1 2 /******************************************************************* 3 * This file is part of the Emulex Linux Device Driver for * 4 * Fibre Channel Host Bus Adapters. * 5 * Copyright (C) 2017 Broadcom. All Rights Reserved. The term * 6 * “Broadcom” refers to Broadcom Limited and/or its subsidiaries. * 7 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 8 * EMULEX and SLI are trademarks of Emulex. * 9 * www.broadcom.com * 10 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 11 * * 12 * This program is free software; you can redistribute it and/or * 13 * modify it under the terms of version 2 of the GNU General * 14 * Public License as published by the Free Software Foundation. * 15 * This program is distributed in the hope that it will be useful. * 16 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 17 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 18 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 19 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 20 * TO BE LEGALLY INVALID. See the GNU General Public License for * 21 * more details, a copy of which can be found in the file COPYING * 22 * included with this package. * 23 *******************************************************************/ 24 25 #include <linux/blkdev.h> 26 #include <linux/pci.h> 27 #include <linux/interrupt.h> 28 #include <linux/delay.h> 29 #include <linux/slab.h> 30 #include <linux/lockdep.h> 31 32 #include <scsi/scsi.h> 33 #include <scsi/scsi_cmnd.h> 34 #include <scsi/scsi_device.h> 35 #include <scsi/scsi_host.h> 36 #include <scsi/scsi_transport_fc.h> 37 #include <scsi/fc/fc_fs.h> 38 #include <linux/aer.h> 39 40 #include <linux/nvme-fc-driver.h> 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_nvmet.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 74 struct lpfc_iocbq *); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static int lpfc_sli4_fp_handle_cqe(struct lpfc_hba *, struct lpfc_queue *, 78 struct lpfc_cqe *); 79 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 80 int); 81 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *, struct lpfc_eqe *, 82 uint32_t); 83 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 84 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 85 static int lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, 86 struct lpfc_sli_ring *pring, 87 struct lpfc_iocbq *cmdiocb); 88 89 static IOCB_t * 90 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 91 { 92 return &iocbq->iocb; 93 } 94 95 /** 96 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 97 * @q: The Work Queue to operate on. 98 * @wqe: The work Queue Entry to put on the Work queue. 99 * 100 * This routine will copy the contents of @wqe to the next available entry on 101 * the @q. This function will then ring the Work Queue Doorbell to signal the 102 * HBA to start processing the Work Queue Entry. This function returns 0 if 103 * successful. If no entries are available on @q then this function will return 104 * -ENOMEM. 105 * The caller is expected to hold the hbalock when calling this routine. 106 **/ 107 static uint32_t 108 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe *wqe) 109 { 110 union lpfc_wqe *temp_wqe; 111 struct lpfc_register doorbell; 112 uint32_t host_index; 113 uint32_t idx; 114 115 /* sanity check on queue memory */ 116 if (unlikely(!q)) 117 return -ENOMEM; 118 temp_wqe = q->qe[q->host_index].wqe; 119 120 /* If the host has not yet processed the next entry then we are done */ 121 idx = ((q->host_index + 1) % q->entry_count); 122 if (idx == q->hba_index) { 123 q->WQ_overflow++; 124 return -ENOMEM; 125 } 126 q->WQ_posted++; 127 /* set consumption flag every once in a while */ 128 if (!((q->host_index + 1) % q->entry_repost)) 129 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 130 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 131 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 132 lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 133 /* ensure WQE bcopy flushed before doorbell write */ 134 wmb(); 135 136 /* Update the host index before invoking device */ 137 host_index = q->host_index; 138 139 q->host_index = idx; 140 141 /* Ring Doorbell */ 142 doorbell.word0 = 0; 143 if (q->db_format == LPFC_DB_LIST_FORMAT) { 144 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 145 bf_set(lpfc_wq_db_list_fm_index, &doorbell, host_index); 146 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 147 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 148 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 149 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 150 } else { 151 return -EINVAL; 152 } 153 writel(doorbell.word0, q->db_regaddr); 154 155 return 0; 156 } 157 158 /** 159 * lpfc_sli4_wq_release - Updates internal hba index for WQ 160 * @q: The Work Queue to operate on. 161 * @index: The index to advance the hba index to. 162 * 163 * This routine will update the HBA index of a queue to reflect consumption of 164 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 165 * an entry the host calls this function to update the queue's internal 166 * pointers. This routine returns the number of entries that were consumed by 167 * the HBA. 168 **/ 169 static uint32_t 170 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 171 { 172 uint32_t released = 0; 173 174 /* sanity check on queue memory */ 175 if (unlikely(!q)) 176 return 0; 177 178 if (q->hba_index == index) 179 return 0; 180 do { 181 q->hba_index = ((q->hba_index + 1) % q->entry_count); 182 released++; 183 } while (q->hba_index != index); 184 return released; 185 } 186 187 /** 188 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 189 * @q: The Mailbox Queue to operate on. 190 * @wqe: The Mailbox Queue Entry to put on the Work queue. 191 * 192 * This routine will copy the contents of @mqe to the next available entry on 193 * the @q. This function will then ring the Work Queue Doorbell to signal the 194 * HBA to start processing the Work Queue Entry. This function returns 0 if 195 * successful. If no entries are available on @q then this function will return 196 * -ENOMEM. 197 * The caller is expected to hold the hbalock when calling this routine. 198 **/ 199 static uint32_t 200 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 201 { 202 struct lpfc_mqe *temp_mqe; 203 struct lpfc_register doorbell; 204 205 /* sanity check on queue memory */ 206 if (unlikely(!q)) 207 return -ENOMEM; 208 temp_mqe = q->qe[q->host_index].mqe; 209 210 /* If the host has not yet processed the next entry then we are done */ 211 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 212 return -ENOMEM; 213 lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 214 /* Save off the mailbox pointer for completion */ 215 q->phba->mbox = (MAILBOX_t *)temp_mqe; 216 217 /* Update the host index before invoking device */ 218 q->host_index = ((q->host_index + 1) % q->entry_count); 219 220 /* Ring Doorbell */ 221 doorbell.word0 = 0; 222 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 223 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 224 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 225 return 0; 226 } 227 228 /** 229 * lpfc_sli4_mq_release - Updates internal hba index for MQ 230 * @q: The Mailbox Queue to operate on. 231 * 232 * This routine will update the HBA index of a queue to reflect consumption of 233 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 234 * an entry the host calls this function to update the queue's internal 235 * pointers. This routine returns the number of entries that were consumed by 236 * the HBA. 237 **/ 238 static uint32_t 239 lpfc_sli4_mq_release(struct lpfc_queue *q) 240 { 241 /* sanity check on queue memory */ 242 if (unlikely(!q)) 243 return 0; 244 245 /* Clear the mailbox pointer for completion */ 246 q->phba->mbox = NULL; 247 q->hba_index = ((q->hba_index + 1) % q->entry_count); 248 return 1; 249 } 250 251 /** 252 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 253 * @q: The Event Queue to get the first valid EQE from 254 * 255 * This routine will get the first valid Event Queue Entry from @q, update 256 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 257 * the Queue (no more work to do), or the Queue is full of EQEs that have been 258 * processed, but not popped back to the HBA then this routine will return NULL. 259 **/ 260 static struct lpfc_eqe * 261 lpfc_sli4_eq_get(struct lpfc_queue *q) 262 { 263 struct lpfc_eqe *eqe; 264 uint32_t idx; 265 266 /* sanity check on queue memory */ 267 if (unlikely(!q)) 268 return NULL; 269 eqe = q->qe[q->hba_index].eqe; 270 271 /* If the next EQE is not valid then we are done */ 272 if (!bf_get_le32(lpfc_eqe_valid, eqe)) 273 return NULL; 274 /* If the host has not yet processed the next entry then we are done */ 275 idx = ((q->hba_index + 1) % q->entry_count); 276 if (idx == q->host_index) 277 return NULL; 278 279 q->hba_index = idx; 280 281 /* 282 * insert barrier for instruction interlock : data from the hardware 283 * must have the valid bit checked before it can be copied and acted 284 * upon. Speculative instructions were allowing a bcopy at the start 285 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 286 * after our return, to copy data before the valid bit check above 287 * was done. As such, some of the copied data was stale. The barrier 288 * ensures the check is before any data is copied. 289 */ 290 mb(); 291 return eqe; 292 } 293 294 /** 295 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 296 * @q: The Event Queue to disable interrupts 297 * 298 **/ 299 static inline void 300 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 301 { 302 struct lpfc_register doorbell; 303 304 doorbell.word0 = 0; 305 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 306 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 307 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 308 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 309 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 310 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 311 } 312 313 /** 314 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ 315 * @q: The Event Queue that the host has completed processing for. 316 * @arm: Indicates whether the host wants to arms this CQ. 317 * 318 * This routine will mark all Event Queue Entries on @q, from the last 319 * known completed entry to the last entry that was processed, as completed 320 * by clearing the valid bit for each completion queue entry. Then it will 321 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 322 * The internal host index in the @q will be updated by this routine to indicate 323 * that the host has finished processing the entries. The @arm parameter 324 * indicates that the queue should be rearmed when ringing the doorbell. 325 * 326 * This function will return the number of EQEs that were popped. 327 **/ 328 uint32_t 329 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm) 330 { 331 uint32_t released = 0; 332 struct lpfc_eqe *temp_eqe; 333 struct lpfc_register doorbell; 334 335 /* sanity check on queue memory */ 336 if (unlikely(!q)) 337 return 0; 338 339 /* while there are valid entries */ 340 while (q->hba_index != q->host_index) { 341 temp_eqe = q->qe[q->host_index].eqe; 342 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 343 released++; 344 q->host_index = ((q->host_index + 1) % q->entry_count); 345 } 346 if (unlikely(released == 0 && !arm)) 347 return 0; 348 349 /* ring doorbell for number popped */ 350 doorbell.word0 = 0; 351 if (arm) { 352 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 353 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 354 } 355 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 356 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 357 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 358 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 359 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 360 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 361 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 362 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 363 readl(q->phba->sli4_hba.EQCQDBregaddr); 364 return released; 365 } 366 367 /** 368 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 369 * @q: The Completion Queue to get the first valid CQE from 370 * 371 * This routine will get the first valid Completion Queue Entry from @q, update 372 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 373 * the Queue (no more work to do), or the Queue is full of CQEs that have been 374 * processed, but not popped back to the HBA then this routine will return NULL. 375 **/ 376 static struct lpfc_cqe * 377 lpfc_sli4_cq_get(struct lpfc_queue *q) 378 { 379 struct lpfc_cqe *cqe; 380 uint32_t idx; 381 382 /* sanity check on queue memory */ 383 if (unlikely(!q)) 384 return NULL; 385 386 /* If the next CQE is not valid then we are done */ 387 if (!bf_get_le32(lpfc_cqe_valid, q->qe[q->hba_index].cqe)) 388 return NULL; 389 /* If the host has not yet processed the next entry then we are done */ 390 idx = ((q->hba_index + 1) % q->entry_count); 391 if (idx == q->host_index) 392 return NULL; 393 394 cqe = q->qe[q->hba_index].cqe; 395 q->hba_index = idx; 396 397 /* 398 * insert barrier for instruction interlock : data from the hardware 399 * must have the valid bit checked before it can be copied and acted 400 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 401 * instructions allowing action on content before valid bit checked, 402 * add barrier here as well. May not be needed as "content" is a 403 * single 32-bit entity here (vs multi word structure for cq's). 404 */ 405 mb(); 406 return cqe; 407 } 408 409 /** 410 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ 411 * @q: The Completion Queue that the host has completed processing for. 412 * @arm: Indicates whether the host wants to arms this CQ. 413 * 414 * This routine will mark all Completion queue entries on @q, from the last 415 * known completed entry to the last entry that was processed, as completed 416 * by clearing the valid bit for each completion queue entry. Then it will 417 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 418 * The internal host index in the @q will be updated by this routine to indicate 419 * that the host has finished processing the entries. The @arm parameter 420 * indicates that the queue should be rearmed when ringing the doorbell. 421 * 422 * This function will return the number of CQEs that were released. 423 **/ 424 uint32_t 425 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm) 426 { 427 uint32_t released = 0; 428 struct lpfc_cqe *temp_qe; 429 struct lpfc_register doorbell; 430 431 /* sanity check on queue memory */ 432 if (unlikely(!q)) 433 return 0; 434 /* while there are valid entries */ 435 while (q->hba_index != q->host_index) { 436 temp_qe = q->qe[q->host_index].cqe; 437 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 438 released++; 439 q->host_index = ((q->host_index + 1) % q->entry_count); 440 } 441 if (unlikely(released == 0 && !arm)) 442 return 0; 443 444 /* ring doorbell for number popped */ 445 doorbell.word0 = 0; 446 if (arm) 447 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 448 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 449 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 450 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 451 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 452 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 453 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 454 return released; 455 } 456 457 /** 458 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 459 * @q: The Header Receive Queue to operate on. 460 * @wqe: The Receive Queue Entry to put on the Receive queue. 461 * 462 * This routine will copy the contents of @wqe to the next available entry on 463 * the @q. This function will then ring the Receive Queue Doorbell to signal the 464 * HBA to start processing the Receive Queue Entry. This function returns the 465 * index that the rqe was copied to if successful. If no entries are available 466 * on @q then this function will return -ENOMEM. 467 * The caller is expected to hold the hbalock when calling this routine. 468 **/ 469 int 470 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 471 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 472 { 473 struct lpfc_rqe *temp_hrqe; 474 struct lpfc_rqe *temp_drqe; 475 struct lpfc_register doorbell; 476 int put_index; 477 478 /* sanity check on queue memory */ 479 if (unlikely(!hq) || unlikely(!dq)) 480 return -ENOMEM; 481 put_index = hq->host_index; 482 temp_hrqe = hq->qe[hq->host_index].rqe; 483 temp_drqe = dq->qe[dq->host_index].rqe; 484 485 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 486 return -EINVAL; 487 if (hq->host_index != dq->host_index) 488 return -EINVAL; 489 /* If the host has not yet processed the next entry then we are done */ 490 if (((hq->host_index + 1) % hq->entry_count) == hq->hba_index) 491 return -EBUSY; 492 lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 493 lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 494 495 /* Update the host index to point to the next slot */ 496 hq->host_index = ((hq->host_index + 1) % hq->entry_count); 497 dq->host_index = ((dq->host_index + 1) % dq->entry_count); 498 499 /* Ring The Header Receive Queue Doorbell */ 500 if (!(hq->host_index % hq->entry_repost)) { 501 doorbell.word0 = 0; 502 if (hq->db_format == LPFC_DB_RING_FORMAT) { 503 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 504 hq->entry_repost); 505 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 506 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 507 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 508 hq->entry_repost); 509 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 510 hq->host_index); 511 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 512 } else { 513 return -EINVAL; 514 } 515 writel(doorbell.word0, hq->db_regaddr); 516 } 517 return put_index; 518 } 519 520 /** 521 * lpfc_sli4_rq_release - Updates internal hba index for RQ 522 * @q: The Header Receive Queue to operate on. 523 * 524 * This routine will update the HBA index of a queue to reflect consumption of 525 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 526 * consumed an entry the host calls this function to update the queue's 527 * internal pointers. This routine returns the number of entries that were 528 * consumed by the HBA. 529 **/ 530 static uint32_t 531 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 532 { 533 /* sanity check on queue memory */ 534 if (unlikely(!hq) || unlikely(!dq)) 535 return 0; 536 537 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 538 return 0; 539 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 540 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 541 return 1; 542 } 543 544 /** 545 * lpfc_cmd_iocb - Get next command iocb entry in the ring 546 * @phba: Pointer to HBA context object. 547 * @pring: Pointer to driver SLI ring object. 548 * 549 * This function returns pointer to next command iocb entry 550 * in the command ring. The caller must hold hbalock to prevent 551 * other threads consume the next command iocb. 552 * SLI-2/SLI-3 provide different sized iocbs. 553 **/ 554 static inline IOCB_t * 555 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 556 { 557 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 558 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 559 } 560 561 /** 562 * lpfc_resp_iocb - Get next response iocb entry in the ring 563 * @phba: Pointer to HBA context object. 564 * @pring: Pointer to driver SLI ring object. 565 * 566 * This function returns pointer to next response iocb entry 567 * in the response ring. The caller must hold hbalock to make sure 568 * that no other thread consume the next response iocb. 569 * SLI-2/SLI-3 provide different sized iocbs. 570 **/ 571 static inline IOCB_t * 572 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 573 { 574 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 575 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 576 } 577 578 /** 579 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 580 * @phba: Pointer to HBA context object. 581 * 582 * This function is called with hbalock held. This function 583 * allocates a new driver iocb object from the iocb pool. If the 584 * allocation is successful, it returns pointer to the newly 585 * allocated iocb object else it returns NULL. 586 **/ 587 struct lpfc_iocbq * 588 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 589 { 590 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 591 struct lpfc_iocbq * iocbq = NULL; 592 593 lockdep_assert_held(&phba->hbalock); 594 595 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 596 if (iocbq) 597 phba->iocb_cnt++; 598 if (phba->iocb_cnt > phba->iocb_max) 599 phba->iocb_max = phba->iocb_cnt; 600 return iocbq; 601 } 602 603 /** 604 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 605 * @phba: Pointer to HBA context object. 606 * @xritag: XRI value. 607 * 608 * This function clears the sglq pointer from the array of acive 609 * sglq's. The xritag that is passed in is used to index into the 610 * array. Before the xritag can be used it needs to be adjusted 611 * by subtracting the xribase. 612 * 613 * Returns sglq ponter = success, NULL = Failure. 614 **/ 615 struct lpfc_sglq * 616 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 617 { 618 struct lpfc_sglq *sglq; 619 620 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 621 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 622 return sglq; 623 } 624 625 /** 626 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 627 * @phba: Pointer to HBA context object. 628 * @xritag: XRI value. 629 * 630 * This function returns the sglq pointer from the array of acive 631 * sglq's. The xritag that is passed in is used to index into the 632 * array. Before the xritag can be used it needs to be adjusted 633 * by subtracting the xribase. 634 * 635 * Returns sglq ponter = success, NULL = Failure. 636 **/ 637 struct lpfc_sglq * 638 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 639 { 640 struct lpfc_sglq *sglq; 641 642 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 643 return sglq; 644 } 645 646 /** 647 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 648 * @phba: Pointer to HBA context object. 649 * @xritag: xri used in this exchange. 650 * @rrq: The RRQ to be cleared. 651 * 652 **/ 653 void 654 lpfc_clr_rrq_active(struct lpfc_hba *phba, 655 uint16_t xritag, 656 struct lpfc_node_rrq *rrq) 657 { 658 struct lpfc_nodelist *ndlp = NULL; 659 660 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 661 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 662 663 /* The target DID could have been swapped (cable swap) 664 * we should use the ndlp from the findnode if it is 665 * available. 666 */ 667 if ((!ndlp) && rrq->ndlp) 668 ndlp = rrq->ndlp; 669 670 if (!ndlp) 671 goto out; 672 673 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 674 rrq->send_rrq = 0; 675 rrq->xritag = 0; 676 rrq->rrq_stop_time = 0; 677 } 678 out: 679 mempool_free(rrq, phba->rrq_pool); 680 } 681 682 /** 683 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 684 * @phba: Pointer to HBA context object. 685 * 686 * This function is called with hbalock held. This function 687 * Checks if stop_time (ratov from setting rrq active) has 688 * been reached, if it has and the send_rrq flag is set then 689 * it will call lpfc_send_rrq. If the send_rrq flag is not set 690 * then it will just call the routine to clear the rrq and 691 * free the rrq resource. 692 * The timer is set to the next rrq that is going to expire before 693 * leaving the routine. 694 * 695 **/ 696 void 697 lpfc_handle_rrq_active(struct lpfc_hba *phba) 698 { 699 struct lpfc_node_rrq *rrq; 700 struct lpfc_node_rrq *nextrrq; 701 unsigned long next_time; 702 unsigned long iflags; 703 LIST_HEAD(send_rrq); 704 705 spin_lock_irqsave(&phba->hbalock, iflags); 706 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 707 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 708 list_for_each_entry_safe(rrq, nextrrq, 709 &phba->active_rrq_list, list) { 710 if (time_after(jiffies, rrq->rrq_stop_time)) 711 list_move(&rrq->list, &send_rrq); 712 else if (time_before(rrq->rrq_stop_time, next_time)) 713 next_time = rrq->rrq_stop_time; 714 } 715 spin_unlock_irqrestore(&phba->hbalock, iflags); 716 if ((!list_empty(&phba->active_rrq_list)) && 717 (!(phba->pport->load_flag & FC_UNLOADING))) 718 mod_timer(&phba->rrq_tmr, next_time); 719 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 720 list_del(&rrq->list); 721 if (!rrq->send_rrq) 722 /* this call will free the rrq */ 723 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 724 else if (lpfc_send_rrq(phba, rrq)) { 725 /* if we send the rrq then the completion handler 726 * will clear the bit in the xribitmap. 727 */ 728 lpfc_clr_rrq_active(phba, rrq->xritag, 729 rrq); 730 } 731 } 732 } 733 734 /** 735 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 736 * @vport: Pointer to vport context object. 737 * @xri: The xri used in the exchange. 738 * @did: The targets DID for this exchange. 739 * 740 * returns NULL = rrq not found in the phba->active_rrq_list. 741 * rrq = rrq for this xri and target. 742 **/ 743 struct lpfc_node_rrq * 744 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 745 { 746 struct lpfc_hba *phba = vport->phba; 747 struct lpfc_node_rrq *rrq; 748 struct lpfc_node_rrq *nextrrq; 749 unsigned long iflags; 750 751 if (phba->sli_rev != LPFC_SLI_REV4) 752 return NULL; 753 spin_lock_irqsave(&phba->hbalock, iflags); 754 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 755 if (rrq->vport == vport && rrq->xritag == xri && 756 rrq->nlp_DID == did){ 757 list_del(&rrq->list); 758 spin_unlock_irqrestore(&phba->hbalock, iflags); 759 return rrq; 760 } 761 } 762 spin_unlock_irqrestore(&phba->hbalock, iflags); 763 return NULL; 764 } 765 766 /** 767 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 768 * @vport: Pointer to vport context object. 769 * @ndlp: Pointer to the lpfc_node_list structure. 770 * If ndlp is NULL Remove all active RRQs for this vport from the 771 * phba->active_rrq_list and clear the rrq. 772 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 773 **/ 774 void 775 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 776 777 { 778 struct lpfc_hba *phba = vport->phba; 779 struct lpfc_node_rrq *rrq; 780 struct lpfc_node_rrq *nextrrq; 781 unsigned long iflags; 782 LIST_HEAD(rrq_list); 783 784 if (phba->sli_rev != LPFC_SLI_REV4) 785 return; 786 if (!ndlp) { 787 lpfc_sli4_vport_delete_els_xri_aborted(vport); 788 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 789 } 790 spin_lock_irqsave(&phba->hbalock, iflags); 791 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 792 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 793 list_move(&rrq->list, &rrq_list); 794 spin_unlock_irqrestore(&phba->hbalock, iflags); 795 796 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 797 list_del(&rrq->list); 798 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 799 } 800 } 801 802 /** 803 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 804 * @phba: Pointer to HBA context object. 805 * @ndlp: Targets nodelist pointer for this exchange. 806 * @xritag the xri in the bitmap to test. 807 * 808 * This function is called with hbalock held. This function 809 * returns 0 = rrq not active for this xri 810 * 1 = rrq is valid for this xri. 811 **/ 812 int 813 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 814 uint16_t xritag) 815 { 816 lockdep_assert_held(&phba->hbalock); 817 if (!ndlp) 818 return 0; 819 if (!ndlp->active_rrqs_xri_bitmap) 820 return 0; 821 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 822 return 1; 823 else 824 return 0; 825 } 826 827 /** 828 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 829 * @phba: Pointer to HBA context object. 830 * @ndlp: nodelist pointer for this target. 831 * @xritag: xri used in this exchange. 832 * @rxid: Remote Exchange ID. 833 * @send_rrq: Flag used to determine if we should send rrq els cmd. 834 * 835 * This function takes the hbalock. 836 * The active bit is always set in the active rrq xri_bitmap even 837 * if there is no slot avaiable for the other rrq information. 838 * 839 * returns 0 rrq actived for this xri 840 * < 0 No memory or invalid ndlp. 841 **/ 842 int 843 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 844 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 845 { 846 unsigned long iflags; 847 struct lpfc_node_rrq *rrq; 848 int empty; 849 850 if (!ndlp) 851 return -EINVAL; 852 853 if (!phba->cfg_enable_rrq) 854 return -EINVAL; 855 856 spin_lock_irqsave(&phba->hbalock, iflags); 857 if (phba->pport->load_flag & FC_UNLOADING) { 858 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 859 goto out; 860 } 861 862 /* 863 * set the active bit even if there is no mem available. 864 */ 865 if (NLP_CHK_FREE_REQ(ndlp)) 866 goto out; 867 868 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 869 goto out; 870 871 if (!ndlp->active_rrqs_xri_bitmap) 872 goto out; 873 874 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 875 goto out; 876 877 spin_unlock_irqrestore(&phba->hbalock, iflags); 878 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 879 if (!rrq) { 880 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 881 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 882 " DID:0x%x Send:%d\n", 883 xritag, rxid, ndlp->nlp_DID, send_rrq); 884 return -EINVAL; 885 } 886 if (phba->cfg_enable_rrq == 1) 887 rrq->send_rrq = send_rrq; 888 else 889 rrq->send_rrq = 0; 890 rrq->xritag = xritag; 891 rrq->rrq_stop_time = jiffies + 892 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 893 rrq->ndlp = ndlp; 894 rrq->nlp_DID = ndlp->nlp_DID; 895 rrq->vport = ndlp->vport; 896 rrq->rxid = rxid; 897 spin_lock_irqsave(&phba->hbalock, iflags); 898 empty = list_empty(&phba->active_rrq_list); 899 list_add_tail(&rrq->list, &phba->active_rrq_list); 900 phba->hba_flag |= HBA_RRQ_ACTIVE; 901 if (empty) 902 lpfc_worker_wake_up(phba); 903 spin_unlock_irqrestore(&phba->hbalock, iflags); 904 return 0; 905 out: 906 spin_unlock_irqrestore(&phba->hbalock, iflags); 907 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 908 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 909 " DID:0x%x Send:%d\n", 910 xritag, rxid, ndlp->nlp_DID, send_rrq); 911 return -EINVAL; 912 } 913 914 /** 915 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 916 * @phba: Pointer to HBA context object. 917 * @piocb: Pointer to the iocbq. 918 * 919 * This function is called with the ring lock held. This function 920 * gets a new driver sglq object from the sglq list. If the 921 * list is not empty then it is successful, it returns pointer to the newly 922 * allocated sglq object else it returns NULL. 923 **/ 924 static struct lpfc_sglq * 925 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 926 { 927 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 928 struct lpfc_sglq *sglq = NULL; 929 struct lpfc_sglq *start_sglq = NULL; 930 struct lpfc_scsi_buf *lpfc_cmd; 931 struct lpfc_nodelist *ndlp; 932 int found = 0; 933 934 lockdep_assert_held(&phba->hbalock); 935 936 if (piocbq->iocb_flag & LPFC_IO_FCP) { 937 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1; 938 ndlp = lpfc_cmd->rdata->pnode; 939 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 940 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 941 ndlp = piocbq->context_un.ndlp; 942 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 943 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 944 ndlp = NULL; 945 else 946 ndlp = piocbq->context_un.ndlp; 947 } else { 948 ndlp = piocbq->context1; 949 } 950 951 spin_lock(&phba->sli4_hba.sgl_list_lock); 952 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 953 start_sglq = sglq; 954 while (!found) { 955 if (!sglq) 956 break; 957 if (ndlp && ndlp->active_rrqs_xri_bitmap && 958 test_bit(sglq->sli4_lxritag, 959 ndlp->active_rrqs_xri_bitmap)) { 960 /* This xri has an rrq outstanding for this DID. 961 * put it back in the list and get another xri. 962 */ 963 list_add_tail(&sglq->list, lpfc_els_sgl_list); 964 sglq = NULL; 965 list_remove_head(lpfc_els_sgl_list, sglq, 966 struct lpfc_sglq, list); 967 if (sglq == start_sglq) { 968 sglq = NULL; 969 break; 970 } else 971 continue; 972 } 973 sglq->ndlp = ndlp; 974 found = 1; 975 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 976 sglq->state = SGL_ALLOCATED; 977 } 978 spin_unlock(&phba->sli4_hba.sgl_list_lock); 979 return sglq; 980 } 981 982 /** 983 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 984 * @phba: Pointer to HBA context object. 985 * @piocb: Pointer to the iocbq. 986 * 987 * This function is called with the sgl_list lock held. This function 988 * gets a new driver sglq object from the sglq list. If the 989 * list is not empty then it is successful, it returns pointer to the newly 990 * allocated sglq object else it returns NULL. 991 **/ 992 struct lpfc_sglq * 993 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 994 { 995 struct list_head *lpfc_nvmet_sgl_list; 996 struct lpfc_sglq *sglq = NULL; 997 998 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 999 1000 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1001 1002 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1003 if (!sglq) 1004 return NULL; 1005 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1006 sglq->state = SGL_ALLOCATED; 1007 return sglq; 1008 } 1009 1010 /** 1011 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1012 * @phba: Pointer to HBA context object. 1013 * 1014 * This function is called with no lock held. This function 1015 * allocates a new driver iocb object from the iocb pool. If the 1016 * allocation is successful, it returns pointer to the newly 1017 * allocated iocb object else it returns NULL. 1018 **/ 1019 struct lpfc_iocbq * 1020 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1021 { 1022 struct lpfc_iocbq * iocbq = NULL; 1023 unsigned long iflags; 1024 1025 spin_lock_irqsave(&phba->hbalock, iflags); 1026 iocbq = __lpfc_sli_get_iocbq(phba); 1027 spin_unlock_irqrestore(&phba->hbalock, iflags); 1028 return iocbq; 1029 } 1030 1031 /** 1032 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1033 * @phba: Pointer to HBA context object. 1034 * @iocbq: Pointer to driver iocb object. 1035 * 1036 * This function is called with hbalock held to release driver 1037 * iocb object to the iocb pool. The iotag in the iocb object 1038 * does not change for each use of the iocb object. This function 1039 * clears all other fields of the iocb object when it is freed. 1040 * The sqlq structure that holds the xritag and phys and virtual 1041 * mappings for the scatter gather list is retrieved from the 1042 * active array of sglq. The get of the sglq pointer also clears 1043 * the entry in the array. If the status of the IO indiactes that 1044 * this IO was aborted then the sglq entry it put on the 1045 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1046 * IO has good status or fails for any other reason then the sglq 1047 * entry is added to the free list (lpfc_els_sgl_list). 1048 **/ 1049 static void 1050 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1051 { 1052 struct lpfc_sglq *sglq; 1053 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1054 unsigned long iflag = 0; 1055 struct lpfc_sli_ring *pring; 1056 1057 lockdep_assert_held(&phba->hbalock); 1058 1059 if (iocbq->sli4_xritag == NO_XRI) 1060 sglq = NULL; 1061 else 1062 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1063 1064 1065 if (sglq) { 1066 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1067 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1068 iflag); 1069 sglq->state = SGL_FREED; 1070 sglq->ndlp = NULL; 1071 list_add_tail(&sglq->list, 1072 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1073 spin_unlock_irqrestore( 1074 &phba->sli4_hba.sgl_list_lock, iflag); 1075 goto out; 1076 } 1077 1078 pring = phba->sli4_hba.els_wq->pring; 1079 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1080 (sglq->state != SGL_XRI_ABORTED)) { 1081 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1082 iflag); 1083 list_add(&sglq->list, 1084 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1085 spin_unlock_irqrestore( 1086 &phba->sli4_hba.sgl_list_lock, iflag); 1087 } else { 1088 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1089 iflag); 1090 sglq->state = SGL_FREED; 1091 sglq->ndlp = NULL; 1092 list_add_tail(&sglq->list, 1093 &phba->sli4_hba.lpfc_els_sgl_list); 1094 spin_unlock_irqrestore( 1095 &phba->sli4_hba.sgl_list_lock, iflag); 1096 1097 /* Check if TXQ queue needs to be serviced */ 1098 if (!list_empty(&pring->txq)) 1099 lpfc_worker_wake_up(phba); 1100 } 1101 } 1102 1103 out: 1104 /* 1105 * Clean all volatile data fields, preserve iotag and node struct. 1106 */ 1107 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1108 iocbq->sli4_lxritag = NO_XRI; 1109 iocbq->sli4_xritag = NO_XRI; 1110 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1111 LPFC_IO_NVME_LS); 1112 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1113 } 1114 1115 1116 /** 1117 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1118 * @phba: Pointer to HBA context object. 1119 * @iocbq: Pointer to driver iocb object. 1120 * 1121 * This function is called with hbalock held to release driver 1122 * iocb object to the iocb pool. The iotag in the iocb object 1123 * does not change for each use of the iocb object. This function 1124 * clears all other fields of the iocb object when it is freed. 1125 **/ 1126 static void 1127 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1128 { 1129 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1130 1131 lockdep_assert_held(&phba->hbalock); 1132 1133 /* 1134 * Clean all volatile data fields, preserve iotag and node struct. 1135 */ 1136 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1137 iocbq->sli4_xritag = NO_XRI; 1138 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1139 } 1140 1141 /** 1142 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1143 * @phba: Pointer to HBA context object. 1144 * @iocbq: Pointer to driver iocb object. 1145 * 1146 * This function is called with hbalock held to release driver 1147 * iocb object to the iocb pool. The iotag in the iocb object 1148 * does not change for each use of the iocb object. This function 1149 * clears all other fields of the iocb object when it is freed. 1150 **/ 1151 static void 1152 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1153 { 1154 lockdep_assert_held(&phba->hbalock); 1155 1156 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1157 phba->iocb_cnt--; 1158 } 1159 1160 /** 1161 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1162 * @phba: Pointer to HBA context object. 1163 * @iocbq: Pointer to driver iocb object. 1164 * 1165 * This function is called with no lock held to release the iocb to 1166 * iocb pool. 1167 **/ 1168 void 1169 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1170 { 1171 unsigned long iflags; 1172 1173 /* 1174 * Clean all volatile data fields, preserve iotag and node struct. 1175 */ 1176 spin_lock_irqsave(&phba->hbalock, iflags); 1177 __lpfc_sli_release_iocbq(phba, iocbq); 1178 spin_unlock_irqrestore(&phba->hbalock, iflags); 1179 } 1180 1181 /** 1182 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1183 * @phba: Pointer to HBA context object. 1184 * @iocblist: List of IOCBs. 1185 * @ulpstatus: ULP status in IOCB command field. 1186 * @ulpWord4: ULP word-4 in IOCB command field. 1187 * 1188 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1189 * on the list by invoking the complete callback function associated with the 1190 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1191 * fields. 1192 **/ 1193 void 1194 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1195 uint32_t ulpstatus, uint32_t ulpWord4) 1196 { 1197 struct lpfc_iocbq *piocb; 1198 1199 while (!list_empty(iocblist)) { 1200 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1201 if (!piocb->iocb_cmpl) 1202 lpfc_sli_release_iocbq(phba, piocb); 1203 else { 1204 piocb->iocb.ulpStatus = ulpstatus; 1205 piocb->iocb.un.ulpWord[4] = ulpWord4; 1206 (piocb->iocb_cmpl) (phba, piocb, piocb); 1207 } 1208 } 1209 return; 1210 } 1211 1212 /** 1213 * lpfc_sli_iocb_cmd_type - Get the iocb type 1214 * @iocb_cmnd: iocb command code. 1215 * 1216 * This function is called by ring event handler function to get the iocb type. 1217 * This function translates the iocb command to an iocb command type used to 1218 * decide the final disposition of each completed IOCB. 1219 * The function returns 1220 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1221 * LPFC_SOL_IOCB if it is a solicited iocb completion 1222 * LPFC_ABORT_IOCB if it is an abort iocb 1223 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1224 * 1225 * The caller is not required to hold any lock. 1226 **/ 1227 static lpfc_iocb_type 1228 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1229 { 1230 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1231 1232 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1233 return 0; 1234 1235 switch (iocb_cmnd) { 1236 case CMD_XMIT_SEQUENCE_CR: 1237 case CMD_XMIT_SEQUENCE_CX: 1238 case CMD_XMIT_BCAST_CN: 1239 case CMD_XMIT_BCAST_CX: 1240 case CMD_ELS_REQUEST_CR: 1241 case CMD_ELS_REQUEST_CX: 1242 case CMD_CREATE_XRI_CR: 1243 case CMD_CREATE_XRI_CX: 1244 case CMD_GET_RPI_CN: 1245 case CMD_XMIT_ELS_RSP_CX: 1246 case CMD_GET_RPI_CR: 1247 case CMD_FCP_IWRITE_CR: 1248 case CMD_FCP_IWRITE_CX: 1249 case CMD_FCP_IREAD_CR: 1250 case CMD_FCP_IREAD_CX: 1251 case CMD_FCP_ICMND_CR: 1252 case CMD_FCP_ICMND_CX: 1253 case CMD_FCP_TSEND_CX: 1254 case CMD_FCP_TRSP_CX: 1255 case CMD_FCP_TRECEIVE_CX: 1256 case CMD_FCP_AUTO_TRSP_CX: 1257 case CMD_ADAPTER_MSG: 1258 case CMD_ADAPTER_DUMP: 1259 case CMD_XMIT_SEQUENCE64_CR: 1260 case CMD_XMIT_SEQUENCE64_CX: 1261 case CMD_XMIT_BCAST64_CN: 1262 case CMD_XMIT_BCAST64_CX: 1263 case CMD_ELS_REQUEST64_CR: 1264 case CMD_ELS_REQUEST64_CX: 1265 case CMD_FCP_IWRITE64_CR: 1266 case CMD_FCP_IWRITE64_CX: 1267 case CMD_FCP_IREAD64_CR: 1268 case CMD_FCP_IREAD64_CX: 1269 case CMD_FCP_ICMND64_CR: 1270 case CMD_FCP_ICMND64_CX: 1271 case CMD_FCP_TSEND64_CX: 1272 case CMD_FCP_TRSP64_CX: 1273 case CMD_FCP_TRECEIVE64_CX: 1274 case CMD_GEN_REQUEST64_CR: 1275 case CMD_GEN_REQUEST64_CX: 1276 case CMD_XMIT_ELS_RSP64_CX: 1277 case DSSCMD_IWRITE64_CR: 1278 case DSSCMD_IWRITE64_CX: 1279 case DSSCMD_IREAD64_CR: 1280 case DSSCMD_IREAD64_CX: 1281 type = LPFC_SOL_IOCB; 1282 break; 1283 case CMD_ABORT_XRI_CN: 1284 case CMD_ABORT_XRI_CX: 1285 case CMD_CLOSE_XRI_CN: 1286 case CMD_CLOSE_XRI_CX: 1287 case CMD_XRI_ABORTED_CX: 1288 case CMD_ABORT_MXRI64_CN: 1289 case CMD_XMIT_BLS_RSP64_CX: 1290 type = LPFC_ABORT_IOCB; 1291 break; 1292 case CMD_RCV_SEQUENCE_CX: 1293 case CMD_RCV_ELS_REQ_CX: 1294 case CMD_RCV_SEQUENCE64_CX: 1295 case CMD_RCV_ELS_REQ64_CX: 1296 case CMD_ASYNC_STATUS: 1297 case CMD_IOCB_RCV_SEQ64_CX: 1298 case CMD_IOCB_RCV_ELS64_CX: 1299 case CMD_IOCB_RCV_CONT64_CX: 1300 case CMD_IOCB_RET_XRI64_CX: 1301 type = LPFC_UNSOL_IOCB; 1302 break; 1303 case CMD_IOCB_XMIT_MSEQ64_CR: 1304 case CMD_IOCB_XMIT_MSEQ64_CX: 1305 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1306 case CMD_IOCB_RCV_ELS_LIST64_CX: 1307 case CMD_IOCB_CLOSE_EXTENDED_CN: 1308 case CMD_IOCB_ABORT_EXTENDED_CN: 1309 case CMD_IOCB_RET_HBQE64_CN: 1310 case CMD_IOCB_FCP_IBIDIR64_CR: 1311 case CMD_IOCB_FCP_IBIDIR64_CX: 1312 case CMD_IOCB_FCP_ITASKMGT64_CX: 1313 case CMD_IOCB_LOGENTRY_CN: 1314 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1315 printk("%s - Unhandled SLI-3 Command x%x\n", 1316 __func__, iocb_cmnd); 1317 type = LPFC_UNKNOWN_IOCB; 1318 break; 1319 default: 1320 type = LPFC_UNKNOWN_IOCB; 1321 break; 1322 } 1323 1324 return type; 1325 } 1326 1327 /** 1328 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1329 * @phba: Pointer to HBA context object. 1330 * 1331 * This function is called from SLI initialization code 1332 * to configure every ring of the HBA's SLI interface. The 1333 * caller is not required to hold any lock. This function issues 1334 * a config_ring mailbox command for each ring. 1335 * This function returns zero if successful else returns a negative 1336 * error code. 1337 **/ 1338 static int 1339 lpfc_sli_ring_map(struct lpfc_hba *phba) 1340 { 1341 struct lpfc_sli *psli = &phba->sli; 1342 LPFC_MBOXQ_t *pmb; 1343 MAILBOX_t *pmbox; 1344 int i, rc, ret = 0; 1345 1346 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1347 if (!pmb) 1348 return -ENOMEM; 1349 pmbox = &pmb->u.mb; 1350 phba->link_state = LPFC_INIT_MBX_CMDS; 1351 for (i = 0; i < psli->num_rings; i++) { 1352 lpfc_config_ring(phba, i, pmb); 1353 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1354 if (rc != MBX_SUCCESS) { 1355 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1356 "0446 Adapter failed to init (%d), " 1357 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1358 "ring %d\n", 1359 rc, pmbox->mbxCommand, 1360 pmbox->mbxStatus, i); 1361 phba->link_state = LPFC_HBA_ERROR; 1362 ret = -ENXIO; 1363 break; 1364 } 1365 } 1366 mempool_free(pmb, phba->mbox_mem_pool); 1367 return ret; 1368 } 1369 1370 /** 1371 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1372 * @phba: Pointer to HBA context object. 1373 * @pring: Pointer to driver SLI ring object. 1374 * @piocb: Pointer to the driver iocb object. 1375 * 1376 * This function is called with hbalock held. The function adds the 1377 * new iocb to txcmplq of the given ring. This function always returns 1378 * 0. If this function is called for ELS ring, this function checks if 1379 * there is a vport associated with the ELS command. This function also 1380 * starts els_tmofunc timer if this is an ELS command. 1381 **/ 1382 static int 1383 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1384 struct lpfc_iocbq *piocb) 1385 { 1386 lockdep_assert_held(&phba->hbalock); 1387 1388 BUG_ON(!piocb); 1389 1390 list_add_tail(&piocb->list, &pring->txcmplq); 1391 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1392 1393 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1394 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1395 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1396 BUG_ON(!piocb->vport); 1397 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1398 mod_timer(&piocb->vport->els_tmofunc, 1399 jiffies + 1400 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1401 } 1402 1403 return 0; 1404 } 1405 1406 /** 1407 * lpfc_sli_ringtx_get - Get first element of the txq 1408 * @phba: Pointer to HBA context object. 1409 * @pring: Pointer to driver SLI ring object. 1410 * 1411 * This function is called with hbalock held to get next 1412 * iocb in txq of the given ring. If there is any iocb in 1413 * the txq, the function returns first iocb in the list after 1414 * removing the iocb from the list, else it returns NULL. 1415 **/ 1416 struct lpfc_iocbq * 1417 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1418 { 1419 struct lpfc_iocbq *cmd_iocb; 1420 1421 lockdep_assert_held(&phba->hbalock); 1422 1423 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1424 return cmd_iocb; 1425 } 1426 1427 /** 1428 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1429 * @phba: Pointer to HBA context object. 1430 * @pring: Pointer to driver SLI ring object. 1431 * 1432 * This function is called with hbalock held and the caller must post the 1433 * iocb without releasing the lock. If the caller releases the lock, 1434 * iocb slot returned by the function is not guaranteed to be available. 1435 * The function returns pointer to the next available iocb slot if there 1436 * is available slot in the ring, else it returns NULL. 1437 * If the get index of the ring is ahead of the put index, the function 1438 * will post an error attention event to the worker thread to take the 1439 * HBA to offline state. 1440 **/ 1441 static IOCB_t * 1442 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1443 { 1444 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1445 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1446 1447 lockdep_assert_held(&phba->hbalock); 1448 1449 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1450 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1451 pring->sli.sli3.next_cmdidx = 0; 1452 1453 if (unlikely(pring->sli.sli3.local_getidx == 1454 pring->sli.sli3.next_cmdidx)) { 1455 1456 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1457 1458 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1459 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1460 "0315 Ring %d issue: portCmdGet %d " 1461 "is bigger than cmd ring %d\n", 1462 pring->ringno, 1463 pring->sli.sli3.local_getidx, 1464 max_cmd_idx); 1465 1466 phba->link_state = LPFC_HBA_ERROR; 1467 /* 1468 * All error attention handlers are posted to 1469 * worker thread 1470 */ 1471 phba->work_ha |= HA_ERATT; 1472 phba->work_hs = HS_FFER3; 1473 1474 lpfc_worker_wake_up(phba); 1475 1476 return NULL; 1477 } 1478 1479 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1480 return NULL; 1481 } 1482 1483 return lpfc_cmd_iocb(phba, pring); 1484 } 1485 1486 /** 1487 * lpfc_sli_next_iotag - Get an iotag for the iocb 1488 * @phba: Pointer to HBA context object. 1489 * @iocbq: Pointer to driver iocb object. 1490 * 1491 * This function gets an iotag for the iocb. If there is no unused iotag and 1492 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1493 * array and assigns a new iotag. 1494 * The function returns the allocated iotag if successful, else returns zero. 1495 * Zero is not a valid iotag. 1496 * The caller is not required to hold any lock. 1497 **/ 1498 uint16_t 1499 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1500 { 1501 struct lpfc_iocbq **new_arr; 1502 struct lpfc_iocbq **old_arr; 1503 size_t new_len; 1504 struct lpfc_sli *psli = &phba->sli; 1505 uint16_t iotag; 1506 1507 spin_lock_irq(&phba->hbalock); 1508 iotag = psli->last_iotag; 1509 if(++iotag < psli->iocbq_lookup_len) { 1510 psli->last_iotag = iotag; 1511 psli->iocbq_lookup[iotag] = iocbq; 1512 spin_unlock_irq(&phba->hbalock); 1513 iocbq->iotag = iotag; 1514 return iotag; 1515 } else if (psli->iocbq_lookup_len < (0xffff 1516 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1517 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1518 spin_unlock_irq(&phba->hbalock); 1519 new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *), 1520 GFP_KERNEL); 1521 if (new_arr) { 1522 spin_lock_irq(&phba->hbalock); 1523 old_arr = psli->iocbq_lookup; 1524 if (new_len <= psli->iocbq_lookup_len) { 1525 /* highly unprobable case */ 1526 kfree(new_arr); 1527 iotag = psli->last_iotag; 1528 if(++iotag < psli->iocbq_lookup_len) { 1529 psli->last_iotag = iotag; 1530 psli->iocbq_lookup[iotag] = iocbq; 1531 spin_unlock_irq(&phba->hbalock); 1532 iocbq->iotag = iotag; 1533 return iotag; 1534 } 1535 spin_unlock_irq(&phba->hbalock); 1536 return 0; 1537 } 1538 if (psli->iocbq_lookup) 1539 memcpy(new_arr, old_arr, 1540 ((psli->last_iotag + 1) * 1541 sizeof (struct lpfc_iocbq *))); 1542 psli->iocbq_lookup = new_arr; 1543 psli->iocbq_lookup_len = new_len; 1544 psli->last_iotag = iotag; 1545 psli->iocbq_lookup[iotag] = iocbq; 1546 spin_unlock_irq(&phba->hbalock); 1547 iocbq->iotag = iotag; 1548 kfree(old_arr); 1549 return iotag; 1550 } 1551 } else 1552 spin_unlock_irq(&phba->hbalock); 1553 1554 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1555 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1556 psli->last_iotag); 1557 1558 return 0; 1559 } 1560 1561 /** 1562 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1563 * @phba: Pointer to HBA context object. 1564 * @pring: Pointer to driver SLI ring object. 1565 * @iocb: Pointer to iocb slot in the ring. 1566 * @nextiocb: Pointer to driver iocb object which need to be 1567 * posted to firmware. 1568 * 1569 * This function is called with hbalock held to post a new iocb to 1570 * the firmware. This function copies the new iocb to ring iocb slot and 1571 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1572 * a completion call back for this iocb else the function will free the 1573 * iocb object. 1574 **/ 1575 static void 1576 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1577 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1578 { 1579 lockdep_assert_held(&phba->hbalock); 1580 /* 1581 * Set up an iotag 1582 */ 1583 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1584 1585 1586 if (pring->ringno == LPFC_ELS_RING) { 1587 lpfc_debugfs_slow_ring_trc(phba, 1588 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1589 *(((uint32_t *) &nextiocb->iocb) + 4), 1590 *(((uint32_t *) &nextiocb->iocb) + 6), 1591 *(((uint32_t *) &nextiocb->iocb) + 7)); 1592 } 1593 1594 /* 1595 * Issue iocb command to adapter 1596 */ 1597 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1598 wmb(); 1599 pring->stats.iocb_cmd++; 1600 1601 /* 1602 * If there is no completion routine to call, we can release the 1603 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1604 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1605 */ 1606 if (nextiocb->iocb_cmpl) 1607 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1608 else 1609 __lpfc_sli_release_iocbq(phba, nextiocb); 1610 1611 /* 1612 * Let the HBA know what IOCB slot will be the next one the 1613 * driver will put a command into. 1614 */ 1615 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1616 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1617 } 1618 1619 /** 1620 * lpfc_sli_update_full_ring - Update the chip attention register 1621 * @phba: Pointer to HBA context object. 1622 * @pring: Pointer to driver SLI ring object. 1623 * 1624 * The caller is not required to hold any lock for calling this function. 1625 * This function updates the chip attention bits for the ring to inform firmware 1626 * that there are pending work to be done for this ring and requests an 1627 * interrupt when there is space available in the ring. This function is 1628 * called when the driver is unable to post more iocbs to the ring due 1629 * to unavailability of space in the ring. 1630 **/ 1631 static void 1632 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1633 { 1634 int ringno = pring->ringno; 1635 1636 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1637 1638 wmb(); 1639 1640 /* 1641 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1642 * The HBA will tell us when an IOCB entry is available. 1643 */ 1644 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1645 readl(phba->CAregaddr); /* flush */ 1646 1647 pring->stats.iocb_cmd_full++; 1648 } 1649 1650 /** 1651 * lpfc_sli_update_ring - Update chip attention register 1652 * @phba: Pointer to HBA context object. 1653 * @pring: Pointer to driver SLI ring object. 1654 * 1655 * This function updates the chip attention register bit for the 1656 * given ring to inform HBA that there is more work to be done 1657 * in this ring. The caller is not required to hold any lock. 1658 **/ 1659 static void 1660 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1661 { 1662 int ringno = pring->ringno; 1663 1664 /* 1665 * Tell the HBA that there is work to do in this ring. 1666 */ 1667 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1668 wmb(); 1669 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1670 readl(phba->CAregaddr); /* flush */ 1671 } 1672 } 1673 1674 /** 1675 * lpfc_sli_resume_iocb - Process iocbs in the txq 1676 * @phba: Pointer to HBA context object. 1677 * @pring: Pointer to driver SLI ring object. 1678 * 1679 * This function is called with hbalock held to post pending iocbs 1680 * in the txq to the firmware. This function is called when driver 1681 * detects space available in the ring. 1682 **/ 1683 static void 1684 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1685 { 1686 IOCB_t *iocb; 1687 struct lpfc_iocbq *nextiocb; 1688 1689 lockdep_assert_held(&phba->hbalock); 1690 1691 /* 1692 * Check to see if: 1693 * (a) there is anything on the txq to send 1694 * (b) link is up 1695 * (c) link attention events can be processed (fcp ring only) 1696 * (d) IOCB processing is not blocked by the outstanding mbox command. 1697 */ 1698 1699 if (lpfc_is_link_up(phba) && 1700 (!list_empty(&pring->txq)) && 1701 (pring->ringno != LPFC_FCP_RING || 1702 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1703 1704 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1705 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1706 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1707 1708 if (iocb) 1709 lpfc_sli_update_ring(phba, pring); 1710 else 1711 lpfc_sli_update_full_ring(phba, pring); 1712 } 1713 1714 return; 1715 } 1716 1717 /** 1718 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1719 * @phba: Pointer to HBA context object. 1720 * @hbqno: HBQ number. 1721 * 1722 * This function is called with hbalock held to get the next 1723 * available slot for the given HBQ. If there is free slot 1724 * available for the HBQ it will return pointer to the next available 1725 * HBQ entry else it will return NULL. 1726 **/ 1727 static struct lpfc_hbq_entry * 1728 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1729 { 1730 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1731 1732 lockdep_assert_held(&phba->hbalock); 1733 1734 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1735 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1736 hbqp->next_hbqPutIdx = 0; 1737 1738 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1739 uint32_t raw_index = phba->hbq_get[hbqno]; 1740 uint32_t getidx = le32_to_cpu(raw_index); 1741 1742 hbqp->local_hbqGetIdx = getidx; 1743 1744 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1745 lpfc_printf_log(phba, KERN_ERR, 1746 LOG_SLI | LOG_VPORT, 1747 "1802 HBQ %d: local_hbqGetIdx " 1748 "%u is > than hbqp->entry_count %u\n", 1749 hbqno, hbqp->local_hbqGetIdx, 1750 hbqp->entry_count); 1751 1752 phba->link_state = LPFC_HBA_ERROR; 1753 return NULL; 1754 } 1755 1756 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1757 return NULL; 1758 } 1759 1760 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1761 hbqp->hbqPutIdx; 1762 } 1763 1764 /** 1765 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1766 * @phba: Pointer to HBA context object. 1767 * 1768 * This function is called with no lock held to free all the 1769 * hbq buffers while uninitializing the SLI interface. It also 1770 * frees the HBQ buffers returned by the firmware but not yet 1771 * processed by the upper layers. 1772 **/ 1773 void 1774 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1775 { 1776 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1777 struct hbq_dmabuf *hbq_buf; 1778 unsigned long flags; 1779 int i, hbq_count; 1780 1781 hbq_count = lpfc_sli_hbq_count(); 1782 /* Return all memory used by all HBQs */ 1783 spin_lock_irqsave(&phba->hbalock, flags); 1784 for (i = 0; i < hbq_count; ++i) { 1785 list_for_each_entry_safe(dmabuf, next_dmabuf, 1786 &phba->hbqs[i].hbq_buffer_list, list) { 1787 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1788 list_del(&hbq_buf->dbuf.list); 1789 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 1790 } 1791 phba->hbqs[i].buffer_count = 0; 1792 } 1793 1794 /* Mark the HBQs not in use */ 1795 phba->hbq_in_use = 0; 1796 spin_unlock_irqrestore(&phba->hbalock, flags); 1797 } 1798 1799 /** 1800 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 1801 * @phba: Pointer to HBA context object. 1802 * @hbqno: HBQ number. 1803 * @hbq_buf: Pointer to HBQ buffer. 1804 * 1805 * This function is called with the hbalock held to post a 1806 * hbq buffer to the firmware. If the function finds an empty 1807 * slot in the HBQ, it will post the buffer. The function will return 1808 * pointer to the hbq entry if it successfully post the buffer 1809 * else it will return NULL. 1810 **/ 1811 static int 1812 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 1813 struct hbq_dmabuf *hbq_buf) 1814 { 1815 lockdep_assert_held(&phba->hbalock); 1816 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 1817 } 1818 1819 /** 1820 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 1821 * @phba: Pointer to HBA context object. 1822 * @hbqno: HBQ number. 1823 * @hbq_buf: Pointer to HBQ buffer. 1824 * 1825 * This function is called with the hbalock held to post a hbq buffer to the 1826 * firmware. If the function finds an empty slot in the HBQ, it will post the 1827 * buffer and place it on the hbq_buffer_list. The function will return zero if 1828 * it successfully post the buffer else it will return an error. 1829 **/ 1830 static int 1831 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 1832 struct hbq_dmabuf *hbq_buf) 1833 { 1834 struct lpfc_hbq_entry *hbqe; 1835 dma_addr_t physaddr = hbq_buf->dbuf.phys; 1836 1837 lockdep_assert_held(&phba->hbalock); 1838 /* Get next HBQ entry slot to use */ 1839 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 1840 if (hbqe) { 1841 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1842 1843 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 1844 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 1845 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 1846 hbqe->bde.tus.f.bdeFlags = 0; 1847 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 1848 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 1849 /* Sync SLIM */ 1850 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 1851 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 1852 /* flush */ 1853 readl(phba->hbq_put + hbqno); 1854 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 1855 return 0; 1856 } else 1857 return -ENOMEM; 1858 } 1859 1860 /** 1861 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 1862 * @phba: Pointer to HBA context object. 1863 * @hbqno: HBQ number. 1864 * @hbq_buf: Pointer to HBQ buffer. 1865 * 1866 * This function is called with the hbalock held to post an RQE to the SLI4 1867 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 1868 * the hbq_buffer_list and return zero, otherwise it will return an error. 1869 **/ 1870 static int 1871 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 1872 struct hbq_dmabuf *hbq_buf) 1873 { 1874 int rc; 1875 struct lpfc_rqe hrqe; 1876 struct lpfc_rqe drqe; 1877 struct lpfc_queue *hrq; 1878 struct lpfc_queue *drq; 1879 1880 if (hbqno != LPFC_ELS_HBQ) 1881 return 1; 1882 hrq = phba->sli4_hba.hdr_rq; 1883 drq = phba->sli4_hba.dat_rq; 1884 1885 lockdep_assert_held(&phba->hbalock); 1886 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 1887 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 1888 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 1889 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 1890 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 1891 if (rc < 0) 1892 return rc; 1893 hbq_buf->tag = (rc | (hbqno << 16)); 1894 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 1895 return 0; 1896 } 1897 1898 /* HBQ for ELS and CT traffic. */ 1899 static struct lpfc_hbq_init lpfc_els_hbq = { 1900 .rn = 1, 1901 .entry_count = 256, 1902 .mask_count = 0, 1903 .profile = 0, 1904 .ring_mask = (1 << LPFC_ELS_RING), 1905 .buffer_count = 0, 1906 .init_count = 40, 1907 .add_count = 40, 1908 }; 1909 1910 /* Array of HBQs */ 1911 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 1912 &lpfc_els_hbq, 1913 }; 1914 1915 /** 1916 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 1917 * @phba: Pointer to HBA context object. 1918 * @hbqno: HBQ number. 1919 * @count: Number of HBQ buffers to be posted. 1920 * 1921 * This function is called with no lock held to post more hbq buffers to the 1922 * given HBQ. The function returns the number of HBQ buffers successfully 1923 * posted. 1924 **/ 1925 static int 1926 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 1927 { 1928 uint32_t i, posted = 0; 1929 unsigned long flags; 1930 struct hbq_dmabuf *hbq_buffer; 1931 LIST_HEAD(hbq_buf_list); 1932 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 1933 return 0; 1934 1935 if ((phba->hbqs[hbqno].buffer_count + count) > 1936 lpfc_hbq_defs[hbqno]->entry_count) 1937 count = lpfc_hbq_defs[hbqno]->entry_count - 1938 phba->hbqs[hbqno].buffer_count; 1939 if (!count) 1940 return 0; 1941 /* Allocate HBQ entries */ 1942 for (i = 0; i < count; i++) { 1943 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 1944 if (!hbq_buffer) 1945 break; 1946 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 1947 } 1948 /* Check whether HBQ is still in use */ 1949 spin_lock_irqsave(&phba->hbalock, flags); 1950 if (!phba->hbq_in_use) 1951 goto err; 1952 while (!list_empty(&hbq_buf_list)) { 1953 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1954 dbuf.list); 1955 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 1956 (hbqno << 16)); 1957 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 1958 phba->hbqs[hbqno].buffer_count++; 1959 posted++; 1960 } else 1961 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1962 } 1963 spin_unlock_irqrestore(&phba->hbalock, flags); 1964 return posted; 1965 err: 1966 spin_unlock_irqrestore(&phba->hbalock, flags); 1967 while (!list_empty(&hbq_buf_list)) { 1968 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1969 dbuf.list); 1970 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1971 } 1972 return 0; 1973 } 1974 1975 /** 1976 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 1977 * @phba: Pointer to HBA context object. 1978 * @qno: HBQ number. 1979 * 1980 * This function posts more buffers to the HBQ. This function 1981 * is called with no lock held. The function returns the number of HBQ entries 1982 * successfully allocated. 1983 **/ 1984 int 1985 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 1986 { 1987 if (phba->sli_rev == LPFC_SLI_REV4) 1988 return 0; 1989 else 1990 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1991 lpfc_hbq_defs[qno]->add_count); 1992 } 1993 1994 /** 1995 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 1996 * @phba: Pointer to HBA context object. 1997 * @qno: HBQ queue number. 1998 * 1999 * This function is called from SLI initialization code path with 2000 * no lock held to post initial HBQ buffers to firmware. The 2001 * function returns the number of HBQ entries successfully allocated. 2002 **/ 2003 static int 2004 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2005 { 2006 if (phba->sli_rev == LPFC_SLI_REV4) 2007 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2008 lpfc_hbq_defs[qno]->entry_count); 2009 else 2010 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2011 lpfc_hbq_defs[qno]->init_count); 2012 } 2013 2014 /** 2015 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2016 * @phba: Pointer to HBA context object. 2017 * @hbqno: HBQ number. 2018 * 2019 * This function removes the first hbq buffer on an hbq list and returns a 2020 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2021 **/ 2022 static struct hbq_dmabuf * 2023 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2024 { 2025 struct lpfc_dmabuf *d_buf; 2026 2027 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2028 if (!d_buf) 2029 return NULL; 2030 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2031 } 2032 2033 /** 2034 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2035 * @phba: Pointer to HBA context object. 2036 * @hbqno: HBQ number. 2037 * 2038 * This function removes the first RQ buffer on an RQ buffer list and returns a 2039 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2040 **/ 2041 static struct rqb_dmabuf * 2042 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2043 { 2044 struct lpfc_dmabuf *h_buf; 2045 struct lpfc_rqb *rqbp; 2046 2047 rqbp = hrq->rqbp; 2048 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2049 struct lpfc_dmabuf, list); 2050 if (!h_buf) 2051 return NULL; 2052 rqbp->buffer_count--; 2053 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2054 } 2055 2056 /** 2057 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2058 * @phba: Pointer to HBA context object. 2059 * @tag: Tag of the hbq buffer. 2060 * 2061 * This function searches for the hbq buffer associated with the given tag in 2062 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2063 * otherwise it returns NULL. 2064 **/ 2065 static struct hbq_dmabuf * 2066 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2067 { 2068 struct lpfc_dmabuf *d_buf; 2069 struct hbq_dmabuf *hbq_buf; 2070 uint32_t hbqno; 2071 2072 hbqno = tag >> 16; 2073 if (hbqno >= LPFC_MAX_HBQS) 2074 return NULL; 2075 2076 spin_lock_irq(&phba->hbalock); 2077 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2078 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2079 if (hbq_buf->tag == tag) { 2080 spin_unlock_irq(&phba->hbalock); 2081 return hbq_buf; 2082 } 2083 } 2084 spin_unlock_irq(&phba->hbalock); 2085 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2086 "1803 Bad hbq tag. Data: x%x x%x\n", 2087 tag, phba->hbqs[tag >> 16].buffer_count); 2088 return NULL; 2089 } 2090 2091 /** 2092 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2093 * @phba: Pointer to HBA context object. 2094 * @hbq_buffer: Pointer to HBQ buffer. 2095 * 2096 * This function is called with hbalock. This function gives back 2097 * the hbq buffer to firmware. If the HBQ does not have space to 2098 * post the buffer, it will free the buffer. 2099 **/ 2100 void 2101 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2102 { 2103 uint32_t hbqno; 2104 2105 if (hbq_buffer) { 2106 hbqno = hbq_buffer->tag >> 16; 2107 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2108 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2109 } 2110 } 2111 2112 /** 2113 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2114 * @mbxCommand: mailbox command code. 2115 * 2116 * This function is called by the mailbox event handler function to verify 2117 * that the completed mailbox command is a legitimate mailbox command. If the 2118 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2119 * and the mailbox event handler will take the HBA offline. 2120 **/ 2121 static int 2122 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2123 { 2124 uint8_t ret; 2125 2126 switch (mbxCommand) { 2127 case MBX_LOAD_SM: 2128 case MBX_READ_NV: 2129 case MBX_WRITE_NV: 2130 case MBX_WRITE_VPARMS: 2131 case MBX_RUN_BIU_DIAG: 2132 case MBX_INIT_LINK: 2133 case MBX_DOWN_LINK: 2134 case MBX_CONFIG_LINK: 2135 case MBX_CONFIG_RING: 2136 case MBX_RESET_RING: 2137 case MBX_READ_CONFIG: 2138 case MBX_READ_RCONFIG: 2139 case MBX_READ_SPARM: 2140 case MBX_READ_STATUS: 2141 case MBX_READ_RPI: 2142 case MBX_READ_XRI: 2143 case MBX_READ_REV: 2144 case MBX_READ_LNK_STAT: 2145 case MBX_REG_LOGIN: 2146 case MBX_UNREG_LOGIN: 2147 case MBX_CLEAR_LA: 2148 case MBX_DUMP_MEMORY: 2149 case MBX_DUMP_CONTEXT: 2150 case MBX_RUN_DIAGS: 2151 case MBX_RESTART: 2152 case MBX_UPDATE_CFG: 2153 case MBX_DOWN_LOAD: 2154 case MBX_DEL_LD_ENTRY: 2155 case MBX_RUN_PROGRAM: 2156 case MBX_SET_MASK: 2157 case MBX_SET_VARIABLE: 2158 case MBX_UNREG_D_ID: 2159 case MBX_KILL_BOARD: 2160 case MBX_CONFIG_FARP: 2161 case MBX_BEACON: 2162 case MBX_LOAD_AREA: 2163 case MBX_RUN_BIU_DIAG64: 2164 case MBX_CONFIG_PORT: 2165 case MBX_READ_SPARM64: 2166 case MBX_READ_RPI64: 2167 case MBX_REG_LOGIN64: 2168 case MBX_READ_TOPOLOGY: 2169 case MBX_WRITE_WWN: 2170 case MBX_SET_DEBUG: 2171 case MBX_LOAD_EXP_ROM: 2172 case MBX_ASYNCEVT_ENABLE: 2173 case MBX_REG_VPI: 2174 case MBX_UNREG_VPI: 2175 case MBX_HEARTBEAT: 2176 case MBX_PORT_CAPABILITIES: 2177 case MBX_PORT_IOV_CONTROL: 2178 case MBX_SLI4_CONFIG: 2179 case MBX_SLI4_REQ_FTRS: 2180 case MBX_REG_FCFI: 2181 case MBX_UNREG_FCFI: 2182 case MBX_REG_VFI: 2183 case MBX_UNREG_VFI: 2184 case MBX_INIT_VPI: 2185 case MBX_INIT_VFI: 2186 case MBX_RESUME_RPI: 2187 case MBX_READ_EVENT_LOG_STATUS: 2188 case MBX_READ_EVENT_LOG: 2189 case MBX_SECURITY_MGMT: 2190 case MBX_AUTH_PORT: 2191 case MBX_ACCESS_VDATA: 2192 ret = mbxCommand; 2193 break; 2194 default: 2195 ret = MBX_SHUTDOWN; 2196 break; 2197 } 2198 return ret; 2199 } 2200 2201 /** 2202 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2203 * @phba: Pointer to HBA context object. 2204 * @pmboxq: Pointer to mailbox command. 2205 * 2206 * This is completion handler function for mailbox commands issued from 2207 * lpfc_sli_issue_mbox_wait function. This function is called by the 2208 * mailbox event handler function with no lock held. This function 2209 * will wake up thread waiting on the wait queue pointed by context1 2210 * of the mailbox. 2211 **/ 2212 void 2213 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2214 { 2215 wait_queue_head_t *pdone_q; 2216 unsigned long drvr_flag; 2217 2218 /* 2219 * If pdone_q is empty, the driver thread gave up waiting and 2220 * continued running. 2221 */ 2222 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2223 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2224 pdone_q = (wait_queue_head_t *) pmboxq->context1; 2225 if (pdone_q) 2226 wake_up_interruptible(pdone_q); 2227 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2228 return; 2229 } 2230 2231 2232 /** 2233 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2234 * @phba: Pointer to HBA context object. 2235 * @pmb: Pointer to mailbox object. 2236 * 2237 * This function is the default mailbox completion handler. It 2238 * frees the memory resources associated with the completed mailbox 2239 * command. If the completed command is a REG_LOGIN mailbox command, 2240 * this function will issue a UREG_LOGIN to re-claim the RPI. 2241 **/ 2242 void 2243 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2244 { 2245 struct lpfc_vport *vport = pmb->vport; 2246 struct lpfc_dmabuf *mp; 2247 struct lpfc_nodelist *ndlp; 2248 struct Scsi_Host *shost; 2249 uint16_t rpi, vpi; 2250 int rc; 2251 2252 mp = (struct lpfc_dmabuf *) (pmb->context1); 2253 2254 if (mp) { 2255 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2256 kfree(mp); 2257 } 2258 2259 /* 2260 * If a REG_LOGIN succeeded after node is destroyed or node 2261 * is in re-discovery driver need to cleanup the RPI. 2262 */ 2263 if (!(phba->pport->load_flag & FC_UNLOADING) && 2264 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2265 !pmb->u.mb.mbxStatus) { 2266 rpi = pmb->u.mb.un.varWords[0]; 2267 vpi = pmb->u.mb.un.varRegLogin.vpi; 2268 lpfc_unreg_login(phba, vpi, rpi, pmb); 2269 pmb->vport = vport; 2270 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2271 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2272 if (rc != MBX_NOT_FINISHED) 2273 return; 2274 } 2275 2276 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2277 !(phba->pport->load_flag & FC_UNLOADING) && 2278 !pmb->u.mb.mbxStatus) { 2279 shost = lpfc_shost_from_vport(vport); 2280 spin_lock_irq(shost->host_lock); 2281 vport->vpi_state |= LPFC_VPI_REGISTERED; 2282 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2283 spin_unlock_irq(shost->host_lock); 2284 } 2285 2286 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2287 ndlp = (struct lpfc_nodelist *)pmb->context2; 2288 lpfc_nlp_put(ndlp); 2289 pmb->context2 = NULL; 2290 } 2291 2292 /* Check security permission status on INIT_LINK mailbox command */ 2293 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2294 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2295 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2296 "2860 SLI authentication is required " 2297 "for INIT_LINK but has not done yet\n"); 2298 2299 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2300 lpfc_sli4_mbox_cmd_free(phba, pmb); 2301 else 2302 mempool_free(pmb, phba->mbox_mem_pool); 2303 } 2304 /** 2305 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2306 * @phba: Pointer to HBA context object. 2307 * @pmb: Pointer to mailbox object. 2308 * 2309 * This function is the unreg rpi mailbox completion handler. It 2310 * frees the memory resources associated with the completed mailbox 2311 * command. An additional refrenece is put on the ndlp to prevent 2312 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2313 * the unreg mailbox command completes, this routine puts the 2314 * reference back. 2315 * 2316 **/ 2317 void 2318 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2319 { 2320 struct lpfc_vport *vport = pmb->vport; 2321 struct lpfc_nodelist *ndlp; 2322 2323 ndlp = pmb->context1; 2324 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2325 if (phba->sli_rev == LPFC_SLI_REV4 && 2326 (bf_get(lpfc_sli_intf_if_type, 2327 &phba->sli4_hba.sli_intf) == 2328 LPFC_SLI_INTF_IF_TYPE_2)) { 2329 if (ndlp) { 2330 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 2331 "0010 UNREG_LOGIN vpi:%x " 2332 "rpi:%x DID:%x map:%x %p\n", 2333 vport->vpi, ndlp->nlp_rpi, 2334 ndlp->nlp_DID, 2335 ndlp->nlp_usg_map, ndlp); 2336 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2337 lpfc_nlp_put(ndlp); 2338 } 2339 } 2340 } 2341 2342 mempool_free(pmb, phba->mbox_mem_pool); 2343 } 2344 2345 /** 2346 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2347 * @phba: Pointer to HBA context object. 2348 * 2349 * This function is called with no lock held. This function processes all 2350 * the completed mailbox commands and gives it to upper layers. The interrupt 2351 * service routine processes mailbox completion interrupt and adds completed 2352 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2353 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2354 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2355 * function returns the mailbox commands to the upper layer by calling the 2356 * completion handler function of each mailbox. 2357 **/ 2358 int 2359 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2360 { 2361 MAILBOX_t *pmbox; 2362 LPFC_MBOXQ_t *pmb; 2363 int rc; 2364 LIST_HEAD(cmplq); 2365 2366 phba->sli.slistat.mbox_event++; 2367 2368 /* Get all completed mailboxe buffers into the cmplq */ 2369 spin_lock_irq(&phba->hbalock); 2370 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2371 spin_unlock_irq(&phba->hbalock); 2372 2373 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2374 do { 2375 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2376 if (pmb == NULL) 2377 break; 2378 2379 pmbox = &pmb->u.mb; 2380 2381 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2382 if (pmb->vport) { 2383 lpfc_debugfs_disc_trc(pmb->vport, 2384 LPFC_DISC_TRC_MBOX_VPORT, 2385 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2386 (uint32_t)pmbox->mbxCommand, 2387 pmbox->un.varWords[0], 2388 pmbox->un.varWords[1]); 2389 } 2390 else { 2391 lpfc_debugfs_disc_trc(phba->pport, 2392 LPFC_DISC_TRC_MBOX, 2393 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2394 (uint32_t)pmbox->mbxCommand, 2395 pmbox->un.varWords[0], 2396 pmbox->un.varWords[1]); 2397 } 2398 } 2399 2400 /* 2401 * It is a fatal error if unknown mbox command completion. 2402 */ 2403 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2404 MBX_SHUTDOWN) { 2405 /* Unknown mailbox command compl */ 2406 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2407 "(%d):0323 Unknown Mailbox command " 2408 "x%x (x%x/x%x) Cmpl\n", 2409 pmb->vport ? pmb->vport->vpi : 0, 2410 pmbox->mbxCommand, 2411 lpfc_sli_config_mbox_subsys_get(phba, 2412 pmb), 2413 lpfc_sli_config_mbox_opcode_get(phba, 2414 pmb)); 2415 phba->link_state = LPFC_HBA_ERROR; 2416 phba->work_hs = HS_FFER3; 2417 lpfc_handle_eratt(phba); 2418 continue; 2419 } 2420 2421 if (pmbox->mbxStatus) { 2422 phba->sli.slistat.mbox_stat_err++; 2423 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2424 /* Mbox cmd cmpl error - RETRYing */ 2425 lpfc_printf_log(phba, KERN_INFO, 2426 LOG_MBOX | LOG_SLI, 2427 "(%d):0305 Mbox cmd cmpl " 2428 "error - RETRYing Data: x%x " 2429 "(x%x/x%x) x%x x%x x%x\n", 2430 pmb->vport ? pmb->vport->vpi : 0, 2431 pmbox->mbxCommand, 2432 lpfc_sli_config_mbox_subsys_get(phba, 2433 pmb), 2434 lpfc_sli_config_mbox_opcode_get(phba, 2435 pmb), 2436 pmbox->mbxStatus, 2437 pmbox->un.varWords[0], 2438 pmb->vport->port_state); 2439 pmbox->mbxStatus = 0; 2440 pmbox->mbxOwner = OWN_HOST; 2441 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2442 if (rc != MBX_NOT_FINISHED) 2443 continue; 2444 } 2445 } 2446 2447 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2448 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2449 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p " 2450 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2451 "x%x x%x x%x\n", 2452 pmb->vport ? pmb->vport->vpi : 0, 2453 pmbox->mbxCommand, 2454 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2455 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2456 pmb->mbox_cmpl, 2457 *((uint32_t *) pmbox), 2458 pmbox->un.varWords[0], 2459 pmbox->un.varWords[1], 2460 pmbox->un.varWords[2], 2461 pmbox->un.varWords[3], 2462 pmbox->un.varWords[4], 2463 pmbox->un.varWords[5], 2464 pmbox->un.varWords[6], 2465 pmbox->un.varWords[7], 2466 pmbox->un.varWords[8], 2467 pmbox->un.varWords[9], 2468 pmbox->un.varWords[10]); 2469 2470 if (pmb->mbox_cmpl) 2471 pmb->mbox_cmpl(phba,pmb); 2472 } while (1); 2473 return 0; 2474 } 2475 2476 /** 2477 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2478 * @phba: Pointer to HBA context object. 