1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2023 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/crash_dump.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_crtn.h" 52 #include "lpfc_logmsg.h" 53 #include "lpfc_compat.h" 54 #include "lpfc_debugfs.h" 55 #include "lpfc_vport.h" 56 #include "lpfc_version.h" 57 58 /* There are only four IOCB completion types. */ 59 typedef enum _lpfc_iocb_type { 60 LPFC_UNKNOWN_IOCB, 61 LPFC_UNSOL_IOCB, 62 LPFC_SOL_IOCB, 63 LPFC_ABORT_IOCB 64 } lpfc_iocb_type; 65 66 67 /* Provide function prototypes local to this module. */ 68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 69 uint32_t); 70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 71 uint8_t *, uint32_t *); 72 static struct lpfc_iocbq * 73 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 74 struct lpfc_iocbq *rspiocbq); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe, 86 enum lpfc_poll_mode poll_mode); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 91 struct lpfc_queue *cq, 92 struct lpfc_cqe *cqe); 93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 94 struct lpfc_iocbq *pwqeq, 95 struct lpfc_sglq *sglq); 96 97 union lpfc_wqe128 lpfc_iread_cmd_template; 98 union lpfc_wqe128 lpfc_iwrite_cmd_template; 99 union lpfc_wqe128 lpfc_icmnd_cmd_template; 100 101 /* Setup WQE templates for IOs */ 102 void lpfc_wqe_cmd_template(void) 103 { 104 union lpfc_wqe128 *wqe; 105 106 /* IREAD template */ 107 wqe = &lpfc_iread_cmd_template; 108 memset(wqe, 0, sizeof(union lpfc_wqe128)); 109 110 /* Word 0, 1, 2 - BDE is variable */ 111 112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 113 114 /* Word 4 - total_xfer_len is variable */ 115 116 /* Word 5 - is zero */ 117 118 /* Word 6 - ctxt_tag, xri_tag is variable */ 119 120 /* Word 7 */ 121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 125 126 /* Word 8 - abort_tag is variable */ 127 128 /* Word 9 - reqtag is variable */ 129 130 /* Word 10 - dbde, wqes is variable */ 131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 136 137 /* Word 11 - pbde is variable */ 138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 141 142 /* Word 12 - is zero */ 143 144 /* Word 13, 14, 15 - PBDE is variable */ 145 146 /* IWRITE template */ 147 wqe = &lpfc_iwrite_cmd_template; 148 memset(wqe, 0, sizeof(union lpfc_wqe128)); 149 150 /* Word 0, 1, 2 - BDE is variable */ 151 152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 153 154 /* Word 4 - total_xfer_len is variable */ 155 156 /* Word 5 - initial_xfer_len is variable */ 157 158 /* Word 6 - ctxt_tag, xri_tag is variable */ 159 160 /* Word 7 */ 161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 165 166 /* Word 8 - abort_tag is variable */ 167 168 /* Word 9 - reqtag is variable */ 169 170 /* Word 10 - dbde, wqes is variable */ 171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 176 177 /* Word 11 - pbde is variable */ 178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 181 182 /* Word 12 - is zero */ 183 184 /* Word 13, 14, 15 - PBDE is variable */ 185 186 /* ICMND template */ 187 wqe = &lpfc_icmnd_cmd_template; 188 memset(wqe, 0, sizeof(union lpfc_wqe128)); 189 190 /* Word 0, 1, 2 - BDE is variable */ 191 192 /* Word 3 - payload_offset_len is variable */ 193 194 /* Word 4, 5 - is zero */ 195 196 /* Word 6 - ctxt_tag, xri_tag is variable */ 197 198 /* Word 7 */ 199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 203 204 /* Word 8 - abort_tag is variable */ 205 206 /* Word 9 - reqtag is variable */ 207 208 /* Word 10 - dbde, wqes is variable */ 209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 214 215 /* Word 11 */ 216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 224 /** 225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 226 * @srcp: Source memory pointer. 227 * @destp: Destination memory pointer. 228 * @cnt: Number of words required to be copied. 229 * Must be a multiple of sizeof(uint64_t) 230 * 231 * This function is used for copying data between driver memory 232 * and the SLI WQ. This function also changes the endianness 233 * of each word if native endianness is different from SLI 234 * endianness. This function can be called with or without 235 * lock. 236 **/ 237 static void 238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 239 { 240 uint64_t *src = srcp; 241 uint64_t *dest = destp; 242 int i; 243 244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 245 *dest++ = *src++; 246 } 247 #else 248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 249 #endif 250 251 /** 252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 253 * @q: The Work Queue to operate on. 254 * @wqe: The work Queue Entry to put on the Work queue. 255 * 256 * This routine will copy the contents of @wqe to the next available entry on 257 * the @q. This function will then ring the Work Queue Doorbell to signal the 258 * HBA to start processing the Work Queue Entry. This function returns 0 if 259 * successful. If no entries are available on @q then this function will return 260 * -ENOMEM. 261 * The caller is expected to hold the hbalock when calling this routine. 262 **/ 263 static int 264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 265 { 266 union lpfc_wqe *temp_wqe; 267 struct lpfc_register doorbell; 268 uint32_t host_index; 269 uint32_t idx; 270 uint32_t i = 0; 271 uint8_t *tmp; 272 u32 if_type; 273 274 /* sanity check on queue memory */ 275 if (unlikely(!q)) 276 return -ENOMEM; 277 278 temp_wqe = lpfc_sli4_qe(q, q->host_index); 279 280 /* If the host has not yet processed the next entry then we are done */ 281 idx = ((q->host_index + 1) % q->entry_count); 282 if (idx == q->hba_index) { 283 q->WQ_overflow++; 284 return -EBUSY; 285 } 286 q->WQ_posted++; 287 /* set consumption flag every once in a while */ 288 if (!((q->host_index + 1) % q->notify_interval)) 289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 290 else 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 295 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 296 /* write to DPP aperture taking advatage of Combined Writes */ 297 tmp = (uint8_t *)temp_wqe; 298 #ifdef __raw_writeq 299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 300 __raw_writeq(*((uint64_t *)(tmp + i)), 301 q->dpp_regaddr + i); 302 #else 303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 304 __raw_writel(*((uint32_t *)(tmp + i)), 305 q->dpp_regaddr + i); 306 #endif 307 } 308 /* ensure WQE bcopy and DPP flushed before doorbell write */ 309 wmb(); 310 311 /* Update the host index before invoking device */ 312 host_index = q->host_index; 313 314 q->host_index = idx; 315 316 /* Ring Doorbell */ 317 doorbell.word0 = 0; 318 if (q->db_format == LPFC_DB_LIST_FORMAT) { 319 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 323 q->dpp_id); 324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 325 q->queue_id); 326 } else { 327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 329 330 /* Leave bits <23:16> clear for if_type 6 dpp */ 331 if_type = bf_get(lpfc_sli_intf_if_type, 332 &q->phba->sli4_hba.sli_intf); 333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 334 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 335 host_index); 336 } 337 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 340 } else { 341 return -EINVAL; 342 } 343 writel(doorbell.word0, q->db_regaddr); 344 345 return 0; 346 } 347 348 /** 349 * lpfc_sli4_wq_release - Updates internal hba index for WQ 350 * @q: The Work Queue to operate on. 351 * @index: The index to advance the hba index to. 352 * 353 * This routine will update the HBA index of a queue to reflect consumption of 354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 355 * an entry the host calls this function to update the queue's internal 356 * pointers. 357 **/ 358 static void 359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 360 { 361 /* sanity check on queue memory */ 362 if (unlikely(!q)) 363 return; 364 365 q->hba_index = index; 366 } 367 368 /** 369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 370 * @q: The Mailbox Queue to operate on. 371 * @mqe: The Mailbox Queue Entry to put on the Work queue. 372 * 373 * This routine will copy the contents of @mqe to the next available entry on 374 * the @q. This function will then ring the Work Queue Doorbell to signal the 375 * HBA to start processing the Work Queue Entry. This function returns 0 if 376 * successful. If no entries are available on @q then this function will return 377 * -ENOMEM. 378 * The caller is expected to hold the hbalock when calling this routine. 379 **/ 380 static uint32_t 381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 382 { 383 struct lpfc_mqe *temp_mqe; 384 struct lpfc_register doorbell; 385 386 /* sanity check on queue memory */ 387 if (unlikely(!q)) 388 return -ENOMEM; 389 temp_mqe = lpfc_sli4_qe(q, q->host_index); 390 391 /* If the host has not yet processed the next entry then we are done */ 392 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 393 return -ENOMEM; 394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 395 /* Save off the mailbox pointer for completion */ 396 q->phba->mbox = (MAILBOX_t *)temp_mqe; 397 398 /* Update the host index before invoking device */ 399 q->host_index = ((q->host_index + 1) % q->entry_count); 400 401 /* Ring Doorbell */ 402 doorbell.word0 = 0; 403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 406 return 0; 407 } 408 409 /** 410 * lpfc_sli4_mq_release - Updates internal hba index for MQ 411 * @q: The Mailbox Queue to operate on. 412 * 413 * This routine will update the HBA index of a queue to reflect consumption of 414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 415 * an entry the host calls this function to update the queue's internal 416 * pointers. This routine returns the number of entries that were consumed by 417 * the HBA. 418 **/ 419 static uint32_t 420 lpfc_sli4_mq_release(struct lpfc_queue *q) 421 { 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 426 /* Clear the mailbox pointer for completion */ 427 q->phba->mbox = NULL; 428 q->hba_index = ((q->hba_index + 1) % q->entry_count); 429 return 1; 430 } 431 432 /** 433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 434 * @q: The Event Queue to get the first valid EQE from 435 * 436 * This routine will get the first valid Event Queue Entry from @q, update 437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 438 * the Queue (no more work to do), or the Queue is full of EQEs that have been 439 * processed, but not popped back to the HBA then this routine will return NULL. 440 **/ 441 static struct lpfc_eqe * 442 lpfc_sli4_eq_get(struct lpfc_queue *q) 443 { 444 struct lpfc_eqe *eqe; 445 446 /* sanity check on queue memory */ 447 if (unlikely(!q)) 448 return NULL; 449 eqe = lpfc_sli4_qe(q, q->host_index); 450 451 /* If the next EQE is not valid then we are done */ 452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 453 return NULL; 454 455 /* 456 * insert barrier for instruction interlock : data from the hardware 457 * must have the valid bit checked before it can be copied and acted 458 * upon. Speculative instructions were allowing a bcopy at the start 459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 460 * after our return, to copy data before the valid bit check above 461 * was done. As such, some of the copied data was stale. The barrier 462 * ensures the check is before any data is copied. 463 */ 464 mb(); 465 return eqe; 466 } 467 468 /** 469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 470 * @q: The Event Queue to disable interrupts 471 * 472 **/ 473 void 474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 475 { 476 struct lpfc_register doorbell; 477 478 doorbell.word0 = 0; 479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 485 } 486 487 /** 488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 489 * @q: The Event Queue to disable interrupts 490 * 491 **/ 492 void 493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 494 { 495 struct lpfc_register doorbell; 496 497 doorbell.word0 = 0; 498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 500 } 501 502 /** 503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 504 * @phba: adapter with EQ 505 * @q: The Event Queue that the host has completed processing for. 506 * @count: Number of elements that have been consumed 507 * @arm: Indicates whether the host wants to arms this CQ. 508 * 509 * This routine will notify the HBA, by ringing the doorbell, that count 510 * number of EQEs have been processed. The @arm parameter indicates whether 511 * the queue should be rearmed when ringing the doorbell. 512 **/ 513 void 514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 515 uint32_t count, bool arm) 516 { 517 struct lpfc_register doorbell; 518 519 /* sanity check on queue memory */ 520 if (unlikely(!q || (count == 0 && !arm))) 521 return; 522 523 /* ring doorbell for number popped */ 524 doorbell.word0 = 0; 525 if (arm) { 526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 528 } 529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 537 readl(q->phba->sli4_hba.EQDBregaddr); 538 } 539 540 /** 541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 542 * @phba: adapter with EQ 543 * @q: The Event Queue that the host has completed processing for. 544 * @count: Number of elements that have been consumed 545 * @arm: Indicates whether the host wants to arms this CQ. 546 * 547 * This routine will notify the HBA, by ringing the doorbell, that count 548 * number of EQEs have been processed. The @arm parameter indicates whether 549 * the queue should be rearmed when ringing the doorbell. 