xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_sli.c (revision d236d361)
1 
2 /*******************************************************************
3  * This file is part of the Emulex Linux Device Driver for         *
4  * Fibre Channel Host Bus Adapters.                                *
5  * Copyright (C) 2017 Broadcom. All Rights Reserved. The term      *
6  * “Broadcom” refers to Broadcom Limited and/or its subsidiaries.  *
7  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
8  * EMULEX and SLI are trademarks of Emulex.                        *
9  * www.broadcom.com                                                *
10  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
11  *                                                                 *
12  * This program is free software; you can redistribute it and/or   *
13  * modify it under the terms of version 2 of the GNU General       *
14  * Public License as published by the Free Software Foundation.    *
15  * This program is distributed in the hope that it will be useful. *
16  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
17  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
18  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
19  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
20  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
21  * more details, a copy of which can be found in the file COPYING  *
22  * included with this package.                                     *
23  *******************************************************************/
24 
25 #include <linux/blkdev.h>
26 #include <linux/pci.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/slab.h>
30 #include <linux/lockdep.h>
31 
32 #include <scsi/scsi.h>
33 #include <scsi/scsi_cmnd.h>
34 #include <scsi/scsi_device.h>
35 #include <scsi/scsi_host.h>
36 #include <scsi/scsi_transport_fc.h>
37 #include <scsi/fc/fc_fs.h>
38 #include <linux/aer.h>
39 
40 #include <linux/nvme-fc-driver.h>
41 
42 #include "lpfc_hw4.h"
43 #include "lpfc_hw.h"
44 #include "lpfc_sli.h"
45 #include "lpfc_sli4.h"
46 #include "lpfc_nl.h"
47 #include "lpfc_disc.h"
48 #include "lpfc.h"
49 #include "lpfc_scsi.h"
50 #include "lpfc_nvme.h"
51 #include "lpfc_nvmet.h"
52 #include "lpfc_crtn.h"
53 #include "lpfc_logmsg.h"
54 #include "lpfc_compat.h"
55 #include "lpfc_debugfs.h"
56 #include "lpfc_vport.h"
57 #include "lpfc_version.h"
58 
59 /* There are only four IOCB completion types. */
60 typedef enum _lpfc_iocb_type {
61 	LPFC_UNKNOWN_IOCB,
62 	LPFC_UNSOL_IOCB,
63 	LPFC_SOL_IOCB,
64 	LPFC_ABORT_IOCB
65 } lpfc_iocb_type;
66 
67 
68 /* Provide function prototypes local to this module. */
69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
70 				  uint32_t);
71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 			      uint8_t *, uint32_t *);
73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
74 							 struct lpfc_iocbq *);
75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
76 				      struct hbq_dmabuf *);
77 static int lpfc_sli4_fp_handle_cqe(struct lpfc_hba *, struct lpfc_queue *,
78 				    struct lpfc_cqe *);
79 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
80 				       int);
81 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *, struct lpfc_eqe *,
82 			uint32_t);
83 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
84 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
85 static int lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba,
86 				   struct lpfc_sli_ring *pring,
87 				   struct lpfc_iocbq *cmdiocb);
88 
89 static IOCB_t *
90 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
91 {
92 	return &iocbq->iocb;
93 }
94 
95 /**
96  * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
97  * @q: The Work Queue to operate on.
98  * @wqe: The work Queue Entry to put on the Work queue.
99  *
100  * This routine will copy the contents of @wqe to the next available entry on
101  * the @q. This function will then ring the Work Queue Doorbell to signal the
102  * HBA to start processing the Work Queue Entry. This function returns 0 if
103  * successful. If no entries are available on @q then this function will return
104  * -ENOMEM.
105  * The caller is expected to hold the hbalock when calling this routine.
106  **/
107 static uint32_t
108 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe *wqe)
109 {
110 	union lpfc_wqe *temp_wqe;
111 	struct lpfc_register doorbell;
112 	uint32_t host_index;
113 	uint32_t idx;
114 
115 	/* sanity check on queue memory */
116 	if (unlikely(!q))
117 		return -ENOMEM;
118 	temp_wqe = q->qe[q->host_index].wqe;
119 
120 	/* If the host has not yet processed the next entry then we are done */
121 	idx = ((q->host_index + 1) % q->entry_count);
122 	if (idx == q->hba_index) {
123 		q->WQ_overflow++;
124 		return -ENOMEM;
125 	}
126 	q->WQ_posted++;
127 	/* set consumption flag every once in a while */
128 	if (!((q->host_index + 1) % q->entry_repost))
129 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
130 	if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
131 		bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
132 	lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
133 	/* ensure WQE bcopy flushed before doorbell write */
134 	wmb();
135 
136 	/* Update the host index before invoking device */
137 	host_index = q->host_index;
138 
139 	q->host_index = idx;
140 
141 	/* Ring Doorbell */
142 	doorbell.word0 = 0;
143 	if (q->db_format == LPFC_DB_LIST_FORMAT) {
144 		bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
145 		bf_set(lpfc_wq_db_list_fm_index, &doorbell, host_index);
146 		bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
147 	} else if (q->db_format == LPFC_DB_RING_FORMAT) {
148 		bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
149 		bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
150 	} else {
151 		return -EINVAL;
152 	}
153 	writel(doorbell.word0, q->db_regaddr);
154 
155 	return 0;
156 }
157 
158 /**
159  * lpfc_sli4_wq_release - Updates internal hba index for WQ
160  * @q: The Work Queue to operate on.
161  * @index: The index to advance the hba index to.
162  *
163  * This routine will update the HBA index of a queue to reflect consumption of
164  * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
165  * an entry the host calls this function to update the queue's internal
166  * pointers. This routine returns the number of entries that were consumed by
167  * the HBA.
168  **/
169 static uint32_t
170 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
171 {
172 	uint32_t released = 0;
173 
174 	/* sanity check on queue memory */
175 	if (unlikely(!q))
176 		return 0;
177 
178 	if (q->hba_index == index)
179 		return 0;
180 	do {
181 		q->hba_index = ((q->hba_index + 1) % q->entry_count);
182 		released++;
183 	} while (q->hba_index != index);
184 	return released;
185 }
186 
187 /**
188  * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
189  * @q: The Mailbox Queue to operate on.
190  * @wqe: The Mailbox Queue Entry to put on the Work queue.
191  *
192  * This routine will copy the contents of @mqe to the next available entry on
193  * the @q. This function will then ring the Work Queue Doorbell to signal the
194  * HBA to start processing the Work Queue Entry. This function returns 0 if
195  * successful. If no entries are available on @q then this function will return
196  * -ENOMEM.
197  * The caller is expected to hold the hbalock when calling this routine.
198  **/
199 static uint32_t
200 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
201 {
202 	struct lpfc_mqe *temp_mqe;
203 	struct lpfc_register doorbell;
204 
205 	/* sanity check on queue memory */
206 	if (unlikely(!q))
207 		return -ENOMEM;
208 	temp_mqe = q->qe[q->host_index].mqe;
209 
210 	/* If the host has not yet processed the next entry then we are done */
211 	if (((q->host_index + 1) % q->entry_count) == q->hba_index)
212 		return -ENOMEM;
213 	lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
214 	/* Save off the mailbox pointer for completion */
215 	q->phba->mbox = (MAILBOX_t *)temp_mqe;
216 
217 	/* Update the host index before invoking device */
218 	q->host_index = ((q->host_index + 1) % q->entry_count);
219 
220 	/* Ring Doorbell */
221 	doorbell.word0 = 0;
222 	bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
223 	bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
224 	writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
225 	return 0;
226 }
227 
228 /**
229  * lpfc_sli4_mq_release - Updates internal hba index for MQ
230  * @q: The Mailbox Queue to operate on.
231  *
232  * This routine will update the HBA index of a queue to reflect consumption of
233  * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
234  * an entry the host calls this function to update the queue's internal
235  * pointers. This routine returns the number of entries that were consumed by
236  * the HBA.
237  **/
238 static uint32_t
239 lpfc_sli4_mq_release(struct lpfc_queue *q)
240 {
241 	/* sanity check on queue memory */
242 	if (unlikely(!q))
243 		return 0;
244 
245 	/* Clear the mailbox pointer for completion */
246 	q->phba->mbox = NULL;
247 	q->hba_index = ((q->hba_index + 1) % q->entry_count);
248 	return 1;
249 }
250 
251 /**
252  * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
253  * @q: The Event Queue to get the first valid EQE from
254  *
255  * This routine will get the first valid Event Queue Entry from @q, update
256  * the queue's internal hba index, and return the EQE. If no valid EQEs are in
257  * the Queue (no more work to do), or the Queue is full of EQEs that have been
258  * processed, but not popped back to the HBA then this routine will return NULL.
259  **/
260 static struct lpfc_eqe *
261 lpfc_sli4_eq_get(struct lpfc_queue *q)
262 {
263 	struct lpfc_eqe *eqe;
264 	uint32_t idx;
265 
266 	/* sanity check on queue memory */
267 	if (unlikely(!q))
268 		return NULL;
269 	eqe = q->qe[q->hba_index].eqe;
270 
271 	/* If the next EQE is not valid then we are done */
272 	if (!bf_get_le32(lpfc_eqe_valid, eqe))
273 		return NULL;
274 	/* If the host has not yet processed the next entry then we are done */
275 	idx = ((q->hba_index + 1) % q->entry_count);
276 	if (idx == q->host_index)
277 		return NULL;
278 
279 	q->hba_index = idx;
280 
281 	/*
282 	 * insert barrier for instruction interlock : data from the hardware
283 	 * must have the valid bit checked before it can be copied and acted
284 	 * upon. Speculative instructions were allowing a bcopy at the start
285 	 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
286 	 * after our return, to copy data before the valid bit check above
287 	 * was done. As such, some of the copied data was stale. The barrier
288 	 * ensures the check is before any data is copied.
289 	 */
290 	mb();
291 	return eqe;
292 }
293 
294 /**
295  * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
296  * @q: The Event Queue to disable interrupts
297  *
298  **/
299 static inline void
300 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
301 {
302 	struct lpfc_register doorbell;
303 
304 	doorbell.word0 = 0;
305 	bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
306 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
307 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
308 		(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
309 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
310 	writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr);
311 }
312 
313 /**
314  * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ
315  * @q: The Event Queue that the host has completed processing for.
316  * @arm: Indicates whether the host wants to arms this CQ.
317  *
318  * This routine will mark all Event Queue Entries on @q, from the last
319  * known completed entry to the last entry that was processed, as completed
320  * by clearing the valid bit for each completion queue entry. Then it will
321  * notify the HBA, by ringing the doorbell, that the EQEs have been processed.
322  * The internal host index in the @q will be updated by this routine to indicate
323  * that the host has finished processing the entries. The @arm parameter
324  * indicates that the queue should be rearmed when ringing the doorbell.
325  *
326  * This function will return the number of EQEs that were popped.
327  **/
328 uint32_t
329 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm)
330 {
331 	uint32_t released = 0;
332 	struct lpfc_eqe *temp_eqe;
333 	struct lpfc_register doorbell;
334 
335 	/* sanity check on queue memory */
336 	if (unlikely(!q))
337 		return 0;
338 
339 	/* while there are valid entries */
340 	while (q->hba_index != q->host_index) {
341 		temp_eqe = q->qe[q->host_index].eqe;
342 		bf_set_le32(lpfc_eqe_valid, temp_eqe, 0);
343 		released++;
344 		q->host_index = ((q->host_index + 1) % q->entry_count);
345 	}
346 	if (unlikely(released == 0 && !arm))
347 		return 0;
348 
349 	/* ring doorbell for number popped */
350 	doorbell.word0 = 0;
351 	if (arm) {
352 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
353 		bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
354 	}
355 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
356 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
357 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
358 			(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
359 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
360 	writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr);
361 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
362 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
363 		readl(q->phba->sli4_hba.EQCQDBregaddr);
364 	return released;
365 }
366 
367 /**
368  * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
369  * @q: The Completion Queue to get the first valid CQE from
370  *
371  * This routine will get the first valid Completion Queue Entry from @q, update
372  * the queue's internal hba index, and return the CQE. If no valid CQEs are in
373  * the Queue (no more work to do), or the Queue is full of CQEs that have been
374  * processed, but not popped back to the HBA then this routine will return NULL.
375  **/
376 static struct lpfc_cqe *
377 lpfc_sli4_cq_get(struct lpfc_queue *q)
378 {
379 	struct lpfc_cqe *cqe;
380 	uint32_t idx;
381 
382 	/* sanity check on queue memory */
383 	if (unlikely(!q))
384 		return NULL;
385 
386 	/* If the next CQE is not valid then we are done */
387 	if (!bf_get_le32(lpfc_cqe_valid, q->qe[q->hba_index].cqe))
388 		return NULL;
389 	/* If the host has not yet processed the next entry then we are done */
390 	idx = ((q->hba_index + 1) % q->entry_count);
391 	if (idx == q->host_index)
392 		return NULL;
393 
394 	cqe = q->qe[q->hba_index].cqe;
395 	q->hba_index = idx;
396 
397 	/*
398 	 * insert barrier for instruction interlock : data from the hardware
399 	 * must have the valid bit checked before it can be copied and acted
400 	 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
401 	 * instructions allowing action on content before valid bit checked,
402 	 * add barrier here as well. May not be needed as "content" is a
403 	 * single 32-bit entity here (vs multi word structure for cq's).
404 	 */
405 	mb();
406 	return cqe;
407 }
408 
409 /**
410  * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ
411  * @q: The Completion Queue that the host has completed processing for.
412  * @arm: Indicates whether the host wants to arms this CQ.
413  *
414  * This routine will mark all Completion queue entries on @q, from the last
415  * known completed entry to the last entry that was processed, as completed
416  * by clearing the valid bit for each completion queue entry. Then it will
417  * notify the HBA, by ringing the doorbell, that the CQEs have been processed.
418  * The internal host index in the @q will be updated by this routine to indicate
419  * that the host has finished processing the entries. The @arm parameter
420  * indicates that the queue should be rearmed when ringing the doorbell.
421  *
422  * This function will return the number of CQEs that were released.
423  **/
424 uint32_t
425 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm)
426 {
427 	uint32_t released = 0;
428 	struct lpfc_cqe *temp_qe;
429 	struct lpfc_register doorbell;
430 
431 	/* sanity check on queue memory */
432 	if (unlikely(!q))
433 		return 0;
434 	/* while there are valid entries */
435 	while (q->hba_index != q->host_index) {
436 		temp_qe = q->qe[q->host_index].cqe;
437 		bf_set_le32(lpfc_cqe_valid, temp_qe, 0);
438 		released++;
439 		q->host_index = ((q->host_index + 1) % q->entry_count);
440 	}
441 	if (unlikely(released == 0 && !arm))
442 		return 0;
443 
444 	/* ring doorbell for number popped */
445 	doorbell.word0 = 0;
446 	if (arm)
447 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
448 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
449 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
450 	bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
451 			(q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
452 	bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
453 	writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr);
454 	return released;
455 }
456 
457 /**
458  * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
459  * @q: The Header Receive Queue to operate on.
460  * @wqe: The Receive Queue Entry to put on the Receive queue.
461  *
462  * This routine will copy the contents of @wqe to the next available entry on
463  * the @q. This function will then ring the Receive Queue Doorbell to signal the
464  * HBA to start processing the Receive Queue Entry. This function returns the
465  * index that the rqe was copied to if successful. If no entries are available
466  * on @q then this function will return -ENOMEM.
467  * The caller is expected to hold the hbalock when calling this routine.
468  **/
469 int
470 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
471 		 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
472 {
473 	struct lpfc_rqe *temp_hrqe;
474 	struct lpfc_rqe *temp_drqe;
475 	struct lpfc_register doorbell;
476 	int put_index;
477 
478 	/* sanity check on queue memory */
479 	if (unlikely(!hq) || unlikely(!dq))
480 		return -ENOMEM;
481 	put_index = hq->host_index;
482 	temp_hrqe = hq->qe[hq->host_index].rqe;
483 	temp_drqe = dq->qe[dq->host_index].rqe;
484 
485 	if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
486 		return -EINVAL;
487 	if (hq->host_index != dq->host_index)
488 		return -EINVAL;
489 	/* If the host has not yet processed the next entry then we are done */
490 	if (((hq->host_index + 1) % hq->entry_count) == hq->hba_index)
491 		return -EBUSY;
492 	lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
493 	lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
494 
495 	/* Update the host index to point to the next slot */
496 	hq->host_index = ((hq->host_index + 1) % hq->entry_count);
497 	dq->host_index = ((dq->host_index + 1) % dq->entry_count);
498 
499 	/* Ring The Header Receive Queue Doorbell */
500 	if (!(hq->host_index % hq->entry_repost)) {
501 		doorbell.word0 = 0;
502 		if (hq->db_format == LPFC_DB_RING_FORMAT) {
503 			bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
504 			       hq->entry_repost);
505 			bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
506 		} else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
507 			bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
508 			       hq->entry_repost);
509 			bf_set(lpfc_rq_db_list_fm_index, &doorbell,
510 			       hq->host_index);
511 			bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
512 		} else {
513 			return -EINVAL;
514 		}
515 		writel(doorbell.word0, hq->db_regaddr);
516 	}
517 	return put_index;
518 }
519 
520 /**
521  * lpfc_sli4_rq_release - Updates internal hba index for RQ
522  * @q: The Header Receive Queue to operate on.
523  *
524  * This routine will update the HBA index of a queue to reflect consumption of
525  * one Receive Queue Entry by the HBA. When the HBA indicates that it has
526  * consumed an entry the host calls this function to update the queue's
527  * internal pointers. This routine returns the number of entries that were
528  * consumed by the HBA.
529  **/
530 static uint32_t
531 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
532 {
533 	/* sanity check on queue memory */
534 	if (unlikely(!hq) || unlikely(!dq))
535 		return 0;
536 
537 	if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
538 		return 0;
539 	hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
540 	dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
541 	return 1;
542 }
543 
544 /**
545  * lpfc_cmd_iocb - Get next command iocb entry in the ring
546  * @phba: Pointer to HBA context object.
547  * @pring: Pointer to driver SLI ring object.
548  *
549  * This function returns pointer to next command iocb entry
550  * in the command ring. The caller must hold hbalock to prevent
551  * other threads consume the next command iocb.
552  * SLI-2/SLI-3 provide different sized iocbs.
553  **/
554 static inline IOCB_t *
555 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
556 {
557 	return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
558 			   pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
559 }
560 
561 /**
562  * lpfc_resp_iocb - Get next response iocb entry in the ring
563  * @phba: Pointer to HBA context object.
564  * @pring: Pointer to driver SLI ring object.
565  *
566  * This function returns pointer to next response iocb entry
567  * in the response ring. The caller must hold hbalock to make sure
568  * that no other thread consume the next response iocb.
569  * SLI-2/SLI-3 provide different sized iocbs.
570  **/
571 static inline IOCB_t *
572 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
573 {
574 	return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
575 			   pring->sli.sli3.rspidx * phba->iocb_rsp_size);
576 }
577 
578 /**
579  * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
580  * @phba: Pointer to HBA context object.
581  *
582  * This function is called with hbalock held. This function
583  * allocates a new driver iocb object from the iocb pool. If the
584  * allocation is successful, it returns pointer to the newly
585  * allocated iocb object else it returns NULL.
586  **/
587 struct lpfc_iocbq *
588 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
589 {
590 	struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
591 	struct lpfc_iocbq * iocbq = NULL;
592 
593 	lockdep_assert_held(&phba->hbalock);
594 
595 	list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
596 	if (iocbq)
597 		phba->iocb_cnt++;
598 	if (phba->iocb_cnt > phba->iocb_max)
599 		phba->iocb_max = phba->iocb_cnt;
600 	return iocbq;
601 }
602 
603 /**
604  * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
605  * @phba: Pointer to HBA context object.
606  * @xritag: XRI value.
607  *
608  * This function clears the sglq pointer from the array of acive
609  * sglq's. The xritag that is passed in is used to index into the
610  * array. Before the xritag can be used it needs to be adjusted
611  * by subtracting the xribase.
612  *
613  * Returns sglq ponter = success, NULL = Failure.
614  **/
615 struct lpfc_sglq *
616 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
617 {
618 	struct lpfc_sglq *sglq;
619 
620 	sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
621 	phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
622 	return sglq;
623 }
624 
625 /**
626  * __lpfc_get_active_sglq - Get the active sglq for this XRI.
627  * @phba: Pointer to HBA context object.
628  * @xritag: XRI value.
629  *
630  * This function returns the sglq pointer from the array of acive
631  * sglq's. The xritag that is passed in is used to index into the
632  * array. Before the xritag can be used it needs to be adjusted
633  * by subtracting the xribase.
634  *
635  * Returns sglq ponter = success, NULL = Failure.
636  **/
637 struct lpfc_sglq *
638 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
639 {
640 	struct lpfc_sglq *sglq;
641 
642 	sglq =  phba->sli4_hba.lpfc_sglq_active_list[xritag];
643 	return sglq;
644 }
645 
646 /**
647  * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
648  * @phba: Pointer to HBA context object.
649  * @xritag: xri used in this exchange.
650  * @rrq: The RRQ to be cleared.
651  *
652  **/
653 void
654 lpfc_clr_rrq_active(struct lpfc_hba *phba,
655 		    uint16_t xritag,
656 		    struct lpfc_node_rrq *rrq)
657 {
658 	struct lpfc_nodelist *ndlp = NULL;
659 
660 	if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
661 		ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
662 
663 	/* The target DID could have been swapped (cable swap)
664 	 * we should use the ndlp from the findnode if it is
665 	 * available.
666 	 */
667 	if ((!ndlp) && rrq->ndlp)
668 		ndlp = rrq->ndlp;
669 
670 	if (!ndlp)
671 		goto out;
672 
673 	if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
674 		rrq->send_rrq = 0;
675 		rrq->xritag = 0;
676 		rrq->rrq_stop_time = 0;
677 	}
678 out:
679 	mempool_free(rrq, phba->rrq_pool);
680 }
681 
682 /**
683  * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
684  * @phba: Pointer to HBA context object.
685  *
686  * This function is called with hbalock held. This function
687  * Checks if stop_time (ratov from setting rrq active) has
688  * been reached, if it has and the send_rrq flag is set then
689  * it will call lpfc_send_rrq. If the send_rrq flag is not set
690  * then it will just call the routine to clear the rrq and
691  * free the rrq resource.
692  * The timer is set to the next rrq that is going to expire before
693  * leaving the routine.
694  *
695  **/
696 void
697 lpfc_handle_rrq_active(struct lpfc_hba *phba)
698 {
699 	struct lpfc_node_rrq *rrq;
700 	struct lpfc_node_rrq *nextrrq;
701 	unsigned long next_time;
702 	unsigned long iflags;
703 	LIST_HEAD(send_rrq);
704 
705 	spin_lock_irqsave(&phba->hbalock, iflags);
706 	phba->hba_flag &= ~HBA_RRQ_ACTIVE;
707 	next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
708 	list_for_each_entry_safe(rrq, nextrrq,
709 				 &phba->active_rrq_list, list) {
710 		if (time_after(jiffies, rrq->rrq_stop_time))
711 			list_move(&rrq->list, &send_rrq);
712 		else if (time_before(rrq->rrq_stop_time, next_time))
713 			next_time = rrq->rrq_stop_time;
714 	}
715 	spin_unlock_irqrestore(&phba->hbalock, iflags);
716 	if ((!list_empty(&phba->active_rrq_list)) &&
717 	    (!(phba->pport->load_flag & FC_UNLOADING)))
718 		mod_timer(&phba->rrq_tmr, next_time);
719 	list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
720 		list_del(&rrq->list);
721 		if (!rrq->send_rrq)
722 			/* this call will free the rrq */
723 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
724 		else if (lpfc_send_rrq(phba, rrq)) {
725 			/* if we send the rrq then the completion handler
726 			*  will clear the bit in the xribitmap.
727 			*/
728 			lpfc_clr_rrq_active(phba, rrq->xritag,
729 					    rrq);
730 		}
731 	}
732 }
733 
734 /**
735  * lpfc_get_active_rrq - Get the active RRQ for this exchange.
736  * @vport: Pointer to vport context object.
737  * @xri: The xri used in the exchange.
738  * @did: The targets DID for this exchange.
739  *
740  * returns NULL = rrq not found in the phba->active_rrq_list.
741  *         rrq = rrq for this xri and target.
742  **/
743 struct lpfc_node_rrq *
744 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
745 {
746 	struct lpfc_hba *phba = vport->phba;
747 	struct lpfc_node_rrq *rrq;
748 	struct lpfc_node_rrq *nextrrq;
749 	unsigned long iflags;
750 
751 	if (phba->sli_rev != LPFC_SLI_REV4)
752 		return NULL;
753 	spin_lock_irqsave(&phba->hbalock, iflags);
754 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
755 		if (rrq->vport == vport && rrq->xritag == xri &&
756 				rrq->nlp_DID == did){
757 			list_del(&rrq->list);
758 			spin_unlock_irqrestore(&phba->hbalock, iflags);
759 			return rrq;
760 		}
761 	}
762 	spin_unlock_irqrestore(&phba->hbalock, iflags);
763 	return NULL;
764 }
765 
766 /**
767  * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
768  * @vport: Pointer to vport context object.
769  * @ndlp: Pointer to the lpfc_node_list structure.
770  * If ndlp is NULL Remove all active RRQs for this vport from the
771  * phba->active_rrq_list and clear the rrq.
772  * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
773  **/
774 void
775 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
776 
777 {
778 	struct lpfc_hba *phba = vport->phba;
779 	struct lpfc_node_rrq *rrq;
780 	struct lpfc_node_rrq *nextrrq;
781 	unsigned long iflags;
782 	LIST_HEAD(rrq_list);
783 
784 	if (phba->sli_rev != LPFC_SLI_REV4)
785 		return;
786 	if (!ndlp) {
787 		lpfc_sli4_vport_delete_els_xri_aborted(vport);
788 		lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
789 	}
790 	spin_lock_irqsave(&phba->hbalock, iflags);
791 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
792 		if ((rrq->vport == vport) && (!ndlp  || rrq->ndlp == ndlp))
793 			list_move(&rrq->list, &rrq_list);
794 	spin_unlock_irqrestore(&phba->hbalock, iflags);
795 
796 	list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
797 		list_del(&rrq->list);
798 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
799 	}
800 }
801 
802 /**
803  * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
804  * @phba: Pointer to HBA context object.
805  * @ndlp: Targets nodelist pointer for this exchange.
806  * @xritag the xri in the bitmap to test.
807  *
808  * This function is called with hbalock held. This function
809  * returns 0 = rrq not active for this xri
810  *         1 = rrq is valid for this xri.
811  **/
812 int
813 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
814 			uint16_t  xritag)
815 {
816 	lockdep_assert_held(&phba->hbalock);
817 	if (!ndlp)
818 		return 0;
819 	if (!ndlp->active_rrqs_xri_bitmap)
820 		return 0;
821 	if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
822 			return 1;
823 	else
824 		return 0;
825 }
826 
827 /**
828  * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
829  * @phba: Pointer to HBA context object.
830  * @ndlp: nodelist pointer for this target.
831  * @xritag: xri used in this exchange.
832  * @rxid: Remote Exchange ID.
833  * @send_rrq: Flag used to determine if we should send rrq els cmd.
834  *
835  * This function takes the hbalock.
836  * The active bit is always set in the active rrq xri_bitmap even
837  * if there is no slot avaiable for the other rrq information.
838  *
839  * returns 0 rrq actived for this xri
840  *         < 0 No memory or invalid ndlp.
841  **/
842 int
843 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
844 		    uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
845 {
846 	unsigned long iflags;
847 	struct lpfc_node_rrq *rrq;
848 	int empty;
849 
850 	if (!ndlp)
851 		return -EINVAL;
852 
853 	if (!phba->cfg_enable_rrq)
854 		return -EINVAL;
855 
856 	spin_lock_irqsave(&phba->hbalock, iflags);
857 	if (phba->pport->load_flag & FC_UNLOADING) {
858 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
859 		goto out;
860 	}
861 
862 	/*
863 	 * set the active bit even if there is no mem available.
864 	 */
865 	if (NLP_CHK_FREE_REQ(ndlp))
866 		goto out;
867 
868 	if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
869 		goto out;
870 
871 	if (!ndlp->active_rrqs_xri_bitmap)
872 		goto out;
873 
874 	if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
875 		goto out;
876 
877 	spin_unlock_irqrestore(&phba->hbalock, iflags);
878 	rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL);
879 	if (!rrq) {
880 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
881 				"3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
882 				" DID:0x%x Send:%d\n",
883 				xritag, rxid, ndlp->nlp_DID, send_rrq);
884 		return -EINVAL;
885 	}
886 	if (phba->cfg_enable_rrq == 1)
887 		rrq->send_rrq = send_rrq;
888 	else
889 		rrq->send_rrq = 0;
890 	rrq->xritag = xritag;
891 	rrq->rrq_stop_time = jiffies +
892 				msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
893 	rrq->ndlp = ndlp;
894 	rrq->nlp_DID = ndlp->nlp_DID;
895 	rrq->vport = ndlp->vport;
896 	rrq->rxid = rxid;
897 	spin_lock_irqsave(&phba->hbalock, iflags);
898 	empty = list_empty(&phba->active_rrq_list);
899 	list_add_tail(&rrq->list, &phba->active_rrq_list);
900 	phba->hba_flag |= HBA_RRQ_ACTIVE;
901 	if (empty)
902 		lpfc_worker_wake_up(phba);
903 	spin_unlock_irqrestore(&phba->hbalock, iflags);
904 	return 0;
905 out:
906 	spin_unlock_irqrestore(&phba->hbalock, iflags);
907 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
908 			"2921 Can't set rrq active xri:0x%x rxid:0x%x"
909 			" DID:0x%x Send:%d\n",
910 			xritag, rxid, ndlp->nlp_DID, send_rrq);
911 	return -EINVAL;
912 }
913 
914 /**
915  * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
916  * @phba: Pointer to HBA context object.
917  * @piocb: Pointer to the iocbq.
918  *
919  * This function is called with the ring lock held. This function
920  * gets a new driver sglq object from the sglq list. If the
921  * list is not empty then it is successful, it returns pointer to the newly
922  * allocated sglq object else it returns NULL.
923  **/
924 static struct lpfc_sglq *
925 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
926 {
927 	struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
928 	struct lpfc_sglq *sglq = NULL;
929 	struct lpfc_sglq *start_sglq = NULL;
930 	struct lpfc_scsi_buf *lpfc_cmd;
931 	struct lpfc_nodelist *ndlp;
932 	int found = 0;
933 
934 	lockdep_assert_held(&phba->hbalock);
935 
936 	if (piocbq->iocb_flag &  LPFC_IO_FCP) {
937 		lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1;
938 		ndlp = lpfc_cmd->rdata->pnode;
939 	} else  if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
940 			!(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
941 		ndlp = piocbq->context_un.ndlp;
942 	} else  if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
943 		if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
944 			ndlp = NULL;
945 		else
946 			ndlp = piocbq->context_un.ndlp;
947 	} else {
948 		ndlp = piocbq->context1;
949 	}
950 
951 	spin_lock(&phba->sli4_hba.sgl_list_lock);
952 	list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
953 	start_sglq = sglq;
954 	while (!found) {
955 		if (!sglq)
956 			break;
957 		if (ndlp && ndlp->active_rrqs_xri_bitmap &&
958 		    test_bit(sglq->sli4_lxritag,
959 		    ndlp->active_rrqs_xri_bitmap)) {
960 			/* This xri has an rrq outstanding for this DID.
961 			 * put it back in the list and get another xri.
962 			 */
963 			list_add_tail(&sglq->list, lpfc_els_sgl_list);
964 			sglq = NULL;
965 			list_remove_head(lpfc_els_sgl_list, sglq,
966 						struct lpfc_sglq, list);
967 			if (sglq == start_sglq) {
968 				sglq = NULL;
969 				break;
970 			} else
971 				continue;
972 		}
973 		sglq->ndlp = ndlp;
974 		found = 1;
975 		phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
976 		sglq->state = SGL_ALLOCATED;
977 	}
978 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
979 	return sglq;
980 }
981 
982 /**
983  * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
984  * @phba: Pointer to HBA context object.
985  * @piocb: Pointer to the iocbq.
986  *
987  * This function is called with the sgl_list lock held. This function
988  * gets a new driver sglq object from the sglq list. If the
989  * list is not empty then it is successful, it returns pointer to the newly
990  * allocated sglq object else it returns NULL.
991  **/
992 struct lpfc_sglq *
993 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
994 {
995 	struct list_head *lpfc_nvmet_sgl_list;
996 	struct lpfc_sglq *sglq = NULL;
997 
998 	lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
999 
1000 	lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1001 
1002 	list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1003 	if (!sglq)
1004 		return NULL;
1005 	phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1006 	sglq->state = SGL_ALLOCATED;
1007 	return sglq;
1008 }
1009 
1010 /**
1011  * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1012  * @phba: Pointer to HBA context object.
1013  *
1014  * This function is called with no lock held. This function
1015  * allocates a new driver iocb object from the iocb pool. If the
1016  * allocation is successful, it returns pointer to the newly
1017  * allocated iocb object else it returns NULL.
1018  **/
1019 struct lpfc_iocbq *
1020 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1021 {
1022 	struct lpfc_iocbq * iocbq = NULL;
1023 	unsigned long iflags;
1024 
1025 	spin_lock_irqsave(&phba->hbalock, iflags);
1026 	iocbq = __lpfc_sli_get_iocbq(phba);
1027 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1028 	return iocbq;
1029 }
1030 
1031 /**
1032  * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1033  * @phba: Pointer to HBA context object.
1034  * @iocbq: Pointer to driver iocb object.
1035  *
1036  * This function is called with hbalock held to release driver
1037  * iocb object to the iocb pool. The iotag in the iocb object
1038  * does not change for each use of the iocb object. This function
1039  * clears all other fields of the iocb object when it is freed.
1040  * The sqlq structure that holds the xritag and phys and virtual
1041  * mappings for the scatter gather list is retrieved from the
1042  * active array of sglq. The get of the sglq pointer also clears
1043  * the entry in the array. If the status of the IO indiactes that
1044  * this IO was aborted then the sglq entry it put on the
1045  * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1046  * IO has good status or fails for any other reason then the sglq
1047  * entry is added to the free list (lpfc_els_sgl_list).
1048  **/
1049 static void
1050 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1051 {
1052 	struct lpfc_sglq *sglq;
1053 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1054 	unsigned long iflag = 0;
1055 	struct lpfc_sli_ring *pring;
1056 
1057 	lockdep_assert_held(&phba->hbalock);
1058 
1059 	if (iocbq->sli4_xritag == NO_XRI)
1060 		sglq = NULL;
1061 	else
1062 		sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1063 
1064 
1065 	if (sglq)  {
1066 		if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1067 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1068 					  iflag);
1069 			sglq->state = SGL_FREED;
1070 			sglq->ndlp = NULL;
1071 			list_add_tail(&sglq->list,
1072 				      &phba->sli4_hba.lpfc_nvmet_sgl_list);
1073 			spin_unlock_irqrestore(
1074 				&phba->sli4_hba.sgl_list_lock, iflag);
1075 			goto out;
1076 		}
1077 
1078 		pring = phba->sli4_hba.els_wq->pring;
1079 		if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1080 			(sglq->state != SGL_XRI_ABORTED)) {
1081 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1082 					  iflag);
1083 			list_add(&sglq->list,
1084 				 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1085 			spin_unlock_irqrestore(
1086 				&phba->sli4_hba.sgl_list_lock, iflag);
1087 		} else {
1088 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1089 					  iflag);
1090 			sglq->state = SGL_FREED;
1091 			sglq->ndlp = NULL;
1092 			list_add_tail(&sglq->list,
1093 				      &phba->sli4_hba.lpfc_els_sgl_list);
1094 			spin_unlock_irqrestore(
1095 				&phba->sli4_hba.sgl_list_lock, iflag);
1096 
1097 			/* Check if TXQ queue needs to be serviced */
1098 			if (!list_empty(&pring->txq))
1099 				lpfc_worker_wake_up(phba);
1100 		}
1101 	}
1102 
1103 out:
1104 	/*
1105 	 * Clean all volatile data fields, preserve iotag and node struct.
1106 	 */
1107 	memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1108 	iocbq->sli4_lxritag = NO_XRI;
1109 	iocbq->sli4_xritag = NO_XRI;
1110 	iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1111 			      LPFC_IO_NVME_LS);
1112 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1113 }
1114 
1115 
1116 /**
1117  * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1118  * @phba: Pointer to HBA context object.
1119  * @iocbq: Pointer to driver iocb object.
1120  *
1121  * This function is called with hbalock held to release driver
1122  * iocb object to the iocb pool. The iotag in the iocb object
1123  * does not change for each use of the iocb object. This function
1124  * clears all other fields of the iocb object when it is freed.
1125  **/
1126 static void
1127 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1128 {
1129 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1130 
1131 	lockdep_assert_held(&phba->hbalock);
1132 
1133 	/*
1134 	 * Clean all volatile data fields, preserve iotag and node struct.
1135 	 */
1136 	memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1137 	iocbq->sli4_xritag = NO_XRI;
1138 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1139 }
1140 
1141 /**
1142  * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1143  * @phba: Pointer to HBA context object.
1144  * @iocbq: Pointer to driver iocb object.
1145  *
1146  * This function is called with hbalock held to release driver
1147  * iocb object to the iocb pool. The iotag in the iocb object
1148  * does not change for each use of the iocb object. This function
1149  * clears all other fields of the iocb object when it is freed.
1150  **/
1151 static void
1152 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1153 {
1154 	lockdep_assert_held(&phba->hbalock);
1155 
1156 	phba->__lpfc_sli_release_iocbq(phba, iocbq);
1157 	phba->iocb_cnt--;
1158 }
1159 
1160 /**
1161  * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1162  * @phba: Pointer to HBA context object.
1163  * @iocbq: Pointer to driver iocb object.
1164  *
1165  * This function is called with no lock held to release the iocb to
1166  * iocb pool.
1167  **/
1168 void
1169 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1170 {
1171 	unsigned long iflags;
1172 
1173 	/*
1174 	 * Clean all volatile data fields, preserve iotag and node struct.
1175 	 */
1176 	spin_lock_irqsave(&phba->hbalock, iflags);
1177 	__lpfc_sli_release_iocbq(phba, iocbq);
1178 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1179 }
1180 
1181 /**
1182  * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1183  * @phba: Pointer to HBA context object.
1184  * @iocblist: List of IOCBs.
1185  * @ulpstatus: ULP status in IOCB command field.
1186  * @ulpWord4: ULP word-4 in IOCB command field.
1187  *
1188  * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1189  * on the list by invoking the complete callback function associated with the
1190  * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1191  * fields.
1192  **/
1193 void
1194 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1195 		      uint32_t ulpstatus, uint32_t ulpWord4)
1196 {
1197 	struct lpfc_iocbq *piocb;
1198 
1199 	while (!list_empty(iocblist)) {
1200 		list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1201 		if (!piocb->iocb_cmpl)
1202 			lpfc_sli_release_iocbq(phba, piocb);
1203 		else {
1204 			piocb->iocb.ulpStatus = ulpstatus;
1205 			piocb->iocb.un.ulpWord[4] = ulpWord4;
1206 			(piocb->iocb_cmpl) (phba, piocb, piocb);
1207 		}
1208 	}
1209 	return;
1210 }
1211 
1212 /**
1213  * lpfc_sli_iocb_cmd_type - Get the iocb type
1214  * @iocb_cmnd: iocb command code.
1215  *
1216  * This function is called by ring event handler function to get the iocb type.
1217  * This function translates the iocb command to an iocb command type used to
1218  * decide the final disposition of each completed IOCB.
1219  * The function returns
1220  * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1221  * LPFC_SOL_IOCB     if it is a solicited iocb completion
1222  * LPFC_ABORT_IOCB   if it is an abort iocb
1223  * LPFC_UNSOL_IOCB   if it is an unsolicited iocb
1224  *
1225  * The caller is not required to hold any lock.
1226  **/
1227 static lpfc_iocb_type
1228 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1229 {
1230 	lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1231 
1232 	if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1233 		return 0;
1234 
1235 	switch (iocb_cmnd) {
1236 	case CMD_XMIT_SEQUENCE_CR:
1237 	case CMD_XMIT_SEQUENCE_CX:
1238 	case CMD_XMIT_BCAST_CN:
1239 	case CMD_XMIT_BCAST_CX:
1240 	case CMD_ELS_REQUEST_CR:
1241 	case CMD_ELS_REQUEST_CX:
1242 	case CMD_CREATE_XRI_CR:
1243 	case CMD_CREATE_XRI_CX:
1244 	case CMD_GET_RPI_CN:
1245 	case CMD_XMIT_ELS_RSP_CX:
1246 	case CMD_GET_RPI_CR:
1247 	case CMD_FCP_IWRITE_CR:
1248 	case CMD_FCP_IWRITE_CX:
1249 	case CMD_FCP_IREAD_CR:
1250 	case CMD_FCP_IREAD_CX:
1251 	case CMD_FCP_ICMND_CR:
1252 	case CMD_FCP_ICMND_CX:
1253 	case CMD_FCP_TSEND_CX:
1254 	case CMD_FCP_TRSP_CX:
1255 	case CMD_FCP_TRECEIVE_CX:
1256 	case CMD_FCP_AUTO_TRSP_CX:
1257 	case CMD_ADAPTER_MSG:
1258 	case CMD_ADAPTER_DUMP:
1259 	case CMD_XMIT_SEQUENCE64_CR:
1260 	case CMD_XMIT_SEQUENCE64_CX:
1261 	case CMD_XMIT_BCAST64_CN:
1262 	case CMD_XMIT_BCAST64_CX:
1263 	case CMD_ELS_REQUEST64_CR:
1264 	case CMD_ELS_REQUEST64_CX:
1265 	case CMD_FCP_IWRITE64_CR:
1266 	case CMD_FCP_IWRITE64_CX:
1267 	case CMD_FCP_IREAD64_CR:
1268 	case CMD_FCP_IREAD64_CX:
1269 	case CMD_FCP_ICMND64_CR:
1270 	case CMD_FCP_ICMND64_CX:
1271 	case CMD_FCP_TSEND64_CX:
1272 	case CMD_FCP_TRSP64_CX:
1273 	case CMD_FCP_TRECEIVE64_CX:
1274 	case CMD_GEN_REQUEST64_CR:
1275 	case CMD_GEN_REQUEST64_CX:
1276 	case CMD_XMIT_ELS_RSP64_CX:
1277 	case DSSCMD_IWRITE64_CR:
1278 	case DSSCMD_IWRITE64_CX:
1279 	case DSSCMD_IREAD64_CR:
1280 	case DSSCMD_IREAD64_CX:
1281 		type = LPFC_SOL_IOCB;
1282 		break;
1283 	case CMD_ABORT_XRI_CN:
1284 	case CMD_ABORT_XRI_CX:
1285 	case CMD_CLOSE_XRI_CN:
1286 	case CMD_CLOSE_XRI_CX:
1287 	case CMD_XRI_ABORTED_CX:
1288 	case CMD_ABORT_MXRI64_CN:
1289 	case CMD_XMIT_BLS_RSP64_CX:
1290 		type = LPFC_ABORT_IOCB;
1291 		break;
1292 	case CMD_RCV_SEQUENCE_CX:
1293 	case CMD_RCV_ELS_REQ_CX:
1294 	case CMD_RCV_SEQUENCE64_CX:
1295 	case CMD_RCV_ELS_REQ64_CX:
1296 	case CMD_ASYNC_STATUS:
1297 	case CMD_IOCB_RCV_SEQ64_CX:
1298 	case CMD_IOCB_RCV_ELS64_CX:
1299 	case CMD_IOCB_RCV_CONT64_CX:
1300 	case CMD_IOCB_RET_XRI64_CX:
1301 		type = LPFC_UNSOL_IOCB;
1302 		break;
1303 	case CMD_IOCB_XMIT_MSEQ64_CR:
1304 	case CMD_IOCB_XMIT_MSEQ64_CX:
1305 	case CMD_IOCB_RCV_SEQ_LIST64_CX:
1306 	case CMD_IOCB_RCV_ELS_LIST64_CX:
1307 	case CMD_IOCB_CLOSE_EXTENDED_CN:
1308 	case CMD_IOCB_ABORT_EXTENDED_CN:
1309 	case CMD_IOCB_RET_HBQE64_CN:
1310 	case CMD_IOCB_FCP_IBIDIR64_CR:
1311 	case CMD_IOCB_FCP_IBIDIR64_CX:
1312 	case CMD_IOCB_FCP_ITASKMGT64_CX:
1313 	case CMD_IOCB_LOGENTRY_CN:
1314 	case CMD_IOCB_LOGENTRY_ASYNC_CN:
1315 		printk("%s - Unhandled SLI-3 Command x%x\n",
1316 				__func__, iocb_cmnd);
1317 		type = LPFC_UNKNOWN_IOCB;
1318 		break;
1319 	default:
1320 		type = LPFC_UNKNOWN_IOCB;
1321 		break;
1322 	}
1323 
1324 	return type;
1325 }
1326 
1327 /**
1328  * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1329  * @phba: Pointer to HBA context object.
1330  *
1331  * This function is called from SLI initialization code
1332  * to configure every ring of the HBA's SLI interface. The
1333  * caller is not required to hold any lock. This function issues
1334  * a config_ring mailbox command for each ring.
1335  * This function returns zero if successful else returns a negative
1336  * error code.
1337  **/
1338 static int
1339 lpfc_sli_ring_map(struct lpfc_hba *phba)
1340 {
1341 	struct lpfc_sli *psli = &phba->sli;
1342 	LPFC_MBOXQ_t *pmb;
1343 	MAILBOX_t *pmbox;
1344 	int i, rc, ret = 0;
1345 
1346 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1347 	if (!pmb)
1348 		return -ENOMEM;
1349 	pmbox = &pmb->u.mb;
1350 	phba->link_state = LPFC_INIT_MBX_CMDS;
1351 	for (i = 0; i < psli->num_rings; i++) {
1352 		lpfc_config_ring(phba, i, pmb);
1353 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1354 		if (rc != MBX_SUCCESS) {
1355 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1356 					"0446 Adapter failed to init (%d), "
1357 					"mbxCmd x%x CFG_RING, mbxStatus x%x, "
1358 					"ring %d\n",
1359 					rc, pmbox->mbxCommand,
1360 					pmbox->mbxStatus, i);
1361 			phba->link_state = LPFC_HBA_ERROR;
1362 			ret = -ENXIO;
1363 			break;
1364 		}
1365 	}
1366 	mempool_free(pmb, phba->mbox_mem_pool);
1367 	return ret;
1368 }
1369 
1370 /**
1371  * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1372  * @phba: Pointer to HBA context object.
1373  * @pring: Pointer to driver SLI ring object.
1374  * @piocb: Pointer to the driver iocb object.
1375  *
1376  * This function is called with hbalock held. The function adds the
1377  * new iocb to txcmplq of the given ring. This function always returns
1378  * 0. If this function is called for ELS ring, this function checks if
1379  * there is a vport associated with the ELS command. This function also
1380  * starts els_tmofunc timer if this is an ELS command.
1381  **/
1382 static int
1383 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1384 			struct lpfc_iocbq *piocb)
1385 {
1386 	lockdep_assert_held(&phba->hbalock);
1387 
1388 	BUG_ON(!piocb);
1389 
1390 	list_add_tail(&piocb->list, &pring->txcmplq);
1391 	piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1392 
1393 	if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1394 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1395 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1396 		BUG_ON(!piocb->vport);
1397 		if (!(piocb->vport->load_flag & FC_UNLOADING))
1398 			mod_timer(&piocb->vport->els_tmofunc,
1399 				  jiffies +
1400 				  msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1401 	}
1402 
1403 	return 0;
1404 }
1405 
1406 /**
1407  * lpfc_sli_ringtx_get - Get first element of the txq
1408  * @phba: Pointer to HBA context object.
1409  * @pring: Pointer to driver SLI ring object.
1410  *
1411  * This function is called with hbalock held to get next
1412  * iocb in txq of the given ring. If there is any iocb in
1413  * the txq, the function returns first iocb in the list after
1414  * removing the iocb from the list, else it returns NULL.
1415  **/
1416 struct lpfc_iocbq *
1417 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1418 {
1419 	struct lpfc_iocbq *cmd_iocb;
1420 
1421 	lockdep_assert_held(&phba->hbalock);
1422 
1423 	list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1424 	return cmd_iocb;
1425 }
1426 
1427 /**
1428  * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1429  * @phba: Pointer to HBA context object.
1430  * @pring: Pointer to driver SLI ring object.
1431  *
1432  * This function is called with hbalock held and the caller must post the
1433  * iocb without releasing the lock. If the caller releases the lock,
1434  * iocb slot returned by the function is not guaranteed to be available.
1435  * The function returns pointer to the next available iocb slot if there
1436  * is available slot in the ring, else it returns NULL.
1437  * If the get index of the ring is ahead of the put index, the function
1438  * will post an error attention event to the worker thread to take the
1439  * HBA to offline state.
1440  **/
1441 static IOCB_t *
1442 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1443 {
1444 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1445 	uint32_t  max_cmd_idx = pring->sli.sli3.numCiocb;
1446 
1447 	lockdep_assert_held(&phba->hbalock);
1448 
1449 	if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1450 	   (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1451 		pring->sli.sli3.next_cmdidx = 0;
1452 
1453 	if (unlikely(pring->sli.sli3.local_getidx ==
1454 		pring->sli.sli3.next_cmdidx)) {
1455 
1456 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1457 
1458 		if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1459 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1460 					"0315 Ring %d issue: portCmdGet %d "
1461 					"is bigger than cmd ring %d\n",
1462 					pring->ringno,
1463 					pring->sli.sli3.local_getidx,
1464 					max_cmd_idx);
1465 
1466 			phba->link_state = LPFC_HBA_ERROR;
1467 			/*
1468 			 * All error attention handlers are posted to
1469 			 * worker thread
1470 			 */
1471 			phba->work_ha |= HA_ERATT;
1472 			phba->work_hs = HS_FFER3;
1473 
1474 			lpfc_worker_wake_up(phba);
1475 
1476 			return NULL;
1477 		}
1478 
1479 		if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1480 			return NULL;
1481 	}
1482 
1483 	return lpfc_cmd_iocb(phba, pring);
1484 }
1485 
1486 /**
1487  * lpfc_sli_next_iotag - Get an iotag for the iocb
1488  * @phba: Pointer to HBA context object.
1489  * @iocbq: Pointer to driver iocb object.
1490  *
1491  * This function gets an iotag for the iocb. If there is no unused iotag and
1492  * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1493  * array and assigns a new iotag.
1494  * The function returns the allocated iotag if successful, else returns zero.
1495  * Zero is not a valid iotag.
1496  * The caller is not required to hold any lock.
1497  **/
1498 uint16_t
1499 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1500 {
1501 	struct lpfc_iocbq **new_arr;
1502 	struct lpfc_iocbq **old_arr;
1503 	size_t new_len;
1504 	struct lpfc_sli *psli = &phba->sli;
1505 	uint16_t iotag;
1506 
1507 	spin_lock_irq(&phba->hbalock);
1508 	iotag = psli->last_iotag;
1509 	if(++iotag < psli->iocbq_lookup_len) {
1510 		psli->last_iotag = iotag;
1511 		psli->iocbq_lookup[iotag] = iocbq;
1512 		spin_unlock_irq(&phba->hbalock);
1513 		iocbq->iotag = iotag;
1514 		return iotag;
1515 	} else if (psli->iocbq_lookup_len < (0xffff
1516 					   - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1517 		new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1518 		spin_unlock_irq(&phba->hbalock);
1519 		new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *),
1520 				  GFP_KERNEL);
1521 		if (new_arr) {
1522 			spin_lock_irq(&phba->hbalock);
1523 			old_arr = psli->iocbq_lookup;
1524 			if (new_len <= psli->iocbq_lookup_len) {
1525 				/* highly unprobable case */
1526 				kfree(new_arr);
1527 				iotag = psli->last_iotag;
1528 				if(++iotag < psli->iocbq_lookup_len) {
1529 					psli->last_iotag = iotag;
1530 					psli->iocbq_lookup[iotag] = iocbq;
1531 					spin_unlock_irq(&phba->hbalock);
1532 					iocbq->iotag = iotag;
1533 					return iotag;
1534 				}
1535 				spin_unlock_irq(&phba->hbalock);
1536 				return 0;
1537 			}
1538 			if (psli->iocbq_lookup)
1539 				memcpy(new_arr, old_arr,
1540 				       ((psli->last_iotag  + 1) *
1541 					sizeof (struct lpfc_iocbq *)));
1542 			psli->iocbq_lookup = new_arr;
1543 			psli->iocbq_lookup_len = new_len;
1544 			psli->last_iotag = iotag;
1545 			psli->iocbq_lookup[iotag] = iocbq;
1546 			spin_unlock_irq(&phba->hbalock);
1547 			iocbq->iotag = iotag;
1548 			kfree(old_arr);
1549 			return iotag;
1550 		}
1551 	} else
1552 		spin_unlock_irq(&phba->hbalock);
1553 
1554 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1555 			"0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1556 			psli->last_iotag);
1557 
1558 	return 0;
1559 }
1560 
1561 /**
1562  * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1563  * @phba: Pointer to HBA context object.
1564  * @pring: Pointer to driver SLI ring object.
1565  * @iocb: Pointer to iocb slot in the ring.
1566  * @nextiocb: Pointer to driver iocb object which need to be
1567  *            posted to firmware.
1568  *
1569  * This function is called with hbalock held to post a new iocb to
1570  * the firmware. This function copies the new iocb to ring iocb slot and
1571  * updates the ring pointers. It adds the new iocb to txcmplq if there is
1572  * a completion call back for this iocb else the function will free the
1573  * iocb object.
1574  **/
1575 static void
1576 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1577 		IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1578 {
1579 	lockdep_assert_held(&phba->hbalock);
1580 	/*
1581 	 * Set up an iotag
1582 	 */
1583 	nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1584 
1585 
1586 	if (pring->ringno == LPFC_ELS_RING) {
1587 		lpfc_debugfs_slow_ring_trc(phba,
1588 			"IOCB cmd ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
1589 			*(((uint32_t *) &nextiocb->iocb) + 4),
1590 			*(((uint32_t *) &nextiocb->iocb) + 6),
1591 			*(((uint32_t *) &nextiocb->iocb) + 7));
1592 	}
1593 
1594 	/*
1595 	 * Issue iocb command to adapter
1596 	 */
1597 	lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1598 	wmb();
1599 	pring->stats.iocb_cmd++;
1600 
1601 	/*
1602 	 * If there is no completion routine to call, we can release the
1603 	 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1604 	 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1605 	 */
1606 	if (nextiocb->iocb_cmpl)
1607 		lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1608 	else
1609 		__lpfc_sli_release_iocbq(phba, nextiocb);
1610 
1611 	/*
1612 	 * Let the HBA know what IOCB slot will be the next one the
1613 	 * driver will put a command into.
1614 	 */
1615 	pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1616 	writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1617 }
1618 
1619 /**
1620  * lpfc_sli_update_full_ring - Update the chip attention register
1621  * @phba: Pointer to HBA context object.
1622  * @pring: Pointer to driver SLI ring object.
1623  *
1624  * The caller is not required to hold any lock for calling this function.
1625  * This function updates the chip attention bits for the ring to inform firmware
1626  * that there are pending work to be done for this ring and requests an
1627  * interrupt when there is space available in the ring. This function is
1628  * called when the driver is unable to post more iocbs to the ring due
1629  * to unavailability of space in the ring.
1630  **/
1631 static void
1632 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1633 {
1634 	int ringno = pring->ringno;
1635 
1636 	pring->flag |= LPFC_CALL_RING_AVAILABLE;
1637 
1638 	wmb();
1639 
1640 	/*
1641 	 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1642 	 * The HBA will tell us when an IOCB entry is available.
1643 	 */
1644 	writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1645 	readl(phba->CAregaddr); /* flush */
1646 
1647 	pring->stats.iocb_cmd_full++;
1648 }
1649 
1650 /**
1651  * lpfc_sli_update_ring - Update chip attention register
1652  * @phba: Pointer to HBA context object.
1653  * @pring: Pointer to driver SLI ring object.
1654  *
1655  * This function updates the chip attention register bit for the
1656  * given ring to inform HBA that there is more work to be done
1657  * in this ring. The caller is not required to hold any lock.
1658  **/
1659 static void
1660 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1661 {
1662 	int ringno = pring->ringno;
1663 
1664 	/*
1665 	 * Tell the HBA that there is work to do in this ring.
1666 	 */
1667 	if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1668 		wmb();
1669 		writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1670 		readl(phba->CAregaddr); /* flush */
1671 	}
1672 }
1673 
1674 /**
1675  * lpfc_sli_resume_iocb - Process iocbs in the txq
1676  * @phba: Pointer to HBA context object.
1677  * @pring: Pointer to driver SLI ring object.
1678  *
1679  * This function is called with hbalock held to post pending iocbs
1680  * in the txq to the firmware. This function is called when driver
1681  * detects space available in the ring.
1682  **/
1683 static void
1684 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1685 {
1686 	IOCB_t *iocb;
1687 	struct lpfc_iocbq *nextiocb;
1688 
1689 	lockdep_assert_held(&phba->hbalock);
1690 
1691 	/*
1692 	 * Check to see if:
1693 	 *  (a) there is anything on the txq to send
1694 	 *  (b) link is up
1695 	 *  (c) link attention events can be processed (fcp ring only)
1696 	 *  (d) IOCB processing is not blocked by the outstanding mbox command.
1697 	 */
1698 
1699 	if (lpfc_is_link_up(phba) &&
1700 	    (!list_empty(&pring->txq)) &&
1701 	    (pring->ringno != LPFC_FCP_RING ||
1702 	     phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1703 
1704 		while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1705 		       (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1706 			lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1707 
1708 		if (iocb)
1709 			lpfc_sli_update_ring(phba, pring);
1710 		else
1711 			lpfc_sli_update_full_ring(phba, pring);
1712 	}
1713 
1714 	return;
1715 }
1716 
1717 /**
1718  * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1719  * @phba: Pointer to HBA context object.
1720  * @hbqno: HBQ number.
1721  *
1722  * This function is called with hbalock held to get the next
1723  * available slot for the given HBQ. If there is free slot
1724  * available for the HBQ it will return pointer to the next available
1725  * HBQ entry else it will return NULL.
1726  **/
1727 static struct lpfc_hbq_entry *
1728 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1729 {
1730 	struct hbq_s *hbqp = &phba->hbqs[hbqno];
1731 
1732 	lockdep_assert_held(&phba->hbalock);
1733 
1734 	if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1735 	    ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1736 		hbqp->next_hbqPutIdx = 0;
1737 
1738 	if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1739 		uint32_t raw_index = phba->hbq_get[hbqno];
1740 		uint32_t getidx = le32_to_cpu(raw_index);
1741 
1742 		hbqp->local_hbqGetIdx = getidx;
1743 
1744 		if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1745 			lpfc_printf_log(phba, KERN_ERR,
1746 					LOG_SLI | LOG_VPORT,
1747 					"1802 HBQ %d: local_hbqGetIdx "
1748 					"%u is > than hbqp->entry_count %u\n",
1749 					hbqno, hbqp->local_hbqGetIdx,
1750 					hbqp->entry_count);
1751 
1752 			phba->link_state = LPFC_HBA_ERROR;
1753 			return NULL;
1754 		}
1755 
1756 		if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1757 			return NULL;
1758 	}
1759 
1760 	return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1761 			hbqp->hbqPutIdx;
1762 }
1763 
1764 /**
1765  * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1766  * @phba: Pointer to HBA context object.
1767  *
1768  * This function is called with no lock held to free all the
1769  * hbq buffers while uninitializing the SLI interface. It also
1770  * frees the HBQ buffers returned by the firmware but not yet
1771  * processed by the upper layers.
1772  **/
1773 void
1774 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
1775 {
1776 	struct lpfc_dmabuf *dmabuf, *next_dmabuf;
1777 	struct hbq_dmabuf *hbq_buf;
1778 	unsigned long flags;
1779 	int i, hbq_count;
1780 
1781 	hbq_count = lpfc_sli_hbq_count();
1782 	/* Return all memory used by all HBQs */
1783 	spin_lock_irqsave(&phba->hbalock, flags);
1784 	for (i = 0; i < hbq_count; ++i) {
1785 		list_for_each_entry_safe(dmabuf, next_dmabuf,
1786 				&phba->hbqs[i].hbq_buffer_list, list) {
1787 			hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1788 			list_del(&hbq_buf->dbuf.list);
1789 			(phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
1790 		}
1791 		phba->hbqs[i].buffer_count = 0;
1792 	}
1793 
1794 	/* Mark the HBQs not in use */
1795 	phba->hbq_in_use = 0;
1796 	spin_unlock_irqrestore(&phba->hbalock, flags);
1797 }
1798 
1799 /**
1800  * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
1801  * @phba: Pointer to HBA context object.
1802  * @hbqno: HBQ number.
1803  * @hbq_buf: Pointer to HBQ buffer.
1804  *
1805  * This function is called with the hbalock held to post a
1806  * hbq buffer to the firmware. If the function finds an empty
1807  * slot in the HBQ, it will post the buffer. The function will return
1808  * pointer to the hbq entry if it successfully post the buffer
1809  * else it will return NULL.
1810  **/
1811 static int
1812 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
1813 			 struct hbq_dmabuf *hbq_buf)
1814 {
1815 	lockdep_assert_held(&phba->hbalock);
1816 	return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
1817 }
1818 
1819 /**
1820  * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
1821  * @phba: Pointer to HBA context object.
1822  * @hbqno: HBQ number.
1823  * @hbq_buf: Pointer to HBQ buffer.
1824  *
1825  * This function is called with the hbalock held to post a hbq buffer to the
1826  * firmware. If the function finds an empty slot in the HBQ, it will post the
1827  * buffer and place it on the hbq_buffer_list. The function will return zero if
1828  * it successfully post the buffer else it will return an error.
1829  **/
1830 static int
1831 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
1832 			    struct hbq_dmabuf *hbq_buf)
1833 {
1834 	struct lpfc_hbq_entry *hbqe;
1835 	dma_addr_t physaddr = hbq_buf->dbuf.phys;
1836 
1837 	lockdep_assert_held(&phba->hbalock);
1838 	/* Get next HBQ entry slot to use */
1839 	hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
1840 	if (hbqe) {
1841 		struct hbq_s *hbqp = &phba->hbqs[hbqno];
1842 
1843 		hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
1844 		hbqe->bde.addrLow  = le32_to_cpu(putPaddrLow(physaddr));
1845 		hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
1846 		hbqe->bde.tus.f.bdeFlags = 0;
1847 		hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
1848 		hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
1849 				/* Sync SLIM */
1850 		hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
1851 		writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
1852 				/* flush */
1853 		readl(phba->hbq_put + hbqno);
1854 		list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
1855 		return 0;
1856 	} else
1857 		return -ENOMEM;
1858 }
1859 
1860 /**
1861  * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
1862  * @phba: Pointer to HBA context object.
1863  * @hbqno: HBQ number.
1864  * @hbq_buf: Pointer to HBQ buffer.
1865  *
1866  * This function is called with the hbalock held to post an RQE to the SLI4
1867  * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
1868  * the hbq_buffer_list and return zero, otherwise it will return an error.
1869  **/
1870 static int
1871 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
1872 			    struct hbq_dmabuf *hbq_buf)
1873 {
1874 	int rc;
1875 	struct lpfc_rqe hrqe;
1876 	struct lpfc_rqe drqe;
1877 	struct lpfc_queue *hrq;
1878 	struct lpfc_queue *drq;
1879 
1880 	if (hbqno != LPFC_ELS_HBQ)
1881 		return 1;
1882 	hrq = phba->sli4_hba.hdr_rq;
1883 	drq = phba->sli4_hba.dat_rq;
1884 
1885 	lockdep_assert_held(&phba->hbalock);
1886 	hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
1887 	hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
1888 	drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
1889 	drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
1890 	rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
1891 	if (rc < 0)
1892 		return rc;
1893 	hbq_buf->tag = (rc | (hbqno << 16));
1894 	list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
1895 	return 0;
1896 }
1897 
1898 /* HBQ for ELS and CT traffic. */
1899 static struct lpfc_hbq_init lpfc_els_hbq = {
1900 	.rn = 1,
1901 	.entry_count = 256,
1902 	.mask_count = 0,
1903 	.profile = 0,
1904 	.ring_mask = (1 << LPFC_ELS_RING),
1905 	.buffer_count = 0,
1906 	.init_count = 40,
1907 	.add_count = 40,
1908 };
1909 
1910 /* Array of HBQs */
1911 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
1912 	&lpfc_els_hbq,
1913 };
1914 
1915 /**
1916  * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
1917  * @phba: Pointer to HBA context object.
1918  * @hbqno: HBQ number.
1919  * @count: Number of HBQ buffers to be posted.
1920  *
1921  * This function is called with no lock held to post more hbq buffers to the
1922  * given HBQ. The function returns the number of HBQ buffers successfully
1923  * posted.
1924  **/
1925 static int
1926 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
1927 {
1928 	uint32_t i, posted = 0;
1929 	unsigned long flags;
1930 	struct hbq_dmabuf *hbq_buffer;
1931 	LIST_HEAD(hbq_buf_list);
1932 	if (!phba->hbqs[hbqno].hbq_alloc_buffer)
1933 		return 0;
1934 
1935 	if ((phba->hbqs[hbqno].buffer_count + count) >
1936 	    lpfc_hbq_defs[hbqno]->entry_count)
1937 		count = lpfc_hbq_defs[hbqno]->entry_count -
1938 					phba->hbqs[hbqno].buffer_count;
1939 	if (!count)
1940 		return 0;
1941 	/* Allocate HBQ entries */
1942 	for (i = 0; i < count; i++) {
1943 		hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
1944 		if (!hbq_buffer)
1945 			break;
1946 		list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
1947 	}
1948 	/* Check whether HBQ is still in use */
1949 	spin_lock_irqsave(&phba->hbalock, flags);
1950 	if (!phba->hbq_in_use)
1951 		goto err;
1952 	while (!list_empty(&hbq_buf_list)) {
1953 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
1954 				 dbuf.list);
1955 		hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
1956 				      (hbqno << 16));
1957 		if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
1958 			phba->hbqs[hbqno].buffer_count++;
1959 			posted++;
1960 		} else
1961 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
1962 	}
1963 	spin_unlock_irqrestore(&phba->hbalock, flags);
1964 	return posted;
1965 err:
1966 	spin_unlock_irqrestore(&phba->hbalock, flags);
1967 	while (!list_empty(&hbq_buf_list)) {
1968 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
1969 				 dbuf.list);
1970 		(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
1971 	}
1972 	return 0;
1973 }
1974 
1975 /**
1976  * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
1977  * @phba: Pointer to HBA context object.
1978  * @qno: HBQ number.
1979  *
1980  * This function posts more buffers to the HBQ. This function
1981  * is called with no lock held. The function returns the number of HBQ entries
1982  * successfully allocated.
1983  **/
1984 int
1985 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
1986 {
1987 	if (phba->sli_rev == LPFC_SLI_REV4)
1988 		return 0;
1989 	else
1990 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
1991 					 lpfc_hbq_defs[qno]->add_count);
1992 }
1993 
1994 /**
1995  * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
1996  * @phba: Pointer to HBA context object.
1997  * @qno:  HBQ queue number.
1998  *
1999  * This function is called from SLI initialization code path with
2000  * no lock held to post initial HBQ buffers to firmware. The
2001  * function returns the number of HBQ entries successfully allocated.
2002  **/
2003 static int
2004 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2005 {
2006 	if (phba->sli_rev == LPFC_SLI_REV4)
2007 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2008 					lpfc_hbq_defs[qno]->entry_count);
2009 	else
2010 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2011 					 lpfc_hbq_defs[qno]->init_count);
2012 }
2013 
2014 /**
2015  * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2016  * @phba: Pointer to HBA context object.
2017  * @hbqno: HBQ number.
2018  *
2019  * This function removes the first hbq buffer on an hbq list and returns a
2020  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2021  **/
2022 static struct hbq_dmabuf *
2023 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2024 {
2025 	struct lpfc_dmabuf *d_buf;
2026 
2027 	list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2028 	if (!d_buf)
2029 		return NULL;
2030 	return container_of(d_buf, struct hbq_dmabuf, dbuf);
2031 }
2032 
2033 /**
2034  * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2035  * @phba: Pointer to HBA context object.
2036  * @hbqno: HBQ number.
2037  *
2038  * This function removes the first RQ buffer on an RQ buffer list and returns a
2039  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2040  **/
2041 static struct rqb_dmabuf *
2042 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2043 {
2044 	struct lpfc_dmabuf *h_buf;
2045 	struct lpfc_rqb *rqbp;
2046 
2047 	rqbp = hrq->rqbp;
2048 	list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2049 			 struct lpfc_dmabuf, list);
2050 	if (!h_buf)
2051 		return NULL;
2052 	rqbp->buffer_count--;
2053 	return container_of(h_buf, struct rqb_dmabuf, hbuf);
2054 }
2055 
2056 /**
2057  * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2058  * @phba: Pointer to HBA context object.
2059  * @tag: Tag of the hbq buffer.
2060  *
2061  * This function searches for the hbq buffer associated with the given tag in
2062  * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2063  * otherwise it returns NULL.
2064  **/
2065 static struct hbq_dmabuf *
2066 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2067 {
2068 	struct lpfc_dmabuf *d_buf;
2069 	struct hbq_dmabuf *hbq_buf;
2070 	uint32_t hbqno;
2071 
2072 	hbqno = tag >> 16;
2073 	if (hbqno >= LPFC_MAX_HBQS)
2074 		return NULL;
2075 
2076 	spin_lock_irq(&phba->hbalock);
2077 	list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2078 		hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2079 		if (hbq_buf->tag == tag) {
2080 			spin_unlock_irq(&phba->hbalock);
2081 			return hbq_buf;
2082 		}
2083 	}
2084 	spin_unlock_irq(&phba->hbalock);
2085 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
2086 			"1803 Bad hbq tag. Data: x%x x%x\n",
2087 			tag, phba->hbqs[tag >> 16].buffer_count);
2088 	return NULL;
2089 }
2090 
2091 /**
2092  * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2093  * @phba: Pointer to HBA context object.
2094  * @hbq_buffer: Pointer to HBQ buffer.
2095  *
2096  * This function is called with hbalock. This function gives back
2097  * the hbq buffer to firmware. If the HBQ does not have space to
2098  * post the buffer, it will free the buffer.
2099  **/
2100 void
2101 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2102 {
2103 	uint32_t hbqno;
2104 
2105 	if (hbq_buffer) {
2106 		hbqno = hbq_buffer->tag >> 16;
2107 		if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2108 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2109 	}
2110 }
2111 
2112 /**
2113  * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2114  * @mbxCommand: mailbox command code.
2115  *
2116  * This function is called by the mailbox event handler function to verify
2117  * that the completed mailbox command is a legitimate mailbox command. If the
2118  * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2119  * and the mailbox event handler will take the HBA offline.
2120  **/
2121 static int
2122 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2123 {
2124 	uint8_t ret;
2125 
2126 	switch (mbxCommand) {
2127 	case MBX_LOAD_SM:
2128 	case MBX_READ_NV:
2129 	case MBX_WRITE_NV:
2130 	case MBX_WRITE_VPARMS:
2131 	case MBX_RUN_BIU_DIAG:
2132 	case MBX_INIT_LINK:
2133 	case MBX_DOWN_LINK:
2134 	case MBX_CONFIG_LINK:
2135 	case MBX_CONFIG_RING:
2136 	case MBX_RESET_RING:
2137 	case MBX_READ_CONFIG:
2138 	case MBX_READ_RCONFIG:
2139 	case MBX_READ_SPARM:
2140 	case MBX_READ_STATUS:
2141 	case MBX_READ_RPI:
2142 	case MBX_READ_XRI:
2143 	case MBX_READ_REV:
2144 	case MBX_READ_LNK_STAT:
2145 	case MBX_REG_LOGIN:
2146 	case MBX_UNREG_LOGIN:
2147 	case MBX_CLEAR_LA:
2148 	case MBX_DUMP_MEMORY:
2149 	case MBX_DUMP_CONTEXT:
2150 	case MBX_RUN_DIAGS:
2151 	case MBX_RESTART:
2152 	case MBX_UPDATE_CFG:
2153 	case MBX_DOWN_LOAD:
2154 	case MBX_DEL_LD_ENTRY:
2155 	case MBX_RUN_PROGRAM:
2156 	case MBX_SET_MASK:
2157 	case MBX_SET_VARIABLE:
2158 	case MBX_UNREG_D_ID:
2159 	case MBX_KILL_BOARD:
2160 	case MBX_CONFIG_FARP:
2161 	case MBX_BEACON:
2162 	case MBX_LOAD_AREA:
2163 	case MBX_RUN_BIU_DIAG64:
2164 	case MBX_CONFIG_PORT:
2165 	case MBX_READ_SPARM64:
2166 	case MBX_READ_RPI64:
2167 	case MBX_REG_LOGIN64:
2168 	case MBX_READ_TOPOLOGY:
2169 	case MBX_WRITE_WWN:
2170 	case MBX_SET_DEBUG:
2171 	case MBX_LOAD_EXP_ROM:
2172 	case MBX_ASYNCEVT_ENABLE:
2173 	case MBX_REG_VPI:
2174 	case MBX_UNREG_VPI:
2175 	case MBX_HEARTBEAT:
2176 	case MBX_PORT_CAPABILITIES:
2177 	case MBX_PORT_IOV_CONTROL:
2178 	case MBX_SLI4_CONFIG:
2179 	case MBX_SLI4_REQ_FTRS:
2180 	case MBX_REG_FCFI:
2181 	case MBX_UNREG_FCFI:
2182 	case MBX_REG_VFI:
2183 	case MBX_UNREG_VFI:
2184 	case MBX_INIT_VPI:
2185 	case MBX_INIT_VFI:
2186 	case MBX_RESUME_RPI:
2187 	case MBX_READ_EVENT_LOG_STATUS:
2188 	case MBX_READ_EVENT_LOG:
2189 	case MBX_SECURITY_MGMT:
2190 	case MBX_AUTH_PORT:
2191 	case MBX_ACCESS_VDATA:
2192 		ret = mbxCommand;
2193 		break;
2194 	default:
2195 		ret = MBX_SHUTDOWN;
2196 		break;
2197 	}
2198 	return ret;
2199 }
2200 
2201 /**
2202  * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2203  * @phba: Pointer to HBA context object.
2204  * @pmboxq: Pointer to mailbox command.
2205  *
2206  * This is completion handler function for mailbox commands issued from
2207  * lpfc_sli_issue_mbox_wait function. This function is called by the
2208  * mailbox event handler function with no lock held. This function
2209  * will wake up thread waiting on the wait queue pointed by context1
2210  * of the mailbox.
2211  **/
2212 void
2213 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2214 {
2215 	wait_queue_head_t *pdone_q;
2216 	unsigned long drvr_flag;
2217 
2218 	/*
2219 	 * If pdone_q is empty, the driver thread gave up waiting and
2220 	 * continued running.
2221 	 */
2222 	pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2223 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
2224 	pdone_q = (wait_queue_head_t *) pmboxq->context1;
2225 	if (pdone_q)
2226 		wake_up_interruptible(pdone_q);
2227 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2228 	return;
2229 }
2230 
2231 
2232 /**
2233  * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2234  * @phba: Pointer to HBA context object.
2235  * @pmb: Pointer to mailbox object.
2236  *
2237  * This function is the default mailbox completion handler. It
2238  * frees the memory resources associated with the completed mailbox
2239  * command. If the completed command is a REG_LOGIN mailbox command,
2240  * this function will issue a UREG_LOGIN to re-claim the RPI.
2241  **/
2242 void
2243 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2244 {
2245 	struct lpfc_vport  *vport = pmb->vport;
2246 	struct lpfc_dmabuf *mp;
2247 	struct lpfc_nodelist *ndlp;
2248 	struct Scsi_Host *shost;
2249 	uint16_t rpi, vpi;
2250 	int rc;
2251 
2252 	mp = (struct lpfc_dmabuf *) (pmb->context1);
2253 
2254 	if (mp) {
2255 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
2256 		kfree(mp);
2257 	}
2258 
2259 	/*
2260 	 * If a REG_LOGIN succeeded  after node is destroyed or node
2261 	 * is in re-discovery driver need to cleanup the RPI.
2262 	 */
2263 	if (!(phba->pport->load_flag & FC_UNLOADING) &&
2264 	    pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2265 	    !pmb->u.mb.mbxStatus) {
2266 		rpi = pmb->u.mb.un.varWords[0];
2267 		vpi = pmb->u.mb.un.varRegLogin.vpi;
2268 		lpfc_unreg_login(phba, vpi, rpi, pmb);
2269 		pmb->vport = vport;
2270 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2271 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2272 		if (rc != MBX_NOT_FINISHED)
2273 			return;
2274 	}
2275 
2276 	if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2277 		!(phba->pport->load_flag & FC_UNLOADING) &&
2278 		!pmb->u.mb.mbxStatus) {
2279 		shost = lpfc_shost_from_vport(vport);
2280 		spin_lock_irq(shost->host_lock);
2281 		vport->vpi_state |= LPFC_VPI_REGISTERED;
2282 		vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2283 		spin_unlock_irq(shost->host_lock);
2284 	}
2285 
2286 	if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2287 		ndlp = (struct lpfc_nodelist *)pmb->context2;
2288 		lpfc_nlp_put(ndlp);
2289 		pmb->context2 = NULL;
2290 	}
2291 
2292 	/* Check security permission status on INIT_LINK mailbox command */
2293 	if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2294 	    (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2295 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2296 				"2860 SLI authentication is required "
2297 				"for INIT_LINK but has not done yet\n");
2298 
2299 	if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2300 		lpfc_sli4_mbox_cmd_free(phba, pmb);
2301 	else
2302 		mempool_free(pmb, phba->mbox_mem_pool);
2303 }
2304  /**
2305  * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2306  * @phba: Pointer to HBA context object.
2307  * @pmb: Pointer to mailbox object.
2308  *
2309  * This function is the unreg rpi mailbox completion handler. It
2310  * frees the memory resources associated with the completed mailbox
2311  * command. An additional refrenece is put on the ndlp to prevent
2312  * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2313  * the unreg mailbox command completes, this routine puts the
2314  * reference back.
2315  *
2316  **/
2317 void
2318 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2319 {
2320 	struct lpfc_vport  *vport = pmb->vport;
2321 	struct lpfc_nodelist *ndlp;
2322 
2323 	ndlp = pmb->context1;
2324 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2325 		if (phba->sli_rev == LPFC_SLI_REV4 &&
2326 		    (bf_get(lpfc_sli_intf_if_type,
2327 		     &phba->sli4_hba.sli_intf) ==
2328 		     LPFC_SLI_INTF_IF_TYPE_2)) {
2329 			if (ndlp) {
2330 				lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
2331 						 "0010 UNREG_LOGIN vpi:%x "
2332 						 "rpi:%x DID:%x map:%x %p\n",
2333 						 vport->vpi, ndlp->nlp_rpi,
2334 						 ndlp->nlp_DID,
2335 						 ndlp->nlp_usg_map, ndlp);
2336 				ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2337 				lpfc_nlp_put(ndlp);
2338 			}
2339 		}
2340 	}
2341 
2342 	mempool_free(pmb, phba->mbox_mem_pool);
2343 }
2344 
2345 /**
2346  * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2347  * @phba: Pointer to HBA context object.
2348  *
2349  * This function is called with no lock held. This function processes all
2350  * the completed mailbox commands and gives it to upper layers. The interrupt
2351  * service routine processes mailbox completion interrupt and adds completed
2352  * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2353  * Worker thread call lpfc_sli_handle_mb_event, which will return the
2354  * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2355  * function returns the mailbox commands to the upper layer by calling the
2356  * completion handler function of each mailbox.
2357  **/
2358 int
2359 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2360 {
2361 	MAILBOX_t *pmbox;
2362 	LPFC_MBOXQ_t *pmb;
2363 	int rc;
2364 	LIST_HEAD(cmplq);
2365 
2366 	phba->sli.slistat.mbox_event++;
2367 
2368 	/* Get all completed mailboxe buffers into the cmplq */
2369 	spin_lock_irq(&phba->hbalock);
2370 	list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2371 	spin_unlock_irq(&phba->hbalock);
2372 
2373 	/* Get a Mailbox buffer to setup mailbox commands for callback */
2374 	do {
2375 		list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2376 		if (pmb == NULL)
2377 			break;
2378 
2379 		pmbox = &pmb->u.mb;
2380 
2381 		if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2382 			if (pmb->vport) {
2383 				lpfc_debugfs_disc_trc(pmb->vport,
2384 					LPFC_DISC_TRC_MBOX_VPORT,
2385 					"MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2386 					(uint32_t)pmbox->mbxCommand,
2387 					pmbox->un.varWords[0],
2388 					pmbox->un.varWords[1]);
2389 			}
2390 			else {
2391 				lpfc_debugfs_disc_trc(phba->pport,
2392 					LPFC_DISC_TRC_MBOX,
2393 					"MBOX cmpl:       cmd:x%x mb:x%x x%x",
2394 					(uint32_t)pmbox->mbxCommand,
2395 					pmbox->un.varWords[0],
2396 					pmbox->un.varWords[1]);
2397 			}
2398 		}
2399 
2400 		/*
2401 		 * It is a fatal error if unknown mbox command completion.
2402 		 */
2403 		if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2404 		    MBX_SHUTDOWN) {
2405 			/* Unknown mailbox command compl */
2406 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2407 					"(%d):0323 Unknown Mailbox command "
2408 					"x%x (x%x/x%x) Cmpl\n",
2409 					pmb->vport ? pmb->vport->vpi : 0,
2410 					pmbox->mbxCommand,
2411 					lpfc_sli_config_mbox_subsys_get(phba,
2412 									pmb),
2413 					lpfc_sli_config_mbox_opcode_get(phba,
2414 									pmb));
2415 			phba->link_state = LPFC_HBA_ERROR;
2416 			phba->work_hs = HS_FFER3;
2417 			lpfc_handle_eratt(phba);
2418 			continue;
2419 		}
2420 
2421 		if (pmbox->mbxStatus) {
2422 			phba->sli.slistat.mbox_stat_err++;
2423 			if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2424 				/* Mbox cmd cmpl error - RETRYing */
2425 				lpfc_printf_log(phba, KERN_INFO,
2426 					LOG_MBOX | LOG_SLI,
2427 					"(%d):0305 Mbox cmd cmpl "
2428 					"error - RETRYing Data: x%x "
2429 					"(x%x/x%x) x%x x%x x%x\n",
2430 					pmb->vport ? pmb->vport->vpi : 0,
2431 					pmbox->mbxCommand,
2432 					lpfc_sli_config_mbox_subsys_get(phba,
2433 									pmb),
2434 					lpfc_sli_config_mbox_opcode_get(phba,
2435 									pmb),
2436 					pmbox->mbxStatus,
2437 					pmbox->un.varWords[0],
2438 					pmb->vport->port_state);
2439 				pmbox->mbxStatus = 0;
2440 				pmbox->mbxOwner = OWN_HOST;
2441 				rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2442 				if (rc != MBX_NOT_FINISHED)
2443 					continue;
2444 			}
2445 		}
2446 
2447 		/* Mailbox cmd <cmd> Cmpl <cmpl> */
2448 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2449 				"(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p "
2450 				"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2451 				"x%x x%x x%x\n",
2452 				pmb->vport ? pmb->vport->vpi : 0,
2453 				pmbox->mbxCommand,
2454 				lpfc_sli_config_mbox_subsys_get(phba, pmb),
2455 				lpfc_sli_config_mbox_opcode_get(phba, pmb),
2456 				pmb->mbox_cmpl,
2457 				*((uint32_t *) pmbox),
2458 				pmbox->un.varWords[0],
2459 				pmbox->un.varWords[1],
2460 				pmbox->un.varWords[2],
2461 				pmbox->un.varWords[3],
2462 				pmbox->un.varWords[4],
2463 				pmbox->un.varWords[5],
2464 				pmbox->un.varWords[6],
2465 				pmbox->un.varWords[7],
2466 				pmbox->un.varWords[8],
2467 				pmbox->un.varWords[9],
2468 				pmbox->un.varWords[10]);
2469 
2470 		if (pmb->mbox_cmpl)
2471 			pmb->mbox_cmpl(phba,pmb);
2472 	} while (1);
2473 	return 0;
2474 }
2475 
2476 /**
2477  * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2478  * @phba: Pointer to HBA context object.
