15972 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15973 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 15974 /* The IOCTL status is embedded in the mailbox subheader. */ 15975 shdr = (union lpfc_sli4_cfg_shdr *) 15976 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 15977 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15978 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15979 if (shdr_status || shdr_add_status || rc) { 15980 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15981 "2506 CQ_DESTROY mailbox failed with " 15982 "status x%x add_status x%x, mbx status x%x\n", 15983 shdr_status, shdr_add_status, rc); 15984 status = -ENXIO; 15985 } 15986 /* Remove cq from any list */ 15987 list_del_init(&cq->list); 15988 mempool_free(mbox, cq->phba->mbox_mem_pool); 15989 return status; 15990 } 15991 15992 /** 15993 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 15994 * @qm: The queue structure associated with the queue to destroy. 15995 * 15996 * This function destroys a queue, as detailed in @mq by sending an mailbox 15997 * command, specific to the type of queue, to the HBA. 15998 * 15999 * The @mq struct is used to get the queue ID of the queue to destroy. 16000 * 16001 * On success this function will return a zero. If the queue destroy mailbox 16002 * command fails this function will return -ENXIO. 16003 **/ 16004 int 16005 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 16006 { 16007 LPFC_MBOXQ_t *mbox; 16008 int rc, length, status = 0; 16009 uint32_t shdr_status, shdr_add_status; 16010 union lpfc_sli4_cfg_shdr *shdr; 16011 16012 /* sanity check on queue memory */ 16013 if (!mq) 16014 return -ENODEV; 16015 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 16016 if (!mbox) 16017 return -ENOMEM; 16018 length = (sizeof(struct lpfc_mbx_mq_destroy) - 16019 sizeof(struct lpfc_sli4_cfg_mhdr)); 16020 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16021 LPFC_MBOX_OPCODE_MQ_DESTROY, 16022 length, LPFC_SLI4_MBX_EMBED); 16023 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 16024 mq->queue_id); 16025 mbox->vport = mq->phba->pport; 16026 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16027 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 16028 /* The IOCTL status is embedded in the mailbox subheader. */ 16029 shdr = (union lpfc_sli4_cfg_shdr *) 16030 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 16031 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16032 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16033 if (shdr_status || shdr_add_status || rc) { 16034 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16035 "2507 MQ_DESTROY mailbox failed with " 16036 "status x%x add_status x%x, mbx status x%x\n", 16037 shdr_status, shdr_add_status, rc); 16038 status = -ENXIO; 16039 } 16040 /* Remove mq from any list */ 16041 list_del_init(&mq->list); 16042 mempool_free(mbox, mq->phba->mbox_mem_pool); 16043 return status; 16044 } 16045 16046 /** 16047 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 16048 * @wq: The queue structure associated with the queue to destroy. 16049 * 16050 * This function destroys a queue, as detailed in @wq by sending an mailbox 16051 * command, specific to the type of queue, to the HBA. 16052 * 16053 * The @wq struct is used to get the queue ID of the queue to destroy. 16054 * 16055 * On success this function will return a zero. If the queue destroy mailbox 16056 * command fails this function will return -ENXIO. 16057 **/ 16058 int 16059 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 16060 { 16061 LPFC_MBOXQ_t *mbox; 16062 int rc, length, status = 0; 16063 uint32_t shdr_status, shdr_add_status; 16064 union lpfc_sli4_cfg_shdr *shdr; 16065 16066 /* sanity check on queue memory */ 16067 if (!wq) 16068 return -ENODEV; 16069 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 16070 if (!mbox) 16071 return -ENOMEM; 16072 length = (sizeof(struct lpfc_mbx_wq_destroy) - 16073 sizeof(struct lpfc_sli4_cfg_mhdr)); 16074 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16075 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 16076 length, LPFC_SLI4_MBX_EMBED); 16077 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 16078 wq->queue_id); 16079 mbox->vport = wq->phba->pport; 16080 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16081 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 16082 shdr = (union lpfc_sli4_cfg_shdr *) 16083 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 16084 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16085 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16086 if (shdr_status || shdr_add_status || rc) { 16087 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16088 "2508 WQ_DESTROY mailbox failed with " 16089 "status x%x add_status x%x, mbx status x%x\n", 16090 shdr_status, shdr_add_status, rc); 16091 status = -ENXIO; 16092 } 16093 /* Remove wq from any list */ 16094 list_del_init(&wq->list); 16095 kfree(wq->pring); 16096 wq->pring = NULL; 16097 mempool_free(mbox, wq->phba->mbox_mem_pool); 16098 return status; 16099 } 16100 16101 /** 16102 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 16103 * @rq: The queue structure associated with the queue to destroy. 16104 * 16105 * This function destroys a queue, as detailed in @rq by sending an mailbox 16106 * command, specific to the type of queue, to the HBA. 16107 * 16108 * The @rq struct is used to get the queue ID of the queue to destroy. 16109 * 16110 * On success this function will return a zero. If the queue destroy mailbox 16111 * command fails this function will return -ENXIO. 16112 **/ 16113 int 16114 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16115 struct lpfc_queue *drq) 16116 { 16117 LPFC_MBOXQ_t *mbox; 16118 int rc, length, status = 0; 16119 uint32_t shdr_status, shdr_add_status; 16120 union lpfc_sli4_cfg_shdr *shdr; 16121 16122 /* sanity check on queue memory */ 16123 if (!hrq || !drq) 16124 return -ENODEV; 16125 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 16126 if (!mbox) 16127 return -ENOMEM; 16128 length = (sizeof(struct lpfc_mbx_rq_destroy) - 16129 sizeof(struct lpfc_sli4_cfg_mhdr)); 16130 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16131 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 16132 length, LPFC_SLI4_MBX_EMBED); 16133 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16134 hrq->queue_id); 16135 mbox->vport = hrq->phba->pport; 16136 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16137 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 16138 /* The IOCTL status is embedded in the mailbox subheader. */ 16139 shdr = (union lpfc_sli4_cfg_shdr *) 16140 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16141 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16142 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16143 if (shdr_status || shdr_add_status || rc) { 16144 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16145 "2509 RQ_DESTROY mailbox failed with " 16146 "status x%x add_status x%x, mbx status x%x\n", 16147 shdr_status, shdr_add_status, rc); 16148 if (rc != MBX_TIMEOUT) 16149 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16150 return -ENXIO; 16151 } 16152 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16153 drq->queue_id); 16154 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 16155 shdr = (union lpfc_sli4_cfg_shdr *) 16156 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16157 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16158 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16159 if (shdr_status || shdr_add_status || rc) { 16160 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16161 "2510 RQ_DESTROY mailbox failed with " 16162 "status x%x add_status x%x, mbx status x%x\n", 16163 shdr_status, shdr_add_status, rc); 16164 status = -ENXIO; 16165 } 16166 list_del_init(&hrq->list); 16167 list_del_init(&drq->list); 16168 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16169 return status; 16170 } 16171 16172 /** 16173 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 16174 * @phba: The virtual port for which this call being executed. 16175 * @pdma_phys_addr0: Physical address of the 1st SGL page. 16176 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 16177 * @xritag: the xritag that ties this io to the SGL pages. 16178 * 16179 * This routine will post the sgl pages for the IO that has the xritag 16180 * that is in the iocbq structure. The xritag is assigned during iocbq 16181 * creation and persists for as long as the driver is loaded. 16182 * if the caller has fewer than 256 scatter gather segments to map then 16183 * pdma_phys_addr1 should be 0. 16184 * If the caller needs to map more than 256 scatter gather segment then 16185 * pdma_phys_addr1 should be a valid physical address. 16186 * physical address for SGLs must be 64 byte aligned. 16187 * If you are going to map 2 SGL's then the first one must have 256 entries 16188 * the second sgl can have between 1 and 256 entries. 16189 * 16190 * Return codes: 16191 * 0 - Success 16192 * -ENXIO, -ENOMEM - Failure 16193 **/ 16194 int 16195 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 16196 dma_addr_t pdma_phys_addr0, 16197 dma_addr_t pdma_phys_addr1, 16198 uint16_t xritag) 16199 { 16200 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 16201 LPFC_MBOXQ_t *mbox; 16202 int rc; 16203 uint32_t shdr_status, shdr_add_status; 16204 uint32_t mbox_tmo; 16205 union lpfc_sli4_cfg_shdr *shdr; 16206 16207 if (xritag == NO_XRI) { 16208 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16209 "0364 Invalid param:\n"); 16210 return -EINVAL; 16211 } 16212 16213 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16214 if (!mbox) 16215 return -ENOMEM; 16216 16217 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16218 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 16219 sizeof(struct lpfc_mbx_post_sgl_pages) - 16220 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 16221 16222 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 16223 &mbox->u.mqe.un.post_sgl_pages; 16224 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 16225 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 16226 16227 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 16228 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 16229 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 16230 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 16231 16232 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 16233 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 16234 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 16235 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 16236 if (!phba->sli4_hba.intr_enable) 16237 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16238 else { 16239 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16240 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16241 } 16242 /* The IOCTL status is embedded in the mailbox subheader. */ 16243 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 16244 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16245 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16246 if (rc != MBX_TIMEOUT) 16247 mempool_free(mbox, phba->mbox_mem_pool); 16248 if (shdr_status || shdr_add_status || rc) { 16249 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16250 "2511 POST_SGL mailbox failed with " 16251 "status x%x add_status x%x, mbx status x%x\n", 16252 shdr_status, shdr_add_status, rc); 16253 } 16254 return 0; 16255 } 16256 16257 /** 16258 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 16259 * @phba: pointer to lpfc hba data structure. 16260 * 16261 * This routine is invoked to post rpi header templates to the 16262 * HBA consistent with the SLI-4 interface spec. This routine 16263 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 16264 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 16265 * 16266 * Returns 16267 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 16268 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 16269 **/ 16270 static uint16_t 16271 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 16272 { 16273 unsigned long xri; 16274 16275 /* 16276 * Fetch the next logical xri. Because this index is logical, 16277 * the driver starts at 0 each time. 16278 */ 16279 spin_lock_irq(&phba->hbalock); 16280 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 16281 phba->sli4_hba.max_cfg_param.max_xri, 0); 16282 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 16283 spin_unlock_irq(&phba->hbalock); 16284 return NO_XRI; 16285 } else { 16286 set_bit(xri, phba->sli4_hba.xri_bmask); 16287 phba->sli4_hba.max_cfg_param.xri_used++; 16288 } 16289 spin_unlock_irq(&phba->hbalock); 16290 return xri; 16291 } 16292 16293 /** 16294 * lpfc_sli4_free_xri - Release an xri for reuse. 16295 * @phba: pointer to lpfc hba data structure. 16296 * 16297 * This routine is invoked to release an xri to the pool of 16298 * available rpis maintained by the driver. 16299 **/ 16300 static void 16301 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16302 { 16303 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 16304 phba->sli4_hba.max_cfg_param.xri_used--; 16305 } 16306 } 16307 16308 /** 16309 * lpfc_sli4_free_xri - Release an xri for reuse. 16310 * @phba: pointer to lpfc hba data structure. 16311 * 16312 * This routine is invoked to release an xri to the pool of 16313 * available rpis maintained by the driver. 16314 **/ 16315 void 16316 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16317 { 16318 spin_lock_irq(&phba->hbalock); 16319 __lpfc_sli4_free_xri(phba, xri); 16320 spin_unlock_irq(&phba->hbalock); 16321 } 16322 16323 /** 16324 * lpfc_sli4_next_xritag - Get an xritag for the io 16325 * @phba: Pointer to HBA context object. 16326 * 16327 * This function gets an xritag for the iocb. If there is no unused xritag 16328 * it will return 0xffff. 16329 * The function returns the allocated xritag if successful, else returns zero. 16330 * Zero is not a valid xritag. 16331 * The caller is not required to hold any lock. 16332 **/ 16333 uint16_t 16334 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 16335 { 16336 uint16_t xri_index; 16337 16338 xri_index = lpfc_sli4_alloc_xri(phba); 16339 if (xri_index == NO_XRI) 16340 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16341 "2004 Failed to allocate XRI.last XRITAG is %d" 16342 " Max XRI is %d, Used XRI is %d\n", 16343 xri_index, 16344 phba->sli4_hba.max_cfg_param.max_xri, 16345 phba->sli4_hba.max_cfg_param.xri_used); 16346 return xri_index; 16347 } 16348 16349 /** 16350 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 16351 * @phba: pointer to lpfc hba data structure. 16352 * @post_sgl_list: pointer to els sgl entry list. 16353 * @count: number of els sgl entries on the list. 16354 * 16355 * This routine is invoked to post a block of driver's sgl pages to the 16356 * HBA using non-embedded mailbox command. No Lock is held. This routine 16357 * is only called when the driver is loading and after all IO has been 16358 * stopped. 