550 **/ 551 void 552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 553 uint32_t count, bool arm) 554 { 555 struct lpfc_register doorbell; 556 557 /* sanity check on queue memory */ 558 if (unlikely(!q || (count == 0 && !arm))) 559 return; 560 561 /* ring doorbell for number popped */ 562 doorbell.word0 = 0; 563 if (arm) 564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 570 readl(q->phba->sli4_hba.EQDBregaddr); 571 } 572 573 static void 574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 575 struct lpfc_eqe *eqe) 576 { 577 if (!phba->sli4_hba.pc_sli4_params.eqav) 578 bf_set_le32(lpfc_eqe_valid, eqe, 0); 579 580 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 581 582 /* if the index wrapped around, toggle the valid bit */ 583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 584 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 585 } 586 587 static void 588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 589 { 590 struct lpfc_eqe *eqe = NULL; 591 u32 eq_count = 0, cq_count = 0; 592 struct lpfc_cqe *cqe = NULL; 593 struct lpfc_queue *cq = NULL, *childq = NULL; 594 int cqid = 0; 595 596 /* walk all the EQ entries and drop on the floor */ 597 eqe = lpfc_sli4_eq_get(eq); 598 while (eqe) { 599 /* Get the reference to the corresponding CQ */ 600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 601 cq = NULL; 602 603 list_for_each_entry(childq, &eq->child_list, list) { 604 if (childq->queue_id == cqid) { 605 cq = childq; 606 break; 607 } 608 } 609 /* If CQ is valid, iterate through it and drop all the CQEs */ 610 if (cq) { 611 cqe = lpfc_sli4_cq_get(cq); 612 while (cqe) { 613 __lpfc_sli4_consume_cqe(phba, cq, cqe); 614 cq_count++; 615 cqe = lpfc_sli4_cq_get(cq); 616 } 617 /* Clear and re-arm the CQ */ 618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 619 LPFC_QUEUE_REARM); 620 cq_count = 0; 621 } 622 __lpfc_sli4_consume_eqe(phba, eq, eqe); 623 eq_count++; 624 eqe = lpfc_sli4_eq_get(eq); 625 } 626 627 /* Clear and re-arm the EQ */ 628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 629 } 630 631 static int 632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 633 u8 rearm, enum lpfc_poll_mode poll_mode) 634 { 635 struct lpfc_eqe *eqe; 636 int count = 0, consumed = 0; 637 638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 639 goto rearm_and_exit; 640 641 eqe = lpfc_sli4_eq_get(eq); 642 while (eqe) { 643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe, poll_mode); 644 __lpfc_sli4_consume_eqe(phba, eq, eqe); 645 646 consumed++; 647 if (!(++count % eq->max_proc_limit)) 648 break; 649 650 if (!(count % eq->notify_interval)) { 651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 652 LPFC_QUEUE_NOARM); 653 consumed = 0; 654 } 655 656 eqe = lpfc_sli4_eq_get(eq); 657 } 658 eq->EQ_processed += count; 659 660 /* Track the max number of EQEs processed in 1 intr */ 661 if (count > eq->EQ_max_eqe) 662 eq->EQ_max_eqe = count; 663 664 xchg(&eq->queue_claimed, 0); 665 666 rearm_and_exit: 667 /* Always clear the EQ. */ 668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 669 670 return count; 671 } 672 673 /** 674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 675 * @q: The Completion Queue to get the first valid CQE from 676 * 677 * This routine will get the first valid Completion Queue Entry from @q, update 678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 679 * the Queue (no more work to do), or the Queue is full of CQEs that have been 680 * processed, but not popped back to the HBA then this routine will return NULL. 681 **/ 682 static struct lpfc_cqe * 683 lpfc_sli4_cq_get(struct lpfc_queue *q) 684 { 685 struct lpfc_cqe *cqe; 686 687 /* sanity check on queue memory */ 688 if (unlikely(!q)) 689 return NULL; 690 cqe = lpfc_sli4_qe(q, q->host_index); 691 692 /* If the next CQE is not valid then we are done */ 693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 694 return NULL; 695 696 /* 697 * insert barrier for instruction interlock : data from the hardware 698 * must have the valid bit checked before it can be copied and acted 699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 700 * instructions allowing action on content before valid bit checked, 701 * add barrier here as well. May not be needed as "content" is a 702 * single 32-bit entity here (vs multi word structure for cq's). 703 */ 704 mb(); 705 return cqe; 706 } 707 708 static void 709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 710 struct lpfc_cqe *cqe) 711 { 712 if (!phba->sli4_hba.pc_sli4_params.cqav) 713 bf_set_le32(lpfc_cqe_valid, cqe, 0); 714 715 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 716 717 /* if the index wrapped around, toggle the valid bit */ 718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 719 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 720 } 721 722 /** 723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 724 * @phba: the adapter with the CQ 725 * @q: The Completion Queue that the host has completed processing for. 726 * @count: the number of elements that were consumed 727 * @arm: Indicates whether the host wants to arms this CQ. 728 * 729 * This routine will notify the HBA, by ringing the doorbell, that the 730 * CQEs have been processed. The @arm parameter specifies whether the 731 * queue should be rearmed when ringing the doorbell. 732 **/ 733 void 734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 735 uint32_t count, bool arm) 736 { 737 struct lpfc_register doorbell; 738 739 /* sanity check on queue memory */ 740 if (unlikely(!q || (count == 0 && !arm))) 741 return; 742 743 /* ring doorbell for number popped */ 744 doorbell.word0 = 0; 745 if (arm) 746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 753 } 754 755 /** 756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 757 * @phba: the adapter with the CQ 758 * @q: The Completion Queue that the host has completed processing for. 759 * @count: the number of elements that were consumed 760 * @arm: Indicates whether the host wants to arms this CQ. 761 * 762 * This routine will notify the HBA, by ringing the doorbell, that the 763 * CQEs have been processed. The @arm parameter specifies whether the 764 * queue should be rearmed when ringing the doorbell. 765 **/ 766 void 767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 768 uint32_t count, bool arm) 769 { 770 struct lpfc_register doorbell; 771 772 /* sanity check on queue memory */ 773 if (unlikely(!q || (count == 0 && !arm))) 774 return; 775 776 /* ring doorbell for number popped */ 777 doorbell.word0 = 0; 778 if (arm) 779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 783 } 784 785 /* 786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 787 * 788 * This routine will copy the contents of @wqe to the next available entry on 789 * the @q. This function will then ring the Receive Queue Doorbell to signal the 790 * HBA to start processing the Receive Queue Entry. This function returns the 791 * index that the rqe was copied to if successful. If no entries are available 792 * on @q then this function will return -ENOMEM. 793 * The caller is expected to hold the hbalock when calling this routine. 794 **/ 795 int 796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 798 { 799 struct lpfc_rqe *temp_hrqe; 800 struct lpfc_rqe *temp_drqe; 801 struct lpfc_register doorbell; 802 int hq_put_index; 803 int dq_put_index; 804 805 /* sanity check on queue memory */ 806 if (unlikely(!hq) || unlikely(!dq)) 807 return -ENOMEM; 808 hq_put_index = hq->host_index; 809 dq_put_index = dq->host_index; 810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 812 813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 814 return -EINVAL; 815 if (hq_put_index != dq_put_index) 816 return -EINVAL; 817 /* If the host has not yet processed the next entry then we are done */ 818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 819 return -EBUSY; 820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 822 823 /* Update the host index to point to the next slot */ 824 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 825 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 826 hq->RQ_buf_posted++; 827 828 /* Ring The Header Receive Queue Doorbell */ 829 if (!(hq->host_index % hq->notify_interval)) { 830 doorbell.word0 = 0; 831 if (hq->db_format == LPFC_DB_RING_FORMAT) { 832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 833 hq->notify_interval); 834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 837 hq->notify_interval); 838 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 839 hq->host_index); 840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 841 } else { 842 return -EINVAL; 843 } 844 writel(doorbell.word0, hq->db_regaddr); 845 } 846 return hq_put_index; 847 } 848 849 /* 850 * lpfc_sli4_rq_release - Updates internal hba index for RQ 851 * 852 * This routine will update the HBA index of a queue to reflect consumption of 853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 854 * consumed an entry the host calls this function to update the queue's 855 * internal pointers. This routine returns the number of entries that were 856 * consumed by the HBA. 857 **/ 858 static uint32_t 859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 860 { 861 /* sanity check on queue memory */ 862 if (unlikely(!hq) || unlikely(!dq)) 863 return 0; 864 865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 866 return 0; 867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 869 return 1; 870 } 871 872 /** 873 * lpfc_cmd_iocb - Get next command iocb entry in the ring 874 * @phba: Pointer to HBA context object. 875 * @pring: Pointer to driver SLI ring object. 876 * 877 * This function returns pointer to next command iocb entry 878 * in the command ring. The caller must hold hbalock to prevent 879 * other threads consume the next command iocb. 880 * SLI-2/SLI-3 provide different sized iocbs. 881 **/ 882 static inline IOCB_t * 883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 884 { 885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 887 } 888 889 /** 890 * lpfc_resp_iocb - Get next response iocb entry in the ring 891 * @phba: Pointer to HBA context object. 892 * @pring: Pointer to driver SLI ring object. 893 * 894 * This function returns pointer to next response iocb entry 895 * in the response ring. The caller must hold hbalock to make sure 896 * that no other thread consume the next response iocb. 897 * SLI-2/SLI-3 provide different sized iocbs. 898 **/ 899 static inline IOCB_t * 900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 901 { 902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 903 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 904 } 905 906 /** 907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 908 * @phba: Pointer to HBA context object. 909 * 910 * This function is called with hbalock held. This function 911 * allocates a new driver iocb object from the iocb pool. If the 912 * allocation is successful, it returns pointer to the newly 913 * allocated iocb object else it returns NULL. 914 **/ 915 struct lpfc_iocbq * 916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 917 { 918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 919 struct lpfc_iocbq * iocbq = NULL; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 924 if (iocbq) 925 phba->iocb_cnt++; 926 if (phba->iocb_cnt > phba->iocb_max) 927 phba->iocb_max = phba->iocb_cnt; 928 return iocbq; 929 } 930 931 /** 932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 933 * @phba: Pointer to HBA context object. 934 * @xritag: XRI value. 935 * 936 * This function clears the sglq pointer from the array of active 937 * sglq's. The xritag that is passed in is used to index into the 938 * array. Before the xritag can be used it needs to be adjusted 939 * by subtracting the xribase. 940 * 941 * Returns sglq ponter = success, NULL = Failure. 942 **/ 943 struct lpfc_sglq * 944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 945 { 946 struct lpfc_sglq *sglq; 947 948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 950 return sglq; 951 } 952 953 /** 954 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 955 * @phba: Pointer to HBA context object. 956 * @xritag: XRI value. 957 * 958 * This function returns the sglq pointer from the array of active 959 * sglq's. The xritag that is passed in is used to index into the 960 * array. Before the xritag can be used it needs to be adjusted 961 * by subtracting the xribase. 962 * 963 * Returns sglq ponter = success, NULL = Failure. 964 **/ 965 struct lpfc_sglq * 966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 967 { 968 struct lpfc_sglq *sglq; 969 970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 971 return sglq; 972 } 973 974 /** 975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 976 * @phba: Pointer to HBA context object. 977 * @xritag: xri used in this exchange. 978 * @rrq: The RRQ to be cleared. 979 * 980 **/ 981 void 982 lpfc_clr_rrq_active(struct lpfc_hba *phba, 983 uint16_t xritag, 984 struct lpfc_node_rrq *rrq) 985 { 986 struct lpfc_nodelist *ndlp = NULL; 987 988 /* Lookup did to verify if did is still active on this vport */ 989 if (rrq->vport) 990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 991 992 if (!ndlp) 993 goto out; 994 995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 996 rrq->send_rrq = 0; 997 rrq->xritag = 0; 998 rrq->rrq_stop_time = 0; 999 } 1000 out: 1001 mempool_free(rrq, phba->rrq_pool); 1002 } 1003 1004 /** 1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1006 * @phba: Pointer to HBA context object. 1007 * 1008 * This function is called with hbalock held. This function 1009 * Checks if stop_time (ratov from setting rrq active) has 1010 * been reached, if it has and the send_rrq flag is set then 1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1012 * then it will just call the routine to clear the rrq and 1013 * free the rrq resource. 1014 * The timer is set to the next rrq that is going to expire before 1015 * leaving the routine. 