2479 * @pring: Pointer to driver SLI ring object. 2480 * @tag: buffer tag. 2481 * 2482 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2483 * is set in the tag the buffer is posted for a particular exchange, 2484 * the function will return the buffer without replacing the buffer. 2485 * If the buffer is for unsolicited ELS or CT traffic, this function 2486 * returns the buffer and also posts another buffer to the firmware. 2487 **/ 2488 static struct lpfc_dmabuf * 2489 lpfc_sli_get_buff(struct lpfc_hba *phba, 2490 struct lpfc_sli_ring *pring, 2491 uint32_t tag) 2492 { 2493 struct hbq_dmabuf *hbq_entry; 2494 2495 if (tag & QUE_BUFTAG_BIT) 2496 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2497 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2498 if (!hbq_entry) 2499 return NULL; 2500 return &hbq_entry->dbuf; 2501 } 2502 2503 /** 2504 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2505 * @phba: Pointer to HBA context object. 2506 * @pring: Pointer to driver SLI ring object. 2507 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2508 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2509 * @fch_type: the type for the first frame of the sequence. 2510 * 2511 * This function is called with no lock held. This function uses the r_ctl and 2512 * type of the received sequence to find the correct callback function to call 2513 * to process the sequence. 2514 **/ 2515 static int 2516 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2517 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2518 uint32_t fch_type) 2519 { 2520 int i; 2521 2522 switch (fch_type) { 2523 case FC_TYPE_NVME: 2524 lpfc_nvmet_unsol_ls_event(phba, pring, saveq); 2525 return 1; 2526 default: 2527 break; 2528 } 2529 2530 /* unSolicited Responses */ 2531 if (pring->prt[0].profile) { 2532 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2533 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2534 saveq); 2535 return 1; 2536 } 2537 /* We must search, based on rctl / type 2538 for the right routine */ 2539 for (i = 0; i < pring->num_mask; i++) { 2540 if ((pring->prt[i].rctl == fch_r_ctl) && 2541 (pring->prt[i].type == fch_type)) { 2542 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2543 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2544 (phba, pring, saveq); 2545 return 1; 2546 } 2547 } 2548 return 0; 2549 } 2550 2551 /** 2552 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2553 * @phba: Pointer to HBA context object. 2554 * @pring: Pointer to driver SLI ring object. 2555 * @saveq: Pointer to the unsolicited iocb. 2556 * 2557 * This function is called with no lock held by the ring event handler 2558 * when there is an unsolicited iocb posted to the response ring by the 2559 * firmware. This function gets the buffer associated with the iocbs 2560 * and calls the event handler for the ring. This function handles both 2561 * qring buffers and hbq buffers. 2562 * When the function returns 1 the caller can free the iocb object otherwise 2563 * upper layer functions will free the iocb objects. 2564 **/ 2565 static int 2566 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2567 struct lpfc_iocbq *saveq) 2568 { 2569 IOCB_t * irsp; 2570 WORD5 * w5p; 2571 uint32_t Rctl, Type; 2572 struct lpfc_iocbq *iocbq; 2573 struct lpfc_dmabuf *dmzbuf; 2574 2575 irsp = &(saveq->iocb); 2576 2577 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2578 if (pring->lpfc_sli_rcv_async_status) 2579 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2580 else 2581 lpfc_printf_log(phba, 2582 KERN_WARNING, 2583 LOG_SLI, 2584 "0316 Ring %d handler: unexpected " 2585 "ASYNC_STATUS iocb received evt_code " 2586 "0x%x\n", 2587 pring->ringno, 2588 irsp->un.asyncstat.evt_code); 2589 return 1; 2590 } 2591 2592 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2593 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2594 if (irsp->ulpBdeCount > 0) { 2595 dmzbuf = lpfc_sli_get_buff(phba, pring, 2596 irsp->un.ulpWord[3]); 2597 lpfc_in_buf_free(phba, dmzbuf); 2598 } 2599 2600 if (irsp->ulpBdeCount > 1) { 2601 dmzbuf = lpfc_sli_get_buff(phba, pring, 2602 irsp->unsli3.sli3Words[3]); 2603 lpfc_in_buf_free(phba, dmzbuf); 2604 } 2605 2606 if (irsp->ulpBdeCount > 2) { 2607 dmzbuf = lpfc_sli_get_buff(phba, pring, 2608 irsp->unsli3.sli3Words[7]); 2609 lpfc_in_buf_free(phba, dmzbuf); 2610 } 2611 2612 return 1; 2613 } 2614 2615 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 2616 if (irsp->ulpBdeCount != 0) { 2617 saveq->context2 = lpfc_sli_get_buff(phba, pring, 2618 irsp->un.ulpWord[3]); 2619 if (!saveq->context2) 2620 lpfc_printf_log(phba, 2621 KERN_ERR, 2622 LOG_SLI, 2623 "0341 Ring %d Cannot find buffer for " 2624 "an unsolicited iocb. tag 0x%x\n", 2625 pring->ringno, 2626 irsp->un.ulpWord[3]); 2627 } 2628 if (irsp->ulpBdeCount == 2) { 2629 saveq->context3 = lpfc_sli_get_buff(phba, pring, 2630 irsp->unsli3.sli3Words[7]); 2631 if (!saveq->context3) 2632 lpfc_printf_log(phba, 2633 KERN_ERR, 2634 LOG_SLI, 2635 "0342 Ring %d Cannot find buffer for an" 2636 " unsolicited iocb. tag 0x%x\n", 2637 pring->ringno, 2638 irsp->unsli3.sli3Words[7]); 2639 } 2640 list_for_each_entry(iocbq, &saveq->list, list) { 2641 irsp = &(iocbq->iocb); 2642 if (irsp->ulpBdeCount != 0) { 2643 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 2644 irsp->un.ulpWord[3]); 2645 if (!iocbq->context2) 2646 lpfc_printf_log(phba, 2647 KERN_ERR, 2648 LOG_SLI, 2649 "0343 Ring %d Cannot find " 2650 "buffer for an unsolicited iocb" 2651 ". tag 0x%x\n", pring->ringno, 2652 irsp->un.ulpWord[3]); 2653 } 2654 if (irsp->ulpBdeCount == 2) { 2655 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 2656 irsp->unsli3.sli3Words[7]); 2657 if (!iocbq->context3) 2658 lpfc_printf_log(phba, 2659 KERN_ERR, 2660 LOG_SLI, 2661 "0344 Ring %d Cannot find " 2662 "buffer for an unsolicited " 2663 "iocb. tag 0x%x\n", 2664 pring->ringno, 2665 irsp->unsli3.sli3Words[7]); 2666 } 2667 } 2668 } 2669 if (irsp->ulpBdeCount != 0 && 2670 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 2671 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 2672 int found = 0; 2673 2674 /* search continue save q for same XRI */ 2675 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 2676 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 2677 saveq->iocb.unsli3.rcvsli3.ox_id) { 2678 list_add_tail(&saveq->list, &iocbq->list); 2679 found = 1; 2680 break; 2681 } 2682 } 2683 if (!found) 2684 list_add_tail(&saveq->clist, 2685 &pring->iocb_continue_saveq); 2686 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 2687 list_del_init(&iocbq->clist); 2688 saveq = iocbq; 2689 irsp = &(saveq->iocb); 2690 } else 2691 return 0; 2692 } 2693 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 2694 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 2695 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 2696 Rctl = FC_RCTL_ELS_REQ; 2697 Type = FC_TYPE_ELS; 2698 } else { 2699 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 2700 Rctl = w5p->hcsw.Rctl; 2701 Type = w5p->hcsw.Type; 2702 2703 /* Firmware Workaround */ 2704 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 2705 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 2706 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 2707 Rctl = FC_RCTL_ELS_REQ; 2708 Type = FC_TYPE_ELS; 2709 w5p->hcsw.Rctl = Rctl; 2710 w5p->hcsw.Type = Type; 2711 } 2712 } 2713 2714 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 2715 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2716 "0313 Ring %d handler: unexpected Rctl x%x " 2717 "Type x%x received\n", 2718 pring->ringno, Rctl, Type); 2719 2720 return 1; 2721 } 2722 2723 /** 2724 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 2725 * @phba: Pointer to HBA context object. 2726 * @pring: Pointer to driver SLI ring object. 2727 * @prspiocb: Pointer to response iocb object. 2728 * 2729 * This function looks up the iocb_lookup table to get the command iocb 2730 * corresponding to the given response iocb using the iotag of the 2731 * response iocb. This function is called with the hbalock held. 2732 * This function returns the command iocb object if it finds the command 2733 * iocb else returns NULL. 2734 **/ 2735 static struct lpfc_iocbq * 2736 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 2737 struct lpfc_sli_ring *pring, 2738 struct lpfc_iocbq *prspiocb) 2739 { 2740 struct lpfc_iocbq *cmd_iocb = NULL; 2741 uint16_t iotag; 2742 lockdep_assert_held(&phba->hbalock); 2743 2744 iotag = prspiocb->iocb.ulpIoTag; 2745 2746 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2747 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2748 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2749 /* remove from txcmpl queue list */ 2750 list_del_init(&cmd_iocb->list); 2751 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2752 return cmd_iocb; 2753 } 2754 } 2755 2756 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2757 "0317 iotag x%x is out of " 2758 "range: max iotag x%x wd0 x%x\n", 2759 iotag, phba->sli.last_iotag, 2760 *(((uint32_t *) &prspiocb->iocb) + 7)); 2761 return NULL; 2762 } 2763 2764 /** 2765 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 2766 * @phba: Pointer to HBA context object. 2767 * @pring: Pointer to driver SLI ring object. 2768 * @iotag: IOCB tag. 2769 * 2770 * This function looks up the iocb_lookup table to get the command iocb 2771 * corresponding to the given iotag. This function is called with the 2772 * hbalock held. 2773 * This function returns the command iocb object if it finds the command 2774 * iocb else returns NULL. 2775 **/ 2776 static struct lpfc_iocbq * 2777 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 2778 struct lpfc_sli_ring *pring, uint16_t iotag) 2779 { 2780 struct lpfc_iocbq *cmd_iocb = NULL; 2781 2782 lockdep_assert_held(&phba->hbalock); 2783 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2784 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2785 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2786 /* remove from txcmpl queue list */ 2787 list_del_init(&cmd_iocb->list); 2788 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2789 return cmd_iocb; 2790 } 2791 } 2792 2793 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2794 "0372 iotag x%x lookup error: max iotag (x%x) " 2795 "iocb_flag x%x\n", 2796 iotag, phba->sli.last_iotag, 2797 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 2798 return NULL; 2799 } 2800 2801 /** 2802 * lpfc_sli_process_sol_iocb - process solicited iocb completion 2803 * @phba: Pointer to HBA context object. 2804 * @pring: Pointer to driver SLI ring object. 2805 * @saveq: Pointer to the response iocb to be processed. 2806 * 2807 * This function is called by the ring event handler for non-fcp 2808 * rings when there is a new response iocb in the response ring. 2809 * The caller is not required to hold any locks. This function 2810 * gets the command iocb associated with the response iocb and 2811 * calls the completion handler for the command iocb. If there 2812 * is no completion handler, the function will free the resources 2813 * associated with command iocb. If the response iocb is for 2814 * an already aborted command iocb, the status of the completion 2815 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 2816 * This function always returns 1. 2817 **/ 2818 static int 2819 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2820 struct lpfc_iocbq *saveq) 2821 { 2822 struct lpfc_iocbq *cmdiocbp; 2823 int rc = 1; 2824 unsigned long iflag; 2825 2826 /* Based on the iotag field, get the cmd IOCB from the txcmplq */ 2827 spin_lock_irqsave(&phba->hbalock, iflag); 2828 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 2829 spin_unlock_irqrestore(&phba->hbalock, iflag); 2830 2831 if (cmdiocbp) { 2832 if (cmdiocbp->iocb_cmpl) { 2833 /* 2834 * If an ELS command failed send an event to mgmt 2835 * application. 2836 */ 2837 if (saveq->iocb.ulpStatus && 2838 (pring->ringno == LPFC_ELS_RING) && 2839 (cmdiocbp->iocb.ulpCommand == 2840 CMD_ELS_REQUEST64_CR)) 2841 lpfc_send_els_failure_event(phba, 2842 cmdiocbp, saveq); 2843 2844 /* 2845 * Post all ELS completions to the worker thread. 2846 * All other are passed to the completion callback. 2847 */ 2848 if (pring->ringno == LPFC_ELS_RING) { 2849 if ((phba->sli_rev < LPFC_SLI_REV4) && 2850 (cmdiocbp->iocb_flag & 2851 LPFC_DRIVER_ABORTED)) { 2852 spin_lock_irqsave(&phba->hbalock, 2853 iflag); 2854 cmdiocbp->iocb_flag &= 2855 ~LPFC_DRIVER_ABORTED; 2856 spin_unlock_irqrestore(&phba->hbalock, 2857 iflag); 2858 saveq->iocb.ulpStatus = 2859 IOSTAT_LOCAL_REJECT; 2860 saveq->iocb.un.ulpWord[4] = 2861 IOERR_SLI_ABORTED; 2862 2863 /* Firmware could still be in progress 2864 * of DMAing payload, so don't free data 2865 * buffer till after a hbeat. 2866 */ 2867 spin_lock_irqsave(&phba->hbalock, 2868 iflag); 2869 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 2870 spin_unlock_irqrestore(&phba->hbalock, 2871 iflag); 2872 } 2873 if (phba->sli_rev == LPFC_SLI_REV4) { 2874 if (saveq->iocb_flag & 2875 LPFC_EXCHANGE_BUSY) { 2876 /* Set cmdiocb flag for the 2877 * exchange busy so sgl (xri) 2878 * will not be released until 2879 * the abort xri is received 2880 * from hba. 2881 */ 2882 spin_lock_irqsave( 2883 &phba->hbalock, iflag); 2884 cmdiocbp->iocb_flag |= 2885 LPFC_EXCHANGE_BUSY; 2886 spin_unlock_irqrestore( 2887 &phba->hbalock, iflag); 2888 } 2889 if (cmdiocbp->iocb_flag & 2890 LPFC_DRIVER_ABORTED) { 2891 /* 2892 * Clear LPFC_DRIVER_ABORTED 2893 * bit in case it was driver 2894 * initiated abort. 2895 */ 2896 spin_lock_irqsave( 2897 &phba->hbalock, iflag); 2898 cmdiocbp->iocb_flag &= 2899 ~LPFC_DRIVER_ABORTED; 2900 spin_unlock_irqrestore( 2901 &phba->hbalock, iflag); 2902 cmdiocbp->iocb.ulpStatus = 2903 IOSTAT_LOCAL_REJECT; 2904 cmdiocbp->iocb.un.ulpWord[4] = 2905 IOERR_ABORT_REQUESTED; 2906 /* 2907 * For SLI4, irsiocb contains 2908 * NO_XRI in sli_xritag, it 2909 * shall not affect releasing 2910 * sgl (xri) process. 2911 */ 2912 saveq->iocb.ulpStatus = 2913 IOSTAT_LOCAL_REJECT; 2914 saveq->iocb.un.ulpWord[4] = 2915 IOERR_SLI_ABORTED; 2916 spin_lock_irqsave( 2917 &phba->hbalock, iflag); 2918 saveq->iocb_flag |= 2919 LPFC_DELAY_MEM_FREE; 2920 spin_unlock_irqrestore( 2921 &phba->hbalock, iflag); 2922 } 2923 } 2924 } 2925 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 2926 } else 2927 lpfc_sli_release_iocbq(phba, cmdiocbp); 2928 } else { 2929 /* 2930 * Unknown initiating command based on the response iotag. 2931 * This could be the case on the ELS ring because of 2932 * lpfc_els_abort(). 2933 */ 2934 if (pring->ringno != LPFC_ELS_RING) { 2935 /* 2936 * Ring <ringno> handler: unexpected completion IoTag 2937 * <IoTag> 2938 */ 2939 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2940 "0322 Ring %d handler: " 2941 "unexpected completion IoTag x%x " 2942 "Data: x%x x%x x%x x%x\n", 2943 pring->ringno, 2944 saveq->iocb.ulpIoTag, 2945 saveq->iocb.ulpStatus, 2946 saveq->iocb.un.ulpWord[4], 2947 saveq->iocb.ulpCommand, 2948 saveq->iocb.ulpContext); 2949 } 2950 } 2951 2952 return rc; 2953 } 2954 2955 /** 2956 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 2957 * @phba: Pointer to HBA context object. 2958 * @pring: Pointer to driver SLI ring object. 2959 * 2960 * This function is called from the iocb ring event handlers when 2961 * put pointer is ahead of the get pointer for a ring. This function signal 2962 * an error attention condition to the worker thread and the worker 2963 * thread will transition the HBA to offline state. 2964 **/ 2965 static void 2966 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2967 { 2968 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2969 /* 2970 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 2971 * rsp ring <portRspMax> 2972 */ 2973 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2974 "0312 Ring %d handler: portRspPut %d " 2975 "is bigger than rsp ring %d\n", 2976 pring->ringno, le32_to_cpu(pgp->rspPutInx), 2977 pring->sli.sli3.numRiocb); 2978 2979 phba->link_state = LPFC_HBA_ERROR; 2980 2981 /* 2982 * All error attention handlers are posted to 2983 * worker thread 2984 */ 2985 phba->work_ha |= HA_ERATT; 2986 phba->work_hs = HS_FFER3; 2987 2988 lpfc_worker_wake_up(phba); 2989 2990 return; 2991 } 2992 2993 /** 2994 * lpfc_poll_eratt - Error attention polling timer timeout handler 2995 * @ptr: Pointer to address of HBA context object. 2996 * 2997 * This function is invoked by the Error Attention polling timer when the 2998 * timer times out. It will check the SLI Error Attention register for 2999 * possible attention events. If so, it will post an Error Attention event 3000 * and wake up worker thread to process it. Otherwise, it will set up the 3001 * Error Attention polling timer for the next poll. 3002 **/ 3003 void lpfc_poll_eratt(unsigned long ptr) 3004 { 3005 struct lpfc_hba *phba; 3006 uint32_t eratt = 0; 3007 uint64_t sli_intr, cnt; 3008 3009 phba = (struct lpfc_hba *)ptr; 3010 3011 /* Here we will also keep track of interrupts per sec of the hba */ 3012 sli_intr = phba->sli.slistat.sli_intr; 3013 3014 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3015 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3016 sli_intr); 3017 else 3018 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3019 3020 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3021 do_div(cnt, phba->eratt_poll_interval); 3022 phba->sli.slistat.sli_ips = cnt; 3023 3024 phba->sli.slistat.sli_prev_intr = sli_intr; 3025 3026 /* Check chip HA register for error event */ 3027 eratt = lpfc_sli_check_eratt(phba); 3028 3029 if (eratt) 3030 /* Tell the worker thread there is work to do */ 3031 lpfc_worker_wake_up(phba); 3032 else 3033 /* Restart the timer for next eratt poll */ 3034 mod_timer(&phba->eratt_poll, 3035 jiffies + 3036 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3037 return; 3038 } 3039 3040 3041 /** 3042 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3043 * @phba: Pointer to HBA context object. 3044 * @pring: Pointer to driver SLI ring object. 3045 * @mask: Host attention register mask for this ring. 3046 * 3047 * This function is called from the interrupt context when there is a ring 3048 * event for the fcp ring. The caller does not hold any lock. 3049 * The function processes each response iocb in the response ring until it 3050 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3051 * LE bit set. The function will call the completion handler of the command iocb 3052 * if the response iocb indicates a completion for a command iocb or it is 3053 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3054 * function if this is an unsolicited iocb. 3055 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3056 * to check it explicitly. 3057 */ 3058 int 3059 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3060 struct lpfc_sli_ring *pring, uint32_t mask) 3061 { 3062 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3063 IOCB_t *irsp = NULL; 3064 IOCB_t *entry = NULL; 3065 struct lpfc_iocbq *cmdiocbq = NULL; 3066 struct lpfc_iocbq rspiocbq; 3067 uint32_t status; 3068 uint32_t portRspPut, portRspMax; 3069 int rc = 1; 3070 lpfc_iocb_type type; 3071 unsigned long iflag; 3072 uint32_t rsp_cmpl = 0; 3073 3074 spin_lock_irqsave(&phba->hbalock, iflag); 3075 pring->stats.iocb_event++; 3076 3077 /* 3078 * The next available response entry should never exceed the maximum 3079 * entries. If it does, treat it as an adapter hardware error. 3080 */ 3081 portRspMax = pring->sli.sli3.numRiocb; 3082 portRspPut = le32_to_cpu(pgp->rspPutInx); 3083 if (unlikely(portRspPut >= portRspMax)) { 3084 lpfc_sli_rsp_pointers_error(phba, pring); 3085 spin_unlock_irqrestore(&phba->hbalock, iflag); 3086 return 1; 3087 } 3088 if (phba->fcp_ring_in_use) { 3089 spin_unlock_irqrestore(&phba->hbalock, iflag); 3090 return 1; 3091 } else 3092 phba->fcp_ring_in_use = 1; 3093 3094 rmb(); 3095 while (pring->sli.sli3.rspidx != portRspPut) { 3096 /* 3097 * Fetch an entry off the ring and copy it into a local data 3098 * structure. The copy involves a byte-swap since the 3099 * network byte order and pci byte orders are different. 3100 */ 3101 entry = lpfc_resp_iocb(phba, pring); 3102 phba->last_completion_time = jiffies; 3103 3104 if (++pring->sli.sli3.rspidx >= portRspMax) 3105 pring->sli.sli3.rspidx = 0; 3106 3107 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3108 (uint32_t *) &rspiocbq.iocb, 3109 phba->iocb_rsp_size); 3110 INIT_LIST_HEAD(&(rspiocbq.list)); 3111 irsp = &rspiocbq.iocb; 3112 3113 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3114 pring->stats.iocb_rsp++; 3115 rsp_cmpl++; 3116 3117 if (unlikely(irsp->ulpStatus)) { 3118 /* 3119 * If resource errors reported from HBA, reduce 3120 * queuedepths of the SCSI device. 3121 */ 3122 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3123 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3124 IOERR_NO_RESOURCES)) { 3125 spin_unlock_irqrestore(&phba->hbalock, iflag); 3126 phba->lpfc_rampdown_queue_depth(phba); 3127 spin_lock_irqsave(&phba->hbalock, iflag); 3128 } 3129 3130 /* Rsp ring <ringno> error: IOCB */ 3131 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3132 "0336 Rsp Ring %d error: IOCB Data: " 3133 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3134 pring->ringno, 3135 irsp->un.ulpWord[0], 3136 irsp->un.ulpWord[1], 3137 irsp->un.ulpWord[2], 3138 irsp->un.ulpWord[3], 3139 irsp->un.ulpWord[4], 3140 irsp->un.ulpWord[5], 3141 *(uint32_t *)&irsp->un1, 3142 *((uint32_t *)&irsp->un1 + 1)); 3143 } 3144 3145 switch (type) { 3146 case LPFC_ABORT_IOCB: 3147 case LPFC_SOL_IOCB: 3148 /* 3149 * Idle exchange closed via ABTS from port. No iocb 3150 * resources need to be recovered. 3151 */ 3152 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3153 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3154 "0333 IOCB cmd 0x%x" 3155 " processed. Skipping" 3156 " completion\n", 3157 irsp->ulpCommand); 3158 break; 3159 } 3160 3161 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3162 &rspiocbq); 3163 if (unlikely(!cmdiocbq)) 3164 break; 3165 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3166 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3167 if (cmdiocbq->iocb_cmpl) { 3168 spin_unlock_irqrestore(&phba->hbalock, iflag); 3169 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3170 &rspiocbq); 3171 spin_lock_irqsave(&phba->hbalock, iflag); 3172 } 3173 break; 3174 case LPFC_UNSOL_IOCB: 3175 spin_unlock_irqrestore(&phba->hbalock, iflag); 3176 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3177 spin_lock_irqsave(&phba->hbalock, iflag); 3178 break; 3179 default: 3180 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3181 char adaptermsg[LPFC_MAX_ADPTMSG]; 3182 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3183 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3184 MAX_MSG_DATA); 3185 dev_warn(&((phba->pcidev)->dev), 3186 "lpfc%d: %s\n", 3187 phba->brd_no, adaptermsg); 3188 } else { 3189 /* Unknown IOCB command */ 3190 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3191 "0334 Unknown IOCB command " 3192 "Data: x%x, x%x x%x x%x x%x\n", 3193 type, irsp->ulpCommand, 3194 irsp->ulpStatus, 3195 irsp->ulpIoTag, 3196 irsp->ulpContext); 3197 } 3198 break; 3199 } 3200 3201 /* 3202 * The response IOCB has been processed. Update the ring 3203 * pointer in SLIM. If the port response put pointer has not 3204 * been updated, sync the pgp->rspPutInx and fetch the new port 3205 * response put pointer. 3206 */ 3207 writel(pring->sli.sli3.rspidx, 3208 &phba->host_gp[pring->ringno].rspGetInx); 3209 3210 if (pring->sli.sli3.rspidx == portRspPut) 3211 portRspPut = le32_to_cpu(pgp->rspPutInx); 3212 } 3213 3214 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3215 pring->stats.iocb_rsp_full++; 3216 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3217 writel(status, phba->CAregaddr); 3218 readl(phba->CAregaddr); 3219 } 3220 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3221 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3222 pring->stats.iocb_cmd_empty++; 3223 3224 /* Force update of the local copy of cmdGetInx */ 3225 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3226 lpfc_sli_resume_iocb(phba, pring); 3227 3228 if ((pring->lpfc_sli_cmd_available)) 3229 (pring->lpfc_sli_cmd_available) (phba, pring); 3230 3231 } 3232 3233 phba->fcp_ring_in_use = 0; 3234 spin_unlock_irqrestore(&phba->hbalock, iflag); 3235 return rc; 3236 } 3237 3238 /** 3239 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3240 * @phba: Pointer to HBA context object. 3241 * @pring: Pointer to driver SLI ring object. 3242 * @rspiocbp: Pointer to driver response IOCB object. 3243 * 3244 * This function is called from the worker thread when there is a slow-path 3245 * response IOCB to process. This function chains all the response iocbs until 3246 * seeing the iocb with the LE bit set. The function will call 3247 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3248 * completion of a command iocb. The function will call the 3249 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3250 * The function frees the resources or calls the completion handler if this 3251 * iocb is an abort completion. The function returns NULL when the response 3252 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3253 * this function shall chain the iocb on to the iocb_continueq and return the 3254 * response iocb passed in. 3255 **/ 3256 static struct lpfc_iocbq * 3257 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3258 struct lpfc_iocbq *rspiocbp) 3259 { 3260 struct lpfc_iocbq *saveq; 3261 struct lpfc_iocbq *cmdiocbp; 3262 struct lpfc_iocbq *next_iocb; 3263 IOCB_t *irsp = NULL; 3264 uint32_t free_saveq; 3265 uint8_t iocb_cmd_type; 3266 lpfc_iocb_type type; 3267 unsigned long iflag; 3268 int rc; 3269 3270 spin_lock_irqsave(&phba->hbalock, iflag); 3271 /* First add the response iocb to the countinueq list */ 3272 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3273 pring->iocb_continueq_cnt++; 3274 3275 /* Now, determine whether the list is completed for processing */ 3276 irsp = &rspiocbp->iocb; 3277 if (irsp->ulpLe) { 3278 /* 3279 * By default, the driver expects to free all resources 3280 * associated with this iocb completion. 3281 */ 3282 free_saveq = 1; 3283 saveq = list_get_first(&pring->iocb_continueq, 3284 struct lpfc_iocbq, list); 3285 irsp = &(saveq->iocb); 3286 list_del_init(&pring->iocb_continueq); 3287 pring->iocb_continueq_cnt = 0; 3288 3289 pring->stats.iocb_rsp++; 3290 3291 /* 3292 * If resource errors reported from HBA, reduce 3293 * queuedepths of the SCSI device. 3294 */ 3295 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3296 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3297 IOERR_NO_RESOURCES)) { 3298 spin_unlock_irqrestore(&phba->hbalock, iflag); 3299 phba->lpfc_rampdown_queue_depth(phba); 3300 spin_lock_irqsave(&phba->hbalock, iflag); 3301 } 3302 3303 if (irsp->ulpStatus) { 3304 /* Rsp ring <ringno> error: IOCB */ 3305 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3306 "0328 Rsp Ring %d error: " 3307 "IOCB Data: " 3308 "x%x x%x x%x x%x " 3309 "x%x x%x x%x x%x " 3310 "x%x x%x x%x x%x " 3311 "x%x x%x x%x x%x\n", 3312 pring->ringno, 3313 irsp->un.ulpWord[0], 3314 irsp->un.ulpWord[1], 3315 irsp->un.ulpWord[2], 3316 irsp->un.ulpWord[3], 3317 irsp->un.ulpWord[4], 3318 irsp->un.ulpWord[5], 3319 *(((uint32_t *) irsp) + 6), 3320 *(((uint32_t *) irsp) + 7), 3321 *(((uint32_t *) irsp) + 8), 3322 *(((uint32_t *) irsp) + 9), 3323 *(((uint32_t *) irsp) + 10), 3324 *(((uint32_t *) irsp) + 11), 3325 *(((uint32_t *) irsp) + 12), 3326 *(((uint32_t *) irsp) + 13), 3327 *(((uint32_t *) irsp) + 14), 3328 *(((uint32_t *) irsp) + 15)); 3329 } 3330 3331 /* 3332 * Fetch the IOCB command type and call the correct completion 3333 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3334 * get freed back to the lpfc_iocb_list by the discovery 3335 * kernel thread. 3336 */ 3337 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3338 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3339 switch (type) { 3340 case LPFC_SOL_IOCB: 3341 spin_unlock_irqrestore(&phba->hbalock, iflag); 3342 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3343 spin_lock_irqsave(&phba->hbalock, iflag); 3344 break; 3345 3346 case LPFC_UNSOL_IOCB: 3347 spin_unlock_irqrestore(&phba->hbalock, iflag); 3348 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3349 spin_lock_irqsave(&phba->hbalock, iflag); 3350 if (!rc) 3351 free_saveq = 0; 3352 break; 3353 3354 case LPFC_ABORT_IOCB: 3355 cmdiocbp = NULL; 3356 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) 3357 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3358 saveq); 3359 if (cmdiocbp) { 3360 /* Call the specified completion routine */ 3361 if (cmdiocbp->iocb_cmpl) { 3362 spin_unlock_irqrestore(&phba->hbalock, 3363 iflag); 3364 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3365 saveq); 3366 spin_lock_irqsave(&phba->hbalock, 3367 iflag); 3368 } else 3369 __lpfc_sli_release_iocbq(phba, 3370 cmdiocbp); 3371 } 3372 break; 3373 3374 case LPFC_UNKNOWN_IOCB: 3375 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3376 char adaptermsg[LPFC_MAX_ADPTMSG]; 3377 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3378 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3379 MAX_MSG_DATA); 3380 dev_warn(&((phba->pcidev)->dev), 3381 "lpfc%d: %s\n", 3382 phba->brd_no, adaptermsg); 3383 } else { 3384 /* Unknown IOCB command */ 3385 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3386 "0335 Unknown IOCB " 3387 "command Data: x%x " 3388 "x%x x%x x%x\n", 3389 irsp->ulpCommand, 3390 irsp->ulpStatus, 3391 irsp->ulpIoTag, 3392 irsp->ulpContext); 3393 } 3394 break; 3395 } 3396 3397 if (free_saveq) { 3398 list_for_each_entry_safe(rspiocbp, next_iocb, 3399 &saveq->list, list) { 3400 list_del_init(&rspiocbp->list); 3401 __lpfc_sli_release_iocbq(phba, rspiocbp); 3402 } 3403 __lpfc_sli_release_iocbq(phba, saveq); 3404 } 3405 rspiocbp = NULL; 3406 } 3407 spin_unlock_irqrestore(&phba->hbalock, iflag); 3408 return rspiocbp; 3409 } 3410 3411 /** 3412 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3413 * @phba: Pointer to HBA context object. 3414 * @pring: Pointer to driver SLI ring object. 3415 * @mask: Host attention register mask for this ring. 3416 * 3417 * This routine wraps the actual slow_ring event process routine from the 3418 * API jump table function pointer from the lpfc_hba struct. 3419 **/ 3420 void 3421 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3422 struct lpfc_sli_ring *pring, uint32_t mask) 3423 { 3424 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3425 } 3426 3427 /** 3428 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3429 * @phba: Pointer to HBA context object. 3430 * @pring: Pointer to driver SLI ring object. 3431 * @mask: Host attention register mask for this ring. 3432 * 3433 * This function is called from the worker thread when there is a ring event 3434 * for non-fcp rings. The caller does not hold any lock. The function will 3435 * remove each response iocb in the response ring and calls the handle 3436 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3437 **/ 3438 static void 3439 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3440 struct lpfc_sli_ring *pring, uint32_t mask) 3441 { 3442 struct lpfc_pgp *pgp; 3443 IOCB_t *entry; 3444 IOCB_t *irsp = NULL; 3445 struct lpfc_iocbq *rspiocbp = NULL; 3446 uint32_t portRspPut, portRspMax; 3447 unsigned long iflag; 3448 uint32_t status; 3449 3450 pgp = &phba->port_gp[pring->ringno]; 3451 spin_lock_irqsave(&phba->hbalock, iflag); 3452 pring->stats.iocb_event++; 3453 3454 /* 3455 * The next available response entry should never exceed the maximum 3456 * entries. If it does, treat it as an adapter hardware error. 3457 */ 3458 portRspMax = pring->sli.sli3.numRiocb; 3459 portRspPut = le32_to_cpu(pgp->rspPutInx); 3460 if (portRspPut >= portRspMax) { 3461 /* 3462 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3463 * rsp ring <portRspMax> 3464 */ 3465 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3466 "0303 Ring %d handler: portRspPut %d " 3467 "is bigger than rsp ring %d\n", 3468 pring->ringno, portRspPut, portRspMax); 3469 3470 phba->link_state = LPFC_HBA_ERROR; 3471 spin_unlock_irqrestore(&phba->hbalock, iflag); 3472 3473 phba->work_hs = HS_FFER3; 3474 lpfc_handle_eratt(phba); 3475 3476 return; 3477 } 3478 3479 rmb(); 3480 while (pring->sli.sli3.rspidx != portRspPut) { 3481 /* 3482 * Build a completion list and call the appropriate handler. 3483 * The process is to get the next available response iocb, get 3484 * a free iocb from the list, copy the response data into the 3485 * free iocb, insert to the continuation list, and update the 3486 * next response index to slim. This process makes response 3487 * iocb's in the ring available to DMA as fast as possible but 3488 * pays a penalty for a copy operation. Since the iocb is 3489 * only 32 bytes, this penalty is considered small relative to 3490 * the PCI reads for register values and a slim write. When 3491 * the ulpLe field is set, the entire Command has been 3492 * received. 3493 */ 3494 entry = lpfc_resp_iocb(phba, pring); 3495 3496 phba->last_completion_time = jiffies; 3497 rspiocbp = __lpfc_sli_get_iocbq(phba); 3498 if (rspiocbp == NULL) { 3499 printk(KERN_ERR "%s: out of buffers! Failing " 3500 "completion.\n", __func__); 3501 break; 3502 } 3503 3504 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3505 phba->iocb_rsp_size); 3506 irsp = &rspiocbp->iocb; 3507 3508 if (++pring->sli.sli3.rspidx >= portRspMax) 3509 pring->sli.sli3.rspidx = 0; 3510 3511 if (pring->ringno == LPFC_ELS_RING) { 3512 lpfc_debugfs_slow_ring_trc(phba, 3513 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3514 *(((uint32_t *) irsp) + 4), 3515 *(((uint32_t *) irsp) + 6), 3516 *(((uint32_t *) irsp) + 7)); 3517 } 3518 3519 writel(pring->sli.sli3.rspidx, 3520 &phba->host_gp[pring->ringno].rspGetInx); 3521 3522 spin_unlock_irqrestore(&phba->hbalock, iflag); 3523 /* Handle the response IOCB */ 3524 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3525 spin_lock_irqsave(&phba->hbalock, iflag); 3526 3527 /* 3528 * If the port response put pointer has not been updated, sync 3529 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3530 * response put pointer. 3531 */ 3532 if (pring->sli.sli3.rspidx == portRspPut) { 3533 portRspPut = le32_to_cpu(pgp->rspPutInx); 3534 } 3535 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3536 3537 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3538 /* At least one response entry has been freed */ 3539 pring->stats.iocb_rsp_full++; 3540 /* SET RxRE_RSP in Chip Att register */ 3541 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3542 writel(status, phba->CAregaddr); 3543 readl(phba->CAregaddr); /* flush */ 3544 } 3545 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3546 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3547 pring->stats.iocb_cmd_empty++; 3548 3549 /* Force update of the local copy of cmdGetInx */ 3550 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3551 lpfc_sli_resume_iocb(phba, pring); 3552 3553 if ((pring->lpfc_sli_cmd_available)) 3554 (pring->lpfc_sli_cmd_available) (phba, pring); 3555 3556 } 3557 3558 spin_unlock_irqrestore(&phba->hbalock, iflag); 3559 return; 3560 } 3561 3562 /** 3563 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3564 * @phba: Pointer to HBA context object. 3565 * @pring: Pointer to driver SLI ring object. 3566 * @mask: Host attention register mask for this ring. 3567 * 3568 * This function is called from the worker thread when there is a pending 3569 * ELS response iocb on the driver internal slow-path response iocb worker 3570 * queue. The caller does not hold any lock. The function will remove each 3571 * response iocb from the response worker queue and calls the handle 3572 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3573 **/ 3574 static void 3575 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 3576 struct lpfc_sli_ring *pring, uint32_t mask) 3577 { 3578 struct lpfc_iocbq *irspiocbq; 3579 struct hbq_dmabuf *dmabuf; 3580 struct lpfc_cq_event *cq_event; 3581 unsigned long iflag; 3582 3583 spin_lock_irqsave(&phba->hbalock, iflag); 3584 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 3585 spin_unlock_irqrestore(&phba->hbalock, iflag); 3586 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 3587 /* Get the response iocb from the head of work queue */ 3588 spin_lock_irqsave(&phba->hbalock, iflag); 3589 list_remove_head(&phba->sli4_hba.sp_queue_event, 3590 cq_event, struct lpfc_cq_event, list); 3591 spin_unlock_irqrestore(&phba->hbalock, iflag); 3592 3593 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 3594 case CQE_CODE_COMPL_WQE: 3595 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 3596 cq_event); 3597 /* Translate ELS WCQE to response IOCBQ */ 3598 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 3599 irspiocbq); 3600 if (irspiocbq) 3601 lpfc_sli_sp_handle_rspiocb(phba, pring, 3602 irspiocbq); 3603 break; 3604 case CQE_CODE_RECEIVE: 3605 case CQE_CODE_RECEIVE_V1: 3606 dmabuf = container_of(cq_event, struct hbq_dmabuf, 3607 cq_event); 3608 lpfc_sli4_handle_received_buffer(phba, dmabuf); 3609 break; 3610 default: 3611 break; 3612 } 3613 } 3614 } 3615 3616 /** 3617 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 3618 * @phba: Pointer to HBA context object. 3619 * @pring: Pointer to driver SLI ring object. 3620 * 3621 * This function aborts all iocbs in the given ring and frees all the iocb 3622 * objects in txq. This function issues an abort iocb for all the iocb commands 3623 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3624 * the return of this function. The caller is not required to hold any locks. 3625 **/ 3626 void 3627 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3628 { 3629 LIST_HEAD(completions); 3630 struct lpfc_iocbq *iocb, *next_iocb; 3631 3632 if (pring->ringno == LPFC_ELS_RING) { 3633 lpfc_fabric_abort_hba(phba); 3634 } 3635 3636 /* Error everything on txq and txcmplq 3637 * First do the txq. 3638 */ 3639 if (phba->sli_rev >= LPFC_SLI_REV4) { 3640 spin_lock_irq(&pring->ring_lock); 3641 list_splice_init(&pring->txq, &completions); 3642 pring->txq_cnt = 0; 3643 spin_unlock_irq(&pring->ring_lock); 3644 3645 spin_lock_irq(&phba->hbalock); 3646 /* Next issue ABTS for everything on the txcmplq */ 3647 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3648 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3649 spin_unlock_irq(&phba->hbalock); 3650 } else { 3651 spin_lock_irq(&phba->hbalock); 3652 list_splice_init(&pring->txq, &completions); 3653 pring->txq_cnt = 0; 3654 3655 /* Next issue ABTS for everything on the txcmplq */ 3656 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3657 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3658 spin_unlock_irq(&phba->hbalock); 3659 } 3660 3661 /* Cancel all the IOCBs from the completions list */ 3662 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 3663 IOERR_SLI_ABORTED); 3664 } 3665 3666 /** 3667 * lpfc_sli_abort_wqe_ring - Abort all iocbs in the ring 3668 * @phba: Pointer to HBA context object. 3669 * @pring: Pointer to driver SLI ring object. 3670 * 3671 * This function aborts all iocbs in the given ring and frees all the iocb 3672 * objects in txq. This function issues an abort iocb for all the iocb commands 3673 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3674 * the return of this function. The caller is not required to hold any locks. 3675 **/ 3676 void 3677 lpfc_sli_abort_wqe_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3678 { 3679 LIST_HEAD(completions); 3680 struct lpfc_iocbq *iocb, *next_iocb; 3681 3682 if (pring->ringno == LPFC_ELS_RING) 3683 lpfc_fabric_abort_hba(phba); 3684 3685 spin_lock_irq(&phba->hbalock); 3686 /* Next issue ABTS for everything on the txcmplq */ 3687 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3688 lpfc_sli4_abort_nvme_io(phba, pring, iocb); 3689 spin_unlock_irq(&phba->hbalock); 3690 } 3691 3692 3693 /** 3694 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 3695 * @phba: Pointer to HBA context object. 3696 * @pring: Pointer to driver SLI ring object. 3697 * 3698 * This function aborts all iocbs in FCP rings and frees all the iocb 3699 * objects in txq. This function issues an abort iocb for all the iocb commands 3700 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3701 * the return of this function. The caller is not required to hold any locks. 3702 **/ 3703 void 3704 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 3705 { 3706 struct lpfc_sli *psli = &phba->sli; 3707 struct lpfc_sli_ring *pring; 3708 uint32_t i; 3709 3710 /* Look on all the FCP Rings for the iotag */ 3711 if (phba->sli_rev >= LPFC_SLI_REV4) { 3712 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3713 pring = phba->sli4_hba.fcp_wq[i]->pring; 3714 lpfc_sli_abort_iocb_ring(phba, pring); 3715 } 3716 } else { 3717 pring = &psli->sli3_ring[LPFC_FCP_RING]; 3718 lpfc_sli_abort_iocb_ring(phba, pring); 3719 } 3720 } 3721 3722 /** 3723 * lpfc_sli_abort_nvme_rings - Abort all wqes in all NVME rings 3724 * @phba: Pointer to HBA context object. 3725 * 3726 * This function aborts all wqes in NVME rings. This function issues an 3727 * abort wqe for all the outstanding IO commands in txcmplq. The iocbs in 3728 * the txcmplq is not guaranteed to complete before the return of this 3729 * function. The caller is not required to hold any locks. 3730 **/ 3731 void 3732 lpfc_sli_abort_nvme_rings(struct lpfc_hba *phba) 3733 { 3734 struct lpfc_sli_ring *pring; 3735 uint32_t i; 3736 3737 if (phba->sli_rev < LPFC_SLI_REV4) 3738 return; 3739 3740 /* Abort all IO on each NVME ring. */ 3741 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 3742 pring = phba->sli4_hba.nvme_wq[i]->pring; 3743 lpfc_sli_abort_wqe_ring(phba, pring); 3744 } 3745 } 3746 3747 3748 /** 3749 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring 3750 * @phba: Pointer to HBA context object. 3751 * 3752 * This function flushes all iocbs in the fcp ring and frees all the iocb 3753 * objects in txq and txcmplq. This function will not issue abort iocbs 3754 * for all the iocb commands in txcmplq, they will just be returned with 3755 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3756 * slot has been permanently disabled. 3757 **/ 3758 void 3759 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba) 3760 { 3761 LIST_HEAD(txq); 3762 LIST_HEAD(txcmplq); 3763 struct lpfc_sli *psli = &phba->sli; 3764 struct lpfc_sli_ring *pring; 3765 uint32_t i; 3766 3767 spin_lock_irq(&phba->hbalock); 3768 /* Indicate the I/O queues are flushed */ 3769 phba->hba_flag |= HBA_FCP_IOQ_FLUSH; 3770 spin_unlock_irq(&phba->hbalock); 3771 3772 /* Look on all the FCP Rings for the iotag */ 3773 if (phba->sli_rev >= LPFC_SLI_REV4) { 3774 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3775 pring = phba->sli4_hba.fcp_wq[i]->pring; 3776 3777 spin_lock_irq(&pring->ring_lock); 3778 /* Retrieve everything on txq */ 3779 list_splice_init(&pring->txq, &txq); 3780 /* Retrieve everything on the txcmplq */ 3781 list_splice_init(&pring->txcmplq, &txcmplq); 3782 pring->txq_cnt = 0; 3783 pring->txcmplq_cnt = 0; 3784 spin_unlock_irq(&pring->ring_lock); 3785 3786 /* Flush the txq */ 3787 lpfc_sli_cancel_iocbs(phba, &txq, 3788 IOSTAT_LOCAL_REJECT, 3789 IOERR_SLI_DOWN); 3790 /* Flush the txcmpq */ 3791 lpfc_sli_cancel_iocbs(phba, &txcmplq, 3792 IOSTAT_LOCAL_REJECT, 3793 IOERR_SLI_DOWN); 3794 } 3795 } else { 3796 pring = &psli->sli3_ring[LPFC_FCP_RING]; 3797 3798 spin_lock_irq(&phba->hbalock); 3799 /* Retrieve everything on txq */ 3800 list_splice_init(&pring->txq, &txq); 3801 /* Retrieve everything on the txcmplq */ 3802 list_splice_init(&pring->txcmplq, &txcmplq); 3803 pring->txq_cnt = 0; 3804 pring->txcmplq_cnt = 0; 3805 spin_unlock_irq(&phba->hbalock); 3806 3807 /* Flush the txq */ 3808 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 3809 IOERR_SLI_DOWN); 3810 /* Flush the txcmpq */ 3811 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 3812 IOERR_SLI_DOWN); 3813 } 3814 } 3815 3816 /** 3817 * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings 3818 * @phba: Pointer to HBA context object. 3819 * 3820 * This function flushes all wqes in the nvme rings and frees all resources 3821 * in the txcmplq. This function does not issue abort wqes for the IO 3822 * commands in txcmplq, they will just be returned with 3823 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3824 * slot has been permanently disabled. 3825 **/ 3826 void 3827 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba) 3828 { 3829 LIST_HEAD(txcmplq); 3830 struct lpfc_sli_ring *pring; 3831 uint32_t i; 3832 3833 if (phba->sli_rev < LPFC_SLI_REV4) 3834 return; 3835 3836 /* Hint to other driver operations that a flush is in progress. */ 3837 spin_lock_irq(&phba->hbalock); 3838 phba->hba_flag |= HBA_NVME_IOQ_FLUSH; 3839 spin_unlock_irq(&phba->hbalock); 3840 3841 /* Cycle through all NVME rings and complete each IO with 3842 * a local driver reason code. This is a flush so no 3843 * abort exchange to FW. 3844 */ 3845 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 3846 pring = phba->sli4_hba.nvme_wq[i]->pring; 3847 3848 /* Retrieve everything on the txcmplq */ 3849 spin_lock_irq(&pring->ring_lock); 3850 list_splice_init(&pring->txcmplq, &txcmplq); 3851 pring->txcmplq_cnt = 0; 3852 spin_unlock_irq(&pring->ring_lock); 3853 3854 /* Flush the txcmpq &&&PAE */ 3855 lpfc_sli_cancel_iocbs(phba, &txcmplq, 3856 IOSTAT_LOCAL_REJECT, 3857 IOERR_SLI_DOWN); 3858 } 3859 } 3860 3861 /** 3862 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 3863 * @phba: Pointer to HBA context object. 3864 * @mask: Bit mask to be checked. 3865 * 3866 * This function reads the host status register and compares 3867 * with the provided bit mask to check if HBA completed 3868 * the restart. This function will wait in a loop for the 3869 * HBA to complete restart. If the HBA does not restart within 3870 * 15 iterations, the function will reset the HBA again. The 3871 * function returns 1 when HBA fail to restart otherwise returns 3872 * zero. 3873 **/ 3874 static int 3875 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 3876 { 3877 uint32_t status; 3878 int i = 0; 3879 int retval = 0; 3880 3881 /* Read the HBA Host Status Register */ 3882 if (lpfc_readl(phba->HSregaddr, &status)) 3883 return 1; 3884 3885 /* 3886 * Check status register every 100ms for 5 retries, then every 3887 * 500ms for 5, then every 2.5 sec for 5, then reset board and 3888 * every 2.5 sec for 4. 3889 * Break our of the loop if errors occurred during init. 3890 */ 3891 while (((status & mask) != mask) && 3892 !(status & HS_FFERM) && 3893 i++ < 20) { 3894 3895 if (i <= 5) 3896 msleep(10); 3897 else if (i <= 10) 3898 msleep(500); 3899 else 3900 msleep(2500); 3901 3902 if (i == 15) { 3903 /* Do post */ 3904 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3905 lpfc_sli_brdrestart(phba); 3906 } 3907 /* Read the HBA Host Status Register */ 3908 if (lpfc_readl(phba->HSregaddr, &status)) { 3909 retval = 1; 3910 break; 3911 } 3912 } 3913 3914 /* Check to see if any errors occurred during init */ 3915 if ((status & HS_FFERM) || (i >= 20)) { 3916 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 3917 "2751 Adapter failed to restart, " 3918 "status reg x%x, FW Data: A8 x%x AC x%x\n", 3919 status, 3920 readl(phba->MBslimaddr + 0xa8), 3921 readl(phba->MBslimaddr + 0xac)); 3922 phba->link_state = LPFC_HBA_ERROR; 3923 retval = 1; 3924 } 3925 3926 return retval; 3927 } 3928 3929 /** 3930 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 3931 * @phba: Pointer to HBA context object. 3932 * @mask: Bit mask to be checked. 3933 * 3934 * This function checks the host status register to check if HBA is 3935 * ready. This function will wait in a loop for the HBA to be ready 3936 * If the HBA is not ready , the function will will reset the HBA PCI 3937 * function again. The function returns 1 when HBA fail to be ready 3938 * otherwise returns zero. 3939 **/ 3940 static int 3941 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 3942 { 3943 uint32_t status; 3944 int retval = 0; 3945 3946 /* Read the HBA Host Status Register */ 3947 status = lpfc_sli4_post_status_check(phba); 3948 3949 if (status) { 3950 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3951 lpfc_sli_brdrestart(phba); 3952 status = lpfc_sli4_post_status_check(phba); 3953 } 3954 3955 /* Check to see if any errors occurred during init */ 3956 if (status) { 3957 phba->link_state = LPFC_HBA_ERROR; 3958 retval = 1; 3959 } else 3960 phba->sli4_hba.intr_enable = 0; 3961 3962 return retval; 3963 } 3964 3965 /** 3966 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 3967 * @phba: Pointer to HBA context object. 3968 * @mask: Bit mask to be checked. 3969 * 3970 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 3971 * from the API jump table function pointer from the lpfc_hba struct. 3972 **/ 3973 int 3974 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 3975 { 3976 return phba->lpfc_sli_brdready(phba, mask); 3977 } 3978 3979 #define BARRIER_TEST_PATTERN (0xdeadbeef) 3980 3981 /** 3982 * lpfc_reset_barrier - Make HBA ready for HBA reset 3983 * @phba: Pointer to HBA context object. 3984 * 3985 * This function is called before resetting an HBA. This function is called 3986 * with hbalock held and requests HBA to quiesce DMAs before a reset. 3987 **/ 3988 void lpfc_reset_barrier(struct lpfc_hba *phba) 3989 { 3990 uint32_t __iomem *resp_buf; 3991 uint32_t __iomem *mbox_buf; 3992 volatile uint32_t mbox; 3993 uint32_t hc_copy, ha_copy, resp_data; 3994 int i; 3995 uint8_t hdrtype; 3996 3997 lockdep_assert_held(&phba->hbalock); 3998 3999 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4000 if (hdrtype != 0x80 || 4001 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4002 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4003 return; 4004 4005 /* 4006 * Tell the other part of the chip to suspend temporarily all 4007 * its DMA activity. 4008 */ 4009 resp_buf = phba->MBslimaddr; 4010 4011 /* Disable the error attention */ 4012 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4013 return; 4014 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4015 readl(phba->HCregaddr); /* flush */ 4016 phba->link_flag |= LS_IGNORE_ERATT; 4017 4018 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4019 return; 4020 if (ha_copy & HA_ERATT) { 4021 /* Clear Chip error bit */ 4022 writel(HA_ERATT, phba->HAregaddr); 4023 phba->pport->stopped = 1; 4024 } 4025 4026 mbox = 0; 4027 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4028 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4029 4030 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4031 mbox_buf = phba->MBslimaddr; 4032 writel(mbox, mbox_buf); 4033 4034 for (i = 0; i < 50; i++) { 4035 if (lpfc_readl((resp_buf + 1), &resp_data)) 4036 return; 4037 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4038 mdelay(1); 4039 else 4040 break; 4041 } 4042 resp_data = 0; 4043 if (lpfc_readl((resp_buf + 1), &resp_data)) 4044 return; 4045 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4046 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4047 phba->pport->stopped) 4048 goto restore_hc; 4049 else 4050 goto clear_errat; 4051 } 4052 4053 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4054 resp_data = 0; 4055 for (i = 0; i < 500; i++) { 4056 if (lpfc_readl(resp_buf, &resp_data)) 4057 return; 4058 if (resp_data != mbox) 4059 mdelay(1); 4060 else 4061 break; 4062 } 4063 4064 clear_errat: 4065 4066 while (++i < 500) { 4067 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4068 return; 4069 if (!(ha_copy & HA_ERATT)) 4070 mdelay(1); 4071 else 4072 break; 4073 } 4074 4075 if (readl(phba->HAregaddr) & HA_ERATT) { 4076 writel(HA_ERATT, phba->HAregaddr); 4077 phba->pport->stopped = 1; 4078 } 4079 4080 restore_hc: 4081 phba->link_flag &= ~LS_IGNORE_ERATT; 4082 writel(hc_copy, phba->HCregaddr); 4083 readl(phba->HCregaddr); /* flush */ 4084 } 4085 4086 /** 4087 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4088 * @phba: Pointer to HBA context object. 4089 * 4090 * This function issues a kill_board mailbox command and waits for 4091 * the error attention interrupt. This function is called for stopping 4092 * the firmware processing. The caller is not required to hold any 4093 * locks. This function calls lpfc_hba_down_post function to free 4094 * any pending commands after the kill. The function will return 1 when it 4095 * fails to kill the board else will return 0. 4096 **/ 4097 int 4098 lpfc_sli_brdkill(struct lpfc_hba *phba) 4099 { 4100 struct lpfc_sli *psli; 4101 LPFC_MBOXQ_t *pmb; 4102 uint32_t status; 4103 uint32_t ha_copy; 4104 int retval; 4105 int i = 0; 4106 4107 psli = &phba->sli; 4108 4109 /* Kill HBA */ 4110 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4111 "0329 Kill HBA Data: x%x x%x\n", 4112 phba->pport->port_state, psli->sli_flag); 4113 4114 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4115 if (!pmb) 4116 return 1; 4117 4118 /* Disable the error attention */ 4119 spin_lock_irq(&phba->hbalock); 4120 if (lpfc_readl(phba->HCregaddr, &status)) { 4121 spin_unlock_irq(&phba->hbalock); 4122 mempool_free(pmb, phba->mbox_mem_pool); 4123 return 1; 4124 } 4125 status &= ~HC_ERINT_ENA; 4126 writel(status, phba->HCregaddr); 4127 readl(phba->HCregaddr); /* flush */ 4128 phba->link_flag |= LS_IGNORE_ERATT; 4129 spin_unlock_irq(&phba->hbalock); 4130 4131 lpfc_kill_board(phba, pmb); 4132 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4133 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4134 4135 if (retval != MBX_SUCCESS) { 4136 if (retval != MBX_BUSY) 4137 mempool_free(pmb, phba->mbox_mem_pool); 4138 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4139 "2752 KILL_BOARD command failed retval %d\n", 4140 retval); 4141 spin_lock_irq(&phba->hbalock); 4142 phba->link_flag &= ~LS_IGNORE_ERATT; 4143 spin_unlock_irq(&phba->hbalock); 4144 return 1; 4145 } 4146 4147 spin_lock_irq(&phba->hbalock); 4148 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4149 spin_unlock_irq(&phba->hbalock); 4150 4151 mempool_free(pmb, phba->mbox_mem_pool); 4152 4153 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4154 * attention every 100ms for 3 seconds. If we don't get ERATT after 4155 * 3 seconds we still set HBA_ERROR state because the status of the 4156 * board is now undefined. 4157 */ 4158 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4159 return 1; 4160 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4161 mdelay(100); 4162 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4163 return 1; 4164 } 4165 4166 del_timer_sync(&psli->mbox_tmo); 4167 if (ha_copy & HA_ERATT) { 4168 writel(HA_ERATT, phba->HAregaddr); 4169 phba->pport->stopped = 1; 4170 } 4171 spin_lock_irq(&phba->hbalock); 4172 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4173 psli->mbox_active = NULL; 4174 phba->link_flag &= ~LS_IGNORE_ERATT; 4175 spin_unlock_irq(&phba->hbalock); 4176 4177 lpfc_hba_down_post(phba); 4178 phba->link_state = LPFC_HBA_ERROR; 4179 4180 return ha_copy & HA_ERATT ? 0 : 1; 4181 } 4182 4183 /** 4184 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4185 * @phba: Pointer to HBA context object. 4186 * 4187 * This function resets the HBA by writing HC_INITFF to the control 4188 * register. After the HBA resets, this function resets all the iocb ring 4189 * indices. This function disables PCI layer parity checking during 4190 * the reset. 4191 * This function returns 0 always. 4192 * The caller is not required to hold any locks. 4193 **/ 4194 int 4195 lpfc_sli_brdreset(struct lpfc_hba *phba) 4196 { 4197 struct lpfc_sli *psli; 4198 struct lpfc_sli_ring *pring; 4199 uint16_t cfg_value; 4200 int i; 4201 4202 psli = &phba->sli; 4203 4204 /* Reset HBA */ 4205 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4206 "0325 Reset HBA Data: x%x x%x\n", 4207 (phba->pport) ? phba->pport->port_state : 0, 4208 psli->sli_flag); 4209 4210 /* perform board reset */ 4211 phba->fc_eventTag = 0; 4212 phba->link_events = 0; 4213 if (phba->pport) { 4214 phba->pport->fc_myDID = 0; 4215 phba->pport->fc_prevDID = 0; 4216 } 4217 4218 /* Turn off parity checking and serr during the physical reset */ 4219 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4220 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4221 (cfg_value & 4222 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4223 4224 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4225 4226 /* Now toggle INITFF bit in the Host Control Register */ 4227 writel(HC_INITFF, phba->HCregaddr); 4228 mdelay(1); 4229 readl(phba->HCregaddr); /* flush */ 4230 writel(0, phba->HCregaddr); 4231 readl(phba->HCregaddr); /* flush */ 4232 4233 /* Restore PCI cmd register */ 4234 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4235 4236 /* Initialize relevant SLI info */ 4237 for (i = 0; i < psli->num_rings; i++) { 4238 pring = &psli->sli3_ring[i]; 4239 pring->flag = 0; 4240 pring->sli.sli3.rspidx = 0; 4241 pring->sli.sli3.next_cmdidx = 0; 4242 pring->sli.sli3.local_getidx = 0; 4243 pring->sli.sli3.cmdidx = 0; 4244 pring->missbufcnt = 0; 4245 } 4246 4247 phba->link_state = LPFC_WARM_START; 4248 return 0; 4249 } 4250 4251 /** 4252 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4253 * @phba: Pointer to HBA context object. 4254 * 4255 * This function resets a SLI4 HBA. This function disables PCI layer parity 4256 * checking during resets the device. The caller is not required to hold 4257 * any locks. 4258 * 4259 * This function returns 0 always. 4260 **/ 4261 int 4262 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4263 { 4264 struct lpfc_sli *psli = &phba->sli; 4265 uint16_t cfg_value; 4266 int rc = 0; 4267 4268 /* Reset HBA */ 4269 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4270 "0295 Reset HBA Data: x%x x%x x%x\n", 4271 phba->pport->port_state, psli->sli_flag, 4272 phba->hba_flag); 4273 4274 /* perform board reset */ 4275 phba->fc_eventTag = 0; 4276 phba->link_events = 0; 4277 phba->pport->fc_myDID = 0; 4278 phba->pport->fc_prevDID = 0; 4279 4280 spin_lock_irq(&phba->hbalock); 4281 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4282 phba->fcf.fcf_flag = 0; 4283 spin_unlock_irq(&phba->hbalock); 4284 4285 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4286 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4287 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4288 return rc; 4289 } 4290 4291 /* Now physically reset the device */ 4292 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4293 "0389 Performing PCI function reset!\n"); 4294 4295 /* Turn off parity checking and serr during the physical reset */ 4296 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4297 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4298 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4299 4300 /* Perform FCoE PCI function reset before freeing queue memory */ 4301 rc = lpfc_pci_function_reset(phba); 4302 lpfc_sli4_queue_destroy(phba); 4303 4304 /* Restore PCI cmd register */ 4305 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4306 4307 return rc; 4308 } 4309 4310 /** 4311 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4312 * @phba: Pointer to HBA context object. 4313 * 4314 * This function is called in the SLI initialization code path to 4315 * restart the HBA. The caller is not required to hold any lock. 4316 * This function writes MBX_RESTART mailbox command to the SLIM and 4317 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4318 * function to free any pending commands. The function enables 4319 * POST only during the first initialization. The function returns zero. 4320 * The function does not guarantee completion of MBX_RESTART mailbox 4321 * command before the return of this function. 4322 **/ 4323 static int 4324 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4325 { 4326 MAILBOX_t *mb; 4327 struct lpfc_sli *psli; 4328 volatile uint32_t word0; 4329 void __iomem *to_slim; 4330 uint32_t hba_aer_enabled; 4331 4332 spin_lock_irq(&phba->hbalock); 4333 4334 /* Take PCIe device Advanced Error Reporting (AER) state */ 4335 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4336 4337 psli = &phba->sli; 4338 4339 /* Restart HBA */ 4340 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4341 "0337 Restart HBA Data: x%x x%x\n", 4342 (phba->pport) ? phba->pport->port_state : 0, 4343 psli->sli_flag); 4344 4345 word0 = 0; 4346 mb = (MAILBOX_t *) &word0; 4347 mb->mbxCommand = MBX_RESTART; 4348 mb->mbxHc = 1; 4349 4350 lpfc_reset_barrier(phba); 4351 4352 to_slim = phba->MBslimaddr; 4353 writel(*(uint32_t *) mb, to_slim); 4354 readl(to_slim); /* flush */ 4355 4356 /* Only skip post after fc_ffinit is completed */ 4357 if (phba->pport && phba->pport->port_state) 4358 word0 = 1; /* This is really setting up word1 */ 4359 else 4360 word0 = 0; /* This is really setting up word1 */ 4361 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4362 writel(*(uint32_t *) mb, to_slim); 4363 readl(to_slim); /* flush */ 4364 4365 lpfc_sli_brdreset(phba); 4366 if (phba->pport) 4367 phba->pport->stopped = 0; 4368 phba->link_state = LPFC_INIT_START; 4369 phba->hba_flag = 0; 4370 spin_unlock_irq(&phba->hbalock); 4371 4372 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4373 psli->stats_start = get_seconds(); 4374 4375 /* Give the INITFF and Post time to settle. */ 4376 mdelay(100); 4377 4378 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4379 if (hba_aer_enabled) 4380 pci_disable_pcie_error_reporting(phba->pcidev); 4381 4382 lpfc_hba_down_post(phba); 4383 4384 return 0; 4385 } 4386 4387 /** 4388 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4389 * @phba: Pointer to HBA context object. 4390 * 4391 * This function is called in the SLI initialization code path to restart 4392 * a SLI4 HBA. The caller is not required to hold any lock. 4393 * At the end of the function, it calls lpfc_hba_down_post function to 4394 * free any pending commands. 4395 **/ 4396 static int 4397 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4398 { 4399 struct lpfc_sli *psli = &phba->sli; 4400 uint32_t hba_aer_enabled; 4401 int rc; 4402 4403 /* Restart HBA */ 4404 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4405 "0296 Restart HBA Data: x%x x%x\n", 4406 phba->pport->port_state, psli->sli_flag); 4407 4408 /* Take PCIe device Advanced Error Reporting (AER) state */ 4409 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4410 4411 rc = lpfc_sli4_brdreset(phba); 4412 4413 spin_lock_irq(&phba->hbalock); 4414 phba->pport->stopped = 0; 4415 phba->link_state = LPFC_INIT_START; 4416 phba->hba_flag = 0; 4417 spin_unlock_irq(&phba->hbalock); 4418 4419 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4420 psli->stats_start = get_seconds(); 4421 4422 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4423 if (hba_aer_enabled) 4424 pci_disable_pcie_error_reporting(phba->pcidev); 4425 4426 lpfc_hba_down_post(phba); 4427 4428 return rc; 4429 } 4430 4431 /** 4432 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4433 * @phba: Pointer to HBA context object. 4434 * 4435 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4436 * API jump table function pointer from the lpfc_hba struct. 4437 **/ 4438 int 4439 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4440 { 4441 return phba->lpfc_sli_brdrestart(phba); 4442 } 4443 4444 /** 4445 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4446 * @phba: Pointer to HBA context object. 4447 * 4448 * This function is called after a HBA restart to wait for successful 4449 * restart of the HBA. Successful restart of the HBA is indicated by 4450 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4451 * iteration, the function will restart the HBA again. The function returns 4452 * zero if HBA successfully restarted else returns negative error code. 4453 **/ 4454 int 4455 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4456 { 4457 uint32_t status, i = 0; 4458 4459 /* Read the HBA Host Status Register */ 4460 if (lpfc_readl(phba->HSregaddr, &status)) 4461 return -EIO; 4462 4463 /* Check status register to see what current state is */ 4464 i = 0; 4465 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4466 4467 /* Check every 10ms for 10 retries, then every 100ms for 90 4468 * retries, then every 1 sec for 50 retires for a total of 4469 * ~60 seconds before reset the board again and check every 4470 * 1 sec for 50 retries. The up to 60 seconds before the 4471 * board ready is required by the Falcon FIPS zeroization 4472 * complete, and any reset the board in between shall cause 4473 * restart of zeroization, further delay the board ready. 4474 */ 4475 if (i++ >= 200) { 4476 /* Adapter failed to init, timeout, status reg 4477 <status> */ 4478 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4479 "0436 Adapter failed to init, " 4480 "timeout, status reg x%x, " 4481 "FW Data: A8 x%x AC x%x\n", status, 4482 readl(phba->MBslimaddr + 0xa8), 4483 readl(phba->MBslimaddr + 0xac)); 4484 phba->link_state = LPFC_HBA_ERROR; 4485 return -ETIMEDOUT; 4486 } 4487 4488 /* Check to see if any errors occurred during init */ 4489 if (status & HS_FFERM) { 4490 /* ERROR: During chipset initialization */ 4491 /* Adapter failed to init, chipset, status reg 4492 <status> */ 4493 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4494 "0437 Adapter failed to init, " 4495 "chipset, status reg x%x, " 4496 "FW Data: A8 x%x AC x%x\n", status, 4497 readl(phba->MBslimaddr + 0xa8), 4498 readl(phba->MBslimaddr + 0xac)); 4499 phba->link_state = LPFC_HBA_ERROR; 4500 return -EIO; 4501 } 4502 4503 if (i <= 10) 4504 msleep(10); 4505 else if (i <= 100) 4506 msleep(100); 4507 else 4508 msleep(1000); 4509 4510 if (i == 150) { 4511 /* Do post */ 4512 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4513 lpfc_sli_brdrestart(phba); 4514 } 4515 /* Read the HBA Host Status Register */ 4516 if (lpfc_readl(phba->HSregaddr, &status)) 4517 return -EIO; 4518 } 4519 4520 /* Check to see if any errors occurred during init */ 4521 if (status & HS_FFERM) { 4522 /* ERROR: During chipset initialization */ 4523 /* Adapter failed to init, chipset, status reg <status> */ 4524 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4525 "0438 Adapter failed to init, chipset, " 4526 "status reg x%x, " 4527 "FW Data: A8 x%x AC x%x\n", status, 4528 readl(phba->MBslimaddr + 0xa8), 4529 readl(phba->MBslimaddr + 0xac)); 4530 phba->link_state = LPFC_HBA_ERROR; 4531 return -EIO; 4532 } 4533 4534 /* Clear all interrupt enable conditions */ 4535 writel(0, phba->HCregaddr); 4536 readl(phba->HCregaddr); /* flush */ 4537 4538 /* setup host attn register */ 4539 writel(0xffffffff, phba->HAregaddr); 4540 readl(phba->HAregaddr); /* flush */ 4541 return 0; 4542 } 4543 4544 /** 4545 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4546 * 4547 * This function calculates and returns the number of HBQs required to be 4548 * configured. 4549 **/ 4550 int 4551 lpfc_sli_hbq_count(void) 4552 { 4553 return ARRAY_SIZE(lpfc_hbq_defs); 4554 } 4555 4556 /** 4557 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4558 * 4559 * This function adds the number of hbq entries in every HBQ to get 4560 * the total number of hbq entries required for the HBA and returns 4561 * the total count. 4562 **/ 4563 static int 4564 lpfc_sli_hbq_entry_count(void) 4565 { 4566 int hbq_count = lpfc_sli_hbq_count(); 4567 int count = 0; 4568 int i; 4569 4570 for (i = 0; i < hbq_count; ++i) 4571 count += lpfc_hbq_defs[i]->entry_count; 4572 return count; 4573 } 4574 4575 /** 4576 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4577 * 4578 * This function calculates amount of memory required for all hbq entries 4579 * to be configured and returns the total memory required. 4580 **/ 4581 int 4582 lpfc_sli_hbq_size(void) 4583 { 4584 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4585 } 4586 4587 /** 4588 * lpfc_sli_hbq_setup - configure and initialize HBQs 4589 * @phba: Pointer to HBA context object. 4590 * 4591 * This function is called during the SLI initialization to configure 4592 * all the HBQs and post buffers to the HBQ. The caller is not 4593 * required to hold any locks. This function will return zero if successful 4594 * else it will return negative error code. 4595 **/ 4596 static int 4597 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4598 { 4599 int hbq_count = lpfc_sli_hbq_count(); 4600 LPFC_MBOXQ_t *pmb; 4601 MAILBOX_t *pmbox; 4602 uint32_t hbqno; 4603 uint32_t hbq_entry_index; 4604 4605 /* Get a Mailbox buffer to setup mailbox 4606 * commands for HBA initialization 4607 */ 4608 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4609 4610 if (!pmb) 4611 return -ENOMEM; 4612 4613 pmbox = &pmb->u.mb; 4614 4615 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4616 phba->link_state = LPFC_INIT_MBX_CMDS; 4617 phba->hbq_in_use = 1; 4618 4619 hbq_entry_index = 0; 4620 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4621 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4622 phba->hbqs[hbqno].hbqPutIdx = 0; 4623 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4624 phba->hbqs[hbqno].entry_count = 4625 lpfc_hbq_defs[hbqno]->entry_count; 4626 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4627 hbq_entry_index, pmb); 4628 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4629 4630 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4631 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4632 mbxStatus <status>, ring <num> */ 4633 4634 lpfc_printf_log(phba, KERN_ERR, 4635 LOG_SLI | LOG_VPORT, 4636 "1805 Adapter failed to init. " 4637 "Data: x%x x%x x%x\n", 4638 pmbox->mbxCommand, 4639 pmbox->mbxStatus, hbqno); 4640 4641 phba->link_state = LPFC_HBA_ERROR; 4642 mempool_free(pmb, phba->mbox_mem_pool); 4643 return -ENXIO; 4644 } 4645 } 4646 phba->hbq_count = hbq_count; 4647 4648 mempool_free(pmb, phba->mbox_mem_pool); 4649 4650 /* Initially populate or replenish the HBQs */ 4651 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 4652 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 4653 return 0; 4654 } 4655 4656 /** 4657 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 4658 * @phba: Pointer to HBA context object. 4659 * 4660 * This function is called during the SLI initialization to configure 4661 * all the HBQs and post buffers to the HBQ. The caller is not 4662 * required to hold any locks. This function will return zero if successful 4663 * else it will return negative error code. 4664 **/ 4665 static int 4666 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 4667 { 4668 phba->hbq_in_use = 1; 4669 phba->hbqs[LPFC_ELS_HBQ].entry_count = 4670 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 4671 phba->hbq_count = 1; 4672 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 4673 /* Initially populate or replenish the HBQs */ 4674 return 0; 4675 } 4676 4677 /** 4678 * lpfc_sli_config_port - Issue config port mailbox command 4679 * @phba: Pointer to HBA context object. 4680 * @sli_mode: sli mode - 2/3 4681 * 4682 * This function is called by the sli initialization code path 4683 * to issue config_port mailbox command. This function restarts the 4684 * HBA firmware and issues a config_port mailbox command to configure 4685 * the SLI interface in the sli mode specified by sli_mode 4686 * variable. The caller is not required to hold any locks. 4687 * The function returns 0 if successful, else returns negative error 4688 * code. 4689 **/ 4690 int 4691 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 4692 { 4693 LPFC_MBOXQ_t *pmb; 4694 uint32_t resetcount = 0, rc = 0, done = 0; 4695 4696 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4697 if (!pmb) { 4698 phba->link_state = LPFC_HBA_ERROR; 4699 return -ENOMEM; 4700 } 4701 4702 phba->sli_rev = sli_mode; 4703 while (resetcount < 2 && !done) { 4704 spin_lock_irq(&phba->hbalock); 4705 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 4706 spin_unlock_irq(&phba->hbalock); 4707 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4708 lpfc_sli_brdrestart(phba); 4709 rc = lpfc_sli_chipset_init(phba); 4710 if (rc) 4711 break; 4712 4713 spin_lock_irq(&phba->hbalock); 4714 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4715 spin_unlock_irq(&phba->hbalock); 4716 resetcount++; 4717 4718 /* Call pre CONFIG_PORT mailbox command initialization. A 4719 * value of 0 means the call was successful. Any other 4720 * nonzero value is a failure, but if ERESTART is returned, 4721 * the driver may reset the HBA and try again. 4722 */ 4723 rc = lpfc_config_port_prep(phba); 4724 if (rc == -ERESTART) { 4725 phba->link_state = LPFC_LINK_UNKNOWN; 4726 continue; 4727 } else if (rc) 4728 break; 4729 4730 phba->link_state = LPFC_INIT_MBX_CMDS; 4731 lpfc_config_port(phba, pmb); 4732 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 4733 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 4734 LPFC_SLI3_HBQ_ENABLED | 4735 LPFC_SLI3_CRP_ENABLED | 4736 LPFC_SLI3_BG_ENABLED | 4737 LPFC_SLI3_DSS_ENABLED); 4738 if (rc != MBX_SUCCESS) { 4739 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4740 "0442 Adapter failed to init, mbxCmd x%x " 4741 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 4742 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 4743 spin_lock_irq(&phba->hbalock); 4744 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 4745 spin_unlock_irq(&phba->hbalock); 4746 rc = -ENXIO; 4747 } else { 4748 /* Allow asynchronous mailbox command to go through */ 4749 spin_lock_irq(&phba->hbalock); 4750 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 4751 spin_unlock_irq(&phba->hbalock); 4752 done = 1; 4753 4754 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 4755 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 4756 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 4757 "3110 Port did not grant ASABT\n"); 4758 } 4759 } 4760 if (!done) { 4761 rc = -EINVAL; 4762 goto do_prep_failed; 4763 } 4764 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 4765 if (!pmb->u.mb.un.varCfgPort.cMA) { 4766 rc = -ENXIO; 4767 goto do_prep_failed; 4768 } 4769 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 4770 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 4771 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 4772 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 4773 phba->max_vpi : phba->max_vports; 4774 4775 } else 4776 phba->max_vpi = 0; 4777 phba->fips_level = 0; 4778 phba->fips_spec_rev = 0; 4779 if (pmb->u.mb.un.varCfgPort.gdss) { 4780 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED; 4781 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level; 4782 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev; 4783 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4784 "2850 Security Crypto Active. FIPS x%d " 4785 "(Spec Rev: x%d)", 4786 phba->fips_level, phba->fips_spec_rev); 4787 } 4788 if (pmb->u.mb.un.varCfgPort.sec_err) { 4789 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4790 "2856 Config Port Security Crypto " 4791 "Error: x%x ", 4792 pmb->u.mb.un.varCfgPort.sec_err); 4793 } 4794 if (pmb->u.mb.un.varCfgPort.gerbm) 4795 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 4796 if (pmb->u.mb.un.varCfgPort.gcrp) 4797 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 4798 4799 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 4800 phba->port_gp = phba->mbox->us.s3_pgp.port; 4801 4802 if (phba->cfg_enable_bg) { 4803 if (pmb->u.mb.un.varCfgPort.gbg) 4804 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 4805 else 4806 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4807 "0443 Adapter did not grant " 4808 "BlockGuard\n"); 4809 } 4810 } else { 4811 phba->hbq_get = NULL; 4812 phba->port_gp = phba->mbox->us.s2.port; 4813 phba->max_vpi = 0; 4814 } 4815 do_prep_failed: 4816 mempool_free(pmb, phba->mbox_mem_pool); 4817 return rc; 4818 } 4819 4820 4821 /** 4822 * lpfc_sli_hba_setup - SLI initialization function 4823 * @phba: Pointer to HBA context object. 4824 * 4825 * This function is the main SLI initialization function. This function 4826 * is called by the HBA initialization code, HBA reset code and HBA 4827 * error attention handler code. Caller is not required to hold any 4828 * locks. This function issues config_port mailbox command to configure 4829 * the SLI, setup iocb rings and HBQ rings. In the end the function 4830 * calls the config_port_post function to issue init_link mailbox 4831 * command and to start the discovery. The function will return zero 4832 * if successful, else it will return negative error code. 4833 **/ 4834 int 4835 lpfc_sli_hba_setup(struct lpfc_hba *phba) 4836 { 4837 uint32_t rc; 4838 int mode = 3, i; 4839 int longs; 4840 4841 switch (phba->cfg_sli_mode) { 4842 case 2: 4843 if (phba->cfg_enable_npiv) { 4844 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4845 "1824 NPIV enabled: Override sli_mode " 4846 "parameter (%d) to auto (0).\n", 4847 phba->cfg_sli_mode); 4848 break; 4849 } 4850 mode = 2; 4851 break; 4852 case 0: 4853 case 3: 4854 break; 4855 default: 4856 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4857 "1819 Unrecognized sli_mode parameter: %d.\n", 4858 phba->cfg_sli_mode); 4859 4860 break; 4861 } 4862 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 4863 4864 rc = lpfc_sli_config_port(phba, mode); 4865 4866 if (rc && phba->cfg_sli_mode == 3) 4867 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4868 "1820 Unable to select SLI-3. " 4869 "Not supported by adapter.\n"); 4870 if (rc && mode != 2) 4871 rc = lpfc_sli_config_port(phba, 2); 4872 else if (rc && mode == 2) 4873 rc = lpfc_sli_config_port(phba, 3); 4874 if (rc) 4875 goto lpfc_sli_hba_setup_error; 4876 4877 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 4878 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 4879 rc = pci_enable_pcie_error_reporting(phba->pcidev); 4880 if (!rc) { 4881 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4882 "2709 This device supports " 4883 "Advanced Error Reporting (AER)\n"); 4884 spin_lock_irq(&phba->hbalock); 4885 phba->hba_flag |= HBA_AER_ENABLED; 4886 spin_unlock_irq(&phba->hbalock); 4887 } else { 4888 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4889 "2708 This device does not support " 4890 "Advanced Error Reporting (AER): %d\n", 4891 rc); 4892 phba->cfg_aer_support = 0; 4893 } 4894 } 4895 4896 if (phba->sli_rev == 3) { 4897 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 4898 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 4899 } else { 4900 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 4901 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 4902 phba->sli3_options = 0; 4903 } 4904 4905 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4906 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 4907 phba->sli_rev, phba->max_vpi); 4908 rc = lpfc_sli_ring_map(phba); 4909 4910 if (rc) 4911 goto lpfc_sli_hba_setup_error; 4912 4913 /* Initialize VPIs. */ 4914 if (phba->sli_rev == LPFC_SLI_REV3) { 4915 /* 4916 * The VPI bitmask and physical ID array are allocated 4917 * and initialized once only - at driver load. A port 4918 * reset doesn't need to reinitialize this memory. 4919 */ 4920 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 4921 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 4922 phba->vpi_bmask = kzalloc(longs * sizeof(unsigned long), 4923 GFP_KERNEL); 4924 if (!phba->vpi_bmask) { 4925 rc = -ENOMEM; 4926 goto lpfc_sli_hba_setup_error; 4927 } 4928 4929 phba->vpi_ids = kzalloc( 4930 (phba->max_vpi+1) * sizeof(uint16_t), 4931 GFP_KERNEL); 4932 if (!phba->vpi_ids) { 4933 kfree(phba->vpi_bmask); 4934 rc = -ENOMEM; 4935 goto lpfc_sli_hba_setup_error; 4936 } 4937 for (i = 0; i < phba->max_vpi; i++) 4938 phba->vpi_ids[i] = i; 4939 } 4940 } 4941 4942 /* Init HBQs */ 4943 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 4944 rc = lpfc_sli_hbq_setup(phba); 4945 if (rc) 4946 goto lpfc_sli_hba_setup_error; 4947 } 4948 spin_lock_irq(&phba->hbalock); 4949 phba->sli.sli_flag |= LPFC_PROCESS_LA; 4950 spin_unlock_irq(&phba->hbalock); 4951 4952 rc = lpfc_config_port_post(phba); 4953 if (rc) 4954 goto lpfc_sli_hba_setup_error; 4955 4956 return rc; 4957 4958 lpfc_sli_hba_setup_error: 4959 phba->link_state = LPFC_HBA_ERROR; 4960 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4961 "0445 Firmware initialization failed\n"); 4962 return rc; 4963 } 4964 4965 /** 4966 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 4967 * @phba: Pointer to HBA context object. 4968 * @mboxq: mailbox pointer. 4969 * This function issue a dump mailbox command to read config region 4970 * 23 and parse the records in the region and populate driver 4971 * data structure. 