2479  * @pring: Pointer to driver SLI ring object.
2480  * @tag: buffer tag.
2481  *
2482  * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2483  * is set in the tag the buffer is posted for a particular exchange,
2484  * the function will return the buffer without replacing the buffer.
2485  * If the buffer is for unsolicited ELS or CT traffic, this function
2486  * returns the buffer and also posts another buffer to the firmware.
2487  **/
2488 static struct lpfc_dmabuf *
2489 lpfc_sli_get_buff(struct lpfc_hba *phba,
2490 		  struct lpfc_sli_ring *pring,
2491 		  uint32_t tag)
2492 {
2493 	struct hbq_dmabuf *hbq_entry;
2494 
2495 	if (tag & QUE_BUFTAG_BIT)
2496 		return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2497 	hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2498 	if (!hbq_entry)
2499 		return NULL;
2500 	return &hbq_entry->dbuf;
2501 }
2502 
2503 /**
2504  * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2505  * @phba: Pointer to HBA context object.
2506  * @pring: Pointer to driver SLI ring object.
2507  * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2508  * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2509  * @fch_type: the type for the first frame of the sequence.
2510  *
2511  * This function is called with no lock held. This function uses the r_ctl and
2512  * type of the received sequence to find the correct callback function to call
2513  * to process the sequence.
2514  **/
2515 static int
2516 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2517 			 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2518 			 uint32_t fch_type)
2519 {
2520 	int i;
2521 
2522 	switch (fch_type) {
2523 	case FC_TYPE_NVME:
2524 		lpfc_nvmet_unsol_ls_event(phba, pring, saveq);
2525 		return 1;
2526 	default:
2527 		break;
2528 	}
2529 
2530 	/* unSolicited Responses */
2531 	if (pring->prt[0].profile) {
2532 		if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2533 			(pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2534 									saveq);
2535 		return 1;
2536 	}
2537 	/* We must search, based on rctl / type
2538 	   for the right routine */
2539 	for (i = 0; i < pring->num_mask; i++) {
2540 		if ((pring->prt[i].rctl == fch_r_ctl) &&
2541 		    (pring->prt[i].type == fch_type)) {
2542 			if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2543 				(pring->prt[i].lpfc_sli_rcv_unsol_event)
2544 						(phba, pring, saveq);
2545 			return 1;
2546 		}
2547 	}
2548 	return 0;
2549 }
2550 
2551 /**
2552  * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2553  * @phba: Pointer to HBA context object.
2554  * @pring: Pointer to driver SLI ring object.
2555  * @saveq: Pointer to the unsolicited iocb.
2556  *
2557  * This function is called with no lock held by the ring event handler
2558  * when there is an unsolicited iocb posted to the response ring by the
2559  * firmware. This function gets the buffer associated with the iocbs
2560  * and calls the event handler for the ring. This function handles both
2561  * qring buffers and hbq buffers.
2562  * When the function returns 1 the caller can free the iocb object otherwise
2563  * upper layer functions will free the iocb objects.
2564  **/
2565 static int
2566 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2567 			    struct lpfc_iocbq *saveq)
2568 {
2569 	IOCB_t           * irsp;
2570 	WORD5            * w5p;
2571 	uint32_t           Rctl, Type;
2572 	struct lpfc_iocbq *iocbq;
2573 	struct lpfc_dmabuf *dmzbuf;
2574 
2575 	irsp = &(saveq->iocb);
2576 
2577 	if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2578 		if (pring->lpfc_sli_rcv_async_status)
2579 			pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2580 		else
2581 			lpfc_printf_log(phba,
2582 					KERN_WARNING,
2583 					LOG_SLI,
2584 					"0316 Ring %d handler: unexpected "
2585 					"ASYNC_STATUS iocb received evt_code "
2586 					"0x%x\n",
2587 					pring->ringno,
2588 					irsp->un.asyncstat.evt_code);
2589 		return 1;
2590 	}
2591 
2592 	if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2593 		(phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2594 		if (irsp->ulpBdeCount > 0) {
2595 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2596 					irsp->un.ulpWord[3]);
2597 			lpfc_in_buf_free(phba, dmzbuf);
2598 		}
2599 
2600 		if (irsp->ulpBdeCount > 1) {
2601 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2602 					irsp->unsli3.sli3Words[3]);
2603 			lpfc_in_buf_free(phba, dmzbuf);
2604 		}
2605 
2606 		if (irsp->ulpBdeCount > 2) {
2607 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2608 				irsp->unsli3.sli3Words[7]);
2609 			lpfc_in_buf_free(phba, dmzbuf);
2610 		}
2611 
2612 		return 1;
2613 	}
2614 
2615 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
2616 		if (irsp->ulpBdeCount != 0) {
2617 			saveq->context2 = lpfc_sli_get_buff(phba, pring,
2618 						irsp->un.ulpWord[3]);
2619 			if (!saveq->context2)
2620 				lpfc_printf_log(phba,
2621 					KERN_ERR,
2622 					LOG_SLI,
2623 					"0341 Ring %d Cannot find buffer for "
2624 					"an unsolicited iocb. tag 0x%x\n",
2625 					pring->ringno,
2626 					irsp->un.ulpWord[3]);
2627 		}
2628 		if (irsp->ulpBdeCount == 2) {
2629 			saveq->context3 = lpfc_sli_get_buff(phba, pring,
2630 						irsp->unsli3.sli3Words[7]);
2631 			if (!saveq->context3)
2632 				lpfc_printf_log(phba,
2633 					KERN_ERR,
2634 					LOG_SLI,
2635 					"0342 Ring %d Cannot find buffer for an"
2636 					" unsolicited iocb. tag 0x%x\n",
2637 					pring->ringno,
2638 					irsp->unsli3.sli3Words[7]);
2639 		}
2640 		list_for_each_entry(iocbq, &saveq->list, list) {
2641 			irsp = &(iocbq->iocb);
2642 			if (irsp->ulpBdeCount != 0) {
2643 				iocbq->context2 = lpfc_sli_get_buff(phba, pring,
2644 							irsp->un.ulpWord[3]);
2645 				if (!iocbq->context2)
2646 					lpfc_printf_log(phba,
2647 						KERN_ERR,
2648 						LOG_SLI,
2649 						"0343 Ring %d Cannot find "
2650 						"buffer for an unsolicited iocb"
2651 						". tag 0x%x\n", pring->ringno,
2652 						irsp->un.ulpWord[3]);
2653 			}
2654 			if (irsp->ulpBdeCount == 2) {
2655 				iocbq->context3 = lpfc_sli_get_buff(phba, pring,
2656 						irsp->unsli3.sli3Words[7]);
2657 				if (!iocbq->context3)
2658 					lpfc_printf_log(phba,
2659 						KERN_ERR,
2660 						LOG_SLI,
2661 						"0344 Ring %d Cannot find "
2662 						"buffer for an unsolicited "
2663 						"iocb. tag 0x%x\n",
2664 						pring->ringno,
2665 						irsp->unsli3.sli3Words[7]);
2666 			}
2667 		}
2668 	}
2669 	if (irsp->ulpBdeCount != 0 &&
2670 	    (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
2671 	     irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
2672 		int found = 0;
2673 
2674 		/* search continue save q for same XRI */
2675 		list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
2676 			if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
2677 				saveq->iocb.unsli3.rcvsli3.ox_id) {
2678 				list_add_tail(&saveq->list, &iocbq->list);
2679 				found = 1;
2680 				break;
2681 			}
2682 		}
2683 		if (!found)
2684 			list_add_tail(&saveq->clist,
2685 				      &pring->iocb_continue_saveq);
2686 		if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
2687 			list_del_init(&iocbq->clist);
2688 			saveq = iocbq;
2689 			irsp = &(saveq->iocb);
2690 		} else
2691 			return 0;
2692 	}
2693 	if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
2694 	    (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
2695 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
2696 		Rctl = FC_RCTL_ELS_REQ;
2697 		Type = FC_TYPE_ELS;
2698 	} else {
2699 		w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
2700 		Rctl = w5p->hcsw.Rctl;
2701 		Type = w5p->hcsw.Type;
2702 
2703 		/* Firmware Workaround */
2704 		if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
2705 			(irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
2706 			 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
2707 			Rctl = FC_RCTL_ELS_REQ;
2708 			Type = FC_TYPE_ELS;
2709 			w5p->hcsw.Rctl = Rctl;
2710 			w5p->hcsw.Type = Type;
2711 		}
2712 	}
2713 
2714 	if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
2715 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2716 				"0313 Ring %d handler: unexpected Rctl x%x "
2717 				"Type x%x received\n",
2718 				pring->ringno, Rctl, Type);
2719 
2720 	return 1;
2721 }
2722 
2723 /**
2724  * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
2725  * @phba: Pointer to HBA context object.
2726  * @pring: Pointer to driver SLI ring object.
2727  * @prspiocb: Pointer to response iocb object.
2728  *
2729  * This function looks up the iocb_lookup table to get the command iocb
2730  * corresponding to the given response iocb using the iotag of the
2731  * response iocb. This function is called with the hbalock held.
2732  * This function returns the command iocb object if it finds the command
2733  * iocb else returns NULL.
2734  **/
2735 static struct lpfc_iocbq *
2736 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
2737 		      struct lpfc_sli_ring *pring,
2738 		      struct lpfc_iocbq *prspiocb)
2739 {
2740 	struct lpfc_iocbq *cmd_iocb = NULL;
2741 	uint16_t iotag;
2742 	lockdep_assert_held(&phba->hbalock);
2743 
2744 	iotag = prspiocb->iocb.ulpIoTag;
2745 
2746 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2747 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
2748 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
2749 			/* remove from txcmpl queue list */
2750 			list_del_init(&cmd_iocb->list);
2751 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
2752 			return cmd_iocb;
2753 		}
2754 	}
2755 
2756 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2757 			"0317 iotag x%x is out of "
2758 			"range: max iotag x%x wd0 x%x\n",
2759 			iotag, phba->sli.last_iotag,
2760 			*(((uint32_t *) &prspiocb->iocb) + 7));
2761 	return NULL;
2762 }
2763 
2764 /**
2765  * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
2766  * @phba: Pointer to HBA context object.
2767  * @pring: Pointer to driver SLI ring object.
2768  * @iotag: IOCB tag.
2769  *
2770  * This function looks up the iocb_lookup table to get the command iocb
2771  * corresponding to the given iotag. This function is called with the
2772  * hbalock held.
2773  * This function returns the command iocb object if it finds the command
2774  * iocb else returns NULL.
2775  **/
2776 static struct lpfc_iocbq *
2777 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
2778 			     struct lpfc_sli_ring *pring, uint16_t iotag)
2779 {
2780 	struct lpfc_iocbq *cmd_iocb = NULL;
2781 
2782 	lockdep_assert_held(&phba->hbalock);
2783 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2784 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
2785 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
2786 			/* remove from txcmpl queue list */
2787 			list_del_init(&cmd_iocb->list);
2788 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
2789 			return cmd_iocb;
2790 		}
2791 	}
2792 
2793 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2794 			"0372 iotag x%x lookup error: max iotag (x%x) "
2795 			"iocb_flag x%x\n",
2796 			iotag, phba->sli.last_iotag,
2797 			cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
2798 	return NULL;
2799 }
2800 
2801 /**
2802  * lpfc_sli_process_sol_iocb - process solicited iocb completion
2803  * @phba: Pointer to HBA context object.
2804  * @pring: Pointer to driver SLI ring object.
2805  * @saveq: Pointer to the response iocb to be processed.
2806  *
2807  * This function is called by the ring event handler for non-fcp
2808  * rings when there is a new response iocb in the response ring.
2809  * The caller is not required to hold any locks. This function
2810  * gets the command iocb associated with the response iocb and
2811  * calls the completion handler for the command iocb. If there
2812  * is no completion handler, the function will free the resources
2813  * associated with command iocb. If the response iocb is for
2814  * an already aborted command iocb, the status of the completion
2815  * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
2816  * This function always returns 1.
2817  **/
2818 static int
2819 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2820 			  struct lpfc_iocbq *saveq)
2821 {
2822 	struct lpfc_iocbq *cmdiocbp;
2823 	int rc = 1;
2824 	unsigned long iflag;
2825 
2826 	/* Based on the iotag field, get the cmd IOCB from the txcmplq */
2827 	spin_lock_irqsave(&phba->hbalock, iflag);
2828 	cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
2829 	spin_unlock_irqrestore(&phba->hbalock, iflag);
2830 
2831 	if (cmdiocbp) {
2832 		if (cmdiocbp->iocb_cmpl) {
2833 			/*
2834 			 * If an ELS command failed send an event to mgmt
2835 			 * application.
2836 			 */
2837 			if (saveq->iocb.ulpStatus &&
2838 			     (pring->ringno == LPFC_ELS_RING) &&
2839 			     (cmdiocbp->iocb.ulpCommand ==
2840 				CMD_ELS_REQUEST64_CR))
2841 				lpfc_send_els_failure_event(phba,
2842 					cmdiocbp, saveq);
2843 
2844 			/*
2845 			 * Post all ELS completions to the worker thread.
2846 			 * All other are passed to the completion callback.
2847 			 */
2848 			if (pring->ringno == LPFC_ELS_RING) {
2849 				if ((phba->sli_rev < LPFC_SLI_REV4) &&
2850 				    (cmdiocbp->iocb_flag &
2851 							LPFC_DRIVER_ABORTED)) {
2852 					spin_lock_irqsave(&phba->hbalock,
2853 							  iflag);
2854 					cmdiocbp->iocb_flag &=
2855 						~LPFC_DRIVER_ABORTED;
2856 					spin_unlock_irqrestore(&phba->hbalock,
2857 							       iflag);
2858 					saveq->iocb.ulpStatus =
2859 						IOSTAT_LOCAL_REJECT;
2860 					saveq->iocb.un.ulpWord[4] =
2861 						IOERR_SLI_ABORTED;
2862 
2863 					/* Firmware could still be in progress
2864 					 * of DMAing payload, so don't free data
2865 					 * buffer till after a hbeat.
2866 					 */
2867 					spin_lock_irqsave(&phba->hbalock,
2868 							  iflag);
2869 					saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
2870 					spin_unlock_irqrestore(&phba->hbalock,
2871 							       iflag);
2872 				}
2873 				if (phba->sli_rev == LPFC_SLI_REV4) {
2874 					if (saveq->iocb_flag &
2875 					    LPFC_EXCHANGE_BUSY) {
2876 						/* Set cmdiocb flag for the
2877 						 * exchange busy so sgl (xri)
2878 						 * will not be released until
2879 						 * the abort xri is received
2880 						 * from hba.
2881 						 */
2882 						spin_lock_irqsave(
2883 							&phba->hbalock, iflag);
2884 						cmdiocbp->iocb_flag |=
2885 							LPFC_EXCHANGE_BUSY;
2886 						spin_unlock_irqrestore(
2887 							&phba->hbalock, iflag);
2888 					}
2889 					if (cmdiocbp->iocb_flag &
2890 					    LPFC_DRIVER_ABORTED) {
2891 						/*
2892 						 * Clear LPFC_DRIVER_ABORTED
2893 						 * bit in case it was driver
2894 						 * initiated abort.
2895 						 */
2896 						spin_lock_irqsave(
2897 							&phba->hbalock, iflag);
2898 						cmdiocbp->iocb_flag &=
2899 							~LPFC_DRIVER_ABORTED;
2900 						spin_unlock_irqrestore(
2901 							&phba->hbalock, iflag);
2902 						cmdiocbp->iocb.ulpStatus =
2903 							IOSTAT_LOCAL_REJECT;
2904 						cmdiocbp->iocb.un.ulpWord[4] =
2905 							IOERR_ABORT_REQUESTED;
2906 						/*
2907 						 * For SLI4, irsiocb contains
2908 						 * NO_XRI in sli_xritag, it
2909 						 * shall not affect releasing
2910 						 * sgl (xri) process.
2911 						 */
2912 						saveq->iocb.ulpStatus =
2913 							IOSTAT_LOCAL_REJECT;
2914 						saveq->iocb.un.ulpWord[4] =
2915 							IOERR_SLI_ABORTED;
2916 						spin_lock_irqsave(
2917 							&phba->hbalock, iflag);
2918 						saveq->iocb_flag |=
2919 							LPFC_DELAY_MEM_FREE;
2920 						spin_unlock_irqrestore(
2921 							&phba->hbalock, iflag);
2922 					}
2923 				}
2924 			}
2925 			(cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
2926 		} else
2927 			lpfc_sli_release_iocbq(phba, cmdiocbp);
2928 	} else {
2929 		/*
2930 		 * Unknown initiating command based on the response iotag.
2931 		 * This could be the case on the ELS ring because of
2932 		 * lpfc_els_abort().
2933 		 */
2934 		if (pring->ringno != LPFC_ELS_RING) {
2935 			/*
2936 			 * Ring <ringno> handler: unexpected completion IoTag
2937 			 * <IoTag>
2938 			 */
2939 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2940 					 "0322 Ring %d handler: "
2941 					 "unexpected completion IoTag x%x "
2942 					 "Data: x%x x%x x%x x%x\n",
2943 					 pring->ringno,
2944 					 saveq->iocb.ulpIoTag,
2945 					 saveq->iocb.ulpStatus,
2946 					 saveq->iocb.un.ulpWord[4],
2947 					 saveq->iocb.ulpCommand,
2948 					 saveq->iocb.ulpContext);
2949 		}
2950 	}
2951 
2952 	return rc;
2953 }
2954 
2955 /**
2956  * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
2957  * @phba: Pointer to HBA context object.
2958  * @pring: Pointer to driver SLI ring object.
2959  *
2960  * This function is called from the iocb ring event handlers when
2961  * put pointer is ahead of the get pointer for a ring. This function signal
2962  * an error attention condition to the worker thread and the worker
2963  * thread will transition the HBA to offline state.
2964  **/
2965 static void
2966 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2967 {
2968 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
2969 	/*
2970 	 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
2971 	 * rsp ring <portRspMax>
2972 	 */
2973 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2974 			"0312 Ring %d handler: portRspPut %d "
2975 			"is bigger than rsp ring %d\n",
2976 			pring->ringno, le32_to_cpu(pgp->rspPutInx),
2977 			pring->sli.sli3.numRiocb);
2978 
2979 	phba->link_state = LPFC_HBA_ERROR;
2980 
2981 	/*
2982 	 * All error attention handlers are posted to
2983 	 * worker thread
2984 	 */
2985 	phba->work_ha |= HA_ERATT;
2986 	phba->work_hs = HS_FFER3;
2987 
2988 	lpfc_worker_wake_up(phba);
2989 
2990 	return;
2991 }
2992 
2993 /**
2994  * lpfc_poll_eratt - Error attention polling timer timeout handler
2995  * @ptr: Pointer to address of HBA context object.
2996  *
2997  * This function is invoked by the Error Attention polling timer when the
2998  * timer times out. It will check the SLI Error Attention register for
2999  * possible attention events. If so, it will post an Error Attention event
3000  * and wake up worker thread to process it. Otherwise, it will set up the
3001  * Error Attention polling timer for the next poll.
3002  **/
3003 void lpfc_poll_eratt(unsigned long ptr)
3004 {
3005 	struct lpfc_hba *phba;
3006 	uint32_t eratt = 0;
3007 	uint64_t sli_intr, cnt;
3008 
3009 	phba = (struct lpfc_hba *)ptr;
3010 
3011 	/* Here we will also keep track of interrupts per sec of the hba */
3012 	sli_intr = phba->sli.slistat.sli_intr;
3013 
3014 	if (phba->sli.slistat.sli_prev_intr > sli_intr)
3015 		cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3016 			sli_intr);
3017 	else
3018 		cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3019 
3020 	/* 64-bit integer division not supported on 32-bit x86 - use do_div */
3021 	do_div(cnt, phba->eratt_poll_interval);
3022 	phba->sli.slistat.sli_ips = cnt;
3023 
3024 	phba->sli.slistat.sli_prev_intr = sli_intr;
3025 
3026 	/* Check chip HA register for error event */
3027 	eratt = lpfc_sli_check_eratt(phba);
3028 
3029 	if (eratt)
3030 		/* Tell the worker thread there is work to do */
3031 		lpfc_worker_wake_up(phba);
3032 	else
3033 		/* Restart the timer for next eratt poll */
3034 		mod_timer(&phba->eratt_poll,
3035 			  jiffies +
3036 			  msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3037 	return;
3038 }
3039 
3040 
3041 /**
3042  * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3043  * @phba: Pointer to HBA context object.
3044  * @pring: Pointer to driver SLI ring object.
3045  * @mask: Host attention register mask for this ring.
3046  *
3047  * This function is called from the interrupt context when there is a ring
3048  * event for the fcp ring. The caller does not hold any lock.
3049  * The function processes each response iocb in the response ring until it
3050  * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3051  * LE bit set. The function will call the completion handler of the command iocb
3052  * if the response iocb indicates a completion for a command iocb or it is
3053  * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3054  * function if this is an unsolicited iocb.
3055  * This routine presumes LPFC_FCP_RING handling and doesn't bother
3056  * to check it explicitly.
3057  */
3058 int
3059 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3060 				struct lpfc_sli_ring *pring, uint32_t mask)
3061 {
3062 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3063 	IOCB_t *irsp = NULL;
3064 	IOCB_t *entry = NULL;
3065 	struct lpfc_iocbq *cmdiocbq = NULL;
3066 	struct lpfc_iocbq rspiocbq;
3067 	uint32_t status;
3068 	uint32_t portRspPut, portRspMax;
3069 	int rc = 1;
3070 	lpfc_iocb_type type;
3071 	unsigned long iflag;
3072 	uint32_t rsp_cmpl = 0;
3073 
3074 	spin_lock_irqsave(&phba->hbalock, iflag);
3075 	pring->stats.iocb_event++;
3076 
3077 	/*
3078 	 * The next available response entry should never exceed the maximum
3079 	 * entries.  If it does, treat it as an adapter hardware error.
3080 	 */
3081 	portRspMax = pring->sli.sli3.numRiocb;
3082 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3083 	if (unlikely(portRspPut >= portRspMax)) {
3084 		lpfc_sli_rsp_pointers_error(phba, pring);
3085 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3086 		return 1;
3087 	}
3088 	if (phba->fcp_ring_in_use) {
3089 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3090 		return 1;
3091 	} else
3092 		phba->fcp_ring_in_use = 1;
3093 
3094 	rmb();
3095 	while (pring->sli.sli3.rspidx != portRspPut) {
3096 		/*
3097 		 * Fetch an entry off the ring and copy it into a local data
3098 		 * structure.  The copy involves a byte-swap since the
3099 		 * network byte order and pci byte orders are different.
3100 		 */
3101 		entry = lpfc_resp_iocb(phba, pring);
3102 		phba->last_completion_time = jiffies;
3103 
3104 		if (++pring->sli.sli3.rspidx >= portRspMax)
3105 			pring->sli.sli3.rspidx = 0;
3106 
3107 		lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3108 				      (uint32_t *) &rspiocbq.iocb,
3109 				      phba->iocb_rsp_size);
3110 		INIT_LIST_HEAD(&(rspiocbq.list));
3111 		irsp = &rspiocbq.iocb;
3112 
3113 		type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3114 		pring->stats.iocb_rsp++;
3115 		rsp_cmpl++;
3116 
3117 		if (unlikely(irsp->ulpStatus)) {
3118 			/*
3119 			 * If resource errors reported from HBA, reduce
3120 			 * queuedepths of the SCSI device.
3121 			 */
3122 			if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3123 			    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3124 			     IOERR_NO_RESOURCES)) {
3125 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3126 				phba->lpfc_rampdown_queue_depth(phba);
3127 				spin_lock_irqsave(&phba->hbalock, iflag);
3128 			}
3129 
3130 			/* Rsp ring <ringno> error: IOCB */
3131 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3132 					"0336 Rsp Ring %d error: IOCB Data: "
3133 					"x%x x%x x%x x%x x%x x%x x%x x%x\n",
3134 					pring->ringno,
3135 					irsp->un.ulpWord[0],
3136 					irsp->un.ulpWord[1],
3137 					irsp->un.ulpWord[2],
3138 					irsp->un.ulpWord[3],
3139 					irsp->un.ulpWord[4],
3140 					irsp->un.ulpWord[5],
3141 					*(uint32_t *)&irsp->un1,
3142 					*((uint32_t *)&irsp->un1 + 1));
3143 		}
3144 
3145 		switch (type) {
3146 		case LPFC_ABORT_IOCB:
3147 		case LPFC_SOL_IOCB:
3148 			/*
3149 			 * Idle exchange closed via ABTS from port.  No iocb
3150 			 * resources need to be recovered.
3151 			 */
3152 			if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3153 				lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3154 						"0333 IOCB cmd 0x%x"
3155 						" processed. Skipping"
3156 						" completion\n",
3157 						irsp->ulpCommand);
3158 				break;
3159 			}
3160 
3161 			cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3162 							 &rspiocbq);
3163 			if (unlikely(!cmdiocbq))
3164 				break;
3165 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3166 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3167 			if (cmdiocbq->iocb_cmpl) {
3168 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3169 				(cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3170 						      &rspiocbq);
3171 				spin_lock_irqsave(&phba->hbalock, iflag);
3172 			}
3173 			break;
3174 		case LPFC_UNSOL_IOCB:
3175 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3176 			lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3177 			spin_lock_irqsave(&phba->hbalock, iflag);
3178 			break;
3179 		default:
3180 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3181 				char adaptermsg[LPFC_MAX_ADPTMSG];
3182 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3183 				memcpy(&adaptermsg[0], (uint8_t *) irsp,
3184 				       MAX_MSG_DATA);
3185 				dev_warn(&((phba->pcidev)->dev),
3186 					 "lpfc%d: %s\n",
3187 					 phba->brd_no, adaptermsg);
3188 			} else {
3189 				/* Unknown IOCB command */
3190 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3191 						"0334 Unknown IOCB command "
3192 						"Data: x%x, x%x x%x x%x x%x\n",
3193 						type, irsp->ulpCommand,
3194 						irsp->ulpStatus,
3195 						irsp->ulpIoTag,
3196 						irsp->ulpContext);
3197 			}
3198 			break;
3199 		}
3200 
3201 		/*
3202 		 * The response IOCB has been processed.  Update the ring
3203 		 * pointer in SLIM.  If the port response put pointer has not
3204 		 * been updated, sync the pgp->rspPutInx and fetch the new port
3205 		 * response put pointer.
3206 		 */
3207 		writel(pring->sli.sli3.rspidx,
3208 			&phba->host_gp[pring->ringno].rspGetInx);
3209 
3210 		if (pring->sli.sli3.rspidx == portRspPut)
3211 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3212 	}
3213 
3214 	if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3215 		pring->stats.iocb_rsp_full++;
3216 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3217 		writel(status, phba->CAregaddr);
3218 		readl(phba->CAregaddr);
3219 	}
3220 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3221 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3222 		pring->stats.iocb_cmd_empty++;
3223 
3224 		/* Force update of the local copy of cmdGetInx */
3225 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3226 		lpfc_sli_resume_iocb(phba, pring);
3227 
3228 		if ((pring->lpfc_sli_cmd_available))
3229 			(pring->lpfc_sli_cmd_available) (phba, pring);
3230 
3231 	}
3232 
3233 	phba->fcp_ring_in_use = 0;
3234 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3235 	return rc;
3236 }
3237 
3238 /**
3239  * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3240  * @phba: Pointer to HBA context object.
3241  * @pring: Pointer to driver SLI ring object.
3242  * @rspiocbp: Pointer to driver response IOCB object.
3243  *
3244  * This function is called from the worker thread when there is a slow-path
3245  * response IOCB to process. This function chains all the response iocbs until
3246  * seeing the iocb with the LE bit set. The function will call
3247  * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3248  * completion of a command iocb. The function will call the
3249  * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3250  * The function frees the resources or calls the completion handler if this
3251  * iocb is an abort completion. The function returns NULL when the response
3252  * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3253  * this function shall chain the iocb on to the iocb_continueq and return the
3254  * response iocb passed in.
3255  **/
3256 static struct lpfc_iocbq *
3257 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3258 			struct lpfc_iocbq *rspiocbp)
3259 {
3260 	struct lpfc_iocbq *saveq;
3261 	struct lpfc_iocbq *cmdiocbp;
3262 	struct lpfc_iocbq *next_iocb;
3263 	IOCB_t *irsp = NULL;
3264 	uint32_t free_saveq;
3265 	uint8_t iocb_cmd_type;
3266 	lpfc_iocb_type type;
3267 	unsigned long iflag;
3268 	int rc;
3269 
3270 	spin_lock_irqsave(&phba->hbalock, iflag);
3271 	/* First add the response iocb to the countinueq list */
3272 	list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3273 	pring->iocb_continueq_cnt++;
3274 
3275 	/* Now, determine whether the list is completed for processing */
3276 	irsp = &rspiocbp->iocb;
3277 	if (irsp->ulpLe) {
3278 		/*
3279 		 * By default, the driver expects to free all resources
3280 		 * associated with this iocb completion.
3281 		 */
3282 		free_saveq = 1;
3283 		saveq = list_get_first(&pring->iocb_continueq,
3284 				       struct lpfc_iocbq, list);
3285 		irsp = &(saveq->iocb);
3286 		list_del_init(&pring->iocb_continueq);
3287 		pring->iocb_continueq_cnt = 0;
3288 
3289 		pring->stats.iocb_rsp++;
3290 
3291 		/*
3292 		 * If resource errors reported from HBA, reduce
3293 		 * queuedepths of the SCSI device.
3294 		 */
3295 		if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3296 		    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3297 		     IOERR_NO_RESOURCES)) {
3298 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3299 			phba->lpfc_rampdown_queue_depth(phba);
3300 			spin_lock_irqsave(&phba->hbalock, iflag);
3301 		}
3302 
3303 		if (irsp->ulpStatus) {
3304 			/* Rsp ring <ringno> error: IOCB */
3305 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3306 					"0328 Rsp Ring %d error: "
3307 					"IOCB Data: "
3308 					"x%x x%x x%x x%x "
3309 					"x%x x%x x%x x%x "
3310 					"x%x x%x x%x x%x "
3311 					"x%x x%x x%x x%x\n",
3312 					pring->ringno,
3313 					irsp->un.ulpWord[0],
3314 					irsp->un.ulpWord[1],
3315 					irsp->un.ulpWord[2],
3316 					irsp->un.ulpWord[3],
3317 					irsp->un.ulpWord[4],
3318 					irsp->un.ulpWord[5],
3319 					*(((uint32_t *) irsp) + 6),
3320 					*(((uint32_t *) irsp) + 7),
3321 					*(((uint32_t *) irsp) + 8),
3322 					*(((uint32_t *) irsp) + 9),
3323 					*(((uint32_t *) irsp) + 10),
3324 					*(((uint32_t *) irsp) + 11),
3325 					*(((uint32_t *) irsp) + 12),
3326 					*(((uint32_t *) irsp) + 13),
3327 					*(((uint32_t *) irsp) + 14),
3328 					*(((uint32_t *) irsp) + 15));
3329 		}
3330 
3331 		/*
3332 		 * Fetch the IOCB command type and call the correct completion
3333 		 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3334 		 * get freed back to the lpfc_iocb_list by the discovery
3335 		 * kernel thread.
3336 		 */
3337 		iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3338 		type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3339 		switch (type) {
3340 		case LPFC_SOL_IOCB:
3341 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3342 			rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3343 			spin_lock_irqsave(&phba->hbalock, iflag);
3344 			break;
3345 
3346 		case LPFC_UNSOL_IOCB:
3347 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3348 			rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3349 			spin_lock_irqsave(&phba->hbalock, iflag);
3350 			if (!rc)
3351 				free_saveq = 0;
3352 			break;
3353 
3354 		case LPFC_ABORT_IOCB:
3355 			cmdiocbp = NULL;
3356 			if (irsp->ulpCommand != CMD_XRI_ABORTED_CX)
3357 				cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3358 								 saveq);
3359 			if (cmdiocbp) {
3360 				/* Call the specified completion routine */
3361 				if (cmdiocbp->iocb_cmpl) {
3362 					spin_unlock_irqrestore(&phba->hbalock,
3363 							       iflag);
3364 					(cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3365 							      saveq);
3366 					spin_lock_irqsave(&phba->hbalock,
3367 							  iflag);
3368 				} else
3369 					__lpfc_sli_release_iocbq(phba,
3370 								 cmdiocbp);
3371 			}
3372 			break;
3373 
3374 		case LPFC_UNKNOWN_IOCB:
3375 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3376 				char adaptermsg[LPFC_MAX_ADPTMSG];
3377 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3378 				memcpy(&adaptermsg[0], (uint8_t *)irsp,
3379 				       MAX_MSG_DATA);
3380 				dev_warn(&((phba->pcidev)->dev),
3381 					 "lpfc%d: %s\n",
3382 					 phba->brd_no, adaptermsg);
3383 			} else {
3384 				/* Unknown IOCB command */
3385 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3386 						"0335 Unknown IOCB "
3387 						"command Data: x%x "
3388 						"x%x x%x x%x\n",
3389 						irsp->ulpCommand,
3390 						irsp->ulpStatus,
3391 						irsp->ulpIoTag,
3392 						irsp->ulpContext);
3393 			}
3394 			break;
3395 		}
3396 
3397 		if (free_saveq) {
3398 			list_for_each_entry_safe(rspiocbp, next_iocb,
3399 						 &saveq->list, list) {
3400 				list_del_init(&rspiocbp->list);
3401 				__lpfc_sli_release_iocbq(phba, rspiocbp);
3402 			}
3403 			__lpfc_sli_release_iocbq(phba, saveq);
3404 		}
3405 		rspiocbp = NULL;
3406 	}
3407 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3408 	return rspiocbp;
3409 }
3410 
3411 /**
3412  * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3413  * @phba: Pointer to HBA context object.
3414  * @pring: Pointer to driver SLI ring object.
3415  * @mask: Host attention register mask for this ring.
3416  *
3417  * This routine wraps the actual slow_ring event process routine from the
3418  * API jump table function pointer from the lpfc_hba struct.
3419  **/
3420 void
3421 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3422 				struct lpfc_sli_ring *pring, uint32_t mask)
3423 {
3424 	phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3425 }
3426 
3427 /**
3428  * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3429  * @phba: Pointer to HBA context object.
3430  * @pring: Pointer to driver SLI ring object.
3431  * @mask: Host attention register mask for this ring.
3432  *
3433  * This function is called from the worker thread when there is a ring event
3434  * for non-fcp rings. The caller does not hold any lock. The function will
3435  * remove each response iocb in the response ring and calls the handle
3436  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3437  **/
3438 static void
3439 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3440 				   struct lpfc_sli_ring *pring, uint32_t mask)
3441 {
3442 	struct lpfc_pgp *pgp;
3443 	IOCB_t *entry;
3444 	IOCB_t *irsp = NULL;
3445 	struct lpfc_iocbq *rspiocbp = NULL;
3446 	uint32_t portRspPut, portRspMax;
3447 	unsigned long iflag;
3448 	uint32_t status;
3449 
3450 	pgp = &phba->port_gp[pring->ringno];
3451 	spin_lock_irqsave(&phba->hbalock, iflag);
3452 	pring->stats.iocb_event++;
3453 
3454 	/*
3455 	 * The next available response entry should never exceed the maximum
3456 	 * entries.  If it does, treat it as an adapter hardware error.
3457 	 */
3458 	portRspMax = pring->sli.sli3.numRiocb;
3459 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3460 	if (portRspPut >= portRspMax) {
3461 		/*
3462 		 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3463 		 * rsp ring <portRspMax>
3464 		 */
3465 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3466 				"0303 Ring %d handler: portRspPut %d "
3467 				"is bigger than rsp ring %d\n",
3468 				pring->ringno, portRspPut, portRspMax);
3469 
3470 		phba->link_state = LPFC_HBA_ERROR;
3471 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3472 
3473 		phba->work_hs = HS_FFER3;
3474 		lpfc_handle_eratt(phba);
3475 
3476 		return;
3477 	}
3478 
3479 	rmb();
3480 	while (pring->sli.sli3.rspidx != portRspPut) {
3481 		/*
3482 		 * Build a completion list and call the appropriate handler.
3483 		 * The process is to get the next available response iocb, get
3484 		 * a free iocb from the list, copy the response data into the
3485 		 * free iocb, insert to the continuation list, and update the
3486 		 * next response index to slim.  This process makes response
3487 		 * iocb's in the ring available to DMA as fast as possible but
3488 		 * pays a penalty for a copy operation.  Since the iocb is
3489 		 * only 32 bytes, this penalty is considered small relative to
3490 		 * the PCI reads for register values and a slim write.  When
3491 		 * the ulpLe field is set, the entire Command has been
3492 		 * received.
3493 		 */
3494 		entry = lpfc_resp_iocb(phba, pring);
3495 
3496 		phba->last_completion_time = jiffies;
3497 		rspiocbp = __lpfc_sli_get_iocbq(phba);
3498 		if (rspiocbp == NULL) {
3499 			printk(KERN_ERR "%s: out of buffers! Failing "
3500 			       "completion.\n", __func__);
3501 			break;
3502 		}
3503 
3504 		lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3505 				      phba->iocb_rsp_size);
3506 		irsp = &rspiocbp->iocb;
3507 
3508 		if (++pring->sli.sli3.rspidx >= portRspMax)
3509 			pring->sli.sli3.rspidx = 0;
3510 
3511 		if (pring->ringno == LPFC_ELS_RING) {
3512 			lpfc_debugfs_slow_ring_trc(phba,
3513 			"IOCB rsp ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
3514 				*(((uint32_t *) irsp) + 4),
3515 				*(((uint32_t *) irsp) + 6),
3516 				*(((uint32_t *) irsp) + 7));
3517 		}
3518 
3519 		writel(pring->sli.sli3.rspidx,
3520 			&phba->host_gp[pring->ringno].rspGetInx);
3521 
3522 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3523 		/* Handle the response IOCB */
3524 		rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3525 		spin_lock_irqsave(&phba->hbalock, iflag);
3526 
3527 		/*
3528 		 * If the port response put pointer has not been updated, sync
3529 		 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3530 		 * response put pointer.
3531 		 */
3532 		if (pring->sli.sli3.rspidx == portRspPut) {
3533 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3534 		}
3535 	} /* while (pring->sli.sli3.rspidx != portRspPut) */
3536 
3537 	if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3538 		/* At least one response entry has been freed */
3539 		pring->stats.iocb_rsp_full++;
3540 		/* SET RxRE_RSP in Chip Att register */
3541 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3542 		writel(status, phba->CAregaddr);
3543 		readl(phba->CAregaddr); /* flush */
3544 	}
3545 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3546 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3547 		pring->stats.iocb_cmd_empty++;
3548 
3549 		/* Force update of the local copy of cmdGetInx */
3550 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3551 		lpfc_sli_resume_iocb(phba, pring);
3552 
3553 		if ((pring->lpfc_sli_cmd_available))
3554 			(pring->lpfc_sli_cmd_available) (phba, pring);
3555 
3556 	}
3557 
3558 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3559 	return;
3560 }
3561 
3562 /**
3563  * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3564  * @phba: Pointer to HBA context object.
3565  * @pring: Pointer to driver SLI ring object.
3566  * @mask: Host attention register mask for this ring.
3567  *
3568  * This function is called from the worker thread when there is a pending
3569  * ELS response iocb on the driver internal slow-path response iocb worker
3570  * queue. The caller does not hold any lock. The function will remove each
3571  * response iocb from the response worker queue and calls the handle
3572  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3573  **/
3574 static void
3575 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
3576 				   struct lpfc_sli_ring *pring, uint32_t mask)
3577 {
3578 	struct lpfc_iocbq *irspiocbq;
3579 	struct hbq_dmabuf *dmabuf;
3580 	struct lpfc_cq_event *cq_event;
3581 	unsigned long iflag;
3582 
3583 	spin_lock_irqsave(&phba->hbalock, iflag);
3584 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
3585 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3586 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
3587 		/* Get the response iocb from the head of work queue */
3588 		spin_lock_irqsave(&phba->hbalock, iflag);
3589 		list_remove_head(&phba->sli4_hba.sp_queue_event,
3590 				 cq_event, struct lpfc_cq_event, list);
3591 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3592 
3593 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
3594 		case CQE_CODE_COMPL_WQE:
3595 			irspiocbq = container_of(cq_event, struct lpfc_iocbq,
3596 						 cq_event);
3597 			/* Translate ELS WCQE to response IOCBQ */
3598 			irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
3599 								   irspiocbq);
3600 			if (irspiocbq)
3601 				lpfc_sli_sp_handle_rspiocb(phba, pring,
3602 							   irspiocbq);
3603 			break;
3604 		case CQE_CODE_RECEIVE:
3605 		case CQE_CODE_RECEIVE_V1:
3606 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
3607 					      cq_event);
3608 			lpfc_sli4_handle_received_buffer(phba, dmabuf);
3609 			break;
3610 		default:
3611 			break;
3612 		}
3613 	}
3614 }
3615 
3616 /**
3617  * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
3618  * @phba: Pointer to HBA context object.
3619  * @pring: Pointer to driver SLI ring object.
3620  *
3621  * This function aborts all iocbs in the given ring and frees all the iocb
3622  * objects in txq. This function issues an abort iocb for all the iocb commands
3623  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3624  * the return of this function. The caller is not required to hold any locks.
3625  **/
3626 void
3627 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3628 {
3629 	LIST_HEAD(completions);
3630 	struct lpfc_iocbq *iocb, *next_iocb;
3631 
3632 	if (pring->ringno == LPFC_ELS_RING) {
3633 		lpfc_fabric_abort_hba(phba);
3634 	}
3635 
3636 	/* Error everything on txq and txcmplq
3637 	 * First do the txq.
3638 	 */
3639 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3640 		spin_lock_irq(&pring->ring_lock);
3641 		list_splice_init(&pring->txq, &completions);
3642 		pring->txq_cnt = 0;
3643 		spin_unlock_irq(&pring->ring_lock);
3644 
3645 		spin_lock_irq(&phba->hbalock);
3646 		/* Next issue ABTS for everything on the txcmplq */
3647 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3648 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3649 		spin_unlock_irq(&phba->hbalock);
3650 	} else {
3651 		spin_lock_irq(&phba->hbalock);
3652 		list_splice_init(&pring->txq, &completions);
3653 		pring->txq_cnt = 0;
3654 
3655 		/* Next issue ABTS for everything on the txcmplq */
3656 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3657 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3658 		spin_unlock_irq(&phba->hbalock);
3659 	}
3660 
3661 	/* Cancel all the IOCBs from the completions list */
3662 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
3663 			      IOERR_SLI_ABORTED);
3664 }
3665 
3666 /**
3667  * lpfc_sli_abort_wqe_ring - Abort all iocbs in the ring
3668  * @phba: Pointer to HBA context object.
3669  * @pring: Pointer to driver SLI ring object.
3670  *
3671  * This function aborts all iocbs in the given ring and frees all the iocb
3672  * objects in txq. This function issues an abort iocb for all the iocb commands
3673  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3674  * the return of this function. The caller is not required to hold any locks.
3675  **/
3676 void
3677 lpfc_sli_abort_wqe_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3678 {
3679 	LIST_HEAD(completions);
3680 	struct lpfc_iocbq *iocb, *next_iocb;
3681 
3682 	if (pring->ringno == LPFC_ELS_RING)
3683 		lpfc_fabric_abort_hba(phba);
3684 
3685 	spin_lock_irq(&phba->hbalock);
3686 	/* Next issue ABTS for everything on the txcmplq */
3687 	list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3688 		lpfc_sli4_abort_nvme_io(phba, pring, iocb);
3689 	spin_unlock_irq(&phba->hbalock);
3690 }
3691 
3692 
3693 /**
3694  * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
3695  * @phba: Pointer to HBA context object.
3696  * @pring: Pointer to driver SLI ring object.
3697  *
3698  * This function aborts all iocbs in FCP rings and frees all the iocb
3699  * objects in txq. This function issues an abort iocb for all the iocb commands
3700  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3701  * the return of this function. The caller is not required to hold any locks.
3702  **/
3703 void
3704 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
3705 {
3706 	struct lpfc_sli *psli = &phba->sli;
3707 	struct lpfc_sli_ring  *pring;
3708 	uint32_t i;
3709 
3710 	/* Look on all the FCP Rings for the iotag */
3711 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3712 		for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
3713 			pring = phba->sli4_hba.fcp_wq[i]->pring;
3714 			lpfc_sli_abort_iocb_ring(phba, pring);
3715 		}
3716 	} else {
3717 		pring = &psli->sli3_ring[LPFC_FCP_RING];
3718 		lpfc_sli_abort_iocb_ring(phba, pring);
3719 	}
3720 }
3721 
3722 /**
3723  * lpfc_sli_abort_nvme_rings - Abort all wqes in all NVME rings
3724  * @phba: Pointer to HBA context object.
3725  *
3726  * This function aborts all wqes in NVME rings. This function issues an
3727  * abort wqe for all the outstanding IO commands in txcmplq. The iocbs in
3728  * the txcmplq is not guaranteed to complete before the return of this
3729  * function. The caller is not required to hold any locks.
3730  **/
3731 void
3732 lpfc_sli_abort_nvme_rings(struct lpfc_hba *phba)
3733 {
3734 	struct lpfc_sli_ring  *pring;
3735 	uint32_t i;
3736 
3737 	if (phba->sli_rev < LPFC_SLI_REV4)
3738 		return;
3739 
3740 	/* Abort all IO on each NVME ring. */
3741 	for (i = 0; i < phba->cfg_nvme_io_channel; i++) {
3742 		pring = phba->sli4_hba.nvme_wq[i]->pring;
3743 		lpfc_sli_abort_wqe_ring(phba, pring);
3744 	}
3745 }
3746 
3747 
3748 /**
3749  * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring
3750  * @phba: Pointer to HBA context object.
3751  *
3752  * This function flushes all iocbs in the fcp ring and frees all the iocb
3753  * objects in txq and txcmplq. This function will not issue abort iocbs
3754  * for all the iocb commands in txcmplq, they will just be returned with
3755  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
3756  * slot has been permanently disabled.
3757  **/
3758 void
3759 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba)
3760 {
3761 	LIST_HEAD(txq);
3762 	LIST_HEAD(txcmplq);
3763 	struct lpfc_sli *psli = &phba->sli;
3764 	struct lpfc_sli_ring  *pring;
3765 	uint32_t i;
3766 
3767 	spin_lock_irq(&phba->hbalock);
3768 	/* Indicate the I/O queues are flushed */
3769 	phba->hba_flag |= HBA_FCP_IOQ_FLUSH;
3770 	spin_unlock_irq(&phba->hbalock);
3771 
3772 	/* Look on all the FCP Rings for the iotag */
3773 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3774 		for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
3775 			pring = phba->sli4_hba.fcp_wq[i]->pring;
3776 
3777 			spin_lock_irq(&pring->ring_lock);
3778 			/* Retrieve everything on txq */
3779 			list_splice_init(&pring->txq, &txq);
3780 			/* Retrieve everything on the txcmplq */
3781 			list_splice_init(&pring->txcmplq, &txcmplq);
3782 			pring->txq_cnt = 0;
3783 			pring->txcmplq_cnt = 0;
3784 			spin_unlock_irq(&pring->ring_lock);
3785 
3786 			/* Flush the txq */
3787 			lpfc_sli_cancel_iocbs(phba, &txq,
3788 					      IOSTAT_LOCAL_REJECT,
3789 					      IOERR_SLI_DOWN);
3790 			/* Flush the txcmpq */
3791 			lpfc_sli_cancel_iocbs(phba, &txcmplq,
3792 					      IOSTAT_LOCAL_REJECT,
3793 					      IOERR_SLI_DOWN);
3794 		}
3795 	} else {
3796 		pring = &psli->sli3_ring[LPFC_FCP_RING];
3797 
3798 		spin_lock_irq(&phba->hbalock);
3799 		/* Retrieve everything on txq */
3800 		list_splice_init(&pring->txq, &txq);
3801 		/* Retrieve everything on the txcmplq */
3802 		list_splice_init(&pring->txcmplq, &txcmplq);
3803 		pring->txq_cnt = 0;
3804 		pring->txcmplq_cnt = 0;
3805 		spin_unlock_irq(&phba->hbalock);
3806 
3807 		/* Flush the txq */
3808 		lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
3809 				      IOERR_SLI_DOWN);
3810 		/* Flush the txcmpq */
3811 		lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
3812 				      IOERR_SLI_DOWN);
3813 	}
3814 }
3815 
3816 /**
3817  * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings
3818  * @phba: Pointer to HBA context object.
3819  *
3820  * This function flushes all wqes in the nvme rings and frees all resources
3821  * in the txcmplq. This function does not issue abort wqes for the IO
3822  * commands in txcmplq, they will just be returned with
3823  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
3824  * slot has been permanently disabled.
3825  **/
3826 void
3827 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba)
3828 {
3829 	LIST_HEAD(txcmplq);
3830 	struct lpfc_sli_ring  *pring;
3831 	uint32_t i;
3832 
3833 	if (phba->sli_rev < LPFC_SLI_REV4)
3834 		return;
3835 
3836 	/* Hint to other driver operations that a flush is in progress. */
3837 	spin_lock_irq(&phba->hbalock);
3838 	phba->hba_flag |= HBA_NVME_IOQ_FLUSH;
3839 	spin_unlock_irq(&phba->hbalock);
3840 
3841 	/* Cycle through all NVME rings and complete each IO with
3842 	 * a local driver reason code.  This is a flush so no
3843 	 * abort exchange to FW.
3844 	 */
3845 	for (i = 0; i < phba->cfg_nvme_io_channel; i++) {
3846 		pring = phba->sli4_hba.nvme_wq[i]->pring;
3847 
3848 		/* Retrieve everything on the txcmplq */
3849 		spin_lock_irq(&pring->ring_lock);
3850 		list_splice_init(&pring->txcmplq, &txcmplq);
3851 		pring->txcmplq_cnt = 0;
3852 		spin_unlock_irq(&pring->ring_lock);
3853 
3854 		/* Flush the txcmpq &&&PAE */
3855 		lpfc_sli_cancel_iocbs(phba, &txcmplq,
3856 				      IOSTAT_LOCAL_REJECT,
3857 				      IOERR_SLI_DOWN);
3858 	}
3859 }
3860 
3861 /**
3862  * lpfc_sli_brdready_s3 - Check for sli3 host ready status
3863  * @phba: Pointer to HBA context object.
3864  * @mask: Bit mask to be checked.
3865  *
3866  * This function reads the host status register and compares
3867  * with the provided bit mask to check if HBA completed
3868  * the restart. This function will wait in a loop for the
3869  * HBA to complete restart. If the HBA does not restart within
3870  * 15 iterations, the function will reset the HBA again. The
3871  * function returns 1 when HBA fail to restart otherwise returns
3872  * zero.
3873  **/
3874 static int
3875 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
3876 {
3877 	uint32_t status;
3878 	int i = 0;
3879 	int retval = 0;
3880 
3881 	/* Read the HBA Host Status Register */
3882 	if (lpfc_readl(phba->HSregaddr, &status))
3883 		return 1;
3884 
3885 	/*
3886 	 * Check status register every 100ms for 5 retries, then every
3887 	 * 500ms for 5, then every 2.5 sec for 5, then reset board and
3888 	 * every 2.5 sec for 4.
3889 	 * Break our of the loop if errors occurred during init.
3890 	 */
3891 	while (((status & mask) != mask) &&
3892 	       !(status & HS_FFERM) &&
3893 	       i++ < 20) {
3894 
3895 		if (i <= 5)
3896 			msleep(10);
3897 		else if (i <= 10)
3898 			msleep(500);
3899 		else
3900 			msleep(2500);
3901 
3902 		if (i == 15) {
3903 				/* Do post */
3904 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
3905 			lpfc_sli_brdrestart(phba);
3906 		}
3907 		/* Read the HBA Host Status Register */
3908 		if (lpfc_readl(phba->HSregaddr, &status)) {
3909 			retval = 1;
3910 			break;
3911 		}
3912 	}
3913 
3914 	/* Check to see if any errors occurred during init */
3915 	if ((status & HS_FFERM) || (i >= 20)) {
3916 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
3917 				"2751 Adapter failed to restart, "
3918 				"status reg x%x, FW Data: A8 x%x AC x%x\n",
3919 				status,
3920 				readl(phba->MBslimaddr + 0xa8),
3921 				readl(phba->MBslimaddr + 0xac));
3922 		phba->link_state = LPFC_HBA_ERROR;
3923 		retval = 1;
3924 	}
3925 
3926 	return retval;
3927 }
3928 
3929 /**
3930  * lpfc_sli_brdready_s4 - Check for sli4 host ready status
3931  * @phba: Pointer to HBA context object.
3932  * @mask: Bit mask to be checked.
3933  *
3934  * This function checks the host status register to check if HBA is
3935  * ready. This function will wait in a loop for the HBA to be ready
3936  * If the HBA is not ready , the function will will reset the HBA PCI
3937  * function again. The function returns 1 when HBA fail to be ready
3938  * otherwise returns zero.
3939  **/
3940 static int
3941 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
3942 {
3943 	uint32_t status;
3944 	int retval = 0;
3945 
3946 	/* Read the HBA Host Status Register */
3947 	status = lpfc_sli4_post_status_check(phba);
3948 
3949 	if (status) {
3950 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
3951 		lpfc_sli_brdrestart(phba);
3952 		status = lpfc_sli4_post_status_check(phba);
3953 	}
3954 
3955 	/* Check to see if any errors occurred during init */
3956 	if (status) {
3957 		phba->link_state = LPFC_HBA_ERROR;
3958 		retval = 1;
3959 	} else
3960 		phba->sli4_hba.intr_enable = 0;
3961 
3962 	return retval;
3963 }
3964 
3965 /**
3966  * lpfc_sli_brdready - Wrapper func for checking the hba readyness
3967  * @phba: Pointer to HBA context object.
3968  * @mask: Bit mask to be checked.
3969  *
3970  * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
3971  * from the API jump table function pointer from the lpfc_hba struct.
3972  **/
3973 int
3974 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
3975 {
3976 	return phba->lpfc_sli_brdready(phba, mask);
3977 }
3978 
3979 #define BARRIER_TEST_PATTERN (0xdeadbeef)
3980 
3981 /**
3982  * lpfc_reset_barrier - Make HBA ready for HBA reset
3983  * @phba: Pointer to HBA context object.
3984  *
3985  * This function is called before resetting an HBA. This function is called
3986  * with hbalock held and requests HBA to quiesce DMAs before a reset.
3987  **/
3988 void lpfc_reset_barrier(struct lpfc_hba *phba)
3989 {
3990 	uint32_t __iomem *resp_buf;
3991 	uint32_t __iomem *mbox_buf;
3992 	volatile uint32_t mbox;
3993 	uint32_t hc_copy, ha_copy, resp_data;
3994 	int  i;
3995 	uint8_t hdrtype;
3996 
3997 	lockdep_assert_held(&phba->hbalock);
3998 
3999 	pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4000 	if (hdrtype != 0x80 ||
4001 	    (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4002 	     FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4003 		return;
4004 
4005 	/*
4006 	 * Tell the other part of the chip to suspend temporarily all
4007 	 * its DMA activity.
4008 	 */
4009 	resp_buf = phba->MBslimaddr;
4010 
4011 	/* Disable the error attention */
4012 	if (lpfc_readl(phba->HCregaddr, &hc_copy))
4013 		return;
4014 	writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4015 	readl(phba->HCregaddr); /* flush */
4016 	phba->link_flag |= LS_IGNORE_ERATT;
4017 
4018 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4019 		return;
4020 	if (ha_copy & HA_ERATT) {
4021 		/* Clear Chip error bit */
4022 		writel(HA_ERATT, phba->HAregaddr);
4023 		phba->pport->stopped = 1;
4024 	}
4025 
4026 	mbox = 0;
4027 	((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4028 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4029 
4030 	writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4031 	mbox_buf = phba->MBslimaddr;
4032 	writel(mbox, mbox_buf);
4033 
4034 	for (i = 0; i < 50; i++) {
4035 		if (lpfc_readl((resp_buf + 1), &resp_data))
4036 			return;
4037 		if (resp_data != ~(BARRIER_TEST_PATTERN))
4038 			mdelay(1);
4039 		else
4040 			break;
4041 	}
4042 	resp_data = 0;
4043 	if (lpfc_readl((resp_buf + 1), &resp_data))
4044 		return;
4045 	if (resp_data  != ~(BARRIER_TEST_PATTERN)) {
4046 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4047 		    phba->pport->stopped)
4048 			goto restore_hc;
4049 		else
4050 			goto clear_errat;
4051 	}
4052 
4053 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4054 	resp_data = 0;
4055 	for (i = 0; i < 500; i++) {
4056 		if (lpfc_readl(resp_buf, &resp_data))
4057 			return;
4058 		if (resp_data != mbox)
4059 			mdelay(1);
4060 		else
4061 			break;
4062 	}
4063 
4064 clear_errat:
4065 
4066 	while (++i < 500) {
4067 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4068 			return;
4069 		if (!(ha_copy & HA_ERATT))
4070 			mdelay(1);
4071 		else
4072 			break;
4073 	}
4074 
4075 	if (readl(phba->HAregaddr) & HA_ERATT) {
4076 		writel(HA_ERATT, phba->HAregaddr);
4077 		phba->pport->stopped = 1;
4078 	}
4079 
4080 restore_hc:
4081 	phba->link_flag &= ~LS_IGNORE_ERATT;
4082 	writel(hc_copy, phba->HCregaddr);
4083 	readl(phba->HCregaddr); /* flush */
4084 }
4085 
4086 /**
4087  * lpfc_sli_brdkill - Issue a kill_board mailbox command
4088  * @phba: Pointer to HBA context object.
4089  *
4090  * This function issues a kill_board mailbox command and waits for
4091  * the error attention interrupt. This function is called for stopping
4092  * the firmware processing. The caller is not required to hold any
4093  * locks. This function calls lpfc_hba_down_post function to free
4094  * any pending commands after the kill. The function will return 1 when it
4095  * fails to kill the board else will return 0.
4096  **/
4097 int
4098 lpfc_sli_brdkill(struct lpfc_hba *phba)
4099 {
4100 	struct lpfc_sli *psli;
4101 	LPFC_MBOXQ_t *pmb;
4102 	uint32_t status;
4103 	uint32_t ha_copy;
4104 	int retval;
4105 	int i = 0;
4106 
4107 	psli = &phba->sli;
4108 
4109 	/* Kill HBA */
4110 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4111 			"0329 Kill HBA Data: x%x x%x\n",
4112 			phba->pport->port_state, psli->sli_flag);
4113 
4114 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4115 	if (!pmb)
4116 		return 1;
4117 
4118 	/* Disable the error attention */
4119 	spin_lock_irq(&phba->hbalock);
4120 	if (lpfc_readl(phba->HCregaddr, &status)) {
4121 		spin_unlock_irq(&phba->hbalock);
4122 		mempool_free(pmb, phba->mbox_mem_pool);
4123 		return 1;
4124 	}
4125 	status &= ~HC_ERINT_ENA;
4126 	writel(status, phba->HCregaddr);
4127 	readl(phba->HCregaddr); /* flush */
4128 	phba->link_flag |= LS_IGNORE_ERATT;
4129 	spin_unlock_irq(&phba->hbalock);
4130 
4131 	lpfc_kill_board(phba, pmb);
4132 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4133 	retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4134 
4135 	if (retval != MBX_SUCCESS) {
4136 		if (retval != MBX_BUSY)
4137 			mempool_free(pmb, phba->mbox_mem_pool);
4138 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4139 				"2752 KILL_BOARD command failed retval %d\n",
4140 				retval);
4141 		spin_lock_irq(&phba->hbalock);
4142 		phba->link_flag &= ~LS_IGNORE_ERATT;
4143 		spin_unlock_irq(&phba->hbalock);
4144 		return 1;
4145 	}
4146 
4147 	spin_lock_irq(&phba->hbalock);
4148 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4149 	spin_unlock_irq(&phba->hbalock);
4150 
4151 	mempool_free(pmb, phba->mbox_mem_pool);
4152 
4153 	/* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4154 	 * attention every 100ms for 3 seconds. If we don't get ERATT after
4155 	 * 3 seconds we still set HBA_ERROR state because the status of the
4156 	 * board is now undefined.
4157 	 */
4158 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4159 		return 1;
4160 	while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4161 		mdelay(100);
4162 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4163 			return 1;
4164 	}
4165 
4166 	del_timer_sync(&psli->mbox_tmo);
4167 	if (ha_copy & HA_ERATT) {
4168 		writel(HA_ERATT, phba->HAregaddr);
4169 		phba->pport->stopped = 1;
4170 	}
4171 	spin_lock_irq(&phba->hbalock);
4172 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4173 	psli->mbox_active = NULL;
4174 	phba->link_flag &= ~LS_IGNORE_ERATT;
4175 	spin_unlock_irq(&phba->hbalock);
4176 
4177 	lpfc_hba_down_post(phba);
4178 	phba->link_state = LPFC_HBA_ERROR;
4179 
4180 	return ha_copy & HA_ERATT ? 0 : 1;
4181 }
4182 
4183 /**
4184  * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4185  * @phba: Pointer to HBA context object.
4186  *
4187  * This function resets the HBA by writing HC_INITFF to the control
4188  * register. After the HBA resets, this function resets all the iocb ring
4189  * indices. This function disables PCI layer parity checking during
4190  * the reset.
4191  * This function returns 0 always.
4192  * The caller is not required to hold any locks.
4193  **/
4194 int
4195 lpfc_sli_brdreset(struct lpfc_hba *phba)
4196 {
4197 	struct lpfc_sli *psli;
4198 	struct lpfc_sli_ring *pring;
4199 	uint16_t cfg_value;
4200 	int i;
4201 
4202 	psli = &phba->sli;
4203 
4204 	/* Reset HBA */
4205 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4206 			"0325 Reset HBA Data: x%x x%x\n",
4207 			(phba->pport) ? phba->pport->port_state : 0,
4208 			psli->sli_flag);
4209 
4210 	/* perform board reset */
4211 	phba->fc_eventTag = 0;
4212 	phba->link_events = 0;
4213 	if (phba->pport) {
4214 		phba->pport->fc_myDID = 0;
4215 		phba->pport->fc_prevDID = 0;
4216 	}
4217 
4218 	/* Turn off parity checking and serr during the physical reset */
4219 	pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
4220 	pci_write_config_word(phba->pcidev, PCI_COMMAND,
4221 			      (cfg_value &
4222 			       ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4223 
4224 	psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4225 
4226 	/* Now toggle INITFF bit in the Host Control Register */
4227 	writel(HC_INITFF, phba->HCregaddr);
4228 	mdelay(1);
4229 	readl(phba->HCregaddr); /* flush */
4230 	writel(0, phba->HCregaddr);
4231 	readl(phba->HCregaddr); /* flush */
4232 
4233 	/* Restore PCI cmd register */
4234 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4235 
4236 	/* Initialize relevant SLI info */
4237 	for (i = 0; i < psli->num_rings; i++) {
4238 		pring = &psli->sli3_ring[i];
4239 		pring->flag = 0;
4240 		pring->sli.sli3.rspidx = 0;
4241 		pring->sli.sli3.next_cmdidx  = 0;
4242 		pring->sli.sli3.local_getidx = 0;
4243 		pring->sli.sli3.cmdidx = 0;
4244 		pring->missbufcnt = 0;
4245 	}
4246 
4247 	phba->link_state = LPFC_WARM_START;
4248 	return 0;
4249 }
4250 
4251 /**
4252  * lpfc_sli4_brdreset - Reset a sli-4 HBA
4253  * @phba: Pointer to HBA context object.
4254  *
4255  * This function resets a SLI4 HBA. This function disables PCI layer parity
4256  * checking during resets the device. The caller is not required to hold
4257  * any locks.
4258  *
4259  * This function returns 0 always.
4260  **/
4261 int
4262 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4263 {
4264 	struct lpfc_sli *psli = &phba->sli;
4265 	uint16_t cfg_value;
4266 	int rc = 0;
4267 
4268 	/* Reset HBA */
4269 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4270 			"0295 Reset HBA Data: x%x x%x x%x\n",
4271 			phba->pport->port_state, psli->sli_flag,
4272 			phba->hba_flag);
4273 
4274 	/* perform board reset */
4275 	phba->fc_eventTag = 0;
4276 	phba->link_events = 0;
4277 	phba->pport->fc_myDID = 0;
4278 	phba->pport->fc_prevDID = 0;
4279 
4280 	spin_lock_irq(&phba->hbalock);
4281 	psli->sli_flag &= ~(LPFC_PROCESS_LA);
4282 	phba->fcf.fcf_flag = 0;
4283 	spin_unlock_irq(&phba->hbalock);
4284 
4285 	/* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4286 	if (phba->hba_flag & HBA_FW_DUMP_OP) {
4287 		phba->hba_flag &= ~HBA_FW_DUMP_OP;
4288 		return rc;
4289 	}
4290 
4291 	/* Now physically reset the device */
4292 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4293 			"0389 Performing PCI function reset!\n");
4294 
4295 	/* Turn off parity checking and serr during the physical reset */
4296 	pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
4297 	pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4298 			      ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4299 
4300 	/* Perform FCoE PCI function reset before freeing queue memory */
4301 	rc = lpfc_pci_function_reset(phba);
4302 	lpfc_sli4_queue_destroy(phba);
4303 
4304 	/* Restore PCI cmd register */
4305 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4306 
4307 	return rc;
4308 }
4309 
4310 /**
4311  * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4312  * @phba: Pointer to HBA context object.
4313  *
4314  * This function is called in the SLI initialization code path to
4315  * restart the HBA. The caller is not required to hold any lock.
4316  * This function writes MBX_RESTART mailbox command to the SLIM and
4317  * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4318  * function to free any pending commands. The function enables
4319  * POST only during the first initialization. The function returns zero.
4320  * The function does not guarantee completion of MBX_RESTART mailbox
4321  * command before the return of this function.
4322  **/
4323 static int
4324 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4325 {
4326 	MAILBOX_t *mb;
4327 	struct lpfc_sli *psli;
4328 	volatile uint32_t word0;
4329 	void __iomem *to_slim;
4330 	uint32_t hba_aer_enabled;
4331 
4332 	spin_lock_irq(&phba->hbalock);
4333 
4334 	/* Take PCIe device Advanced Error Reporting (AER) state */
4335 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4336 
4337 	psli = &phba->sli;
4338 
4339 	/* Restart HBA */
4340 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4341 			"0337 Restart HBA Data: x%x x%x\n",
4342 			(phba->pport) ? phba->pport->port_state : 0,
4343 			psli->sli_flag);
4344 
4345 	word0 = 0;
4346 	mb = (MAILBOX_t *) &word0;
4347 	mb->mbxCommand = MBX_RESTART;
4348 	mb->mbxHc = 1;
4349 
4350 	lpfc_reset_barrier(phba);
4351 
4352 	to_slim = phba->MBslimaddr;
4353 	writel(*(uint32_t *) mb, to_slim);
4354 	readl(to_slim); /* flush */
4355 
4356 	/* Only skip post after fc_ffinit is completed */
4357 	if (phba->pport && phba->pport->port_state)
4358 		word0 = 1;	/* This is really setting up word1 */
4359 	else
4360 		word0 = 0;	/* This is really setting up word1 */
4361 	to_slim = phba->MBslimaddr + sizeof (uint32_t);
4362 	writel(*(uint32_t *) mb, to_slim);
4363 	readl(to_slim); /* flush */
4364 
4365 	lpfc_sli_brdreset(phba);
4366 	if (phba->pport)
4367 		phba->pport->stopped = 0;
4368 	phba->link_state = LPFC_INIT_START;
4369 	phba->hba_flag = 0;
4370 	spin_unlock_irq(&phba->hbalock);
4371 
4372 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4373 	psli->stats_start = get_seconds();
4374 
4375 	/* Give the INITFF and Post time to settle. */
4376 	mdelay(100);
4377 
4378 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4379 	if (hba_aer_enabled)
4380 		pci_disable_pcie_error_reporting(phba->pcidev);
4381 
4382 	lpfc_hba_down_post(phba);
4383 
4384 	return 0;
4385 }
4386 
4387 /**
4388  * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4389  * @phba: Pointer to HBA context object.
4390  *
4391  * This function is called in the SLI initialization code path to restart
4392  * a SLI4 HBA. The caller is not required to hold any lock.
4393  * At the end of the function, it calls lpfc_hba_down_post function to
4394  * free any pending commands.
4395  **/
4396 static int
4397 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4398 {
4399 	struct lpfc_sli *psli = &phba->sli;
4400 	uint32_t hba_aer_enabled;
4401 	int rc;
4402 
4403 	/* Restart HBA */
4404 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4405 			"0296 Restart HBA Data: x%x x%x\n",
4406 			phba->pport->port_state, psli->sli_flag);
4407 
4408 	/* Take PCIe device Advanced Error Reporting (AER) state */
4409 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4410 
4411 	rc = lpfc_sli4_brdreset(phba);
4412 
4413 	spin_lock_irq(&phba->hbalock);
4414 	phba->pport->stopped = 0;
4415 	phba->link_state = LPFC_INIT_START;
4416 	phba->hba_flag = 0;
4417 	spin_unlock_irq(&phba->hbalock);
4418 
4419 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4420 	psli->stats_start = get_seconds();
4421 
4422 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4423 	if (hba_aer_enabled)
4424 		pci_disable_pcie_error_reporting(phba->pcidev);
4425 
4426 	lpfc_hba_down_post(phba);
4427 
4428 	return rc;
4429 }
4430 
4431 /**
4432  * lpfc_sli_brdrestart - Wrapper func for restarting hba
4433  * @phba: Pointer to HBA context object.
4434  *
4435  * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4436  * API jump table function pointer from the lpfc_hba struct.
4437 **/
4438 int
4439 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4440 {
4441 	return phba->lpfc_sli_brdrestart(phba);
4442 }
4443 
4444 /**
4445  * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4446  * @phba: Pointer to HBA context object.
4447  *
4448  * This function is called after a HBA restart to wait for successful
4449  * restart of the HBA. Successful restart of the HBA is indicated by
4450  * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4451  * iteration, the function will restart the HBA again. The function returns
4452  * zero if HBA successfully restarted else returns negative error code.
4453  **/
4454 int
4455 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4456 {
4457 	uint32_t status, i = 0;
4458 
4459 	/* Read the HBA Host Status Register */
4460 	if (lpfc_readl(phba->HSregaddr, &status))
4461 		return -EIO;
4462 
4463 	/* Check status register to see what current state is */
4464 	i = 0;
4465 	while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4466 
4467 		/* Check every 10ms for 10 retries, then every 100ms for 90
4468 		 * retries, then every 1 sec for 50 retires for a total of
4469 		 * ~60 seconds before reset the board again and check every
4470 		 * 1 sec for 50 retries. The up to 60 seconds before the
4471 		 * board ready is required by the Falcon FIPS zeroization
4472 		 * complete, and any reset the board in between shall cause
4473 		 * restart of zeroization, further delay the board ready.
4474 		 */
4475 		if (i++ >= 200) {
4476 			/* Adapter failed to init, timeout, status reg
4477 			   <status> */
4478 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4479 					"0436 Adapter failed to init, "
4480 					"timeout, status reg x%x, "
4481 					"FW Data: A8 x%x AC x%x\n", status,
4482 					readl(phba->MBslimaddr + 0xa8),
4483 					readl(phba->MBslimaddr + 0xac));
4484 			phba->link_state = LPFC_HBA_ERROR;
4485 			return -ETIMEDOUT;
4486 		}
4487 
4488 		/* Check to see if any errors occurred during init */
4489 		if (status & HS_FFERM) {
4490 			/* ERROR: During chipset initialization */
4491 			/* Adapter failed to init, chipset, status reg
4492 			   <status> */
4493 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4494 					"0437 Adapter failed to init, "
4495 					"chipset, status reg x%x, "
4496 					"FW Data: A8 x%x AC x%x\n", status,
4497 					readl(phba->MBslimaddr + 0xa8),
4498 					readl(phba->MBslimaddr + 0xac));
4499 			phba->link_state = LPFC_HBA_ERROR;
4500 			return -EIO;
4501 		}
4502 
4503 		if (i <= 10)
4504 			msleep(10);
4505 		else if (i <= 100)
4506 			msleep(100);
4507 		else
4508 			msleep(1000);
4509 
4510 		if (i == 150) {
4511 			/* Do post */
4512 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4513 			lpfc_sli_brdrestart(phba);
4514 		}
4515 		/* Read the HBA Host Status Register */
4516 		if (lpfc_readl(phba->HSregaddr, &status))
4517 			return -EIO;
4518 	}
4519 
4520 	/* Check to see if any errors occurred during init */
4521 	if (status & HS_FFERM) {
4522 		/* ERROR: During chipset initialization */
4523 		/* Adapter failed to init, chipset, status reg <status> */
4524 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4525 				"0438 Adapter failed to init, chipset, "
4526 				"status reg x%x, "
4527 				"FW Data: A8 x%x AC x%x\n", status,
4528 				readl(phba->MBslimaddr + 0xa8),
4529 				readl(phba->MBslimaddr + 0xac));
4530 		phba->link_state = LPFC_HBA_ERROR;
4531 		return -EIO;
4532 	}
4533 
4534 	/* Clear all interrupt enable conditions */
4535 	writel(0, phba->HCregaddr);
4536 	readl(phba->HCregaddr); /* flush */
4537 
4538 	/* setup host attn register */
4539 	writel(0xffffffff, phba->HAregaddr);
4540 	readl(phba->HAregaddr); /* flush */
4541 	return 0;
4542 }
4543 
4544 /**
4545  * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4546  *
4547  * This function calculates and returns the number of HBQs required to be
4548  * configured.
4549  **/
4550 int
4551 lpfc_sli_hbq_count(void)
4552 {
4553 	return ARRAY_SIZE(lpfc_hbq_defs);
4554 }
4555 
4556 /**
4557  * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4558  *
4559  * This function adds the number of hbq entries in every HBQ to get
4560  * the total number of hbq entries required for the HBA and returns
4561  * the total count.
4562  **/
4563 static int
4564 lpfc_sli_hbq_entry_count(void)
4565 {
4566 	int  hbq_count = lpfc_sli_hbq_count();
4567 	int  count = 0;
4568 	int  i;
4569 
4570 	for (i = 0; i < hbq_count; ++i)
4571 		count += lpfc_hbq_defs[i]->entry_count;
4572 	return count;
4573 }
4574 
4575 /**
4576  * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4577  *
4578  * This function calculates amount of memory required for all hbq entries
4579  * to be configured and returns the total memory required.
4580  **/
4581 int
4582 lpfc_sli_hbq_size(void)
4583 {
4584 	return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4585 }
4586 
4587 /**
4588  * lpfc_sli_hbq_setup - configure and initialize HBQs
4589  * @phba: Pointer to HBA context object.
4590  *
4591  * This function is called during the SLI initialization to configure
4592  * all the HBQs and post buffers to the HBQ. The caller is not
4593  * required to hold any locks. This function will return zero if successful
4594  * else it will return negative error code.
4595  **/
4596 static int
4597 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4598 {
4599 	int  hbq_count = lpfc_sli_hbq_count();
4600 	LPFC_MBOXQ_t *pmb;
4601 	MAILBOX_t *pmbox;
4602 	uint32_t hbqno;
4603 	uint32_t hbq_entry_index;
4604 
4605 				/* Get a Mailbox buffer to setup mailbox
4606 				 * commands for HBA initialization
4607 				 */
4608 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4609 
4610 	if (!pmb)
4611 		return -ENOMEM;
4612 
4613 	pmbox = &pmb->u.mb;
4614 
4615 	/* Initialize the struct lpfc_sli_hbq structure for each hbq */
4616 	phba->link_state = LPFC_INIT_MBX_CMDS;
4617 	phba->hbq_in_use = 1;
4618 
4619 	hbq_entry_index = 0;
4620 	for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4621 		phba->hbqs[hbqno].next_hbqPutIdx = 0;
4622 		phba->hbqs[hbqno].hbqPutIdx      = 0;
4623 		phba->hbqs[hbqno].local_hbqGetIdx   = 0;
4624 		phba->hbqs[hbqno].entry_count =
4625 			lpfc_hbq_defs[hbqno]->entry_count;
4626 		lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4627 			hbq_entry_index, pmb);
4628 		hbq_entry_index += phba->hbqs[hbqno].entry_count;
4629 
4630 		if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4631 			/* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4632 			   mbxStatus <status>, ring <num> */
4633 
4634 			lpfc_printf_log(phba, KERN_ERR,
4635 					LOG_SLI | LOG_VPORT,
4636 					"1805 Adapter failed to init. "
4637 					"Data: x%x x%x x%x\n",
4638 					pmbox->mbxCommand,
4639 					pmbox->mbxStatus, hbqno);
4640 
4641 			phba->link_state = LPFC_HBA_ERROR;
4642 			mempool_free(pmb, phba->mbox_mem_pool);
4643 			return -ENXIO;
4644 		}
4645 	}
4646 	phba->hbq_count = hbq_count;
4647 
4648 	mempool_free(pmb, phba->mbox_mem_pool);
4649 
4650 	/* Initially populate or replenish the HBQs */
4651 	for (hbqno = 0; hbqno < hbq_count; ++hbqno)
4652 		lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
4653 	return 0;
4654 }
4655 
4656 /**
4657  * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
4658  * @phba: Pointer to HBA context object.
4659  *
4660  * This function is called during the SLI initialization to configure
4661  * all the HBQs and post buffers to the HBQ. The caller is not
4662  * required to hold any locks. This function will return zero if successful
4663  * else it will return negative error code.
4664  **/
4665 static int
4666 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
4667 {
4668 	phba->hbq_in_use = 1;
4669 	phba->hbqs[LPFC_ELS_HBQ].entry_count =
4670 		lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
4671 	phba->hbq_count = 1;
4672 	lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
4673 	/* Initially populate or replenish the HBQs */
4674 	return 0;
4675 }
4676 
4677 /**
4678  * lpfc_sli_config_port - Issue config port mailbox command
4679  * @phba: Pointer to HBA context object.
4680  * @sli_mode: sli mode - 2/3
4681  *
4682  * This function is called by the sli initialization code path
4683  * to issue config_port mailbox command. This function restarts the
4684  * HBA firmware and issues a config_port mailbox command to configure
4685  * the SLI interface in the sli mode specified by sli_mode
4686  * variable. The caller is not required to hold any locks.
4687  * The function returns 0 if successful, else returns negative error
4688  * code.
4689  **/
4690 int
4691 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
4692 {
4693 	LPFC_MBOXQ_t *pmb;
4694 	uint32_t resetcount = 0, rc = 0, done = 0;
4695 
4696 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4697 	if (!pmb) {
4698 		phba->link_state = LPFC_HBA_ERROR;
4699 		return -ENOMEM;
4700 	}
4701 
4702 	phba->sli_rev = sli_mode;
4703 	while (resetcount < 2 && !done) {
4704 		spin_lock_irq(&phba->hbalock);
4705 		phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
4706 		spin_unlock_irq(&phba->hbalock);
4707 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4708 		lpfc_sli_brdrestart(phba);
4709 		rc = lpfc_sli_chipset_init(phba);
4710 		if (rc)
4711 			break;
4712 
4713 		spin_lock_irq(&phba->hbalock);
4714 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4715 		spin_unlock_irq(&phba->hbalock);
4716 		resetcount++;
4717 
4718 		/* Call pre CONFIG_PORT mailbox command initialization.  A
4719 		 * value of 0 means the call was successful.  Any other
4720 		 * nonzero value is a failure, but if ERESTART is returned,
4721 		 * the driver may reset the HBA and try again.
4722 		 */
4723 		rc = lpfc_config_port_prep(phba);
4724 		if (rc == -ERESTART) {
4725 			phba->link_state = LPFC_LINK_UNKNOWN;
4726 			continue;
4727 		} else if (rc)
4728 			break;
4729 
4730 		phba->link_state = LPFC_INIT_MBX_CMDS;
4731 		lpfc_config_port(phba, pmb);
4732 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
4733 		phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
4734 					LPFC_SLI3_HBQ_ENABLED |
4735 					LPFC_SLI3_CRP_ENABLED |
4736 					LPFC_SLI3_BG_ENABLED |
4737 					LPFC_SLI3_DSS_ENABLED);
4738 		if (rc != MBX_SUCCESS) {
4739 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4740 				"0442 Adapter failed to init, mbxCmd x%x "
4741 				"CONFIG_PORT, mbxStatus x%x Data: x%x\n",
4742 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
4743 			spin_lock_irq(&phba->hbalock);
4744 			phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
4745 			spin_unlock_irq(&phba->hbalock);
4746 			rc = -ENXIO;
4747 		} else {
4748 			/* Allow asynchronous mailbox command to go through */
4749 			spin_lock_irq(&phba->hbalock);
4750 			phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
4751 			spin_unlock_irq(&phba->hbalock);
4752 			done = 1;
4753 
4754 			if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
4755 			    (pmb->u.mb.un.varCfgPort.gasabt == 0))
4756 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
4757 					"3110 Port did not grant ASABT\n");
4758 		}
4759 	}
4760 	if (!done) {
4761 		rc = -EINVAL;
4762 		goto do_prep_failed;
4763 	}
4764 	if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
4765 		if (!pmb->u.mb.un.varCfgPort.cMA) {
4766 			rc = -ENXIO;
4767 			goto do_prep_failed;
4768 		}
4769 		if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
4770 			phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
4771 			phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
4772 			phba->max_vports = (phba->max_vpi > phba->max_vports) ?