1016 * 1017 **/ 1018 void 1019 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_node_rrq *rrq; 1022 struct lpfc_node_rrq *nextrrq; 1023 unsigned long next_time; 1024 unsigned long iflags; 1025 LIST_HEAD(send_rrq); 1026 1027 spin_lock_irqsave(&phba->hbalock, iflags); 1028 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1029 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1030 list_for_each_entry_safe(rrq, nextrrq, 1031 &phba->active_rrq_list, list) { 1032 if (time_after(jiffies, rrq->rrq_stop_time)) 1033 list_move(&rrq->list, &send_rrq); 1034 else if (time_before(rrq->rrq_stop_time, next_time)) 1035 next_time = rrq->rrq_stop_time; 1036 } 1037 spin_unlock_irqrestore(&phba->hbalock, iflags); 1038 if ((!list_empty(&phba->active_rrq_list)) && 1039 (!(phba->pport->load_flag & FC_UNLOADING))) 1040 mod_timer(&phba->rrq_tmr, next_time); 1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1042 list_del(&rrq->list); 1043 if (!rrq->send_rrq) { 1044 /* this call will free the rrq */ 1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1046 } else if (lpfc_send_rrq(phba, rrq)) { 1047 /* if we send the rrq then the completion handler 1048 * will clear the bit in the xribitmap. 1049 */ 1050 lpfc_clr_rrq_active(phba, rrq->xritag, 1051 rrq); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1058 * @vport: Pointer to vport context object. 1059 * @xri: The xri used in the exchange. 1060 * @did: The targets DID for this exchange. 1061 * 1062 * returns NULL = rrq not found in the phba->active_rrq_list. 1063 * rrq = rrq for this xri and target. 1064 **/ 1065 struct lpfc_node_rrq * 1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1067 { 1068 struct lpfc_hba *phba = vport->phba; 1069 struct lpfc_node_rrq *rrq; 1070 struct lpfc_node_rrq *nextrrq; 1071 unsigned long iflags; 1072 1073 if (phba->sli_rev != LPFC_SLI_REV4) 1074 return NULL; 1075 spin_lock_irqsave(&phba->hbalock, iflags); 1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1077 if (rrq->vport == vport && rrq->xritag == xri && 1078 rrq->nlp_DID == did){ 1079 list_del(&rrq->list); 1080 spin_unlock_irqrestore(&phba->hbalock, iflags); 1081 return rrq; 1082 } 1083 } 1084 spin_unlock_irqrestore(&phba->hbalock, iflags); 1085 return NULL; 1086 } 1087 1088 /** 1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1090 * @vport: Pointer to vport context object. 1091 * @ndlp: Pointer to the lpfc_node_list structure. 1092 * If ndlp is NULL Remove all active RRQs for this vport from the 1093 * phba->active_rrq_list and clear the rrq. 1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1095 **/ 1096 void 1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1098 1099 { 1100 struct lpfc_hba *phba = vport->phba; 1101 struct lpfc_node_rrq *rrq; 1102 struct lpfc_node_rrq *nextrrq; 1103 unsigned long iflags; 1104 LIST_HEAD(rrq_list); 1105 1106 if (phba->sli_rev != LPFC_SLI_REV4) 1107 return; 1108 if (!ndlp) { 1109 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1111 } 1112 spin_lock_irqsave(&phba->hbalock, iflags); 1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1114 if (rrq->vport != vport) 1115 continue; 1116 1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1118 list_move(&rrq->list, &rrq_list); 1119 1120 } 1121 spin_unlock_irqrestore(&phba->hbalock, iflags); 1122 1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1124 list_del(&rrq->list); 1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1126 } 1127 } 1128 1129 /** 1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1131 * @phba: Pointer to HBA context object. 1132 * @ndlp: Targets nodelist pointer for this exchange. 1133 * @xritag: the xri in the bitmap to test. 1134 * 1135 * This function returns: 1136 * 0 = rrq not active for this xri 1137 * 1 = rrq is valid for this xri. 1138 **/ 1139 int 1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1141 uint16_t xritag) 1142 { 1143 if (!ndlp) 1144 return 0; 1145 if (!ndlp->active_rrqs_xri_bitmap) 1146 return 0; 1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1148 return 1; 1149 else 1150 return 0; 1151 } 1152 1153 /** 1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1155 * @phba: Pointer to HBA context object. 1156 * @ndlp: nodelist pointer for this target. 1157 * @xritag: xri used in this exchange. 1158 * @rxid: Remote Exchange ID. 1159 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1160 * 1161 * This function takes the hbalock. 1162 * The active bit is always set in the active rrq xri_bitmap even 1163 * if there is no slot avaiable for the other rrq information. 1164 * 1165 * returns 0 rrq actived for this xri 1166 * < 0 No memory or invalid ndlp. 1167 **/ 1168 int 1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1171 { 1172 unsigned long iflags; 1173 struct lpfc_node_rrq *rrq; 1174 int empty; 1175 1176 if (!ndlp) 1177 return -EINVAL; 1178 1179 if (!phba->cfg_enable_rrq) 1180 return -EINVAL; 1181 1182 spin_lock_irqsave(&phba->hbalock, iflags); 1183 if (phba->pport->load_flag & FC_UNLOADING) { 1184 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1185 goto out; 1186 } 1187 1188 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1189 goto out; 1190 1191 if (!ndlp->active_rrqs_xri_bitmap) 1192 goto out; 1193 1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1195 goto out; 1196 1197 spin_unlock_irqrestore(&phba->hbalock, iflags); 1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1199 if (!rrq) { 1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1202 " DID:0x%x Send:%d\n", 1203 xritag, rxid, ndlp->nlp_DID, send_rrq); 1204 return -EINVAL; 1205 } 1206 if (phba->cfg_enable_rrq == 1) 1207 rrq->send_rrq = send_rrq; 1208 else 1209 rrq->send_rrq = 0; 1210 rrq->xritag = xritag; 1211 rrq->rrq_stop_time = jiffies + 1212 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1213 rrq->nlp_DID = ndlp->nlp_DID; 1214 rrq->vport = ndlp->vport; 1215 rrq->rxid = rxid; 1216 spin_lock_irqsave(&phba->hbalock, iflags); 1217 empty = list_empty(&phba->active_rrq_list); 1218 list_add_tail(&rrq->list, &phba->active_rrq_list); 1219 phba->hba_flag |= HBA_RRQ_ACTIVE; 1220 spin_unlock_irqrestore(&phba->hbalock, iflags); 1221 if (empty) 1222 lpfc_worker_wake_up(phba); 1223 return 0; 1224 out: 1225 spin_unlock_irqrestore(&phba->hbalock, iflags); 1226 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1227 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1228 " DID:0x%x Send:%d\n", 1229 xritag, rxid, ndlp->nlp_DID, send_rrq); 1230 return -EINVAL; 1231 } 1232 1233 /** 1234 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1235 * @phba: Pointer to HBA context object. 1236 * @piocbq: Pointer to the iocbq. 1237 * 1238 * The driver calls this function with either the nvme ls ring lock 1239 * or the fc els ring lock held depending on the iocb usage. This function 1240 * gets a new driver sglq object from the sglq list. If the list is not empty 1241 * then it is successful, it returns pointer to the newly allocated sglq 1242 * object else it returns NULL. 1243 **/ 1244 static struct lpfc_sglq * 1245 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1246 { 1247 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1248 struct lpfc_sglq *sglq = NULL; 1249 struct lpfc_sglq *start_sglq = NULL; 1250 struct lpfc_io_buf *lpfc_cmd; 1251 struct lpfc_nodelist *ndlp; 1252 int found = 0; 1253 u8 cmnd; 1254 1255 cmnd = get_job_cmnd(phba, piocbq); 1256 1257 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1258 lpfc_cmd = piocbq->io_buf; 1259 ndlp = lpfc_cmd->rdata->pnode; 1260 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1261 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1262 ndlp = piocbq->ndlp; 1263 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1264 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1265 ndlp = NULL; 1266 else 1267 ndlp = piocbq->ndlp; 1268 } else { 1269 ndlp = piocbq->ndlp; 1270 } 1271 1272 spin_lock(&phba->sli4_hba.sgl_list_lock); 1273 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1274 start_sglq = sglq; 1275 while (!found) { 1276 if (!sglq) 1277 break; 1278 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1279 test_bit(sglq->sli4_lxritag, 1280 ndlp->active_rrqs_xri_bitmap)) { 1281 /* This xri has an rrq outstanding for this DID. 1282 * put it back in the list and get another xri. 1283 */ 1284 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1285 sglq = NULL; 1286 list_remove_head(lpfc_els_sgl_list, sglq, 1287 struct lpfc_sglq, list); 1288 if (sglq == start_sglq) { 1289 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1290 sglq = NULL; 1291 break; 1292 } else 1293 continue; 1294 } 1295 sglq->ndlp = ndlp; 1296 found = 1; 1297 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1298 sglq->state = SGL_ALLOCATED; 1299 } 1300 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1301 return sglq; 1302 } 1303 1304 /** 1305 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1306 * @phba: Pointer to HBA context object. 1307 * @piocbq: Pointer to the iocbq. 1308 * 1309 * This function is called with the sgl_list lock held. This function 1310 * gets a new driver sglq object from the sglq list. If the 1311 * list is not empty then it is successful, it returns pointer to the newly 1312 * allocated sglq object else it returns NULL. 1313 **/ 1314 struct lpfc_sglq * 1315 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1316 { 1317 struct list_head *lpfc_nvmet_sgl_list; 1318 struct lpfc_sglq *sglq = NULL; 1319 1320 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1321 1322 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1323 1324 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1325 if (!sglq) 1326 return NULL; 1327 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1328 sglq->state = SGL_ALLOCATED; 1329 return sglq; 1330 } 1331 1332 /** 1333 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1334 * @phba: Pointer to HBA context object. 1335 * 1336 * This function is called with no lock held. This function 1337 * allocates a new driver iocb object from the iocb pool. If the 1338 * allocation is successful, it returns pointer to the newly 1339 * allocated iocb object else it returns NULL. 1340 **/ 1341 struct lpfc_iocbq * 1342 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1343 { 1344 struct lpfc_iocbq * iocbq = NULL; 1345 unsigned long iflags; 1346 1347 spin_lock_irqsave(&phba->hbalock, iflags); 1348 iocbq = __lpfc_sli_get_iocbq(phba); 1349 spin_unlock_irqrestore(&phba->hbalock, iflags); 1350 return iocbq; 1351 } 1352 1353 /** 1354 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1355 * @phba: Pointer to HBA context object. 1356 * @iocbq: Pointer to driver iocb object. 1357 * 1358 * This function is called to release the driver iocb object 1359 * to the iocb pool. The iotag in the iocb object 1360 * does not change for each use of the iocb object. This function 1361 * clears all other fields of the iocb object when it is freed. 1362 * The sqlq structure that holds the xritag and phys and virtual 1363 * mappings for the scatter gather list is retrieved from the 1364 * active array of sglq. The get of the sglq pointer also clears 1365 * the entry in the array. If the status of the IO indiactes that 1366 * this IO was aborted then the sglq entry it put on the 1367 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1368 * IO has good status or fails for any other reason then the sglq 1369 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1370 * asserted held in the code path calling this routine. 1371 **/ 1372 static void 1373 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1374 { 1375 struct lpfc_sglq *sglq; 1376 unsigned long iflag = 0; 1377 struct lpfc_sli_ring *pring; 1378 1379 if (iocbq->sli4_xritag == NO_XRI) 1380 sglq = NULL; 1381 else 1382 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1383 1384 1385 if (sglq) { 1386 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1387 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1388 iflag); 1389 sglq->state = SGL_FREED; 1390 sglq->ndlp = NULL; 1391 list_add_tail(&sglq->list, 1392 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1393 spin_unlock_irqrestore( 1394 &phba->sli4_hba.sgl_list_lock, iflag); 1395 goto out; 1396 } 1397 1398 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1399 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1400 sglq->state != SGL_XRI_ABORTED) { 1401 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1402 iflag); 1403 1404 /* Check if we can get a reference on ndlp */ 1405 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1406 sglq->ndlp = NULL; 1407 1408 list_add(&sglq->list, 1409 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1410 spin_unlock_irqrestore( 1411 &phba->sli4_hba.sgl_list_lock, iflag); 1412 } else { 1413 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1414 iflag); 1415 sglq->state = SGL_FREED; 1416 sglq->ndlp = NULL; 1417 list_add_tail(&sglq->list, 1418 &phba->sli4_hba.lpfc_els_sgl_list); 1419 spin_unlock_irqrestore( 1420 &phba->sli4_hba.sgl_list_lock, iflag); 1421 pring = lpfc_phba_elsring(phba); 1422 /* Check if TXQ queue needs to be serviced */ 1423 if (pring && (!list_empty(&pring->txq))) 1424 lpfc_worker_wake_up(phba); 1425 } 1426 } 1427 1428 out: 1429 /* 1430 * Clean all volatile data fields, preserve iotag and node struct. 1431 */ 1432 memset_startat(iocbq, 0, wqe); 1433 iocbq->sli4_lxritag = NO_XRI; 1434 iocbq->sli4_xritag = NO_XRI; 1435 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1436 LPFC_IO_NVME_LS); 1437 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1438 } 1439 1440 1441 /** 1442 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1443 * @phba: Pointer to HBA context object. 1444 * @iocbq: Pointer to driver iocb object. 1445 * 1446 * This function is called to release the driver iocb object to the 1447 * iocb pool. The iotag in the iocb object does not change for each 1448 * use of the iocb object. This function clears all other fields of 1449 * the iocb object when it is freed. The hbalock is asserted held in 1450 * the code path calling this routine. 1451 **/ 1452 static void 1453 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1454 { 1455 1456 /* 1457 * Clean all volatile data fields, preserve iotag and node struct. 