4972 **/ 4973 static int 4974 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 4975 { 4976 LPFC_MBOXQ_t *mboxq; 4977 struct lpfc_dmabuf *mp; 4978 struct lpfc_mqe *mqe; 4979 uint32_t data_length; 4980 int rc; 4981 4982 /* Program the default value of vlan_id and fc_map */ 4983 phba->valid_vlan = 0; 4984 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 4985 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 4986 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 4987 4988 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4989 if (!mboxq) 4990 return -ENOMEM; 4991 4992 mqe = &mboxq->u.mqe; 4993 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 4994 rc = -ENOMEM; 4995 goto out_free_mboxq; 4996 } 4997 4998 mp = (struct lpfc_dmabuf *) mboxq->context1; 4999 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5000 5001 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5002 "(%d):2571 Mailbox cmd x%x Status x%x " 5003 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5004 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5005 "CQ: x%x x%x x%x x%x\n", 5006 mboxq->vport ? mboxq->vport->vpi : 0, 5007 bf_get(lpfc_mqe_command, mqe), 5008 bf_get(lpfc_mqe_status, mqe), 5009 mqe->un.mb_words[0], mqe->un.mb_words[1], 5010 mqe->un.mb_words[2], mqe->un.mb_words[3], 5011 mqe->un.mb_words[4], mqe->un.mb_words[5], 5012 mqe->un.mb_words[6], mqe->un.mb_words[7], 5013 mqe->un.mb_words[8], mqe->un.mb_words[9], 5014 mqe->un.mb_words[10], mqe->un.mb_words[11], 5015 mqe->un.mb_words[12], mqe->un.mb_words[13], 5016 mqe->un.mb_words[14], mqe->un.mb_words[15], 5017 mqe->un.mb_words[16], mqe->un.mb_words[50], 5018 mboxq->mcqe.word0, 5019 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5020 mboxq->mcqe.trailer); 5021 5022 if (rc) { 5023 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5024 kfree(mp); 5025 rc = -EIO; 5026 goto out_free_mboxq; 5027 } 5028 data_length = mqe->un.mb_words[5]; 5029 if (data_length > DMP_RGN23_SIZE) { 5030 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5031 kfree(mp); 5032 rc = -EIO; 5033 goto out_free_mboxq; 5034 } 5035 5036 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5037 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5038 kfree(mp); 5039 rc = 0; 5040 5041 out_free_mboxq: 5042 mempool_free(mboxq, phba->mbox_mem_pool); 5043 return rc; 5044 } 5045 5046 /** 5047 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5048 * @phba: pointer to lpfc hba data structure. 5049 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5050 * @vpd: pointer to the memory to hold resulting port vpd data. 5051 * @vpd_size: On input, the number of bytes allocated to @vpd. 5052 * On output, the number of data bytes in @vpd. 5053 * 5054 * This routine executes a READ_REV SLI4 mailbox command. In 5055 * addition, this routine gets the port vpd data. 5056 * 5057 * Return codes 5058 * 0 - successful 5059 * -ENOMEM - could not allocated memory. 5060 **/ 5061 static int 5062 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5063 uint8_t *vpd, uint32_t *vpd_size) 5064 { 5065 int rc = 0; 5066 uint32_t dma_size; 5067 struct lpfc_dmabuf *dmabuf; 5068 struct lpfc_mqe *mqe; 5069 5070 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5071 if (!dmabuf) 5072 return -ENOMEM; 5073 5074 /* 5075 * Get a DMA buffer for the vpd data resulting from the READ_REV 5076 * mailbox command. 5077 */ 5078 dma_size = *vpd_size; 5079 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size, 5080 &dmabuf->phys, GFP_KERNEL); 5081 if (!dmabuf->virt) { 5082 kfree(dmabuf); 5083 return -ENOMEM; 5084 } 5085 5086 /* 5087 * The SLI4 implementation of READ_REV conflicts at word1, 5088 * bits 31:16 and SLI4 adds vpd functionality not present 5089 * in SLI3. This code corrects the conflicts. 5090 */ 5091 lpfc_read_rev(phba, mboxq); 5092 mqe = &mboxq->u.mqe; 5093 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5094 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5095 mqe->un.read_rev.word1 &= 0x0000FFFF; 5096 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5097 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5098 5099 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5100 if (rc) { 5101 dma_free_coherent(&phba->pcidev->dev, dma_size, 5102 dmabuf->virt, dmabuf->phys); 5103 kfree(dmabuf); 5104 return -EIO; 5105 } 5106 5107 /* 5108 * The available vpd length cannot be bigger than the 5109 * DMA buffer passed to the port. Catch the less than 5110 * case and update the caller's size. 5111 */ 5112 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5113 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5114 5115 memcpy(vpd, dmabuf->virt, *vpd_size); 5116 5117 dma_free_coherent(&phba->pcidev->dev, dma_size, 5118 dmabuf->virt, dmabuf->phys); 5119 kfree(dmabuf); 5120 return 0; 5121 } 5122 5123 /** 5124 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5125 * @phba: pointer to lpfc hba data structure. 5126 * 5127 * This routine retrieves SLI4 device physical port name this PCI function 5128 * is attached to. 5129 * 5130 * Return codes 5131 * 0 - successful 5132 * otherwise - failed to retrieve physical port name 5133 **/ 5134 static int 5135 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5136 { 5137 LPFC_MBOXQ_t *mboxq; 5138 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5139 struct lpfc_controller_attribute *cntl_attr; 5140 struct lpfc_mbx_get_port_name *get_port_name; 5141 void *virtaddr = NULL; 5142 uint32_t alloclen, reqlen; 5143 uint32_t shdr_status, shdr_add_status; 5144 union lpfc_sli4_cfg_shdr *shdr; 5145 char cport_name = 0; 5146 int rc; 5147 5148 /* We assume nothing at this point */ 5149 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5150 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5151 5152 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5153 if (!mboxq) 5154 return -ENOMEM; 5155 /* obtain link type and link number via READ_CONFIG */ 5156 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5157 lpfc_sli4_read_config(phba); 5158 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5159 goto retrieve_ppname; 5160 5161 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5162 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5163 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5164 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5165 LPFC_SLI4_MBX_NEMBED); 5166 if (alloclen < reqlen) { 5167 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5168 "3084 Allocated DMA memory size (%d) is " 5169 "less than the requested DMA memory size " 5170 "(%d)\n", alloclen, reqlen); 5171 rc = -ENOMEM; 5172 goto out_free_mboxq; 5173 } 5174 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5175 virtaddr = mboxq->sge_array->addr[0]; 5176 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5177 shdr = &mbx_cntl_attr->cfg_shdr; 5178 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5179 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5180 if (shdr_status || shdr_add_status || rc) { 5181 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5182 "3085 Mailbox x%x (x%x/x%x) failed, " 5183 "rc:x%x, status:x%x, add_status:x%x\n", 5184 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5185 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5186 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5187 rc, shdr_status, shdr_add_status); 5188 rc = -ENXIO; 5189 goto out_free_mboxq; 5190 } 5191 cntl_attr = &mbx_cntl_attr->cntl_attr; 5192 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5193 phba->sli4_hba.lnk_info.lnk_tp = 5194 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5195 phba->sli4_hba.lnk_info.lnk_no = 5196 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5197 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5198 "3086 lnk_type:%d, lnk_numb:%d\n", 5199 phba->sli4_hba.lnk_info.lnk_tp, 5200 phba->sli4_hba.lnk_info.lnk_no); 5201 5202 retrieve_ppname: 5203 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5204 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5205 sizeof(struct lpfc_mbx_get_port_name) - 5206 sizeof(struct lpfc_sli4_cfg_mhdr), 5207 LPFC_SLI4_MBX_EMBED); 5208 get_port_name = &mboxq->u.mqe.un.get_port_name; 5209 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5210 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5211 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5212 phba->sli4_hba.lnk_info.lnk_tp); 5213 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5214 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5215 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5216 if (shdr_status || shdr_add_status || rc) { 5217 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5218 "3087 Mailbox x%x (x%x/x%x) failed: " 5219 "rc:x%x, status:x%x, add_status:x%x\n", 5220 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5221 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5222 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5223 rc, shdr_status, shdr_add_status); 5224 rc = -ENXIO; 5225 goto out_free_mboxq; 5226 } 5227 switch (phba->sli4_hba.lnk_info.lnk_no) { 5228 case LPFC_LINK_NUMBER_0: 5229 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5230 &get_port_name->u.response); 5231 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5232 break; 5233 case LPFC_LINK_NUMBER_1: 5234 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5235 &get_port_name->u.response); 5236 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5237 break; 5238 case LPFC_LINK_NUMBER_2: 5239 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5240 &get_port_name->u.response); 5241 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5242 break; 5243 case LPFC_LINK_NUMBER_3: 5244 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5245 &get_port_name->u.response); 5246 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5247 break; 5248 default: 5249 break; 5250 } 5251 5252 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5253 phba->Port[0] = cport_name; 5254 phba->Port[1] = '\0'; 5255 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5256 "3091 SLI get port name: %s\n", phba->Port); 5257 } 5258 5259 out_free_mboxq: 5260 if (rc != MBX_TIMEOUT) { 5261 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5262 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5263 else 5264 mempool_free(mboxq, phba->mbox_mem_pool); 5265 } 5266 return rc; 5267 } 5268 5269 /** 5270 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5271 * @phba: pointer to lpfc hba data structure. 5272 * 5273 * This routine is called to explicitly arm the SLI4 device's completion and 5274 * event queues 5275 **/ 5276 static void 5277 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5278 { 5279 int qidx; 5280 5281 lpfc_sli4_cq_release(phba->sli4_hba.mbx_cq, LPFC_QUEUE_REARM); 5282 lpfc_sli4_cq_release(phba->sli4_hba.els_cq, LPFC_QUEUE_REARM); 5283 if (phba->sli4_hba.nvmels_cq) 5284 lpfc_sli4_cq_release(phba->sli4_hba.nvmels_cq, 5285 LPFC_QUEUE_REARM); 5286 5287 if (phba->sli4_hba.fcp_cq) 5288 for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++) 5289 lpfc_sli4_cq_release(phba->sli4_hba.fcp_cq[qidx], 5290 LPFC_QUEUE_REARM); 5291 5292 if (phba->sli4_hba.nvme_cq) 5293 for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) 5294 lpfc_sli4_cq_release(phba->sli4_hba.nvme_cq[qidx], 5295 LPFC_QUEUE_REARM); 5296 5297 if (phba->cfg_fof) 5298 lpfc_sli4_cq_release(phba->sli4_hba.oas_cq, LPFC_QUEUE_REARM); 5299 5300 if (phba->sli4_hba.hba_eq) 5301 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) 5302 lpfc_sli4_eq_release(phba->sli4_hba.hba_eq[qidx], 5303 LPFC_QUEUE_REARM); 5304 5305 if (phba->nvmet_support) { 5306 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5307 lpfc_sli4_cq_release( 5308 phba->sli4_hba.nvmet_cqset[qidx], 5309 LPFC_QUEUE_REARM); 5310 } 5311 } 5312 5313 if (phba->cfg_fof) 5314 lpfc_sli4_eq_release(phba->sli4_hba.fof_eq, LPFC_QUEUE_REARM); 5315 } 5316 5317 /** 5318 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5319 * @phba: Pointer to HBA context object. 5320 * @type: The resource extent type. 5321 * @extnt_count: buffer to hold port available extent count. 5322 * @extnt_size: buffer to hold element count per extent. 5323 * 5324 * This function calls the port and retrievs the number of available 5325 * extents and their size for a particular extent type. 5326 * 5327 * Returns: 0 if successful. Nonzero otherwise. 5328 **/ 5329 int 5330 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5331 uint16_t *extnt_count, uint16_t *extnt_size) 5332 { 5333 int rc = 0; 5334 uint32_t length; 5335 uint32_t mbox_tmo; 5336 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5337 LPFC_MBOXQ_t *mbox; 5338 5339 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5340 if (!mbox) 5341 return -ENOMEM; 5342 5343 /* Find out how many extents are available for this resource type */ 5344 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5345 sizeof(struct lpfc_sli4_cfg_mhdr)); 5346 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5347 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5348 length, LPFC_SLI4_MBX_EMBED); 5349 5350 /* Send an extents count of 0 - the GET doesn't use it. */ 5351 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5352 LPFC_SLI4_MBX_EMBED); 5353 if (unlikely(rc)) { 5354 rc = -EIO; 5355 goto err_exit; 5356 } 5357 5358 if (!phba->sli4_hba.intr_enable) 5359 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5360 else { 5361 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5362 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5363 } 5364 if (unlikely(rc)) { 5365 rc = -EIO; 5366 goto err_exit; 5367 } 5368 5369 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5370 if (bf_get(lpfc_mbox_hdr_status, 5371 &rsrc_info->header.cfg_shdr.response)) { 5372 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5373 "2930 Failed to get resource extents " 5374 "Status 0x%x Add'l Status 0x%x\n", 5375 bf_get(lpfc_mbox_hdr_status, 5376 &rsrc_info->header.cfg_shdr.response), 5377 bf_get(lpfc_mbox_hdr_add_status, 5378 &rsrc_info->header.cfg_shdr.response)); 5379 rc = -EIO; 5380 goto err_exit; 5381 } 5382 5383 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5384 &rsrc_info->u.rsp); 5385 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5386 &rsrc_info->u.rsp); 5387 5388 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5389 "3162 Retrieved extents type-%d from port: count:%d, " 5390 "size:%d\n", type, *extnt_count, *extnt_size); 5391 5392 err_exit: 5393 mempool_free(mbox, phba->mbox_mem_pool); 5394 return rc; 5395 } 5396 5397 /** 5398 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5399 * @phba: Pointer to HBA context object. 5400 * @type: The extent type to check. 5401 * 5402 * This function reads the current available extents from the port and checks 5403 * if the extent count or extent size has changed since the last access. 5404 * Callers use this routine post port reset to understand if there is a 5405 * extent reprovisioning requirement. 5406 * 5407 * Returns: 5408 * -Error: error indicates problem. 5409 * 1: Extent count or size has changed. 5410 * 0: No changes. 5411 **/ 5412 static int 5413 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5414 { 5415 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5416 uint16_t size_diff, rsrc_ext_size; 5417 int rc = 0; 5418 struct lpfc_rsrc_blks *rsrc_entry; 5419 struct list_head *rsrc_blk_list = NULL; 5420 5421 size_diff = 0; 5422 curr_ext_cnt = 0; 5423 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5424 &rsrc_ext_cnt, 5425 &rsrc_ext_size); 5426 if (unlikely(rc)) 5427 return -EIO; 5428 5429 switch (type) { 5430 case LPFC_RSC_TYPE_FCOE_RPI: 5431 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5432 break; 5433 case LPFC_RSC_TYPE_FCOE_VPI: 5434 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5435 break; 5436 case LPFC_RSC_TYPE_FCOE_XRI: 5437 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5438 break; 5439 case LPFC_RSC_TYPE_FCOE_VFI: 5440 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5441 break; 5442 default: 5443 break; 5444 } 5445 5446 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5447 curr_ext_cnt++; 5448 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5449 size_diff++; 5450 } 5451 5452 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5453 rc = 1; 5454 5455 return rc; 5456 } 5457 5458 /** 5459 * lpfc_sli4_cfg_post_extnts - 5460 * @phba: Pointer to HBA context object. 5461 * @extnt_cnt - number of available extents. 5462 * @type - the extent type (rpi, xri, vfi, vpi). 5463 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5464 * @mbox - pointer to the caller's allocated mailbox structure. 5465 * 5466 * This function executes the extents allocation request. It also 5467 * takes care of the amount of memory needed to allocate or get the 5468 * allocated extents. It is the caller's responsibility to evaluate 5469 * the response. 5470 * 5471 * Returns: 5472 * -Error: Error value describes the condition found. 5473 * 0: if successful 5474 **/ 5475 static int 5476 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5477 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5478 { 5479 int rc = 0; 5480 uint32_t req_len; 5481 uint32_t emb_len; 5482 uint32_t alloc_len, mbox_tmo; 5483 5484 /* Calculate the total requested length of the dma memory */ 5485 req_len = extnt_cnt * sizeof(uint16_t); 5486 5487 /* 5488 * Calculate the size of an embedded mailbox. The uint32_t 5489 * accounts for extents-specific word. 5490 */ 5491 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5492 sizeof(uint32_t); 5493 5494 /* 5495 * Presume the allocation and response will fit into an embedded 5496 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5497 */ 5498 *emb = LPFC_SLI4_MBX_EMBED; 5499 if (req_len > emb_len) { 5500 req_len = extnt_cnt * sizeof(uint16_t) + 5501 sizeof(union lpfc_sli4_cfg_shdr) + 5502 sizeof(uint32_t); 5503 *emb = LPFC_SLI4_MBX_NEMBED; 5504 } 5505 5506 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5507 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5508 req_len, *emb); 5509 if (alloc_len < req_len) { 5510 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5511 "2982 Allocated DMA memory size (x%x) is " 5512 "less than the requested DMA memory " 5513 "size (x%x)\n", alloc_len, req_len); 5514 return -ENOMEM; 5515 } 5516 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5517 if (unlikely(rc)) 5518 return -EIO; 5519 5520 if (!phba->sli4_hba.intr_enable) 5521 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5522 else { 5523 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5524 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5525 } 5526 5527 if (unlikely(rc)) 5528 rc = -EIO; 5529 return rc; 5530 } 5531 5532 /** 5533 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5534 * @phba: Pointer to HBA context object. 5535 * @type: The resource extent type to allocate. 5536 * 5537 * This function allocates the number of elements for the specified 5538 * resource type. 5539 **/ 5540 static int 5541 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5542 { 5543 bool emb = false; 5544 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5545 uint16_t rsrc_id, rsrc_start, j, k; 5546 uint16_t *ids; 5547 int i, rc; 5548 unsigned long longs; 5549 unsigned long *bmask; 5550 struct lpfc_rsrc_blks *rsrc_blks; 5551 LPFC_MBOXQ_t *mbox; 5552 uint32_t length; 5553 struct lpfc_id_range *id_array = NULL; 5554 void *virtaddr = NULL; 5555 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5556 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5557 struct list_head *ext_blk_list; 5558 5559 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5560 &rsrc_cnt, 5561 &rsrc_size); 5562 if (unlikely(rc)) 5563 return -EIO; 5564 5565 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5566 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5567 "3009 No available Resource Extents " 5568 "for resource type 0x%x: Count: 0x%x, " 5569 "Size 0x%x\n", type, rsrc_cnt, 5570 rsrc_size); 5571 return -ENOMEM; 5572 } 5573 5574 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5575 "2903 Post resource extents type-0x%x: " 5576 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5577 5578 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5579 if (!mbox) 5580 return -ENOMEM; 5581 5582 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5583 if (unlikely(rc)) { 5584 rc = -EIO; 5585 goto err_exit; 5586 } 5587 5588 /* 5589 * Figure out where the response is located. Then get local pointers 5590 * to the response data. The port does not guarantee to respond to 5591 * all extents counts request so update the local variable with the 5592 * allocated count from the port. 5593 */ 5594 if (emb == LPFC_SLI4_MBX_EMBED) { 5595 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5596 id_array = &rsrc_ext->u.rsp.id[0]; 5597 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5598 } else { 5599 virtaddr = mbox->sge_array->addr[0]; 5600 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5601 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5602 id_array = &n_rsrc->id; 5603 } 5604 5605 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5606 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5607 5608 /* 5609 * Based on the resource size and count, correct the base and max 5610 * resource values. 5611 */ 5612 length = sizeof(struct lpfc_rsrc_blks); 5613 switch (type) { 5614 case LPFC_RSC_TYPE_FCOE_RPI: 5615 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5616 sizeof(unsigned long), 5617 GFP_KERNEL); 5618 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5619 rc = -ENOMEM; 5620 goto err_exit; 5621 } 5622 phba->sli4_hba.rpi_ids = kzalloc(rsrc_id_cnt * 5623 sizeof(uint16_t), 5624 GFP_KERNEL); 5625 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5626 kfree(phba->sli4_hba.rpi_bmask); 5627 rc = -ENOMEM; 5628 goto err_exit; 5629 } 5630 5631 /* 5632 * The next_rpi was initialized with the maximum available 5633 * count but the port may allocate a smaller number. Catch 5634 * that case and update the next_rpi. 5635 */ 5636 phba->sli4_hba.next_rpi = rsrc_id_cnt; 5637 5638 /* Initialize local ptrs for common extent processing later. */ 5639 bmask = phba->sli4_hba.rpi_bmask; 5640 ids = phba->sli4_hba.rpi_ids; 5641 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5642 break; 5643 case LPFC_RSC_TYPE_FCOE_VPI: 5644 phba->vpi_bmask = kzalloc(longs * 5645 sizeof(unsigned long), 5646 GFP_KERNEL); 5647 if (unlikely(!phba->vpi_bmask)) { 5648 rc = -ENOMEM; 5649 goto err_exit; 5650 } 5651 phba->vpi_ids = kzalloc(rsrc_id_cnt * 5652 sizeof(uint16_t), 5653 GFP_KERNEL); 5654 if (unlikely(!phba->vpi_ids)) { 5655 kfree(phba->vpi_bmask); 5656 rc = -ENOMEM; 5657 goto err_exit; 5658 } 5659 5660 /* Initialize local ptrs for common extent processing later. */ 5661 bmask = phba->vpi_bmask; 5662 ids = phba->vpi_ids; 5663 ext_blk_list = &phba->lpfc_vpi_blk_list; 5664 break; 5665 case LPFC_RSC_TYPE_FCOE_XRI: 5666 phba->sli4_hba.xri_bmask = kzalloc(longs * 5667 sizeof(unsigned long), 5668 GFP_KERNEL); 5669 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5670 rc = -ENOMEM; 5671 goto err_exit; 5672 } 5673 phba->sli4_hba.max_cfg_param.xri_used = 0; 5674 phba->sli4_hba.xri_ids = kzalloc(rsrc_id_cnt * 5675 sizeof(uint16_t), 5676 GFP_KERNEL); 5677 if (unlikely(!phba->sli4_hba.xri_ids)) { 5678 kfree(phba->sli4_hba.xri_bmask); 5679 rc = -ENOMEM; 5680 goto err_exit; 5681 } 5682 5683 /* Initialize local ptrs for common extent processing later. */ 5684 bmask = phba->sli4_hba.xri_bmask; 5685 ids = phba->sli4_hba.xri_ids; 5686 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5687 break; 5688 case LPFC_RSC_TYPE_FCOE_VFI: 5689 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5690 sizeof(unsigned long), 5691 GFP_KERNEL); 5692 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5693 rc = -ENOMEM; 5694 goto err_exit; 5695 } 5696 phba->sli4_hba.vfi_ids = kzalloc(rsrc_id_cnt * 5697 sizeof(uint16_t), 5698 GFP_KERNEL); 5699 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5700 kfree(phba->sli4_hba.vfi_bmask); 5701 rc = -ENOMEM; 5702 goto err_exit; 5703 } 5704 5705 /* Initialize local ptrs for common extent processing later. */ 5706 bmask = phba->sli4_hba.vfi_bmask; 5707 ids = phba->sli4_hba.vfi_ids; 5708 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5709 break; 5710 default: 5711 /* Unsupported Opcode. Fail call. */ 5712 id_array = NULL; 5713 bmask = NULL; 5714 ids = NULL; 5715 ext_blk_list = NULL; 5716 goto err_exit; 5717 } 5718 5719 /* 5720 * Complete initializing the extent configuration with the 5721 * allocated ids assigned to this function. The bitmask serves 5722 * as an index into the array and manages the available ids. The 5723 * array just stores the ids communicated to the port via the wqes. 5724 */ 5725 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 5726 if ((i % 2) == 0) 5727 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 5728 &id_array[k]); 5729 else 5730 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 5731 &id_array[k]); 5732 5733 rsrc_blks = kzalloc(length, GFP_KERNEL); 5734 if (unlikely(!rsrc_blks)) { 5735 rc = -ENOMEM; 5736 kfree(bmask); 5737 kfree(ids); 5738 goto err_exit; 5739 } 5740 rsrc_blks->rsrc_start = rsrc_id; 5741 rsrc_blks->rsrc_size = rsrc_size; 5742 list_add_tail(&rsrc_blks->list, ext_blk_list); 5743 rsrc_start = rsrc_id; 5744 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 5745 phba->sli4_hba.scsi_xri_start = rsrc_start + 5746 lpfc_sli4_get_iocb_cnt(phba); 5747 phba->sli4_hba.nvme_xri_start = 5748 phba->sli4_hba.scsi_xri_start + 5749 phba->sli4_hba.scsi_xri_max; 5750 } 5751 5752 while (rsrc_id < (rsrc_start + rsrc_size)) { 5753 ids[j] = rsrc_id; 5754 rsrc_id++; 5755 j++; 5756 } 5757 /* Entire word processed. Get next word.*/ 5758 if ((i % 2) == 1) 5759 k++; 5760 } 5761 err_exit: 5762 lpfc_sli4_mbox_cmd_free(phba, mbox); 5763 return rc; 5764 } 5765 5766 5767 5768 /** 5769 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 5770 * @phba: Pointer to HBA context object. 5771 * @type: the extent's type. 5772 * 5773 * This function deallocates all extents of a particular resource type. 5774 * SLI4 does not allow for deallocating a particular extent range. It 5775 * is the caller's responsibility to release all kernel memory resources. 5776 **/ 5777 static int 5778 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 5779 { 5780 int rc; 5781 uint32_t length, mbox_tmo = 0; 5782 LPFC_MBOXQ_t *mbox; 5783 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 5784 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 5785 5786 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5787 if (!mbox) 5788 return -ENOMEM; 5789 5790 /* 5791 * This function sends an embedded mailbox because it only sends the 5792 * the resource type. All extents of this type are released by the 5793 * port. 5794 */ 5795 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 5796 sizeof(struct lpfc_sli4_cfg_mhdr)); 5797 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5798 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 5799 length, LPFC_SLI4_MBX_EMBED); 5800 5801 /* Send an extents count of 0 - the dealloc doesn't use it. */ 5802 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5803 LPFC_SLI4_MBX_EMBED); 5804 if (unlikely(rc)) { 5805 rc = -EIO; 5806 goto out_free_mbox; 5807 } 5808 if (!phba->sli4_hba.intr_enable) 5809 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5810 else { 5811 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5812 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5813 } 5814 if (unlikely(rc)) { 5815 rc = -EIO; 5816 goto out_free_mbox; 5817 } 5818 5819 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 5820 if (bf_get(lpfc_mbox_hdr_status, 5821 &dealloc_rsrc->header.cfg_shdr.response)) { 5822 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5823 "2919 Failed to release resource extents " 5824 "for type %d - Status 0x%x Add'l Status 0x%x. " 5825 "Resource memory not released.\n", 5826 type, 5827 bf_get(lpfc_mbox_hdr_status, 5828 &dealloc_rsrc->header.cfg_shdr.response), 5829 bf_get(lpfc_mbox_hdr_add_status, 5830 &dealloc_rsrc->header.cfg_shdr.response)); 5831 rc = -EIO; 5832 goto out_free_mbox; 5833 } 5834 5835 /* Release kernel memory resources for the specific type. */ 5836 switch (type) { 5837 case LPFC_RSC_TYPE_FCOE_VPI: 5838 kfree(phba->vpi_bmask); 5839 kfree(phba->vpi_ids); 5840 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5841 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5842 &phba->lpfc_vpi_blk_list, list) { 5843 list_del_init(&rsrc_blk->list); 5844 kfree(rsrc_blk); 5845 } 5846 phba->sli4_hba.max_cfg_param.vpi_used = 0; 5847 break; 5848 case LPFC_RSC_TYPE_FCOE_XRI: 5849 kfree(phba->sli4_hba.xri_bmask); 5850 kfree(phba->sli4_hba.xri_ids); 5851 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5852 &phba->sli4_hba.lpfc_xri_blk_list, list) { 5853 list_del_init(&rsrc_blk->list); 5854 kfree(rsrc_blk); 5855 } 5856 break; 5857 case LPFC_RSC_TYPE_FCOE_VFI: 5858 kfree(phba->sli4_hba.vfi_bmask); 5859 kfree(phba->sli4_hba.vfi_ids); 5860 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5861 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5862 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 5863 list_del_init(&rsrc_blk->list); 5864 kfree(rsrc_blk); 5865 } 5866 break; 5867 case LPFC_RSC_TYPE_FCOE_RPI: 5868 /* RPI bitmask and physical id array are cleaned up earlier. */ 5869 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5870 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 5871 list_del_init(&rsrc_blk->list); 5872 kfree(rsrc_blk); 5873 } 5874 break; 5875 default: 5876 break; 5877 } 5878 5879 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5880 5881 out_free_mbox: 5882 mempool_free(mbox, phba->mbox_mem_pool); 5883 return rc; 5884 } 5885 5886 static void 5887 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 5888 uint32_t feature) 5889 { 5890 uint32_t len; 5891 5892 len = sizeof(struct lpfc_mbx_set_feature) - 5893 sizeof(struct lpfc_sli4_cfg_mhdr); 5894 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5895 LPFC_MBOX_OPCODE_SET_FEATURES, len, 5896 LPFC_SLI4_MBX_EMBED); 5897 5898 switch (feature) { 5899 case LPFC_SET_UE_RECOVERY: 5900 bf_set(lpfc_mbx_set_feature_UER, 5901 &mbox->u.mqe.un.set_feature, 1); 5902 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 5903 mbox->u.mqe.un.set_feature.param_len = 8; 5904 break; 5905 case LPFC_SET_MDS_DIAGS: 5906 bf_set(lpfc_mbx_set_feature_mds, 5907 &mbox->u.mqe.un.set_feature, 1); 5908 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 5909 &mbox->u.mqe.un.set_feature, 0); 5910 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 5911 mbox->u.mqe.un.set_feature.param_len = 8; 5912 break; 5913 } 5914 5915 return; 5916 } 5917 5918 /** 5919 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 5920 * @phba: Pointer to HBA context object. 5921 * 5922 * This function allocates all SLI4 resource identifiers. 5923 **/ 5924 int 5925 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 5926 { 5927 int i, rc, error = 0; 5928 uint16_t count, base; 5929 unsigned long longs; 5930 5931 if (!phba->sli4_hba.rpi_hdrs_in_use) 5932 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 5933 if (phba->sli4_hba.extents_in_use) { 5934 /* 5935 * The port supports resource extents. The XRI, VPI, VFI, RPI 5936 * resource extent count must be read and allocated before 5937 * provisioning the resource id arrays. 5938 */ 5939 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 5940 LPFC_IDX_RSRC_RDY) { 5941 /* 5942 * Extent-based resources are set - the driver could 5943 * be in a port reset. Figure out if any corrective 5944 * actions need to be taken. 5945 */ 5946 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5947 LPFC_RSC_TYPE_FCOE_VFI); 5948 if (rc != 0) 5949 error++; 5950 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5951 LPFC_RSC_TYPE_FCOE_VPI); 5952 if (rc != 0) 5953 error++; 5954 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5955 LPFC_RSC_TYPE_FCOE_XRI); 5956 if (rc != 0) 5957 error++; 5958 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5959 LPFC_RSC_TYPE_FCOE_RPI); 5960 if (rc != 0) 5961 error++; 5962 5963 /* 5964 * It's possible that the number of resources 5965 * provided to this port instance changed between 5966 * resets. Detect this condition and reallocate 5967 * resources. Otherwise, there is no action. 5968 */ 5969 if (error) { 5970 lpfc_printf_log(phba, KERN_INFO, 5971 LOG_MBOX | LOG_INIT, 5972 "2931 Detected extent resource " 5973 "change. Reallocating all " 5974 "extents.\n"); 5975 rc = lpfc_sli4_dealloc_extent(phba, 5976 LPFC_RSC_TYPE_FCOE_VFI); 5977 rc = lpfc_sli4_dealloc_extent(phba, 5978 LPFC_RSC_TYPE_FCOE_VPI); 5979 rc = lpfc_sli4_dealloc_extent(phba, 5980 LPFC_RSC_TYPE_FCOE_XRI); 5981 rc = lpfc_sli4_dealloc_extent(phba, 5982 LPFC_RSC_TYPE_FCOE_RPI); 5983 } else 5984 return 0; 5985 } 5986 5987 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 5988 if (unlikely(rc)) 5989 goto err_exit; 5990 5991 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 5992 if (unlikely(rc)) 5993 goto err_exit; 5994 5995 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 5996 if (unlikely(rc)) 5997 goto err_exit; 5998 5999 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6000 if (unlikely(rc)) 6001 goto err_exit; 6002 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6003 LPFC_IDX_RSRC_RDY); 6004 return rc; 6005 } else { 6006 /* 6007 * The port does not support resource extents. The XRI, VPI, 6008 * VFI, RPI resource ids were determined from READ_CONFIG. 6009 * Just allocate the bitmasks and provision the resource id 6010 * arrays. If a port reset is active, the resources don't 6011 * need any action - just exit. 6012 */ 6013 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6014 LPFC_IDX_RSRC_RDY) { 6015 lpfc_sli4_dealloc_resource_identifiers(phba); 6016 lpfc_sli4_remove_rpis(phba); 6017 } 6018 /* RPIs. */ 6019 count = phba->sli4_hba.max_cfg_param.max_rpi; 6020 if (count <= 0) { 6021 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6022 "3279 Invalid provisioning of " 6023 "rpi:%d\n", count); 6024 rc = -EINVAL; 6025 goto err_exit; 6026 } 6027 base = phba->sli4_hba.max_cfg_param.rpi_base; 6028 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6029 phba->sli4_hba.rpi_bmask = kzalloc(longs * 6030 sizeof(unsigned long), 6031 GFP_KERNEL); 6032 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6033 rc = -ENOMEM; 6034 goto err_exit; 6035 } 6036 phba->sli4_hba.rpi_ids = kzalloc(count * 6037 sizeof(uint16_t), 6038 GFP_KERNEL); 6039 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6040 rc = -ENOMEM; 6041 goto free_rpi_bmask; 6042 } 6043 6044 for (i = 0; i < count; i++) 6045 phba->sli4_hba.rpi_ids[i] = base + i; 6046 6047 /* VPIs. */ 6048 count = phba->sli4_hba.max_cfg_param.max_vpi; 6049 if (count <= 0) { 6050 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6051 "3280 Invalid provisioning of " 6052 "vpi:%d\n", count); 6053 rc = -EINVAL; 6054 goto free_rpi_ids; 6055 } 6056 base = phba->sli4_hba.max_cfg_param.vpi_base; 6057 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6058 phba->vpi_bmask = kzalloc(longs * 6059 sizeof(unsigned long), 6060 GFP_KERNEL); 6061 if (unlikely(!phba->vpi_bmask)) { 6062 rc = -ENOMEM; 6063 goto free_rpi_ids; 6064 } 6065 phba->vpi_ids = kzalloc(count * 6066 sizeof(uint16_t), 6067 GFP_KERNEL); 6068 if (unlikely(!phba->vpi_ids)) { 6069 rc = -ENOMEM; 6070 goto free_vpi_bmask; 6071 } 6072 6073 for (i = 0; i < count; i++) 6074 phba->vpi_ids[i] = base + i; 6075 6076 /* XRIs. */ 6077 count = phba->sli4_hba.max_cfg_param.max_xri; 6078 if (count <= 0) { 6079 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6080 "3281 Invalid provisioning of " 6081 "xri:%d\n", count); 6082 rc = -EINVAL; 6083 goto free_vpi_ids; 6084 } 6085 base = phba->sli4_hba.max_cfg_param.xri_base; 6086 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6087 phba->sli4_hba.xri_bmask = kzalloc(longs * 6088 sizeof(unsigned long), 6089 GFP_KERNEL); 6090 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6091 rc = -ENOMEM; 6092 goto free_vpi_ids; 6093 } 6094 phba->sli4_hba.max_cfg_param.xri_used = 0; 6095 phba->sli4_hba.xri_ids = kzalloc(count * 6096 sizeof(uint16_t), 6097 GFP_KERNEL); 6098 if (unlikely(!phba->sli4_hba.xri_ids)) { 6099 rc = -ENOMEM; 6100 goto free_xri_bmask; 6101 } 6102 6103 for (i = 0; i < count; i++) 6104 phba->sli4_hba.xri_ids[i] = base + i; 6105 6106 /* VFIs. */ 6107 count = phba->sli4_hba.max_cfg_param.max_vfi; 6108 if (count <= 0) { 6109 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6110 "3282 Invalid provisioning of " 6111 "vfi:%d\n", count); 6112 rc = -EINVAL; 6113 goto free_xri_ids; 6114 } 6115 base = phba->sli4_hba.max_cfg_param.vfi_base; 6116 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6117 phba->sli4_hba.vfi_bmask = kzalloc(longs * 6118 sizeof(unsigned long), 6119 GFP_KERNEL); 6120 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6121 rc = -ENOMEM; 6122 goto free_xri_ids; 6123 } 6124 phba->sli4_hba.vfi_ids = kzalloc(count * 6125 sizeof(uint16_t), 6126 GFP_KERNEL); 6127 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6128 rc = -ENOMEM; 6129 goto free_vfi_bmask; 6130 } 6131 6132 for (i = 0; i < count; i++) 6133 phba->sli4_hba.vfi_ids[i] = base + i; 6134 6135 /* 6136 * Mark all resources ready. An HBA reset doesn't need 6137 * to reset the initialization. 6138 */ 6139 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6140 LPFC_IDX_RSRC_RDY); 6141 return 0; 6142 } 6143 6144 free_vfi_bmask: 6145 kfree(phba->sli4_hba.vfi_bmask); 6146 phba->sli4_hba.vfi_bmask = NULL; 6147 free_xri_ids: 6148 kfree(phba->sli4_hba.xri_ids); 6149 phba->sli4_hba.xri_ids = NULL; 6150 free_xri_bmask: 6151 kfree(phba->sli4_hba.xri_bmask); 6152 phba->sli4_hba.xri_bmask = NULL; 6153 free_vpi_ids: 6154 kfree(phba->vpi_ids); 6155 phba->vpi_ids = NULL; 6156 free_vpi_bmask: 6157 kfree(phba->vpi_bmask); 6158 phba->vpi_bmask = NULL; 6159 free_rpi_ids: 6160 kfree(phba->sli4_hba.rpi_ids); 6161 phba->sli4_hba.rpi_ids = NULL; 6162 free_rpi_bmask: 6163 kfree(phba->sli4_hba.rpi_bmask); 6164 phba->sli4_hba.rpi_bmask = NULL; 6165 err_exit: 6166 return rc; 6167 } 6168 6169 /** 6170 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6171 * @phba: Pointer to HBA context object. 6172 * 6173 * This function allocates the number of elements for the specified 6174 * resource type. 6175 **/ 6176 int 6177 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 6178 { 6179 if (phba->sli4_hba.extents_in_use) { 6180 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6181 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6182 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6183 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6184 } else { 6185 kfree(phba->vpi_bmask); 6186 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6187 kfree(phba->vpi_ids); 6188 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6189 kfree(phba->sli4_hba.xri_bmask); 6190 kfree(phba->sli4_hba.xri_ids); 6191 kfree(phba->sli4_hba.vfi_bmask); 6192 kfree(phba->sli4_hba.vfi_ids); 6193 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6194 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6195 } 6196 6197 return 0; 6198 } 6199 6200 /** 6201 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 6202 * @phba: Pointer to HBA context object. 6203 * @type: The resource extent type. 6204 * @extnt_count: buffer to hold port extent count response 6205 * @extnt_size: buffer to hold port extent size response. 6206 * 6207 * This function calls the port to read the host allocated extents 6208 * for a particular type. 6209 **/ 6210 int 6211 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 6212 uint16_t *extnt_cnt, uint16_t *extnt_size) 6213 { 6214 bool emb; 6215 int rc = 0; 6216 uint16_t curr_blks = 0; 6217 uint32_t req_len, emb_len; 6218 uint32_t alloc_len, mbox_tmo; 6219 struct list_head *blk_list_head; 6220 struct lpfc_rsrc_blks *rsrc_blk; 6221 LPFC_MBOXQ_t *mbox; 6222 void *virtaddr = NULL; 6223 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6224 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6225 union lpfc_sli4_cfg_shdr *shdr; 6226 6227 switch (type) { 6228 case LPFC_RSC_TYPE_FCOE_VPI: 6229 blk_list_head = &phba->lpfc_vpi_blk_list; 6230 break; 6231 case LPFC_RSC_TYPE_FCOE_XRI: 6232 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6233 break; 6234 case LPFC_RSC_TYPE_FCOE_VFI: 6235 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6236 break; 6237 case LPFC_RSC_TYPE_FCOE_RPI: 6238 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6239 break; 6240 default: 6241 return -EIO; 6242 } 6243 6244 /* Count the number of extents currently allocatd for this type. */ 6245 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6246 if (curr_blks == 0) { 6247 /* 6248 * The GET_ALLOCATED mailbox does not return the size, 6249 * just the count. The size should be just the size 6250 * stored in the current allocated block and all sizes 6251 * for an extent type are the same so set the return 6252 * value now. 6253 */ 6254 *extnt_size = rsrc_blk->rsrc_size; 6255 } 6256 curr_blks++; 6257 } 6258 6259 /* 6260 * Calculate the size of an embedded mailbox. The uint32_t 6261 * accounts for extents-specific word. 6262 */ 6263 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6264 sizeof(uint32_t); 6265 6266 /* 6267 * Presume the allocation and response will fit into an embedded 6268 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6269 */ 6270 emb = LPFC_SLI4_MBX_EMBED; 6271 req_len = emb_len; 6272 if (req_len > emb_len) { 6273 req_len = curr_blks * sizeof(uint16_t) + 6274 sizeof(union lpfc_sli4_cfg_shdr) + 6275 sizeof(uint32_t); 6276 emb = LPFC_SLI4_MBX_NEMBED; 6277 } 6278 6279 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6280 if (!mbox) 6281 return -ENOMEM; 6282 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6283 6284 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6285 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6286 req_len, emb); 6287 if (alloc_len < req_len) { 6288 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6289 "2983 Allocated DMA memory size (x%x) is " 6290 "less than the requested DMA memory " 6291 "size (x%x)\n", alloc_len, req_len); 6292 rc = -ENOMEM; 6293 goto err_exit; 6294 } 6295 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6296 if (unlikely(rc)) { 6297 rc = -EIO; 6298 goto err_exit; 6299 } 6300 6301 if (!phba->sli4_hba.intr_enable) 6302 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6303 else { 6304 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6305 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6306 } 6307 6308 if (unlikely(rc)) { 6309 rc = -EIO; 6310 goto err_exit; 6311 } 6312 6313 /* 6314 * Figure out where the response is located. Then get local pointers 6315 * to the response data. The port does not guarantee to respond to 6316 * all extents counts request so update the local variable with the 6317 * allocated count from the port. 6318 */ 6319 if (emb == LPFC_SLI4_MBX_EMBED) { 6320 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6321 shdr = &rsrc_ext->header.cfg_shdr; 6322 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6323 } else { 6324 virtaddr = mbox->sge_array->addr[0]; 6325 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6326 shdr = &n_rsrc->cfg_shdr; 6327 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6328 } 6329 6330 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 6331 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6332 "2984 Failed to read allocated resources " 6333 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 6334 type, 6335 bf_get(lpfc_mbox_hdr_status, &shdr->response), 6336 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 6337 rc = -EIO; 6338 goto err_exit; 6339 } 6340 err_exit: 6341 lpfc_sli4_mbox_cmd_free(phba, mbox); 6342 return rc; 6343 } 6344 6345 /** 6346 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 6347 * @phba: pointer to lpfc hba data structure. 6348 * @pring: Pointer to driver SLI ring object. 6349 * @sgl_list: linked link of sgl buffers to post 6350 * @cnt: number of linked list buffers 6351 * 6352 * This routine walks the list of buffers that have been allocated and 6353 * repost them to the port by using SGL block post. This is needed after a 6354 * pci_function_reset/warm_start or start. It attempts to construct blocks 6355 * of buffer sgls which contains contiguous xris and uses the non-embedded 6356 * SGL block post mailbox commands to post them to the port. For single 6357 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 6358 * mailbox command for posting. 6359 * 6360 * Returns: 0 = success, non-zero failure. 6361 **/ 6362 static int 6363 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 6364 struct list_head *sgl_list, int cnt) 6365 { 6366 struct lpfc_sglq *sglq_entry = NULL; 6367 struct lpfc_sglq *sglq_entry_next = NULL; 6368 struct lpfc_sglq *sglq_entry_first = NULL; 6369 int status, total_cnt; 6370 int post_cnt = 0, num_posted = 0, block_cnt = 0; 6371 int last_xritag = NO_XRI; 6372 LIST_HEAD(prep_sgl_list); 6373 LIST_HEAD(blck_sgl_list); 6374 LIST_HEAD(allc_sgl_list); 6375 LIST_HEAD(post_sgl_list); 6376 LIST_HEAD(free_sgl_list); 6377 6378 spin_lock_irq(&phba->hbalock); 6379 spin_lock(&phba->sli4_hba.sgl_list_lock); 6380 list_splice_init(sgl_list, &allc_sgl_list); 6381 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6382 spin_unlock_irq(&phba->hbalock); 6383 6384 total_cnt = cnt; 6385 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 6386 &allc_sgl_list, list) { 6387 list_del_init(&sglq_entry->list); 6388 block_cnt++; 6389 if ((last_xritag != NO_XRI) && 6390 (sglq_entry->sli4_xritag != last_xritag + 1)) { 6391 /* a hole in xri block, form a sgl posting block */ 6392 list_splice_init(&prep_sgl_list, &blck_sgl_list); 6393 post_cnt = block_cnt - 1; 6394 /* prepare list for next posting block */ 6395 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6396 block_cnt = 1; 6397 } else { 6398 /* prepare list for next posting block */ 6399 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6400 /* enough sgls for non-embed sgl mbox command */ 6401 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 6402 list_splice_init(&prep_sgl_list, 6403 &blck_sgl_list); 6404 post_cnt = block_cnt; 6405 block_cnt = 0; 6406 } 6407 } 6408 num_posted++; 6409 6410 /* keep track of last sgl's xritag */ 6411 last_xritag = sglq_entry->sli4_xritag; 6412 6413 /* end of repost sgl list condition for buffers */ 6414 if (num_posted == total_cnt) { 6415 if (post_cnt == 0) { 6416 list_splice_init(&prep_sgl_list, 6417 &blck_sgl_list); 6418 post_cnt = block_cnt; 6419 } else if (block_cnt == 1) { 6420 status = lpfc_sli4_post_sgl(phba, 6421 sglq_entry->phys, 0, 6422 sglq_entry->sli4_xritag); 6423 if (!status) { 6424 /* successful, put sgl to posted list */ 6425 list_add_tail(&sglq_entry->list, 6426 &post_sgl_list); 6427 } else { 6428 /* Failure, put sgl to free list */ 6429 lpfc_printf_log(phba, KERN_WARNING, 6430 LOG_SLI, 6431 "3159 Failed to post " 6432 "sgl, xritag:x%x\n", 6433 sglq_entry->sli4_xritag); 6434 list_add_tail(&sglq_entry->list, 6435 &free_sgl_list); 6436 total_cnt--; 6437 } 6438 } 6439 } 6440 6441 /* continue until a nembed page worth of sgls */ 6442 if (post_cnt == 0) 6443 continue; 6444 6445 /* post the buffer list sgls as a block */ 6446 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 6447 post_cnt); 6448 6449 if (!status) { 6450 /* success, put sgl list to posted sgl list */ 6451 list_splice_init(&blck_sgl_list, &post_sgl_list); 6452 } else { 6453 /* Failure, put sgl list to free sgl list */ 6454 sglq_entry_first = list_first_entry(&blck_sgl_list, 6455 struct lpfc_sglq, 6456 list); 6457 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6458 "3160 Failed to post sgl-list, " 6459 "xritag:x%x-x%x\n", 6460 sglq_entry_first->sli4_xritag, 6461 (sglq_entry_first->sli4_xritag + 6462 post_cnt - 1)); 6463 list_splice_init(&blck_sgl_list, &free_sgl_list); 6464 total_cnt -= post_cnt; 6465 } 6466 6467 /* don't reset xirtag due to hole in xri block */ 6468 if (block_cnt == 0) 6469 last_xritag = NO_XRI; 6470 6471 /* reset sgl post count for next round of posting */ 6472 post_cnt = 0; 6473 } 6474 6475 /* free the sgls failed to post */ 6476 lpfc_free_sgl_list(phba, &free_sgl_list); 6477 6478 /* push sgls posted to the available list */ 6479 if (!list_empty(&post_sgl_list)) { 6480 spin_lock_irq(&phba->hbalock); 6481 spin_lock(&phba->sli4_hba.sgl_list_lock); 6482 list_splice_init(&post_sgl_list, sgl_list); 6483 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6484 spin_unlock_irq(&phba->hbalock); 6485 } else { 6486 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6487 "3161 Failure to post sgl to port.\n"); 6488 return -EIO; 6489 } 6490 6491 /* return the number of XRIs actually posted */ 6492 return total_cnt; 6493 } 6494 6495 void 6496 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 6497 { 6498 uint32_t len; 6499 6500 len = sizeof(struct lpfc_mbx_set_host_data) - 6501 sizeof(struct lpfc_sli4_cfg_mhdr); 6502 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6503 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 6504 LPFC_SLI4_MBX_EMBED); 6505 6506 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 6507 mbox->u.mqe.un.set_host_data.param_len = 6508 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 6509 snprintf(mbox->u.mqe.un.set_host_data.data, 6510 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 6511 "Linux %s v"LPFC_DRIVER_VERSION, 6512 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 6513 } 6514 6515 /** 6516 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 6517 * @phba: Pointer to HBA context object. 6518 * 6519 * This function is the main SLI4 device initialization PCI function. This 6520 * function is called by the HBA initialization code, HBA reset code and 6521 * HBA error attention handler code. Caller is not required to hold any 6522 * locks. 6523 **/ 6524 int 6525 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 6526 { 6527 int rc, i; 6528 LPFC_MBOXQ_t *mboxq; 6529 struct lpfc_mqe *mqe; 6530 uint8_t *vpd; 6531 uint32_t vpd_size; 6532 uint32_t ftr_rsp = 0; 6533 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 6534 struct lpfc_vport *vport = phba->pport; 6535 struct lpfc_dmabuf *mp; 6536 struct lpfc_rqb *rqbp; 6537 6538 /* Perform a PCI function reset to start from clean */ 6539 rc = lpfc_pci_function_reset(phba); 6540 if (unlikely(rc)) 6541 return -ENODEV; 6542 6543 /* Check the HBA Host Status Register for readyness */ 6544 rc = lpfc_sli4_post_status_check(phba); 6545 if (unlikely(rc)) 6546 return -ENODEV; 6547 else { 6548 spin_lock_irq(&phba->hbalock); 6549 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 6550 spin_unlock_irq(&phba->hbalock); 6551 } 6552 6553 /* 6554 * Allocate a single mailbox container for initializing the 6555 * port. 6556 */ 6557 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6558 if (!mboxq) 6559 return -ENOMEM; 6560 6561 /* Issue READ_REV to collect vpd and FW information. */ 6562 vpd_size = SLI4_PAGE_SIZE; 6563 vpd = kzalloc(vpd_size, GFP_KERNEL); 6564 if (!vpd) { 6565 rc = -ENOMEM; 6566 goto out_free_mbox; 6567 } 6568 6569 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 6570 if (unlikely(rc)) { 6571 kfree(vpd); 6572 goto out_free_mbox; 6573 } 6574 6575 mqe = &mboxq->u.mqe; 6576 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 6577 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 6578 phba->hba_flag |= HBA_FCOE_MODE; 6579 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 6580 } else { 6581 phba->hba_flag &= ~HBA_FCOE_MODE; 6582 } 6583 6584 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 6585 LPFC_DCBX_CEE_MODE) 6586 phba->hba_flag |= HBA_FIP_SUPPORT; 6587 else 6588 phba->hba_flag &= ~HBA_FIP_SUPPORT; 6589 6590 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH; 6591 6592 if (phba->sli_rev != LPFC_SLI_REV4) { 6593 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6594 "0376 READ_REV Error. SLI Level %d " 6595 "FCoE enabled %d\n", 6596 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 6597 rc = -EIO; 6598 kfree(vpd); 6599 goto out_free_mbox; 6600 } 6601 6602 /* 6603 * Continue initialization with default values even if driver failed 6604 * to read FCoE param config regions, only read parameters if the 6605 * board is FCoE 6606 */ 6607 if (phba->hba_flag & HBA_FCOE_MODE && 6608 lpfc_sli4_read_fcoe_params(phba)) 6609 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 6610 "2570 Failed to read FCoE parameters\n"); 6611 6612 /* 6613 * Retrieve sli4 device physical port name, failure of doing it 6614 * is considered as non-fatal. 6615 */ 6616 rc = lpfc_sli4_retrieve_pport_name(phba); 6617 if (!rc) 6618 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6619 "3080 Successful retrieving SLI4 device " 6620 "physical port name: %s.\n", phba->Port); 6621 6622 /* 6623 * Evaluate the read rev and vpd data. Populate the driver 6624 * state with the results. If this routine fails, the failure 6625 * is not fatal as the driver will use generic values. 6626 */ 6627 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 6628 if (unlikely(!rc)) { 6629 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6630 "0377 Error %d parsing vpd. " 6631 "Using defaults.\n", rc); 6632 rc = 0; 6633 } 6634 kfree(vpd); 6635 6636 /* Save information as VPD data */ 6637 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 6638 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 6639 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 6640 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 6641 &mqe->un.read_rev); 6642 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 6643 &mqe->un.read_rev); 6644 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 6645 &mqe->un.read_rev); 6646 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 6647 &mqe->un.read_rev); 6648 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 6649 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 6650 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 6651 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 6652 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 6653 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 6654 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6655 "(%d):0380 READ_REV Status x%x " 6656 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 6657 mboxq->vport ? mboxq->vport->vpi : 0, 6658 bf_get(lpfc_mqe_status, mqe), 6659 phba->vpd.rev.opFwName, 6660 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 6661 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 6662 6663 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */ 6664 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3); 6665 if (phba->pport->cfg_lun_queue_depth > rc) { 6666 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6667 "3362 LUN queue depth changed from %d to %d\n", 6668 phba->pport->cfg_lun_queue_depth, rc); 6669 phba->pport->cfg_lun_queue_depth = rc; 6670 } 6671 6672 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 6673 LPFC_SLI_INTF_IF_TYPE_0) { 6674 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 6675 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6676 if (rc == MBX_SUCCESS) { 6677 phba->hba_flag |= HBA_RECOVERABLE_UE; 6678 /* Set 1Sec interval to detect UE */ 6679 phba->eratt_poll_interval = 1; 6680 phba->sli4_hba.ue_to_sr = bf_get( 6681 lpfc_mbx_set_feature_UESR, 6682 &mboxq->u.mqe.un.set_feature); 6683 phba->sli4_hba.ue_to_rp = bf_get( 6684 lpfc_mbx_set_feature_UERP, 6685 &mboxq->u.mqe.un.set_feature); 6686 } 6687 } 6688 6689 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 6690 /* Enable MDS Diagnostics only if the SLI Port supports it */ 6691 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 6692 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6693 if (rc != MBX_SUCCESS) 6694 phba->mds_diags_support = 0; 6695 } 6696 6697 /* 6698 * Discover the port's supported feature set and match it against the 6699 * hosts requests. 6700 */ 6701 lpfc_request_features(phba, mboxq); 6702 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6703 if (unlikely(rc)) { 6704 rc = -EIO; 6705 goto out_free_mbox; 6706 } 6707 6708 /* 6709 * The port must support FCP initiator mode as this is the 6710 * only mode running in the host. 6711 */ 6712 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 6713 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6714 "0378 No support for fcpi mode.\n"); 6715 ftr_rsp++; 6716 } 6717 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 6718 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 6719 else 6720 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 6721 /* 6722 * If the port cannot support the host's requested features 6723 * then turn off the global config parameters to disable the 6724 * feature in the driver. This is not a fatal error. 6725 */ 6726 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 6727 if (phba->cfg_enable_bg) { 6728 if (bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)) 6729 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 6730 else 6731 ftr_rsp++; 6732 } 6733 6734 if (phba->max_vpi && phba->cfg_enable_npiv && 6735 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6736 ftr_rsp++; 6737 6738 if (ftr_rsp) { 6739 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6740 "0379 Feature Mismatch Data: x%08x %08x " 6741 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 6742 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 6743 phba->cfg_enable_npiv, phba->max_vpi); 6744 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 6745 phba->cfg_enable_bg = 0; 6746 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6747 phba->cfg_enable_npiv = 0; 6748 } 6749 6750 /* These SLI3 features are assumed in SLI4 */ 6751 spin_lock_irq(&phba->hbalock); 6752 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 6753 spin_unlock_irq(&phba->hbalock); 6754 6755 /* 6756 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 6757 * calls depends on these resources to complete port setup. 6758 */ 6759 rc = lpfc_sli4_alloc_resource_identifiers(phba); 6760 if (rc) { 6761 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6762 "2920 Failed to alloc Resource IDs " 6763 "rc = x%x\n", rc); 6764 goto out_free_mbox; 6765 } 6766 6767 lpfc_set_host_data(phba, mboxq); 6768 6769 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6770 if (rc) { 6771 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6772 "2134 Failed to set host os driver version %x", 6773 rc); 6774 } 6775 6776 /* Read the port's service parameters. */ 6777 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 6778 if (rc) { 6779 phba->link_state = LPFC_HBA_ERROR; 6780 rc = -ENOMEM; 6781 goto out_free_mbox; 6782 } 6783 6784 mboxq->vport = vport; 6785 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6786 mp = (struct lpfc_dmabuf *) mboxq->context1; 6787 if (rc == MBX_SUCCESS) { 6788 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 6789 rc = 0; 6790 } 6791 6792 /* 6793 * This memory was allocated by the lpfc_read_sparam routine. Release 6794 * it to the mbuf pool. 6795 */ 6796 lpfc_mbuf_free(phba, mp->virt, mp->phys); 6797 kfree(mp); 6798 mboxq->context1 = NULL; 6799 if (unlikely(rc)) { 6800 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6801 "0382 READ_SPARAM command failed " 6802 "status %d, mbxStatus x%x\n", 6803 rc, bf_get(lpfc_mqe_status, mqe)); 6804 phba->link_state = LPFC_HBA_ERROR; 6805 rc = -EIO; 6806 goto out_free_mbox; 6807 } 6808 6809 lpfc_update_vport_wwn(vport); 6810 6811 /* Update the fc_host data structures with new wwn. */ 6812 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 6813 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 6814 6815 /* Create all the SLI4 queues */ 6816 rc = lpfc_sli4_queue_create(phba); 6817 if (rc) { 6818 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6819 "3089 Failed to allocate queues\n"); 6820 rc = -ENODEV; 6821 goto out_free_mbox; 6822 } 6823 /* Set up all the queues to the device */ 6824 rc = lpfc_sli4_queue_setup(phba); 6825 if (unlikely(rc)) { 6826 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6827 "0381 Error %d during queue setup.\n ", rc); 6828 goto out_stop_timers; 6829 } 6830 /* Initialize the driver internal SLI layer lists. */ 6831 lpfc_sli4_setup(phba); 6832 lpfc_sli4_queue_init(phba); 6833 6834 /* update host els xri-sgl sizes and mappings */ 6835 rc = lpfc_sli4_els_sgl_update(phba); 6836 if (unlikely(rc)) { 6837 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6838 "1400 Failed to update xri-sgl size and " 6839 "mapping: %d\n", rc); 6840 goto out_destroy_queue; 6841 } 6842 6843 /* register the els sgl pool to the port */ 6844 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 6845 phba->sli4_hba.els_xri_cnt); 6846 if (unlikely(rc < 0)) { 6847 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6848 "0582 Error %d during els sgl post " 6849 "operation\n", rc); 6850 rc = -ENODEV; 6851 goto out_destroy_queue; 6852 } 6853 phba->sli4_hba.els_xri_cnt = rc; 6854 6855 if (phba->nvmet_support) { 6856 /* update host nvmet xri-sgl sizes and mappings */ 6857 rc = lpfc_sli4_nvmet_sgl_update(phba); 6858 if (unlikely(rc)) { 6859 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6860 "6308 Failed to update nvmet-sgl size " 6861 "and mapping: %d\n", rc); 6862 goto out_destroy_queue; 6863 } 6864 6865 /* register the nvmet sgl pool to the port */ 6866 rc = lpfc_sli4_repost_sgl_list( 6867 phba, 6868 &phba->sli4_hba.lpfc_nvmet_sgl_list, 6869 phba->sli4_hba.nvmet_xri_cnt); 6870 if (unlikely(rc < 0)) { 6871 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6872 "3117 Error %d during nvmet " 6873 "sgl post\n", rc); 6874 rc = -ENODEV; 6875 goto out_destroy_queue; 6876 } 6877 phba->sli4_hba.nvmet_xri_cnt = rc; 6878 lpfc_nvmet_create_targetport(phba); 6879 } else { 6880 /* update host scsi xri-sgl sizes and mappings */ 6881 rc = lpfc_sli4_scsi_sgl_update(phba); 6882 if (unlikely(rc)) { 6883 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6884 "6309 Failed to update scsi-sgl size " 6885 "and mapping: %d\n", rc); 6886 goto out_destroy_queue; 6887 } 6888 6889 /* update host nvme xri-sgl sizes and mappings */ 6890 rc = lpfc_sli4_nvme_sgl_update(phba); 6891 if (unlikely(rc)) { 6892 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6893 "6082 Failed to update nvme-sgl size " 6894 "and mapping: %d\n", rc); 6895 goto out_destroy_queue; 6896 } 6897 } 6898 6899 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 6900 6901 /* Post initial buffers to all RQs created */ 6902 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 6903 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 6904 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 6905 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 6906 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 6907 rqbp->entry_count = 256; 6908 rqbp->buffer_count = 0; 6909 6910 /* Divide by 4 and round down to multiple of 16 */ 6911 rc = (phba->cfg_nvmet_mrq_post >> 2) & 0xfff8; 6912 phba->sli4_hba.nvmet_mrq_hdr[i]->entry_repost = rc; 6913 phba->sli4_hba.nvmet_mrq_data[i]->entry_repost = rc; 6914 6915 lpfc_post_rq_buffer( 6916 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 6917 phba->sli4_hba.nvmet_mrq_data[i], 6918 phba->cfg_nvmet_mrq_post); 6919 } 6920 } 6921 6922 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 6923 /* register the allocated scsi sgl pool to the port */ 6924 rc = lpfc_sli4_repost_scsi_sgl_list(phba); 6925 if (unlikely(rc)) { 6926 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6927 "0383 Error %d during scsi sgl post " 6928 "operation\n", rc); 6929 /* Some Scsi buffers were moved to abort scsi list */ 6930 /* A pci function reset will repost them */ 6931 rc = -ENODEV; 6932 goto out_destroy_queue; 6933 } 6934 } 6935 6936 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 6937 (phba->nvmet_support == 0)) { 6938 6939 /* register the allocated nvme sgl pool to the port */ 6940 rc = lpfc_repost_nvme_sgl_list(phba); 6941 if (unlikely(rc)) { 6942 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6943 "6116 Error %d during nvme sgl post " 6944 "operation\n", rc); 6945 /* Some NVME buffers were moved to abort nvme list */ 6946 /* A pci function reset will repost them */ 6947 rc = -ENODEV; 6948 goto out_destroy_queue; 6949 } 6950 } 6951 6952 /* Post the rpi header region to the device. */ 6953 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 6954 if (unlikely(rc)) { 6955 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6956 "0393 Error %d during rpi post operation\n", 6957 rc); 6958 rc = -ENODEV; 6959 goto out_destroy_queue; 6960 } 6961 lpfc_sli4_node_prep(phba); 6962 6963 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 6964 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 6965 /* 6966 * The FC Port needs to register FCFI (index 0) 6967 */ 6968 lpfc_reg_fcfi(phba, mboxq); 6969 mboxq->vport = phba->pport; 6970 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6971 if (rc != MBX_SUCCESS) 6972 goto out_unset_queue; 6973 rc = 0; 6974 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 6975 &mboxq->u.mqe.un.reg_fcfi); 6976 } else { 6977 /* We are a NVME Target mode with MRQ > 1 */ 6978 6979 /* First register the FCFI */ 6980 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 6981 mboxq->vport = phba->pport; 6982 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6983 if (rc != MBX_SUCCESS) 6984 goto out_unset_queue; 6985 rc = 0; 6986 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 6987 &mboxq->u.mqe.un.reg_fcfi_mrq); 6988 6989 /* Next register the MRQs */ 6990 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 6991 mboxq->vport = phba->pport; 6992 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6993 if (rc != MBX_SUCCESS) 6994 goto out_unset_queue; 6995 rc = 0; 6996 } 6997 /* Check if the port is configured to be disabled */ 6998 lpfc_sli_read_link_ste(phba); 6999 } 7000 7001 /* Arm the CQs and then EQs on device */ 7002 lpfc_sli4_arm_cqeq_intr(phba); 7003 7004 /* Indicate device interrupt mode */ 7005 phba->sli4_hba.intr_enable = 1; 7006 7007 /* Allow asynchronous mailbox command to go through */ 7008 spin_lock_irq(&phba->hbalock); 7009 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7010 spin_unlock_irq(&phba->hbalock); 7011 7012 /* Post receive buffers to the device */ 7013 lpfc_sli4_rb_setup(phba); 7014 7015 /* Reset HBA FCF states after HBA reset */ 7016 phba->fcf.fcf_flag = 0; 7017 phba->fcf.current_rec.flag = 0; 7018 7019 /* Start the ELS watchdog timer */ 7020 mod_timer(&vport->els_tmofunc, 7021 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 7022 7023 /* Start heart beat timer */ 7024 mod_timer(&phba->hb_tmofunc, 7025 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 7026 phba->hb_outstanding = 0; 7027 phba->last_completion_time = jiffies; 7028 7029 /* Start error attention (ERATT) polling timer */ 7030 mod_timer(&phba->eratt_poll, 7031 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 7032 7033 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 7034 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 7035 rc = pci_enable_pcie_error_reporting(phba->pcidev); 7036 if (!rc) { 7037 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7038 "2829 This device supports " 7039 "Advanced Error Reporting (AER)\n"); 7040 spin_lock_irq(&phba->hbalock); 7041 phba->hba_flag |= HBA_AER_ENABLED; 7042 spin_unlock_irq(&phba->hbalock); 7043 } else { 7044 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7045 "2830 This device does not support " 7046 "Advanced Error Reporting (AER)\n"); 7047 phba->cfg_aer_support = 0; 7048 } 7049 rc = 0; 7050 } 7051 7052 /* 7053 * The port is ready, set the host's link state to LINK_DOWN 7054 * in preparation for link interrupts. 7055 */ 7056 spin_lock_irq(&phba->hbalock); 7057 phba->link_state = LPFC_LINK_DOWN; 7058 spin_unlock_irq(&phba->hbalock); 7059 if (!(phba->hba_flag & HBA_FCOE_MODE) && 7060 (phba->hba_flag & LINK_DISABLED)) { 7061 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7062 "3103 Adapter Link is disabled.\n"); 7063 lpfc_down_link(phba, mboxq); 7064 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7065 if (rc != MBX_SUCCESS) { 7066 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7067 "3104 Adapter failed to issue " 7068 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 7069 goto out_unset_queue; 7070 } 7071 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 7072 /* don't perform init_link on SLI4 FC port loopback test */ 7073 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 7074 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 7075 if (rc) 7076 goto out_unset_queue; 7077 } 7078 } 7079 mempool_free(mboxq, phba->mbox_mem_pool); 7080 return rc; 7081 out_unset_queue: 7082 /* Unset all the queues set up in this routine when error out */ 7083 lpfc_sli4_queue_unset(phba); 7084 out_destroy_queue: 7085 lpfc_sli4_queue_destroy(phba); 7086 out_stop_timers: 7087 lpfc_stop_hba_timers(phba); 7088 out_free_mbox: 7089 mempool_free(mboxq, phba->mbox_mem_pool); 7090 return rc; 7091 } 7092 7093 /** 7094 * lpfc_mbox_timeout - Timeout call back function for mbox timer 7095 * @ptr: context object - pointer to hba structure. 7096 * 7097 * This is the callback function for mailbox timer. The mailbox 7098 * timer is armed when a new mailbox command is issued and the timer 7099 * is deleted when the mailbox complete. The function is called by 7100 * the kernel timer code when a mailbox does not complete within 7101 * expected time. This function wakes up the worker thread to 7102 * process the mailbox timeout and returns. All the processing is 7103 * done by the worker thread function lpfc_mbox_timeout_handler. 7104 **/ 7105 void 7106 lpfc_mbox_timeout(unsigned long ptr) 7107 { 7108 struct lpfc_hba *phba = (struct lpfc_hba *) ptr; 7109 unsigned long iflag; 7110 uint32_t tmo_posted; 7111 7112 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 7113 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 7114 if (!tmo_posted) 7115 phba->pport->work_port_events |= WORKER_MBOX_TMO; 7116 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 7117 7118 if (!tmo_posted) 7119 lpfc_worker_wake_up(phba); 7120 return; 7121 } 7122 7123 /** 7124 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 7125 * are pending 7126 * @phba: Pointer to HBA context object. 7127 * 7128 * This function checks if any mailbox completions are present on the mailbox 7129 * completion queue. 7130 **/ 7131 static bool 7132 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 7133 { 7134 7135 uint32_t idx; 7136 struct lpfc_queue *mcq; 7137 struct lpfc_mcqe *mcqe; 7138 bool pending_completions = false; 7139 7140 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7141 return false; 7142 7143 /* Check for completions on mailbox completion queue */ 7144 7145 mcq = phba->sli4_hba.mbx_cq; 7146 idx = mcq->hba_index; 7147 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe)) { 7148 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe; 7149 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 7150 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 7151 pending_completions = true; 7152 break; 7153 } 7154 idx = (idx + 1) % mcq->entry_count; 7155 if (mcq->hba_index == idx) 7156 break; 7157 } 7158 return pending_completions; 7159 7160 } 7161 7162 /** 7163 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 7164 * that were missed. 7165 * @phba: Pointer to HBA context object. 7166 * 7167 * For sli4, it is possible to miss an interrupt. As such mbox completions 7168 * maybe missed causing erroneous mailbox timeouts to occur. This function 7169 * checks to see if mbox completions are on the mailbox completion queue 7170 * and will process all the completions associated with the eq for the 7171 * mailbox completion queue. 7172 **/ 7173 bool 7174 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 7175 { 7176 7177 uint32_t eqidx; 7178 struct lpfc_queue *fpeq = NULL; 7179 struct lpfc_eqe *eqe; 7180 bool mbox_pending; 7181 7182 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7183 return false; 7184 7185 /* Find the eq associated with the mcq */ 7186 7187 if (phba->sli4_hba.hba_eq) 7188 for (eqidx = 0; eqidx < phba->io_channel_irqs; eqidx++) 7189 if (phba->sli4_hba.hba_eq[eqidx]->queue_id == 7190 phba->sli4_hba.mbx_cq->assoc_qid) { 7191 fpeq = phba->sli4_hba.hba_eq[eqidx]; 7192 break; 7193 } 7194 if (!fpeq) 7195 return false; 7196 7197 /* Turn off interrupts from this EQ */ 7198 7199 lpfc_sli4_eq_clr_intr(fpeq); 7200 7201 /* Check to see if a mbox completion is pending */ 7202 7203 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 7204 7205 /* 7206 * If a mbox completion is pending, process all the events on EQ 7207 * associated with the mbox completion queue (this could include 7208 * mailbox commands, async events, els commands, receive queue data 7209 * and fcp commands) 7210 */ 7211 7212 if (mbox_pending) 7213 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 7214 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx); 7215 fpeq->EQ_processed++; 7216 } 7217 7218 /* Always clear and re-arm the EQ */ 7219 7220 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 7221 7222 return mbox_pending; 7223 7224 } 7225 7226 /** 7227 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 7228 * @phba: Pointer to HBA context object. 7229 * 7230 * This function is called from worker thread when a mailbox command times out. 7231 * The caller is not required to hold any locks. This function will reset the 7232 * HBA and recover all the pending commands. 7233 **/ 7234 void 7235 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 7236 { 7237 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 7238 MAILBOX_t *mb = NULL; 7239 7240 struct lpfc_sli *psli = &phba->sli; 7241 7242 /* If the mailbox completed, process the completion and return */ 7243 if (lpfc_sli4_process_missed_mbox_completions(phba)) 7244 return; 7245 7246 if (pmbox != NULL) 7247 mb = &pmbox->u.mb; 7248 /* Check the pmbox pointer first. There is a race condition 7249 * between the mbox timeout handler getting executed in the 7250 * worklist and the mailbox actually completing. When this 7251 * race condition occurs, the mbox_active will be NULL. 7252 */ 7253 spin_lock_irq(&phba->hbalock); 7254 if (pmbox == NULL) { 7255 lpfc_printf_log(phba, KERN_WARNING, 7256 LOG_MBOX | LOG_SLI, 7257 "0353 Active Mailbox cleared - mailbox timeout " 7258 "exiting\n"); 7259 spin_unlock_irq(&phba->hbalock); 7260 return; 7261 } 7262 7263 /* Mbox cmd <mbxCommand> timeout */ 7264 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7265 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n", 7266 mb->mbxCommand, 7267 phba->pport->port_state, 7268 phba->sli.sli_flag, 7269 phba->sli.mbox_active); 7270 spin_unlock_irq(&phba->hbalock); 7271 7272 /* Setting state unknown so lpfc_sli_abort_iocb_ring 7273 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 7274 * it to fail all outstanding SCSI IO. 7275 */ 7276 spin_lock_irq(&phba->pport->work_port_lock); 7277 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 7278 spin_unlock_irq(&phba->pport->work_port_lock); 7279 spin_lock_irq(&phba->hbalock); 7280 phba->link_state = LPFC_LINK_UNKNOWN; 7281 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 7282 spin_unlock_irq(&phba->hbalock); 7283 7284 lpfc_sli_abort_fcp_rings(phba); 7285 7286 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7287 "0345 Resetting board due to mailbox timeout\n"); 7288 7289 /* Reset the HBA device */ 7290 lpfc_reset_hba(phba); 7291 } 7292 7293 /** 7294 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 7295 * @phba: Pointer to HBA context object. 7296 * @pmbox: Pointer to mailbox object. 7297 * @flag: Flag indicating how the mailbox need to be processed. 7298 * 7299 * This function is called by discovery code and HBA management code 7300 * to submit a mailbox command to firmware with SLI-3 interface spec. This 7301 * function gets the hbalock to protect the data structures. 7302 * The mailbox command can be submitted in polling mode, in which case 7303 * this function will wait in a polling loop for the completion of the 7304 * mailbox. 7305 * If the mailbox is submitted in no_wait mode (not polling) the 7306 * function will submit the command and returns immediately without waiting 7307 * for the mailbox completion. The no_wait is supported only when HBA 7308 * is in SLI2/SLI3 mode - interrupts are enabled. 7309 * The SLI interface allows only one mailbox pending at a time. If the 7310 * mailbox is issued in polling mode and there is already a mailbox 7311 * pending, then the function will return an error. If the mailbox is issued 7312 * in NO_WAIT mode and there is a mailbox pending already, the function 7313 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 7314 * The sli layer owns the mailbox object until the completion of mailbox 7315 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 7316 * return codes the caller owns the mailbox command after the return of 7317 * the function. 7318 **/ 7319 static int 7320 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 7321 uint32_t flag) 7322 { 7323 MAILBOX_t *mbx; 7324 struct lpfc_sli *psli = &phba->sli; 7325 uint32_t status, evtctr; 7326 uint32_t ha_copy, hc_copy; 7327 int i; 7328 unsigned long timeout; 7329 unsigned long drvr_flag = 0; 7330 uint32_t word0, ldata; 7331 void __iomem *to_slim; 7332 int processing_queue = 0; 7333 7334 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7335 if (!pmbox) { 7336 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7337 /* processing mbox queue from intr_handler */ 7338 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7339 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7340 return MBX_SUCCESS; 7341 } 7342 processing_queue = 1; 7343 pmbox = lpfc_mbox_get(phba); 7344 if (!pmbox) { 7345 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7346 return MBX_SUCCESS; 7347 } 7348 } 7349 7350 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 7351 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 7352 if(!pmbox->vport) { 7353 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7354 lpfc_printf_log(phba, KERN_ERR, 7355 LOG_MBOX | LOG_VPORT, 7356 "1806 Mbox x%x failed. No vport\n", 7357 pmbox->u.mb.mbxCommand); 7358 dump_stack(); 7359 goto out_not_finished; 7360 } 7361 } 7362 7363 /* If the PCI channel is in offline state, do not post mbox. */ 7364 if (unlikely(pci_channel_offline(phba->pcidev))) { 7365 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7366 goto out_not_finished; 7367 } 7368 7369 /* If HBA has a deferred error attention, fail the iocb. */ 7370 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 7371 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7372 goto out_not_finished; 7373 } 7374 7375 psli = &phba->sli; 7376 7377 mbx = &pmbox->u.mb; 7378 status = MBX_SUCCESS; 7379 7380 if (phba->link_state == LPFC_HBA_ERROR) { 7381 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7382 7383 /* Mbox command <mbxCommand> cannot issue */ 7384 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7385 "(%d):0311 Mailbox command x%x cannot " 7386 "issue Data: x%x x%x\n", 7387 pmbox->vport ? pmbox->vport->vpi : 0, 7388 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7389 goto out_not_finished; 7390 } 7391 7392 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 7393 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 7394 !(hc_copy & HC_MBINT_ENA)) { 7395 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7396 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7397 "(%d):2528 Mailbox command x%x cannot " 7398 "issue Data: x%x x%x\n", 7399 pmbox->vport ? pmbox->vport->vpi : 0, 7400 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7401 goto out_not_finished; 7402 } 7403 } 7404 7405 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7406 /* Polling for a mbox command when another one is already active 7407 * is not allowed in SLI. Also, the driver must have established 7408 * SLI2 mode to queue and process multiple mbox commands. 7409 */ 7410 7411 if (flag & MBX_POLL) { 7412 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7413 7414 /* Mbox command <mbxCommand> cannot issue */ 7415 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7416 "(%d):2529 Mailbox command x%x " 7417 "cannot issue Data: x%x x%x\n", 7418 pmbox->vport ? pmbox->vport->vpi : 0, 7419 pmbox->u.mb.mbxCommand, 7420 psli->sli_flag, flag); 7421 goto out_not_finished; 7422 } 7423 7424 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 7425 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7426 /* Mbox command <mbxCommand> cannot issue */ 7427 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7428 "(%d):2530 Mailbox command x%x " 7429 "cannot issue Data: x%x x%x\n", 7430 pmbox->vport ? pmbox->vport->vpi : 0, 7431 pmbox->u.mb.mbxCommand, 7432 psli->sli_flag, flag); 7433 goto out_not_finished; 7434 } 7435 7436 /* Another mailbox command is still being processed, queue this 7437 * command to be processed later. 