16359 **/ 16360 static int 16361 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 16362 struct list_head *post_sgl_list, 16363 int post_cnt) 16364 { 16365 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 16366 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16367 struct sgl_page_pairs *sgl_pg_pairs; 16368 void *viraddr; 16369 LPFC_MBOXQ_t *mbox; 16370 uint32_t reqlen, alloclen, pg_pairs; 16371 uint32_t mbox_tmo; 16372 uint16_t xritag_start = 0; 16373 int rc = 0; 16374 uint32_t shdr_status, shdr_add_status; 16375 union lpfc_sli4_cfg_shdr *shdr; 16376 16377 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 16378 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16379 if (reqlen > SLI4_PAGE_SIZE) { 16380 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16381 "2559 Block sgl registration required DMA " 16382 "size (%d) great than a page\n", reqlen); 16383 return -ENOMEM; 16384 } 16385 16386 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16387 if (!mbox) 16388 return -ENOMEM; 16389 16390 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16391 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16392 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 16393 LPFC_SLI4_MBX_NEMBED); 16394 16395 if (alloclen < reqlen) { 16396 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16397 "0285 Allocated DMA memory size (%d) is " 16398 "less than the requested DMA memory " 16399 "size (%d)\n", alloclen, reqlen); 16400 lpfc_sli4_mbox_cmd_free(phba, mbox); 16401 return -ENOMEM; 16402 } 16403 /* Set up the SGL pages in the non-embedded DMA pages */ 16404 viraddr = mbox->sge_array->addr[0]; 16405 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16406 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16407 16408 pg_pairs = 0; 16409 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 16410 /* Set up the sge entry */ 16411 sgl_pg_pairs->sgl_pg0_addr_lo = 16412 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 16413 sgl_pg_pairs->sgl_pg0_addr_hi = 16414 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 16415 sgl_pg_pairs->sgl_pg1_addr_lo = 16416 cpu_to_le32(putPaddrLow(0)); 16417 sgl_pg_pairs->sgl_pg1_addr_hi = 16418 cpu_to_le32(putPaddrHigh(0)); 16419 16420 /* Keep the first xritag on the list */ 16421 if (pg_pairs == 0) 16422 xritag_start = sglq_entry->sli4_xritag; 16423 sgl_pg_pairs++; 16424 pg_pairs++; 16425 } 16426 16427 /* Complete initialization and perform endian conversion. */ 16428 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16429 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 16430 sgl->word0 = cpu_to_le32(sgl->word0); 16431 16432 if (!phba->sli4_hba.intr_enable) 16433 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16434 else { 16435 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16436 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16437 } 16438 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16439 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16440 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16441 if (rc != MBX_TIMEOUT) 16442 lpfc_sli4_mbox_cmd_free(phba, mbox); 16443 if (shdr_status || shdr_add_status || rc) { 16444 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16445 "2513 POST_SGL_BLOCK mailbox command failed " 16446 "status x%x add_status x%x mbx status x%x\n", 16447 shdr_status, shdr_add_status, rc); 16448 rc = -ENXIO; 16449 } 16450 return rc; 16451 } 16452 16453 /** 16454 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware 16455 * @phba: pointer to lpfc hba data structure. 16456 * @sblist: pointer to scsi buffer list. 16457 * @count: number of scsi buffers on the list. 16458 * 16459 * This routine is invoked to post a block of @count scsi sgl pages from a 16460 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command. 16461 * No Lock is held. 16462 * 16463 **/ 16464 int 16465 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba, 16466 struct list_head *sblist, 16467 int count) 16468 { 16469 struct lpfc_scsi_buf *psb; 16470 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16471 struct sgl_page_pairs *sgl_pg_pairs; 16472 void *viraddr; 16473 LPFC_MBOXQ_t *mbox; 16474 uint32_t reqlen, alloclen, pg_pairs; 16475 uint32_t mbox_tmo; 16476 uint16_t xritag_start = 0; 16477 int rc = 0; 16478 uint32_t shdr_status, shdr_add_status; 16479 dma_addr_t pdma_phys_bpl1; 16480 union lpfc_sli4_cfg_shdr *shdr; 16481 16482 /* Calculate the requested length of the dma memory */ 16483 reqlen = count * sizeof(struct sgl_page_pairs) + 16484 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16485 if (reqlen > SLI4_PAGE_SIZE) { 16486 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 16487 "0217 Block sgl registration required DMA " 16488 "size (%d) great than a page\n", reqlen); 16489 return -ENOMEM; 16490 } 16491 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16492 if (!mbox) { 16493 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16494 "0283 Failed to allocate mbox cmd memory\n"); 16495 return -ENOMEM; 16496 } 16497 16498 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16499 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16500 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 16501 LPFC_SLI4_MBX_NEMBED); 16502 16503 if (alloclen < reqlen) { 16504 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16505 "2561 Allocated DMA memory size (%d) is " 16506 "less than the requested DMA memory " 16507 "size (%d)\n", alloclen, reqlen); 16508 lpfc_sli4_mbox_cmd_free(phba, mbox); 16509 return -ENOMEM; 16510 } 16511 16512 /* Get the first SGE entry from the non-embedded DMA memory */ 16513 viraddr = mbox->sge_array->addr[0]; 16514 16515 /* Set up the SGL pages in the non-embedded DMA pages */ 16516 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16517 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16518 16519 pg_pairs = 0; 16520 list_for_each_entry(psb, sblist, list) { 16521 /* Set up the sge entry */ 16522 sgl_pg_pairs->sgl_pg0_addr_lo = 16523 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl)); 16524 sgl_pg_pairs->sgl_pg0_addr_hi = 16525 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl)); 16526 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 16527 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE; 16528 else 16529 pdma_phys_bpl1 = 0; 16530 sgl_pg_pairs->sgl_pg1_addr_lo = 16531 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 16532 sgl_pg_pairs->sgl_pg1_addr_hi = 16533 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 16534 /* Keep the first xritag on the list */ 16535 if (pg_pairs == 0) 16536 xritag_start = psb->cur_iocbq.sli4_xritag; 16537 sgl_pg_pairs++; 16538 pg_pairs++; 16539 } 16540 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16541 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 16542 /* Perform endian conversion if necessary */ 16543 sgl->word0 = cpu_to_le32(sgl->word0); 16544 16545 if (!phba->sli4_hba.intr_enable) 16546 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16547 else { 16548 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16549 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16550 } 16551 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16552 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16553 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16554 if (rc != MBX_TIMEOUT) 16555 lpfc_sli4_mbox_cmd_free(phba, mbox); 16556 if (shdr_status || shdr_add_status || rc) { 16557 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16558 "2564 POST_SGL_BLOCK mailbox command failed " 16559 "status x%x add_status x%x mbx status x%x\n", 16560 shdr_status, shdr_add_status, rc); 16561 rc = -ENXIO; 16562 } 16563 return rc; 16564 } 16565 16566 /** 16567 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 16568 * @phba: pointer to lpfc_hba struct that the frame was received on 16569 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16570 * 16571 * This function checks the fields in the @fc_hdr to see if the FC frame is a 16572 * valid type of frame that the LPFC driver will handle. This function will 16573 * return a zero if the frame is a valid frame or a non zero value when the 16574 * frame does not pass the check. 16575 **/ 16576 static int 16577 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 16578 { 16579 /* make rctl_names static to save stack space */ 16580 struct fc_vft_header *fc_vft_hdr; 16581 uint32_t *header = (uint32_t *) fc_hdr; 16582 16583 #define FC_RCTL_MDS_DIAGS 0xF4 16584 16585 switch (fc_hdr->fh_r_ctl) { 16586 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 16587 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 16588 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 16589 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 16590 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 16591 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 16592 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 16593 case FC_RCTL_DD_CMD_STATUS: /* command status */ 16594 case FC_RCTL_ELS_REQ: /* extended link services request */ 16595 case FC_RCTL_ELS_REP: /* extended link services reply */ 16596 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 16597 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 16598 case FC_RCTL_BA_NOP: /* basic link service NOP */ 16599 case FC_RCTL_BA_ABTS: /* basic link service abort */ 16600 case FC_RCTL_BA_RMC: /* remove connection */ 16601 case FC_RCTL_BA_ACC: /* basic accept */ 16602 case FC_RCTL_BA_RJT: /* basic reject */ 16603 case FC_RCTL_BA_PRMT: 16604 case FC_RCTL_ACK_1: /* acknowledge_1 */ 16605 case FC_RCTL_ACK_0: /* acknowledge_0 */ 16606 case FC_RCTL_P_RJT: /* port reject */ 16607 case FC_RCTL_F_RJT: /* fabric reject */ 16608 case FC_RCTL_P_BSY: /* port busy */ 16609 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 16610 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 16611 case FC_RCTL_LCR: /* link credit reset */ 16612 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 16613 case FC_RCTL_END: /* end */ 16614 break; 16615 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 16616 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 16617 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 16618 return lpfc_fc_frame_check(phba, fc_hdr); 16619 default: 16620 goto drop; 16621 } 16622 16623 #define FC_TYPE_VENDOR_UNIQUE 0xFF 16624 16625 switch (fc_hdr->fh_type) { 16626 case FC_TYPE_BLS: 16627 case FC_TYPE_ELS: 16628 case FC_TYPE_FCP: 16629 case FC_TYPE_CT: 16630 case FC_TYPE_NVME: 16631 case FC_TYPE_VENDOR_UNIQUE: 16632 break; 16633 case FC_TYPE_IP: 16634 case FC_TYPE_ILS: 16635 default: 16636 goto drop; 16637 } 16638 16639 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 16640 "2538 Received frame rctl:x%x, type:x%x, " 16641 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 16642 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 16643 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 16644 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 16645 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 16646 be32_to_cpu(header[6])); 16647 return 0; 16648 drop: 16649 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 16650 "2539 Dropped frame rctl:x%x type:x%x\n", 16651 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 16652 return 1; 16653 } 16654 16655 /** 16656 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 16657 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16658 * 16659 * This function processes the FC header to retrieve the VFI from the VF 16660 * header, if one exists. This function will return the VFI if one exists 16661 * or 0 if no VSAN Header exists. 16662 **/ 16663 static uint32_t 16664 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 16665 { 16666 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 16667 16668 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 16669 return 0; 16670 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 16671 } 16672 16673 /** 16674 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 16675 * @phba: Pointer to the HBA structure to search for the vport on 16676 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16677 * @fcfi: The FC Fabric ID that the frame came from 16678 * 16679 * This function searches the @phba for a vport that matches the content of the 16680 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 16681 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 16682 * returns the matching vport pointer or NULL if unable to match frame to a 16683 * vport. 16684 **/ 16685 static struct lpfc_vport * 16686 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 16687 uint16_t fcfi, uint32_t did) 16688 { 16689 struct lpfc_vport **vports; 16690 struct lpfc_vport *vport = NULL; 16691 int i; 16692 16693 if (did == Fabric_DID) 16694 return phba->pport; 16695 if ((phba->pport->fc_flag & FC_PT2PT) && 16696 !(phba->link_state == LPFC_HBA_READY)) 16697 return phba->pport; 16698 16699 vports = lpfc_create_vport_work_array(phba); 16700 if (vports != NULL) { 16701 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 16702 if (phba->fcf.fcfi == fcfi && 16703 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 16704 vports[i]->fc_myDID == did) { 16705 vport = vports[i]; 16706 break; 16707 } 16708 } 16709 } 16710 lpfc_destroy_vport_work_array(phba, vports); 16711 return vport; 16712 } 16713 16714 /** 16715 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 16716 * @vport: The vport to work on. 16717 * 16718 * This function updates the receive sequence time stamp for this vport. The 16719 * receive sequence time stamp indicates the time that the last frame of the 16720 * the sequence that has been idle for the longest amount of time was received. 16721 * the driver uses this time stamp to indicate if any received sequences have 16722 * timed out. 16723 **/ 16724 static void 16725 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 16726 { 16727 struct lpfc_dmabuf *h_buf; 16728 struct hbq_dmabuf *dmabuf = NULL; 16729 16730 /* get the oldest sequence on the rcv list */ 16731 h_buf = list_get_first(&vport->rcv_buffer_list, 16732 struct lpfc_dmabuf, list); 16733 if (!h_buf) 16734 return; 16735 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16736 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 16737 } 16738 16739 /** 16740 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 16741 * @vport: The vport that the received sequences were sent to. 16742 * 16743 * This function cleans up all outstanding received sequences. This is called 16744 * by the driver when a link event or user action invalidates all the received 16745 * sequences. 16746 **/ 16747 void 16748 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 16749 { 16750 struct lpfc_dmabuf *h_buf, *hnext; 16751 struct lpfc_dmabuf *d_buf, *dnext; 16752 struct hbq_dmabuf *dmabuf = NULL; 16753 16754 /* start with the oldest sequence on the rcv list */ 16755 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 16756 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16757 list_del_init(&dmabuf->hbuf.list); 16758 list_for_each_entry_safe(d_buf, dnext, 16759 &dmabuf->dbuf.list, list) { 16760 list_del_init(&d_buf->list); 16761 lpfc_in_buf_free(vport->phba, d_buf); 16762 } 16763 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 16764 } 16765 } 16766 16767 /** 16768 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 16769 * @vport: The vport that the received sequences were sent to. 16770 * 16771 * This function determines whether any received sequences have timed out by 16772 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 16773 * indicates that there is at least one timed out sequence this routine will 16774 * go through the received sequences one at a time from most inactive to most 16775 * active to determine which ones need to be cleaned up. Once it has determined 16776 * that a sequence needs to be cleaned up it will simply free up the resources 16777 * without sending an abort. 