1458 */ 1459 memset_startat(iocbq, 0, iocb); 1460 iocbq->sli4_xritag = NO_XRI; 1461 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1462 } 1463 1464 /** 1465 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1466 * @phba: Pointer to HBA context object. 1467 * @iocbq: Pointer to driver iocb object. 1468 * 1469 * This function is called with hbalock held to release driver 1470 * iocb object to the iocb pool. The iotag in the iocb object 1471 * does not change for each use of the iocb object. This function 1472 * clears all other fields of the iocb object when it is freed. 1473 **/ 1474 static void 1475 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1476 { 1477 lockdep_assert_held(&phba->hbalock); 1478 1479 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1480 phba->iocb_cnt--; 1481 } 1482 1483 /** 1484 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1485 * @phba: Pointer to HBA context object. 1486 * @iocbq: Pointer to driver iocb object. 1487 * 1488 * This function is called with no lock held to release the iocb to 1489 * iocb pool. 1490 **/ 1491 void 1492 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1493 { 1494 unsigned long iflags; 1495 1496 /* 1497 * Clean all volatile data fields, preserve iotag and node struct. 1498 */ 1499 spin_lock_irqsave(&phba->hbalock, iflags); 1500 __lpfc_sli_release_iocbq(phba, iocbq); 1501 spin_unlock_irqrestore(&phba->hbalock, iflags); 1502 } 1503 1504 /** 1505 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1506 * @phba: Pointer to HBA context object. 1507 * @iocblist: List of IOCBs. 1508 * @ulpstatus: ULP status in IOCB command field. 1509 * @ulpWord4: ULP word-4 in IOCB command field. 1510 * 1511 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1512 * on the list by invoking the complete callback function associated with the 1513 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1514 * fields. 1515 **/ 1516 void 1517 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1518 uint32_t ulpstatus, uint32_t ulpWord4) 1519 { 1520 struct lpfc_iocbq *piocb; 1521 1522 while (!list_empty(iocblist)) { 1523 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1524 if (piocb->cmd_cmpl) { 1525 if (piocb->cmd_flag & LPFC_IO_NVME) { 1526 lpfc_nvme_cancel_iocb(phba, piocb, 1527 ulpstatus, ulpWord4); 1528 } else { 1529 if (phba->sli_rev == LPFC_SLI_REV4) { 1530 bf_set(lpfc_wcqe_c_status, 1531 &piocb->wcqe_cmpl, ulpstatus); 1532 piocb->wcqe_cmpl.parameter = ulpWord4; 1533 } else { 1534 piocb->iocb.ulpStatus = ulpstatus; 1535 piocb->iocb.un.ulpWord[4] = ulpWord4; 1536 } 1537 (piocb->cmd_cmpl) (phba, piocb, piocb); 1538 } 1539 } else { 1540 lpfc_sli_release_iocbq(phba, piocb); 1541 } 1542 } 1543 return; 1544 } 1545 1546 /** 1547 * lpfc_sli_iocb_cmd_type - Get the iocb type 1548 * @iocb_cmnd: iocb command code. 1549 * 1550 * This function is called by ring event handler function to get the iocb type. 1551 * This function translates the iocb command to an iocb command type used to 1552 * decide the final disposition of each completed IOCB. 1553 * The function returns 1554 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1555 * LPFC_SOL_IOCB if it is a solicited iocb completion 1556 * LPFC_ABORT_IOCB if it is an abort iocb 1557 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1558 * 1559 * The caller is not required to hold any lock. 1560 **/ 1561 static lpfc_iocb_type 1562 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1563 { 1564 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1565 1566 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1567 return 0; 1568 1569 switch (iocb_cmnd) { 1570 case CMD_XMIT_SEQUENCE_CR: 1571 case CMD_XMIT_SEQUENCE_CX: 1572 case CMD_XMIT_BCAST_CN: 1573 case CMD_XMIT_BCAST_CX: 1574 case CMD_ELS_REQUEST_CR: 1575 case CMD_ELS_REQUEST_CX: 1576 case CMD_CREATE_XRI_CR: 1577 case CMD_CREATE_XRI_CX: 1578 case CMD_GET_RPI_CN: 1579 case CMD_XMIT_ELS_RSP_CX: 1580 case CMD_GET_RPI_CR: 1581 case CMD_FCP_IWRITE_CR: 1582 case CMD_FCP_IWRITE_CX: 1583 case CMD_FCP_IREAD_CR: 1584 case CMD_FCP_IREAD_CX: 1585 case CMD_FCP_ICMND_CR: 1586 case CMD_FCP_ICMND_CX: 1587 case CMD_FCP_TSEND_CX: 1588 case CMD_FCP_TRSP_CX: 1589 case CMD_FCP_TRECEIVE_CX: 1590 case CMD_FCP_AUTO_TRSP_CX: 1591 case CMD_ADAPTER_MSG: 1592 case CMD_ADAPTER_DUMP: 1593 case CMD_XMIT_SEQUENCE64_CR: 1594 case CMD_XMIT_SEQUENCE64_CX: 1595 case CMD_XMIT_BCAST64_CN: 1596 case CMD_XMIT_BCAST64_CX: 1597 case CMD_ELS_REQUEST64_CR: 1598 case CMD_ELS_REQUEST64_CX: 1599 case CMD_FCP_IWRITE64_CR: 1600 case CMD_FCP_IWRITE64_CX: 1601 case CMD_FCP_IREAD64_CR: 1602 case CMD_FCP_IREAD64_CX: 1603 case CMD_FCP_ICMND64_CR: 1604 case CMD_FCP_ICMND64_CX: 1605 case CMD_FCP_TSEND64_CX: 1606 case CMD_FCP_TRSP64_CX: 1607 case CMD_FCP_TRECEIVE64_CX: 1608 case CMD_GEN_REQUEST64_CR: 1609 case CMD_GEN_REQUEST64_CX: 1610 case CMD_XMIT_ELS_RSP64_CX: 1611 case DSSCMD_IWRITE64_CR: 1612 case DSSCMD_IWRITE64_CX: 1613 case DSSCMD_IREAD64_CR: 1614 case DSSCMD_IREAD64_CX: 1615 case CMD_SEND_FRAME: 1616 type = LPFC_SOL_IOCB; 1617 break; 1618 case CMD_ABORT_XRI_CN: 1619 case CMD_ABORT_XRI_CX: 1620 case CMD_CLOSE_XRI_CN: 1621 case CMD_CLOSE_XRI_CX: 1622 case CMD_XRI_ABORTED_CX: 1623 case CMD_ABORT_MXRI64_CN: 1624 case CMD_XMIT_BLS_RSP64_CX: 1625 type = LPFC_ABORT_IOCB; 1626 break; 1627 case CMD_RCV_SEQUENCE_CX: 1628 case CMD_RCV_ELS_REQ_CX: 1629 case CMD_RCV_SEQUENCE64_CX: 1630 case CMD_RCV_ELS_REQ64_CX: 1631 case CMD_ASYNC_STATUS: 1632 case CMD_IOCB_RCV_SEQ64_CX: 1633 case CMD_IOCB_RCV_ELS64_CX: 1634 case CMD_IOCB_RCV_CONT64_CX: 1635 case CMD_IOCB_RET_XRI64_CX: 1636 type = LPFC_UNSOL_IOCB; 1637 break; 1638 case CMD_IOCB_XMIT_MSEQ64_CR: 1639 case CMD_IOCB_XMIT_MSEQ64_CX: 1640 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1641 case CMD_IOCB_RCV_ELS_LIST64_CX: 1642 case CMD_IOCB_CLOSE_EXTENDED_CN: 1643 case CMD_IOCB_ABORT_EXTENDED_CN: 1644 case CMD_IOCB_RET_HBQE64_CN: 1645 case CMD_IOCB_FCP_IBIDIR64_CR: 1646 case CMD_IOCB_FCP_IBIDIR64_CX: 1647 case CMD_IOCB_FCP_ITASKMGT64_CX: 1648 case CMD_IOCB_LOGENTRY_CN: 1649 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1650 printk("%s - Unhandled SLI-3 Command x%x\n", 1651 __func__, iocb_cmnd); 1652 type = LPFC_UNKNOWN_IOCB; 1653 break; 1654 default: 1655 type = LPFC_UNKNOWN_IOCB; 1656 break; 1657 } 1658 1659 return type; 1660 } 1661 1662 /** 1663 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1664 * @phba: Pointer to HBA context object. 1665 * 1666 * This function is called from SLI initialization code 1667 * to configure every ring of the HBA's SLI interface. The 1668 * caller is not required to hold any lock. This function issues 1669 * a config_ring mailbox command for each ring. 1670 * This function returns zero if successful else returns a negative 1671 * error code. 1672 **/ 1673 static int 1674 lpfc_sli_ring_map(struct lpfc_hba *phba) 1675 { 1676 struct lpfc_sli *psli = &phba->sli; 1677 LPFC_MBOXQ_t *pmb; 1678 MAILBOX_t *pmbox; 1679 int i, rc, ret = 0; 1680 1681 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1682 if (!pmb) 1683 return -ENOMEM; 1684 pmbox = &pmb->u.mb; 1685 phba->link_state = LPFC_INIT_MBX_CMDS; 1686 for (i = 0; i < psli->num_rings; i++) { 1687 lpfc_config_ring(phba, i, pmb); 1688 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1689 if (rc != MBX_SUCCESS) { 1690 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1691 "0446 Adapter failed to init (%d), " 1692 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1693 "ring %d\n", 1694 rc, pmbox->mbxCommand, 1695 pmbox->mbxStatus, i); 1696 phba->link_state = LPFC_HBA_ERROR; 1697 ret = -ENXIO; 1698 break; 1699 } 1700 } 1701 mempool_free(pmb, phba->mbox_mem_pool); 1702 return ret; 1703 } 1704 1705 /** 1706 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1707 * @phba: Pointer to HBA context object. 1708 * @pring: Pointer to driver SLI ring object. 1709 * @piocb: Pointer to the driver iocb object. 1710 * 1711 * The driver calls this function with the hbalock held for SLI3 ports or 1712 * the ring lock held for SLI4 ports. The function adds the 1713 * new iocb to txcmplq of the given ring. This function always returns 1714 * 0. If this function is called for ELS ring, this function checks if 1715 * there is a vport associated with the ELS command. This function also 1716 * starts els_tmofunc timer if this is an ELS command. 1717 **/ 1718 static int 1719 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1720 struct lpfc_iocbq *piocb) 1721 { 1722 u32 ulp_command = 0; 1723 1724 BUG_ON(!piocb); 1725 ulp_command = get_job_cmnd(phba, piocb); 1726 1727 list_add_tail(&piocb->list, &pring->txcmplq); 1728 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1729 pring->txcmplq_cnt++; 1730 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1731 (ulp_command != CMD_ABORT_XRI_WQE) && 1732 (ulp_command != CMD_ABORT_XRI_CN) && 1733 (ulp_command != CMD_CLOSE_XRI_CN)) { 1734 BUG_ON(!piocb->vport); 1735 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1736 mod_timer(&piocb->vport->els_tmofunc, 1737 jiffies + 1738 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1739 } 1740 1741 return 0; 1742 } 1743 1744 /** 1745 * lpfc_sli_ringtx_get - Get first element of the txq 1746 * @phba: Pointer to HBA context object. 1747 * @pring: Pointer to driver SLI ring object. 1748 * 1749 * This function is called with hbalock held to get next 1750 * iocb in txq of the given ring. If there is any iocb in 1751 * the txq, the function returns first iocb in the list after 1752 * removing the iocb from the list, else it returns NULL. 1753 **/ 1754 struct lpfc_iocbq * 1755 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1756 { 1757 struct lpfc_iocbq *cmd_iocb; 1758 1759 lockdep_assert_held(&phba->hbalock); 1760 1761 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1762 return cmd_iocb; 1763 } 1764 1765 /** 1766 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1767 * @phba: Pointer to HBA context object. 1768 * @cmdiocb: Pointer to driver command iocb object. 1769 * @rspiocb: Pointer to driver response iocb object. 1770 * 1771 * This routine will inform the driver of any BW adjustments we need 1772 * to make. These changes will be picked up during the next CMF 1773 * timer interrupt. In addition, any BW changes will be logged 1774 * with LOG_CGN_MGMT. 1775 **/ 1776 static void 1777 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1778 struct lpfc_iocbq *rspiocb) 1779 { 1780 union lpfc_wqe128 *wqe; 1781 uint32_t status, info; 1782 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1783 uint64_t bw, bwdif, slop; 1784 uint64_t pcent, bwpcent; 1785 int asig, afpin, sigcnt, fpincnt; 1786 int wsigmax, wfpinmax, cg, tdp; 1787 char *s; 1788 1789 /* First check for error */ 1790 status = bf_get(lpfc_wcqe_c_status, wcqe); 1791 if (status) { 1792 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1793 "6211 CMF_SYNC_WQE Error " 1794 "req_tag x%x status x%x hwstatus x%x " 1795 "tdatap x%x parm x%x\n", 1796 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1797 bf_get(lpfc_wcqe_c_status, wcqe), 1798 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1799 wcqe->total_data_placed, 1800 wcqe->parameter); 1801 goto out; 1802 } 1803 1804 /* Gather congestion information on a successful cmpl */ 1805 info = wcqe->parameter; 1806 phba->cmf_active_info = info; 1807 1808 /* See if firmware info count is valid or has changed */ 1809 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1810 info = 0; 1811 else 1812 phba->cmf_info_per_interval = info; 1813 1814 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1815 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1816 1817 /* Get BW requirement from firmware */ 1818 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1819 if (!bw) { 1820 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1821 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1822 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1823 goto out; 1824 } 1825 1826 /* Gather information needed for logging if a BW change is required */ 1827 wqe = &cmdiocb->wqe; 1828 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1829 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1830 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1831 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1832 if (phba->cmf_max_bytes_per_interval != bw || 1833 (asig || afpin || sigcnt || fpincnt)) { 1834 /* Are we increasing or decreasing BW */ 1835 if (phba->cmf_max_bytes_per_interval < bw) { 1836 bwdif = bw - phba->cmf_max_bytes_per_interval; 1837 s = "Increase"; 1838 } else { 1839 bwdif = phba->cmf_max_bytes_per_interval - bw; 1840 s = "Decrease"; 1841 } 1842 1843 /* What is the change percentage */ 1844 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1845 pcent = div64_u64(bwdif * 100 + slop, 1846 phba->cmf_link_byte_count); 1847 bwpcent = div64_u64(bw * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 /* Because of bytes adjustment due to shorter timer in 1850 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and 1851 * may seem like BW is above 100%. 