7438 */ 7439 lpfc_mbox_put(phba, pmbox); 7440 7441 /* Mbox cmd issue - BUSY */ 7442 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7443 "(%d):0308 Mbox cmd issue - BUSY Data: " 7444 "x%x x%x x%x x%x\n", 7445 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 7446 mbx->mbxCommand, phba->pport->port_state, 7447 psli->sli_flag, flag); 7448 7449 psli->slistat.mbox_busy++; 7450 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7451 7452 if (pmbox->vport) { 7453 lpfc_debugfs_disc_trc(pmbox->vport, 7454 LPFC_DISC_TRC_MBOX_VPORT, 7455 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 7456 (uint32_t)mbx->mbxCommand, 7457 mbx->un.varWords[0], mbx->un.varWords[1]); 7458 } 7459 else { 7460 lpfc_debugfs_disc_trc(phba->pport, 7461 LPFC_DISC_TRC_MBOX, 7462 "MBOX Bsy: cmd:x%x mb:x%x x%x", 7463 (uint32_t)mbx->mbxCommand, 7464 mbx->un.varWords[0], mbx->un.varWords[1]); 7465 } 7466 7467 return MBX_BUSY; 7468 } 7469 7470 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7471 7472 /* If we are not polling, we MUST be in SLI2 mode */ 7473 if (flag != MBX_POLL) { 7474 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 7475 (mbx->mbxCommand != MBX_KILL_BOARD)) { 7476 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7477 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7478 /* Mbox command <mbxCommand> cannot issue */ 7479 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7480 "(%d):2531 Mailbox command x%x " 7481 "cannot issue Data: x%x x%x\n", 7482 pmbox->vport ? pmbox->vport->vpi : 0, 7483 pmbox->u.mb.mbxCommand, 7484 psli->sli_flag, flag); 7485 goto out_not_finished; 7486 } 7487 /* timeout active mbox command */ 7488 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7489 1000); 7490 mod_timer(&psli->mbox_tmo, jiffies + timeout); 7491 } 7492 7493 /* Mailbox cmd <cmd> issue */ 7494 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7495 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 7496 "x%x\n", 7497 pmbox->vport ? pmbox->vport->vpi : 0, 7498 mbx->mbxCommand, phba->pport->port_state, 7499 psli->sli_flag, flag); 7500 7501 if (mbx->mbxCommand != MBX_HEARTBEAT) { 7502 if (pmbox->vport) { 7503 lpfc_debugfs_disc_trc(pmbox->vport, 7504 LPFC_DISC_TRC_MBOX_VPORT, 7505 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7506 (uint32_t)mbx->mbxCommand, 7507 mbx->un.varWords[0], mbx->un.varWords[1]); 7508 } 7509 else { 7510 lpfc_debugfs_disc_trc(phba->pport, 7511 LPFC_DISC_TRC_MBOX, 7512 "MBOX Send: cmd:x%x mb:x%x x%x", 7513 (uint32_t)mbx->mbxCommand, 7514 mbx->un.varWords[0], mbx->un.varWords[1]); 7515 } 7516 } 7517 7518 psli->slistat.mbox_cmd++; 7519 evtctr = psli->slistat.mbox_event; 7520 7521 /* next set own bit for the adapter and copy over command word */ 7522 mbx->mbxOwner = OWN_CHIP; 7523 7524 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7525 /* Populate mbox extension offset word. */ 7526 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 7527 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7528 = (uint8_t *)phba->mbox_ext 7529 - (uint8_t *)phba->mbox; 7530 } 7531 7532 /* Copy the mailbox extension data */ 7533 if (pmbox->in_ext_byte_len && pmbox->context2) { 7534 lpfc_sli_pcimem_bcopy(pmbox->context2, 7535 (uint8_t *)phba->mbox_ext, 7536 pmbox->in_ext_byte_len); 7537 } 7538 /* Copy command data to host SLIM area */ 7539 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 7540 } else { 7541 /* Populate mbox extension offset word. */ 7542 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 7543 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7544 = MAILBOX_HBA_EXT_OFFSET; 7545 7546 /* Copy the mailbox extension data */ 7547 if (pmbox->in_ext_byte_len && pmbox->context2) 7548 lpfc_memcpy_to_slim(phba->MBslimaddr + 7549 MAILBOX_HBA_EXT_OFFSET, 7550 pmbox->context2, pmbox->in_ext_byte_len); 7551 7552 if (mbx->mbxCommand == MBX_CONFIG_PORT) 7553 /* copy command data into host mbox for cmpl */ 7554 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 7555 MAILBOX_CMD_SIZE); 7556 7557 /* First copy mbox command data to HBA SLIM, skip past first 7558 word */ 7559 to_slim = phba->MBslimaddr + sizeof (uint32_t); 7560 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 7561 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 7562 7563 /* Next copy over first word, with mbxOwner set */ 7564 ldata = *((uint32_t *)mbx); 7565 to_slim = phba->MBslimaddr; 7566 writel(ldata, to_slim); 7567 readl(to_slim); /* flush */ 7568 7569 if (mbx->mbxCommand == MBX_CONFIG_PORT) 7570 /* switch over to host mailbox */ 7571 psli->sli_flag |= LPFC_SLI_ACTIVE; 7572 } 7573 7574 wmb(); 7575 7576 switch (flag) { 7577 case MBX_NOWAIT: 7578 /* Set up reference to mailbox command */ 7579 psli->mbox_active = pmbox; 7580 /* Interrupt board to do it */ 7581 writel(CA_MBATT, phba->CAregaddr); 7582 readl(phba->CAregaddr); /* flush */ 7583 /* Don't wait for it to finish, just return */ 7584 break; 7585 7586 case MBX_POLL: 7587 /* Set up null reference to mailbox command */ 7588 psli->mbox_active = NULL; 7589 /* Interrupt board to do it */ 7590 writel(CA_MBATT, phba->CAregaddr); 7591 readl(phba->CAregaddr); /* flush */ 7592 7593 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7594 /* First read mbox status word */ 7595 word0 = *((uint32_t *)phba->mbox); 7596 word0 = le32_to_cpu(word0); 7597 } else { 7598 /* First read mbox status word */ 7599 if (lpfc_readl(phba->MBslimaddr, &word0)) { 7600 spin_unlock_irqrestore(&phba->hbalock, 7601 drvr_flag); 7602 goto out_not_finished; 7603 } 7604 } 7605 7606 /* Read the HBA Host Attention Register */ 7607 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7608 spin_unlock_irqrestore(&phba->hbalock, 7609 drvr_flag); 7610 goto out_not_finished; 7611 } 7612 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7613 1000) + jiffies; 7614 i = 0; 7615 /* Wait for command to complete */ 7616 while (((word0 & OWN_CHIP) == OWN_CHIP) || 7617 (!(ha_copy & HA_MBATT) && 7618 (phba->link_state > LPFC_WARM_START))) { 7619 if (time_after(jiffies, timeout)) { 7620 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7621 spin_unlock_irqrestore(&phba->hbalock, 7622 drvr_flag); 7623 goto out_not_finished; 7624 } 7625 7626 /* Check if we took a mbox interrupt while we were 7627 polling */ 7628 if (((word0 & OWN_CHIP) != OWN_CHIP) 7629 && (evtctr != psli->slistat.mbox_event)) 7630 break; 7631 7632 if (i++ > 10) { 7633 spin_unlock_irqrestore(&phba->hbalock, 7634 drvr_flag); 7635 msleep(1); 7636 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7637 } 7638 7639 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7640 /* First copy command data */ 7641 word0 = *((uint32_t *)phba->mbox); 7642 word0 = le32_to_cpu(word0); 7643 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7644 MAILBOX_t *slimmb; 7645 uint32_t slimword0; 7646 /* Check real SLIM for any errors */ 7647 slimword0 = readl(phba->MBslimaddr); 7648 slimmb = (MAILBOX_t *) & slimword0; 7649 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 7650 && slimmb->mbxStatus) { 7651 psli->sli_flag &= 7652 ~LPFC_SLI_ACTIVE; 7653 word0 = slimword0; 7654 } 7655 } 7656 } else { 7657 /* First copy command data */ 7658 word0 = readl(phba->MBslimaddr); 7659 } 7660 /* Read the HBA Host Attention Register */ 7661 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7662 spin_unlock_irqrestore(&phba->hbalock, 7663 drvr_flag); 7664 goto out_not_finished; 7665 } 7666 } 7667 7668 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7669 /* copy results back to user */ 7670 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 7671 MAILBOX_CMD_SIZE); 7672 /* Copy the mailbox extension data */ 7673 if (pmbox->out_ext_byte_len && pmbox->context2) { 7674 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 7675 pmbox->context2, 7676 pmbox->out_ext_byte_len); 7677 } 7678 } else { 7679 /* First copy command data */ 7680 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 7681 MAILBOX_CMD_SIZE); 7682 /* Copy the mailbox extension data */ 7683 if (pmbox->out_ext_byte_len && pmbox->context2) { 7684 lpfc_memcpy_from_slim(pmbox->context2, 7685 phba->MBslimaddr + 7686 MAILBOX_HBA_EXT_OFFSET, 7687 pmbox->out_ext_byte_len); 7688 } 7689 } 7690 7691 writel(HA_MBATT, phba->HAregaddr); 7692 readl(phba->HAregaddr); /* flush */ 7693 7694 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7695 status = mbx->mbxStatus; 7696 } 7697 7698 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7699 return status; 7700 7701 out_not_finished: 7702 if (processing_queue) { 7703 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 7704 lpfc_mbox_cmpl_put(phba, pmbox); 7705 } 7706 return MBX_NOT_FINISHED; 7707 } 7708 7709 /** 7710 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 7711 * @phba: Pointer to HBA context object. 7712 * 7713 * The function blocks the posting of SLI4 asynchronous mailbox commands from 7714 * the driver internal pending mailbox queue. It will then try to wait out the 7715 * possible outstanding mailbox command before return. 7716 * 7717 * Returns: 7718 * 0 - the outstanding mailbox command completed; otherwise, the wait for 7719 * the outstanding mailbox command timed out. 7720 **/ 7721 static int 7722 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 7723 { 7724 struct lpfc_sli *psli = &phba->sli; 7725 int rc = 0; 7726 unsigned long timeout = 0; 7727 7728 /* Mark the asynchronous mailbox command posting as blocked */ 7729 spin_lock_irq(&phba->hbalock); 7730 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 7731 /* Determine how long we might wait for the active mailbox 7732 * command to be gracefully completed by firmware. 7733 */ 7734 if (phba->sli.mbox_active) 7735 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 7736 phba->sli.mbox_active) * 7737 1000) + jiffies; 7738 spin_unlock_irq(&phba->hbalock); 7739 7740 /* Make sure the mailbox is really active */ 7741 if (timeout) 7742 lpfc_sli4_process_missed_mbox_completions(phba); 7743 7744 /* Wait for the outstnading mailbox command to complete */ 7745 while (phba->sli.mbox_active) { 7746 /* Check active mailbox complete status every 2ms */ 7747 msleep(2); 7748 if (time_after(jiffies, timeout)) { 7749 /* Timeout, marked the outstanding cmd not complete */ 7750 rc = 1; 7751 break; 7752 } 7753 } 7754 7755 /* Can not cleanly block async mailbox command, fails it */ 7756 if (rc) { 7757 spin_lock_irq(&phba->hbalock); 7758 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7759 spin_unlock_irq(&phba->hbalock); 7760 } 7761 return rc; 7762 } 7763 7764 /** 7765 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 7766 * @phba: Pointer to HBA context object. 7767 * 7768 * The function unblocks and resume posting of SLI4 asynchronous mailbox 7769 * commands from the driver internal pending mailbox queue. It makes sure 7770 * that there is no outstanding mailbox command before resuming posting 7771 * asynchronous mailbox commands. If, for any reason, there is outstanding 7772 * mailbox command, it will try to wait it out before resuming asynchronous 7773 * mailbox command posting. 7774 **/ 7775 static void 7776 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 7777 { 7778 struct lpfc_sli *psli = &phba->sli; 7779 7780 spin_lock_irq(&phba->hbalock); 7781 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7782 /* Asynchronous mailbox posting is not blocked, do nothing */ 7783 spin_unlock_irq(&phba->hbalock); 7784 return; 7785 } 7786 7787 /* Outstanding synchronous mailbox command is guaranteed to be done, 7788 * successful or timeout, after timing-out the outstanding mailbox 7789 * command shall always be removed, so just unblock posting async 7790 * mailbox command and resume 7791 */ 7792 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7793 spin_unlock_irq(&phba->hbalock); 7794 7795 /* wake up worker thread to post asynchronlous mailbox command */ 7796 lpfc_worker_wake_up(phba); 7797 } 7798 7799 /** 7800 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 7801 * @phba: Pointer to HBA context object. 7802 * @mboxq: Pointer to mailbox object. 7803 * 7804 * The function waits for the bootstrap mailbox register ready bit from 7805 * port for twice the regular mailbox command timeout value. 7806 * 7807 * 0 - no timeout on waiting for bootstrap mailbox register ready. 7808 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 7809 **/ 7810 static int 7811 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7812 { 7813 uint32_t db_ready; 7814 unsigned long timeout; 7815 struct lpfc_register bmbx_reg; 7816 7817 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 7818 * 1000) + jiffies; 7819 7820 do { 7821 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 7822 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 7823 if (!db_ready) 7824 msleep(2); 7825 7826 if (time_after(jiffies, timeout)) 7827 return MBXERR_ERROR; 7828 } while (!db_ready); 7829 7830 return 0; 7831 } 7832 7833 /** 7834 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 7835 * @phba: Pointer to HBA context object. 7836 * @mboxq: Pointer to mailbox object. 7837 * 7838 * The function posts a mailbox to the port. The mailbox is expected 7839 * to be comletely filled in and ready for the port to operate on it. 7840 * This routine executes a synchronous completion operation on the 7841 * mailbox by polling for its completion. 7842 * 7843 * The caller must not be holding any locks when calling this routine. 7844 * 7845 * Returns: 7846 * MBX_SUCCESS - mailbox posted successfully 7847 * Any of the MBX error values. 7848 **/ 7849 static int 7850 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7851 { 7852 int rc = MBX_SUCCESS; 7853 unsigned long iflag; 7854 uint32_t mcqe_status; 7855 uint32_t mbx_cmnd; 7856 struct lpfc_sli *psli = &phba->sli; 7857 struct lpfc_mqe *mb = &mboxq->u.mqe; 7858 struct lpfc_bmbx_create *mbox_rgn; 7859 struct dma_address *dma_address; 7860 7861 /* 7862 * Only one mailbox can be active to the bootstrap mailbox region 7863 * at a time and there is no queueing provided. 7864 */ 7865 spin_lock_irqsave(&phba->hbalock, iflag); 7866 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7867 spin_unlock_irqrestore(&phba->hbalock, iflag); 7868 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7869 "(%d):2532 Mailbox command x%x (x%x/x%x) " 7870 "cannot issue Data: x%x x%x\n", 7871 mboxq->vport ? mboxq->vport->vpi : 0, 7872 mboxq->u.mb.mbxCommand, 7873 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7874 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7875 psli->sli_flag, MBX_POLL); 7876 return MBXERR_ERROR; 7877 } 7878 /* The server grabs the token and owns it until release */ 7879 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7880 phba->sli.mbox_active = mboxq; 7881 spin_unlock_irqrestore(&phba->hbalock, iflag); 7882 7883 /* wait for bootstrap mbox register for readyness */ 7884 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7885 if (rc) 7886 goto exit; 7887 7888 /* 7889 * Initialize the bootstrap memory region to avoid stale data areas 7890 * in the mailbox post. Then copy the caller's mailbox contents to 7891 * the bmbx mailbox region. 7892 */ 7893 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 7894 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 7895 lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 7896 sizeof(struct lpfc_mqe)); 7897 7898 /* Post the high mailbox dma address to the port and wait for ready. */ 7899 dma_address = &phba->sli4_hba.bmbx.dma_address; 7900 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 7901 7902 /* wait for bootstrap mbox register for hi-address write done */ 7903 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7904 if (rc) 7905 goto exit; 7906 7907 /* Post the low mailbox dma address to the port. */ 7908 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 7909 7910 /* wait for bootstrap mbox register for low address write done */ 7911 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7912 if (rc) 7913 goto exit; 7914 7915 /* 7916 * Read the CQ to ensure the mailbox has completed. 7917 * If so, update the mailbox status so that the upper layers 7918 * can complete the request normally. 7919 */ 7920 lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 7921 sizeof(struct lpfc_mqe)); 7922 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 7923 lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 7924 sizeof(struct lpfc_mcqe)); 7925 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 7926 /* 7927 * When the CQE status indicates a failure and the mailbox status 7928 * indicates success then copy the CQE status into the mailbox status 7929 * (and prefix it with x4000). 7930 */ 7931 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 7932 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 7933 bf_set(lpfc_mqe_status, mb, 7934 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 7935 rc = MBXERR_ERROR; 7936 } else 7937 lpfc_sli4_swap_str(phba, mboxq); 7938 7939 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7940 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 7941 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 7942 " x%x x%x CQ: x%x x%x x%x x%x\n", 7943 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 7944 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7945 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7946 bf_get(lpfc_mqe_status, mb), 7947 mb->un.mb_words[0], mb->un.mb_words[1], 7948 mb->un.mb_words[2], mb->un.mb_words[3], 7949 mb->un.mb_words[4], mb->un.mb_words[5], 7950 mb->un.mb_words[6], mb->un.mb_words[7], 7951 mb->un.mb_words[8], mb->un.mb_words[9], 7952 mb->un.mb_words[10], mb->un.mb_words[11], 7953 mb->un.mb_words[12], mboxq->mcqe.word0, 7954 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 7955 mboxq->mcqe.trailer); 7956 exit: 7957 /* We are holding the token, no needed for lock when release */ 7958 spin_lock_irqsave(&phba->hbalock, iflag); 7959 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7960 phba->sli.mbox_active = NULL; 7961 spin_unlock_irqrestore(&phba->hbalock, iflag); 7962 return rc; 7963 } 7964 7965 /** 7966 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 7967 * @phba: Pointer to HBA context object. 7968 * @pmbox: Pointer to mailbox object. 7969 * @flag: Flag indicating how the mailbox need to be processed. 7970 * 7971 * This function is called by discovery code and HBA management code to submit 7972 * a mailbox command to firmware with SLI-4 interface spec. 7973 * 7974 * Return codes the caller owns the mailbox command after the return of the 7975 * function. 7976 **/ 7977 static int 7978 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 7979 uint32_t flag) 7980 { 7981 struct lpfc_sli *psli = &phba->sli; 7982 unsigned long iflags; 7983 int rc; 7984 7985 /* dump from issue mailbox command if setup */ 7986 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 7987 7988 rc = lpfc_mbox_dev_check(phba); 7989 if (unlikely(rc)) { 7990 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7991 "(%d):2544 Mailbox command x%x (x%x/x%x) " 7992 "cannot issue Data: x%x x%x\n", 7993 mboxq->vport ? mboxq->vport->vpi : 0, 7994 mboxq->u.mb.mbxCommand, 7995 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7996 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7997 psli->sli_flag, flag); 7998 goto out_not_finished; 7999 } 8000 8001 /* Detect polling mode and jump to a handler */ 8002 if (!phba->sli4_hba.intr_enable) { 8003 if (flag == MBX_POLL) 8004 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8005 else 8006 rc = -EIO; 8007 if (rc != MBX_SUCCESS) 8008 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8009 "(%d):2541 Mailbox command x%x " 8010 "(x%x/x%x) failure: " 8011 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8012 "Data: x%x x%x\n,", 8013 mboxq->vport ? mboxq->vport->vpi : 0, 8014 mboxq->u.mb.mbxCommand, 8015 lpfc_sli_config_mbox_subsys_get(phba, 8016 mboxq), 8017 lpfc_sli_config_mbox_opcode_get(phba, 8018 mboxq), 8019 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8020 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8021 bf_get(lpfc_mcqe_ext_status, 8022 &mboxq->mcqe), 8023 psli->sli_flag, flag); 8024 return rc; 8025 } else if (flag == MBX_POLL) { 8026 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8027 "(%d):2542 Try to issue mailbox command " 8028 "x%x (x%x/x%x) synchronously ahead of async" 8029 "mailbox command queue: x%x x%x\n", 8030 mboxq->vport ? mboxq->vport->vpi : 0, 8031 mboxq->u.mb.mbxCommand, 8032 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8033 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8034 psli->sli_flag, flag); 8035 /* Try to block the asynchronous mailbox posting */ 8036 rc = lpfc_sli4_async_mbox_block(phba); 8037 if (!rc) { 8038 /* Successfully blocked, now issue sync mbox cmd */ 8039 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8040 if (rc != MBX_SUCCESS) 8041 lpfc_printf_log(phba, KERN_WARNING, 8042 LOG_MBOX | LOG_SLI, 8043 "(%d):2597 Sync Mailbox command " 8044 "x%x (x%x/x%x) failure: " 8045 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8046 "Data: x%x x%x\n,", 8047 mboxq->vport ? mboxq->vport->vpi : 0, 8048 mboxq->u.mb.mbxCommand, 8049 lpfc_sli_config_mbox_subsys_get(phba, 8050 mboxq), 8051 lpfc_sli_config_mbox_opcode_get(phba, 8052 mboxq), 8053 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8054 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8055 bf_get(lpfc_mcqe_ext_status, 8056 &mboxq->mcqe), 8057 psli->sli_flag, flag); 8058 /* Unblock the async mailbox posting afterward */ 8059 lpfc_sli4_async_mbox_unblock(phba); 8060 } 8061 return rc; 8062 } 8063 8064 /* Now, interrupt mode asynchrous mailbox command */ 8065 rc = lpfc_mbox_cmd_check(phba, mboxq); 8066 if (rc) { 8067 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8068 "(%d):2543 Mailbox command x%x (x%x/x%x) " 8069 "cannot issue Data: x%x x%x\n", 8070 mboxq->vport ? mboxq->vport->vpi : 0, 8071 mboxq->u.mb.mbxCommand, 8072 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8073 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8074 psli->sli_flag, flag); 8075 goto out_not_finished; 8076 } 8077 8078 /* Put the mailbox command to the driver internal FIFO */ 8079 psli->slistat.mbox_busy++; 8080 spin_lock_irqsave(&phba->hbalock, iflags); 8081 lpfc_mbox_put(phba, mboxq); 8082 spin_unlock_irqrestore(&phba->hbalock, iflags); 8083 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8084 "(%d):0354 Mbox cmd issue - Enqueue Data: " 8085 "x%x (x%x/x%x) x%x x%x x%x\n", 8086 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 8087 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8088 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8089 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8090 phba->pport->port_state, 8091 psli->sli_flag, MBX_NOWAIT); 8092 /* Wake up worker thread to transport mailbox command from head */ 8093 lpfc_worker_wake_up(phba); 8094 8095 return MBX_BUSY; 8096 8097 out_not_finished: 8098 return MBX_NOT_FINISHED; 8099 } 8100 8101 /** 8102 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 8103 * @phba: Pointer to HBA context object. 8104 * 8105 * This function is called by worker thread to send a mailbox command to 8106 * SLI4 HBA firmware. 8107 * 8108 **/ 8109 int 8110 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 8111 { 8112 struct lpfc_sli *psli = &phba->sli; 8113 LPFC_MBOXQ_t *mboxq; 8114 int rc = MBX_SUCCESS; 8115 unsigned long iflags; 8116 struct lpfc_mqe *mqe; 8117 uint32_t mbx_cmnd; 8118 8119 /* Check interrupt mode before post async mailbox command */ 8120 if (unlikely(!phba->sli4_hba.intr_enable)) 8121 return MBX_NOT_FINISHED; 8122 8123 /* Check for mailbox command service token */ 8124 spin_lock_irqsave(&phba->hbalock, iflags); 8125 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8126 spin_unlock_irqrestore(&phba->hbalock, iflags); 8127 return MBX_NOT_FINISHED; 8128 } 8129 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8130 spin_unlock_irqrestore(&phba->hbalock, iflags); 8131 return MBX_NOT_FINISHED; 8132 } 8133 if (unlikely(phba->sli.mbox_active)) { 8134 spin_unlock_irqrestore(&phba->hbalock, iflags); 8135 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8136 "0384 There is pending active mailbox cmd\n"); 8137 return MBX_NOT_FINISHED; 8138 } 8139 /* Take the mailbox command service token */ 8140 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8141 8142 /* Get the next mailbox command from head of queue */ 8143 mboxq = lpfc_mbox_get(phba); 8144 8145 /* If no more mailbox command waiting for post, we're done */ 8146 if (!mboxq) { 8147 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8148 spin_unlock_irqrestore(&phba->hbalock, iflags); 8149 return MBX_SUCCESS; 8150 } 8151 phba->sli.mbox_active = mboxq; 8152 spin_unlock_irqrestore(&phba->hbalock, iflags); 8153 8154 /* Check device readiness for posting mailbox command */ 8155 rc = lpfc_mbox_dev_check(phba); 8156 if (unlikely(rc)) 8157 /* Driver clean routine will clean up pending mailbox */ 8158 goto out_not_finished; 8159 8160 /* Prepare the mbox command to be posted */ 8161 mqe = &mboxq->u.mqe; 8162 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 8163 8164 /* Start timer for the mbox_tmo and log some mailbox post messages */ 8165 mod_timer(&psli->mbox_tmo, (jiffies + 8166 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 8167 8168 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8169 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 8170 "x%x x%x\n", 8171 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8172 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8173 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8174 phba->pport->port_state, psli->sli_flag); 8175 8176 if (mbx_cmnd != MBX_HEARTBEAT) { 8177 if (mboxq->vport) { 8178 lpfc_debugfs_disc_trc(mboxq->vport, 8179 LPFC_DISC_TRC_MBOX_VPORT, 8180 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8181 mbx_cmnd, mqe->un.mb_words[0], 8182 mqe->un.mb_words[1]); 8183 } else { 8184 lpfc_debugfs_disc_trc(phba->pport, 8185 LPFC_DISC_TRC_MBOX, 8186 "MBOX Send: cmd:x%x mb:x%x x%x", 8187 mbx_cmnd, mqe->un.mb_words[0], 8188 mqe->un.mb_words[1]); 8189 } 8190 } 8191 psli->slistat.mbox_cmd++; 8192 8193 /* Post the mailbox command to the port */ 8194 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 8195 if (rc != MBX_SUCCESS) { 8196 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8197 "(%d):2533 Mailbox command x%x (x%x/x%x) " 8198 "cannot issue Data: x%x x%x\n", 8199 mboxq->vport ? mboxq->vport->vpi : 0, 8200 mboxq->u.mb.mbxCommand, 8201 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8202 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8203 psli->sli_flag, MBX_NOWAIT); 8204 goto out_not_finished; 8205 } 8206 8207 return rc; 8208 8209 out_not_finished: 8210 spin_lock_irqsave(&phba->hbalock, iflags); 8211 if (phba->sli.mbox_active) { 8212 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 8213 __lpfc_mbox_cmpl_put(phba, mboxq); 8214 /* Release the token */ 8215 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8216 phba->sli.mbox_active = NULL; 8217 } 8218 spin_unlock_irqrestore(&phba->hbalock, iflags); 8219 8220 return MBX_NOT_FINISHED; 8221 } 8222 8223 /** 8224 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 8225 * @phba: Pointer to HBA context object. 8226 * @pmbox: Pointer to mailbox object. 8227 * @flag: Flag indicating how the mailbox need to be processed. 8228 * 8229 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 8230 * the API jump table function pointer from the lpfc_hba struct. 8231 * 8232 * Return codes the caller owns the mailbox command after the return of the 8233 * function. 8234 **/ 8235 int 8236 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 8237 { 8238 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 8239 } 8240 8241 /** 8242 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 8243 * @phba: The hba struct for which this call is being executed. 8244 * @dev_grp: The HBA PCI-Device group number. 8245 * 8246 * This routine sets up the mbox interface API function jump table in @phba 8247 * struct. 8248 * Returns: 0 - success, -ENODEV - failure. 8249 **/ 8250 int 8251 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8252 { 8253 8254 switch (dev_grp) { 8255 case LPFC_PCI_DEV_LP: 8256 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 8257 phba->lpfc_sli_handle_slow_ring_event = 8258 lpfc_sli_handle_slow_ring_event_s3; 8259 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 8260 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 8261 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 8262 break; 8263 case LPFC_PCI_DEV_OC: 8264 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 8265 phba->lpfc_sli_handle_slow_ring_event = 8266 lpfc_sli_handle_slow_ring_event_s4; 8267 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 8268 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 8269 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 8270 break; 8271 default: 8272 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8273 "1420 Invalid HBA PCI-device group: 0x%x\n", 8274 dev_grp); 8275 return -ENODEV; 8276 break; 8277 } 8278 return 0; 8279 } 8280 8281 /** 8282 * __lpfc_sli_ringtx_put - Add an iocb to the txq 8283 * @phba: Pointer to HBA context object. 8284 * @pring: Pointer to driver SLI ring object. 8285 * @piocb: Pointer to address of newly added command iocb. 8286 * 8287 * This function is called with hbalock held to add a command 8288 * iocb to the txq when SLI layer cannot submit the command iocb 8289 * to the ring. 8290 **/ 8291 void 8292 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8293 struct lpfc_iocbq *piocb) 8294 { 8295 lockdep_assert_held(&phba->hbalock); 8296 /* Insert the caller's iocb in the txq tail for later processing. */ 8297 list_add_tail(&piocb->list, &pring->txq); 8298 } 8299 8300 /** 8301 * lpfc_sli_next_iocb - Get the next iocb in the txq 8302 * @phba: Pointer to HBA context object. 8303 * @pring: Pointer to driver SLI ring object. 8304 * @piocb: Pointer to address of newly added command iocb. 8305 * 8306 * This function is called with hbalock held before a new 8307 * iocb is submitted to the firmware. This function checks 8308 * txq to flush the iocbs in txq to Firmware before 8309 * submitting new iocbs to the Firmware. 8310 * If there are iocbs in the txq which need to be submitted 8311 * to firmware, lpfc_sli_next_iocb returns the first element 8312 * of the txq after dequeuing it from txq. 8313 * If there is no iocb in the txq then the function will return 8314 * *piocb and *piocb is set to NULL. Caller needs to check 8315 * *piocb to find if there are more commands in the txq. 8316 **/ 8317 static struct lpfc_iocbq * 8318 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8319 struct lpfc_iocbq **piocb) 8320 { 8321 struct lpfc_iocbq * nextiocb; 8322 8323 lockdep_assert_held(&phba->hbalock); 8324 8325 nextiocb = lpfc_sli_ringtx_get(phba, pring); 8326 if (!nextiocb) { 8327 nextiocb = *piocb; 8328 *piocb = NULL; 8329 } 8330 8331 return nextiocb; 8332 } 8333 8334 /** 8335 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 8336 * @phba: Pointer to HBA context object. 8337 * @ring_number: SLI ring number to issue iocb on. 8338 * @piocb: Pointer to command iocb. 8339 * @flag: Flag indicating if this command can be put into txq. 8340 * 8341 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 8342 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 8343 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 8344 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 8345 * this function allows only iocbs for posting buffers. This function finds 8346 * next available slot in the command ring and posts the command to the 8347 * available slot and writes the port attention register to request HBA start 8348 * processing new iocb. If there is no slot available in the ring and 8349 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 8350 * the function returns IOCB_BUSY. 8351 * 8352 * This function is called with hbalock held. The function will return success 8353 * after it successfully submit the iocb to firmware or after adding to the 8354 * txq. 8355 **/ 8356 static int 8357 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 8358 struct lpfc_iocbq *piocb, uint32_t flag) 8359 { 8360 struct lpfc_iocbq *nextiocb; 8361 IOCB_t *iocb; 8362 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 8363 8364 lockdep_assert_held(&phba->hbalock); 8365 8366 if (piocb->iocb_cmpl && (!piocb->vport) && 8367 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 8368 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 8369 lpfc_printf_log(phba, KERN_ERR, 8370 LOG_SLI | LOG_VPORT, 8371 "1807 IOCB x%x failed. No vport\n", 8372 piocb->iocb.ulpCommand); 8373 dump_stack(); 8374 return IOCB_ERROR; 8375 } 8376 8377 8378 /* If the PCI channel is in offline state, do not post iocbs. */ 8379 if (unlikely(pci_channel_offline(phba->pcidev))) 8380 return IOCB_ERROR; 8381 8382 /* If HBA has a deferred error attention, fail the iocb. */ 8383 if (unlikely(phba->hba_flag & DEFER_ERATT)) 8384 return IOCB_ERROR; 8385 8386 /* 8387 * We should never get an IOCB if we are in a < LINK_DOWN state 8388 */ 8389 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 8390 return IOCB_ERROR; 8391 8392 /* 8393 * Check to see if we are blocking IOCB processing because of a 8394 * outstanding event. 8395 */ 8396 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 8397 goto iocb_busy; 8398 8399 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 8400 /* 8401 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 8402 * can be issued if the link is not up. 8403 */ 8404 switch (piocb->iocb.ulpCommand) { 8405 case CMD_GEN_REQUEST64_CR: 8406 case CMD_GEN_REQUEST64_CX: 8407 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 8408 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 8409 FC_RCTL_DD_UNSOL_CMD) || 8410 (piocb->iocb.un.genreq64.w5.hcsw.Type != 8411 MENLO_TRANSPORT_TYPE)) 8412 8413 goto iocb_busy; 8414 break; 8415 case CMD_QUE_RING_BUF_CN: 8416 case CMD_QUE_RING_BUF64_CN: 8417 /* 8418 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 8419 * completion, iocb_cmpl MUST be 0. 8420 */ 8421 if (piocb->iocb_cmpl) 8422 piocb->iocb_cmpl = NULL; 8423 /*FALLTHROUGH*/ 8424 case CMD_CREATE_XRI_CR: 8425 case CMD_CLOSE_XRI_CN: 8426 case CMD_CLOSE_XRI_CX: 8427 break; 8428 default: 8429 goto iocb_busy; 8430 } 8431 8432 /* 8433 * For FCP commands, we must be in a state where we can process link 8434 * attention events. 8435 */ 8436 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 8437 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 8438 goto iocb_busy; 8439 } 8440 8441 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 8442 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 8443 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 8444 8445 if (iocb) 8446 lpfc_sli_update_ring(phba, pring); 8447 else 8448 lpfc_sli_update_full_ring(phba, pring); 8449 8450 if (!piocb) 8451 return IOCB_SUCCESS; 8452 8453 goto out_busy; 8454 8455 iocb_busy: 8456 pring->stats.iocb_cmd_delay++; 8457 8458 out_busy: 8459 8460 if (!(flag & SLI_IOCB_RET_IOCB)) { 8461 __lpfc_sli_ringtx_put(phba, pring, piocb); 8462 return IOCB_SUCCESS; 8463 } 8464 8465 return IOCB_BUSY; 8466 } 8467 8468 /** 8469 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 8470 * @phba: Pointer to HBA context object. 8471 * @piocb: Pointer to command iocb. 8472 * @sglq: Pointer to the scatter gather queue object. 8473 * 8474 * This routine converts the bpl or bde that is in the IOCB 8475 * to a sgl list for the sli4 hardware. The physical address 8476 * of the bpl/bde is converted back to a virtual address. 8477 * If the IOCB contains a BPL then the list of BDE's is 8478 * converted to sli4_sge's. If the IOCB contains a single 8479 * BDE then it is converted to a single sli_sge. 8480 * The IOCB is still in cpu endianess so the contents of 8481 * the bpl can be used without byte swapping. 8482 * 8483 * Returns valid XRI = Success, NO_XRI = Failure. 8484 **/ 8485 static uint16_t 8486 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 8487 struct lpfc_sglq *sglq) 8488 { 8489 uint16_t xritag = NO_XRI; 8490 struct ulp_bde64 *bpl = NULL; 8491 struct ulp_bde64 bde; 8492 struct sli4_sge *sgl = NULL; 8493 struct lpfc_dmabuf *dmabuf; 8494 IOCB_t *icmd; 8495 int numBdes = 0; 8496 int i = 0; 8497 uint32_t offset = 0; /* accumulated offset in the sg request list */ 8498 int inbound = 0; /* number of sg reply entries inbound from firmware */ 8499 8500 if (!piocbq || !sglq) 8501 return xritag; 8502 8503 sgl = (struct sli4_sge *)sglq->sgl; 8504 icmd = &piocbq->iocb; 8505 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 8506 return sglq->sli4_xritag; 8507 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8508 numBdes = icmd->un.genreq64.bdl.bdeSize / 8509 sizeof(struct ulp_bde64); 8510 /* The addrHigh and addrLow fields within the IOCB 8511 * have not been byteswapped yet so there is no 8512 * need to swap them back. 8513 */ 8514 if (piocbq->context3) 8515 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 8516 else 8517 return xritag; 8518 8519 bpl = (struct ulp_bde64 *)dmabuf->virt; 8520 if (!bpl) 8521 return xritag; 8522 8523 for (i = 0; i < numBdes; i++) { 8524 /* Should already be byte swapped. */ 8525 sgl->addr_hi = bpl->addrHigh; 8526 sgl->addr_lo = bpl->addrLow; 8527 8528 sgl->word2 = le32_to_cpu(sgl->word2); 8529 if ((i+1) == numBdes) 8530 bf_set(lpfc_sli4_sge_last, sgl, 1); 8531 else 8532 bf_set(lpfc_sli4_sge_last, sgl, 0); 8533 /* swap the size field back to the cpu so we 8534 * can assign it to the sgl. 8535 */ 8536 bde.tus.w = le32_to_cpu(bpl->tus.w); 8537 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 8538 /* The offsets in the sgl need to be accumulated 8539 * separately for the request and reply lists. 8540 * The request is always first, the reply follows. 8541 */ 8542 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 8543 /* add up the reply sg entries */ 8544 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 8545 inbound++; 8546 /* first inbound? reset the offset */ 8547 if (inbound == 1) 8548 offset = 0; 8549 bf_set(lpfc_sli4_sge_offset, sgl, offset); 8550 bf_set(lpfc_sli4_sge_type, sgl, 8551 LPFC_SGE_TYPE_DATA); 8552 offset += bde.tus.f.bdeSize; 8553 } 8554 sgl->word2 = cpu_to_le32(sgl->word2); 8555 bpl++; 8556 sgl++; 8557 } 8558 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 8559 /* The addrHigh and addrLow fields of the BDE have not 8560 * been byteswapped yet so they need to be swapped 8561 * before putting them in the sgl. 8562 */ 8563 sgl->addr_hi = 8564 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 8565 sgl->addr_lo = 8566 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 8567 sgl->word2 = le32_to_cpu(sgl->word2); 8568 bf_set(lpfc_sli4_sge_last, sgl, 1); 8569 sgl->word2 = cpu_to_le32(sgl->word2); 8570 sgl->sge_len = 8571 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 8572 } 8573 return sglq->sli4_xritag; 8574 } 8575 8576 /** 8577 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 8578 * @phba: Pointer to HBA context object. 8579 * @piocb: Pointer to command iocb. 8580 * @wqe: Pointer to the work queue entry. 8581 * 8582 * This routine converts the iocb command to its Work Queue Entry 8583 * equivalent. The wqe pointer should not have any fields set when 8584 * this routine is called because it will memcpy over them. 8585 * This routine does not set the CQ_ID or the WQEC bits in the 8586 * wqe. 8587 * 8588 * Returns: 0 = Success, IOCB_ERROR = Failure. 8589 **/ 8590 static int 8591 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 8592 union lpfc_wqe *wqe) 8593 { 8594 uint32_t xmit_len = 0, total_len = 0; 8595 uint8_t ct = 0; 8596 uint32_t fip; 8597 uint32_t abort_tag; 8598 uint8_t command_type = ELS_COMMAND_NON_FIP; 8599 uint8_t cmnd; 8600 uint16_t xritag; 8601 uint16_t abrt_iotag; 8602 struct lpfc_iocbq *abrtiocbq; 8603 struct ulp_bde64 *bpl = NULL; 8604 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 8605 int numBdes, i; 8606 struct ulp_bde64 bde; 8607 struct lpfc_nodelist *ndlp; 8608 uint32_t *pcmd; 8609 uint32_t if_type; 8610 8611 fip = phba->hba_flag & HBA_FIP_SUPPORT; 8612 /* The fcp commands will set command type */ 8613 if (iocbq->iocb_flag & LPFC_IO_FCP) 8614 command_type = FCP_COMMAND; 8615 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 8616 command_type = ELS_COMMAND_FIP; 8617 else 8618 command_type = ELS_COMMAND_NON_FIP; 8619 8620 if (phba->fcp_embed_io) 8621 memset(wqe, 0, sizeof(union lpfc_wqe128)); 8622 /* Some of the fields are in the right position already */ 8623 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 8624 wqe->generic.wqe_com.word7 = 0; /* The ct field has moved so reset */ 8625 wqe->generic.wqe_com.word10 = 0; 8626 8627 abort_tag = (uint32_t) iocbq->iotag; 8628 xritag = iocbq->sli4_xritag; 8629 /* words0-2 bpl convert bde */ 8630 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8631 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8632 sizeof(struct ulp_bde64); 8633 bpl = (struct ulp_bde64 *) 8634 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 8635 if (!bpl) 8636 return IOCB_ERROR; 8637 8638 /* Should already be byte swapped. */ 8639 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 8640 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 8641 /* swap the size field back to the cpu so we 8642 * can assign it to the sgl. 8643 */ 8644 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 8645 xmit_len = wqe->generic.bde.tus.f.bdeSize; 8646 total_len = 0; 8647 for (i = 0; i < numBdes; i++) { 8648 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8649 total_len += bde.tus.f.bdeSize; 8650 } 8651 } else 8652 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 8653 8654 iocbq->iocb.ulpIoTag = iocbq->iotag; 8655 cmnd = iocbq->iocb.ulpCommand; 8656 8657 switch (iocbq->iocb.ulpCommand) { 8658 case CMD_ELS_REQUEST64_CR: 8659 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 8660 ndlp = iocbq->context_un.ndlp; 8661 else 8662 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8663 if (!iocbq->iocb.ulpLe) { 8664 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8665 "2007 Only Limited Edition cmd Format" 8666 " supported 0x%x\n", 8667 iocbq->iocb.ulpCommand); 8668 return IOCB_ERROR; 8669 } 8670 8671 wqe->els_req.payload_len = xmit_len; 8672 /* Els_reguest64 has a TMO */ 8673 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 8674 iocbq->iocb.ulpTimeout); 8675 /* Need a VF for word 4 set the vf bit*/ 8676 bf_set(els_req64_vf, &wqe->els_req, 0); 8677 /* And a VFID for word 12 */ 8678 bf_set(els_req64_vfid, &wqe->els_req, 0); 8679 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8680 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8681 iocbq->iocb.ulpContext); 8682 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 8683 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 8684 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 8685 if (command_type == ELS_COMMAND_FIP) 8686 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 8687 >> LPFC_FIP_ELS_ID_SHIFT); 8688 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8689 iocbq->context2)->virt); 8690 if_type = bf_get(lpfc_sli_intf_if_type, 8691 &phba->sli4_hba.sli_intf); 8692 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8693 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 8694 *pcmd == ELS_CMD_SCR || 8695 *pcmd == ELS_CMD_FDISC || 8696 *pcmd == ELS_CMD_LOGO || 8697 *pcmd == ELS_CMD_PLOGI)) { 8698 bf_set(els_req64_sp, &wqe->els_req, 1); 8699 bf_set(els_req64_sid, &wqe->els_req, 8700 iocbq->vport->fc_myDID); 8701 if ((*pcmd == ELS_CMD_FLOGI) && 8702 !(phba->fc_topology == 8703 LPFC_TOPOLOGY_LOOP)) 8704 bf_set(els_req64_sid, &wqe->els_req, 0); 8705 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 8706 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8707 phba->vpi_ids[iocbq->vport->vpi]); 8708 } else if (pcmd && iocbq->context1) { 8709 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 8710 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8711 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8712 } 8713 } 8714 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 8715 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8716 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 8717 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 8718 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 8719 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 8720 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8721 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 8722 wqe->els_req.max_response_payload_len = total_len - xmit_len; 8723 break; 8724 case CMD_XMIT_SEQUENCE64_CX: 8725 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 8726 iocbq->iocb.un.ulpWord[3]); 8727 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 8728 iocbq->iocb.unsli3.rcvsli3.ox_id); 8729 /* The entire sequence is transmitted for this IOCB */ 8730 xmit_len = total_len; 8731 cmnd = CMD_XMIT_SEQUENCE64_CR; 8732 if (phba->link_flag & LS_LOOPBACK_MODE) 8733 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 8734 case CMD_XMIT_SEQUENCE64_CR: 8735 /* word3 iocb=io_tag32 wqe=reserved */ 8736 wqe->xmit_sequence.rsvd3 = 0; 8737 /* word4 relative_offset memcpy */ 8738 /* word5 r_ctl/df_ctl memcpy */ 8739 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 8740 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 8741 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 8742 LPFC_WQE_IOD_WRITE); 8743 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 8744 LPFC_WQE_LENLOC_WORD12); 8745 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 8746 wqe->xmit_sequence.xmit_len = xmit_len; 8747 command_type = OTHER_COMMAND; 8748 break; 8749 case CMD_XMIT_BCAST64_CN: 8750 /* word3 iocb=iotag32 wqe=seq_payload_len */ 8751 wqe->xmit_bcast64.seq_payload_len = xmit_len; 8752 /* word4 iocb=rsvd wqe=rsvd */ 8753 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 8754 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 8755 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 8756 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8757 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 8758 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 8759 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 8760 LPFC_WQE_LENLOC_WORD3); 8761 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 8762 break; 8763 case CMD_FCP_IWRITE64_CR: 8764 command_type = FCP_COMMAND_DATA_OUT; 8765 /* word3 iocb=iotag wqe=payload_offset_len */ 8766 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8767 bf_set(payload_offset_len, &wqe->fcp_iwrite, 8768 xmit_len + sizeof(struct fcp_rsp)); 8769 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 8770 0); 8771 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8772 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8773 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 8774 iocbq->iocb.ulpFCP2Rcvy); 8775 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 8776 /* Always open the exchange */ 8777 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 8778 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 8779 LPFC_WQE_LENLOC_WORD4); 8780 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 8781 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 8782 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8783 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 8784 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 8785 if (iocbq->priority) { 8786 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 8787 (iocbq->priority << 1)); 8788 } else { 8789 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 8790 (phba->cfg_XLanePriority << 1)); 8791 } 8792 } 8793 /* Note, word 10 is already initialized to 0 */ 8794 8795 if (phba->fcp_embed_io) { 8796 struct lpfc_scsi_buf *lpfc_cmd; 8797 struct sli4_sge *sgl; 8798 union lpfc_wqe128 *wqe128; 8799 struct fcp_cmnd *fcp_cmnd; 8800 uint32_t *ptr; 8801 8802 /* 128 byte wqe support here */ 8803 wqe128 = (union lpfc_wqe128 *)wqe; 8804 8805 lpfc_cmd = iocbq->context1; 8806 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8807 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8808 8809 /* Word 0-2 - FCP_CMND */ 8810 wqe128->generic.bde.tus.f.bdeFlags = 8811 BUFF_TYPE_BDE_IMMED; 8812 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8813 wqe128->generic.bde.addrHigh = 0; 8814 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8815 8816 bf_set(wqe_wqes, &wqe128->fcp_iwrite.wqe_com, 1); 8817 8818 /* Word 22-29 FCP CMND Payload */ 8819 ptr = &wqe128->words[22]; 8820 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8821 } 8822 break; 8823 case CMD_FCP_IREAD64_CR: 8824 /* word3 iocb=iotag wqe=payload_offset_len */ 8825 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8826 bf_set(payload_offset_len, &wqe->fcp_iread, 8827 xmit_len + sizeof(struct fcp_rsp)); 8828 bf_set(cmd_buff_len, &wqe->fcp_iread, 8829 0); 8830 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8831 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8832 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 8833 iocbq->iocb.ulpFCP2Rcvy); 8834 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 8835 /* Always open the exchange */ 8836 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 8837 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 8838 LPFC_WQE_LENLOC_WORD4); 8839 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 8840 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 8841 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8842 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 8843 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 8844 if (iocbq->priority) { 8845 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 8846 (iocbq->priority << 1)); 8847 } else { 8848 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 8849 (phba->cfg_XLanePriority << 1)); 8850 } 8851 } 8852 /* Note, word 10 is already initialized to 0 */ 8853 8854 if (phba->fcp_embed_io) { 8855 struct lpfc_scsi_buf *lpfc_cmd; 8856 struct sli4_sge *sgl; 8857 union lpfc_wqe128 *wqe128; 8858 struct fcp_cmnd *fcp_cmnd; 8859 uint32_t *ptr; 8860 8861 /* 128 byte wqe support here */ 8862 wqe128 = (union lpfc_wqe128 *)wqe; 8863 8864 lpfc_cmd = iocbq->context1; 8865 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8866 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8867 8868 /* Word 0-2 - FCP_CMND */ 8869 wqe128->generic.bde.tus.f.bdeFlags = 8870 BUFF_TYPE_BDE_IMMED; 8871 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8872 wqe128->generic.bde.addrHigh = 0; 8873 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8874 8875 bf_set(wqe_wqes, &wqe128->fcp_iread.wqe_com, 1); 8876 8877 /* Word 22-29 FCP CMND Payload */ 8878 ptr = &wqe128->words[22]; 8879 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8880 } 8881 break; 8882 case CMD_FCP_ICMND64_CR: 8883 /* word3 iocb=iotag wqe=payload_offset_len */ 8884 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8885 bf_set(payload_offset_len, &wqe->fcp_icmd, 8886 xmit_len + sizeof(struct fcp_rsp)); 8887 bf_set(cmd_buff_len, &wqe->fcp_icmd, 8888 0); 8889 /* word3 iocb=IO_TAG wqe=reserved */ 8890 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 8891 /* Always open the exchange */ 8892 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 8893 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 8894 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 8895 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 8896 LPFC_WQE_LENLOC_NONE); 8897 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 8898 iocbq->iocb.ulpFCP2Rcvy); 8899 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8900 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 8901 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 8902 if (iocbq->priority) { 8903 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 8904 (iocbq->priority << 1)); 8905 } else { 8906 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 8907 (phba->cfg_XLanePriority << 1)); 8908 } 8909 } 8910 /* Note, word 10 is already initialized to 0 */ 8911 8912 if (phba->fcp_embed_io) { 8913 struct lpfc_scsi_buf *lpfc_cmd; 8914 struct sli4_sge *sgl; 8915 union lpfc_wqe128 *wqe128; 8916 struct fcp_cmnd *fcp_cmnd; 8917 uint32_t *ptr; 8918 8919 /* 128 byte wqe support here */ 8920 wqe128 = (union lpfc_wqe128 *)wqe; 8921 8922 lpfc_cmd = iocbq->context1; 8923 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8924 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8925 8926 /* Word 0-2 - FCP_CMND */ 8927 wqe128->generic.bde.tus.f.bdeFlags = 8928 BUFF_TYPE_BDE_IMMED; 8929 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8930 wqe128->generic.bde.addrHigh = 0; 8931 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8932 8933 bf_set(wqe_wqes, &wqe128->fcp_icmd.wqe_com, 1); 8934 8935 /* Word 22-29 FCP CMND Payload */ 8936 ptr = &wqe128->words[22]; 8937 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8938 } 8939 break; 8940 case CMD_GEN_REQUEST64_CR: 8941 /* For this command calculate the xmit length of the 8942 * request bde. 8943 */ 8944 xmit_len = 0; 8945 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8946 sizeof(struct ulp_bde64); 8947 for (i = 0; i < numBdes; i++) { 8948 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8949 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 8950 break; 8951 xmit_len += bde.tus.f.bdeSize; 8952 } 8953 /* word3 iocb=IO_TAG wqe=request_payload_len */ 8954 wqe->gen_req.request_payload_len = xmit_len; 8955 /* word4 iocb=parameter wqe=relative_offset memcpy */ 8956 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 8957 /* word6 context tag copied in memcpy */ 8958 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 8959 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8960 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8961 "2015 Invalid CT %x command 0x%x\n", 8962 ct, iocbq->iocb.ulpCommand); 8963 return IOCB_ERROR; 8964 } 8965 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 8966 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 8967 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 8968 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 8969 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 8970 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 8971 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8972 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 8973 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 8974 command_type = OTHER_COMMAND; 8975 break; 8976 case CMD_XMIT_ELS_RSP64_CX: 8977 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8978 /* words0-2 BDE memcpy */ 8979 /* word3 iocb=iotag32 wqe=response_payload_len */ 8980 wqe->xmit_els_rsp.response_payload_len = xmit_len; 8981 /* word4 */ 8982 wqe->xmit_els_rsp.word4 = 0; 8983 /* word5 iocb=rsvd wge=did */ 8984 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 8985 iocbq->iocb.un.xseq64.xmit_els_remoteID); 8986 8987 if_type = bf_get(lpfc_sli_intf_if_type, 8988 &phba->sli4_hba.sli_intf); 8989 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8990 if (iocbq->vport->fc_flag & FC_PT2PT) { 8991 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 8992 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 8993 iocbq->vport->fc_myDID); 8994 if (iocbq->vport->fc_myDID == Fabric_DID) { 8995 bf_set(wqe_els_did, 8996 &wqe->xmit_els_rsp.wqe_dest, 0); 8997 } 8998 } 8999 } 9000 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 9001 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9002 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 9003 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 9004 iocbq->iocb.unsli3.rcvsli3.ox_id); 9005 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 9006 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9007 phba->vpi_ids[iocbq->vport->vpi]); 9008 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 9009 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 9010 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 9011 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 9012 LPFC_WQE_LENLOC_WORD3); 9013 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 9014 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 9015 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9016 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9017 iocbq->context2)->virt); 9018 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 9019 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9020 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9021 iocbq->vport->fc_myDID); 9022 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 9023 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9024 phba->vpi_ids[phba->pport->vpi]); 9025 } 9026 command_type = OTHER_COMMAND; 9027 break; 9028 case CMD_CLOSE_XRI_CN: 9029 case CMD_ABORT_XRI_CN: 9030 case CMD_ABORT_XRI_CX: 9031 /* words 0-2 memcpy should be 0 rserved */ 9032 /* port will send abts */ 9033 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 9034 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 9035 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 9036 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 9037 } else 9038 fip = 0; 9039 9040 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 9041 /* 9042 * The link is down, or the command was ELS_FIP 9043 * so the fw does not need to send abts 9044 * on the wire. 9045 */ 9046 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 9047 else 9048 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 9049 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 9050 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 9051 wqe->abort_cmd.rsrvd5 = 0; 9052 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 9053 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9054 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 9055 /* 9056 * The abort handler will send us CMD_ABORT_XRI_CN or 9057 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 9058 */ 9059 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 9060 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 9061 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 9062 LPFC_WQE_LENLOC_NONE); 9063 cmnd = CMD_ABORT_XRI_CX; 9064 command_type = OTHER_COMMAND; 9065 xritag = 0; 9066 break; 9067 case CMD_XMIT_BLS_RSP64_CX: 9068 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9069 /* As BLS ABTS RSP WQE is very different from other WQEs, 9070 * we re-construct this WQE here based on information in 9071 * iocbq from scratch. 9072 */ 9073 memset(wqe, 0, sizeof(union lpfc_wqe)); 9074 /* OX_ID is invariable to who sent ABTS to CT exchange */ 9075 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 9076 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 9077 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 9078 LPFC_ABTS_UNSOL_INT) { 9079 /* ABTS sent by initiator to CT exchange, the 9080 * RX_ID field will be filled with the newly 9081 * allocated responder XRI. 9082 */ 9083 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9084 iocbq->sli4_xritag); 9085 } else { 9086 /* ABTS sent by responder to CT exchange, the 9087 * RX_ID field will be filled with the responder 9088 * RX_ID from ABTS. 9089 */ 9090 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9091 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 9092 } 9093 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 9094 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 9095 9096 /* Use CT=VPI */ 9097 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 9098 ndlp->nlp_DID); 9099 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 9100 iocbq->iocb.ulpContext); 9101 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 9102 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 9103 phba->vpi_ids[phba->pport->vpi]); 9104 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 9105 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 9106 LPFC_WQE_LENLOC_NONE); 9107 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 9108 command_type = OTHER_COMMAND; 9109 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 9110 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 9111 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 9112 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 9113 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 9114 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 9115 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 9116 } 9117 9118 break; 9119 case CMD_XRI_ABORTED_CX: 9120 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 9121 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 9122 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 9123 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 9124 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 9125 default: 9126 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9127 "2014 Invalid command 0x%x\n", 9128 iocbq->iocb.ulpCommand); 9129 return IOCB_ERROR; 9130 break; 9131 } 9132 9133 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 9134 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 9135 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 9136 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 9137 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 9138 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 9139 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 9140 LPFC_IO_DIF_INSERT); 9141 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9142 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9143 wqe->generic.wqe_com.abort_tag = abort_tag; 9144 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 9145 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 9146 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 9147 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 9148 return 0; 9149 } 9150 9151 /** 9152 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 9153 * @phba: Pointer to HBA context object. 9154 * @ring_number: SLI ring number to issue iocb on. 9155 * @piocb: Pointer to command iocb. 9156 * @flag: Flag indicating if this command can be put into txq. 9157 * 9158 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 9159 * an iocb command to an HBA with SLI-4 interface spec. 9160 * 9161 * This function is called with hbalock held. The function will return success 9162 * after it successfully submit the iocb to firmware or after adding to the 9163 * txq. 9164 **/ 9165 static int 9166 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 9167 struct lpfc_iocbq *piocb, uint32_t flag) 9168 { 9169 struct lpfc_sglq *sglq; 9170 union lpfc_wqe *wqe; 9171 union lpfc_wqe128 wqe128; 9172 struct lpfc_queue *wq; 9173 struct lpfc_sli_ring *pring; 9174 9175 /* Get the WQ */ 9176 if ((piocb->iocb_flag & LPFC_IO_FCP) || 9177 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 9178 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS))) 9179 wq = phba->sli4_hba.fcp_wq[piocb->hba_wqidx]; 9180 else 9181 wq = phba->sli4_hba.oas_wq; 9182 } else { 9183 wq = phba->sli4_hba.els_wq; 9184 } 9185 9186 /* Get corresponding ring */ 9187 pring = wq->pring; 9188 9189 /* 9190 * The WQE can be either 64 or 128 bytes, 9191 * so allocate space on the stack assuming the largest. 9192 */ 9193 wqe = (union lpfc_wqe *)&wqe128; 9194 9195 lockdep_assert_held(&phba->hbalock); 9196 9197 if (piocb->sli4_xritag == NO_XRI) { 9198 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 9199 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 9200 sglq = NULL; 9201 else { 9202 if (!list_empty(&pring->txq)) { 9203 if (!(flag & SLI_IOCB_RET_IOCB)) { 9204 __lpfc_sli_ringtx_put(phba, 9205 pring, piocb); 9206 return IOCB_SUCCESS; 9207 } else { 9208 return IOCB_BUSY; 9209 } 9210 } else { 9211 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 9212 if (!sglq) { 9213 if (!(flag & SLI_IOCB_RET_IOCB)) { 9214 __lpfc_sli_ringtx_put(phba, 9215 pring, 9216 piocb); 9217 return IOCB_SUCCESS; 9218 } else 9219 return IOCB_BUSY; 9220 } 9221 } 9222 } 9223 } else if (piocb->iocb_flag & LPFC_IO_FCP) 9224 /* These IO's already have an XRI and a mapped sgl. */ 9225 sglq = NULL; 9226 else { 9227 /* 9228 * This is a continuation of a commandi,(CX) so this 9229 * sglq is on the active list 9230 */ 9231 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 9232 if (!sglq) 9233 return IOCB_ERROR; 9234 } 9235 9236 if (sglq) { 9237 piocb->sli4_lxritag = sglq->sli4_lxritag; 9238 piocb->sli4_xritag = sglq->sli4_xritag; 9239 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 9240 return IOCB_ERROR; 9241 } 9242 9243 if (lpfc_sli4_iocb2wqe(phba, piocb, wqe)) 9244 return IOCB_ERROR; 9245 9246 if (lpfc_sli4_wq_put(wq, wqe)) 9247 return IOCB_ERROR; 9248 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 9249 9250 return 0; 9251 } 9252 9253 /** 9254 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 9255 * 9256 * This routine wraps the actual lockless version for issusing IOCB function 9257 * pointer from the lpfc_hba struct. 9258 * 9259 * Return codes: 9260 * IOCB_ERROR - Error 9261 * IOCB_SUCCESS - Success 9262 * IOCB_BUSY - Busy 9263 **/ 9264 int 9265 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9266 struct lpfc_iocbq *piocb, uint32_t flag) 9267 { 9268 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9269 } 9270 9271 /** 9272 * lpfc_sli_api_table_setup - Set up sli api function jump table 9273 * @phba: The hba struct for which this call is being executed. 9274 * @dev_grp: The HBA PCI-Device group number. 9275 * 9276 * This routine sets up the SLI interface API function jump table in @phba 9277 * struct. 9278 * Returns: 0 - success, -ENODEV - failure. 9279 **/ 9280 int 9281 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9282 { 9283 9284 switch (dev_grp) { 9285 case LPFC_PCI_DEV_LP: 9286 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 9287 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 9288 break; 9289 case LPFC_PCI_DEV_OC: 9290 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 9291 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 9292 break; 9293 default: 9294 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9295 "1419 Invalid HBA PCI-device group: 0x%x\n", 9296 dev_grp); 9297 return -ENODEV; 9298 break; 9299 } 9300 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 9301 return 0; 9302 } 9303 9304 /** 9305 * lpfc_sli4_calc_ring - Calculates which ring to use 9306 * @phba: Pointer to HBA context object. 9307 * @piocb: Pointer to command iocb. 9308 * 9309 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 9310 * hba_wqidx, thus we need to calculate the corresponding ring. 9311 * Since ABORTS must go on the same WQ of the command they are 9312 * aborting, we use command's hba_wqidx. 9313 */ 9314 struct lpfc_sli_ring * 9315 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 9316 { 9317 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 9318 if (!(phba->cfg_fof) || 9319 (!(piocb->iocb_flag & LPFC_IO_FOF))) { 9320 if (unlikely(!phba->sli4_hba.fcp_wq)) 9321 return NULL; 9322 /* 9323 * for abort iocb hba_wqidx should already 9324 * be setup based on what work queue we used. 9325 */ 9326 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) 9327 piocb->hba_wqidx = 9328 lpfc_sli4_scmd_to_wqidx_distr(phba, 9329 piocb->context1); 9330 return phba->sli4_hba.fcp_wq[piocb->hba_wqidx]->pring; 9331 } else { 9332 if (unlikely(!phba->sli4_hba.oas_wq)) 9333 return NULL; 9334 piocb->hba_wqidx = 0; 9335 return phba->sli4_hba.oas_wq->pring; 9336 } 9337 } else { 9338 if (unlikely(!phba->sli4_hba.els_wq)) 9339 return NULL; 9340 piocb->hba_wqidx = 0; 9341 return phba->sli4_hba.els_wq->pring; 9342 } 9343 } 9344 9345 /** 9346 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 9347 * @phba: Pointer to HBA context object. 9348 * @pring: Pointer to driver SLI ring object. 9349 * @piocb: Pointer to command iocb. 9350 * @flag: Flag indicating if this command can be put into txq. 9351 * 9352 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 9353 * function. This function gets the hbalock and calls 9354 * __lpfc_sli_issue_iocb function and will return the error returned 9355 * by __lpfc_sli_issue_iocb function. This wrapper is used by 9356 * functions which do not hold hbalock. 9357 **/ 9358 int 9359 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9360 struct lpfc_iocbq *piocb, uint32_t flag) 9361 { 9362 struct lpfc_hba_eq_hdl *hba_eq_hdl; 9363 struct lpfc_sli_ring *pring; 9364 struct lpfc_queue *fpeq; 9365 struct lpfc_eqe *eqe; 9366 unsigned long iflags; 9367 int rc, idx; 9368 9369 if (phba->sli_rev == LPFC_SLI_REV4) { 9370 pring = lpfc_sli4_calc_ring(phba, piocb); 9371 if (unlikely(pring == NULL)) 9372 return IOCB_ERROR; 9373 9374 spin_lock_irqsave(&pring->ring_lock, iflags); 9375 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9376 spin_unlock_irqrestore(&pring->ring_lock, iflags); 9377 9378 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) { 9379 idx = piocb->hba_wqidx; 9380 hba_eq_hdl = &phba->sli4_hba.hba_eq_hdl[idx]; 9381 9382 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) { 9383 9384 /* Get associated EQ with this index */ 9385 fpeq = phba->sli4_hba.hba_eq[idx]; 9386 9387 /* Turn off interrupts from this EQ */ 9388 lpfc_sli4_eq_clr_intr(fpeq); 9389 9390 /* 9391 * Process all the events on FCP EQ 9392 */ 9393 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 9394 lpfc_sli4_hba_handle_eqe(phba, 9395 eqe, idx); 9396 fpeq->EQ_processed++; 9397 } 9398 9399 /* Always clear and re-arm the EQ */ 9400 lpfc_sli4_eq_release(fpeq, 9401 LPFC_QUEUE_REARM); 9402 } 9403 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 9404 } 9405 } else { 9406 /* For now, SLI2/3 will still use hbalock */ 9407 spin_lock_irqsave(&phba->hbalock, iflags); 9408 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9409 spin_unlock_irqrestore(&phba->hbalock, iflags); 9410 } 9411 return rc; 9412 } 9413 9414 /** 9415 * lpfc_extra_ring_setup - Extra ring setup function 9416 * @phba: Pointer to HBA context object. 9417 * 9418 * This function is called while driver attaches with the 9419 * HBA to setup the extra ring. The extra ring is used 9420 * only when driver needs to support target mode functionality 9421 * or IP over FC functionalities. 9422 * 9423 * This function is called with no lock held. SLI3 only. 9424 **/ 9425 static int 9426 lpfc_extra_ring_setup( struct lpfc_hba *phba) 9427 { 9428 struct lpfc_sli *psli; 9429 struct lpfc_sli_ring *pring; 9430 9431 psli = &phba->sli; 9432 9433 /* Adjust cmd/rsp ring iocb entries more evenly */ 9434 9435 /* Take some away from the FCP ring */ 9436 pring = &psli->sli3_ring[LPFC_FCP_RING]; 9437 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9438 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9439 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9440 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9441 9442 /* and give them to the extra ring */ 9443 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 9444 9445 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9446 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9447 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9448 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9449 9450 /* Setup default profile for this ring */ 9451 pring->iotag_max = 4096; 9452 pring->num_mask = 1; 9453 pring->prt[0].profile = 0; /* Mask 0 */ 9454 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 9455 pring->prt[0].type = phba->cfg_multi_ring_type; 9456 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 9457 return 0; 9458 } 9459 9460 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 9461 * @phba: Pointer to HBA context object. 9462 * @iocbq: Pointer to iocb object. 9463 * 9464 * The async_event handler calls this routine when it receives 9465 * an ASYNC_STATUS_CN event from the port. The port generates 9466 * this event when an Abort Sequence request to an rport fails 9467 * twice in succession. The abort could be originated by the 9468 * driver or by the port. The ABTS could have been for an ELS 9469 * or FCP IO. The port only generates this event when an ABTS 9470 * fails to complete after one retry. 9471 */ 9472 static void 9473 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 9474 struct lpfc_iocbq *iocbq) 9475 { 9476 struct lpfc_nodelist *ndlp = NULL; 9477 uint16_t rpi = 0, vpi = 0; 9478 struct lpfc_vport *vport = NULL; 9479 9480 /* The rpi in the ulpContext is vport-sensitive. */ 9481 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 9482 rpi = iocbq->iocb.ulpContext; 9483 9484 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9485 "3092 Port generated ABTS async event " 9486 "on vpi %d rpi %d status 0x%x\n", 9487 vpi, rpi, iocbq->iocb.ulpStatus); 9488 9489 vport = lpfc_find_vport_by_vpid(phba, vpi); 9490 if (!vport) 9491 goto err_exit; 9492 ndlp = lpfc_findnode_rpi(vport, rpi); 9493 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 9494 goto err_exit; 9495 9496 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 9497 lpfc_sli_abts_recover_port(vport, ndlp); 9498 return; 9499 9500 err_exit: 9501 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9502 "3095 Event Context not found, no " 9503 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 9504 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 9505 vpi, rpi); 9506 } 9507 9508 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 9509 * @phba: pointer to HBA context object. 9510 * @ndlp: nodelist pointer for the impacted rport. 9511 * @axri: pointer to the wcqe containing the failed exchange. 9512 * 9513 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 9514 * port. The port generates this event when an abort exchange request to an 9515 * rport fails twice in succession with no reply. The abort could be originated 9516 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 9517 */ 9518 void 9519 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 9520 struct lpfc_nodelist *ndlp, 9521 struct sli4_wcqe_xri_aborted *axri) 9522 { 9523 struct lpfc_vport *vport; 9524 uint32_t ext_status = 0; 9525 9526 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 9527 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9528 "3115 Node Context not found, driver " 9529 "ignoring abts err event\n"); 9530 return; 9531 } 9532 9533 vport = ndlp->vport; 9534 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9535 "3116 Port generated FCP XRI ABORT event on " 9536 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 9537 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 9538 bf_get(lpfc_wcqe_xa_xri, axri), 9539 bf_get(lpfc_wcqe_xa_status, axri), 9540 axri->parameter); 9541 9542 /* 9543 * Catch the ABTS protocol failure case. Older OCe FW releases returned 9544 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 9545 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 9546 */ 9547 ext_status = axri->parameter & IOERR_PARAM_MASK; 9548 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 9549 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 9550 lpfc_sli_abts_recover_port(vport, ndlp); 9551 } 9552 9553 /** 9554 * lpfc_sli_async_event_handler - ASYNC iocb handler function 9555 * @phba: Pointer to HBA context object. 9556 * @pring: Pointer to driver SLI ring object. 9557 * @iocbq: Pointer to iocb object. 9558 * 9559 * This function is called by the slow ring event handler 9560 * function when there is an ASYNC event iocb in the ring. 9561 * This function is called with no lock held. 9562 * Currently this function handles only temperature related 9563 * ASYNC events. The function decodes the temperature sensor 9564 * event message and posts events for the management applications. 9565 **/ 9566 static void 9567 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 9568 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 9569 { 9570 IOCB_t *icmd; 9571 uint16_t evt_code; 9572 struct temp_event temp_event_data; 9573 struct Scsi_Host *shost; 9574 uint32_t *iocb_w; 9575 9576 icmd = &iocbq->iocb; 9577 evt_code = icmd->un.asyncstat.evt_code; 9578 9579 switch (evt_code) { 9580 case ASYNC_TEMP_WARN: 9581 case ASYNC_TEMP_SAFE: 9582 temp_event_data.data = (uint32_t) icmd->ulpContext; 9583 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 9584 if (evt_code == ASYNC_TEMP_WARN) { 9585 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 9586 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9587 "0347 Adapter is very hot, please take " 9588 "corrective action. temperature : %d Celsius\n", 9589 (uint32_t) icmd->ulpContext); 9590 } else { 9591 temp_event_data.event_code = LPFC_NORMAL_TEMP; 9592 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9593 "0340 Adapter temperature is OK now. " 9594 "temperature : %d Celsius\n", 9595 (uint32_t) icmd->ulpContext); 9596 } 9597 9598 /* Send temperature change event to applications */ 9599 shost = lpfc_shost_from_vport(phba->pport); 9600 fc_host_post_vendor_event(shost, fc_get_event_number(), 9601 sizeof(temp_event_data), (char *) &temp_event_data, 9602 LPFC_NL_VENDOR_ID); 9603 break; 9604 case ASYNC_STATUS_CN: 9605 lpfc_sli_abts_err_handler(phba, iocbq); 9606 break; 9607 default: 9608 iocb_w = (uint32_t *) icmd; 9609 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9610 "0346 Ring %d handler: unexpected ASYNC_STATUS" 9611 " evt_code 0x%x\n" 9612 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 9613 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 9614 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 9615 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 9616 pring->ringno, icmd->un.asyncstat.evt_code, 9617 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 9618 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 9619 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 9620 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 9621 9622 break; 9623 } 9624 } 9625 9626 9627 /** 9628 * lpfc_sli4_setup - SLI ring setup function 9629 * @phba: Pointer to HBA context object. 9630 * 9631 * lpfc_sli_setup sets up rings of the SLI interface with 9632 * number of iocbs per ring and iotags. This function is 9633 * called while driver attach to the HBA and before the 9634 * interrupts are enabled. So there is no need for locking. 9635 * 9636 * This function always returns 0. 9637 **/ 9638 int 9639 lpfc_sli4_setup(struct lpfc_hba *phba) 9640 { 9641 struct lpfc_sli_ring *pring; 9642 9643 pring = phba->sli4_hba.els_wq->pring; 9644 pring->num_mask = LPFC_MAX_RING_MASK; 9645 pring->prt[0].profile = 0; /* Mask 0 */ 9646 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 9647 pring->prt[0].type = FC_TYPE_ELS; 9648 pring->prt[0].lpfc_sli_rcv_unsol_event = 9649 lpfc_els_unsol_event; 9650 pring->prt[1].profile = 0; /* Mask 1 */ 9651 pring->prt[1].rctl = FC_RCTL_ELS_REP; 9652 pring->prt[1].type = FC_TYPE_ELS; 9653 pring->prt[1].lpfc_sli_rcv_unsol_event = 9654 lpfc_els_unsol_event; 9655 pring->prt[2].profile = 0; /* Mask 2 */ 9656 /* NameServer Inquiry */ 9657 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 9658 /* NameServer */ 9659 pring->prt[2].type = FC_TYPE_CT; 9660 pring->prt[2].lpfc_sli_rcv_unsol_event = 9661 lpfc_ct_unsol_event; 9662 pring->prt[3].profile = 0; /* Mask 3 */ 9663 /* NameServer response */ 9664 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 9665 /* NameServer */ 9666 pring->prt[3].type = FC_TYPE_CT; 9667 pring->prt[3].lpfc_sli_rcv_unsol_event = 9668 lpfc_ct_unsol_event; 9669 return 0; 9670 } 9671 9672 /** 9673 * lpfc_sli_setup - SLI ring setup function 9674 * @phba: Pointer to HBA context object. 9675 * 9676 * lpfc_sli_setup sets up rings of the SLI interface with 9677 * number of iocbs per ring and iotags. This function is 9678 * called while driver attach to the HBA and before the 9679 * interrupts are enabled. So there is no need for locking. 