4773 				phba->max_vpi : phba->max_vports;
4774 
4775 		} else
4776 			phba->max_vpi = 0;
4777 		phba->fips_level = 0;
4778 		phba->fips_spec_rev = 0;
4779 		if (pmb->u.mb.un.varCfgPort.gdss) {
4780 			phba->sli3_options |= LPFC_SLI3_DSS_ENABLED;
4781 			phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level;
4782 			phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev;
4783 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4784 					"2850 Security Crypto Active. FIPS x%d "
4785 					"(Spec Rev: x%d)",
4786 					phba->fips_level, phba->fips_spec_rev);
4787 		}
4788 		if (pmb->u.mb.un.varCfgPort.sec_err) {
4789 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4790 					"2856 Config Port Security Crypto "
4791 					"Error: x%x ",
4792 					pmb->u.mb.un.varCfgPort.sec_err);
4793 		}
4794 		if (pmb->u.mb.un.varCfgPort.gerbm)
4795 			phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
4796 		if (pmb->u.mb.un.varCfgPort.gcrp)
4797 			phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
4798 
4799 		phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
4800 		phba->port_gp = phba->mbox->us.s3_pgp.port;
4801 
4802 		if (phba->cfg_enable_bg) {
4803 			if (pmb->u.mb.un.varCfgPort.gbg)
4804 				phba->sli3_options |= LPFC_SLI3_BG_ENABLED;
4805 			else
4806 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4807 						"0443 Adapter did not grant "
4808 						"BlockGuard\n");
4809 		}
4810 	} else {
4811 		phba->hbq_get = NULL;
4812 		phba->port_gp = phba->mbox->us.s2.port;
4813 		phba->max_vpi = 0;
4814 	}
4815 do_prep_failed:
4816 	mempool_free(pmb, phba->mbox_mem_pool);
4817 	return rc;
4818 }
4819 
4820 
4821 /**
4822  * lpfc_sli_hba_setup - SLI initialization function
4823  * @phba: Pointer to HBA context object.
4824  *
4825  * This function is the main SLI initialization function. This function
4826  * is called by the HBA initialization code, HBA reset code and HBA
4827  * error attention handler code. Caller is not required to hold any
4828  * locks. This function issues config_port mailbox command to configure
4829  * the SLI, setup iocb rings and HBQ rings. In the end the function
4830  * calls the config_port_post function to issue init_link mailbox
4831  * command and to start the discovery. The function will return zero
4832  * if successful, else it will return negative error code.
4833  **/
4834 int
4835 lpfc_sli_hba_setup(struct lpfc_hba *phba)
4836 {
4837 	uint32_t rc;
4838 	int  mode = 3, i;
4839 	int longs;
4840 
4841 	switch (phba->cfg_sli_mode) {
4842 	case 2:
4843 		if (phba->cfg_enable_npiv) {
4844 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4845 				"1824 NPIV enabled: Override sli_mode "
4846 				"parameter (%d) to auto (0).\n",
4847 				phba->cfg_sli_mode);
4848 			break;
4849 		}
4850 		mode = 2;
4851 		break;
4852 	case 0:
4853 	case 3:
4854 		break;
4855 	default:
4856 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4857 				"1819 Unrecognized sli_mode parameter: %d.\n",
4858 				phba->cfg_sli_mode);
4859 
4860 		break;
4861 	}
4862 	phba->fcp_embed_io = 0;	/* SLI4 FC support only */
4863 
4864 	rc = lpfc_sli_config_port(phba, mode);
4865 
4866 	if (rc && phba->cfg_sli_mode == 3)
4867 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4868 				"1820 Unable to select SLI-3.  "
4869 				"Not supported by adapter.\n");
4870 	if (rc && mode != 2)
4871 		rc = lpfc_sli_config_port(phba, 2);
4872 	else if (rc && mode == 2)
4873 		rc = lpfc_sli_config_port(phba, 3);
4874 	if (rc)
4875 		goto lpfc_sli_hba_setup_error;
4876 
4877 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
4878 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
4879 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
4880 		if (!rc) {
4881 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4882 					"2709 This device supports "
4883 					"Advanced Error Reporting (AER)\n");
4884 			spin_lock_irq(&phba->hbalock);
4885 			phba->hba_flag |= HBA_AER_ENABLED;
4886 			spin_unlock_irq(&phba->hbalock);
4887 		} else {
4888 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4889 					"2708 This device does not support "
4890 					"Advanced Error Reporting (AER): %d\n",
4891 					rc);
4892 			phba->cfg_aer_support = 0;
4893 		}
4894 	}
4895 
4896 	if (phba->sli_rev == 3) {
4897 		phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
4898 		phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
4899 	} else {
4900 		phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
4901 		phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
4902 		phba->sli3_options = 0;
4903 	}
4904 
4905 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4906 			"0444 Firmware in SLI %x mode. Max_vpi %d\n",
4907 			phba->sli_rev, phba->max_vpi);
4908 	rc = lpfc_sli_ring_map(phba);
4909 
4910 	if (rc)
4911 		goto lpfc_sli_hba_setup_error;
4912 
4913 	/* Initialize VPIs. */
4914 	if (phba->sli_rev == LPFC_SLI_REV3) {
4915 		/*
4916 		 * The VPI bitmask and physical ID array are allocated
4917 		 * and initialized once only - at driver load.  A port
4918 		 * reset doesn't need to reinitialize this memory.
4919 		 */
4920 		if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
4921 			longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
4922 			phba->vpi_bmask = kzalloc(longs * sizeof(unsigned long),
4923 						  GFP_KERNEL);
4924 			if (!phba->vpi_bmask) {
4925 				rc = -ENOMEM;
4926 				goto lpfc_sli_hba_setup_error;
4927 			}
4928 
4929 			phba->vpi_ids = kzalloc(
4930 					(phba->max_vpi+1) * sizeof(uint16_t),
4931 					GFP_KERNEL);
4932 			if (!phba->vpi_ids) {
4933 				kfree(phba->vpi_bmask);
4934 				rc = -ENOMEM;
4935 				goto lpfc_sli_hba_setup_error;
4936 			}
4937 			for (i = 0; i < phba->max_vpi; i++)
4938 				phba->vpi_ids[i] = i;
4939 		}
4940 	}
4941 
4942 	/* Init HBQs */
4943 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
4944 		rc = lpfc_sli_hbq_setup(phba);
4945 		if (rc)
4946 			goto lpfc_sli_hba_setup_error;
4947 	}
4948 	spin_lock_irq(&phba->hbalock);
4949 	phba->sli.sli_flag |= LPFC_PROCESS_LA;
4950 	spin_unlock_irq(&phba->hbalock);
4951 
4952 	rc = lpfc_config_port_post(phba);
4953 	if (rc)
4954 		goto lpfc_sli_hba_setup_error;
4955 
4956 	return rc;
4957 
4958 lpfc_sli_hba_setup_error:
4959 	phba->link_state = LPFC_HBA_ERROR;
4960 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4961 			"0445 Firmware initialization failed\n");
4962 	return rc;
4963 }
4964 
4965 /**
4966  * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
4967  * @phba: Pointer to HBA context object.
4968  * @mboxq: mailbox pointer.
4969  * This function issue a dump mailbox command to read config region
4970  * 23 and parse the records in the region and populate driver
4971  * data structure.
4972  **/
4973 static int
4974 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
4975 {
4976 	LPFC_MBOXQ_t *mboxq;
4977 	struct lpfc_dmabuf *mp;
4978 	struct lpfc_mqe *mqe;
4979 	uint32_t data_length;
4980 	int rc;
4981 
4982 	/* Program the default value of vlan_id and fc_map */
4983 	phba->valid_vlan = 0;
4984 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
4985 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
4986 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
4987 
4988 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4989 	if (!mboxq)
4990 		return -ENOMEM;
4991 
4992 	mqe = &mboxq->u.mqe;
4993 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
4994 		rc = -ENOMEM;
4995 		goto out_free_mboxq;
4996 	}
4997 
4998 	mp = (struct lpfc_dmabuf *) mboxq->context1;
4999 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5000 
5001 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5002 			"(%d):2571 Mailbox cmd x%x Status x%x "
5003 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5004 			"x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5005 			"CQ: x%x x%x x%x x%x\n",
5006 			mboxq->vport ? mboxq->vport->vpi : 0,
5007 			bf_get(lpfc_mqe_command, mqe),
5008 			bf_get(lpfc_mqe_status, mqe),
5009 			mqe->un.mb_words[0], mqe->un.mb_words[1],
5010 			mqe->un.mb_words[2], mqe->un.mb_words[3],
5011 			mqe->un.mb_words[4], mqe->un.mb_words[5],
5012 			mqe->un.mb_words[6], mqe->un.mb_words[7],
5013 			mqe->un.mb_words[8], mqe->un.mb_words[9],
5014 			mqe->un.mb_words[10], mqe->un.mb_words[11],
5015 			mqe->un.mb_words[12], mqe->un.mb_words[13],
5016 			mqe->un.mb_words[14], mqe->un.mb_words[15],
5017 			mqe->un.mb_words[16], mqe->un.mb_words[50],
5018 			mboxq->mcqe.word0,
5019 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
5020 			mboxq->mcqe.trailer);
5021 
5022 	if (rc) {
5023 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5024 		kfree(mp);
5025 		rc = -EIO;
5026 		goto out_free_mboxq;
5027 	}
5028 	data_length = mqe->un.mb_words[5];
5029 	if (data_length > DMP_RGN23_SIZE) {
5030 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5031 		kfree(mp);
5032 		rc = -EIO;
5033 		goto out_free_mboxq;
5034 	}
5035 
5036 	lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5037 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
5038 	kfree(mp);
5039 	rc = 0;
5040 
5041 out_free_mboxq:
5042 	mempool_free(mboxq, phba->mbox_mem_pool);
5043 	return rc;
5044 }
5045 
5046 /**
5047  * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5048  * @phba: pointer to lpfc hba data structure.
5049  * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5050  * @vpd: pointer to the memory to hold resulting port vpd data.
5051  * @vpd_size: On input, the number of bytes allocated to @vpd.
5052  *	      On output, the number of data bytes in @vpd.
5053  *
5054  * This routine executes a READ_REV SLI4 mailbox command.  In
5055  * addition, this routine gets the port vpd data.
5056  *
5057  * Return codes
5058  * 	0 - successful
5059  * 	-ENOMEM - could not allocated memory.
5060  **/
5061 static int
5062 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5063 		    uint8_t *vpd, uint32_t *vpd_size)
5064 {
5065 	int rc = 0;
5066 	uint32_t dma_size;
5067 	struct lpfc_dmabuf *dmabuf;
5068 	struct lpfc_mqe *mqe;
5069 
5070 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5071 	if (!dmabuf)
5072 		return -ENOMEM;
5073 
5074 	/*
5075 	 * Get a DMA buffer for the vpd data resulting from the READ_REV
5076 	 * mailbox command.
5077 	 */
5078 	dma_size = *vpd_size;
5079 	dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size,
5080 					   &dmabuf->phys, GFP_KERNEL);
5081 	if (!dmabuf->virt) {
5082 		kfree(dmabuf);
5083 		return -ENOMEM;
5084 	}
5085 
5086 	/*
5087 	 * The SLI4 implementation of READ_REV conflicts at word1,
5088 	 * bits 31:16 and SLI4 adds vpd functionality not present
5089 	 * in SLI3.  This code corrects the conflicts.
5090 	 */
5091 	lpfc_read_rev(phba, mboxq);
5092 	mqe = &mboxq->u.mqe;
5093 	mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5094 	mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5095 	mqe->un.read_rev.word1 &= 0x0000FFFF;
5096 	bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5097 	bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5098 
5099 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5100 	if (rc) {
5101 		dma_free_coherent(&phba->pcidev->dev, dma_size,
5102 				  dmabuf->virt, dmabuf->phys);
5103 		kfree(dmabuf);
5104 		return -EIO;
5105 	}
5106 
5107 	/*
5108 	 * The available vpd length cannot be bigger than the
5109 	 * DMA buffer passed to the port.  Catch the less than
5110 	 * case and update the caller's size.
5111 	 */
5112 	if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5113 		*vpd_size = mqe->un.read_rev.avail_vpd_len;
5114 
5115 	memcpy(vpd, dmabuf->virt, *vpd_size);
5116 
5117 	dma_free_coherent(&phba->pcidev->dev, dma_size,
5118 			  dmabuf->virt, dmabuf->phys);
5119 	kfree(dmabuf);
5120 	return 0;
5121 }
5122 
5123 /**
5124  * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5125  * @phba: pointer to lpfc hba data structure.
5126  *
5127  * This routine retrieves SLI4 device physical port name this PCI function
5128  * is attached to.
5129  *
5130  * Return codes
5131  *      0 - successful
5132  *      otherwise - failed to retrieve physical port name
5133  **/
5134 static int
5135 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5136 {
5137 	LPFC_MBOXQ_t *mboxq;
5138 	struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5139 	struct lpfc_controller_attribute *cntl_attr;
5140 	struct lpfc_mbx_get_port_name *get_port_name;
5141 	void *virtaddr = NULL;
5142 	uint32_t alloclen, reqlen;
5143 	uint32_t shdr_status, shdr_add_status;
5144 	union lpfc_sli4_cfg_shdr *shdr;
5145 	char cport_name = 0;
5146 	int rc;
5147 
5148 	/* We assume nothing at this point */
5149 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5150 	phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5151 
5152 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5153 	if (!mboxq)
5154 		return -ENOMEM;
5155 	/* obtain link type and link number via READ_CONFIG */
5156 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5157 	lpfc_sli4_read_config(phba);
5158 	if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5159 		goto retrieve_ppname;
5160 
5161 	/* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5162 	reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5163 	alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5164 			LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5165 			LPFC_SLI4_MBX_NEMBED);
5166 	if (alloclen < reqlen) {
5167 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5168 				"3084 Allocated DMA memory size (%d) is "
5169 				"less than the requested DMA memory size "
5170 				"(%d)\n", alloclen, reqlen);
5171 		rc = -ENOMEM;
5172 		goto out_free_mboxq;
5173 	}
5174 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5175 	virtaddr = mboxq->sge_array->addr[0];
5176 	mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5177 	shdr = &mbx_cntl_attr->cfg_shdr;
5178 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5179 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5180 	if (shdr_status || shdr_add_status || rc) {
5181 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5182 				"3085 Mailbox x%x (x%x/x%x) failed, "
5183 				"rc:x%x, status:x%x, add_status:x%x\n",
5184 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5185 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5186 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5187 				rc, shdr_status, shdr_add_status);
5188 		rc = -ENXIO;
5189 		goto out_free_mboxq;
5190 	}
5191 	cntl_attr = &mbx_cntl_attr->cntl_attr;
5192 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5193 	phba->sli4_hba.lnk_info.lnk_tp =
5194 		bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5195 	phba->sli4_hba.lnk_info.lnk_no =
5196 		bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5197 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5198 			"3086 lnk_type:%d, lnk_numb:%d\n",
5199 			phba->sli4_hba.lnk_info.lnk_tp,
5200 			phba->sli4_hba.lnk_info.lnk_no);
5201 
5202 retrieve_ppname:
5203 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5204 		LPFC_MBOX_OPCODE_GET_PORT_NAME,
5205 		sizeof(struct lpfc_mbx_get_port_name) -
5206 		sizeof(struct lpfc_sli4_cfg_mhdr),
5207 		LPFC_SLI4_MBX_EMBED);
5208 	get_port_name = &mboxq->u.mqe.un.get_port_name;
5209 	shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5210 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5211 	bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5212 		phba->sli4_hba.lnk_info.lnk_tp);
5213 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5214 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5215 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5216 	if (shdr_status || shdr_add_status || rc) {
5217 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5218 				"3087 Mailbox x%x (x%x/x%x) failed: "
5219 				"rc:x%x, status:x%x, add_status:x%x\n",
5220 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5221 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5222 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5223 				rc, shdr_status, shdr_add_status);
5224 		rc = -ENXIO;
5225 		goto out_free_mboxq;
5226 	}
5227 	switch (phba->sli4_hba.lnk_info.lnk_no) {
5228 	case LPFC_LINK_NUMBER_0:
5229 		cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5230 				&get_port_name->u.response);
5231 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5232 		break;
5233 	case LPFC_LINK_NUMBER_1:
5234 		cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5235 				&get_port_name->u.response);
5236 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5237 		break;
5238 	case LPFC_LINK_NUMBER_2:
5239 		cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5240 				&get_port_name->u.response);
5241 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5242 		break;
5243 	case LPFC_LINK_NUMBER_3:
5244 		cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5245 				&get_port_name->u.response);
5246 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5247 		break;
5248 	default:
5249 		break;
5250 	}
5251 
5252 	if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5253 		phba->Port[0] = cport_name;
5254 		phba->Port[1] = '\0';
5255 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5256 				"3091 SLI get port name: %s\n", phba->Port);
5257 	}
5258 
5259 out_free_mboxq:
5260 	if (rc != MBX_TIMEOUT) {
5261 		if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5262 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
5263 		else
5264 			mempool_free(mboxq, phba->mbox_mem_pool);
5265 	}
5266 	return rc;
5267 }
5268 
5269 /**
5270  * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5271  * @phba: pointer to lpfc hba data structure.
5272  *
5273  * This routine is called to explicitly arm the SLI4 device's completion and
5274  * event queues
5275  **/
5276 static void
5277 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5278 {
5279 	int qidx;
5280 
5281 	lpfc_sli4_cq_release(phba->sli4_hba.mbx_cq, LPFC_QUEUE_REARM);
5282 	lpfc_sli4_cq_release(phba->sli4_hba.els_cq, LPFC_QUEUE_REARM);
5283 	if (phba->sli4_hba.nvmels_cq)
5284 		lpfc_sli4_cq_release(phba->sli4_hba.nvmels_cq,
5285 						LPFC_QUEUE_REARM);
5286 
5287 	if (phba->sli4_hba.fcp_cq)
5288 		for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++)
5289 			lpfc_sli4_cq_release(phba->sli4_hba.fcp_cq[qidx],
5290 						LPFC_QUEUE_REARM);
5291 
5292 	if (phba->sli4_hba.nvme_cq)
5293 		for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++)
5294 			lpfc_sli4_cq_release(phba->sli4_hba.nvme_cq[qidx],
5295 						LPFC_QUEUE_REARM);
5296 
5297 	if (phba->cfg_fof)
5298 		lpfc_sli4_cq_release(phba->sli4_hba.oas_cq, LPFC_QUEUE_REARM);
5299 
5300 	if (phba->sli4_hba.hba_eq)
5301 		for (qidx = 0; qidx < phba->io_channel_irqs; qidx++)
5302 			lpfc_sli4_eq_release(phba->sli4_hba.hba_eq[qidx],
5303 						LPFC_QUEUE_REARM);
5304 
5305 	if (phba->nvmet_support) {
5306 		for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5307 			lpfc_sli4_cq_release(
5308 				phba->sli4_hba.nvmet_cqset[qidx],
5309 				LPFC_QUEUE_REARM);
5310 		}
5311 	}
5312 
5313 	if (phba->cfg_fof)
5314 		lpfc_sli4_eq_release(phba->sli4_hba.fof_eq, LPFC_QUEUE_REARM);
5315 }
5316 
5317 /**
5318  * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5319  * @phba: Pointer to HBA context object.
5320  * @type: The resource extent type.
5321  * @extnt_count: buffer to hold port available extent count.
5322  * @extnt_size: buffer to hold element count per extent.
5323  *
5324  * This function calls the port and retrievs the number of available
5325  * extents and their size for a particular extent type.
5326  *
5327  * Returns: 0 if successful.  Nonzero otherwise.
5328  **/
5329 int
5330 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5331 			       uint16_t *extnt_count, uint16_t *extnt_size)
5332 {
5333 	int rc = 0;
5334 	uint32_t length;
5335 	uint32_t mbox_tmo;
5336 	struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5337 	LPFC_MBOXQ_t *mbox;
5338 
5339 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5340 	if (!mbox)
5341 		return -ENOMEM;
5342 
5343 	/* Find out how many extents are available for this resource type */
5344 	length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5345 		  sizeof(struct lpfc_sli4_cfg_mhdr));
5346 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5347 			 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5348 			 length, LPFC_SLI4_MBX_EMBED);
5349 
5350 	/* Send an extents count of 0 - the GET doesn't use it. */
5351 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5352 					LPFC_SLI4_MBX_EMBED);
5353 	if (unlikely(rc)) {
5354 		rc = -EIO;
5355 		goto err_exit;
5356 	}
5357 
5358 	if (!phba->sli4_hba.intr_enable)
5359 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5360 	else {
5361 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5362 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5363 	}
5364 	if (unlikely(rc)) {
5365 		rc = -EIO;
5366 		goto err_exit;
5367 	}
5368 
5369 	rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5370 	if (bf_get(lpfc_mbox_hdr_status,
5371 		   &rsrc_info->header.cfg_shdr.response)) {
5372 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5373 				"2930 Failed to get resource extents "
5374 				"Status 0x%x Add'l Status 0x%x\n",
5375 				bf_get(lpfc_mbox_hdr_status,
5376 				       &rsrc_info->header.cfg_shdr.response),
5377 				bf_get(lpfc_mbox_hdr_add_status,
5378 				       &rsrc_info->header.cfg_shdr.response));
5379 		rc = -EIO;
5380 		goto err_exit;
5381 	}
5382 
5383 	*extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5384 			      &rsrc_info->u.rsp);
5385 	*extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5386 			     &rsrc_info->u.rsp);
5387 
5388 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5389 			"3162 Retrieved extents type-%d from port: count:%d, "
5390 			"size:%d\n", type, *extnt_count, *extnt_size);
5391 
5392 err_exit:
5393 	mempool_free(mbox, phba->mbox_mem_pool);
5394 	return rc;
5395 }
5396 
5397 /**
5398  * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5399  * @phba: Pointer to HBA context object.
5400  * @type: The extent type to check.
5401  *
5402  * This function reads the current available extents from the port and checks
5403  * if the extent count or extent size has changed since the last access.
5404  * Callers use this routine post port reset to understand if there is a
5405  * extent reprovisioning requirement.
5406  *
5407  * Returns:
5408  *   -Error: error indicates problem.
5409  *   1: Extent count or size has changed.
5410  *   0: No changes.
5411  **/
5412 static int
5413 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5414 {
5415 	uint16_t curr_ext_cnt, rsrc_ext_cnt;
5416 	uint16_t size_diff, rsrc_ext_size;
5417 	int rc = 0;
5418 	struct lpfc_rsrc_blks *rsrc_entry;
5419 	struct list_head *rsrc_blk_list = NULL;
5420 
5421 	size_diff = 0;
5422 	curr_ext_cnt = 0;
5423 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5424 					    &rsrc_ext_cnt,
5425 					    &rsrc_ext_size);
5426 	if (unlikely(rc))
5427 		return -EIO;
5428 
5429 	switch (type) {
5430 	case LPFC_RSC_TYPE_FCOE_RPI:
5431 		rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5432 		break;
5433 	case LPFC_RSC_TYPE_FCOE_VPI:
5434 		rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5435 		break;
5436 	case LPFC_RSC_TYPE_FCOE_XRI:
5437 		rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5438 		break;
5439 	case LPFC_RSC_TYPE_FCOE_VFI:
5440 		rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5441 		break;
5442 	default:
5443 		break;
5444 	}
5445 
5446 	list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5447 		curr_ext_cnt++;
5448 		if (rsrc_entry->rsrc_size != rsrc_ext_size)
5449 			size_diff++;
5450 	}
5451 
5452 	if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5453 		rc = 1;
5454 
5455 	return rc;
5456 }
5457 
5458 /**
5459  * lpfc_sli4_cfg_post_extnts -
5460  * @phba: Pointer to HBA context object.
5461  * @extnt_cnt - number of available extents.
5462  * @type - the extent type (rpi, xri, vfi, vpi).
5463  * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5464  * @mbox - pointer to the caller's allocated mailbox structure.
5465  *
5466  * This function executes the extents allocation request.  It also
5467  * takes care of the amount of memory needed to allocate or get the
5468  * allocated extents. It is the caller's responsibility to evaluate
5469  * the response.
5470  *
5471  * Returns:
5472  *   -Error:  Error value describes the condition found.
5473  *   0: if successful
5474  **/
5475 static int
5476 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5477 			  uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5478 {
5479 	int rc = 0;
5480 	uint32_t req_len;
5481 	uint32_t emb_len;
5482 	uint32_t alloc_len, mbox_tmo;
5483 
5484 	/* Calculate the total requested length of the dma memory */
5485 	req_len = extnt_cnt * sizeof(uint16_t);
5486 
5487 	/*
5488 	 * Calculate the size of an embedded mailbox.  The uint32_t
5489 	 * accounts for extents-specific word.
5490 	 */
5491 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5492 		sizeof(uint32_t);
5493 
5494 	/*
5495 	 * Presume the allocation and response will fit into an embedded
5496 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
5497 	 */
5498 	*emb = LPFC_SLI4_MBX_EMBED;
5499 	if (req_len > emb_len) {
5500 		req_len = extnt_cnt * sizeof(uint16_t) +
5501 			sizeof(union lpfc_sli4_cfg_shdr) +
5502 			sizeof(uint32_t);
5503 		*emb = LPFC_SLI4_MBX_NEMBED;
5504 	}
5505 
5506 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5507 				     LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5508 				     req_len, *emb);
5509 	if (alloc_len < req_len) {
5510 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5511 			"2982 Allocated DMA memory size (x%x) is "
5512 			"less than the requested DMA memory "
5513 			"size (x%x)\n", alloc_len, req_len);
5514 		return -ENOMEM;
5515 	}
5516 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5517 	if (unlikely(rc))
5518 		return -EIO;
5519 
5520 	if (!phba->sli4_hba.intr_enable)
5521 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5522 	else {
5523 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5524 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5525 	}
5526 
5527 	if (unlikely(rc))
5528 		rc = -EIO;
5529 	return rc;
5530 }
5531 
5532 /**
5533  * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5534  * @phba: Pointer to HBA context object.
5535  * @type:  The resource extent type to allocate.
5536  *
5537  * This function allocates the number of elements for the specified
5538  * resource type.
5539  **/
5540 static int
5541 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5542 {
5543 	bool emb = false;
5544 	uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5545 	uint16_t rsrc_id, rsrc_start, j, k;
5546 	uint16_t *ids;
5547 	int i, rc;
5548 	unsigned long longs;
5549 	unsigned long *bmask;
5550 	struct lpfc_rsrc_blks *rsrc_blks;
5551 	LPFC_MBOXQ_t *mbox;
5552 	uint32_t length;
5553 	struct lpfc_id_range *id_array = NULL;
5554 	void *virtaddr = NULL;
5555 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5556 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5557 	struct list_head *ext_blk_list;
5558 
5559 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5560 					    &rsrc_cnt,
5561 					    &rsrc_size);
5562 	if (unlikely(rc))
5563 		return -EIO;
5564 
5565 	if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5566 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5567 			"3009 No available Resource Extents "
5568 			"for resource type 0x%x: Count: 0x%x, "
5569 			"Size 0x%x\n", type, rsrc_cnt,
5570 			rsrc_size);
5571 		return -ENOMEM;
5572 	}
5573 
5574 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5575 			"2903 Post resource extents type-0x%x: "
5576 			"count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5577 
5578 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5579 	if (!mbox)
5580 		return -ENOMEM;
5581 
5582 	rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5583 	if (unlikely(rc)) {
5584 		rc = -EIO;
5585 		goto err_exit;
5586 	}
5587 
5588 	/*
5589 	 * Figure out where the response is located.  Then get local pointers
5590 	 * to the response data.  The port does not guarantee to respond to
5591 	 * all extents counts request so update the local variable with the
5592 	 * allocated count from the port.
5593 	 */
5594 	if (emb == LPFC_SLI4_MBX_EMBED) {
5595 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5596 		id_array = &rsrc_ext->u.rsp.id[0];
5597 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5598 	} else {
5599 		virtaddr = mbox->sge_array->addr[0];
5600 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5601 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5602 		id_array = &n_rsrc->id;
5603 	}
5604 
5605 	longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
5606 	rsrc_id_cnt = rsrc_cnt * rsrc_size;
5607 
5608 	/*
5609 	 * Based on the resource size and count, correct the base and max
5610 	 * resource values.
5611 	 */
5612 	length = sizeof(struct lpfc_rsrc_blks);
5613 	switch (type) {
5614 	case LPFC_RSC_TYPE_FCOE_RPI:
5615 		phba->sli4_hba.rpi_bmask = kzalloc(longs *
5616 						   sizeof(unsigned long),
5617 						   GFP_KERNEL);
5618 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5619 			rc = -ENOMEM;
5620 			goto err_exit;
5621 		}
5622 		phba->sli4_hba.rpi_ids = kzalloc(rsrc_id_cnt *
5623 						 sizeof(uint16_t),
5624 						 GFP_KERNEL);
5625 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
5626 			kfree(phba->sli4_hba.rpi_bmask);
5627 			rc = -ENOMEM;
5628 			goto err_exit;
5629 		}
5630 
5631 		/*
5632 		 * The next_rpi was initialized with the maximum available
5633 		 * count but the port may allocate a smaller number.  Catch
5634 		 * that case and update the next_rpi.
5635 		 */
5636 		phba->sli4_hba.next_rpi = rsrc_id_cnt;
5637 
5638 		/* Initialize local ptrs for common extent processing later. */
5639 		bmask = phba->sli4_hba.rpi_bmask;
5640 		ids = phba->sli4_hba.rpi_ids;
5641 		ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5642 		break;
5643 	case LPFC_RSC_TYPE_FCOE_VPI:
5644 		phba->vpi_bmask = kzalloc(longs *
5645 					  sizeof(unsigned long),
5646 					  GFP_KERNEL);
5647 		if (unlikely(!phba->vpi_bmask)) {
5648 			rc = -ENOMEM;
5649 			goto err_exit;
5650 		}
5651 		phba->vpi_ids = kzalloc(rsrc_id_cnt *
5652 					 sizeof(uint16_t),
5653 					 GFP_KERNEL);
5654 		if (unlikely(!phba->vpi_ids)) {
5655 			kfree(phba->vpi_bmask);
5656 			rc = -ENOMEM;
5657 			goto err_exit;
5658 		}
5659 
5660 		/* Initialize local ptrs for common extent processing later. */
5661 		bmask = phba->vpi_bmask;
5662 		ids = phba->vpi_ids;
5663 		ext_blk_list = &phba->lpfc_vpi_blk_list;
5664 		break;
5665 	case LPFC_RSC_TYPE_FCOE_XRI:
5666 		phba->sli4_hba.xri_bmask = kzalloc(longs *
5667 						   sizeof(unsigned long),
5668 						   GFP_KERNEL);
5669 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
5670 			rc = -ENOMEM;
5671 			goto err_exit;
5672 		}
5673 		phba->sli4_hba.max_cfg_param.xri_used = 0;
5674 		phba->sli4_hba.xri_ids = kzalloc(rsrc_id_cnt *
5675 						 sizeof(uint16_t),
5676 						 GFP_KERNEL);
5677 		if (unlikely(!phba->sli4_hba.xri_ids)) {
5678 			kfree(phba->sli4_hba.xri_bmask);
5679 			rc = -ENOMEM;
5680 			goto err_exit;
5681 		}
5682 
5683 		/* Initialize local ptrs for common extent processing later. */
5684 		bmask = phba->sli4_hba.xri_bmask;
5685 		ids = phba->sli4_hba.xri_ids;
5686 		ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5687 		break;
5688 	case LPFC_RSC_TYPE_FCOE_VFI:
5689 		phba->sli4_hba.vfi_bmask = kzalloc(longs *
5690 						   sizeof(unsigned long),
5691 						   GFP_KERNEL);
5692 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5693 			rc = -ENOMEM;
5694 			goto err_exit;
5695 		}
5696 		phba->sli4_hba.vfi_ids = kzalloc(rsrc_id_cnt *
5697 						 sizeof(uint16_t),
5698 						 GFP_KERNEL);
5699 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
5700 			kfree(phba->sli4_hba.vfi_bmask);
5701 			rc = -ENOMEM;
5702 			goto err_exit;
5703 		}
5704 
5705 		/* Initialize local ptrs for common extent processing later. */
5706 		bmask = phba->sli4_hba.vfi_bmask;
5707 		ids = phba->sli4_hba.vfi_ids;
5708 		ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5709 		break;
5710 	default:
5711 		/* Unsupported Opcode.  Fail call. */
5712 		id_array = NULL;
5713 		bmask = NULL;
5714 		ids = NULL;
5715 		ext_blk_list = NULL;
5716 		goto err_exit;
5717 	}
5718 
5719 	/*
5720 	 * Complete initializing the extent configuration with the
5721 	 * allocated ids assigned to this function.  The bitmask serves
5722 	 * as an index into the array and manages the available ids.  The
5723 	 * array just stores the ids communicated to the port via the wqes.
5724 	 */
5725 	for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
5726 		if ((i % 2) == 0)
5727 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
5728 					 &id_array[k]);
5729 		else
5730 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
5731 					 &id_array[k]);
5732 
5733 		rsrc_blks = kzalloc(length, GFP_KERNEL);
5734 		if (unlikely(!rsrc_blks)) {
5735 			rc = -ENOMEM;
5736 			kfree(bmask);
5737 			kfree(ids);
5738 			goto err_exit;
5739 		}
5740 		rsrc_blks->rsrc_start = rsrc_id;
5741 		rsrc_blks->rsrc_size = rsrc_size;
5742 		list_add_tail(&rsrc_blks->list, ext_blk_list);
5743 		rsrc_start = rsrc_id;
5744 		if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
5745 			phba->sli4_hba.scsi_xri_start = rsrc_start +
5746 				lpfc_sli4_get_iocb_cnt(phba);
5747 			phba->sli4_hba.nvme_xri_start =
5748 				phba->sli4_hba.scsi_xri_start +
5749 				phba->sli4_hba.scsi_xri_max;
5750 		}
5751 
5752 		while (rsrc_id < (rsrc_start + rsrc_size)) {
5753 			ids[j] = rsrc_id;
5754 			rsrc_id++;
5755 			j++;
5756 		}
5757 		/* Entire word processed.  Get next word.*/
5758 		if ((i % 2) == 1)
5759 			k++;
5760 	}
5761  err_exit:
5762 	lpfc_sli4_mbox_cmd_free(phba, mbox);
5763 	return rc;
5764 }
5765 
5766 
5767 
5768 /**
5769  * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
5770  * @phba: Pointer to HBA context object.
5771  * @type: the extent's type.
5772  *
5773  * This function deallocates all extents of a particular resource type.
5774  * SLI4 does not allow for deallocating a particular extent range.  It
5775  * is the caller's responsibility to release all kernel memory resources.
5776  **/
5777 static int
5778 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
5779 {
5780 	int rc;
5781 	uint32_t length, mbox_tmo = 0;
5782 	LPFC_MBOXQ_t *mbox;
5783 	struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
5784 	struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
5785 
5786 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5787 	if (!mbox)
5788 		return -ENOMEM;
5789 
5790 	/*
5791 	 * This function sends an embedded mailbox because it only sends the
5792 	 * the resource type.  All extents of this type are released by the
5793 	 * port.
5794 	 */
5795 	length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
5796 		  sizeof(struct lpfc_sli4_cfg_mhdr));
5797 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5798 			 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
5799 			 length, LPFC_SLI4_MBX_EMBED);
5800 
5801 	/* Send an extents count of 0 - the dealloc doesn't use it. */
5802 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5803 					LPFC_SLI4_MBX_EMBED);
5804 	if (unlikely(rc)) {
5805 		rc = -EIO;
5806 		goto out_free_mbox;
5807 	}
5808 	if (!phba->sli4_hba.intr_enable)
5809 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5810 	else {
5811 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5812 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5813 	}
5814 	if (unlikely(rc)) {
5815 		rc = -EIO;
5816 		goto out_free_mbox;
5817 	}
5818 
5819 	dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
5820 	if (bf_get(lpfc_mbox_hdr_status,
5821 		   &dealloc_rsrc->header.cfg_shdr.response)) {
5822 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5823 				"2919 Failed to release resource extents "
5824 				"for type %d - Status 0x%x Add'l Status 0x%x. "
5825 				"Resource memory not released.\n",
5826 				type,
5827 				bf_get(lpfc_mbox_hdr_status,
5828 				    &dealloc_rsrc->header.cfg_shdr.response),
5829 				bf_get(lpfc_mbox_hdr_add_status,
5830 				    &dealloc_rsrc->header.cfg_shdr.response));
5831 		rc = -EIO;
5832 		goto out_free_mbox;
5833 	}
5834 
5835 	/* Release kernel memory resources for the specific type. */
5836 	switch (type) {
5837 	case LPFC_RSC_TYPE_FCOE_VPI:
5838 		kfree(phba->vpi_bmask);
5839 		kfree(phba->vpi_ids);
5840 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5841 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5842 				    &phba->lpfc_vpi_blk_list, list) {
5843 			list_del_init(&rsrc_blk->list);
5844 			kfree(rsrc_blk);
5845 		}
5846 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
5847 		break;
5848 	case LPFC_RSC_TYPE_FCOE_XRI:
5849 		kfree(phba->sli4_hba.xri_bmask);
5850 		kfree(phba->sli4_hba.xri_ids);
5851 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5852 				    &phba->sli4_hba.lpfc_xri_blk_list, list) {
5853 			list_del_init(&rsrc_blk->list);
5854 			kfree(rsrc_blk);
5855 		}
5856 		break;
5857 	case LPFC_RSC_TYPE_FCOE_VFI:
5858 		kfree(phba->sli4_hba.vfi_bmask);
5859 		kfree(phba->sli4_hba.vfi_ids);
5860 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5861 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5862 				    &phba->sli4_hba.lpfc_vfi_blk_list, list) {
5863 			list_del_init(&rsrc_blk->list);
5864 			kfree(rsrc_blk);
5865 		}
5866 		break;
5867 	case LPFC_RSC_TYPE_FCOE_RPI:
5868 		/* RPI bitmask and physical id array are cleaned up earlier. */
5869 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5870 				    &phba->sli4_hba.lpfc_rpi_blk_list, list) {
5871 			list_del_init(&rsrc_blk->list);
5872 			kfree(rsrc_blk);
5873 		}
5874 		break;
5875 	default:
5876 		break;
5877 	}
5878 
5879 	bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5880 
5881  out_free_mbox:
5882 	mempool_free(mbox, phba->mbox_mem_pool);
5883 	return rc;
5884 }
5885 
5886 static void
5887 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
5888 		  uint32_t feature)
5889 {
5890 	uint32_t len;
5891 
5892 	len = sizeof(struct lpfc_mbx_set_feature) -
5893 		sizeof(struct lpfc_sli4_cfg_mhdr);
5894 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5895 			 LPFC_MBOX_OPCODE_SET_FEATURES, len,
5896 			 LPFC_SLI4_MBX_EMBED);
5897 
5898 	switch (feature) {
5899 	case LPFC_SET_UE_RECOVERY:
5900 		bf_set(lpfc_mbx_set_feature_UER,
5901 		       &mbox->u.mqe.un.set_feature, 1);
5902 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
5903 		mbox->u.mqe.un.set_feature.param_len = 8;
5904 		break;
5905 	case LPFC_SET_MDS_DIAGS:
5906 		bf_set(lpfc_mbx_set_feature_mds,
5907 		       &mbox->u.mqe.un.set_feature, 1);
5908 		bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
5909 		       &mbox->u.mqe.un.set_feature, 0);
5910 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
5911 		mbox->u.mqe.un.set_feature.param_len = 8;
5912 		break;
5913 	}
5914 
5915 	return;
5916 }
5917 
5918 /**
5919  * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
5920  * @phba: Pointer to HBA context object.
5921  *
5922  * This function allocates all SLI4 resource identifiers.
5923  **/
5924 int
5925 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
5926 {
5927 	int i, rc, error = 0;
5928 	uint16_t count, base;
5929 	unsigned long longs;
5930 
5931 	if (!phba->sli4_hba.rpi_hdrs_in_use)
5932 		phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
5933 	if (phba->sli4_hba.extents_in_use) {
5934 		/*
5935 		 * The port supports resource extents. The XRI, VPI, VFI, RPI
5936 		 * resource extent count must be read and allocated before
5937 		 * provisioning the resource id arrays.
5938 		 */
5939 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
5940 		    LPFC_IDX_RSRC_RDY) {
5941 			/*
5942 			 * Extent-based resources are set - the driver could
5943 			 * be in a port reset. Figure out if any corrective
5944 			 * actions need to be taken.
5945 			 */
5946 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5947 						 LPFC_RSC_TYPE_FCOE_VFI);
5948 			if (rc != 0)
5949 				error++;
5950 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5951 						 LPFC_RSC_TYPE_FCOE_VPI);
5952 			if (rc != 0)
5953 				error++;
5954 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5955 						 LPFC_RSC_TYPE_FCOE_XRI);
5956 			if (rc != 0)
5957 				error++;
5958 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5959 						 LPFC_RSC_TYPE_FCOE_RPI);
5960 			if (rc != 0)
5961 				error++;
5962 
5963 			/*
5964 			 * It's possible that the number of resources
5965 			 * provided to this port instance changed between
5966 			 * resets.  Detect this condition and reallocate
5967 			 * resources.  Otherwise, there is no action.
5968 			 */
5969 			if (error) {
5970 				lpfc_printf_log(phba, KERN_INFO,
5971 						LOG_MBOX | LOG_INIT,
5972 						"2931 Detected extent resource "
5973 						"change.  Reallocating all "
5974 						"extents.\n");
5975 				rc = lpfc_sli4_dealloc_extent(phba,
5976 						 LPFC_RSC_TYPE_FCOE_VFI);
5977 				rc = lpfc_sli4_dealloc_extent(phba,
5978 						 LPFC_RSC_TYPE_FCOE_VPI);
5979 				rc = lpfc_sli4_dealloc_extent(phba,
5980 						 LPFC_RSC_TYPE_FCOE_XRI);
5981 				rc = lpfc_sli4_dealloc_extent(phba,
5982 						 LPFC_RSC_TYPE_FCOE_RPI);
5983 			} else
5984 				return 0;
5985 		}
5986 
5987 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
5988 		if (unlikely(rc))
5989 			goto err_exit;
5990 
5991 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
5992 		if (unlikely(rc))
5993 			goto err_exit;
5994 
5995 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
5996 		if (unlikely(rc))
5997 			goto err_exit;
5998 
5999 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6000 		if (unlikely(rc))
6001 			goto err_exit;
6002 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6003 		       LPFC_IDX_RSRC_RDY);
6004 		return rc;
6005 	} else {
6006 		/*
6007 		 * The port does not support resource extents.  The XRI, VPI,
6008 		 * VFI, RPI resource ids were determined from READ_CONFIG.
6009 		 * Just allocate the bitmasks and provision the resource id
6010 		 * arrays.  If a port reset is active, the resources don't
6011 		 * need any action - just exit.
6012 		 */
6013 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6014 		    LPFC_IDX_RSRC_RDY) {
6015 			lpfc_sli4_dealloc_resource_identifiers(phba);
6016 			lpfc_sli4_remove_rpis(phba);
6017 		}
6018 		/* RPIs. */
6019 		count = phba->sli4_hba.max_cfg_param.max_rpi;
6020 		if (count <= 0) {
6021 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6022 					"3279 Invalid provisioning of "
6023 					"rpi:%d\n", count);
6024 			rc = -EINVAL;
6025 			goto err_exit;
6026 		}
6027 		base = phba->sli4_hba.max_cfg_param.rpi_base;
6028 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6029 		phba->sli4_hba.rpi_bmask = kzalloc(longs *
6030 						   sizeof(unsigned long),
6031 						   GFP_KERNEL);
6032 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6033 			rc = -ENOMEM;
6034 			goto err_exit;
6035 		}
6036 		phba->sli4_hba.rpi_ids = kzalloc(count *
6037 						 sizeof(uint16_t),
6038 						 GFP_KERNEL);
6039 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6040 			rc = -ENOMEM;
6041 			goto free_rpi_bmask;
6042 		}
6043 
6044 		for (i = 0; i < count; i++)
6045 			phba->sli4_hba.rpi_ids[i] = base + i;
6046 
6047 		/* VPIs. */
6048 		count = phba->sli4_hba.max_cfg_param.max_vpi;
6049 		if (count <= 0) {
6050 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6051 					"3280 Invalid provisioning of "
6052 					"vpi:%d\n", count);
6053 			rc = -EINVAL;
6054 			goto free_rpi_ids;
6055 		}
6056 		base = phba->sli4_hba.max_cfg_param.vpi_base;
6057 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6058 		phba->vpi_bmask = kzalloc(longs *
6059 					  sizeof(unsigned long),
6060 					  GFP_KERNEL);
6061 		if (unlikely(!phba->vpi_bmask)) {
6062 			rc = -ENOMEM;
6063 			goto free_rpi_ids;
6064 		}
6065 		phba->vpi_ids = kzalloc(count *
6066 					sizeof(uint16_t),
6067 					GFP_KERNEL);
6068 		if (unlikely(!phba->vpi_ids)) {
6069 			rc = -ENOMEM;
6070 			goto free_vpi_bmask;
6071 		}
6072 
6073 		for (i = 0; i < count; i++)
6074 			phba->vpi_ids[i] = base + i;
6075 
6076 		/* XRIs. */
6077 		count = phba->sli4_hba.max_cfg_param.max_xri;
6078 		if (count <= 0) {
6079 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6080 					"3281 Invalid provisioning of "
6081 					"xri:%d\n", count);
6082 			rc = -EINVAL;
6083 			goto free_vpi_ids;
6084 		}
6085 		base = phba->sli4_hba.max_cfg_param.xri_base;
6086 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6087 		phba->sli4_hba.xri_bmask = kzalloc(longs *
6088 						   sizeof(unsigned long),
6089 						   GFP_KERNEL);
6090 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6091 			rc = -ENOMEM;
6092 			goto free_vpi_ids;
6093 		}
6094 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6095 		phba->sli4_hba.xri_ids = kzalloc(count *
6096 						 sizeof(uint16_t),
6097 						 GFP_KERNEL);
6098 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6099 			rc = -ENOMEM;
6100 			goto free_xri_bmask;
6101 		}
6102 
6103 		for (i = 0; i < count; i++)
6104 			phba->sli4_hba.xri_ids[i] = base + i;
6105 
6106 		/* VFIs. */
6107 		count = phba->sli4_hba.max_cfg_param.max_vfi;
6108 		if (count <= 0) {
6109 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6110 					"3282 Invalid provisioning of "
6111 					"vfi:%d\n", count);
6112 			rc = -EINVAL;
6113 			goto free_xri_ids;
6114 		}
6115 		base = phba->sli4_hba.max_cfg_param.vfi_base;
6116 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6117 		phba->sli4_hba.vfi_bmask = kzalloc(longs *
6118 						   sizeof(unsigned long),
6119 						   GFP_KERNEL);
6120 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6121 			rc = -ENOMEM;
6122 			goto free_xri_ids;
6123 		}
6124 		phba->sli4_hba.vfi_ids = kzalloc(count *
6125 						 sizeof(uint16_t),
6126 						 GFP_KERNEL);
6127 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6128 			rc = -ENOMEM;
6129 			goto free_vfi_bmask;
6130 		}
6131 
6132 		for (i = 0; i < count; i++)
6133 			phba->sli4_hba.vfi_ids[i] = base + i;
6134 
6135 		/*
6136 		 * Mark all resources ready.  An HBA reset doesn't need
6137 		 * to reset the initialization.
6138 		 */
6139 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6140 		       LPFC_IDX_RSRC_RDY);
6141 		return 0;
6142 	}
6143 
6144  free_vfi_bmask:
6145 	kfree(phba->sli4_hba.vfi_bmask);
6146 	phba->sli4_hba.vfi_bmask = NULL;
6147  free_xri_ids:
6148 	kfree(phba->sli4_hba.xri_ids);
6149 	phba->sli4_hba.xri_ids = NULL;
6150  free_xri_bmask:
6151 	kfree(phba->sli4_hba.xri_bmask);
6152 	phba->sli4_hba.xri_bmask = NULL;
6153  free_vpi_ids:
6154 	kfree(phba->vpi_ids);
6155 	phba->vpi_ids = NULL;
6156  free_vpi_bmask:
6157 	kfree(phba->vpi_bmask);
6158 	phba->vpi_bmask = NULL;
6159  free_rpi_ids:
6160 	kfree(phba->sli4_hba.rpi_ids);
6161 	phba->sli4_hba.rpi_ids = NULL;
6162  free_rpi_bmask:
6163 	kfree(phba->sli4_hba.rpi_bmask);
6164 	phba->sli4_hba.rpi_bmask = NULL;
6165  err_exit:
6166 	return rc;
6167 }
6168 
6169 /**
6170  * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6171  * @phba: Pointer to HBA context object.
6172  *
6173  * This function allocates the number of elements for the specified
6174  * resource type.
6175  **/
6176 int
6177 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
6178 {
6179 	if (phba->sli4_hba.extents_in_use) {
6180 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6181 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6182 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6183 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6184 	} else {
6185 		kfree(phba->vpi_bmask);
6186 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6187 		kfree(phba->vpi_ids);
6188 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6189 		kfree(phba->sli4_hba.xri_bmask);
6190 		kfree(phba->sli4_hba.xri_ids);
6191 		kfree(phba->sli4_hba.vfi_bmask);
6192 		kfree(phba->sli4_hba.vfi_ids);
6193 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6194 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6195 	}
6196 
6197 	return 0;
6198 }
6199 
6200 /**
6201  * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6202  * @phba: Pointer to HBA context object.
6203  * @type: The resource extent type.
6204  * @extnt_count: buffer to hold port extent count response
6205  * @extnt_size: buffer to hold port extent size response.
6206  *
6207  * This function calls the port to read the host allocated extents
6208  * for a particular type.
6209  **/
6210 int
6211 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6212 			       uint16_t *extnt_cnt, uint16_t *extnt_size)
6213 {
6214 	bool emb;
6215 	int rc = 0;
6216 	uint16_t curr_blks = 0;
6217 	uint32_t req_len, emb_len;
6218 	uint32_t alloc_len, mbox_tmo;
6219 	struct list_head *blk_list_head;
6220 	struct lpfc_rsrc_blks *rsrc_blk;
6221 	LPFC_MBOXQ_t *mbox;
6222 	void *virtaddr = NULL;
6223 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6224 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6225 	union  lpfc_sli4_cfg_shdr *shdr;
6226 
6227 	switch (type) {
6228 	case LPFC_RSC_TYPE_FCOE_VPI:
6229 		blk_list_head = &phba->lpfc_vpi_blk_list;
6230 		break;
6231 	case LPFC_RSC_TYPE_FCOE_XRI:
6232 		blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6233 		break;
6234 	case LPFC_RSC_TYPE_FCOE_VFI:
6235 		blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6236 		break;
6237 	case LPFC_RSC_TYPE_FCOE_RPI:
6238 		blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6239 		break;
6240 	default:
6241 		return -EIO;
6242 	}
6243 
6244 	/* Count the number of extents currently allocatd for this type. */
6245 	list_for_each_entry(rsrc_blk, blk_list_head, list) {
6246 		if (curr_blks == 0) {
6247 			/*
6248 			 * The GET_ALLOCATED mailbox does not return the size,
6249 			 * just the count.  The size should be just the size
6250 			 * stored in the current allocated block and all sizes
6251 			 * for an extent type are the same so set the return
6252 			 * value now.
6253 			 */
6254 			*extnt_size = rsrc_blk->rsrc_size;
6255 		}
6256 		curr_blks++;
6257 	}
6258 
6259 	/*
6260 	 * Calculate the size of an embedded mailbox.  The uint32_t
6261 	 * accounts for extents-specific word.
6262 	 */
6263 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6264 		sizeof(uint32_t);
6265 
6266 	/*
6267 	 * Presume the allocation and response will fit into an embedded
6268 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
6269 	 */
6270 	emb = LPFC_SLI4_MBX_EMBED;
6271 	req_len = emb_len;
6272 	if (req_len > emb_len) {
6273 		req_len = curr_blks * sizeof(uint16_t) +
6274 			sizeof(union lpfc_sli4_cfg_shdr) +
6275 			sizeof(uint32_t);
6276 		emb = LPFC_SLI4_MBX_NEMBED;
6277 	}
6278 
6279 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6280 	if (!mbox)
6281 		return -ENOMEM;
6282 	memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6283 
6284 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6285 				     LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6286 				     req_len, emb);
6287 	if (alloc_len < req_len) {
6288 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6289 			"2983 Allocated DMA memory size (x%x) is "
6290 			"less than the requested DMA memory "
6291 			"size (x%x)\n", alloc_len, req_len);
6292 		rc = -ENOMEM;
6293 		goto err_exit;
6294 	}
6295 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6296 	if (unlikely(rc)) {
6297 		rc = -EIO;
6298 		goto err_exit;
6299 	}
6300 
6301 	if (!phba->sli4_hba.intr_enable)
6302 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6303 	else {
6304 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6305 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6306 	}
6307 
6308 	if (unlikely(rc)) {
6309 		rc = -EIO;
6310 		goto err_exit;
6311 	}
6312 
6313 	/*
6314 	 * Figure out where the response is located.  Then get local pointers
6315 	 * to the response data.  The port does not guarantee to respond to
6316 	 * all extents counts request so update the local variable with the
6317 	 * allocated count from the port.
6318 	 */
6319 	if (emb == LPFC_SLI4_MBX_EMBED) {
6320 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6321 		shdr = &rsrc_ext->header.cfg_shdr;
6322 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6323 	} else {
6324 		virtaddr = mbox->sge_array->addr[0];
6325 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6326 		shdr = &n_rsrc->cfg_shdr;
6327 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6328 	}
6329 
6330 	if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
6331 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6332 			"2984 Failed to read allocated resources "
6333 			"for type %d - Status 0x%x Add'l Status 0x%x.\n",
6334 			type,
6335 			bf_get(lpfc_mbox_hdr_status, &shdr->response),
6336 			bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
6337 		rc = -EIO;
6338 		goto err_exit;
6339 	}
6340  err_exit:
6341 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6342 	return rc;
6343 }
6344 
6345 /**
6346  * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
6347  * @phba: pointer to lpfc hba data structure.
6348  * @pring: Pointer to driver SLI ring object.
6349  * @sgl_list: linked link of sgl buffers to post
6350  * @cnt: number of linked list buffers
6351  *
6352  * This routine walks the list of buffers that have been allocated and
6353  * repost them to the port by using SGL block post. This is needed after a
6354  * pci_function_reset/warm_start or start. It attempts to construct blocks
6355  * of buffer sgls which contains contiguous xris and uses the non-embedded
6356  * SGL block post mailbox commands to post them to the port. For single
6357  * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
6358  * mailbox command for posting.
6359  *
6360  * Returns: 0 = success, non-zero failure.
6361  **/
6362 static int
6363 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
6364 			  struct list_head *sgl_list, int cnt)
6365 {
6366 	struct lpfc_sglq *sglq_entry = NULL;
6367 	struct lpfc_sglq *sglq_entry_next = NULL;
6368 	struct lpfc_sglq *sglq_entry_first = NULL;
6369 	int status, total_cnt;
6370 	int post_cnt = 0, num_posted = 0, block_cnt = 0;
6371 	int last_xritag = NO_XRI;
6372 	LIST_HEAD(prep_sgl_list);
6373 	LIST_HEAD(blck_sgl_list);
6374 	LIST_HEAD(allc_sgl_list);
6375 	LIST_HEAD(post_sgl_list);
6376 	LIST_HEAD(free_sgl_list);
6377 
6378 	spin_lock_irq(&phba->hbalock);
6379 	spin_lock(&phba->sli4_hba.sgl_list_lock);
6380 	list_splice_init(sgl_list, &allc_sgl_list);
6381 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
6382 	spin_unlock_irq(&phba->hbalock);
6383 
6384 	total_cnt = cnt;
6385 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
6386 				 &allc_sgl_list, list) {
6387 		list_del_init(&sglq_entry->list);
6388 		block_cnt++;
6389 		if ((last_xritag != NO_XRI) &&
6390 		    (sglq_entry->sli4_xritag != last_xritag + 1)) {
6391 			/* a hole in xri block, form a sgl posting block */
6392 			list_splice_init(&prep_sgl_list, &blck_sgl_list);
6393 			post_cnt = block_cnt - 1;
6394 			/* prepare list for next posting block */
6395 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
6396 			block_cnt = 1;
6397 		} else {
6398 			/* prepare list for next posting block */
6399 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
6400 			/* enough sgls for non-embed sgl mbox command */
6401 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
6402 				list_splice_init(&prep_sgl_list,
6403 						 &blck_sgl_list);
6404 				post_cnt = block_cnt;
6405 				block_cnt = 0;
6406 			}
6407 		}
6408 		num_posted++;
6409 
6410 		/* keep track of last sgl's xritag */
6411 		last_xritag = sglq_entry->sli4_xritag;
6412 
6413 		/* end of repost sgl list condition for buffers */
6414 		if (num_posted == total_cnt) {
6415 			if (post_cnt == 0) {
6416 				list_splice_init(&prep_sgl_list,
6417 						 &blck_sgl_list);
6418 				post_cnt = block_cnt;
6419 			} else if (block_cnt == 1) {
6420 				status = lpfc_sli4_post_sgl(phba,
6421 						sglq_entry->phys, 0,
6422 						sglq_entry->sli4_xritag);
6423 				if (!status) {
6424 					/* successful, put sgl to posted list */
6425 					list_add_tail(&sglq_entry->list,
6426 						      &post_sgl_list);
6427 				} else {
6428 					/* Failure, put sgl to free list */
6429 					lpfc_printf_log(phba, KERN_WARNING,
6430 						LOG_SLI,
6431 						"3159 Failed to post "
6432 						"sgl, xritag:x%x\n",
6433 						sglq_entry->sli4_xritag);
6434 					list_add_tail(&sglq_entry->list,
6435 						      &free_sgl_list);
6436 					total_cnt--;
6437 				}
6438 			}
6439 		}
6440 
6441 		/* continue until a nembed page worth of sgls */
6442 		if (post_cnt == 0)
6443 			continue;
6444 
6445 		/* post the buffer list sgls as a block */
6446 		status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
6447 						 post_cnt);
6448 
6449 		if (!status) {
6450 			/* success, put sgl list to posted sgl list */
6451 			list_splice_init(&blck_sgl_list, &post_sgl_list);
6452 		} else {
6453 			/* Failure, put sgl list to free sgl list */
6454 			sglq_entry_first = list_first_entry(&blck_sgl_list,
6455 							    struct lpfc_sglq,
6456 							    list);
6457 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6458 					"3160 Failed to post sgl-list, "
6459 					"xritag:x%x-x%x\n",
6460 					sglq_entry_first->sli4_xritag,
6461 					(sglq_entry_first->sli4_xritag +
6462 					 post_cnt - 1));
6463 			list_splice_init(&blck_sgl_list, &free_sgl_list);
6464 			total_cnt -= post_cnt;
6465 		}
6466 
6467 		/* don't reset xirtag due to hole in xri block */
6468 		if (block_cnt == 0)
6469 			last_xritag = NO_XRI;
6470 
6471 		/* reset sgl post count for next round of posting */
6472 		post_cnt = 0;
6473 	}
6474 
6475 	/* free the sgls failed to post */
6476 	lpfc_free_sgl_list(phba, &free_sgl_list);
6477 
6478 	/* push sgls posted to the available list */
6479 	if (!list_empty(&post_sgl_list)) {
6480 		spin_lock_irq(&phba->hbalock);
6481 		spin_lock(&phba->sli4_hba.sgl_list_lock);
6482 		list_splice_init(&post_sgl_list, sgl_list);
6483 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
6484 		spin_unlock_irq(&phba->hbalock);
6485 	} else {
6486 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6487 				"3161 Failure to post sgl to port.\n");
6488 		return -EIO;
6489 	}
6490 
6491 	/* return the number of XRIs actually posted */
6492 	return total_cnt;
6493 }
6494 
6495 void
6496 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
6497 {
6498 	uint32_t len;
6499 
6500 	len = sizeof(struct lpfc_mbx_set_host_data) -
6501 		sizeof(struct lpfc_sli4_cfg_mhdr);
6502 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6503 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
6504 			 LPFC_SLI4_MBX_EMBED);
6505 
6506 	mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
6507 	mbox->u.mqe.un.set_host_data.param_len =
6508 					LPFC_HOST_OS_DRIVER_VERSION_SIZE;
6509 	snprintf(mbox->u.mqe.un.set_host_data.data,
6510 		 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
6511 		 "Linux %s v"LPFC_DRIVER_VERSION,
6512 		 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
6513 }
6514 
6515 /**
6516  * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
6517  * @phba: Pointer to HBA context object.
6518  *
6519  * This function is the main SLI4 device initialization PCI function. This
6520  * function is called by the HBA initialization code, HBA reset code and
6521  * HBA error attention handler code. Caller is not required to hold any
6522  * locks.
6523  **/
6524 int
6525 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
6526 {
6527 	int rc, i;
6528 	LPFC_MBOXQ_t *mboxq;
6529 	struct lpfc_mqe *mqe;
6530 	uint8_t *vpd;
6531 	uint32_t vpd_size;
6532 	uint32_t ftr_rsp = 0;
6533 	struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
6534 	struct lpfc_vport *vport = phba->pport;
6535 	struct lpfc_dmabuf *mp;
6536 	struct lpfc_rqb *rqbp;
6537 
6538 	/* Perform a PCI function reset to start from clean */
6539 	rc = lpfc_pci_function_reset(phba);
6540 	if (unlikely(rc))
6541 		return -ENODEV;
6542 
6543 	/* Check the HBA Host Status Register for readyness */
6544 	rc = lpfc_sli4_post_status_check(phba);
6545 	if (unlikely(rc))
6546 		return -ENODEV;
6547 	else {
6548 		spin_lock_irq(&phba->hbalock);
6549 		phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
6550 		spin_unlock_irq(&phba->hbalock);
6551 	}
6552 
6553 	/*
6554 	 * Allocate a single mailbox container for initializing the
6555 	 * port.
6556 	 */
6557 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6558 	if (!mboxq)
6559 		return -ENOMEM;
6560 
6561 	/* Issue READ_REV to collect vpd and FW information. */
6562 	vpd_size = SLI4_PAGE_SIZE;
6563 	vpd = kzalloc(vpd_size, GFP_KERNEL);
6564 	if (!vpd) {
6565 		rc = -ENOMEM;
6566 		goto out_free_mbox;
6567 	}
6568 
6569 	rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
6570 	if (unlikely(rc)) {
6571 		kfree(vpd);
6572 		goto out_free_mbox;
6573 	}
6574 
6575 	mqe = &mboxq->u.mqe;
6576 	phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
6577 	if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
6578 		phba->hba_flag |= HBA_FCOE_MODE;
6579 		phba->fcp_embed_io = 0;	/* SLI4 FC support only */
6580 	} else {
6581 		phba->hba_flag &= ~HBA_FCOE_MODE;
6582 	}
6583 
6584 	if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
6585 		LPFC_DCBX_CEE_MODE)
6586 		phba->hba_flag |= HBA_FIP_SUPPORT;
6587 	else
6588 		phba->hba_flag &= ~HBA_FIP_SUPPORT;
6589 
6590 	phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH;
6591 
6592 	if (phba->sli_rev != LPFC_SLI_REV4) {
6593 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6594 			"0376 READ_REV Error. SLI Level %d "
6595 			"FCoE enabled %d\n",
6596 			phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
6597 		rc = -EIO;
6598 		kfree(vpd);
6599 		goto out_free_mbox;
6600 	}
6601 
6602 	/*
6603 	 * Continue initialization with default values even if driver failed
6604 	 * to read FCoE param config regions, only read parameters if the
6605 	 * board is FCoE
6606 	 */
6607 	if (phba->hba_flag & HBA_FCOE_MODE &&
6608 	    lpfc_sli4_read_fcoe_params(phba))
6609 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
6610 			"2570 Failed to read FCoE parameters\n");
6611 
6612 	/*
6613 	 * Retrieve sli4 device physical port name, failure of doing it
6614 	 * is considered as non-fatal.
6615 	 */
6616 	rc = lpfc_sli4_retrieve_pport_name(phba);
6617 	if (!rc)
6618 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
6619 				"3080 Successful retrieving SLI4 device "
6620 				"physical port name: %s.\n", phba->Port);
6621 
6622 	/*
6623 	 * Evaluate the read rev and vpd data. Populate the driver
6624 	 * state with the results. If this routine fails, the failure
6625 	 * is not fatal as the driver will use generic values.
6626 	 */
6627 	rc = lpfc_parse_vpd(phba, vpd, vpd_size);
6628 	if (unlikely(!rc)) {
6629 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6630 				"0377 Error %d parsing vpd. "
6631 				"Using defaults.\n", rc);
6632 		rc = 0;
6633 	}
6634 	kfree(vpd);
6635 
6636 	/* Save information as VPD data */
6637 	phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
6638 	phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
6639 	phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
6640 	phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
6641 					 &mqe->un.read_rev);
6642 	phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
6643 				       &mqe->un.read_rev);
6644 	phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
6645 					    &mqe->un.read_rev);
6646 	phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
6647 					   &mqe->un.read_rev);
6648 	phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
6649 	memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
6650 	phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
6651 	memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
6652 	phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
6653 	memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
6654 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
6655 			"(%d):0380 READ_REV Status x%x "
6656 			"fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
6657 			mboxq->vport ? mboxq->vport->vpi : 0,
6658 			bf_get(lpfc_mqe_status, mqe),
6659 			phba->vpd.rev.opFwName,
6660 			phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
6661 			phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
6662 
6663 	/* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3)  */
6664 	rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3);
6665 	if (phba->pport->cfg_lun_queue_depth > rc) {
6666 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6667 				"3362 LUN queue depth changed from %d to %d\n",
6668 				phba->pport->cfg_lun_queue_depth, rc);
6669 		phba->pport->cfg_lun_queue_depth = rc;
6670 	}
6671 
6672 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
6673 	    LPFC_SLI_INTF_IF_TYPE_0) {
6674 		lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
6675 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6676 		if (rc == MBX_SUCCESS) {
6677 			phba->hba_flag |= HBA_RECOVERABLE_UE;
6678 			/* Set 1Sec interval to detect UE */
6679 			phba->eratt_poll_interval = 1;
6680 			phba->sli4_hba.ue_to_sr = bf_get(
6681 					lpfc_mbx_set_feature_UESR,
6682 					&mboxq->u.mqe.un.set_feature);
6683 			phba->sli4_hba.ue_to_rp = bf_get(
6684 					lpfc_mbx_set_feature_UERP,
6685 					&mboxq->u.mqe.un.set_feature);
6686 		}
6687 	}
6688 
6689 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
6690 		/* Enable MDS Diagnostics only if the SLI Port supports it */
6691 		lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
6692 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6693 		if (rc != MBX_SUCCESS)
6694 			phba->mds_diags_support = 0;
6695 	}
6696 
6697 	/*
6698 	 * Discover the port's supported feature set and match it against the
6699 	 * hosts requests.
6700 	 */
6701 	lpfc_request_features(phba, mboxq);
6702 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6703 	if (unlikely(rc)) {
6704 		rc = -EIO;
6705 		goto out_free_mbox;
6706 	}
6707 
6708 	/*
6709 	 * The port must support FCP initiator mode as this is the
6710 	 * only mode running in the host.
6711 	 */
6712 	if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
6713 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
6714 				"0378 No support for fcpi mode.\n");
6715 		ftr_rsp++;
6716 	}
6717 	if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
6718 		phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
6719 	else
6720 		phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
6721 	/*
6722 	 * If the port cannot support the host's requested features
6723 	 * then turn off the global config parameters to disable the
6724 	 * feature in the driver.  This is not a fatal error.
6725 	 */
6726 	phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
6727 	if (phba->cfg_enable_bg) {
6728 		if (bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))
6729 			phba->sli3_options |= LPFC_SLI3_BG_ENABLED;
6730 		else
6731 			ftr_rsp++;
6732 	}
6733 
6734 	if (phba->max_vpi && phba->cfg_enable_npiv &&
6735 	    !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
6736 		ftr_rsp++;
6737 
6738 	if (ftr_rsp) {
6739 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
6740 				"0379 Feature Mismatch Data: x%08x %08x "
6741 				"x%x x%x x%x\n", mqe->un.req_ftrs.word2,
6742 				mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
6743 				phba->cfg_enable_npiv, phba->max_vpi);
6744 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
6745 			phba->cfg_enable_bg = 0;
6746 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
6747 			phba->cfg_enable_npiv = 0;
6748 	}
6749 
6750 	/* These SLI3 features are assumed in SLI4 */
6751 	spin_lock_irq(&phba->hbalock);
6752 	phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
6753 	spin_unlock_irq(&phba->hbalock);
6754 
6755 	/*
6756 	 * Allocate all resources (xri,rpi,vpi,vfi) now.  Subsequent
6757 	 * calls depends on these resources to complete port setup.
6758 	 */
6759 	rc = lpfc_sli4_alloc_resource_identifiers(phba);
6760 	if (rc) {
6761 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6762 				"2920 Failed to alloc Resource IDs "
6763 				"rc = x%x\n", rc);
6764 		goto out_free_mbox;
6765 	}
6766 
6767 	lpfc_set_host_data(phba, mboxq);
6768 
6769 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6770 	if (rc) {
6771 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
6772 				"2134 Failed to set host os driver version %x",
6773 				rc);
6774 	}
6775 
6776 	/* Read the port's service parameters. */
6777 	rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
6778 	if (rc) {
6779 		phba->link_state = LPFC_HBA_ERROR;
6780 		rc = -ENOMEM;
6781 		goto out_free_mbox;
6782 	}
6783 
6784 	mboxq->vport = vport;
6785 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6786 	mp = (struct lpfc_dmabuf *) mboxq->context1;
6787 	if (rc == MBX_SUCCESS) {
6788 		memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
6789 		rc = 0;
6790 	}
6791 
6792 	/*
6793 	 * This memory was allocated by the lpfc_read_sparam routine. Release
6794 	 * it to the mbuf pool.
6795 	 */
6796 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
6797 	kfree(mp);
6798 	mboxq->context1 = NULL;
6799 	if (unlikely(rc)) {
6800 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6801 				"0382 READ_SPARAM command failed "
6802 				"status %d, mbxStatus x%x\n",
6803 				rc, bf_get(lpfc_mqe_status, mqe));
6804 		phba->link_state = LPFC_HBA_ERROR;
6805 		rc = -EIO;
6806 		goto out_free_mbox;
6807 	}
6808 
6809 	lpfc_update_vport_wwn(vport);
6810 
6811 	/* Update the fc_host data structures with new wwn. */
6812 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
6813 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
6814 
6815 	/* Create all the SLI4 queues */
6816 	rc = lpfc_sli4_queue_create(phba);
6817 	if (rc) {
6818 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6819 				"3089 Failed to allocate queues\n");
6820 		rc = -ENODEV;
6821 		goto out_free_mbox;
6822 	}
6823 	/* Set up all the queues to the device */
6824 	rc = lpfc_sli4_queue_setup(phba);
6825 	if (unlikely(rc)) {
6826 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6827 				"0381 Error %d during queue setup.\n ", rc);
6828 		goto out_stop_timers;
6829 	}
6830 	/* Initialize the driver internal SLI layer lists. */
6831 	lpfc_sli4_setup(phba);
6832 	lpfc_sli4_queue_init(phba);
6833 
6834 	/* update host els xri-sgl sizes and mappings */
6835 	rc = lpfc_sli4_els_sgl_update(phba);
6836 	if (unlikely(rc)) {
6837 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6838 				"1400 Failed to update xri-sgl size and "
6839 				"mapping: %d\n", rc);
6840 		goto out_destroy_queue;
6841 	}
6842 
6843 	/* register the els sgl pool to the port */
6844 	rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
6845 				       phba->sli4_hba.els_xri_cnt);
6846 	if (unlikely(rc < 0)) {
6847 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6848 				"0582 Error %d during els sgl post "
6849 				"operation\n", rc);
6850 		rc = -ENODEV;
6851 		goto out_destroy_queue;
6852 	}
6853 	phba->sli4_hba.els_xri_cnt = rc;
6854 
6855 	if (phba->nvmet_support) {
6856 		/* update host nvmet xri-sgl sizes and mappings */
6857 		rc = lpfc_sli4_nvmet_sgl_update(phba);
6858 		if (unlikely(rc)) {
6859 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6860 					"6308 Failed to update nvmet-sgl size "
6861 					"and mapping: %d\n", rc);
6862 			goto out_destroy_queue;
6863 		}
6864 
6865 		/* register the nvmet sgl pool to the port */
6866 		rc = lpfc_sli4_repost_sgl_list(
6867 			phba,
6868 			&phba->sli4_hba.lpfc_nvmet_sgl_list,
6869 			phba->sli4_hba.nvmet_xri_cnt);
6870 		if (unlikely(rc < 0)) {
6871 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6872 					"3117 Error %d during nvmet "
6873 					"sgl post\n", rc);
6874 			rc = -ENODEV;
6875 			goto out_destroy_queue;
6876 		}
6877 		phba->sli4_hba.nvmet_xri_cnt = rc;
6878 		lpfc_nvmet_create_targetport(phba);
6879 	} else {
6880 		/* update host scsi xri-sgl sizes and mappings */
6881 		rc = lpfc_sli4_scsi_sgl_update(phba);
6882 		if (unlikely(rc)) {
6883 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6884 					"6309 Failed to update scsi-sgl size "
6885 					"and mapping: %d\n", rc);
6886 			goto out_destroy_queue;
6887 		}
6888 
6889 		/* update host nvme xri-sgl sizes and mappings */
6890 		rc = lpfc_sli4_nvme_sgl_update(phba);
6891 		if (unlikely(rc)) {
6892 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6893 					"6082 Failed to update nvme-sgl size "
6894 					"and mapping: %d\n", rc);
6895 			goto out_destroy_queue;
6896 		}
6897 	}
6898 
6899 	if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
6900 
6901 		/* Post initial buffers to all RQs created */
6902 		for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
6903 			rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
6904 			INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
6905 			rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
6906 			rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
6907 			rqbp->entry_count = 256;
6908 			rqbp->buffer_count = 0;
6909 
6910 			/* Divide by 4 and round down to multiple of 16 */
6911 			rc = (phba->cfg_nvmet_mrq_post >> 2) & 0xfff8;
6912 			phba->sli4_hba.nvmet_mrq_hdr[i]->entry_repost = rc;
6913 			phba->sli4_hba.nvmet_mrq_data[i]->entry_repost = rc;
6914 
6915 			lpfc_post_rq_buffer(
6916 				phba, phba->sli4_hba.nvmet_mrq_hdr[i],
6917 				phba->sli4_hba.nvmet_mrq_data[i],
6918 				phba->cfg_nvmet_mrq_post);
6919 		}
6920 	}
6921 
6922 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
6923 		/* register the allocated scsi sgl pool to the port */
6924 		rc = lpfc_sli4_repost_scsi_sgl_list(phba);
6925 		if (unlikely(rc)) {
6926 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6927 					"0383 Error %d during scsi sgl post "
6928 					"operation\n", rc);
6929 			/* Some Scsi buffers were moved to abort scsi list */
6930 			/* A pci function reset will repost them */
6931 			rc = -ENODEV;
6932 			goto out_destroy_queue;
6933 		}
6934 	}
6935 
6936 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
6937 	    (phba->nvmet_support == 0)) {
6938 
6939 		/* register the allocated nvme sgl pool to the port */
6940 		rc = lpfc_repost_nvme_sgl_list(phba);
6941 		if (unlikely(rc)) {
6942 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6943 					"6116 Error %d during nvme sgl post "
6944 					"operation\n", rc);
6945 			/* Some NVME buffers were moved to abort nvme list */
6946 			/* A pci function reset will repost them */
6947 			rc = -ENODEV;
6948 			goto out_destroy_queue;
6949 		}
6950 	}
6951 
6952 	/* Post the rpi header region to the device. */
6953 	rc = lpfc_sli4_post_all_rpi_hdrs(phba);
6954 	if (unlikely(rc)) {
6955 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6956 				"0393 Error %d during rpi post operation\n",
6957 				rc);
6958 		rc = -ENODEV;
6959 		goto out_destroy_queue;
6960 	}
6961 	lpfc_sli4_node_prep(phba);
6962 
6963 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
6964 		if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
6965 			/*
6966 			 * The FC Port needs to register FCFI (index 0)
6967 			 */
6968 			lpfc_reg_fcfi(phba, mboxq);
6969 			mboxq->vport = phba->pport;
6970 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6971 			if (rc != MBX_SUCCESS)
6972 				goto out_unset_queue;
6973 			rc = 0;
6974 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
6975 						&mboxq->u.mqe.un.reg_fcfi);
6976 		} else {
6977 			/* We are a NVME Target mode with MRQ > 1 */
6978 
6979 			/* First register the FCFI */
6980 			lpfc_reg_fcfi_mrq(phba, mboxq, 0);
6981 			mboxq->vport = phba->pport;
6982 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6983 			if (rc != MBX_SUCCESS)
6984 				goto out_unset_queue;
6985 			rc = 0;
6986 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
6987 						&mboxq->u.mqe.un.reg_fcfi_mrq);
6988 
6989 			/* Next register the MRQs */
6990 			lpfc_reg_fcfi_mrq(phba, mboxq, 1);
6991 			mboxq->vport = phba->pport;
6992 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6993 			if (rc != MBX_SUCCESS)
6994 				goto out_unset_queue;
6995 			rc = 0;
6996 		}
6997 		/* Check if the port is configured to be disabled */
6998 		lpfc_sli_read_link_ste(phba);
6999 	}
7000 
7001 	/* Arm the CQs and then EQs on device */
7002 	lpfc_sli4_arm_cqeq_intr(phba);
7003 
7004 	/* Indicate device interrupt mode */
7005 	phba->sli4_hba.intr_enable = 1;
7006 
7007 	/* Allow asynchronous mailbox command to go through */
7008 	spin_lock_irq(&phba->hbalock);
7009 	phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7010 	spin_unlock_irq(&phba->hbalock);
7011 
7012 	/* Post receive buffers to the device */
7013 	lpfc_sli4_rb_setup(phba);
7014 
7015 	/* Reset HBA FCF states after HBA reset */
7016 	phba->fcf.fcf_flag = 0;
7017 	phba->fcf.current_rec.flag = 0;
7018 
7019 	/* Start the ELS watchdog timer */
7020 	mod_timer(&vport->els_tmofunc,
7021 		  jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
7022 
7023 	/* Start heart beat timer */
7024 	mod_timer(&phba->hb_tmofunc,
7025 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
7026 	phba->hb_outstanding = 0;
7027 	phba->last_completion_time = jiffies;
7028 
7029 	/* Start error attention (ERATT) polling timer */
7030 	mod_timer(&phba->eratt_poll,
7031 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
7032 
7033 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
7034 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
7035 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
7036 		if (!rc) {
7037 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7038 					"2829 This device supports "
7039 					"Advanced Error Reporting (AER)\n");
7040 			spin_lock_irq(&phba->hbalock);
7041 			phba->hba_flag |= HBA_AER_ENABLED;
7042 			spin_unlock_irq(&phba->hbalock);
7043 		} else {
7044 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7045 					"2830 This device does not support "
7046 					"Advanced Error Reporting (AER)\n");
7047 			phba->cfg_aer_support = 0;
7048 		}
7049 		rc = 0;
7050 	}
7051 
7052 	/*
7053 	 * The port is ready, set the host's link state to LINK_DOWN
7054 	 * in preparation for link interrupts.
7055 	 */
7056 	spin_lock_irq(&phba->hbalock);
7057 	phba->link_state = LPFC_LINK_DOWN;
7058 	spin_unlock_irq(&phba->hbalock);
7059 	if (!(phba->hba_flag & HBA_FCOE_MODE) &&
7060 	    (phba->hba_flag & LINK_DISABLED)) {
7061 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7062 				"3103 Adapter Link is disabled.\n");
7063 		lpfc_down_link(phba, mboxq);
7064 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7065 		if (rc != MBX_SUCCESS) {
7066 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7067 					"3104 Adapter failed to issue "
7068 					"DOWN_LINK mbox cmd, rc:x%x\n", rc);
7069 			goto out_unset_queue;
7070 		}
7071 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
7072 		/* don't perform init_link on SLI4 FC port loopback test */
7073 		if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
7074 			rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
7075 			if (rc)
7076 				goto out_unset_queue;
7077 		}
7078 	}
7079 	mempool_free(mboxq, phba->mbox_mem_pool);
7080 	return rc;
7081 out_unset_queue:
7082 	/* Unset all the queues set up in this routine when error out */
7083 	lpfc_sli4_queue_unset(phba);
7084 out_destroy_queue:
7085 	lpfc_sli4_queue_destroy(phba);
7086 out_stop_timers:
7087 	lpfc_stop_hba_timers(phba);
7088 out_free_mbox:
7089 	mempool_free(mboxq, phba->mbox_mem_pool);
7090 	return rc;
7091 }
7092 
7093 /**
7094  * lpfc_mbox_timeout - Timeout call back function for mbox timer
7095  * @ptr: context object - pointer to hba structure.
7096  *
7097  * This is the callback function for mailbox timer. The mailbox
7098  * timer is armed when a new mailbox command is issued and the timer
7099  * is deleted when the mailbox complete. The function is called by
7100  * the kernel timer code when a mailbox does not complete within
7101  * expected time. This function wakes up the worker thread to
7102  * process the mailbox timeout and returns. All the processing is
7103  * done by the worker thread function lpfc_mbox_timeout_handler.
7104  **/
7105 void
7106 lpfc_mbox_timeout(unsigned long ptr)
7107 {
7108 	struct lpfc_hba  *phba = (struct lpfc_hba *) ptr;
7109 	unsigned long iflag;
7110 	uint32_t tmo_posted;
7111 
7112 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
7113 	tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
7114 	if (!tmo_posted)
7115 		phba->pport->work_port_events |= WORKER_MBOX_TMO;
7116 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
7117 
7118 	if (!tmo_posted)
7119 		lpfc_worker_wake_up(phba);
7120 	return;
7121 }
7122 
7123 /**
7124  * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
7125  *                                    are pending
7126  * @phba: Pointer to HBA context object.
7127  *
7128  * This function checks if any mailbox completions are present on the mailbox
7129  * completion queue.
7130  **/
7131 static bool
7132 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
7133 {
7134 
7135 	uint32_t idx;
7136 	struct lpfc_queue *mcq;
7137 	struct lpfc_mcqe *mcqe;
7138 	bool pending_completions = false;
7139 
7140 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7141 		return false;
7142 
7143 	/* Check for completions on mailbox completion queue */
7144 
7145 	mcq = phba->sli4_hba.mbx_cq;
7146 	idx = mcq->hba_index;
7147 	while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe)) {
7148 		mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe;
7149 		if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
7150 		    (!bf_get_le32(lpfc_trailer_async, mcqe))) {
7151 			pending_completions = true;
7152 			break;
7153 		}
7154 		idx = (idx + 1) % mcq->entry_count;
7155 		if (mcq->hba_index == idx)
7156 			break;
7157 	}
7158 	return pending_completions;
7159 
7160 }
7161 
7162 /**
7163  * lpfc_sli4_process_missed_mbox_completions - process mbox completions
7164  *					      that were missed.
7165  * @phba: Pointer to HBA context object.
7166  *
7167  * For sli4, it is possible to miss an interrupt. As such mbox completions
7168  * maybe missed causing erroneous mailbox timeouts to occur. This function
7169  * checks to see if mbox completions are on the mailbox completion queue
7170  * and will process all the completions associated with the eq for the
7171  * mailbox completion queue.