1852 */ 1853 if (bwpcent > 100) 1854 bwpcent = 100; 1855 1856 if (phba->cmf_max_bytes_per_interval < bw && 1857 bwpcent > 95) 1858 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1859 "6208 Congestion bandwidth " 1860 "limits removed\n"); 1861 else if ((phba->cmf_max_bytes_per_interval > bw) && 1862 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95)) 1863 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1864 "6209 Congestion bandwidth " 1865 "limits in effect\n"); 1866 1867 if (asig) { 1868 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1869 "6237 BW Threshold %lld%% (%lld): " 1870 "%lld%% %s: Signal Alarm: cg:%d " 1871 "Info:%u\n", 1872 bwpcent, bw, pcent, s, cg, 1873 phba->cmf_active_info); 1874 } else if (afpin) { 1875 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1876 "6238 BW Threshold %lld%% (%lld): " 1877 "%lld%% %s: FPIN Alarm: cg:%d " 1878 "Info:%u\n", 1879 bwpcent, bw, pcent, s, cg, 1880 phba->cmf_active_info); 1881 } else if (sigcnt) { 1882 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1883 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1884 "6239 BW Threshold %lld%% (%lld): " 1885 "%lld%% %s: Signal Warning: " 1886 "Cnt %d Max %d: cg:%d Info:%u\n", 1887 bwpcent, bw, pcent, s, sigcnt, 1888 wsigmax, cg, phba->cmf_active_info); 1889 } else if (fpincnt) { 1890 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1891 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1892 "6240 BW Threshold %lld%% (%lld): " 1893 "%lld%% %s: FPIN Warning: " 1894 "Cnt %d Max %d: cg:%d Info:%u\n", 1895 bwpcent, bw, pcent, s, fpincnt, 1896 wfpinmax, cg, phba->cmf_active_info); 1897 } else { 1898 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1899 "6241 BW Threshold %lld%% (%lld): " 1900 "CMF %lld%% %s: cg:%d Info:%u\n", 1901 bwpcent, bw, pcent, s, cg, 1902 phba->cmf_active_info); 1903 } 1904 } else if (info) { 1905 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1906 "6246 Info Threshold %u\n", info); 1907 } 1908 1909 /* Save BW change to be picked up during next timer interrupt */ 1910 phba->cmf_last_sync_bw = bw; 1911 out: 1912 lpfc_sli_release_iocbq(phba, cmdiocb); 1913 } 1914 1915 /** 1916 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1917 * @phba: Pointer to HBA context object. 1918 * @ms: ms to set in WQE interval, 0 means use init op 1919 * @total: Total rcv bytes for this interval 1920 * 1921 * This routine is called every CMF timer interrupt. Its purpose is 1922 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1923 * that may indicate we have congestion (FPINs or Signals). Upon 1924 * completion, the firmware will indicate any BW restrictions the 1925 * driver may need to take. 1926 **/ 1927 int 1928 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1929 { 1930 union lpfc_wqe128 *wqe; 1931 struct lpfc_iocbq *sync_buf; 1932 unsigned long iflags; 1933 u32 ret_val; 1934 u32 atot, wtot, max; 1935 u8 warn_sync_period = 0; 1936 1937 /* First address any alarm / warning activity */ 1938 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1939 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1940 1941 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1942 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1943 phba->link_state == LPFC_LINK_DOWN) 1944 return 0; 1945 1946 spin_lock_irqsave(&phba->hbalock, iflags); 1947 sync_buf = __lpfc_sli_get_iocbq(phba); 1948 if (!sync_buf) { 1949 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1950 "6244 No available WQEs for CMF_SYNC_WQE\n"); 1951 ret_val = ENOMEM; 1952 goto out_unlock; 1953 } 1954 1955 wqe = &sync_buf->wqe; 1956 1957 /* WQEs are reused. Clear stale data and set key fields to zero */ 1958 memset(wqe, 0, sizeof(*wqe)); 1959 1960 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1961 if (!ms) { 1962 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1963 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1964 phba->fc_eventTag); 1965 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1966 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1967 goto initpath; 1968 } 1969 1970 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1971 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1972 1973 /* Check for alarms / warnings */ 1974 if (atot) { 1975 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1976 /* We hit an Signal alarm condition */ 1977 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1978 } else { 1979 /* We hit a FPIN alarm condition */ 1980 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1981 } 1982 } else if (wtot) { 1983 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1984 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1985 /* We hit an Signal warning condition */ 1986 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1987 lpfc_acqe_cgn_frequency; 1988 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1989 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1990 warn_sync_period = lpfc_acqe_cgn_frequency; 1991 } else { 1992 /* We hit a FPIN warning condition */ 1993 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1994 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1995 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) 1996 warn_sync_period = 1997 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency); 1998 } 1999 } 2000 2001 /* Update total read blocks during previous timer interval */ 2002 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 2003 2004 initpath: 2005 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 2006 wqe->cmf_sync.event_tag = phba->fc_eventTag; 2007 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 2008 2009 /* Setup reqtag to match the wqe completion. */ 2010 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 2011 2012 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 2013 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period); 2014 2015 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 2016 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 2017 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2018 2019 sync_buf->vport = phba->pport; 2020 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 2021 sync_buf->cmd_dmabuf = NULL; 2022 sync_buf->rsp_dmabuf = NULL; 2023 sync_buf->bpl_dmabuf = NULL; 2024 sync_buf->sli4_xritag = NO_XRI; 2025 2026 sync_buf->cmd_flag |= LPFC_IO_CMF; 2027 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2028 if (ret_val) { 2029 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2030 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2031 ret_val); 2032 __lpfc_sli_release_iocbq(phba, sync_buf); 2033 } 2034 out_unlock: 2035 spin_unlock_irqrestore(&phba->hbalock, iflags); 2036 return ret_val; 2037 } 2038 2039 /** 2040 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2041 * @phba: Pointer to HBA context object. 2042 * @pring: Pointer to driver SLI ring object. 2043 * 2044 * This function is called with hbalock held and the caller must post the 2045 * iocb without releasing the lock. If the caller releases the lock, 2046 * iocb slot returned by the function is not guaranteed to be available. 2047 * The function returns pointer to the next available iocb slot if there 2048 * is available slot in the ring, else it returns NULL. 2049 * If the get index of the ring is ahead of the put index, the function 2050 * will post an error attention event to the worker thread to take the 2051 * HBA to offline state. 2052 **/ 2053 static IOCB_t * 2054 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2055 { 2056 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2057 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2058 2059 lockdep_assert_held(&phba->hbalock); 2060 2061 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2062 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2063 pring->sli.sli3.next_cmdidx = 0; 2064 2065 if (unlikely(pring->sli.sli3.local_getidx == 2066 pring->sli.sli3.next_cmdidx)) { 2067 2068 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2069 2070 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2071 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2072 "0315 Ring %d issue: portCmdGet %d " 2073 "is bigger than cmd ring %d\n", 2074 pring->ringno, 2075 pring->sli.sli3.local_getidx, 2076 max_cmd_idx); 2077 2078 phba->link_state = LPFC_HBA_ERROR; 2079 /* 2080 * All error attention handlers are posted to 2081 * worker thread 2082 */ 2083 phba->work_ha |= HA_ERATT; 2084 phba->work_hs = HS_FFER3; 2085 2086 lpfc_worker_wake_up(phba); 2087 2088 return NULL; 2089 } 2090 2091 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2092 return NULL; 2093 } 2094 2095 return lpfc_cmd_iocb(phba, pring); 2096 } 2097 2098 /** 2099 * lpfc_sli_next_iotag - Get an iotag for the iocb 2100 * @phba: Pointer to HBA context object. 2101 * @iocbq: Pointer to driver iocb object. 2102 * 2103 * This function gets an iotag for the iocb. If there is no unused iotag and 2104 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2105 * array and assigns a new iotag. 2106 * The function returns the allocated iotag if successful, else returns zero. 2107 * Zero is not a valid iotag. 2108 * The caller is not required to hold any lock. 2109 **/ 2110 uint16_t 2111 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2112 { 2113 struct lpfc_iocbq **new_arr; 2114 struct lpfc_iocbq **old_arr; 2115 size_t new_len; 2116 struct lpfc_sli *psli = &phba->sli; 2117 uint16_t iotag; 2118 2119 spin_lock_irq(&phba->hbalock); 2120 iotag = psli->last_iotag; 2121 if(++iotag < psli->iocbq_lookup_len) { 2122 psli->last_iotag = iotag; 2123 psli->iocbq_lookup[iotag] = iocbq; 2124 spin_unlock_irq(&phba->hbalock); 2125 iocbq->iotag = iotag; 2126 return iotag; 2127 } else if (psli->iocbq_lookup_len < (0xffff 2128 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2129 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2130 spin_unlock_irq(&phba->hbalock); 2131 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2132 GFP_KERNEL); 2133 if (new_arr) { 2134 spin_lock_irq(&phba->hbalock); 2135 old_arr = psli->iocbq_lookup; 2136 if (new_len <= psli->iocbq_lookup_len) { 2137 /* highly unprobable case */ 2138 kfree(new_arr); 2139 iotag = psli->last_iotag; 2140 if(++iotag < psli->iocbq_lookup_len) { 2141 psli->last_iotag = iotag; 2142 psli->iocbq_lookup[iotag] = iocbq; 2143 spin_unlock_irq(&phba->hbalock); 2144 iocbq->iotag = iotag; 2145 return iotag; 2146 } 2147 spin_unlock_irq(&phba->hbalock); 2148 return 0; 2149 } 2150 if (psli->iocbq_lookup) 2151 memcpy(new_arr, old_arr, 2152 ((psli->last_iotag + 1) * 2153 sizeof (struct lpfc_iocbq *))); 2154 psli->iocbq_lookup = new_arr; 2155 psli->iocbq_lookup_len = new_len; 2156 psli->last_iotag = iotag; 2157 psli->iocbq_lookup[iotag] = iocbq; 2158 spin_unlock_irq(&phba->hbalock); 2159 iocbq->iotag = iotag; 2160 kfree(old_arr); 2161 return iotag; 2162 } 2163 } else 2164 spin_unlock_irq(&phba->hbalock); 2165 2166 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2167 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2168 psli->last_iotag); 2169 2170 return 0; 2171 } 2172 2173 /** 2174 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2175 * @phba: Pointer to HBA context object. 2176 * @pring: Pointer to driver SLI ring object. 2177 * @iocb: Pointer to iocb slot in the ring. 2178 * @nextiocb: Pointer to driver iocb object which need to be 2179 * posted to firmware. 2180 * 2181 * This function is called to post a new iocb to the firmware. This 2182 * function copies the new iocb to ring iocb slot and updates the 2183 * ring pointers. It adds the new iocb to txcmplq if there is 2184 * a completion call back for this iocb else the function will free the 2185 * iocb object. The hbalock is asserted held in the code path calling 2186 * this routine. 2187 **/ 2188 static void 2189 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2190 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2191 { 2192 /* 2193 * Set up an iotag 2194 */ 2195 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2196 2197 2198 if (pring->ringno == LPFC_ELS_RING) { 2199 lpfc_debugfs_slow_ring_trc(phba, 2200 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2201 *(((uint32_t *) &nextiocb->iocb) + 4), 2202 *(((uint32_t *) &nextiocb->iocb) + 6), 2203 *(((uint32_t *) &nextiocb->iocb) + 7)); 2204 } 2205 2206 /* 2207 * Issue iocb command to adapter 2208 */ 2209 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2210 wmb(); 2211 pring->stats.iocb_cmd++; 2212 2213 /* 2214 * If there is no completion routine to call, we can release the 2215 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2216 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2217 */ 2218 if (nextiocb->cmd_cmpl) 2219 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2220 else 2221 __lpfc_sli_release_iocbq(phba, nextiocb); 2222 2223 /* 2224 * Let the HBA know what IOCB slot will be the next one the 2225 * driver will put a command into. 2226 */ 2227 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2228 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2229 } 2230 2231 /** 2232 * lpfc_sli_update_full_ring - Update the chip attention register 2233 * @phba: Pointer to HBA context object. 2234 * @pring: Pointer to driver SLI ring object. 2235 * 2236 * The caller is not required to hold any lock for calling this function. 2237 * This function updates the chip attention bits for the ring to inform firmware 2238 * that there are pending work to be done for this ring and requests an 2239 * interrupt when there is space available in the ring. This function is 2240 * called when the driver is unable to post more iocbs to the ring due 2241 * to unavailability of space in the ring. 2242 **/ 2243 static void 2244 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2245 { 2246 int ringno = pring->ringno; 2247 2248 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2249 2250 wmb(); 2251 2252 /* 2253 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2254 * The HBA will tell us when an IOCB entry is available. 2255 */ 2256 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2257 readl(phba->CAregaddr); /* flush */ 2258 2259 pring->stats.iocb_cmd_full++; 2260 } 2261 2262 /** 2263 * lpfc_sli_update_ring - Update chip attention register 2264 * @phba: Pointer to HBA context object. 2265 * @pring: Pointer to driver SLI ring object. 2266 * 2267 * This function updates the chip attention register bit for the 2268 * given ring to inform HBA that there is more work to be done 2269 * in this ring. The caller is not required to hold any lock. 2270 **/ 2271 static void 2272 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2273 { 2274 int ringno = pring->ringno; 2275 2276 /* 2277 * Tell the HBA that there is work to do in this ring. 2278 */ 2279 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2280 wmb(); 2281 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2282 readl(phba->CAregaddr); /* flush */ 2283 } 2284 } 2285 2286 /** 2287 * lpfc_sli_resume_iocb - Process iocbs in the txq 2288 * @phba: Pointer to HBA context object. 