9680 * 9681 * This function always returns 0. SLI3 only. 9682 **/ 9683 int 9684 lpfc_sli_setup(struct lpfc_hba *phba) 9685 { 9686 int i, totiocbsize = 0; 9687 struct lpfc_sli *psli = &phba->sli; 9688 struct lpfc_sli_ring *pring; 9689 9690 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 9691 psli->sli_flag = 0; 9692 9693 psli->iocbq_lookup = NULL; 9694 psli->iocbq_lookup_len = 0; 9695 psli->last_iotag = 0; 9696 9697 for (i = 0; i < psli->num_rings; i++) { 9698 pring = &psli->sli3_ring[i]; 9699 switch (i) { 9700 case LPFC_FCP_RING: /* ring 0 - FCP */ 9701 /* numCiocb and numRiocb are used in config_port */ 9702 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 9703 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 9704 pring->sli.sli3.numCiocb += 9705 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9706 pring->sli.sli3.numRiocb += 9707 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9708 pring->sli.sli3.numCiocb += 9709 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9710 pring->sli.sli3.numRiocb += 9711 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9712 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9713 SLI3_IOCB_CMD_SIZE : 9714 SLI2_IOCB_CMD_SIZE; 9715 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9716 SLI3_IOCB_RSP_SIZE : 9717 SLI2_IOCB_RSP_SIZE; 9718 pring->iotag_ctr = 0; 9719 pring->iotag_max = 9720 (phba->cfg_hba_queue_depth * 2); 9721 pring->fast_iotag = pring->iotag_max; 9722 pring->num_mask = 0; 9723 break; 9724 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 9725 /* numCiocb and numRiocb are used in config_port */ 9726 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 9727 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 9728 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9729 SLI3_IOCB_CMD_SIZE : 9730 SLI2_IOCB_CMD_SIZE; 9731 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9732 SLI3_IOCB_RSP_SIZE : 9733 SLI2_IOCB_RSP_SIZE; 9734 pring->iotag_max = phba->cfg_hba_queue_depth; 9735 pring->num_mask = 0; 9736 break; 9737 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 9738 /* numCiocb and numRiocb are used in config_port */ 9739 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 9740 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 9741 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9742 SLI3_IOCB_CMD_SIZE : 9743 SLI2_IOCB_CMD_SIZE; 9744 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9745 SLI3_IOCB_RSP_SIZE : 9746 SLI2_IOCB_RSP_SIZE; 9747 pring->fast_iotag = 0; 9748 pring->iotag_ctr = 0; 9749 pring->iotag_max = 4096; 9750 pring->lpfc_sli_rcv_async_status = 9751 lpfc_sli_async_event_handler; 9752 pring->num_mask = LPFC_MAX_RING_MASK; 9753 pring->prt[0].profile = 0; /* Mask 0 */ 9754 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 9755 pring->prt[0].type = FC_TYPE_ELS; 9756 pring->prt[0].lpfc_sli_rcv_unsol_event = 9757 lpfc_els_unsol_event; 9758 pring->prt[1].profile = 0; /* Mask 1 */ 9759 pring->prt[1].rctl = FC_RCTL_ELS_REP; 9760 pring->prt[1].type = FC_TYPE_ELS; 9761 pring->prt[1].lpfc_sli_rcv_unsol_event = 9762 lpfc_els_unsol_event; 9763 pring->prt[2].profile = 0; /* Mask 2 */ 9764 /* NameServer Inquiry */ 9765 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 9766 /* NameServer */ 9767 pring->prt[2].type = FC_TYPE_CT; 9768 pring->prt[2].lpfc_sli_rcv_unsol_event = 9769 lpfc_ct_unsol_event; 9770 pring->prt[3].profile = 0; /* Mask 3 */ 9771 /* NameServer response */ 9772 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 9773 /* NameServer */ 9774 pring->prt[3].type = FC_TYPE_CT; 9775 pring->prt[3].lpfc_sli_rcv_unsol_event = 9776 lpfc_ct_unsol_event; 9777 break; 9778 } 9779 totiocbsize += (pring->sli.sli3.numCiocb * 9780 pring->sli.sli3.sizeCiocb) + 9781 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 9782 } 9783 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 9784 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 9785 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 9786 "SLI2 SLIM Data: x%x x%lx\n", 9787 phba->brd_no, totiocbsize, 9788 (unsigned long) MAX_SLIM_IOCB_SIZE); 9789 } 9790 if (phba->cfg_multi_ring_support == 2) 9791 lpfc_extra_ring_setup(phba); 9792 9793 return 0; 9794 } 9795 9796 /** 9797 * lpfc_sli4_queue_init - Queue initialization function 9798 * @phba: Pointer to HBA context object. 9799 * 9800 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 9801 * ring. This function also initializes ring indices of each ring. 9802 * This function is called during the initialization of the SLI 9803 * interface of an HBA. 9804 * This function is called with no lock held and always returns 9805 * 1. 9806 **/ 9807 void 9808 lpfc_sli4_queue_init(struct lpfc_hba *phba) 9809 { 9810 struct lpfc_sli *psli; 9811 struct lpfc_sli_ring *pring; 9812 int i; 9813 9814 psli = &phba->sli; 9815 spin_lock_irq(&phba->hbalock); 9816 INIT_LIST_HEAD(&psli->mboxq); 9817 INIT_LIST_HEAD(&psli->mboxq_cmpl); 9818 /* Initialize list headers for txq and txcmplq as double linked lists */ 9819 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 9820 pring = phba->sli4_hba.fcp_wq[i]->pring; 9821 pring->flag = 0; 9822 pring->ringno = LPFC_FCP_RING; 9823 INIT_LIST_HEAD(&pring->txq); 9824 INIT_LIST_HEAD(&pring->txcmplq); 9825 INIT_LIST_HEAD(&pring->iocb_continueq); 9826 spin_lock_init(&pring->ring_lock); 9827 } 9828 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 9829 pring = phba->sli4_hba.nvme_wq[i]->pring; 9830 pring->flag = 0; 9831 pring->ringno = LPFC_FCP_RING; 9832 INIT_LIST_HEAD(&pring->txq); 9833 INIT_LIST_HEAD(&pring->txcmplq); 9834 INIT_LIST_HEAD(&pring->iocb_continueq); 9835 spin_lock_init(&pring->ring_lock); 9836 } 9837 pring = phba->sli4_hba.els_wq->pring; 9838 pring->flag = 0; 9839 pring->ringno = LPFC_ELS_RING; 9840 INIT_LIST_HEAD(&pring->txq); 9841 INIT_LIST_HEAD(&pring->txcmplq); 9842 INIT_LIST_HEAD(&pring->iocb_continueq); 9843 spin_lock_init(&pring->ring_lock); 9844 9845 if (phba->cfg_nvme_io_channel) { 9846 pring = phba->sli4_hba.nvmels_wq->pring; 9847 pring->flag = 0; 9848 pring->ringno = LPFC_ELS_RING; 9849 INIT_LIST_HEAD(&pring->txq); 9850 INIT_LIST_HEAD(&pring->txcmplq); 9851 INIT_LIST_HEAD(&pring->iocb_continueq); 9852 spin_lock_init(&pring->ring_lock); 9853 } 9854 9855 if (phba->cfg_fof) { 9856 pring = phba->sli4_hba.oas_wq->pring; 9857 pring->flag = 0; 9858 pring->ringno = LPFC_FCP_RING; 9859 INIT_LIST_HEAD(&pring->txq); 9860 INIT_LIST_HEAD(&pring->txcmplq); 9861 INIT_LIST_HEAD(&pring->iocb_continueq); 9862 spin_lock_init(&pring->ring_lock); 9863 } 9864 9865 spin_unlock_irq(&phba->hbalock); 9866 } 9867 9868 /** 9869 * lpfc_sli_queue_init - Queue initialization function 9870 * @phba: Pointer to HBA context object. 9871 * 9872 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 9873 * ring. This function also initializes ring indices of each ring. 9874 * This function is called during the initialization of the SLI 9875 * interface of an HBA. 9876 * This function is called with no lock held and always returns 9877 * 1. 9878 **/ 9879 void 9880 lpfc_sli_queue_init(struct lpfc_hba *phba) 9881 { 9882 struct lpfc_sli *psli; 9883 struct lpfc_sli_ring *pring; 9884 int i; 9885 9886 psli = &phba->sli; 9887 spin_lock_irq(&phba->hbalock); 9888 INIT_LIST_HEAD(&psli->mboxq); 9889 INIT_LIST_HEAD(&psli->mboxq_cmpl); 9890 /* Initialize list headers for txq and txcmplq as double linked lists */ 9891 for (i = 0; i < psli->num_rings; i++) { 9892 pring = &psli->sli3_ring[i]; 9893 pring->ringno = i; 9894 pring->sli.sli3.next_cmdidx = 0; 9895 pring->sli.sli3.local_getidx = 0; 9896 pring->sli.sli3.cmdidx = 0; 9897 INIT_LIST_HEAD(&pring->iocb_continueq); 9898 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 9899 INIT_LIST_HEAD(&pring->postbufq); 9900 pring->flag = 0; 9901 INIT_LIST_HEAD(&pring->txq); 9902 INIT_LIST_HEAD(&pring->txcmplq); 9903 spin_lock_init(&pring->ring_lock); 9904 } 9905 spin_unlock_irq(&phba->hbalock); 9906 } 9907 9908 /** 9909 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 9910 * @phba: Pointer to HBA context object. 9911 * 9912 * This routine flushes the mailbox command subsystem. It will unconditionally 9913 * flush all the mailbox commands in the three possible stages in the mailbox 9914 * command sub-system: pending mailbox command queue; the outstanding mailbox 9915 * command; and completed mailbox command queue. It is caller's responsibility 9916 * to make sure that the driver is in the proper state to flush the mailbox 9917 * command sub-system. Namely, the posting of mailbox commands into the 9918 * pending mailbox command queue from the various clients must be stopped; 9919 * either the HBA is in a state that it will never works on the outstanding 9920 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 9921 * mailbox command has been completed. 9922 **/ 9923 static void 9924 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 9925 { 9926 LIST_HEAD(completions); 9927 struct lpfc_sli *psli = &phba->sli; 9928 LPFC_MBOXQ_t *pmb; 9929 unsigned long iflag; 9930 9931 /* Flush all the mailbox commands in the mbox system */ 9932 spin_lock_irqsave(&phba->hbalock, iflag); 9933 /* The pending mailbox command queue */ 9934 list_splice_init(&phba->sli.mboxq, &completions); 9935 /* The outstanding active mailbox command */ 9936 if (psli->mbox_active) { 9937 list_add_tail(&psli->mbox_active->list, &completions); 9938 psli->mbox_active = NULL; 9939 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9940 } 9941 /* The completed mailbox command queue */ 9942 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 9943 spin_unlock_irqrestore(&phba->hbalock, iflag); 9944 9945 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 9946 while (!list_empty(&completions)) { 9947 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 9948 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 9949 if (pmb->mbox_cmpl) 9950 pmb->mbox_cmpl(phba, pmb); 9951 } 9952 } 9953 9954 /** 9955 * lpfc_sli_host_down - Vport cleanup function 9956 * @vport: Pointer to virtual port object. 9957 * 9958 * lpfc_sli_host_down is called to clean up the resources 9959 * associated with a vport before destroying virtual 9960 * port data structures. 9961 * This function does following operations: 9962 * - Free discovery resources associated with this virtual 9963 * port. 9964 * - Free iocbs associated with this virtual port in 9965 * the txq. 9966 * - Send abort for all iocb commands associated with this 9967 * vport in txcmplq. 9968 * 9969 * This function is called with no lock held and always returns 1. 9970 **/ 9971 int 9972 lpfc_sli_host_down(struct lpfc_vport *vport) 9973 { 9974 LIST_HEAD(completions); 9975 struct lpfc_hba *phba = vport->phba; 9976 struct lpfc_sli *psli = &phba->sli; 9977 struct lpfc_queue *qp = NULL; 9978 struct lpfc_sli_ring *pring; 9979 struct lpfc_iocbq *iocb, *next_iocb; 9980 int i; 9981 unsigned long flags = 0; 9982 uint16_t prev_pring_flag; 9983 9984 lpfc_cleanup_discovery_resources(vport); 9985 9986 spin_lock_irqsave(&phba->hbalock, flags); 9987 9988 /* 9989 * Error everything on the txq since these iocbs 9990 * have not been given to the FW yet. 9991 * Also issue ABTS for everything on the txcmplq 9992 */ 9993 if (phba->sli_rev != LPFC_SLI_REV4) { 9994 for (i = 0; i < psli->num_rings; i++) { 9995 pring = &psli->sli3_ring[i]; 9996 prev_pring_flag = pring->flag; 9997 /* Only slow rings */ 9998 if (pring->ringno == LPFC_ELS_RING) { 9999 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10000 /* Set the lpfc data pending flag */ 10001 set_bit(LPFC_DATA_READY, &phba->data_flags); 10002 } 10003 list_for_each_entry_safe(iocb, next_iocb, 10004 &pring->txq, list) { 10005 if (iocb->vport != vport) 10006 continue; 10007 list_move_tail(&iocb->list, &completions); 10008 } 10009 list_for_each_entry_safe(iocb, next_iocb, 10010 &pring->txcmplq, list) { 10011 if (iocb->vport != vport) 10012 continue; 10013 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10014 } 10015 pring->flag = prev_pring_flag; 10016 } 10017 } else { 10018 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10019 pring = qp->pring; 10020 if (!pring) 10021 continue; 10022 if (pring == phba->sli4_hba.els_wq->pring) { 10023 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10024 /* Set the lpfc data pending flag */ 10025 set_bit(LPFC_DATA_READY, &phba->data_flags); 10026 } 10027 prev_pring_flag = pring->flag; 10028 spin_lock_irq(&pring->ring_lock); 10029 list_for_each_entry_safe(iocb, next_iocb, 10030 &pring->txq, list) { 10031 if (iocb->vport != vport) 10032 continue; 10033 list_move_tail(&iocb->list, &completions); 10034 } 10035 spin_unlock_irq(&pring->ring_lock); 10036 list_for_each_entry_safe(iocb, next_iocb, 10037 &pring->txcmplq, list) { 10038 if (iocb->vport != vport) 10039 continue; 10040 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10041 } 10042 pring->flag = prev_pring_flag; 10043 } 10044 } 10045 spin_unlock_irqrestore(&phba->hbalock, flags); 10046 10047 /* Cancel all the IOCBs from the completions list */ 10048 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10049 IOERR_SLI_DOWN); 10050 return 1; 10051 } 10052 10053 /** 10054 * lpfc_sli_hba_down - Resource cleanup function for the HBA 10055 * @phba: Pointer to HBA context object. 10056 * 10057 * This function cleans up all iocb, buffers, mailbox commands 10058 * while shutting down the HBA. This function is called with no 10059 * lock held and always returns 1. 10060 * This function does the following to cleanup driver resources: 10061 * - Free discovery resources for each virtual port 10062 * - Cleanup any pending fabric iocbs 10063 * - Iterate through the iocb txq and free each entry 10064 * in the list. 10065 * - Free up any buffer posted to the HBA 10066 * - Free mailbox commands in the mailbox queue. 10067 **/ 10068 int 10069 lpfc_sli_hba_down(struct lpfc_hba *phba) 10070 { 10071 LIST_HEAD(completions); 10072 struct lpfc_sli *psli = &phba->sli; 10073 struct lpfc_queue *qp = NULL; 10074 struct lpfc_sli_ring *pring; 10075 struct lpfc_dmabuf *buf_ptr; 10076 unsigned long flags = 0; 10077 int i; 10078 10079 /* Shutdown the mailbox command sub-system */ 10080 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 10081 10082 lpfc_hba_down_prep(phba); 10083 10084 lpfc_fabric_abort_hba(phba); 10085 10086 spin_lock_irqsave(&phba->hbalock, flags); 10087 10088 /* 10089 * Error everything on the txq since these iocbs 10090 * have not been given to the FW yet. 10091 */ 10092 if (phba->sli_rev != LPFC_SLI_REV4) { 10093 for (i = 0; i < psli->num_rings; i++) { 10094 pring = &psli->sli3_ring[i]; 10095 /* Only slow rings */ 10096 if (pring->ringno == LPFC_ELS_RING) { 10097 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10098 /* Set the lpfc data pending flag */ 10099 set_bit(LPFC_DATA_READY, &phba->data_flags); 10100 } 10101 list_splice_init(&pring->txq, &completions); 10102 } 10103 } else { 10104 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10105 pring = qp->pring; 10106 if (!pring) 10107 continue; 10108 spin_lock_irq(&pring->ring_lock); 10109 list_splice_init(&pring->txq, &completions); 10110 spin_unlock_irq(&pring->ring_lock); 10111 if (pring == phba->sli4_hba.els_wq->pring) { 10112 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10113 /* Set the lpfc data pending flag */ 10114 set_bit(LPFC_DATA_READY, &phba->data_flags); 10115 } 10116 } 10117 } 10118 spin_unlock_irqrestore(&phba->hbalock, flags); 10119 10120 /* Cancel all the IOCBs from the completions list */ 10121 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10122 IOERR_SLI_DOWN); 10123 10124 spin_lock_irqsave(&phba->hbalock, flags); 10125 list_splice_init(&phba->elsbuf, &completions); 10126 phba->elsbuf_cnt = 0; 10127 phba->elsbuf_prev_cnt = 0; 10128 spin_unlock_irqrestore(&phba->hbalock, flags); 10129 10130 while (!list_empty(&completions)) { 10131 list_remove_head(&completions, buf_ptr, 10132 struct lpfc_dmabuf, list); 10133 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 10134 kfree(buf_ptr); 10135 } 10136 10137 /* Return any active mbox cmds */ 10138 del_timer_sync(&psli->mbox_tmo); 10139 10140 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 10141 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 10142 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 10143 10144 return 1; 10145 } 10146 10147 /** 10148 * lpfc_sli_pcimem_bcopy - SLI memory copy function 10149 * @srcp: Source memory pointer. 10150 * @destp: Destination memory pointer. 10151 * @cnt: Number of words required to be copied. 10152 * 10153 * This function is used for copying data between driver memory 10154 * and the SLI memory. This function also changes the endianness 10155 * of each word if native endianness is different from SLI 10156 * endianness. This function can be called with or without 10157 * lock. 10158 **/ 10159 void 10160 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 10161 { 10162 uint32_t *src = srcp; 10163 uint32_t *dest = destp; 10164 uint32_t ldata; 10165 int i; 10166 10167 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 10168 ldata = *src; 10169 ldata = le32_to_cpu(ldata); 10170 *dest = ldata; 10171 src++; 10172 dest++; 10173 } 10174 } 10175 10176 10177 /** 10178 * lpfc_sli_bemem_bcopy - SLI memory copy function 10179 * @srcp: Source memory pointer. 10180 * @destp: Destination memory pointer. 10181 * @cnt: Number of words required to be copied. 10182 * 10183 * This function is used for copying data between a data structure 10184 * with big endian representation to local endianness. 10185 * This function can be called with or without lock. 10186 **/ 10187 void 10188 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 10189 { 10190 uint32_t *src = srcp; 10191 uint32_t *dest = destp; 10192 uint32_t ldata; 10193 int i; 10194 10195 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 10196 ldata = *src; 10197 ldata = be32_to_cpu(ldata); 10198 *dest = ldata; 10199 src++; 10200 dest++; 10201 } 10202 } 10203 10204 /** 10205 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 10206 * @phba: Pointer to HBA context object. 10207 * @pring: Pointer to driver SLI ring object. 10208 * @mp: Pointer to driver buffer object. 10209 * 10210 * This function is called with no lock held. 10211 * It always return zero after adding the buffer to the postbufq 10212 * buffer list. 10213 **/ 10214 int 10215 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10216 struct lpfc_dmabuf *mp) 10217 { 10218 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 10219 later */ 10220 spin_lock_irq(&phba->hbalock); 10221 list_add_tail(&mp->list, &pring->postbufq); 10222 pring->postbufq_cnt++; 10223 spin_unlock_irq(&phba->hbalock); 10224 return 0; 10225 } 10226 10227 /** 10228 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 10229 * @phba: Pointer to HBA context object. 10230 * 10231 * When HBQ is enabled, buffers are searched based on tags. This function 10232 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 10233 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 10234 * does not conflict with tags of buffer posted for unsolicited events. 10235 * The function returns the allocated tag. The function is called with 10236 * no locks held. 10237 **/ 10238 uint32_t 10239 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 10240 { 10241 spin_lock_irq(&phba->hbalock); 10242 phba->buffer_tag_count++; 10243 /* 10244 * Always set the QUE_BUFTAG_BIT to distiguish between 10245 * a tag assigned by HBQ. 10246 */ 10247 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 10248 spin_unlock_irq(&phba->hbalock); 10249 return phba->buffer_tag_count; 10250 } 10251 10252 /** 10253 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 10254 * @phba: Pointer to HBA context object. 10255 * @pring: Pointer to driver SLI ring object. 10256 * @tag: Buffer tag. 10257 * 10258 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 10259 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 10260 * iocb is posted to the response ring with the tag of the buffer. 10261 * This function searches the pring->postbufq list using the tag 10262 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 10263 * iocb. If the buffer is found then lpfc_dmabuf object of the 10264 * buffer is returned to the caller else NULL is returned. 10265 * This function is called with no lock held. 10266 **/ 10267 struct lpfc_dmabuf * 10268 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10269 uint32_t tag) 10270 { 10271 struct lpfc_dmabuf *mp, *next_mp; 10272 struct list_head *slp = &pring->postbufq; 10273 10274 /* Search postbufq, from the beginning, looking for a match on tag */ 10275 spin_lock_irq(&phba->hbalock); 10276 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 10277 if (mp->buffer_tag == tag) { 10278 list_del_init(&mp->list); 10279 pring->postbufq_cnt--; 10280 spin_unlock_irq(&phba->hbalock); 10281 return mp; 10282 } 10283 } 10284 10285 spin_unlock_irq(&phba->hbalock); 10286 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10287 "0402 Cannot find virtual addr for buffer tag on " 10288 "ring %d Data x%lx x%p x%p x%x\n", 10289 pring->ringno, (unsigned long) tag, 10290 slp->next, slp->prev, pring->postbufq_cnt); 10291 10292 return NULL; 10293 } 10294 10295 /** 10296 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 10297 * @phba: Pointer to HBA context object. 10298 * @pring: Pointer to driver SLI ring object. 10299 * @phys: DMA address of the buffer. 10300 * 10301 * This function searches the buffer list using the dma_address 10302 * of unsolicited event to find the driver's lpfc_dmabuf object 10303 * corresponding to the dma_address. The function returns the 10304 * lpfc_dmabuf object if a buffer is found else it returns NULL. 10305 * This function is called by the ct and els unsolicited event 10306 * handlers to get the buffer associated with the unsolicited 10307 * event. 10308 * 10309 * This function is called with no lock held. 10310 **/ 10311 struct lpfc_dmabuf * 10312 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10313 dma_addr_t phys) 10314 { 10315 struct lpfc_dmabuf *mp, *next_mp; 10316 struct list_head *slp = &pring->postbufq; 10317 10318 /* Search postbufq, from the beginning, looking for a match on phys */ 10319 spin_lock_irq(&phba->hbalock); 10320 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 10321 if (mp->phys == phys) { 10322 list_del_init(&mp->list); 10323 pring->postbufq_cnt--; 10324 spin_unlock_irq(&phba->hbalock); 10325 return mp; 10326 } 10327 } 10328 10329 spin_unlock_irq(&phba->hbalock); 10330 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10331 "0410 Cannot find virtual addr for mapped buf on " 10332 "ring %d Data x%llx x%p x%p x%x\n", 10333 pring->ringno, (unsigned long long)phys, 10334 slp->next, slp->prev, pring->postbufq_cnt); 10335 return NULL; 10336 } 10337 10338 /** 10339 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 10340 * @phba: Pointer to HBA context object. 10341 * @cmdiocb: Pointer to driver command iocb object. 10342 * @rspiocb: Pointer to driver response iocb object. 10343 * 10344 * This function is the completion handler for the abort iocbs for 10345 * ELS commands. This function is called from the ELS ring event 10346 * handler with no lock held. This function frees memory resources 10347 * associated with the abort iocb. 10348 **/ 10349 static void 10350 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10351 struct lpfc_iocbq *rspiocb) 10352 { 10353 IOCB_t *irsp = &rspiocb->iocb; 10354 uint16_t abort_iotag, abort_context; 10355 struct lpfc_iocbq *abort_iocb = NULL; 10356 10357 if (irsp->ulpStatus) { 10358 10359 /* 10360 * Assume that the port already completed and returned, or 10361 * will return the iocb. Just Log the message. 10362 */ 10363 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 10364 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 10365 10366 spin_lock_irq(&phba->hbalock); 10367 if (phba->sli_rev < LPFC_SLI_REV4) { 10368 if (abort_iotag != 0 && 10369 abort_iotag <= phba->sli.last_iotag) 10370 abort_iocb = 10371 phba->sli.iocbq_lookup[abort_iotag]; 10372 } else 10373 /* For sli4 the abort_tag is the XRI, 10374 * so the abort routine puts the iotag of the iocb 10375 * being aborted in the context field of the abort 10376 * IOCB. 10377 */ 10378 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 10379 10380 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 10381 "0327 Cannot abort els iocb %p " 10382 "with tag %x context %x, abort status %x, " 10383 "abort code %x\n", 10384 abort_iocb, abort_iotag, abort_context, 10385 irsp->ulpStatus, irsp->un.ulpWord[4]); 10386 10387 spin_unlock_irq(&phba->hbalock); 10388 } 10389 lpfc_sli_release_iocbq(phba, cmdiocb); 10390 return; 10391 } 10392 10393 /** 10394 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 10395 * @phba: Pointer to HBA context object. 10396 * @cmdiocb: Pointer to driver command iocb object. 10397 * @rspiocb: Pointer to driver response iocb object. 10398 * 10399 * The function is called from SLI ring event handler with no 10400 * lock held. This function is the completion handler for ELS commands 10401 * which are aborted. The function frees memory resources used for 10402 * the aborted ELS commands. 10403 **/ 10404 static void 10405 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10406 struct lpfc_iocbq *rspiocb) 10407 { 10408 IOCB_t *irsp = &rspiocb->iocb; 10409 10410 /* ELS cmd tag <ulpIoTag> completes */ 10411 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 10412 "0139 Ignoring ELS cmd tag x%x completion Data: " 10413 "x%x x%x x%x\n", 10414 irsp->ulpIoTag, irsp->ulpStatus, 10415 irsp->un.ulpWord[4], irsp->ulpTimeout); 10416 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 10417 lpfc_ct_free_iocb(phba, cmdiocb); 10418 else 10419 lpfc_els_free_iocb(phba, cmdiocb); 10420 return; 10421 } 10422 10423 /** 10424 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 10425 * @phba: Pointer to HBA context object. 10426 * @pring: Pointer to driver SLI ring object. 10427 * @cmdiocb: Pointer to driver command iocb object. 10428 * 10429 * This function issues an abort iocb for the provided command iocb down to 10430 * the port. Other than the case the outstanding command iocb is an abort 10431 * request, this function issues abort out unconditionally. This function is 10432 * called with hbalock held. The function returns 0 when it fails due to 10433 * memory allocation failure or when the command iocb is an abort request. 10434 **/ 10435 static int 10436 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10437 struct lpfc_iocbq *cmdiocb) 10438 { 10439 struct lpfc_vport *vport = cmdiocb->vport; 10440 struct lpfc_iocbq *abtsiocbp; 10441 IOCB_t *icmd = NULL; 10442 IOCB_t *iabt = NULL; 10443 int retval; 10444 unsigned long iflags; 10445 10446 lockdep_assert_held(&phba->hbalock); 10447 10448 /* 10449 * There are certain command types we don't want to abort. And we 10450 * don't want to abort commands that are already in the process of 10451 * being aborted. 10452 */ 10453 icmd = &cmdiocb->iocb; 10454 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 10455 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 10456 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10457 return 0; 10458 10459 /* issue ABTS for this IOCB based on iotag */ 10460 abtsiocbp = __lpfc_sli_get_iocbq(phba); 10461 if (abtsiocbp == NULL) 10462 return 0; 10463 10464 /* This signals the response to set the correct status 10465 * before calling the completion handler 10466 */ 10467 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 10468 10469 iabt = &abtsiocbp->iocb; 10470 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 10471 iabt->un.acxri.abortContextTag = icmd->ulpContext; 10472 if (phba->sli_rev == LPFC_SLI_REV4) { 10473 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 10474 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 10475 } 10476 else 10477 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 10478 iabt->ulpLe = 1; 10479 iabt->ulpClass = icmd->ulpClass; 10480 10481 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10482 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 10483 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 10484 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 10485 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 10486 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 10487 10488 if (phba->link_state >= LPFC_LINK_UP) 10489 iabt->ulpCommand = CMD_ABORT_XRI_CN; 10490 else 10491 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 10492 10493 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 10494 abtsiocbp->vport = vport; 10495 10496 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 10497 "0339 Abort xri x%x, original iotag x%x, " 10498 "abort cmd iotag x%x\n", 10499 iabt->un.acxri.abortIoTag, 10500 iabt->un.acxri.abortContextTag, 10501 abtsiocbp->iotag); 10502 10503 if (phba->sli_rev == LPFC_SLI_REV4) { 10504 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 10505 if (unlikely(pring == NULL)) 10506 return 0; 10507 /* Note: both hbalock and ring_lock need to be set here */ 10508 spin_lock_irqsave(&pring->ring_lock, iflags); 10509 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10510 abtsiocbp, 0); 10511 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10512 } else { 10513 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10514 abtsiocbp, 0); 10515 } 10516 10517 if (retval) 10518 __lpfc_sli_release_iocbq(phba, abtsiocbp); 10519 10520 /* 10521 * Caller to this routine should check for IOCB_ERROR 10522 * and handle it properly. This routine no longer removes 10523 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10524 */ 10525 return retval; 10526 } 10527 10528 /** 10529 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 10530 * @phba: Pointer to HBA context object. 10531 * @pring: Pointer to driver SLI ring object. 10532 * @cmdiocb: Pointer to driver command iocb object. 10533 * 10534 * This function issues an abort iocb for the provided command iocb. In case 10535 * of unloading, the abort iocb will not be issued to commands on the ELS 10536 * ring. Instead, the callback function shall be changed to those commands 10537 * so that nothing happens when them finishes. This function is called with 10538 * hbalock held. The function returns 0 when the command iocb is an abort 10539 * request. 10540 **/ 10541 int 10542 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10543 struct lpfc_iocbq *cmdiocb) 10544 { 10545 struct lpfc_vport *vport = cmdiocb->vport; 10546 int retval = IOCB_ERROR; 10547 IOCB_t *icmd = NULL; 10548 10549 lockdep_assert_held(&phba->hbalock); 10550 10551 /* 10552 * There are certain command types we don't want to abort. And we 10553 * don't want to abort commands that are already in the process of 10554 * being aborted. 10555 */ 10556 icmd = &cmdiocb->iocb; 10557 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 10558 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 10559 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10560 return 0; 10561 10562 /* 10563 * If we're unloading, don't abort iocb on the ELS ring, but change 10564 * the callback so that nothing happens when it finishes. 10565 */ 10566 if ((vport->load_flag & FC_UNLOADING) && 10567 (pring->ringno == LPFC_ELS_RING)) { 10568 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 10569 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 10570 else 10571 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 10572 goto abort_iotag_exit; 10573 } 10574 10575 /* Now, we try to issue the abort to the cmdiocb out */ 10576 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 10577 10578 abort_iotag_exit: 10579 /* 10580 * Caller to this routine should check for IOCB_ERROR 10581 * and handle it properly. This routine no longer removes 10582 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10583 */ 10584 return retval; 10585 } 10586 10587 /** 10588 * lpfc_sli4_abort_nvme_io - Issue abort for a command iocb 10589 * @phba: Pointer to HBA context object. 10590 * @pring: Pointer to driver SLI ring object. 10591 * @cmdiocb: Pointer to driver command iocb object. 10592 * 10593 * This function issues an abort iocb for the provided command iocb down to 10594 * the port. Other than the case the outstanding command iocb is an abort 10595 * request, this function issues abort out unconditionally. This function is 10596 * called with hbalock held. The function returns 0 when it fails due to 10597 * memory allocation failure or when the command iocb is an abort request. 10598 **/ 10599 static int 10600 lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10601 struct lpfc_iocbq *cmdiocb) 10602 { 10603 struct lpfc_vport *vport = cmdiocb->vport; 10604 struct lpfc_iocbq *abtsiocbp; 10605 union lpfc_wqe *abts_wqe; 10606 int retval; 10607 10608 /* 10609 * There are certain command types we don't want to abort. And we 10610 * don't want to abort commands that are already in the process of 10611 * being aborted. 10612 */ 10613 if (cmdiocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 10614 cmdiocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN || 10615 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10616 return 0; 10617 10618 /* issue ABTS for this io based on iotag */ 10619 abtsiocbp = __lpfc_sli_get_iocbq(phba); 10620 if (abtsiocbp == NULL) 10621 return 0; 10622 10623 /* This signals the response to set the correct status 10624 * before calling the completion handler 10625 */ 10626 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 10627 10628 /* Complete prepping the abort wqe and issue to the FW. */ 10629 abts_wqe = &abtsiocbp->wqe; 10630 bf_set(abort_cmd_ia, &abts_wqe->abort_cmd, 0); 10631 bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG); 10632 10633 /* Explicitly set reserved fields to zero.*/ 10634 abts_wqe->abort_cmd.rsrvd4 = 0; 10635 abts_wqe->abort_cmd.rsrvd5 = 0; 10636 10637 /* WQE Common - word 6. Context is XRI tag. Set 0. */ 10638 bf_set(wqe_xri_tag, &abts_wqe->abort_cmd.wqe_com, 0); 10639 bf_set(wqe_ctxt_tag, &abts_wqe->abort_cmd.wqe_com, 0); 10640 10641 /* word 7 */ 10642 bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0); 10643 bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10644 bf_set(wqe_class, &abts_wqe->abort_cmd.wqe_com, 10645 cmdiocb->iocb.ulpClass); 10646 10647 /* word 8 - tell the FW to abort the IO associated with this 10648 * outstanding exchange ID. 10649 */ 10650 abts_wqe->abort_cmd.wqe_com.abort_tag = cmdiocb->sli4_xritag; 10651 10652 /* word 9 - this is the iotag for the abts_wqe completion. */ 10653 bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com, 10654 abtsiocbp->iotag); 10655 10656 /* word 10 */ 10657 bf_set(wqe_wqid, &abts_wqe->abort_cmd.wqe_com, cmdiocb->hba_wqidx); 10658 bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1); 10659 bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 10660 10661 /* word 11 */ 10662 bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND); 10663 bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1); 10664 bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10665 10666 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10667 abtsiocbp->iocb_flag |= LPFC_IO_NVME; 10668 abtsiocbp->vport = vport; 10669 abtsiocbp->wqe_cmpl = lpfc_nvme_abort_fcreq_cmpl; 10670 retval = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abtsiocbp); 10671 if (retval == IOCB_ERROR) { 10672 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 10673 "6147 Failed abts issue_wqe with status x%x " 10674 "for oxid x%x\n", 10675 retval, cmdiocb->sli4_xritag); 10676 lpfc_sli_release_iocbq(phba, abtsiocbp); 10677 return retval; 10678 } 10679 10680 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 10681 "6148 Drv Abort NVME Request Issued for " 10682 "ox_id x%x on reqtag x%x\n", 10683 cmdiocb->sli4_xritag, 10684 abtsiocbp->iotag); 10685 10686 return retval; 10687 } 10688 10689 /** 10690 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 10691 * @phba: pointer to lpfc HBA data structure. 10692 * 10693 * This routine will abort all pending and outstanding iocbs to an HBA. 10694 **/ 10695 void 10696 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 10697 { 10698 struct lpfc_sli *psli = &phba->sli; 10699 struct lpfc_sli_ring *pring; 10700 struct lpfc_queue *qp = NULL; 10701 int i; 10702 10703 if (phba->sli_rev != LPFC_SLI_REV4) { 10704 for (i = 0; i < psli->num_rings; i++) { 10705 pring = &psli->sli3_ring[i]; 10706 lpfc_sli_abort_iocb_ring(phba, pring); 10707 } 10708 return; 10709 } 10710 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10711 pring = qp->pring; 10712 if (!pring) 10713 continue; 10714 lpfc_sli_abort_iocb_ring(phba, pring); 10715 } 10716 } 10717 10718 /** 10719 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 10720 * @iocbq: Pointer to driver iocb object. 10721 * @vport: Pointer to driver virtual port object. 10722 * @tgt_id: SCSI ID of the target. 10723 * @lun_id: LUN ID of the scsi device. 10724 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 10725 * 10726 * This function acts as an iocb filter for functions which abort or count 10727 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 10728 * 0 if the filtering criteria is met for the given iocb and will return 10729 * 1 if the filtering criteria is not met. 10730 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 10731 * given iocb is for the SCSI device specified by vport, tgt_id and 10732 * lun_id parameter. 10733 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 10734 * given iocb is for the SCSI target specified by vport and tgt_id 10735 * parameters. 10736 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 10737 * given iocb is for the SCSI host associated with the given vport. 10738 * This function is called with no locks held. 10739 **/ 10740 static int 10741 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 10742 uint16_t tgt_id, uint64_t lun_id, 10743 lpfc_ctx_cmd ctx_cmd) 10744 { 10745 struct lpfc_scsi_buf *lpfc_cmd; 10746 int rc = 1; 10747 10748 if (!(iocbq->iocb_flag & LPFC_IO_FCP)) 10749 return rc; 10750 10751 if (iocbq->vport != vport) 10752 return rc; 10753 10754 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 10755 10756 if (lpfc_cmd->pCmd == NULL) 10757 return rc; 10758 10759 switch (ctx_cmd) { 10760 case LPFC_CTX_LUN: 10761 if ((lpfc_cmd->rdata->pnode) && 10762 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 10763 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 10764 rc = 0; 10765 break; 10766 case LPFC_CTX_TGT: 10767 if ((lpfc_cmd->rdata->pnode) && 10768 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 10769 rc = 0; 10770 break; 10771 case LPFC_CTX_HOST: 10772 rc = 0; 10773 break; 10774 default: 10775 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 10776 __func__, ctx_cmd); 10777 break; 10778 } 10779 10780 return rc; 10781 } 10782 10783 /** 10784 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 10785 * @vport: Pointer to virtual port. 10786 * @tgt_id: SCSI ID of the target. 10787 * @lun_id: LUN ID of the scsi device. 10788 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10789 * 10790 * This function returns number of FCP commands pending for the vport. 10791 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 10792 * commands pending on the vport associated with SCSI device specified 10793 * by tgt_id and lun_id parameters. 10794 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 10795 * commands pending on the vport associated with SCSI target specified 10796 * by tgt_id parameter. 10797 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 10798 * commands pending on the vport. 10799 * This function returns the number of iocbs which satisfy the filter. 10800 * This function is called without any lock held. 10801 **/ 10802 int 10803 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 10804 lpfc_ctx_cmd ctx_cmd) 10805 { 10806 struct lpfc_hba *phba = vport->phba; 10807 struct lpfc_iocbq *iocbq; 10808 int sum, i; 10809 10810 spin_lock_irq(&phba->hbalock); 10811 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 10812 iocbq = phba->sli.iocbq_lookup[i]; 10813 10814 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 10815 ctx_cmd) == 0) 10816 sum++; 10817 } 10818 spin_unlock_irq(&phba->hbalock); 10819 10820 return sum; 10821 } 10822 10823 /** 10824 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 10825 * @phba: Pointer to HBA context object 10826 * @cmdiocb: Pointer to command iocb object. 10827 * @rspiocb: Pointer to response iocb object. 10828 * 10829 * This function is called when an aborted FCP iocb completes. This 10830 * function is called by the ring event handler with no lock held. 10831 * This function frees the iocb. 10832 **/ 10833 void 10834 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10835 struct lpfc_iocbq *rspiocb) 10836 { 10837 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10838 "3096 ABORT_XRI_CN completing on rpi x%x " 10839 "original iotag x%x, abort cmd iotag x%x " 10840 "status 0x%x, reason 0x%x\n", 10841 cmdiocb->iocb.un.acxri.abortContextTag, 10842 cmdiocb->iocb.un.acxri.abortIoTag, 10843 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 10844 rspiocb->iocb.un.ulpWord[4]); 10845 lpfc_sli_release_iocbq(phba, cmdiocb); 10846 return; 10847 } 10848 10849 /** 10850 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 10851 * @vport: Pointer to virtual port. 10852 * @pring: Pointer to driver SLI ring object. 10853 * @tgt_id: SCSI ID of the target. 10854 * @lun_id: LUN ID of the scsi device. 10855 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10856 * 10857 * This function sends an abort command for every SCSI command 10858 * associated with the given virtual port pending on the ring 10859 * filtered by lpfc_sli_validate_fcp_iocb function. 10860 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 10861 * FCP iocbs associated with lun specified by tgt_id and lun_id 10862 * parameters 10863 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 10864 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10865 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 10866 * FCP iocbs associated with virtual port. 10867 * This function returns number of iocbs it failed to abort. 10868 * This function is called with no locks held. 10869 **/ 10870 int 10871 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10872 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 10873 { 10874 struct lpfc_hba *phba = vport->phba; 10875 struct lpfc_iocbq *iocbq; 10876 struct lpfc_iocbq *abtsiocb; 10877 IOCB_t *cmd = NULL; 10878 int errcnt = 0, ret_val = 0; 10879 int i; 10880 10881 for (i = 1; i <= phba->sli.last_iotag; i++) { 10882 iocbq = phba->sli.iocbq_lookup[i]; 10883 10884 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10885 abort_cmd) != 0) 10886 continue; 10887 10888 /* 10889 * If the iocbq is already being aborted, don't take a second 10890 * action, but do count it. 10891 */ 10892 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10893 continue; 10894 10895 /* issue ABTS for this IOCB based on iotag */ 10896 abtsiocb = lpfc_sli_get_iocbq(phba); 10897 if (abtsiocb == NULL) { 10898 errcnt++; 10899 continue; 10900 } 10901 10902 /* indicate the IO is being aborted by the driver. */ 10903 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 10904 10905 cmd = &iocbq->iocb; 10906 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 10907 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 10908 if (phba->sli_rev == LPFC_SLI_REV4) 10909 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 10910 else 10911 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 10912 abtsiocb->iocb.ulpLe = 1; 10913 abtsiocb->iocb.ulpClass = cmd->ulpClass; 10914 abtsiocb->vport = vport; 10915 10916 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10917 abtsiocb->hba_wqidx = iocbq->hba_wqidx; 10918 if (iocbq->iocb_flag & LPFC_IO_FCP) 10919 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 10920 if (iocbq->iocb_flag & LPFC_IO_FOF) 10921 abtsiocb->iocb_flag |= LPFC_IO_FOF; 10922 10923 if (lpfc_is_link_up(phba)) 10924 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 10925 else 10926 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 10927 10928 /* Setup callback routine and issue the command. */ 10929 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 10930 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 10931 abtsiocb, 0); 10932 if (ret_val == IOCB_ERROR) { 10933 lpfc_sli_release_iocbq(phba, abtsiocb); 10934 errcnt++; 10935 continue; 10936 } 10937 } 10938 10939 return errcnt; 10940 } 10941 10942 /** 10943 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 10944 * @vport: Pointer to virtual port. 10945 * @pring: Pointer to driver SLI ring object. 10946 * @tgt_id: SCSI ID of the target. 10947 * @lun_id: LUN ID of the scsi device. 10948 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10949 * 10950 * This function sends an abort command for every SCSI command 10951 * associated with the given virtual port pending on the ring 10952 * filtered by lpfc_sli_validate_fcp_iocb function. 10953 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 10954 * FCP iocbs associated with lun specified by tgt_id and lun_id 10955 * parameters 10956 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 10957 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10958 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 10959 * FCP iocbs associated with virtual port. 10960 * This function returns number of iocbs it aborted . 10961 * This function is called with no locks held right after a taskmgmt 10962 * command is sent. 10963 **/ 10964 int 10965 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10966 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 10967 { 10968 struct lpfc_hba *phba = vport->phba; 10969 struct lpfc_scsi_buf *lpfc_cmd; 10970 struct lpfc_iocbq *abtsiocbq; 10971 struct lpfc_nodelist *ndlp; 10972 struct lpfc_iocbq *iocbq; 10973 IOCB_t *icmd; 10974 int sum, i, ret_val; 10975 unsigned long iflags; 10976 struct lpfc_sli_ring *pring_s4; 10977 10978 spin_lock_irq(&phba->hbalock); 10979 10980 /* all I/Os are in process of being flushed */ 10981 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) { 10982 spin_unlock_irq(&phba->hbalock); 10983 return 0; 10984 } 10985 sum = 0; 10986 10987 for (i = 1; i <= phba->sli.last_iotag; i++) { 10988 iocbq = phba->sli.iocbq_lookup[i]; 10989 10990 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10991 cmd) != 0) 10992 continue; 10993 10994 /* 10995 * If the iocbq is already being aborted, don't take a second 10996 * action, but do count it. 10997 */ 10998 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10999 continue; 11000 11001 /* issue ABTS for this IOCB based on iotag */ 11002 abtsiocbq = __lpfc_sli_get_iocbq(phba); 11003 if (abtsiocbq == NULL) 11004 continue; 11005 11006 icmd = &iocbq->iocb; 11007 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11008 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 11009 if (phba->sli_rev == LPFC_SLI_REV4) 11010 abtsiocbq->iocb.un.acxri.abortIoTag = 11011 iocbq->sli4_xritag; 11012 else 11013 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 11014 abtsiocbq->iocb.ulpLe = 1; 11015 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 11016 abtsiocbq->vport = vport; 11017 11018 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11019 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 11020 if (iocbq->iocb_flag & LPFC_IO_FCP) 11021 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 11022 if (iocbq->iocb_flag & LPFC_IO_FOF) 11023 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 11024 11025 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 11026 ndlp = lpfc_cmd->rdata->pnode; 11027 11028 if (lpfc_is_link_up(phba) && 11029 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 11030 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11031 else 11032 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11033 11034 /* Setup callback routine and issue the command. */ 11035 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11036 11037 /* 11038 * Indicate the IO is being aborted by the driver and set 11039 * the caller's flag into the aborted IO. 11040 */ 11041 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11042 11043 if (phba->sli_rev == LPFC_SLI_REV4) { 11044 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq); 11045 if (pring_s4 == NULL) 11046 continue; 11047 /* Note: both hbalock and ring_lock must be set here */ 11048 spin_lock_irqsave(&pring_s4->ring_lock, iflags); 11049 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11050 abtsiocbq, 0); 11051 spin_unlock_irqrestore(&pring_s4->ring_lock, iflags); 11052 } else { 11053 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 11054 abtsiocbq, 0); 11055 } 11056 11057 11058 if (ret_val == IOCB_ERROR) 11059 __lpfc_sli_release_iocbq(phba, abtsiocbq); 11060 else 11061 sum++; 11062 } 11063 spin_unlock_irq(&phba->hbalock); 11064 return sum; 11065 } 11066 11067 /** 11068 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 11069 * @phba: Pointer to HBA context object. 11070 * @cmdiocbq: Pointer to command iocb. 11071 * @rspiocbq: Pointer to response iocb. 11072 * 11073 * This function is the completion handler for iocbs issued using 11074 * lpfc_sli_issue_iocb_wait function. This function is called by the 11075 * ring event handler function without any lock held. This function 11076 * can be called from both worker thread context and interrupt 11077 * context. This function also can be called from other thread which 11078 * cleans up the SLI layer objects. 11079 * This function copy the contents of the response iocb to the 11080 * response iocb memory object provided by the caller of 11081 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 11082 * sleeps for the iocb completion. 11083 **/ 11084 static void 11085 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 11086 struct lpfc_iocbq *cmdiocbq, 11087 struct lpfc_iocbq *rspiocbq) 11088 { 11089 wait_queue_head_t *pdone_q; 11090 unsigned long iflags; 11091 struct lpfc_scsi_buf *lpfc_cmd; 11092 11093 spin_lock_irqsave(&phba->hbalock, iflags); 11094 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 11095 11096 /* 11097 * A time out has occurred for the iocb. If a time out 11098 * completion handler has been supplied, call it. Otherwise, 11099 * just free the iocbq. 11100 */ 11101 11102 spin_unlock_irqrestore(&phba->hbalock, iflags); 11103 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 11104 cmdiocbq->wait_iocb_cmpl = NULL; 11105 if (cmdiocbq->iocb_cmpl) 11106 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 11107 else 11108 lpfc_sli_release_iocbq(phba, cmdiocbq); 11109 return; 11110 } 11111 11112 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 11113 if (cmdiocbq->context2 && rspiocbq) 11114 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 11115 &rspiocbq->iocb, sizeof(IOCB_t)); 11116 11117 /* Set the exchange busy flag for task management commands */ 11118 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 11119 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 11120 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf, 11121 cur_iocbq); 11122 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY; 11123 } 11124 11125 pdone_q = cmdiocbq->context_un.wait_queue; 11126 if (pdone_q) 11127 wake_up(pdone_q); 11128 spin_unlock_irqrestore(&phba->hbalock, iflags); 11129 return; 11130 } 11131 11132 /** 11133 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 11134 * @phba: Pointer to HBA context object.. 11135 * @piocbq: Pointer to command iocb. 11136 * @flag: Flag to test. 11137 * 11138 * This routine grabs the hbalock and then test the iocb_flag to 11139 * see if the passed in flag is set. 11140 * Returns: 11141 * 1 if flag is set. 11142 * 0 if flag is not set. 11143 **/ 11144 static int 11145 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 11146 struct lpfc_iocbq *piocbq, uint32_t flag) 11147 { 11148 unsigned long iflags; 11149 int ret; 11150 11151 spin_lock_irqsave(&phba->hbalock, iflags); 11152 ret = piocbq->iocb_flag & flag; 11153 spin_unlock_irqrestore(&phba->hbalock, iflags); 11154 return ret; 11155 11156 } 11157 11158 /** 11159 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 11160 * @phba: Pointer to HBA context object.. 11161 * @pring: Pointer to sli ring. 11162 * @piocb: Pointer to command iocb. 11163 * @prspiocbq: Pointer to response iocb. 11164 * @timeout: Timeout in number of seconds. 11165 * 11166 * This function issues the iocb to firmware and waits for the 11167 * iocb to complete. The iocb_cmpl field of the shall be used 11168 * to handle iocbs which time out. If the field is NULL, the 11169 * function shall free the iocbq structure. If more clean up is 11170 * needed, the caller is expected to provide a completion function 11171 * that will provide the needed clean up. If the iocb command is 11172 * not completed within timeout seconds, the function will either 11173 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 11174 * completion function set in the iocb_cmpl field and then return 11175 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 11176 * resources if this function returns IOCB_TIMEDOUT. 11177 * The function waits for the iocb completion using an 11178 * non-interruptible wait. 11179 * This function will sleep while waiting for iocb completion. 11180 * So, this function should not be called from any context which 11181 * does not allow sleeping. Due to the same reason, this function 11182 * cannot be called with interrupt disabled. 11183 * This function assumes that the iocb completions occur while 11184 * this function sleep. So, this function cannot be called from 11185 * the thread which process iocb completion for this ring. 11186 * This function clears the iocb_flag of the iocb object before 11187 * issuing the iocb and the iocb completion handler sets this 11188 * flag and wakes this thread when the iocb completes. 11189 * The contents of the response iocb will be copied to prspiocbq 11190 * by the completion handler when the command completes. 11191 * This function returns IOCB_SUCCESS when success. 11192 * This function is called with no lock held. 11193 **/ 11194 int 11195 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 11196 uint32_t ring_number, 11197 struct lpfc_iocbq *piocb, 11198 struct lpfc_iocbq *prspiocbq, 11199 uint32_t timeout) 11200 { 11201 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 11202 long timeleft, timeout_req = 0; 11203 int retval = IOCB_SUCCESS; 11204 uint32_t creg_val; 11205 struct lpfc_iocbq *iocb; 11206 int txq_cnt = 0; 11207 int txcmplq_cnt = 0; 11208 struct lpfc_sli_ring *pring; 11209 unsigned long iflags; 11210 bool iocb_completed = true; 11211 11212 if (phba->sli_rev >= LPFC_SLI_REV4) 11213 pring = lpfc_sli4_calc_ring(phba, piocb); 11214 else 11215 pring = &phba->sli.sli3_ring[ring_number]; 11216 /* 11217 * If the caller has provided a response iocbq buffer, then context2 11218 * is NULL or its an error. 11219 */ 11220 if (prspiocbq) { 11221 if (piocb->context2) 11222 return IOCB_ERROR; 11223 piocb->context2 = prspiocbq; 11224 } 11225 11226 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 11227 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 11228 piocb->context_un.wait_queue = &done_q; 11229 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 11230 11231 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11232 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11233 return IOCB_ERROR; 11234 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 11235 writel(creg_val, phba->HCregaddr); 11236 readl(phba->HCregaddr); /* flush */ 11237 } 11238 11239 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 11240 SLI_IOCB_RET_IOCB); 11241 if (retval == IOCB_SUCCESS) { 11242 timeout_req = msecs_to_jiffies(timeout * 1000); 11243 timeleft = wait_event_timeout(done_q, 11244 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 11245 timeout_req); 11246 spin_lock_irqsave(&phba->hbalock, iflags); 11247 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 11248 11249 /* 11250 * IOCB timed out. Inform the wake iocb wait 11251 * completion function and set local status 11252 */ 11253 11254 iocb_completed = false; 11255 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 11256 } 11257 spin_unlock_irqrestore(&phba->hbalock, iflags); 11258 if (iocb_completed) { 11259 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11260 "0331 IOCB wake signaled\n"); 11261 /* Note: we are not indicating if the IOCB has a success 11262 * status or not - that's for the caller to check. 11263 * IOCB_SUCCESS means just that the command was sent and 11264 * completed. Not that it completed successfully. 11265 * */ 11266 } else if (timeleft == 0) { 11267 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11268 "0338 IOCB wait timeout error - no " 11269 "wake response Data x%x\n", timeout); 11270 retval = IOCB_TIMEDOUT; 11271 } else { 11272 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11273 "0330 IOCB wake NOT set, " 11274 "Data x%x x%lx\n", 11275 timeout, (timeleft / jiffies)); 11276 retval = IOCB_TIMEDOUT; 11277 } 11278 } else if (retval == IOCB_BUSY) { 11279 if (phba->cfg_log_verbose & LOG_SLI) { 11280 list_for_each_entry(iocb, &pring->txq, list) { 11281 txq_cnt++; 11282 } 11283 list_for_each_entry(iocb, &pring->txcmplq, list) { 11284 txcmplq_cnt++; 11285 } 11286 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11287 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 11288 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 11289 } 11290 return retval; 11291 } else { 11292 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11293 "0332 IOCB wait issue failed, Data x%x\n", 11294 retval); 11295 retval = IOCB_ERROR; 11296 } 11297 11298 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11299 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11300 return IOCB_ERROR; 11301 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 11302 writel(creg_val, phba->HCregaddr); 11303 readl(phba->HCregaddr); /* flush */ 11304 } 11305 11306 if (prspiocbq) 11307 piocb->context2 = NULL; 11308 11309 piocb->context_un.wait_queue = NULL; 11310 piocb->iocb_cmpl = NULL; 11311 return retval; 11312 } 11313 11314 /** 11315 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 11316 * @phba: Pointer to HBA context object. 11317 * @pmboxq: Pointer to driver mailbox object. 11318 * @timeout: Timeout in number of seconds. 11319 * 11320 * This function issues the mailbox to firmware and waits for the 11321 * mailbox command to complete. If the mailbox command is not 11322 * completed within timeout seconds, it returns MBX_TIMEOUT. 11323 * The function waits for the mailbox completion using an 11324 * interruptible wait. If the thread is woken up due to a 11325 * signal, MBX_TIMEOUT error is returned to the caller. Caller 11326 * should not free the mailbox resources, if this function returns 11327 * MBX_TIMEOUT. 11328 * This function will sleep while waiting for mailbox completion. 11329 * So, this function should not be called from any context which 11330 * does not allow sleeping. Due to the same reason, this function 11331 * cannot be called with interrupt disabled. 11332 * This function assumes that the mailbox completion occurs while 11333 * this function sleep. So, this function cannot be called from 11334 * the worker thread which processes mailbox completion. 11335 * This function is called in the context of HBA management 11336 * applications. 11337 * This function returns MBX_SUCCESS when successful. 11338 * This function is called with no lock held. 11339 **/ 11340 int 11341 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 11342 uint32_t timeout) 11343 { 11344 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 11345 MAILBOX_t *mb = NULL; 11346 int retval; 11347 unsigned long flag; 11348 11349 /* The caller might set context1 for extended buffer */ 11350 if (pmboxq->context1) 11351 mb = (MAILBOX_t *)pmboxq->context1; 11352 11353 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 11354 /* setup wake call as IOCB callback */ 11355 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 11356 /* setup context field to pass wait_queue pointer to wake function */ 11357 pmboxq->context1 = &done_q; 11358 11359 /* now issue the command */ 11360 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 11361 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 11362 wait_event_interruptible_timeout(done_q, 11363 pmboxq->mbox_flag & LPFC_MBX_WAKE, 11364 msecs_to_jiffies(timeout * 1000)); 11365 11366 spin_lock_irqsave(&phba->hbalock, flag); 11367 /* restore the possible extended buffer for free resource */ 11368 pmboxq->context1 = (uint8_t *)mb; 11369 /* 11370 * if LPFC_MBX_WAKE flag is set the mailbox is completed 11371 * else do not free the resources. 11372 */ 11373 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 11374 retval = MBX_SUCCESS; 11375 } else { 11376 retval = MBX_TIMEOUT; 11377 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 11378 } 11379 spin_unlock_irqrestore(&phba->hbalock, flag); 11380 } else { 11381 /* restore the possible extended buffer for free resource */ 11382 pmboxq->context1 = (uint8_t *)mb; 11383 } 11384 11385 return retval; 11386 } 11387 11388 /** 11389 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 11390 * @phba: Pointer to HBA context. 11391 * 11392 * This function is called to shutdown the driver's mailbox sub-system. 11393 * It first marks the mailbox sub-system is in a block state to prevent 11394 * the asynchronous mailbox command from issued off the pending mailbox 11395 * command queue. If the mailbox command sub-system shutdown is due to 11396 * HBA error conditions such as EEH or ERATT, this routine shall invoke 11397 * the mailbox sub-system flush routine to forcefully bring down the 11398 * mailbox sub-system. Otherwise, if it is due to normal condition (such 11399 * as with offline or HBA function reset), this routine will wait for the 11400 * outstanding mailbox command to complete before invoking the mailbox 11401 * sub-system flush routine to gracefully bring down mailbox sub-system. 11402 **/ 11403 void 11404 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 11405 { 11406 struct lpfc_sli *psli = &phba->sli; 11407 unsigned long timeout; 11408 11409 if (mbx_action == LPFC_MBX_NO_WAIT) { 11410 /* delay 100ms for port state */ 11411 msleep(100); 11412 lpfc_sli_mbox_sys_flush(phba); 11413 return; 11414 } 11415 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 11416 11417 spin_lock_irq(&phba->hbalock); 11418 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 11419 11420 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 11421 /* Determine how long we might wait for the active mailbox 11422 * command to be gracefully completed by firmware. 11423 */ 11424 if (phba->sli.mbox_active) 11425 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 11426 phba->sli.mbox_active) * 11427 1000) + jiffies; 11428 spin_unlock_irq(&phba->hbalock); 11429 11430 while (phba->sli.mbox_active) { 11431 /* Check active mailbox complete status every 2ms */ 11432 msleep(2); 11433 if (time_after(jiffies, timeout)) 11434 /* Timeout, let the mailbox flush routine to 11435 * forcefully release active mailbox command 11436 */ 11437 break; 11438 } 11439 } else 11440 spin_unlock_irq(&phba->hbalock); 11441 11442 lpfc_sli_mbox_sys_flush(phba); 11443 } 11444 11445 /** 11446 * lpfc_sli_eratt_read - read sli-3 error attention events 11447 * @phba: Pointer to HBA context. 11448 * 11449 * This function is called to read the SLI3 device error attention registers 11450 * for possible error attention events. The caller must hold the hostlock 11451 * with spin_lock_irq(). 11452 * 11453 * This function returns 1 when there is Error Attention in the Host Attention 11454 * Register and returns 0 otherwise. 11455 **/ 11456 static int 11457 lpfc_sli_eratt_read(struct lpfc_hba *phba) 11458 { 11459 uint32_t ha_copy; 11460 11461 /* Read chip Host Attention (HA) register */ 11462 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11463 goto unplug_err; 11464 11465 if (ha_copy & HA_ERATT) { 11466 /* Read host status register to retrieve error event */ 11467 if (lpfc_sli_read_hs(phba)) 11468 goto unplug_err; 11469 11470 /* Check if there is a deferred error condition is active */ 11471 if ((HS_FFER1 & phba->work_hs) && 11472 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 11473 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 11474 phba->hba_flag |= DEFER_ERATT; 11475 /* Clear all interrupt enable conditions */ 11476 writel(0, phba->HCregaddr); 11477 readl(phba->HCregaddr); 11478 } 11479 11480 /* Set the driver HA work bitmap */ 11481 phba->work_ha |= HA_ERATT; 11482 /* Indicate polling handles this ERATT */ 11483 phba->hba_flag |= HBA_ERATT_HANDLED; 11484 return 1; 11485 } 11486 return 0; 11487 11488 unplug_err: 11489 /* Set the driver HS work bitmap */ 11490 phba->work_hs |= UNPLUG_ERR; 11491 /* Set the driver HA work bitmap */ 11492 phba->work_ha |= HA_ERATT; 11493 /* Indicate polling handles this ERATT */ 11494 phba->hba_flag |= HBA_ERATT_HANDLED; 11495 return 1; 11496 } 11497 11498 /** 11499 * lpfc_sli4_eratt_read - read sli-4 error attention events 11500 * @phba: Pointer to HBA context. 11501 * 11502 * This function is called to read the SLI4 device error attention registers 11503 * for possible error attention events. The caller must hold the hostlock 11504 * with spin_lock_irq(). 11505 * 11506 * This function returns 1 when there is Error Attention in the Host Attention 11507 * Register and returns 0 otherwise. 11508 **/ 11509 static int 11510 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 11511 { 11512 uint32_t uerr_sta_hi, uerr_sta_lo; 11513 uint32_t if_type, portsmphr; 11514 struct lpfc_register portstat_reg; 11515 11516 /* 11517 * For now, use the SLI4 device internal unrecoverable error 11518 * registers for error attention. This can be changed later. 11519 */ 11520 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11521 switch (if_type) { 11522 case LPFC_SLI_INTF_IF_TYPE_0: 11523 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 11524 &uerr_sta_lo) || 11525 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 11526 &uerr_sta_hi)) { 11527 phba->work_hs |= UNPLUG_ERR; 11528 phba->work_ha |= HA_ERATT; 11529 phba->hba_flag |= HBA_ERATT_HANDLED; 11530 return 1; 11531 } 11532 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 11533 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 11534 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11535 "1423 HBA Unrecoverable error: " 11536 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 11537 "ue_mask_lo_reg=0x%x, " 11538 "ue_mask_hi_reg=0x%x\n", 11539 uerr_sta_lo, uerr_sta_hi, 11540 phba->sli4_hba.ue_mask_lo, 11541 phba->sli4_hba.ue_mask_hi); 11542 phba->work_status[0] = uerr_sta_lo; 11543 phba->work_status[1] = uerr_sta_hi; 11544 phba->work_ha |= HA_ERATT; 11545 phba->hba_flag |= HBA_ERATT_HANDLED; 11546 return 1; 11547 } 11548 break; 11549 case LPFC_SLI_INTF_IF_TYPE_2: 11550 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 11551 &portstat_reg.word0) || 11552 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 11553 &portsmphr)){ 11554 phba->work_hs |= UNPLUG_ERR; 11555 phba->work_ha |= HA_ERATT; 11556 phba->hba_flag |= HBA_ERATT_HANDLED; 11557 return 1; 11558 } 11559 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 11560 phba->work_status[0] = 11561 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 11562 phba->work_status[1] = 11563 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 11564 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11565 "2885 Port Status Event: " 11566 "port status reg 0x%x, " 11567 "port smphr reg 0x%x, " 11568 "error 1=0x%x, error 2=0x%x\n", 11569 portstat_reg.word0, 11570 portsmphr, 11571 phba->work_status[0], 11572 phba->work_status[1]); 11573 phba->work_ha |= HA_ERATT; 11574 phba->hba_flag |= HBA_ERATT_HANDLED; 11575 return 1; 11576 } 11577 break; 11578 case LPFC_SLI_INTF_IF_TYPE_1: 11579 default: 11580 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11581 "2886 HBA Error Attention on unsupported " 11582 "if type %d.", if_type); 11583 return 1; 11584 } 11585 11586 return 0; 11587 } 11588 11589 /** 11590 * lpfc_sli_check_eratt - check error attention events 11591 * @phba: Pointer to HBA context. 11592 * 11593 * This function is called from timer soft interrupt context to check HBA's 11594 * error attention register bit for error attention events. 11595 * 11596 * This function returns 1 when there is Error Attention in the Host Attention 11597 * Register and returns 0 otherwise. 11598 **/ 11599 int 11600 lpfc_sli_check_eratt(struct lpfc_hba *phba) 11601 { 11602 uint32_t ha_copy; 11603 11604 /* If somebody is waiting to handle an eratt, don't process it 11605 * here. The brdkill function will do this. 11606 */ 11607 if (phba->link_flag & LS_IGNORE_ERATT) 11608 return 0; 11609 11610 /* Check if interrupt handler handles this ERATT */ 11611 spin_lock_irq(&phba->hbalock); 11612 if (phba->hba_flag & HBA_ERATT_HANDLED) { 11613 /* Interrupt handler has handled ERATT */ 11614 spin_unlock_irq(&phba->hbalock); 11615 return 0; 11616 } 11617 11618 /* 11619 * If there is deferred error attention, do not check for error 11620 * attention 11621 */ 11622 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11623 spin_unlock_irq(&phba->hbalock); 11624 return 0; 11625 } 11626 11627 /* If PCI channel is offline, don't process it */ 11628 if (unlikely(pci_channel_offline(phba->pcidev))) { 11629 spin_unlock_irq(&phba->hbalock); 11630 return 0; 11631 } 11632 11633 switch (phba->sli_rev) { 11634 case LPFC_SLI_REV2: 11635 case LPFC_SLI_REV3: 11636 /* Read chip Host Attention (HA) register */ 11637 ha_copy = lpfc_sli_eratt_read(phba); 11638 break; 11639 case LPFC_SLI_REV4: 11640 /* Read device Uncoverable Error (UERR) registers */ 11641 ha_copy = lpfc_sli4_eratt_read(phba); 11642 break; 11643 default: 11644 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11645 "0299 Invalid SLI revision (%d)\n", 11646 phba->sli_rev); 11647 ha_copy = 0; 11648 break; 11649 } 11650 spin_unlock_irq(&phba->hbalock); 11651 11652 return ha_copy; 11653 } 11654 11655 /** 11656 * lpfc_intr_state_check - Check device state for interrupt handling 11657 * @phba: Pointer to HBA context. 11658 * 11659 * This inline routine checks whether a device or its PCI slot is in a state 11660 * that the interrupt should be handled. 11661 * 11662 * This function returns 0 if the device or the PCI slot is in a state that 11663 * interrupt should be handled, otherwise -EIO. 11664 */ 11665 static inline int 11666 lpfc_intr_state_check(struct lpfc_hba *phba) 11667 { 11668 /* If the pci channel is offline, ignore all the interrupts */ 11669 if (unlikely(pci_channel_offline(phba->pcidev))) 11670 return -EIO; 11671 11672 /* Update device level interrupt statistics */ 11673 phba->sli.slistat.sli_intr++; 11674 11675 /* Ignore all interrupts during initialization. */ 11676 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 11677 return -EIO; 11678 11679 return 0; 11680 } 11681 11682 /** 11683 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 11684 * @irq: Interrupt number. 11685 * @dev_id: The device context pointer. 11686 * 11687 * This function is directly called from the PCI layer as an interrupt 11688 * service routine when device with SLI-3 interface spec is enabled with 11689 * MSI-X multi-message interrupt mode and there are slow-path events in 11690 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 11691 * interrupt mode, this function is called as part of the device-level 11692 * interrupt handler. When the PCI slot is in error recovery or the HBA 11693 * is undergoing initialization, the interrupt handler will not process 11694 * the interrupt. The link attention and ELS ring attention events are 11695 * handled by the worker thread. The interrupt handler signals the worker 11696 * thread and returns for these events. This function is called without 11697 * any lock held. It gets the hbalock to access and update SLI data 11698 * structures. 11699 * 11700 * This function returns IRQ_HANDLED when interrupt is handled else it 11701 * returns IRQ_NONE. 11702 **/ 11703 irqreturn_t 11704 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 11705 { 11706 struct lpfc_hba *phba; 11707 uint32_t ha_copy, hc_copy; 11708 uint32_t work_ha_copy; 11709 unsigned long status; 11710 unsigned long iflag; 11711 uint32_t control; 11712 11713 MAILBOX_t *mbox, *pmbox; 11714 struct lpfc_vport *vport; 11715 struct lpfc_nodelist *ndlp; 11716 struct lpfc_dmabuf *mp; 11717 LPFC_MBOXQ_t *pmb; 11718 int rc; 11719 11720 /* 11721 * Get the driver's phba structure from the dev_id and 11722 * assume the HBA is not interrupting. 11723 */ 11724 phba = (struct lpfc_hba *)dev_id; 11725 11726 if (unlikely(!phba)) 11727 return IRQ_NONE; 11728 11729 /* 11730 * Stuff needs to be attented to when this function is invoked as an 11731 * individual interrupt handler in MSI-X multi-message interrupt mode 11732 */ 11733 if (phba->intr_type == MSIX) { 11734 /* Check device state for handling interrupt */ 11735 if (lpfc_intr_state_check(phba)) 11736 return IRQ_NONE; 11737 /* Need to read HA REG for slow-path events */ 11738 spin_lock_irqsave(&phba->hbalock, iflag); 11739 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11740 goto unplug_error; 11741 /* If somebody is waiting to handle an eratt don't process it 11742 * here. The brdkill function will do this. 11743 */ 11744 if (phba->link_flag & LS_IGNORE_ERATT) 11745 ha_copy &= ~HA_ERATT; 11746 /* Check the need for handling ERATT in interrupt handler */ 11747 if (ha_copy & HA_ERATT) { 11748 if (phba->hba_flag & HBA_ERATT_HANDLED) 11749 /* ERATT polling has handled ERATT */ 11750 ha_copy &= ~HA_ERATT; 11751 else 11752 /* Indicate interrupt handler handles ERATT */ 11753 phba->hba_flag |= HBA_ERATT_HANDLED; 11754 } 11755 11756 /* 11757 * If there is deferred error attention, do not check for any 11758 * interrupt. 11759 */ 11760 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11761 spin_unlock_irqrestore(&phba->hbalock, iflag); 11762 return IRQ_NONE; 11763 } 11764 11765 /* Clear up only attention source related to slow-path */ 11766 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 11767 goto unplug_error; 11768 11769 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 11770 HC_LAINT_ENA | HC_ERINT_ENA), 11771 phba->HCregaddr); 11772 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 11773 phba->HAregaddr); 11774 writel(hc_copy, phba->HCregaddr); 11775 readl(phba->HAregaddr); /* flush */ 11776 spin_unlock_irqrestore(&phba->hbalock, iflag); 11777 } else 11778 ha_copy = phba->ha_copy; 11779 11780 work_ha_copy = ha_copy & phba->work_ha_mask; 11781 11782 if (work_ha_copy) { 11783 if (work_ha_copy & HA_LATT) { 11784 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 11785 /* 11786 * Turn off Link Attention interrupts 11787 * until CLEAR_LA done 11788 */ 11789 spin_lock_irqsave(&phba->hbalock, iflag); 11790 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 11791 if (lpfc_readl(phba->HCregaddr, &control)) 11792 goto unplug_error; 11793 control &= ~HC_LAINT_ENA; 11794 writel(control, phba->HCregaddr); 11795 readl(phba->HCregaddr); /* flush */ 11796 spin_unlock_irqrestore(&phba->hbalock, iflag); 11797 } 11798 else 11799 work_ha_copy &= ~HA_LATT; 11800 } 11801 11802 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 11803 /* 11804 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 11805 * the only slow ring. 11806 */ 11807 status = (work_ha_copy & 11808 (HA_RXMASK << (4*LPFC_ELS_RING))); 11809 status >>= (4*LPFC_ELS_RING); 11810 if (status & HA_RXMASK) { 11811 spin_lock_irqsave(&phba->hbalock, iflag); 11812 if (lpfc_readl(phba->HCregaddr, &control)) 11813 goto unplug_error; 11814 11815 lpfc_debugfs_slow_ring_trc(phba, 11816 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 11817 control, status, 11818 (uint32_t)phba->sli.slistat.sli_intr); 11819 11820 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 11821 lpfc_debugfs_slow_ring_trc(phba, 11822 "ISR Disable ring:" 11823 "pwork:x%x hawork:x%x wait:x%x", 11824 phba->work_ha, work_ha_copy, 11825 (uint32_t)((unsigned long) 11826 &phba->work_waitq)); 11827 11828 control &= 11829 ~(HC_R0INT_ENA << LPFC_ELS_RING); 11830 writel(control, phba->HCregaddr); 11831 readl(phba->HCregaddr); /* flush */ 11832 } 11833 else { 11834 lpfc_debugfs_slow_ring_trc(phba, 11835 "ISR slow ring: pwork:" 11836 "x%x hawork:x%x wait:x%x", 11837 phba->work_ha, work_ha_copy, 11838 (uint32_t)((unsigned long) 11839 &phba->work_waitq)); 11840 } 11841 spin_unlock_irqrestore(&phba->hbalock, iflag); 11842 } 11843 } 11844 spin_lock_irqsave(&phba->hbalock, iflag); 11845 if (work_ha_copy & HA_ERATT) { 11846 if (lpfc_sli_read_hs(phba)) 11847 goto unplug_error; 11848 /* 11849 * Check if there is a deferred error condition 11850 * is active 11851 */ 11852 if ((HS_FFER1 & phba->work_hs) && 11853 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 11854 HS_FFER6 | HS_FFER7 | HS_FFER8) & 11855 phba->work_hs)) { 11856 phba->hba_flag |= DEFER_ERATT; 11857 /* Clear all interrupt enable conditions */ 11858 writel(0, phba->HCregaddr); 11859 readl(phba->HCregaddr); 11860 } 11861 } 11862 11863 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 11864 pmb = phba->sli.mbox_active; 11865 pmbox = &pmb->u.mb; 11866 mbox = phba->mbox; 11867 vport = pmb->vport; 11868 11869 /* First check out the status word */ 11870 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 11871 if (pmbox->mbxOwner != OWN_HOST) { 11872 spin_unlock_irqrestore(&phba->hbalock, iflag); 11873 /* 11874 * Stray Mailbox Interrupt, mbxCommand <cmd> 11875 * mbxStatus <status> 11876 */ 11877 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11878 LOG_SLI, 11879 "(%d):0304 Stray Mailbox " 11880 "Interrupt mbxCommand x%x " 11881 "mbxStatus x%x\n", 11882 (vport ? vport->vpi : 0), 11883 pmbox->mbxCommand, 11884 pmbox->mbxStatus); 11885 /* clear mailbox attention bit */ 11886 work_ha_copy &= ~HA_MBATT; 11887 } else { 11888 phba->sli.mbox_active = NULL; 11889 spin_unlock_irqrestore(&phba->hbalock, iflag); 11890 phba->last_completion_time = jiffies; 11891 del_timer(&phba->sli.mbox_tmo); 11892 if (pmb->mbox_cmpl) { 11893 lpfc_sli_pcimem_bcopy(mbox, pmbox, 11894 MAILBOX_CMD_SIZE); 11895 if (pmb->out_ext_byte_len && 11896 pmb->context2) 11897 lpfc_sli_pcimem_bcopy( 11898 phba->mbox_ext, 11899 pmb->context2, 11900 pmb->out_ext_byte_len); 11901 } 11902 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 11903 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 11904 11905 lpfc_debugfs_disc_trc(vport, 11906 LPFC_DISC_TRC_MBOX_VPORT, 11907 "MBOX dflt rpi: : " 11908 "status:x%x rpi:x%x", 11909 (uint32_t)pmbox->mbxStatus, 11910 pmbox->un.varWords[0], 0); 11911 11912 if (!pmbox->mbxStatus) { 11913 mp = (struct lpfc_dmabuf *) 11914 (pmb->context1); 11915 ndlp = (struct lpfc_nodelist *) 11916 pmb->context2; 11917 11918 /* Reg_LOGIN of dflt RPI was 11919 * successful. new lets get 11920 * rid of the RPI using the 11921 * same mbox buffer. 11922 */ 11923 lpfc_unreg_login(phba, 11924 vport->vpi, 11925 pmbox->un.varWords[0], 11926 pmb); 11927 pmb->mbox_cmpl = 11928 lpfc_mbx_cmpl_dflt_rpi; 11929 pmb->context1 = mp; 11930 pmb->context2 = ndlp; 11931 pmb->vport = vport; 11932 rc = lpfc_sli_issue_mbox(phba, 11933 pmb, 11934 MBX_NOWAIT); 11935 if (rc != MBX_BUSY) 11936 lpfc_printf_log(phba, 11937 KERN_ERR, 11938 LOG_MBOX | LOG_SLI, 11939 "0350 rc should have" 11940 "been MBX_BUSY\n"); 11941 if (rc != MBX_NOT_FINISHED) 11942 goto send_current_mbox; 11943 } 11944 } 11945 spin_lock_irqsave( 11946 &phba->pport->work_port_lock, 11947 iflag); 11948 phba->pport->work_port_events &= 11949 ~WORKER_MBOX_TMO; 11950 spin_unlock_irqrestore( 11951 &phba->pport->work_port_lock, 11952 iflag); 11953 lpfc_mbox_cmpl_put(phba, pmb); 11954 } 11955 } else 11956 spin_unlock_irqrestore(&phba->hbalock, iflag); 11957 11958 if ((work_ha_copy & HA_MBATT) && 11959 (phba->sli.mbox_active == NULL)) { 11960 send_current_mbox: 11961 /* Process next mailbox command if there is one */ 11962 do { 11963 rc = lpfc_sli_issue_mbox(phba, NULL, 11964 MBX_NOWAIT); 11965 } while (rc == MBX_NOT_FINISHED); 11966 if (rc != MBX_SUCCESS) 11967 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11968 LOG_SLI, "0349 rc should be " 11969 "MBX_SUCCESS\n"); 11970 } 11971 11972 spin_lock_irqsave(&phba->hbalock, iflag); 11973 phba->work_ha |= work_ha_copy; 11974 spin_unlock_irqrestore(&phba->hbalock, iflag); 11975 lpfc_worker_wake_up(phba); 11976 } 11977 return IRQ_HANDLED; 11978 unplug_error: 11979 spin_unlock_irqrestore(&phba->hbalock, iflag); 11980 return IRQ_HANDLED; 11981 11982 } /* lpfc_sli_sp_intr_handler */ 11983 11984 /** 11985 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 11986 * @irq: Interrupt number. 11987 * @dev_id: The device context pointer. 11988 * 11989 * This function is directly called from the PCI layer as an interrupt 11990 * service routine when device with SLI-3 interface spec is enabled with 11991 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 11992 * ring event in the HBA. However, when the device is enabled with either 11993 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 11994 * device-level interrupt handler. When the PCI slot is in error recovery 11995 * or the HBA is undergoing initialization, the interrupt handler will not 11996 * process the interrupt. The SCSI FCP fast-path ring event are handled in 11997 * the intrrupt context. This function is called without any lock held. 11998 * It gets the hbalock to access and update SLI data structures. 11999 * 12000 * This function returns IRQ_HANDLED when interrupt is handled else it 12001 * returns IRQ_NONE. 12002 **/ 12003 irqreturn_t 12004 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 12005 { 12006 struct lpfc_hba *phba; 12007 uint32_t ha_copy; 12008 unsigned long status; 12009 unsigned long iflag; 12010 struct lpfc_sli_ring *pring; 12011 12012 /* Get the driver's phba structure from the dev_id and 12013 * assume the HBA is not interrupting. 