7172  **/
7173 bool
7174 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
7175 {
7176 
7177 	uint32_t eqidx;
7178 	struct lpfc_queue *fpeq = NULL;
7179 	struct lpfc_eqe *eqe;
7180 	bool mbox_pending;
7181 
7182 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7183 		return false;
7184 
7185 	/* Find the eq associated with the mcq */
7186 
7187 	if (phba->sli4_hba.hba_eq)
7188 		for (eqidx = 0; eqidx < phba->io_channel_irqs; eqidx++)
7189 			if (phba->sli4_hba.hba_eq[eqidx]->queue_id ==
7190 			    phba->sli4_hba.mbx_cq->assoc_qid) {
7191 				fpeq = phba->sli4_hba.hba_eq[eqidx];
7192 				break;
7193 			}
7194 	if (!fpeq)
7195 		return false;
7196 
7197 	/* Turn off interrupts from this EQ */
7198 
7199 	lpfc_sli4_eq_clr_intr(fpeq);
7200 
7201 	/* Check to see if a mbox completion is pending */
7202 
7203 	mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
7204 
7205 	/*
7206 	 * If a mbox completion is pending, process all the events on EQ
7207 	 * associated with the mbox completion queue (this could include
7208 	 * mailbox commands, async events, els commands, receive queue data
7209 	 * and fcp commands)
7210 	 */
7211 
7212 	if (mbox_pending)
7213 		while ((eqe = lpfc_sli4_eq_get(fpeq))) {
7214 			lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx);
7215 			fpeq->EQ_processed++;
7216 		}
7217 
7218 	/* Always clear and re-arm the EQ */
7219 
7220 	lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM);
7221 
7222 	return mbox_pending;
7223 
7224 }
7225 
7226 /**
7227  * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
7228  * @phba: Pointer to HBA context object.
7229  *
7230  * This function is called from worker thread when a mailbox command times out.
7231  * The caller is not required to hold any locks. This function will reset the
7232  * HBA and recover all the pending commands.
7233  **/
7234 void
7235 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
7236 {
7237 	LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
7238 	MAILBOX_t *mb = NULL;
7239 
7240 	struct lpfc_sli *psli = &phba->sli;
7241 
7242 	/* If the mailbox completed, process the completion and return */
7243 	if (lpfc_sli4_process_missed_mbox_completions(phba))
7244 		return;
7245 
7246 	if (pmbox != NULL)
7247 		mb = &pmbox->u.mb;
7248 	/* Check the pmbox pointer first.  There is a race condition
7249 	 * between the mbox timeout handler getting executed in the
7250 	 * worklist and the mailbox actually completing. When this
7251 	 * race condition occurs, the mbox_active will be NULL.
7252 	 */
7253 	spin_lock_irq(&phba->hbalock);
7254 	if (pmbox == NULL) {
7255 		lpfc_printf_log(phba, KERN_WARNING,
7256 				LOG_MBOX | LOG_SLI,
7257 				"0353 Active Mailbox cleared - mailbox timeout "
7258 				"exiting\n");
7259 		spin_unlock_irq(&phba->hbalock);
7260 		return;
7261 	}
7262 
7263 	/* Mbox cmd <mbxCommand> timeout */
7264 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7265 			"0310 Mailbox command x%x timeout Data: x%x x%x x%p\n",
7266 			mb->mbxCommand,
7267 			phba->pport->port_state,
7268 			phba->sli.sli_flag,
7269 			phba->sli.mbox_active);
7270 	spin_unlock_irq(&phba->hbalock);
7271 
7272 	/* Setting state unknown so lpfc_sli_abort_iocb_ring
7273 	 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
7274 	 * it to fail all outstanding SCSI IO.
7275 	 */
7276 	spin_lock_irq(&phba->pport->work_port_lock);
7277 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
7278 	spin_unlock_irq(&phba->pport->work_port_lock);
7279 	spin_lock_irq(&phba->hbalock);
7280 	phba->link_state = LPFC_LINK_UNKNOWN;
7281 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
7282 	spin_unlock_irq(&phba->hbalock);
7283 
7284 	lpfc_sli_abort_fcp_rings(phba);
7285 
7286 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7287 			"0345 Resetting board due to mailbox timeout\n");
7288 
7289 	/* Reset the HBA device */
7290 	lpfc_reset_hba(phba);
7291 }
7292 
7293 /**
7294  * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
7295  * @phba: Pointer to HBA context object.
7296  * @pmbox: Pointer to mailbox object.
7297  * @flag: Flag indicating how the mailbox need to be processed.
7298  *
7299  * This function is called by discovery code and HBA management code
7300  * to submit a mailbox command to firmware with SLI-3 interface spec. This
7301  * function gets the hbalock to protect the data structures.
7302  * The mailbox command can be submitted in polling mode, in which case
7303  * this function will wait in a polling loop for the completion of the
7304  * mailbox.
7305  * If the mailbox is submitted in no_wait mode (not polling) the
7306  * function will submit the command and returns immediately without waiting
7307  * for the mailbox completion. The no_wait is supported only when HBA
7308  * is in SLI2/SLI3 mode - interrupts are enabled.
7309  * The SLI interface allows only one mailbox pending at a time. If the
7310  * mailbox is issued in polling mode and there is already a mailbox
7311  * pending, then the function will return an error. If the mailbox is issued
7312  * in NO_WAIT mode and there is a mailbox pending already, the function
7313  * will return MBX_BUSY after queuing the mailbox into mailbox queue.
7314  * The sli layer owns the mailbox object until the completion of mailbox
7315  * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
7316  * return codes the caller owns the mailbox command after the return of
7317  * the function.
7318  **/
7319 static int
7320 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
7321 		       uint32_t flag)
7322 {
7323 	MAILBOX_t *mbx;
7324 	struct lpfc_sli *psli = &phba->sli;
7325 	uint32_t status, evtctr;
7326 	uint32_t ha_copy, hc_copy;
7327 	int i;
7328 	unsigned long timeout;
7329 	unsigned long drvr_flag = 0;
7330 	uint32_t word0, ldata;
7331 	void __iomem *to_slim;
7332 	int processing_queue = 0;
7333 
7334 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
7335 	if (!pmbox) {
7336 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7337 		/* processing mbox queue from intr_handler */
7338 		if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
7339 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7340 			return MBX_SUCCESS;
7341 		}
7342 		processing_queue = 1;
7343 		pmbox = lpfc_mbox_get(phba);
7344 		if (!pmbox) {
7345 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7346 			return MBX_SUCCESS;
7347 		}
7348 	}
7349 
7350 	if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
7351 		pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
7352 		if(!pmbox->vport) {
7353 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7354 			lpfc_printf_log(phba, KERN_ERR,
7355 					LOG_MBOX | LOG_VPORT,
7356 					"1806 Mbox x%x failed. No vport\n",
7357 					pmbox->u.mb.mbxCommand);
7358 			dump_stack();
7359 			goto out_not_finished;
7360 		}
7361 	}
7362 
7363 	/* If the PCI channel is in offline state, do not post mbox. */
7364 	if (unlikely(pci_channel_offline(phba->pcidev))) {
7365 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7366 		goto out_not_finished;
7367 	}
7368 
7369 	/* If HBA has a deferred error attention, fail the iocb. */
7370 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
7371 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7372 		goto out_not_finished;
7373 	}
7374 
7375 	psli = &phba->sli;
7376 
7377 	mbx = &pmbox->u.mb;
7378 	status = MBX_SUCCESS;
7379 
7380 	if (phba->link_state == LPFC_HBA_ERROR) {
7381 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7382 
7383 		/* Mbox command <mbxCommand> cannot issue */
7384 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7385 				"(%d):0311 Mailbox command x%x cannot "
7386 				"issue Data: x%x x%x\n",
7387 				pmbox->vport ? pmbox->vport->vpi : 0,
7388 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
7389 		goto out_not_finished;
7390 	}
7391 
7392 	if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
7393 		if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
7394 			!(hc_copy & HC_MBINT_ENA)) {
7395 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7396 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7397 				"(%d):2528 Mailbox command x%x cannot "
7398 				"issue Data: x%x x%x\n",
7399 				pmbox->vport ? pmbox->vport->vpi : 0,
7400 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
7401 			goto out_not_finished;
7402 		}
7403 	}
7404 
7405 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
7406 		/* Polling for a mbox command when another one is already active
7407 		 * is not allowed in SLI. Also, the driver must have established
7408 		 * SLI2 mode to queue and process multiple mbox commands.
7409 		 */
7410 
7411 		if (flag & MBX_POLL) {
7412 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7413 
7414 			/* Mbox command <mbxCommand> cannot issue */
7415 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7416 					"(%d):2529 Mailbox command x%x "
7417 					"cannot issue Data: x%x x%x\n",
7418 					pmbox->vport ? pmbox->vport->vpi : 0,
7419 					pmbox->u.mb.mbxCommand,
7420 					psli->sli_flag, flag);
7421 			goto out_not_finished;
7422 		}
7423 
7424 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
7425 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7426 			/* Mbox command <mbxCommand> cannot issue */
7427 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7428 					"(%d):2530 Mailbox command x%x "
7429 					"cannot issue Data: x%x x%x\n",
7430 					pmbox->vport ? pmbox->vport->vpi : 0,
7431 					pmbox->u.mb.mbxCommand,
7432 					psli->sli_flag, flag);
7433 			goto out_not_finished;
7434 		}
7435 
7436 		/* Another mailbox command is still being processed, queue this
7437 		 * command to be processed later.
7438 		 */
7439 		lpfc_mbox_put(phba, pmbox);
7440 
7441 		/* Mbox cmd issue - BUSY */
7442 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7443 				"(%d):0308 Mbox cmd issue - BUSY Data: "
7444 				"x%x x%x x%x x%x\n",
7445 				pmbox->vport ? pmbox->vport->vpi : 0xffffff,
7446 				mbx->mbxCommand, phba->pport->port_state,
7447 				psli->sli_flag, flag);
7448 
7449 		psli->slistat.mbox_busy++;
7450 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7451 
7452 		if (pmbox->vport) {
7453 			lpfc_debugfs_disc_trc(pmbox->vport,
7454 				LPFC_DISC_TRC_MBOX_VPORT,
7455 				"MBOX Bsy vport:  cmd:x%x mb:x%x x%x",
7456 				(uint32_t)mbx->mbxCommand,
7457 				mbx->un.varWords[0], mbx->un.varWords[1]);
7458 		}
7459 		else {
7460 			lpfc_debugfs_disc_trc(phba->pport,
7461 				LPFC_DISC_TRC_MBOX,
7462 				"MBOX Bsy:        cmd:x%x mb:x%x x%x",
7463 				(uint32_t)mbx->mbxCommand,
7464 				mbx->un.varWords[0], mbx->un.varWords[1]);
7465 		}
7466 
7467 		return MBX_BUSY;
7468 	}
7469 
7470 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
7471 
7472 	/* If we are not polling, we MUST be in SLI2 mode */
7473 	if (flag != MBX_POLL) {
7474 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
7475 		    (mbx->mbxCommand != MBX_KILL_BOARD)) {
7476 			psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7477 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7478 			/* Mbox command <mbxCommand> cannot issue */
7479 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7480 					"(%d):2531 Mailbox command x%x "
7481 					"cannot issue Data: x%x x%x\n",
7482 					pmbox->vport ? pmbox->vport->vpi : 0,
7483 					pmbox->u.mb.mbxCommand,
7484 					psli->sli_flag, flag);
7485 			goto out_not_finished;
7486 		}
7487 		/* timeout active mbox command */
7488 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
7489 					   1000);
7490 		mod_timer(&psli->mbox_tmo, jiffies + timeout);
7491 	}
7492 
7493 	/* Mailbox cmd <cmd> issue */
7494 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7495 			"(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
7496 			"x%x\n",
7497 			pmbox->vport ? pmbox->vport->vpi : 0,
7498 			mbx->mbxCommand, phba->pport->port_state,
7499 			psli->sli_flag, flag);
7500 
7501 	if (mbx->mbxCommand != MBX_HEARTBEAT) {
7502 		if (pmbox->vport) {
7503 			lpfc_debugfs_disc_trc(pmbox->vport,
7504 				LPFC_DISC_TRC_MBOX_VPORT,
7505 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
7506 				(uint32_t)mbx->mbxCommand,
7507 				mbx->un.varWords[0], mbx->un.varWords[1]);
7508 		}
7509 		else {
7510 			lpfc_debugfs_disc_trc(phba->pport,
7511 				LPFC_DISC_TRC_MBOX,
7512 				"MBOX Send:       cmd:x%x mb:x%x x%x",
7513 				(uint32_t)mbx->mbxCommand,
7514 				mbx->un.varWords[0], mbx->un.varWords[1]);
7515 		}
7516 	}
7517 
7518 	psli->slistat.mbox_cmd++;
7519 	evtctr = psli->slistat.mbox_event;
7520 
7521 	/* next set own bit for the adapter and copy over command word */
7522 	mbx->mbxOwner = OWN_CHIP;
7523 
7524 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7525 		/* Populate mbox extension offset word. */
7526 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
7527 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
7528 				= (uint8_t *)phba->mbox_ext
7529 				  - (uint8_t *)phba->mbox;
7530 		}
7531 
7532 		/* Copy the mailbox extension data */
7533 		if (pmbox->in_ext_byte_len && pmbox->context2) {
7534 			lpfc_sli_pcimem_bcopy(pmbox->context2,
7535 				(uint8_t *)phba->mbox_ext,
7536 				pmbox->in_ext_byte_len);
7537 		}
7538 		/* Copy command data to host SLIM area */
7539 		lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
7540 	} else {
7541 		/* Populate mbox extension offset word. */
7542 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
7543 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
7544 				= MAILBOX_HBA_EXT_OFFSET;
7545 
7546 		/* Copy the mailbox extension data */
7547 		if (pmbox->in_ext_byte_len && pmbox->context2)
7548 			lpfc_memcpy_to_slim(phba->MBslimaddr +
7549 				MAILBOX_HBA_EXT_OFFSET,
7550 				pmbox->context2, pmbox->in_ext_byte_len);
7551 
7552 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
7553 			/* copy command data into host mbox for cmpl */
7554 			lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
7555 					      MAILBOX_CMD_SIZE);
7556 
7557 		/* First copy mbox command data to HBA SLIM, skip past first
7558 		   word */
7559 		to_slim = phba->MBslimaddr + sizeof (uint32_t);
7560 		lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
7561 			    MAILBOX_CMD_SIZE - sizeof (uint32_t));
7562 
7563 		/* Next copy over first word, with mbxOwner set */
7564 		ldata = *((uint32_t *)mbx);
7565 		to_slim = phba->MBslimaddr;
7566 		writel(ldata, to_slim);
7567 		readl(to_slim); /* flush */
7568 
7569 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
7570 			/* switch over to host mailbox */
7571 			psli->sli_flag |= LPFC_SLI_ACTIVE;
7572 	}
7573 
7574 	wmb();
7575 
7576 	switch (flag) {
7577 	case MBX_NOWAIT:
7578 		/* Set up reference to mailbox command */
7579 		psli->mbox_active = pmbox;
7580 		/* Interrupt board to do it */
7581 		writel(CA_MBATT, phba->CAregaddr);
7582 		readl(phba->CAregaddr); /* flush */
7583 		/* Don't wait for it to finish, just return */
7584 		break;
7585 
7586 	case MBX_POLL:
7587 		/* Set up null reference to mailbox command */
7588 		psli->mbox_active = NULL;
7589 		/* Interrupt board to do it */
7590 		writel(CA_MBATT, phba->CAregaddr);
7591 		readl(phba->CAregaddr); /* flush */
7592 
7593 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7594 			/* First read mbox status word */
7595 			word0 = *((uint32_t *)phba->mbox);
7596 			word0 = le32_to_cpu(word0);
7597 		} else {
7598 			/* First read mbox status word */
7599 			if (lpfc_readl(phba->MBslimaddr, &word0)) {
7600 				spin_unlock_irqrestore(&phba->hbalock,
7601 						       drvr_flag);
7602 				goto out_not_finished;
7603 			}
7604 		}
7605 
7606 		/* Read the HBA Host Attention Register */
7607 		if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
7608 			spin_unlock_irqrestore(&phba->hbalock,
7609 						       drvr_flag);
7610 			goto out_not_finished;
7611 		}
7612 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
7613 							1000) + jiffies;
7614 		i = 0;
7615 		/* Wait for command to complete */
7616 		while (((word0 & OWN_CHIP) == OWN_CHIP) ||
7617 		       (!(ha_copy & HA_MBATT) &&
7618 			(phba->link_state > LPFC_WARM_START))) {
7619 			if (time_after(jiffies, timeout)) {
7620 				psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7621 				spin_unlock_irqrestore(&phba->hbalock,
7622 						       drvr_flag);
7623 				goto out_not_finished;
7624 			}
7625 
7626 			/* Check if we took a mbox interrupt while we were
7627 			   polling */
7628 			if (((word0 & OWN_CHIP) != OWN_CHIP)
7629 			    && (evtctr != psli->slistat.mbox_event))
7630 				break;
7631 
7632 			if (i++ > 10) {
7633 				spin_unlock_irqrestore(&phba->hbalock,
7634 						       drvr_flag);
7635 				msleep(1);
7636 				spin_lock_irqsave(&phba->hbalock, drvr_flag);
7637 			}
7638 
7639 			if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7640 				/* First copy command data */
7641 				word0 = *((uint32_t *)phba->mbox);
7642 				word0 = le32_to_cpu(word0);
7643 				if (mbx->mbxCommand == MBX_CONFIG_PORT) {
7644 					MAILBOX_t *slimmb;
7645 					uint32_t slimword0;
7646 					/* Check real SLIM for any errors */
7647 					slimword0 = readl(phba->MBslimaddr);
7648 					slimmb = (MAILBOX_t *) & slimword0;
7649 					if (((slimword0 & OWN_CHIP) != OWN_CHIP)
7650 					    && slimmb->mbxStatus) {
7651 						psli->sli_flag &=
7652 						    ~LPFC_SLI_ACTIVE;
7653 						word0 = slimword0;
7654 					}
7655 				}
7656 			} else {
7657 				/* First copy command data */
7658 				word0 = readl(phba->MBslimaddr);
7659 			}
7660 			/* Read the HBA Host Attention Register */
7661 			if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
7662 				spin_unlock_irqrestore(&phba->hbalock,
7663 						       drvr_flag);
7664 				goto out_not_finished;
7665 			}
7666 		}
7667 
7668 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7669 			/* copy results back to user */
7670 			lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
7671 						MAILBOX_CMD_SIZE);
7672 			/* Copy the mailbox extension data */
7673 			if (pmbox->out_ext_byte_len && pmbox->context2) {
7674 				lpfc_sli_pcimem_bcopy(phba->mbox_ext,
7675 						      pmbox->context2,
7676 						      pmbox->out_ext_byte_len);
7677 			}
7678 		} else {
7679 			/* First copy command data */
7680 			lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
7681 						MAILBOX_CMD_SIZE);
7682 			/* Copy the mailbox extension data */
7683 			if (pmbox->out_ext_byte_len && pmbox->context2) {
7684 				lpfc_memcpy_from_slim(pmbox->context2,
7685 					phba->MBslimaddr +
7686 					MAILBOX_HBA_EXT_OFFSET,
7687 					pmbox->out_ext_byte_len);
7688 			}
7689 		}
7690 
7691 		writel(HA_MBATT, phba->HAregaddr);
7692 		readl(phba->HAregaddr); /* flush */
7693 
7694 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7695 		status = mbx->mbxStatus;
7696 	}
7697 
7698 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7699 	return status;
7700 
7701 out_not_finished:
7702 	if (processing_queue) {
7703 		pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
7704 		lpfc_mbox_cmpl_put(phba, pmbox);
7705 	}
7706 	return MBX_NOT_FINISHED;
7707 }
7708 
7709 /**
7710  * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
7711  * @phba: Pointer to HBA context object.
7712  *
7713  * The function blocks the posting of SLI4 asynchronous mailbox commands from
7714  * the driver internal pending mailbox queue. It will then try to wait out the
7715  * possible outstanding mailbox command before return.
7716  *
7717  * Returns:
7718  * 	0 - the outstanding mailbox command completed; otherwise, the wait for
7719  * 	the outstanding mailbox command timed out.
7720  **/
7721 static int
7722 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
7723 {
7724 	struct lpfc_sli *psli = &phba->sli;
7725 	int rc = 0;
7726 	unsigned long timeout = 0;
7727 
7728 	/* Mark the asynchronous mailbox command posting as blocked */
7729 	spin_lock_irq(&phba->hbalock);
7730 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
7731 	/* Determine how long we might wait for the active mailbox
7732 	 * command to be gracefully completed by firmware.
7733 	 */
7734 	if (phba->sli.mbox_active)
7735 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
7736 						phba->sli.mbox_active) *
7737 						1000) + jiffies;
7738 	spin_unlock_irq(&phba->hbalock);
7739 
7740 	/* Make sure the mailbox is really active */
7741 	if (timeout)
7742 		lpfc_sli4_process_missed_mbox_completions(phba);
7743 
7744 	/* Wait for the outstnading mailbox command to complete */
7745 	while (phba->sli.mbox_active) {
7746 		/* Check active mailbox complete status every 2ms */
7747 		msleep(2);
7748 		if (time_after(jiffies, timeout)) {
7749 			/* Timeout, marked the outstanding cmd not complete */
7750 			rc = 1;
7751 			break;
7752 		}
7753 	}
7754 
7755 	/* Can not cleanly block async mailbox command, fails it */
7756 	if (rc) {
7757 		spin_lock_irq(&phba->hbalock);
7758 		psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7759 		spin_unlock_irq(&phba->hbalock);
7760 	}
7761 	return rc;
7762 }
7763 
7764 /**
7765  * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
7766  * @phba: Pointer to HBA context object.
7767  *
7768  * The function unblocks and resume posting of SLI4 asynchronous mailbox
7769  * commands from the driver internal pending mailbox queue. It makes sure
7770  * that there is no outstanding mailbox command before resuming posting
7771  * asynchronous mailbox commands. If, for any reason, there is outstanding
7772  * mailbox command, it will try to wait it out before resuming asynchronous
7773  * mailbox command posting.
7774  **/
7775 static void
7776 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
7777 {
7778 	struct lpfc_sli *psli = &phba->sli;
7779 
7780 	spin_lock_irq(&phba->hbalock);
7781 	if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
7782 		/* Asynchronous mailbox posting is not blocked, do nothing */
7783 		spin_unlock_irq(&phba->hbalock);
7784 		return;
7785 	}
7786 
7787 	/* Outstanding synchronous mailbox command is guaranteed to be done,
7788 	 * successful or timeout, after timing-out the outstanding mailbox
7789 	 * command shall always be removed, so just unblock posting async
7790 	 * mailbox command and resume
7791 	 */
7792 	psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7793 	spin_unlock_irq(&phba->hbalock);
7794 
7795 	/* wake up worker thread to post asynchronlous mailbox command */
7796 	lpfc_worker_wake_up(phba);
7797 }
7798 
7799 /**
7800  * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
7801  * @phba: Pointer to HBA context object.
7802  * @mboxq: Pointer to mailbox object.
7803  *
7804  * The function waits for the bootstrap mailbox register ready bit from
7805  * port for twice the regular mailbox command timeout value.
7806  *
7807  *      0 - no timeout on waiting for bootstrap mailbox register ready.
7808  *      MBXERR_ERROR - wait for bootstrap mailbox register timed out.
7809  **/
7810 static int
7811 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
7812 {
7813 	uint32_t db_ready;
7814 	unsigned long timeout;
7815 	struct lpfc_register bmbx_reg;
7816 
7817 	timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
7818 				   * 1000) + jiffies;
7819 
7820 	do {
7821 		bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
7822 		db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
7823 		if (!db_ready)
7824 			msleep(2);
7825 
7826 		if (time_after(jiffies, timeout))
7827 			return MBXERR_ERROR;
7828 	} while (!db_ready);
7829 
7830 	return 0;
7831 }
7832 
7833 /**
7834  * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
7835  * @phba: Pointer to HBA context object.
7836  * @mboxq: Pointer to mailbox object.
7837  *
7838  * The function posts a mailbox to the port.  The mailbox is expected
7839  * to be comletely filled in and ready for the port to operate on it.
7840  * This routine executes a synchronous completion operation on the
7841  * mailbox by polling for its completion.
7842  *
7843  * The caller must not be holding any locks when calling this routine.
7844  *
7845  * Returns:
7846  *	MBX_SUCCESS - mailbox posted successfully
7847  *	Any of the MBX error values.
7848  **/
7849 static int
7850 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
7851 {
7852 	int rc = MBX_SUCCESS;
7853 	unsigned long iflag;
7854 	uint32_t mcqe_status;
7855 	uint32_t mbx_cmnd;
7856 	struct lpfc_sli *psli = &phba->sli;
7857 	struct lpfc_mqe *mb = &mboxq->u.mqe;
7858 	struct lpfc_bmbx_create *mbox_rgn;
7859 	struct dma_address *dma_address;
7860 
7861 	/*
7862 	 * Only one mailbox can be active to the bootstrap mailbox region
7863 	 * at a time and there is no queueing provided.
7864 	 */
7865 	spin_lock_irqsave(&phba->hbalock, iflag);
7866 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
7867 		spin_unlock_irqrestore(&phba->hbalock, iflag);
7868 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7869 				"(%d):2532 Mailbox command x%x (x%x/x%x) "
7870 				"cannot issue Data: x%x x%x\n",
7871 				mboxq->vport ? mboxq->vport->vpi : 0,
7872 				mboxq->u.mb.mbxCommand,
7873 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7874 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7875 				psli->sli_flag, MBX_POLL);
7876 		return MBXERR_ERROR;
7877 	}
7878 	/* The server grabs the token and owns it until release */
7879 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
7880 	phba->sli.mbox_active = mboxq;
7881 	spin_unlock_irqrestore(&phba->hbalock, iflag);
7882 
7883 	/* wait for bootstrap mbox register for readyness */
7884 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
7885 	if (rc)
7886 		goto exit;
7887 
7888 	/*
7889 	 * Initialize the bootstrap memory region to avoid stale data areas
7890 	 * in the mailbox post.  Then copy the caller's mailbox contents to
7891 	 * the bmbx mailbox region.
7892 	 */
7893 	mbx_cmnd = bf_get(lpfc_mqe_command, mb);
7894 	memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
7895 	lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
7896 			      sizeof(struct lpfc_mqe));
7897 
7898 	/* Post the high mailbox dma address to the port and wait for ready. */
7899 	dma_address = &phba->sli4_hba.bmbx.dma_address;
7900 	writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
7901 
7902 	/* wait for bootstrap mbox register for hi-address write done */
7903 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
7904 	if (rc)
7905 		goto exit;
7906 
7907 	/* Post the low mailbox dma address to the port. */
7908 	writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
7909 
7910 	/* wait for bootstrap mbox register for low address write done */
7911 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
7912 	if (rc)
7913 		goto exit;
7914 
7915 	/*
7916 	 * Read the CQ to ensure the mailbox has completed.
7917 	 * If so, update the mailbox status so that the upper layers
7918 	 * can complete the request normally.
7919 	 */
7920 	lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
7921 			      sizeof(struct lpfc_mqe));
7922 	mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
7923 	lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
7924 			      sizeof(struct lpfc_mcqe));
7925 	mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
7926 	/*
7927 	 * When the CQE status indicates a failure and the mailbox status
7928 	 * indicates success then copy the CQE status into the mailbox status
7929 	 * (and prefix it with x4000).
7930 	 */
7931 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
7932 		if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
7933 			bf_set(lpfc_mqe_status, mb,
7934 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
7935 		rc = MBXERR_ERROR;
7936 	} else
7937 		lpfc_sli4_swap_str(phba, mboxq);
7938 
7939 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7940 			"(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
7941 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
7942 			" x%x x%x CQ: x%x x%x x%x x%x\n",
7943 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
7944 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7945 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7946 			bf_get(lpfc_mqe_status, mb),
7947 			mb->un.mb_words[0], mb->un.mb_words[1],
7948 			mb->un.mb_words[2], mb->un.mb_words[3],
7949 			mb->un.mb_words[4], mb->un.mb_words[5],
7950 			mb->un.mb_words[6], mb->un.mb_words[7],
7951 			mb->un.mb_words[8], mb->un.mb_words[9],
7952 			mb->un.mb_words[10], mb->un.mb_words[11],
7953 			mb->un.mb_words[12], mboxq->mcqe.word0,
7954 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
7955 			mboxq->mcqe.trailer);
7956 exit:
7957 	/* We are holding the token, no needed for lock when release */
7958 	spin_lock_irqsave(&phba->hbalock, iflag);
7959 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7960 	phba->sli.mbox_active = NULL;
7961 	spin_unlock_irqrestore(&phba->hbalock, iflag);
7962 	return rc;
7963 }
7964 
7965 /**
7966  * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
7967  * @phba: Pointer to HBA context object.
7968  * @pmbox: Pointer to mailbox object.
7969  * @flag: Flag indicating how the mailbox need to be processed.
7970  *
7971  * This function is called by discovery code and HBA management code to submit
7972  * a mailbox command to firmware with SLI-4 interface spec.
7973  *
7974  * Return codes the caller owns the mailbox command after the return of the
7975  * function.
7976  **/
7977 static int
7978 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
7979 		       uint32_t flag)
7980 {
7981 	struct lpfc_sli *psli = &phba->sli;
7982 	unsigned long iflags;
7983 	int rc;
7984 
7985 	/* dump from issue mailbox command if setup */
7986 	lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
7987 
7988 	rc = lpfc_mbox_dev_check(phba);
7989 	if (unlikely(rc)) {
7990 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7991 				"(%d):2544 Mailbox command x%x (x%x/x%x) "
7992 				"cannot issue Data: x%x x%x\n",
7993 				mboxq->vport ? mboxq->vport->vpi : 0,
7994 				mboxq->u.mb.mbxCommand,
7995 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7996 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7997 				psli->sli_flag, flag);
7998 		goto out_not_finished;
7999 	}
8000 
8001 	/* Detect polling mode and jump to a handler */
8002 	if (!phba->sli4_hba.intr_enable) {
8003 		if (flag == MBX_POLL)
8004 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8005 		else
8006 			rc = -EIO;
8007 		if (rc != MBX_SUCCESS)
8008 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8009 					"(%d):2541 Mailbox command x%x "
8010 					"(x%x/x%x) failure: "
8011 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8012 					"Data: x%x x%x\n,",
8013 					mboxq->vport ? mboxq->vport->vpi : 0,
8014 					mboxq->u.mb.mbxCommand,
8015 					lpfc_sli_config_mbox_subsys_get(phba,
8016 									mboxq),
8017 					lpfc_sli_config_mbox_opcode_get(phba,
8018 									mboxq),
8019 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8020 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8021 					bf_get(lpfc_mcqe_ext_status,
8022 					       &mboxq->mcqe),
8023 					psli->sli_flag, flag);
8024 		return rc;
8025 	} else if (flag == MBX_POLL) {
8026 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8027 				"(%d):2542 Try to issue mailbox command "
8028 				"x%x (x%x/x%x) synchronously ahead of async"
8029 				"mailbox command queue: x%x x%x\n",
8030 				mboxq->vport ? mboxq->vport->vpi : 0,
8031 				mboxq->u.mb.mbxCommand,
8032 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8033 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8034 				psli->sli_flag, flag);
8035 		/* Try to block the asynchronous mailbox posting */
8036 		rc = lpfc_sli4_async_mbox_block(phba);
8037 		if (!rc) {
8038 			/* Successfully blocked, now issue sync mbox cmd */
8039 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8040 			if (rc != MBX_SUCCESS)
8041 				lpfc_printf_log(phba, KERN_WARNING,
8042 					LOG_MBOX | LOG_SLI,
8043 					"(%d):2597 Sync Mailbox command "
8044 					"x%x (x%x/x%x) failure: "
8045 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8046 					"Data: x%x x%x\n,",
8047 					mboxq->vport ? mboxq->vport->vpi : 0,
8048 					mboxq->u.mb.mbxCommand,
8049 					lpfc_sli_config_mbox_subsys_get(phba,
8050 									mboxq),
8051 					lpfc_sli_config_mbox_opcode_get(phba,
8052 									mboxq),
8053 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8054 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8055 					bf_get(lpfc_mcqe_ext_status,
8056 					       &mboxq->mcqe),
8057 					psli->sli_flag, flag);
8058 			/* Unblock the async mailbox posting afterward */
8059 			lpfc_sli4_async_mbox_unblock(phba);
8060 		}
8061 		return rc;
8062 	}
8063 
8064 	/* Now, interrupt mode asynchrous mailbox command */
8065 	rc = lpfc_mbox_cmd_check(phba, mboxq);
8066 	if (rc) {
8067 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8068 				"(%d):2543 Mailbox command x%x (x%x/x%x) "
8069 				"cannot issue Data: x%x x%x\n",
8070 				mboxq->vport ? mboxq->vport->vpi : 0,
8071 				mboxq->u.mb.mbxCommand,
8072 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8073 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8074 				psli->sli_flag, flag);
8075 		goto out_not_finished;
8076 	}
8077 
8078 	/* Put the mailbox command to the driver internal FIFO */
8079 	psli->slistat.mbox_busy++;
8080 	spin_lock_irqsave(&phba->hbalock, iflags);
8081 	lpfc_mbox_put(phba, mboxq);
8082 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8083 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8084 			"(%d):0354 Mbox cmd issue - Enqueue Data: "
8085 			"x%x (x%x/x%x) x%x x%x x%x\n",
8086 			mboxq->vport ? mboxq->vport->vpi : 0xffffff,
8087 			bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8088 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8089 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8090 			phba->pport->port_state,
8091 			psli->sli_flag, MBX_NOWAIT);
8092 	/* Wake up worker thread to transport mailbox command from head */
8093 	lpfc_worker_wake_up(phba);
8094 
8095 	return MBX_BUSY;
8096 
8097 out_not_finished:
8098 	return MBX_NOT_FINISHED;
8099 }
8100 
8101 /**
8102  * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
8103  * @phba: Pointer to HBA context object.
8104  *
8105  * This function is called by worker thread to send a mailbox command to
8106  * SLI4 HBA firmware.
8107  *
8108  **/
8109 int
8110 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
8111 {
8112 	struct lpfc_sli *psli = &phba->sli;
8113 	LPFC_MBOXQ_t *mboxq;
8114 	int rc = MBX_SUCCESS;
8115 	unsigned long iflags;
8116 	struct lpfc_mqe *mqe;
8117 	uint32_t mbx_cmnd;
8118 
8119 	/* Check interrupt mode before post async mailbox command */
8120 	if (unlikely(!phba->sli4_hba.intr_enable))
8121 		return MBX_NOT_FINISHED;
8122 
8123 	/* Check for mailbox command service token */
8124 	spin_lock_irqsave(&phba->hbalock, iflags);
8125 	if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8126 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8127 		return MBX_NOT_FINISHED;
8128 	}
8129 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8130 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8131 		return MBX_NOT_FINISHED;
8132 	}
8133 	if (unlikely(phba->sli.mbox_active)) {
8134 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8135 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8136 				"0384 There is pending active mailbox cmd\n");
8137 		return MBX_NOT_FINISHED;
8138 	}
8139 	/* Take the mailbox command service token */
8140 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8141 
8142 	/* Get the next mailbox command from head of queue */
8143 	mboxq = lpfc_mbox_get(phba);
8144 
8145 	/* If no more mailbox command waiting for post, we're done */
8146 	if (!mboxq) {
8147 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8148 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8149 		return MBX_SUCCESS;
8150 	}
8151 	phba->sli.mbox_active = mboxq;
8152 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8153 
8154 	/* Check device readiness for posting mailbox command */
8155 	rc = lpfc_mbox_dev_check(phba);
8156 	if (unlikely(rc))
8157 		/* Driver clean routine will clean up pending mailbox */
8158 		goto out_not_finished;
8159 
8160 	/* Prepare the mbox command to be posted */
8161 	mqe = &mboxq->u.mqe;
8162 	mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
8163 
8164 	/* Start timer for the mbox_tmo and log some mailbox post messages */
8165 	mod_timer(&psli->mbox_tmo, (jiffies +
8166 		  msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
8167 
8168 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8169 			"(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
8170 			"x%x x%x\n",
8171 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8172 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8173 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8174 			phba->pport->port_state, psli->sli_flag);
8175 
8176 	if (mbx_cmnd != MBX_HEARTBEAT) {
8177 		if (mboxq->vport) {
8178 			lpfc_debugfs_disc_trc(mboxq->vport,
8179 				LPFC_DISC_TRC_MBOX_VPORT,
8180 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8181 				mbx_cmnd, mqe->un.mb_words[0],
8182 				mqe->un.mb_words[1]);
8183 		} else {
8184 			lpfc_debugfs_disc_trc(phba->pport,
8185 				LPFC_DISC_TRC_MBOX,
8186 				"MBOX Send: cmd:x%x mb:x%x x%x",
8187 				mbx_cmnd, mqe->un.mb_words[0],
8188 				mqe->un.mb_words[1]);
8189 		}
8190 	}
8191 	psli->slistat.mbox_cmd++;
8192 
8193 	/* Post the mailbox command to the port */
8194 	rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
8195 	if (rc != MBX_SUCCESS) {
8196 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8197 				"(%d):2533 Mailbox command x%x (x%x/x%x) "
8198 				"cannot issue Data: x%x x%x\n",
8199 				mboxq->vport ? mboxq->vport->vpi : 0,
8200 				mboxq->u.mb.mbxCommand,
8201 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8202 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8203 				psli->sli_flag, MBX_NOWAIT);
8204 		goto out_not_finished;
8205 	}
8206 
8207 	return rc;
8208 
8209 out_not_finished:
8210 	spin_lock_irqsave(&phba->hbalock, iflags);
8211 	if (phba->sli.mbox_active) {
8212 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
8213 		__lpfc_mbox_cmpl_put(phba, mboxq);
8214 		/* Release the token */
8215 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8216 		phba->sli.mbox_active = NULL;
8217 	}
8218 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8219 
8220 	return MBX_NOT_FINISHED;
8221 }
8222 
8223 /**
8224  * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
8225  * @phba: Pointer to HBA context object.
8226  * @pmbox: Pointer to mailbox object.
8227  * @flag: Flag indicating how the mailbox need to be processed.
8228  *
8229  * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
8230  * the API jump table function pointer from the lpfc_hba struct.
8231  *
8232  * Return codes the caller owns the mailbox command after the return of the
8233  * function.
8234  **/
8235 int
8236 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
8237 {
8238 	return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
8239 }
8240 
8241 /**
8242  * lpfc_mbox_api_table_setup - Set up mbox api function jump table
8243  * @phba: The hba struct for which this call is being executed.
8244  * @dev_grp: The HBA PCI-Device group number.
8245  *
8246  * This routine sets up the mbox interface API function jump table in @phba
8247  * struct.
8248  * Returns: 0 - success, -ENODEV - failure.
8249  **/
8250 int
8251 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8252 {
8253 
8254 	switch (dev_grp) {
8255 	case LPFC_PCI_DEV_LP:
8256 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
8257 		phba->lpfc_sli_handle_slow_ring_event =
8258 				lpfc_sli_handle_slow_ring_event_s3;
8259 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
8260 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
8261 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
8262 		break;
8263 	case LPFC_PCI_DEV_OC:
8264 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
8265 		phba->lpfc_sli_handle_slow_ring_event =
8266 				lpfc_sli_handle_slow_ring_event_s4;
8267 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
8268 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
8269 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
8270 		break;
8271 	default:
8272 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8273 				"1420 Invalid HBA PCI-device group: 0x%x\n",
8274 				dev_grp);
8275 		return -ENODEV;
8276 		break;
8277 	}
8278 	return 0;
8279 }
8280 
8281 /**
8282  * __lpfc_sli_ringtx_put - Add an iocb to the txq
8283  * @phba: Pointer to HBA context object.
8284  * @pring: Pointer to driver SLI ring object.
8285  * @piocb: Pointer to address of newly added command iocb.
8286  *
8287  * This function is called with hbalock held to add a command
8288  * iocb to the txq when SLI layer cannot submit the command iocb
8289  * to the ring.
8290  **/
8291 void
8292 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8293 		    struct lpfc_iocbq *piocb)
8294 {
8295 	lockdep_assert_held(&phba->hbalock);
8296 	/* Insert the caller's iocb in the txq tail for later processing. */
8297 	list_add_tail(&piocb->list, &pring->txq);
8298 }
8299 
8300 /**
8301  * lpfc_sli_next_iocb - Get the next iocb in the txq
8302  * @phba: Pointer to HBA context object.
8303  * @pring: Pointer to driver SLI ring object.
8304  * @piocb: Pointer to address of newly added command iocb.
8305  *
8306  * This function is called with hbalock held before a new
8307  * iocb is submitted to the firmware. This function checks
8308  * txq to flush the iocbs in txq to Firmware before
8309  * submitting new iocbs to the Firmware.
8310  * If there are iocbs in the txq which need to be submitted
8311  * to firmware, lpfc_sli_next_iocb returns the first element
8312  * of the txq after dequeuing it from txq.
8313  * If there is no iocb in the txq then the function will return
8314  * *piocb and *piocb is set to NULL. Caller needs to check
8315  * *piocb to find if there are more commands in the txq.
8316  **/
8317 static struct lpfc_iocbq *
8318 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8319 		   struct lpfc_iocbq **piocb)
8320 {
8321 	struct lpfc_iocbq * nextiocb;
8322 
8323 	lockdep_assert_held(&phba->hbalock);
8324 
8325 	nextiocb = lpfc_sli_ringtx_get(phba, pring);
8326 	if (!nextiocb) {
8327 		nextiocb = *piocb;
8328 		*piocb = NULL;
8329 	}
8330 
8331 	return nextiocb;
8332 }
8333 
8334 /**
8335  * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
8336  * @phba: Pointer to HBA context object.
8337  * @ring_number: SLI ring number to issue iocb on.
8338  * @piocb: Pointer to command iocb.
8339  * @flag: Flag indicating if this command can be put into txq.
8340  *
8341  * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
8342  * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
8343  * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
8344  * flag is turned on, the function returns IOCB_ERROR. When the link is down,
8345  * this function allows only iocbs for posting buffers. This function finds
8346  * next available slot in the command ring and posts the command to the
8347  * available slot and writes the port attention register to request HBA start
8348  * processing new iocb. If there is no slot available in the ring and
8349  * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
8350  * the function returns IOCB_BUSY.
8351  *
8352  * This function is called with hbalock held. The function will return success
8353  * after it successfully submit the iocb to firmware or after adding to the
8354  * txq.
8355  **/
8356 static int
8357 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
8358 		    struct lpfc_iocbq *piocb, uint32_t flag)
8359 {
8360 	struct lpfc_iocbq *nextiocb;
8361 	IOCB_t *iocb;
8362 	struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
8363 
8364 	lockdep_assert_held(&phba->hbalock);
8365 
8366 	if (piocb->iocb_cmpl && (!piocb->vport) &&
8367 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
8368 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
8369 		lpfc_printf_log(phba, KERN_ERR,
8370 				LOG_SLI | LOG_VPORT,
8371 				"1807 IOCB x%x failed. No vport\n",
8372 				piocb->iocb.ulpCommand);
8373 		dump_stack();
8374 		return IOCB_ERROR;
8375 	}
8376 
8377 
8378 	/* If the PCI channel is in offline state, do not post iocbs. */
8379 	if (unlikely(pci_channel_offline(phba->pcidev)))
8380 		return IOCB_ERROR;
8381 
8382 	/* If HBA has a deferred error attention, fail the iocb. */
8383 	if (unlikely(phba->hba_flag & DEFER_ERATT))
8384 		return IOCB_ERROR;
8385 
8386 	/*
8387 	 * We should never get an IOCB if we are in a < LINK_DOWN state
8388 	 */
8389 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
8390 		return IOCB_ERROR;
8391 
8392 	/*
8393 	 * Check to see if we are blocking IOCB processing because of a
8394 	 * outstanding event.
8395 	 */
8396 	if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
8397 		goto iocb_busy;
8398 
8399 	if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
8400 		/*
8401 		 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
8402 		 * can be issued if the link is not up.
8403 		 */
8404 		switch (piocb->iocb.ulpCommand) {
8405 		case CMD_GEN_REQUEST64_CR:
8406 		case CMD_GEN_REQUEST64_CX:
8407 			if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
8408 				(piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
8409 					FC_RCTL_DD_UNSOL_CMD) ||
8410 				(piocb->iocb.un.genreq64.w5.hcsw.Type !=
8411 					MENLO_TRANSPORT_TYPE))
8412 
8413 				goto iocb_busy;
8414 			break;
8415 		case CMD_QUE_RING_BUF_CN:
8416 		case CMD_QUE_RING_BUF64_CN:
8417 			/*
8418 			 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
8419 			 * completion, iocb_cmpl MUST be 0.
8420 			 */
8421 			if (piocb->iocb_cmpl)
8422 				piocb->iocb_cmpl = NULL;
8423 			/*FALLTHROUGH*/
8424 		case CMD_CREATE_XRI_CR:
8425 		case CMD_CLOSE_XRI_CN:
8426 		case CMD_CLOSE_XRI_CX:
8427 			break;
8428 		default:
8429 			goto iocb_busy;
8430 		}
8431 
8432 	/*
8433 	 * For FCP commands, we must be in a state where we can process link
8434 	 * attention events.
8435 	 */
8436 	} else if (unlikely(pring->ringno == LPFC_FCP_RING &&
8437 			    !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
8438 		goto iocb_busy;
8439 	}
8440 
8441 	while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
8442 	       (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
8443 		lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
8444 
8445 	if (iocb)
8446 		lpfc_sli_update_ring(phba, pring);
8447 	else
8448 		lpfc_sli_update_full_ring(phba, pring);
8449 
8450 	if (!piocb)
8451 		return IOCB_SUCCESS;
8452 
8453 	goto out_busy;
8454 
8455  iocb_busy:
8456 	pring->stats.iocb_cmd_delay++;
8457 
8458  out_busy:
8459 
8460 	if (!(flag & SLI_IOCB_RET_IOCB)) {
8461 		__lpfc_sli_ringtx_put(phba, pring, piocb);
8462 		return IOCB_SUCCESS;
8463 	}
8464 
8465 	return IOCB_BUSY;
8466 }
8467 
8468 /**
8469  * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
8470  * @phba: Pointer to HBA context object.
8471  * @piocb: Pointer to command iocb.
8472  * @sglq: Pointer to the scatter gather queue object.
8473  *
8474  * This routine converts the bpl or bde that is in the IOCB
8475  * to a sgl list for the sli4 hardware. The physical address
8476  * of the bpl/bde is converted back to a virtual address.
8477  * If the IOCB contains a BPL then the list of BDE's is
8478  * converted to sli4_sge's. If the IOCB contains a single
8479  * BDE then it is converted to a single sli_sge.
8480  * The IOCB is still in cpu endianess so the contents of
8481  * the bpl can be used without byte swapping.
8482  *
8483  * Returns valid XRI = Success, NO_XRI = Failure.
8484 **/
8485 static uint16_t
8486 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
8487 		struct lpfc_sglq *sglq)
8488 {
8489 	uint16_t xritag = NO_XRI;
8490 	struct ulp_bde64 *bpl = NULL;
8491 	struct ulp_bde64 bde;
8492 	struct sli4_sge *sgl  = NULL;
8493 	struct lpfc_dmabuf *dmabuf;
8494 	IOCB_t *icmd;
8495 	int numBdes = 0;
8496 	int i = 0;
8497 	uint32_t offset = 0; /* accumulated offset in the sg request list */
8498 	int inbound = 0; /* number of sg reply entries inbound from firmware */
8499 
8500 	if (!piocbq || !sglq)
8501 		return xritag;
8502 
8503 	sgl  = (struct sli4_sge *)sglq->sgl;
8504 	icmd = &piocbq->iocb;
8505 	if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
8506 		return sglq->sli4_xritag;
8507 	if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
8508 		numBdes = icmd->un.genreq64.bdl.bdeSize /
8509 				sizeof(struct ulp_bde64);
8510 		/* The addrHigh and addrLow fields within the IOCB
8511 		 * have not been byteswapped yet so there is no
8512 		 * need to swap them back.
8513 		 */
8514 		if (piocbq->context3)
8515 			dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
8516 		else
8517 			return xritag;
8518 
8519 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
8520 		if (!bpl)
8521 			return xritag;
8522 
8523 		for (i = 0; i < numBdes; i++) {
8524 			/* Should already be byte swapped. */
8525 			sgl->addr_hi = bpl->addrHigh;
8526 			sgl->addr_lo = bpl->addrLow;
8527 
8528 			sgl->word2 = le32_to_cpu(sgl->word2);
8529 			if ((i+1) == numBdes)
8530 				bf_set(lpfc_sli4_sge_last, sgl, 1);
8531 			else
8532 				bf_set(lpfc_sli4_sge_last, sgl, 0);
8533 			/* swap the size field back to the cpu so we
8534 			 * can assign it to the sgl.
8535 			 */
8536 			bde.tus.w = le32_to_cpu(bpl->tus.w);
8537 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
8538 			/* The offsets in the sgl need to be accumulated
8539 			 * separately for the request and reply lists.
8540 			 * The request is always first, the reply follows.
8541 			 */
8542 			if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
8543 				/* add up the reply sg entries */
8544 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
8545 					inbound++;
8546 				/* first inbound? reset the offset */
8547 				if (inbound == 1)
8548 					offset = 0;
8549 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
8550 				bf_set(lpfc_sli4_sge_type, sgl,
8551 					LPFC_SGE_TYPE_DATA);
8552 				offset += bde.tus.f.bdeSize;
8553 			}
8554 			sgl->word2 = cpu_to_le32(sgl->word2);
8555 			bpl++;
8556 			sgl++;
8557 		}
8558 	} else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
8559 			/* The addrHigh and addrLow fields of the BDE have not
8560 			 * been byteswapped yet so they need to be swapped
8561 			 * before putting them in the sgl.
8562 			 */
8563 			sgl->addr_hi =
8564 				cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
8565 			sgl->addr_lo =
8566 				cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
8567 			sgl->word2 = le32_to_cpu(sgl->word2);
8568 			bf_set(lpfc_sli4_sge_last, sgl, 1);
8569 			sgl->word2 = cpu_to_le32(sgl->word2);
8570 			sgl->sge_len =
8571 				cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
8572 	}
8573 	return sglq->sli4_xritag;
8574 }
8575 
8576 /**
8577  * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
8578  * @phba: Pointer to HBA context object.
8579  * @piocb: Pointer to command iocb.
8580  * @wqe: Pointer to the work queue entry.
8581  *
8582  * This routine converts the iocb command to its Work Queue Entry
8583  * equivalent. The wqe pointer should not have any fields set when
8584  * this routine is called because it will memcpy over them.
8585  * This routine does not set the CQ_ID or the WQEC bits in the
8586  * wqe.
8587  *
8588  * Returns: 0 = Success, IOCB_ERROR = Failure.
8589  **/
8590 static int
8591 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
8592 		union lpfc_wqe *wqe)
8593 {
8594 	uint32_t xmit_len = 0, total_len = 0;
8595 	uint8_t ct = 0;
8596 	uint32_t fip;
8597 	uint32_t abort_tag;
8598 	uint8_t command_type = ELS_COMMAND_NON_FIP;
8599 	uint8_t cmnd;
8600 	uint16_t xritag;
8601 	uint16_t abrt_iotag;
8602 	struct lpfc_iocbq *abrtiocbq;
8603 	struct ulp_bde64 *bpl = NULL;
8604 	uint32_t els_id = LPFC_ELS_ID_DEFAULT;
8605 	int numBdes, i;
8606 	struct ulp_bde64 bde;
8607 	struct lpfc_nodelist *ndlp;
8608 	uint32_t *pcmd;
8609 	uint32_t if_type;
8610 
8611 	fip = phba->hba_flag & HBA_FIP_SUPPORT;
8612 	/* The fcp commands will set command type */
8613 	if (iocbq->iocb_flag &  LPFC_IO_FCP)
8614 		command_type = FCP_COMMAND;
8615 	else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
8616 		command_type = ELS_COMMAND_FIP;
8617 	else
8618 		command_type = ELS_COMMAND_NON_FIP;
8619 
8620 	if (phba->fcp_embed_io)
8621 		memset(wqe, 0, sizeof(union lpfc_wqe128));
8622 	/* Some of the fields are in the right position already */
8623 	memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
8624 	wqe->generic.wqe_com.word7 = 0; /* The ct field has moved so reset */
8625 	wqe->generic.wqe_com.word10 = 0;
8626 
8627 	abort_tag = (uint32_t) iocbq->iotag;
8628 	xritag = iocbq->sli4_xritag;
8629 	/* words0-2 bpl convert bde */
8630 	if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
8631 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
8632 				sizeof(struct ulp_bde64);
8633 		bpl  = (struct ulp_bde64 *)
8634 			((struct lpfc_dmabuf *)iocbq->context3)->virt;
8635 		if (!bpl)
8636 			return IOCB_ERROR;
8637 
8638 		/* Should already be byte swapped. */
8639 		wqe->generic.bde.addrHigh =  le32_to_cpu(bpl->addrHigh);
8640 		wqe->generic.bde.addrLow =  le32_to_cpu(bpl->addrLow);
8641 		/* swap the size field back to the cpu so we
8642 		 * can assign it to the sgl.
8643 		 */
8644 		wqe->generic.bde.tus.w  = le32_to_cpu(bpl->tus.w);
8645 		xmit_len = wqe->generic.bde.tus.f.bdeSize;
8646 		total_len = 0;
8647 		for (i = 0; i < numBdes; i++) {
8648 			bde.tus.w  = le32_to_cpu(bpl[i].tus.w);
8649 			total_len += bde.tus.f.bdeSize;
8650 		}
8651 	} else
8652 		xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
8653 
8654 	iocbq->iocb.ulpIoTag = iocbq->iotag;
8655 	cmnd = iocbq->iocb.ulpCommand;
8656 
8657 	switch (iocbq->iocb.ulpCommand) {
8658 	case CMD_ELS_REQUEST64_CR:
8659 		if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
8660 			ndlp = iocbq->context_un.ndlp;
8661 		else
8662 			ndlp = (struct lpfc_nodelist *)iocbq->context1;
8663 		if (!iocbq->iocb.ulpLe) {
8664 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8665 				"2007 Only Limited Edition cmd Format"
8666 				" supported 0x%x\n",
8667 				iocbq->iocb.ulpCommand);
8668 			return IOCB_ERROR;
8669 		}
8670 
8671 		wqe->els_req.payload_len = xmit_len;
8672 		/* Els_reguest64 has a TMO */
8673 		bf_set(wqe_tmo, &wqe->els_req.wqe_com,
8674 			iocbq->iocb.ulpTimeout);
8675 		/* Need a VF for word 4 set the vf bit*/
8676 		bf_set(els_req64_vf, &wqe->els_req, 0);
8677 		/* And a VFID for word 12 */
8678 		bf_set(els_req64_vfid, &wqe->els_req, 0);
8679 		ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
8680 		bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
8681 		       iocbq->iocb.ulpContext);
8682 		bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
8683 		bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
8684 		/* CCP CCPE PV PRI in word10 were set in the memcpy */
8685 		if (command_type == ELS_COMMAND_FIP)
8686 			els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
8687 					>> LPFC_FIP_ELS_ID_SHIFT);
8688 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
8689 					iocbq->context2)->virt);
8690 		if_type = bf_get(lpfc_sli_intf_if_type,
8691 					&phba->sli4_hba.sli_intf);
8692 		if (if_type == LPFC_SLI_INTF_IF_TYPE_2) {
8693 			if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
8694 				*pcmd == ELS_CMD_SCR ||
8695 				*pcmd == ELS_CMD_FDISC ||
8696 				*pcmd == ELS_CMD_LOGO ||
8697 				*pcmd == ELS_CMD_PLOGI)) {
8698 				bf_set(els_req64_sp, &wqe->els_req, 1);
8699 				bf_set(els_req64_sid, &wqe->els_req,
8700 					iocbq->vport->fc_myDID);
8701 				if ((*pcmd == ELS_CMD_FLOGI) &&
8702 					!(phba->fc_topology ==
8703 						LPFC_TOPOLOGY_LOOP))
8704 					bf_set(els_req64_sid, &wqe->els_req, 0);
8705 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
8706 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
8707 					phba->vpi_ids[iocbq->vport->vpi]);
8708 			} else if (pcmd && iocbq->context1) {
8709 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
8710 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
8711 					phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
8712 			}
8713 		}
8714 		bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
8715 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
8716 		bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
8717 		bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
8718 		bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
8719 		bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
8720 		bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
8721 		bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
8722 		wqe->els_req.max_response_payload_len = total_len - xmit_len;
8723 		break;
8724 	case CMD_XMIT_SEQUENCE64_CX:
8725 		bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
8726 		       iocbq->iocb.un.ulpWord[3]);
8727 		bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
8728 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
8729 		/* The entire sequence is transmitted for this IOCB */
8730 		xmit_len = total_len;
8731 		cmnd = CMD_XMIT_SEQUENCE64_CR;
8732 		if (phba->link_flag & LS_LOOPBACK_MODE)
8733 			bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
8734 	case CMD_XMIT_SEQUENCE64_CR:
8735 		/* word3 iocb=io_tag32 wqe=reserved */
8736 		wqe->xmit_sequence.rsvd3 = 0;
8737 		/* word4 relative_offset memcpy */
8738 		/* word5 r_ctl/df_ctl memcpy */
8739 		bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
8740 		bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
8741 		bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
8742 		       LPFC_WQE_IOD_WRITE);
8743 		bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
8744 		       LPFC_WQE_LENLOC_WORD12);
8745 		bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
8746 		wqe->xmit_sequence.xmit_len = xmit_len;
8747 		command_type = OTHER_COMMAND;
8748 		break;
8749 	case CMD_XMIT_BCAST64_CN:
8750 		/* word3 iocb=iotag32 wqe=seq_payload_len */
8751 		wqe->xmit_bcast64.seq_payload_len = xmit_len;
8752 		/* word4 iocb=rsvd wqe=rsvd */
8753 		/* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
8754 		/* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
8755 		bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
8756 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
8757 		bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
8758 		bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
8759 		bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
8760 		       LPFC_WQE_LENLOC_WORD3);
8761 		bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
8762 		break;
8763 	case CMD_FCP_IWRITE64_CR:
8764 		command_type = FCP_COMMAND_DATA_OUT;
8765 		/* word3 iocb=iotag wqe=payload_offset_len */
8766 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
8767 		bf_set(payload_offset_len, &wqe->fcp_iwrite,
8768 		       xmit_len + sizeof(struct fcp_rsp));
8769 		bf_set(cmd_buff_len, &wqe->fcp_iwrite,
8770 		       0);
8771 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
8772 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
8773 		bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
8774 		       iocbq->iocb.ulpFCP2Rcvy);
8775 		bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
8776 		/* Always open the exchange */
8777 		bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
8778 		bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
8779 		       LPFC_WQE_LENLOC_WORD4);
8780 		bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
8781 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
8782 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
8783 			bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
8784 			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
8785 			if (iocbq->priority) {
8786 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
8787 				       (iocbq->priority << 1));
8788 			} else {
8789 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
8790 				       (phba->cfg_XLanePriority << 1));
8791 			}
8792 		}
8793 		/* Note, word 10 is already initialized to 0 */
8794 
8795 		if (phba->fcp_embed_io) {
8796 			struct lpfc_scsi_buf *lpfc_cmd;
8797 			struct sli4_sge *sgl;
8798 			union lpfc_wqe128 *wqe128;
8799 			struct fcp_cmnd *fcp_cmnd;
8800 			uint32_t *ptr;
8801 
8802 			/* 128 byte wqe support here */
8803 			wqe128 = (union lpfc_wqe128 *)wqe;
8804 
8805 			lpfc_cmd = iocbq->context1;
8806 			sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
8807 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
8808 
8809 			/* Word 0-2 - FCP_CMND */
8810 			wqe128->generic.bde.tus.f.bdeFlags =
8811 				BUFF_TYPE_BDE_IMMED;
8812 			wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len;
8813 			wqe128->generic.bde.addrHigh = 0;
8814 			wqe128->generic.bde.addrLow =  88;  /* Word 22 */
8815 
8816 			bf_set(wqe_wqes, &wqe128->fcp_iwrite.wqe_com, 1);
8817 
8818 			/* Word 22-29  FCP CMND Payload */
8819 			ptr = &wqe128->words[22];
8820 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
8821 		}
8822 		break;
8823 	case CMD_FCP_IREAD64_CR:
8824 		/* word3 iocb=iotag wqe=payload_offset_len */
8825 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
8826 		bf_set(payload_offset_len, &wqe->fcp_iread,
8827 		       xmit_len + sizeof(struct fcp_rsp));
8828 		bf_set(cmd_buff_len, &wqe->fcp_iread,
8829 		       0);
8830 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
8831 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
8832 		bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
8833 		       iocbq->iocb.ulpFCP2Rcvy);
8834 		bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
8835 		/* Always open the exchange */
8836 		bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
8837 		bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
8838 		       LPFC_WQE_LENLOC_WORD4);
8839 		bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
8840 		bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
8841 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
8842 			bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
8843 			bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
8844 			if (iocbq->priority) {
8845 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
8846 				       (iocbq->priority << 1));
8847 			} else {
8848 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
8849 				       (phba->cfg_XLanePriority << 1));
8850 			}
8851 		}
8852 		/* Note, word 10 is already initialized to 0 */
8853 
8854 		if (phba->fcp_embed_io) {
8855 			struct lpfc_scsi_buf *lpfc_cmd;
8856 			struct sli4_sge *sgl;
8857 			union lpfc_wqe128 *wqe128;
8858 			struct fcp_cmnd *fcp_cmnd;
8859 			uint32_t *ptr;
8860 
8861 			/* 128 byte wqe support here */
8862 			wqe128 = (union lpfc_wqe128 *)wqe;
8863 
8864 			lpfc_cmd = iocbq->context1;
8865 			sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
8866 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
8867 
8868 			/* Word 0-2 - FCP_CMND */
8869 			wqe128->generic.bde.tus.f.bdeFlags =
8870 				BUFF_TYPE_BDE_IMMED;
8871 			wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len;
8872 			wqe128->generic.bde.addrHigh = 0;
8873 			wqe128->generic.bde.addrLow =  88;  /* Word 22 */
8874 
8875 			bf_set(wqe_wqes, &wqe128->fcp_iread.wqe_com, 1);
8876 
8877 			/* Word 22-29  FCP CMND Payload */
8878 			ptr = &wqe128->words[22];
8879 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
8880 		}
8881 		break;
8882 	case CMD_FCP_ICMND64_CR:
8883 		/* word3 iocb=iotag wqe=payload_offset_len */
8884 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
8885 		bf_set(payload_offset_len, &wqe->fcp_icmd,
8886 		       xmit_len + sizeof(struct fcp_rsp));
8887 		bf_set(cmd_buff_len, &wqe->fcp_icmd,
8888 		       0);
8889 		/* word3 iocb=IO_TAG wqe=reserved */
8890 		bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
8891 		/* Always open the exchange */
8892 		bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
8893 		bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
8894 		bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
8895 		bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
8896 		       LPFC_WQE_LENLOC_NONE);
8897 		bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
8898 		       iocbq->iocb.ulpFCP2Rcvy);
8899 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
8900 			bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
8901 			bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
8902 			if (iocbq->priority) {
8903 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
8904 				       (iocbq->priority << 1));
8905 			} else {
8906 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
8907 				       (phba->cfg_XLanePriority << 1));
8908 			}
8909 		}
8910 		/* Note, word 10 is already initialized to 0 */
8911 
8912 		if (phba->fcp_embed_io) {
8913 			struct lpfc_scsi_buf *lpfc_cmd;
8914 			struct sli4_sge *sgl;
8915 			union lpfc_wqe128 *wqe128;
8916 			struct fcp_cmnd *fcp_cmnd;
8917 			uint32_t *ptr;
8918 
8919 			/* 128 byte wqe support here */
8920 			wqe128 = (union lpfc_wqe128 *)wqe;
8921 
8922 			lpfc_cmd = iocbq->context1;
8923 			sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
8924 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
8925 
8926 			/* Word 0-2 - FCP_CMND */
8927 			wqe128->generic.bde.tus.f.bdeFlags =
8928 				BUFF_TYPE_BDE_IMMED;
8929 			wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len;
8930 			wqe128->generic.bde.addrHigh = 0;
8931 			wqe128->generic.bde.addrLow =  88;  /* Word 22 */
8932 
8933 			bf_set(wqe_wqes, &wqe128->fcp_icmd.wqe_com, 1);
8934 
8935 			/* Word 22-29  FCP CMND Payload */
8936 			ptr = &wqe128->words[22];
8937 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
8938 		}
8939 		break;
8940 	case CMD_GEN_REQUEST64_CR:
8941 		/* For this command calculate the xmit length of the
8942 		 * request bde.
8943 		 */
8944 		xmit_len = 0;
8945 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
8946 			sizeof(struct ulp_bde64);
8947 		for (i = 0; i < numBdes; i++) {
8948 			bde.tus.w = le32_to_cpu(bpl[i].tus.w);
8949 			if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
8950 				break;
8951 			xmit_len += bde.tus.f.bdeSize;
8952 		}
8953 		/* word3 iocb=IO_TAG wqe=request_payload_len */
8954 		wqe->gen_req.request_payload_len = xmit_len;
8955 		/* word4 iocb=parameter wqe=relative_offset memcpy */
8956 		/* word5 [rctl, type, df_ctl, la] copied in memcpy */
8957 		/* word6 context tag copied in memcpy */
8958 		if (iocbq->iocb.ulpCt_h  || iocbq->iocb.ulpCt_l) {
8959 			ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
8960 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8961 				"2015 Invalid CT %x command 0x%x\n",
8962 				ct, iocbq->iocb.ulpCommand);
8963 			return IOCB_ERROR;
8964 		}
8965 		bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
8966 		bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
8967 		bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
8968 		bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
8969 		bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
8970 		bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
8971 		bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
8972 		bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
8973 		wqe->gen_req.max_response_payload_len = total_len - xmit_len;
8974 		command_type = OTHER_COMMAND;
8975 		break;
8976 	case CMD_XMIT_ELS_RSP64_CX:
8977 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
8978 		/* words0-2 BDE memcpy */
8979 		/* word3 iocb=iotag32 wqe=response_payload_len */
8980 		wqe->xmit_els_rsp.response_payload_len = xmit_len;
8981 		/* word4 */
8982 		wqe->xmit_els_rsp.word4 = 0;
8983 		/* word5 iocb=rsvd wge=did */
8984 		bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
8985 			 iocbq->iocb.un.xseq64.xmit_els_remoteID);
8986 
8987 		if_type = bf_get(lpfc_sli_intf_if_type,
8988 					&phba->sli4_hba.sli_intf);
8989 		if (if_type == LPFC_SLI_INTF_IF_TYPE_2) {
8990 			if (iocbq->vport->fc_flag & FC_PT2PT) {
8991 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
8992 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
8993 					iocbq->vport->fc_myDID);
8994 				if (iocbq->vport->fc_myDID == Fabric_DID) {
8995 					bf_set(wqe_els_did,
8996 						&wqe->xmit_els_rsp.wqe_dest, 0);
8997 				}
8998 			}
8999 		}
9000 		bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
9001 		       ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9002 		bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
9003 		bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
9004 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9005 		if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
9006 			bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9007 			       phba->vpi_ids[iocbq->vport->vpi]);
9008 		bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
9009 		bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
9010 		bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
9011 		bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
9012 		       LPFC_WQE_LENLOC_WORD3);
9013 		bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
9014 		bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
9015 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9016 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9017 					iocbq->context2)->virt);
9018 		if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
9019 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9020 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9021 					iocbq->vport->fc_myDID);
9022 				bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
9023 				bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9024 					phba->vpi_ids[phba->pport->vpi]);
9025 		}
9026 		command_type = OTHER_COMMAND;
9027 		break;
9028 	case CMD_CLOSE_XRI_CN:
9029 	case CMD_ABORT_XRI_CN:
9030 	case CMD_ABORT_XRI_CX:
9031 		/* words 0-2 memcpy should be 0 rserved */
9032 		/* port will send abts */
9033 		abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
9034 		if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
9035 			abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
9036 			fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
9037 		} else
9038 			fip = 0;
9039 
9040 		if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
9041 			/*
9042 			 * The link is down, or the command was ELS_FIP
9043 			 * so the fw does not need to send abts
9044 			 * on the wire.
9045 			 */
9046 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
9047 		else
9048 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
9049 		bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
9050 		/* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
9051 		wqe->abort_cmd.rsrvd5 = 0;
9052 		bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
9053 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9054 		abort_tag = iocbq->iocb.un.acxri.abortIoTag;
9055 		/*
9056 		 * The abort handler will send us CMD_ABORT_XRI_CN or
9057 		 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
9058 		 */
9059 		bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
9060 		bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
9061 		bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
9062 		       LPFC_WQE_LENLOC_NONE);
9063 		cmnd = CMD_ABORT_XRI_CX;
9064 		command_type = OTHER_COMMAND;
9065 		xritag = 0;
9066 		break;
9067 	case CMD_XMIT_BLS_RSP64_CX:
9068 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9069 		/* As BLS ABTS RSP WQE is very different from other WQEs,
9070 		 * we re-construct this WQE here based on information in
9071 		 * iocbq from scratch.
9072 		 */
9073 		memset(wqe, 0, sizeof(union lpfc_wqe));
9074 		/* OX_ID is invariable to who sent ABTS to CT exchange */
9075 		bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
9076 		       bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
9077 		if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
9078 		    LPFC_ABTS_UNSOL_INT) {
9079 			/* ABTS sent by initiator to CT exchange, the
9080 			 * RX_ID field will be filled with the newly
9081 			 * allocated responder XRI.
9082 			 */
9083 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9084 			       iocbq->sli4_xritag);
9085 		} else {
9086 			/* ABTS sent by responder to CT exchange, the
9087 			 * RX_ID field will be filled with the responder
9088 			 * RX_ID from ABTS.
9089 			 */
9090 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9091 			       bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
9092 		}
9093 		bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
9094 		bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
9095 
9096 		/* Use CT=VPI */
9097 		bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
9098 			ndlp->nlp_DID);
9099 		bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
9100 			iocbq->iocb.ulpContext);
9101 		bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
9102 		bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
9103 			phba->vpi_ids[phba->pport->vpi]);
9104 		bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
9105 		bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
9106 		       LPFC_WQE_LENLOC_NONE);
9107 		/* Overwrite the pre-set comnd type with OTHER_COMMAND */
9108 		command_type = OTHER_COMMAND;
9109 		if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
9110 			bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
9111 			       bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
9112 			bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
9113 			       bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
9114 			bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
9115 			       bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
9116 		}
9117 
9118 		break;
9119 	case CMD_XRI_ABORTED_CX:
9120 	case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
9121 	case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
9122 	case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
9123 	case CMD_FCP_TRSP64_CX: /* Target mode rcv */
9124 	case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
9125 	default:
9126 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9127 				"2014 Invalid command 0x%x\n",
9128 				iocbq->iocb.ulpCommand);
9129 		return IOCB_ERROR;
9130 		break;
9131 	}
9132 
9133 	if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
9134 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
9135 	else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
9136 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
9137 	else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
9138 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
9139 	iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
9140 			      LPFC_IO_DIF_INSERT);
9141 	bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9142 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9143 	wqe->generic.wqe_com.abort_tag = abort_tag;
9144 	bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
9145 	bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
9146 	bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
9147 	bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9148 	return 0;
9149 }
9150 
9151 /**
9152  * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
9153  * @phba: Pointer to HBA context object.
9154  * @ring_number: SLI ring number to issue iocb on.
9155  * @piocb: Pointer to command iocb.
9156  * @flag: Flag indicating if this command can be put into txq.
9157  *
9158  * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
9159  * an iocb command to an HBA with SLI-4 interface spec.
9160  *
9161  * This function is called with hbalock held. The function will return success
9162  * after it successfully submit the iocb to firmware or after adding to the
9163  * txq.
9164  **/
9165 static int
9166 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
9167 			 struct lpfc_iocbq *piocb, uint32_t flag)
9168 {
9169 	struct lpfc_sglq *sglq;
9170 	union lpfc_wqe *wqe;
9171 	union lpfc_wqe128 wqe128;
9172 	struct lpfc_queue *wq;
9173 	struct lpfc_sli_ring *pring;
9174 
9175 	/* Get the WQ */
9176 	if ((piocb->iocb_flag & LPFC_IO_FCP) ||
9177 	    (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
9178 		if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS)))
9179 			wq = phba->sli4_hba.fcp_wq[piocb->hba_wqidx];
9180 		else
9181 			wq = phba->sli4_hba.oas_wq;
9182 	} else {
9183 		wq = phba->sli4_hba.els_wq;
9184 	}
9185 
9186 	/* Get corresponding ring */
9187 	pring = wq->pring;
9188 
9189 	/*
9190 	 * The WQE can be either 64 or 128 bytes,
9191 	 * so allocate space on the stack assuming the largest.
9192 	 */
9193 	wqe = (union lpfc_wqe *)&wqe128;
9194 
9195 	lockdep_assert_held(&phba->hbalock);
9196 
9197 	if (piocb->sli4_xritag == NO_XRI) {
9198 		if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
9199 		    piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
9200 			sglq = NULL;
9201 		else {
9202 			if (!list_empty(&pring->txq)) {
9203 				if (!(flag & SLI_IOCB_RET_IOCB)) {
9204 					__lpfc_sli_ringtx_put(phba,
9205 						pring, piocb);
9206 					return IOCB_SUCCESS;
9207 				} else {
9208 					return IOCB_BUSY;
9209 				}
9210 			} else {
9211 				sglq = __lpfc_sli_get_els_sglq(phba, piocb);
9212 				if (!sglq) {
9213 					if (!(flag & SLI_IOCB_RET_IOCB)) {
9214 						__lpfc_sli_ringtx_put(phba,
9215 								pring,
9216 								piocb);
9217 						return IOCB_SUCCESS;
9218 					} else
9219 						return IOCB_BUSY;
9220 				}
9221 			}
9222 		}
9223 	} else if (piocb->iocb_flag &  LPFC_IO_FCP)
9224 		/* These IO's already have an XRI and a mapped sgl. */
9225 		sglq = NULL;
9226 	else {
9227 		/*
9228 		 * This is a continuation of a commandi,(CX) so this
9229 		 * sglq is on the active list
9230 		 */
9231 		sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
9232 		if (!sglq)
9233 			return IOCB_ERROR;
9234 	}
9235 
9236 	if (sglq) {
9237 		piocb->sli4_lxritag = sglq->sli4_lxritag;
9238 		piocb->sli4_xritag = sglq->sli4_xritag;
9239 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
9240 			return IOCB_ERROR;
9241 	}
9242 
9243 	if (lpfc_sli4_iocb2wqe(phba, piocb, wqe))
9244 		return IOCB_ERROR;
9245 
9246 	if (lpfc_sli4_wq_put(wq, wqe))
9247 		return IOCB_ERROR;
9248 	lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
9249 
9250 	return 0;
9251 }
9252 
9253 /**
9254  * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
9255  *
9256  * This routine wraps the actual lockless version for issusing IOCB function
9257  * pointer from the lpfc_hba struct.
9258  *
9259  * Return codes:
9260  * IOCB_ERROR - Error
9261  * IOCB_SUCCESS - Success
9262  * IOCB_BUSY - Busy
9263  **/
9264 int
9265 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
9266 		struct lpfc_iocbq *piocb, uint32_t flag)
9267 {
9268 	return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9269 }
9270 
9271 /**
9272  * lpfc_sli_api_table_setup - Set up sli api function jump table
9273  * @phba: The hba struct for which this call is being executed.
9274  * @dev_grp: The HBA PCI-Device group number.
9275  *
9276  * This routine sets up the SLI interface API function jump table in @phba
9277  * struct.
9278  * Returns: 0 - success, -ENODEV - failure.
9279  **/
9280 int
9281 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9282 {
9283 
9284 	switch (dev_grp) {
9285 	case LPFC_PCI_DEV_LP:
9286 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
9287 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
9288 		break;
9289 	case LPFC_PCI_DEV_OC:
9290 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
9291 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
9292 		break;
9293 	default:
9294 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9295 				"1419 Invalid HBA PCI-device group: 0x%x\n",
9296 				dev_grp);
9297 		return -ENODEV;
9298 		break;
9299 	}
9300 	phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
9301 	return 0;
9302 }
9303 
9304 /**
9305  * lpfc_sli4_calc_ring - Calculates which ring to use
9306  * @phba: Pointer to HBA context object.
9307  * @piocb: Pointer to command iocb.
9308  *
9309  * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
9310  * hba_wqidx, thus we need to calculate the corresponding ring.
9311  * Since ABORTS must go on the same WQ of the command they are
9312  * aborting, we use command's hba_wqidx.
9313  */
9314 struct lpfc_sli_ring *
9315 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
9316 {
9317 	if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
9318 		if (!(phba->cfg_fof) ||
9319 		    (!(piocb->iocb_flag & LPFC_IO_FOF))) {
9320 			if (unlikely(!phba->sli4_hba.fcp_wq))
9321 				return NULL;
9322 			/*
9323 			 * for abort iocb hba_wqidx should already
9324 			 * be setup based on what work queue we used.
9325 			 */
9326 			if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX))
9327 				piocb->hba_wqidx =
9328 					lpfc_sli4_scmd_to_wqidx_distr(phba,
9329 							      piocb->context1);
9330 			return phba->sli4_hba.fcp_wq[piocb->hba_wqidx]->pring;
9331 		} else {
9332 			if (unlikely(!phba->sli4_hba.oas_wq))
9333 				return NULL;
9334 			piocb->hba_wqidx = 0;
9335 			return phba->sli4_hba.oas_wq->pring;
9336 		}
9337 	} else {
9338 		if (unlikely(!phba->sli4_hba.els_wq))
9339 			return NULL;
9340 		piocb->hba_wqidx = 0;
9341 		return phba->sli4_hba.els_wq->pring;
9342 	}
9343 }
9344 
9345 /**
9346  * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
9347  * @phba: Pointer to HBA context object.
9348  * @pring: Pointer to driver SLI ring object.
9349  * @piocb: Pointer to command iocb.
9350  * @flag: Flag indicating if this command can be put into txq.
9351  *
9352  * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
9353  * function. This function gets the hbalock and calls
9354  * __lpfc_sli_issue_iocb function and will return the error returned
9355  * by __lpfc_sli_issue_iocb function. This wrapper is used by
9356  * functions which do not hold hbalock.
9357  **/
9358 int
9359 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
9360 		    struct lpfc_iocbq *piocb, uint32_t flag)
9361 {
9362 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
9363 	struct lpfc_sli_ring *pring;
9364 	struct lpfc_queue *fpeq;
9365 	struct lpfc_eqe *eqe;
9366 	unsigned long iflags;
9367 	int rc, idx;
9368 
9369 	if (phba->sli_rev == LPFC_SLI_REV4) {
9370 		pring = lpfc_sli4_calc_ring(phba, piocb);
9371 		if (unlikely(pring == NULL))
9372 			return IOCB_ERROR;
9373 
9374 		spin_lock_irqsave(&pring->ring_lock, iflags);
9375 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9376 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
9377 
9378 		if (lpfc_fcp_look_ahead && (piocb->iocb_flag &  LPFC_IO_FCP)) {
9379 			idx = piocb->hba_wqidx;
9380 			hba_eq_hdl = &phba->sli4_hba.hba_eq_hdl[idx];
9381 
9382 			if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) {
9383 
9384 				/* Get associated EQ with this index */
9385 				fpeq = phba->sli4_hba.hba_eq[idx];
9386 
9387 				/* Turn off interrupts from this EQ */
9388 				lpfc_sli4_eq_clr_intr(fpeq);
9389 
9390 				/*
9391 				 * Process all the events on FCP EQ
9392 				 */
9393 				while ((eqe = lpfc_sli4_eq_get(fpeq))) {
9394 					lpfc_sli4_hba_handle_eqe(phba,
9395 						eqe, idx);
9396 					fpeq->EQ_processed++;
9397 				}
9398 
9399 				/* Always clear and re-arm the EQ */
9400 				lpfc_sli4_eq_release(fpeq,
9401 					LPFC_QUEUE_REARM);
9402 			}
9403 			atomic_inc(&hba_eq_hdl->hba_eq_in_use);
9404 		}
9405 	} else {
9406 		/* For now, SLI2/3 will still use hbalock */
9407 		spin_lock_irqsave(&phba->hbalock, iflags);
9408 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9409 		spin_unlock_irqrestore(&phba->hbalock, iflags);
9410 	}
9411 	return rc;
9412 }
9413 
9414 /**
9415  * lpfc_extra_ring_setup - Extra ring setup function
9416  * @phba: Pointer to HBA context object.
9417  *
9418  * This function is called while driver attaches with the
9419  * HBA to setup the extra ring. The extra ring is used
9420  * only when driver needs to support target mode functionality
9421  * or IP over FC functionalities.
9422  *
9423  * This function is called with no lock held. SLI3 only.
9424  **/
9425 static int
9426 lpfc_extra_ring_setup( struct lpfc_hba *phba)
9427 {
9428 	struct lpfc_sli *psli;
9429 	struct lpfc_sli_ring *pring;
9430 
9431 	psli = &phba->sli;
9432 
9433 	/* Adjust cmd/rsp ring iocb entries more evenly */
9434 
9435 	/* Take some away from the FCP ring */
9436 	pring = &psli->sli3_ring[LPFC_FCP_RING];
9437 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
9438 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
9439 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
9440 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
9441 
9442 	/* and give them to the extra ring */
9443 	pring = &psli->sli3_ring[LPFC_EXTRA_RING];
9444 
9445 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
9446 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
9447 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
9448 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
9449 
9450 	/* Setup default profile for this ring */
9451 	pring->iotag_max = 4096;
9452 	pring->num_mask = 1;
9453 	pring->prt[0].profile = 0;      /* Mask 0 */
9454 	pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
9455 	pring->prt[0].type = phba->cfg_multi_ring_type;
9456 	pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
9457 	return 0;
9458 }
9459 
9460 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
9461  * @phba: Pointer to HBA context object.
9462  * @iocbq: Pointer to iocb object.
9463  *
9464  * The async_event handler calls this routine when it receives
9465  * an ASYNC_STATUS_CN event from the port.  The port generates
9466  * this event when an Abort Sequence request to an rport fails
9467  * twice in succession.  The abort could be originated by the
9468  * driver or by the port.  The ABTS could have been for an ELS
9469  * or FCP IO.  The port only generates this event when an ABTS
9470  * fails to complete after one retry.