2289 * @pring: Pointer to driver SLI ring object. 2290 * 2291 * This function is called with hbalock held to post pending iocbs 2292 * in the txq to the firmware. This function is called when driver 2293 * detects space available in the ring. 2294 **/ 2295 static void 2296 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2297 { 2298 IOCB_t *iocb; 2299 struct lpfc_iocbq *nextiocb; 2300 2301 lockdep_assert_held(&phba->hbalock); 2302 2303 /* 2304 * Check to see if: 2305 * (a) there is anything on the txq to send 2306 * (b) link is up 2307 * (c) link attention events can be processed (fcp ring only) 2308 * (d) IOCB processing is not blocked by the outstanding mbox command. 2309 */ 2310 2311 if (lpfc_is_link_up(phba) && 2312 (!list_empty(&pring->txq)) && 2313 (pring->ringno != LPFC_FCP_RING || 2314 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2315 2316 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2317 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2318 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2319 2320 if (iocb) 2321 lpfc_sli_update_ring(phba, pring); 2322 else 2323 lpfc_sli_update_full_ring(phba, pring); 2324 } 2325 2326 return; 2327 } 2328 2329 /** 2330 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2331 * @phba: Pointer to HBA context object. 2332 * @hbqno: HBQ number. 2333 * 2334 * This function is called with hbalock held to get the next 2335 * available slot for the given HBQ. If there is free slot 2336 * available for the HBQ it will return pointer to the next available 2337 * HBQ entry else it will return NULL. 2338 **/ 2339 static struct lpfc_hbq_entry * 2340 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2341 { 2342 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2343 2344 lockdep_assert_held(&phba->hbalock); 2345 2346 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2347 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2348 hbqp->next_hbqPutIdx = 0; 2349 2350 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2351 uint32_t raw_index = phba->hbq_get[hbqno]; 2352 uint32_t getidx = le32_to_cpu(raw_index); 2353 2354 hbqp->local_hbqGetIdx = getidx; 2355 2356 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2357 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2358 "1802 HBQ %d: local_hbqGetIdx " 2359 "%u is > than hbqp->entry_count %u\n", 2360 hbqno, hbqp->local_hbqGetIdx, 2361 hbqp->entry_count); 2362 2363 phba->link_state = LPFC_HBA_ERROR; 2364 return NULL; 2365 } 2366 2367 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2368 return NULL; 2369 } 2370 2371 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2372 hbqp->hbqPutIdx; 2373 } 2374 2375 /** 2376 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2377 * @phba: Pointer to HBA context object. 2378 * 2379 * This function is called with no lock held to free all the 2380 * hbq buffers while uninitializing the SLI interface. It also 2381 * frees the HBQ buffers returned by the firmware but not yet 2382 * processed by the upper layers. 2383 **/ 2384 void 2385 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2386 { 2387 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2388 struct hbq_dmabuf *hbq_buf; 2389 unsigned long flags; 2390 int i, hbq_count; 2391 2392 hbq_count = lpfc_sli_hbq_count(); 2393 /* Return all memory used by all HBQs */ 2394 spin_lock_irqsave(&phba->hbalock, flags); 2395 for (i = 0; i < hbq_count; ++i) { 2396 list_for_each_entry_safe(dmabuf, next_dmabuf, 2397 &phba->hbqs[i].hbq_buffer_list, list) { 2398 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2399 list_del(&hbq_buf->dbuf.list); 2400 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2401 } 2402 phba->hbqs[i].buffer_count = 0; 2403 } 2404 2405 /* Mark the HBQs not in use */ 2406 phba->hbq_in_use = 0; 2407 spin_unlock_irqrestore(&phba->hbalock, flags); 2408 } 2409 2410 /** 2411 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2412 * @phba: Pointer to HBA context object. 2413 * @hbqno: HBQ number. 2414 * @hbq_buf: Pointer to HBQ buffer. 2415 * 2416 * This function is called with the hbalock held to post a 2417 * hbq buffer to the firmware. If the function finds an empty 2418 * slot in the HBQ, it will post the buffer. The function will return 2419 * pointer to the hbq entry if it successfully post the buffer 2420 * else it will return NULL. 2421 **/ 2422 static int 2423 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2424 struct hbq_dmabuf *hbq_buf) 2425 { 2426 lockdep_assert_held(&phba->hbalock); 2427 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2428 } 2429 2430 /** 2431 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2432 * @phba: Pointer to HBA context object. 2433 * @hbqno: HBQ number. 2434 * @hbq_buf: Pointer to HBQ buffer. 2435 * 2436 * This function is called with the hbalock held to post a hbq buffer to the 2437 * firmware. If the function finds an empty slot in the HBQ, it will post the 2438 * buffer and place it on the hbq_buffer_list. The function will return zero if 2439 * it successfully post the buffer else it will return an error. 2440 **/ 2441 static int 2442 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2443 struct hbq_dmabuf *hbq_buf) 2444 { 2445 struct lpfc_hbq_entry *hbqe; 2446 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2447 2448 lockdep_assert_held(&phba->hbalock); 2449 /* Get next HBQ entry slot to use */ 2450 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2451 if (hbqe) { 2452 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2453 2454 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2455 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2456 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2457 hbqe->bde.tus.f.bdeFlags = 0; 2458 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2459 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2460 /* Sync SLIM */ 2461 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2462 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2463 /* flush */ 2464 readl(phba->hbq_put + hbqno); 2465 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2466 return 0; 2467 } else 2468 return -ENOMEM; 2469 } 2470 2471 /** 2472 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2473 * @phba: Pointer to HBA context object. 2474 * @hbqno: HBQ number. 2475 * @hbq_buf: Pointer to HBQ buffer. 2476 * 2477 * This function is called with the hbalock held to post an RQE to the SLI4 2478 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2479 * the hbq_buffer_list and return zero, otherwise it will return an error. 2480 **/ 2481 static int 2482 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2483 struct hbq_dmabuf *hbq_buf) 2484 { 2485 int rc; 2486 struct lpfc_rqe hrqe; 2487 struct lpfc_rqe drqe; 2488 struct lpfc_queue *hrq; 2489 struct lpfc_queue *drq; 2490 2491 if (hbqno != LPFC_ELS_HBQ) 2492 return 1; 2493 hrq = phba->sli4_hba.hdr_rq; 2494 drq = phba->sli4_hba.dat_rq; 2495 2496 lockdep_assert_held(&phba->hbalock); 2497 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2498 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2499 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2500 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2501 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2502 if (rc < 0) 2503 return rc; 2504 hbq_buf->tag = (rc | (hbqno << 16)); 2505 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2506 return 0; 2507 } 2508 2509 /* HBQ for ELS and CT traffic. */ 2510 static struct lpfc_hbq_init lpfc_els_hbq = { 2511 .rn = 1, 2512 .entry_count = 256, 2513 .mask_count = 0, 2514 .profile = 0, 2515 .ring_mask = (1 << LPFC_ELS_RING), 2516 .buffer_count = 0, 2517 .init_count = 40, 2518 .add_count = 40, 2519 }; 2520 2521 /* Array of HBQs */ 2522 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2523 &lpfc_els_hbq, 2524 }; 2525 2526 /** 2527 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2528 * @phba: Pointer to HBA context object. 2529 * @hbqno: HBQ number. 2530 * @count: Number of HBQ buffers to be posted. 2531 * 2532 * This function is called with no lock held to post more hbq buffers to the 2533 * given HBQ. The function returns the number of HBQ buffers successfully 2534 * posted. 2535 **/ 2536 static int 2537 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2538 { 2539 uint32_t i, posted = 0; 2540 unsigned long flags; 2541 struct hbq_dmabuf *hbq_buffer; 2542 LIST_HEAD(hbq_buf_list); 2543 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2544 return 0; 2545 2546 if ((phba->hbqs[hbqno].buffer_count + count) > 2547 lpfc_hbq_defs[hbqno]->entry_count) 2548 count = lpfc_hbq_defs[hbqno]->entry_count - 2549 phba->hbqs[hbqno].buffer_count; 2550 if (!count) 2551 return 0; 2552 /* Allocate HBQ entries */ 2553 for (i = 0; i < count; i++) { 2554 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2555 if (!hbq_buffer) 2556 break; 2557 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2558 } 2559 /* Check whether HBQ is still in use */ 2560 spin_lock_irqsave(&phba->hbalock, flags); 2561 if (!phba->hbq_in_use) 2562 goto err; 2563 while (!list_empty(&hbq_buf_list)) { 2564 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2565 dbuf.list); 2566 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2567 (hbqno << 16)); 2568 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2569 phba->hbqs[hbqno].buffer_count++; 2570 posted++; 2571 } else 2572 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2573 } 2574 spin_unlock_irqrestore(&phba->hbalock, flags); 2575 return posted; 2576 err: 2577 spin_unlock_irqrestore(&phba->hbalock, flags); 2578 while (!list_empty(&hbq_buf_list)) { 2579 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2580 dbuf.list); 2581 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2582 } 2583 return 0; 2584 } 2585 2586 /** 2587 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2588 * @phba: Pointer to HBA context object. 2589 * @qno: HBQ number. 2590 * 2591 * This function posts more buffers to the HBQ. This function 2592 * is called with no lock held. The function returns the number of HBQ entries 2593 * successfully allocated. 2594 **/ 2595 int 2596 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2597 { 2598 if (phba->sli_rev == LPFC_SLI_REV4) 2599 return 0; 2600 else 2601 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2602 lpfc_hbq_defs[qno]->add_count); 2603 } 2604 2605 /** 2606 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2607 * @phba: Pointer to HBA context object. 2608 * @qno: HBQ queue number. 2609 * 2610 * This function is called from SLI initialization code path with 2611 * no lock held to post initial HBQ buffers to firmware. The 2612 * function returns the number of HBQ entries successfully allocated. 2613 **/ 2614 static int 2615 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2616 { 2617 if (phba->sli_rev == LPFC_SLI_REV4) 2618 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2619 lpfc_hbq_defs[qno]->entry_count); 2620 else 2621 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2622 lpfc_hbq_defs[qno]->init_count); 2623 } 2624 2625 /* 2626 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2627 * 2628 * This function removes the first hbq buffer on an hbq list and returns a 2629 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2630 **/ 2631 static struct hbq_dmabuf * 2632 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2633 { 2634 struct lpfc_dmabuf *d_buf; 2635 2636 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2637 if (!d_buf) 2638 return NULL; 2639 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2640 } 2641 2642 /** 2643 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2644 * @phba: Pointer to HBA context object. 2645 * @hrq: HBQ number. 2646 * 2647 * This function removes the first RQ buffer on an RQ buffer list and returns a 2648 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2649 **/ 2650 static struct rqb_dmabuf * 2651 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2652 { 2653 struct lpfc_dmabuf *h_buf; 2654 struct lpfc_rqb *rqbp; 2655 2656 rqbp = hrq->rqbp; 2657 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2658 struct lpfc_dmabuf, list); 2659 if (!h_buf) 2660 return NULL; 2661 rqbp->buffer_count--; 2662 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2663 } 2664 2665 /** 2666 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2667 * @phba: Pointer to HBA context object. 2668 * @tag: Tag of the hbq buffer. 2669 * 2670 * This function searches for the hbq buffer associated with the given tag in 2671 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2672 * otherwise it returns NULL. 2673 **/ 2674 static struct hbq_dmabuf * 2675 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2676 { 2677 struct lpfc_dmabuf *d_buf; 2678 struct hbq_dmabuf *hbq_buf; 2679 uint32_t hbqno; 2680 2681 hbqno = tag >> 16; 2682 if (hbqno >= LPFC_MAX_HBQS) 2683 return NULL; 2684 2685 spin_lock_irq(&phba->hbalock); 2686 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2687 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2688 if (hbq_buf->tag == tag) { 2689 spin_unlock_irq(&phba->hbalock); 2690 return hbq_buf; 2691 } 2692 } 2693 spin_unlock_irq(&phba->hbalock); 2694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2695 "1803 Bad hbq tag. Data: x%x x%x\n", 2696 tag, phba->hbqs[tag >> 16].buffer_count); 2697 return NULL; 2698 } 2699 2700 /** 2701 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2702 * @phba: Pointer to HBA context object. 2703 * @hbq_buffer: Pointer to HBQ buffer. 2704 * 2705 * This function is called with hbalock. This function gives back 2706 * the hbq buffer to firmware. If the HBQ does not have space to 2707 * post the buffer, it will free the buffer. 