16778 **/ 16779 void 16780 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 16781 { 16782 struct lpfc_dmabuf *h_buf, *hnext; 16783 struct lpfc_dmabuf *d_buf, *dnext; 16784 struct hbq_dmabuf *dmabuf = NULL; 16785 unsigned long timeout; 16786 int abort_count = 0; 16787 16788 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 16789 vport->rcv_buffer_time_stamp); 16790 if (list_empty(&vport->rcv_buffer_list) || 16791 time_before(jiffies, timeout)) 16792 return; 16793 /* start with the oldest sequence on the rcv list */ 16794 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 16795 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16796 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 16797 dmabuf->time_stamp); 16798 if (time_before(jiffies, timeout)) 16799 break; 16800 abort_count++; 16801 list_del_init(&dmabuf->hbuf.list); 16802 list_for_each_entry_safe(d_buf, dnext, 16803 &dmabuf->dbuf.list, list) { 16804 list_del_init(&d_buf->list); 16805 lpfc_in_buf_free(vport->phba, d_buf); 16806 } 16807 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 16808 } 16809 if (abort_count) 16810 lpfc_update_rcv_time_stamp(vport); 16811 } 16812 16813 /** 16814 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 16815 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 16816 * 16817 * This function searches through the existing incomplete sequences that have 16818 * been sent to this @vport. If the frame matches one of the incomplete 16819 * sequences then the dbuf in the @dmabuf is added to the list of frames that 16820 * make up that sequence. If no sequence is found that matches this frame then 16821 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 16822 * This function returns a pointer to the first dmabuf in the sequence list that 16823 * the frame was linked to. 16824 **/ 16825 static struct hbq_dmabuf * 16826 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 16827 { 16828 struct fc_frame_header *new_hdr; 16829 struct fc_frame_header *temp_hdr; 16830 struct lpfc_dmabuf *d_buf; 16831 struct lpfc_dmabuf *h_buf; 16832 struct hbq_dmabuf *seq_dmabuf = NULL; 16833 struct hbq_dmabuf *temp_dmabuf = NULL; 16834 uint8_t found = 0; 16835 16836 INIT_LIST_HEAD(&dmabuf->dbuf.list); 16837 dmabuf->time_stamp = jiffies; 16838 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16839 16840 /* Use the hdr_buf to find the sequence that this frame belongs to */ 16841 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 16842 temp_hdr = (struct fc_frame_header *)h_buf->virt; 16843 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 16844 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 16845 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 16846 continue; 16847 /* found a pending sequence that matches this frame */ 16848 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16849 break; 16850 } 16851 if (!seq_dmabuf) { 16852 /* 16853 * This indicates first frame received for this sequence. 16854 * Queue the buffer on the vport's rcv_buffer_list. 16855 */ 16856 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 16857 lpfc_update_rcv_time_stamp(vport); 16858 return dmabuf; 16859 } 16860 temp_hdr = seq_dmabuf->hbuf.virt; 16861 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 16862 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 16863 list_del_init(&seq_dmabuf->hbuf.list); 16864 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 16865 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 16866 lpfc_update_rcv_time_stamp(vport); 16867 return dmabuf; 16868 } 16869 /* move this sequence to the tail to indicate a young sequence */ 16870 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 16871 seq_dmabuf->time_stamp = jiffies; 16872 lpfc_update_rcv_time_stamp(vport); 16873 if (list_empty(&seq_dmabuf->dbuf.list)) { 16874 temp_hdr = dmabuf->hbuf.virt; 16875 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 16876 return seq_dmabuf; 16877 } 16878 /* find the correct place in the sequence to insert this frame */ 16879 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 16880 while (!found) { 16881 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16882 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 16883 /* 16884 * If the frame's sequence count is greater than the frame on 16885 * the list then insert the frame right after this frame 16886 */ 16887 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 16888 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 16889 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 16890 found = 1; 16891 break; 16892 } 16893 16894 if (&d_buf->list == &seq_dmabuf->dbuf.list) 16895 break; 16896 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 16897 } 16898 16899 if (found) 16900 return seq_dmabuf; 16901 return NULL; 16902 } 16903 16904 /** 16905 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 16906 * @vport: pointer to a vitural port 16907 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16908 * 16909 * This function tries to abort from the partially assembed sequence, described 16910 * by the information from basic abbort @dmabuf. It checks to see whether such 16911 * partially assembled sequence held by the driver. If so, it shall free up all 16912 * the frames from the partially assembled sequence. 16913 * 16914 * Return 16915 * true -- if there is matching partially assembled sequence present and all 16916 * the frames freed with the sequence; 16917 * false -- if there is no matching partially assembled sequence present so 16918 * nothing got aborted in the lower layer driver 16919 **/ 16920 static bool 16921 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 16922 struct hbq_dmabuf *dmabuf) 16923 { 16924 struct fc_frame_header *new_hdr; 16925 struct fc_frame_header *temp_hdr; 16926 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 16927 struct hbq_dmabuf *seq_dmabuf = NULL; 16928 16929 /* Use the hdr_buf to find the sequence that matches this frame */ 16930 INIT_LIST_HEAD(&dmabuf->dbuf.list); 16931 INIT_LIST_HEAD(&dmabuf->hbuf.list); 16932 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16933 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 16934 temp_hdr = (struct fc_frame_header *)h_buf->virt; 16935 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 16936 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 16937 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 16938 continue; 16939 /* found a pending sequence that matches this frame */ 16940 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16941 break; 16942 } 16943 16944 /* Free up all the frames from the partially assembled sequence */ 16945 if (seq_dmabuf) { 16946 list_for_each_entry_safe(d_buf, n_buf, 16947 &seq_dmabuf->dbuf.list, list) { 16948 list_del_init(&d_buf->list); 16949 lpfc_in_buf_free(vport->phba, d_buf); 16950 } 16951 return true; 16952 } 16953 return false; 16954 } 16955 16956 /** 16957 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 16958 * @vport: pointer to a vitural port 16959 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16960 * 16961 * This function tries to abort from the assembed sequence from upper level 16962 * protocol, described by the information from basic abbort @dmabuf. It 16963 * checks to see whether such pending context exists at upper level protocol. 16964 * If so, it shall clean up the pending context. 16965 * 16966 * Return 16967 * true -- if there is matching pending context of the sequence cleaned 16968 * at ulp; 16969 * false -- if there is no matching pending context of the sequence present 16970 * at ulp. 16971 **/ 16972 static bool 16973 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 16974 { 16975 struct lpfc_hba *phba = vport->phba; 16976 int handled; 16977 16978 /* Accepting abort at ulp with SLI4 only */ 16979 if (phba->sli_rev < LPFC_SLI_REV4) 16980 return false; 16981 16982 /* Register all caring upper level protocols to attend abort */ 16983 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 16984 if (handled) 16985 return true; 16986 16987 return false; 16988 } 16989 16990 /** 16991 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 16992 * @phba: Pointer to HBA context object. 16993 * @cmd_iocbq: pointer to the command iocbq structure. 16994 * @rsp_iocbq: pointer to the response iocbq structure. 16995 * 16996 * This function handles the sequence abort response iocb command complete 16997 * event. It properly releases the memory allocated to the sequence abort 16998 * accept iocb. 16999 **/ 17000 static void 17001 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 17002 struct lpfc_iocbq *cmd_iocbq, 17003 struct lpfc_iocbq *rsp_iocbq) 17004 { 17005 struct lpfc_nodelist *ndlp; 17006 17007 if (cmd_iocbq) { 17008 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 17009 lpfc_nlp_put(ndlp); 17010 lpfc_nlp_not_used(ndlp); 17011 lpfc_sli_release_iocbq(phba, cmd_iocbq); 17012 } 17013 17014 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 17015 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 17016 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17017 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 17018 rsp_iocbq->iocb.ulpStatus, 17019 rsp_iocbq->iocb.un.ulpWord[4]); 17020 } 17021 17022 /** 17023 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 17024 * @phba: Pointer to HBA context object. 17025 * @xri: xri id in transaction. 17026 * 17027 * This function validates the xri maps to the known range of XRIs allocated an 17028 * used by the driver. 17029 **/ 17030 uint16_t 17031 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 17032 uint16_t xri) 17033 { 17034 uint16_t i; 17035 17036 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 17037 if (xri == phba->sli4_hba.xri_ids[i]) 17038 return i; 17039 } 17040 return NO_XRI; 17041 } 17042 17043 /** 17044 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 17045 * @phba: Pointer to HBA context object. 17046 * @fc_hdr: pointer to a FC frame header. 17047 * 17048 * This function sends a basic response to a previous unsol sequence abort 17049 * event after aborting the sequence handling. 17050 **/ 17051 void 17052 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 17053 struct fc_frame_header *fc_hdr, bool aborted) 17054 { 17055 struct lpfc_hba *phba = vport->phba; 17056 struct lpfc_iocbq *ctiocb = NULL; 17057 struct lpfc_nodelist *ndlp; 17058 uint16_t oxid, rxid, xri, lxri; 17059 uint32_t sid, fctl; 17060 IOCB_t *icmd; 17061 int rc; 17062 17063 if (!lpfc_is_link_up(phba)) 17064 return; 17065 17066 sid = sli4_sid_from_fc_hdr(fc_hdr); 17067 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 17068 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 17069 17070 ndlp = lpfc_findnode_did(vport, sid); 17071 if (!ndlp) { 17072 ndlp = lpfc_nlp_init(vport, sid); 17073 if (!ndlp) { 17074 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17075 "1268 Failed to allocate ndlp for " 17076 "oxid:x%x SID:x%x\n", oxid, sid); 17077 return; 17078 } 17079 /* Put ndlp onto pport node list */ 17080 lpfc_enqueue_node(vport, ndlp); 17081 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 17082 /* re-setup ndlp without removing from node list */ 17083 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 17084 if (!ndlp) { 17085 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17086 "3275 Failed to active ndlp found " 17087 "for oxid:x%x SID:x%x\n", oxid, sid); 17088 return; 17089 } 17090 } 17091 17092 /* Allocate buffer for rsp iocb */ 17093 ctiocb = lpfc_sli_get_iocbq(phba); 17094 if (!ctiocb) 17095 return; 17096 17097 /* Extract the F_CTL field from FC_HDR */ 17098 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 17099 17100 icmd = &ctiocb->iocb; 17101 icmd->un.xseq64.bdl.bdeSize = 0; 17102 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 17103 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 17104 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 17105 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 17106 17107 /* Fill in the rest of iocb fields */ 17108 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 17109 icmd->ulpBdeCount = 0; 17110 icmd->ulpLe = 1; 17111 icmd->ulpClass = CLASS3; 17112 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 17113 ctiocb->context1 = lpfc_nlp_get(ndlp); 17114 17115 ctiocb->iocb_cmpl = NULL; 17116 ctiocb->vport = phba->pport; 17117 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 17118 ctiocb->sli4_lxritag = NO_XRI; 17119 ctiocb->sli4_xritag = NO_XRI; 17120 17121 if (fctl & FC_FC_EX_CTX) 17122 /* Exchange responder sent the abort so we 17123 * own the oxid. 17124 */ 17125 xri = oxid; 17126 else 17127 xri = rxid; 17128 lxri = lpfc_sli4_xri_inrange(phba, xri); 17129 if (lxri != NO_XRI) 17130 lpfc_set_rrq_active(phba, ndlp, lxri, 17131 (xri == oxid) ? rxid : oxid, 0); 17132 /* For BA_ABTS from exchange responder, if the logical xri with 17133 * the oxid maps to the FCP XRI range, the port no longer has 17134 * that exchange context, send a BLS_RJT. Override the IOCB for 17135 * a BA_RJT. 17136 */ 17137 if ((fctl & FC_FC_EX_CTX) && 17138 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 17139 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17140 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17141 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17142 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17143 } 17144 17145 /* If BA_ABTS failed to abort a partially assembled receive sequence, 17146 * the driver no longer has that exchange, send a BLS_RJT. Override 17147 * the IOCB for a BA_RJT. 17148 */ 17149 if (aborted == false) { 17150 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17151 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17152 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17153 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17154 } 17155 17156 if (fctl & FC_FC_EX_CTX) { 17157 /* ABTS sent by responder to CT exchange, construction 17158 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 17159 * field and RX_ID from ABTS for RX_ID field. 17160 */ 17161 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 17162 } else { 17163 /* ABTS sent by initiator to CT exchange, construction 17164 * of BA_ACC will need to allocate a new XRI as for the 17165 * XRI_TAG field. 17166 */ 17167 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 17168 } 17169 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 17170 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 17171 17172 /* Xmit CT abts response on exchange <xid> */ 17173 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 17174 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 17175 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 17176 17177 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 17178 if (rc == IOCB_ERROR) { 17179 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 17180 "2925 Failed to issue CT ABTS RSP x%x on " 17181 "xri x%x, Data x%x\n", 17182 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 17183 phba->link_state); 17184 lpfc_nlp_put(ndlp); 17185 ctiocb->context1 = NULL; 17186 lpfc_sli_release_iocbq(phba, ctiocb); 17187 } 17188 } 17189 17190 /** 17191 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 17192 * @vport: Pointer to the vport on which this sequence was received 17193 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17194 * 17195 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 17196 * receive sequence is only partially assembed by the driver, it shall abort 17197 * the partially assembled frames for the sequence. Otherwise, if the 17198 * unsolicited receive sequence has been completely assembled and passed to 17199 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 17200 * unsolicited sequence has been aborted. After that, it will issue a basic 17201 * accept to accept the abort. 