12014 */ 12015 phba = (struct lpfc_hba *) dev_id; 12016 12017 if (unlikely(!phba)) 12018 return IRQ_NONE; 12019 12020 /* 12021 * Stuff needs to be attented to when this function is invoked as an 12022 * individual interrupt handler in MSI-X multi-message interrupt mode 12023 */ 12024 if (phba->intr_type == MSIX) { 12025 /* Check device state for handling interrupt */ 12026 if (lpfc_intr_state_check(phba)) 12027 return IRQ_NONE; 12028 /* Need to read HA REG for FCP ring and other ring events */ 12029 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12030 return IRQ_HANDLED; 12031 /* Clear up only attention source related to fast-path */ 12032 spin_lock_irqsave(&phba->hbalock, iflag); 12033 /* 12034 * If there is deferred error attention, do not check for 12035 * any interrupt. 12036 */ 12037 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12038 spin_unlock_irqrestore(&phba->hbalock, iflag); 12039 return IRQ_NONE; 12040 } 12041 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 12042 phba->HAregaddr); 12043 readl(phba->HAregaddr); /* flush */ 12044 spin_unlock_irqrestore(&phba->hbalock, iflag); 12045 } else 12046 ha_copy = phba->ha_copy; 12047 12048 /* 12049 * Process all events on FCP ring. Take the optimized path for FCP IO. 12050 */ 12051 ha_copy &= ~(phba->work_ha_mask); 12052 12053 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12054 status >>= (4*LPFC_FCP_RING); 12055 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12056 if (status & HA_RXMASK) 12057 lpfc_sli_handle_fast_ring_event(phba, pring, status); 12058 12059 if (phba->cfg_multi_ring_support == 2) { 12060 /* 12061 * Process all events on extra ring. Take the optimized path 12062 * for extra ring IO. 12063 */ 12064 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12065 status >>= (4*LPFC_EXTRA_RING); 12066 if (status & HA_RXMASK) { 12067 lpfc_sli_handle_fast_ring_event(phba, 12068 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 12069 status); 12070 } 12071 } 12072 return IRQ_HANDLED; 12073 } /* lpfc_sli_fp_intr_handler */ 12074 12075 /** 12076 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 12077 * @irq: Interrupt number. 12078 * @dev_id: The device context pointer. 12079 * 12080 * This function is the HBA device-level interrupt handler to device with 12081 * SLI-3 interface spec, called from the PCI layer when either MSI or 12082 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 12083 * requires driver attention. This function invokes the slow-path interrupt 12084 * attention handling function and fast-path interrupt attention handling 12085 * function in turn to process the relevant HBA attention events. This 12086 * function is called without any lock held. It gets the hbalock to access 12087 * and update SLI data structures. 12088 * 12089 * This function returns IRQ_HANDLED when interrupt is handled, else it 12090 * returns IRQ_NONE. 12091 **/ 12092 irqreturn_t 12093 lpfc_sli_intr_handler(int irq, void *dev_id) 12094 { 12095 struct lpfc_hba *phba; 12096 irqreturn_t sp_irq_rc, fp_irq_rc; 12097 unsigned long status1, status2; 12098 uint32_t hc_copy; 12099 12100 /* 12101 * Get the driver's phba structure from the dev_id and 12102 * assume the HBA is not interrupting. 12103 */ 12104 phba = (struct lpfc_hba *) dev_id; 12105 12106 if (unlikely(!phba)) 12107 return IRQ_NONE; 12108 12109 /* Check device state for handling interrupt */ 12110 if (lpfc_intr_state_check(phba)) 12111 return IRQ_NONE; 12112 12113 spin_lock(&phba->hbalock); 12114 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 12115 spin_unlock(&phba->hbalock); 12116 return IRQ_HANDLED; 12117 } 12118 12119 if (unlikely(!phba->ha_copy)) { 12120 spin_unlock(&phba->hbalock); 12121 return IRQ_NONE; 12122 } else if (phba->ha_copy & HA_ERATT) { 12123 if (phba->hba_flag & HBA_ERATT_HANDLED) 12124 /* ERATT polling has handled ERATT */ 12125 phba->ha_copy &= ~HA_ERATT; 12126 else 12127 /* Indicate interrupt handler handles ERATT */ 12128 phba->hba_flag |= HBA_ERATT_HANDLED; 12129 } 12130 12131 /* 12132 * If there is deferred error attention, do not check for any interrupt. 12133 */ 12134 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12135 spin_unlock(&phba->hbalock); 12136 return IRQ_NONE; 12137 } 12138 12139 /* Clear attention sources except link and error attentions */ 12140 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 12141 spin_unlock(&phba->hbalock); 12142 return IRQ_HANDLED; 12143 } 12144 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 12145 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 12146 phba->HCregaddr); 12147 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 12148 writel(hc_copy, phba->HCregaddr); 12149 readl(phba->HAregaddr); /* flush */ 12150 spin_unlock(&phba->hbalock); 12151 12152 /* 12153 * Invokes slow-path host attention interrupt handling as appropriate. 12154 */ 12155 12156 /* status of events with mailbox and link attention */ 12157 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 12158 12159 /* status of events with ELS ring */ 12160 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 12161 status2 >>= (4*LPFC_ELS_RING); 12162 12163 if (status1 || (status2 & HA_RXMASK)) 12164 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 12165 else 12166 sp_irq_rc = IRQ_NONE; 12167 12168 /* 12169 * Invoke fast-path host attention interrupt handling as appropriate. 12170 */ 12171 12172 /* status of events with FCP ring */ 12173 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12174 status1 >>= (4*LPFC_FCP_RING); 12175 12176 /* status of events with extra ring */ 12177 if (phba->cfg_multi_ring_support == 2) { 12178 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12179 status2 >>= (4*LPFC_EXTRA_RING); 12180 } else 12181 status2 = 0; 12182 12183 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 12184 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 12185 else 12186 fp_irq_rc = IRQ_NONE; 12187 12188 /* Return device-level interrupt handling status */ 12189 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 12190 } /* lpfc_sli_intr_handler */ 12191 12192 /** 12193 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event 12194 * @phba: pointer to lpfc hba data structure. 12195 * 12196 * This routine is invoked by the worker thread to process all the pending 12197 * SLI4 FCP abort XRI events. 12198 **/ 12199 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba) 12200 { 12201 struct lpfc_cq_event *cq_event; 12202 12203 /* First, declare the fcp xri abort event has been handled */ 12204 spin_lock_irq(&phba->hbalock); 12205 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT; 12206 spin_unlock_irq(&phba->hbalock); 12207 /* Now, handle all the fcp xri abort events */ 12208 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) { 12209 /* Get the first event from the head of the event queue */ 12210 spin_lock_irq(&phba->hbalock); 12211 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 12212 cq_event, struct lpfc_cq_event, list); 12213 spin_unlock_irq(&phba->hbalock); 12214 /* Notify aborted XRI for FCP work queue */ 12215 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12216 /* Free the event processed back to the free pool */ 12217 lpfc_sli4_cq_event_release(phba, cq_event); 12218 } 12219 } 12220 12221 /** 12222 * lpfc_sli4_nvme_xri_abort_event_proc - Process nvme xri abort event 12223 * @phba: pointer to lpfc hba data structure. 12224 * 12225 * This routine is invoked by the worker thread to process all the pending 12226 * SLI4 NVME abort XRI events. 12227 **/ 12228 void lpfc_sli4_nvme_xri_abort_event_proc(struct lpfc_hba *phba) 12229 { 12230 struct lpfc_cq_event *cq_event; 12231 12232 /* First, declare the fcp xri abort event has been handled */ 12233 spin_lock_irq(&phba->hbalock); 12234 phba->hba_flag &= ~NVME_XRI_ABORT_EVENT; 12235 spin_unlock_irq(&phba->hbalock); 12236 /* Now, handle all the fcp xri abort events */ 12237 while (!list_empty(&phba->sli4_hba.sp_nvme_xri_aborted_work_queue)) { 12238 /* Get the first event from the head of the event queue */ 12239 spin_lock_irq(&phba->hbalock); 12240 list_remove_head(&phba->sli4_hba.sp_nvme_xri_aborted_work_queue, 12241 cq_event, struct lpfc_cq_event, list); 12242 spin_unlock_irq(&phba->hbalock); 12243 /* Notify aborted XRI for NVME work queue */ 12244 if (phba->nvmet_support) { 12245 lpfc_sli4_nvmet_xri_aborted(phba, 12246 &cq_event->cqe.wcqe_axri); 12247 } else { 12248 lpfc_sli4_nvme_xri_aborted(phba, 12249 &cq_event->cqe.wcqe_axri); 12250 } 12251 /* Free the event processed back to the free pool */ 12252 lpfc_sli4_cq_event_release(phba, cq_event); 12253 } 12254 } 12255 12256 /** 12257 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 12258 * @phba: pointer to lpfc hba data structure. 12259 * 12260 * This routine is invoked by the worker thread to process all the pending 12261 * SLI4 els abort xri events. 12262 **/ 12263 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 12264 { 12265 struct lpfc_cq_event *cq_event; 12266 12267 /* First, declare the els xri abort event has been handled */ 12268 spin_lock_irq(&phba->hbalock); 12269 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 12270 spin_unlock_irq(&phba->hbalock); 12271 /* Now, handle all the els xri abort events */ 12272 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 12273 /* Get the first event from the head of the event queue */ 12274 spin_lock_irq(&phba->hbalock); 12275 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 12276 cq_event, struct lpfc_cq_event, list); 12277 spin_unlock_irq(&phba->hbalock); 12278 /* Notify aborted XRI for ELS work queue */ 12279 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12280 /* Free the event processed back to the free pool */ 12281 lpfc_sli4_cq_event_release(phba, cq_event); 12282 } 12283 } 12284 12285 /** 12286 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 12287 * @phba: pointer to lpfc hba data structure 12288 * @pIocbIn: pointer to the rspiocbq 12289 * @pIocbOut: pointer to the cmdiocbq 12290 * @wcqe: pointer to the complete wcqe 12291 * 12292 * This routine transfers the fields of a command iocbq to a response iocbq 12293 * by copying all the IOCB fields from command iocbq and transferring the 12294 * completion status information from the complete wcqe. 12295 **/ 12296 static void 12297 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 12298 struct lpfc_iocbq *pIocbIn, 12299 struct lpfc_iocbq *pIocbOut, 12300 struct lpfc_wcqe_complete *wcqe) 12301 { 12302 int numBdes, i; 12303 unsigned long iflags; 12304 uint32_t status, max_response; 12305 struct lpfc_dmabuf *dmabuf; 12306 struct ulp_bde64 *bpl, bde; 12307 size_t offset = offsetof(struct lpfc_iocbq, iocb); 12308 12309 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 12310 sizeof(struct lpfc_iocbq) - offset); 12311 /* Map WCQE parameters into irspiocb parameters */ 12312 status = bf_get(lpfc_wcqe_c_status, wcqe); 12313 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 12314 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 12315 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 12316 pIocbIn->iocb.un.fcpi.fcpi_parm = 12317 pIocbOut->iocb.un.fcpi.fcpi_parm - 12318 wcqe->total_data_placed; 12319 else 12320 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12321 else { 12322 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12323 switch (pIocbOut->iocb.ulpCommand) { 12324 case CMD_ELS_REQUEST64_CR: 12325 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12326 bpl = (struct ulp_bde64 *)dmabuf->virt; 12327 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 12328 max_response = bde.tus.f.bdeSize; 12329 break; 12330 case CMD_GEN_REQUEST64_CR: 12331 max_response = 0; 12332 if (!pIocbOut->context3) 12333 break; 12334 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 12335 sizeof(struct ulp_bde64); 12336 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12337 bpl = (struct ulp_bde64 *)dmabuf->virt; 12338 for (i = 0; i < numBdes; i++) { 12339 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 12340 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 12341 max_response += bde.tus.f.bdeSize; 12342 } 12343 break; 12344 default: 12345 max_response = wcqe->total_data_placed; 12346 break; 12347 } 12348 if (max_response < wcqe->total_data_placed) 12349 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 12350 else 12351 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 12352 wcqe->total_data_placed; 12353 } 12354 12355 /* Convert BG errors for completion status */ 12356 if (status == CQE_STATUS_DI_ERROR) { 12357 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 12358 12359 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 12360 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 12361 else 12362 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 12363 12364 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 12365 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 12366 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12367 BGS_GUARD_ERR_MASK; 12368 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 12369 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12370 BGS_APPTAG_ERR_MASK; 12371 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 12372 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12373 BGS_REFTAG_ERR_MASK; 12374 12375 /* Check to see if there was any good data before the error */ 12376 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 12377 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12378 BGS_HI_WATER_MARK_PRESENT_MASK; 12379 pIocbIn->iocb.unsli3.sli3_bg.bghm = 12380 wcqe->total_data_placed; 12381 } 12382 12383 /* 12384 * Set ALL the error bits to indicate we don't know what 12385 * type of error it is. 12386 */ 12387 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 12388 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12389 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 12390 BGS_GUARD_ERR_MASK); 12391 } 12392 12393 /* Pick up HBA exchange busy condition */ 12394 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 12395 spin_lock_irqsave(&phba->hbalock, iflags); 12396 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 12397 spin_unlock_irqrestore(&phba->hbalock, iflags); 12398 } 12399 } 12400 12401 /** 12402 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 12403 * @phba: Pointer to HBA context object. 12404 * @wcqe: Pointer to work-queue completion queue entry. 12405 * 12406 * This routine handles an ELS work-queue completion event and construct 12407 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 12408 * discovery engine to handle. 12409 * 12410 * Return: Pointer to the receive IOCBQ, NULL otherwise. 12411 **/ 12412 static struct lpfc_iocbq * 12413 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 12414 struct lpfc_iocbq *irspiocbq) 12415 { 12416 struct lpfc_sli_ring *pring; 12417 struct lpfc_iocbq *cmdiocbq; 12418 struct lpfc_wcqe_complete *wcqe; 12419 unsigned long iflags; 12420 12421 pring = lpfc_phba_elsring(phba); 12422 12423 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 12424 spin_lock_irqsave(&pring->ring_lock, iflags); 12425 pring->stats.iocb_event++; 12426 /* Look up the ELS command IOCB and create pseudo response IOCB */ 12427 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 12428 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12429 /* Put the iocb back on the txcmplq */ 12430 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 12431 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12432 12433 if (unlikely(!cmdiocbq)) { 12434 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12435 "0386 ELS complete with no corresponding " 12436 "cmdiocb: iotag (%d)\n", 12437 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12438 lpfc_sli_release_iocbq(phba, irspiocbq); 12439 return NULL; 12440 } 12441 12442 /* Fake the irspiocbq and copy necessary response information */ 12443 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 12444 12445 return irspiocbq; 12446 } 12447 12448 /** 12449 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event 12450 * @phba: Pointer to HBA context object. 12451 * @cqe: Pointer to mailbox completion queue entry. 12452 * 12453 * This routine process a mailbox completion queue entry with asynchrous 12454 * event. 12455 * 12456 * Return: true if work posted to worker thread, otherwise false. 12457 **/ 12458 static bool 12459 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 12460 { 12461 struct lpfc_cq_event *cq_event; 12462 unsigned long iflags; 12463 12464 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12465 "0392 Async Event: word0:x%x, word1:x%x, " 12466 "word2:x%x, word3:x%x\n", mcqe->word0, 12467 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 12468 12469 /* Allocate a new internal CQ_EVENT entry */ 12470 cq_event = lpfc_sli4_cq_event_alloc(phba); 12471 if (!cq_event) { 12472 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12473 "0394 Failed to allocate CQ_EVENT entry\n"); 12474 return false; 12475 } 12476 12477 /* Move the CQE into an asynchronous event entry */ 12478 memcpy(&cq_event->cqe, mcqe, sizeof(struct lpfc_mcqe)); 12479 spin_lock_irqsave(&phba->hbalock, iflags); 12480 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 12481 /* Set the async event flag */ 12482 phba->hba_flag |= ASYNC_EVENT; 12483 spin_unlock_irqrestore(&phba->hbalock, iflags); 12484 12485 return true; 12486 } 12487 12488 /** 12489 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 12490 * @phba: Pointer to HBA context object. 12491 * @cqe: Pointer to mailbox completion queue entry. 12492 * 12493 * This routine process a mailbox completion queue entry with mailbox 12494 * completion event. 12495 * 12496 * Return: true if work posted to worker thread, otherwise false. 12497 **/ 12498 static bool 12499 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 12500 { 12501 uint32_t mcqe_status; 12502 MAILBOX_t *mbox, *pmbox; 12503 struct lpfc_mqe *mqe; 12504 struct lpfc_vport *vport; 12505 struct lpfc_nodelist *ndlp; 12506 struct lpfc_dmabuf *mp; 12507 unsigned long iflags; 12508 LPFC_MBOXQ_t *pmb; 12509 bool workposted = false; 12510 int rc; 12511 12512 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 12513 if (!bf_get(lpfc_trailer_completed, mcqe)) 12514 goto out_no_mqe_complete; 12515 12516 /* Get the reference to the active mbox command */ 12517 spin_lock_irqsave(&phba->hbalock, iflags); 12518 pmb = phba->sli.mbox_active; 12519 if (unlikely(!pmb)) { 12520 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 12521 "1832 No pending MBOX command to handle\n"); 12522 spin_unlock_irqrestore(&phba->hbalock, iflags); 12523 goto out_no_mqe_complete; 12524 } 12525 spin_unlock_irqrestore(&phba->hbalock, iflags); 12526 mqe = &pmb->u.mqe; 12527 pmbox = (MAILBOX_t *)&pmb->u.mqe; 12528 mbox = phba->mbox; 12529 vport = pmb->vport; 12530 12531 /* Reset heartbeat timer */ 12532 phba->last_completion_time = jiffies; 12533 del_timer(&phba->sli.mbox_tmo); 12534 12535 /* Move mbox data to caller's mailbox region, do endian swapping */ 12536 if (pmb->mbox_cmpl && mbox) 12537 lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 12538 12539 /* 12540 * For mcqe errors, conditionally move a modified error code to 12541 * the mbox so that the error will not be missed. 12542 */ 12543 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 12544 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 12545 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 12546 bf_set(lpfc_mqe_status, mqe, 12547 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 12548 } 12549 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12550 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12551 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 12552 "MBOX dflt rpi: status:x%x rpi:x%x", 12553 mcqe_status, 12554 pmbox->un.varWords[0], 0); 12555 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 12556 mp = (struct lpfc_dmabuf *)(pmb->context1); 12557 ndlp = (struct lpfc_nodelist *)pmb->context2; 12558 /* Reg_LOGIN of dflt RPI was successful. Now lets get 12559 * RID of the PPI using the same mbox buffer. 12560 */ 12561 lpfc_unreg_login(phba, vport->vpi, 12562 pmbox->un.varWords[0], pmb); 12563 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 12564 pmb->context1 = mp; 12565 pmb->context2 = ndlp; 12566 pmb->vport = vport; 12567 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 12568 if (rc != MBX_BUSY) 12569 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12570 LOG_SLI, "0385 rc should " 12571 "have been MBX_BUSY\n"); 12572 if (rc != MBX_NOT_FINISHED) 12573 goto send_current_mbox; 12574 } 12575 } 12576 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 12577 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12578 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 12579 12580 /* There is mailbox completion work to do */ 12581 spin_lock_irqsave(&phba->hbalock, iflags); 12582 __lpfc_mbox_cmpl_put(phba, pmb); 12583 phba->work_ha |= HA_MBATT; 12584 spin_unlock_irqrestore(&phba->hbalock, iflags); 12585 workposted = true; 12586 12587 send_current_mbox: 12588 spin_lock_irqsave(&phba->hbalock, iflags); 12589 /* Release the mailbox command posting token */ 12590 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 12591 /* Setting active mailbox pointer need to be in sync to flag clear */ 12592 phba->sli.mbox_active = NULL; 12593 spin_unlock_irqrestore(&phba->hbalock, iflags); 12594 /* Wake up worker thread to post the next pending mailbox command */ 12595 lpfc_worker_wake_up(phba); 12596 out_no_mqe_complete: 12597 if (bf_get(lpfc_trailer_consumed, mcqe)) 12598 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 12599 return workposted; 12600 } 12601 12602 /** 12603 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 12604 * @phba: Pointer to HBA context object. 12605 * @cqe: Pointer to mailbox completion queue entry. 12606 * 12607 * This routine process a mailbox completion queue entry, it invokes the 12608 * proper mailbox complete handling or asynchrous event handling routine 12609 * according to the MCQE's async bit. 12610 * 12611 * Return: true if work posted to worker thread, otherwise false. 12612 **/ 12613 static bool 12614 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe) 12615 { 12616 struct lpfc_mcqe mcqe; 12617 bool workposted; 12618 12619 /* Copy the mailbox MCQE and convert endian order as needed */ 12620 lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 12621 12622 /* Invoke the proper event handling routine */ 12623 if (!bf_get(lpfc_trailer_async, &mcqe)) 12624 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 12625 else 12626 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 12627 return workposted; 12628 } 12629 12630 /** 12631 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 12632 * @phba: Pointer to HBA context object. 12633 * @cq: Pointer to associated CQ 12634 * @wcqe: Pointer to work-queue completion queue entry. 12635 * 12636 * This routine handles an ELS work-queue completion event. 12637 * 12638 * Return: true if work posted to worker thread, otherwise false. 12639 **/ 12640 static bool 12641 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12642 struct lpfc_wcqe_complete *wcqe) 12643 { 12644 struct lpfc_iocbq *irspiocbq; 12645 unsigned long iflags; 12646 struct lpfc_sli_ring *pring = cq->pring; 12647 int txq_cnt = 0; 12648 int txcmplq_cnt = 0; 12649 int fcp_txcmplq_cnt = 0; 12650 12651 /* Get an irspiocbq for later ELS response processing use */ 12652 irspiocbq = lpfc_sli_get_iocbq(phba); 12653 if (!irspiocbq) { 12654 if (!list_empty(&pring->txq)) 12655 txq_cnt++; 12656 if (!list_empty(&pring->txcmplq)) 12657 txcmplq_cnt++; 12658 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12659 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 12660 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n", 12661 txq_cnt, phba->iocb_cnt, 12662 fcp_txcmplq_cnt, 12663 txcmplq_cnt); 12664 return false; 12665 } 12666 12667 /* Save off the slow-path queue event for work thread to process */ 12668 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 12669 spin_lock_irqsave(&phba->hbalock, iflags); 12670 list_add_tail(&irspiocbq->cq_event.list, 12671 &phba->sli4_hba.sp_queue_event); 12672 phba->hba_flag |= HBA_SP_QUEUE_EVT; 12673 spin_unlock_irqrestore(&phba->hbalock, iflags); 12674 12675 return true; 12676 } 12677 12678 /** 12679 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 12680 * @phba: Pointer to HBA context object. 12681 * @wcqe: Pointer to work-queue completion queue entry. 12682 * 12683 * This routine handles slow-path WQ entry consumed event by invoking the 12684 * proper WQ release routine to the slow-path WQ. 12685 **/ 12686 static void 12687 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 12688 struct lpfc_wcqe_release *wcqe) 12689 { 12690 /* sanity check on queue memory */ 12691 if (unlikely(!phba->sli4_hba.els_wq)) 12692 return; 12693 /* Check for the slow-path ELS work queue */ 12694 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 12695 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 12696 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 12697 else 12698 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12699 "2579 Slow-path wqe consume event carries " 12700 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 12701 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 12702 phba->sli4_hba.els_wq->queue_id); 12703 } 12704 12705 /** 12706 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 12707 * @phba: Pointer to HBA context object. 12708 * @cq: Pointer to a WQ completion queue. 12709 * @wcqe: Pointer to work-queue completion queue entry. 12710 * 12711 * This routine handles an XRI abort event. 12712 * 12713 * Return: true if work posted to worker thread, otherwise false. 12714 **/ 12715 static bool 12716 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 12717 struct lpfc_queue *cq, 12718 struct sli4_wcqe_xri_aborted *wcqe) 12719 { 12720 bool workposted = false; 12721 struct lpfc_cq_event *cq_event; 12722 unsigned long iflags; 12723 12724 /* Allocate a new internal CQ_EVENT entry */ 12725 cq_event = lpfc_sli4_cq_event_alloc(phba); 12726 if (!cq_event) { 12727 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12728 "0602 Failed to allocate CQ_EVENT entry\n"); 12729 return false; 12730 } 12731 12732 /* Move the CQE into the proper xri abort event list */ 12733 memcpy(&cq_event->cqe, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 12734 switch (cq->subtype) { 12735 case LPFC_FCP: 12736 spin_lock_irqsave(&phba->hbalock, iflags); 12737 list_add_tail(&cq_event->list, 12738 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 12739 /* Set the fcp xri abort event flag */ 12740 phba->hba_flag |= FCP_XRI_ABORT_EVENT; 12741 spin_unlock_irqrestore(&phba->hbalock, iflags); 12742 workposted = true; 12743 break; 12744 case LPFC_ELS: 12745 spin_lock_irqsave(&phba->hbalock, iflags); 12746 list_add_tail(&cq_event->list, 12747 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 12748 /* Set the els xri abort event flag */ 12749 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 12750 spin_unlock_irqrestore(&phba->hbalock, iflags); 12751 workposted = true; 12752 break; 12753 case LPFC_NVME: 12754 spin_lock_irqsave(&phba->hbalock, iflags); 12755 list_add_tail(&cq_event->list, 12756 &phba->sli4_hba.sp_nvme_xri_aborted_work_queue); 12757 /* Set the nvme xri abort event flag */ 12758 phba->hba_flag |= NVME_XRI_ABORT_EVENT; 12759 spin_unlock_irqrestore(&phba->hbalock, iflags); 12760 workposted = true; 12761 break; 12762 default: 12763 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12764 "0603 Invalid CQ subtype %d: " 12765 "%08x %08x %08x %08x\n", 12766 cq->subtype, wcqe->word0, wcqe->parameter, 12767 wcqe->word2, wcqe->word3); 12768 lpfc_sli4_cq_event_release(phba, cq_event); 12769 workposted = false; 12770 break; 12771 } 12772 return workposted; 12773 } 12774 12775 /** 12776 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 12777 * @phba: Pointer to HBA context object. 12778 * @rcqe: Pointer to receive-queue completion queue entry. 12779 * 12780 * This routine process a receive-queue completion queue entry. 12781 * 12782 * Return: true if work posted to worker thread, otherwise false. 12783 **/ 12784 static bool 12785 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 12786 { 12787 bool workposted = false; 12788 struct fc_frame_header *fc_hdr; 12789 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 12790 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 12791 struct hbq_dmabuf *dma_buf; 12792 uint32_t status, rq_id; 12793 unsigned long iflags; 12794 12795 /* sanity check on queue memory */ 12796 if (unlikely(!hrq) || unlikely(!drq)) 12797 return workposted; 12798 12799 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 12800 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 12801 else 12802 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 12803 if (rq_id != hrq->queue_id) 12804 goto out; 12805 12806 status = bf_get(lpfc_rcqe_status, rcqe); 12807 switch (status) { 12808 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 12809 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12810 "2537 Receive Frame Truncated!!\n"); 12811 hrq->RQ_buf_trunc++; 12812 case FC_STATUS_RQ_SUCCESS: 12813 lpfc_sli4_rq_release(hrq, drq); 12814 spin_lock_irqsave(&phba->hbalock, iflags); 12815 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 12816 if (!dma_buf) { 12817 hrq->RQ_no_buf_found++; 12818 spin_unlock_irqrestore(&phba->hbalock, iflags); 12819 goto out; 12820 } 12821 hrq->RQ_rcv_buf++; 12822 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 12823 12824 /* If a NVME LS event (type 0x28), treat it as Fast path */ 12825 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 12826 12827 /* save off the frame for the word thread to process */ 12828 list_add_tail(&dma_buf->cq_event.list, 12829 &phba->sli4_hba.sp_queue_event); 12830 /* Frame received */ 12831 phba->hba_flag |= HBA_SP_QUEUE_EVT; 12832 spin_unlock_irqrestore(&phba->hbalock, iflags); 12833 workposted = true; 12834 break; 12835 case FC_STATUS_INSUFF_BUF_NEED_BUF: 12836 case FC_STATUS_INSUFF_BUF_FRM_DISC: 12837 hrq->RQ_no_posted_buf++; 12838 /* Post more buffers if possible */ 12839 spin_lock_irqsave(&phba->hbalock, iflags); 12840 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 12841 spin_unlock_irqrestore(&phba->hbalock, iflags); 12842 workposted = true; 12843 break; 12844 } 12845 out: 12846 return workposted; 12847 } 12848 12849 /** 12850 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 12851 * @phba: Pointer to HBA context object. 12852 * @cq: Pointer to the completion queue. 12853 * @wcqe: Pointer to a completion queue entry. 12854 * 12855 * This routine process a slow-path work-queue or receive queue completion queue 12856 * entry. 12857 * 12858 * Return: true if work posted to worker thread, otherwise false. 12859 **/ 12860 static bool 12861 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12862 struct lpfc_cqe *cqe) 12863 { 12864 struct lpfc_cqe cqevt; 12865 bool workposted = false; 12866 12867 /* Copy the work queue CQE and convert endian order if needed */ 12868 lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 12869 12870 /* Check and process for different type of WCQE and dispatch */ 12871 switch (bf_get(lpfc_cqe_code, &cqevt)) { 12872 case CQE_CODE_COMPL_WQE: 12873 /* Process the WQ/RQ complete event */ 12874 phba->last_completion_time = jiffies; 12875 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 12876 (struct lpfc_wcqe_complete *)&cqevt); 12877 break; 12878 case CQE_CODE_RELEASE_WQE: 12879 /* Process the WQ release event */ 12880 lpfc_sli4_sp_handle_rel_wcqe(phba, 12881 (struct lpfc_wcqe_release *)&cqevt); 12882 break; 12883 case CQE_CODE_XRI_ABORTED: 12884 /* Process the WQ XRI abort event */ 12885 phba->last_completion_time = jiffies; 12886 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 12887 (struct sli4_wcqe_xri_aborted *)&cqevt); 12888 break; 12889 case CQE_CODE_RECEIVE: 12890 case CQE_CODE_RECEIVE_V1: 12891 /* Process the RQ event */ 12892 phba->last_completion_time = jiffies; 12893 workposted = lpfc_sli4_sp_handle_rcqe(phba, 12894 (struct lpfc_rcqe *)&cqevt); 12895 break; 12896 default: 12897 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12898 "0388 Not a valid WCQE code: x%x\n", 12899 bf_get(lpfc_cqe_code, &cqevt)); 12900 break; 12901 } 12902 return workposted; 12903 } 12904 12905 /** 12906 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 12907 * @phba: Pointer to HBA context object. 12908 * @eqe: Pointer to fast-path event queue entry. 12909 * 12910 * This routine process a event queue entry from the slow-path event queue. 12911 * It will check the MajorCode and MinorCode to determine this is for a 12912 * completion event on a completion queue, if not, an error shall be logged 12913 * and just return. Otherwise, it will get to the corresponding completion 12914 * queue and process all the entries on that completion queue, rearm the 12915 * completion queue, and then return. 12916 * 12917 **/ 12918 static void 12919 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 12920 struct lpfc_queue *speq) 12921 { 12922 struct lpfc_queue *cq = NULL, *childq; 12923 struct lpfc_cqe *cqe; 12924 bool workposted = false; 12925 int ecount = 0; 12926 uint16_t cqid; 12927 12928 /* Get the reference to the corresponding CQ */ 12929 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12930 12931 list_for_each_entry(childq, &speq->child_list, list) { 12932 if (childq->queue_id == cqid) { 12933 cq = childq; 12934 break; 12935 } 12936 } 12937 if (unlikely(!cq)) { 12938 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12939 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12940 "0365 Slow-path CQ identifier " 12941 "(%d) does not exist\n", cqid); 12942 return; 12943 } 12944 12945 /* Save EQ associated with this CQ */ 12946 cq->assoc_qp = speq; 12947 12948 /* Process all the entries to the CQ */ 12949 switch (cq->type) { 12950 case LPFC_MCQ: 12951 while ((cqe = lpfc_sli4_cq_get(cq))) { 12952 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe); 12953 if (!(++ecount % cq->entry_repost)) 12954 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12955 cq->CQ_mbox++; 12956 } 12957 break; 12958 case LPFC_WCQ: 12959 while ((cqe = lpfc_sli4_cq_get(cq))) { 12960 if ((cq->subtype == LPFC_FCP) || 12961 (cq->subtype == LPFC_NVME)) 12962 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, 12963 cqe); 12964 else 12965 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq, 12966 cqe); 12967 if (!(++ecount % cq->entry_repost)) 12968 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12969 } 12970 12971 /* Track the max number of CQEs processed in 1 EQ */ 12972 if (ecount > cq->CQ_max_cqe) 12973 cq->CQ_max_cqe = ecount; 12974 break; 12975 default: 12976 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12977 "0370 Invalid completion queue type (%d)\n", 12978 cq->type); 12979 return; 12980 } 12981 12982 /* Catch the no cq entry condition, log an error */ 12983 if (unlikely(ecount == 0)) 12984 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12985 "0371 No entry from the CQ: identifier " 12986 "(x%x), type (%d)\n", cq->queue_id, cq->type); 12987 12988 /* In any case, flash and re-arm the RCQ */ 12989 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12990 12991 /* wake up worker thread if there are works to be done */ 12992 if (workposted) 12993 lpfc_worker_wake_up(phba); 12994 } 12995 12996 /** 12997 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 12998 * @phba: Pointer to HBA context object. 12999 * @cq: Pointer to associated CQ 13000 * @wcqe: Pointer to work-queue completion queue entry. 13001 * 13002 * This routine process a fast-path work queue completion entry from fast-path 13003 * event queue for FCP command response completion. 13004 **/ 13005 static void 13006 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13007 struct lpfc_wcqe_complete *wcqe) 13008 { 13009 struct lpfc_sli_ring *pring = cq->pring; 13010 struct lpfc_iocbq *cmdiocbq; 13011 struct lpfc_iocbq irspiocbq; 13012 unsigned long iflags; 13013 13014 /* Check for response status */ 13015 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13016 /* If resource errors reported from HBA, reduce queue 13017 * depth of the SCSI device. 13018 */ 13019 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 13020 IOSTAT_LOCAL_REJECT)) && 13021 ((wcqe->parameter & IOERR_PARAM_MASK) == 13022 IOERR_NO_RESOURCES)) 13023 phba->lpfc_rampdown_queue_depth(phba); 13024 13025 /* Log the error status */ 13026 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13027 "0373 FCP complete error: status=x%x, " 13028 "hw_status=x%x, total_data_specified=%d, " 13029 "parameter=x%x, word3=x%x\n", 13030 bf_get(lpfc_wcqe_c_status, wcqe), 13031 bf_get(lpfc_wcqe_c_hw_status, wcqe), 13032 wcqe->total_data_placed, wcqe->parameter, 13033 wcqe->word3); 13034 } 13035 13036 /* Look up the FCP command IOCB and create pseudo response IOCB */ 13037 spin_lock_irqsave(&pring->ring_lock, iflags); 13038 pring->stats.iocb_event++; 13039 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13040 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13041 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13042 if (unlikely(!cmdiocbq)) { 13043 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13044 "0374 FCP complete with no corresponding " 13045 "cmdiocb: iotag (%d)\n", 13046 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13047 return; 13048 } 13049 13050 if (cq->assoc_qp) 13051 cmdiocbq->isr_timestamp = 13052 cq->assoc_qp->isr_timestamp; 13053 13054 if (cmdiocbq->iocb_cmpl == NULL) { 13055 if (cmdiocbq->wqe_cmpl) { 13056 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13057 spin_lock_irqsave(&phba->hbalock, iflags); 13058 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13059 spin_unlock_irqrestore(&phba->hbalock, iflags); 13060 } 13061 13062 /* Pass the cmd_iocb and the wcqe to the upper layer */ 13063 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 13064 return; 13065 } 13066 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13067 "0375 FCP cmdiocb not callback function " 13068 "iotag: (%d)\n", 13069 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13070 return; 13071 } 13072 13073 /* Fake the irspiocb and copy necessary response information */ 13074 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 13075 13076 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13077 spin_lock_irqsave(&phba->hbalock, iflags); 13078 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13079 spin_unlock_irqrestore(&phba->hbalock, iflags); 13080 } 13081 13082 /* Pass the cmd_iocb and the rsp state to the upper layer */ 13083 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 13084 } 13085 13086 /** 13087 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 13088 * @phba: Pointer to HBA context object. 13089 * @cq: Pointer to completion queue. 13090 * @wcqe: Pointer to work-queue completion queue entry. 13091 * 13092 * This routine handles an fast-path WQ entry consumed event by invoking the 13093 * proper WQ release routine to the slow-path WQ. 13094 **/ 13095 static void 13096 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13097 struct lpfc_wcqe_release *wcqe) 13098 { 13099 struct lpfc_queue *childwq; 13100 bool wqid_matched = false; 13101 uint16_t hba_wqid; 13102 13103 /* Check for fast-path FCP work queue release */ 13104 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 13105 list_for_each_entry(childwq, &cq->child_list, list) { 13106 if (childwq->queue_id == hba_wqid) { 13107 lpfc_sli4_wq_release(childwq, 13108 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13109 wqid_matched = true; 13110 break; 13111 } 13112 } 13113 /* Report warning log message if no match found */ 13114 if (wqid_matched != true) 13115 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13116 "2580 Fast-path wqe consume event carries " 13117 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 13118 } 13119 13120 /** 13121 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 13122 * @phba: Pointer to HBA context object. 13123 * @rcqe: Pointer to receive-queue completion queue entry. 13124 * 13125 * This routine process a receive-queue completion queue entry. 13126 * 13127 * Return: true if work posted to worker thread, otherwise false. 13128 **/ 13129 static bool 13130 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13131 struct lpfc_rcqe *rcqe) 13132 { 13133 bool workposted = false; 13134 struct lpfc_queue *hrq; 13135 struct lpfc_queue *drq; 13136 struct rqb_dmabuf *dma_buf; 13137 struct fc_frame_header *fc_hdr; 13138 uint32_t status, rq_id; 13139 unsigned long iflags; 13140 uint32_t fctl, idx; 13141 13142 if ((phba->nvmet_support == 0) || 13143 (phba->sli4_hba.nvmet_cqset == NULL)) 13144 return workposted; 13145 13146 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 13147 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 13148 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 13149 13150 /* sanity check on queue memory */ 13151 if (unlikely(!hrq) || unlikely(!drq)) 13152 return workposted; 13153 13154 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13155 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13156 else 13157 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13158 13159 if ((phba->nvmet_support == 0) || 13160 (rq_id != hrq->queue_id)) 13161 return workposted; 13162 13163 status = bf_get(lpfc_rcqe_status, rcqe); 13164 switch (status) { 13165 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13166 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13167 "6126 Receive Frame Truncated!!\n"); 13168 hrq->RQ_buf_trunc++; 13169 break; 13170 case FC_STATUS_RQ_SUCCESS: 13171 lpfc_sli4_rq_release(hrq, drq); 13172 spin_lock_irqsave(&phba->hbalock, iflags); 13173 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 13174 if (!dma_buf) { 13175 hrq->RQ_no_buf_found++; 13176 spin_unlock_irqrestore(&phba->hbalock, iflags); 13177 goto out; 13178 } 13179 spin_unlock_irqrestore(&phba->hbalock, iflags); 13180 hrq->RQ_rcv_buf++; 13181 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13182 13183 /* Just some basic sanity checks on FCP Command frame */ 13184 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 13185 fc_hdr->fh_f_ctl[1] << 8 | 13186 fc_hdr->fh_f_ctl[2]); 13187 if (((fctl & 13188 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 13189 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 13190 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 13191 goto drop; 13192 13193 if (fc_hdr->fh_type == FC_TYPE_FCP) { 13194 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 13195 lpfc_nvmet_unsol_fcp_event( 13196 phba, phba->sli4_hba.els_wq->pring, dma_buf, 13197 cq->assoc_qp->isr_timestamp); 13198 return false; 13199 } 13200 drop: 13201 lpfc_in_buf_free(phba, &dma_buf->dbuf); 13202 break; 13203 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13204 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13205 hrq->RQ_no_posted_buf++; 13206 /* Post more buffers if possible */ 13207 spin_lock_irqsave(&phba->hbalock, iflags); 13208 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 13209 spin_unlock_irqrestore(&phba->hbalock, iflags); 13210 workposted = true; 13211 break; 13212 } 13213 out: 13214 return workposted; 13215 } 13216 13217 /** 13218 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 13219 * @cq: Pointer to the completion queue. 13220 * @eqe: Pointer to fast-path completion queue entry. 13221 * 13222 * This routine process a fast-path work queue completion entry from fast-path 13223 * event queue for FCP command response completion. 13224 **/ 13225 static int 13226 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13227 struct lpfc_cqe *cqe) 13228 { 13229 struct lpfc_wcqe_release wcqe; 13230 bool workposted = false; 13231 13232 /* Copy the work queue CQE and convert endian order if needed */ 13233 lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 13234 13235 /* Check and process for different type of WCQE and dispatch */ 13236 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 13237 case CQE_CODE_COMPL_WQE: 13238 case CQE_CODE_NVME_ERSP: 13239 cq->CQ_wq++; 13240 /* Process the WQ complete event */ 13241 phba->last_completion_time = jiffies; 13242 if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME)) 13243 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 13244 (struct lpfc_wcqe_complete *)&wcqe); 13245 if (cq->subtype == LPFC_NVME_LS) 13246 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 13247 (struct lpfc_wcqe_complete *)&wcqe); 13248 break; 13249 case CQE_CODE_RELEASE_WQE: 13250 cq->CQ_release_wqe++; 13251 /* Process the WQ release event */ 13252 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 13253 (struct lpfc_wcqe_release *)&wcqe); 13254 break; 13255 case CQE_CODE_XRI_ABORTED: 13256 cq->CQ_xri_aborted++; 13257 /* Process the WQ XRI abort event */ 13258 phba->last_completion_time = jiffies; 13259 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13260 (struct sli4_wcqe_xri_aborted *)&wcqe); 13261 break; 13262 case CQE_CODE_RECEIVE_V1: 13263 case CQE_CODE_RECEIVE: 13264 phba->last_completion_time = jiffies; 13265 if (cq->subtype == LPFC_NVMET) { 13266 workposted = lpfc_sli4_nvmet_handle_rcqe( 13267 phba, cq, (struct lpfc_rcqe *)&wcqe); 13268 } 13269 break; 13270 default: 13271 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13272 "0144 Not a valid CQE code: x%x\n", 13273 bf_get(lpfc_wcqe_c_code, &wcqe)); 13274 break; 13275 } 13276 return workposted; 13277 } 13278 13279 /** 13280 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 13281 * @phba: Pointer to HBA context object. 13282 * @eqe: Pointer to fast-path event queue entry. 13283 * 13284 * This routine process a event queue entry from the fast-path event queue. 13285 * It will check the MajorCode and MinorCode to determine this is for a 13286 * completion event on a completion queue, if not, an error shall be logged 13287 * and just return. Otherwise, it will get to the corresponding completion 13288 * queue and process all the entries on the completion queue, rearm the 13289 * completion queue, and then return. 13290 **/ 13291 static void 13292 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13293 uint32_t qidx) 13294 { 13295 struct lpfc_queue *cq = NULL; 13296 struct lpfc_cqe *cqe; 13297 bool workposted = false; 13298 uint16_t cqid, id; 13299 int ecount = 0; 13300 13301 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 13302 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13303 "0366 Not a valid completion " 13304 "event: majorcode=x%x, minorcode=x%x\n", 13305 bf_get_le32(lpfc_eqe_major_code, eqe), 13306 bf_get_le32(lpfc_eqe_minor_code, eqe)); 13307 return; 13308 } 13309 13310 /* Get the reference to the corresponding CQ */ 13311 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13312 13313 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 13314 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 13315 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 13316 /* Process NVMET unsol rcv */ 13317 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 13318 goto process_cq; 13319 } 13320 } 13321 13322 if (phba->sli4_hba.nvme_cq_map && 13323 (cqid == phba->sli4_hba.nvme_cq_map[qidx])) { 13324 /* Process NVME / NVMET command completion */ 13325 cq = phba->sli4_hba.nvme_cq[qidx]; 13326 goto process_cq; 13327 } 13328 13329 if (phba->sli4_hba.fcp_cq_map && 13330 (cqid == phba->sli4_hba.fcp_cq_map[qidx])) { 13331 /* Process FCP command completion */ 13332 cq = phba->sli4_hba.fcp_cq[qidx]; 13333 goto process_cq; 13334 } 13335 13336 if (phba->sli4_hba.nvmels_cq && 13337 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 13338 /* Process NVME unsol rcv */ 13339 cq = phba->sli4_hba.nvmels_cq; 13340 } 13341 13342 /* Otherwise this is a Slow path event */ 13343 if (cq == NULL) { 13344 lpfc_sli4_sp_handle_eqe(phba, eqe, phba->sli4_hba.hba_eq[qidx]); 13345 return; 13346 } 13347 13348 process_cq: 13349 if (unlikely(cqid != cq->queue_id)) { 13350 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13351 "0368 Miss-matched fast-path completion " 13352 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 13353 cqid, cq->queue_id); 13354 return; 13355 } 13356 13357 /* Save EQ associated with this CQ */ 13358 cq->assoc_qp = phba->sli4_hba.hba_eq[qidx]; 13359 13360 /* Process all the entries to the CQ */ 13361 while ((cqe = lpfc_sli4_cq_get(cq))) { 13362 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe); 13363 if (!(++ecount % cq->entry_repost)) 13364 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 13365 } 13366 13367 /* Track the max number of CQEs processed in 1 EQ */ 13368 if (ecount > cq->CQ_max_cqe) 13369 cq->CQ_max_cqe = ecount; 13370 13371 /* Catch the no cq entry condition */ 13372 if (unlikely(ecount == 0)) 13373 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13374 "0369 No entry from fast-path completion " 13375 "queue fcpcqid=%d\n", cq->queue_id); 13376 13377 /* In any case, flash and re-arm the CQ */ 13378 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 13379 13380 /* wake up worker thread if there are works to be done */ 13381 if (workposted) 13382 lpfc_worker_wake_up(phba); 13383 } 13384 13385 static void 13386 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 13387 { 13388 struct lpfc_eqe *eqe; 13389 13390 /* walk all the EQ entries and drop on the floor */ 13391 while ((eqe = lpfc_sli4_eq_get(eq))) 13392 ; 13393 13394 /* Clear and re-arm the EQ */ 13395 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 13396 } 13397 13398 13399 /** 13400 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue 13401 * entry 13402 * @phba: Pointer to HBA context object. 13403 * @eqe: Pointer to fast-path event queue entry. 13404 * 13405 * This routine process a event queue entry from the Flash Optimized Fabric 13406 * event queue. It will check the MajorCode and MinorCode to determine this 13407 * is for a completion event on a completion queue, if not, an error shall be 13408 * logged and just return. Otherwise, it will get to the corresponding 13409 * completion queue and process all the entries on the completion queue, rearm 13410 * the completion queue, and then return. 13411 **/ 13412 static void 13413 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe) 13414 { 13415 struct lpfc_queue *cq; 13416 struct lpfc_cqe *cqe; 13417 bool workposted = false; 13418 uint16_t cqid; 13419 int ecount = 0; 13420 13421 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 13422 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13423 "9147 Not a valid completion " 13424 "event: majorcode=x%x, minorcode=x%x\n", 13425 bf_get_le32(lpfc_eqe_major_code, eqe), 13426 bf_get_le32(lpfc_eqe_minor_code, eqe)); 13427 return; 13428 } 13429 13430 /* Get the reference to the corresponding CQ */ 13431 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13432 13433 /* Next check for OAS */ 13434 cq = phba->sli4_hba.oas_cq; 13435 if (unlikely(!cq)) { 13436 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13437 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13438 "9148 OAS completion queue " 13439 "does not exist\n"); 13440 return; 13441 } 13442 13443 if (unlikely(cqid != cq->queue_id)) { 13444 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13445 "9149 Miss-matched fast-path compl " 13446 "queue id: eqcqid=%d, fcpcqid=%d\n", 13447 cqid, cq->queue_id); 13448 return; 13449 } 13450 13451 /* Process all the entries to the OAS CQ */ 13452 while ((cqe = lpfc_sli4_cq_get(cq))) { 13453 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe); 13454 if (!(++ecount % cq->entry_repost)) 13455 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 13456 } 13457 13458 /* Track the max number of CQEs processed in 1 EQ */ 13459 if (ecount > cq->CQ_max_cqe) 13460 cq->CQ_max_cqe = ecount; 13461 13462 /* Catch the no cq entry condition */ 13463 if (unlikely(ecount == 0)) 13464 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13465 "9153 No entry from fast-path completion " 13466 "queue fcpcqid=%d\n", cq->queue_id); 13467 13468 /* In any case, flash and re-arm the CQ */ 13469 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 13470 13471 /* wake up worker thread if there are works to be done */ 13472 if (workposted) 13473 lpfc_worker_wake_up(phba); 13474 } 13475 13476 /** 13477 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device 13478 * @irq: Interrupt number. 13479 * @dev_id: The device context pointer. 13480 * 13481 * This function is directly called from the PCI layer as an interrupt 13482 * service routine when device with SLI-4 interface spec is enabled with 13483 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric 13484 * IOCB ring event in the HBA. However, when the device is enabled with either 13485 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13486 * device-level interrupt handler. When the PCI slot is in error recovery 13487 * or the HBA is undergoing initialization, the interrupt handler will not 13488 * process the interrupt. The Flash Optimized Fabric ring event are handled in 13489 * the intrrupt context. This function is called without any lock held. 13490 * It gets the hbalock to access and update SLI data structures. Note that, 13491 * the EQ to CQ are one-to-one map such that the EQ index is 13492 * equal to that of CQ index. 13493 * 13494 * This function returns IRQ_HANDLED when interrupt is handled else it 13495 * returns IRQ_NONE. 13496 **/ 13497 irqreturn_t 13498 lpfc_sli4_fof_intr_handler(int irq, void *dev_id) 13499 { 13500 struct lpfc_hba *phba; 13501 struct lpfc_hba_eq_hdl *hba_eq_hdl; 13502 struct lpfc_queue *eq; 13503 struct lpfc_eqe *eqe; 13504 unsigned long iflag; 13505 int ecount = 0; 13506 13507 /* Get the driver's phba structure from the dev_id */ 13508 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 13509 phba = hba_eq_hdl->phba; 13510 13511 if (unlikely(!phba)) 13512 return IRQ_NONE; 13513 13514 /* Get to the EQ struct associated with this vector */ 13515 eq = phba->sli4_hba.fof_eq; 13516 if (unlikely(!eq)) 13517 return IRQ_NONE; 13518 13519 /* Check device state for handling interrupt */ 13520 if (unlikely(lpfc_intr_state_check(phba))) { 13521 eq->EQ_badstate++; 13522 /* Check again for link_state with lock held */ 13523 spin_lock_irqsave(&phba->hbalock, iflag); 13524 if (phba->link_state < LPFC_LINK_DOWN) 13525 /* Flush, clear interrupt, and rearm the EQ */ 13526 lpfc_sli4_eq_flush(phba, eq); 13527 spin_unlock_irqrestore(&phba->hbalock, iflag); 13528 return IRQ_NONE; 13529 } 13530 13531 /* 13532 * Process all the event on FCP fast-path EQ 13533 */ 13534 while ((eqe = lpfc_sli4_eq_get(eq))) { 13535 lpfc_sli4_fof_handle_eqe(phba, eqe); 13536 if (!(++ecount % eq->entry_repost)) 13537 lpfc_sli4_eq_release(eq, LPFC_QUEUE_NOARM); 13538 eq->EQ_processed++; 13539 } 13540 13541 /* Track the max number of EQEs processed in 1 intr */ 13542 if (ecount > eq->EQ_max_eqe) 13543 eq->EQ_max_eqe = ecount; 13544 13545 13546 if (unlikely(ecount == 0)) { 13547 eq->EQ_no_entry++; 13548 13549 if (phba->intr_type == MSIX) 13550 /* MSI-X treated interrupt served as no EQ share INT */ 13551 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13552 "9145 MSI-X interrupt with no EQE\n"); 13553 else { 13554 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13555 "9146 ISR interrupt with no EQE\n"); 13556 /* Non MSI-X treated on interrupt as EQ share INT */ 13557 return IRQ_NONE; 13558 } 13559 } 13560 /* Always clear and re-arm the fast-path EQ */ 13561 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 13562 return IRQ_HANDLED; 13563 } 13564 13565 /** 13566 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 13567 * @irq: Interrupt number. 13568 * @dev_id: The device context pointer. 13569 * 13570 * This function is directly called from the PCI layer as an interrupt 13571 * service routine when device with SLI-4 interface spec is enabled with 13572 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13573 * ring event in the HBA. However, when the device is enabled with either 13574 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13575 * device-level interrupt handler. When the PCI slot is in error recovery 13576 * or the HBA is undergoing initialization, the interrupt handler will not 13577 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13578 * the intrrupt context. This function is called without any lock held. 13579 * It gets the hbalock to access and update SLI data structures. Note that, 13580 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 13581 * equal to that of FCP CQ index. 13582 * 13583 * The link attention and ELS ring attention events are handled 13584 * by the worker thread. The interrupt handler signals the worker thread 13585 * and returns for these events. This function is called without any lock 13586 * held. It gets the hbalock to access and update SLI data structures. 13587 * 13588 * This function returns IRQ_HANDLED when interrupt is handled else it 13589 * returns IRQ_NONE. 13590 **/ 13591 irqreturn_t 13592 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 13593 { 13594 struct lpfc_hba *phba; 13595 struct lpfc_hba_eq_hdl *hba_eq_hdl; 13596 struct lpfc_queue *fpeq; 13597 struct lpfc_eqe *eqe; 13598 unsigned long iflag; 13599 int ecount = 0; 13600 int hba_eqidx; 13601 13602 /* Get the driver's phba structure from the dev_id */ 13603 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 13604 phba = hba_eq_hdl->phba; 13605 hba_eqidx = hba_eq_hdl->idx; 13606 13607 if (unlikely(!phba)) 13608 return IRQ_NONE; 13609 if (unlikely(!phba->sli4_hba.hba_eq)) 13610 return IRQ_NONE; 13611 13612 /* Get to the EQ struct associated with this vector */ 13613 fpeq = phba->sli4_hba.hba_eq[hba_eqidx]; 13614 if (unlikely(!fpeq)) 13615 return IRQ_NONE; 13616 13617 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13618 if (phba->ktime_on) 13619 fpeq->isr_timestamp = ktime_get_ns(); 13620 #endif 13621 13622 if (lpfc_fcp_look_ahead) { 13623 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) 13624 lpfc_sli4_eq_clr_intr(fpeq); 13625 else { 13626 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13627 return IRQ_NONE; 13628 } 13629 } 13630 13631 /* Check device state for handling interrupt */ 13632 if (unlikely(lpfc_intr_state_check(phba))) { 13633 fpeq->EQ_badstate++; 13634 /* Check again for link_state with lock held */ 13635 spin_lock_irqsave(&phba->hbalock, iflag); 13636 if (phba->link_state < LPFC_LINK_DOWN) 13637 /* Flush, clear interrupt, and rearm the EQ */ 13638 lpfc_sli4_eq_flush(phba, fpeq); 13639 spin_unlock_irqrestore(&phba->hbalock, iflag); 13640 if (lpfc_fcp_look_ahead) 13641 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13642 return IRQ_NONE; 13643 } 13644 13645 /* 13646 * Process all the event on FCP fast-path EQ 13647 */ 13648 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 13649 if (eqe == NULL) 13650 break; 13651 13652 lpfc_sli4_hba_handle_eqe(phba, eqe, hba_eqidx); 13653 if (!(++ecount % fpeq->entry_repost)) 13654 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_NOARM); 13655 fpeq->EQ_processed++; 13656 } 13657 13658 /* Track the max number of EQEs processed in 1 intr */ 13659 if (ecount > fpeq->EQ_max_eqe) 13660 fpeq->EQ_max_eqe = ecount; 13661 13662 /* Always clear and re-arm the fast-path EQ */ 13663 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 13664 13665 if (unlikely(ecount == 0)) { 13666 fpeq->EQ_no_entry++; 13667 13668 if (lpfc_fcp_look_ahead) { 13669 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13670 return IRQ_NONE; 13671 } 13672 13673 if (phba->intr_type == MSIX) 13674 /* MSI-X treated interrupt served as no EQ share INT */ 13675 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13676 "0358 MSI-X interrupt with no EQE\n"); 13677 else 13678 /* Non MSI-X treated on interrupt as EQ share INT */ 13679 return IRQ_NONE; 13680 } 13681 13682 if (lpfc_fcp_look_ahead) 13683 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13684 13685 return IRQ_HANDLED; 13686 } /* lpfc_sli4_fp_intr_handler */ 13687 13688 /** 13689 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 13690 * @irq: Interrupt number. 13691 * @dev_id: The device context pointer. 13692 * 13693 * This function is the device-level interrupt handler to device with SLI-4 13694 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 13695 * interrupt mode is enabled and there is an event in the HBA which requires 13696 * driver attention. This function invokes the slow-path interrupt attention 13697 * handling function and fast-path interrupt attention handling function in 13698 * turn to process the relevant HBA attention events. This function is called 13699 * without any lock held. It gets the hbalock to access and update SLI data 13700 * structures. 13701 * 13702 * This function returns IRQ_HANDLED when interrupt is handled, else it 13703 * returns IRQ_NONE. 13704 **/ 13705 irqreturn_t 13706 lpfc_sli4_intr_handler(int irq, void *dev_id) 13707 { 13708 struct lpfc_hba *phba; 13709 irqreturn_t hba_irq_rc; 13710 bool hba_handled = false; 13711 int qidx; 13712 13713 /* Get the driver's phba structure from the dev_id */ 13714 phba = (struct lpfc_hba *)dev_id; 13715 13716 if (unlikely(!phba)) 13717 return IRQ_NONE; 13718 13719 /* 13720 * Invoke fast-path host attention interrupt handling as appropriate. 13721 */ 13722 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) { 13723 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 13724 &phba->sli4_hba.hba_eq_hdl[qidx]); 13725 if (hba_irq_rc == IRQ_HANDLED) 13726 hba_handled |= true; 13727 } 13728 13729 if (phba->cfg_fof) { 13730 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq, 13731 &phba->sli4_hba.hba_eq_hdl[qidx]); 13732 if (hba_irq_rc == IRQ_HANDLED) 13733 hba_handled |= true; 13734 } 13735 13736 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 13737 } /* lpfc_sli4_intr_handler */ 13738 13739 /** 13740 * lpfc_sli4_queue_free - free a queue structure and associated memory 13741 * @queue: The queue structure to free. 13742 * 13743 * This function frees a queue structure and the DMAable memory used for 13744 * the host resident queue. This function must be called after destroying the 13745 * queue on the HBA. 13746 **/ 13747 void 13748 lpfc_sli4_queue_free(struct lpfc_queue *queue) 13749 { 13750 struct lpfc_dmabuf *dmabuf; 13751 13752 if (!queue) 13753 return; 13754 13755 while (!list_empty(&queue->page_list)) { 13756 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 13757 list); 13758 dma_free_coherent(&queue->phba->pcidev->dev, SLI4_PAGE_SIZE, 13759 dmabuf->virt, dmabuf->phys); 13760 kfree(dmabuf); 13761 } 13762 if (queue->rqbp) { 13763 lpfc_free_rq_buffer(queue->phba, queue); 13764 kfree(queue->rqbp); 13765 } 13766 13767 if (!list_empty(&queue->wq_list)) 13768 list_del(&queue->wq_list); 13769 13770 kfree(queue); 13771 return; 13772 } 13773 13774 /** 13775 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 13776 * @phba: The HBA that this queue is being created on. 13777 * @entry_size: The size of each queue entry for this queue. 13778 * @entry count: The number of entries that this queue will handle. 13779 * 13780 * This function allocates a queue structure and the DMAable memory used for 13781 * the host resident queue. This function must be called before creating the 13782 * queue on the HBA. 13783 **/ 13784 struct lpfc_queue * 13785 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t entry_size, 13786 uint32_t entry_count) 13787 { 13788 struct lpfc_queue *queue; 13789 struct lpfc_dmabuf *dmabuf; 13790 int x, total_qe_count; 13791 void *dma_pointer; 13792 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13793 13794 if (!phba->sli4_hba.pc_sli4_params.supported) 13795 hw_page_size = SLI4_PAGE_SIZE; 13796 13797 queue = kzalloc(sizeof(struct lpfc_queue) + 13798 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL); 13799 if (!queue) 13800 return NULL; 13801 queue->page_count = (ALIGN(entry_size * entry_count, 13802 hw_page_size))/hw_page_size; 13803 13804 /* If needed, Adjust page count to match the max the adapter supports */ 13805 if (queue->page_count > phba->sli4_hba.pc_sli4_params.wqpcnt) 13806 queue->page_count = phba->sli4_hba.pc_sli4_params.wqpcnt; 13807 13808 INIT_LIST_HEAD(&queue->list); 13809 INIT_LIST_HEAD(&queue->wq_list); 13810 INIT_LIST_HEAD(&queue->page_list); 13811 INIT_LIST_HEAD(&queue->child_list); 13812 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) { 13813 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 13814 if (!dmabuf) 13815 goto out_fail; 13816 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, 13817 hw_page_size, &dmabuf->phys, 13818 GFP_KERNEL); 13819 if (!dmabuf->virt) { 13820 kfree(dmabuf); 13821 goto out_fail; 13822 } 13823 dmabuf->buffer_tag = x; 13824 list_add_tail(&dmabuf->list, &queue->page_list); 13825 /* initialize queue's entry array */ 13826 dma_pointer = dmabuf->virt; 13827 for (; total_qe_count < entry_count && 13828 dma_pointer < (hw_page_size + dmabuf->virt); 13829 total_qe_count++, dma_pointer += entry_size) { 13830 queue->qe[total_qe_count].address = dma_pointer; 13831 } 13832 } 13833 queue->entry_size = entry_size; 13834 queue->entry_count = entry_count; 13835 13836 /* 13837 * entry_repost is calculated based on the number of entries in the 13838 * queue. This works out except for RQs. If buffers are NOT initially 13839 * posted for every RQE, entry_repost should be adjusted accordingly. 13840 */ 13841 queue->entry_repost = (entry_count >> 3); 13842 if (queue->entry_repost < LPFC_QUEUE_MIN_REPOST) 13843 queue->entry_repost = LPFC_QUEUE_MIN_REPOST; 13844 queue->phba = phba; 13845 13846 return queue; 13847 out_fail: 13848 lpfc_sli4_queue_free(queue); 13849 return NULL; 13850 } 13851 13852 /** 13853 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 13854 * @phba: HBA structure that indicates port to create a queue on. 13855 * @pci_barset: PCI BAR set flag. 13856 * 13857 * This function shall perform iomap of the specified PCI BAR address to host 13858 * memory address if not already done so and return it. The returned host 13859 * memory address can be NULL. 13860 */ 13861 static void __iomem * 13862 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 13863 { 13864 if (!phba->pcidev) 13865 return NULL; 13866 13867 switch (pci_barset) { 13868 case WQ_PCI_BAR_0_AND_1: 13869 return phba->pci_bar0_memmap_p; 13870 case WQ_PCI_BAR_2_AND_3: 13871 return phba->pci_bar2_memmap_p; 13872 case WQ_PCI_BAR_4_AND_5: 13873 return phba->pci_bar4_memmap_p; 13874 default: 13875 break; 13876 } 13877 return NULL; 13878 } 13879 13880 /** 13881 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on FCP EQs 13882 * @phba: HBA structure that indicates port to create a queue on. 13883 * @startq: The starting FCP EQ to modify 13884 * 13885 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA. 13886 * The command allows up to LPFC_MAX_EQ_DELAY_EQID_CNT EQ ID's to be 13887 * updated in one mailbox command. 13888 * 13889 * The @phba struct is used to send mailbox command to HBA. The @startq 13890 * is used to get the starting FCP EQ to change. 13891 * This function is asynchronous and will wait for the mailbox 13892 * command to finish before continuing. 13893 * 13894 * On success this function will return a zero. If unable to allocate enough 13895 * memory this function will return -ENOMEM. If the queue create mailbox command 13896 * fails this function will return -ENXIO. 13897 **/ 13898 int 13899 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq) 13900 { 13901 struct lpfc_mbx_modify_eq_delay *eq_delay; 13902 LPFC_MBOXQ_t *mbox; 13903 struct lpfc_queue *eq; 13904 int cnt, rc, length, status = 0; 13905 uint32_t shdr_status, shdr_add_status; 13906 uint32_t result; 13907 int qidx; 13908 union lpfc_sli4_cfg_shdr *shdr; 13909 uint16_t dmult; 13910 13911 if (startq >= phba->io_channel_irqs) 13912 return 0; 13913 13914 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13915 if (!mbox) 13916 return -ENOMEM; 13917 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 13918 sizeof(struct lpfc_sli4_cfg_mhdr)); 13919 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13920 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 13921 length, LPFC_SLI4_MBX_EMBED); 13922 eq_delay = &mbox->u.mqe.un.eq_delay; 13923 13924 /* Calculate delay multiper from maximum interrupt per second */ 13925 result = phba->cfg_fcp_imax / phba->io_channel_irqs; 13926 if (result > LPFC_DMULT_CONST || result == 0) 13927 dmult = 0; 13928 else 13929 dmult = LPFC_DMULT_CONST/result - 1; 13930 13931 cnt = 0; 13932 for (qidx = startq; qidx < phba->io_channel_irqs; qidx++) { 13933 eq = phba->sli4_hba.hba_eq[qidx]; 13934 if (!eq) 13935 continue; 13936 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 13937 eq_delay->u.request.eq[cnt].phase = 0; 13938 eq_delay->u.request.eq[cnt].delay_multi = dmult; 13939 cnt++; 13940 if (cnt >= LPFC_MAX_EQ_DELAY_EQID_CNT) 13941 break; 13942 } 13943 eq_delay->u.request.num_eq = cnt; 13944 13945 mbox->vport = phba->pport; 13946 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13947 mbox->context1 = NULL; 13948 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13949 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 13950 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13951 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13952 if (shdr_status || shdr_add_status || rc) { 13953 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13954 "2512 MODIFY_EQ_DELAY mailbox failed with " 13955 "status x%x add_status x%x, mbx status x%x\n", 13956 shdr_status, shdr_add_status, rc); 13957 status = -ENXIO; 13958 } 13959 mempool_free(mbox, phba->mbox_mem_pool); 13960 return status; 13961 } 13962 13963 /** 13964 * lpfc_eq_create - Create an Event Queue on the HBA 13965 * @phba: HBA structure that indicates port to create a queue on. 13966 * @eq: The queue structure to use to create the event queue. 13967 * @imax: The maximum interrupt per second limit. 13968 * 13969 * This function creates an event queue, as detailed in @eq, on a port, 13970 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 13971 * 13972 * The @phba struct is used to send mailbox command to HBA. The @eq struct 13973 * is used to get the entry count and entry size that are necessary to 13974 * determine the number of pages to allocate and use for this queue. This 13975 * function will send the EQ_CREATE mailbox command to the HBA to setup the 13976 * event queue. This function is asynchronous and will wait for the mailbox 13977 * command to finish before continuing. 13978 * 13979 * On success this function will return a zero. If unable to allocate enough 13980 * memory this function will return -ENOMEM. If the queue create mailbox command 13981 * fails this function will return -ENXIO. 13982 **/ 13983 int 13984 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 13985 { 13986 struct lpfc_mbx_eq_create *eq_create; 13987 LPFC_MBOXQ_t *mbox; 13988 int rc, length, status = 0; 13989 struct lpfc_dmabuf *dmabuf; 13990 uint32_t shdr_status, shdr_add_status; 13991 union lpfc_sli4_cfg_shdr *shdr; 13992 uint16_t dmult; 13993 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13994 13995 /* sanity check on queue memory */ 13996 if (!eq) 13997 return -ENODEV; 13998 if (!phba->sli4_hba.pc_sli4_params.supported) 13999 hw_page_size = SLI4_PAGE_SIZE; 14000 14001 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14002 if (!mbox) 14003 return -ENOMEM; 14004 length = (sizeof(struct lpfc_mbx_eq_create) - 14005 sizeof(struct lpfc_sli4_cfg_mhdr)); 14006 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14007 LPFC_MBOX_OPCODE_EQ_CREATE, 14008 length, LPFC_SLI4_MBX_EMBED); 14009 eq_create = &mbox->u.mqe.un.eq_create; 14010 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 14011 eq->page_count); 14012 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 14013 LPFC_EQE_SIZE); 14014 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 14015 /* don't setup delay multiplier using EQ_CREATE */ 14016 dmult = 0; 14017 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 14018 dmult); 14019 switch (eq->entry_count) { 14020 default: 14021 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14022 "0360 Unsupported EQ count. (%d)\n", 14023 eq->entry_count); 14024 if (eq->entry_count < 256) 14025 return -EINVAL; 14026 /* otherwise default to smallest count (drop through) */ 14027 case 256: 14028 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14029 LPFC_EQ_CNT_256); 14030 break; 14031 case 512: 14032 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14033 LPFC_EQ_CNT_512); 14034 break; 14035 case 1024: 14036 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14037 LPFC_EQ_CNT_1024); 14038 break; 14039 case 2048: 14040 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14041 LPFC_EQ_CNT_2048); 14042 break; 14043 case 4096: 14044 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14045 LPFC_EQ_CNT_4096); 14046 break; 14047 } 14048 list_for_each_entry(dmabuf, &eq->page_list, list) { 14049 memset(dmabuf->virt, 0, hw_page_size); 14050 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14051 putPaddrLow(dmabuf->phys); 14052 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14053 putPaddrHigh(dmabuf->phys); 14054 } 14055 mbox->vport = phba->pport; 14056 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14057 mbox->context1 = NULL; 14058 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14059 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 14060 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14061 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14062 if (shdr_status || shdr_add_status || rc) { 14063 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14064 "2500 EQ_CREATE mailbox failed with " 14065 "status x%x add_status x%x, mbx status x%x\n", 14066 shdr_status, shdr_add_status, rc); 14067 status = -ENXIO; 14068 } 14069 eq->type = LPFC_EQ; 14070 eq->subtype = LPFC_NONE; 14071 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 14072 if (eq->queue_id == 0xFFFF) 14073 status = -ENXIO; 14074 eq->host_index = 0; 14075 eq->hba_index = 0; 14076 14077 mempool_free(mbox, phba->mbox_mem_pool); 14078 return status; 14079 } 14080 14081 /** 14082 * lpfc_cq_create - Create a Completion Queue on the HBA 14083 * @phba: HBA structure that indicates port to create a queue on. 14084 * @cq: The queue structure to use to create the completion queue. 14085 * @eq: The event queue to bind this completion queue to. 14086 * 14087 * This function creates a completion queue, as detailed in @wq, on a port, 14088 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 14089 * 14090 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14091 * is used to get the entry count and entry size that are necessary to 14092 * determine the number of pages to allocate and use for this queue. The @eq 14093 * is used to indicate which event queue to bind this completion queue to. This 14094 * function will send the CQ_CREATE mailbox command to the HBA to setup the 14095 * completion queue. This function is asynchronous and will wait for the mailbox 14096 * command to finish before continuing. 14097 * 14098 * On success this function will return a zero. If unable to allocate enough 14099 * memory this function will return -ENOMEM. If the queue create mailbox command 14100 * fails this function will return -ENXIO. 14101 **/ 14102 int 14103 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 14104 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 14105 { 14106 struct lpfc_mbx_cq_create *cq_create; 14107 struct lpfc_dmabuf *dmabuf; 14108 LPFC_MBOXQ_t *mbox; 14109 int rc, length, status = 0; 14110 uint32_t shdr_status, shdr_add_status; 14111 union lpfc_sli4_cfg_shdr *shdr; 14112 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14113 14114 /* sanity check on queue memory */ 14115 if (!cq || !eq) 14116 return -ENODEV; 14117 if (!phba->sli4_hba.pc_sli4_params.supported) 14118 hw_page_size = SLI4_PAGE_SIZE; 14119 14120 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14121 if (!mbox) 14122 return -ENOMEM; 14123 length = (sizeof(struct lpfc_mbx_cq_create) - 14124 sizeof(struct lpfc_sli4_cfg_mhdr)); 14125 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14126 LPFC_MBOX_OPCODE_CQ_CREATE, 14127 length, LPFC_SLI4_MBX_EMBED); 14128 cq_create = &mbox->u.mqe.un.cq_create; 14129 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 14130 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 14131 cq->page_count); 14132 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 14133 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 14134 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14135 phba->sli4_hba.pc_sli4_params.cqv); 14136 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 14137 /* FW only supports 1. Should be PAGE_SIZE/SLI4_PAGE_SIZE */ 14138 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 1); 14139 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 14140 eq->queue_id); 14141 } else { 14142 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 14143 eq->queue_id); 14144 } 14145 switch (cq->entry_count) { 14146 default: 14147 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14148 "0361 Unsupported CQ count: " 14149 "entry cnt %d sz %d pg cnt %d repost %d\n", 14150 cq->entry_count, cq->entry_size, 14151 cq->page_count, cq->entry_repost); 14152 if (cq->entry_count < 256) { 14153 status = -EINVAL; 14154 goto out; 14155 } 14156 /* otherwise default to smallest count (drop through) */ 14157 case 256: 14158 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14159 LPFC_CQ_CNT_256); 14160 break; 14161 case 512: 14162 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14163 LPFC_CQ_CNT_512); 14164 break; 14165 case 1024: 14166 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14167 LPFC_CQ_CNT_1024); 14168 break; 14169 } 14170 list_for_each_entry(dmabuf, &cq->page_list, list) { 14171 memset(dmabuf->virt, 0, hw_page_size); 14172 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14173 putPaddrLow(dmabuf->phys); 14174 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14175 putPaddrHigh(dmabuf->phys); 14176 } 14177 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14178 14179 /* The IOCTL status is embedded in the mailbox subheader. */ 14180 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14181 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14182 if (shdr_status || shdr_add_status || rc) { 14183 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14184 "2501 CQ_CREATE mailbox failed with " 14185 "status x%x add_status x%x, mbx status x%x\n", 14186 shdr_status, shdr_add_status, rc); 14187 status = -ENXIO; 14188 goto out; 14189 } 14190 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 14191 if (cq->queue_id == 0xFFFF) { 14192 status = -ENXIO; 14193 goto out; 14194 } 14195 /* link the cq onto the parent eq child list */ 14196 list_add_tail(&cq->list, &eq->child_list); 14197 /* Set up completion queue's type and subtype */ 14198 cq->type = type; 14199 cq->subtype = subtype; 14200 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 14201 cq->assoc_qid = eq->queue_id; 14202 cq->host_index = 0; 14203 cq->hba_index = 0; 14204 14205 out: 14206 mempool_free(mbox, phba->mbox_mem_pool); 14207 return status; 14208 } 14209 14210 /** 14211 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 14212 * @phba: HBA structure that indicates port to create a queue on. 14213 * @cqp: The queue structure array to use to create the completion queues. 14214 * @eqp: The event queue array to bind these completion queues to. 14215 * 14216 * This function creates a set of completion queue, s to support MRQ 14217 * as detailed in @cqp, on a port, 14218 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 14219 * 14220 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14221 * is used to get the entry count and entry size that are necessary to 14222 * determine the number of pages to allocate and use for this queue. The @eq 14223 * is used to indicate which event queue to bind this completion queue to. This 14224 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 14225 * completion queue. This function is asynchronous and will wait for the mailbox 14226 * command to finish before continuing. 14227 * 14228 * On success this function will return a zero. If unable to allocate enough 14229 * memory this function will return -ENOMEM. If the queue create mailbox command 14230 * fails this function will return -ENXIO. 