2708 **/ 2709 void 2710 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2711 { 2712 uint32_t hbqno; 2713 2714 if (hbq_buffer) { 2715 hbqno = hbq_buffer->tag >> 16; 2716 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2717 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2718 } 2719 } 2720 2721 /** 2722 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2723 * @mbxCommand: mailbox command code. 2724 * 2725 * This function is called by the mailbox event handler function to verify 2726 * that the completed mailbox command is a legitimate mailbox command. If the 2727 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2728 * and the mailbox event handler will take the HBA offline. 2729 **/ 2730 static int 2731 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2732 { 2733 uint8_t ret; 2734 2735 switch (mbxCommand) { 2736 case MBX_LOAD_SM: 2737 case MBX_READ_NV: 2738 case MBX_WRITE_NV: 2739 case MBX_WRITE_VPARMS: 2740 case MBX_RUN_BIU_DIAG: 2741 case MBX_INIT_LINK: 2742 case MBX_DOWN_LINK: 2743 case MBX_CONFIG_LINK: 2744 case MBX_CONFIG_RING: 2745 case MBX_RESET_RING: 2746 case MBX_READ_CONFIG: 2747 case MBX_READ_RCONFIG: 2748 case MBX_READ_SPARM: 2749 case MBX_READ_STATUS: 2750 case MBX_READ_RPI: 2751 case MBX_READ_XRI: 2752 case MBX_READ_REV: 2753 case MBX_READ_LNK_STAT: 2754 case MBX_REG_LOGIN: 2755 case MBX_UNREG_LOGIN: 2756 case MBX_CLEAR_LA: 2757 case MBX_DUMP_MEMORY: 2758 case MBX_DUMP_CONTEXT: 2759 case MBX_RUN_DIAGS: 2760 case MBX_RESTART: 2761 case MBX_UPDATE_CFG: 2762 case MBX_DOWN_LOAD: 2763 case MBX_DEL_LD_ENTRY: 2764 case MBX_RUN_PROGRAM: 2765 case MBX_SET_MASK: 2766 case MBX_SET_VARIABLE: 2767 case MBX_UNREG_D_ID: 2768 case MBX_KILL_BOARD: 2769 case MBX_CONFIG_FARP: 2770 case MBX_BEACON: 2771 case MBX_LOAD_AREA: 2772 case MBX_RUN_BIU_DIAG64: 2773 case MBX_CONFIG_PORT: 2774 case MBX_READ_SPARM64: 2775 case MBX_READ_RPI64: 2776 case MBX_REG_LOGIN64: 2777 case MBX_READ_TOPOLOGY: 2778 case MBX_WRITE_WWN: 2779 case MBX_SET_DEBUG: 2780 case MBX_LOAD_EXP_ROM: 2781 case MBX_ASYNCEVT_ENABLE: 2782 case MBX_REG_VPI: 2783 case MBX_UNREG_VPI: 2784 case MBX_HEARTBEAT: 2785 case MBX_PORT_CAPABILITIES: 2786 case MBX_PORT_IOV_CONTROL: 2787 case MBX_SLI4_CONFIG: 2788 case MBX_SLI4_REQ_FTRS: 2789 case MBX_REG_FCFI: 2790 case MBX_UNREG_FCFI: 2791 case MBX_REG_VFI: 2792 case MBX_UNREG_VFI: 2793 case MBX_INIT_VPI: 2794 case MBX_INIT_VFI: 2795 case MBX_RESUME_RPI: 2796 case MBX_READ_EVENT_LOG_STATUS: 2797 case MBX_READ_EVENT_LOG: 2798 case MBX_SECURITY_MGMT: 2799 case MBX_AUTH_PORT: 2800 case MBX_ACCESS_VDATA: 2801 ret = mbxCommand; 2802 break; 2803 default: 2804 ret = MBX_SHUTDOWN; 2805 break; 2806 } 2807 return ret; 2808 } 2809 2810 /** 2811 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2812 * @phba: Pointer to HBA context object. 2813 * @pmboxq: Pointer to mailbox command. 2814 * 2815 * This is completion handler function for mailbox commands issued from 2816 * lpfc_sli_issue_mbox_wait function. This function is called by the 2817 * mailbox event handler function with no lock held. This function 2818 * will wake up thread waiting on the wait queue pointed by context1 2819 * of the mailbox. 2820 **/ 2821 void 2822 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2823 { 2824 unsigned long drvr_flag; 2825 struct completion *pmbox_done; 2826 2827 /* 2828 * If pmbox_done is empty, the driver thread gave up waiting and 2829 * continued running. 2830 */ 2831 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2832 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2833 pmbox_done = (struct completion *)pmboxq->context3; 2834 if (pmbox_done) 2835 complete(pmbox_done); 2836 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2837 return; 2838 } 2839 2840 static void 2841 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2842 { 2843 unsigned long iflags; 2844 2845 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2846 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2847 spin_lock_irqsave(&ndlp->lock, iflags); 2848 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2849 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2850 spin_unlock_irqrestore(&ndlp->lock, iflags); 2851 } 2852 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2853 } 2854 2855 void 2856 lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2857 { 2858 __lpfc_sli_rpi_release(vport, ndlp); 2859 } 2860 2861 /** 2862 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2863 * @phba: Pointer to HBA context object. 2864 * @pmb: Pointer to mailbox object. 2865 * 2866 * This function is the default mailbox completion handler. It 2867 * frees the memory resources associated with the completed mailbox 2868 * command. If the completed command is a REG_LOGIN mailbox command, 2869 * this function will issue a UREG_LOGIN to re-claim the RPI. 2870 **/ 2871 void 2872 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2873 { 2874 struct lpfc_vport *vport = pmb->vport; 2875 struct lpfc_dmabuf *mp; 2876 struct lpfc_nodelist *ndlp; 2877 struct Scsi_Host *shost; 2878 uint16_t rpi, vpi; 2879 int rc; 2880 2881 /* 2882 * If a REG_LOGIN succeeded after node is destroyed or node 2883 * is in re-discovery driver need to cleanup the RPI. 2884 */ 2885 if (!(phba->pport->load_flag & FC_UNLOADING) && 2886 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2887 !pmb->u.mb.mbxStatus) { 2888 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 2889 if (mp) { 2890 pmb->ctx_buf = NULL; 2891 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2892 kfree(mp); 2893 } 2894 rpi = pmb->u.mb.un.varWords[0]; 2895 vpi = pmb->u.mb.un.varRegLogin.vpi; 2896 if (phba->sli_rev == LPFC_SLI_REV4) 2897 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2898 lpfc_unreg_login(phba, vpi, rpi, pmb); 2899 pmb->vport = vport; 2900 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2901 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2902 if (rc != MBX_NOT_FINISHED) 2903 return; 2904 } 2905 2906 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2907 !(phba->pport->load_flag & FC_UNLOADING) && 2908 !pmb->u.mb.mbxStatus) { 2909 shost = lpfc_shost_from_vport(vport); 2910 spin_lock_irq(shost->host_lock); 2911 vport->vpi_state |= LPFC_VPI_REGISTERED; 2912 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2913 spin_unlock_irq(shost->host_lock); 2914 } 2915 2916 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2917 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2918 lpfc_nlp_put(ndlp); 2919 } 2920 2921 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2922 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2923 2924 /* Check to see if there are any deferred events to process */ 2925 if (ndlp) { 2926 lpfc_printf_vlog( 2927 vport, 2928 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2929 "1438 UNREG cmpl deferred mbox x%x " 2930 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2931 ndlp->nlp_rpi, ndlp->nlp_DID, 2932 ndlp->nlp_flag, ndlp->nlp_defer_did, 2933 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2934 2935 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2936 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2937 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2938 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2939 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2940 } else { 2941 __lpfc_sli_rpi_release(vport, ndlp); 2942 } 2943 2944 /* The unreg_login mailbox is complete and had a 2945 * reference that has to be released. The PLOGI 2946 * got its own ref. 2947 */ 2948 lpfc_nlp_put(ndlp); 2949 pmb->ctx_ndlp = NULL; 2950 } 2951 } 2952 2953 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2954 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2955 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2956 lpfc_nlp_put(ndlp); 2957 } 2958 2959 /* Check security permission status on INIT_LINK mailbox command */ 2960 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2961 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2963 "2860 SLI authentication is required " 2964 "for INIT_LINK but has not done yet\n"); 2965 2966 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2967 lpfc_sli4_mbox_cmd_free(phba, pmb); 2968 else 2969 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2970 } 2971 /** 2972 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2973 * @phba: Pointer to HBA context object. 2974 * @pmb: Pointer to mailbox object. 2975 * 2976 * This function is the unreg rpi mailbox completion handler. It 2977 * frees the memory resources associated with the completed mailbox 2978 * command. An additional reference is put on the ndlp to prevent 2979 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2980 * the unreg mailbox command completes, this routine puts the 2981 * reference back. 2982 * 2983 **/ 2984 void 2985 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2986 { 2987 struct lpfc_vport *vport = pmb->vport; 2988 struct lpfc_nodelist *ndlp; 2989 2990 ndlp = pmb->ctx_ndlp; 2991 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2992 if (phba->sli_rev == LPFC_SLI_REV4 && 2993 (bf_get(lpfc_sli_intf_if_type, 2994 &phba->sli4_hba.sli_intf) >= 2995 LPFC_SLI_INTF_IF_TYPE_2)) { 2996 if (ndlp) { 2997 lpfc_printf_vlog( 2998 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2999 "0010 UNREG_LOGIN vpi:%x " 3000 "rpi:%x DID:%x defer x%x flg x%x " 3001 "x%px\n", 3002 vport->vpi, ndlp->nlp_rpi, 3003 ndlp->nlp_DID, ndlp->nlp_defer_did, 3004 ndlp->nlp_flag, 3005 ndlp); 3006 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 3007 3008 /* Check to see if there are any deferred 3009 * events to process 3010 */ 3011 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 3012 (ndlp->nlp_defer_did != 3013 NLP_EVT_NOTHING_PENDING)) { 3014 lpfc_printf_vlog( 3015 vport, KERN_INFO, LOG_DISCOVERY, 3016 "4111 UNREG cmpl deferred " 3017 "clr x%x on " 3018 "NPort x%x Data: x%x x%px\n", 3019 ndlp->nlp_rpi, ndlp->nlp_DID, 3020 ndlp->nlp_defer_did, ndlp); 3021 ndlp->nlp_flag &= ~NLP_UNREG_INP; 3022 ndlp->nlp_defer_did = 3023 NLP_EVT_NOTHING_PENDING; 3024 lpfc_issue_els_plogi( 3025 vport, ndlp->nlp_DID, 0); 3026 } else { 3027 __lpfc_sli_rpi_release(vport, ndlp); 3028 } 3029 lpfc_nlp_put(ndlp); 3030 } 3031 } 3032 } 3033 3034 mempool_free(pmb, phba->mbox_mem_pool); 3035 } 3036 3037 /** 3038 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3039 * @phba: Pointer to HBA context object. 3040 * 3041 * This function is called with no lock held. This function processes all 3042 * the completed mailbox commands and gives it to upper layers. The interrupt 3043 * service routine processes mailbox completion interrupt and adds completed 3044 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3045 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3046 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3047 * function returns the mailbox commands to the upper layer by calling the 3048 * completion handler function of each mailbox. 3049 **/ 3050 int 3051 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3052 { 3053 MAILBOX_t *pmbox; 3054 LPFC_MBOXQ_t *pmb; 3055 int rc; 3056 LIST_HEAD(cmplq); 3057 3058 phba->sli.slistat.mbox_event++; 3059 3060 /* Get all completed mailboxe buffers into the cmplq */ 3061 spin_lock_irq(&phba->hbalock); 3062 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3063 spin_unlock_irq(&phba->hbalock); 3064 3065 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3066 do { 3067 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3068 if (pmb == NULL) 3069 break; 3070 3071 pmbox = &pmb->u.mb; 3072 3073 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3074 if (pmb->vport) { 3075 lpfc_debugfs_disc_trc(pmb->vport, 3076 LPFC_DISC_TRC_MBOX_VPORT, 3077 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3078 (uint32_t)pmbox->mbxCommand, 3079 pmbox->un.varWords[0], 3080 pmbox->un.varWords[1]); 3081 } 3082 else { 3083 lpfc_debugfs_disc_trc(phba->pport, 3084 LPFC_DISC_TRC_MBOX, 3085 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3086 (uint32_t)pmbox->mbxCommand, 3087 pmbox->un.varWords[0], 3088 pmbox->un.varWords[1]); 3089 } 3090 } 3091 3092 /* 3093 * It is a fatal error if unknown mbox command completion. 3094 */ 3095 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3096 MBX_SHUTDOWN) { 3097 /* Unknown mailbox command compl */ 3098 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3099 "(%d):0323 Unknown Mailbox command " 3100 "x%x (x%x/x%x) Cmpl\n", 3101 pmb->vport ? pmb->vport->vpi : 3102 LPFC_VPORT_UNKNOWN, 3103 pmbox->mbxCommand, 3104 lpfc_sli_config_mbox_subsys_get(phba, 3105 pmb), 3106 lpfc_sli_config_mbox_opcode_get(phba, 3107 pmb)); 3108 phba->link_state = LPFC_HBA_ERROR; 3109 phba->work_hs = HS_FFER3; 3110 lpfc_handle_eratt(phba); 3111 continue; 3112 } 3113 3114 if (pmbox->mbxStatus) { 3115 phba->sli.slistat.mbox_stat_err++; 3116 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3117 /* Mbox cmd cmpl error - RETRYing */ 3118 lpfc_printf_log(phba, KERN_INFO, 3119 LOG_MBOX | LOG_SLI, 3120 "(%d):0305 Mbox cmd cmpl " 3121 "error - RETRYing Data: x%x " 3122 "(x%x/x%x) x%x x%x x%x\n", 3123 pmb->vport ? pmb->vport->vpi : 3124 LPFC_VPORT_UNKNOWN, 3125 pmbox->mbxCommand, 3126 lpfc_sli_config_mbox_subsys_get(phba, 3127 pmb), 3128 lpfc_sli_config_mbox_opcode_get(phba, 3129 pmb), 3130 pmbox->mbxStatus, 3131 pmbox->un.varWords[0], 3132 pmb->vport ? pmb->vport->port_state : 3133 LPFC_VPORT_UNKNOWN); 3134 pmbox->mbxStatus = 0; 3135 pmbox->mbxOwner = OWN_HOST; 3136 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3137 if (rc != MBX_NOT_FINISHED) 3138 continue; 3139 } 3140 } 3141 3142 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3143 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3144 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3145 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3146 "x%x x%x x%x\n", 3147 pmb->vport ? pmb->vport->vpi : 0, 3148 pmbox->mbxCommand, 3149 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3150 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3151 pmb->mbox_cmpl, 3152 *((uint32_t *) pmbox), 3153 pmbox->un.varWords[0], 3154 pmbox->un.varWords[1], 3155 pmbox->un.varWords[2], 3156 pmbox->un.varWords[3], 3157 pmbox->un.varWords[4], 3158 pmbox->un.varWords[5], 3159 pmbox->un.varWords[6], 3160 pmbox->un.varWords[7], 3161 pmbox->un.varWords[8], 3162 pmbox->un.varWords[9], 3163 pmbox->un.varWords[10]); 3164 3165 if (pmb->mbox_cmpl) 3166 pmb->mbox_cmpl(phba,pmb); 3167 } while (1); 3168 return 0; 3169 } 3170 3171 /** 3172 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3173 * @phba: Pointer to HBA context object. 