17202 **/ 17203 static void 17204 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 17205 struct hbq_dmabuf *dmabuf) 17206 { 17207 struct lpfc_hba *phba = vport->phba; 17208 struct fc_frame_header fc_hdr; 17209 uint32_t fctl; 17210 bool aborted; 17211 17212 /* Make a copy of fc_hdr before the dmabuf being released */ 17213 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 17214 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 17215 17216 if (fctl & FC_FC_EX_CTX) { 17217 /* ABTS by responder to exchange, no cleanup needed */ 17218 aborted = true; 17219 } else { 17220 /* ABTS by initiator to exchange, need to do cleanup */ 17221 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 17222 if (aborted == false) 17223 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 17224 } 17225 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17226 17227 if (phba->nvmet_support) { 17228 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 17229 return; 17230 } 17231 17232 /* Respond with BA_ACC or BA_RJT accordingly */ 17233 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 17234 } 17235 17236 /** 17237 * lpfc_seq_complete - Indicates if a sequence is complete 17238 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17239 * 17240 * This function checks the sequence, starting with the frame described by 17241 * @dmabuf, to see if all the frames associated with this sequence are present. 17242 * the frames associated with this sequence are linked to the @dmabuf using the 17243 * dbuf list. This function looks for two major things. 1) That the first frame 17244 * has a sequence count of zero. 2) There is a frame with last frame of sequence 17245 * set. 3) That there are no holes in the sequence count. The function will 17246 * return 1 when the sequence is complete, otherwise it will return 0. 17247 **/ 17248 static int 17249 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 17250 { 17251 struct fc_frame_header *hdr; 17252 struct lpfc_dmabuf *d_buf; 17253 struct hbq_dmabuf *seq_dmabuf; 17254 uint32_t fctl; 17255 int seq_count = 0; 17256 17257 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17258 /* make sure first fame of sequence has a sequence count of zero */ 17259 if (hdr->fh_seq_cnt != seq_count) 17260 return 0; 17261 fctl = (hdr->fh_f_ctl[0] << 16 | 17262 hdr->fh_f_ctl[1] << 8 | 17263 hdr->fh_f_ctl[2]); 17264 /* If last frame of sequence we can return success. */ 17265 if (fctl & FC_FC_END_SEQ) 17266 return 1; 17267 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 17268 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17269 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17270 /* If there is a hole in the sequence count then fail. */ 17271 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 17272 return 0; 17273 fctl = (hdr->fh_f_ctl[0] << 16 | 17274 hdr->fh_f_ctl[1] << 8 | 17275 hdr->fh_f_ctl[2]); 17276 /* If last frame of sequence we can return success. */ 17277 if (fctl & FC_FC_END_SEQ) 17278 return 1; 17279 } 17280 return 0; 17281 } 17282 17283 /** 17284 * lpfc_prep_seq - Prep sequence for ULP processing 17285 * @vport: Pointer to the vport on which this sequence was received 17286 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17287 * 17288 * This function takes a sequence, described by a list of frames, and creates 17289 * a list of iocbq structures to describe the sequence. This iocbq list will be 17290 * used to issue to the generic unsolicited sequence handler. This routine 17291 * returns a pointer to the first iocbq in the list. If the function is unable 17292 * to allocate an iocbq then it throw out the received frames that were not 17293 * able to be described and return a pointer to the first iocbq. If unable to 17294 * allocate any iocbqs (including the first) this function will return NULL. 17295 **/ 17296 static struct lpfc_iocbq * 17297 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 17298 { 17299 struct hbq_dmabuf *hbq_buf; 17300 struct lpfc_dmabuf *d_buf, *n_buf; 17301 struct lpfc_iocbq *first_iocbq, *iocbq; 17302 struct fc_frame_header *fc_hdr; 17303 uint32_t sid; 17304 uint32_t len, tot_len; 17305 struct ulp_bde64 *pbde; 17306 17307 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17308 /* remove from receive buffer list */ 17309 list_del_init(&seq_dmabuf->hbuf.list); 17310 lpfc_update_rcv_time_stamp(vport); 17311 /* get the Remote Port's SID */ 17312 sid = sli4_sid_from_fc_hdr(fc_hdr); 17313 tot_len = 0; 17314 /* Get an iocbq struct to fill in. */ 17315 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 17316 if (first_iocbq) { 17317 /* Initialize the first IOCB. */ 17318 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 17319 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 17320 first_iocbq->vport = vport; 17321 17322 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 17323 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 17324 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 17325 first_iocbq->iocb.un.rcvels.parmRo = 17326 sli4_did_from_fc_hdr(fc_hdr); 17327 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 17328 } else 17329 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 17330 first_iocbq->iocb.ulpContext = NO_XRI; 17331 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 17332 be16_to_cpu(fc_hdr->fh_ox_id); 17333 /* iocbq is prepped for internal consumption. Physical vpi. */ 17334 first_iocbq->iocb.unsli3.rcvsli3.vpi = 17335 vport->phba->vpi_ids[vport->vpi]; 17336 /* put the first buffer into the first IOCBq */ 17337 tot_len = bf_get(lpfc_rcqe_length, 17338 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 17339 17340 first_iocbq->context2 = &seq_dmabuf->dbuf; 17341 first_iocbq->context3 = NULL; 17342 first_iocbq->iocb.ulpBdeCount = 1; 17343 if (tot_len > LPFC_DATA_BUF_SIZE) 17344 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 17345 LPFC_DATA_BUF_SIZE; 17346 else 17347 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 17348 17349 first_iocbq->iocb.un.rcvels.remoteID = sid; 17350 17351 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 17352 } 17353 iocbq = first_iocbq; 17354 /* 17355 * Each IOCBq can have two Buffers assigned, so go through the list 17356 * of buffers for this sequence and save two buffers in each IOCBq 17357 */ 17358 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 17359 if (!iocbq) { 17360 lpfc_in_buf_free(vport->phba, d_buf); 17361 continue; 17362 } 17363 if (!iocbq->context3) { 17364 iocbq->context3 = d_buf; 17365 iocbq->iocb.ulpBdeCount++; 17366 /* We need to get the size out of the right CQE */ 17367 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17368 len = bf_get(lpfc_rcqe_length, 17369 &hbq_buf->cq_event.cqe.rcqe_cmpl); 17370 pbde = (struct ulp_bde64 *) 17371 &iocbq->iocb.unsli3.sli3Words[4]; 17372 if (len > LPFC_DATA_BUF_SIZE) 17373 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 17374 else 17375 pbde->tus.f.bdeSize = len; 17376 17377 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 17378 tot_len += len; 17379 } else { 17380 iocbq = lpfc_sli_get_iocbq(vport->phba); 17381 if (!iocbq) { 17382 if (first_iocbq) { 17383 first_iocbq->iocb.ulpStatus = 17384 IOSTAT_FCP_RSP_ERROR; 17385 first_iocbq->iocb.un.ulpWord[4] = 17386 IOERR_NO_RESOURCES; 17387 } 17388 lpfc_in_buf_free(vport->phba, d_buf); 17389 continue; 17390 } 17391 /* We need to get the size out of the right CQE */ 17392 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17393 len = bf_get(lpfc_rcqe_length, 17394 &hbq_buf->cq_event.cqe.rcqe_cmpl); 17395 iocbq->context2 = d_buf; 17396 iocbq->context3 = NULL; 17397 iocbq->iocb.ulpBdeCount = 1; 17398 if (len > LPFC_DATA_BUF_SIZE) 17399 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 17400 LPFC_DATA_BUF_SIZE; 17401 else 17402 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 17403 17404 tot_len += len; 17405 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 17406 17407 iocbq->iocb.un.rcvels.remoteID = sid; 17408 list_add_tail(&iocbq->list, &first_iocbq->list); 17409 } 17410 } 17411 return first_iocbq; 17412 } 17413 17414 static void 17415 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 17416 struct hbq_dmabuf *seq_dmabuf) 17417 { 17418 struct fc_frame_header *fc_hdr; 17419 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 17420 struct lpfc_hba *phba = vport->phba; 17421 17422 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17423 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 17424 if (!iocbq) { 17425 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17426 "2707 Ring %d handler: Failed to allocate " 17427 "iocb Rctl x%x Type x%x received\n", 17428 LPFC_ELS_RING, 17429 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17430 return; 17431 } 17432 if (!lpfc_complete_unsol_iocb(phba, 17433 phba->sli4_hba.els_wq->pring, 17434 iocbq, fc_hdr->fh_r_ctl, 17435 fc_hdr->fh_type)) 17436 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17437 "2540 Ring %d handler: unexpected Rctl " 17438 "x%x Type x%x received\n", 17439 LPFC_ELS_RING, 17440 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17441 17442 /* Free iocb created in lpfc_prep_seq */ 17443 list_for_each_entry_safe(curr_iocb, next_iocb, 17444 &iocbq->list, list) { 17445 list_del_init(&curr_iocb->list); 17446 lpfc_sli_release_iocbq(phba, curr_iocb); 17447 } 17448 lpfc_sli_release_iocbq(phba, iocbq); 17449 } 17450 17451 static void 17452 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 17453 struct lpfc_iocbq *rspiocb) 17454 { 17455 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 17456 17457 if (pcmd && pcmd->virt) 17458 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 17459 kfree(pcmd); 17460 lpfc_sli_release_iocbq(phba, cmdiocb); 17461 } 17462 17463 static void 17464 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 17465 struct hbq_dmabuf *dmabuf) 17466 { 17467 struct fc_frame_header *fc_hdr; 17468 struct lpfc_hba *phba = vport->phba; 17469 struct lpfc_iocbq *iocbq = NULL; 17470 union lpfc_wqe *wqe; 17471 struct lpfc_dmabuf *pcmd = NULL; 17472 uint32_t frame_len; 17473 int rc; 17474 17475 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17476 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 17477 17478 /* Send the received frame back */ 17479 iocbq = lpfc_sli_get_iocbq(phba); 17480 if (!iocbq) 17481 goto exit; 17482 17483 /* Allocate buffer for command payload */ 17484 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 17485 if (pcmd) 17486 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 17487 &pcmd->phys); 17488 if (!pcmd || !pcmd->virt) 17489 goto exit; 17490 17491 INIT_LIST_HEAD(&pcmd->list); 17492 17493 /* copyin the payload */ 17494 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 17495 17496 /* fill in BDE's for command */ 17497 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 17498 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 17499 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 17500 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 17501 17502 iocbq->context2 = pcmd; 17503 iocbq->vport = vport; 17504 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 17505 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 17506 17507 /* 17508 * Setup rest of the iocb as though it were a WQE 17509 * Build the SEND_FRAME WQE 17510 */ 17511 wqe = (union lpfc_wqe *)&iocbq->iocb; 17512 17513 wqe->send_frame.frame_len = frame_len; 17514 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 17515 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 17516 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 17517 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 17518 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 17519 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 17520 17521 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 17522 iocbq->iocb.ulpLe = 1; 17523 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 17524 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 17525 if (rc == IOCB_ERROR) 17526 goto exit; 17527 17528 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17529 return; 17530 17531 exit: 17532 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17533 "2023 Unable to process MDS loopback frame\n"); 17534 if (pcmd && pcmd->virt) 17535 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 17536 kfree(pcmd); 17537 if (iocbq) 17538 lpfc_sli_release_iocbq(phba, iocbq); 17539 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17540 } 17541 17542 /** 17543 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 17544 * @phba: Pointer to HBA context object. 17545 * 17546 * This function is called with no lock held. This function processes all 17547 * the received buffers and gives it to upper layers when a received buffer 17548 * indicates that it is the final frame in the sequence. The interrupt 17549 * service routine processes received buffers at interrupt contexts. 17550 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 17551 * appropriate receive function when the final frame in a sequence is received. 17552 **/ 17553 void 17554 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 17555 struct hbq_dmabuf *dmabuf) 17556 { 17557 struct hbq_dmabuf *seq_dmabuf; 17558 struct fc_frame_header *fc_hdr; 17559 struct lpfc_vport *vport; 17560 uint32_t fcfi; 17561 uint32_t did; 17562 17563 /* Process each received buffer */ 17564 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17565 17566 /* check to see if this a valid type of frame */ 17567 if (lpfc_fc_frame_check(phba, fc_hdr)) { 17568 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17569 return; 17570 } 17571 17572 if ((bf_get(lpfc_cqe_code, 17573 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 17574 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 17575 &dmabuf->cq_event.cqe.rcqe_cmpl); 17576 else 17577 fcfi = bf_get(lpfc_rcqe_fcf_id, 17578 &dmabuf->cq_event.cqe.rcqe_cmpl); 17579 17580 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 17581 vport = phba->pport; 17582 /* Handle MDS Loopback frames */ 17583 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 17584 return; 17585 } 17586 17587 /* d_id this frame is directed to */ 17588 did = sli4_did_from_fc_hdr(fc_hdr); 17589 17590 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 17591 if (!vport) { 17592 /* throw out the frame */ 17593 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17594 return; 17595 } 17596 17597 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 17598 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 17599 (did != Fabric_DID)) { 17600 /* 17601 * Throw out the frame if we are not pt2pt. 17602 * The pt2pt protocol allows for discovery frames 17603 * to be received without a registered VPI. 17604 */ 17605 if (!