9471  */
9472 static void
9473 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
9474 			  struct lpfc_iocbq *iocbq)
9475 {
9476 	struct lpfc_nodelist *ndlp = NULL;
9477 	uint16_t rpi = 0, vpi = 0;
9478 	struct lpfc_vport *vport = NULL;
9479 
9480 	/* The rpi in the ulpContext is vport-sensitive. */
9481 	vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
9482 	rpi = iocbq->iocb.ulpContext;
9483 
9484 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9485 			"3092 Port generated ABTS async event "
9486 			"on vpi %d rpi %d status 0x%x\n",
9487 			vpi, rpi, iocbq->iocb.ulpStatus);
9488 
9489 	vport = lpfc_find_vport_by_vpid(phba, vpi);
9490 	if (!vport)
9491 		goto err_exit;
9492 	ndlp = lpfc_findnode_rpi(vport, rpi);
9493 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
9494 		goto err_exit;
9495 
9496 	if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
9497 		lpfc_sli_abts_recover_port(vport, ndlp);
9498 	return;
9499 
9500  err_exit:
9501 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9502 			"3095 Event Context not found, no "
9503 			"action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
9504 			iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
9505 			vpi, rpi);
9506 }
9507 
9508 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
9509  * @phba: pointer to HBA context object.
9510  * @ndlp: nodelist pointer for the impacted rport.
9511  * @axri: pointer to the wcqe containing the failed exchange.
9512  *
9513  * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
9514  * port.  The port generates this event when an abort exchange request to an
9515  * rport fails twice in succession with no reply.  The abort could be originated
9516  * by the driver or by the port.  The ABTS could have been for an ELS or FCP IO.
9517  */
9518 void
9519 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
9520 			   struct lpfc_nodelist *ndlp,
9521 			   struct sli4_wcqe_xri_aborted *axri)
9522 {
9523 	struct lpfc_vport *vport;
9524 	uint32_t ext_status = 0;
9525 
9526 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
9527 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9528 				"3115 Node Context not found, driver "
9529 				"ignoring abts err event\n");
9530 		return;
9531 	}
9532 
9533 	vport = ndlp->vport;
9534 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9535 			"3116 Port generated FCP XRI ABORT event on "
9536 			"vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
9537 			ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
9538 			bf_get(lpfc_wcqe_xa_xri, axri),
9539 			bf_get(lpfc_wcqe_xa_status, axri),
9540 			axri->parameter);
9541 
9542 	/*
9543 	 * Catch the ABTS protocol failure case.  Older OCe FW releases returned
9544 	 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
9545 	 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
9546 	 */
9547 	ext_status = axri->parameter & IOERR_PARAM_MASK;
9548 	if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
9549 	    ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
9550 		lpfc_sli_abts_recover_port(vport, ndlp);
9551 }
9552 
9553 /**
9554  * lpfc_sli_async_event_handler - ASYNC iocb handler function
9555  * @phba: Pointer to HBA context object.
9556  * @pring: Pointer to driver SLI ring object.
9557  * @iocbq: Pointer to iocb object.
9558  *
9559  * This function is called by the slow ring event handler
9560  * function when there is an ASYNC event iocb in the ring.
9561  * This function is called with no lock held.
9562  * Currently this function handles only temperature related
9563  * ASYNC events. The function decodes the temperature sensor
9564  * event message and posts events for the management applications.
9565  **/
9566 static void
9567 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
9568 	struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
9569 {
9570 	IOCB_t *icmd;
9571 	uint16_t evt_code;
9572 	struct temp_event temp_event_data;
9573 	struct Scsi_Host *shost;
9574 	uint32_t *iocb_w;
9575 
9576 	icmd = &iocbq->iocb;
9577 	evt_code = icmd->un.asyncstat.evt_code;
9578 
9579 	switch (evt_code) {
9580 	case ASYNC_TEMP_WARN:
9581 	case ASYNC_TEMP_SAFE:
9582 		temp_event_data.data = (uint32_t) icmd->ulpContext;
9583 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
9584 		if (evt_code == ASYNC_TEMP_WARN) {
9585 			temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
9586 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
9587 				"0347 Adapter is very hot, please take "
9588 				"corrective action. temperature : %d Celsius\n",
9589 				(uint32_t) icmd->ulpContext);
9590 		} else {
9591 			temp_event_data.event_code = LPFC_NORMAL_TEMP;
9592 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
9593 				"0340 Adapter temperature is OK now. "
9594 				"temperature : %d Celsius\n",
9595 				(uint32_t) icmd->ulpContext);
9596 		}
9597 
9598 		/* Send temperature change event to applications */
9599 		shost = lpfc_shost_from_vport(phba->pport);
9600 		fc_host_post_vendor_event(shost, fc_get_event_number(),
9601 			sizeof(temp_event_data), (char *) &temp_event_data,
9602 			LPFC_NL_VENDOR_ID);
9603 		break;
9604 	case ASYNC_STATUS_CN:
9605 		lpfc_sli_abts_err_handler(phba, iocbq);
9606 		break;
9607 	default:
9608 		iocb_w = (uint32_t *) icmd;
9609 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9610 			"0346 Ring %d handler: unexpected ASYNC_STATUS"
9611 			" evt_code 0x%x\n"
9612 			"W0  0x%08x W1  0x%08x W2  0x%08x W3  0x%08x\n"
9613 			"W4  0x%08x W5  0x%08x W6  0x%08x W7  0x%08x\n"
9614 			"W8  0x%08x W9  0x%08x W10 0x%08x W11 0x%08x\n"
9615 			"W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
9616 			pring->ringno, icmd->un.asyncstat.evt_code,
9617 			iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
9618 			iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
9619 			iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
9620 			iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
9621 
9622 		break;
9623 	}
9624 }
9625 
9626 
9627 /**
9628  * lpfc_sli4_setup - SLI ring setup function
9629  * @phba: Pointer to HBA context object.
9630  *
9631  * lpfc_sli_setup sets up rings of the SLI interface with
9632  * number of iocbs per ring and iotags. This function is
9633  * called while driver attach to the HBA and before the
9634  * interrupts are enabled. So there is no need for locking.
9635  *
9636  * This function always returns 0.
9637  **/
9638 int
9639 lpfc_sli4_setup(struct lpfc_hba *phba)
9640 {
9641 	struct lpfc_sli_ring *pring;
9642 
9643 	pring = phba->sli4_hba.els_wq->pring;
9644 	pring->num_mask = LPFC_MAX_RING_MASK;
9645 	pring->prt[0].profile = 0;	/* Mask 0 */
9646 	pring->prt[0].rctl = FC_RCTL_ELS_REQ;
9647 	pring->prt[0].type = FC_TYPE_ELS;
9648 	pring->prt[0].lpfc_sli_rcv_unsol_event =
9649 	    lpfc_els_unsol_event;
9650 	pring->prt[1].profile = 0;	/* Mask 1 */
9651 	pring->prt[1].rctl = FC_RCTL_ELS_REP;
9652 	pring->prt[1].type = FC_TYPE_ELS;
9653 	pring->prt[1].lpfc_sli_rcv_unsol_event =
9654 	    lpfc_els_unsol_event;
9655 	pring->prt[2].profile = 0;	/* Mask 2 */
9656 	/* NameServer Inquiry */
9657 	pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
9658 	/* NameServer */
9659 	pring->prt[2].type = FC_TYPE_CT;
9660 	pring->prt[2].lpfc_sli_rcv_unsol_event =
9661 	    lpfc_ct_unsol_event;
9662 	pring->prt[3].profile = 0;	/* Mask 3 */
9663 	/* NameServer response */
9664 	pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
9665 	/* NameServer */
9666 	pring->prt[3].type = FC_TYPE_CT;
9667 	pring->prt[3].lpfc_sli_rcv_unsol_event =
9668 	    lpfc_ct_unsol_event;
9669 	return 0;
9670 }
9671 
9672 /**
9673  * lpfc_sli_setup - SLI ring setup function
9674  * @phba: Pointer to HBA context object.
9675  *
9676  * lpfc_sli_setup sets up rings of the SLI interface with
9677  * number of iocbs per ring and iotags. This function is
9678  * called while driver attach to the HBA and before the
9679  * interrupts are enabled. So there is no need for locking.
9680  *
9681  * This function always returns 0. SLI3 only.
9682  **/
9683 int
9684 lpfc_sli_setup(struct lpfc_hba *phba)
9685 {
9686 	int i, totiocbsize = 0;
9687 	struct lpfc_sli *psli = &phba->sli;
9688 	struct lpfc_sli_ring *pring;
9689 
9690 	psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
9691 	psli->sli_flag = 0;
9692 
9693 	psli->iocbq_lookup = NULL;
9694 	psli->iocbq_lookup_len = 0;
9695 	psli->last_iotag = 0;
9696 
9697 	for (i = 0; i < psli->num_rings; i++) {
9698 		pring = &psli->sli3_ring[i];
9699 		switch (i) {
9700 		case LPFC_FCP_RING:	/* ring 0 - FCP */
9701 			/* numCiocb and numRiocb are used in config_port */
9702 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
9703 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
9704 			pring->sli.sli3.numCiocb +=
9705 				SLI2_IOCB_CMD_R1XTRA_ENTRIES;
9706 			pring->sli.sli3.numRiocb +=
9707 				SLI2_IOCB_RSP_R1XTRA_ENTRIES;
9708 			pring->sli.sli3.numCiocb +=
9709 				SLI2_IOCB_CMD_R3XTRA_ENTRIES;
9710 			pring->sli.sli3.numRiocb +=
9711 				SLI2_IOCB_RSP_R3XTRA_ENTRIES;
9712 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
9713 							SLI3_IOCB_CMD_SIZE :
9714 							SLI2_IOCB_CMD_SIZE;
9715 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
9716 							SLI3_IOCB_RSP_SIZE :
9717 							SLI2_IOCB_RSP_SIZE;
9718 			pring->iotag_ctr = 0;
9719 			pring->iotag_max =
9720 			    (phba->cfg_hba_queue_depth * 2);
9721 			pring->fast_iotag = pring->iotag_max;
9722 			pring->num_mask = 0;
9723 			break;
9724 		case LPFC_EXTRA_RING:	/* ring 1 - EXTRA */
9725 			/* numCiocb and numRiocb are used in config_port */
9726 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
9727 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
9728 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
9729 							SLI3_IOCB_CMD_SIZE :
9730 							SLI2_IOCB_CMD_SIZE;
9731 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
9732 							SLI3_IOCB_RSP_SIZE :
9733 							SLI2_IOCB_RSP_SIZE;
9734 			pring->iotag_max = phba->cfg_hba_queue_depth;
9735 			pring->num_mask = 0;
9736 			break;
9737 		case LPFC_ELS_RING:	/* ring 2 - ELS / CT */
9738 			/* numCiocb and numRiocb are used in config_port */
9739 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
9740 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
9741 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
9742 							SLI3_IOCB_CMD_SIZE :
9743 							SLI2_IOCB_CMD_SIZE;
9744 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
9745 							SLI3_IOCB_RSP_SIZE :
9746 							SLI2_IOCB_RSP_SIZE;
9747 			pring->fast_iotag = 0;
9748 			pring->iotag_ctr = 0;
9749 			pring->iotag_max = 4096;
9750 			pring->lpfc_sli_rcv_async_status =
9751 				lpfc_sli_async_event_handler;
9752 			pring->num_mask = LPFC_MAX_RING_MASK;
9753 			pring->prt[0].profile = 0;	/* Mask 0 */
9754 			pring->prt[0].rctl = FC_RCTL_ELS_REQ;
9755 			pring->prt[0].type = FC_TYPE_ELS;
9756 			pring->prt[0].lpfc_sli_rcv_unsol_event =
9757 			    lpfc_els_unsol_event;
9758 			pring->prt[1].profile = 0;	/* Mask 1 */
9759 			pring->prt[1].rctl = FC_RCTL_ELS_REP;
9760 			pring->prt[1].type = FC_TYPE_ELS;
9761 			pring->prt[1].lpfc_sli_rcv_unsol_event =
9762 			    lpfc_els_unsol_event;
9763 			pring->prt[2].profile = 0;	/* Mask 2 */
9764 			/* NameServer Inquiry */
9765 			pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
9766 			/* NameServer */
9767 			pring->prt[2].type = FC_TYPE_CT;
9768 			pring->prt[2].lpfc_sli_rcv_unsol_event =
9769 			    lpfc_ct_unsol_event;
9770 			pring->prt[3].profile = 0;	/* Mask 3 */
9771 			/* NameServer response */
9772 			pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
9773 			/* NameServer */
9774 			pring->prt[3].type = FC_TYPE_CT;
9775 			pring->prt[3].lpfc_sli_rcv_unsol_event =
9776 			    lpfc_ct_unsol_event;
9777 			break;
9778 		}
9779 		totiocbsize += (pring->sli.sli3.numCiocb *
9780 			pring->sli.sli3.sizeCiocb) +
9781 			(pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
9782 	}
9783 	if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
9784 		/* Too many cmd / rsp ring entries in SLI2 SLIM */
9785 		printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
9786 		       "SLI2 SLIM Data: x%x x%lx\n",
9787 		       phba->brd_no, totiocbsize,
9788 		       (unsigned long) MAX_SLIM_IOCB_SIZE);
9789 	}
9790 	if (phba->cfg_multi_ring_support == 2)
9791 		lpfc_extra_ring_setup(phba);
9792 
9793 	return 0;
9794 }
9795 
9796 /**
9797  * lpfc_sli4_queue_init - Queue initialization function
9798  * @phba: Pointer to HBA context object.
9799  *
9800  * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
9801  * ring. This function also initializes ring indices of each ring.
9802  * This function is called during the initialization of the SLI
9803  * interface of an HBA.
9804  * This function is called with no lock held and always returns
9805  * 1.
9806  **/
9807 void
9808 lpfc_sli4_queue_init(struct lpfc_hba *phba)
9809 {
9810 	struct lpfc_sli *psli;
9811 	struct lpfc_sli_ring *pring;
9812 	int i;
9813 
9814 	psli = &phba->sli;
9815 	spin_lock_irq(&phba->hbalock);
9816 	INIT_LIST_HEAD(&psli->mboxq);
9817 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
9818 	/* Initialize list headers for txq and txcmplq as double linked lists */
9819 	for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
9820 		pring = phba->sli4_hba.fcp_wq[i]->pring;
9821 		pring->flag = 0;
9822 		pring->ringno = LPFC_FCP_RING;
9823 		INIT_LIST_HEAD(&pring->txq);
9824 		INIT_LIST_HEAD(&pring->txcmplq);
9825 		INIT_LIST_HEAD(&pring->iocb_continueq);
9826 		spin_lock_init(&pring->ring_lock);
9827 	}
9828 	for (i = 0; i < phba->cfg_nvme_io_channel; i++) {
9829 		pring = phba->sli4_hba.nvme_wq[i]->pring;
9830 		pring->flag = 0;
9831 		pring->ringno = LPFC_FCP_RING;
9832 		INIT_LIST_HEAD(&pring->txq);
9833 		INIT_LIST_HEAD(&pring->txcmplq);
9834 		INIT_LIST_HEAD(&pring->iocb_continueq);
9835 		spin_lock_init(&pring->ring_lock);
9836 	}
9837 	pring = phba->sli4_hba.els_wq->pring;
9838 	pring->flag = 0;
9839 	pring->ringno = LPFC_ELS_RING;
9840 	INIT_LIST_HEAD(&pring->txq);
9841 	INIT_LIST_HEAD(&pring->txcmplq);
9842 	INIT_LIST_HEAD(&pring->iocb_continueq);
9843 	spin_lock_init(&pring->ring_lock);
9844 
9845 	if (phba->cfg_nvme_io_channel) {
9846 		pring = phba->sli4_hba.nvmels_wq->pring;
9847 		pring->flag = 0;
9848 		pring->ringno = LPFC_ELS_RING;
9849 		INIT_LIST_HEAD(&pring->txq);
9850 		INIT_LIST_HEAD(&pring->txcmplq);
9851 		INIT_LIST_HEAD(&pring->iocb_continueq);
9852 		spin_lock_init(&pring->ring_lock);
9853 	}
9854 
9855 	if (phba->cfg_fof) {
9856 		pring = phba->sli4_hba.oas_wq->pring;
9857 		pring->flag = 0;
9858 		pring->ringno = LPFC_FCP_RING;
9859 		INIT_LIST_HEAD(&pring->txq);
9860 		INIT_LIST_HEAD(&pring->txcmplq);
9861 		INIT_LIST_HEAD(&pring->iocb_continueq);
9862 		spin_lock_init(&pring->ring_lock);
9863 	}
9864 
9865 	spin_unlock_irq(&phba->hbalock);
9866 }
9867 
9868 /**
9869  * lpfc_sli_queue_init - Queue initialization function
9870  * @phba: Pointer to HBA context object.
9871  *
9872  * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
9873  * ring. This function also initializes ring indices of each ring.
9874  * This function is called during the initialization of the SLI
9875  * interface of an HBA.
9876  * This function is called with no lock held and always returns
9877  * 1.
9878  **/
9879 void
9880 lpfc_sli_queue_init(struct lpfc_hba *phba)
9881 {
9882 	struct lpfc_sli *psli;
9883 	struct lpfc_sli_ring *pring;
9884 	int i;
9885 
9886 	psli = &phba->sli;
9887 	spin_lock_irq(&phba->hbalock);
9888 	INIT_LIST_HEAD(&psli->mboxq);
9889 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
9890 	/* Initialize list headers for txq and txcmplq as double linked lists */
9891 	for (i = 0; i < psli->num_rings; i++) {
9892 		pring = &psli->sli3_ring[i];
9893 		pring->ringno = i;
9894 		pring->sli.sli3.next_cmdidx  = 0;
9895 		pring->sli.sli3.local_getidx = 0;
9896 		pring->sli.sli3.cmdidx = 0;
9897 		INIT_LIST_HEAD(&pring->iocb_continueq);
9898 		INIT_LIST_HEAD(&pring->iocb_continue_saveq);
9899 		INIT_LIST_HEAD(&pring->postbufq);
9900 		pring->flag = 0;
9901 		INIT_LIST_HEAD(&pring->txq);
9902 		INIT_LIST_HEAD(&pring->txcmplq);
9903 		spin_lock_init(&pring->ring_lock);
9904 	}
9905 	spin_unlock_irq(&phba->hbalock);
9906 }
9907 
9908 /**
9909  * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
9910  * @phba: Pointer to HBA context object.
9911  *
9912  * This routine flushes the mailbox command subsystem. It will unconditionally
9913  * flush all the mailbox commands in the three possible stages in the mailbox
9914  * command sub-system: pending mailbox command queue; the outstanding mailbox
9915  * command; and completed mailbox command queue. It is caller's responsibility
9916  * to make sure that the driver is in the proper state to flush the mailbox
9917  * command sub-system. Namely, the posting of mailbox commands into the
9918  * pending mailbox command queue from the various clients must be stopped;
9919  * either the HBA is in a state that it will never works on the outstanding
9920  * mailbox command (such as in EEH or ERATT conditions) or the outstanding
9921  * mailbox command has been completed.
9922  **/
9923 static void
9924 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
9925 {
9926 	LIST_HEAD(completions);
9927 	struct lpfc_sli *psli = &phba->sli;
9928 	LPFC_MBOXQ_t *pmb;
9929 	unsigned long iflag;
9930 
9931 	/* Flush all the mailbox commands in the mbox system */
9932 	spin_lock_irqsave(&phba->hbalock, iflag);
9933 	/* The pending mailbox command queue */
9934 	list_splice_init(&phba->sli.mboxq, &completions);
9935 	/* The outstanding active mailbox command */
9936 	if (psli->mbox_active) {
9937 		list_add_tail(&psli->mbox_active->list, &completions);
9938 		psli->mbox_active = NULL;
9939 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9940 	}
9941 	/* The completed mailbox command queue */
9942 	list_splice_init(&phba->sli.mboxq_cmpl, &completions);
9943 	spin_unlock_irqrestore(&phba->hbalock, iflag);
9944 
9945 	/* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
9946 	while (!list_empty(&completions)) {
9947 		list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
9948 		pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
9949 		if (pmb->mbox_cmpl)
9950 			pmb->mbox_cmpl(phba, pmb);
9951 	}
9952 }
9953 
9954 /**
9955  * lpfc_sli_host_down - Vport cleanup function
9956  * @vport: Pointer to virtual port object.
9957  *
9958  * lpfc_sli_host_down is called to clean up the resources
9959  * associated with a vport before destroying virtual
9960  * port data structures.
9961  * This function does following operations:
9962  * - Free discovery resources associated with this virtual
9963  *   port.
9964  * - Free iocbs associated with this virtual port in
9965  *   the txq.
9966  * - Send abort for all iocb commands associated with this
9967  *   vport in txcmplq.
9968  *
9969  * This function is called with no lock held and always returns 1.
9970  **/
9971 int
9972 lpfc_sli_host_down(struct lpfc_vport *vport)
9973 {
9974 	LIST_HEAD(completions);
9975 	struct lpfc_hba *phba = vport->phba;
9976 	struct lpfc_sli *psli = &phba->sli;
9977 	struct lpfc_queue *qp = NULL;
9978 	struct lpfc_sli_ring *pring;
9979 	struct lpfc_iocbq *iocb, *next_iocb;
9980 	int i;
9981 	unsigned long flags = 0;
9982 	uint16_t prev_pring_flag;
9983 
9984 	lpfc_cleanup_discovery_resources(vport);
9985 
9986 	spin_lock_irqsave(&phba->hbalock, flags);
9987 
9988 	/*
9989 	 * Error everything on the txq since these iocbs
9990 	 * have not been given to the FW yet.
9991 	 * Also issue ABTS for everything on the txcmplq
9992 	 */
9993 	if (phba->sli_rev != LPFC_SLI_REV4) {
9994 		for (i = 0; i < psli->num_rings; i++) {
9995 			pring = &psli->sli3_ring[i];
9996 			prev_pring_flag = pring->flag;
9997 			/* Only slow rings */
9998 			if (pring->ringno == LPFC_ELS_RING) {
9999 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10000 				/* Set the lpfc data pending flag */
10001 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10002 			}
10003 			list_for_each_entry_safe(iocb, next_iocb,
10004 						 &pring->txq, list) {
10005 				if (iocb->vport != vport)
10006 					continue;
10007 				list_move_tail(&iocb->list, &completions);
10008 			}
10009 			list_for_each_entry_safe(iocb, next_iocb,
10010 						 &pring->txcmplq, list) {
10011 				if (iocb->vport != vport)
10012 					continue;
10013 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10014 			}
10015 			pring->flag = prev_pring_flag;
10016 		}
10017 	} else {
10018 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10019 			pring = qp->pring;
10020 			if (!pring)
10021 				continue;
10022 			if (pring == phba->sli4_hba.els_wq->pring) {
10023 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10024 				/* Set the lpfc data pending flag */
10025 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10026 			}
10027 			prev_pring_flag = pring->flag;
10028 			spin_lock_irq(&pring->ring_lock);
10029 			list_for_each_entry_safe(iocb, next_iocb,
10030 						 &pring->txq, list) {
10031 				if (iocb->vport != vport)
10032 					continue;
10033 				list_move_tail(&iocb->list, &completions);
10034 			}
10035 			spin_unlock_irq(&pring->ring_lock);
10036 			list_for_each_entry_safe(iocb, next_iocb,
10037 						 &pring->txcmplq, list) {
10038 				if (iocb->vport != vport)
10039 					continue;
10040 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10041 			}
10042 			pring->flag = prev_pring_flag;
10043 		}
10044 	}
10045 	spin_unlock_irqrestore(&phba->hbalock, flags);
10046 
10047 	/* Cancel all the IOCBs from the completions list */
10048 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10049 			      IOERR_SLI_DOWN);
10050 	return 1;
10051 }
10052 
10053 /**
10054  * lpfc_sli_hba_down - Resource cleanup function for the HBA
10055  * @phba: Pointer to HBA context object.
10056  *
10057  * This function cleans up all iocb, buffers, mailbox commands
10058  * while shutting down the HBA. This function is called with no
10059  * lock held and always returns 1.
10060  * This function does the following to cleanup driver resources:
10061  * - Free discovery resources for each virtual port
10062  * - Cleanup any pending fabric iocbs
10063  * - Iterate through the iocb txq and free each entry
10064  *   in the list.
10065  * - Free up any buffer posted to the HBA
10066  * - Free mailbox commands in the mailbox queue.
10067  **/
10068 int
10069 lpfc_sli_hba_down(struct lpfc_hba *phba)
10070 {
10071 	LIST_HEAD(completions);
10072 	struct lpfc_sli *psli = &phba->sli;
10073 	struct lpfc_queue *qp = NULL;
10074 	struct lpfc_sli_ring *pring;
10075 	struct lpfc_dmabuf *buf_ptr;
10076 	unsigned long flags = 0;
10077 	int i;
10078 
10079 	/* Shutdown the mailbox command sub-system */
10080 	lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
10081 
10082 	lpfc_hba_down_prep(phba);
10083 
10084 	lpfc_fabric_abort_hba(phba);
10085 
10086 	spin_lock_irqsave(&phba->hbalock, flags);
10087 
10088 	/*
10089 	 * Error everything on the txq since these iocbs
10090 	 * have not been given to the FW yet.
10091 	 */
10092 	if (phba->sli_rev != LPFC_SLI_REV4) {
10093 		for (i = 0; i < psli->num_rings; i++) {
10094 			pring = &psli->sli3_ring[i];
10095 			/* Only slow rings */
10096 			if (pring->ringno == LPFC_ELS_RING) {
10097 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10098 				/* Set the lpfc data pending flag */
10099 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10100 			}
10101 			list_splice_init(&pring->txq, &completions);
10102 		}
10103 	} else {
10104 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10105 			pring = qp->pring;
10106 			if (!pring)
10107 				continue;
10108 			spin_lock_irq(&pring->ring_lock);
10109 			list_splice_init(&pring->txq, &completions);
10110 			spin_unlock_irq(&pring->ring_lock);
10111 			if (pring == phba->sli4_hba.els_wq->pring) {
10112 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10113 				/* Set the lpfc data pending flag */
10114 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10115 			}
10116 		}
10117 	}
10118 	spin_unlock_irqrestore(&phba->hbalock, flags);
10119 
10120 	/* Cancel all the IOCBs from the completions list */
10121 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10122 			      IOERR_SLI_DOWN);
10123 
10124 	spin_lock_irqsave(&phba->hbalock, flags);
10125 	list_splice_init(&phba->elsbuf, &completions);
10126 	phba->elsbuf_cnt = 0;
10127 	phba->elsbuf_prev_cnt = 0;
10128 	spin_unlock_irqrestore(&phba->hbalock, flags);
10129 
10130 	while (!list_empty(&completions)) {
10131 		list_remove_head(&completions, buf_ptr,
10132 			struct lpfc_dmabuf, list);
10133 		lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
10134 		kfree(buf_ptr);
10135 	}
10136 
10137 	/* Return any active mbox cmds */
10138 	del_timer_sync(&psli->mbox_tmo);
10139 
10140 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
10141 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
10142 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
10143 
10144 	return 1;
10145 }
10146 
10147 /**
10148  * lpfc_sli_pcimem_bcopy - SLI memory copy function
10149  * @srcp: Source memory pointer.
10150  * @destp: Destination memory pointer.
10151  * @cnt: Number of words required to be copied.
10152  *
10153  * This function is used for copying data between driver memory
10154  * and the SLI memory. This function also changes the endianness
10155  * of each word if native endianness is different from SLI
10156  * endianness. This function can be called with or without
10157  * lock.
10158  **/
10159 void
10160 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
10161 {
10162 	uint32_t *src = srcp;
10163 	uint32_t *dest = destp;
10164 	uint32_t ldata;
10165 	int i;
10166 
10167 	for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
10168 		ldata = *src;
10169 		ldata = le32_to_cpu(ldata);
10170 		*dest = ldata;
10171 		src++;
10172 		dest++;
10173 	}
10174 }
10175 
10176 
10177 /**
10178  * lpfc_sli_bemem_bcopy - SLI memory copy function
10179  * @srcp: Source memory pointer.
10180  * @destp: Destination memory pointer.
10181  * @cnt: Number of words required to be copied.
10182  *
10183  * This function is used for copying data between a data structure
10184  * with big endian representation to local endianness.
10185  * This function can be called with or without lock.
10186  **/
10187 void
10188 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
10189 {
10190 	uint32_t *src = srcp;
10191 	uint32_t *dest = destp;
10192 	uint32_t ldata;
10193 	int i;
10194 
10195 	for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
10196 		ldata = *src;
10197 		ldata = be32_to_cpu(ldata);
10198 		*dest = ldata;
10199 		src++;
10200 		dest++;
10201 	}
10202 }
10203 
10204 /**
10205  * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
10206  * @phba: Pointer to HBA context object.
10207  * @pring: Pointer to driver SLI ring object.
10208  * @mp: Pointer to driver buffer object.
10209  *
10210  * This function is called with no lock held.
10211  * It always return zero after adding the buffer to the postbufq
10212  * buffer list.
10213  **/
10214 int
10215 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10216 			 struct lpfc_dmabuf *mp)
10217 {
10218 	/* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
10219 	   later */
10220 	spin_lock_irq(&phba->hbalock);
10221 	list_add_tail(&mp->list, &pring->postbufq);
10222 	pring->postbufq_cnt++;
10223 	spin_unlock_irq(&phba->hbalock);
10224 	return 0;
10225 }
10226 
10227 /**
10228  * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
10229  * @phba: Pointer to HBA context object.
10230  *
10231  * When HBQ is enabled, buffers are searched based on tags. This function
10232  * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
10233  * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
10234  * does not conflict with tags of buffer posted for unsolicited events.
10235  * The function returns the allocated tag. The function is called with
10236  * no locks held.
10237  **/
10238 uint32_t
10239 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
10240 {
10241 	spin_lock_irq(&phba->hbalock);
10242 	phba->buffer_tag_count++;
10243 	/*
10244 	 * Always set the QUE_BUFTAG_BIT to distiguish between
10245 	 * a tag assigned by HBQ.
10246 	 */
10247 	phba->buffer_tag_count |= QUE_BUFTAG_BIT;
10248 	spin_unlock_irq(&phba->hbalock);
10249 	return phba->buffer_tag_count;
10250 }
10251 
10252 /**
10253  * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
10254  * @phba: Pointer to HBA context object.
10255  * @pring: Pointer to driver SLI ring object.
10256  * @tag: Buffer tag.
10257  *
10258  * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
10259  * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
10260  * iocb is posted to the response ring with the tag of the buffer.
10261  * This function searches the pring->postbufq list using the tag
10262  * to find buffer associated with CMD_IOCB_RET_XRI64_CX
10263  * iocb. If the buffer is found then lpfc_dmabuf object of the
10264  * buffer is returned to the caller else NULL is returned.
10265  * This function is called with no lock held.
10266  **/
10267 struct lpfc_dmabuf *
10268 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10269 			uint32_t tag)
10270 {
10271 	struct lpfc_dmabuf *mp, *next_mp;
10272 	struct list_head *slp = &pring->postbufq;
10273 
10274 	/* Search postbufq, from the beginning, looking for a match on tag */
10275 	spin_lock_irq(&phba->hbalock);
10276 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10277 		if (mp->buffer_tag == tag) {
10278 			list_del_init(&mp->list);
10279 			pring->postbufq_cnt--;
10280 			spin_unlock_irq(&phba->hbalock);
10281 			return mp;
10282 		}
10283 	}
10284 
10285 	spin_unlock_irq(&phba->hbalock);
10286 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10287 			"0402 Cannot find virtual addr for buffer tag on "
10288 			"ring %d Data x%lx x%p x%p x%x\n",
10289 			pring->ringno, (unsigned long) tag,
10290 			slp->next, slp->prev, pring->postbufq_cnt);
10291 
10292 	return NULL;
10293 }
10294 
10295 /**
10296  * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
10297  * @phba: Pointer to HBA context object.
10298  * @pring: Pointer to driver SLI ring object.
10299  * @phys: DMA address of the buffer.
10300  *
10301  * This function searches the buffer list using the dma_address
10302  * of unsolicited event to find the driver's lpfc_dmabuf object
10303  * corresponding to the dma_address. The function returns the
10304  * lpfc_dmabuf object if a buffer is found else it returns NULL.
10305  * This function is called by the ct and els unsolicited event
10306  * handlers to get the buffer associated with the unsolicited
10307  * event.
10308  *
10309  * This function is called with no lock held.
10310  **/
10311 struct lpfc_dmabuf *
10312 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10313 			 dma_addr_t phys)
10314 {
10315 	struct lpfc_dmabuf *mp, *next_mp;
10316 	struct list_head *slp = &pring->postbufq;
10317 
10318 	/* Search postbufq, from the beginning, looking for a match on phys */
10319 	spin_lock_irq(&phba->hbalock);
10320 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10321 		if (mp->phys == phys) {
10322 			list_del_init(&mp->list);
10323 			pring->postbufq_cnt--;
10324 			spin_unlock_irq(&phba->hbalock);
10325 			return mp;
10326 		}
10327 	}
10328 
10329 	spin_unlock_irq(&phba->hbalock);
10330 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10331 			"0410 Cannot find virtual addr for mapped buf on "
10332 			"ring %d Data x%llx x%p x%p x%x\n",
10333 			pring->ringno, (unsigned long long)phys,
10334 			slp->next, slp->prev, pring->postbufq_cnt);
10335 	return NULL;
10336 }
10337 
10338 /**
10339  * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
10340  * @phba: Pointer to HBA context object.
10341  * @cmdiocb: Pointer to driver command iocb object.
10342  * @rspiocb: Pointer to driver response iocb object.
10343  *
10344  * This function is the completion handler for the abort iocbs for
10345  * ELS commands. This function is called from the ELS ring event
10346  * handler with no lock held. This function frees memory resources
10347  * associated with the abort iocb.
10348  **/
10349 static void
10350 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
10351 			struct lpfc_iocbq *rspiocb)
10352 {
10353 	IOCB_t *irsp = &rspiocb->iocb;
10354 	uint16_t abort_iotag, abort_context;
10355 	struct lpfc_iocbq *abort_iocb = NULL;
10356 
10357 	if (irsp->ulpStatus) {
10358 
10359 		/*
10360 		 * Assume that the port already completed and returned, or
10361 		 * will return the iocb. Just Log the message.
10362 		 */
10363 		abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
10364 		abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
10365 
10366 		spin_lock_irq(&phba->hbalock);
10367 		if (phba->sli_rev < LPFC_SLI_REV4) {
10368 			if (abort_iotag != 0 &&
10369 				abort_iotag <= phba->sli.last_iotag)
10370 				abort_iocb =
10371 					phba->sli.iocbq_lookup[abort_iotag];
10372 		} else
10373 			/* For sli4 the abort_tag is the XRI,
10374 			 * so the abort routine puts the iotag  of the iocb
10375 			 * being aborted in the context field of the abort
10376 			 * IOCB.
10377 			 */
10378 			abort_iocb = phba->sli.iocbq_lookup[abort_context];
10379 
10380 		lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
10381 				"0327 Cannot abort els iocb %p "
10382 				"with tag %x context %x, abort status %x, "
10383 				"abort code %x\n",
10384 				abort_iocb, abort_iotag, abort_context,
10385 				irsp->ulpStatus, irsp->un.ulpWord[4]);
10386 
10387 		spin_unlock_irq(&phba->hbalock);
10388 	}
10389 	lpfc_sli_release_iocbq(phba, cmdiocb);
10390 	return;
10391 }
10392 
10393 /**
10394  * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
10395  * @phba: Pointer to HBA context object.
10396  * @cmdiocb: Pointer to driver command iocb object.
10397  * @rspiocb: Pointer to driver response iocb object.
10398  *
10399  * The function is called from SLI ring event handler with no
10400  * lock held. This function is the completion handler for ELS commands
10401  * which are aborted. The function frees memory resources used for
10402  * the aborted ELS commands.
10403  **/
10404 static void
10405 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
10406 		     struct lpfc_iocbq *rspiocb)
10407 {
10408 	IOCB_t *irsp = &rspiocb->iocb;
10409 
10410 	/* ELS cmd tag <ulpIoTag> completes */
10411 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
10412 			"0139 Ignoring ELS cmd tag x%x completion Data: "
10413 			"x%x x%x x%x\n",
10414 			irsp->ulpIoTag, irsp->ulpStatus,
10415 			irsp->un.ulpWord[4], irsp->ulpTimeout);
10416 	if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
10417 		lpfc_ct_free_iocb(phba, cmdiocb);
10418 	else
10419 		lpfc_els_free_iocb(phba, cmdiocb);
10420 	return;
10421 }
10422 
10423 /**
10424  * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
10425  * @phba: Pointer to HBA context object.
10426  * @pring: Pointer to driver SLI ring object.
10427  * @cmdiocb: Pointer to driver command iocb object.
10428  *
10429  * This function issues an abort iocb for the provided command iocb down to
10430  * the port. Other than the case the outstanding command iocb is an abort
10431  * request, this function issues abort out unconditionally. This function is
10432  * called with hbalock held. The function returns 0 when it fails due to
10433  * memory allocation failure or when the command iocb is an abort request.
10434  **/
10435 static int
10436 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10437 			   struct lpfc_iocbq *cmdiocb)
10438 {
10439 	struct lpfc_vport *vport = cmdiocb->vport;
10440 	struct lpfc_iocbq *abtsiocbp;
10441 	IOCB_t *icmd = NULL;
10442 	IOCB_t *iabt = NULL;
10443 	int retval;
10444 	unsigned long iflags;
10445 
10446 	lockdep_assert_held(&phba->hbalock);
10447 
10448 	/*
10449 	 * There are certain command types we don't want to abort.  And we
10450 	 * don't want to abort commands that are already in the process of
10451 	 * being aborted.
10452 	 */
10453 	icmd = &cmdiocb->iocb;
10454 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
10455 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
10456 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
10457 		return 0;
10458 
10459 	/* issue ABTS for this IOCB based on iotag */
10460 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
10461 	if (abtsiocbp == NULL)
10462 		return 0;
10463 
10464 	/* This signals the response to set the correct status
10465 	 * before calling the completion handler
10466 	 */
10467 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
10468 
10469 	iabt = &abtsiocbp->iocb;
10470 	iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
10471 	iabt->un.acxri.abortContextTag = icmd->ulpContext;
10472 	if (phba->sli_rev == LPFC_SLI_REV4) {
10473 		iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
10474 		iabt->un.acxri.abortContextTag = cmdiocb->iotag;
10475 	}
10476 	else
10477 		iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
10478 	iabt->ulpLe = 1;
10479 	iabt->ulpClass = icmd->ulpClass;
10480 
10481 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
10482 	abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
10483 	if (cmdiocb->iocb_flag & LPFC_IO_FCP)
10484 		abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
10485 	if (cmdiocb->iocb_flag & LPFC_IO_FOF)
10486 		abtsiocbp->iocb_flag |= LPFC_IO_FOF;
10487 
10488 	if (phba->link_state >= LPFC_LINK_UP)
10489 		iabt->ulpCommand = CMD_ABORT_XRI_CN;
10490 	else
10491 		iabt->ulpCommand = CMD_CLOSE_XRI_CN;
10492 
10493 	abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
10494 	abtsiocbp->vport = vport;
10495 
10496 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
10497 			 "0339 Abort xri x%x, original iotag x%x, "
10498 			 "abort cmd iotag x%x\n",
10499 			 iabt->un.acxri.abortIoTag,
10500 			 iabt->un.acxri.abortContextTag,
10501 			 abtsiocbp->iotag);
10502 
10503 	if (phba->sli_rev == LPFC_SLI_REV4) {
10504 		pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
10505 		if (unlikely(pring == NULL))
10506 			return 0;
10507 		/* Note: both hbalock and ring_lock need to be set here */
10508 		spin_lock_irqsave(&pring->ring_lock, iflags);
10509 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
10510 			abtsiocbp, 0);
10511 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
10512 	} else {
10513 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
10514 			abtsiocbp, 0);
10515 	}
10516 
10517 	if (retval)
10518 		__lpfc_sli_release_iocbq(phba, abtsiocbp);
10519 
10520 	/*
10521 	 * Caller to this routine should check for IOCB_ERROR
10522 	 * and handle it properly.  This routine no longer removes
10523 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
10524 	 */
10525 	return retval;
10526 }
10527 
10528 /**
10529  * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
10530  * @phba: Pointer to HBA context object.
10531  * @pring: Pointer to driver SLI ring object.
10532  * @cmdiocb: Pointer to driver command iocb object.
10533  *
10534  * This function issues an abort iocb for the provided command iocb. In case
10535  * of unloading, the abort iocb will not be issued to commands on the ELS
10536  * ring. Instead, the callback function shall be changed to those commands
10537  * so that nothing happens when them finishes. This function is called with
10538  * hbalock held. The function returns 0 when the command iocb is an abort
10539  * request.
10540  **/
10541 int
10542 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10543 			   struct lpfc_iocbq *cmdiocb)
10544 {
10545 	struct lpfc_vport *vport = cmdiocb->vport;
10546 	int retval = IOCB_ERROR;
10547 	IOCB_t *icmd = NULL;
10548 
10549 	lockdep_assert_held(&phba->hbalock);
10550 
10551 	/*
10552 	 * There are certain command types we don't want to abort.  And we
10553 	 * don't want to abort commands that are already in the process of
10554 	 * being aborted.
10555 	 */
10556 	icmd = &cmdiocb->iocb;
10557 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
10558 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
10559 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
10560 		return 0;
10561 
10562 	/*
10563 	 * If we're unloading, don't abort iocb on the ELS ring, but change
10564 	 * the callback so that nothing happens when it finishes.
10565 	 */
10566 	if ((vport->load_flag & FC_UNLOADING) &&
10567 	    (pring->ringno == LPFC_ELS_RING)) {
10568 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
10569 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
10570 		else
10571 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
10572 		goto abort_iotag_exit;
10573 	}
10574 
10575 	/* Now, we try to issue the abort to the cmdiocb out */
10576 	retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
10577 
10578 abort_iotag_exit:
10579 	/*
10580 	 * Caller to this routine should check for IOCB_ERROR
10581 	 * and handle it properly.  This routine no longer removes
10582 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
10583 	 */
10584 	return retval;
10585 }
10586 
10587 /**
10588  * lpfc_sli4_abort_nvme_io - Issue abort for a command iocb
10589  * @phba: Pointer to HBA context object.
10590  * @pring: Pointer to driver SLI ring object.
10591  * @cmdiocb: Pointer to driver command iocb object.
10592  *
10593  * This function issues an abort iocb for the provided command iocb down to
10594  * the port. Other than the case the outstanding command iocb is an abort
10595  * request, this function issues abort out unconditionally. This function is
10596  * called with hbalock held. The function returns 0 when it fails due to
10597  * memory allocation failure or when the command iocb is an abort request.
10598  **/
10599 static int
10600 lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10601 			struct lpfc_iocbq *cmdiocb)
10602 {
10603 	struct lpfc_vport *vport = cmdiocb->vport;
10604 	struct lpfc_iocbq *abtsiocbp;
10605 	union lpfc_wqe *abts_wqe;
10606 	int retval;
10607 
10608 	/*
10609 	 * There are certain command types we don't want to abort.  And we
10610 	 * don't want to abort commands that are already in the process of
10611 	 * being aborted.
10612 	 */
10613 	if (cmdiocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
10614 	    cmdiocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN ||
10615 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
10616 		return 0;
10617 
10618 	/* issue ABTS for this io based on iotag */
10619 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
10620 	if (abtsiocbp == NULL)
10621 		return 0;
10622 
10623 	/* This signals the response to set the correct status
10624 	 * before calling the completion handler
10625 	 */
10626 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
10627 
10628 	/* Complete prepping the abort wqe and issue to the FW. */
10629 	abts_wqe = &abtsiocbp->wqe;
10630 	bf_set(abort_cmd_ia, &abts_wqe->abort_cmd, 0);
10631 	bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG);
10632 
10633 	/* Explicitly set reserved fields to zero.*/
10634 	abts_wqe->abort_cmd.rsrvd4 = 0;
10635 	abts_wqe->abort_cmd.rsrvd5 = 0;
10636 
10637 	/* WQE Common - word 6.  Context is XRI tag.  Set 0. */
10638 	bf_set(wqe_xri_tag, &abts_wqe->abort_cmd.wqe_com, 0);
10639 	bf_set(wqe_ctxt_tag, &abts_wqe->abort_cmd.wqe_com, 0);
10640 
10641 	/* word 7 */
10642 	bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0);
10643 	bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
10644 	bf_set(wqe_class, &abts_wqe->abort_cmd.wqe_com,
10645 	       cmdiocb->iocb.ulpClass);
10646 
10647 	/* word 8 - tell the FW to abort the IO associated with this
10648 	 * outstanding exchange ID.
10649 	 */
10650 	abts_wqe->abort_cmd.wqe_com.abort_tag = cmdiocb->sli4_xritag;
10651 
10652 	/* word 9 - this is the iotag for the abts_wqe completion. */
10653 	bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com,
10654 	       abtsiocbp->iotag);
10655 
10656 	/* word 10 */
10657 	bf_set(wqe_wqid, &abts_wqe->abort_cmd.wqe_com, cmdiocb->hba_wqidx);
10658 	bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1);
10659 	bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
10660 
10661 	/* word 11 */
10662 	bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND);
10663 	bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1);
10664 	bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
10665 
10666 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
10667 	abtsiocbp->iocb_flag |= LPFC_IO_NVME;
10668 	abtsiocbp->vport = vport;
10669 	abtsiocbp->wqe_cmpl = lpfc_nvme_abort_fcreq_cmpl;
10670 	retval = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abtsiocbp);
10671 	if (retval == IOCB_ERROR) {
10672 		lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME,
10673 				 "6147 Failed abts issue_wqe with status x%x "
10674 				 "for oxid x%x\n",
10675 				 retval, cmdiocb->sli4_xritag);
10676 		lpfc_sli_release_iocbq(phba, abtsiocbp);
10677 		return retval;
10678 	}
10679 
10680 	lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME,
10681 			 "6148 Drv Abort NVME Request Issued for "
10682 			 "ox_id x%x on reqtag x%x\n",
10683 			 cmdiocb->sli4_xritag,
10684 			 abtsiocbp->iotag);
10685 
10686 	return retval;
10687 }
10688 
10689 /**
10690  * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
10691  * @phba: pointer to lpfc HBA data structure.
10692  *
10693  * This routine will abort all pending and outstanding iocbs to an HBA.
10694  **/
10695 void
10696 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
10697 {
10698 	struct lpfc_sli *psli = &phba->sli;
10699 	struct lpfc_sli_ring *pring;
10700 	struct lpfc_queue *qp = NULL;
10701 	int i;
10702 
10703 	if (phba->sli_rev != LPFC_SLI_REV4) {
10704 		for (i = 0; i < psli->num_rings; i++) {
10705 			pring = &psli->sli3_ring[i];
10706 			lpfc_sli_abort_iocb_ring(phba, pring);
10707 		}
10708 		return;
10709 	}
10710 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10711 		pring = qp->pring;
10712 		if (!pring)
10713 			continue;
10714 		lpfc_sli_abort_iocb_ring(phba, pring);
10715 	}
10716 }
10717 
10718 /**
10719  * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
10720  * @iocbq: Pointer to driver iocb object.
10721  * @vport: Pointer to driver virtual port object.
10722  * @tgt_id: SCSI ID of the target.
10723  * @lun_id: LUN ID of the scsi device.
10724  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
10725  *
10726  * This function acts as an iocb filter for functions which abort or count
10727  * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
10728  * 0 if the filtering criteria is met for the given iocb and will return
10729  * 1 if the filtering criteria is not met.
10730  * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
10731  * given iocb is for the SCSI device specified by vport, tgt_id and
10732  * lun_id parameter.
10733  * If ctx_cmd == LPFC_CTX_TGT,  the function returns 0 only if the
10734  * given iocb is for the SCSI target specified by vport and tgt_id
10735  * parameters.
10736  * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
10737  * given iocb is for the SCSI host associated with the given vport.
10738  * This function is called with no locks held.
10739  **/
10740 static int
10741 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
10742 			   uint16_t tgt_id, uint64_t lun_id,
10743 			   lpfc_ctx_cmd ctx_cmd)
10744 {
10745 	struct lpfc_scsi_buf *lpfc_cmd;
10746 	int rc = 1;
10747 
10748 	if (!(iocbq->iocb_flag &  LPFC_IO_FCP))
10749 		return rc;
10750 
10751 	if (iocbq->vport != vport)
10752 		return rc;
10753 
10754 	lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
10755 
10756 	if (lpfc_cmd->pCmd == NULL)
10757 		return rc;
10758 
10759 	switch (ctx_cmd) {
10760 	case LPFC_CTX_LUN:
10761 		if ((lpfc_cmd->rdata->pnode) &&
10762 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
10763 		    (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
10764 			rc = 0;
10765 		break;
10766 	case LPFC_CTX_TGT:
10767 		if ((lpfc_cmd->rdata->pnode) &&
10768 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
10769 			rc = 0;
10770 		break;
10771 	case LPFC_CTX_HOST:
10772 		rc = 0;
10773 		break;
10774 	default:
10775 		printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
10776 			__func__, ctx_cmd);
10777 		break;
10778 	}
10779 
10780 	return rc;
10781 }
10782 
10783 /**
10784  * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
10785  * @vport: Pointer to virtual port.
10786  * @tgt_id: SCSI ID of the target.
10787  * @lun_id: LUN ID of the scsi device.
10788  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
10789  *
10790  * This function returns number of FCP commands pending for the vport.
10791  * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
10792  * commands pending on the vport associated with SCSI device specified
10793  * by tgt_id and lun_id parameters.
10794  * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
10795  * commands pending on the vport associated with SCSI target specified
10796  * by tgt_id parameter.
10797  * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
10798  * commands pending on the vport.
10799  * This function returns the number of iocbs which satisfy the filter.
10800  * This function is called without any lock held.
10801  **/
10802 int
10803 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
10804 		  lpfc_ctx_cmd ctx_cmd)
10805 {
10806 	struct lpfc_hba *phba = vport->phba;
10807 	struct lpfc_iocbq *iocbq;
10808 	int sum, i;
10809 
10810 	spin_lock_irq(&phba->hbalock);
10811 	for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
10812 		iocbq = phba->sli.iocbq_lookup[i];
10813 
10814 		if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
10815 						ctx_cmd) == 0)
10816 			sum++;
10817 	}
10818 	spin_unlock_irq(&phba->hbalock);
10819 
10820 	return sum;
10821 }
10822 
10823 /**
10824  * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
10825  * @phba: Pointer to HBA context object
10826  * @cmdiocb: Pointer to command iocb object.
10827  * @rspiocb: Pointer to response iocb object.
10828  *
10829  * This function is called when an aborted FCP iocb completes. This
10830  * function is called by the ring event handler with no lock held.
10831  * This function frees the iocb.
10832  **/
10833 void
10834 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
10835 			struct lpfc_iocbq *rspiocb)
10836 {
10837 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10838 			"3096 ABORT_XRI_CN completing on rpi x%x "
10839 			"original iotag x%x, abort cmd iotag x%x "
10840 			"status 0x%x, reason 0x%x\n",
10841 			cmdiocb->iocb.un.acxri.abortContextTag,
10842 			cmdiocb->iocb.un.acxri.abortIoTag,
10843 			cmdiocb->iotag, rspiocb->iocb.ulpStatus,
10844 			rspiocb->iocb.un.ulpWord[4]);
10845 	lpfc_sli_release_iocbq(phba, cmdiocb);
10846 	return;
10847 }
10848 
10849 /**
10850  * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
10851  * @vport: Pointer to virtual port.
10852  * @pring: Pointer to driver SLI ring object.
10853  * @tgt_id: SCSI ID of the target.
10854  * @lun_id: LUN ID of the scsi device.
10855  * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
10856  *
10857  * This function sends an abort command for every SCSI command
10858  * associated with the given virtual port pending on the ring
10859  * filtered by lpfc_sli_validate_fcp_iocb function.
10860  * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
10861  * FCP iocbs associated with lun specified by tgt_id and lun_id
10862  * parameters
10863  * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
10864  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
10865  * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
10866  * FCP iocbs associated with virtual port.
10867  * This function returns number of iocbs it failed to abort.
10868  * This function is called with no locks held.
10869  **/
10870 int
10871 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
10872 		    uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
10873 {
10874 	struct lpfc_hba *phba = vport->phba;
10875 	struct lpfc_iocbq *iocbq;
10876 	struct lpfc_iocbq *abtsiocb;
10877 	IOCB_t *cmd = NULL;
10878 	int errcnt = 0, ret_val = 0;
10879 	int i;
10880 
10881 	for (i = 1; i <= phba->sli.last_iotag; i++) {
10882 		iocbq = phba->sli.iocbq_lookup[i];
10883 
10884 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
10885 					       abort_cmd) != 0)
10886 			continue;
10887 
10888 		/*
10889 		 * If the iocbq is already being aborted, don't take a second
10890 		 * action, but do count it.
10891 		 */
10892 		if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
10893 			continue;
10894 
10895 		/* issue ABTS for this IOCB based on iotag */
10896 		abtsiocb = lpfc_sli_get_iocbq(phba);
10897 		if (abtsiocb == NULL) {
10898 			errcnt++;
10899 			continue;
10900 		}
10901 
10902 		/* indicate the IO is being aborted by the driver. */
10903 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
10904 
10905 		cmd = &iocbq->iocb;
10906 		abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
10907 		abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
10908 		if (phba->sli_rev == LPFC_SLI_REV4)
10909 			abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
10910 		else
10911 			abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
10912 		abtsiocb->iocb.ulpLe = 1;
10913 		abtsiocb->iocb.ulpClass = cmd->ulpClass;
10914 		abtsiocb->vport = vport;
10915 
10916 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
10917 		abtsiocb->hba_wqidx = iocbq->hba_wqidx;
10918 		if (iocbq->iocb_flag & LPFC_IO_FCP)
10919 			abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
10920 		if (iocbq->iocb_flag & LPFC_IO_FOF)
10921 			abtsiocb->iocb_flag |= LPFC_IO_FOF;
10922 
10923 		if (lpfc_is_link_up(phba))
10924 			abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
10925 		else
10926 			abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
10927 
10928 		/* Setup callback routine and issue the command. */
10929 		abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
10930 		ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
10931 					      abtsiocb, 0);
10932 		if (ret_val == IOCB_ERROR) {
10933 			lpfc_sli_release_iocbq(phba, abtsiocb);
10934 			errcnt++;
10935 			continue;
10936 		}
10937 	}
10938 
10939 	return errcnt;
10940 }
10941 
10942 /**
10943  * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
10944  * @vport: Pointer to virtual port.
10945  * @pring: Pointer to driver SLI ring object.
10946  * @tgt_id: SCSI ID of the target.
10947  * @lun_id: LUN ID of the scsi device.
10948  * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
10949  *
10950  * This function sends an abort command for every SCSI command
10951  * associated with the given virtual port pending on the ring
10952  * filtered by lpfc_sli_validate_fcp_iocb function.
10953  * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
10954  * FCP iocbs associated with lun specified by tgt_id and lun_id
10955  * parameters
10956  * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
10957  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
10958  * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
10959  * FCP iocbs associated with virtual port.
10960  * This function returns number of iocbs it aborted .
10961  * This function is called with no locks held right after a taskmgmt
10962  * command is sent.
10963  **/
10964 int
10965 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
10966 			uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
10967 {
10968 	struct lpfc_hba *phba = vport->phba;
10969 	struct lpfc_scsi_buf *lpfc_cmd;
10970 	struct lpfc_iocbq *abtsiocbq;
10971 	struct lpfc_nodelist *ndlp;
10972 	struct lpfc_iocbq *iocbq;
10973 	IOCB_t *icmd;
10974 	int sum, i, ret_val;
10975 	unsigned long iflags;
10976 	struct lpfc_sli_ring *pring_s4;
10977 
10978 	spin_lock_irq(&phba->hbalock);
10979 
10980 	/* all I/Os are in process of being flushed */
10981 	if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) {
10982 		spin_unlock_irq(&phba->hbalock);
10983 		return 0;
10984 	}
10985 	sum = 0;
10986 
10987 	for (i = 1; i <= phba->sli.last_iotag; i++) {
10988 		iocbq = phba->sli.iocbq_lookup[i];
10989 
10990 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
10991 					       cmd) != 0)
10992 			continue;
10993 
10994 		/*
10995 		 * If the iocbq is already being aborted, don't take a second
10996 		 * action, but do count it.
10997 		 */
10998 		if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
10999 			continue;
11000 
11001 		/* issue ABTS for this IOCB based on iotag */
11002 		abtsiocbq = __lpfc_sli_get_iocbq(phba);
11003 		if (abtsiocbq == NULL)
11004 			continue;
11005 
11006 		icmd = &iocbq->iocb;
11007 		abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11008 		abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
11009 		if (phba->sli_rev == LPFC_SLI_REV4)
11010 			abtsiocbq->iocb.un.acxri.abortIoTag =
11011 							 iocbq->sli4_xritag;
11012 		else
11013 			abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
11014 		abtsiocbq->iocb.ulpLe = 1;
11015 		abtsiocbq->iocb.ulpClass = icmd->ulpClass;
11016 		abtsiocbq->vport = vport;
11017 
11018 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11019 		abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
11020 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11021 			abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
11022 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11023 			abtsiocbq->iocb_flag |= LPFC_IO_FOF;
11024 
11025 		lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
11026 		ndlp = lpfc_cmd->rdata->pnode;
11027 
11028 		if (lpfc_is_link_up(phba) &&
11029 		    (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
11030 			abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11031 		else
11032 			abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11033 
11034 		/* Setup callback routine and issue the command. */
11035 		abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11036 
11037 		/*
11038 		 * Indicate the IO is being aborted by the driver and set
11039 		 * the caller's flag into the aborted IO.
11040 		 */
11041 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11042 
11043 		if (phba->sli_rev == LPFC_SLI_REV4) {
11044 			pring_s4 = lpfc_sli4_calc_ring(phba, iocbq);
11045 			if (pring_s4 == NULL)
11046 				continue;
11047 			/* Note: both hbalock and ring_lock must be set here */
11048 			spin_lock_irqsave(&pring_s4->ring_lock, iflags);
11049 			ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11050 							abtsiocbq, 0);
11051 			spin_unlock_irqrestore(&pring_s4->ring_lock, iflags);
11052 		} else {
11053 			ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
11054 							abtsiocbq, 0);
11055 		}
11056 
11057 
11058 		if (ret_val == IOCB_ERROR)
11059 			__lpfc_sli_release_iocbq(phba, abtsiocbq);
11060 		else
11061 			sum++;
11062 	}
11063 	spin_unlock_irq(&phba->hbalock);
11064 	return sum;
11065 }
11066 
11067 /**
11068  * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
11069  * @phba: Pointer to HBA context object.
11070  * @cmdiocbq: Pointer to command iocb.
11071  * @rspiocbq: Pointer to response iocb.
11072  *
11073  * This function is the completion handler for iocbs issued using
11074  * lpfc_sli_issue_iocb_wait function. This function is called by the
11075  * ring event handler function without any lock held. This function
11076  * can be called from both worker thread context and interrupt
11077  * context. This function also can be called from other thread which
11078  * cleans up the SLI layer objects.
11079  * This function copy the contents of the response iocb to the
11080  * response iocb memory object provided by the caller of
11081  * lpfc_sli_issue_iocb_wait and then wakes up the thread which
11082  * sleeps for the iocb completion.
11083  **/
11084 static void
11085 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
11086 			struct lpfc_iocbq *cmdiocbq,
11087 			struct lpfc_iocbq *rspiocbq)
11088 {
11089 	wait_queue_head_t *pdone_q;
11090 	unsigned long iflags;
11091 	struct lpfc_scsi_buf *lpfc_cmd;
11092 
11093 	spin_lock_irqsave(&phba->hbalock, iflags);
11094 	if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
11095 
11096 		/*
11097 		 * A time out has occurred for the iocb.  If a time out
11098 		 * completion handler has been supplied, call it.  Otherwise,
11099 		 * just free the iocbq.
11100 		 */
11101 
11102 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11103 		cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
11104 		cmdiocbq->wait_iocb_cmpl = NULL;
11105 		if (cmdiocbq->iocb_cmpl)
11106 			(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
11107 		else
11108 			lpfc_sli_release_iocbq(phba, cmdiocbq);
11109 		return;
11110 	}
11111 
11112 	cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
11113 	if (cmdiocbq->context2 && rspiocbq)
11114 		memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
11115 		       &rspiocbq->iocb, sizeof(IOCB_t));
11116 
11117 	/* Set the exchange busy flag for task management commands */
11118 	if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
11119 		!(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
11120 		lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf,
11121 			cur_iocbq);
11122 		lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY;
11123 	}
11124 
11125 	pdone_q = cmdiocbq->context_un.wait_queue;
11126 	if (pdone_q)
11127 		wake_up(pdone_q);
11128 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11129 	return;
11130 }
11131 
11132 /**
11133  * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
11134  * @phba: Pointer to HBA context object..
11135  * @piocbq: Pointer to command iocb.
11136  * @flag: Flag to test.
11137  *
11138  * This routine grabs the hbalock and then test the iocb_flag to
11139  * see if the passed in flag is set.
11140  * Returns:
11141  * 1 if flag is set.
11142  * 0 if flag is not set.
11143  **/
11144 static int
11145 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
11146 		 struct lpfc_iocbq *piocbq, uint32_t flag)
11147 {
11148 	unsigned long iflags;
11149 	int ret;
11150 
11151 	spin_lock_irqsave(&phba->hbalock, iflags);
11152 	ret = piocbq->iocb_flag & flag;
11153 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11154 	return ret;
11155 
11156 }
11157 
11158 /**
11159  * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
11160  * @phba: Pointer to HBA context object..
11161  * @pring: Pointer to sli ring.
11162  * @piocb: Pointer to command iocb.
11163  * @prspiocbq: Pointer to response iocb.
11164  * @timeout: Timeout in number of seconds.
11165  *
11166  * This function issues the iocb to firmware and waits for the
11167  * iocb to complete. The iocb_cmpl field of the shall be used
11168  * to handle iocbs which time out. If the field is NULL, the
11169  * function shall free the iocbq structure.  If more clean up is
11170  * needed, the caller is expected to provide a completion function
11171  * that will provide the needed clean up.  If the iocb command is
11172  * not completed within timeout seconds, the function will either
11173  * free the iocbq structure (if iocb_cmpl == NULL) or execute the
11174  * completion function set in the iocb_cmpl field and then return
11175  * a status of IOCB_TIMEDOUT.  The caller should not free the iocb
11176  * resources if this function returns IOCB_TIMEDOUT.
11177  * The function waits for the iocb completion using an
11178  * non-interruptible wait.
11179  * This function will sleep while waiting for iocb completion.
11180  * So, this function should not be called from any context which
11181  * does not allow sleeping. Due to the same reason, this function
11182  * cannot be called with interrupt disabled.
11183  * This function assumes that the iocb completions occur while
11184  * this function sleep. So, this function cannot be called from
11185  * the thread which process iocb completion for this ring.
11186  * This function clears the iocb_flag of the iocb object before
11187  * issuing the iocb and the iocb completion handler sets this
11188  * flag and wakes this thread when the iocb completes.
11189  * The contents of the response iocb will be copied to prspiocbq
11190  * by the completion handler when the command completes.
11191  * This function returns IOCB_SUCCESS when success.
11192  * This function is called with no lock held.
11193  **/
11194 int
11195 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
11196 			 uint32_t ring_number,
11197 			 struct lpfc_iocbq *piocb,
11198 			 struct lpfc_iocbq *prspiocbq,
11199 			 uint32_t timeout)
11200 {
11201 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
11202 	long timeleft, timeout_req = 0;
11203 	int retval = IOCB_SUCCESS;
11204 	uint32_t creg_val;
11205 	struct lpfc_iocbq *iocb;
11206 	int txq_cnt = 0;
11207 	int txcmplq_cnt = 0;
11208 	struct lpfc_sli_ring *pring;
11209 	unsigned long iflags;
11210 	bool iocb_completed = true;
11211 
11212 	if (phba->sli_rev >= LPFC_SLI_REV4)
11213 		pring = lpfc_sli4_calc_ring(phba, piocb);
11214 	else
11215 		pring = &phba->sli.sli3_ring[ring_number];
11216 	/*
11217 	 * If the caller has provided a response iocbq buffer, then context2
11218 	 * is NULL or its an error.
11219 	 */
11220 	if (prspiocbq) {
11221 		if (piocb->context2)
11222 			return IOCB_ERROR;
11223 		piocb->context2 = prspiocbq;
11224 	}
11225 
11226 	piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
11227 	piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
11228 	piocb->context_un.wait_queue = &done_q;
11229 	piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
11230 
11231 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11232 		if (lpfc_readl(phba->HCregaddr, &creg_val))
11233 			return IOCB_ERROR;
11234 		creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
11235 		writel(creg_val, phba->HCregaddr);
11236 		readl(phba->HCregaddr); /* flush */
11237 	}
11238 
11239 	retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
11240 				     SLI_IOCB_RET_IOCB);
11241 	if (retval == IOCB_SUCCESS) {
11242 		timeout_req = msecs_to_jiffies(timeout * 1000);
11243 		timeleft = wait_event_timeout(done_q,
11244 				lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
11245 				timeout_req);
11246 		spin_lock_irqsave(&phba->hbalock, iflags);
11247 		if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
11248 
11249 			/*
11250 			 * IOCB timed out.  Inform the wake iocb wait
11251 			 * completion function and set local status
11252 			 */
11253 
11254 			iocb_completed = false;
11255 			piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
11256 		}
11257 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11258 		if (iocb_completed) {
11259 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11260 					"0331 IOCB wake signaled\n");
11261 			/* Note: we are not indicating if the IOCB has a success
11262 			 * status or not - that's for the caller to check.
11263 			 * IOCB_SUCCESS means just that the command was sent and
11264 			 * completed. Not that it completed successfully.
11265 			 * */
11266 		} else if (timeleft == 0) {
11267 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11268 					"0338 IOCB wait timeout error - no "
11269 					"wake response Data x%x\n", timeout);
11270 			retval = IOCB_TIMEDOUT;
11271 		} else {
11272 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11273 					"0330 IOCB wake NOT set, "
11274 					"Data x%x x%lx\n",
11275 					timeout, (timeleft / jiffies));
11276 			retval = IOCB_TIMEDOUT;
11277 		}
11278 	} else if (retval == IOCB_BUSY) {
11279 		if (phba->cfg_log_verbose & LOG_SLI) {
11280 			list_for_each_entry(iocb, &pring->txq, list) {
11281 				txq_cnt++;
11282 			}
11283 			list_for_each_entry(iocb, &pring->txcmplq, list) {
11284 				txcmplq_cnt++;
11285 			}
11286 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11287 				"2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
11288 				phba->iocb_cnt, txq_cnt, txcmplq_cnt);
11289 		}
11290 		return retval;
11291 	} else {
11292 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11293 				"0332 IOCB wait issue failed, Data x%x\n",
11294 				retval);
11295 		retval = IOCB_ERROR;
11296 	}
11297 
11298 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11299 		if (lpfc_readl(phba->HCregaddr, &creg_val))
11300 			return IOCB_ERROR;
11301 		creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
11302 		writel(creg_val, phba->HCregaddr);
11303 		readl(phba->HCregaddr); /* flush */
11304 	}
11305 
11306 	if (prspiocbq)
11307 		piocb->context2 = NULL;
11308 
11309 	piocb->context_un.wait_queue = NULL;
11310 	piocb->iocb_cmpl = NULL;
11311 	return retval;
11312 }
11313 
11314 /**
11315  * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
11316  * @phba: Pointer to HBA context object.
11317  * @pmboxq: Pointer to driver mailbox object.
11318  * @timeout: Timeout in number of seconds.
11319  *
11320  * This function issues the mailbox to firmware and waits for the
11321  * mailbox command to complete. If the mailbox command is not
11322  * completed within timeout seconds, it returns MBX_TIMEOUT.
11323  * The function waits for the mailbox completion using an
11324  * interruptible wait. If the thread is woken up due to a
11325  * signal, MBX_TIMEOUT error is returned to the caller. Caller
11326  * should not free the mailbox resources, if this function returns
11327  * MBX_TIMEOUT.
11328  * This function will sleep while waiting for mailbox completion.
11329  * So, this function should not be called from any context which
11330  * does not allow sleeping. Due to the same reason, this function
11331  * cannot be called with interrupt disabled.
11332  * This function assumes that the mailbox completion occurs while
11333  * this function sleep. So, this function cannot be called from
11334  * the worker thread which processes mailbox completion.
11335  * This function is called in the context of HBA management
11336  * applications.
11337  * This function returns MBX_SUCCESS when successful.
11338  * This function is called with no lock held.
11339  **/
11340 int
11341 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
11342 			 uint32_t timeout)
11343 {
11344 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
11345 	MAILBOX_t *mb = NULL;
11346 	int retval;
11347 	unsigned long flag;
11348 
11349 	/* The caller might set context1 for extended buffer */
11350 	if (pmboxq->context1)
11351 		mb = (MAILBOX_t *)pmboxq->context1;
11352 
11353 	pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
11354 	/* setup wake call as IOCB callback */
11355 	pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
11356 	/* setup context field to pass wait_queue pointer to wake function  */
11357 	pmboxq->context1 = &done_q;
11358 
11359 	/* now issue the command */
11360 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
11361 	if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
11362 		wait_event_interruptible_timeout(done_q,
11363 				pmboxq->mbox_flag & LPFC_MBX_WAKE,
11364 				msecs_to_jiffies(timeout * 1000));
11365 
11366 		spin_lock_irqsave(&phba->hbalock, flag);
11367 		/* restore the possible extended buffer for free resource */
11368 		pmboxq->context1 = (uint8_t *)mb;
11369 		/*
11370 		 * if LPFC_MBX_WAKE flag is set the mailbox is completed
11371 		 * else do not free the resources.
11372 		 */
11373 		if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
11374 			retval = MBX_SUCCESS;
11375 		} else {
11376 			retval = MBX_TIMEOUT;
11377 			pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
11378 		}
11379 		spin_unlock_irqrestore(&phba->hbalock, flag);
11380 	} else {
11381 		/* restore the possible extended buffer for free resource */
11382 		pmboxq->context1 = (uint8_t *)mb;
11383 	}
11384 
11385 	return retval;
11386 }
11387 
11388 /**
11389  * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
11390  * @phba: Pointer to HBA context.
11391  *
11392  * This function is called to shutdown the driver's mailbox sub-system.
11393  * It first marks the mailbox sub-system is in a block state to prevent
11394  * the asynchronous mailbox command from issued off the pending mailbox
11395  * command queue. If the mailbox command sub-system shutdown is due to
11396  * HBA error conditions such as EEH or ERATT, this routine shall invoke
11397  * the mailbox sub-system flush routine to forcefully bring down the
11398  * mailbox sub-system. Otherwise, if it is due to normal condition (such
11399  * as with offline or HBA function reset), this routine will wait for the
11400  * outstanding mailbox command to complete before invoking the mailbox
11401  * sub-system flush routine to gracefully bring down mailbox sub-system.
11402  **/
11403 void
11404 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
11405 {
11406 	struct lpfc_sli *psli = &phba->sli;
11407 	unsigned long timeout;
11408 
11409 	if (mbx_action == LPFC_MBX_NO_WAIT) {
11410 		/* delay 100ms for port state */
11411 		msleep(100);
11412 		lpfc_sli_mbox_sys_flush(phba);
11413 		return;
11414 	}
11415 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
11416 
11417 	spin_lock_irq(&phba->hbalock);
11418 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
11419 
11420 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
11421 		/* Determine how long we might wait for the active mailbox
11422 		 * command to be gracefully completed by firmware.
11423 		 */
11424 		if (phba->sli.mbox_active)
11425 			timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
11426 						phba->sli.mbox_active) *
11427 						1000) + jiffies;
11428 		spin_unlock_irq(&phba->hbalock);
11429 
11430 		while (phba->sli.mbox_active) {
11431 			/* Check active mailbox complete status every 2ms */
11432 			msleep(2);
11433 			if (time_after(jiffies, timeout))
11434 				/* Timeout, let the mailbox flush routine to
11435 				 * forcefully release active mailbox command
11436 				 */
11437 				break;
11438 		}
11439 	} else
11440 		spin_unlock_irq(&phba->hbalock);
11441 
11442 	lpfc_sli_mbox_sys_flush(phba);
11443 }
11444 
11445 /**
11446  * lpfc_sli_eratt_read - read sli-3 error attention events
11447  * @phba: Pointer to HBA context.
11448  *
11449  * This function is called to read the SLI3 device error attention registers
11450  * for possible error attention events. The caller must hold the hostlock
11451  * with spin_lock_irq().
11452  *
11453  * This function returns 1 when there is Error Attention in the Host Attention
11454  * Register and returns 0 otherwise.
11455  **/
11456 static int
11457 lpfc_sli_eratt_read(struct lpfc_hba *phba)
11458 {
11459 	uint32_t ha_copy;
11460 
11461 	/* Read chip Host Attention (HA) register */
11462 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
11463 		goto unplug_err;
11464 
11465 	if (ha_copy & HA_ERATT) {
11466 		/* Read host status register to retrieve error event */
11467 		if (lpfc_sli_read_hs(phba))
11468 			goto unplug_err;
11469 
11470 		/* Check if there is a deferred error condition is active */
11471 		if ((HS_FFER1 & phba->work_hs) &&
11472 		    ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
11473 		      HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
11474 			phba->hba_flag |= DEFER_ERATT;
11475 			/* Clear all interrupt enable conditions */
11476 			writel(0, phba->HCregaddr);
11477 			readl(phba->HCregaddr);
11478 		}
11479 
11480 		/* Set the driver HA work bitmap */
11481 		phba->work_ha |= HA_ERATT;
11482 		/* Indicate polling handles this ERATT */
11483 		phba->hba_flag |= HBA_ERATT_HANDLED;
11484 		return 1;
11485 	}
11486 	return 0;
11487 
11488 unplug_err:
11489 	/* Set the driver HS work bitmap */
11490 	phba->work_hs |= UNPLUG_ERR;
11491 	/* Set the driver HA work bitmap */
11492 	phba->work_ha |= HA_ERATT;
11493 	/* Indicate polling handles this ERATT */
11494 	phba->hba_flag |= HBA_ERATT_HANDLED;
11495 	return 1;
11496 }
11497 
11498 /**
11499  * lpfc_sli4_eratt_read - read sli-4 error attention events
11500  * @phba: Pointer to HBA context.
11501  *
11502  * This function is called to read the SLI4 device error attention registers
11503  * for possible error attention events. The caller must hold the hostlock
11504  * with spin_lock_irq().
11505  *
11506  * This function returns 1 when there is Error Attention in the Host Attention
11507  * Register and returns 0 otherwise.
11508  **/
11509 static int
11510 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
11511 {
11512 	uint32_t uerr_sta_hi, uerr_sta_lo;
11513 	uint32_t if_type, portsmphr;
11514 	struct lpfc_register portstat_reg;
11515 
11516 	/*
11517 	 * For now, use the SLI4 device internal unrecoverable error
11518 	 * registers for error attention. This can be changed later.
11519 	 */
11520 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11521 	switch (if_type) {
11522 	case LPFC_SLI_INTF_IF_TYPE_0:
11523 		if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
11524 			&uerr_sta_lo) ||
11525 			lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
11526 			&uerr_sta_hi)) {
11527 			phba->work_hs |= UNPLUG_ERR;
11528 			phba->work_ha |= HA_ERATT;
11529 			phba->hba_flag |= HBA_ERATT_HANDLED;
11530 			return 1;
11531 		}
11532 		if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
11533 		    (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
11534 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11535 					"1423 HBA Unrecoverable error: "
11536 					"uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
11537 					"ue_mask_lo_reg=0x%x, "
11538 					"ue_mask_hi_reg=0x%x\n",
11539 					uerr_sta_lo, uerr_sta_hi,
11540 					phba->sli4_hba.ue_mask_lo,
11541 					phba->sli4_hba.ue_mask_hi);
11542 			phba->work_status[0] = uerr_sta_lo;
11543 			phba->work_status[1] = uerr_sta_hi;
11544 			phba->work_ha |= HA_ERATT;
11545 			phba->hba_flag |= HBA_ERATT_HANDLED;
11546 			return 1;
11547 		}
11548 		break;
11549 	case LPFC_SLI_INTF_IF_TYPE_2:
11550 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
11551 			&portstat_reg.word0) ||
11552 			lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
11553 			&portsmphr)){
11554 			phba->work_hs |= UNPLUG_ERR;
11555 			phba->work_ha |= HA_ERATT;
11556 			phba->hba_flag |= HBA_ERATT_HANDLED;
11557 			return 1;
11558 		}
11559 		if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
11560 			phba->work_status[0] =
11561 				readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
11562 			phba->work_status[1] =
11563 				readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
11564 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11565 					"2885 Port Status Event: "
11566 					"port status reg 0x%x, "
11567 					"port smphr reg 0x%x, "
11568 					"error 1=0x%x, error 2=0x%x\n",
11569 					portstat_reg.word0,
11570 					portsmphr,
11571 					phba->work_status[0],
11572 					phba->work_status[1]);
11573 			phba->work_ha |= HA_ERATT;
11574 			phba->hba_flag |= HBA_ERATT_HANDLED;
11575 			return 1;
11576 		}
11577 		break;
11578 	case LPFC_SLI_INTF_IF_TYPE_1:
11579 	default:
11580 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11581 				"2886 HBA Error Attention on unsupported "
11582 				"if type %d.", if_type);
11583 		return 1;
11584 	}
11585 
11586 	return 0;
11587 }
11588 
11589 /**
11590  * lpfc_sli_check_eratt - check error attention events
11591  * @phba: Pointer to HBA context.
11592  *
11593  * This function is called from timer soft interrupt context to check HBA's
11594  * error attention register bit for error attention events.
11595  *
11596  * This function returns 1 when there is Error Attention in the Host Attention
11597  * Register and returns 0 otherwise.
11598  **/
11599 int
11600 lpfc_sli_check_eratt(struct lpfc_hba *phba)
11601 {
11602 	uint32_t ha_copy;
11603 
11604 	/* If somebody is waiting to handle an eratt, don't process it
11605 	 * here. The brdkill function will do this.
11606 	 */
11607 	if (phba->link_flag & LS_IGNORE_ERATT)
11608 		return 0;
11609 
11610 	/* Check if interrupt handler handles this ERATT */
11611 	spin_lock_irq(&phba->hbalock);
11612 	if (phba->hba_flag & HBA_ERATT_HANDLED) {
11613 		/* Interrupt handler has handled ERATT */
11614 		spin_unlock_irq(&phba->hbalock);
11615 		return 0;
11616 	}
11617 
11618 	/*
11619 	 * If there is deferred error attention, do not check for error
11620 	 * attention
11621 	 */
11622 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
11623 		spin_unlock_irq(&phba->hbalock);
11624 		return 0;
11625 	}
11626 
11627 	/* If PCI channel is offline, don't process it */
11628 	if (unlikely(pci_channel_offline(phba->pcidev))) {
11629 		spin_unlock_irq(&phba->hbalock);
11630 		return 0;
11631 	}
11632 
11633 	switch (phba->sli_rev) {
11634 	case LPFC_SLI_REV2:
11635 	case LPFC_SLI_REV3:
11636 		/* Read chip Host Attention (HA) register */
11637 		ha_copy = lpfc_sli_eratt_read(phba);
11638 		break;
11639 	case LPFC_SLI_REV4:
11640 		/* Read device Uncoverable Error (UERR) registers */
11641 		ha_copy = lpfc_sli4_eratt_read(phba);
11642 		break;
11643 	default:
11644 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11645 				"0299 Invalid SLI revision (%d)\n",
11646 				phba->sli_rev);
11647 		ha_copy = 0;
11648 		break;
11649 	}
11650 	spin_unlock_irq(&phba->hbalock);
11651 
11652 	return ha_copy;
11653 }
11654 
11655 /**
11656  * lpfc_intr_state_check - Check device state for interrupt handling
11657  * @phba: Pointer to HBA context.
11658  *
11659  * This inline routine checks whether a device or its PCI slot is in a state
11660  * that the interrupt should be handled.
11661  *
11662  * This function returns 0 if the device or the PCI slot is in a state that
11663  * interrupt should be handled, otherwise -EIO.
11664  */
11665 static inline int
11666 lpfc_intr_state_check(struct lpfc_hba *phba)
11667 {
11668 	/* If the pci channel is offline, ignore all the interrupts */
11669 	if (unlikely(pci_channel_offline(phba->pcidev)))
11670 		return -EIO;
11671 
11672 	/* Update device level interrupt statistics */
11673 	phba->sli.slistat.sli_intr++;
11674 
11675 	/* Ignore all interrupts during initialization. */
11676 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
11677 		return -EIO;
11678 
11679 	return 0;
11680 }
11681 
11682 /**
11683  * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
11684  * @irq: Interrupt number.
11685  * @dev_id: The device context pointer.
11686  *
11687  * This function is directly called from the PCI layer as an interrupt
11688  * service routine when device with SLI-3 interface spec is enabled with
11689  * MSI-X multi-message interrupt mode and there are slow-path events in
11690  * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
11691  * interrupt mode, this function is called as part of the device-level
11692  * interrupt handler. When the PCI slot is in error recovery or the HBA
11693  * is undergoing initialization, the interrupt handler will not process
11694  * the interrupt. The link attention and ELS ring attention events are
11695  * handled by the worker thread. The interrupt handler signals the worker
11696  * thread and returns for these events. This function is called without
11697  * any lock held. It gets the hbalock to access and update SLI data
11698  * structures.
11699  *
11700  * This function returns IRQ_HANDLED when interrupt is handled else it
11701  * returns IRQ_NONE.
11702  **/
11703 irqreturn_t
11704 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
11705 {
11706 	struct lpfc_hba  *phba;
11707 	uint32_t ha_copy, hc_copy;
11708 	uint32_t work_ha_copy;
11709 	unsigned long status;
11710 	unsigned long iflag;
11711 	uint32_t control;
11712 
11713 	MAILBOX_t *mbox, *pmbox;
11714 	struct lpfc_vport *vport;
11715 	struct lpfc_nodelist *ndlp;
11716 	struct lpfc_dmabuf *mp;
11717 	LPFC_MBOXQ_t *pmb;
11718 	int rc;
11719 
11720 	/*
11721 	 * Get the driver's phba structure from the dev_id and
11722 	 * assume the HBA is not interrupting.
11723 	 */
11724 	phba = (struct lpfc_hba *)dev_id;
11725 
11726 	if (unlikely(!phba))
11727 		return IRQ_NONE;
11728 
11729 	/*
11730 	 * Stuff needs to be attented to when this function is invoked as an
11731 	 * individual interrupt handler in MSI-X multi-message interrupt mode
11732 	 */
11733 	if (phba->intr_type == MSIX) {
11734 		/* Check device state for handling interrupt */
11735 		if (lpfc_intr_state_check(phba))
11736 			return IRQ_NONE;
11737 		/* Need to read HA REG for slow-path events */
11738 		spin_lock_irqsave(&phba->hbalock, iflag);
11739 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
11740 			goto unplug_error;
11741 		/* If somebody is waiting to handle an eratt don't process it
11742 		 * here. The brdkill function will do this.
11743 		 */
11744 		if (phba->link_flag & LS_IGNORE_ERATT)
11745 			ha_copy &= ~HA_ERATT;
11746 		/* Check the need for handling ERATT in interrupt handler */
11747 		if (ha_copy & HA_ERATT) {
11748 			if (phba->hba_flag & HBA_ERATT_HANDLED)
11749 				/* ERATT polling has handled ERATT */
11750 				ha_copy &= ~HA_ERATT;
11751 			else
11752 				/* Indicate interrupt handler handles ERATT */
11753 				phba->hba_flag |= HBA_ERATT_HANDLED;
11754 		}
11755 
11756 		/*
11757 		 * If there is deferred error attention, do not check for any
11758 		 * interrupt.