14231 **/ 14232 int 14233 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 14234 struct lpfc_queue **eqp, uint32_t type, uint32_t subtype) 14235 { 14236 struct lpfc_queue *cq; 14237 struct lpfc_queue *eq; 14238 struct lpfc_mbx_cq_create_set *cq_set; 14239 struct lpfc_dmabuf *dmabuf; 14240 LPFC_MBOXQ_t *mbox; 14241 int rc, length, alloclen, status = 0; 14242 int cnt, idx, numcq, page_idx = 0; 14243 uint32_t shdr_status, shdr_add_status; 14244 union lpfc_sli4_cfg_shdr *shdr; 14245 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14246 14247 /* sanity check on queue memory */ 14248 numcq = phba->cfg_nvmet_mrq; 14249 if (!cqp || !eqp || !numcq) 14250 return -ENODEV; 14251 if (!phba->sli4_hba.pc_sli4_params.supported) 14252 hw_page_size = SLI4_PAGE_SIZE; 14253 14254 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14255 if (!mbox) 14256 return -ENOMEM; 14257 14258 length = sizeof(struct lpfc_mbx_cq_create_set); 14259 length += ((numcq * cqp[0]->page_count) * 14260 sizeof(struct dma_address)); 14261 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14262 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 14263 LPFC_SLI4_MBX_NEMBED); 14264 if (alloclen < length) { 14265 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14266 "3098 Allocated DMA memory size (%d) is " 14267 "less than the requested DMA memory size " 14268 "(%d)\n", alloclen, length); 14269 status = -ENOMEM; 14270 goto out; 14271 } 14272 cq_set = mbox->sge_array->addr[0]; 14273 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 14274 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 14275 14276 for (idx = 0; idx < numcq; idx++) { 14277 cq = cqp[idx]; 14278 eq = eqp[idx]; 14279 if (!cq || !eq) { 14280 status = -ENOMEM; 14281 goto out; 14282 } 14283 14284 switch (idx) { 14285 case 0: 14286 bf_set(lpfc_mbx_cq_create_set_page_size, 14287 &cq_set->u.request, 14288 (hw_page_size / SLI4_PAGE_SIZE)); 14289 bf_set(lpfc_mbx_cq_create_set_num_pages, 14290 &cq_set->u.request, cq->page_count); 14291 bf_set(lpfc_mbx_cq_create_set_evt, 14292 &cq_set->u.request, 1); 14293 bf_set(lpfc_mbx_cq_create_set_valid, 14294 &cq_set->u.request, 1); 14295 bf_set(lpfc_mbx_cq_create_set_cqe_size, 14296 &cq_set->u.request, 0); 14297 bf_set(lpfc_mbx_cq_create_set_num_cq, 14298 &cq_set->u.request, numcq); 14299 switch (cq->entry_count) { 14300 default: 14301 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14302 "3118 Bad CQ count. (%d)\n", 14303 cq->entry_count); 14304 if (cq->entry_count < 256) { 14305 status = -EINVAL; 14306 goto out; 14307 } 14308 /* otherwise default to smallest (drop thru) */ 14309 case 256: 14310 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14311 &cq_set->u.request, LPFC_CQ_CNT_256); 14312 break; 14313 case 512: 14314 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14315 &cq_set->u.request, LPFC_CQ_CNT_512); 14316 break; 14317 case 1024: 14318 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14319 &cq_set->u.request, LPFC_CQ_CNT_1024); 14320 break; 14321 } 14322 bf_set(lpfc_mbx_cq_create_set_eq_id0, 14323 &cq_set->u.request, eq->queue_id); 14324 break; 14325 case 1: 14326 bf_set(lpfc_mbx_cq_create_set_eq_id1, 14327 &cq_set->u.request, eq->queue_id); 14328 break; 14329 case 2: 14330 bf_set(lpfc_mbx_cq_create_set_eq_id2, 14331 &cq_set->u.request, eq->queue_id); 14332 break; 14333 case 3: 14334 bf_set(lpfc_mbx_cq_create_set_eq_id3, 14335 &cq_set->u.request, eq->queue_id); 14336 break; 14337 case 4: 14338 bf_set(lpfc_mbx_cq_create_set_eq_id4, 14339 &cq_set->u.request, eq->queue_id); 14340 break; 14341 case 5: 14342 bf_set(lpfc_mbx_cq_create_set_eq_id5, 14343 &cq_set->u.request, eq->queue_id); 14344 break; 14345 case 6: 14346 bf_set(lpfc_mbx_cq_create_set_eq_id6, 14347 &cq_set->u.request, eq->queue_id); 14348 break; 14349 case 7: 14350 bf_set(lpfc_mbx_cq_create_set_eq_id7, 14351 &cq_set->u.request, eq->queue_id); 14352 break; 14353 case 8: 14354 bf_set(lpfc_mbx_cq_create_set_eq_id8, 14355 &cq_set->u.request, eq->queue_id); 14356 break; 14357 case 9: 14358 bf_set(lpfc_mbx_cq_create_set_eq_id9, 14359 &cq_set->u.request, eq->queue_id); 14360 break; 14361 case 10: 14362 bf_set(lpfc_mbx_cq_create_set_eq_id10, 14363 &cq_set->u.request, eq->queue_id); 14364 break; 14365 case 11: 14366 bf_set(lpfc_mbx_cq_create_set_eq_id11, 14367 &cq_set->u.request, eq->queue_id); 14368 break; 14369 case 12: 14370 bf_set(lpfc_mbx_cq_create_set_eq_id12, 14371 &cq_set->u.request, eq->queue_id); 14372 break; 14373 case 13: 14374 bf_set(lpfc_mbx_cq_create_set_eq_id13, 14375 &cq_set->u.request, eq->queue_id); 14376 break; 14377 case 14: 14378 bf_set(lpfc_mbx_cq_create_set_eq_id14, 14379 &cq_set->u.request, eq->queue_id); 14380 break; 14381 case 15: 14382 bf_set(lpfc_mbx_cq_create_set_eq_id15, 14383 &cq_set->u.request, eq->queue_id); 14384 break; 14385 } 14386 14387 /* link the cq onto the parent eq child list */ 14388 list_add_tail(&cq->list, &eq->child_list); 14389 /* Set up completion queue's type and subtype */ 14390 cq->type = type; 14391 cq->subtype = subtype; 14392 cq->assoc_qid = eq->queue_id; 14393 cq->host_index = 0; 14394 cq->hba_index = 0; 14395 14396 rc = 0; 14397 list_for_each_entry(dmabuf, &cq->page_list, list) { 14398 memset(dmabuf->virt, 0, hw_page_size); 14399 cnt = page_idx + dmabuf->buffer_tag; 14400 cq_set->u.request.page[cnt].addr_lo = 14401 putPaddrLow(dmabuf->phys); 14402 cq_set->u.request.page[cnt].addr_hi = 14403 putPaddrHigh(dmabuf->phys); 14404 rc++; 14405 } 14406 page_idx += rc; 14407 } 14408 14409 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14410 14411 /* The IOCTL status is embedded in the mailbox subheader. */ 14412 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14413 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14414 if (shdr_status || shdr_add_status || rc) { 14415 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14416 "3119 CQ_CREATE_SET mailbox failed with " 14417 "status x%x add_status x%x, mbx status x%x\n", 14418 shdr_status, shdr_add_status, rc); 14419 status = -ENXIO; 14420 goto out; 14421 } 14422 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 14423 if (rc == 0xFFFF) { 14424 status = -ENXIO; 14425 goto out; 14426 } 14427 14428 for (idx = 0; idx < numcq; idx++) { 14429 cq = cqp[idx]; 14430 cq->queue_id = rc + idx; 14431 } 14432 14433 out: 14434 lpfc_sli4_mbox_cmd_free(phba, mbox); 14435 return status; 14436 } 14437 14438 /** 14439 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 14440 * @phba: HBA structure that indicates port to create a queue on. 14441 * @mq: The queue structure to use to create the mailbox queue. 14442 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 14443 * @cq: The completion queue to associate with this cq. 14444 * 14445 * This function provides failback (fb) functionality when the 14446 * mq_create_ext fails on older FW generations. It's purpose is identical 14447 * to mq_create_ext otherwise. 14448 * 14449 * This routine cannot fail as all attributes were previously accessed and 14450 * initialized in mq_create_ext. 14451 **/ 14452 static void 14453 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 14454 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 14455 { 14456 struct lpfc_mbx_mq_create *mq_create; 14457 struct lpfc_dmabuf *dmabuf; 14458 int length; 14459 14460 length = (sizeof(struct lpfc_mbx_mq_create) - 14461 sizeof(struct lpfc_sli4_cfg_mhdr)); 14462 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14463 LPFC_MBOX_OPCODE_MQ_CREATE, 14464 length, LPFC_SLI4_MBX_EMBED); 14465 mq_create = &mbox->u.mqe.un.mq_create; 14466 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 14467 mq->page_count); 14468 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 14469 cq->queue_id); 14470 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 14471 switch (mq->entry_count) { 14472 case 16: 14473 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14474 LPFC_MQ_RING_SIZE_16); 14475 break; 14476 case 32: 14477 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14478 LPFC_MQ_RING_SIZE_32); 14479 break; 14480 case 64: 14481 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14482 LPFC_MQ_RING_SIZE_64); 14483 break; 14484 case 128: 14485 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14486 LPFC_MQ_RING_SIZE_128); 14487 break; 14488 } 14489 list_for_each_entry(dmabuf, &mq->page_list, list) { 14490 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14491 putPaddrLow(dmabuf->phys); 14492 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14493 putPaddrHigh(dmabuf->phys); 14494 } 14495 } 14496 14497 /** 14498 * lpfc_mq_create - Create a mailbox Queue on the HBA 14499 * @phba: HBA structure that indicates port to create a queue on. 14500 * @mq: The queue structure to use to create the mailbox queue. 14501 * @cq: The completion queue to associate with this cq. 14502 * @subtype: The queue's subtype. 14503 * 14504 * This function creates a mailbox queue, as detailed in @mq, on a port, 14505 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 14506 * 14507 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14508 * is used to get the entry count and entry size that are necessary to 14509 * determine the number of pages to allocate and use for this queue. This 14510 * function will send the MQ_CREATE mailbox command to the HBA to setup the 14511 * mailbox queue. This function is asynchronous and will wait for the mailbox 14512 * command to finish before continuing. 14513 * 14514 * On success this function will return a zero. If unable to allocate enough 14515 * memory this function will return -ENOMEM. If the queue create mailbox command 14516 * fails this function will return -ENXIO. 14517 **/ 14518 int32_t 14519 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 14520 struct lpfc_queue *cq, uint32_t subtype) 14521 { 14522 struct lpfc_mbx_mq_create *mq_create; 14523 struct lpfc_mbx_mq_create_ext *mq_create_ext; 14524 struct lpfc_dmabuf *dmabuf; 14525 LPFC_MBOXQ_t *mbox; 14526 int rc, length, status = 0; 14527 uint32_t shdr_status, shdr_add_status; 14528 union lpfc_sli4_cfg_shdr *shdr; 14529 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14530 14531 /* sanity check on queue memory */ 14532 if (!mq || !cq) 14533 return -ENODEV; 14534 if (!phba->sli4_hba.pc_sli4_params.supported) 14535 hw_page_size = SLI4_PAGE_SIZE; 14536 14537 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14538 if (!mbox) 14539 return -ENOMEM; 14540 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 14541 sizeof(struct lpfc_sli4_cfg_mhdr)); 14542 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14543 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 14544 length, LPFC_SLI4_MBX_EMBED); 14545 14546 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 14547 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 14548 bf_set(lpfc_mbx_mq_create_ext_num_pages, 14549 &mq_create_ext->u.request, mq->page_count); 14550 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 14551 &mq_create_ext->u.request, 1); 14552 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 14553 &mq_create_ext->u.request, 1); 14554 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 14555 &mq_create_ext->u.request, 1); 14556 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 14557 &mq_create_ext->u.request, 1); 14558 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 14559 &mq_create_ext->u.request, 1); 14560 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 14561 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14562 phba->sli4_hba.pc_sli4_params.mqv); 14563 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 14564 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 14565 cq->queue_id); 14566 else 14567 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 14568 cq->queue_id); 14569 switch (mq->entry_count) { 14570 default: 14571 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14572 "0362 Unsupported MQ count. (%d)\n", 14573 mq->entry_count); 14574 if (mq->entry_count < 16) { 14575 status = -EINVAL; 14576 goto out; 14577 } 14578 /* otherwise default to smallest count (drop through) */ 14579 case 16: 14580 bf_set(lpfc_mq_context_ring_size, 14581 &mq_create_ext->u.request.context, 14582 LPFC_MQ_RING_SIZE_16); 14583 break; 14584 case 32: 14585 bf_set(lpfc_mq_context_ring_size, 14586 &mq_create_ext->u.request.context, 14587 LPFC_MQ_RING_SIZE_32); 14588 break; 14589 case 64: 14590 bf_set(lpfc_mq_context_ring_size, 14591 &mq_create_ext->u.request.context, 14592 LPFC_MQ_RING_SIZE_64); 14593 break; 14594 case 128: 14595 bf_set(lpfc_mq_context_ring_size, 14596 &mq_create_ext->u.request.context, 14597 LPFC_MQ_RING_SIZE_128); 14598 break; 14599 } 14600 list_for_each_entry(dmabuf, &mq->page_list, list) { 14601 memset(dmabuf->virt, 0, hw_page_size); 14602 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 14603 putPaddrLow(dmabuf->phys); 14604 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 14605 putPaddrHigh(dmabuf->phys); 14606 } 14607 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14608 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 14609 &mq_create_ext->u.response); 14610 if (rc != MBX_SUCCESS) { 14611 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14612 "2795 MQ_CREATE_EXT failed with " 14613 "status x%x. Failback to MQ_CREATE.\n", 14614 rc); 14615 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 14616 mq_create = &mbox->u.mqe.un.mq_create; 14617 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14618 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 14619 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 14620 &mq_create->u.response); 14621 } 14622 14623 /* The IOCTL status is embedded in the mailbox subheader. */ 14624 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14625 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14626 if (shdr_status || shdr_add_status || rc) { 14627 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14628 "2502 MQ_CREATE mailbox failed with " 14629 "status x%x add_status x%x, mbx status x%x\n", 14630 shdr_status, shdr_add_status, rc); 14631 status = -ENXIO; 14632 goto out; 14633 } 14634 if (mq->queue_id == 0xFFFF) { 14635 status = -ENXIO; 14636 goto out; 14637 } 14638 mq->type = LPFC_MQ; 14639 mq->assoc_qid = cq->queue_id; 14640 mq->subtype = subtype; 14641 mq->host_index = 0; 14642 mq->hba_index = 0; 14643 14644 /* link the mq onto the parent cq child list */ 14645 list_add_tail(&mq->list, &cq->child_list); 14646 out: 14647 mempool_free(mbox, phba->mbox_mem_pool); 14648 return status; 14649 } 14650 14651 /** 14652 * lpfc_wq_create - Create a Work Queue on the HBA 14653 * @phba: HBA structure that indicates port to create a queue on. 14654 * @wq: The queue structure to use to create the work queue. 14655 * @cq: The completion queue to bind this work queue to. 14656 * @subtype: The subtype of the work queue indicating its functionality. 14657 * 14658 * This function creates a work queue, as detailed in @wq, on a port, described 14659 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 14660 * 14661 * The @phba struct is used to send mailbox command to HBA. The @wq struct 14662 * is used to get the entry count and entry size that are necessary to 14663 * determine the number of pages to allocate and use for this queue. The @cq 14664 * is used to indicate which completion queue to bind this work queue to. This 14665 * function will send the WQ_CREATE mailbox command to the HBA to setup the 14666 * work queue. This function is asynchronous and will wait for the mailbox 14667 * command to finish before continuing. 14668 * 14669 * On success this function will return a zero. If unable to allocate enough 14670 * memory this function will return -ENOMEM. If the queue create mailbox command 14671 * fails this function will return -ENXIO. 14672 **/ 14673 int 14674 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 14675 struct lpfc_queue *cq, uint32_t subtype) 14676 { 14677 struct lpfc_mbx_wq_create *wq_create; 14678 struct lpfc_dmabuf *dmabuf; 14679 LPFC_MBOXQ_t *mbox; 14680 int rc, length, status = 0; 14681 uint32_t shdr_status, shdr_add_status; 14682 union lpfc_sli4_cfg_shdr *shdr; 14683 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14684 struct dma_address *page; 14685 void __iomem *bar_memmap_p; 14686 uint32_t db_offset; 14687 uint16_t pci_barset; 14688 14689 /* sanity check on queue memory */ 14690 if (!wq || !cq) 14691 return -ENODEV; 14692 if (!phba->sli4_hba.pc_sli4_params.supported) 14693 hw_page_size = SLI4_PAGE_SIZE; 14694 14695 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14696 if (!mbox) 14697 return -ENOMEM; 14698 length = (sizeof(struct lpfc_mbx_wq_create) - 14699 sizeof(struct lpfc_sli4_cfg_mhdr)); 14700 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14701 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 14702 length, LPFC_SLI4_MBX_EMBED); 14703 wq_create = &mbox->u.mqe.un.wq_create; 14704 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 14705 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 14706 wq->page_count); 14707 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 14708 cq->queue_id); 14709 14710 /* wqv is the earliest version supported, NOT the latest */ 14711 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14712 phba->sli4_hba.pc_sli4_params.wqv); 14713 14714 switch (phba->sli4_hba.pc_sli4_params.wqv) { 14715 case LPFC_Q_CREATE_VERSION_0: 14716 switch (wq->entry_size) { 14717 default: 14718 case 64: 14719 /* Nothing to do, version 0 ONLY supports 64 byte */ 14720 page = wq_create->u.request.page; 14721 break; 14722 case 128: 14723 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 14724 LPFC_WQ_SZ128_SUPPORT)) { 14725 status = -ERANGE; 14726 goto out; 14727 } 14728 /* If we get here the HBA MUST also support V1 and 14729 * we MUST use it 14730 */ 14731 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14732 LPFC_Q_CREATE_VERSION_1); 14733 14734 bf_set(lpfc_mbx_wq_create_wqe_count, 14735 &wq_create->u.request_1, wq->entry_count); 14736 bf_set(lpfc_mbx_wq_create_wqe_size, 14737 &wq_create->u.request_1, 14738 LPFC_WQ_WQE_SIZE_128); 14739 bf_set(lpfc_mbx_wq_create_page_size, 14740 &wq_create->u.request_1, 14741 LPFC_WQ_PAGE_SIZE_4096); 14742 page = wq_create->u.request_1.page; 14743 break; 14744 } 14745 break; 14746 case LPFC_Q_CREATE_VERSION_1: 14747 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 14748 wq->entry_count); 14749 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14750 LPFC_Q_CREATE_VERSION_1); 14751 14752 switch (wq->entry_size) { 14753 default: 14754 case 64: 14755 bf_set(lpfc_mbx_wq_create_wqe_size, 14756 &wq_create->u.request_1, 14757 LPFC_WQ_WQE_SIZE_64); 14758 break; 14759 case 128: 14760 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 14761 LPFC_WQ_SZ128_SUPPORT)) { 14762 status = -ERANGE; 14763 goto out; 14764 } 14765 bf_set(lpfc_mbx_wq_create_wqe_size, 14766 &wq_create->u.request_1, 14767 LPFC_WQ_WQE_SIZE_128); 14768 break; 14769 } 14770 bf_set(lpfc_mbx_wq_create_page_size, 14771 &wq_create->u.request_1, 14772 LPFC_WQ_PAGE_SIZE_4096); 14773 page = wq_create->u.request_1.page; 14774 break; 14775 default: 14776 status = -ERANGE; 14777 goto out; 14778 } 14779 14780 list_for_each_entry(dmabuf, &wq->page_list, list) { 14781 memset(dmabuf->virt, 0, hw_page_size); 14782 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 14783 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 14784 } 14785 14786 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 14787 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 14788 14789 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14790 /* The IOCTL status is embedded in the mailbox subheader. */ 14791 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14792 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14793 if (shdr_status || shdr_add_status || rc) { 14794 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14795 "2503 WQ_CREATE mailbox failed with " 14796 "status x%x add_status x%x, mbx status x%x\n", 14797 shdr_status, shdr_add_status, rc); 14798 status = -ENXIO; 14799 goto out; 14800 } 14801 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response); 14802 if (wq->queue_id == 0xFFFF) { 14803 status = -ENXIO; 14804 goto out; 14805 } 14806 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 14807 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 14808 &wq_create->u.response); 14809 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 14810 (wq->db_format != LPFC_DB_RING_FORMAT)) { 14811 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14812 "3265 WQ[%d] doorbell format not " 14813 "supported: x%x\n", wq->queue_id, 14814 wq->db_format); 14815 status = -EINVAL; 14816 goto out; 14817 } 14818 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 14819 &wq_create->u.response); 14820 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 14821 if (!bar_memmap_p) { 14822 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14823 "3263 WQ[%d] failed to memmap pci " 14824 "barset:x%x\n", wq->queue_id, 14825 pci_barset); 14826 status = -ENOMEM; 14827 goto out; 14828 } 14829 db_offset = wq_create->u.response.doorbell_offset; 14830 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 14831 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 14832 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14833 "3252 WQ[%d] doorbell offset not " 14834 "supported: x%x\n", wq->queue_id, 14835 db_offset); 14836 status = -EINVAL; 14837 goto out; 14838 } 14839 wq->db_regaddr = bar_memmap_p + db_offset; 14840 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14841 "3264 WQ[%d]: barset:x%x, offset:x%x, " 14842 "format:x%x\n", wq->queue_id, pci_barset, 14843 db_offset, wq->db_format); 14844 } else { 14845 wq->db_format = LPFC_DB_LIST_FORMAT; 14846 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 14847 } 14848 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 14849 if (wq->pring == NULL) { 14850 status = -ENOMEM; 14851 goto out; 14852 } 14853 wq->type = LPFC_WQ; 14854 wq->assoc_qid = cq->queue_id; 14855 wq->subtype = subtype; 14856 wq->host_index = 0; 14857 wq->hba_index = 0; 14858 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL; 14859 14860 /* link the wq onto the parent cq child list */ 14861 list_add_tail(&wq->list, &cq->child_list); 14862 out: 14863 mempool_free(mbox, phba->mbox_mem_pool); 14864 return status; 14865 } 14866 14867 /** 14868 * lpfc_rq_adjust_repost - Adjust entry_repost for an RQ 14869 * @phba: HBA structure that indicates port to create a queue on. 14870 * @rq: The queue structure to use for the receive queue. 14871 * @qno: The associated HBQ number 14872 * 14873 * 14874 * For SLI4 we need to adjust the RQ repost value based on 14875 * the number of buffers that are initially posted to the RQ. 14876 */ 14877 void 14878 lpfc_rq_adjust_repost(struct lpfc_hba *phba, struct lpfc_queue *rq, int qno) 14879 { 14880 uint32_t cnt; 14881 14882 /* sanity check on queue memory */ 14883 if (!rq) 14884 return; 14885 cnt = lpfc_hbq_defs[qno]->entry_count; 14886 14887 /* Recalc repost for RQs based on buffers initially posted */ 14888 cnt = (cnt >> 3); 14889 if (cnt < LPFC_QUEUE_MIN_REPOST) 14890 cnt = LPFC_QUEUE_MIN_REPOST; 14891 14892 rq->entry_repost = cnt; 14893 } 14894 14895 /** 14896 * lpfc_rq_create - Create a Receive Queue on the HBA 14897 * @phba: HBA structure that indicates port to create a queue on. 14898 * @hrq: The queue structure to use to create the header receive queue. 14899 * @drq: The queue structure to use to create the data receive queue. 14900 * @cq: The completion queue to bind this work queue to. 14901 * 14902 * This function creates a receive buffer queue pair , as detailed in @hrq and 14903 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 14904 * to the HBA. 14905 * 14906 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 14907 * struct is used to get the entry count that is necessary to determine the 14908 * number of pages to use for this queue. The @cq is used to indicate which 14909 * completion queue to bind received buffers that are posted to these queues to. 14910 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 14911 * receive queue pair. This function is asynchronous and will wait for the 14912 * mailbox command to finish before continuing. 14913 * 14914 * On success this function will return a zero. If unable to allocate enough 14915 * memory this function will return -ENOMEM. If the queue create mailbox command 14916 * fails this function will return -ENXIO. 14917 **/ 14918 int 14919 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 14920 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 14921 { 14922 struct lpfc_mbx_rq_create *rq_create; 14923 struct lpfc_dmabuf *dmabuf; 14924 LPFC_MBOXQ_t *mbox; 14925 int rc, length, status = 0; 14926 uint32_t shdr_status, shdr_add_status; 14927 union lpfc_sli4_cfg_shdr *shdr; 14928 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14929 void __iomem *bar_memmap_p; 14930 uint32_t db_offset; 14931 uint16_t pci_barset; 14932 14933 /* sanity check on queue memory */ 14934 if (!hrq || !drq || !cq) 14935 return -ENODEV; 14936 if (!phba->sli4_hba.pc_sli4_params.supported) 14937 hw_page_size = SLI4_PAGE_SIZE; 14938 14939 if (hrq->entry_count != drq->entry_count) 14940 return -EINVAL; 14941 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14942 if (!mbox) 14943 return -ENOMEM; 14944 length = (sizeof(struct lpfc_mbx_rq_create) - 14945 sizeof(struct lpfc_sli4_cfg_mhdr)); 14946 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14947 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 14948 length, LPFC_SLI4_MBX_EMBED); 14949 rq_create = &mbox->u.mqe.un.rq_create; 14950 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 14951 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14952 phba->sli4_hba.pc_sli4_params.rqv); 14953 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 14954 bf_set(lpfc_rq_context_rqe_count_1, 14955 &rq_create->u.request.context, 14956 hrq->entry_count); 14957 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 14958 bf_set(lpfc_rq_context_rqe_size, 14959 &rq_create->u.request.context, 14960 LPFC_RQE_SIZE_8); 14961 bf_set(lpfc_rq_context_page_size, 14962 &rq_create->u.request.context, 14963 LPFC_RQ_PAGE_SIZE_4096); 14964 } else { 14965 switch (hrq->entry_count) { 14966 default: 14967 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14968 "2535 Unsupported RQ count. (%d)\n", 14969 hrq->entry_count); 14970 if (hrq->entry_count < 512) { 14971 status = -EINVAL; 14972 goto out; 14973 } 14974 /* otherwise default to smallest count (drop through) */ 14975 case 512: 14976 bf_set(lpfc_rq_context_rqe_count, 14977 &rq_create->u.request.context, 14978 LPFC_RQ_RING_SIZE_512); 14979 break; 14980 case 1024: 14981 bf_set(lpfc_rq_context_rqe_count, 14982 &rq_create->u.request.context, 14983 LPFC_RQ_RING_SIZE_1024); 14984 break; 14985 case 2048: 14986 bf_set(lpfc_rq_context_rqe_count, 14987 &rq_create->u.request.context, 14988 LPFC_RQ_RING_SIZE_2048); 14989 break; 14990 case 4096: 14991 bf_set(lpfc_rq_context_rqe_count, 14992 &rq_create->u.request.context, 14993 LPFC_RQ_RING_SIZE_4096); 14994 break; 14995 } 14996 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 14997 LPFC_HDR_BUF_SIZE); 14998 } 14999 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 15000 cq->queue_id); 15001 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 15002 hrq->page_count); 15003 list_for_each_entry(dmabuf, &hrq->page_list, list) { 15004 memset(dmabuf->virt, 0, hw_page_size); 15005 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15006 putPaddrLow(dmabuf->phys); 15007 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15008 putPaddrHigh(dmabuf->phys); 15009 } 15010 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15011 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 15012 15013 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15014 /* The IOCTL status is embedded in the mailbox subheader. */ 15015 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15016 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15017 if (shdr_status || shdr_add_status || rc) { 15018 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15019 "2504 RQ_CREATE mailbox failed with " 15020 "status x%x add_status x%x, mbx status x%x\n", 15021 shdr_status, shdr_add_status, rc); 15022 status = -ENXIO; 15023 goto out; 15024 } 15025 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15026 if (hrq->queue_id == 0xFFFF) { 15027 status = -ENXIO; 15028 goto out; 15029 } 15030 15031 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15032 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 15033 &rq_create->u.response); 15034 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 15035 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 15036 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15037 "3262 RQ [%d] doorbell format not " 15038 "supported: x%x\n", hrq->queue_id, 15039 hrq->db_format); 15040 status = -EINVAL; 15041 goto out; 15042 } 15043 15044 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 15045 &rq_create->u.response); 15046 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 15047 if (!bar_memmap_p) { 15048 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15049 "3269 RQ[%d] failed to memmap pci " 15050 "barset:x%x\n", hrq->queue_id, 15051 pci_barset); 15052 status = -ENOMEM; 15053 goto out; 15054 } 15055 15056 db_offset = rq_create->u.response.doorbell_offset; 15057 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 15058 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 15059 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15060 "3270 RQ[%d] doorbell offset not " 15061 "supported: x%x\n", hrq->queue_id, 15062 db_offset); 15063 status = -EINVAL; 15064 goto out; 15065 } 15066 hrq->db_regaddr = bar_memmap_p + db_offset; 15067 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15068 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 15069 "format:x%x\n", hrq->queue_id, pci_barset, 15070 db_offset, hrq->db_format); 15071 } else { 15072 hrq->db_format = LPFC_DB_RING_FORMAT; 15073 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15074 } 15075 hrq->type = LPFC_HRQ; 15076 hrq->assoc_qid = cq->queue_id; 15077 hrq->subtype = subtype; 15078 hrq->host_index = 0; 15079 hrq->hba_index = 0; 15080 15081 /* now create the data queue */ 15082 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15083 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15084 length, LPFC_SLI4_MBX_EMBED); 15085 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15086 phba->sli4_hba.pc_sli4_params.rqv); 15087 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15088 bf_set(lpfc_rq_context_rqe_count_1, 15089 &rq_create->u.request.context, hrq->entry_count); 15090 rq_create->u.request.context.buffer_size = LPFC_DATA_BUF_SIZE; 15091 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 15092 LPFC_RQE_SIZE_8); 15093 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 15094 (PAGE_SIZE/SLI4_PAGE_SIZE)); 15095 } else { 15096 switch (drq->entry_count) { 15097 default: 15098 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15099 "2536 Unsupported RQ count. (%d)\n", 15100 drq->entry_count); 15101 if (drq->entry_count < 512) { 15102 status = -EINVAL; 15103 goto out; 15104 } 15105 /* otherwise default to smallest count (drop through) */ 15106 case 512: 15107 bf_set(lpfc_rq_context_rqe_count, 15108 &rq_create->u.request.context, 15109 LPFC_RQ_RING_SIZE_512); 15110 break; 15111 case 1024: 15112 bf_set(lpfc_rq_context_rqe_count, 15113 &rq_create->u.request.context, 15114 LPFC_RQ_RING_SIZE_1024); 15115 break; 15116 case 2048: 15117 bf_set(lpfc_rq_context_rqe_count, 15118 &rq_create->u.request.context, 15119 LPFC_RQ_RING_SIZE_2048); 15120 break; 15121 case 4096: 15122 bf_set(lpfc_rq_context_rqe_count, 15123 &rq_create->u.request.context, 15124 LPFC_RQ_RING_SIZE_4096); 15125 break; 15126 } 15127 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 15128 LPFC_DATA_BUF_SIZE); 15129 } 15130 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 15131 cq->queue_id); 15132 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 15133 drq->page_count); 15134 list_for_each_entry(dmabuf, &drq->page_list, list) { 15135 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15136 putPaddrLow(dmabuf->phys); 15137 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15138 putPaddrHigh(dmabuf->phys); 15139 } 15140 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15141 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 15142 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15143 /* The IOCTL status is embedded in the mailbox subheader. */ 15144 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 15145 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15146 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15147 if (shdr_status || shdr_add_status || rc) { 15148 status = -ENXIO; 15149 goto out; 15150 } 15151 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15152 if (drq->queue_id == 0xFFFF) { 15153 status = -ENXIO; 15154 goto out; 15155 } 15156 drq->type = LPFC_DRQ; 15157 drq->assoc_qid = cq->queue_id; 15158 drq->subtype = subtype; 15159 drq->host_index = 0; 15160 drq->hba_index = 0; 15161 15162 /* link the header and data RQs onto the parent cq child list */ 15163 list_add_tail(&hrq->list, &cq->child_list); 15164 list_add_tail(&drq->list, &cq->child_list); 15165 15166 out: 15167 mempool_free(mbox, phba->mbox_mem_pool); 15168 return status; 15169 } 15170 15171 /** 15172 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 15173 * @phba: HBA structure that indicates port to create a queue on. 15174 * @hrqp: The queue structure array to use to create the header receive queues. 15175 * @drqp: The queue structure array to use to create the data receive queues. 15176 * @cqp: The completion queue array to bind these receive queues to. 15177 * 15178 * This function creates a receive buffer queue pair , as detailed in @hrq and 15179 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 15180 * to the HBA. 15181 * 15182 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 15183 * struct is used to get the entry count that is necessary to determine the 15184 * number of pages to use for this queue. The @cq is used to indicate which 15185 * completion queue to bind received buffers that are posted to these queues to. 15186 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 15187 * receive queue pair. This function is asynchronous and will wait for the 15188 * mailbox command to finish before continuing. 15189 * 15190 * On success this function will return a zero. If unable to allocate enough 15191 * memory this function will return -ENOMEM. If the queue create mailbox command 15192 * fails this function will return -ENXIO. 15193 **/ 15194 int 15195 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 15196 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 15197 uint32_t subtype) 15198 { 15199 struct lpfc_queue *hrq, *drq, *cq; 15200 struct lpfc_mbx_rq_create_v2 *rq_create; 15201 struct lpfc_dmabuf *dmabuf; 15202 LPFC_MBOXQ_t *mbox; 15203 int rc, length, alloclen, status = 0; 15204 int cnt, idx, numrq, page_idx = 0; 15205 uint32_t shdr_status, shdr_add_status; 15206 union lpfc_sli4_cfg_shdr *shdr; 15207 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15208 15209 numrq = phba->cfg_nvmet_mrq; 15210 /* sanity check on array memory */ 15211 if (!hrqp || !drqp || !cqp || !numrq) 15212 return -ENODEV; 15213 if (!phba->sli4_hba.pc_sli4_params.supported) 15214 hw_page_size = SLI4_PAGE_SIZE; 15215 15216 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15217 if (!mbox) 15218 return -ENOMEM; 15219 15220 length = sizeof(struct lpfc_mbx_rq_create_v2); 15221 length += ((2 * numrq * hrqp[0]->page_count) * 15222 sizeof(struct dma_address)); 15223 15224 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15225 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 15226 LPFC_SLI4_MBX_NEMBED); 15227 if (alloclen < length) { 15228 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15229 "3099 Allocated DMA memory size (%d) is " 15230 "less than the requested DMA memory size " 15231 "(%d)\n", alloclen, length); 15232 status = -ENOMEM; 15233 goto out; 15234 } 15235 15236 15237 15238 rq_create = mbox->sge_array->addr[0]; 15239 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 15240 15241 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 15242 cnt = 0; 15243 15244 for (idx = 0; idx < numrq; idx++) { 15245 hrq = hrqp[idx]; 15246 drq = drqp[idx]; 15247 cq = cqp[idx]; 15248 15249 /* sanity check on queue memory */ 15250 if (!hrq || !drq || !cq) { 15251 status = -ENODEV; 15252 goto out; 15253 } 15254 15255 if (hrq->entry_count != drq->entry_count) { 15256 status = -EINVAL; 15257 goto out; 15258 } 15259 15260 if (idx == 0) { 15261 bf_set(lpfc_mbx_rq_create_num_pages, 15262 &rq_create->u.request, 15263 hrq->page_count); 15264 bf_set(lpfc_mbx_rq_create_rq_cnt, 15265 &rq_create->u.request, (numrq * 2)); 15266 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 15267 1); 15268 bf_set(lpfc_rq_context_base_cq, 15269 &rq_create->u.request.context, 15270 cq->queue_id); 15271 bf_set(lpfc_rq_context_data_size, 15272 &rq_create->u.request.context, 15273 LPFC_DATA_BUF_SIZE); 15274 bf_set(lpfc_rq_context_hdr_size, 15275 &rq_create->u.request.context, 15276 LPFC_HDR_BUF_SIZE); 15277 bf_set(lpfc_rq_context_rqe_count_1, 15278 &rq_create->u.request.context, 15279 hrq->entry_count); 15280 bf_set(lpfc_rq_context_rqe_size, 15281 &rq_create->u.request.context, 15282 LPFC_RQE_SIZE_8); 15283 bf_set(lpfc_rq_context_page_size, 15284 &rq_create->u.request.context, 15285 (PAGE_SIZE/SLI4_PAGE_SIZE)); 15286 } 15287 rc = 0; 15288 list_for_each_entry(dmabuf, &hrq->page_list, list) { 15289 memset(dmabuf->virt, 0, hw_page_size); 15290 cnt = page_idx + dmabuf->buffer_tag; 15291 rq_create->u.request.page[cnt].addr_lo = 15292 putPaddrLow(dmabuf->phys); 15293 rq_create->u.request.page[cnt].addr_hi = 15294 putPaddrHigh(dmabuf->phys); 15295 rc++; 15296 } 15297 page_idx += rc; 15298 15299 rc = 0; 15300 list_for_each_entry(dmabuf, &drq->page_list, list) { 15301 memset(dmabuf->virt, 0, hw_page_size); 15302 cnt = page_idx + dmabuf->buffer_tag; 15303 rq_create->u.request.page[cnt].addr_lo = 15304 putPaddrLow(dmabuf->phys); 15305 rq_create->u.request.page[cnt].addr_hi = 15306 putPaddrHigh(dmabuf->phys); 15307 rc++; 15308 } 15309 page_idx += rc; 15310 15311 hrq->db_format = LPFC_DB_RING_FORMAT; 15312 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15313 hrq->type = LPFC_HRQ; 15314 hrq->assoc_qid = cq->queue_id; 15315 hrq->subtype = subtype; 15316 hrq->host_index = 0; 15317 hrq->hba_index = 0; 15318 15319 drq->db_format = LPFC_DB_RING_FORMAT; 15320 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15321 drq->type = LPFC_DRQ; 15322 drq->assoc_qid = cq->queue_id; 15323 drq->subtype = subtype; 15324 drq->host_index = 0; 15325 drq->hba_index = 0; 15326 15327 list_add_tail(&hrq->list, &cq->child_list); 15328 list_add_tail(&drq->list, &cq->child_list); 15329 } 15330 15331 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15332 /* The IOCTL status is embedded in the mailbox subheader. */ 15333 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15334 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15335 if (shdr_status || shdr_add_status || rc) { 15336 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15337 "3120 RQ_CREATE mailbox failed with " 15338 "status x%x add_status x%x, mbx status x%x\n", 15339 shdr_status, shdr_add_status, rc); 15340 status = -ENXIO; 15341 goto out; 15342 } 15343 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15344 if (rc == 0xFFFF) { 15345 status = -ENXIO; 15346 goto out; 15347 } 15348 15349 /* Initialize all RQs with associated queue id */ 15350 for (idx = 0; idx < numrq; idx++) { 15351 hrq = hrqp[idx]; 15352 hrq->queue_id = rc + (2 * idx); 15353 drq = drqp[idx]; 15354 drq->queue_id = rc + (2 * idx) + 1; 15355 } 15356 15357 out: 15358 lpfc_sli4_mbox_cmd_free(phba, mbox); 15359 return status; 15360 } 15361 15362 /** 15363 * lpfc_eq_destroy - Destroy an event Queue on the HBA 15364 * @eq: The queue structure associated with the queue to destroy. 15365 * 15366 * This function destroys a queue, as detailed in @eq by sending an mailbox 15367 * command, specific to the type of queue, to the HBA. 15368 * 15369 * The @eq struct is used to get the queue ID of the queue to destroy. 15370 * 15371 * On success this function will return a zero. If the queue destroy mailbox 15372 * command fails this function will return -ENXIO. 15373 **/ 15374 int 15375 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 15376 { 15377 LPFC_MBOXQ_t *mbox; 15378 int rc, length, status = 0; 15379 uint32_t shdr_status, shdr_add_status; 15380 union lpfc_sli4_cfg_shdr *shdr; 15381 15382 /* sanity check on queue memory */ 15383 if (!eq) 15384 return -ENODEV; 15385 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 15386 if (!mbox) 15387 return -ENOMEM; 15388 length = (sizeof(struct lpfc_mbx_eq_destroy) - 15389 sizeof(struct lpfc_sli4_cfg_mhdr)); 15390 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15391 LPFC_MBOX_OPCODE_EQ_DESTROY, 15392 length, LPFC_SLI4_MBX_EMBED); 15393 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 15394 eq->queue_id); 15395 mbox->vport = eq->phba->pport; 15396 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15397 15398 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 15399 /* The IOCTL status is embedded in the mailbox subheader. */ 15400 shdr = (union lpfc_sli4_cfg_shdr *) 15401 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 15402 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15403 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15404 if (shdr_status || shdr_add_status || rc) { 15405 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15406 "2505 EQ_DESTROY mailbox failed with " 15407 "status x%x add_status x%x, mbx status x%x\n", 15408 shdr_status, shdr_add_status, rc); 15409 status = -ENXIO; 15410 } 15411 15412 /* Remove eq from any list */ 15413 list_del_init(&eq->list); 15414 mempool_free(mbox, eq->phba->mbox_mem_pool); 15415 return status; 15416 } 15417 15418 /** 15419 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 15420 * @cq: The queue structure associated with the queue to destroy. 15421 * 15422 * This function destroys a queue, as detailed in @cq by sending an mailbox 15423 * command, specific to the type of queue, to the HBA. 15424 * 15425 * The @cq struct is used to get the queue ID of the queue to destroy. 15426 * 15427 * On success this function will return a zero. If the queue destroy mailbox 15428 * command fails this function will return -ENXIO. 15429 **/ 15430 int 15431 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 15432 { 15433 LPFC_MBOXQ_t *mbox; 15434 int rc, length, status = 0; 15435 uint32_t shdr_status, shdr_add_status; 15436 union lpfc_sli4_cfg_shdr *shdr; 15437 15438 /* sanity check on queue memory */ 15439 if (!cq) 15440 return -ENODEV; 15441 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 15442 if (!mbox) 15443 return -ENOMEM; 15444 length = (sizeof(struct lpfc_mbx_cq_destroy) - 15445 sizeof(struct lpfc_sli4_cfg_mhdr)); 15446 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15447 LPFC_MBOX_OPCODE_CQ_DESTROY, 15448 length, LPFC_SLI4_MBX_EMBED); 15449 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 15450 cq->queue_id); 15451 mbox->vport = cq->phba->pport; 15452 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15453 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 15454 /* The IOCTL status is embedded in the mailbox subheader. */ 15455 shdr = (union lpfc_sli4_cfg_shdr *) 15456 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 15457 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15458 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15459 if (shdr_status || shdr_add_status || rc) { 15460 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15461 "2506 CQ_DESTROY mailbox failed with " 15462 "status x%x add_status x%x, mbx status x%x\n", 15463 shdr_status, shdr_add_status, rc); 15464 status = -ENXIO; 15465 } 15466 /* Remove cq from any list */ 15467 list_del_init(&cq->list); 15468 mempool_free(mbox, cq->phba->mbox_mem_pool); 15469 return status; 15470 } 15471 15472 /** 15473 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 15474 * @qm: The queue structure associated with the queue to destroy. 15475 * 15476 * This function destroys a queue, as detailed in @mq by sending an mailbox 15477 * command, specific to the type of queue, to the HBA. 15478 * 15479 * The @mq struct is used to get the queue ID of the queue to destroy. 15480 * 15481 * On success this function will return a zero. If the queue destroy mailbox 15482 * command fails this function will return -ENXIO. 15483 **/ 15484 int 15485 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 15486 { 15487 LPFC_MBOXQ_t *mbox; 15488 int rc, length, status = 0; 15489 uint32_t shdr_status, shdr_add_status; 15490 union lpfc_sli4_cfg_shdr *shdr; 15491 15492 /* sanity check on queue memory */ 15493 if (!mq) 15494 return -ENODEV; 15495 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 15496 if (!mbox) 15497 return -ENOMEM; 15498 length = (sizeof(struct lpfc_mbx_mq_destroy) - 15499 sizeof(struct lpfc_sli4_cfg_mhdr)); 15500 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15501 LPFC_MBOX_OPCODE_MQ_DESTROY, 15502 length, LPFC_SLI4_MBX_EMBED); 15503 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 15504 mq->queue_id); 15505 mbox->vport = mq->phba->pport; 15506 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15507 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 15508 /* The IOCTL status is embedded in the mailbox subheader. */ 15509 shdr = (union lpfc_sli4_cfg_shdr *) 15510 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 15511 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15512 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15513 if (shdr_status || shdr_add_status || rc) { 15514 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15515 "2507 MQ_DESTROY mailbox failed with " 15516 "status x%x add_status x%x, mbx status x%x\n", 15517 shdr_status, shdr_add_status, rc); 15518 status = -ENXIO; 15519 } 15520 /* Remove mq from any list */ 15521 list_del_init(&mq->list); 15522 mempool_free(mbox, mq->phba->mbox_mem_pool); 15523 return status; 15524 } 15525 15526 /** 15527 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 15528 * @wq: The queue structure associated with the queue to destroy. 15529 * 15530 * This function destroys a queue, as detailed in @wq by sending an mailbox 15531 * command, specific to the type of queue, to the HBA. 15532 * 15533 * The @wq struct is used to get the queue ID of the queue to destroy. 15534 * 15535 * On success this function will return a zero. If the queue destroy mailbox 15536 * command fails this function will return -ENXIO. 15537 **/ 15538 int 15539 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 15540 { 15541 LPFC_MBOXQ_t *mbox; 15542 int rc, length, status = 0; 15543 uint32_t shdr_status, shdr_add_status; 15544 union lpfc_sli4_cfg_shdr *shdr; 15545 15546 /* sanity check on queue memory */ 15547 if (!wq) 15548 return -ENODEV; 15549 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 15550 if (!mbox) 15551 return -ENOMEM; 15552 length = (sizeof(struct lpfc_mbx_wq_destroy) - 15553 sizeof(struct lpfc_sli4_cfg_mhdr)); 15554 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15555 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 15556 length, LPFC_SLI4_MBX_EMBED); 15557 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 15558 wq->queue_id); 15559 mbox->vport = wq->phba->pport; 15560 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15561 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 15562 shdr = (union lpfc_sli4_cfg_shdr *) 15563 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 15564 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15565 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15566 if (shdr_status || shdr_add_status || rc) { 15567 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15568 "2508 WQ_DESTROY mailbox failed with " 15569 "status x%x add_status x%x, mbx status x%x\n", 15570 shdr_status, shdr_add_status, rc); 15571 status = -ENXIO; 15572 } 15573 /* Remove wq from any list */ 15574 list_del_init(&wq->list); 15575 kfree(wq->pring); 15576 wq->pring = NULL; 15577 mempool_free(mbox, wq->phba->mbox_mem_pool); 15578 return status; 15579 } 15580 15581 /** 15582 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 15583 * @rq: The queue structure associated with the queue to destroy. 15584 * 15585 * This function destroys a queue, as detailed in @rq by sending an mailbox 15586 * command, specific to the type of queue, to the HBA. 15587 * 15588 * The @rq struct is used to get the queue ID of the queue to destroy. 15589 * 15590 * On success this function will return a zero. If the queue destroy mailbox 15591 * command fails this function will return -ENXIO. 15592 **/ 15593 int 15594 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 15595 struct lpfc_queue *drq) 15596 { 15597 LPFC_MBOXQ_t *mbox; 15598 int rc, length, status = 0; 15599 uint32_t shdr_status, shdr_add_status; 15600 union lpfc_sli4_cfg_shdr *shdr; 15601 15602 /* sanity check on queue memory */ 15603 if (!hrq || !drq) 15604 return -ENODEV; 15605 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 15606 if (!mbox) 15607 return -ENOMEM; 15608 length = (sizeof(struct lpfc_mbx_rq_destroy) - 15609 sizeof(struct lpfc_sli4_cfg_mhdr)); 15610 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15611 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 15612 length, LPFC_SLI4_MBX_EMBED); 15613 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 15614 hrq->queue_id); 15615 mbox->vport = hrq->phba->pport; 15616 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15617 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 15618 /* The IOCTL status is embedded in the mailbox subheader. */ 15619 shdr = (union lpfc_sli4_cfg_shdr *) 15620 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 15621 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15622 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15623 if (shdr_status || shdr_add_status || rc) { 15624 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15625 "2509 RQ_DESTROY mailbox failed with " 15626 "status x%x add_status x%x, mbx status x%x\n", 15627 shdr_status, shdr_add_status, rc); 15628 if (rc != MBX_TIMEOUT) 15629 mempool_free(mbox, hrq->phba->mbox_mem_pool); 15630 return -ENXIO; 15631 } 15632 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 15633 drq->queue_id); 15634 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 15635 shdr = (union lpfc_sli4_cfg_shdr *) 15636 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 15637 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15638 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15639 if (shdr_status || shdr_add_status || rc) { 15640 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15641 "2510 RQ_DESTROY mailbox failed with " 15642 "status x%x add_status x%x, mbx status x%x\n", 15643 shdr_status, shdr_add_status, rc); 15644 status = -ENXIO; 15645 } 15646 list_del_init(&hrq->list); 15647 list_del_init(&drq->list); 15648 mempool_free(mbox, hrq->phba->mbox_mem_pool); 15649 return status; 15650 } 15651 15652 /** 15653 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 15654 * @phba: The virtual port for which this call being executed. 15655 * @pdma_phys_addr0: Physical address of the 1st SGL page. 15656 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 15657 * @xritag: the xritag that ties this io to the SGL pages. 15658 * 15659 * This routine will post the sgl pages for the IO that has the xritag 15660 * that is in the iocbq structure. The xritag is assigned during iocbq 15661 * creation and persists for as long as the driver is loaded. 15662 * if the caller has fewer than 256 scatter gather segments to map then 15663 * pdma_phys_addr1 should be 0. 15664 * If the caller needs to map more than 256 scatter gather segment then 15665 * pdma_phys_addr1 should be a valid physical address. 15666 * physical address for SGLs must be 64 byte aligned. 15667 * If you are going to map 2 SGL's then the first one must have 256 entries 15668 * the second sgl can have between 1 and 256 entries. 15669 * 15670 * Return codes: 15671 * 0 - Success 15672 * -ENXIO, -ENOMEM - Failure 15673 **/ 15674 int 15675 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 15676 dma_addr_t pdma_phys_addr0, 15677 dma_addr_t pdma_phys_addr1, 15678 uint16_t xritag) 15679 { 15680 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 15681 LPFC_MBOXQ_t *mbox; 15682 int rc; 15683 uint32_t shdr_status, shdr_add_status; 15684 uint32_t mbox_tmo; 15685 union lpfc_sli4_cfg_shdr *shdr; 15686 15687 if (xritag == NO_XRI) { 15688 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15689 "0364 Invalid param:\n"); 15690 return -EINVAL; 15691 } 15692 15693 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15694 if (!mbox) 15695 return -ENOMEM; 15696 15697 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15698 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 15699 sizeof(struct lpfc_mbx_post_sgl_pages) - 15700 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 15701 15702 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 15703 &mbox->u.mqe.un.post_sgl_pages; 15704 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 15705 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 15706 15707 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 15708 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 15709 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 15710 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 15711 15712 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 15713 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 15714 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 15715 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 15716 if (!phba->sli4_hba.intr_enable) 15717 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15718 else { 15719 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 15720 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 15721 } 15722 /* The IOCTL status is embedded in the mailbox subheader. */ 15723 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 15724 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15725 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15726 if (rc != MBX_TIMEOUT) 15727 mempool_free(mbox, phba->mbox_mem_pool); 15728 if (shdr_status || shdr_add_status || rc) { 15729 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15730 "2511 POST_SGL mailbox failed with " 15731 "status x%x add_status x%x, mbx status x%x\n", 15732 shdr_status, shdr_add_status, rc); 15733 } 15734 return 0; 15735 } 15736 15737 /** 15738 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 15739 * @phba: pointer to lpfc hba data structure. 15740 * 15741 * This routine is invoked to post rpi header templates to the 15742 * HBA consistent with the SLI-4 interface spec. This routine 15743 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 15744 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 15745 * 15746 * Returns 15747 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 15748 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 15749 **/ 15750 static uint16_t 15751 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 15752 { 15753 unsigned long xri; 15754 15755 /* 15756 * Fetch the next logical xri. Because this index is logical, 15757 * the driver starts at 0 each time. 15758 */ 15759 spin_lock_irq(&phba->hbalock); 15760 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 15761 phba->sli4_hba.max_cfg_param.max_xri, 0); 15762 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 15763 spin_unlock_irq(&phba->hbalock); 15764 return NO_XRI; 15765 } else { 15766 set_bit(xri, phba->sli4_hba.xri_bmask); 15767 phba->sli4_hba.max_cfg_param.xri_used++; 15768 } 15769 spin_unlock_irq(&phba->hbalock); 15770 return xri; 15771 } 15772 15773 /** 15774 * lpfc_sli4_free_xri - Release an xri for reuse. 15775 * @phba: pointer to lpfc hba data structure. 15776 * 15777 * This routine is invoked to release an xri to the pool of 15778 * available rpis maintained by the driver. 15779 **/ 15780 static void 15781 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 15782 { 15783 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 15784 phba->sli4_hba.max_cfg_param.xri_used--; 15785 } 15786 } 15787 15788 /** 15789 * lpfc_sli4_free_xri - Release an xri for reuse. 15790 * @phba: pointer to lpfc hba data structure. 15791 * 15792 * This routine is invoked to release an xri to the pool of 15793 * available rpis maintained by the driver. 15794 **/ 15795 void 15796 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 15797 { 15798 spin_lock_irq(&phba->hbalock); 15799 __lpfc_sli4_free_xri(phba, xri); 15800 spin_unlock_irq(&phba->hbalock); 15801 } 15802 15803 /** 15804 * lpfc_sli4_next_xritag - Get an xritag for the io 15805 * @phba: Pointer to HBA context object. 15806 * 15807 * This function gets an xritag for the iocb. If there is no unused xritag 15808 * it will return 0xffff. 15809 * The function returns the allocated xritag if successful, else returns zero. 15810 * Zero is not a valid xritag. 15811 * The caller is not required to hold any lock. 15812 **/ 15813 uint16_t 15814 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 15815 { 15816 uint16_t xri_index; 15817 15818 xri_index = lpfc_sli4_alloc_xri(phba); 15819 if (xri_index == NO_XRI) 15820 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15821 "2004 Failed to allocate XRI.last XRITAG is %d" 15822 " Max XRI is %d, Used XRI is %d\n", 15823 xri_index, 15824 phba->sli4_hba.max_cfg_param.max_xri, 15825 phba->sli4_hba.max_cfg_param.xri_used); 15826 return xri_index; 15827 } 15828 15829 /** 15830 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 15831 * @phba: pointer to lpfc hba data structure. 15832 * @post_sgl_list: pointer to els sgl entry list. 15833 * @count: number of els sgl entries on the list. 15834 * 15835 * This routine is invoked to post a block of driver's sgl pages to the 15836 * HBA using non-embedded mailbox command. No Lock is held. This routine 15837 * is only called when the driver is loading and after all IO has been 15838 * stopped. 15839 **/ 15840 static int 15841 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 15842 struct list_head *post_sgl_list, 15843 int post_cnt) 15844 { 15845 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 15846 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 15847 struct sgl_page_pairs *sgl_pg_pairs; 15848 void *viraddr; 15849 LPFC_MBOXQ_t *mbox; 15850 uint32_t reqlen, alloclen, pg_pairs; 15851 uint32_t mbox_tmo; 15852 uint16_t xritag_start = 0; 15853 int rc = 0; 15854 uint32_t shdr_status, shdr_add_status; 15855 union lpfc_sli4_cfg_shdr *shdr; 15856 15857 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 15858 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 15859 if (reqlen > SLI4_PAGE_SIZE) { 15860 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15861 "2559 Block sgl registration required DMA " 15862 "size (%d) great than a page\n", reqlen); 15863 return -ENOMEM; 15864 } 15865 15866 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15867 if (!mbox) 15868 return -ENOMEM; 15869 15870 /* Allocate DMA memory and set up the non-embedded mailbox command */ 15871 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15872 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 15873 LPFC_SLI4_MBX_NEMBED); 15874 15875 if (alloclen < reqlen) { 15876 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15877 "0285 Allocated DMA memory size (%d) is " 15878 "less than the requested DMA memory " 15879 "size (%d)\n", alloclen, reqlen); 15880 lpfc_sli4_mbox_cmd_free(phba, mbox); 15881 return -ENOMEM; 15882 } 15883 /* Set up the SGL pages in the non-embedded DMA pages */ 15884 viraddr = mbox->sge_array->addr[0]; 15885 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 15886 sgl_pg_pairs = &sgl->sgl_pg_pairs; 15887 15888 pg_pairs = 0; 15889 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 15890 /* Set up the sge entry */ 15891 sgl_pg_pairs->sgl_pg0_addr_lo = 15892 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 15893 sgl_pg_pairs->sgl_pg0_addr_hi = 15894 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 15895 sgl_pg_pairs->sgl_pg1_addr_lo = 15896 cpu_to_le32(putPaddrLow(0)); 15897 sgl_pg_pairs->sgl_pg1_addr_hi = 15898 cpu_to_le32(putPaddrHigh(0)); 15899 15900 /* Keep the first xritag on the list */ 15901 if (pg_pairs == 0) 15902 xritag_start = sglq_entry->sli4_xritag; 15903 sgl_pg_pairs++; 15904 pg_pairs++; 15905 } 15906 15907 /* Complete initialization and perform endian conversion. */ 15908 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 15909 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 15910 sgl->word0 = cpu_to_le32(sgl->word0); 15911 15912 if (!phba->sli4_hba.intr_enable) 15913 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15914 else { 15915 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 15916 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 15917 } 15918 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 15919 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15920 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15921 if (rc != MBX_TIMEOUT) 15922 lpfc_sli4_mbox_cmd_free(phba, mbox); 15923 if (shdr_status || shdr_add_status || rc) { 15924 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15925 "2513 POST_SGL_BLOCK mailbox command failed " 15926 "status x%x add_status x%x mbx status x%x\n", 15927 shdr_status, shdr_add_status, rc); 15928 rc = -ENXIO; 15929 } 15930 return rc; 15931 } 15932 15933 /** 15934 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware 15935 * @phba: pointer to lpfc hba data structure. 15936 * @sblist: pointer to scsi buffer list. 15937 * @count: number of scsi buffers on the list. 15938 * 15939 * This routine is invoked to post a block of @count scsi sgl pages from a 15940 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command. 15941 * No Lock is held. 15942 * 15943 **/ 15944 int 15945 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba, 15946 struct list_head *sblist, 15947 int count) 15948 { 15949 struct lpfc_scsi_buf *psb; 15950 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 15951 struct sgl_page_pairs *sgl_pg_pairs; 15952 void *viraddr; 15953 LPFC_MBOXQ_t *mbox; 15954 uint32_t reqlen, alloclen, pg_pairs; 15955 uint32_t mbox_tmo; 15956 uint16_t xritag_start = 0; 15957 int rc = 0; 15958 uint32_t shdr_status, shdr_add_status; 15959 dma_addr_t pdma_phys_bpl1; 15960 union lpfc_sli4_cfg_shdr *shdr; 15961 15962 /* Calculate the requested length of the dma memory */ 15963 reqlen = count * sizeof(struct sgl_page_pairs) + 15964 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 15965 if (reqlen > SLI4_PAGE_SIZE) { 15966 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 15967 "0217 Block sgl registration required DMA " 15968 "size (%d) great than a page\n", reqlen); 15969 return -ENOMEM; 15970 } 15971 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15972 if (!mbox) { 15973 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15974 "0283 Failed to allocate mbox cmd memory\n"); 15975 return -ENOMEM; 15976 } 15977 15978 /* Allocate DMA memory and set up the non-embedded mailbox command */ 15979 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15980 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 15981 LPFC_SLI4_MBX_NEMBED); 15982 15983 if (alloclen < reqlen) { 15984 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15985 "2561 Allocated DMA memory size (%d) is " 15986 "less than the requested DMA memory " 15987 "size (%d)\n", alloclen, reqlen); 15988 lpfc_sli4_mbox_cmd_free(phba, mbox); 15989 return -ENOMEM; 15990 } 15991 15992 /* Get the first SGE entry from the non-embedded DMA memory */ 15993 viraddr = mbox->sge_array->addr[0]; 15994 15995 /* Set up the SGL pages in the non-embedded DMA pages */ 15996 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 15997 sgl_pg_pairs = &sgl->sgl_pg_pairs; 15998 15999 pg_pairs = 0; 16000 list_for_each_entry(psb, sblist, list) { 16001 /* Set up the sge entry */ 16002 sgl_pg_pairs->sgl_pg0_addr_lo = 16003 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl)); 16004 sgl_pg_pairs->sgl_pg0_addr_hi = 16005 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl)); 16006 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 16007 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE; 16008 else 16009 pdma_phys_bpl1 = 0; 16010 sgl_pg_pairs->sgl_pg1_addr_lo = 16011 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 16012 sgl_pg_pairs->sgl_pg1_addr_hi = 16013 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 16014 /* Keep the first xritag on the list */ 16015 if (pg_pairs == 0) 16016 xritag_start = psb->cur_iocbq.sli4_xritag; 16017 sgl_pg_pairs++; 16018 pg_pairs++; 16019 } 16020 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16021 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 16022 /* Perform endian conversion if necessary */ 16023 sgl->word0 = cpu_to_le32(sgl->word0); 16024 16025 if (!phba->sli4_hba.intr_enable) 16026 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16027 else { 16028 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16029 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16030 } 16031 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16032 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16033 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16034 if (rc != MBX_TIMEOUT) 16035 lpfc_sli4_mbox_cmd_free(phba, mbox); 16036 if (shdr_status || shdr_add_status || rc) { 16037 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16038 "2564 POST_SGL_BLOCK mailbox command failed " 16039 "status x%x add_status x%x mbx status x%x\n", 16040 shdr_status, shdr_add_status, rc); 16041 rc = -ENXIO; 16042 } 16043 return rc; 16044 } 16045 16046 static char *lpfc_rctl_names[] = FC_RCTL_NAMES_INIT; 16047 static char *lpfc_type_names[] = FC_TYPE_NAMES_INIT; 16048 16049 /** 16050 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 16051 * @phba: pointer to lpfc_hba struct that the frame was received on 16052 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16053 * 16054 * This function checks the fields in the @fc_hdr to see if the FC frame is a 16055 * valid type of frame that the LPFC driver will handle. This function will 16056 * return a zero if the frame is a valid frame or a non zero value when the 16057 * frame does not pass the check. 16058 **/ 16059 static int 16060 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 16061 { 16062 /* make rctl_names static to save stack space */ 16063 struct fc_vft_header *fc_vft_hdr; 16064 uint32_t *header = (uint32_t *) fc_hdr; 16065 16066 switch (fc_hdr->fh_r_ctl) { 16067 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 16068 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 16069 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 16070 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 16071 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 16072 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 16073 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 16074 case FC_RCTL_DD_CMD_STATUS: /* command status */ 16075 case FC_RCTL_ELS_REQ: /* extended link services request */ 16076 case FC_RCTL_ELS_REP: /* extended link services reply */ 16077 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 16078 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 16079 case FC_RCTL_BA_NOP: /* basic link service NOP */ 16080 case FC_RCTL_BA_ABTS: /* basic link service abort */ 16081 case FC_RCTL_BA_RMC: /* remove connection */ 16082 case FC_RCTL_BA_ACC: /* basic accept */ 16083 case FC_RCTL_BA_RJT: /* basic reject */ 16084 case FC_RCTL_BA_PRMT: 16085 case FC_RCTL_ACK_1: /* acknowledge_1 */ 16086 case FC_RCTL_ACK_0: /* acknowledge_0 */ 16087 case FC_RCTL_P_RJT: /* port reject */ 16088 case FC_RCTL_F_RJT: /* fabric reject */ 16089 case FC_RCTL_P_BSY: /* port busy */ 16090 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 16091 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 16092 case FC_RCTL_LCR: /* link credit reset */ 16093 case FC_RCTL_END: /* end */ 16094 break; 16095 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 16096 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 16097 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 16098 return lpfc_fc_frame_check(phba, fc_hdr); 16099 default: 16100 goto drop; 16101 } 16102 switch (fc_hdr->fh_type) { 16103 case FC_TYPE_BLS: 16104 case FC_TYPE_ELS: 16105 case FC_TYPE_FCP: 16106 case FC_TYPE_CT: 16107 case FC_TYPE_NVME: 16108 break; 16109 case FC_TYPE_IP: 16110 case FC_TYPE_ILS: 16111 default: 16112 goto drop; 16113 } 16114 16115 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 16116 "2538 Received frame rctl:%s (x%x), type:%s (x%x), " 16117 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 16118 lpfc_rctl_names[fc_hdr->fh_r_ctl], fc_hdr->fh_r_ctl, 16119 lpfc_type_names[fc_hdr->fh_type], fc_hdr->fh_type, 16120 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 16121 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 16122 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 16123 be32_to_cpu(header[6])); 16124 return 0; 16125 drop: 16126 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 16127 "2539 Dropped frame rctl:%s type:%s\n", 16128 lpfc_rctl_names[fc_hdr->fh_r_ctl], 16129 lpfc_type_names[fc_hdr->fh_type]); 16130 return 1; 16131 } 16132 16133 /** 16134 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 16135 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16136 * 16137 * This function processes the FC header to retrieve the VFI from the VF 16138 * header, if one exists. This function will return the VFI if one exists 16139 * or 0 if no VSAN Header exists. 16140 **/ 16141 static uint32_t 16142 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 16143 { 16144 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 16145 16146 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 16147 return 0; 16148 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 16149 } 16150 16151 /** 16152 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 16153 * @phba: Pointer to the HBA structure to search for the vport on 16154 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16155 * @fcfi: The FC Fabric ID that the frame came from 16156 * 16157 * This function searches the @phba for a vport that matches the content of the 16158 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 16159 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 16160 * returns the matching vport pointer or NULL if unable to match frame to a 16161 * vport. 16162 **/ 16163 static struct lpfc_vport * 16164 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 16165 uint16_t fcfi, uint32_t did) 16166 { 16167 struct lpfc_vport **vports; 16168 struct lpfc_vport *vport = NULL; 16169 int i; 16170 16171 if (did == Fabric_DID) 16172 return phba->pport; 16173 if ((phba->pport->fc_flag & FC_PT2PT) && 16174 !(phba->link_state == LPFC_HBA_READY)) 16175 return phba->pport; 16176 16177 vports = lpfc_create_vport_work_array(phba); 16178 if (vports != NULL) { 16179 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 16180 if (phba->fcf.fcfi == fcfi && 16181 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 16182 vports[i]->fc_myDID == did) { 16183 vport = vports[i]; 16184 break; 16185 } 16186 } 16187 } 16188 lpfc_destroy_vport_work_array(phba, vports); 16189 return vport; 16190 } 16191 16192 /** 16193 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 16194 * @vport: The vport to work on. 16195 * 16196 * This function updates the receive sequence time stamp for this vport. The 16197 * receive sequence time stamp indicates the time that the last frame of the 16198 * the sequence that has been idle for the longest amount of time was received. 16199 * the driver uses this time stamp to indicate if any received sequences have 16200 * timed out. 16201 **/ 16202 static void 16203 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 16204 { 16205 struct lpfc_dmabuf *h_buf; 16206 struct hbq_dmabuf *dmabuf = NULL; 16207 16208 /* get the oldest sequence on the rcv list */ 16209 h_buf = list_get_first(&vport->rcv_buffer_list, 16210 struct lpfc_dmabuf, list); 16211 if (!h_buf) 16212 return; 16213 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16214 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 16215 } 16216 16217 /** 16218 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 16219 * @vport: The vport that the received sequences were sent to. 16220 * 16221 * This function cleans up all outstanding received sequences. This is called 16222 * by the driver when a link event or user action invalidates all the received 16223 * sequences. 16224 **/ 16225 void 16226 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 16227 { 16228 struct lpfc_dmabuf *h_buf, *hnext; 16229 struct lpfc_dmabuf *d_buf, *dnext; 16230 struct hbq_dmabuf *dmabuf = NULL; 16231 16232 /* start with the oldest sequence on the rcv list */ 16233 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 16234 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16235 list_del_init(&dmabuf->hbuf.list); 16236 list_for_each_entry_safe(d_buf, dnext, 16237 &dmabuf->dbuf.list, list) { 16238 list_del_init(&d_buf->list); 16239 lpfc_in_buf_free(vport->phba, d_buf); 16240 } 16241 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 16242 } 16243 } 16244 16245 /** 16246 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 16247 * @vport: The vport that the received sequences were sent to. 16248 * 16249 * This function determines whether any received sequences have timed out by 16250 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 16251 * indicates that there is at least one timed out sequence this routine will 16252 * go through the received sequences one at a time from most inactive to most 16253 * active to determine which ones need to be cleaned up. Once it has determined 16254 * that a sequence needs to be cleaned up it will simply free up the resources 16255 * without sending an abort. 16256 **/ 16257 void 16258 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 16259 { 16260 struct lpfc_dmabuf *h_buf, *hnext; 16261 struct lpfc_dmabuf *d_buf, *dnext; 16262 struct hbq_dmabuf *dmabuf = NULL; 16263 unsigned long timeout; 16264 int abort_count = 0; 16265 16266 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 16267 vport->rcv_buffer_time_stamp); 16268 if (list_empty(&vport->rcv_buffer_list) || 16269 time_before(jiffies, timeout)) 16270 return; 16271 /* start with the oldest sequence on the rcv list */ 16272 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 16273 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16274 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 16275 dmabuf->time_stamp); 16276 if (time_before(jiffies, timeout)) 16277 break; 16278 abort_count++; 16279 list_del_init(&dmabuf->hbuf.list); 16280 list_for_each_entry_safe(d_buf, dnext, 16281 &dmabuf->dbuf.list, list) { 16282 list_del_init(&d_buf->list); 16283 lpfc_in_buf_free(vport->phba, d_buf); 16284 } 16285 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 16286 } 16287 if (abort_count) 16288 lpfc_update_rcv_time_stamp(vport); 16289 } 16290 16291 /** 16292 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 16293 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 16294 * 16295 * This function searches through the existing incomplete sequences that have 16296 * been sent to this @vport. If the frame matches one of the incomplete 16297 * sequences then the dbuf in the @dmabuf is added to the list of frames that 16298 * make up that sequence. If no sequence is found that matches this frame then 16299 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 16300 * This function returns a pointer to the first dmabuf in the sequence list that 16301 * the frame was linked to. 16302 **/ 16303 static struct hbq_dmabuf * 16304 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 16305 { 16306 struct fc_frame_header *new_hdr; 16307 struct fc_frame_header *temp_hdr; 16308 struct lpfc_dmabuf *d_buf; 16309 struct lpfc_dmabuf *h_buf; 16310 struct hbq_dmabuf *seq_dmabuf = NULL; 16311 struct hbq_dmabuf *temp_dmabuf = NULL; 16312 uint8_t found = 0; 16313 16314 INIT_LIST_HEAD(&dmabuf->dbuf.list); 16315 dmabuf->time_stamp = jiffies; 16316 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16317 16318 /* Use the hdr_buf to find the sequence that this frame belongs to */ 16319 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 16320 temp_hdr = (struct fc_frame_header *)h_buf->virt; 16321 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 16322 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 16323 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 16324 continue; 16325 /* found a pending sequence that matches this frame */ 16326 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16327 break; 16328 } 16329 if (!seq_dmabuf) { 16330 /* 16331 * This indicates first frame received for this sequence. 16332 * Queue the buffer on the vport's rcv_buffer_list. 16333 */ 16334 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 16335 lpfc_update_rcv_time_stamp(vport); 16336 return dmabuf; 16337 } 16338 temp_hdr = seq_dmabuf->hbuf.virt; 16339 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 16340 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 16341 list_del_init(&seq_dmabuf->hbuf.list); 16342 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 16343 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 16344 lpfc_update_rcv_time_stamp(vport); 16345 return dmabuf; 16346 } 16347 /* move this sequence to the tail to indicate a young sequence */ 16348 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 16349 seq_dmabuf->time_stamp = jiffies; 16350 lpfc_update_rcv_time_stamp(vport); 16351 if (list_empty(&seq_dmabuf->dbuf.list)) { 16352 temp_hdr = dmabuf->hbuf.virt; 16353 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 16354 return seq_dmabuf; 16355 } 16356 /* find the correct place in the sequence to insert this frame */ 16357 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 16358 while (!found) { 16359 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16360 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 16361 /* 16362 * If the frame's sequence count is greater than the frame on 16363 * the list then insert the frame right after this frame 16364 */ 16365 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 16366 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 16367 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 16368 found = 1; 16369 break; 16370 } 16371 16372 if (&d_buf->list == &seq_dmabuf->dbuf.list) 16373 break; 16374 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 16375 } 16376 16377 if (found) 16378 return seq_dmabuf; 16379 return NULL; 16380 } 16381 16382 /** 16383 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 16384 * @vport: pointer to a vitural port 16385 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16386 * 16387 * This function tries to abort from the partially assembed sequence, described 16388 * by the information from basic abbort @dmabuf. It checks to see whether such 16389 * partially assembled sequence held by the driver. If so, it shall free up all 16390 * the frames from the partially assembled sequence. 16391 * 16392 * Return 16393 * true -- if there is matching partially assembled sequence present and all 16394 * the frames freed with the sequence; 16395 * false -- if there is no matching partially assembled sequence present so 16396 * nothing got aborted in the lower layer driver 16397 **/ 16398 static bool 16399 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 16400 struct hbq_dmabuf *dmabuf) 16401 { 16402 struct fc_frame_header *new_hdr; 16403 struct fc_frame_header *temp_hdr; 16404 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 16405 struct hbq_dmabuf *seq_dmabuf = NULL; 16406 16407 /* Use the hdr_buf to find the sequence that matches this frame */ 16408 INIT_LIST_HEAD(&dmabuf->dbuf.list); 16409 INIT_LIST_HEAD(&dmabuf->hbuf.list); 16410 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16411 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 16412 temp_hdr = (struct fc_frame_header *)h_buf->virt; 16413 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 16414 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 16415 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 16416 continue; 16417 /* found a pending sequence that matches this frame */ 16418 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16419 break; 16420 } 16421 16422 /* Free up all the frames from the partially assembled sequence */ 16423 if (seq_dmabuf) { 16424 list_for_each_entry_safe(d_buf, n_buf, 16425 &seq_dmabuf->dbuf.list, list) { 16426 list_del_init(&d_buf->list); 16427 lpfc_in_buf_free(vport->phba, d_buf); 16428 } 16429 return true; 16430 } 16431 return false; 16432 } 16433 16434 /** 16435 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 16436 * @vport: pointer to a vitural port 16437 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16438 * 16439 * This function tries to abort from the assembed sequence from upper level 16440 * protocol, described by the information from basic abbort @dmabuf. It 16441 * checks to see whether such pending context exists at upper level protocol. 16442 * If so, it shall clean up the pending context. 