(vport->fc_flag & FC_PT2PT) || 17606 (phba->link_state == LPFC_HBA_READY)) { 17607 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17608 return; 17609 } 17610 } 17611 17612 /* Handle the basic abort sequence (BA_ABTS) event */ 17613 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 17614 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 17615 return; 17616 } 17617 17618 /* Link this frame */ 17619 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 17620 if (!seq_dmabuf) { 17621 /* unable to add frame to vport - throw it out */ 17622 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17623 return; 17624 } 17625 /* If not last frame in sequence continue processing frames. */ 17626 if (!lpfc_seq_complete(seq_dmabuf)) 17627 return; 17628 17629 /* Send the complete sequence to the upper layer protocol */ 17630 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 17631 } 17632 17633 /** 17634 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 17635 * @phba: pointer to lpfc hba data structure. 17636 * 17637 * This routine is invoked to post rpi header templates to the 17638 * HBA consistent with the SLI-4 interface spec. This routine 17639 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17640 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17641 * 17642 * This routine does not require any locks. It's usage is expected 17643 * to be driver load or reset recovery when the driver is 17644 * sequential. 17645 * 17646 * Return codes 17647 * 0 - successful 17648 * -EIO - The mailbox failed to complete successfully. 17649 * When this error occurs, the driver is not guaranteed 17650 * to have any rpi regions posted to the device and 17651 * must either attempt to repost the regions or take a 17652 * fatal error. 17653 **/ 17654 int 17655 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 17656 { 17657 struct lpfc_rpi_hdr *rpi_page; 17658 uint32_t rc = 0; 17659 uint16_t lrpi = 0; 17660 17661 /* SLI4 ports that support extents do not require RPI headers. */ 17662 if (!phba->sli4_hba.rpi_hdrs_in_use) 17663 goto exit; 17664 if (phba->sli4_hba.extents_in_use) 17665 return -EIO; 17666 17667 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 17668 /* 17669 * Assign the rpi headers a physical rpi only if the driver 17670 * has not initialized those resources. A port reset only 17671 * needs the headers posted. 17672 */ 17673 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 17674 LPFC_RPI_RSRC_RDY) 17675 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 17676 17677 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 17678 if (rc != MBX_SUCCESS) { 17679 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17680 "2008 Error %d posting all rpi " 17681 "headers\n", rc); 17682 rc = -EIO; 17683 break; 17684 } 17685 } 17686 17687 exit: 17688 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 17689 LPFC_RPI_RSRC_RDY); 17690 return rc; 17691 } 17692 17693 /** 17694 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 17695 * @phba: pointer to lpfc hba data structure. 17696 * @rpi_page: pointer to the rpi memory region. 17697 * 17698 * This routine is invoked to post a single rpi header to the 17699 * HBA consistent with the SLI-4 interface spec. This memory region 17700 * maps up to 64 rpi context regions. 17701 * 17702 * Return codes 17703 * 0 - successful 17704 * -ENOMEM - No available memory 17705 * -EIO - The mailbox failed to complete successfully. 17706 **/ 17707 int 17708 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 17709 { 17710 LPFC_MBOXQ_t *mboxq; 17711 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 17712 uint32_t rc = 0; 17713 uint32_t shdr_status, shdr_add_status; 17714 union lpfc_sli4_cfg_shdr *shdr; 17715 17716 /* SLI4 ports that support extents do not require RPI headers. */ 17717 if (!phba->sli4_hba.rpi_hdrs_in_use) 17718 return rc; 17719 if (phba->sli4_hba.extents_in_use) 17720 return -EIO; 17721 17722 /* The port is notified of the header region via a mailbox command. */ 17723 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17724 if (!mboxq) { 17725 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17726 "2001 Unable to allocate memory for issuing " 17727 "SLI_CONFIG_SPECIAL mailbox command\n"); 17728 return -ENOMEM; 17729 } 17730 17731 /* Post all rpi memory regions to the port. */ 17732 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 17733 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 17734 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 17735 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 17736 sizeof(struct lpfc_sli4_cfg_mhdr), 17737 LPFC_SLI4_MBX_EMBED); 17738 17739 17740 /* Post the physical rpi to the port for this rpi header. */ 17741 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 17742 rpi_page->start_rpi); 17743 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 17744 hdr_tmpl, rpi_page->page_count); 17745 17746 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 17747 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 17748 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 17749 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 17750 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17751 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17752 if (rc != MBX_TIMEOUT) 17753 mempool_free(mboxq, phba->mbox_mem_pool); 17754 if (shdr_status || shdr_add_status || rc) { 17755 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17756 "2514 POST_RPI_HDR mailbox failed with " 17757 "status x%x add_status x%x, mbx status x%x\n", 17758 shdr_status, shdr_add_status, rc); 17759 rc = -ENXIO; 17760 } else { 17761 /* 17762 * The next_rpi stores the next logical module-64 rpi value used 17763 * to post physical rpis in subsequent rpi postings. 17764 */ 17765 spin_lock_irq(&phba->hbalock); 17766 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 17767 spin_unlock_irq(&phba->hbalock); 17768 } 17769 return rc; 17770 } 17771 17772 /** 17773 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 17774 * @phba: pointer to lpfc hba data structure. 17775 * 17776 * This routine is invoked to post rpi header templates to the 17777 * HBA consistent with the SLI-4 interface spec. This routine 17778 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17779 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17780 * 17781 * Returns 17782 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17783 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17784 **/ 17785 int 17786 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 17787 { 17788 unsigned long rpi; 17789 uint16_t max_rpi, rpi_limit; 17790 uint16_t rpi_remaining, lrpi = 0; 17791 struct lpfc_rpi_hdr *rpi_hdr; 17792 unsigned long iflag; 17793 17794 /* 17795 * Fetch the next logical rpi. Because this index is logical, 17796 * the driver starts at 0 each time. 17797 */ 17798 spin_lock_irqsave(&phba->hbalock, iflag); 17799 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 17800 rpi_limit = phba->sli4_hba.next_rpi; 17801 17802 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 17803 if (rpi >= rpi_limit) 17804 rpi = LPFC_RPI_ALLOC_ERROR; 17805 else { 17806 set_bit(rpi, phba->sli4_hba.rpi_bmask); 17807 phba->sli4_hba.max_cfg_param.rpi_used++; 17808 phba->sli4_hba.rpi_count++; 17809 } 17810 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 17811 "0001 rpi:%x max:%x lim:%x\n", 17812 (int) rpi, max_rpi, rpi_limit); 17813 17814 /* 17815 * Don't try to allocate more rpi header regions if the device limit 17816 * has been exhausted. 17817 */ 17818 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 17819 (phba->sli4_hba.rpi_count >= max_rpi)) { 17820 spin_unlock_irqrestore(&phba->hbalock, iflag); 17821 return rpi; 17822 } 17823 17824 /* 17825 * RPI header postings are not required for SLI4 ports capable of 17826 * extents. 17827 */ 17828 if (!phba->sli4_hba.rpi_hdrs_in_use) { 17829 spin_unlock_irqrestore(&phba->hbalock, iflag); 17830 return rpi; 17831 } 17832 17833 /* 17834 * If the driver is running low on rpi resources, allocate another 17835 * page now. Note that the next_rpi value is used because 17836 * it represents how many are actually in use whereas max_rpi notes 17837 * how many are supported max by the device. 17838 */ 17839 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 17840 spin_unlock_irqrestore(&phba->hbalock, iflag); 17841 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 17842 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 17843 if (!rpi_hdr) { 17844 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17845 "2002 Error Could not grow rpi " 17846 "count\n"); 17847 } else { 17848 lrpi = rpi_hdr->start_rpi; 17849 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 17850 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 17851 } 17852 } 17853 17854 return rpi; 17855 } 17856 17857 /** 17858 * lpfc_sli4_free_rpi - Release an rpi for reuse. 17859 * @phba: pointer to lpfc hba data structure. 17860 * 17861 * This routine is invoked to release an rpi to the pool of 17862 * available rpis maintained by the driver. 17863 **/ 17864 static void 17865 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 17866 { 17867 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 17868 phba->sli4_hba.rpi_count--; 17869 phba->sli4_hba.max_cfg_param.rpi_used--; 17870 } 17871 } 17872 17873 /** 17874 * lpfc_sli4_free_rpi - Release an rpi for reuse. 17875 * @phba: pointer to lpfc hba data structure. 17876 * 17877 * This routine is invoked to release an rpi to the pool of 17878 * available rpis maintained by the driver. 17879 **/ 17880 void 17881 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 17882 { 17883 spin_lock_irq(&phba->hbalock); 17884 __lpfc_sli4_free_rpi(phba, rpi); 17885 spin_unlock_irq(&phba->hbalock); 17886 } 17887 17888 /** 17889 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 17890 * @phba: pointer to lpfc hba data structure. 17891 * 17892 * This routine is invoked to remove the memory region that 17893 * provided rpi via a bitmask. 17894 **/ 17895 void 17896 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 17897 { 17898 kfree(phba->sli4_hba.rpi_bmask); 17899 kfree(phba->sli4_hba.rpi_ids); 17900 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 17901 } 17902 17903 /** 17904 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 17905 * @phba: pointer to lpfc hba data structure. 17906 * 17907 * This routine is invoked to remove the memory region that 17908 * provided rpi via a bitmask. 17909 **/ 17910 int 17911 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 17912 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 17913 { 17914 LPFC_MBOXQ_t *mboxq; 17915 struct lpfc_hba *phba = ndlp->phba; 17916 int rc; 17917 17918 /* The port is notified of the header region via a mailbox command. */ 17919 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17920 if (!mboxq) 17921 return -ENOMEM; 17922 17923 /* Post all rpi memory regions to the port. */ 17924 lpfc_resume_rpi(mboxq, ndlp); 17925 if (cmpl) { 17926 mboxq->mbox_cmpl = cmpl; 17927 mboxq->context1 = arg; 17928 mboxq->context2 = ndlp; 17929 } else 17930 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17931 mboxq->vport = ndlp->vport; 17932 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17933 if (rc == MBX_NOT_FINISHED) { 17934 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17935 "2010 Resume RPI Mailbox failed " 17936 "status %d, mbxStatus x%x\n", rc, 17937 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 17938 mempool_free(mboxq, phba->mbox_mem_pool); 17939 return -EIO; 17940 } 17941 return 0; 17942 } 17943 17944 /** 17945 * lpfc_sli4_init_vpi - Initialize a vpi with the port 17946 * @vport: Pointer to the vport for which the vpi is being initialized 17947 * 17948 * This routine is invoked to activate a vpi with the port. 17949 * 17950 * Returns: 17951 * 0 success 17952 * -Evalue otherwise 17953 **/ 17954 int 17955 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 17956 { 17957 LPFC_MBOXQ_t *mboxq; 17958 int rc = 0; 17959 int retval = MBX_SUCCESS; 17960 uint32_t mbox_tmo; 17961 struct lpfc_hba *phba = vport->phba; 17962 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17963 if (!mboxq) 17964 return -ENOMEM; 17965 lpfc_init_vpi(phba, mboxq, vport->vpi); 17966 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 17967 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 17968 if (rc != MBX_SUCCESS) { 17969 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 17970 "2022 INIT VPI Mailbox failed " 17971 "status %d, mbxStatus x%x\n", rc, 17972 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 17973 retval = -EIO; 17974 } 17975 if (rc != MBX_TIMEOUT) 17976 mempool_free(mboxq, vport->phba->mbox_mem_pool); 17977 17978 return retval; 17979 } 17980 17981 /** 17982 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 17983 * @phba: pointer to lpfc hba data structure. 17984 * @mboxq: Pointer to mailbox object. 17985 * 17986 * This routine is invoked to manually add a single FCF record. The caller 17987 * must pass a completely initialized FCF_Record. This routine takes 17988 * care of the nonembedded mailbox operations. 17989 **/ 17990 static void 17991 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 17992 { 17993 void *virt_addr; 17994 union lpfc_sli4_cfg_shdr *shdr; 17995 uint32_t shdr_status, shdr_add_status; 17996 17997 virt_addr = mboxq->sge_array->addr[0]; 17998 /* The IOCTL status is embedded in the mailbox subheader. */ 17999 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 18000 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18001 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18002 18003 if ((shdr_status || shdr_add_status) && 18004 (shdr_status != STATUS_FCF_IN_USE)) 18005 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18006 "2558 ADD_FCF_RECORD mailbox failed with " 18007 "status x%x add_status x%x\n", 18008 shdr_status, shdr_add_status); 18009 18010 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18011 } 18012 18013 /** 18014 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 18015 * @phba: pointer to lpfc hba data structure. 18016 * @fcf_record: pointer to the initialized fcf record to add. 18017 * 18018 * This routine is invoked to manually add a single FCF record. The caller 18019 * must pass a completely initialized FCF_Record. This routine takes 18020 * care of the nonembedded mailbox operations. 18021 **/ 18022 int 18023 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 18024 { 18025 int rc = 0; 18026 LPFC_MBOXQ_t *mboxq; 18027 uint8_t *bytep; 18028 void *virt_addr; 18029 struct lpfc_mbx_sge sge; 18030 uint32_t alloc_len, req_len; 18031 uint32_t fcfindex; 18032 18033 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18034 if (!mboxq) { 18035 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18036 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 18037 return -ENOMEM; 18038 } 18039 18040 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 18041 sizeof(uint32_t); 18042 18043 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18044 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18045 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 18046 req_len, LPFC_SLI4_MBX_NEMBED); 18047 if (alloc_len < req_len) { 18048 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18049 "2523 Allocated DMA memory size (x%x) is " 18050 "less than the requested DMA memory " 18051 "size (x%x)\n", alloc_len, req_len); 18052 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18053 return -ENOMEM; 18054 } 18055 18056 /* 18057 * Get the first SGE entry from the non-embedded DMA memory. This 18058 * routine only uses a single SGE. 18059 */ 18060 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 18061 virt_addr = mboxq->sge_array->addr[0]; 18062 /* 18063 * Configure the FCF record for FCFI 0. This is the driver's 18064 * hardcoded default and gets used in nonFIP mode. 18065 */ 18066 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 18067 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 18068 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 18069 18070 /* 18071 * Copy the fcf_index and the FCF Record Data. The data starts after 18072 * the FCoE header plus word10. The data copy needs to be endian 18073 * correct. 