11759 		 */
11760 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
11761 			spin_unlock_irqrestore(&phba->hbalock, iflag);
11762 			return IRQ_NONE;
11763 		}
11764 
11765 		/* Clear up only attention source related to slow-path */
11766 		if (lpfc_readl(phba->HCregaddr, &hc_copy))
11767 			goto unplug_error;
11768 
11769 		writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
11770 			HC_LAINT_ENA | HC_ERINT_ENA),
11771 			phba->HCregaddr);
11772 		writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
11773 			phba->HAregaddr);
11774 		writel(hc_copy, phba->HCregaddr);
11775 		readl(phba->HAregaddr); /* flush */
11776 		spin_unlock_irqrestore(&phba->hbalock, iflag);
11777 	} else
11778 		ha_copy = phba->ha_copy;
11779 
11780 	work_ha_copy = ha_copy & phba->work_ha_mask;
11781 
11782 	if (work_ha_copy) {
11783 		if (work_ha_copy & HA_LATT) {
11784 			if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
11785 				/*
11786 				 * Turn off Link Attention interrupts
11787 				 * until CLEAR_LA done
11788 				 */
11789 				spin_lock_irqsave(&phba->hbalock, iflag);
11790 				phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
11791 				if (lpfc_readl(phba->HCregaddr, &control))
11792 					goto unplug_error;
11793 				control &= ~HC_LAINT_ENA;
11794 				writel(control, phba->HCregaddr);
11795 				readl(phba->HCregaddr); /* flush */
11796 				spin_unlock_irqrestore(&phba->hbalock, iflag);
11797 			}
11798 			else
11799 				work_ha_copy &= ~HA_LATT;
11800 		}
11801 
11802 		if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
11803 			/*
11804 			 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
11805 			 * the only slow ring.
11806 			 */
11807 			status = (work_ha_copy &
11808 				(HA_RXMASK  << (4*LPFC_ELS_RING)));
11809 			status >>= (4*LPFC_ELS_RING);
11810 			if (status & HA_RXMASK) {
11811 				spin_lock_irqsave(&phba->hbalock, iflag);
11812 				if (lpfc_readl(phba->HCregaddr, &control))
11813 					goto unplug_error;
11814 
11815 				lpfc_debugfs_slow_ring_trc(phba,
11816 				"ISR slow ring:   ctl:x%x stat:x%x isrcnt:x%x",
11817 				control, status,
11818 				(uint32_t)phba->sli.slistat.sli_intr);
11819 
11820 				if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
11821 					lpfc_debugfs_slow_ring_trc(phba,
11822 						"ISR Disable ring:"
11823 						"pwork:x%x hawork:x%x wait:x%x",
11824 						phba->work_ha, work_ha_copy,
11825 						(uint32_t)((unsigned long)
11826 						&phba->work_waitq));
11827 
11828 					control &=
11829 					    ~(HC_R0INT_ENA << LPFC_ELS_RING);
11830 					writel(control, phba->HCregaddr);
11831 					readl(phba->HCregaddr); /* flush */
11832 				}
11833 				else {
11834 					lpfc_debugfs_slow_ring_trc(phba,
11835 						"ISR slow ring:   pwork:"
11836 						"x%x hawork:x%x wait:x%x",
11837 						phba->work_ha, work_ha_copy,
11838 						(uint32_t)((unsigned long)
11839 						&phba->work_waitq));
11840 				}
11841 				spin_unlock_irqrestore(&phba->hbalock, iflag);
11842 			}
11843 		}
11844 		spin_lock_irqsave(&phba->hbalock, iflag);
11845 		if (work_ha_copy & HA_ERATT) {
11846 			if (lpfc_sli_read_hs(phba))
11847 				goto unplug_error;
11848 			/*
11849 			 * Check if there is a deferred error condition
11850 			 * is active
11851 			 */
11852 			if ((HS_FFER1 & phba->work_hs) &&
11853 				((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
11854 				  HS_FFER6 | HS_FFER7 | HS_FFER8) &
11855 				  phba->work_hs)) {
11856 				phba->hba_flag |= DEFER_ERATT;
11857 				/* Clear all interrupt enable conditions */
11858 				writel(0, phba->HCregaddr);
11859 				readl(phba->HCregaddr);
11860 			}
11861 		}
11862 
11863 		if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
11864 			pmb = phba->sli.mbox_active;
11865 			pmbox = &pmb->u.mb;
11866 			mbox = phba->mbox;
11867 			vport = pmb->vport;
11868 
11869 			/* First check out the status word */
11870 			lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
11871 			if (pmbox->mbxOwner != OWN_HOST) {
11872 				spin_unlock_irqrestore(&phba->hbalock, iflag);
11873 				/*
11874 				 * Stray Mailbox Interrupt, mbxCommand <cmd>
11875 				 * mbxStatus <status>
11876 				 */
11877 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
11878 						LOG_SLI,
11879 						"(%d):0304 Stray Mailbox "
11880 						"Interrupt mbxCommand x%x "
11881 						"mbxStatus x%x\n",
11882 						(vport ? vport->vpi : 0),
11883 						pmbox->mbxCommand,
11884 						pmbox->mbxStatus);
11885 				/* clear mailbox attention bit */
11886 				work_ha_copy &= ~HA_MBATT;
11887 			} else {
11888 				phba->sli.mbox_active = NULL;
11889 				spin_unlock_irqrestore(&phba->hbalock, iflag);
11890 				phba->last_completion_time = jiffies;
11891 				del_timer(&phba->sli.mbox_tmo);
11892 				if (pmb->mbox_cmpl) {
11893 					lpfc_sli_pcimem_bcopy(mbox, pmbox,
11894 							MAILBOX_CMD_SIZE);
11895 					if (pmb->out_ext_byte_len &&
11896 						pmb->context2)
11897 						lpfc_sli_pcimem_bcopy(
11898 						phba->mbox_ext,
11899 						pmb->context2,
11900 						pmb->out_ext_byte_len);
11901 				}
11902 				if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
11903 					pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
11904 
11905 					lpfc_debugfs_disc_trc(vport,
11906 						LPFC_DISC_TRC_MBOX_VPORT,
11907 						"MBOX dflt rpi: : "
11908 						"status:x%x rpi:x%x",
11909 						(uint32_t)pmbox->mbxStatus,
11910 						pmbox->un.varWords[0], 0);
11911 
11912 					if (!pmbox->mbxStatus) {
11913 						mp = (struct lpfc_dmabuf *)
11914 							(pmb->context1);
11915 						ndlp = (struct lpfc_nodelist *)
11916 							pmb->context2;
11917 
11918 						/* Reg_LOGIN of dflt RPI was
11919 						 * successful. new lets get
11920 						 * rid of the RPI using the
11921 						 * same mbox buffer.
11922 						 */
11923 						lpfc_unreg_login(phba,
11924 							vport->vpi,
11925 							pmbox->un.varWords[0],
11926 							pmb);
11927 						pmb->mbox_cmpl =
11928 							lpfc_mbx_cmpl_dflt_rpi;
11929 						pmb->context1 = mp;
11930 						pmb->context2 = ndlp;
11931 						pmb->vport = vport;
11932 						rc = lpfc_sli_issue_mbox(phba,
11933 								pmb,
11934 								MBX_NOWAIT);
11935 						if (rc != MBX_BUSY)
11936 							lpfc_printf_log(phba,
11937 							KERN_ERR,
11938 							LOG_MBOX | LOG_SLI,
11939 							"0350 rc should have"
11940 							"been MBX_BUSY\n");
11941 						if (rc != MBX_NOT_FINISHED)
11942 							goto send_current_mbox;
11943 					}
11944 				}
11945 				spin_lock_irqsave(
11946 						&phba->pport->work_port_lock,
11947 						iflag);
11948 				phba->pport->work_port_events &=
11949 					~WORKER_MBOX_TMO;
11950 				spin_unlock_irqrestore(
11951 						&phba->pport->work_port_lock,
11952 						iflag);
11953 				lpfc_mbox_cmpl_put(phba, pmb);
11954 			}
11955 		} else
11956 			spin_unlock_irqrestore(&phba->hbalock, iflag);
11957 
11958 		if ((work_ha_copy & HA_MBATT) &&
11959 		    (phba->sli.mbox_active == NULL)) {
11960 send_current_mbox:
11961 			/* Process next mailbox command if there is one */
11962 			do {
11963 				rc = lpfc_sli_issue_mbox(phba, NULL,
11964 							 MBX_NOWAIT);
11965 			} while (rc == MBX_NOT_FINISHED);
11966 			if (rc != MBX_SUCCESS)
11967 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
11968 						LOG_SLI, "0349 rc should be "
11969 						"MBX_SUCCESS\n");
11970 		}
11971 
11972 		spin_lock_irqsave(&phba->hbalock, iflag);
11973 		phba->work_ha |= work_ha_copy;
11974 		spin_unlock_irqrestore(&phba->hbalock, iflag);
11975 		lpfc_worker_wake_up(phba);
11976 	}
11977 	return IRQ_HANDLED;
11978 unplug_error:
11979 	spin_unlock_irqrestore(&phba->hbalock, iflag);
11980 	return IRQ_HANDLED;
11981 
11982 } /* lpfc_sli_sp_intr_handler */
11983 
11984 /**
11985  * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
11986  * @irq: Interrupt number.
11987  * @dev_id: The device context pointer.
11988  *
11989  * This function is directly called from the PCI layer as an interrupt
11990  * service routine when device with SLI-3 interface spec is enabled with
11991  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
11992  * ring event in the HBA. However, when the device is enabled with either
11993  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
11994  * device-level interrupt handler. When the PCI slot is in error recovery
11995  * or the HBA is undergoing initialization, the interrupt handler will not
11996  * process the interrupt. The SCSI FCP fast-path ring event are handled in
11997  * the intrrupt context. This function is called without any lock held.
11998  * It gets the hbalock to access and update SLI data structures.
11999  *
12000  * This function returns IRQ_HANDLED when interrupt is handled else it
12001  * returns IRQ_NONE.
12002  **/
12003 irqreturn_t
12004 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
12005 {
12006 	struct lpfc_hba  *phba;
12007 	uint32_t ha_copy;
12008 	unsigned long status;
12009 	unsigned long iflag;
12010 	struct lpfc_sli_ring *pring;
12011 
12012 	/* Get the driver's phba structure from the dev_id and
12013 	 * assume the HBA is not interrupting.
12014 	 */
12015 	phba = (struct lpfc_hba *) dev_id;
12016 
12017 	if (unlikely(!phba))
12018 		return IRQ_NONE;
12019 
12020 	/*
12021 	 * Stuff needs to be attented to when this function is invoked as an
12022 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12023 	 */
12024 	if (phba->intr_type == MSIX) {
12025 		/* Check device state for handling interrupt */
12026 		if (lpfc_intr_state_check(phba))
12027 			return IRQ_NONE;
12028 		/* Need to read HA REG for FCP ring and other ring events */
12029 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12030 			return IRQ_HANDLED;
12031 		/* Clear up only attention source related to fast-path */
12032 		spin_lock_irqsave(&phba->hbalock, iflag);
12033 		/*
12034 		 * If there is deferred error attention, do not check for
12035 		 * any interrupt.
12036 		 */
12037 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12038 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12039 			return IRQ_NONE;
12040 		}
12041 		writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
12042 			phba->HAregaddr);
12043 		readl(phba->HAregaddr); /* flush */
12044 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12045 	} else
12046 		ha_copy = phba->ha_copy;
12047 
12048 	/*
12049 	 * Process all events on FCP ring. Take the optimized path for FCP IO.
12050 	 */
12051 	ha_copy &= ~(phba->work_ha_mask);
12052 
12053 	status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12054 	status >>= (4*LPFC_FCP_RING);
12055 	pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12056 	if (status & HA_RXMASK)
12057 		lpfc_sli_handle_fast_ring_event(phba, pring, status);
12058 
12059 	if (phba->cfg_multi_ring_support == 2) {
12060 		/*
12061 		 * Process all events on extra ring. Take the optimized path
12062 		 * for extra ring IO.
12063 		 */
12064 		status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12065 		status >>= (4*LPFC_EXTRA_RING);
12066 		if (status & HA_RXMASK) {
12067 			lpfc_sli_handle_fast_ring_event(phba,
12068 					&phba->sli.sli3_ring[LPFC_EXTRA_RING],
12069 					status);
12070 		}
12071 	}
12072 	return IRQ_HANDLED;
12073 }  /* lpfc_sli_fp_intr_handler */
12074 
12075 /**
12076  * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
12077  * @irq: Interrupt number.
12078  * @dev_id: The device context pointer.
12079  *
12080  * This function is the HBA device-level interrupt handler to device with
12081  * SLI-3 interface spec, called from the PCI layer when either MSI or
12082  * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
12083  * requires driver attention. This function invokes the slow-path interrupt
12084  * attention handling function and fast-path interrupt attention handling
12085  * function in turn to process the relevant HBA attention events. This
12086  * function is called without any lock held. It gets the hbalock to access
12087  * and update SLI data structures.
12088  *
12089  * This function returns IRQ_HANDLED when interrupt is handled, else it
12090  * returns IRQ_NONE.
12091  **/
12092 irqreturn_t
12093 lpfc_sli_intr_handler(int irq, void *dev_id)
12094 {
12095 	struct lpfc_hba  *phba;
12096 	irqreturn_t sp_irq_rc, fp_irq_rc;
12097 	unsigned long status1, status2;
12098 	uint32_t hc_copy;
12099 
12100 	/*
12101 	 * Get the driver's phba structure from the dev_id and
12102 	 * assume the HBA is not interrupting.
12103 	 */
12104 	phba = (struct lpfc_hba *) dev_id;
12105 
12106 	if (unlikely(!phba))
12107 		return IRQ_NONE;
12108 
12109 	/* Check device state for handling interrupt */
12110 	if (lpfc_intr_state_check(phba))
12111 		return IRQ_NONE;
12112 
12113 	spin_lock(&phba->hbalock);
12114 	if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
12115 		spin_unlock(&phba->hbalock);
12116 		return IRQ_HANDLED;
12117 	}
12118 
12119 	if (unlikely(!phba->ha_copy)) {
12120 		spin_unlock(&phba->hbalock);
12121 		return IRQ_NONE;
12122 	} else if (phba->ha_copy & HA_ERATT) {
12123 		if (phba->hba_flag & HBA_ERATT_HANDLED)
12124 			/* ERATT polling has handled ERATT */
12125 			phba->ha_copy &= ~HA_ERATT;
12126 		else
12127 			/* Indicate interrupt handler handles ERATT */
12128 			phba->hba_flag |= HBA_ERATT_HANDLED;
12129 	}
12130 
12131 	/*
12132 	 * If there is deferred error attention, do not check for any interrupt.
12133 	 */
12134 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12135 		spin_unlock(&phba->hbalock);
12136 		return IRQ_NONE;
12137 	}
12138 
12139 	/* Clear attention sources except link and error attentions */
12140 	if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
12141 		spin_unlock(&phba->hbalock);
12142 		return IRQ_HANDLED;
12143 	}
12144 	writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
12145 		| HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
12146 		phba->HCregaddr);
12147 	writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
12148 	writel(hc_copy, phba->HCregaddr);
12149 	readl(phba->HAregaddr); /* flush */
12150 	spin_unlock(&phba->hbalock);
12151 
12152 	/*
12153 	 * Invokes slow-path host attention interrupt handling as appropriate.
12154 	 */
12155 
12156 	/* status of events with mailbox and link attention */
12157 	status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
12158 
12159 	/* status of events with ELS ring */
12160 	status2 = (phba->ha_copy & (HA_RXMASK  << (4*LPFC_ELS_RING)));
12161 	status2 >>= (4*LPFC_ELS_RING);
12162 
12163 	if (status1 || (status2 & HA_RXMASK))
12164 		sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
12165 	else
12166 		sp_irq_rc = IRQ_NONE;
12167 
12168 	/*
12169 	 * Invoke fast-path host attention interrupt handling as appropriate.
12170 	 */
12171 
12172 	/* status of events with FCP ring */
12173 	status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12174 	status1 >>= (4*LPFC_FCP_RING);
12175 
12176 	/* status of events with extra ring */
12177 	if (phba->cfg_multi_ring_support == 2) {
12178 		status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12179 		status2 >>= (4*LPFC_EXTRA_RING);
12180 	} else
12181 		status2 = 0;
12182 
12183 	if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
12184 		fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
12185 	else
12186 		fp_irq_rc = IRQ_NONE;
12187 
12188 	/* Return device-level interrupt handling status */
12189 	return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
12190 }  /* lpfc_sli_intr_handler */
12191 
12192 /**
12193  * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event
12194  * @phba: pointer to lpfc hba data structure.
12195  *
12196  * This routine is invoked by the worker thread to process all the pending
12197  * SLI4 FCP abort XRI events.
12198  **/
12199 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba)
12200 {
12201 	struct lpfc_cq_event *cq_event;
12202 
12203 	/* First, declare the fcp xri abort event has been handled */
12204 	spin_lock_irq(&phba->hbalock);
12205 	phba->hba_flag &= ~FCP_XRI_ABORT_EVENT;
12206 	spin_unlock_irq(&phba->hbalock);
12207 	/* Now, handle all the fcp xri abort events */
12208 	while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) {
12209 		/* Get the first event from the head of the event queue */
12210 		spin_lock_irq(&phba->hbalock);
12211 		list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue,
12212 				 cq_event, struct lpfc_cq_event, list);
12213 		spin_unlock_irq(&phba->hbalock);
12214 		/* Notify aborted XRI for FCP work queue */
12215 		lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12216 		/* Free the event processed back to the free pool */
12217 		lpfc_sli4_cq_event_release(phba, cq_event);
12218 	}
12219 }
12220 
12221 /**
12222  * lpfc_sli4_nvme_xri_abort_event_proc - Process nvme xri abort event
12223  * @phba: pointer to lpfc hba data structure.
12224  *
12225  * This routine is invoked by the worker thread to process all the pending
12226  * SLI4 NVME abort XRI events.
12227  **/
12228 void lpfc_sli4_nvme_xri_abort_event_proc(struct lpfc_hba *phba)
12229 {
12230 	struct lpfc_cq_event *cq_event;
12231 
12232 	/* First, declare the fcp xri abort event has been handled */
12233 	spin_lock_irq(&phba->hbalock);
12234 	phba->hba_flag &= ~NVME_XRI_ABORT_EVENT;
12235 	spin_unlock_irq(&phba->hbalock);
12236 	/* Now, handle all the fcp xri abort events */
12237 	while (!list_empty(&phba->sli4_hba.sp_nvme_xri_aborted_work_queue)) {
12238 		/* Get the first event from the head of the event queue */
12239 		spin_lock_irq(&phba->hbalock);
12240 		list_remove_head(&phba->sli4_hba.sp_nvme_xri_aborted_work_queue,
12241 				 cq_event, struct lpfc_cq_event, list);
12242 		spin_unlock_irq(&phba->hbalock);
12243 		/* Notify aborted XRI for NVME work queue */
12244 		if (phba->nvmet_support) {
12245 			lpfc_sli4_nvmet_xri_aborted(phba,
12246 						    &cq_event->cqe.wcqe_axri);
12247 		} else {
12248 			lpfc_sli4_nvme_xri_aborted(phba,
12249 						   &cq_event->cqe.wcqe_axri);
12250 		}
12251 		/* Free the event processed back to the free pool */
12252 		lpfc_sli4_cq_event_release(phba, cq_event);
12253 	}
12254 }
12255 
12256 /**
12257  * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
12258  * @phba: pointer to lpfc hba data structure.
12259  *
12260  * This routine is invoked by the worker thread to process all the pending
12261  * SLI4 els abort xri events.
12262  **/
12263 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
12264 {
12265 	struct lpfc_cq_event *cq_event;
12266 
12267 	/* First, declare the els xri abort event has been handled */
12268 	spin_lock_irq(&phba->hbalock);
12269 	phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
12270 	spin_unlock_irq(&phba->hbalock);
12271 	/* Now, handle all the els xri abort events */
12272 	while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
12273 		/* Get the first event from the head of the event queue */
12274 		spin_lock_irq(&phba->hbalock);
12275 		list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
12276 				 cq_event, struct lpfc_cq_event, list);
12277 		spin_unlock_irq(&phba->hbalock);
12278 		/* Notify aborted XRI for ELS work queue */
12279 		lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12280 		/* Free the event processed back to the free pool */
12281 		lpfc_sli4_cq_event_release(phba, cq_event);
12282 	}
12283 }
12284 
12285 /**
12286  * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
12287  * @phba: pointer to lpfc hba data structure
12288  * @pIocbIn: pointer to the rspiocbq
12289  * @pIocbOut: pointer to the cmdiocbq
12290  * @wcqe: pointer to the complete wcqe
12291  *
12292  * This routine transfers the fields of a command iocbq to a response iocbq
12293  * by copying all the IOCB fields from command iocbq and transferring the
12294  * completion status information from the complete wcqe.
12295  **/
12296 static void
12297 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
12298 			      struct lpfc_iocbq *pIocbIn,
12299 			      struct lpfc_iocbq *pIocbOut,
12300 			      struct lpfc_wcqe_complete *wcqe)
12301 {
12302 	int numBdes, i;
12303 	unsigned long iflags;
12304 	uint32_t status, max_response;
12305 	struct lpfc_dmabuf *dmabuf;
12306 	struct ulp_bde64 *bpl, bde;
12307 	size_t offset = offsetof(struct lpfc_iocbq, iocb);
12308 
12309 	memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
12310 	       sizeof(struct lpfc_iocbq) - offset);
12311 	/* Map WCQE parameters into irspiocb parameters */
12312 	status = bf_get(lpfc_wcqe_c_status, wcqe);
12313 	pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
12314 	if (pIocbOut->iocb_flag & LPFC_IO_FCP)
12315 		if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
12316 			pIocbIn->iocb.un.fcpi.fcpi_parm =
12317 					pIocbOut->iocb.un.fcpi.fcpi_parm -
12318 					wcqe->total_data_placed;
12319 		else
12320 			pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12321 	else {
12322 		pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12323 		switch (pIocbOut->iocb.ulpCommand) {
12324 		case CMD_ELS_REQUEST64_CR:
12325 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12326 			bpl  = (struct ulp_bde64 *)dmabuf->virt;
12327 			bde.tus.w = le32_to_cpu(bpl[1].tus.w);
12328 			max_response = bde.tus.f.bdeSize;
12329 			break;
12330 		case CMD_GEN_REQUEST64_CR:
12331 			max_response = 0;
12332 			if (!pIocbOut->context3)
12333 				break;
12334 			numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
12335 					sizeof(struct ulp_bde64);
12336 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12337 			bpl = (struct ulp_bde64 *)dmabuf->virt;
12338 			for (i = 0; i < numBdes; i++) {
12339 				bde.tus.w = le32_to_cpu(bpl[i].tus.w);
12340 				if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
12341 					max_response += bde.tus.f.bdeSize;
12342 			}
12343 			break;
12344 		default:
12345 			max_response = wcqe->total_data_placed;
12346 			break;
12347 		}
12348 		if (max_response < wcqe->total_data_placed)
12349 			pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
12350 		else
12351 			pIocbIn->iocb.un.genreq64.bdl.bdeSize =
12352 				wcqe->total_data_placed;
12353 	}
12354 
12355 	/* Convert BG errors for completion status */
12356 	if (status == CQE_STATUS_DI_ERROR) {
12357 		pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
12358 
12359 		if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
12360 			pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
12361 		else
12362 			pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
12363 
12364 		pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
12365 		if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
12366 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12367 				BGS_GUARD_ERR_MASK;
12368 		if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
12369 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12370 				BGS_APPTAG_ERR_MASK;
12371 		if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
12372 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12373 				BGS_REFTAG_ERR_MASK;
12374 
12375 		/* Check to see if there was any good data before the error */
12376 		if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
12377 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12378 				BGS_HI_WATER_MARK_PRESENT_MASK;
12379 			pIocbIn->iocb.unsli3.sli3_bg.bghm =
12380 				wcqe->total_data_placed;
12381 		}
12382 
12383 		/*
12384 		* Set ALL the error bits to indicate we don't know what
12385 		* type of error it is.
12386 		*/
12387 		if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
12388 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12389 				(BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
12390 				BGS_GUARD_ERR_MASK);
12391 	}
12392 
12393 	/* Pick up HBA exchange busy condition */
12394 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
12395 		spin_lock_irqsave(&phba->hbalock, iflags);
12396 		pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
12397 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12398 	}
12399 }
12400 
12401 /**
12402  * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
12403  * @phba: Pointer to HBA context object.
12404  * @wcqe: Pointer to work-queue completion queue entry.
12405  *
12406  * This routine handles an ELS work-queue completion event and construct
12407  * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
12408  * discovery engine to handle.
12409  *
12410  * Return: Pointer to the receive IOCBQ, NULL otherwise.
12411  **/
12412 static struct lpfc_iocbq *
12413 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
12414 			       struct lpfc_iocbq *irspiocbq)
12415 {
12416 	struct lpfc_sli_ring *pring;
12417 	struct lpfc_iocbq *cmdiocbq;
12418 	struct lpfc_wcqe_complete *wcqe;
12419 	unsigned long iflags;
12420 
12421 	pring = lpfc_phba_elsring(phba);
12422 
12423 	wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
12424 	spin_lock_irqsave(&pring->ring_lock, iflags);
12425 	pring->stats.iocb_event++;
12426 	/* Look up the ELS command IOCB and create pseudo response IOCB */
12427 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
12428 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
12429 	/* Put the iocb back on the txcmplq */
12430 	lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
12431 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
12432 
12433 	if (unlikely(!cmdiocbq)) {
12434 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12435 				"0386 ELS complete with no corresponding "
12436 				"cmdiocb: iotag (%d)\n",
12437 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
12438 		lpfc_sli_release_iocbq(phba, irspiocbq);
12439 		return NULL;
12440 	}
12441 
12442 	/* Fake the irspiocbq and copy necessary response information */
12443 	lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
12444 
12445 	return irspiocbq;
12446 }
12447 
12448 /**
12449  * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event
12450  * @phba: Pointer to HBA context object.
12451  * @cqe: Pointer to mailbox completion queue entry.
12452  *
12453  * This routine process a mailbox completion queue entry with asynchrous
12454  * event.
12455  *
12456  * Return: true if work posted to worker thread, otherwise false.
12457  **/
12458 static bool
12459 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
12460 {
12461 	struct lpfc_cq_event *cq_event;
12462 	unsigned long iflags;
12463 
12464 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12465 			"0392 Async Event: word0:x%x, word1:x%x, "
12466 			"word2:x%x, word3:x%x\n", mcqe->word0,
12467 			mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
12468 
12469 	/* Allocate a new internal CQ_EVENT entry */
12470 	cq_event = lpfc_sli4_cq_event_alloc(phba);
12471 	if (!cq_event) {
12472 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12473 				"0394 Failed to allocate CQ_EVENT entry\n");
12474 		return false;
12475 	}
12476 
12477 	/* Move the CQE into an asynchronous event entry */
12478 	memcpy(&cq_event->cqe, mcqe, sizeof(struct lpfc_mcqe));
12479 	spin_lock_irqsave(&phba->hbalock, iflags);
12480 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
12481 	/* Set the async event flag */
12482 	phba->hba_flag |= ASYNC_EVENT;
12483 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12484 
12485 	return true;
12486 }
12487 
12488 /**
12489  * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
12490  * @phba: Pointer to HBA context object.
12491  * @cqe: Pointer to mailbox completion queue entry.
12492  *
12493  * This routine process a mailbox completion queue entry with mailbox
12494  * completion event.
12495  *
12496  * Return: true if work posted to worker thread, otherwise false.
12497  **/
12498 static bool
12499 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
12500 {
12501 	uint32_t mcqe_status;
12502 	MAILBOX_t *mbox, *pmbox;
12503 	struct lpfc_mqe *mqe;
12504 	struct lpfc_vport *vport;
12505 	struct lpfc_nodelist *ndlp;
12506 	struct lpfc_dmabuf *mp;
12507 	unsigned long iflags;
12508 	LPFC_MBOXQ_t *pmb;
12509 	bool workposted = false;
12510 	int rc;
12511 
12512 	/* If not a mailbox complete MCQE, out by checking mailbox consume */
12513 	if (!bf_get(lpfc_trailer_completed, mcqe))
12514 		goto out_no_mqe_complete;
12515 
12516 	/* Get the reference to the active mbox command */
12517 	spin_lock_irqsave(&phba->hbalock, iflags);
12518 	pmb = phba->sli.mbox_active;
12519 	if (unlikely(!pmb)) {
12520 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
12521 				"1832 No pending MBOX command to handle\n");
12522 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12523 		goto out_no_mqe_complete;
12524 	}
12525 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12526 	mqe = &pmb->u.mqe;
12527 	pmbox = (MAILBOX_t *)&pmb->u.mqe;
12528 	mbox = phba->mbox;
12529 	vport = pmb->vport;
12530 
12531 	/* Reset heartbeat timer */
12532 	phba->last_completion_time = jiffies;
12533 	del_timer(&phba->sli.mbox_tmo);
12534 
12535 	/* Move mbox data to caller's mailbox region, do endian swapping */
12536 	if (pmb->mbox_cmpl && mbox)
12537 		lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
12538 
12539 	/*
12540 	 * For mcqe errors, conditionally move a modified error code to
12541 	 * the mbox so that the error will not be missed.
12542 	 */
12543 	mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
12544 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
12545 		if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
12546 			bf_set(lpfc_mqe_status, mqe,
12547 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
12548 	}
12549 	if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12550 		pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12551 		lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
12552 				      "MBOX dflt rpi: status:x%x rpi:x%x",
12553 				      mcqe_status,
12554 				      pmbox->un.varWords[0], 0);
12555 		if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
12556 			mp = (struct lpfc_dmabuf *)(pmb->context1);
12557 			ndlp = (struct lpfc_nodelist *)pmb->context2;
12558 			/* Reg_LOGIN of dflt RPI was successful. Now lets get
12559 			 * RID of the PPI using the same mbox buffer.
12560 			 */
12561 			lpfc_unreg_login(phba, vport->vpi,
12562 					 pmbox->un.varWords[0], pmb);
12563 			pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
12564 			pmb->context1 = mp;
12565 			pmb->context2 = ndlp;
12566 			pmb->vport = vport;
12567 			rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
12568 			if (rc != MBX_BUSY)
12569 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12570 						LOG_SLI, "0385 rc should "
12571 						"have been MBX_BUSY\n");
12572 			if (rc != MBX_NOT_FINISHED)
12573 				goto send_current_mbox;
12574 		}
12575 	}
12576 	spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
12577 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
12578 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
12579 
12580 	/* There is mailbox completion work to do */
12581 	spin_lock_irqsave(&phba->hbalock, iflags);
12582 	__lpfc_mbox_cmpl_put(phba, pmb);
12583 	phba->work_ha |= HA_MBATT;
12584 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12585 	workposted = true;
12586 
12587 send_current_mbox:
12588 	spin_lock_irqsave(&phba->hbalock, iflags);
12589 	/* Release the mailbox command posting token */
12590 	phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
12591 	/* Setting active mailbox pointer need to be in sync to flag clear */
12592 	phba->sli.mbox_active = NULL;
12593 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12594 	/* Wake up worker thread to post the next pending mailbox command */
12595 	lpfc_worker_wake_up(phba);
12596 out_no_mqe_complete:
12597 	if (bf_get(lpfc_trailer_consumed, mcqe))
12598 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
12599 	return workposted;
12600 }
12601 
12602 /**
12603  * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
12604  * @phba: Pointer to HBA context object.
12605  * @cqe: Pointer to mailbox completion queue entry.
12606  *
12607  * This routine process a mailbox completion queue entry, it invokes the
12608  * proper mailbox complete handling or asynchrous event handling routine
12609  * according to the MCQE's async bit.
12610  *
12611  * Return: true if work posted to worker thread, otherwise false.
12612  **/
12613 static bool
12614 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe)
12615 {
12616 	struct lpfc_mcqe mcqe;
12617 	bool workposted;
12618 
12619 	/* Copy the mailbox MCQE and convert endian order as needed */
12620 	lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
12621 
12622 	/* Invoke the proper event handling routine */
12623 	if (!bf_get(lpfc_trailer_async, &mcqe))
12624 		workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
12625 	else
12626 		workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
12627 	return workposted;
12628 }
12629 
12630 /**
12631  * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
12632  * @phba: Pointer to HBA context object.
12633  * @cq: Pointer to associated CQ
12634  * @wcqe: Pointer to work-queue completion queue entry.
12635  *
12636  * This routine handles an ELS work-queue completion event.
12637  *
12638  * Return: true if work posted to worker thread, otherwise false.
12639  **/
12640 static bool
12641 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
12642 			     struct lpfc_wcqe_complete *wcqe)
12643 {
12644 	struct lpfc_iocbq *irspiocbq;
12645 	unsigned long iflags;
12646 	struct lpfc_sli_ring *pring = cq->pring;
12647 	int txq_cnt = 0;
12648 	int txcmplq_cnt = 0;
12649 	int fcp_txcmplq_cnt = 0;
12650 
12651 	/* Get an irspiocbq for later ELS response processing use */
12652 	irspiocbq = lpfc_sli_get_iocbq(phba);
12653 	if (!irspiocbq) {
12654 		if (!list_empty(&pring->txq))
12655 			txq_cnt++;
12656 		if (!list_empty(&pring->txcmplq))
12657 			txcmplq_cnt++;
12658 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12659 			"0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
12660 			"fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n",
12661 			txq_cnt, phba->iocb_cnt,
12662 			fcp_txcmplq_cnt,
12663 			txcmplq_cnt);
12664 		return false;
12665 	}
12666 
12667 	/* Save off the slow-path queue event for work thread to process */
12668 	memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
12669 	spin_lock_irqsave(&phba->hbalock, iflags);
12670 	list_add_tail(&irspiocbq->cq_event.list,
12671 		      &phba->sli4_hba.sp_queue_event);
12672 	phba->hba_flag |= HBA_SP_QUEUE_EVT;
12673 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12674 
12675 	return true;
12676 }
12677 
12678 /**
12679  * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
12680  * @phba: Pointer to HBA context object.
12681  * @wcqe: Pointer to work-queue completion queue entry.
12682  *
12683  * This routine handles slow-path WQ entry consumed event by invoking the
12684  * proper WQ release routine to the slow-path WQ.
12685  **/
12686 static void
12687 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
12688 			     struct lpfc_wcqe_release *wcqe)
12689 {
12690 	/* sanity check on queue memory */
12691 	if (unlikely(!phba->sli4_hba.els_wq))
12692 		return;
12693 	/* Check for the slow-path ELS work queue */
12694 	if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
12695 		lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
12696 				     bf_get(lpfc_wcqe_r_wqe_index, wcqe));
12697 	else
12698 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12699 				"2579 Slow-path wqe consume event carries "
12700 				"miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
12701 				bf_get(lpfc_wcqe_r_wqe_index, wcqe),
12702 				phba->sli4_hba.els_wq->queue_id);
12703 }
12704 
12705 /**
12706  * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
12707  * @phba: Pointer to HBA context object.
12708  * @cq: Pointer to a WQ completion queue.
12709  * @wcqe: Pointer to work-queue completion queue entry.
12710  *
12711  * This routine handles an XRI abort event.
12712  *
12713  * Return: true if work posted to worker thread, otherwise false.
12714  **/
12715 static bool
12716 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
12717 				   struct lpfc_queue *cq,
12718 				   struct sli4_wcqe_xri_aborted *wcqe)
12719 {
12720 	bool workposted = false;
12721 	struct lpfc_cq_event *cq_event;
12722 	unsigned long iflags;
12723 
12724 	/* Allocate a new internal CQ_EVENT entry */
12725 	cq_event = lpfc_sli4_cq_event_alloc(phba);
12726 	if (!cq_event) {
12727 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12728 				"0602 Failed to allocate CQ_EVENT entry\n");
12729 		return false;
12730 	}
12731 
12732 	/* Move the CQE into the proper xri abort event list */
12733 	memcpy(&cq_event->cqe, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
12734 	switch (cq->subtype) {
12735 	case LPFC_FCP:
12736 		spin_lock_irqsave(&phba->hbalock, iflags);
12737 		list_add_tail(&cq_event->list,
12738 			      &phba->sli4_hba.sp_fcp_xri_aborted_work_queue);
12739 		/* Set the fcp xri abort event flag */
12740 		phba->hba_flag |= FCP_XRI_ABORT_EVENT;
12741 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12742 		workposted = true;
12743 		break;
12744 	case LPFC_ELS:
12745 		spin_lock_irqsave(&phba->hbalock, iflags);
12746 		list_add_tail(&cq_event->list,
12747 			      &phba->sli4_hba.sp_els_xri_aborted_work_queue);
12748 		/* Set the els xri abort event flag */
12749 		phba->hba_flag |= ELS_XRI_ABORT_EVENT;
12750 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12751 		workposted = true;
12752 		break;
12753 	case LPFC_NVME:
12754 		spin_lock_irqsave(&phba->hbalock, iflags);
12755 		list_add_tail(&cq_event->list,
12756 			      &phba->sli4_hba.sp_nvme_xri_aborted_work_queue);
12757 		/* Set the nvme xri abort event flag */
12758 		phba->hba_flag |= NVME_XRI_ABORT_EVENT;
12759 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12760 		workposted = true;
12761 		break;
12762 	default:
12763 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12764 				"0603 Invalid CQ subtype %d: "
12765 				"%08x %08x %08x %08x\n",
12766 				cq->subtype, wcqe->word0, wcqe->parameter,
12767 				wcqe->word2, wcqe->word3);
12768 		lpfc_sli4_cq_event_release(phba, cq_event);
12769 		workposted = false;
12770 		break;
12771 	}
12772 	return workposted;
12773 }
12774 
12775 /**
12776  * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
12777  * @phba: Pointer to HBA context object.
12778  * @rcqe: Pointer to receive-queue completion queue entry.
12779  *
12780  * This routine process a receive-queue completion queue entry.
12781  *
12782  * Return: true if work posted to worker thread, otherwise false.
12783  **/
12784 static bool
12785 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
12786 {
12787 	bool workposted = false;
12788 	struct fc_frame_header *fc_hdr;
12789 	struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
12790 	struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
12791 	struct hbq_dmabuf *dma_buf;
12792 	uint32_t status, rq_id;
12793 	unsigned long iflags;
12794 
12795 	/* sanity check on queue memory */
12796 	if (unlikely(!hrq) || unlikely(!drq))
12797 		return workposted;
12798 
12799 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
12800 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
12801 	else
12802 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
12803 	if (rq_id != hrq->queue_id)
12804 		goto out;
12805 
12806 	status = bf_get(lpfc_rcqe_status, rcqe);
12807 	switch (status) {
12808 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
12809 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12810 				"2537 Receive Frame Truncated!!\n");
12811 		hrq->RQ_buf_trunc++;
12812 	case FC_STATUS_RQ_SUCCESS:
12813 		lpfc_sli4_rq_release(hrq, drq);
12814 		spin_lock_irqsave(&phba->hbalock, iflags);
12815 		dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
12816 		if (!dma_buf) {
12817 			hrq->RQ_no_buf_found++;
12818 			spin_unlock_irqrestore(&phba->hbalock, iflags);
12819 			goto out;
12820 		}
12821 		hrq->RQ_rcv_buf++;
12822 		memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
12823 
12824 		/* If a NVME LS event (type 0x28), treat it as Fast path */
12825 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
12826 
12827 		/* save off the frame for the word thread to process */
12828 		list_add_tail(&dma_buf->cq_event.list,
12829 			      &phba->sli4_hba.sp_queue_event);
12830 		/* Frame received */
12831 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
12832 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12833 		workposted = true;
12834 		break;
12835 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
12836 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
12837 		hrq->RQ_no_posted_buf++;
12838 		/* Post more buffers if possible */
12839 		spin_lock_irqsave(&phba->hbalock, iflags);
12840 		phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
12841 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12842 		workposted = true;
12843 		break;
12844 	}
12845 out:
12846 	return workposted;
12847 }
12848 
12849 /**
12850  * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
12851  * @phba: Pointer to HBA context object.
12852  * @cq: Pointer to the completion queue.
12853  * @wcqe: Pointer to a completion queue entry.
12854  *
12855  * This routine process a slow-path work-queue or receive queue completion queue
12856  * entry.
12857  *
12858  * Return: true if work posted to worker thread, otherwise false.
12859  **/
12860 static bool
12861 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
12862 			 struct lpfc_cqe *cqe)
12863 {
12864 	struct lpfc_cqe cqevt;
12865 	bool workposted = false;
12866 
12867 	/* Copy the work queue CQE and convert endian order if needed */
12868 	lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
12869 
12870 	/* Check and process for different type of WCQE and dispatch */
12871 	switch (bf_get(lpfc_cqe_code, &cqevt)) {
12872 	case CQE_CODE_COMPL_WQE:
12873 		/* Process the WQ/RQ complete event */
12874 		phba->last_completion_time = jiffies;
12875 		workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
12876 				(struct lpfc_wcqe_complete *)&cqevt);
12877 		break;
12878 	case CQE_CODE_RELEASE_WQE:
12879 		/* Process the WQ release event */
12880 		lpfc_sli4_sp_handle_rel_wcqe(phba,
12881 				(struct lpfc_wcqe_release *)&cqevt);
12882 		break;
12883 	case CQE_CODE_XRI_ABORTED:
12884 		/* Process the WQ XRI abort event */
12885 		phba->last_completion_time = jiffies;
12886 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
12887 				(struct sli4_wcqe_xri_aborted *)&cqevt);
12888 		break;
12889 	case CQE_CODE_RECEIVE:
12890 	case CQE_CODE_RECEIVE_V1:
12891 		/* Process the RQ event */
12892 		phba->last_completion_time = jiffies;
12893 		workposted = lpfc_sli4_sp_handle_rcqe(phba,
12894 				(struct lpfc_rcqe *)&cqevt);
12895 		break;
12896 	default:
12897 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12898 				"0388 Not a valid WCQE code: x%x\n",
12899 				bf_get(lpfc_cqe_code, &cqevt));
12900 		break;
12901 	}
12902 	return workposted;
12903 }
12904 
12905 /**
12906  * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
12907  * @phba: Pointer to HBA context object.
12908  * @eqe: Pointer to fast-path event queue entry.
12909  *
12910  * This routine process a event queue entry from the slow-path event queue.
12911  * It will check the MajorCode and MinorCode to determine this is for a
12912  * completion event on a completion queue, if not, an error shall be logged
12913  * and just return. Otherwise, it will get to the corresponding completion
12914  * queue and process all the entries on that completion queue, rearm the
12915  * completion queue, and then return.
12916  *
12917  **/
12918 static void
12919 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
12920 	struct lpfc_queue *speq)
12921 {
12922 	struct lpfc_queue *cq = NULL, *childq;
12923 	struct lpfc_cqe *cqe;
12924 	bool workposted = false;
12925 	int ecount = 0;
12926 	uint16_t cqid;
12927 
12928 	/* Get the reference to the corresponding CQ */
12929 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
12930 
12931 	list_for_each_entry(childq, &speq->child_list, list) {
12932 		if (childq->queue_id == cqid) {
12933 			cq = childq;
12934 			break;
12935 		}
12936 	}
12937 	if (unlikely(!cq)) {
12938 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
12939 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12940 					"0365 Slow-path CQ identifier "
12941 					"(%d) does not exist\n", cqid);
12942 		return;
12943 	}
12944 
12945 	/* Save EQ associated with this CQ */
12946 	cq->assoc_qp = speq;
12947 
12948 	/* Process all the entries to the CQ */
12949 	switch (cq->type) {
12950 	case LPFC_MCQ:
12951 		while ((cqe = lpfc_sli4_cq_get(cq))) {
12952 			workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe);
12953 			if (!(++ecount % cq->entry_repost))
12954 				lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
12955 			cq->CQ_mbox++;
12956 		}
12957 		break;
12958 	case LPFC_WCQ:
12959 		while ((cqe = lpfc_sli4_cq_get(cq))) {
12960 			if ((cq->subtype == LPFC_FCP) ||
12961 			    (cq->subtype == LPFC_NVME))
12962 				workposted |= lpfc_sli4_fp_handle_cqe(phba, cq,
12963 								       cqe);
12964 			else
12965 				workposted |= lpfc_sli4_sp_handle_cqe(phba, cq,
12966 								      cqe);
12967 			if (!(++ecount % cq->entry_repost))
12968 				lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
12969 		}
12970 
12971 		/* Track the max number of CQEs processed in 1 EQ */
12972 		if (ecount > cq->CQ_max_cqe)
12973 			cq->CQ_max_cqe = ecount;
12974 		break;
12975 	default:
12976 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12977 				"0370 Invalid completion queue type (%d)\n",
12978 				cq->type);
12979 		return;
12980 	}
12981 
12982 	/* Catch the no cq entry condition, log an error */
12983 	if (unlikely(ecount == 0))
12984 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12985 				"0371 No entry from the CQ: identifier "
12986 				"(x%x), type (%d)\n", cq->queue_id, cq->type);
12987 
12988 	/* In any case, flash and re-arm the RCQ */
12989 	lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM);
12990 
12991 	/* wake up worker thread if there are works to be done */
12992 	if (workposted)
12993 		lpfc_worker_wake_up(phba);
12994 }
12995 
12996 /**
12997  * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
12998  * @phba: Pointer to HBA context object.
12999  * @cq: Pointer to associated CQ
13000  * @wcqe: Pointer to work-queue completion queue entry.
13001  *
13002  * This routine process a fast-path work queue completion entry from fast-path
13003  * event queue for FCP command response completion.
13004  **/
13005 static void
13006 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13007 			     struct lpfc_wcqe_complete *wcqe)
13008 {
13009 	struct lpfc_sli_ring *pring = cq->pring;
13010 	struct lpfc_iocbq *cmdiocbq;
13011 	struct lpfc_iocbq irspiocbq;
13012 	unsigned long iflags;
13013 
13014 	/* Check for response status */
13015 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13016 		/* If resource errors reported from HBA, reduce queue
13017 		 * depth of the SCSI device.
13018 		 */
13019 		if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
13020 		     IOSTAT_LOCAL_REJECT)) &&
13021 		    ((wcqe->parameter & IOERR_PARAM_MASK) ==
13022 		     IOERR_NO_RESOURCES))
13023 			phba->lpfc_rampdown_queue_depth(phba);
13024 
13025 		/* Log the error status */
13026 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13027 				"0373 FCP complete error: status=x%x, "
13028 				"hw_status=x%x, total_data_specified=%d, "
13029 				"parameter=x%x, word3=x%x\n",
13030 				bf_get(lpfc_wcqe_c_status, wcqe),
13031 				bf_get(lpfc_wcqe_c_hw_status, wcqe),
13032 				wcqe->total_data_placed, wcqe->parameter,
13033 				wcqe->word3);
13034 	}
13035 
13036 	/* Look up the FCP command IOCB and create pseudo response IOCB */
13037 	spin_lock_irqsave(&pring->ring_lock, iflags);
13038 	pring->stats.iocb_event++;
13039 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13040 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13041 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13042 	if (unlikely(!cmdiocbq)) {
13043 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13044 				"0374 FCP complete with no corresponding "
13045 				"cmdiocb: iotag (%d)\n",
13046 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13047 		return;
13048 	}
13049 
13050 	if (cq->assoc_qp)
13051 		cmdiocbq->isr_timestamp =
13052 			cq->assoc_qp->isr_timestamp;
13053 
13054 	if (cmdiocbq->iocb_cmpl == NULL) {
13055 		if (cmdiocbq->wqe_cmpl) {
13056 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13057 				spin_lock_irqsave(&phba->hbalock, iflags);
13058 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13059 				spin_unlock_irqrestore(&phba->hbalock, iflags);
13060 			}
13061 
13062 			/* Pass the cmd_iocb and the wcqe to the upper layer */
13063 			(cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
13064 			return;
13065 		}
13066 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13067 				"0375 FCP cmdiocb not callback function "
13068 				"iotag: (%d)\n",
13069 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13070 		return;
13071 	}
13072 
13073 	/* Fake the irspiocb and copy necessary response information */
13074 	lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
13075 
13076 	if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13077 		spin_lock_irqsave(&phba->hbalock, iflags);
13078 		cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13079 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13080 	}
13081 
13082 	/* Pass the cmd_iocb and the rsp state to the upper layer */
13083 	(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
13084 }
13085 
13086 /**
13087  * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
13088  * @phba: Pointer to HBA context object.
13089  * @cq: Pointer to completion queue.
13090  * @wcqe: Pointer to work-queue completion queue entry.
13091  *
13092  * This routine handles an fast-path WQ entry consumed event by invoking the
13093  * proper WQ release routine to the slow-path WQ.
13094  **/
13095 static void
13096 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13097 			     struct lpfc_wcqe_release *wcqe)
13098 {
13099 	struct lpfc_queue *childwq;
13100 	bool wqid_matched = false;
13101 	uint16_t hba_wqid;
13102 
13103 	/* Check for fast-path FCP work queue release */
13104 	hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
13105 	list_for_each_entry(childwq, &cq->child_list, list) {
13106 		if (childwq->queue_id == hba_wqid) {
13107 			lpfc_sli4_wq_release(childwq,
13108 					bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13109 			wqid_matched = true;
13110 			break;
13111 		}
13112 	}
13113 	/* Report warning log message if no match found */
13114 	if (wqid_matched != true)
13115 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13116 				"2580 Fast-path wqe consume event carries "
13117 				"miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
13118 }
13119 
13120 /**
13121  * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
13122  * @phba: Pointer to HBA context object.
13123  * @rcqe: Pointer to receive-queue completion queue entry.
13124  *
13125  * This routine process a receive-queue completion queue entry.
13126  *
13127  * Return: true if work posted to worker thread, otherwise false.
13128  **/
13129 static bool
13130 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13131 			    struct lpfc_rcqe *rcqe)
13132 {
13133 	bool workposted = false;
13134 	struct lpfc_queue *hrq;
13135 	struct lpfc_queue *drq;
13136 	struct rqb_dmabuf *dma_buf;
13137 	struct fc_frame_header *fc_hdr;
13138 	uint32_t status, rq_id;
13139 	unsigned long iflags;
13140 	uint32_t fctl, idx;
13141 
13142 	if ((phba->nvmet_support == 0) ||
13143 	    (phba->sli4_hba.nvmet_cqset == NULL))
13144 		return workposted;
13145 
13146 	idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
13147 	hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
13148 	drq = phba->sli4_hba.nvmet_mrq_data[idx];
13149 
13150 	/* sanity check on queue memory */
13151 	if (unlikely(!hrq) || unlikely(!drq))
13152 		return workposted;
13153 
13154 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13155 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13156 	else
13157 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13158 
13159 	if ((phba->nvmet_support == 0) ||
13160 	    (rq_id != hrq->queue_id))
13161 		return workposted;
13162 
13163 	status = bf_get(lpfc_rcqe_status, rcqe);
13164 	switch (status) {
13165 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13166 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13167 				"6126 Receive Frame Truncated!!\n");
13168 		hrq->RQ_buf_trunc++;
13169 		break;
13170 	case FC_STATUS_RQ_SUCCESS:
13171 		lpfc_sli4_rq_release(hrq, drq);
13172 		spin_lock_irqsave(&phba->hbalock, iflags);
13173 		dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
13174 		if (!dma_buf) {
13175 			hrq->RQ_no_buf_found++;
13176 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13177 			goto out;
13178 		}
13179 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13180 		hrq->RQ_rcv_buf++;
13181 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13182 
13183 		/* Just some basic sanity checks on FCP Command frame */
13184 		fctl = (fc_hdr->fh_f_ctl[0] << 16 |
13185 		fc_hdr->fh_f_ctl[1] << 8 |
13186 		fc_hdr->fh_f_ctl[2]);
13187 		if (((fctl &
13188 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
13189 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
13190 		    (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
13191 			goto drop;
13192 
13193 		if (fc_hdr->fh_type == FC_TYPE_FCP) {
13194 			dma_buf->bytes_recv = bf_get(lpfc_rcqe_length,  rcqe);
13195 			lpfc_nvmet_unsol_fcp_event(
13196 				phba, phba->sli4_hba.els_wq->pring, dma_buf,
13197 				cq->assoc_qp->isr_timestamp);
13198 			return false;
13199 		}
13200 drop:
13201 		lpfc_in_buf_free(phba, &dma_buf->dbuf);
13202 		break;
13203 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
13204 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13205 		hrq->RQ_no_posted_buf++;
13206 		/* Post more buffers if possible */
13207 		spin_lock_irqsave(&phba->hbalock, iflags);
13208 		phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
13209 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13210 		workposted = true;
13211 		break;
13212 	}
13213 out:
13214 	return workposted;
13215 }
13216 
13217 /**
13218  * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
13219  * @cq: Pointer to the completion queue.
13220  * @eqe: Pointer to fast-path completion queue entry.
13221  *
13222  * This routine process a fast-path work queue completion entry from fast-path
13223  * event queue for FCP command response completion.
13224  **/
13225 static int
13226 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13227 			 struct lpfc_cqe *cqe)
13228 {
13229 	struct lpfc_wcqe_release wcqe;
13230 	bool workposted = false;
13231 
13232 	/* Copy the work queue CQE and convert endian order if needed */
13233 	lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
13234 
13235 	/* Check and process for different type of WCQE and dispatch */
13236 	switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
13237 	case CQE_CODE_COMPL_WQE:
13238 	case CQE_CODE_NVME_ERSP:
13239 		cq->CQ_wq++;
13240 		/* Process the WQ complete event */
13241 		phba->last_completion_time = jiffies;
13242 		if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME))
13243 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
13244 				(struct lpfc_wcqe_complete *)&wcqe);
13245 		if (cq->subtype == LPFC_NVME_LS)
13246 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
13247 				(struct lpfc_wcqe_complete *)&wcqe);
13248 		break;
13249 	case CQE_CODE_RELEASE_WQE:
13250 		cq->CQ_release_wqe++;
13251 		/* Process the WQ release event */
13252 		lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
13253 				(struct lpfc_wcqe_release *)&wcqe);
13254 		break;
13255 	case CQE_CODE_XRI_ABORTED:
13256 		cq->CQ_xri_aborted++;
13257 		/* Process the WQ XRI abort event */
13258 		phba->last_completion_time = jiffies;
13259 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13260 				(struct sli4_wcqe_xri_aborted *)&wcqe);
13261 		break;
13262 	case CQE_CODE_RECEIVE_V1:
13263 	case CQE_CODE_RECEIVE:
13264 		phba->last_completion_time = jiffies;
13265 		if (cq->subtype == LPFC_NVMET) {
13266 			workposted = lpfc_sli4_nvmet_handle_rcqe(
13267 				phba, cq, (struct lpfc_rcqe *)&wcqe);
13268 		}
13269 		break;
13270 	default:
13271 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13272 				"0144 Not a valid CQE code: x%x\n",
13273 				bf_get(lpfc_wcqe_c_code, &wcqe));
13274 		break;
13275 	}
13276 	return workposted;
13277 }
13278 
13279 /**
13280  * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
13281  * @phba: Pointer to HBA context object.
13282  * @eqe: Pointer to fast-path event queue entry.
13283  *
13284  * This routine process a event queue entry from the fast-path event queue.
13285  * It will check the MajorCode and MinorCode to determine this is for a
13286  * completion event on a completion queue, if not, an error shall be logged
13287  * and just return. Otherwise, it will get to the corresponding completion
13288  * queue and process all the entries on the completion queue, rearm the
13289  * completion queue, and then return.
13290  **/
13291 static void
13292 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13293 			uint32_t qidx)
13294 {
13295 	struct lpfc_queue *cq = NULL;
13296 	struct lpfc_cqe *cqe;
13297 	bool workposted = false;
13298 	uint16_t cqid, id;
13299 	int ecount = 0;
13300 
13301 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
13302 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13303 				"0366 Not a valid completion "
13304 				"event: majorcode=x%x, minorcode=x%x\n",
13305 				bf_get_le32(lpfc_eqe_major_code, eqe),
13306 				bf_get_le32(lpfc_eqe_minor_code, eqe));
13307 		return;
13308 	}
13309 
13310 	/* Get the reference to the corresponding CQ */
13311 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13312 
13313 	if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
13314 		id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
13315 		if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
13316 			/* Process NVMET unsol rcv */
13317 			cq = phba->sli4_hba.nvmet_cqset[cqid - id];
13318 			goto  process_cq;
13319 		}
13320 	}
13321 
13322 	if (phba->sli4_hba.nvme_cq_map &&
13323 	    (cqid == phba->sli4_hba.nvme_cq_map[qidx])) {
13324 		/* Process NVME / NVMET command completion */
13325 		cq = phba->sli4_hba.nvme_cq[qidx];
13326 		goto  process_cq;
13327 	}
13328 
13329 	if (phba->sli4_hba.fcp_cq_map &&
13330 	    (cqid == phba->sli4_hba.fcp_cq_map[qidx])) {
13331 		/* Process FCP command completion */
13332 		cq = phba->sli4_hba.fcp_cq[qidx];
13333 		goto  process_cq;
13334 	}
13335 
13336 	if (phba->sli4_hba.nvmels_cq &&
13337 	    (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
13338 		/* Process NVME unsol rcv */
13339 		cq = phba->sli4_hba.nvmels_cq;
13340 	}
13341 
13342 	/* Otherwise this is a Slow path event */
13343 	if (cq == NULL) {
13344 		lpfc_sli4_sp_handle_eqe(phba, eqe, phba->sli4_hba.hba_eq[qidx]);
13345 		return;
13346 	}
13347 
13348 process_cq:
13349 	if (unlikely(cqid != cq->queue_id)) {
13350 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13351 				"0368 Miss-matched fast-path completion "
13352 				"queue identifier: eqcqid=%d, fcpcqid=%d\n",
13353 				cqid, cq->queue_id);
13354 		return;
13355 	}
13356 
13357 	/* Save EQ associated with this CQ */
13358 	cq->assoc_qp = phba->sli4_hba.hba_eq[qidx];
13359 
13360 	/* Process all the entries to the CQ */
13361 	while ((cqe = lpfc_sli4_cq_get(cq))) {
13362 		workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe);
13363 		if (!(++ecount % cq->entry_repost))
13364 			lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
13365 	}
13366 
13367 	/* Track the max number of CQEs processed in 1 EQ */
13368 	if (ecount > cq->CQ_max_cqe)
13369 		cq->CQ_max_cqe = ecount;
13370 
13371 	/* Catch the no cq entry condition */
13372 	if (unlikely(ecount == 0))
13373 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13374 				"0369 No entry from fast-path completion "
13375 				"queue fcpcqid=%d\n", cq->queue_id);
13376 
13377 	/* In any case, flash and re-arm the CQ */
13378 	lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM);
13379 
13380 	/* wake up worker thread if there are works to be done */
13381 	if (workposted)
13382 		lpfc_worker_wake_up(phba);
13383 }
13384 
13385 static void
13386 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
13387 {
13388 	struct lpfc_eqe *eqe;
13389 
13390 	/* walk all the EQ entries and drop on the floor */
13391 	while ((eqe = lpfc_sli4_eq_get(eq)))
13392 		;
13393 
13394 	/* Clear and re-arm the EQ */
13395 	lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM);
13396 }
13397 
13398 
13399 /**
13400  * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue
13401  *			     entry
13402  * @phba: Pointer to HBA context object.
13403  * @eqe: Pointer to fast-path event queue entry.
13404  *
13405  * This routine process a event queue entry from the Flash Optimized Fabric
13406  * event queue.  It will check the MajorCode and MinorCode to determine this
13407  * is for a completion event on a completion queue, if not, an error shall be
13408  * logged and just return. Otherwise, it will get to the corresponding
13409  * completion queue and process all the entries on the completion queue, rearm
13410  * the completion queue, and then return.
13411  **/
13412 static void
13413 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe)
13414 {
13415 	struct lpfc_queue *cq;
13416 	struct lpfc_cqe *cqe;
13417 	bool workposted = false;
13418 	uint16_t cqid;
13419 	int ecount = 0;
13420 
13421 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
13422 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13423 				"9147 Not a valid completion "
13424 				"event: majorcode=x%x, minorcode=x%x\n",
13425 				bf_get_le32(lpfc_eqe_major_code, eqe),
13426 				bf_get_le32(lpfc_eqe_minor_code, eqe));
13427 		return;
13428 	}
13429 
13430 	/* Get the reference to the corresponding CQ */
13431 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13432 
13433 	/* Next check for OAS */
13434 	cq = phba->sli4_hba.oas_cq;
13435 	if (unlikely(!cq)) {
13436 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
13437 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13438 					"9148 OAS completion queue "
13439 					"does not exist\n");
13440 		return;
13441 	}
13442 
13443 	if (unlikely(cqid != cq->queue_id)) {
13444 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13445 				"9149 Miss-matched fast-path compl "
13446 				"queue id: eqcqid=%d, fcpcqid=%d\n",
13447 				cqid, cq->queue_id);
13448 		return;
13449 	}
13450 
13451 	/* Process all the entries to the OAS CQ */
13452 	while ((cqe = lpfc_sli4_cq_get(cq))) {
13453 		workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe);
13454 		if (!(++ecount % cq->entry_repost))
13455 			lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
13456 	}
13457 
13458 	/* Track the max number of CQEs processed in 1 EQ */
13459 	if (ecount > cq->CQ_max_cqe)
13460 		cq->CQ_max_cqe = ecount;
13461 
13462 	/* Catch the no cq entry condition */
13463 	if (unlikely(ecount == 0))
13464 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13465 				"9153 No entry from fast-path completion "
13466 				"queue fcpcqid=%d\n", cq->queue_id);
13467 
13468 	/* In any case, flash and re-arm the CQ */
13469 	lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM);
13470 
13471 	/* wake up worker thread if there are works to be done */
13472 	if (workposted)
13473 		lpfc_worker_wake_up(phba);
13474 }
13475 
13476 /**
13477  * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device
13478  * @irq: Interrupt number.
13479  * @dev_id: The device context pointer.
13480  *
13481  * This function is directly called from the PCI layer as an interrupt
13482  * service routine when device with SLI-4 interface spec is enabled with
13483  * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric
13484  * IOCB ring event in the HBA. However, when the device is enabled with either
13485  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
13486  * device-level interrupt handler. When the PCI slot is in error recovery
13487  * or the HBA is undergoing initialization, the interrupt handler will not
13488  * process the interrupt. The Flash Optimized Fabric ring event are handled in
13489  * the intrrupt context. This function is called without any lock held.
13490  * It gets the hbalock to access and update SLI data structures. Note that,
13491  * the EQ to CQ are one-to-one map such that the EQ index is
13492  * equal to that of CQ index.
13493  *
13494  * This function returns IRQ_HANDLED when interrupt is handled else it
13495  * returns IRQ_NONE.
13496  **/
13497 irqreturn_t
13498 lpfc_sli4_fof_intr_handler(int irq, void *dev_id)
13499 {
13500 	struct lpfc_hba *phba;
13501 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
13502 	struct lpfc_queue *eq;
13503 	struct lpfc_eqe *eqe;
13504 	unsigned long iflag;
13505 	int ecount = 0;
13506 
13507 	/* Get the driver's phba structure from the dev_id */
13508 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
13509 	phba = hba_eq_hdl->phba;
13510 
13511 	if (unlikely(!phba))
13512 		return IRQ_NONE;
13513 
13514 	/* Get to the EQ struct associated with this vector */
13515 	eq = phba->sli4_hba.fof_eq;
13516 	if (unlikely(!eq))
13517 		return IRQ_NONE;
13518 
13519 	/* Check device state for handling interrupt */
13520 	if (unlikely(lpfc_intr_state_check(phba))) {
13521 		eq->EQ_badstate++;
13522 		/* Check again for link_state with lock held */
13523 		spin_lock_irqsave(&phba->hbalock, iflag);
13524 		if (phba->link_state < LPFC_LINK_DOWN)
13525 			/* Flush, clear interrupt, and rearm the EQ */
13526 			lpfc_sli4_eq_flush(phba, eq);
13527 		spin_unlock_irqrestore(&phba->hbalock, iflag);
13528 		return IRQ_NONE;
13529 	}
13530 
13531 	/*
13532 	 * Process all the event on FCP fast-path EQ
13533 	 */
13534 	while ((eqe = lpfc_sli4_eq_get(eq))) {
13535 		lpfc_sli4_fof_handle_eqe(phba, eqe);
13536 		if (!(++ecount % eq->entry_repost))
13537 			lpfc_sli4_eq_release(eq, LPFC_QUEUE_NOARM);
13538 		eq->EQ_processed++;
13539 	}
13540 
13541 	/* Track the max number of EQEs processed in 1 intr */
13542 	if (ecount > eq->EQ_max_eqe)
13543 		eq->EQ_max_eqe = ecount;
13544 
13545 
13546 	if (unlikely(ecount == 0)) {
13547 		eq->EQ_no_entry++;
13548 
13549 		if (phba->intr_type == MSIX)
13550 			/* MSI-X treated interrupt served as no EQ share INT */
13551 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13552 					"9145 MSI-X interrupt with no EQE\n");
13553 		else {
13554 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13555 					"9146 ISR interrupt with no EQE\n");
13556 			/* Non MSI-X treated on interrupt as EQ share INT */
13557 			return IRQ_NONE;
13558 		}
13559 	}
13560 	/* Always clear and re-arm the fast-path EQ */
13561 	lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM);
13562 	return IRQ_HANDLED;
13563 }
13564 
13565 /**
13566  * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
13567  * @irq: Interrupt number.
13568  * @dev_id: The device context pointer.
13569  *
13570  * This function is directly called from the PCI layer as an interrupt
13571  * service routine when device with SLI-4 interface spec is enabled with
13572  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
13573  * ring event in the HBA. However, when the device is enabled with either
13574  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
13575  * device-level interrupt handler. When the PCI slot is in error recovery
13576  * or the HBA is undergoing initialization, the interrupt handler will not
13577  * process the interrupt. The SCSI FCP fast-path ring event are handled in
13578  * the intrrupt context. This function is called without any lock held.
13579  * It gets the hbalock to access and update SLI data structures. Note that,
13580  * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
13581  * equal to that of FCP CQ index.
13582  *
13583  * The link attention and ELS ring attention events are handled
13584  * by the worker thread. The interrupt handler signals the worker thread
13585  * and returns for these events. This function is called without any lock
13586  * held. It gets the hbalock to access and update SLI data structures.
13587  *
13588  * This function returns IRQ_HANDLED when interrupt is handled else it
13589  * returns IRQ_NONE.
13590  **/
13591 irqreturn_t
13592 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
13593 {
13594 	struct lpfc_hba *phba;
13595 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
13596 	struct lpfc_queue *fpeq;
13597 	struct lpfc_eqe *eqe;
13598 	unsigned long iflag;
13599 	int ecount = 0;
13600 	int hba_eqidx;
13601 
13602 	/* Get the driver's phba structure from the dev_id */
13603 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
13604 	phba = hba_eq_hdl->phba;
13605 	hba_eqidx = hba_eq_hdl->idx;
13606 
13607 	if (unlikely(!phba))
13608 		return IRQ_NONE;
13609 	if (unlikely(!phba->sli4_hba.hba_eq))
13610 		return IRQ_NONE;
13611 
13612 	/* Get to the EQ struct associated with this vector */
13613 	fpeq = phba->sli4_hba.hba_eq[hba_eqidx];
13614 	if (unlikely(!fpeq))
13615 		return IRQ_NONE;
13616 
13617 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
13618 	if (phba->ktime_on)
13619 		fpeq->isr_timestamp = ktime_get_ns();
13620 #endif
13621 
13622 	if (lpfc_fcp_look_ahead) {
13623 		if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use))
13624 			lpfc_sli4_eq_clr_intr(fpeq);
13625 		else {
13626 			atomic_inc(&hba_eq_hdl->hba_eq_in_use);
13627 			return IRQ_NONE;
13628 		}
13629 	}
13630 
13631 	/* Check device state for handling interrupt */
13632 	if (unlikely(lpfc_intr_state_check(phba))) {
13633 		fpeq->EQ_badstate++;
13634 		/* Check again for link_state with lock held */
13635 		spin_lock_irqsave(&phba->hbalock, iflag);
13636 		if (phba->link_state < LPFC_LINK_DOWN)
13637 			/* Flush, clear interrupt, and rearm the EQ */
13638 			lpfc_sli4_eq_flush(phba, fpeq);
13639 		spin_unlock_irqrestore(&phba->hbalock, iflag);
13640 		if (lpfc_fcp_look_ahead)
13641 			atomic_inc(&hba_eq_hdl->hba_eq_in_use);
13642 		return IRQ_NONE;
13643 	}
13644 
13645 	/*
13646 	 * Process all the event on FCP fast-path EQ
13647 	 */
13648 	while ((eqe = lpfc_sli4_eq_get(fpeq))) {
13649 		if (eqe == NULL)
13650 			break;
13651 
13652 		lpfc_sli4_hba_handle_eqe(phba, eqe, hba_eqidx);
13653 		if (!(++ecount % fpeq->entry_repost))
13654 			lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_NOARM);
13655 		fpeq->EQ_processed++;
13656 	}
13657 
13658 	/* Track the max number of EQEs processed in 1 intr */
13659 	if (ecount > fpeq->EQ_max_eqe)
13660 		fpeq->EQ_max_eqe = ecount;
13661 
13662 	/* Always clear and re-arm the fast-path EQ */
13663 	lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM);
13664 
13665 	if (unlikely(ecount == 0)) {
13666 		fpeq->EQ_no_entry++;
13667 
13668 		if (lpfc_fcp_look_ahead) {
13669 			atomic_inc(&hba_eq_hdl->hba_eq_in_use);
13670 			return IRQ_NONE;
13671 		}
13672 
13673 		if (phba->intr_type == MSIX)
13674 			/* MSI-X treated interrupt served as no EQ share INT */
13675 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13676 					"0358 MSI-X interrupt with no EQE\n");
13677 		else
13678 			/* Non MSI-X treated on interrupt as EQ share INT */
13679 			return IRQ_NONE;
13680 	}
13681 
13682 	if (lpfc_fcp_look_ahead)
13683 		atomic_inc(&hba_eq_hdl->hba_eq_in_use);
13684 
13685 	return IRQ_HANDLED;
13686 } /* lpfc_sli4_fp_intr_handler */
13687 
13688 /**
13689  * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
13690  * @irq: Interrupt number.
13691  * @dev_id: The device context pointer.
13692  *
13693  * This function is the device-level interrupt handler to device with SLI-4
13694  * interface spec, called from the PCI layer when either MSI or Pin-IRQ
13695  * interrupt mode is enabled and there is an event in the HBA which requires
13696  * driver attention. This function invokes the slow-path interrupt attention
13697  * handling function and fast-path interrupt attention handling function in
13698  * turn to process the relevant HBA attention events. This function is called
13699  * without any lock held. It gets the hbalock to access and update SLI data
13700  * structures.
13701  *
13702  * This function returns IRQ_HANDLED when interrupt is handled, else it
13703  * returns IRQ_NONE.
13704  **/
13705 irqreturn_t
13706 lpfc_sli4_intr_handler(int irq, void *dev_id)
13707 {
13708 	struct lpfc_hba  *phba;
13709 	irqreturn_t hba_irq_rc;
13710 	bool hba_handled = false;
13711 	int qidx;
13712 
13713 	/* Get the driver's phba structure from the dev_id */
13714 	phba = (struct lpfc_hba *)dev_id;
13715 
13716 	if (unlikely(!phba))
13717 		return IRQ_NONE;
13718 
13719 	/*
13720 	 * Invoke fast-path host attention interrupt handling as appropriate.
13721 	 */
13722 	for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) {
13723 		hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
13724 					&phba->sli4_hba.hba_eq_hdl[qidx]);
13725 		if (hba_irq_rc == IRQ_HANDLED)
13726 			hba_handled |= true;
13727 	}
13728 
13729 	if (phba->cfg_fof) {
13730 		hba_irq_rc = lpfc_sli4_fof_intr_handler(irq,
13731 					&phba->sli4_hba.hba_eq_hdl[qidx]);
13732 		if (hba_irq_rc == IRQ_HANDLED)
13733 			hba_handled |= true;
13734 	}
13735 
13736 	return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
13737 } /* lpfc_sli4_intr_handler */
13738 
13739 /**
13740  * lpfc_sli4_queue_free - free a queue structure and associated memory
13741  * @queue: The queue structure to free.
13742  *
13743  * This function frees a queue structure and the DMAable memory used for
13744  * the host resident queue. This function must be called after destroying the
13745  * queue on the HBA.
13746  **/
13747 void
13748 lpfc_sli4_queue_free(struct lpfc_queue *queue)
13749 {
13750 	struct lpfc_dmabuf *dmabuf;
13751 
13752 	if (!queue)
13753 		return;
13754 
13755 	while (!list_empty(&queue->page_list)) {
13756 		list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
13757 				 list);
13758 		dma_free_coherent(&queue->phba->pcidev->dev, SLI4_PAGE_SIZE,
13759 				  dmabuf->virt, dmabuf->phys);
13760 		kfree(dmabuf);
13761 	}
13762 	if (queue->rqbp) {
13763 		lpfc_free_rq_buffer(queue->phba, queue);
13764 		kfree(queue->rqbp);
13765 	}
13766 
13767 	if (!list_empty(&queue->wq_list))
13768 		list_del(&queue->wq_list);
13769 
13770 	kfree(queue);
13771 	return;
13772 }
13773 
13774 /**
13775  * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
13776  * @phba: The HBA that this queue is being created on.
13777  * @entry_size: The size of each queue entry for this queue.
13778  * @entry count: The number of entries that this queue will handle.
13779  *
13780  * This function allocates a queue structure and the DMAable memory used for
13781  * the host resident queue. This function must be called before creating the
13782  * queue on the HBA.
13783  **/
13784 struct lpfc_queue *
13785 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t entry_size,
13786 		      uint32_t entry_count)
13787 {
13788 	struct lpfc_queue *queue;
13789 	struct lpfc_dmabuf *dmabuf;
13790 	int x, total_qe_count;
13791 	void *dma_pointer;
13792 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
13793 
13794 	if (!phba->sli4_hba.pc_sli4_params.supported)
13795 		hw_page_size = SLI4_PAGE_SIZE;
13796 
13797 	queue = kzalloc(sizeof(struct lpfc_queue) +
13798 			(sizeof(union sli4_qe) * entry_count), GFP_KERNEL);
13799 	if (!queue)
13800 		return NULL;
13801 	queue->page_count = (ALIGN(entry_size * entry_count,
13802 			hw_page_size))/hw_page_size;
13803 
13804 	/* If needed, Adjust page count to match the max the adapter supports */
13805 	if (queue->page_count > phba->sli4_hba.pc_sli4_params.wqpcnt)
13806 		queue->page_count = phba->sli4_hba.pc_sli4_params.wqpcnt;
13807 
13808 	INIT_LIST_HEAD(&queue->list);
13809 	INIT_LIST_HEAD(&queue->wq_list);
13810 	INIT_LIST_HEAD(&queue->page_list);
13811 	INIT_LIST_HEAD(&queue->child_list);
13812 	for (x = 0, total_qe_count = 0; x < queue->page_count; x++) {
13813 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
13814 		if (!dmabuf)
13815 			goto out_fail;
13816 		dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev,
13817 						   hw_page_size, &dmabuf->phys,
13818 						   GFP_KERNEL);
13819 		if (!dmabuf->virt) {
13820 			kfree(dmabuf);
13821 			goto out_fail;
13822 		}
13823 		dmabuf->buffer_tag = x;
13824 		list_add_tail(&dmabuf->list, &queue->page_list);
13825 		/* initialize queue's entry array */
13826 		dma_pointer = dmabuf->virt;
13827 		for (; total_qe_count < entry_count &&
13828 		     dma_pointer < (hw_page_size + dmabuf->virt);
13829 		     total_qe_count++, dma_pointer += entry_size) {
13830 			queue->qe[total_qe_count].address = dma_pointer;
13831 		}
13832 	}
13833 	queue->entry_size = entry_size;
13834 	queue->entry_count = entry_count;
13835 
13836 	/*
13837 	 * entry_repost is calculated based on the number of entries in the
13838 	 * queue. This works out except for RQs. If buffers are NOT initially
13839 	 * posted for every RQE, entry_repost should be adjusted accordingly.
13840 	 */
13841 	queue->entry_repost = (entry_count >> 3);
13842 	if (queue->entry_repost < LPFC_QUEUE_MIN_REPOST)
13843 		queue->entry_repost = LPFC_QUEUE_MIN_REPOST;
13844 	queue->phba = phba;
13845 
13846 	return queue;
13847 out_fail:
13848 	lpfc_sli4_queue_free(queue);
13849 	return NULL;
13850 }
13851 
13852 /**
13853  * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
13854  * @phba: HBA structure that indicates port to create a queue on.
13855  * @pci_barset: PCI BAR set flag.
13856  *
13857  * This function shall perform iomap of the specified PCI BAR address to host
13858  * memory address if not already done so and return it. The returned host
13859  * memory address can be NULL.
13860  */
13861 static void __iomem *
13862 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
13863 {
13864 	if (!phba->pcidev)
13865 		return NULL;
13866 
13867 	switch (pci_barset) {
13868 	case WQ_PCI_BAR_0_AND_1:
13869 		return phba->pci_bar0_memmap_p;
13870 	case WQ_PCI_BAR_2_AND_3:
13871 		return phba->pci_bar2_memmap_p;
13872 	case WQ_PCI_BAR_4_AND_5:
13873 		return phba->pci_bar4_memmap_p;
13874 	default:
13875 		break;
13876 	}
13877 	return NULL;
13878 }
13879 
13880 /**
13881  * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on FCP EQs
13882  * @phba: HBA structure that indicates port to create a queue on.
13883  * @startq: The starting FCP EQ to modify
13884  *
13885  * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA.
13886  * The command allows up to LPFC_MAX_EQ_DELAY_EQID_CNT EQ ID's to be
13887  * updated in one mailbox command.
13888  *
13889  * The @phba struct is used to send mailbox command to HBA. The @startq
13890  * is used to get the starting FCP EQ to change.
13891  * This function is asynchronous and will wait for the mailbox
13892  * command to finish before continuing.
13893  *
13894  * On success this function will return a zero. If unable to allocate enough
13895  * memory this function will return -ENOMEM. If the queue create mailbox command
13896  * fails this function will return -ENXIO.
13897  **/
13898 int
13899 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq)
13900 {
13901 	struct lpfc_mbx_modify_eq_delay *eq_delay;
13902 	LPFC_MBOXQ_t *mbox;
13903 	struct lpfc_queue *eq;
13904 	int cnt, rc, length, status = 0;
13905 	uint32_t shdr_status, shdr_add_status;
13906 	uint32_t result;
13907 	int qidx;
13908 	union lpfc_sli4_cfg_shdr *shdr;
13909 	uint16_t dmult;
13910 
13911 	if (startq >= phba->io_channel_irqs)
13912 		return 0;
13913 
13914 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13915 	if (!mbox)
13916 		return -ENOMEM;
13917 	length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
13918 		  sizeof(struct lpfc_sli4_cfg_mhdr));
13919 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
13920 			 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
13921 			 length, LPFC_SLI4_MBX_EMBED);
13922 	eq_delay = &mbox->u.mqe.un.eq_delay;
13923 
13924 	/* Calculate delay multiper from maximum interrupt per second */
13925 	result = phba->cfg_fcp_imax / phba->io_channel_irqs;
13926 	if (result > LPFC_DMULT_CONST || result == 0)
13927 		dmult = 0;
13928 	else
13929 		dmult = LPFC_DMULT_CONST/result - 1;
13930 
13931 	cnt = 0;
13932 	for (qidx = startq; qidx < phba->io_channel_irqs; qidx++) {
13933 		eq = phba->sli4_hba.hba_eq[qidx];
13934 		if (!eq)
13935 			continue;
13936 		eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
13937 		eq_delay->u.request.eq[cnt].phase = 0;
13938 		eq_delay->u.request.eq[cnt].delay_multi = dmult;
13939 		cnt++;
13940 		if (cnt >= LPFC_MAX_EQ_DELAY_EQID_CNT)
13941 			break;
13942 	}
13943 	eq_delay->u.request.num_eq = cnt;
13944 
13945 	mbox->vport = phba->pport;
13946 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
13947 	mbox->context1 = NULL;
13948 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13949 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
13950 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13951 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
13952 	if (shdr_status || shdr_add_status || rc) {
13953 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13954 				"2512 MODIFY_EQ_DELAY mailbox failed with "
13955 				"status x%x add_status x%x, mbx status x%x\n",
13956 				shdr_status, shdr_add_status, rc);
13957 		status = -ENXIO;
13958 	}
13959 	mempool_free(mbox, phba->mbox_mem_pool);
13960 	return status;
13961 }
13962 
13963 /**
13964  * lpfc_eq_create - Create an Event Queue on the HBA
13965  * @phba: HBA structure that indicates port to create a queue on.
13966  * @eq: The queue structure to use to create the event queue.
13967  * @imax: The maximum interrupt per second limit.
13968  *
13969  * This function creates an event queue, as detailed in @eq, on a port,
13970  * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
13971  *
13972  * The @phba struct is used to send mailbox command to HBA. The @eq struct
13973  * is used to get the entry count and entry size that are necessary to
13974  * determine the number of pages to allocate and use for this queue. This
13975  * function will send the EQ_CREATE mailbox command to the HBA to setup the
13976  * event queue. This function is asynchronous and will wait for the mailbox
13977  * command to finish before continuing.
13978  *
13979  * On success this function will return a zero. If unable to allocate enough
13980  * memory this function will return -ENOMEM. If the queue create mailbox command
13981  * fails this function will return -ENXIO.