16443 * 16444 * Return 16445 * true -- if there is matching pending context of the sequence cleaned 16446 * at ulp; 16447 * false -- if there is no matching pending context of the sequence present 16448 * at ulp. 16449 **/ 16450 static bool 16451 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 16452 { 16453 struct lpfc_hba *phba = vport->phba; 16454 int handled; 16455 16456 /* Accepting abort at ulp with SLI4 only */ 16457 if (phba->sli_rev < LPFC_SLI_REV4) 16458 return false; 16459 16460 /* Register all caring upper level protocols to attend abort */ 16461 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 16462 if (handled) 16463 return true; 16464 16465 return false; 16466 } 16467 16468 /** 16469 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 16470 * @phba: Pointer to HBA context object. 16471 * @cmd_iocbq: pointer to the command iocbq structure. 16472 * @rsp_iocbq: pointer to the response iocbq structure. 16473 * 16474 * This function handles the sequence abort response iocb command complete 16475 * event. It properly releases the memory allocated to the sequence abort 16476 * accept iocb. 16477 **/ 16478 static void 16479 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 16480 struct lpfc_iocbq *cmd_iocbq, 16481 struct lpfc_iocbq *rsp_iocbq) 16482 { 16483 struct lpfc_nodelist *ndlp; 16484 16485 if (cmd_iocbq) { 16486 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 16487 lpfc_nlp_put(ndlp); 16488 lpfc_nlp_not_used(ndlp); 16489 lpfc_sli_release_iocbq(phba, cmd_iocbq); 16490 } 16491 16492 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 16493 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 16494 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16495 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 16496 rsp_iocbq->iocb.ulpStatus, 16497 rsp_iocbq->iocb.un.ulpWord[4]); 16498 } 16499 16500 /** 16501 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 16502 * @phba: Pointer to HBA context object. 16503 * @xri: xri id in transaction. 16504 * 16505 * This function validates the xri maps to the known range of XRIs allocated an 16506 * used by the driver. 16507 **/ 16508 uint16_t 16509 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 16510 uint16_t xri) 16511 { 16512 uint16_t i; 16513 16514 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 16515 if (xri == phba->sli4_hba.xri_ids[i]) 16516 return i; 16517 } 16518 return NO_XRI; 16519 } 16520 16521 /** 16522 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 16523 * @phba: Pointer to HBA context object. 16524 * @fc_hdr: pointer to a FC frame header. 16525 * 16526 * This function sends a basic response to a previous unsol sequence abort 16527 * event after aborting the sequence handling. 16528 **/ 16529 void 16530 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 16531 struct fc_frame_header *fc_hdr, bool aborted) 16532 { 16533 struct lpfc_hba *phba = vport->phba; 16534 struct lpfc_iocbq *ctiocb = NULL; 16535 struct lpfc_nodelist *ndlp; 16536 uint16_t oxid, rxid, xri, lxri; 16537 uint32_t sid, fctl; 16538 IOCB_t *icmd; 16539 int rc; 16540 16541 if (!lpfc_is_link_up(phba)) 16542 return; 16543 16544 sid = sli4_sid_from_fc_hdr(fc_hdr); 16545 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 16546 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 16547 16548 ndlp = lpfc_findnode_did(vport, sid); 16549 if (!ndlp) { 16550 ndlp = lpfc_nlp_init(vport, sid); 16551 if (!ndlp) { 16552 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 16553 "1268 Failed to allocate ndlp for " 16554 "oxid:x%x SID:x%x\n", oxid, sid); 16555 return; 16556 } 16557 /* Put ndlp onto pport node list */ 16558 lpfc_enqueue_node(vport, ndlp); 16559 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 16560 /* re-setup ndlp without removing from node list */ 16561 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 16562 if (!ndlp) { 16563 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 16564 "3275 Failed to active ndlp found " 16565 "for oxid:x%x SID:x%x\n", oxid, sid); 16566 return; 16567 } 16568 } 16569 16570 /* Allocate buffer for rsp iocb */ 16571 ctiocb = lpfc_sli_get_iocbq(phba); 16572 if (!ctiocb) 16573 return; 16574 16575 /* Extract the F_CTL field from FC_HDR */ 16576 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 16577 16578 icmd = &ctiocb->iocb; 16579 icmd->un.xseq64.bdl.bdeSize = 0; 16580 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 16581 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 16582 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 16583 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 16584 16585 /* Fill in the rest of iocb fields */ 16586 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 16587 icmd->ulpBdeCount = 0; 16588 icmd->ulpLe = 1; 16589 icmd->ulpClass = CLASS3; 16590 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 16591 ctiocb->context1 = lpfc_nlp_get(ndlp); 16592 16593 ctiocb->iocb_cmpl = NULL; 16594 ctiocb->vport = phba->pport; 16595 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 16596 ctiocb->sli4_lxritag = NO_XRI; 16597 ctiocb->sli4_xritag = NO_XRI; 16598 16599 if (fctl & FC_FC_EX_CTX) 16600 /* Exchange responder sent the abort so we 16601 * own the oxid. 16602 */ 16603 xri = oxid; 16604 else 16605 xri = rxid; 16606 lxri = lpfc_sli4_xri_inrange(phba, xri); 16607 if (lxri != NO_XRI) 16608 lpfc_set_rrq_active(phba, ndlp, lxri, 16609 (xri == oxid) ? rxid : oxid, 0); 16610 /* For BA_ABTS from exchange responder, if the logical xri with 16611 * the oxid maps to the FCP XRI range, the port no longer has 16612 * that exchange context, send a BLS_RJT. Override the IOCB for 16613 * a BA_RJT. 16614 */ 16615 if ((fctl & FC_FC_EX_CTX) && 16616 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 16617 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 16618 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 16619 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 16620 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 16621 } 16622 16623 /* If BA_ABTS failed to abort a partially assembled receive sequence, 16624 * the driver no longer has that exchange, send a BLS_RJT. Override 16625 * the IOCB for a BA_RJT. 16626 */ 16627 if (aborted == false) { 16628 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 16629 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 16630 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 16631 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 16632 } 16633 16634 if (fctl & FC_FC_EX_CTX) { 16635 /* ABTS sent by responder to CT exchange, construction 16636 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 16637 * field and RX_ID from ABTS for RX_ID field. 16638 */ 16639 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 16640 } else { 16641 /* ABTS sent by initiator to CT exchange, construction 16642 * of BA_ACC will need to allocate a new XRI as for the 16643 * XRI_TAG field. 16644 */ 16645 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 16646 } 16647 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 16648 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 16649 16650 /* Xmit CT abts response on exchange <xid> */ 16651 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 16652 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 16653 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 16654 16655 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 16656 if (rc == IOCB_ERROR) { 16657 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 16658 "2925 Failed to issue CT ABTS RSP x%x on " 16659 "xri x%x, Data x%x\n", 16660 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 16661 phba->link_state); 16662 lpfc_nlp_put(ndlp); 16663 ctiocb->context1 = NULL; 16664 lpfc_sli_release_iocbq(phba, ctiocb); 16665 } 16666 } 16667 16668 /** 16669 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 16670 * @vport: Pointer to the vport on which this sequence was received 16671 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16672 * 16673 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 16674 * receive sequence is only partially assembed by the driver, it shall abort 16675 * the partially assembled frames for the sequence. Otherwise, if the 16676 * unsolicited receive sequence has been completely assembled and passed to 16677 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 16678 * unsolicited sequence has been aborted. After that, it will issue a basic 16679 * accept to accept the abort. 16680 **/ 16681 static void 16682 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 16683 struct hbq_dmabuf *dmabuf) 16684 { 16685 struct lpfc_hba *phba = vport->phba; 16686 struct fc_frame_header fc_hdr; 16687 uint32_t fctl; 16688 bool aborted; 16689 16690 /* Make a copy of fc_hdr before the dmabuf being released */ 16691 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 16692 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 16693 16694 if (fctl & FC_FC_EX_CTX) { 16695 /* ABTS by responder to exchange, no cleanup needed */ 16696 aborted = true; 16697 } else { 16698 /* ABTS by initiator to exchange, need to do cleanup */ 16699 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 16700 if (aborted == false) 16701 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 16702 } 16703 lpfc_in_buf_free(phba, &dmabuf->dbuf); 16704 16705 if (phba->nvmet_support) { 16706 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 16707 return; 16708 } 16709 16710 /* Respond with BA_ACC or BA_RJT accordingly */ 16711 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 16712 } 16713 16714 /** 16715 * lpfc_seq_complete - Indicates if a sequence is complete 16716 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16717 * 16718 * This function checks the sequence, starting with the frame described by 16719 * @dmabuf, to see if all the frames associated with this sequence are present. 16720 * the frames associated with this sequence are linked to the @dmabuf using the 16721 * dbuf list. This function looks for two major things. 1) That the first frame 16722 * has a sequence count of zero. 2) There is a frame with last frame of sequence 16723 * set. 3) That there are no holes in the sequence count. The function will 16724 * return 1 when the sequence is complete, otherwise it will return 0. 16725 **/ 16726 static int 16727 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 16728 { 16729 struct fc_frame_header *hdr; 16730 struct lpfc_dmabuf *d_buf; 16731 struct hbq_dmabuf *seq_dmabuf; 16732 uint32_t fctl; 16733 int seq_count = 0; 16734 16735 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16736 /* make sure first fame of sequence has a sequence count of zero */ 16737 if (hdr->fh_seq_cnt != seq_count) 16738 return 0; 16739 fctl = (hdr->fh_f_ctl[0] << 16 | 16740 hdr->fh_f_ctl[1] << 8 | 16741 hdr->fh_f_ctl[2]); 16742 /* If last frame of sequence we can return success. */ 16743 if (fctl & FC_FC_END_SEQ) 16744 return 1; 16745 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 16746 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16747 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 16748 /* If there is a hole in the sequence count then fail. */ 16749 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 16750 return 0; 16751 fctl = (hdr->fh_f_ctl[0] << 16 | 16752 hdr->fh_f_ctl[1] << 8 | 16753 hdr->fh_f_ctl[2]); 16754 /* If last frame of sequence we can return success. */ 16755 if (fctl & FC_FC_END_SEQ) 16756 return 1; 16757 } 16758 return 0; 16759 } 16760 16761 /** 16762 * lpfc_prep_seq - Prep sequence for ULP processing 16763 * @vport: Pointer to the vport on which this sequence was received 16764 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16765 * 16766 * This function takes a sequence, described by a list of frames, and creates 16767 * a list of iocbq structures to describe the sequence. This iocbq list will be 16768 * used to issue to the generic unsolicited sequence handler. This routine 16769 * returns a pointer to the first iocbq in the list. If the function is unable 16770 * to allocate an iocbq then it throw out the received frames that were not 16771 * able to be described and return a pointer to the first iocbq. If unable to 16772 * allocate any iocbqs (including the first) this function will return NULL. 16773 **/ 16774 static struct lpfc_iocbq * 16775 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 16776 { 16777 struct hbq_dmabuf *hbq_buf; 16778 struct lpfc_dmabuf *d_buf, *n_buf; 16779 struct lpfc_iocbq *first_iocbq, *iocbq; 16780 struct fc_frame_header *fc_hdr; 16781 uint32_t sid; 16782 uint32_t len, tot_len; 16783 struct ulp_bde64 *pbde; 16784 16785 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 16786 /* remove from receive buffer list */ 16787 list_del_init(&seq_dmabuf->hbuf.list); 16788 lpfc_update_rcv_time_stamp(vport); 16789 /* get the Remote Port's SID */ 16790 sid = sli4_sid_from_fc_hdr(fc_hdr); 16791 tot_len = 0; 16792 /* Get an iocbq struct to fill in. */ 16793 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 16794 if (first_iocbq) { 16795 /* Initialize the first IOCB. */ 16796 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 16797 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 16798 first_iocbq->vport = vport; 16799 16800 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 16801 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 16802 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 16803 first_iocbq->iocb.un.rcvels.parmRo = 16804 sli4_did_from_fc_hdr(fc_hdr); 16805 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 16806 } else 16807 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 16808 first_iocbq->iocb.ulpContext = NO_XRI; 16809 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 16810 be16_to_cpu(fc_hdr->fh_ox_id); 16811 /* iocbq is prepped for internal consumption. Physical vpi. */ 16812 first_iocbq->iocb.unsli3.rcvsli3.vpi = 16813 vport->phba->vpi_ids[vport->vpi]; 16814 /* put the first buffer into the first IOCBq */ 16815 tot_len = bf_get(lpfc_rcqe_length, 16816 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 16817 16818 first_iocbq->context2 = &seq_dmabuf->dbuf; 16819 first_iocbq->context3 = NULL; 16820 first_iocbq->iocb.ulpBdeCount = 1; 16821 if (tot_len > LPFC_DATA_BUF_SIZE) 16822 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 16823 LPFC_DATA_BUF_SIZE; 16824 else 16825 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 16826 16827 first_iocbq->iocb.un.rcvels.remoteID = sid; 16828 16829 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 16830 } 16831 iocbq = first_iocbq; 16832 /* 16833 * Each IOCBq can have two Buffers assigned, so go through the list 16834 * of buffers for this sequence and save two buffers in each IOCBq 16835 */ 16836 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 16837 if (!iocbq) { 16838 lpfc_in_buf_free(vport->phba, d_buf); 16839 continue; 16840 } 16841 if (!iocbq->context3) { 16842 iocbq->context3 = d_buf; 16843 iocbq->iocb.ulpBdeCount++; 16844 /* We need to get the size out of the right CQE */ 16845 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16846 len = bf_get(lpfc_rcqe_length, 16847 &hbq_buf->cq_event.cqe.rcqe_cmpl); 16848 pbde = (struct ulp_bde64 *) 16849 &iocbq->iocb.unsli3.sli3Words[4]; 16850 if (len > LPFC_DATA_BUF_SIZE) 16851 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 16852 else 16853 pbde->tus.f.bdeSize = len; 16854 16855 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 16856 tot_len += len; 16857 } else { 16858 iocbq = lpfc_sli_get_iocbq(vport->phba); 16859 if (!iocbq) { 16860 if (first_iocbq) { 16861 first_iocbq->iocb.ulpStatus = 16862 IOSTAT_FCP_RSP_ERROR; 16863 first_iocbq->iocb.un.ulpWord[4] = 16864 IOERR_NO_RESOURCES; 16865 } 16866 lpfc_in_buf_free(vport->phba, d_buf); 16867 continue; 16868 } 16869 /* We need to get the size out of the right CQE */ 16870 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16871 len = bf_get(lpfc_rcqe_length, 16872 &hbq_buf->cq_event.cqe.rcqe_cmpl); 16873 iocbq->context2 = d_buf; 16874 iocbq->context3 = NULL; 16875 iocbq->iocb.ulpBdeCount = 1; 16876 if (len > LPFC_DATA_BUF_SIZE) 16877 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 16878 LPFC_DATA_BUF_SIZE; 16879 else 16880 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 16881 16882 tot_len += len; 16883 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 16884 16885 iocbq->iocb.un.rcvels.remoteID = sid; 16886 list_add_tail(&iocbq->list, &first_iocbq->list); 16887 } 16888 } 16889 return first_iocbq; 16890 } 16891 16892 static void 16893 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 16894 struct hbq_dmabuf *seq_dmabuf) 16895 { 16896 struct fc_frame_header *fc_hdr; 16897 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 16898 struct lpfc_hba *phba = vport->phba; 16899 16900 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 16901 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 16902 if (!iocbq) { 16903 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16904 "2707 Ring %d handler: Failed to allocate " 16905 "iocb Rctl x%x Type x%x received\n", 16906 LPFC_ELS_RING, 16907 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 16908 return; 16909 } 16910 if (!lpfc_complete_unsol_iocb(phba, 16911 phba->sli4_hba.els_wq->pring, 16912 iocbq, fc_hdr->fh_r_ctl, 16913 fc_hdr->fh_type)) 16914 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16915 "2540 Ring %d handler: unexpected Rctl " 16916 "x%x Type x%x received\n", 16917 LPFC_ELS_RING, 16918 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 16919 16920 /* Free iocb created in lpfc_prep_seq */ 16921 list_for_each_entry_safe(curr_iocb, next_iocb, 16922 &iocbq->list, list) { 16923 list_del_init(&curr_iocb->list); 16924 lpfc_sli_release_iocbq(phba, curr_iocb); 16925 } 16926 lpfc_sli_release_iocbq(phba, iocbq); 16927 } 16928 16929 /** 16930 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 16931 * @phba: Pointer to HBA context object. 16932 * 16933 * This function is called with no lock held. This function processes all 16934 * the received buffers and gives it to upper layers when a received buffer 16935 * indicates that it is the final frame in the sequence. The interrupt 16936 * service routine processes received buffers at interrupt contexts. 16937 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 16938 * appropriate receive function when the final frame in a sequence is received. 16939 **/ 16940 void 16941 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 16942 struct hbq_dmabuf *dmabuf) 16943 { 16944 struct hbq_dmabuf *seq_dmabuf; 16945 struct fc_frame_header *fc_hdr; 16946 struct lpfc_vport *vport; 16947 uint32_t fcfi; 16948 uint32_t did; 16949 16950 /* Process each received buffer */ 16951 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16952 16953 /* check to see if this a valid type of frame */ 16954 if (lpfc_fc_frame_check(phba, fc_hdr)) { 16955 lpfc_in_buf_free(phba, &dmabuf->dbuf); 16956 return; 16957 } 16958 16959 if ((bf_get(lpfc_cqe_code, 16960 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 16961 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 16962 &dmabuf->cq_event.cqe.rcqe_cmpl); 16963 else 16964 fcfi = bf_get(lpfc_rcqe_fcf_id, 16965 &dmabuf->cq_event.cqe.rcqe_cmpl); 16966 16967 /* d_id this frame is directed to */ 16968 did = sli4_did_from_fc_hdr(fc_hdr); 16969 16970 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 16971 if (!vport) { 16972 /* throw out the frame */ 16973 lpfc_in_buf_free(phba, &dmabuf->dbuf); 16974 return; 16975 } 16976 16977 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 16978 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 16979 (did != Fabric_DID)) { 16980 /* 16981 * Throw out the frame if we are not pt2pt. 16982 * The pt2pt protocol allows for discovery frames 16983 * to be received without a registered VPI. 16984 */ 16985 if (!(vport->fc_flag & FC_PT2PT) || 16986 (phba->link_state == LPFC_HBA_READY)) { 16987 lpfc_in_buf_free(phba, &dmabuf->dbuf); 16988 return; 16989 } 16990 } 16991 16992 /* Handle the basic abort sequence (BA_ABTS) event */ 16993 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 16994 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 16995 return; 16996 } 16997 16998 /* Link this frame */ 16999 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 17000 if (!seq_dmabuf) { 17001 /* unable to add frame to vport - throw it out */ 17002 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17003 return; 17004 } 17005 /* If not last frame in sequence continue processing frames. */ 17006 if (!lpfc_seq_complete(seq_dmabuf)) 17007 return; 17008 17009 /* Send the complete sequence to the upper layer protocol */ 17010 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 17011 } 17012 17013 /** 17014 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 17015 * @phba: pointer to lpfc hba data structure. 17016 * 17017 * This routine is invoked to post rpi header templates to the 17018 * HBA consistent with the SLI-4 interface spec. This routine 17019 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17020 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17021 * 17022 * This routine does not require any locks. It's usage is expected 17023 * to be driver load or reset recovery when the driver is 17024 * sequential. 17025 * 17026 * Return codes 17027 * 0 - successful 17028 * -EIO - The mailbox failed to complete successfully. 17029 * When this error occurs, the driver is not guaranteed 17030 * to have any rpi regions posted to the device and 17031 * must either attempt to repost the regions or take a 17032 * fatal error. 17033 **/ 17034 int 17035 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 17036 { 17037 struct lpfc_rpi_hdr *rpi_page; 17038 uint32_t rc = 0; 17039 uint16_t lrpi = 0; 17040 17041 /* SLI4 ports that support extents do not require RPI headers. */ 17042 if (!phba->sli4_hba.rpi_hdrs_in_use) 17043 goto exit; 17044 if (phba->sli4_hba.extents_in_use) 17045 return -EIO; 17046 17047 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 17048 /* 17049 * Assign the rpi headers a physical rpi only if the driver 17050 * has not initialized those resources. A port reset only 17051 * needs the headers posted. 17052 */ 17053 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 17054 LPFC_RPI_RSRC_RDY) 17055 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 17056 17057 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 17058 if (rc != MBX_SUCCESS) { 17059 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17060 "2008 Error %d posting all rpi " 17061 "headers\n", rc); 17062 rc = -EIO; 17063 break; 17064 } 17065 } 17066 17067 exit: 17068 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 17069 LPFC_RPI_RSRC_RDY); 17070 return rc; 17071 } 17072 17073 /** 17074 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 17075 * @phba: pointer to lpfc hba data structure. 17076 * @rpi_page: pointer to the rpi memory region. 17077 * 17078 * This routine is invoked to post a single rpi header to the 17079 * HBA consistent with the SLI-4 interface spec. This memory region 17080 * maps up to 64 rpi context regions. 17081 * 17082 * Return codes 17083 * 0 - successful 17084 * -ENOMEM - No available memory 17085 * -EIO - The mailbox failed to complete successfully. 17086 **/ 17087 int 17088 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 17089 { 17090 LPFC_MBOXQ_t *mboxq; 17091 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 17092 uint32_t rc = 0; 17093 uint32_t shdr_status, shdr_add_status; 17094 union lpfc_sli4_cfg_shdr *shdr; 17095 17096 /* SLI4 ports that support extents do not require RPI headers. */ 17097 if (!phba->sli4_hba.rpi_hdrs_in_use) 17098 return rc; 17099 if (phba->sli4_hba.extents_in_use) 17100 return -EIO; 17101 17102 /* The port is notified of the header region via a mailbox command. */ 17103 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17104 if (!mboxq) { 17105 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17106 "2001 Unable to allocate memory for issuing " 17107 "SLI_CONFIG_SPECIAL mailbox command\n"); 17108 return -ENOMEM; 17109 } 17110 17111 /* Post all rpi memory regions to the port. */ 17112 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 17113 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 17114 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 17115 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 17116 sizeof(struct lpfc_sli4_cfg_mhdr), 17117 LPFC_SLI4_MBX_EMBED); 17118 17119 17120 /* Post the physical rpi to the port for this rpi header. */ 17121 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 17122 rpi_page->start_rpi); 17123 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 17124 hdr_tmpl, rpi_page->page_count); 17125 17126 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 17127 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 17128 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 17129 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 17130 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17131 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17132 if (rc != MBX_TIMEOUT) 17133 mempool_free(mboxq, phba->mbox_mem_pool); 17134 if (shdr_status || shdr_add_status || rc) { 17135 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17136 "2514 POST_RPI_HDR mailbox failed with " 17137 "status x%x add_status x%x, mbx status x%x\n", 17138 shdr_status, shdr_add_status, rc); 17139 rc = -ENXIO; 17140 } 17141 return rc; 17142 } 17143 17144 /** 17145 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 17146 * @phba: pointer to lpfc hba data structure. 17147 * 17148 * This routine is invoked to post rpi header templates to the 17149 * HBA consistent with the SLI-4 interface spec. This routine 17150 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17151 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17152 * 17153 * Returns 17154 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17155 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17156 **/ 17157 int 17158 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 17159 { 17160 unsigned long rpi; 17161 uint16_t max_rpi, rpi_limit; 17162 uint16_t rpi_remaining, lrpi = 0; 17163 struct lpfc_rpi_hdr *rpi_hdr; 17164 unsigned long iflag; 17165 17166 /* 17167 * Fetch the next logical rpi. Because this index is logical, 17168 * the driver starts at 0 each time. 17169 */ 17170 spin_lock_irqsave(&phba->hbalock, iflag); 17171 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 17172 rpi_limit = phba->sli4_hba.next_rpi; 17173 17174 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 17175 if (rpi >= rpi_limit) 17176 rpi = LPFC_RPI_ALLOC_ERROR; 17177 else { 17178 set_bit(rpi, phba->sli4_hba.rpi_bmask); 17179 phba->sli4_hba.max_cfg_param.rpi_used++; 17180 phba->sli4_hba.rpi_count++; 17181 } 17182 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 17183 "0001 rpi:%x max:%x lim:%x\n", 17184 (int) rpi, max_rpi, rpi_limit); 17185 17186 /* 17187 * Don't try to allocate more rpi header regions if the device limit 17188 * has been exhausted. 17189 */ 17190 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 17191 (phba->sli4_hba.rpi_count >= max_rpi)) { 17192 spin_unlock_irqrestore(&phba->hbalock, iflag); 17193 return rpi; 17194 } 17195 17196 /* 17197 * RPI header postings are not required for SLI4 ports capable of 17198 * extents. 17199 */ 17200 if (!phba->sli4_hba.rpi_hdrs_in_use) { 17201 spin_unlock_irqrestore(&phba->hbalock, iflag); 17202 return rpi; 17203 } 17204 17205 /* 17206 * If the driver is running low on rpi resources, allocate another 17207 * page now. Note that the next_rpi value is used because 17208 * it represents how many are actually in use whereas max_rpi notes 17209 * how many are supported max by the device. 17210 */ 17211 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 17212 spin_unlock_irqrestore(&phba->hbalock, iflag); 17213 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 17214 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 17215 if (!rpi_hdr) { 17216 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17217 "2002 Error Could not grow rpi " 17218 "count\n"); 17219 } else { 17220 lrpi = rpi_hdr->start_rpi; 17221 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 17222 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 17223 } 17224 } 17225 17226 return rpi; 17227 } 17228 17229 /** 17230 * lpfc_sli4_free_rpi - Release an rpi for reuse. 17231 * @phba: pointer to lpfc hba data structure. 17232 * 17233 * This routine is invoked to release an rpi to the pool of 17234 * available rpis maintained by the driver. 17235 **/ 17236 static void 17237 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 17238 { 17239 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 17240 phba->sli4_hba.rpi_count--; 17241 phba->sli4_hba.max_cfg_param.rpi_used--; 17242 } 17243 } 17244 17245 /** 17246 * lpfc_sli4_free_rpi - Release an rpi for reuse. 17247 * @phba: pointer to lpfc hba data structure. 17248 * 17249 * This routine is invoked to release an rpi to the pool of 17250 * available rpis maintained by the driver. 17251 **/ 17252 void 17253 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 17254 { 17255 spin_lock_irq(&phba->hbalock); 17256 __lpfc_sli4_free_rpi(phba, rpi); 17257 spin_unlock_irq(&phba->hbalock); 17258 } 17259 17260 /** 17261 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 17262 * @phba: pointer to lpfc hba data structure. 17263 * 17264 * This routine is invoked to remove the memory region that 17265 * provided rpi via a bitmask. 17266 **/ 17267 void 17268 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 17269 { 17270 kfree(phba->sli4_hba.rpi_bmask); 17271 kfree(phba->sli4_hba.rpi_ids); 17272 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 17273 } 17274 17275 /** 17276 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 17277 * @phba: pointer to lpfc hba data structure. 17278 * 17279 * This routine is invoked to remove the memory region that 17280 * provided rpi via a bitmask. 17281 **/ 17282 int 17283 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 17284 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 17285 { 17286 LPFC_MBOXQ_t *mboxq; 17287 struct lpfc_hba *phba = ndlp->phba; 17288 int rc; 17289 17290 /* The port is notified of the header region via a mailbox command. */ 17291 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17292 if (!mboxq) 17293 return -ENOMEM; 17294 17295 /* Post all rpi memory regions to the port. */ 17296 lpfc_resume_rpi(mboxq, ndlp); 17297 if (cmpl) { 17298 mboxq->mbox_cmpl = cmpl; 17299 mboxq->context1 = arg; 17300 mboxq->context2 = ndlp; 17301 } else 17302 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17303 mboxq->vport = ndlp->vport; 17304 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17305 if (rc == MBX_NOT_FINISHED) { 17306 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17307 "2010 Resume RPI Mailbox failed " 17308 "status %d, mbxStatus x%x\n", rc, 17309 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 17310 mempool_free(mboxq, phba->mbox_mem_pool); 17311 return -EIO; 17312 } 17313 return 0; 17314 } 17315 17316 /** 17317 * lpfc_sli4_init_vpi - Initialize a vpi with the port 17318 * @vport: Pointer to the vport for which the vpi is being initialized 17319 * 17320 * This routine is invoked to activate a vpi with the port. 17321 * 17322 * Returns: 17323 * 0 success 17324 * -Evalue otherwise 17325 **/ 17326 int 17327 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 17328 { 17329 LPFC_MBOXQ_t *mboxq; 17330 int rc = 0; 17331 int retval = MBX_SUCCESS; 17332 uint32_t mbox_tmo; 17333 struct lpfc_hba *phba = vport->phba; 17334 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17335 if (!mboxq) 17336 return -ENOMEM; 17337 lpfc_init_vpi(phba, mboxq, vport->vpi); 17338 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 17339 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 17340 if (rc != MBX_SUCCESS) { 17341 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 17342 "2022 INIT VPI Mailbox failed " 17343 "status %d, mbxStatus x%x\n", rc, 17344 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 17345 retval = -EIO; 17346 } 17347 if (rc != MBX_TIMEOUT) 17348 mempool_free(mboxq, vport->phba->mbox_mem_pool); 17349 17350 return retval; 17351 } 17352 17353 /** 17354 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 17355 * @phba: pointer to lpfc hba data structure. 17356 * @mboxq: Pointer to mailbox object. 17357 * 17358 * This routine is invoked to manually add a single FCF record. The caller 17359 * must pass a completely initialized FCF_Record. This routine takes 17360 * care of the nonembedded mailbox operations. 17361 **/ 17362 static void 17363 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 17364 { 17365 void *virt_addr; 17366 union lpfc_sli4_cfg_shdr *shdr; 17367 uint32_t shdr_status, shdr_add_status; 17368 17369 virt_addr = mboxq->sge_array->addr[0]; 17370 /* The IOCTL status is embedded in the mailbox subheader. */ 17371 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 17372 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17373 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17374 17375 if ((shdr_status || shdr_add_status) && 17376 (shdr_status != STATUS_FCF_IN_USE)) 17377 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17378 "2558 ADD_FCF_RECORD mailbox failed with " 17379 "status x%x add_status x%x\n", 17380 shdr_status, shdr_add_status); 17381 17382 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17383 } 17384 17385 /** 17386 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 17387 * @phba: pointer to lpfc hba data structure. 17388 * @fcf_record: pointer to the initialized fcf record to add. 17389 * 17390 * This routine is invoked to manually add a single FCF record. The caller 17391 * must pass a completely initialized FCF_Record. This routine takes 17392 * care of the nonembedded mailbox operations. 17393 **/ 17394 int 17395 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 17396 { 17397 int rc = 0; 17398 LPFC_MBOXQ_t *mboxq; 17399 uint8_t *bytep; 17400 void *virt_addr; 17401 struct lpfc_mbx_sge sge; 17402 uint32_t alloc_len, req_len; 17403 uint32_t fcfindex; 17404 17405 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17406 if (!mboxq) { 17407 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17408 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 17409 return -ENOMEM; 17410 } 17411 17412 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 17413 sizeof(uint32_t); 17414 17415 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17416 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 17417 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 17418 req_len, LPFC_SLI4_MBX_NEMBED); 17419 if (alloc_len < req_len) { 17420 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17421 "2523 Allocated DMA memory size (x%x) is " 17422 "less than the requested DMA memory " 17423 "size (x%x)\n", alloc_len, req_len); 17424 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17425 return -ENOMEM; 17426 } 17427 17428 /* 17429 * Get the first SGE entry from the non-embedded DMA memory. This 17430 * routine only uses a single SGE. 17431 */ 17432 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 17433 virt_addr = mboxq->sge_array->addr[0]; 17434 /* 17435 * Configure the FCF record for FCFI 0. This is the driver's 17436 * hardcoded default and gets used in nonFIP mode. 17437 */ 17438 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 17439 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 17440 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 17441 17442 /* 17443 * Copy the fcf_index and the FCF Record Data. The data starts after 17444 * the FCoE header plus word10. The data copy needs to be endian 17445 * correct. 17446 */ 17447 bytep += sizeof(uint32_t); 17448 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 17449 mboxq->vport = phba->pport; 17450 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 17451 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17452 if (rc == MBX_NOT_FINISHED) { 17453 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17454 "2515 ADD_FCF_RECORD mailbox failed with " 17455 "status 0x%x\n", rc); 17456 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17457 rc = -EIO; 17458 } else 17459 rc = 0; 17460 17461 return rc; 17462 } 17463 17464 /** 17465 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 17466 * @phba: pointer to lpfc hba data structure. 17467 * @fcf_record: pointer to the fcf record to write the default data. 17468 * @fcf_index: FCF table entry index. 17469 * 17470 * This routine is invoked to build the driver's default FCF record. The 17471 * values used are hardcoded. This routine handles memory initialization. 17472 * 17473 **/ 17474 void 17475 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 17476 struct fcf_record *fcf_record, 17477 uint16_t fcf_index) 17478 { 17479 memset(fcf_record, 0, sizeof(struct fcf_record)); 17480 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 17481 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 17482 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 17483 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 17484 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 17485 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 17486 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 17487 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 17488 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 17489 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 17490 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 17491 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 17492 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 17493 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 17494 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 17495 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 17496 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 17497 /* Set the VLAN bit map */ 17498 if (phba->valid_vlan) { 17499 fcf_record->vlan_bitmap[phba->vlan_id / 8] 17500 = 1 << (phba->vlan_id % 8); 17501 } 17502 } 17503 17504 /** 17505 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 17506 * @phba: pointer to lpfc hba data structure. 17507 * @fcf_index: FCF table entry offset. 17508 * 17509 * This routine is invoked to scan the entire FCF table by reading FCF 17510 * record and processing it one at a time starting from the @fcf_index 17511 * for initial FCF discovery or fast FCF failover rediscovery. 17512 * 17513 * Return 0 if the mailbox command is submitted successfully, none 0 17514 * otherwise. 17515 **/ 17516 int 17517 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 17518 { 17519 int rc = 0, error; 17520 LPFC_MBOXQ_t *mboxq; 17521 17522 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 17523 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 17524 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17525 if (!mboxq) { 17526 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17527 "2000 Failed to allocate mbox for " 17528 "READ_FCF cmd\n"); 17529 error = -ENOMEM; 17530 goto fail_fcf_scan; 17531 } 17532 /* Construct the read FCF record mailbox command */ 17533 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 17534 if (rc) { 17535 error = -EINVAL; 17536 goto fail_fcf_scan; 17537 } 17538 /* Issue the mailbox command asynchronously */ 17539 mboxq->vport = phba->pport; 17540 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 17541 17542 spin_lock_irq(&phba->hbalock); 17543 phba->hba_flag |= FCF_TS_INPROG; 17544 spin_unlock_irq(&phba->hbalock); 17545 17546 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17547 if (rc == MBX_NOT_FINISHED) 17548 error = -EIO; 17549 else { 17550 /* Reset eligible FCF count for new scan */ 17551 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 17552 phba->fcf.eligible_fcf_cnt = 0; 17553 error = 0; 17554 } 17555 fail_fcf_scan: 17556 if (error) { 17557 if (mboxq) 17558 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17559 /* FCF scan failed, clear FCF_TS_INPROG flag */ 17560 spin_lock_irq(&phba->hbalock); 17561 phba->hba_flag &= ~FCF_TS_INPROG; 17562 spin_unlock_irq(&phba->hbalock); 17563 } 17564 return error; 17565 } 17566 17567 /** 17568 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 17569 * @phba: pointer to lpfc hba data structure. 17570 * @fcf_index: FCF table entry offset. 17571 * 17572 * This routine is invoked to read an FCF record indicated by @fcf_index 17573 * and to use it for FLOGI roundrobin FCF failover. 17574 * 17575 * Return 0 if the mailbox command is submitted successfully, none 0 17576 * otherwise. 17577 **/ 17578 int 17579 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 17580 { 17581 int rc = 0, error; 17582 LPFC_MBOXQ_t *mboxq; 17583 17584 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17585 if (!mboxq) { 17586 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 17587 "2763 Failed to allocate mbox for " 17588 "READ_FCF cmd\n"); 17589 error = -ENOMEM; 17590 goto fail_fcf_read; 17591 } 17592 /* Construct the read FCF record mailbox command */ 17593 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 17594 if (rc) { 17595 error = -EINVAL; 17596 goto fail_fcf_read; 17597 } 17598 /* Issue the mailbox command asynchronously */ 17599 mboxq->vport = phba->pport; 17600 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 17601 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17602 if (rc == MBX_NOT_FINISHED) 17603 error = -EIO; 17604 else 17605 error = 0; 17606 17607 fail_fcf_read: 17608 if (error && mboxq) 17609 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17610 return error; 17611 } 17612 17613 /** 17614 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 17615 * @phba: pointer to lpfc hba data structure. 17616 * @fcf_index: FCF table entry offset. 17617 * 17618 * This routine is invoked to read an FCF record indicated by @fcf_index to 17619 * determine whether it's eligible for FLOGI roundrobin failover list. 17620 * 17621 * Return 0 if the mailbox command is submitted successfully, none 0 17622 * otherwise. 17623 **/ 17624 int 17625 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 17626 { 17627 int rc = 0, error; 17628 LPFC_MBOXQ_t *mboxq; 17629 17630 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17631 if (!mboxq) { 17632 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 17633 "2758 Failed to allocate mbox for " 17634 "READ_FCF cmd\n"); 17635 error = -ENOMEM; 17636 goto fail_fcf_read; 17637 } 17638 /* Construct the read FCF record mailbox command */ 17639 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 17640 if (rc) { 17641 error = -EINVAL; 17642 goto fail_fcf_read; 17643 } 17644 /* Issue the mailbox command asynchronously */ 17645 mboxq->vport = phba->pport; 17646 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 17647 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17648 if (rc == MBX_NOT_FINISHED) 17649 error = -EIO; 17650 else 17651 error = 0; 17652 17653 fail_fcf_read: 17654 if (error && mboxq) 17655 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17656 return error; 17657 } 17658 17659 /** 17660 * lpfc_check_next_fcf_pri_level 17661 * phba pointer to the lpfc_hba struct for this port. 17662 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 17663 * routine when the rr_bmask is empty. The FCF indecies are put into the 17664 * rr_bmask based on their priority level. Starting from the highest priority 17665 * to the lowest. The most likely FCF candidate will be in the highest 17666 * priority group. When this routine is called it searches the fcf_pri list for 17667 * next lowest priority group and repopulates the rr_bmask with only those 17668 * fcf_indexes. 17669 * returns: 17670 * 1=success 0=failure 17671 **/ 17672 static int 17673 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 17674 { 17675 uint16_t next_fcf_pri; 17676 uint16_t last_index; 17677 struct lpfc_fcf_pri *fcf_pri; 17678 int rc; 17679 int ret = 0; 17680 17681 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 17682 LPFC_SLI4_FCF_TBL_INDX_MAX); 17683 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 17684 "3060 Last IDX %d\n", last_index); 17685 17686 /* Verify the priority list has 2 or more entries */ 17687 spin_lock_irq(&phba->hbalock); 17688 if (list_empty(&phba->fcf.fcf_pri_list) || 17689 list_is_singular(&phba->fcf.fcf_pri_list)) { 17690 spin_unlock_irq(&phba->hbalock); 17691 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 17692 "3061 Last IDX %d\n", last_index); 17693 return 0; /* Empty rr list */ 17694 } 17695 spin_unlock_irq(&phba->hbalock); 17696 17697 next_fcf_pri = 0; 17698 /* 17699 * Clear the rr_bmask and set all of the bits that are at this 17700 * priority. 17701 */ 17702 memset(phba->fcf.fcf_rr_bmask, 0, 17703 sizeof(*phba->fcf.fcf_rr_bmask)); 17704 spin_lock_irq(&phba->hbalock); 17705 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 17706 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 17707 continue; 17708 /* 17709 * the 1st priority that has not FLOGI failed 17710 * will be the highest. 17711 */ 17712 if (!next_fcf_pri) 17713 next_fcf_pri = fcf_pri->fcf_rec.priority; 17714 spin_unlock_irq(&phba->hbalock); 17715 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 17716 rc = lpfc_sli4_fcf_rr_index_set(phba, 17717 fcf_pri->fcf_rec.fcf_index); 17718 if (rc) 17719 return 0; 17720 } 17721 spin_lock_irq(&phba->hbalock); 17722 } 17723 /* 17724 * if next_fcf_pri was not set above and the list is not empty then 17725 * we have failed flogis on all of them. So reset flogi failed 17726 * and start at the beginning. 17727 */ 17728 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 17729 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 17730 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 17731 /* 17732 * the 1st priority that has not FLOGI failed 17733 * will be the highest. 17734 */ 17735 if (!next_fcf_pri) 17736 next_fcf_pri = fcf_pri->fcf_rec.priority; 17737 spin_unlock_irq(&phba->hbalock); 17738 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 17739 rc = lpfc_sli4_fcf_rr_index_set(phba, 17740 fcf_pri->fcf_rec.fcf_index); 17741 if (rc) 17742 return 0; 17743 } 17744 spin_lock_irq(&phba->hbalock); 17745 } 17746 } else 17747 ret = 1; 17748 spin_unlock_irq(&phba->hbalock); 17749 17750 return ret; 17751 } 17752 /** 17753 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 17754 * @phba: pointer to lpfc hba data structure. 17755 * 17756 * This routine is to get the next eligible FCF record index in a round 17757 * robin fashion. If the next eligible FCF record index equals to the 17758 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 17759 * shall be returned, otherwise, the next eligible FCF record's index 17760 * shall be returned. 17761 **/ 17762 uint16_t 17763 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 17764 { 17765 uint16_t next_fcf_index; 17766 17767 initial_priority: 17768 /* Search start from next bit of currently registered FCF index */ 17769 next_fcf_index = phba->fcf.current_rec.fcf_indx; 17770 17771 next_priority: 17772 /* Determine the next fcf index to check */ 17773 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 17774 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 17775 LPFC_SLI4_FCF_TBL_INDX_MAX, 17776 next_fcf_index); 17777 17778 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 17779 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 17780 /* 17781 * If we have wrapped then we need to clear the bits that 17782 * have been tested so that we can detect when we should 17783 * change the priority level. 17784 */ 17785 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 17786 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 17787 } 17788 17789 17790 /* Check roundrobin failover list empty condition */ 17791 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 17792 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 17793 /* 17794 * If next fcf index is not found check if there are lower 17795 * Priority level fcf's in the fcf_priority list. 17796 * Set up the rr_bmask with all of the avaiable fcf bits 17797 * at that level and continue the selection process. 17798 */ 17799 if (lpfc_check_next_fcf_pri_level(phba)) 17800 goto initial_priority; 17801 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 17802 "2844 No roundrobin failover FCF available\n"); 17803 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) 17804 return LPFC_FCOE_FCF_NEXT_NONE; 17805 else { 17806 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 17807 "3063 Only FCF available idx %d, flag %x\n", 17808 next_fcf_index, 17809 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag); 17810 return next_fcf_index; 17811 } 17812 } 17813 17814 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 17815 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 17816 LPFC_FCF_FLOGI_FAILED) { 17817 if (list_is_singular(&phba->fcf.fcf_pri_list)) 17818 return LPFC_FCOE_FCF_NEXT_NONE; 17819 17820 goto next_priority; 17821 } 17822 17823 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 17824 "2845 Get next roundrobin failover FCF (x%x)\n", 17825 next_fcf_index); 17826 17827 return next_fcf_index; 17828 } 17829 17830 /** 17831 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 17832 * @phba: pointer to lpfc hba data structure. 17833 * 17834 * This routine sets the FCF record index in to the eligible bmask for 17835 * roundrobin failover search. It checks to make sure that the index 17836 * does not go beyond the range of the driver allocated bmask dimension 17837 * before setting the bit. 17838 * 17839 * Returns 0 if the index bit successfully set, otherwise, it returns 17840 * -EINVAL. 17841 **/ 17842 int 17843 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 17844 { 17845 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 17846 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 17847 "2610 FCF (x%x) reached driver's book " 17848 "keeping dimension:x%x\n", 17849 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 17850 return -EINVAL; 17851 } 17852 /* Set the eligible FCF record index bmask */ 17853 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 17854 17855 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 17856 "2790 Set FCF (x%x) to roundrobin FCF failover " 17857 "bmask\n", fcf_index); 17858 17859 return 0; 17860 } 17861 17862 /** 17863 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 17864 * @phba: pointer to lpfc hba data structure. 17865 * 17866 * This routine clears the FCF record index from the eligible bmask for 17867 * roundrobin failover search. It checks to make sure that the index 17868 * does not go beyond the range of the driver allocated bmask dimension 17869 * before clearing the bit. 17870 **/ 17871 void 17872 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 17873 { 17874 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 17875 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 17876 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 17877 "2762 FCF (x%x) reached driver's book " 17878 "keeping dimension:x%x\n", 17879 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 17880 return; 17881 } 17882 /* Clear the eligible FCF record index bmask */ 17883 spin_lock_irq(&phba->hbalock); 17884 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 17885 list) { 17886 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 17887 list_del_init(&fcf_pri->list); 17888 break; 17889 } 17890 } 17891 spin_unlock_irq(&phba->hbalock); 17892 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 17893 17894 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 17895 "2791 Clear FCF (x%x) from roundrobin failover " 17896 "bmask\n", fcf_index); 17897 } 17898 17899 /** 17900 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 17901 * @phba: pointer to lpfc hba data structure. 17902 * 17903 * This routine is the completion routine for the rediscover FCF table mailbox 17904 * command. If the mailbox command returned failure, it will try to stop the 17905 * FCF rediscover wait timer. 17906 **/ 17907 static void 17908 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 17909 { 17910 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 17911 uint32_t shdr_status, shdr_add_status; 17912 17913 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 17914 17915 shdr_status = bf_get(lpfc_mbox_hdr_status, 17916 &redisc_fcf->header.cfg_shdr.response); 17917 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 17918 &redisc_fcf->header.cfg_shdr.response); 17919 if (shdr_status || shdr_add_status) { 17920 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 17921 "2746 Requesting for FCF rediscovery failed " 17922 "status x%x add_status x%x\n", 17923 shdr_status, shdr_add_status); 17924 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 17925 spin_lock_irq(&phba->hbalock); 17926 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 17927 spin_unlock_irq(&phba->hbalock); 17928 /* 17929 * CVL event triggered FCF rediscover request failed, 17930 * last resort to re-try current registered FCF entry. 17931 */ 17932 lpfc_retry_pport_discovery(phba); 17933 } else { 17934 spin_lock_irq(&phba->hbalock); 17935 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 17936 spin_unlock_irq(&phba->hbalock); 17937 /* 17938 * DEAD FCF event triggered FCF rediscover request 17939 * failed, last resort to fail over as a link down 17940 * to FCF registration. 17941 */ 17942 lpfc_sli4_fcf_dead_failthrough(phba); 17943 } 17944 } else { 17945 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 17946 "2775 Start FCF rediscover quiescent timer\n"); 17947 /* 17948 * Start FCF rediscovery wait timer for pending FCF 17949 * before rescan FCF record table. 17950 */ 17951 lpfc_fcf_redisc_wait_start_timer(phba); 17952 } 17953 17954 mempool_free(mbox, phba->mbox_mem_pool); 17955 } 17956 17957 /** 17958 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 17959 * @phba: pointer to lpfc hba data structure. 17960 * 17961 * This routine is invoked to request for rediscovery of the entire FCF table 17962 * by the port. 17963 **/ 17964 int 17965 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 17966 { 17967 LPFC_MBOXQ_t *mbox; 17968 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 17969 int rc, length; 17970 17971 /* Cancel retry delay timers to all vports before FCF rediscover */ 17972 lpfc_cancel_all_vport_retry_delay_timer(phba); 17973 17974 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17975 if (!mbox) { 17976 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17977 "2745 Failed to allocate mbox for " 17978 "requesting FCF rediscover.\n"); 17979 return -ENOMEM; 17980 } 17981 17982 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 17983 sizeof(struct lpfc_sli4_cfg_mhdr)); 17984 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17985 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 17986 length, LPFC_SLI4_MBX_EMBED); 17987 17988 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 17989 /* Set count to 0 for invalidating the entire FCF database */ 17990 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 17991 17992 /* Issue the mailbox command asynchronously */ 17993 mbox->vport = phba->pport; 17994 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 17995 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 17996 17997 if (rc == MBX_NOT_FINISHED) { 17998 mempool_free(mbox, phba->mbox_mem_pool); 17999 return -EIO; 18000 } 18001 return 0; 18002 } 18003 18004 /** 18005 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 18006 * @phba: pointer to lpfc hba data structure. 18007 * 18008 * This function is the failover routine as a last resort to the FCF DEAD 18009 * event when driver failed to perform fast FCF failover. 18010 **/ 18011 void 18012 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 18013 { 18014 uint32_t link_state; 18015 18016 /* 18017 * Last resort as FCF DEAD event failover will treat this as 18018 * a link down, but save the link state because we don't want 18019 * it to be changed to Link Down unless it is already down. 18020 */ 18021 link_state = phba->link_state; 18022 lpfc_linkdown(phba); 18023 phba->link_state = link_state; 18024 18025 /* Unregister FCF if no devices connected to it */ 18026 lpfc_unregister_unused_fcf(phba); 18027 } 18028 18029 /** 18030 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 18031 * @phba: pointer to lpfc hba data structure. 18032 * @rgn23_data: pointer to configure region 23 data. 18033 * 18034 * This function gets SLI3 port configure region 23 data through memory dump 18035 * mailbox command. When it successfully retrieves data, the size of the data 18036 * will be returned, otherwise, 0 will be returned. 18037 **/ 18038 static uint32_t 18039 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 18040 { 18041 LPFC_MBOXQ_t *pmb = NULL; 18042 MAILBOX_t *mb; 18043 uint32_t offset = 0; 18044 int rc; 18045 18046 if (!rgn23_data) 18047 return 0; 18048 18049 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18050 if (!pmb) { 18051 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18052 "2600 failed to allocate mailbox memory\n"); 18053 return 0; 18054 } 18055 mb = &pmb->u.mb; 18056 18057 do { 18058 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 18059 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 18060 18061 if (rc != MBX_SUCCESS) { 18062 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 18063 "2601 failed to read config " 18064 "region 23, rc 0x%x Status 0x%x\n", 18065 rc, mb->mbxStatus); 18066 mb->un.varDmp.word_cnt = 0; 18067 } 18068 /* 18069 * dump mem may return a zero when finished or we got a 18070 * mailbox error, either way we are done. 18071 */ 18072 if (mb->un.varDmp.word_cnt == 0) 18073 break; 18074 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 18075 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 18076 18077 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 18078 rgn23_data + offset, 18079 mb->un.varDmp.word_cnt); 18080 offset += mb->un.varDmp.word_cnt; 18081 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 18082 18083 mempool_free(pmb, phba->mbox_mem_pool); 18084 return offset; 18085 } 18086 18087 /** 18088 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 18089 * @phba: pointer to lpfc hba data structure. 18090 * @rgn23_data: pointer to configure region 23 data. 18091 * 18092 * This function gets SLI4 port configure region 23 data through memory dump 18093 * mailbox command. When it successfully retrieves data, the size of the data 18094 * will be returned, otherwise, 0 will be returned. 18095 **/ 18096 static uint32_t 18097 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 18098 { 18099 LPFC_MBOXQ_t *mboxq = NULL; 18100 struct lpfc_dmabuf *mp = NULL; 18101 struct lpfc_mqe *mqe; 18102 uint32_t data_length = 0; 18103 int rc; 18104 18105 if (!rgn23_data) 18106 return 0; 18107 18108 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18109 if (!mboxq) { 18110 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18111 "3105 failed to allocate mailbox memory\n"); 18112 return 0; 18113 } 18114 18115 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 18116 goto out; 18117 mqe = &mboxq->u.mqe; 18118 mp = (struct lpfc_dmabuf *) mboxq->context1; 18119 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18120 if (rc) 18121 goto out; 18122 data_length = mqe->un.mb_words[5]; 18123 if (data_length == 0) 18124 goto out; 18125 if (data_length > DMP_RGN23_SIZE) { 18126 data_length = 0; 18127 goto out; 18128 } 18129 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 18130 out: 18131 mempool_free(mboxq, phba->mbox_mem_pool); 18132 if (mp) { 18133 lpfc_mbuf_free(phba, mp->virt, mp->phys); 18134 kfree(mp); 18135 } 18136 return data_length; 18137 } 18138 18139 /** 18140 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 18141 * @phba: pointer to lpfc hba data structure. 18142 * 18143 * This function read region 23 and parse TLV for port status to 18144 * decide if the user disaled the port. If the TLV indicates the 18145 * port is disabled, the hba_flag is set accordingly. 18146 **/ 18147 void 18148 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 18149 { 18150 uint8_t *rgn23_data = NULL; 18151 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 18152 uint32_t offset = 0; 18153 18154 /* Get adapter Region 23 data */ 18155 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 18156 if (!rgn23_data) 18157 goto out; 18158 18159 if (phba->sli_rev < LPFC_SLI_REV4) 18160 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 18161 else { 18162 if_type = bf_get(lpfc_sli_intf_if_type, 18163 &phba->sli4_hba.sli_intf); 18164 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 18165 goto out; 18166 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 18167 } 18168 18169 if (!data_size) 18170 goto out; 18171 18172 /* Check the region signature first */ 18173 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 18174 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18175 "2619 Config region 23 has bad signature\n"); 18176 goto out; 18177 } 18178 offset += 4; 18179 18180 /* Check the data structure version */ 18181 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 18182 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18183 "2620 Config region 23 has bad version\n"); 18184 goto out; 18185 } 18186 offset += 4; 18187 18188 /* Parse TLV entries in the region */ 18189 while (offset < data_size) { 18190 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 18191 break; 18192 /* 18193 * If the TLV is not driver specific TLV or driver id is 18194 * not linux driver id, skip the record. 18195 */ 18196 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 18197 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 18198 (rgn23_data[offset + 3] != 0)) { 18199 offset += rgn23_data[offset + 1] * 4 + 4; 18200 continue; 18201 } 18202 18203 /* Driver found a driver specific TLV in the config region */ 18204 sub_tlv_len = rgn23_data[offset + 1] * 4; 18205 offset += 4; 18206 tlv_offset = 0; 18207 18208 /* 18209 * Search for configured port state sub-TLV. 18210 */ 18211 while ((offset < data_size) && 18212 (tlv_offset < sub_tlv_len)) { 18213 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 18214 offset += 4; 18215 tlv_offset += 4; 18216 break; 18217 } 18218 if (rgn23_data[offset] != PORT_STE_TYPE) { 18219 offset += rgn23_data[offset + 1] * 4 + 4; 18220 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 18221 continue; 18222 } 18223 18224 /* This HBA contains PORT_STE configured */ 18225 if (!rgn23_data[offset + 2]) 18226 phba->hba_flag |= LINK_DISABLED; 18227 18228 goto out; 18229 } 18230 } 18231 18232 out: 18233 kfree(rgn23_data); 18234 return; 18235 } 18236 18237 /** 18238 * lpfc_wr_object - write an object to the firmware 18239 * @phba: HBA structure that indicates port to create a queue on. 18240 * @dmabuf_list: list of dmabufs to write to the port. 18241 * @size: the total byte value of the objects to write to the port. 18242 * @offset: the current offset to be used to start the transfer. 18243 * 18244 * This routine will create a wr_object mailbox command to send to the port. 18245 * the mailbox command will be constructed using the dma buffers described in 18246 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 18247 * BDEs that the imbedded mailbox can support. The @offset variable will be 18248 * used to indicate the starting offset of the transfer and will also return 18249 * the offset after the write object mailbox has completed. @size is used to 18250 * determine the end of the object and whether the eof bit should be set. 18251 * 18252 * Return 0 is successful and offset will contain the the new offset to use 18253 * for the next write. 18254 * Return negative value for error cases. 18255 **/ 18256 int 18257 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 18258 uint32_t size, uint32_t *offset) 18259 { 18260 struct lpfc_mbx_wr_object *wr_object; 18261 LPFC_MBOXQ_t *mbox; 18262 int rc = 0, i = 0; 18263 uint32_t shdr_status, shdr_add_status; 18264 uint32_t mbox_tmo; 18265 union lpfc_sli4_cfg_shdr *shdr; 18266 struct lpfc_dmabuf *dmabuf; 18267 uint32_t written = 0; 18268 18269 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18270 if (!mbox) 18271 return -ENOMEM; 18272 18273 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 18274 LPFC_MBOX_OPCODE_WRITE_OBJECT, 18275 sizeof(struct lpfc_mbx_wr_object) - 18276 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 18277 18278 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 18279 wr_object->u.request.write_offset = *offset; 18280 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 18281 wr_object->u.request.object_name[0] = 18282 cpu_to_le32(wr_object->u.request.object_name[0]); 18283 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 18284 list_for_each_entry(dmabuf, dmabuf_list, list) { 18285 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 18286 break; 18287 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 18288 wr_object->u.request.bde[i].addrHigh = 18289 putPaddrHigh(dmabuf->phys); 18290 if (written + SLI4_PAGE_SIZE >= size) { 18291 wr_object->u.request.bde[i].tus.f.bdeSize = 18292 (size - written); 18293 written += (size - written); 18294 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 18295 } else { 18296 wr_object->u.request.bde[i].tus.f.bdeSize = 18297 SLI4_PAGE_SIZE; 18298 written += SLI4_PAGE_SIZE; 18299 } 18300 i++; 18301 } 18302 wr_object->u.request.bde_count = i; 18303 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 18304 if (!phba->sli4_hba.intr_enable) 18305 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18306 else { 18307 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18308 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18309 } 18310 /* The IOCTL status is embedded in the mailbox subheader. */ 18311 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr; 18312 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18313 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18314 if (rc != MBX_TIMEOUT) 18315 mempool_free(mbox, phba->mbox_mem_pool); 18316 if (shdr_status || shdr_add_status || rc) { 18317 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18318 "3025 Write Object mailbox failed with " 18319 "status x%x add_status x%x, mbx status x%x\n", 18320 shdr_status, shdr_add_status, rc); 18321 rc = -ENXIO; 18322 } else 18323 *offset += wr_object->u.response.actual_write_length; 18324 return rc; 18325 } 18326 18327 /** 18328 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 18329 * @vport: pointer to vport data structure. 18330 * 18331 * This function iterate through the mailboxq and clean up all REG_LOGIN 18332 * and REG_VPI mailbox commands associated with the vport. This function 18333 * is called when driver want to restart discovery of the vport due to 18334 * a Clear Virtual Link event. 18335 **/ 18336 void 18337 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 18338 { 18339 struct lpfc_hba *phba = vport->phba; 18340 LPFC_MBOXQ_t *mb, *nextmb; 18341 struct lpfc_dmabuf *mp; 18342 struct lpfc_nodelist *ndlp; 18343 struct lpfc_nodelist *act_mbx_ndlp = NULL; 18344 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 18345 LIST_HEAD(mbox_cmd_list); 18346 uint8_t restart_loop; 18347 18348 /* Clean up internally queued mailbox commands with the vport */ 18349 spin_lock_irq(&phba->hbalock); 18350 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 18351 if (mb->vport != vport) 18352 continue; 18353 18354 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 18355 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 18356 continue; 18357 18358 list_del(&mb->list); 18359 list_add_tail(&mb->list, &mbox_cmd_list); 18360 } 18361 /* Clean up active mailbox command with the vport */ 18362 mb = phba->sli.mbox_active; 18363 if (mb && (mb->vport == vport)) { 18364 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 18365 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 18366 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18367 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 18368 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2; 18369 /* Put reference count for delayed processing */ 18370 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 18371 /* Unregister the RPI when mailbox complete */ 18372 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 18373 } 18374 } 18375 /* Cleanup any mailbox completions which are not yet processed */ 18376 do { 18377 restart_loop = 0; 18378 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 18379 /* 18380 * If this mailox is already processed or it is 18381 * for another vport ignore it. 18382 */ 18383 if ((mb->vport != vport) || 18384 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 18385 continue; 18386 18387 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 18388 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 18389 continue; 18390 18391 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18392 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 18393 ndlp = (struct lpfc_nodelist *)mb->context2; 18394 /* Unregister the RPI when mailbox complete */ 18395 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 18396 restart_loop = 1; 18397 spin_unlock_irq(&phba->hbalock); 18398 spin_lock(shost->host_lock); 18399 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 18400 spin_unlock(shost->host_lock); 18401 spin_lock_irq(&phba->hbalock); 18402 break; 18403 } 18404 } 18405 } while (restart_loop); 18406 18407 spin_unlock_irq(&phba->hbalock); 18408 18409 /* Release the cleaned-up mailbox commands */ 18410 while (!list_empty(&mbox_cmd_list)) { 18411 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 18412 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 18413 mp = (struct lpfc_dmabuf *) (mb->context1); 18414 if (mp) { 18415 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 18416 kfree(mp); 18417 } 18418 ndlp = (struct lpfc_nodelist *) mb->context2; 18419 mb->context2 = NULL; 18420 if (ndlp) { 18421 spin_lock(shost->host_lock); 18422 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 18423 spin_unlock(shost->host_lock); 18424 lpfc_nlp_put(ndlp); 18425 } 18426 } 18427 mempool_free(mb, phba->mbox_mem_pool); 18428 } 18429 18430 /* Release the ndlp with the cleaned-up active mailbox command */ 18431 if (act_mbx_ndlp) { 18432 spin_lock(shost->host_lock); 18433 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 18434 spin_unlock(shost->host_lock); 18435 lpfc_nlp_put(act_mbx_ndlp); 18436 } 18437 } 18438 18439 /** 18440 * lpfc_drain_txq - Drain the txq 18441 * @phba: Pointer to HBA context object. 18442 * 18443 * This function attempt to submit IOCBs on the txq 18444 * to the adapter. For SLI4 adapters, the txq contains 18445 * ELS IOCBs that have been deferred because the there 18446 * are no SGLs. This congestion can occur with large 18447 * vport counts during node discovery. 18448 **/ 18449 18450 uint32_t 18451 lpfc_drain_txq(struct lpfc_hba *phba) 18452 { 18453 LIST_HEAD(completions); 18454 struct lpfc_sli_ring *pring; 18455 struct lpfc_iocbq *piocbq = NULL; 18456 unsigned long iflags = 0; 18457 char *fail_msg = NULL; 18458 struct lpfc_sglq *sglq; 18459 union lpfc_wqe128 wqe128; 18460 union lpfc_wqe *wqe = (union lpfc_wqe *) &wqe128; 18461 uint32_t txq_cnt = 0; 18462 18463 pring = lpfc_phba_elsring(phba); 18464 18465 spin_lock_irqsave(&pring->ring_lock, iflags); 18466 list_for_each_entry(piocbq, &pring->txq, list) { 18467 txq_cnt++; 18468 } 18469 18470 if (txq_cnt > pring->txq_max) 18471 pring->txq_max = txq_cnt; 18472 18473 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18474 18475 while (!list_empty(&pring->txq)) { 18476 spin_lock_irqsave(&pring->ring_lock, iflags); 18477 18478 piocbq = lpfc_sli_ringtx_get(phba, pring); 18479 if (!piocbq) { 18480 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18481 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18482 "2823 txq empty and txq_cnt is %d\n ", 18483 txq_cnt); 18484 break; 18485 } 18486 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 18487 if (!sglq) { 18488 __lpfc_sli_ringtx_put(phba, pring, piocbq); 18489 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18490 break; 18491 } 18492 txq_cnt--; 18493 18494 /* The xri and iocb resources secured, 18495 * attempt to issue request 18496 */ 18497 piocbq->sli4_lxritag = sglq->sli4_lxritag; 18498 piocbq->sli4_xritag = sglq->sli4_xritag; 18499 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 18500 fail_msg = "to convert bpl to sgl"; 18501 else if (lpfc_sli4_iocb2wqe(phba, piocbq, wqe)) 18502 fail_msg = "to convert iocb to wqe"; 18503 else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, wqe)) 18504 fail_msg = " - Wq is full"; 18505 else 18506 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 18507 18508 if (fail_msg) { 18509 /* Failed means we can't issue and need to cancel */ 18510 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18511 "2822 IOCB failed %s iotag 0x%x " 18512 "xri 0x%x\n", 18513 fail_msg, 18514 piocbq->iotag, piocbq->sli4_xritag); 18515 list_add_tail(&piocbq->list, &completions); 18516 } 18517 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18518 } 18519 18520 /* Cancel all the IOCBs that cannot be issued */ 18521 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 18522 IOERR_SLI_ABORTED); 18523 18524 return txq_cnt; 18525 } 18526 18527 /** 18528 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 18529 * @phba: Pointer to HBA context object. 18530 * @pwqe: Pointer to command WQE. 18531 * @sglq: Pointer to the scatter gather queue object. 18532 * 18533 * This routine converts the bpl or bde that is in the WQE 18534 * to a sgl list for the sli4 hardware. The physical address 18535 * of the bpl/bde is converted back to a virtual address. 18536 * If the WQE contains a BPL then the list of BDE's is 18537 * converted to sli4_sge's. If the WQE contains a single 18538 * BDE then it is converted to a single sli_sge. 18539 * The WQE is still in cpu endianness so the contents of 18540 * the bpl can be used without byte swapping. 18541 * 18542 * Returns valid XRI = Success, NO_XRI = Failure. 18543 */ 18544 static uint16_t 18545 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 18546 struct lpfc_sglq *sglq) 18547 { 18548 uint16_t xritag = NO_XRI; 18549 struct ulp_bde64 *bpl = NULL; 18550 struct ulp_bde64 bde; 18551 struct sli4_sge *sgl = NULL; 18552 struct lpfc_dmabuf *dmabuf; 18553 union lpfc_wqe *wqe; 18554 int numBdes = 0; 18555 int i = 0; 18556 uint32_t offset = 0; /* accumulated offset in the sg request list */ 18557 int inbound = 0; /* number of sg reply entries inbound from firmware */ 18558 uint32_t cmd; 18559 18560 if (!pwqeq || !sglq) 18561 return xritag; 18562 18563 sgl = (struct sli4_sge *)sglq->sgl; 18564 wqe = &pwqeq->wqe; 18565 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 18566 18567 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 18568 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 18569 return sglq->sli4_xritag; 18570 numBdes = pwqeq->rsvd2; 18571 if (numBdes) { 18572 /* The addrHigh and addrLow fields within the WQE 18573 * have not been byteswapped yet so there is no 18574 * need to swap them back. 18575 */ 18576 if (pwqeq->context3) 18577 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 18578 else 18579 return xritag; 18580 18581 bpl = (struct ulp_bde64 *)dmabuf->virt; 18582 if (!bpl) 18583 return xritag; 18584 18585 for (i = 0; i < numBdes; i++) { 18586 /* Should already be byte swapped. */ 18587 sgl->addr_hi = bpl->addrHigh; 18588 sgl->addr_lo = bpl->addrLow; 18589 18590 sgl->word2 = le32_to_cpu(sgl->word2); 18591 if ((i+1) == numBdes) 18592 bf_set(lpfc_sli4_sge_last, sgl, 1); 18593 else 18594 bf_set(lpfc_sli4_sge_last, sgl, 0); 18595 /* swap the size field back to the cpu so we 18596 * can assign it to the sgl. 18597 */ 18598 bde.tus.w = le32_to_cpu(bpl->tus.w); 18599 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 18600 /* The offsets in the sgl need to be accumulated 18601 * separately for the request and reply lists. 18602 * The request is always first, the reply follows. 18603 */ 18604 switch (cmd) { 18605 case CMD_GEN_REQUEST64_WQE: 18606 /* add up the reply sg entries */ 18607 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 18608 inbound++; 18609 /* first inbound? reset the offset */ 18610 if (inbound == 1) 18611 offset = 0; 18612 bf_set(lpfc_sli4_sge_offset, sgl, offset); 18613 bf_set(lpfc_sli4_sge_type, sgl, 18614 LPFC_SGE_TYPE_DATA); 18615 offset += bde.tus.f.bdeSize; 18616 break; 18617 case CMD_FCP_TRSP64_WQE: 18618 bf_set(lpfc_sli4_sge_offset, sgl, 0); 18619 bf_set(lpfc_sli4_sge_type, sgl, 18620 LPFC_SGE_TYPE_DATA); 18621 break; 18622 case CMD_FCP_TSEND64_WQE: 18623 case CMD_FCP_TRECEIVE64_WQE: 18624 bf_set(lpfc_sli4_sge_type, sgl, 18625 bpl->tus.f.bdeFlags); 18626 if (i < 3) 18627 offset = 0; 18628 else 18629 offset += bde.tus.f.bdeSize; 18630 bf_set(lpfc_sli4_sge_offset, sgl, offset); 18631 break; 18632 } 18633 sgl->word2 = cpu_to_le32(sgl->word2); 18634 bpl++; 18635 sgl++; 18636 } 18637 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 18638 /* The addrHigh and addrLow fields of the BDE have not 18639 * been byteswapped yet so they need to be swapped 18640 * before putting them in the sgl. 18641 */ 18642 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 18643 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 18644 sgl->word2 = le32_to_cpu(sgl->word2); 18645 bf_set(lpfc_sli4_sge_last, sgl, 1); 18646 sgl->word2 = cpu_to_le32(sgl->word2); 18647 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 18648 } 18649 return sglq->sli4_xritag; 18650 } 18651 18652 /** 18653 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 18654 * @phba: Pointer to HBA context object. 18655 * @ring_number: Base sli ring number 18656 * @pwqe: Pointer to command WQE. 18657 **/ 18658 int 18659 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, uint32_t ring_number, 18660 struct lpfc_iocbq *pwqe) 18661 { 18662 union lpfc_wqe *wqe = &pwqe->wqe; 18663 struct lpfc_nvmet_rcv_ctx *ctxp; 18664 struct lpfc_queue *wq; 18665 struct lpfc_sglq *sglq; 18666 struct lpfc_sli_ring *pring; 18667 unsigned long iflags; 18668 18669 /* NVME_LS and NVME_LS ABTS requests. */ 18670 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 18671 pring = phba->sli4_hba.nvmels_wq->pring; 18672 spin_lock_irqsave(&pring->ring_lock, iflags); 18673 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 18674 if (!sglq) { 18675 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18676 return WQE_BUSY; 18677 } 18678 pwqe->sli4_lxritag = sglq->sli4_lxritag; 18679 pwqe->sli4_xritag = sglq->sli4_xritag; 18680 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 18681 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18682 return WQE_ERROR; 18683 } 18684 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 18685 pwqe->sli4_xritag); 18686 if (lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe)) { 18687 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18688 return WQE_ERROR; 18689 } 18690 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 18691 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18692 return 0; 18693 } 18694 18695 /* NVME_FCREQ and NVME_ABTS requests */ 18696 if (pwqe->iocb_flag & LPFC_IO_NVME) { 18697 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 18698 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 18699 18700 spin_lock_irqsave(&pring->ring_lock, iflags); 18701 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 18702 bf_set(wqe_cqid, &wqe->generic.wqe_com, 18703 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 18704 if (lpfc_sli4_wq_put(wq, wqe)) { 18705 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18706 return WQE_ERROR; 18707 } 18708 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 18709 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18710 return 0; 18711 } 18712 18713 /* NVMET requests */ 18714 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 18715 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 18716 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 18717 18718 spin_lock_irqsave(&pring->ring_lock, iflags); 18719 ctxp = pwqe->context2; 18720 sglq = ctxp->rqb_buffer->sglq; 18721 if (pwqe->sli4_xritag == NO_XRI) { 18722 pwqe->sli4_lxritag = sglq->sli4_lxritag; 18723 pwqe->sli4_xritag = sglq->sli4_xritag; 18724 } 18725 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 18726 pwqe->sli4_xritag); 18727 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 18728 bf_set(wqe_cqid, &wqe->generic.wqe_com, 18729 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 18730 if (lpfc_sli4_wq_put(wq, wqe)) { 18731 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18732 return WQE_ERROR; 18733 } 18734 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 18735 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18736 return 0; 18737 } 18738 return WQE_ERROR; 18739 } 18740