18074 */ 18075 bytep += sizeof(uint32_t); 18076 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 18077 mboxq->vport = phba->pport; 18078 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 18079 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18080 if (rc == MBX_NOT_FINISHED) { 18081 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18082 "2515 ADD_FCF_RECORD mailbox failed with " 18083 "status 0x%x\n", rc); 18084 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18085 rc = -EIO; 18086 } else 18087 rc = 0; 18088 18089 return rc; 18090 } 18091 18092 /** 18093 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 18094 * @phba: pointer to lpfc hba data structure. 18095 * @fcf_record: pointer to the fcf record to write the default data. 18096 * @fcf_index: FCF table entry index. 18097 * 18098 * This routine is invoked to build the driver's default FCF record. The 18099 * values used are hardcoded. This routine handles memory initialization. 18100 * 18101 **/ 18102 void 18103 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 18104 struct fcf_record *fcf_record, 18105 uint16_t fcf_index) 18106 { 18107 memset(fcf_record, 0, sizeof(struct fcf_record)); 18108 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 18109 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 18110 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 18111 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 18112 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 18113 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 18114 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 18115 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 18116 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 18117 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 18118 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 18119 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 18120 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 18121 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 18122 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 18123 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 18124 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 18125 /* Set the VLAN bit map */ 18126 if (phba->valid_vlan) { 18127 fcf_record->vlan_bitmap[phba->vlan_id / 8] 18128 = 1 << (phba->vlan_id % 8); 18129 } 18130 } 18131 18132 /** 18133 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 18134 * @phba: pointer to lpfc hba data structure. 18135 * @fcf_index: FCF table entry offset. 18136 * 18137 * This routine is invoked to scan the entire FCF table by reading FCF 18138 * record and processing it one at a time starting from the @fcf_index 18139 * for initial FCF discovery or fast FCF failover rediscovery. 18140 * 18141 * Return 0 if the mailbox command is submitted successfully, none 0 18142 * otherwise. 18143 **/ 18144 int 18145 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18146 { 18147 int rc = 0, error; 18148 LPFC_MBOXQ_t *mboxq; 18149 18150 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 18151 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 18152 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18153 if (!mboxq) { 18154 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18155 "2000 Failed to allocate mbox for " 18156 "READ_FCF cmd\n"); 18157 error = -ENOMEM; 18158 goto fail_fcf_scan; 18159 } 18160 /* Construct the read FCF record mailbox command */ 18161 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18162 if (rc) { 18163 error = -EINVAL; 18164 goto fail_fcf_scan; 18165 } 18166 /* Issue the mailbox command asynchronously */ 18167 mboxq->vport = phba->pport; 18168 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 18169 18170 spin_lock_irq(&phba->hbalock); 18171 phba->hba_flag |= FCF_TS_INPROG; 18172 spin_unlock_irq(&phba->hbalock); 18173 18174 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18175 if (rc == MBX_NOT_FINISHED) 18176 error = -EIO; 18177 else { 18178 /* Reset eligible FCF count for new scan */ 18179 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 18180 phba->fcf.eligible_fcf_cnt = 0; 18181 error = 0; 18182 } 18183 fail_fcf_scan: 18184 if (error) { 18185 if (mboxq) 18186 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18187 /* FCF scan failed, clear FCF_TS_INPROG flag */ 18188 spin_lock_irq(&phba->hbalock); 18189 phba->hba_flag &= ~FCF_TS_INPROG; 18190 spin_unlock_irq(&phba->hbalock); 18191 } 18192 return error; 18193 } 18194 18195 /** 18196 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 18197 * @phba: pointer to lpfc hba data structure. 18198 * @fcf_index: FCF table entry offset. 18199 * 18200 * This routine is invoked to read an FCF record indicated by @fcf_index 18201 * and to use it for FLOGI roundrobin FCF failover. 18202 * 18203 * Return 0 if the mailbox command is submitted successfully, none 0 18204 * otherwise. 18205 **/ 18206 int 18207 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18208 { 18209 int rc = 0, error; 18210 LPFC_MBOXQ_t *mboxq; 18211 18212 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18213 if (!mboxq) { 18214 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 18215 "2763 Failed to allocate mbox for " 18216 "READ_FCF cmd\n"); 18217 error = -ENOMEM; 18218 goto fail_fcf_read; 18219 } 18220 /* Construct the read FCF record mailbox command */ 18221 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18222 if (rc) { 18223 error = -EINVAL; 18224 goto fail_fcf_read; 18225 } 18226 /* Issue the mailbox command asynchronously */ 18227 mboxq->vport = phba->pport; 18228 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 18229 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18230 if (rc == MBX_NOT_FINISHED) 18231 error = -EIO; 18232 else 18233 error = 0; 18234 18235 fail_fcf_read: 18236 if (error && mboxq) 18237 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18238 return error; 18239 } 18240 18241 /** 18242 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 18243 * @phba: pointer to lpfc hba data structure. 18244 * @fcf_index: FCF table entry offset. 18245 * 18246 * This routine is invoked to read an FCF record indicated by @fcf_index to 18247 * determine whether it's eligible for FLOGI roundrobin failover list. 18248 * 18249 * Return 0 if the mailbox command is submitted successfully, none 0 18250 * otherwise. 18251 **/ 18252 int 18253 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18254 { 18255 int rc = 0, error; 18256 LPFC_MBOXQ_t *mboxq; 18257 18258 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18259 if (!mboxq) { 18260 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 18261 "2758 Failed to allocate mbox for " 18262 "READ_FCF cmd\n"); 18263 error = -ENOMEM; 18264 goto fail_fcf_read; 18265 } 18266 /* Construct the read FCF record mailbox command */ 18267 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18268 if (rc) { 18269 error = -EINVAL; 18270 goto fail_fcf_read; 18271 } 18272 /* Issue the mailbox command asynchronously */ 18273 mboxq->vport = phba->pport; 18274 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 18275 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18276 if (rc == MBX_NOT_FINISHED) 18277 error = -EIO; 18278 else 18279 error = 0; 18280 18281 fail_fcf_read: 18282 if (error && mboxq) 18283 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18284 return error; 18285 } 18286 18287 /** 18288 * lpfc_check_next_fcf_pri_level 18289 * phba pointer to the lpfc_hba struct for this port. 18290 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 18291 * routine when the rr_bmask is empty. The FCF indecies are put into the 18292 * rr_bmask based on their priority level. Starting from the highest priority 18293 * to the lowest. The most likely FCF candidate will be in the highest 18294 * priority group. When this routine is called it searches the fcf_pri list for 18295 * next lowest priority group and repopulates the rr_bmask with only those 18296 * fcf_indexes. 18297 * returns: 18298 * 1=success 0=failure 18299 **/ 18300 static int 18301 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 18302 { 18303 uint16_t next_fcf_pri; 18304 uint16_t last_index; 18305 struct lpfc_fcf_pri *fcf_pri; 18306 int rc; 18307 int ret = 0; 18308 18309 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 18310 LPFC_SLI4_FCF_TBL_INDX_MAX); 18311 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18312 "3060 Last IDX %d\n", last_index); 18313 18314 /* Verify the priority list has 2 or more entries */ 18315 spin_lock_irq(&phba->hbalock); 18316 if (list_empty(&phba->fcf.fcf_pri_list) || 18317 list_is_singular(&phba->fcf.fcf_pri_list)) { 18318 spin_unlock_irq(&phba->hbalock); 18319 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18320 "3061 Last IDX %d\n", last_index); 18321 return 0; /* Empty rr list */ 18322 } 18323 spin_unlock_irq(&phba->hbalock); 18324 18325 next_fcf_pri = 0; 18326 /* 18327 * Clear the rr_bmask and set all of the bits that are at this 18328 * priority. 18329 */ 18330 memset(phba->fcf.fcf_rr_bmask, 0, 18331 sizeof(*phba->fcf.fcf_rr_bmask)); 18332 spin_lock_irq(&phba->hbalock); 18333 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 18334 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 18335 continue; 18336 /* 18337 * the 1st priority that has not FLOGI failed 18338 * will be the highest. 18339 */ 18340 if (!next_fcf_pri) 18341 next_fcf_pri = fcf_pri->fcf_rec.priority; 18342 spin_unlock_irq(&phba->hbalock); 18343 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 18344 rc = lpfc_sli4_fcf_rr_index_set(phba, 18345 fcf_pri->fcf_rec.fcf_index); 18346 if (rc) 18347 return 0; 18348 } 18349 spin_lock_irq(&phba->hbalock); 18350 } 18351 /* 18352 * if next_fcf_pri was not set above and the list is not empty then 18353 * we have failed flogis on all of them. So reset flogi failed 18354 * and start at the beginning. 18355 */ 18356 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 18357 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 18358 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 18359 /* 18360 * the 1st priority that has not FLOGI failed 18361 * will be the highest. 18362 */ 18363 if (!next_fcf_pri) 18364 next_fcf_pri = fcf_pri->fcf_rec.priority; 18365 spin_unlock_irq(&phba->hbalock); 18366 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 18367 rc = lpfc_sli4_fcf_rr_index_set(phba, 18368 fcf_pri->fcf_rec.fcf_index); 18369 if (rc) 18370 return 0; 18371 } 18372 spin_lock_irq(&phba->hbalock); 18373 } 18374 } else 18375 ret = 1; 18376 spin_unlock_irq(&phba->hbalock); 18377 18378 return ret; 18379 } 18380 /** 18381 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 18382 * @phba: pointer to lpfc hba data structure. 18383 * 18384 * This routine is to get the next eligible FCF record index in a round 18385 * robin fashion. If the next eligible FCF record index equals to the 18386 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 18387 * shall be returned, otherwise, the next eligible FCF record's index 18388 * shall be returned. 18389 **/ 18390 uint16_t 18391 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 18392 { 18393 uint16_t next_fcf_index; 18394 18395 initial_priority: 18396 /* Search start from next bit of currently registered FCF index */ 18397 next_fcf_index = phba->fcf.current_rec.fcf_indx; 18398 18399 next_priority: 18400 /* Determine the next fcf index to check */ 18401 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 18402 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 18403 LPFC_SLI4_FCF_TBL_INDX_MAX, 18404 next_fcf_index); 18405 18406 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 18407 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18408 /* 18409 * If we have wrapped then we need to clear the bits that 18410 * have been tested so that we can detect when we should 18411 * change the priority level. 18412 */ 18413 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 18414 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 18415 } 18416 18417 18418 /* Check roundrobin failover list empty condition */ 18419 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 18420 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 18421 /* 18422 * If next fcf index is not found check if there are lower 18423 * Priority level fcf's in the fcf_priority list. 18424 * Set up the rr_bmask with all of the avaiable fcf bits 18425 * at that level and continue the selection process. 18426 */ 18427 if (lpfc_check_next_fcf_pri_level(phba)) 18428 goto initial_priority; 18429 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 18430 "2844 No roundrobin failover FCF available\n"); 18431 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) 18432 return LPFC_FCOE_FCF_NEXT_NONE; 18433 else { 18434 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 18435 "3063 Only FCF available idx %d, flag %x\n", 18436 next_fcf_index, 18437 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag); 18438 return next_fcf_index; 18439 } 18440 } 18441 18442 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 18443 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 18444 LPFC_FCF_FLOGI_FAILED) { 18445 if (list_is_singular(&phba->fcf.fcf_pri_list)) 18446 return LPFC_FCOE_FCF_NEXT_NONE; 18447 18448 goto next_priority; 18449 } 18450 18451 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18452 "2845 Get next roundrobin failover FCF (x%x)\n", 18453 next_fcf_index); 18454 18455 return next_fcf_index; 18456 } 18457 18458 /** 18459 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 18460 * @phba: pointer to lpfc hba data structure. 18461 * 18462 * This routine sets the FCF record index in to the eligible bmask for 18463 * roundrobin failover search. It checks to make sure that the index 18464 * does not go beyond the range of the driver allocated bmask dimension 18465 * before setting the bit. 18466 * 18467 * Returns 0 if the index bit successfully set, otherwise, it returns 18468 * -EINVAL. 18469 **/ 18470 int 18471 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 18472 { 18473 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18474 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18475 "2610 FCF (x%x) reached driver's book " 18476 "keeping dimension:x%x\n", 18477 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 18478 return -EINVAL; 18479 } 18480 /* Set the eligible FCF record index bmask */ 18481 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 18482 18483 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18484 "2790 Set FCF (x%x) to roundrobin FCF failover " 18485 "bmask\n", fcf_index); 18486 18487 return 0; 18488 } 18489 18490 /** 18491 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 18492 * @phba: pointer to lpfc hba data structure. 