13982  **/
13983 int
13984 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
13985 {
13986 	struct lpfc_mbx_eq_create *eq_create;
13987 	LPFC_MBOXQ_t *mbox;
13988 	int rc, length, status = 0;
13989 	struct lpfc_dmabuf *dmabuf;
13990 	uint32_t shdr_status, shdr_add_status;
13991 	union lpfc_sli4_cfg_shdr *shdr;
13992 	uint16_t dmult;
13993 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
13994 
13995 	/* sanity check on queue memory */
13996 	if (!eq)
13997 		return -ENODEV;
13998 	if (!phba->sli4_hba.pc_sli4_params.supported)
13999 		hw_page_size = SLI4_PAGE_SIZE;
14000 
14001 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14002 	if (!mbox)
14003 		return -ENOMEM;
14004 	length = (sizeof(struct lpfc_mbx_eq_create) -
14005 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14006 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14007 			 LPFC_MBOX_OPCODE_EQ_CREATE,
14008 			 length, LPFC_SLI4_MBX_EMBED);
14009 	eq_create = &mbox->u.mqe.un.eq_create;
14010 	bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
14011 	       eq->page_count);
14012 	bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
14013 	       LPFC_EQE_SIZE);
14014 	bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
14015 	/* don't setup delay multiplier using EQ_CREATE */
14016 	dmult = 0;
14017 	bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
14018 	       dmult);
14019 	switch (eq->entry_count) {
14020 	default:
14021 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14022 				"0360 Unsupported EQ count. (%d)\n",
14023 				eq->entry_count);
14024 		if (eq->entry_count < 256)
14025 			return -EINVAL;
14026 		/* otherwise default to smallest count (drop through) */
14027 	case 256:
14028 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14029 		       LPFC_EQ_CNT_256);
14030 		break;
14031 	case 512:
14032 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14033 		       LPFC_EQ_CNT_512);
14034 		break;
14035 	case 1024:
14036 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14037 		       LPFC_EQ_CNT_1024);
14038 		break;
14039 	case 2048:
14040 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14041 		       LPFC_EQ_CNT_2048);
14042 		break;
14043 	case 4096:
14044 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14045 		       LPFC_EQ_CNT_4096);
14046 		break;
14047 	}
14048 	list_for_each_entry(dmabuf, &eq->page_list, list) {
14049 		memset(dmabuf->virt, 0, hw_page_size);
14050 		eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14051 					putPaddrLow(dmabuf->phys);
14052 		eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14053 					putPaddrHigh(dmabuf->phys);
14054 	}
14055 	mbox->vport = phba->pport;
14056 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14057 	mbox->context1 = NULL;
14058 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14059 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
14060 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14061 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14062 	if (shdr_status || shdr_add_status || rc) {
14063 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14064 				"2500 EQ_CREATE mailbox failed with "
14065 				"status x%x add_status x%x, mbx status x%x\n",
14066 				shdr_status, shdr_add_status, rc);
14067 		status = -ENXIO;
14068 	}
14069 	eq->type = LPFC_EQ;
14070 	eq->subtype = LPFC_NONE;
14071 	eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
14072 	if (eq->queue_id == 0xFFFF)
14073 		status = -ENXIO;
14074 	eq->host_index = 0;
14075 	eq->hba_index = 0;
14076 
14077 	mempool_free(mbox, phba->mbox_mem_pool);
14078 	return status;
14079 }
14080 
14081 /**
14082  * lpfc_cq_create - Create a Completion Queue on the HBA
14083  * @phba: HBA structure that indicates port to create a queue on.
14084  * @cq: The queue structure to use to create the completion queue.
14085  * @eq: The event queue to bind this completion queue to.
14086  *
14087  * This function creates a completion queue, as detailed in @wq, on a port,
14088  * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
14089  *
14090  * The @phba struct is used to send mailbox command to HBA. The @cq struct
14091  * is used to get the entry count and entry size that are necessary to
14092  * determine the number of pages to allocate and use for this queue. The @eq
14093  * is used to indicate which event queue to bind this completion queue to. This
14094  * function will send the CQ_CREATE mailbox command to the HBA to setup the
14095  * completion queue. This function is asynchronous and will wait for the mailbox
14096  * command to finish before continuing.
14097  *
14098  * On success this function will return a zero. If unable to allocate enough
14099  * memory this function will return -ENOMEM. If the queue create mailbox command
14100  * fails this function will return -ENXIO.
14101  **/
14102 int
14103 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
14104 	       struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
14105 {
14106 	struct lpfc_mbx_cq_create *cq_create;
14107 	struct lpfc_dmabuf *dmabuf;
14108 	LPFC_MBOXQ_t *mbox;
14109 	int rc, length, status = 0;
14110 	uint32_t shdr_status, shdr_add_status;
14111 	union lpfc_sli4_cfg_shdr *shdr;
14112 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14113 
14114 	/* sanity check on queue memory */
14115 	if (!cq || !eq)
14116 		return -ENODEV;
14117 	if (!phba->sli4_hba.pc_sli4_params.supported)
14118 		hw_page_size = SLI4_PAGE_SIZE;
14119 
14120 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14121 	if (!mbox)
14122 		return -ENOMEM;
14123 	length = (sizeof(struct lpfc_mbx_cq_create) -
14124 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14125 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14126 			 LPFC_MBOX_OPCODE_CQ_CREATE,
14127 			 length, LPFC_SLI4_MBX_EMBED);
14128 	cq_create = &mbox->u.mqe.un.cq_create;
14129 	shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
14130 	bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
14131 		    cq->page_count);
14132 	bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
14133 	bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
14134 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
14135 	       phba->sli4_hba.pc_sli4_params.cqv);
14136 	if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
14137 		/* FW only supports 1. Should be PAGE_SIZE/SLI4_PAGE_SIZE */
14138 		bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 1);
14139 		bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
14140 		       eq->queue_id);
14141 	} else {
14142 		bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
14143 		       eq->queue_id);
14144 	}
14145 	switch (cq->entry_count) {
14146 	default:
14147 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14148 				"0361 Unsupported CQ count: "
14149 				"entry cnt %d sz %d pg cnt %d repost %d\n",
14150 				cq->entry_count, cq->entry_size,
14151 				cq->page_count, cq->entry_repost);
14152 		if (cq->entry_count < 256) {
14153 			status = -EINVAL;
14154 			goto out;
14155 		}
14156 		/* otherwise default to smallest count (drop through) */
14157 	case 256:
14158 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14159 		       LPFC_CQ_CNT_256);
14160 		break;
14161 	case 512:
14162 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14163 		       LPFC_CQ_CNT_512);
14164 		break;
14165 	case 1024:
14166 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14167 		       LPFC_CQ_CNT_1024);
14168 		break;
14169 	}
14170 	list_for_each_entry(dmabuf, &cq->page_list, list) {
14171 		memset(dmabuf->virt, 0, hw_page_size);
14172 		cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14173 					putPaddrLow(dmabuf->phys);
14174 		cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14175 					putPaddrHigh(dmabuf->phys);
14176 	}
14177 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14178 
14179 	/* The IOCTL status is embedded in the mailbox subheader. */
14180 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14181 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14182 	if (shdr_status || shdr_add_status || rc) {
14183 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14184 				"2501 CQ_CREATE mailbox failed with "
14185 				"status x%x add_status x%x, mbx status x%x\n",
14186 				shdr_status, shdr_add_status, rc);
14187 		status = -ENXIO;
14188 		goto out;
14189 	}
14190 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14191 	if (cq->queue_id == 0xFFFF) {
14192 		status = -ENXIO;
14193 		goto out;
14194 	}
14195 	/* link the cq onto the parent eq child list */
14196 	list_add_tail(&cq->list, &eq->child_list);
14197 	/* Set up completion queue's type and subtype */
14198 	cq->type = type;
14199 	cq->subtype = subtype;
14200 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14201 	cq->assoc_qid = eq->queue_id;
14202 	cq->host_index = 0;
14203 	cq->hba_index = 0;
14204 
14205 out:
14206 	mempool_free(mbox, phba->mbox_mem_pool);
14207 	return status;
14208 }
14209 
14210 /**
14211  * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
14212  * @phba: HBA structure that indicates port to create a queue on.
14213  * @cqp: The queue structure array to use to create the completion queues.
14214  * @eqp: The event queue array to bind these completion queues to.
14215  *
14216  * This function creates a set of  completion queue, s to support MRQ
14217  * as detailed in @cqp, on a port,
14218  * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
14219  *
14220  * The @phba struct is used to send mailbox command to HBA. The @cq struct
14221  * is used to get the entry count and entry size that are necessary to
14222  * determine the number of pages to allocate and use for this queue. The @eq
14223  * is used to indicate which event queue to bind this completion queue to. This
14224  * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
14225  * completion queue. This function is asynchronous and will wait for the mailbox
14226  * command to finish before continuing.
14227  *
14228  * On success this function will return a zero. If unable to allocate enough
14229  * memory this function will return -ENOMEM. If the queue create mailbox command
14230  * fails this function will return -ENXIO.
14231  **/
14232 int
14233 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
14234 		   struct lpfc_queue **eqp, uint32_t type, uint32_t subtype)
14235 {
14236 	struct lpfc_queue *cq;
14237 	struct lpfc_queue *eq;
14238 	struct lpfc_mbx_cq_create_set *cq_set;
14239 	struct lpfc_dmabuf *dmabuf;
14240 	LPFC_MBOXQ_t *mbox;
14241 	int rc, length, alloclen, status = 0;
14242 	int cnt, idx, numcq, page_idx = 0;
14243 	uint32_t shdr_status, shdr_add_status;
14244 	union lpfc_sli4_cfg_shdr *shdr;
14245 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14246 
14247 	/* sanity check on queue memory */
14248 	numcq = phba->cfg_nvmet_mrq;
14249 	if (!cqp || !eqp || !numcq)
14250 		return -ENODEV;
14251 	if (!phba->sli4_hba.pc_sli4_params.supported)
14252 		hw_page_size = SLI4_PAGE_SIZE;
14253 
14254 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14255 	if (!mbox)
14256 		return -ENOMEM;
14257 
14258 	length = sizeof(struct lpfc_mbx_cq_create_set);
14259 	length += ((numcq * cqp[0]->page_count) *
14260 		   sizeof(struct dma_address));
14261 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14262 			LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
14263 			LPFC_SLI4_MBX_NEMBED);
14264 	if (alloclen < length) {
14265 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14266 				"3098 Allocated DMA memory size (%d) is "
14267 				"less than the requested DMA memory size "
14268 				"(%d)\n", alloclen, length);
14269 		status = -ENOMEM;
14270 		goto out;
14271 	}
14272 	cq_set = mbox->sge_array->addr[0];
14273 	shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
14274 	bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
14275 
14276 	for (idx = 0; idx < numcq; idx++) {
14277 		cq = cqp[idx];
14278 		eq = eqp[idx];
14279 		if (!cq || !eq) {
14280 			status = -ENOMEM;
14281 			goto out;
14282 		}
14283 
14284 		switch (idx) {
14285 		case 0:
14286 			bf_set(lpfc_mbx_cq_create_set_page_size,
14287 			       &cq_set->u.request,
14288 			       (hw_page_size / SLI4_PAGE_SIZE));
14289 			bf_set(lpfc_mbx_cq_create_set_num_pages,
14290 			       &cq_set->u.request, cq->page_count);
14291 			bf_set(lpfc_mbx_cq_create_set_evt,
14292 			       &cq_set->u.request, 1);
14293 			bf_set(lpfc_mbx_cq_create_set_valid,
14294 			       &cq_set->u.request, 1);
14295 			bf_set(lpfc_mbx_cq_create_set_cqe_size,
14296 			       &cq_set->u.request, 0);
14297 			bf_set(lpfc_mbx_cq_create_set_num_cq,
14298 			       &cq_set->u.request, numcq);
14299 			switch (cq->entry_count) {
14300 			default:
14301 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14302 						"3118 Bad CQ count. (%d)\n",
14303 						cq->entry_count);
14304 				if (cq->entry_count < 256) {
14305 					status = -EINVAL;
14306 					goto out;
14307 				}
14308 				/* otherwise default to smallest (drop thru) */
14309 			case 256:
14310 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14311 				       &cq_set->u.request, LPFC_CQ_CNT_256);
14312 				break;
14313 			case 512:
14314 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14315 				       &cq_set->u.request, LPFC_CQ_CNT_512);
14316 				break;
14317 			case 1024:
14318 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14319 				       &cq_set->u.request, LPFC_CQ_CNT_1024);
14320 				break;
14321 			}
14322 			bf_set(lpfc_mbx_cq_create_set_eq_id0,
14323 			       &cq_set->u.request, eq->queue_id);
14324 			break;
14325 		case 1:
14326 			bf_set(lpfc_mbx_cq_create_set_eq_id1,
14327 			       &cq_set->u.request, eq->queue_id);
14328 			break;
14329 		case 2:
14330 			bf_set(lpfc_mbx_cq_create_set_eq_id2,
14331 			       &cq_set->u.request, eq->queue_id);
14332 			break;
14333 		case 3:
14334 			bf_set(lpfc_mbx_cq_create_set_eq_id3,
14335 			       &cq_set->u.request, eq->queue_id);
14336 			break;
14337 		case 4:
14338 			bf_set(lpfc_mbx_cq_create_set_eq_id4,
14339 			       &cq_set->u.request, eq->queue_id);
14340 			break;
14341 		case 5:
14342 			bf_set(lpfc_mbx_cq_create_set_eq_id5,
14343 			       &cq_set->u.request, eq->queue_id);
14344 			break;
14345 		case 6:
14346 			bf_set(lpfc_mbx_cq_create_set_eq_id6,
14347 			       &cq_set->u.request, eq->queue_id);
14348 			break;
14349 		case 7:
14350 			bf_set(lpfc_mbx_cq_create_set_eq_id7,
14351 			       &cq_set->u.request, eq->queue_id);
14352 			break;
14353 		case 8:
14354 			bf_set(lpfc_mbx_cq_create_set_eq_id8,
14355 			       &cq_set->u.request, eq->queue_id);
14356 			break;
14357 		case 9:
14358 			bf_set(lpfc_mbx_cq_create_set_eq_id9,
14359 			       &cq_set->u.request, eq->queue_id);
14360 			break;
14361 		case 10:
14362 			bf_set(lpfc_mbx_cq_create_set_eq_id10,
14363 			       &cq_set->u.request, eq->queue_id);
14364 			break;
14365 		case 11:
14366 			bf_set(lpfc_mbx_cq_create_set_eq_id11,
14367 			       &cq_set->u.request, eq->queue_id);
14368 			break;
14369 		case 12:
14370 			bf_set(lpfc_mbx_cq_create_set_eq_id12,
14371 			       &cq_set->u.request, eq->queue_id);
14372 			break;
14373 		case 13:
14374 			bf_set(lpfc_mbx_cq_create_set_eq_id13,
14375 			       &cq_set->u.request, eq->queue_id);
14376 			break;
14377 		case 14:
14378 			bf_set(lpfc_mbx_cq_create_set_eq_id14,
14379 			       &cq_set->u.request, eq->queue_id);
14380 			break;
14381 		case 15:
14382 			bf_set(lpfc_mbx_cq_create_set_eq_id15,
14383 			       &cq_set->u.request, eq->queue_id);
14384 			break;
14385 		}
14386 
14387 		/* link the cq onto the parent eq child list */
14388 		list_add_tail(&cq->list, &eq->child_list);
14389 		/* Set up completion queue's type and subtype */
14390 		cq->type = type;
14391 		cq->subtype = subtype;
14392 		cq->assoc_qid = eq->queue_id;
14393 		cq->host_index = 0;
14394 		cq->hba_index = 0;
14395 
14396 		rc = 0;
14397 		list_for_each_entry(dmabuf, &cq->page_list, list) {
14398 			memset(dmabuf->virt, 0, hw_page_size);
14399 			cnt = page_idx + dmabuf->buffer_tag;
14400 			cq_set->u.request.page[cnt].addr_lo =
14401 					putPaddrLow(dmabuf->phys);
14402 			cq_set->u.request.page[cnt].addr_hi =
14403 					putPaddrHigh(dmabuf->phys);
14404 			rc++;
14405 		}
14406 		page_idx += rc;
14407 	}
14408 
14409 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14410 
14411 	/* The IOCTL status is embedded in the mailbox subheader. */
14412 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14413 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14414 	if (shdr_status || shdr_add_status || rc) {
14415 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14416 				"3119 CQ_CREATE_SET mailbox failed with "
14417 				"status x%x add_status x%x, mbx status x%x\n",
14418 				shdr_status, shdr_add_status, rc);
14419 		status = -ENXIO;
14420 		goto out;
14421 	}
14422 	rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
14423 	if (rc == 0xFFFF) {
14424 		status = -ENXIO;
14425 		goto out;
14426 	}
14427 
14428 	for (idx = 0; idx < numcq; idx++) {
14429 		cq = cqp[idx];
14430 		cq->queue_id = rc + idx;
14431 	}
14432 
14433 out:
14434 	lpfc_sli4_mbox_cmd_free(phba, mbox);
14435 	return status;
14436 }
14437 
14438 /**
14439  * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
14440  * @phba: HBA structure that indicates port to create a queue on.
14441  * @mq: The queue structure to use to create the mailbox queue.
14442  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
14443  * @cq: The completion queue to associate with this cq.
14444  *
14445  * This function provides failback (fb) functionality when the
14446  * mq_create_ext fails on older FW generations.  It's purpose is identical
14447  * to mq_create_ext otherwise.
14448  *
14449  * This routine cannot fail as all attributes were previously accessed and
14450  * initialized in mq_create_ext.
14451  **/
14452 static void
14453 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
14454 		       LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
14455 {
14456 	struct lpfc_mbx_mq_create *mq_create;
14457 	struct lpfc_dmabuf *dmabuf;
14458 	int length;
14459 
14460 	length = (sizeof(struct lpfc_mbx_mq_create) -
14461 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14462 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14463 			 LPFC_MBOX_OPCODE_MQ_CREATE,
14464 			 length, LPFC_SLI4_MBX_EMBED);
14465 	mq_create = &mbox->u.mqe.un.mq_create;
14466 	bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
14467 	       mq->page_count);
14468 	bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
14469 	       cq->queue_id);
14470 	bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
14471 	switch (mq->entry_count) {
14472 	case 16:
14473 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
14474 		       LPFC_MQ_RING_SIZE_16);
14475 		break;
14476 	case 32:
14477 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
14478 		       LPFC_MQ_RING_SIZE_32);
14479 		break;
14480 	case 64:
14481 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
14482 		       LPFC_MQ_RING_SIZE_64);
14483 		break;
14484 	case 128:
14485 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
14486 		       LPFC_MQ_RING_SIZE_128);
14487 		break;
14488 	}
14489 	list_for_each_entry(dmabuf, &mq->page_list, list) {
14490 		mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14491 			putPaddrLow(dmabuf->phys);
14492 		mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14493 			putPaddrHigh(dmabuf->phys);
14494 	}
14495 }
14496 
14497 /**
14498  * lpfc_mq_create - Create a mailbox Queue on the HBA
14499  * @phba: HBA structure that indicates port to create a queue on.
14500  * @mq: The queue structure to use to create the mailbox queue.
14501  * @cq: The completion queue to associate with this cq.
14502  * @subtype: The queue's subtype.
14503  *
14504  * This function creates a mailbox queue, as detailed in @mq, on a port,
14505  * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
14506  *
14507  * The @phba struct is used to send mailbox command to HBA. The @cq struct
14508  * is used to get the entry count and entry size that are necessary to
14509  * determine the number of pages to allocate and use for this queue. This
14510  * function will send the MQ_CREATE mailbox command to the HBA to setup the
14511  * mailbox queue. This function is asynchronous and will wait for the mailbox
14512  * command to finish before continuing.
14513  *
14514  * On success this function will return a zero. If unable to allocate enough
14515  * memory this function will return -ENOMEM. If the queue create mailbox command
14516  * fails this function will return -ENXIO.
14517  **/
14518 int32_t
14519 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
14520 	       struct lpfc_queue *cq, uint32_t subtype)
14521 {
14522 	struct lpfc_mbx_mq_create *mq_create;
14523 	struct lpfc_mbx_mq_create_ext *mq_create_ext;
14524 	struct lpfc_dmabuf *dmabuf;
14525 	LPFC_MBOXQ_t *mbox;
14526 	int rc, length, status = 0;
14527 	uint32_t shdr_status, shdr_add_status;
14528 	union lpfc_sli4_cfg_shdr *shdr;
14529 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14530 
14531 	/* sanity check on queue memory */
14532 	if (!mq || !cq)
14533 		return -ENODEV;
14534 	if (!phba->sli4_hba.pc_sli4_params.supported)
14535 		hw_page_size = SLI4_PAGE_SIZE;
14536 
14537 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14538 	if (!mbox)
14539 		return -ENOMEM;
14540 	length = (sizeof(struct lpfc_mbx_mq_create_ext) -
14541 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14542 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14543 			 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
14544 			 length, LPFC_SLI4_MBX_EMBED);
14545 
14546 	mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
14547 	shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
14548 	bf_set(lpfc_mbx_mq_create_ext_num_pages,
14549 	       &mq_create_ext->u.request, mq->page_count);
14550 	bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
14551 	       &mq_create_ext->u.request, 1);
14552 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
14553 	       &mq_create_ext->u.request, 1);
14554 	bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
14555 	       &mq_create_ext->u.request, 1);
14556 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
14557 	       &mq_create_ext->u.request, 1);
14558 	bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
14559 	       &mq_create_ext->u.request, 1);
14560 	bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
14561 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
14562 	       phba->sli4_hba.pc_sli4_params.mqv);
14563 	if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
14564 		bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
14565 		       cq->queue_id);
14566 	else
14567 		bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
14568 		       cq->queue_id);
14569 	switch (mq->entry_count) {
14570 	default:
14571 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14572 				"0362 Unsupported MQ count. (%d)\n",
14573 				mq->entry_count);
14574 		if (mq->entry_count < 16) {
14575 			status = -EINVAL;
14576 			goto out;
14577 		}
14578 		/* otherwise default to smallest count (drop through) */
14579 	case 16:
14580 		bf_set(lpfc_mq_context_ring_size,
14581 		       &mq_create_ext->u.request.context,
14582 		       LPFC_MQ_RING_SIZE_16);
14583 		break;
14584 	case 32:
14585 		bf_set(lpfc_mq_context_ring_size,
14586 		       &mq_create_ext->u.request.context,
14587 		       LPFC_MQ_RING_SIZE_32);
14588 		break;
14589 	case 64:
14590 		bf_set(lpfc_mq_context_ring_size,
14591 		       &mq_create_ext->u.request.context,
14592 		       LPFC_MQ_RING_SIZE_64);
14593 		break;
14594 	case 128:
14595 		bf_set(lpfc_mq_context_ring_size,
14596 		       &mq_create_ext->u.request.context,
14597 		       LPFC_MQ_RING_SIZE_128);
14598 		break;
14599 	}
14600 	list_for_each_entry(dmabuf, &mq->page_list, list) {
14601 		memset(dmabuf->virt, 0, hw_page_size);
14602 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
14603 					putPaddrLow(dmabuf->phys);
14604 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
14605 					putPaddrHigh(dmabuf->phys);
14606 	}
14607 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14608 	mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
14609 			      &mq_create_ext->u.response);
14610 	if (rc != MBX_SUCCESS) {
14611 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14612 				"2795 MQ_CREATE_EXT failed with "
14613 				"status x%x. Failback to MQ_CREATE.\n",
14614 				rc);
14615 		lpfc_mq_create_fb_init(phba, mq, mbox, cq);
14616 		mq_create = &mbox->u.mqe.un.mq_create;
14617 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14618 		shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
14619 		mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
14620 				      &mq_create->u.response);
14621 	}
14622 
14623 	/* The IOCTL status is embedded in the mailbox subheader. */
14624 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14625 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14626 	if (shdr_status || shdr_add_status || rc) {
14627 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14628 				"2502 MQ_CREATE mailbox failed with "
14629 				"status x%x add_status x%x, mbx status x%x\n",
14630 				shdr_status, shdr_add_status, rc);
14631 		status = -ENXIO;
14632 		goto out;
14633 	}
14634 	if (mq->queue_id == 0xFFFF) {
14635 		status = -ENXIO;
14636 		goto out;
14637 	}
14638 	mq->type = LPFC_MQ;
14639 	mq->assoc_qid = cq->queue_id;
14640 	mq->subtype = subtype;
14641 	mq->host_index = 0;
14642 	mq->hba_index = 0;
14643 
14644 	/* link the mq onto the parent cq child list */
14645 	list_add_tail(&mq->list, &cq->child_list);
14646 out:
14647 	mempool_free(mbox, phba->mbox_mem_pool);
14648 	return status;
14649 }
14650 
14651 /**
14652  * lpfc_wq_create - Create a Work Queue on the HBA
14653  * @phba: HBA structure that indicates port to create a queue on.
14654  * @wq: The queue structure to use to create the work queue.
14655  * @cq: The completion queue to bind this work queue to.
14656  * @subtype: The subtype of the work queue indicating its functionality.
14657  *
14658  * This function creates a work queue, as detailed in @wq, on a port, described
14659  * by @phba by sending a WQ_CREATE mailbox command to the HBA.
14660  *
14661  * The @phba struct is used to send mailbox command to HBA. The @wq struct
14662  * is used to get the entry count and entry size that are necessary to
14663  * determine the number of pages to allocate and use for this queue. The @cq
14664  * is used to indicate which completion queue to bind this work queue to. This
14665  * function will send the WQ_CREATE mailbox command to the HBA to setup the
14666  * work queue. This function is asynchronous and will wait for the mailbox
14667  * command to finish before continuing.
14668  *
14669  * On success this function will return a zero. If unable to allocate enough
14670  * memory this function will return -ENOMEM. If the queue create mailbox command
14671  * fails this function will return -ENXIO.
14672  **/
14673 int
14674 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
14675 	       struct lpfc_queue *cq, uint32_t subtype)
14676 {
14677 	struct lpfc_mbx_wq_create *wq_create;
14678 	struct lpfc_dmabuf *dmabuf;
14679 	LPFC_MBOXQ_t *mbox;
14680 	int rc, length, status = 0;
14681 	uint32_t shdr_status, shdr_add_status;
14682 	union lpfc_sli4_cfg_shdr *shdr;
14683 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14684 	struct dma_address *page;
14685 	void __iomem *bar_memmap_p;
14686 	uint32_t db_offset;
14687 	uint16_t pci_barset;
14688 
14689 	/* sanity check on queue memory */
14690 	if (!wq || !cq)
14691 		return -ENODEV;
14692 	if (!phba->sli4_hba.pc_sli4_params.supported)
14693 		hw_page_size = SLI4_PAGE_SIZE;
14694 
14695 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14696 	if (!mbox)
14697 		return -ENOMEM;
14698 	length = (sizeof(struct lpfc_mbx_wq_create) -
14699 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14700 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14701 			 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
14702 			 length, LPFC_SLI4_MBX_EMBED);
14703 	wq_create = &mbox->u.mqe.un.wq_create;
14704 	shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
14705 	bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
14706 		    wq->page_count);
14707 	bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
14708 		    cq->queue_id);
14709 
14710 	/* wqv is the earliest version supported, NOT the latest */
14711 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
14712 	       phba->sli4_hba.pc_sli4_params.wqv);
14713 
14714 	switch (phba->sli4_hba.pc_sli4_params.wqv) {
14715 	case LPFC_Q_CREATE_VERSION_0:
14716 		switch (wq->entry_size) {
14717 		default:
14718 		case 64:
14719 			/* Nothing to do, version 0 ONLY supports 64 byte */
14720 			page = wq_create->u.request.page;
14721 			break;
14722 		case 128:
14723 			if (!(phba->sli4_hba.pc_sli4_params.wqsize &
14724 			    LPFC_WQ_SZ128_SUPPORT)) {
14725 				status = -ERANGE;
14726 				goto out;
14727 			}
14728 			/* If we get here the HBA MUST also support V1 and
14729 			 * we MUST use it
14730 			 */
14731 			bf_set(lpfc_mbox_hdr_version, &shdr->request,
14732 			       LPFC_Q_CREATE_VERSION_1);
14733 
14734 			bf_set(lpfc_mbx_wq_create_wqe_count,
14735 			       &wq_create->u.request_1, wq->entry_count);
14736 			bf_set(lpfc_mbx_wq_create_wqe_size,
14737 			       &wq_create->u.request_1,
14738 			       LPFC_WQ_WQE_SIZE_128);
14739 			bf_set(lpfc_mbx_wq_create_page_size,
14740 			       &wq_create->u.request_1,
14741 			       LPFC_WQ_PAGE_SIZE_4096);
14742 			page = wq_create->u.request_1.page;
14743 			break;
14744 		}
14745 		break;
14746 	case LPFC_Q_CREATE_VERSION_1:
14747 		bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
14748 		       wq->entry_count);
14749 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
14750 		       LPFC_Q_CREATE_VERSION_1);
14751 
14752 		switch (wq->entry_size) {
14753 		default:
14754 		case 64:
14755 			bf_set(lpfc_mbx_wq_create_wqe_size,
14756 			       &wq_create->u.request_1,
14757 			       LPFC_WQ_WQE_SIZE_64);
14758 			break;
14759 		case 128:
14760 			if (!(phba->sli4_hba.pc_sli4_params.wqsize &
14761 				LPFC_WQ_SZ128_SUPPORT)) {
14762 				status = -ERANGE;
14763 				goto out;
14764 			}
14765 			bf_set(lpfc_mbx_wq_create_wqe_size,
14766 			       &wq_create->u.request_1,
14767 			       LPFC_WQ_WQE_SIZE_128);
14768 			break;
14769 		}
14770 		bf_set(lpfc_mbx_wq_create_page_size,
14771 		       &wq_create->u.request_1,
14772 		       LPFC_WQ_PAGE_SIZE_4096);
14773 		page = wq_create->u.request_1.page;
14774 		break;
14775 	default:
14776 		status = -ERANGE;
14777 		goto out;
14778 	}
14779 
14780 	list_for_each_entry(dmabuf, &wq->page_list, list) {
14781 		memset(dmabuf->virt, 0, hw_page_size);
14782 		page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
14783 		page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
14784 	}
14785 
14786 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
14787 		bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
14788 
14789 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14790 	/* The IOCTL status is embedded in the mailbox subheader. */
14791 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14792 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14793 	if (shdr_status || shdr_add_status || rc) {
14794 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14795 				"2503 WQ_CREATE mailbox failed with "
14796 				"status x%x add_status x%x, mbx status x%x\n",
14797 				shdr_status, shdr_add_status, rc);
14798 		status = -ENXIO;
14799 		goto out;
14800 	}
14801 	wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response);
14802 	if (wq->queue_id == 0xFFFF) {
14803 		status = -ENXIO;
14804 		goto out;
14805 	}
14806 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
14807 		wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
14808 				       &wq_create->u.response);
14809 		if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
14810 		    (wq->db_format != LPFC_DB_RING_FORMAT)) {
14811 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14812 					"3265 WQ[%d] doorbell format not "
14813 					"supported: x%x\n", wq->queue_id,
14814 					wq->db_format);
14815 			status = -EINVAL;
14816 			goto out;
14817 		}
14818 		pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
14819 				    &wq_create->u.response);
14820 		bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
14821 		if (!bar_memmap_p) {
14822 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14823 					"3263 WQ[%d] failed to memmap pci "
14824 					"barset:x%x\n", wq->queue_id,
14825 					pci_barset);
14826 			status = -ENOMEM;
14827 			goto out;
14828 		}
14829 		db_offset = wq_create->u.response.doorbell_offset;
14830 		if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
14831 		    (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
14832 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14833 					"3252 WQ[%d] doorbell offset not "
14834 					"supported: x%x\n", wq->queue_id,
14835 					db_offset);
14836 			status = -EINVAL;
14837 			goto out;
14838 		}
14839 		wq->db_regaddr = bar_memmap_p + db_offset;
14840 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14841 				"3264 WQ[%d]: barset:x%x, offset:x%x, "
14842 				"format:x%x\n", wq->queue_id, pci_barset,
14843 				db_offset, wq->db_format);
14844 	} else {
14845 		wq->db_format = LPFC_DB_LIST_FORMAT;
14846 		wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
14847 	}
14848 	wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
14849 	if (wq->pring == NULL) {
14850 		status = -ENOMEM;
14851 		goto out;
14852 	}
14853 	wq->type = LPFC_WQ;
14854 	wq->assoc_qid = cq->queue_id;
14855 	wq->subtype = subtype;
14856 	wq->host_index = 0;
14857 	wq->hba_index = 0;
14858 	wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL;
14859 
14860 	/* link the wq onto the parent cq child list */
14861 	list_add_tail(&wq->list, &cq->child_list);
14862 out:
14863 	mempool_free(mbox, phba->mbox_mem_pool);
14864 	return status;
14865 }
14866 
14867 /**
14868  * lpfc_rq_adjust_repost - Adjust entry_repost for an RQ
14869  * @phba: HBA structure that indicates port to create a queue on.
14870  * @rq:   The queue structure to use for the receive queue.
14871  * @qno:  The associated HBQ number
14872  *
14873  *
14874  * For SLI4 we need to adjust the RQ repost value based on
14875  * the number of buffers that are initially posted to the RQ.
14876  */
14877 void
14878 lpfc_rq_adjust_repost(struct lpfc_hba *phba, struct lpfc_queue *rq, int qno)
14879 {
14880 	uint32_t cnt;
14881 
14882 	/* sanity check on queue memory */
14883 	if (!rq)
14884 		return;
14885 	cnt = lpfc_hbq_defs[qno]->entry_count;
14886 
14887 	/* Recalc repost for RQs based on buffers initially posted */
14888 	cnt = (cnt >> 3);
14889 	if (cnt < LPFC_QUEUE_MIN_REPOST)
14890 		cnt = LPFC_QUEUE_MIN_REPOST;
14891 
14892 	rq->entry_repost = cnt;
14893 }
14894 
14895 /**
14896  * lpfc_rq_create - Create a Receive Queue on the HBA
14897  * @phba: HBA structure that indicates port to create a queue on.
14898  * @hrq: The queue structure to use to create the header receive queue.
14899  * @drq: The queue structure to use to create the data receive queue.
14900  * @cq: The completion queue to bind this work queue to.
14901  *
14902  * This function creates a receive buffer queue pair , as detailed in @hrq and
14903  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
14904  * to the HBA.
14905  *
14906  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
14907  * struct is used to get the entry count that is necessary to determine the
14908  * number of pages to use for this queue. The @cq is used to indicate which
14909  * completion queue to bind received buffers that are posted to these queues to.
14910  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
14911  * receive queue pair. This function is asynchronous and will wait for the
14912  * mailbox command to finish before continuing.
14913  *
14914  * On success this function will return a zero. If unable to allocate enough
14915  * memory this function will return -ENOMEM. If the queue create mailbox command
14916  * fails this function will return -ENXIO.
14917  **/
14918 int
14919 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
14920 	       struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
14921 {
14922 	struct lpfc_mbx_rq_create *rq_create;
14923 	struct lpfc_dmabuf *dmabuf;
14924 	LPFC_MBOXQ_t *mbox;
14925 	int rc, length, status = 0;
14926 	uint32_t shdr_status, shdr_add_status;
14927 	union lpfc_sli4_cfg_shdr *shdr;
14928 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14929 	void __iomem *bar_memmap_p;
14930 	uint32_t db_offset;
14931 	uint16_t pci_barset;
14932 
14933 	/* sanity check on queue memory */
14934 	if (!hrq || !drq || !cq)
14935 		return -ENODEV;
14936 	if (!phba->sli4_hba.pc_sli4_params.supported)
14937 		hw_page_size = SLI4_PAGE_SIZE;
14938 
14939 	if (hrq->entry_count != drq->entry_count)
14940 		return -EINVAL;
14941 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14942 	if (!mbox)
14943 		return -ENOMEM;
14944 	length = (sizeof(struct lpfc_mbx_rq_create) -
14945 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14946 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14947 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
14948 			 length, LPFC_SLI4_MBX_EMBED);
14949 	rq_create = &mbox->u.mqe.un.rq_create;
14950 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
14951 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
14952 	       phba->sli4_hba.pc_sli4_params.rqv);
14953 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
14954 		bf_set(lpfc_rq_context_rqe_count_1,
14955 		       &rq_create->u.request.context,
14956 		       hrq->entry_count);
14957 		rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
14958 		bf_set(lpfc_rq_context_rqe_size,
14959 		       &rq_create->u.request.context,
14960 		       LPFC_RQE_SIZE_8);
14961 		bf_set(lpfc_rq_context_page_size,
14962 		       &rq_create->u.request.context,
14963 		       LPFC_RQ_PAGE_SIZE_4096);
14964 	} else {
14965 		switch (hrq->entry_count) {
14966 		default:
14967 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14968 					"2535 Unsupported RQ count. (%d)\n",
14969 					hrq->entry_count);
14970 			if (hrq->entry_count < 512) {
14971 				status = -EINVAL;
14972 				goto out;
14973 			}
14974 			/* otherwise default to smallest count (drop through) */
14975 		case 512:
14976 			bf_set(lpfc_rq_context_rqe_count,
14977 			       &rq_create->u.request.context,
14978 			       LPFC_RQ_RING_SIZE_512);
14979 			break;
14980 		case 1024:
14981 			bf_set(lpfc_rq_context_rqe_count,
14982 			       &rq_create->u.request.context,
14983 			       LPFC_RQ_RING_SIZE_1024);
14984 			break;
14985 		case 2048:
14986 			bf_set(lpfc_rq_context_rqe_count,
14987 			       &rq_create->u.request.context,
14988 			       LPFC_RQ_RING_SIZE_2048);
14989 			break;
14990 		case 4096:
14991 			bf_set(lpfc_rq_context_rqe_count,
14992 			       &rq_create->u.request.context,
14993 			       LPFC_RQ_RING_SIZE_4096);
14994 			break;
14995 		}
14996 		bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
14997 		       LPFC_HDR_BUF_SIZE);
14998 	}
14999 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15000 	       cq->queue_id);
15001 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15002 	       hrq->page_count);
15003 	list_for_each_entry(dmabuf, &hrq->page_list, list) {
15004 		memset(dmabuf->virt, 0, hw_page_size);
15005 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15006 					putPaddrLow(dmabuf->phys);
15007 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15008 					putPaddrHigh(dmabuf->phys);
15009 	}
15010 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15011 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15012 
15013 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15014 	/* The IOCTL status is embedded in the mailbox subheader. */
15015 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15016 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15017 	if (shdr_status || shdr_add_status || rc) {
15018 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15019 				"2504 RQ_CREATE mailbox failed with "
15020 				"status x%x add_status x%x, mbx status x%x\n",
15021 				shdr_status, shdr_add_status, rc);
15022 		status = -ENXIO;
15023 		goto out;
15024 	}
15025 	hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15026 	if (hrq->queue_id == 0xFFFF) {
15027 		status = -ENXIO;
15028 		goto out;
15029 	}
15030 
15031 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15032 		hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
15033 					&rq_create->u.response);
15034 		if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
15035 		    (hrq->db_format != LPFC_DB_RING_FORMAT)) {
15036 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15037 					"3262 RQ [%d] doorbell format not "
15038 					"supported: x%x\n", hrq->queue_id,
15039 					hrq->db_format);
15040 			status = -EINVAL;
15041 			goto out;
15042 		}
15043 
15044 		pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
15045 				    &rq_create->u.response);
15046 		bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
15047 		if (!bar_memmap_p) {
15048 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15049 					"3269 RQ[%d] failed to memmap pci "
15050 					"barset:x%x\n", hrq->queue_id,
15051 					pci_barset);
15052 			status = -ENOMEM;
15053 			goto out;
15054 		}
15055 
15056 		db_offset = rq_create->u.response.doorbell_offset;
15057 		if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
15058 		    (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
15059 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15060 					"3270 RQ[%d] doorbell offset not "
15061 					"supported: x%x\n", hrq->queue_id,
15062 					db_offset);
15063 			status = -EINVAL;
15064 			goto out;
15065 		}
15066 		hrq->db_regaddr = bar_memmap_p + db_offset;
15067 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15068 				"3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
15069 				"format:x%x\n", hrq->queue_id, pci_barset,
15070 				db_offset, hrq->db_format);
15071 	} else {
15072 		hrq->db_format = LPFC_DB_RING_FORMAT;
15073 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15074 	}
15075 	hrq->type = LPFC_HRQ;
15076 	hrq->assoc_qid = cq->queue_id;
15077 	hrq->subtype = subtype;
15078 	hrq->host_index = 0;
15079 	hrq->hba_index = 0;
15080 
15081 	/* now create the data queue */
15082 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15083 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15084 			 length, LPFC_SLI4_MBX_EMBED);
15085 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15086 	       phba->sli4_hba.pc_sli4_params.rqv);
15087 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15088 		bf_set(lpfc_rq_context_rqe_count_1,
15089 		       &rq_create->u.request.context, hrq->entry_count);
15090 		rq_create->u.request.context.buffer_size = LPFC_DATA_BUF_SIZE;
15091 		bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
15092 		       LPFC_RQE_SIZE_8);
15093 		bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
15094 		       (PAGE_SIZE/SLI4_PAGE_SIZE));
15095 	} else {
15096 		switch (drq->entry_count) {
15097 		default:
15098 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15099 					"2536 Unsupported RQ count. (%d)\n",
15100 					drq->entry_count);
15101 			if (drq->entry_count < 512) {
15102 				status = -EINVAL;
15103 				goto out;
15104 			}
15105 			/* otherwise default to smallest count (drop through) */
15106 		case 512:
15107 			bf_set(lpfc_rq_context_rqe_count,
15108 			       &rq_create->u.request.context,
15109 			       LPFC_RQ_RING_SIZE_512);
15110 			break;
15111 		case 1024:
15112 			bf_set(lpfc_rq_context_rqe_count,
15113 			       &rq_create->u.request.context,
15114 			       LPFC_RQ_RING_SIZE_1024);
15115 			break;
15116 		case 2048:
15117 			bf_set(lpfc_rq_context_rqe_count,
15118 			       &rq_create->u.request.context,
15119 			       LPFC_RQ_RING_SIZE_2048);
15120 			break;
15121 		case 4096:
15122 			bf_set(lpfc_rq_context_rqe_count,
15123 			       &rq_create->u.request.context,
15124 			       LPFC_RQ_RING_SIZE_4096);
15125 			break;
15126 		}
15127 		bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
15128 		       LPFC_DATA_BUF_SIZE);
15129 	}
15130 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15131 	       cq->queue_id);
15132 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15133 	       drq->page_count);
15134 	list_for_each_entry(dmabuf, &drq->page_list, list) {
15135 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15136 					putPaddrLow(dmabuf->phys);
15137 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15138 					putPaddrHigh(dmabuf->phys);
15139 	}
15140 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15141 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15142 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15143 	/* The IOCTL status is embedded in the mailbox subheader. */
15144 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15145 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15146 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15147 	if (shdr_status || shdr_add_status || rc) {
15148 		status = -ENXIO;
15149 		goto out;
15150 	}
15151 	drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15152 	if (drq->queue_id == 0xFFFF) {
15153 		status = -ENXIO;
15154 		goto out;
15155 	}
15156 	drq->type = LPFC_DRQ;
15157 	drq->assoc_qid = cq->queue_id;
15158 	drq->subtype = subtype;
15159 	drq->host_index = 0;
15160 	drq->hba_index = 0;
15161 
15162 	/* link the header and data RQs onto the parent cq child list */
15163 	list_add_tail(&hrq->list, &cq->child_list);
15164 	list_add_tail(&drq->list, &cq->child_list);
15165 
15166 out:
15167 	mempool_free(mbox, phba->mbox_mem_pool);
15168 	return status;
15169 }
15170 
15171 /**
15172  * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
15173  * @phba: HBA structure that indicates port to create a queue on.
15174  * @hrqp: The queue structure array to use to create the header receive queues.
15175  * @drqp: The queue structure array to use to create the data receive queues.
15176  * @cqp: The completion queue array to bind these receive queues to.
15177  *
15178  * This function creates a receive buffer queue pair , as detailed in @hrq and
15179  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15180  * to the HBA.
15181  *
15182  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15183  * struct is used to get the entry count that is necessary to determine the
15184  * number of pages to use for this queue. The @cq is used to indicate which
15185  * completion queue to bind received buffers that are posted to these queues to.
15186  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15187  * receive queue pair. This function is asynchronous and will wait for the
15188  * mailbox command to finish before continuing.
15189  *
15190  * On success this function will return a zero. If unable to allocate enough
15191  * memory this function will return -ENOMEM. If the queue create mailbox command
15192  * fails this function will return -ENXIO.
15193  **/
15194 int
15195 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
15196 		struct lpfc_queue **drqp, struct lpfc_queue **cqp,
15197 		uint32_t subtype)
15198 {
15199 	struct lpfc_queue *hrq, *drq, *cq;
15200 	struct lpfc_mbx_rq_create_v2 *rq_create;
15201 	struct lpfc_dmabuf *dmabuf;
15202 	LPFC_MBOXQ_t *mbox;
15203 	int rc, length, alloclen, status = 0;
15204 	int cnt, idx, numrq, page_idx = 0;
15205 	uint32_t shdr_status, shdr_add_status;
15206 	union lpfc_sli4_cfg_shdr *shdr;
15207 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15208 
15209 	numrq = phba->cfg_nvmet_mrq;
15210 	/* sanity check on array memory */
15211 	if (!hrqp || !drqp || !cqp || !numrq)
15212 		return -ENODEV;
15213 	if (!phba->sli4_hba.pc_sli4_params.supported)
15214 		hw_page_size = SLI4_PAGE_SIZE;
15215 
15216 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15217 	if (!mbox)
15218 		return -ENOMEM;
15219 
15220 	length = sizeof(struct lpfc_mbx_rq_create_v2);
15221 	length += ((2 * numrq * hrqp[0]->page_count) *
15222 		   sizeof(struct dma_address));
15223 
15224 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15225 				    LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
15226 				    LPFC_SLI4_MBX_NEMBED);
15227 	if (alloclen < length) {
15228 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15229 				"3099 Allocated DMA memory size (%d) is "
15230 				"less than the requested DMA memory size "
15231 				"(%d)\n", alloclen, length);
15232 		status = -ENOMEM;
15233 		goto out;
15234 	}
15235 
15236 
15237 
15238 	rq_create = mbox->sge_array->addr[0];
15239 	shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
15240 
15241 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
15242 	cnt = 0;
15243 
15244 	for (idx = 0; idx < numrq; idx++) {
15245 		hrq = hrqp[idx];
15246 		drq = drqp[idx];
15247 		cq  = cqp[idx];
15248 
15249 		/* sanity check on queue memory */
15250 		if (!hrq || !drq || !cq) {
15251 			status = -ENODEV;
15252 			goto out;
15253 		}
15254 
15255 		if (hrq->entry_count != drq->entry_count) {
15256 			status = -EINVAL;
15257 			goto out;
15258 		}
15259 
15260 		if (idx == 0) {
15261 			bf_set(lpfc_mbx_rq_create_num_pages,
15262 			       &rq_create->u.request,
15263 			       hrq->page_count);
15264 			bf_set(lpfc_mbx_rq_create_rq_cnt,
15265 			       &rq_create->u.request, (numrq * 2));
15266 			bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
15267 			       1);
15268 			bf_set(lpfc_rq_context_base_cq,
15269 			       &rq_create->u.request.context,
15270 			       cq->queue_id);
15271 			bf_set(lpfc_rq_context_data_size,
15272 			       &rq_create->u.request.context,
15273 			       LPFC_DATA_BUF_SIZE);
15274 			bf_set(lpfc_rq_context_hdr_size,
15275 			       &rq_create->u.request.context,
15276 			       LPFC_HDR_BUF_SIZE);
15277 			bf_set(lpfc_rq_context_rqe_count_1,
15278 			       &rq_create->u.request.context,
15279 			       hrq->entry_count);
15280 			bf_set(lpfc_rq_context_rqe_size,
15281 			       &rq_create->u.request.context,
15282 			       LPFC_RQE_SIZE_8);
15283 			bf_set(lpfc_rq_context_page_size,
15284 			       &rq_create->u.request.context,
15285 			       (PAGE_SIZE/SLI4_PAGE_SIZE));
15286 		}
15287 		rc = 0;
15288 		list_for_each_entry(dmabuf, &hrq->page_list, list) {
15289 			memset(dmabuf->virt, 0, hw_page_size);
15290 			cnt = page_idx + dmabuf->buffer_tag;
15291 			rq_create->u.request.page[cnt].addr_lo =
15292 					putPaddrLow(dmabuf->phys);
15293 			rq_create->u.request.page[cnt].addr_hi =
15294 					putPaddrHigh(dmabuf->phys);
15295 			rc++;
15296 		}
15297 		page_idx += rc;
15298 
15299 		rc = 0;
15300 		list_for_each_entry(dmabuf, &drq->page_list, list) {
15301 			memset(dmabuf->virt, 0, hw_page_size);
15302 			cnt = page_idx + dmabuf->buffer_tag;
15303 			rq_create->u.request.page[cnt].addr_lo =
15304 					putPaddrLow(dmabuf->phys);
15305 			rq_create->u.request.page[cnt].addr_hi =
15306 					putPaddrHigh(dmabuf->phys);
15307 			rc++;
15308 		}
15309 		page_idx += rc;
15310 
15311 		hrq->db_format = LPFC_DB_RING_FORMAT;
15312 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15313 		hrq->type = LPFC_HRQ;
15314 		hrq->assoc_qid = cq->queue_id;
15315 		hrq->subtype = subtype;
15316 		hrq->host_index = 0;
15317 		hrq->hba_index = 0;
15318 
15319 		drq->db_format = LPFC_DB_RING_FORMAT;
15320 		drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15321 		drq->type = LPFC_DRQ;
15322 		drq->assoc_qid = cq->queue_id;
15323 		drq->subtype = subtype;
15324 		drq->host_index = 0;
15325 		drq->hba_index = 0;
15326 
15327 		list_add_tail(&hrq->list, &cq->child_list);
15328 		list_add_tail(&drq->list, &cq->child_list);
15329 	}
15330 
15331 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15332 	/* The IOCTL status is embedded in the mailbox subheader. */
15333 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15334 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15335 	if (shdr_status || shdr_add_status || rc) {
15336 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15337 				"3120 RQ_CREATE mailbox failed with "
15338 				"status x%x add_status x%x, mbx status x%x\n",
15339 				shdr_status, shdr_add_status, rc);
15340 		status = -ENXIO;
15341 		goto out;
15342 	}
15343 	rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15344 	if (rc == 0xFFFF) {
15345 		status = -ENXIO;
15346 		goto out;
15347 	}
15348 
15349 	/* Initialize all RQs with associated queue id */
15350 	for (idx = 0; idx < numrq; idx++) {
15351 		hrq = hrqp[idx];
15352 		hrq->queue_id = rc + (2 * idx);
15353 		drq = drqp[idx];
15354 		drq->queue_id = rc + (2 * idx) + 1;
15355 	}
15356 
15357 out:
15358 	lpfc_sli4_mbox_cmd_free(phba, mbox);
15359 	return status;
15360 }
15361 
15362 /**
15363  * lpfc_eq_destroy - Destroy an event Queue on the HBA
15364  * @eq: The queue structure associated with the queue to destroy.
15365  *
15366  * This function destroys a queue, as detailed in @eq by sending an mailbox
15367  * command, specific to the type of queue, to the HBA.
15368  *
15369  * The @eq struct is used to get the queue ID of the queue to destroy.
15370  *
15371  * On success this function will return a zero. If the queue destroy mailbox
15372  * command fails this function will return -ENXIO.
15373  **/
15374 int
15375 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
15376 {
15377 	LPFC_MBOXQ_t *mbox;
15378 	int rc, length, status = 0;
15379 	uint32_t shdr_status, shdr_add_status;
15380 	union lpfc_sli4_cfg_shdr *shdr;
15381 
15382 	/* sanity check on queue memory */
15383 	if (!eq)
15384 		return -ENODEV;
15385 	mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
15386 	if (!mbox)
15387 		return -ENOMEM;
15388 	length = (sizeof(struct lpfc_mbx_eq_destroy) -
15389 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15390 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15391 			 LPFC_MBOX_OPCODE_EQ_DESTROY,
15392 			 length, LPFC_SLI4_MBX_EMBED);
15393 	bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
15394 	       eq->queue_id);
15395 	mbox->vport = eq->phba->pport;
15396 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15397 
15398 	rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
15399 	/* The IOCTL status is embedded in the mailbox subheader. */
15400 	shdr = (union lpfc_sli4_cfg_shdr *)
15401 		&mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
15402 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15403 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15404 	if (shdr_status || shdr_add_status || rc) {
15405 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15406 				"2505 EQ_DESTROY mailbox failed with "
15407 				"status x%x add_status x%x, mbx status x%x\n",
15408 				shdr_status, shdr_add_status, rc);
15409 		status = -ENXIO;
15410 	}
15411 
15412 	/* Remove eq from any list */
15413 	list_del_init(&eq->list);
15414 	mempool_free(mbox, eq->phba->mbox_mem_pool);
15415 	return status;
15416 }
15417 
15418 /**
15419  * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
15420  * @cq: The queue structure associated with the queue to destroy.
15421  *
15422  * This function destroys a queue, as detailed in @cq by sending an mailbox
15423  * command, specific to the type of queue, to the HBA.
15424  *
15425  * The @cq struct is used to get the queue ID of the queue to destroy.
15426  *
15427  * On success this function will return a zero. If the queue destroy mailbox
15428  * command fails this function will return -ENXIO.
15429  **/
15430 int
15431 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
15432 {
15433 	LPFC_MBOXQ_t *mbox;
15434 	int rc, length, status = 0;
15435 	uint32_t shdr_status, shdr_add_status;
15436 	union lpfc_sli4_cfg_shdr *shdr;
15437 
15438 	/* sanity check on queue memory */
15439 	if (!cq)
15440 		return -ENODEV;
15441 	mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
15442 	if (!mbox)
15443 		return -ENOMEM;
15444 	length = (sizeof(struct lpfc_mbx_cq_destroy) -
15445 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15446 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15447 			 LPFC_MBOX_OPCODE_CQ_DESTROY,
15448 			 length, LPFC_SLI4_MBX_EMBED);
15449 	bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
15450 	       cq->queue_id);
15451 	mbox->vport = cq->phba->pport;
15452 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15453 	rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
15454 	/* The IOCTL status is embedded in the mailbox subheader. */
15455 	shdr = (union lpfc_sli4_cfg_shdr *)
15456 		&mbox->u.mqe.un.wq_create.header.cfg_shdr;
15457 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15458 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15459 	if (shdr_status || shdr_add_status || rc) {
15460 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15461 				"2506 CQ_DESTROY mailbox failed with "
15462 				"status x%x add_status x%x, mbx status x%x\n",
15463 				shdr_status, shdr_add_status, rc);
15464 		status = -ENXIO;
15465 	}
15466 	/* Remove cq from any list */
15467 	list_del_init(&cq->list);
15468 	mempool_free(mbox, cq->phba->mbox_mem_pool);
15469 	return status;
15470 }
15471 
15472 /**
15473  * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
15474  * @qm: The queue structure associated with the queue to destroy.
15475  *
15476  * This function destroys a queue, as detailed in @mq by sending an mailbox
15477  * command, specific to the type of queue, to the HBA.
15478  *
15479  * The @mq struct is used to get the queue ID of the queue to destroy.
15480  *
15481  * On success this function will return a zero. If the queue destroy mailbox
15482  * command fails this function will return -ENXIO.
15483  **/
15484 int
15485 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
15486 {
15487 	LPFC_MBOXQ_t *mbox;
15488 	int rc, length, status = 0;
15489 	uint32_t shdr_status, shdr_add_status;
15490 	union lpfc_sli4_cfg_shdr *shdr;
15491 
15492 	/* sanity check on queue memory */
15493 	if (!mq)
15494 		return -ENODEV;
15495 	mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
15496 	if (!mbox)
15497 		return -ENOMEM;
15498 	length = (sizeof(struct lpfc_mbx_mq_destroy) -
15499 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15500 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15501 			 LPFC_MBOX_OPCODE_MQ_DESTROY,
15502 			 length, LPFC_SLI4_MBX_EMBED);
15503 	bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
15504 	       mq->queue_id);
15505 	mbox->vport = mq->phba->pport;
15506 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15507 	rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
15508 	/* The IOCTL status is embedded in the mailbox subheader. */
15509 	shdr = (union lpfc_sli4_cfg_shdr *)
15510 		&mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
15511 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15512 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15513 	if (shdr_status || shdr_add_status || rc) {
15514 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15515 				"2507 MQ_DESTROY mailbox failed with "
15516 				"status x%x add_status x%x, mbx status x%x\n",
15517 				shdr_status, shdr_add_status, rc);
15518 		status = -ENXIO;
15519 	}
15520 	/* Remove mq from any list */
15521 	list_del_init(&mq->list);
15522 	mempool_free(mbox, mq->phba->mbox_mem_pool);
15523 	return status;
15524 }
15525 
15526 /**
15527  * lpfc_wq_destroy - Destroy a Work Queue on the HBA
15528  * @wq: The queue structure associated with the queue to destroy.
15529  *
15530  * This function destroys a queue, as detailed in @wq by sending an mailbox
15531  * command, specific to the type of queue, to the HBA.
15532  *
15533  * The @wq struct is used to get the queue ID of the queue to destroy.
15534  *
15535  * On success this function will return a zero. If the queue destroy mailbox
15536  * command fails this function will return -ENXIO.
15537  **/
15538 int
15539 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
15540 {
15541 	LPFC_MBOXQ_t *mbox;
15542 	int rc, length, status = 0;
15543 	uint32_t shdr_status, shdr_add_status;
15544 	union lpfc_sli4_cfg_shdr *shdr;
15545 
15546 	/* sanity check on queue memory */
15547 	if (!wq)
15548 		return -ENODEV;
15549 	mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
15550 	if (!mbox)
15551 		return -ENOMEM;
15552 	length = (sizeof(struct lpfc_mbx_wq_destroy) -
15553 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15554 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15555 			 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
15556 			 length, LPFC_SLI4_MBX_EMBED);
15557 	bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
15558 	       wq->queue_id);
15559 	mbox->vport = wq->phba->pport;
15560 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15561 	rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
15562 	shdr = (union lpfc_sli4_cfg_shdr *)
15563 		&mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
15564 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15565 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15566 	if (shdr_status || shdr_add_status || rc) {
15567 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15568 				"2508 WQ_DESTROY mailbox failed with "
15569 				"status x%x add_status x%x, mbx status x%x\n",
15570 				shdr_status, shdr_add_status, rc);
15571 		status = -ENXIO;
15572 	}
15573 	/* Remove wq from any list */
15574 	list_del_init(&wq->list);
15575 	kfree(wq->pring);
15576 	wq->pring = NULL;
15577 	mempool_free(mbox, wq->phba->mbox_mem_pool);
15578 	return status;
15579 }
15580 
15581 /**
15582  * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
15583  * @rq: The queue structure associated with the queue to destroy.
15584  *
15585  * This function destroys a queue, as detailed in @rq by sending an mailbox
15586  * command, specific to the type of queue, to the HBA.
15587  *
15588  * The @rq struct is used to get the queue ID of the queue to destroy.
15589  *
15590  * On success this function will return a zero. If the queue destroy mailbox
15591  * command fails this function will return -ENXIO.
15592  **/
15593 int
15594 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
15595 		struct lpfc_queue *drq)
15596 {
15597 	LPFC_MBOXQ_t *mbox;
15598 	int rc, length, status = 0;
15599 	uint32_t shdr_status, shdr_add_status;
15600 	union lpfc_sli4_cfg_shdr *shdr;
15601 
15602 	/* sanity check on queue memory */
15603 	if (!hrq || !drq)
15604 		return -ENODEV;
15605 	mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
15606 	if (!mbox)
15607 		return -ENOMEM;
15608 	length = (sizeof(struct lpfc_mbx_rq_destroy) -
15609 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15610 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15611 			 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
15612 			 length, LPFC_SLI4_MBX_EMBED);
15613 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
15614 	       hrq->queue_id);
15615 	mbox->vport = hrq->phba->pport;
15616 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15617 	rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
15618 	/* The IOCTL status is embedded in the mailbox subheader. */
15619 	shdr = (union lpfc_sli4_cfg_shdr *)
15620 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
15621 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15622 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15623 	if (shdr_status || shdr_add_status || rc) {
15624 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15625 				"2509 RQ_DESTROY mailbox failed with "
15626 				"status x%x add_status x%x, mbx status x%x\n",
15627 				shdr_status, shdr_add_status, rc);
15628 		if (rc != MBX_TIMEOUT)
15629 			mempool_free(mbox, hrq->phba->mbox_mem_pool);
15630 		return -ENXIO;
15631 	}
15632 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
15633 	       drq->queue_id);
15634 	rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
15635 	shdr = (union lpfc_sli4_cfg_shdr *)
15636 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
15637 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15638 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15639 	if (shdr_status || shdr_add_status || rc) {
15640 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15641 				"2510 RQ_DESTROY mailbox failed with "
15642 				"status x%x add_status x%x, mbx status x%x\n",
15643 				shdr_status, shdr_add_status, rc);
15644 		status = -ENXIO;
15645 	}
15646 	list_del_init(&hrq->list);
15647 	list_del_init(&drq->list);
15648 	mempool_free(mbox, hrq->phba->mbox_mem_pool);
15649 	return status;
15650 }
15651 
15652 /**
15653  * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
15654  * @phba: The virtual port for which this call being executed.
15655  * @pdma_phys_addr0: Physical address of the 1st SGL page.
15656  * @pdma_phys_addr1: Physical address of the 2nd SGL page.
15657  * @xritag: the xritag that ties this io to the SGL pages.
15658  *
15659  * This routine will post the sgl pages for the IO that has the xritag
15660  * that is in the iocbq structure. The xritag is assigned during iocbq
15661  * creation and persists for as long as the driver is loaded.
15662  * if the caller has fewer than 256 scatter gather segments to map then
15663  * pdma_phys_addr1 should be 0.
15664  * If the caller needs to map more than 256 scatter gather segment then
15665  * pdma_phys_addr1 should be a valid physical address.
15666  * physical address for SGLs must be 64 byte aligned.
15667  * If you are going to map 2 SGL's then the first one must have 256 entries
15668  * the second sgl can have between 1 and 256 entries.
15669  *
15670  * Return codes:
15671  * 	0 - Success
15672  * 	-ENXIO, -ENOMEM - Failure
15673  **/
15674 int
15675 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
15676 		dma_addr_t pdma_phys_addr0,
15677 		dma_addr_t pdma_phys_addr1,
15678 		uint16_t xritag)
15679 {
15680 	struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
15681 	LPFC_MBOXQ_t *mbox;
15682 	int rc;
15683 	uint32_t shdr_status, shdr_add_status;
15684 	uint32_t mbox_tmo;
15685 	union lpfc_sli4_cfg_shdr *shdr;
15686 
15687 	if (xritag == NO_XRI) {
15688 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15689 				"0364 Invalid param:\n");
15690 		return -EINVAL;
15691 	}
15692 
15693 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15694 	if (!mbox)
15695 		return -ENOMEM;
15696 
15697 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15698 			LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
15699 			sizeof(struct lpfc_mbx_post_sgl_pages) -
15700 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
15701 
15702 	post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
15703 				&mbox->u.mqe.un.post_sgl_pages;
15704 	bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
15705 	bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
15706 
15707 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo	=
15708 				cpu_to_le32(putPaddrLow(pdma_phys_addr0));
15709 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
15710 				cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
15711 
15712 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo	=
15713 				cpu_to_le32(putPaddrLow(pdma_phys_addr1));
15714 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
15715 				cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
15716 	if (!phba->sli4_hba.intr_enable)
15717 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15718 	else {
15719 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
15720 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
15721 	}
15722 	/* The IOCTL status is embedded in the mailbox subheader. */
15723 	shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
15724 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15725 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15726 	if (rc != MBX_TIMEOUT)
15727 		mempool_free(mbox, phba->mbox_mem_pool);
15728 	if (shdr_status || shdr_add_status || rc) {
15729 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15730 				"2511 POST_SGL mailbox failed with "
15731 				"status x%x add_status x%x, mbx status x%x\n",
15732 				shdr_status, shdr_add_status, rc);
15733 	}
15734 	return 0;
15735 }
15736 
15737 /**
15738  * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
15739  * @phba: pointer to lpfc hba data structure.
15740  *
15741  * This routine is invoked to post rpi header templates to the
15742  * HBA consistent with the SLI-4 interface spec.  This routine
15743  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
15744  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
15745  *
15746  * Returns
15747  *	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
15748  *	LPFC_RPI_ALLOC_ERROR if no rpis are available.
15749  **/
15750 static uint16_t
15751 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
15752 {
15753 	unsigned long xri;
15754 
15755 	/*
15756 	 * Fetch the next logical xri.  Because this index is logical,
15757 	 * the driver starts at 0 each time.
15758 	 */
15759 	spin_lock_irq(&phba->hbalock);
15760 	xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
15761 				 phba->sli4_hba.max_cfg_param.max_xri, 0);
15762 	if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
15763 		spin_unlock_irq(&phba->hbalock);
15764 		return NO_XRI;
15765 	} else {
15766 		set_bit(xri, phba->sli4_hba.xri_bmask);
15767 		phba->sli4_hba.max_cfg_param.xri_used++;
15768 	}
15769 	spin_unlock_irq(&phba->hbalock);
15770 	return xri;
15771 }
15772 
15773 /**
15774  * lpfc_sli4_free_xri - Release an xri for reuse.
15775  * @phba: pointer to lpfc hba data structure.
15776  *
15777  * This routine is invoked to release an xri to the pool of
15778  * available rpis maintained by the driver.
15779  **/
15780 static void
15781 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
15782 {
15783 	if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
15784 		phba->sli4_hba.max_cfg_param.xri_used--;
15785 	}
15786 }
15787 
15788 /**
15789  * lpfc_sli4_free_xri - Release an xri for reuse.
15790  * @phba: pointer to lpfc hba data structure.
15791  *
15792  * This routine is invoked to release an xri to the pool of
15793  * available rpis maintained by the driver.
15794  **/
15795 void
15796 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
15797 {
15798 	spin_lock_irq(&phba->hbalock);
15799 	__lpfc_sli4_free_xri(phba, xri);
15800 	spin_unlock_irq(&phba->hbalock);
15801 }
15802 
15803 /**
15804  * lpfc_sli4_next_xritag - Get an xritag for the io
15805  * @phba: Pointer to HBA context object.
15806  *
15807  * This function gets an xritag for the iocb. If there is no unused xritag
15808  * it will return 0xffff.
15809  * The function returns the allocated xritag if successful, else returns zero.
15810  * Zero is not a valid xritag.
15811  * The caller is not required to hold any lock.
15812  **/
15813 uint16_t
15814 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
15815 {
15816 	uint16_t xri_index;
15817 
15818 	xri_index = lpfc_sli4_alloc_xri(phba);
15819 	if (xri_index == NO_XRI)
15820 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15821 				"2004 Failed to allocate XRI.last XRITAG is %d"
15822 				" Max XRI is %d, Used XRI is %d\n",
15823 				xri_index,
15824 				phba->sli4_hba.max_cfg_param.max_xri,
15825 				phba->sli4_hba.max_cfg_param.xri_used);
15826 	return xri_index;
15827 }
15828 
15829 /**
15830  * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
15831  * @phba: pointer to lpfc hba data structure.
15832  * @post_sgl_list: pointer to els sgl entry list.
15833  * @count: number of els sgl entries on the list.
15834  *
15835  * This routine is invoked to post a block of driver's sgl pages to the
15836  * HBA using non-embedded mailbox command. No Lock is held. This routine
15837  * is only called when the driver is loading and after all IO has been
15838  * stopped.
15839  **/
15840 static int
15841 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
15842 			    struct list_head *post_sgl_list,
15843 			    int post_cnt)
15844 {
15845 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
15846 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
15847 	struct sgl_page_pairs *sgl_pg_pairs;
15848 	void *viraddr;
15849 	LPFC_MBOXQ_t *mbox;
15850 	uint32_t reqlen, alloclen, pg_pairs;
15851 	uint32_t mbox_tmo;
15852 	uint16_t xritag_start = 0;
15853 	int rc = 0;
15854 	uint32_t shdr_status, shdr_add_status;
15855 	union lpfc_sli4_cfg_shdr *shdr;
15856 
15857 	reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
15858 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
15859 	if (reqlen > SLI4_PAGE_SIZE) {
15860 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15861 				"2559 Block sgl registration required DMA "
15862 				"size (%d) great than a page\n", reqlen);
15863 		return -ENOMEM;
15864 	}
15865 
15866 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15867 	if (!mbox)
15868 		return -ENOMEM;
15869 
15870 	/* Allocate DMA memory and set up the non-embedded mailbox command */
15871 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15872 			 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
15873 			 LPFC_SLI4_MBX_NEMBED);
15874 
15875 	if (alloclen < reqlen) {
15876 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15877 				"0285 Allocated DMA memory size (%d) is "
15878 				"less than the requested DMA memory "
15879 				"size (%d)\n", alloclen, reqlen);
15880 		lpfc_sli4_mbox_cmd_free(phba, mbox);
15881 		return -ENOMEM;
15882 	}
15883 	/* Set up the SGL pages in the non-embedded DMA pages */
15884 	viraddr = mbox->sge_array->addr[0];
15885 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
15886 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
15887 
15888 	pg_pairs = 0;
15889 	list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
15890 		/* Set up the sge entry */
15891 		sgl_pg_pairs->sgl_pg0_addr_lo =
15892 				cpu_to_le32(putPaddrLow(sglq_entry->phys));
15893 		sgl_pg_pairs->sgl_pg0_addr_hi =
15894 				cpu_to_le32(putPaddrHigh(sglq_entry->phys));
15895 		sgl_pg_pairs->sgl_pg1_addr_lo =
15896 				cpu_to_le32(putPaddrLow(0));
15897 		sgl_pg_pairs->sgl_pg1_addr_hi =
15898 				cpu_to_le32(putPaddrHigh(0));
15899 
15900 		/* Keep the first xritag on the list */
15901 		if (pg_pairs == 0)
15902 			xritag_start = sglq_entry->sli4_xritag;
15903 		sgl_pg_pairs++;
15904 		pg_pairs++;
15905 	}
15906 
15907 	/* Complete initialization and perform endian conversion. */
15908 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
15909 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
15910 	sgl->word0 = cpu_to_le32(sgl->word0);
15911 
15912 	if (!phba->sli4_hba.intr_enable)
15913 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15914 	else {
15915 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
15916 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
15917 	}
15918 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
15919 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15920 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15921 	if (rc != MBX_TIMEOUT)
15922 		lpfc_sli4_mbox_cmd_free(phba, mbox);
15923 	if (shdr_status || shdr_add_status || rc) {
15924 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15925 				"2513 POST_SGL_BLOCK mailbox command failed "
15926 				"status x%x add_status x%x mbx status x%x\n",
15927 				shdr_status, shdr_add_status, rc);
15928 		rc = -ENXIO;
15929 	}
15930 	return rc;
15931 }
15932 
15933 /**
15934  * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware
15935  * @phba: pointer to lpfc hba data structure.
15936  * @sblist: pointer to scsi buffer list.
15937  * @count: number of scsi buffers on the list.
15938  *
15939  * This routine is invoked to post a block of @count scsi sgl pages from a
15940  * SCSI buffer list @sblist to the HBA using non-embedded mailbox command.
15941  * No Lock is held.
15942  *
15943  **/
15944 int
15945 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba,
15946 			      struct list_head *sblist,
15947 			      int count)
15948 {
15949 	struct lpfc_scsi_buf *psb;
15950 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
15951 	struct sgl_page_pairs *sgl_pg_pairs;
15952 	void *viraddr;
15953 	LPFC_MBOXQ_t *mbox;
15954 	uint32_t reqlen, alloclen, pg_pairs;
15955 	uint32_t mbox_tmo;
15956 	uint16_t xritag_start = 0;
15957 	int rc = 0;
15958 	uint32_t shdr_status, shdr_add_status;
15959 	dma_addr_t pdma_phys_bpl1;
15960 	union lpfc_sli4_cfg_shdr *shdr;
15961 
15962 	/* Calculate the requested length of the dma memory */
15963 	reqlen = count * sizeof(struct sgl_page_pairs) +
15964 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
15965 	if (reqlen > SLI4_PAGE_SIZE) {
15966 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
15967 				"0217 Block sgl registration required DMA "
15968 				"size (%d) great than a page\n", reqlen);
15969 		return -ENOMEM;
15970 	}
15971 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15972 	if (!mbox) {
15973 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15974 				"0283 Failed to allocate mbox cmd memory\n");
15975 		return -ENOMEM;
15976 	}
15977 
15978 	/* Allocate DMA memory and set up the non-embedded mailbox command */
15979 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15980 				LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
15981 				LPFC_SLI4_MBX_NEMBED);
15982 
15983 	if (alloclen < reqlen) {
15984 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15985 				"2561 Allocated DMA memory size (%d) is "
15986 				"less than the requested DMA memory "
15987 				"size (%d)\n", alloclen, reqlen);
15988 		lpfc_sli4_mbox_cmd_free(phba, mbox);
15989 		return -ENOMEM;
15990 	}
15991 
15992 	/* Get the first SGE entry from the non-embedded DMA memory */
15993 	viraddr = mbox->sge_array->addr[0];
15994 
15995 	/* Set up the SGL pages in the non-embedded DMA pages */
15996 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
15997 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
15998 
15999 	pg_pairs = 0;
16000 	list_for_each_entry(psb, sblist, list) {
16001 		/* Set up the sge entry */
16002 		sgl_pg_pairs->sgl_pg0_addr_lo =
16003 			cpu_to_le32(putPaddrLow(psb->dma_phys_bpl));
16004 		sgl_pg_pairs->sgl_pg0_addr_hi =
16005 			cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl));
16006 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
16007 			pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE;
16008 		else
16009 			pdma_phys_bpl1 = 0;
16010 		sgl_pg_pairs->sgl_pg1_addr_lo =
16011 			cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
16012 		sgl_pg_pairs->sgl_pg1_addr_hi =
16013 			cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
16014 		/* Keep the first xritag on the list */
16015 		if (pg_pairs == 0)
16016 			xritag_start = psb->cur_iocbq.sli4_xritag;
16017 		sgl_pg_pairs++;
16018 		pg_pairs++;
16019 	}
16020 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16021 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
16022 	/* Perform endian conversion if necessary */
16023 	sgl->word0 = cpu_to_le32(sgl->word0);
16024 
16025 	if (!phba->sli4_hba.intr_enable)
16026 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16027 	else {
16028 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16029 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16030 	}
16031 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
16032 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16033 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16034 	if (rc != MBX_TIMEOUT)
16035 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16036 	if (shdr_status || shdr_add_status || rc) {
16037 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16038 				"2564 POST_SGL_BLOCK mailbox command failed "
16039 				"status x%x add_status x%x mbx status x%x\n",
16040 				shdr_status, shdr_add_status, rc);
16041 		rc = -ENXIO;
16042 	}
16043 	return rc;
16044 }
16045 
16046 static char *lpfc_rctl_names[] = FC_RCTL_NAMES_INIT;
16047 static char *lpfc_type_names[] = FC_TYPE_NAMES_INIT;
16048 
16049 /**
16050  * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
16051  * @phba: pointer to lpfc_hba struct that the frame was received on
16052  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16053  *
16054  * This function checks the fields in the @fc_hdr to see if the FC frame is a
16055  * valid type of frame that the LPFC driver will handle. This function will
16056  * return a zero if the frame is a valid frame or a non zero value when the
16057  * frame does not pass the check.
16058  **/
16059 static int
16060 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
16061 {
16062 	/*  make rctl_names static to save stack space */
16063 	struct fc_vft_header *fc_vft_hdr;
16064 	uint32_t *header = (uint32_t *) fc_hdr;
16065 
16066 	switch (fc_hdr->fh_r_ctl) {
16067 	case FC_RCTL_DD_UNCAT:		/* uncategorized information */
16068 	case FC_RCTL_DD_SOL_DATA:	/* solicited data */
16069 	case FC_RCTL_DD_UNSOL_CTL:	/* unsolicited control */
16070 	case FC_RCTL_DD_SOL_CTL:	/* solicited control or reply */
16071 	case FC_RCTL_DD_UNSOL_DATA:	/* unsolicited data */
16072 	case FC_RCTL_DD_DATA_DESC:	/* data descriptor */
16073 	case FC_RCTL_DD_UNSOL_CMD:	/* unsolicited command */
16074 	case FC_RCTL_DD_CMD_STATUS:	/* command status */
16075 	case FC_RCTL_ELS_REQ:	/* extended link services request */
16076 	case FC_RCTL_ELS_REP:	/* extended link services reply */
16077 	case FC_RCTL_ELS4_REQ:	/* FC-4 ELS request */
16078 	case FC_RCTL_ELS4_REP:	/* FC-4 ELS reply */
16079 	case FC_RCTL_BA_NOP:  	/* basic link service NOP */
16080 	case FC_RCTL_BA_ABTS: 	/* basic link service abort */
16081 	case FC_RCTL_BA_RMC: 	/* remove connection */
16082 	case FC_RCTL_BA_ACC:	/* basic accept */
16083 	case FC_RCTL_BA_RJT:	/* basic reject */
16084 	case FC_RCTL_BA_PRMT:
16085 	case FC_RCTL_ACK_1:	/* acknowledge_1 */
16086 	case FC_RCTL_ACK_0:	/* acknowledge_0 */
16087 	case FC_RCTL_P_RJT:	/* port reject */
16088 	case FC_RCTL_F_RJT:	/* fabric reject */
16089 	case FC_RCTL_P_BSY:	/* port busy */
16090 	case FC_RCTL_F_BSY:	/* fabric busy to data frame */
16091 	case FC_RCTL_F_BSYL:	/* fabric busy to link control frame */
16092 	case FC_RCTL_LCR:	/* link credit reset */
16093 	case FC_RCTL_END:	/* end */
16094 		break;
16095 	case FC_RCTL_VFTH:	/* Virtual Fabric tagging Header */
16096 		fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16097 		fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
16098 		return lpfc_fc_frame_check(phba, fc_hdr);
16099 	default:
16100 		goto drop;
16101 	}
16102 	switch (fc_hdr->fh_type) {
16103 	case FC_TYPE_BLS:
16104 	case FC_TYPE_ELS:
16105 	case FC_TYPE_FCP:
16106 	case FC_TYPE_CT:
16107 	case FC_TYPE_NVME:
16108 		break;
16109 	case FC_TYPE_IP:
16110 	case FC_TYPE_ILS:
16111 	default:
16112 		goto drop;
16113 	}
16114 
16115 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
16116 			"2538 Received frame rctl:%s (x%x), type:%s (x%x), "
16117 			"frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
16118 			lpfc_rctl_names[fc_hdr->fh_r_ctl], fc_hdr->fh_r_ctl,
16119 			lpfc_type_names[fc_hdr->fh_type], fc_hdr->fh_type,
16120 			be32_to_cpu(header[0]), be32_to_cpu(header[1]),
16121 			be32_to_cpu(header[2]), be32_to_cpu(header[3]),
16122 			be32_to_cpu(header[4]), be32_to_cpu(header[5]),
16123 			be32_to_cpu(header[6]));
16124 	return 0;
16125 drop:
16126 	lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
16127 			"2539 Dropped frame rctl:%s type:%s\n",
16128 			lpfc_rctl_names[fc_hdr->fh_r_ctl],
16129 			lpfc_type_names[fc_hdr->fh_type]);
16130 	return 1;
16131 }
16132 
16133 /**
16134  * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
16135  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16136  *
16137  * This function processes the FC header to retrieve the VFI from the VF
16138  * header, if one exists. This function will return the VFI if one exists
16139  * or 0 if no VSAN Header exists.
16140  **/
16141 static uint32_t
16142 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
16143 {
16144 	struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16145 
16146 	if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
16147 		return 0;
16148 	return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
16149 }
16150 
16151 /**
16152  * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
16153  * @phba: Pointer to the HBA structure to search for the vport on
16154  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16155  * @fcfi: The FC Fabric ID that the frame came from
16156  *
16157  * This function searches the @phba for a vport that matches the content of the
16158  * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
16159  * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
16160  * returns the matching vport pointer or NULL if unable to match frame to a
16161  * vport.
16162  **/
16163 static struct lpfc_vport *
16164 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
16165 		       uint16_t fcfi, uint32_t did)
16166 {
16167 	struct lpfc_vport **vports;
16168 	struct lpfc_vport *vport = NULL;
16169 	int i;
16170 
16171 	if (did == Fabric_DID)
16172 		return phba->pport;
16173 	if ((phba->pport->fc_flag & FC_PT2PT) &&
16174 		!(phba->link_state == LPFC_HBA_READY))
16175 		return phba->pport;
16176 
16177 	vports = lpfc_create_vport_work_array(phba);
16178 	if (vports != NULL) {
16179 		for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
16180 			if (phba->fcf.fcfi == fcfi &&
16181 			    vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
16182 			    vports[i]->fc_myDID == did) {
16183 				vport = vports[i];
16184 				break;
16185 			}
16186 		}
16187 	}
16188 	lpfc_destroy_vport_work_array(phba, vports);
16189 	return vport;
16190 }
16191 
16192 /**
16193  * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
16194  * @vport: The vport to work on.
16195  *
16196  * This function updates the receive sequence time stamp for this vport. The
16197  * receive sequence time stamp indicates the time that the last frame of the
16198  * the sequence that has been idle for the longest amount of time was received.
16199  * the driver uses this time stamp to indicate if any received sequences have
16200  * timed out.
16201  **/
16202 static void
16203 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
16204 {
16205 	struct lpfc_dmabuf *h_buf;
16206 	struct hbq_dmabuf *dmabuf = NULL;
16207 
16208 	/* get the oldest sequence on the rcv list */
16209 	h_buf = list_get_first(&vport->rcv_buffer_list,
16210 			       struct lpfc_dmabuf, list);
16211 	if (!h_buf)
16212 		return;
16213 	dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
16214 	vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
16215 }
16216 
16217 /**
16218  * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
16219  * @vport: The vport that the received sequences were sent to.
16220  *
16221  * This function cleans up all outstanding received sequences. This is called
16222  * by the driver when a link event or user action invalidates all the received
16223  * sequences.
16224  **/
16225 void
16226 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
16227 {
16228 	struct lpfc_dmabuf *h_buf, *hnext;
16229 	struct lpfc_dmabuf *d_buf, *dnext;
16230 	struct hbq_dmabuf *dmabuf = NULL;
16231 
16232 	/* start with the oldest sequence on the rcv list */
16233 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
16234 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
16235 		list_del_init(&dmabuf->hbuf.list);
16236 		list_for_each_entry_safe(d_buf, dnext,
16237 					 &dmabuf->dbuf.list, list) {
16238 			list_del_init(&d_buf->list);
16239 			lpfc_in_buf_free(vport->phba, d_buf);
16240 		}
16241 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
16242 	}
16243 }
16244 
16245 /**
16246  * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
16247  * @vport: The vport that the received sequences were sent to.
16248  *
16249  * This function determines whether any received sequences have timed out by
16250  * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
16251  * indicates that there is at least one timed out sequence this routine will
16252  * go through the received sequences one at a time from most inactive to most
16253  * active to determine which ones need to be cleaned up. Once it has determined
16254  * that a sequence needs to be cleaned up it will simply free up the resources
16255  * without sending an abort.
16256  **/
16257 void
16258 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
16259 {
16260 	struct lpfc_dmabuf *h_buf, *hnext;
16261 	struct lpfc_dmabuf *d_buf, *dnext;
16262 	struct hbq_dmabuf *dmabuf = NULL;
16263 	unsigned long timeout;
16264 	int abort_count = 0;
16265 
16266 	timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
16267 		   vport->rcv_buffer_time_stamp);
16268 	if (list_empty(&vport->rcv_buffer_list) ||
16269 	    time_before(jiffies, timeout))
16270 		return;
16271 	/* start with the oldest sequence on the rcv list */
16272 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
16273 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
16274 		timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
16275 			   dmabuf->time_stamp);
16276 		if (time_before(jiffies, timeout))
16277 			break;
16278 		abort_count++;
16279 		list_del_init(&dmabuf->hbuf.list);
16280 		list_for_each_entry_safe(d_buf, dnext,
16281 					 &dmabuf->dbuf.list, list) {
16282 			list_del_init(&d_buf->list);
16283 			lpfc_in_buf_free(vport->phba, d_buf);
16284 		}
16285 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
16286 	}
16287 	if (abort_count)
16288 		lpfc_update_rcv_time_stamp(vport);
16289 }
16290 
16291 /**
16292  * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
16293  * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
16294  *
16295  * This function searches through the existing incomplete sequences that have
16296  * been sent to this @vport. If the frame matches one of the incomplete
16297  * sequences then the dbuf in the @dmabuf is added to the list of frames that
16298  * make up that sequence. If no sequence is found that matches this frame then
16299  * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
16300  * This function returns a pointer to the first dmabuf in the sequence list that
16301  * the frame was linked to.