18493 * 18494 * This routine clears the FCF record index from the eligible bmask for 18495 * roundrobin failover search. It checks to make sure that the index 18496 * does not go beyond the range of the driver allocated bmask dimension 18497 * before clearing the bit. 18498 **/ 18499 void 18500 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 18501 { 18502 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 18503 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18504 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18505 "2762 FCF (x%x) reached driver's book " 18506 "keeping dimension:x%x\n", 18507 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 18508 return; 18509 } 18510 /* Clear the eligible FCF record index bmask */ 18511 spin_lock_irq(&phba->hbalock); 18512 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 18513 list) { 18514 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 18515 list_del_init(&fcf_pri->list); 18516 break; 18517 } 18518 } 18519 spin_unlock_irq(&phba->hbalock); 18520 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 18521 18522 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18523 "2791 Clear FCF (x%x) from roundrobin failover " 18524 "bmask\n", fcf_index); 18525 } 18526 18527 /** 18528 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 18529 * @phba: pointer to lpfc hba data structure. 18530 * 18531 * This routine is the completion routine for the rediscover FCF table mailbox 18532 * command. If the mailbox command returned failure, it will try to stop the 18533 * FCF rediscover wait timer. 18534 **/ 18535 static void 18536 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 18537 { 18538 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 18539 uint32_t shdr_status, shdr_add_status; 18540 18541 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 18542 18543 shdr_status = bf_get(lpfc_mbox_hdr_status, 18544 &redisc_fcf->header.cfg_shdr.response); 18545 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 18546 &redisc_fcf->header.cfg_shdr.response); 18547 if (shdr_status || shdr_add_status) { 18548 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18549 "2746 Requesting for FCF rediscovery failed " 18550 "status x%x add_status x%x\n", 18551 shdr_status, shdr_add_status); 18552 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 18553 spin_lock_irq(&phba->hbalock); 18554 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 18555 spin_unlock_irq(&phba->hbalock); 18556 /* 18557 * CVL event triggered FCF rediscover request failed, 18558 * last resort to re-try current registered FCF entry. 18559 */ 18560 lpfc_retry_pport_discovery(phba); 18561 } else { 18562 spin_lock_irq(&phba->hbalock); 18563 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 18564 spin_unlock_irq(&phba->hbalock); 18565 /* 18566 * DEAD FCF event triggered FCF rediscover request 18567 * failed, last resort to fail over as a link down 18568 * to FCF registration. 18569 */ 18570 lpfc_sli4_fcf_dead_failthrough(phba); 18571 } 18572 } else { 18573 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18574 "2775 Start FCF rediscover quiescent timer\n"); 18575 /* 18576 * Start FCF rediscovery wait timer for pending FCF 18577 * before rescan FCF record table. 18578 */ 18579 lpfc_fcf_redisc_wait_start_timer(phba); 18580 } 18581 18582 mempool_free(mbox, phba->mbox_mem_pool); 18583 } 18584 18585 /** 18586 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 18587 * @phba: pointer to lpfc hba data structure. 18588 * 18589 * This routine is invoked to request for rediscovery of the entire FCF table 18590 * by the port. 18591 **/ 18592 int 18593 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 18594 { 18595 LPFC_MBOXQ_t *mbox; 18596 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 18597 int rc, length; 18598 18599 /* Cancel retry delay timers to all vports before FCF rediscover */ 18600 lpfc_cancel_all_vport_retry_delay_timer(phba); 18601 18602 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18603 if (!mbox) { 18604 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18605 "2745 Failed to allocate mbox for " 18606 "requesting FCF rediscover.\n"); 18607 return -ENOMEM; 18608 } 18609 18610 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 18611 sizeof(struct lpfc_sli4_cfg_mhdr)); 18612 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18613 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 18614 length, LPFC_SLI4_MBX_EMBED); 18615 18616 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 18617 /* Set count to 0 for invalidating the entire FCF database */ 18618 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 18619 18620 /* Issue the mailbox command asynchronously */ 18621 mbox->vport = phba->pport; 18622 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 18623 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 18624 18625 if (rc == MBX_NOT_FINISHED) { 18626 mempool_free(mbox, phba->mbox_mem_pool); 18627 return -EIO; 18628 } 18629 return 0; 18630 } 18631 18632 /** 18633 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 18634 * @phba: pointer to lpfc hba data structure. 18635 * 18636 * This function is the failover routine as a last resort to the FCF DEAD 18637 * event when driver failed to perform fast FCF failover. 18638 **/ 18639 void 18640 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 18641 { 18642 uint32_t link_state; 18643 18644 /* 18645 * Last resort as FCF DEAD event failover will treat this as 18646 * a link down, but save the link state because we don't want 18647 * it to be changed to Link Down unless it is already down. 18648 */ 18649 link_state = phba->link_state; 18650 lpfc_linkdown(phba); 18651 phba->link_state = link_state; 18652 18653 /* Unregister FCF if no devices connected to it */ 18654 lpfc_unregister_unused_fcf(phba); 18655 } 18656 18657 /** 18658 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 18659 * @phba: pointer to lpfc hba data structure. 18660 * @rgn23_data: pointer to configure region 23 data. 18661 * 18662 * This function gets SLI3 port configure region 23 data through memory dump 18663 * mailbox command. When it successfully retrieves data, the size of the data 18664 * will be returned, otherwise, 0 will be returned. 18665 **/ 18666 static uint32_t 18667 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 18668 { 18669 LPFC_MBOXQ_t *pmb = NULL; 18670 MAILBOX_t *mb; 18671 uint32_t offset = 0; 18672 int rc; 18673 18674 if (!rgn23_data) 18675 return 0; 18676 18677 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18678 if (!pmb) { 18679 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18680 "2600 failed to allocate mailbox memory\n"); 18681 return 0; 18682 } 18683 mb = &pmb->u.mb; 18684 18685 do { 18686 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 18687 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 18688 18689 if (rc != MBX_SUCCESS) { 18690 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 18691 "2601 failed to read config " 18692 "region 23, rc 0x%x Status 0x%x\n", 18693 rc, mb->mbxStatus); 18694 mb->un.varDmp.word_cnt = 0; 18695 } 18696 /* 18697 * dump mem may return a zero when finished or we got a 18698 * mailbox error, either way we are done. 18699 */ 18700 if (mb->un.varDmp.word_cnt == 0) 18701 break; 18702 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 18703 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 18704 18705 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 18706 rgn23_data + offset, 18707 mb->un.varDmp.word_cnt); 18708 offset += mb->un.varDmp.word_cnt; 18709 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 18710 18711 mempool_free(pmb, phba->mbox_mem_pool); 18712 return offset; 18713 } 18714 18715 /** 18716 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 18717 * @phba: pointer to lpfc hba data structure. 18718 * @rgn23_data: pointer to configure region 23 data. 18719 * 18720 * This function gets SLI4 port configure region 23 data through memory dump 18721 * mailbox command. When it successfully retrieves data, the size of the data 18722 * will be returned, otherwise, 0 will be returned. 18723 **/ 18724 static uint32_t 18725 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 18726 { 18727 LPFC_MBOXQ_t *mboxq = NULL; 18728 struct lpfc_dmabuf *mp = NULL; 18729 struct lpfc_mqe *mqe; 18730 uint32_t data_length = 0; 18731 int rc; 18732 18733 if (!rgn23_data) 18734 return 0; 18735 18736 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18737 if (!mboxq) { 18738 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18739 "3105 failed to allocate mailbox memory\n"); 18740 return 0; 18741 } 18742 18743 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 18744 goto out; 18745 mqe = &mboxq->u.mqe; 18746 mp = (struct lpfc_dmabuf *) mboxq->context1; 18747 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18748 if (rc) 18749 goto out; 18750 data_length = mqe->un.mb_words[5]; 18751 if (data_length == 0) 18752 goto out; 18753 if (data_length > DMP_RGN23_SIZE) { 18754 data_length = 0; 18755 goto out; 18756 } 18757 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 18758 out: 18759 mempool_free(mboxq, phba->mbox_mem_pool); 18760 if (mp) { 18761 lpfc_mbuf_free(phba, mp->virt, mp->phys); 18762 kfree(mp); 18763 } 18764 return data_length; 18765 } 18766 18767 /** 18768 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 18769 * @phba: pointer to lpfc hba data structure. 18770 * 18771 * This function read region 23 and parse TLV for port status to 18772 * decide if the user disaled the port. If the TLV indicates the 18773 * port is disabled, the hba_flag is set accordingly. 18774 **/ 18775 void 18776 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 18777 { 18778 uint8_t *rgn23_data = NULL; 18779 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 18780 uint32_t offset = 0; 18781 18782 /* Get adapter Region 23 data */ 18783 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 18784 if (!rgn23_data) 18785 goto out; 18786 18787 if (phba->sli_rev < LPFC_SLI_REV4) 18788 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 18789 else { 18790 if_type = bf_get(lpfc_sli_intf_if_type, 18791 &phba->sli4_hba.sli_intf); 18792 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 18793 goto out; 18794 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 18795 } 18796 18797 if (!data_size) 18798 goto out; 18799 18800 /* Check the region signature first */ 18801 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 18802 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18803 "2619 Config region 23 has bad signature\n"); 18804 goto out; 18805 } 18806 offset += 4; 18807 18808 /* Check the data structure version */ 18809 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 18810 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18811 "2620 Config region 23 has bad version\n"); 18812 goto out; 18813 } 18814 offset += 4; 18815 18816 /* Parse TLV entries in the region */ 18817 while (offset < data_size) { 18818 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 18819 break; 18820 /* 18821 * If the TLV is not driver specific TLV or driver id is 18822 * not linux driver id, skip the record. 18823 */ 18824 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 18825 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 18826 (rgn23_data[offset + 3] != 0)) { 18827 offset += rgn23_data[offset + 1] * 4 + 4; 18828 continue; 18829 } 18830 18831 /* Driver found a driver specific TLV in the config region */ 18832 sub_tlv_len = rgn23_data[offset + 1] * 4; 18833 offset += 4; 18834 tlv_offset = 0; 18835 18836 /* 18837 * Search for configured port state sub-TLV. 18838 */ 18839 while ((offset < data_size) && 18840 (tlv_offset < sub_tlv_len)) { 18841 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 18842 offset += 4; 18843 tlv_offset += 4; 18844 break; 18845 } 18846 if (rgn23_data[offset] != PORT_STE_TYPE) { 18847 offset += rgn23_data[offset + 1] * 4 + 4; 18848 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 18849 continue; 18850 } 18851 18852 /* This HBA contains PORT_STE configured */ 18853 if (!rgn23_data[offset + 2]) 18854 phba->hba_flag |= LINK_DISABLED; 18855 18856 goto out; 18857 } 18858 } 18859 18860 out: 18861 kfree(rgn23_data); 18862 return; 18863 } 18864 18865 /** 18866 * lpfc_wr_object - write an object to the firmware 18867 * @phba: HBA structure that indicates port to create a queue on. 18868 * @dmabuf_list: list of dmabufs to write to the port. 18869 * @size: the total byte value of the objects to write to the port. 18870 * @offset: the current offset to be used to start the transfer. 18871 * 18872 * This routine will create a wr_object mailbox command to send to the port. 18873 * the mailbox command will be constructed using the dma buffers described in 18874 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 18875 * BDEs that the imbedded mailbox can support. The @offset variable will be 18876 * used to indicate the starting offset of the transfer and will also return 18877 * the offset after the write object mailbox has completed. @size is used to 18878 * determine the end of the object and whether the eof bit should be set. 18879 * 18880 * Return 0 is successful and offset will contain the the new offset to use 18881 * for the next write. 18882 * Return negative value for error cases. 18883 **/ 18884 int 18885 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 18886 uint32_t size, uint32_t *offset) 18887 { 18888 struct lpfc_mbx_wr_object *wr_object; 18889 LPFC_MBOXQ_t *mbox; 18890 int rc = 0, i = 0; 18891 uint32_t shdr_status, shdr_add_status; 18892 uint32_t mbox_tmo; 18893 union lpfc_sli4_cfg_shdr *shdr; 18894 struct lpfc_dmabuf *dmabuf; 18895 uint32_t written = 0; 18896 18897 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18898 if (!mbox) 18899 return -ENOMEM; 18900 18901 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 18902 LPFC_MBOX_OPCODE_WRITE_OBJECT, 18903 sizeof(struct lpfc_mbx_wr_object) - 18904 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 18905 18906 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 18907 wr_object->u.request.write_offset = *offset; 18908 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 18909 wr_object->u.request.object_name[0] = 18910 cpu_to_le32(wr_object->u.request.object_name[0]); 18911 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 18912 list_for_each_entry(dmabuf, dmabuf_list, list) { 18913 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 18914 break; 18915 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 18916 wr_object->u.request.bde[i].addrHigh = 18917 putPaddrHigh(dmabuf->phys); 18918 if (written + SLI4_PAGE_SIZE >= size) { 18919 wr_object->u.request.bde[i].tus.f.bdeSize = 18920 (size - written); 18921 written += (size - written); 18922 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 18923 } else { 18924 wr_object->u.request.bde[i].tus.f.bdeSize = 18925 SLI4_PAGE_SIZE; 18926 written += SLI4_PAGE_SIZE; 18927 } 18928 i++; 18929 } 18930 wr_object->u.request.bde_count = i; 18931 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 18932 if (!phba->sli4_hba.intr_enable) 18933 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18934 else { 18935 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18936 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18937 } 18938 /* The IOCTL status is embedded in the mailbox subheader. */ 18939 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr; 18940 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18941 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18942 if (rc != MBX_TIMEOUT) 18943 mempool_free(mbox, phba->mbox_mem_pool); 18944 if (shdr_status || shdr_add_status || rc) { 18945 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18946 "3025 Write Object mailbox failed with " 18947 "status x%x add_status x%x, mbx status x%x\n", 18948 shdr_status, shdr_add_status, rc); 18949 rc = -ENXIO; 18950 *offset = shdr_add_status; 18951 } else 18952 *offset += wr_object->u.response.actual_write_length; 18953 return rc; 18954 } 18955 18956 /** 18957 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 18958 * @vport: pointer to vport data structure. 