16302  **/
16303 static struct hbq_dmabuf *
16304 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
16305 {
16306 	struct fc_frame_header *new_hdr;
16307 	struct fc_frame_header *temp_hdr;
16308 	struct lpfc_dmabuf *d_buf;
16309 	struct lpfc_dmabuf *h_buf;
16310 	struct hbq_dmabuf *seq_dmabuf = NULL;
16311 	struct hbq_dmabuf *temp_dmabuf = NULL;
16312 	uint8_t	found = 0;
16313 
16314 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
16315 	dmabuf->time_stamp = jiffies;
16316 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
16317 
16318 	/* Use the hdr_buf to find the sequence that this frame belongs to */
16319 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
16320 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
16321 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
16322 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
16323 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
16324 			continue;
16325 		/* found a pending sequence that matches this frame */
16326 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
16327 		break;
16328 	}
16329 	if (!seq_dmabuf) {
16330 		/*
16331 		 * This indicates first frame received for this sequence.
16332 		 * Queue the buffer on the vport's rcv_buffer_list.
16333 		 */
16334 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
16335 		lpfc_update_rcv_time_stamp(vport);
16336 		return dmabuf;
16337 	}
16338 	temp_hdr = seq_dmabuf->hbuf.virt;
16339 	if (be16_to_cpu(new_hdr->fh_seq_cnt) <
16340 		be16_to_cpu(temp_hdr->fh_seq_cnt)) {
16341 		list_del_init(&seq_dmabuf->hbuf.list);
16342 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
16343 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
16344 		lpfc_update_rcv_time_stamp(vport);
16345 		return dmabuf;
16346 	}
16347 	/* move this sequence to the tail to indicate a young sequence */
16348 	list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
16349 	seq_dmabuf->time_stamp = jiffies;
16350 	lpfc_update_rcv_time_stamp(vport);
16351 	if (list_empty(&seq_dmabuf->dbuf.list)) {
16352 		temp_hdr = dmabuf->hbuf.virt;
16353 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
16354 		return seq_dmabuf;
16355 	}
16356 	/* find the correct place in the sequence to insert this frame */
16357 	d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
16358 	while (!found) {
16359 		temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
16360 		temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
16361 		/*
16362 		 * If the frame's sequence count is greater than the frame on
16363 		 * the list then insert the frame right after this frame
16364 		 */
16365 		if (be16_to_cpu(new_hdr->fh_seq_cnt) >
16366 			be16_to_cpu(temp_hdr->fh_seq_cnt)) {
16367 			list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
16368 			found = 1;
16369 			break;
16370 		}
16371 
16372 		if (&d_buf->list == &seq_dmabuf->dbuf.list)
16373 			break;
16374 		d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
16375 	}
16376 
16377 	if (found)
16378 		return seq_dmabuf;
16379 	return NULL;
16380 }
16381 
16382 /**
16383  * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
16384  * @vport: pointer to a vitural port
16385  * @dmabuf: pointer to a dmabuf that describes the FC sequence
16386  *
16387  * This function tries to abort from the partially assembed sequence, described
16388  * by the information from basic abbort @dmabuf. It checks to see whether such
16389  * partially assembled sequence held by the driver. If so, it shall free up all
16390  * the frames from the partially assembled sequence.
16391  *
16392  * Return
16393  * true  -- if there is matching partially assembled sequence present and all
16394  *          the frames freed with the sequence;
16395  * false -- if there is no matching partially assembled sequence present so
16396  *          nothing got aborted in the lower layer driver
16397  **/
16398 static bool
16399 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
16400 			    struct hbq_dmabuf *dmabuf)
16401 {
16402 	struct fc_frame_header *new_hdr;
16403 	struct fc_frame_header *temp_hdr;
16404 	struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
16405 	struct hbq_dmabuf *seq_dmabuf = NULL;
16406 
16407 	/* Use the hdr_buf to find the sequence that matches this frame */
16408 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
16409 	INIT_LIST_HEAD(&dmabuf->hbuf.list);
16410 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
16411 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
16412 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
16413 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
16414 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
16415 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
16416 			continue;
16417 		/* found a pending sequence that matches this frame */
16418 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
16419 		break;
16420 	}
16421 
16422 	/* Free up all the frames from the partially assembled sequence */
16423 	if (seq_dmabuf) {
16424 		list_for_each_entry_safe(d_buf, n_buf,
16425 					 &seq_dmabuf->dbuf.list, list) {
16426 			list_del_init(&d_buf->list);
16427 			lpfc_in_buf_free(vport->phba, d_buf);
16428 		}
16429 		return true;
16430 	}
16431 	return false;
16432 }
16433 
16434 /**
16435  * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
16436  * @vport: pointer to a vitural port
16437  * @dmabuf: pointer to a dmabuf that describes the FC sequence
16438  *
16439  * This function tries to abort from the assembed sequence from upper level
16440  * protocol, described by the information from basic abbort @dmabuf. It
16441  * checks to see whether such pending context exists at upper level protocol.
16442  * If so, it shall clean up the pending context.
16443  *
16444  * Return
16445  * true  -- if there is matching pending context of the sequence cleaned
16446  *          at ulp;
16447  * false -- if there is no matching pending context of the sequence present
16448  *          at ulp.
16449  **/
16450 static bool
16451 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
16452 {
16453 	struct lpfc_hba *phba = vport->phba;
16454 	int handled;
16455 
16456 	/* Accepting abort at ulp with SLI4 only */
16457 	if (phba->sli_rev < LPFC_SLI_REV4)
16458 		return false;
16459 
16460 	/* Register all caring upper level protocols to attend abort */
16461 	handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
16462 	if (handled)
16463 		return true;
16464 
16465 	return false;
16466 }
16467 
16468 /**
16469  * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
16470  * @phba: Pointer to HBA context object.
16471  * @cmd_iocbq: pointer to the command iocbq structure.
16472  * @rsp_iocbq: pointer to the response iocbq structure.
16473  *
16474  * This function handles the sequence abort response iocb command complete
16475  * event. It properly releases the memory allocated to the sequence abort
16476  * accept iocb.
16477  **/
16478 static void
16479 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
16480 			     struct lpfc_iocbq *cmd_iocbq,
16481 			     struct lpfc_iocbq *rsp_iocbq)
16482 {
16483 	struct lpfc_nodelist *ndlp;
16484 
16485 	if (cmd_iocbq) {
16486 		ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
16487 		lpfc_nlp_put(ndlp);
16488 		lpfc_nlp_not_used(ndlp);
16489 		lpfc_sli_release_iocbq(phba, cmd_iocbq);
16490 	}
16491 
16492 	/* Failure means BLS ABORT RSP did not get delivered to remote node*/
16493 	if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
16494 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16495 			"3154 BLS ABORT RSP failed, data:  x%x/x%x\n",
16496 			rsp_iocbq->iocb.ulpStatus,
16497 			rsp_iocbq->iocb.un.ulpWord[4]);
16498 }
16499 
16500 /**
16501  * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
16502  * @phba: Pointer to HBA context object.
16503  * @xri: xri id in transaction.
16504  *
16505  * This function validates the xri maps to the known range of XRIs allocated an
16506  * used by the driver.
16507  **/
16508 uint16_t
16509 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
16510 		      uint16_t xri)
16511 {
16512 	uint16_t i;
16513 
16514 	for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
16515 		if (xri == phba->sli4_hba.xri_ids[i])
16516 			return i;
16517 	}
16518 	return NO_XRI;
16519 }
16520 
16521 /**
16522  * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
16523  * @phba: Pointer to HBA context object.
16524  * @fc_hdr: pointer to a FC frame header.
16525  *
16526  * This function sends a basic response to a previous unsol sequence abort
16527  * event after aborting the sequence handling.
16528  **/
16529 void
16530 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
16531 			struct fc_frame_header *fc_hdr, bool aborted)
16532 {
16533 	struct lpfc_hba *phba = vport->phba;
16534 	struct lpfc_iocbq *ctiocb = NULL;
16535 	struct lpfc_nodelist *ndlp;
16536 	uint16_t oxid, rxid, xri, lxri;
16537 	uint32_t sid, fctl;
16538 	IOCB_t *icmd;
16539 	int rc;
16540 
16541 	if (!lpfc_is_link_up(phba))
16542 		return;
16543 
16544 	sid = sli4_sid_from_fc_hdr(fc_hdr);
16545 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
16546 	rxid = be16_to_cpu(fc_hdr->fh_rx_id);
16547 
16548 	ndlp = lpfc_findnode_did(vport, sid);
16549 	if (!ndlp) {
16550 		ndlp = lpfc_nlp_init(vport, sid);
16551 		if (!ndlp) {
16552 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
16553 					 "1268 Failed to allocate ndlp for "
16554 					 "oxid:x%x SID:x%x\n", oxid, sid);
16555 			return;
16556 		}
16557 		/* Put ndlp onto pport node list */
16558 		lpfc_enqueue_node(vport, ndlp);
16559 	} else if (!NLP_CHK_NODE_ACT(ndlp)) {
16560 		/* re-setup ndlp without removing from node list */
16561 		ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
16562 		if (!ndlp) {
16563 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
16564 					 "3275 Failed to active ndlp found "
16565 					 "for oxid:x%x SID:x%x\n", oxid, sid);
16566 			return;
16567 		}
16568 	}
16569 
16570 	/* Allocate buffer for rsp iocb */
16571 	ctiocb = lpfc_sli_get_iocbq(phba);
16572 	if (!ctiocb)
16573 		return;
16574 
16575 	/* Extract the F_CTL field from FC_HDR */
16576 	fctl = sli4_fctl_from_fc_hdr(fc_hdr);
16577 
16578 	icmd = &ctiocb->iocb;
16579 	icmd->un.xseq64.bdl.bdeSize = 0;
16580 	icmd->un.xseq64.bdl.ulpIoTag32 = 0;
16581 	icmd->un.xseq64.w5.hcsw.Dfctl = 0;
16582 	icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
16583 	icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
16584 
16585 	/* Fill in the rest of iocb fields */
16586 	icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
16587 	icmd->ulpBdeCount = 0;
16588 	icmd->ulpLe = 1;
16589 	icmd->ulpClass = CLASS3;
16590 	icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
16591 	ctiocb->context1 = lpfc_nlp_get(ndlp);
16592 
16593 	ctiocb->iocb_cmpl = NULL;
16594 	ctiocb->vport = phba->pport;
16595 	ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
16596 	ctiocb->sli4_lxritag = NO_XRI;
16597 	ctiocb->sli4_xritag = NO_XRI;
16598 
16599 	if (fctl & FC_FC_EX_CTX)
16600 		/* Exchange responder sent the abort so we
16601 		 * own the oxid.
16602 		 */
16603 		xri = oxid;
16604 	else
16605 		xri = rxid;
16606 	lxri = lpfc_sli4_xri_inrange(phba, xri);
16607 	if (lxri != NO_XRI)
16608 		lpfc_set_rrq_active(phba, ndlp, lxri,
16609 			(xri == oxid) ? rxid : oxid, 0);
16610 	/* For BA_ABTS from exchange responder, if the logical xri with
16611 	 * the oxid maps to the FCP XRI range, the port no longer has
16612 	 * that exchange context, send a BLS_RJT. Override the IOCB for
16613 	 * a BA_RJT.
16614 	 */
16615 	if ((fctl & FC_FC_EX_CTX) &&
16616 	    (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
16617 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
16618 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
16619 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
16620 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
16621 	}
16622 
16623 	/* If BA_ABTS failed to abort a partially assembled receive sequence,
16624 	 * the driver no longer has that exchange, send a BLS_RJT. Override
16625 	 * the IOCB for a BA_RJT.
16626 	 */
16627 	if (aborted == false) {
16628 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
16629 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
16630 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
16631 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
16632 	}
16633 
16634 	if (fctl & FC_FC_EX_CTX) {
16635 		/* ABTS sent by responder to CT exchange, construction
16636 		 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
16637 		 * field and RX_ID from ABTS for RX_ID field.
16638 		 */
16639 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
16640 	} else {
16641 		/* ABTS sent by initiator to CT exchange, construction
16642 		 * of BA_ACC will need to allocate a new XRI as for the
16643 		 * XRI_TAG field.
16644 		 */
16645 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
16646 	}
16647 	bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
16648 	bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
16649 
16650 	/* Xmit CT abts response on exchange <xid> */
16651 	lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
16652 			 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
16653 			 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
16654 
16655 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
16656 	if (rc == IOCB_ERROR) {
16657 		lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
16658 				 "2925 Failed to issue CT ABTS RSP x%x on "
16659 				 "xri x%x, Data x%x\n",
16660 				 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
16661 				 phba->link_state);
16662 		lpfc_nlp_put(ndlp);
16663 		ctiocb->context1 = NULL;
16664 		lpfc_sli_release_iocbq(phba, ctiocb);
16665 	}
16666 }
16667 
16668 /**
16669  * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
16670  * @vport: Pointer to the vport on which this sequence was received
16671  * @dmabuf: pointer to a dmabuf that describes the FC sequence
16672  *
16673  * This function handles an SLI-4 unsolicited abort event. If the unsolicited
16674  * receive sequence is only partially assembed by the driver, it shall abort
16675  * the partially assembled frames for the sequence. Otherwise, if the
16676  * unsolicited receive sequence has been completely assembled and passed to
16677  * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
16678  * unsolicited sequence has been aborted. After that, it will issue a basic
16679  * accept to accept the abort.
16680  **/
16681 static void
16682 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
16683 			     struct hbq_dmabuf *dmabuf)
16684 {
16685 	struct lpfc_hba *phba = vport->phba;
16686 	struct fc_frame_header fc_hdr;
16687 	uint32_t fctl;
16688 	bool aborted;
16689 
16690 	/* Make a copy of fc_hdr before the dmabuf being released */
16691 	memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
16692 	fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
16693 
16694 	if (fctl & FC_FC_EX_CTX) {
16695 		/* ABTS by responder to exchange, no cleanup needed */
16696 		aborted = true;
16697 	} else {
16698 		/* ABTS by initiator to exchange, need to do cleanup */
16699 		aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
16700 		if (aborted == false)
16701 			aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
16702 	}
16703 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
16704 
16705 	if (phba->nvmet_support) {
16706 		lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
16707 		return;
16708 	}
16709 
16710 	/* Respond with BA_ACC or BA_RJT accordingly */
16711 	lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
16712 }
16713 
16714 /**
16715  * lpfc_seq_complete - Indicates if a sequence is complete
16716  * @dmabuf: pointer to a dmabuf that describes the FC sequence
16717  *
16718  * This function checks the sequence, starting with the frame described by
16719  * @dmabuf, to see if all the frames associated with this sequence are present.
16720  * the frames associated with this sequence are linked to the @dmabuf using the
16721  * dbuf list. This function looks for two major things. 1) That the first frame
16722  * has a sequence count of zero. 2) There is a frame with last frame of sequence
16723  * set. 3) That there are no holes in the sequence count. The function will
16724  * return 1 when the sequence is complete, otherwise it will return 0.
16725  **/
16726 static int
16727 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
16728 {
16729 	struct fc_frame_header *hdr;
16730 	struct lpfc_dmabuf *d_buf;
16731 	struct hbq_dmabuf *seq_dmabuf;
16732 	uint32_t fctl;
16733 	int seq_count = 0;
16734 
16735 	hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
16736 	/* make sure first fame of sequence has a sequence count of zero */
16737 	if (hdr->fh_seq_cnt != seq_count)
16738 		return 0;
16739 	fctl = (hdr->fh_f_ctl[0] << 16 |
16740 		hdr->fh_f_ctl[1] << 8 |
16741 		hdr->fh_f_ctl[2]);
16742 	/* If last frame of sequence we can return success. */
16743 	if (fctl & FC_FC_END_SEQ)
16744 		return 1;
16745 	list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
16746 		seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
16747 		hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
16748 		/* If there is a hole in the sequence count then fail. */
16749 		if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
16750 			return 0;
16751 		fctl = (hdr->fh_f_ctl[0] << 16 |
16752 			hdr->fh_f_ctl[1] << 8 |
16753 			hdr->fh_f_ctl[2]);
16754 		/* If last frame of sequence we can return success. */
16755 		if (fctl & FC_FC_END_SEQ)
16756 			return 1;
16757 	}
16758 	return 0;
16759 }
16760 
16761 /**
16762  * lpfc_prep_seq - Prep sequence for ULP processing
16763  * @vport: Pointer to the vport on which this sequence was received
16764  * @dmabuf: pointer to a dmabuf that describes the FC sequence
16765  *
16766  * This function takes a sequence, described by a list of frames, and creates
16767  * a list of iocbq structures to describe the sequence. This iocbq list will be
16768  * used to issue to the generic unsolicited sequence handler. This routine
16769  * returns a pointer to the first iocbq in the list. If the function is unable
16770  * to allocate an iocbq then it throw out the received frames that were not
16771  * able to be described and return a pointer to the first iocbq. If unable to
16772  * allocate any iocbqs (including the first) this function will return NULL.
16773  **/
16774 static struct lpfc_iocbq *
16775 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
16776 {
16777 	struct hbq_dmabuf *hbq_buf;
16778 	struct lpfc_dmabuf *d_buf, *n_buf;
16779 	struct lpfc_iocbq *first_iocbq, *iocbq;
16780 	struct fc_frame_header *fc_hdr;
16781 	uint32_t sid;
16782 	uint32_t len, tot_len;
16783 	struct ulp_bde64 *pbde;
16784 
16785 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
16786 	/* remove from receive buffer list */
16787 	list_del_init(&seq_dmabuf->hbuf.list);
16788 	lpfc_update_rcv_time_stamp(vport);
16789 	/* get the Remote Port's SID */
16790 	sid = sli4_sid_from_fc_hdr(fc_hdr);
16791 	tot_len = 0;
16792 	/* Get an iocbq struct to fill in. */
16793 	first_iocbq = lpfc_sli_get_iocbq(vport->phba);
16794 	if (first_iocbq) {
16795 		/* Initialize the first IOCB. */
16796 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
16797 		first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
16798 		first_iocbq->vport = vport;
16799 
16800 		/* Check FC Header to see what TYPE of frame we are rcv'ing */
16801 		if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
16802 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
16803 			first_iocbq->iocb.un.rcvels.parmRo =
16804 				sli4_did_from_fc_hdr(fc_hdr);
16805 			first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
16806 		} else
16807 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
16808 		first_iocbq->iocb.ulpContext = NO_XRI;
16809 		first_iocbq->iocb.unsli3.rcvsli3.ox_id =
16810 			be16_to_cpu(fc_hdr->fh_ox_id);
16811 		/* iocbq is prepped for internal consumption.  Physical vpi. */
16812 		first_iocbq->iocb.unsli3.rcvsli3.vpi =
16813 			vport->phba->vpi_ids[vport->vpi];
16814 		/* put the first buffer into the first IOCBq */
16815 		tot_len = bf_get(lpfc_rcqe_length,
16816 				       &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
16817 
16818 		first_iocbq->context2 = &seq_dmabuf->dbuf;
16819 		first_iocbq->context3 = NULL;
16820 		first_iocbq->iocb.ulpBdeCount = 1;
16821 		if (tot_len > LPFC_DATA_BUF_SIZE)
16822 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
16823 							LPFC_DATA_BUF_SIZE;
16824 		else
16825 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
16826 
16827 		first_iocbq->iocb.un.rcvels.remoteID = sid;
16828 
16829 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
16830 	}
16831 	iocbq = first_iocbq;
16832 	/*
16833 	 * Each IOCBq can have two Buffers assigned, so go through the list
16834 	 * of buffers for this sequence and save two buffers in each IOCBq
16835 	 */
16836 	list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
16837 		if (!iocbq) {
16838 			lpfc_in_buf_free(vport->phba, d_buf);
16839 			continue;
16840 		}
16841 		if (!iocbq->context3) {
16842 			iocbq->context3 = d_buf;
16843 			iocbq->iocb.ulpBdeCount++;
16844 			/* We need to get the size out of the right CQE */
16845 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
16846 			len = bf_get(lpfc_rcqe_length,
16847 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
16848 			pbde = (struct ulp_bde64 *)
16849 					&iocbq->iocb.unsli3.sli3Words[4];
16850 			if (len > LPFC_DATA_BUF_SIZE)
16851 				pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
16852 			else
16853 				pbde->tus.f.bdeSize = len;
16854 
16855 			iocbq->iocb.unsli3.rcvsli3.acc_len += len;
16856 			tot_len += len;
16857 		} else {
16858 			iocbq = lpfc_sli_get_iocbq(vport->phba);
16859 			if (!iocbq) {
16860 				if (first_iocbq) {
16861 					first_iocbq->iocb.ulpStatus =
16862 							IOSTAT_FCP_RSP_ERROR;
16863 					first_iocbq->iocb.un.ulpWord[4] =
16864 							IOERR_NO_RESOURCES;
16865 				}
16866 				lpfc_in_buf_free(vport->phba, d_buf);
16867 				continue;
16868 			}
16869 			/* We need to get the size out of the right CQE */
16870 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
16871 			len = bf_get(lpfc_rcqe_length,
16872 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
16873 			iocbq->context2 = d_buf;
16874 			iocbq->context3 = NULL;
16875 			iocbq->iocb.ulpBdeCount = 1;
16876 			if (len > LPFC_DATA_BUF_SIZE)
16877 				iocbq->iocb.un.cont64[0].tus.f.bdeSize =
16878 							LPFC_DATA_BUF_SIZE;
16879 			else
16880 				iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
16881 
16882 			tot_len += len;
16883 			iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
16884 
16885 			iocbq->iocb.un.rcvels.remoteID = sid;
16886 			list_add_tail(&iocbq->list, &first_iocbq->list);
16887 		}
16888 	}
16889 	return first_iocbq;
16890 }
16891 
16892 static void
16893 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
16894 			  struct hbq_dmabuf *seq_dmabuf)
16895 {
16896 	struct fc_frame_header *fc_hdr;
16897 	struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
16898 	struct lpfc_hba *phba = vport->phba;
16899 
16900 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
16901 	iocbq = lpfc_prep_seq(vport, seq_dmabuf);
16902 	if (!iocbq) {
16903 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16904 				"2707 Ring %d handler: Failed to allocate "
16905 				"iocb Rctl x%x Type x%x received\n",
16906 				LPFC_ELS_RING,
16907 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
16908 		return;
16909 	}
16910 	if (!lpfc_complete_unsol_iocb(phba,
16911 				      phba->sli4_hba.els_wq->pring,
16912 				      iocbq, fc_hdr->fh_r_ctl,
16913 				      fc_hdr->fh_type))
16914 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16915 				"2540 Ring %d handler: unexpected Rctl "
16916 				"x%x Type x%x received\n",
16917 				LPFC_ELS_RING,
16918 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
16919 
16920 	/* Free iocb created in lpfc_prep_seq */
16921 	list_for_each_entry_safe(curr_iocb, next_iocb,
16922 		&iocbq->list, list) {
16923 		list_del_init(&curr_iocb->list);
16924 		lpfc_sli_release_iocbq(phba, curr_iocb);
16925 	}
16926 	lpfc_sli_release_iocbq(phba, iocbq);
16927 }
16928 
16929 /**
16930  * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
16931  * @phba: Pointer to HBA context object.
16932  *
16933  * This function is called with no lock held. This function processes all
16934  * the received buffers and gives it to upper layers when a received buffer
16935  * indicates that it is the final frame in the sequence. The interrupt
16936  * service routine processes received buffers at interrupt contexts.
16937  * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
16938  * appropriate receive function when the final frame in a sequence is received.
16939  **/
16940 void
16941 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
16942 				 struct hbq_dmabuf *dmabuf)
16943 {
16944 	struct hbq_dmabuf *seq_dmabuf;
16945 	struct fc_frame_header *fc_hdr;
16946 	struct lpfc_vport *vport;
16947 	uint32_t fcfi;
16948 	uint32_t did;
16949 
16950 	/* Process each received buffer */
16951 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
16952 
16953 	/* check to see if this a valid type of frame */
16954 	if (lpfc_fc_frame_check(phba, fc_hdr)) {
16955 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
16956 		return;
16957 	}
16958 
16959 	if ((bf_get(lpfc_cqe_code,
16960 		    &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
16961 		fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
16962 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
16963 	else
16964 		fcfi = bf_get(lpfc_rcqe_fcf_id,
16965 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
16966 
16967 	/* d_id this frame is directed to */
16968 	did = sli4_did_from_fc_hdr(fc_hdr);
16969 
16970 	vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
16971 	if (!vport) {
16972 		/* throw out the frame */
16973 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
16974 		return;
16975 	}
16976 
16977 	/* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
16978 	if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
16979 		(did != Fabric_DID)) {
16980 		/*
16981 		 * Throw out the frame if we are not pt2pt.
16982 		 * The pt2pt protocol allows for discovery frames
16983 		 * to be received without a registered VPI.
16984 		 */
16985 		if (!(vport->fc_flag & FC_PT2PT) ||
16986 			(phba->link_state == LPFC_HBA_READY)) {
16987 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
16988 			return;
16989 		}
16990 	}
16991 
16992 	/* Handle the basic abort sequence (BA_ABTS) event */
16993 	if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
16994 		lpfc_sli4_handle_unsol_abort(vport, dmabuf);
16995 		return;
16996 	}
16997 
16998 	/* Link this frame */
16999 	seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
17000 	if (!seq_dmabuf) {
17001 		/* unable to add frame to vport - throw it out */
17002 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17003 		return;
17004 	}
17005 	/* If not last frame in sequence continue processing frames. */
17006 	if (!lpfc_seq_complete(seq_dmabuf))
17007 		return;
17008 
17009 	/* Send the complete sequence to the upper layer protocol */
17010 	lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
17011 }
17012 
17013 /**
17014  * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
17015  * @phba: pointer to lpfc hba data structure.
17016  *
17017  * This routine is invoked to post rpi header templates to the
17018  * HBA consistent with the SLI-4 interface spec.  This routine
17019  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
17020  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
17021  *
17022  * This routine does not require any locks.  It's usage is expected
17023  * to be driver load or reset recovery when the driver is
17024  * sequential.
17025  *
17026  * Return codes
17027  * 	0 - successful
17028  *      -EIO - The mailbox failed to complete successfully.
17029  * 	When this error occurs, the driver is not guaranteed
17030  *	to have any rpi regions posted to the device and
17031  *	must either attempt to repost the regions or take a
17032  *	fatal error.
17033  **/
17034 int
17035 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
17036 {
17037 	struct lpfc_rpi_hdr *rpi_page;
17038 	uint32_t rc = 0;
17039 	uint16_t lrpi = 0;
17040 
17041 	/* SLI4 ports that support extents do not require RPI headers. */
17042 	if (!phba->sli4_hba.rpi_hdrs_in_use)
17043 		goto exit;
17044 	if (phba->sli4_hba.extents_in_use)
17045 		return -EIO;
17046 
17047 	list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
17048 		/*
17049 		 * Assign the rpi headers a physical rpi only if the driver
17050 		 * has not initialized those resources.  A port reset only
17051 		 * needs the headers posted.
17052 		 */
17053 		if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
17054 		    LPFC_RPI_RSRC_RDY)
17055 			rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
17056 
17057 		rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
17058 		if (rc != MBX_SUCCESS) {
17059 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17060 					"2008 Error %d posting all rpi "
17061 					"headers\n", rc);
17062 			rc = -EIO;
17063 			break;
17064 		}
17065 	}
17066 
17067  exit:
17068 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
17069 	       LPFC_RPI_RSRC_RDY);
17070 	return rc;
17071 }
17072 
17073 /**
17074  * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
17075  * @phba: pointer to lpfc hba data structure.
17076  * @rpi_page:  pointer to the rpi memory region.
17077  *
17078  * This routine is invoked to post a single rpi header to the
17079  * HBA consistent with the SLI-4 interface spec.  This memory region
17080  * maps up to 64 rpi context regions.
17081  *
17082  * Return codes
17083  * 	0 - successful
17084  * 	-ENOMEM - No available memory
17085  *      -EIO - The mailbox failed to complete successfully.
17086  **/
17087 int
17088 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
17089 {
17090 	LPFC_MBOXQ_t *mboxq;
17091 	struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
17092 	uint32_t rc = 0;
17093 	uint32_t shdr_status, shdr_add_status;
17094 	union lpfc_sli4_cfg_shdr *shdr;
17095 
17096 	/* SLI4 ports that support extents do not require RPI headers. */
17097 	if (!phba->sli4_hba.rpi_hdrs_in_use)
17098 		return rc;
17099 	if (phba->sli4_hba.extents_in_use)
17100 		return -EIO;
17101 
17102 	/* The port is notified of the header region via a mailbox command. */
17103 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17104 	if (!mboxq) {
17105 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17106 				"2001 Unable to allocate memory for issuing "
17107 				"SLI_CONFIG_SPECIAL mailbox command\n");
17108 		return -ENOMEM;
17109 	}
17110 
17111 	/* Post all rpi memory regions to the port. */
17112 	hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
17113 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
17114 			 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
17115 			 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
17116 			 sizeof(struct lpfc_sli4_cfg_mhdr),
17117 			 LPFC_SLI4_MBX_EMBED);
17118 
17119 
17120 	/* Post the physical rpi to the port for this rpi header. */
17121 	bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
17122 	       rpi_page->start_rpi);
17123 	bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
17124 	       hdr_tmpl, rpi_page->page_count);
17125 
17126 	hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
17127 	hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
17128 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
17129 	shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
17130 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17131 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17132 	if (rc != MBX_TIMEOUT)
17133 		mempool_free(mboxq, phba->mbox_mem_pool);
17134 	if (shdr_status || shdr_add_status || rc) {
17135 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17136 				"2514 POST_RPI_HDR mailbox failed with "
17137 				"status x%x add_status x%x, mbx status x%x\n",
17138 				shdr_status, shdr_add_status, rc);
17139 		rc = -ENXIO;
17140 	}
17141 	return rc;
17142 }
17143 
17144 /**
17145  * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
17146  * @phba: pointer to lpfc hba data structure.
17147  *
17148  * This routine is invoked to post rpi header templates to the
17149  * HBA consistent with the SLI-4 interface spec.  This routine
17150  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
17151  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
17152  *
17153  * Returns
17154  * 	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
17155  * 	LPFC_RPI_ALLOC_ERROR if no rpis are available.
17156  **/
17157 int
17158 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
17159 {
17160 	unsigned long rpi;
17161 	uint16_t max_rpi, rpi_limit;
17162 	uint16_t rpi_remaining, lrpi = 0;
17163 	struct lpfc_rpi_hdr *rpi_hdr;
17164 	unsigned long iflag;
17165 
17166 	/*
17167 	 * Fetch the next logical rpi.  Because this index is logical,
17168 	 * the  driver starts at 0 each time.
17169 	 */
17170 	spin_lock_irqsave(&phba->hbalock, iflag);
17171 	max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
17172 	rpi_limit = phba->sli4_hba.next_rpi;
17173 
17174 	rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
17175 	if (rpi >= rpi_limit)
17176 		rpi = LPFC_RPI_ALLOC_ERROR;
17177 	else {
17178 		set_bit(rpi, phba->sli4_hba.rpi_bmask);
17179 		phba->sli4_hba.max_cfg_param.rpi_used++;
17180 		phba->sli4_hba.rpi_count++;
17181 	}
17182 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
17183 			"0001 rpi:%x max:%x lim:%x\n",
17184 			(int) rpi, max_rpi, rpi_limit);
17185 
17186 	/*
17187 	 * Don't try to allocate more rpi header regions if the device limit
17188 	 * has been exhausted.
17189 	 */
17190 	if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
17191 	    (phba->sli4_hba.rpi_count >= max_rpi)) {
17192 		spin_unlock_irqrestore(&phba->hbalock, iflag);
17193 		return rpi;
17194 	}
17195 
17196 	/*
17197 	 * RPI header postings are not required for SLI4 ports capable of
17198 	 * extents.
17199 	 */
17200 	if (!phba->sli4_hba.rpi_hdrs_in_use) {
17201 		spin_unlock_irqrestore(&phba->hbalock, iflag);
17202 		return rpi;
17203 	}
17204 
17205 	/*
17206 	 * If the driver is running low on rpi resources, allocate another
17207 	 * page now.  Note that the next_rpi value is used because
17208 	 * it represents how many are actually in use whereas max_rpi notes
17209 	 * how many are supported max by the device.
17210 	 */
17211 	rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
17212 	spin_unlock_irqrestore(&phba->hbalock, iflag);
17213 	if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
17214 		rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
17215 		if (!rpi_hdr) {
17216 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17217 					"2002 Error Could not grow rpi "
17218 					"count\n");
17219 		} else {
17220 			lrpi = rpi_hdr->start_rpi;
17221 			rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
17222 			lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
17223 		}
17224 	}
17225 
17226 	return rpi;
17227 }
17228 
17229 /**
17230  * lpfc_sli4_free_rpi - Release an rpi for reuse.
17231  * @phba: pointer to lpfc hba data structure.
17232  *
17233  * This routine is invoked to release an rpi to the pool of
17234  * available rpis maintained by the driver.
17235  **/
17236 static void
17237 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
17238 {
17239 	if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
17240 		phba->sli4_hba.rpi_count--;
17241 		phba->sli4_hba.max_cfg_param.rpi_used--;
17242 	}
17243 }
17244 
17245 /**
17246  * lpfc_sli4_free_rpi - Release an rpi for reuse.
17247  * @phba: pointer to lpfc hba data structure.
17248  *
17249  * This routine is invoked to release an rpi to the pool of
17250  * available rpis maintained by the driver.
17251  **/
17252 void
17253 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
17254 {
17255 	spin_lock_irq(&phba->hbalock);
17256 	__lpfc_sli4_free_rpi(phba, rpi);
17257 	spin_unlock_irq(&phba->hbalock);
17258 }
17259 
17260 /**
17261  * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
17262  * @phba: pointer to lpfc hba data structure.
17263  *
17264  * This routine is invoked to remove the memory region that
17265  * provided rpi via a bitmask.
17266  **/
17267 void
17268 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
17269 {
17270 	kfree(phba->sli4_hba.rpi_bmask);
17271 	kfree(phba->sli4_hba.rpi_ids);
17272 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
17273 }
17274 
17275 /**
17276  * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
17277  * @phba: pointer to lpfc hba data structure.
17278  *
17279  * This routine is invoked to remove the memory region that
17280  * provided rpi via a bitmask.
17281  **/
17282 int
17283 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
17284 	void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
17285 {
17286 	LPFC_MBOXQ_t *mboxq;
17287 	struct lpfc_hba *phba = ndlp->phba;
17288 	int rc;
17289 
17290 	/* The port is notified of the header region via a mailbox command. */
17291 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17292 	if (!mboxq)
17293 		return -ENOMEM;
17294 
17295 	/* Post all rpi memory regions to the port. */
17296 	lpfc_resume_rpi(mboxq, ndlp);
17297 	if (cmpl) {
17298 		mboxq->mbox_cmpl = cmpl;
17299 		mboxq->context1 = arg;
17300 		mboxq->context2 = ndlp;
17301 	} else
17302 		mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17303 	mboxq->vport = ndlp->vport;
17304 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
17305 	if (rc == MBX_NOT_FINISHED) {
17306 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17307 				"2010 Resume RPI Mailbox failed "
17308 				"status %d, mbxStatus x%x\n", rc,
17309 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
17310 		mempool_free(mboxq, phba->mbox_mem_pool);
17311 		return -EIO;
17312 	}
17313 	return 0;
17314 }
17315 
17316 /**
17317  * lpfc_sli4_init_vpi - Initialize a vpi with the port
17318  * @vport: Pointer to the vport for which the vpi is being initialized
17319  *
17320  * This routine is invoked to activate a vpi with the port.
17321  *
17322  * Returns:
17323  *    0 success
17324  *    -Evalue otherwise
17325  **/
17326 int
17327 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
17328 {
17329 	LPFC_MBOXQ_t *mboxq;
17330 	int rc = 0;
17331 	int retval = MBX_SUCCESS;
17332 	uint32_t mbox_tmo;
17333 	struct lpfc_hba *phba = vport->phba;
17334 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17335 	if (!mboxq)
17336 		return -ENOMEM;
17337 	lpfc_init_vpi(phba, mboxq, vport->vpi);
17338 	mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
17339 	rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
17340 	if (rc != MBX_SUCCESS) {
17341 		lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI,
17342 				"2022 INIT VPI Mailbox failed "
17343 				"status %d, mbxStatus x%x\n", rc,
17344 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
17345 		retval = -EIO;
17346 	}
17347 	if (rc != MBX_TIMEOUT)
17348 		mempool_free(mboxq, vport->phba->mbox_mem_pool);
17349 
17350 	return retval;
17351 }
17352 
17353 /**
17354  * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
17355  * @phba: pointer to lpfc hba data structure.
17356  * @mboxq: Pointer to mailbox object.
17357  *
17358  * This routine is invoked to manually add a single FCF record. The caller
17359  * must pass a completely initialized FCF_Record.  This routine takes
17360  * care of the nonembedded mailbox operations.
17361  **/
17362 static void
17363 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
17364 {
17365 	void *virt_addr;
17366 	union lpfc_sli4_cfg_shdr *shdr;
17367 	uint32_t shdr_status, shdr_add_status;
17368 
17369 	virt_addr = mboxq->sge_array->addr[0];
17370 	/* The IOCTL status is embedded in the mailbox subheader. */
17371 	shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
17372 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17373 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17374 
17375 	if ((shdr_status || shdr_add_status) &&
17376 		(shdr_status != STATUS_FCF_IN_USE))
17377 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17378 			"2558 ADD_FCF_RECORD mailbox failed with "
17379 			"status x%x add_status x%x\n",
17380 			shdr_status, shdr_add_status);
17381 
17382 	lpfc_sli4_mbox_cmd_free(phba, mboxq);
17383 }
17384 
17385 /**
17386  * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
17387  * @phba: pointer to lpfc hba data structure.
17388  * @fcf_record:  pointer to the initialized fcf record to add.
17389  *
17390  * This routine is invoked to manually add a single FCF record. The caller
17391  * must pass a completely initialized FCF_Record.  This routine takes
17392  * care of the nonembedded mailbox operations.
17393  **/
17394 int
17395 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
17396 {
17397 	int rc = 0;
17398 	LPFC_MBOXQ_t *mboxq;
17399 	uint8_t *bytep;
17400 	void *virt_addr;
17401 	struct lpfc_mbx_sge sge;
17402 	uint32_t alloc_len, req_len;
17403 	uint32_t fcfindex;
17404 
17405 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17406 	if (!mboxq) {
17407 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17408 			"2009 Failed to allocate mbox for ADD_FCF cmd\n");
17409 		return -ENOMEM;
17410 	}
17411 
17412 	req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
17413 		  sizeof(uint32_t);
17414 
17415 	/* Allocate DMA memory and set up the non-embedded mailbox command */
17416 	alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
17417 				     LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
17418 				     req_len, LPFC_SLI4_MBX_NEMBED);
17419 	if (alloc_len < req_len) {
17420 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17421 			"2523 Allocated DMA memory size (x%x) is "
17422 			"less than the requested DMA memory "
17423 			"size (x%x)\n", alloc_len, req_len);
17424 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
17425 		return -ENOMEM;
17426 	}
17427 
17428 	/*
17429 	 * Get the first SGE entry from the non-embedded DMA memory.  This
17430 	 * routine only uses a single SGE.
17431 	 */
17432 	lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
17433 	virt_addr = mboxq->sge_array->addr[0];
17434 	/*
17435 	 * Configure the FCF record for FCFI 0.  This is the driver's
17436 	 * hardcoded default and gets used in nonFIP mode.
17437 	 */
17438 	fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
17439 	bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
17440 	lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
17441 
17442 	/*
17443 	 * Copy the fcf_index and the FCF Record Data. The data starts after
17444 	 * the FCoE header plus word10. The data copy needs to be endian
17445 	 * correct.
17446 	 */
17447 	bytep += sizeof(uint32_t);
17448 	lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
17449 	mboxq->vport = phba->pport;
17450 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
17451 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
17452 	if (rc == MBX_NOT_FINISHED) {
17453 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17454 			"2515 ADD_FCF_RECORD mailbox failed with "
17455 			"status 0x%x\n", rc);
17456 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
17457 		rc = -EIO;
17458 	} else
17459 		rc = 0;
17460 
17461 	return rc;
17462 }
17463 
17464 /**
17465  * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
17466  * @phba: pointer to lpfc hba data structure.
17467  * @fcf_record:  pointer to the fcf record to write the default data.
17468  * @fcf_index: FCF table entry index.
17469  *
17470  * This routine is invoked to build the driver's default FCF record.  The
17471  * values used are hardcoded.  This routine handles memory initialization.
17472  *
17473  **/
17474 void
17475 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
17476 				struct fcf_record *fcf_record,
17477 				uint16_t fcf_index)
17478 {
17479 	memset(fcf_record, 0, sizeof(struct fcf_record));
17480 	fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
17481 	fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
17482 	fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
17483 	bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
17484 	bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
17485 	bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
17486 	bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
17487 	bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
17488 	bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
17489 	bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
17490 	bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
17491 	bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
17492 	bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
17493 	bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
17494 	bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
17495 	bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
17496 		LPFC_FCF_FPMA | LPFC_FCF_SPMA);
17497 	/* Set the VLAN bit map */
17498 	if (phba->valid_vlan) {
17499 		fcf_record->vlan_bitmap[phba->vlan_id / 8]
17500 			= 1 << (phba->vlan_id % 8);
17501 	}
17502 }
17503 
17504 /**
17505  * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
17506  * @phba: pointer to lpfc hba data structure.
17507  * @fcf_index: FCF table entry offset.
17508  *
17509  * This routine is invoked to scan the entire FCF table by reading FCF
17510  * record and processing it one at a time starting from the @fcf_index
17511  * for initial FCF discovery or fast FCF failover rediscovery.
17512  *
17513  * Return 0 if the mailbox command is submitted successfully, none 0
17514  * otherwise.
17515  **/
17516 int
17517 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
17518 {
17519 	int rc = 0, error;
17520 	LPFC_MBOXQ_t *mboxq;
17521 
17522 	phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
17523 	phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
17524 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17525 	if (!mboxq) {
17526 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17527 				"2000 Failed to allocate mbox for "
17528 				"READ_FCF cmd\n");
17529 		error = -ENOMEM;
17530 		goto fail_fcf_scan;
17531 	}
17532 	/* Construct the read FCF record mailbox command */
17533 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
17534 	if (rc) {
17535 		error = -EINVAL;
17536 		goto fail_fcf_scan;
17537 	}
17538 	/* Issue the mailbox command asynchronously */
17539 	mboxq->vport = phba->pport;
17540 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
17541 
17542 	spin_lock_irq(&phba->hbalock);
17543 	phba->hba_flag |= FCF_TS_INPROG;
17544 	spin_unlock_irq(&phba->hbalock);
17545 
17546 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
17547 	if (rc == MBX_NOT_FINISHED)
17548 		error = -EIO;
17549 	else {
17550 		/* Reset eligible FCF count for new scan */
17551 		if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
17552 			phba->fcf.eligible_fcf_cnt = 0;
17553 		error = 0;
17554 	}
17555 fail_fcf_scan:
17556 	if (error) {
17557 		if (mboxq)
17558 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
17559 		/* FCF scan failed, clear FCF_TS_INPROG flag */
17560 		spin_lock_irq(&phba->hbalock);
17561 		phba->hba_flag &= ~FCF_TS_INPROG;
17562 		spin_unlock_irq(&phba->hbalock);
17563 	}
17564 	return error;
17565 }
17566 
17567 /**
17568  * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
17569  * @phba: pointer to lpfc hba data structure.
17570  * @fcf_index: FCF table entry offset.
17571  *
17572  * This routine is invoked to read an FCF record indicated by @fcf_index
17573  * and to use it for FLOGI roundrobin FCF failover.
17574  *
17575  * Return 0 if the mailbox command is submitted successfully, none 0
17576  * otherwise.
17577  **/
17578 int
17579 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
17580 {
17581 	int rc = 0, error;
17582 	LPFC_MBOXQ_t *mboxq;
17583 
17584 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17585 	if (!mboxq) {
17586 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
17587 				"2763 Failed to allocate mbox for "
17588 				"READ_FCF cmd\n");
17589 		error = -ENOMEM;
17590 		goto fail_fcf_read;
17591 	}
17592 	/* Construct the read FCF record mailbox command */
17593 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
17594 	if (rc) {
17595 		error = -EINVAL;
17596 		goto fail_fcf_read;
17597 	}
17598 	/* Issue the mailbox command asynchronously */
17599 	mboxq->vport = phba->pport;
17600 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
17601 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
17602 	if (rc == MBX_NOT_FINISHED)
17603 		error = -EIO;
17604 	else
17605 		error = 0;
17606 
17607 fail_fcf_read:
17608 	if (error && mboxq)
17609 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
17610 	return error;
17611 }
17612 
17613 /**
17614  * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
17615  * @phba: pointer to lpfc hba data structure.
17616  * @fcf_index: FCF table entry offset.
17617  *
17618  * This routine is invoked to read an FCF record indicated by @fcf_index to
17619  * determine whether it's eligible for FLOGI roundrobin failover list.
17620  *
17621  * Return 0 if the mailbox command is submitted successfully, none 0
17622  * otherwise.
17623  **/
17624 int
17625 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
17626 {
17627 	int rc = 0, error;
17628 	LPFC_MBOXQ_t *mboxq;
17629 
17630 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17631 	if (!mboxq) {
17632 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
17633 				"2758 Failed to allocate mbox for "
17634 				"READ_FCF cmd\n");
17635 				error = -ENOMEM;
17636 				goto fail_fcf_read;
17637 	}
17638 	/* Construct the read FCF record mailbox command */
17639 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
17640 	if (rc) {
17641 		error = -EINVAL;
17642 		goto fail_fcf_read;
17643 	}
17644 	/* Issue the mailbox command asynchronously */
17645 	mboxq->vport = phba->pport;
17646 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
17647 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
17648 	if (rc == MBX_NOT_FINISHED)
17649 		error = -EIO;
17650 	else
17651 		error = 0;
17652 
17653 fail_fcf_read:
17654 	if (error && mboxq)
17655 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
17656 	return error;
17657 }
17658 
17659 /**
17660  * lpfc_check_next_fcf_pri_level
17661  * phba pointer to the lpfc_hba struct for this port.
17662  * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
17663  * routine when the rr_bmask is empty. The FCF indecies are put into the
17664  * rr_bmask based on their priority level. Starting from the highest priority
17665  * to the lowest. The most likely FCF candidate will be in the highest
17666  * priority group. When this routine is called it searches the fcf_pri list for
17667  * next lowest priority group and repopulates the rr_bmask with only those
17668  * fcf_indexes.
17669  * returns:
17670  * 1=success 0=failure
17671  **/
17672 static int
17673 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
17674 {
17675 	uint16_t next_fcf_pri;
17676 	uint16_t last_index;
17677 	struct lpfc_fcf_pri *fcf_pri;
17678 	int rc;
17679 	int ret = 0;
17680 
17681 	last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
17682 			LPFC_SLI4_FCF_TBL_INDX_MAX);
17683 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
17684 			"3060 Last IDX %d\n", last_index);
17685 
17686 	/* Verify the priority list has 2 or more entries */
17687 	spin_lock_irq(&phba->hbalock);
17688 	if (list_empty(&phba->fcf.fcf_pri_list) ||
17689 	    list_is_singular(&phba->fcf.fcf_pri_list)) {
17690 		spin_unlock_irq(&phba->hbalock);
17691 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
17692 			"3061 Last IDX %d\n", last_index);
17693 		return 0; /* Empty rr list */
17694 	}
17695 	spin_unlock_irq(&phba->hbalock);
17696 
17697 	next_fcf_pri = 0;
17698 	/*
17699 	 * Clear the rr_bmask and set all of the bits that are at this
17700 	 * priority.
17701 	 */
17702 	memset(phba->fcf.fcf_rr_bmask, 0,
17703 			sizeof(*phba->fcf.fcf_rr_bmask));
17704 	spin_lock_irq(&phba->hbalock);
17705 	list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
17706 		if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
17707 			continue;
17708 		/*
17709 		 * the 1st priority that has not FLOGI failed
17710 		 * will be the highest.
17711 		 */
17712 		if (!next_fcf_pri)
17713 			next_fcf_pri = fcf_pri->fcf_rec.priority;
17714 		spin_unlock_irq(&phba->hbalock);
17715 		if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
17716 			rc = lpfc_sli4_fcf_rr_index_set(phba,
17717 						fcf_pri->fcf_rec.fcf_index);
17718 			if (rc)
17719 				return 0;
17720 		}
17721 		spin_lock_irq(&phba->hbalock);
17722 	}
17723 	/*
17724 	 * if next_fcf_pri was not set above and the list is not empty then
17725 	 * we have failed flogis on all of them. So reset flogi failed
17726 	 * and start at the beginning.
17727 	 */
17728 	if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
17729 		list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
17730 			fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
17731 			/*
17732 			 * the 1st priority that has not FLOGI failed
17733 			 * will be the highest.
17734 			 */
17735 			if (!next_fcf_pri)
17736 				next_fcf_pri = fcf_pri->fcf_rec.priority;
17737 			spin_unlock_irq(&phba->hbalock);
17738 			if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
17739 				rc = lpfc_sli4_fcf_rr_index_set(phba,
17740 						fcf_pri->fcf_rec.fcf_index);
17741 				if (rc)
17742 					return 0;
17743 			}
17744 			spin_lock_irq(&phba->hbalock);
17745 		}
17746 	} else
17747 		ret = 1;
17748 	spin_unlock_irq(&phba->hbalock);
17749 
17750 	return ret;
17751 }
17752 /**
17753  * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
17754  * @phba: pointer to lpfc hba data structure.
17755  *
17756  * This routine is to get the next eligible FCF record index in a round
17757  * robin fashion. If the next eligible FCF record index equals to the
17758  * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
17759  * shall be returned, otherwise, the next eligible FCF record's index
17760  * shall be returned.
17761  **/
17762 uint16_t
17763 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
17764 {
17765 	uint16_t next_fcf_index;
17766 
17767 initial_priority:
17768 	/* Search start from next bit of currently registered FCF index */
17769 	next_fcf_index = phba->fcf.current_rec.fcf_indx;
17770 
17771 next_priority:
17772 	/* Determine the next fcf index to check */
17773 	next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
17774 	next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
17775 				       LPFC_SLI4_FCF_TBL_INDX_MAX,
17776 				       next_fcf_index);
17777 
17778 	/* Wrap around condition on phba->fcf.fcf_rr_bmask */
17779 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
17780 		/*
17781 		 * If we have wrapped then we need to clear the bits that
17782 		 * have been tested so that we can detect when we should
17783 		 * change the priority level.
17784 		 */
17785 		next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
17786 					       LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
17787 	}
17788 
17789 
17790 	/* Check roundrobin failover list empty condition */
17791 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
17792 		next_fcf_index == phba->fcf.current_rec.fcf_indx) {
17793 		/*
17794 		 * If next fcf index is not found check if there are lower
17795 		 * Priority level fcf's in the fcf_priority list.
17796 		 * Set up the rr_bmask with all of the avaiable fcf bits
17797 		 * at that level and continue the selection process.
17798 		 */
17799 		if (lpfc_check_next_fcf_pri_level(phba))
17800 			goto initial_priority;
17801 		lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
17802 				"2844 No roundrobin failover FCF available\n");
17803 		if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX)
17804 			return LPFC_FCOE_FCF_NEXT_NONE;
17805 		else {
17806 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
17807 				"3063 Only FCF available idx %d, flag %x\n",
17808 				next_fcf_index,
17809 			phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag);
17810 			return next_fcf_index;
17811 		}
17812 	}
17813 
17814 	if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
17815 		phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
17816 		LPFC_FCF_FLOGI_FAILED) {
17817 		if (list_is_singular(&phba->fcf.fcf_pri_list))
17818 			return LPFC_FCOE_FCF_NEXT_NONE;
17819 
17820 		goto next_priority;
17821 	}
17822 
17823 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
17824 			"2845 Get next roundrobin failover FCF (x%x)\n",
17825 			next_fcf_index);
17826 
17827 	return next_fcf_index;
17828 }
17829 
17830 /**
17831  * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
17832  * @phba: pointer to lpfc hba data structure.
17833  *
17834  * This routine sets the FCF record index in to the eligible bmask for
17835  * roundrobin failover search. It checks to make sure that the index
17836  * does not go beyond the range of the driver allocated bmask dimension
17837  * before setting the bit.
17838  *
17839  * Returns 0 if the index bit successfully set, otherwise, it returns
17840  * -EINVAL.
17841  **/
17842 int
17843 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
17844 {
17845 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
17846 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
17847 				"2610 FCF (x%x) reached driver's book "
17848 				"keeping dimension:x%x\n",
17849 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
17850 		return -EINVAL;
17851 	}
17852 	/* Set the eligible FCF record index bmask */
17853 	set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
17854 
17855 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
17856 			"2790 Set FCF (x%x) to roundrobin FCF failover "
17857 			"bmask\n", fcf_index);
17858 
17859 	return 0;
17860 }
17861 
17862 /**
17863  * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
17864  * @phba: pointer to lpfc hba data structure.
17865  *
17866  * This routine clears the FCF record index from the eligible bmask for
17867  * roundrobin failover search. It checks to make sure that the index
17868  * does not go beyond the range of the driver allocated bmask dimension
17869  * before clearing the bit.
17870  **/
17871 void
17872 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
17873 {
17874 	struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
17875 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
17876 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
17877 				"2762 FCF (x%x) reached driver's book "
17878 				"keeping dimension:x%x\n",
17879 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
17880 		return;
17881 	}
17882 	/* Clear the eligible FCF record index bmask */
17883 	spin_lock_irq(&phba->hbalock);
17884 	list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
17885 				 list) {
17886 		if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
17887 			list_del_init(&fcf_pri->list);
17888 			break;
17889 		}
17890 	}
17891 	spin_unlock_irq(&phba->hbalock);
17892 	clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
17893 
17894 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
17895 			"2791 Clear FCF (x%x) from roundrobin failover "
17896 			"bmask\n", fcf_index);
17897 }
17898 
17899 /**
17900  * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
17901  * @phba: pointer to lpfc hba data structure.
17902  *
17903  * This routine is the completion routine for the rediscover FCF table mailbox
17904  * command. If the mailbox command returned failure, it will try to stop the
17905  * FCF rediscover wait timer.
17906  **/
17907 static void
17908 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
17909 {
17910 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
17911 	uint32_t shdr_status, shdr_add_status;
17912 
17913 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
17914 
17915 	shdr_status = bf_get(lpfc_mbox_hdr_status,
17916 			     &redisc_fcf->header.cfg_shdr.response);
17917 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
17918 			     &redisc_fcf->header.cfg_shdr.response);
17919 	if (shdr_status || shdr_add_status) {
17920 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
17921 				"2746 Requesting for FCF rediscovery failed "
17922 				"status x%x add_status x%x\n",
17923 				shdr_status, shdr_add_status);
17924 		if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
17925 			spin_lock_irq(&phba->hbalock);
17926 			phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
17927 			spin_unlock_irq(&phba->hbalock);
17928 			/*
17929 			 * CVL event triggered FCF rediscover request failed,
17930 			 * last resort to re-try current registered FCF entry.
17931 			 */
17932 			lpfc_retry_pport_discovery(phba);
17933 		} else {
17934 			spin_lock_irq(&phba->hbalock);
17935 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
17936 			spin_unlock_irq(&phba->hbalock);
17937 			/*
17938 			 * DEAD FCF event triggered FCF rediscover request
17939 			 * failed, last resort to fail over as a link down
17940 			 * to FCF registration.
17941 			 */
17942 			lpfc_sli4_fcf_dead_failthrough(phba);
17943 		}
17944 	} else {
17945 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
17946 				"2775 Start FCF rediscover quiescent timer\n");
17947 		/*
17948 		 * Start FCF rediscovery wait timer for pending FCF
17949 		 * before rescan FCF record table.
17950 		 */
17951 		lpfc_fcf_redisc_wait_start_timer(phba);
17952 	}
17953 
17954 	mempool_free(mbox, phba->mbox_mem_pool);
17955 }
17956 
17957 /**
17958  * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
17959  * @phba: pointer to lpfc hba data structure.
17960  *
17961  * This routine is invoked to request for rediscovery of the entire FCF table
17962  * by the port.
17963  **/
17964 int
17965 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
17966 {
17967 	LPFC_MBOXQ_t *mbox;
17968 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
17969 	int rc, length;
17970 
17971 	/* Cancel retry delay timers to all vports before FCF rediscover */
17972 	lpfc_cancel_all_vport_retry_delay_timer(phba);
17973 
17974 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17975 	if (!mbox) {
17976 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17977 				"2745 Failed to allocate mbox for "
17978 				"requesting FCF rediscover.\n");
17979 		return -ENOMEM;
17980 	}
17981 
17982 	length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
17983 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17984 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17985 			 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
17986 			 length, LPFC_SLI4_MBX_EMBED);
17987 
17988 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
17989 	/* Set count to 0 for invalidating the entire FCF database */
17990 	bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
17991 
17992 	/* Issue the mailbox command asynchronously */
17993 	mbox->vport = phba->pport;
17994 	mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
17995 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
17996 
17997 	if (rc == MBX_NOT_FINISHED) {
17998 		mempool_free(mbox, phba->mbox_mem_pool);
17999 		return -EIO;
18000 	}
18001 	return 0;
18002 }
18003 
18004 /**
18005  * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
18006  * @phba: pointer to lpfc hba data structure.
18007  *
18008  * This function is the failover routine as a last resort to the FCF DEAD
18009  * event when driver failed to perform fast FCF failover.
18010  **/
18011 void
18012 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
18013 {
18014 	uint32_t link_state;
18015 
18016 	/*
18017 	 * Last resort as FCF DEAD event failover will treat this as
18018 	 * a link down, but save the link state because we don't want
18019 	 * it to be changed to Link Down unless it is already down.
18020 	 */
18021 	link_state = phba->link_state;
18022 	lpfc_linkdown(phba);
18023 	phba->link_state = link_state;
18024 
18025 	/* Unregister FCF if no devices connected to it */
18026 	lpfc_unregister_unused_fcf(phba);
18027 }
18028 
18029 /**
18030  * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
18031  * @phba: pointer to lpfc hba data structure.
18032  * @rgn23_data: pointer to configure region 23 data.
18033  *
18034  * This function gets SLI3 port configure region 23 data through memory dump
18035  * mailbox command. When it successfully retrieves data, the size of the data
18036  * will be returned, otherwise, 0 will be returned.
18037  **/
18038 static uint32_t
18039 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
18040 {
18041 	LPFC_MBOXQ_t *pmb = NULL;
18042 	MAILBOX_t *mb;
18043 	uint32_t offset = 0;
18044 	int rc;
18045 
18046 	if (!rgn23_data)
18047 		return 0;
18048 
18049 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18050 	if (!pmb) {
18051 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18052 				"2600 failed to allocate mailbox memory\n");
18053 		return 0;
18054 	}
18055 	mb = &pmb->u.mb;
18056 
18057 	do {
18058 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
18059 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
18060 
18061 		if (rc != MBX_SUCCESS) {
18062 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
18063 					"2601 failed to read config "
18064 					"region 23, rc 0x%x Status 0x%x\n",
18065 					rc, mb->mbxStatus);
18066 			mb->un.varDmp.word_cnt = 0;
18067 		}
18068 		/*
18069 		 * dump mem may return a zero when finished or we got a
18070 		 * mailbox error, either way we are done.
18071 		 */
18072 		if (mb->un.varDmp.word_cnt == 0)
18073 			break;
18074 		if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
18075 			mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
18076 
18077 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
18078 				       rgn23_data + offset,
18079 				       mb->un.varDmp.word_cnt);
18080 		offset += mb->un.varDmp.word_cnt;
18081 	} while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
18082 
18083 	mempool_free(pmb, phba->mbox_mem_pool);
18084 	return offset;
18085 }
18086 
18087 /**
18088  * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
18089  * @phba: pointer to lpfc hba data structure.
18090  * @rgn23_data: pointer to configure region 23 data.
18091  *
18092  * This function gets SLI4 port configure region 23 data through memory dump
18093  * mailbox command. When it successfully retrieves data, the size of the data
18094  * will be returned, otherwise, 0 will be returned.
18095  **/
18096 static uint32_t
18097 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
18098 {
18099 	LPFC_MBOXQ_t *mboxq = NULL;
18100 	struct lpfc_dmabuf *mp = NULL;
18101 	struct lpfc_mqe *mqe;
18102 	uint32_t data_length = 0;
18103 	int rc;
18104 
18105 	if (!rgn23_data)
18106 		return 0;
18107 
18108 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18109 	if (!mboxq) {
18110 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18111 				"3105 failed to allocate mailbox memory\n");
18112 		return 0;
18113 	}
18114 
18115 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
18116 		goto out;
18117 	mqe = &mboxq->u.mqe;
18118 	mp = (struct lpfc_dmabuf *) mboxq->context1;
18119 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18120 	if (rc)
18121 		goto out;
18122 	data_length = mqe->un.mb_words[5];
18123 	if (data_length == 0)
18124 		goto out;
18125 	if (data_length > DMP_RGN23_SIZE) {
18126 		data_length = 0;
18127 		goto out;
18128 	}
18129 	lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
18130 out:
18131 	mempool_free(mboxq, phba->mbox_mem_pool);
18132 	if (mp) {
18133 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
18134 		kfree(mp);
18135 	}
18136 	return data_length;
18137 }
18138 
18139 /**
18140  * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
18141  * @phba: pointer to lpfc hba data structure.
18142  *
18143  * This function read region 23 and parse TLV for port status to
18144  * decide if the user disaled the port. If the TLV indicates the
18145  * port is disabled, the hba_flag is set accordingly.
18146  **/
18147 void
18148 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
18149 {
18150 	uint8_t *rgn23_data = NULL;
18151 	uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
18152 	uint32_t offset = 0;
18153 
18154 	/* Get adapter Region 23 data */
18155 	rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
18156 	if (!rgn23_data)
18157 		goto out;
18158 
18159 	if (phba->sli_rev < LPFC_SLI_REV4)
18160 		data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
18161 	else {
18162 		if_type = bf_get(lpfc_sli_intf_if_type,
18163 				 &phba->sli4_hba.sli_intf);
18164 		if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
18165 			goto out;
18166 		data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
18167 	}
18168 
18169 	if (!data_size)
18170 		goto out;
18171 
18172 	/* Check the region signature first */
18173 	if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
18174 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18175 			"2619 Config region 23 has bad signature\n");
18176 			goto out;
18177 	}
18178 	offset += 4;
18179 
18180 	/* Check the data structure version */
18181 	if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
18182 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18183 			"2620 Config region 23 has bad version\n");
18184 		goto out;
18185 	}
18186 	offset += 4;
18187 
18188 	/* Parse TLV entries in the region */
18189 	while (offset < data_size) {
18190 		if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
18191 			break;
18192 		/*
18193 		 * If the TLV is not driver specific TLV or driver id is
18194 		 * not linux driver id, skip the record.
18195 		 */
18196 		if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
18197 		    (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
18198 		    (rgn23_data[offset + 3] != 0)) {
18199 			offset += rgn23_data[offset + 1] * 4 + 4;
18200 			continue;
18201 		}
18202 
18203 		/* Driver found a driver specific TLV in the config region */
18204 		sub_tlv_len = rgn23_data[offset + 1] * 4;
18205 		offset += 4;
18206 		tlv_offset = 0;
18207 
18208 		/*
18209 		 * Search for configured port state sub-TLV.
18210 		 */
18211 		while ((offset < data_size) &&
18212 			(tlv_offset < sub_tlv_len)) {
18213 			if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
18214 				offset += 4;
18215 				tlv_offset += 4;
18216 				break;
18217 			}
18218 			if (rgn23_data[offset] != PORT_STE_TYPE) {
18219 				offset += rgn23_data[offset + 1] * 4 + 4;
18220 				tlv_offset += rgn23_data[offset + 1] * 4 + 4;
18221 				continue;
18222 			}
18223 
18224 			/* This HBA contains PORT_STE configured */
18225 			if (!rgn23_data[offset + 2])
18226 				phba->hba_flag |= LINK_DISABLED;
18227 
18228 			goto out;
18229 		}
18230 	}
18231 
18232 out:
18233 	kfree(rgn23_data);
18234 	return;
18235 }
18236 
18237 /**
18238  * lpfc_wr_object - write an object to the firmware
18239  * @phba: HBA structure that indicates port to create a queue on.
18240  * @dmabuf_list: list of dmabufs to write to the port.
18241  * @size: the total byte value of the objects to write to the port.
18242  * @offset: the current offset to be used to start the transfer.
18243  *
18244  * This routine will create a wr_object mailbox command to send to the port.
18245  * the mailbox command will be constructed using the dma buffers described in
18246  * @dmabuf_list to create a list of BDEs. This routine will fill in as many
18247  * BDEs that the imbedded mailbox can support. The @offset variable will be
18248  * used to indicate the starting offset of the transfer and will also return
18249  * the offset after the write object mailbox has completed. @size is used to
18250  * determine the end of the object and whether the eof bit should be set.
18251  *
18252  * Return 0 is successful and offset will contain the the new offset to use
18253  * for the next write.
18254  * Return negative value for error cases.
18255  **/
18256 int
18257 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
18258 	       uint32_t size, uint32_t *offset)
18259 {
18260 	struct lpfc_mbx_wr_object *wr_object;
18261 	LPFC_MBOXQ_t *mbox;
18262 	int rc = 0, i = 0;
18263 	uint32_t shdr_status, shdr_add_status;
18264 	uint32_t mbox_tmo;
18265 	union lpfc_sli4_cfg_shdr *shdr;
18266 	struct lpfc_dmabuf *dmabuf;
18267 	uint32_t written = 0;
18268 
18269 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18270 	if (!mbox)
18271 		return -ENOMEM;
18272 
18273 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
18274 			LPFC_MBOX_OPCODE_WRITE_OBJECT,
18275 			sizeof(struct lpfc_mbx_wr_object) -
18276 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
18277 
18278 	wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
18279 	wr_object->u.request.write_offset = *offset;
18280 	sprintf((uint8_t *)wr_object->u.request.object_name, "/");
18281 	wr_object->u.request.object_name[0] =
18282 		cpu_to_le32(wr_object->u.request.object_name[0]);
18283 	bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
18284 	list_for_each_entry(dmabuf, dmabuf_list, list) {
18285 		if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
18286 			break;
18287 		wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
18288 		wr_object->u.request.bde[i].addrHigh =
18289 			putPaddrHigh(dmabuf->phys);
18290 		if (written + SLI4_PAGE_SIZE >= size) {
18291 			wr_object->u.request.bde[i].tus.f.bdeSize =
18292 				(size - written);
18293 			written += (size - written);
18294 			bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
18295 		} else {
18296 			wr_object->u.request.bde[i].tus.f.bdeSize =
18297 				SLI4_PAGE_SIZE;
18298 			written += SLI4_PAGE_SIZE;
18299 		}
18300 		i++;
18301 	}
18302 	wr_object->u.request.bde_count = i;
18303 	bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
18304 	if (!phba->sli4_hba.intr_enable)
18305 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
18306 	else {
18307 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
18308 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
18309 	}
18310 	/* The IOCTL status is embedded in the mailbox subheader. */
18311 	shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr;
18312 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18313 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18314 	if (rc != MBX_TIMEOUT)
18315 		mempool_free(mbox, phba->mbox_mem_pool);
18316 	if (shdr_status || shdr_add_status || rc) {
18317 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18318 				"3025 Write Object mailbox failed with "
18319 				"status x%x add_status x%x, mbx status x%x\n",
18320 				shdr_status, shdr_add_status, rc);
18321 		rc = -ENXIO;
18322 	} else
18323 		*offset += wr_object->u.response.actual_write_length;
18324 	return rc;
18325 }
18326 
18327 /**
18328  * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
18329  * @vport: pointer to vport data structure.
18330  *
18331  * This function iterate through the mailboxq and clean up all REG_LOGIN
18332  * and REG_VPI mailbox commands associated with the vport. This function
18333  * is called when driver want to restart discovery of the vport due to
18334  * a Clear Virtual Link event.
18335  **/
18336 void
18337 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
18338 {
18339 	struct lpfc_hba *phba = vport->phba;
18340 	LPFC_MBOXQ_t *mb, *nextmb;
18341 	struct lpfc_dmabuf *mp;
18342 	struct lpfc_nodelist *ndlp;
18343 	struct lpfc_nodelist *act_mbx_ndlp = NULL;
18344 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
18345 	LIST_HEAD(mbox_cmd_list);
18346 	uint8_t restart_loop;
18347 
18348 	/* Clean up internally queued mailbox commands with the vport */
18349 	spin_lock_irq(&phba->hbalock);
18350 	list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
18351 		if (mb->vport != vport)
18352 			continue;
18353 
18354 		if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
18355 			(mb->u.mb.mbxCommand != MBX_REG_VPI))
18356 			continue;
18357 
18358 		list_del(&mb->list);
18359 		list_add_tail(&mb->list, &mbox_cmd_list);
18360 	}
18361 	/* Clean up active mailbox command with the vport */
18362 	mb = phba->sli.mbox_active;
18363 	if (mb && (mb->vport == vport)) {
18364 		if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
18365 			(mb->u.mb.mbxCommand == MBX_REG_VPI))
18366 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18367 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
18368 			act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2;
18369 			/* Put reference count for delayed processing */
18370 			act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
18371 			/* Unregister the RPI when mailbox complete */
18372 			mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
18373 		}
18374 	}
18375 	/* Cleanup any mailbox completions which are not yet processed */
18376 	do {
18377 		restart_loop = 0;
18378 		list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
18379 			/*
18380 			 * If this mailox is already processed or it is
18381 			 * for another vport ignore it.
18382 			 */
18383 			if ((mb->vport != vport) ||
18384 				(mb->mbox_flag & LPFC_MBX_IMED_UNREG))
18385 				continue;
18386 
18387 			if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
18388 				(mb->u.mb.mbxCommand != MBX_REG_VPI))
18389 				continue;
18390 
18391 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18392 			if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
18393 				ndlp = (struct lpfc_nodelist *)mb->context2;
18394 				/* Unregister the RPI when mailbox complete */
18395 				mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
18396 				restart_loop = 1;
18397 				spin_unlock_irq(&phba->hbalock);
18398 				spin_lock(shost->host_lock);
18399 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
18400 				spin_unlock(shost->host_lock);
18401 				spin_lock_irq(&phba->hbalock);
18402 				break;
18403 			}
18404 		}
18405 	} while (restart_loop);
18406 
18407 	spin_unlock_irq(&phba->hbalock);
18408 
18409 	/* Release the cleaned-up mailbox commands */
18410 	while (!list_empty(&mbox_cmd_list)) {
18411 		list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
18412 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
18413 			mp = (struct lpfc_dmabuf *) (mb->context1);
18414 			if (mp) {
18415 				__lpfc_mbuf_free(phba, mp->virt, mp->phys);
18416 				kfree(mp);
18417 			}
18418 			ndlp = (struct lpfc_nodelist *) mb->context2;
18419 			mb->context2 = NULL;
18420 			if (ndlp) {
18421 				spin_lock(shost->host_lock);
18422 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
18423 				spin_unlock(shost->host_lock);
18424 				lpfc_nlp_put(ndlp);
18425 			}
18426 		}
18427 		mempool_free(mb, phba->mbox_mem_pool);
18428 	}
18429 
18430 	/* Release the ndlp with the cleaned-up active mailbox command */
18431 	if (act_mbx_ndlp) {
18432 		spin_lock(shost->host_lock);
18433 		act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
18434 		spin_unlock(shost->host_lock);
18435 		lpfc_nlp_put(act_mbx_ndlp);
18436 	}
18437 }
18438 
18439 /**
18440  * lpfc_drain_txq - Drain the txq
18441  * @phba: Pointer to HBA context object.
18442  *
18443  * This function attempt to submit IOCBs on the txq
18444  * to the adapter.  For SLI4 adapters, the txq contains
18445  * ELS IOCBs that have been deferred because the there
18446  * are no SGLs.  This congestion can occur with large
18447  * vport counts during node discovery.
18448  **/
18449 
18450 uint32_t
18451 lpfc_drain_txq(struct lpfc_hba *phba)
18452 {
18453 	LIST_HEAD(completions);
18454 	struct lpfc_sli_ring *pring;
18455 	struct lpfc_iocbq *piocbq = NULL;
18456 	unsigned long iflags = 0;
18457 	char *fail_msg = NULL;
18458 	struct lpfc_sglq *sglq;
18459 	union lpfc_wqe128 wqe128;
18460 	union lpfc_wqe *wqe = (union lpfc_wqe *) &wqe128;
18461 	uint32_t txq_cnt = 0;
18462 
18463 	pring = lpfc_phba_elsring(phba);
18464 
18465 	spin_lock_irqsave(&pring->ring_lock, iflags);
18466 	list_for_each_entry(piocbq, &pring->txq, list) {
18467 		txq_cnt++;
18468 	}
18469 
18470 	if (txq_cnt > pring->txq_max)
18471 		pring->txq_max = txq_cnt;
18472 
18473 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
18474 
18475 	while (!list_empty(&pring->txq)) {
18476 		spin_lock_irqsave(&pring->ring_lock, iflags);
18477 
18478 		piocbq = lpfc_sli_ringtx_get(phba, pring);
18479 		if (!piocbq) {
18480 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
18481 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18482 				"2823 txq empty and txq_cnt is %d\n ",
18483 				txq_cnt);
18484 			break;
18485 		}
18486 		sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
18487 		if (!sglq) {
18488 			__lpfc_sli_ringtx_put(phba, pring, piocbq);
18489 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
18490 			break;
18491 		}
18492 		txq_cnt--;
18493 
18494 		/* The xri and iocb resources secured,
18495 		 * attempt to issue request
18496 		 */
18497 		piocbq->sli4_lxritag = sglq->sli4_lxritag;
18498 		piocbq->sli4_xritag = sglq->sli4_xritag;
18499 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
18500 			fail_msg = "to convert bpl to sgl";
18501 		else if (lpfc_sli4_iocb2wqe(phba, piocbq, wqe))
18502 			fail_msg = "to convert iocb to wqe";
18503 		else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, wqe))
18504 			fail_msg = " - Wq is full";
18505 		else
18506 			lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
18507 
18508 		if (fail_msg) {
18509 			/* Failed means we can't issue and need to cancel */
18510 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18511 					"2822 IOCB failed %s iotag 0x%x "
18512 					"xri 0x%x\n",
18513 					fail_msg,
18514 					piocbq->iotag, piocbq->sli4_xritag);
18515 			list_add_tail(&piocbq->list, &completions);
18516 		}
18517 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
18518 	}
18519 
18520 	/* Cancel all the IOCBs that cannot be issued */
18521 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
18522 				IOERR_SLI_ABORTED);
18523 
18524 	return txq_cnt;
18525 }
18526 
18527 /**
18528  * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
18529  * @phba: Pointer to HBA context object.
18530  * @pwqe: Pointer to command WQE.
18531  * @sglq: Pointer to the scatter gather queue object.
18532  *
18533  * This routine converts the bpl or bde that is in the WQE
18534  * to a sgl list for the sli4 hardware. The physical address
18535  * of the bpl/bde is converted back to a virtual address.
18536  * If the WQE contains a BPL then the list of BDE's is
18537  * converted to sli4_sge's. If the WQE contains a single
18538  * BDE then it is converted to a single sli_sge.
18539  * The WQE is still in cpu endianness so the contents of
18540  * the bpl can be used without byte swapping.
18541  *
18542  * Returns valid XRI = Success, NO_XRI = Failure.
18543  */
18544 static uint16_t
18545 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
18546 		 struct lpfc_sglq *sglq)
18547 {
18548 	uint16_t xritag = NO_XRI;
18549 	struct ulp_bde64 *bpl = NULL;
18550 	struct ulp_bde64 bde;
18551 	struct sli4_sge *sgl  = NULL;
18552 	struct lpfc_dmabuf *dmabuf;
18553 	union lpfc_wqe *wqe;
18554 	int numBdes = 0;
18555 	int i = 0;
18556 	uint32_t offset = 0; /* accumulated offset in the sg request list */
18557 	int inbound = 0; /* number of sg reply entries inbound from firmware */
18558 	uint32_t cmd;
18559 
18560 	if (!pwqeq || !sglq)
18561 		return xritag;
18562 
18563 	sgl  = (struct sli4_sge *)sglq->sgl;
18564 	wqe = &pwqeq->wqe;
18565 	pwqeq->iocb.ulpIoTag = pwqeq->iotag;
18566 
18567 	cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
18568 	if (cmd == CMD_XMIT_BLS_RSP64_WQE)
18569 		return sglq->sli4_xritag;
18570 	numBdes = pwqeq->rsvd2;
18571 	if (numBdes) {
18572 		/* The addrHigh and addrLow fields within the WQE
18573 		 * have not been byteswapped yet so there is no
18574 		 * need to swap them back.
18575 		 */
18576 		if (pwqeq->context3)
18577 			dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
18578 		else
18579 			return xritag;
18580 
18581 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
18582 		if (!bpl)
18583 			return xritag;
18584 
18585 		for (i = 0; i < numBdes; i++) {
18586 			/* Should already be byte swapped. */
18587 			sgl->addr_hi = bpl->addrHigh;
18588 			sgl->addr_lo = bpl->addrLow;
18589 
18590 			sgl->word2 = le32_to_cpu(sgl->word2);
18591 			if ((i+1) == numBdes)
18592 				bf_set(lpfc_sli4_sge_last, sgl, 1);
18593 			else
18594 				bf_set(lpfc_sli4_sge_last, sgl, 0);
18595 			/* swap the size field back to the cpu so we
18596 			 * can assign it to the sgl.
18597 			 */
18598 			bde.tus.w = le32_to_cpu(bpl->tus.w);
18599 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
18600 			/* The offsets in the sgl need to be accumulated
18601 			 * separately for the request and reply lists.
18602 			 * The request is always first, the reply follows.
18603 			 */
18604 			switch (cmd) {
18605 			case CMD_GEN_REQUEST64_WQE:
18606 				/* add up the reply sg entries */
18607 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
18608 					inbound++;
18609 				/* first inbound? reset the offset */
18610 				if (inbound == 1)
18611 					offset = 0;
18612 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
18613 				bf_set(lpfc_sli4_sge_type, sgl,
18614 					LPFC_SGE_TYPE_DATA);
18615 				offset += bde.tus.f.bdeSize;
18616 				break;
18617 			case CMD_FCP_TRSP64_WQE:
18618 				bf_set(lpfc_sli4_sge_offset, sgl, 0);
18619 				bf_set(lpfc_sli4_sge_type, sgl,
18620 					LPFC_SGE_TYPE_DATA);
18621 				break;
18622 			case CMD_FCP_TSEND64_WQE:
18623 			case CMD_FCP_TRECEIVE64_WQE:
18624 				bf_set(lpfc_sli4_sge_type, sgl,
18625 					bpl->tus.f.bdeFlags);
18626 				if (i < 3)
18627 					offset = 0;
18628 				else
18629 					offset += bde.tus.f.bdeSize;
18630 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
18631 				break;
18632 			}
18633 			sgl->word2 = cpu_to_le32(sgl->word2);
18634 			bpl++;
18635 			sgl++;
18636 		}
18637 	} else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
18638 		/* The addrHigh and addrLow fields of the BDE have not
18639 		 * been byteswapped yet so they need to be swapped
18640 		 * before putting them in the sgl.
18641 		 */
18642 		sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
18643 		sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
18644 		sgl->word2 = le32_to_cpu(sgl->word2);
18645 		bf_set(lpfc_sli4_sge_last, sgl, 1);
18646 		sgl->word2 = cpu_to_le32(sgl->word2);
18647 		sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
18648 	}
18649 	return sglq->sli4_xritag;
18650 }
18651 
18652 /**
18653  * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
18654  * @phba: Pointer to HBA context object.
18655  * @ring_number: Base sli ring number
18656  * @pwqe: Pointer to command WQE.
18657  **/
18658 int
18659 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, uint32_t ring_number,
18660 		    struct lpfc_iocbq *pwqe)
18661 {
18662 	union lpfc_wqe *wqe = &pwqe->wqe;
18663 	struct lpfc_nvmet_rcv_ctx *ctxp;
18664 	struct lpfc_queue *wq;
18665 	struct lpfc_sglq *sglq;
18666 	struct lpfc_sli_ring *pring;
18667 	unsigned long iflags;
18668 
18669 	/* NVME_LS and NVME_LS ABTS requests. */
18670 	if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
18671 		pring =  phba->sli4_hba.nvmels_wq->pring;
18672 		spin_lock_irqsave(&pring->ring_lock, iflags);
18673 		sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
18674 		if (!sglq) {
18675 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
18676 			return WQE_BUSY;
18677 		}
18678 		pwqe->sli4_lxritag = sglq->sli4_lxritag;
18679 		pwqe->sli4_xritag = sglq->sli4_xritag;
18680 		if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
18681 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
18682 			return WQE_ERROR;
18683 		}
18684 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
18685 		       pwqe->sli4_xritag);
18686 		if (lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe)) {
18687 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
18688 			return WQE_ERROR;
18689 		}
18690 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
18691 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
18692 		return 0;
18693 	}
18694 
18695 	/* NVME_FCREQ and NVME_ABTS requests */
18696 	if (pwqe->iocb_flag & LPFC_IO_NVME) {
18697 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
18698 		pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring;
18699 
18700 		spin_lock_irqsave(&pring->ring_lock, iflags);
18701 		wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx];
18702 		bf_set(wqe_cqid, &wqe->generic.wqe_com,
18703 		      phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id);
18704 		if (lpfc_sli4_wq_put(wq, wqe)) {
18705 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
18706 			return WQE_ERROR;
18707 		}
18708 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
18709 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
18710 		return 0;
18711 	}
18712 
18713 	/* NVMET requests */
18714 	if (pwqe->iocb_flag & LPFC_IO_NVMET) {
18715 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
18716 		pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring;
18717 
18718 		spin_lock_irqsave(&pring->ring_lock, iflags);
18719 		ctxp = pwqe->context2;
18720 		sglq = ctxp->rqb_buffer->sglq;
18721 		if (pwqe->sli4_xritag ==  NO_XRI) {
18722 			pwqe->sli4_lxritag = sglq->sli4_lxritag;
18723 			pwqe->sli4_xritag = sglq->sli4_xritag;
18724 		}
18725 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
18726 		       pwqe->sli4_xritag);
18727 		wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx];
18728 		bf_set(wqe_cqid, &wqe->generic.wqe_com,
18729 		      phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id);
18730 		if (lpfc_sli4_wq_put(wq, wqe)) {
18731 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
18732 			return WQE_ERROR;
18733 		}
18734 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
18735 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
18736 		return 0;
18737 	}
18738 	return WQE_ERROR;
18739 }
18740