18959 * 18960 * This function iterate through the mailboxq and clean up all REG_LOGIN 18961 * and REG_VPI mailbox commands associated with the vport. This function 18962 * is called when driver want to restart discovery of the vport due to 18963 * a Clear Virtual Link event. 18964 **/ 18965 void 18966 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 18967 { 18968 struct lpfc_hba *phba = vport->phba; 18969 LPFC_MBOXQ_t *mb, *nextmb; 18970 struct lpfc_dmabuf *mp; 18971 struct lpfc_nodelist *ndlp; 18972 struct lpfc_nodelist *act_mbx_ndlp = NULL; 18973 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 18974 LIST_HEAD(mbox_cmd_list); 18975 uint8_t restart_loop; 18976 18977 /* Clean up internally queued mailbox commands with the vport */ 18978 spin_lock_irq(&phba->hbalock); 18979 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 18980 if (mb->vport != vport) 18981 continue; 18982 18983 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 18984 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 18985 continue; 18986 18987 list_del(&mb->list); 18988 list_add_tail(&mb->list, &mbox_cmd_list); 18989 } 18990 /* Clean up active mailbox command with the vport */ 18991 mb = phba->sli.mbox_active; 18992 if (mb && (mb->vport == vport)) { 18993 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 18994 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 18995 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18996 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 18997 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2; 18998 /* Put reference count for delayed processing */ 18999 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 19000 /* Unregister the RPI when mailbox complete */ 19001 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19002 } 19003 } 19004 /* Cleanup any mailbox completions which are not yet processed */ 19005 do { 19006 restart_loop = 0; 19007 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 19008 /* 19009 * If this mailox is already processed or it is 19010 * for another vport ignore it. 19011 */ 19012 if ((mb->vport != vport) || 19013 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 19014 continue; 19015 19016 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 19017 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 19018 continue; 19019 19020 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19021 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19022 ndlp = (struct lpfc_nodelist *)mb->context2; 19023 /* Unregister the RPI when mailbox complete */ 19024 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19025 restart_loop = 1; 19026 spin_unlock_irq(&phba->hbalock); 19027 spin_lock(shost->host_lock); 19028 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19029 spin_unlock(shost->host_lock); 19030 spin_lock_irq(&phba->hbalock); 19031 break; 19032 } 19033 } 19034 } while (restart_loop); 19035 19036 spin_unlock_irq(&phba->hbalock); 19037 19038 /* Release the cleaned-up mailbox commands */ 19039 while (!list_empty(&mbox_cmd_list)) { 19040 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 19041 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19042 mp = (struct lpfc_dmabuf *) (mb->context1); 19043 if (mp) { 19044 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 19045 kfree(mp); 19046 } 19047 ndlp = (struct lpfc_nodelist *) mb->context2; 19048 mb->context2 = NULL; 19049 if (ndlp) { 19050 spin_lock(shost->host_lock); 19051 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19052 spin_unlock(shost->host_lock); 19053 lpfc_nlp_put(ndlp); 19054 } 19055 } 19056 mempool_free(mb, phba->mbox_mem_pool); 19057 } 19058 19059 /* Release the ndlp with the cleaned-up active mailbox command */ 19060 if (act_mbx_ndlp) { 19061 spin_lock(shost->host_lock); 19062 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19063 spin_unlock(shost->host_lock); 19064 lpfc_nlp_put(act_mbx_ndlp); 19065 } 19066 } 19067 19068 /** 19069 * lpfc_drain_txq - Drain the txq 19070 * @phba: Pointer to HBA context object. 19071 * 19072 * This function attempt to submit IOCBs on the txq 19073 * to the adapter. For SLI4 adapters, the txq contains 19074 * ELS IOCBs that have been deferred because the there 19075 * are no SGLs. This congestion can occur with large 19076 * vport counts during node discovery. 19077 **/ 19078 19079 uint32_t 19080 lpfc_drain_txq(struct lpfc_hba *phba) 19081 { 19082 LIST_HEAD(completions); 19083 struct lpfc_sli_ring *pring; 19084 struct lpfc_iocbq *piocbq = NULL; 19085 unsigned long iflags = 0; 19086 char *fail_msg = NULL; 19087 struct lpfc_sglq *sglq; 19088 union lpfc_wqe128 wqe; 19089 uint32_t txq_cnt = 0; 19090 struct lpfc_queue *wq; 19091 19092 if (phba->link_flag & LS_MDS_LOOPBACK) { 19093 /* MDS WQE are posted only to first WQ*/ 19094 wq = phba->sli4_hba.fcp_wq[0]; 19095 if (unlikely(!wq)) 19096 return 0; 19097 pring = wq->pring; 19098 } else { 19099 wq = phba->sli4_hba.els_wq; 19100 if (unlikely(!wq)) 19101 return 0; 19102 pring = lpfc_phba_elsring(phba); 19103 } 19104 19105 if (unlikely(!pring) || list_empty(&pring->txq)) 19106 return 0; 19107 19108 spin_lock_irqsave(&pring->ring_lock, iflags); 19109 list_for_each_entry(piocbq, &pring->txq, list) { 19110 txq_cnt++; 19111 } 19112 19113 if (txq_cnt > pring->txq_max) 19114 pring->txq_max = txq_cnt; 19115 19116 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19117 19118 while (!list_empty(&pring->txq)) { 19119 spin_lock_irqsave(&pring->ring_lock, iflags); 19120 19121 piocbq = lpfc_sli_ringtx_get(phba, pring); 19122 if (!piocbq) { 19123 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19124 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19125 "2823 txq empty and txq_cnt is %d\n ", 19126 txq_cnt); 19127 break; 19128 } 19129 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 19130 if (!sglq) { 19131 __lpfc_sli_ringtx_put(phba, pring, piocbq); 19132 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19133 break; 19134 } 19135 txq_cnt--; 19136 19137 /* The xri and iocb resources secured, 19138 * attempt to issue request 19139 */ 19140 piocbq->sli4_lxritag = sglq->sli4_lxritag; 19141 piocbq->sli4_xritag = sglq->sli4_xritag; 19142 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 19143 fail_msg = "to convert bpl to sgl"; 19144 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 19145 fail_msg = "to convert iocb to wqe"; 19146 else if (lpfc_sli4_wq_put(wq, &wqe)) 19147 fail_msg = " - Wq is full"; 19148 else 19149 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 19150 19151 if (fail_msg) { 19152 /* Failed means we can't issue and need to cancel */ 19153 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19154 "2822 IOCB failed %s iotag 0x%x " 19155 "xri 0x%x\n", 19156 fail_msg, 19157 piocbq->iotag, piocbq->sli4_xritag); 19158 list_add_tail(&piocbq->list, &completions); 19159 } 19160 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19161 } 19162 19163 /* Cancel all the IOCBs that cannot be issued */ 19164 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 19165 IOERR_SLI_ABORTED); 19166 19167 return txq_cnt; 19168 } 19169 19170 /** 19171 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 19172 * @phba: Pointer to HBA context object. 19173 * @pwqe: Pointer to command WQE. 19174 * @sglq: Pointer to the scatter gather queue object. 19175 * 19176 * This routine converts the bpl or bde that is in the WQE 19177 * to a sgl list for the sli4 hardware. The physical address 19178 * of the bpl/bde is converted back to a virtual address. 19179 * If the WQE contains a BPL then the list of BDE's is 19180 * converted to sli4_sge's. If the WQE contains a single 19181 * BDE then it is converted to a single sli_sge. 19182 * The WQE is still in cpu endianness so the contents of 19183 * the bpl can be used without byte swapping. 19184 * 19185 * Returns valid XRI = Success, NO_XRI = Failure. 19186 */ 19187 static uint16_t 19188 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 19189 struct lpfc_sglq *sglq) 19190 { 19191 uint16_t xritag = NO_XRI; 19192 struct ulp_bde64 *bpl = NULL; 19193 struct ulp_bde64 bde; 19194 struct sli4_sge *sgl = NULL; 19195 struct lpfc_dmabuf *dmabuf; 19196 union lpfc_wqe128 *wqe; 19197 int numBdes = 0; 19198 int i = 0; 19199 uint32_t offset = 0; /* accumulated offset in the sg request list */ 19200 int inbound = 0; /* number of sg reply entries inbound from firmware */ 19201 uint32_t cmd; 19202 19203 if (!pwqeq || !sglq) 19204 return xritag; 19205 19206 sgl = (struct sli4_sge *)sglq->sgl; 19207 wqe = &pwqeq->wqe; 19208 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 19209 19210 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 19211 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 19212 return sglq->sli4_xritag; 19213 numBdes = pwqeq->rsvd2; 19214 if (numBdes) { 19215 /* The addrHigh and addrLow fields within the WQE 19216 * have not been byteswapped yet so there is no 19217 * need to swap them back. 19218 */ 19219 if (pwqeq->context3) 19220 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 19221 else 19222 return xritag; 19223 19224 bpl = (struct ulp_bde64 *)dmabuf->virt; 19225 if (!bpl) 19226 return xritag; 19227 19228 for (i = 0; i < numBdes; i++) { 19229 /* Should already be byte swapped. */ 19230 sgl->addr_hi = bpl->addrHigh; 19231 sgl->addr_lo = bpl->addrLow; 19232 19233 sgl->word2 = le32_to_cpu(sgl->word2); 19234 if ((i+1) == numBdes) 19235 bf_set(lpfc_sli4_sge_last, sgl, 1); 19236 else 19237 bf_set(lpfc_sli4_sge_last, sgl, 0); 19238 /* swap the size field back to the cpu so we 19239 * can assign it to the sgl. 19240 */ 19241 bde.tus.w = le32_to_cpu(bpl->tus.w); 19242 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 19243 /* The offsets in the sgl need to be accumulated 19244 * separately for the request and reply lists. 19245 * The request is always first, the reply follows. 19246 */ 19247 switch (cmd) { 19248 case CMD_GEN_REQUEST64_WQE: 19249 /* add up the reply sg entries */ 19250 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 19251 inbound++; 19252 /* first inbound? reset the offset */ 19253 if (inbound == 1) 19254 offset = 0; 19255 bf_set(lpfc_sli4_sge_offset, sgl, offset); 19256 bf_set(lpfc_sli4_sge_type, sgl, 19257 LPFC_SGE_TYPE_DATA); 19258 offset += bde.tus.f.bdeSize; 19259 break; 19260 case CMD_FCP_TRSP64_WQE: 19261 bf_set(lpfc_sli4_sge_offset, sgl, 0); 19262 bf_set(lpfc_sli4_sge_type, sgl, 19263 LPFC_SGE_TYPE_DATA); 19264 break; 19265 case CMD_FCP_TSEND64_WQE: 19266 case CMD_FCP_TRECEIVE64_WQE: 19267 bf_set(lpfc_sli4_sge_type, sgl, 19268 bpl->tus.f.bdeFlags); 19269 if (i < 3) 19270 offset = 0; 19271 else 19272 offset += bde.tus.f.bdeSize; 19273 bf_set(lpfc_sli4_sge_offset, sgl, offset); 19274 break; 19275 } 19276 sgl->word2 = cpu_to_le32(sgl->word2); 19277 bpl++; 19278 sgl++; 19279 } 19280 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 19281 /* The addrHigh and addrLow fields of the BDE have not 19282 * been byteswapped yet so they need to be swapped 19283 * before putting them in the sgl. 19284 */ 19285 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 19286 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 19287 sgl->word2 = le32_to_cpu(sgl->word2); 19288 bf_set(lpfc_sli4_sge_last, sgl, 1); 19289 sgl->word2 = cpu_to_le32(sgl->word2); 19290 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 19291 } 19292 return sglq->sli4_xritag; 19293 } 19294 19295 /** 19296 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 19297 * @phba: Pointer to HBA context object. 19298 * @ring_number: Base sli ring number 19299 * @pwqe: Pointer to command WQE. 19300 **/ 19301 int 19302 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, uint32_t ring_number, 19303 struct lpfc_iocbq *pwqe) 19304 { 19305 union lpfc_wqe128 *wqe = &pwqe->wqe; 19306 struct lpfc_nvmet_rcv_ctx *ctxp; 19307 struct lpfc_queue *wq; 19308 struct lpfc_sglq *sglq; 19309 struct lpfc_sli_ring *pring; 19310 unsigned long iflags; 19311 uint32_t ret = 0; 19312 19313 /* NVME_LS and NVME_LS ABTS requests. */ 19314 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 19315 pring = phba->sli4_hba.nvmels_wq->pring; 19316 spin_lock_irqsave(&pring->ring_lock, iflags); 19317 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 19318 if (!sglq) { 19319 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19320 return WQE_BUSY; 19321 } 19322 pwqe->sli4_lxritag = sglq->sli4_lxritag; 19323 pwqe->sli4_xritag = sglq->sli4_xritag; 19324 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 19325 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19326 return WQE_ERROR; 19327 } 19328 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 19329 pwqe->sli4_xritag); 19330 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 19331 if (ret) { 19332 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19333 return ret; 19334 } 19335 19336 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19337 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19338 return 0; 19339 } 19340 19341 /* NVME_FCREQ and NVME_ABTS requests */ 19342 if (pwqe->iocb_flag & LPFC_IO_NVME) { 19343 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 19344 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 19345 19346 spin_lock_irqsave(&pring->ring_lock, iflags); 19347 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 19348 bf_set(wqe_cqid, &wqe->generic.wqe_com, 19349 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 19350 ret = lpfc_sli4_wq_put(wq, wqe); 19351 if (ret) { 19352 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19353 return ret; 19354 } 19355 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19356 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19357 return 0; 19358 } 19359 19360 /* NVMET requests */ 19361 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 19362 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 19363 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 19364 19365 spin_lock_irqsave(&pring->ring_lock, iflags); 19366 ctxp = pwqe->context2; 19367 sglq = ctxp->ctxbuf->sglq; 19368 if (pwqe->sli4_xritag == NO_XRI) { 19369 pwqe->sli4_lxritag = sglq->sli4_lxritag; 19370 pwqe->sli4_xritag = sglq->sli4_xritag; 19371 } 19372 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 19373 pwqe->sli4_xritag); 19374 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 19375 bf_set(wqe_cqid, &wqe->generic.wqe_com, 19376 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 19377 ret = lpfc_sli4_wq_put(wq, wqe); 19378 if (ret) { 19379 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19380 return ret; 19381 } 19382 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19383 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19384 return 0; 19385 } 19386 return WQE_ERROR; 19387 } 19388