3174 * @pring: Pointer to driver SLI ring object. 3175 * @tag: buffer tag. 3176 * 3177 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3178 * is set in the tag the buffer is posted for a particular exchange, 3179 * the function will return the buffer without replacing the buffer. 3180 * If the buffer is for unsolicited ELS or CT traffic, this function 3181 * returns the buffer and also posts another buffer to the firmware. 3182 **/ 3183 static struct lpfc_dmabuf * 3184 lpfc_sli_get_buff(struct lpfc_hba *phba, 3185 struct lpfc_sli_ring *pring, 3186 uint32_t tag) 3187 { 3188 struct hbq_dmabuf *hbq_entry; 3189 3190 if (tag & QUE_BUFTAG_BIT) 3191 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3192 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3193 if (!hbq_entry) 3194 return NULL; 3195 return &hbq_entry->dbuf; 3196 } 3197 3198 /** 3199 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3200 * containing a NVME LS request. 3201 * @phba: pointer to lpfc hba data structure. 3202 * @piocb: pointer to the iocbq struct representing the sequence starting 3203 * frame. 3204 * 3205 * This routine initially validates the NVME LS, validates there is a login 3206 * with the port that sent the LS, and then calls the appropriate nvme host 3207 * or target LS request handler. 3208 **/ 3209 static void 3210 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3211 { 3212 struct lpfc_nodelist *ndlp; 3213 struct lpfc_dmabuf *d_buf; 3214 struct hbq_dmabuf *nvmebuf; 3215 struct fc_frame_header *fc_hdr; 3216 struct lpfc_async_xchg_ctx *axchg = NULL; 3217 char *failwhy = NULL; 3218 uint32_t oxid, sid, did, fctl, size; 3219 int ret = 1; 3220 3221 d_buf = piocb->cmd_dmabuf; 3222 3223 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3224 fc_hdr = nvmebuf->hbuf.virt; 3225 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3226 sid = sli4_sid_from_fc_hdr(fc_hdr); 3227 did = sli4_did_from_fc_hdr(fc_hdr); 3228 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3229 fc_hdr->fh_f_ctl[1] << 8 | 3230 fc_hdr->fh_f_ctl[2]); 3231 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3232 3233 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3234 oxid, size, sid); 3235 3236 if (phba->pport->load_flag & FC_UNLOADING) { 3237 failwhy = "Driver Unloading"; 3238 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3239 failwhy = "NVME FC4 Disabled"; 3240 } else if (!phba->nvmet_support && !phba->pport->localport) { 3241 failwhy = "No Localport"; 3242 } else if (phba->nvmet_support && !phba->targetport) { 3243 failwhy = "No Targetport"; 3244 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3245 failwhy = "Bad NVME LS R_CTL"; 3246 } else if (unlikely((fctl & 0x00FF0000) != 3247 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3248 failwhy = "Bad NVME LS F_CTL"; 3249 } else { 3250 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3251 if (!axchg) 3252 failwhy = "No CTX memory"; 3253 } 3254 3255 if (unlikely(failwhy)) { 3256 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3257 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3258 sid, oxid, failwhy); 3259 goto out_fail; 3260 } 3261 3262 /* validate the source of the LS is logged in */ 3263 ndlp = lpfc_findnode_did(phba->pport, sid); 3264 if (!ndlp || 3265 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3266 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3267 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3268 "6216 NVME Unsol rcv: No ndlp: " 3269 "NPort_ID x%x oxid x%x\n", 3270 sid, oxid); 3271 goto out_fail; 3272 } 3273 3274 axchg->phba = phba; 3275 axchg->ndlp = ndlp; 3276 axchg->size = size; 3277 axchg->oxid = oxid; 3278 axchg->sid = sid; 3279 axchg->wqeq = NULL; 3280 axchg->state = LPFC_NVME_STE_LS_RCV; 3281 axchg->entry_cnt = 1; 3282 axchg->rqb_buffer = (void *)nvmebuf; 3283 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3284 axchg->payload = nvmebuf->dbuf.virt; 3285 INIT_LIST_HEAD(&axchg->list); 3286 3287 if (phba->nvmet_support) { 3288 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3289 spin_lock_irq(&ndlp->lock); 3290 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3291 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3292 spin_unlock_irq(&ndlp->lock); 3293 3294 /* This reference is a single occurrence to hold the 3295 * node valid until the nvmet transport calls 3296 * host_release. 3297 */ 3298 if (!lpfc_nlp_get(ndlp)) 3299 goto out_fail; 3300 3301 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3302 "6206 NVMET unsol ls_req ndlp x%px " 3303 "DID x%x xflags x%x refcnt %d\n", 3304 ndlp, ndlp->nlp_DID, 3305 ndlp->fc4_xpt_flags, 3306 kref_read(&ndlp->kref)); 3307 } else { 3308 spin_unlock_irq(&ndlp->lock); 3309 } 3310 } else { 3311 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3312 } 3313 3314 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3315 if (!ret) 3316 return; 3317 3318 out_fail: 3319 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3320 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3321 "NVMe%s handler failed %d\n", 3322 did, sid, oxid, 3323 (phba->nvmet_support) ? "T" : "I", ret); 3324 3325 /* recycle receive buffer */ 3326 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3327 3328 /* If start of new exchange, abort it */ 3329 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3330 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3331 3332 if (ret) 3333 kfree(axchg); 3334 } 3335 3336 /** 3337 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3338 * @phba: Pointer to HBA context object. 3339 * @pring: Pointer to driver SLI ring object. 3340 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3341 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3342 * @fch_type: the type for the first frame of the sequence. 3343 * 3344 * This function is called with no lock held. This function uses the r_ctl and 3345 * type of the received sequence to find the correct callback function to call 3346 * to process the sequence. 3347 **/ 3348 static int 3349 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3350 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3351 uint32_t fch_type) 3352 { 3353 int i; 3354 3355 switch (fch_type) { 3356 case FC_TYPE_NVME: 3357 lpfc_nvme_unsol_ls_handler(phba, saveq); 3358 return 1; 3359 default: 3360 break; 3361 } 3362 3363 /* unSolicited Responses */ 3364 if (pring->prt[0].profile) { 3365 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3366 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3367 saveq); 3368 return 1; 3369 } 3370 /* We must search, based on rctl / type 3371 for the right routine */ 3372 for (i = 0; i < pring->num_mask; i++) { 3373 if ((pring->prt[i].rctl == fch_r_ctl) && 3374 (pring->prt[i].type == fch_type)) { 3375 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3376 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3377 (phba, pring, saveq); 3378 return 1; 3379 } 3380 } 3381 return 0; 3382 } 3383 3384 static void 3385 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3386 struct lpfc_iocbq *saveq) 3387 { 3388 IOCB_t *irsp; 3389 union lpfc_wqe128 *wqe; 3390 u16 i = 0; 3391 3392 irsp = &saveq->iocb; 3393 wqe = &saveq->wqe; 3394 3395 /* Fill wcqe with the IOCB status fields */ 3396 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3397 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3398 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3399 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3400 3401 /* Source ID */ 3402 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3403 3404 /* rx-id of the response frame */ 3405 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3406 3407 /* ox-id of the frame */ 3408 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3409 irsp->unsli3.rcvsli3.ox_id); 3410 3411 /* DID */ 3412 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3413 irsp->un.rcvels.remoteID); 3414 3415 /* unsol data len */ 3416 for (i = 0; i < irsp->ulpBdeCount; i++) { 3417 struct lpfc_hbq_entry *hbqe = NULL; 3418 3419 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3420 if (i == 0) { 3421 hbqe = (struct lpfc_hbq_entry *) 3422 &irsp->un.ulpWord[0]; 3423 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3424 hbqe->bde.tus.f.bdeSize; 3425 } else if (i == 1) { 3426 hbqe = (struct lpfc_hbq_entry *) 3427 &irsp->unsli3.sli3Words[4]; 3428 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3429 } 3430 } 3431 } 3432 } 3433 3434 /** 3435 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3436 * @phba: Pointer to HBA context object. 3437 * @pring: Pointer to driver SLI ring object. 3438 * @saveq: Pointer to the unsolicited iocb. 3439 * 3440 * This function is called with no lock held by the ring event handler 3441 * when there is an unsolicited iocb posted to the response ring by the 3442 * firmware. This function gets the buffer associated with the iocbs 3443 * and calls the event handler for the ring. This function handles both 3444 * qring buffers and hbq buffers. 3445 * When the function returns 1 the caller can free the iocb object otherwise 3446 * upper layer functions will free the iocb objects. 3447 **/ 3448 static int 3449 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3450 struct lpfc_iocbq *saveq) 3451 { 3452 IOCB_t * irsp; 3453 WORD5 * w5p; 3454 dma_addr_t paddr; 3455 uint32_t Rctl, Type; 3456 struct lpfc_iocbq *iocbq; 3457 struct lpfc_dmabuf *dmzbuf; 3458 3459 irsp = &saveq->iocb; 3460 saveq->vport = phba->pport; 3461 3462 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3463 if (pring->lpfc_sli_rcv_async_status) 3464 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3465 else 3466 lpfc_printf_log(phba, 3467 KERN_WARNING, 3468 LOG_SLI, 3469 "0316 Ring %d handler: unexpected " 3470 "ASYNC_STATUS iocb received evt_code " 3471 "0x%x\n", 3472 pring->ringno, 3473 irsp->un.asyncstat.evt_code); 3474 return 1; 3475 } 3476 3477 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3478 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3479 if (irsp->ulpBdeCount > 0) { 3480 dmzbuf = lpfc_sli_get_buff(phba, pring, 3481 irsp->un.ulpWord[3]); 3482 lpfc_in_buf_free(phba, dmzbuf); 3483 } 3484 3485 if (irsp->ulpBdeCount > 1) { 3486 dmzbuf = lpfc_sli_get_buff(phba, pring, 3487 irsp->unsli3.sli3Words[3]); 3488 lpfc_in_buf_free(phba, dmzbuf); 3489 } 3490 3491 if (irsp->ulpBdeCount > 2) { 3492 dmzbuf = lpfc_sli_get_buff(phba, pring, 3493 irsp->unsli3.sli3Words[7]); 3494 lpfc_in_buf_free(phba, dmzbuf); 3495 } 3496 3497 return 1; 3498 } 3499 3500 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3501 if (irsp->ulpBdeCount != 0) { 3502 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring, 3503 irsp->un.ulpWord[3]); 3504 if (!saveq->cmd_dmabuf) 3505 lpfc_printf_log(phba, 3506 KERN_ERR, 3507 LOG_SLI, 3508 "0341 Ring %d Cannot find buffer for " 3509 "an unsolicited iocb. tag 0x%x\n", 3510 pring->ringno, 3511 irsp->un.ulpWord[3]); 3512 } 3513 if (irsp->ulpBdeCount == 2) { 3514 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring, 3515 irsp->unsli3.sli3Words[7]); 3516 if (!saveq->bpl_dmabuf) 3517 lpfc_printf_log(phba, 3518 KERN_ERR, 3519 LOG_SLI, 3520 "0342 Ring %d Cannot find buffer for an" 3521 " unsolicited iocb. tag 0x%x\n", 3522 pring->ringno, 3523 irsp->unsli3.sli3Words[7]); 3524 } 3525 list_for_each_entry(iocbq, &saveq->list, list) { 3526 irsp = &iocbq->iocb; 3527 if (irsp->ulpBdeCount != 0) { 3528 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba, 3529 pring, 3530 irsp->un.ulpWord[3]); 3531 if (!iocbq->cmd_dmabuf) 3532 lpfc_printf_log(phba, 3533 KERN_ERR, 3534 LOG_SLI, 3535 "0343 Ring %d Cannot find " 3536 "buffer for an unsolicited iocb" 3537 ". tag 0x%x\n", pring->ringno, 3538 irsp->un.ulpWord[3]); 3539 } 3540 if (irsp->ulpBdeCount == 2) { 3541 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba, 3542 pring, 3543 irsp->unsli3.sli3Words[7]); 3544 if (!iocbq->bpl_dmabuf) 3545 lpfc_printf_log(phba, 3546 KERN_ERR, 3547 LOG_SLI, 3548 "0344 Ring %d Cannot find " 3549 "buffer for an unsolicited " 3550 "iocb. tag 0x%x\n", 3551 pring->ringno, 3552 irsp->unsli3.sli3Words[7]); 3553 } 3554 } 3555 } else { 3556 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3557 irsp->un.cont64[0].addrLow); 3558 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring, 3559 paddr); 3560 if (irsp->ulpBdeCount == 2) { 3561 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3562 irsp->un.cont64[1].addrLow); 3563 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba, 3564 pring, 3565 paddr); 3566 } 3567 } 3568 3569 if (irsp->ulpBdeCount != 0 && 3570 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3571 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3572 int found = 0; 3573 3574 /* search continue save q for same XRI */ 3575 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3576 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3577 saveq->iocb.unsli3.rcvsli3.ox_id) { 3578 list_add_tail(&saveq->list, &iocbq->list); 3579 found = 1; 3580 break; 3581 } 3582 } 3583 if (!found) 3584 list_add_tail(&saveq->clist, 3585 &pring->iocb_continue_saveq); 3586 3587 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3588 list_del_init(&iocbq->clist); 3589 saveq = iocbq; 3590 irsp = &saveq->iocb; 3591 } else { 3592 return 0; 3593 } 3594 } 3595 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3596 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3597 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3598 Rctl = FC_RCTL_ELS_REQ; 3599 Type = FC_TYPE_ELS; 3600 } else { 3601 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3602 Rctl = w5p->hcsw.Rctl; 3603 Type = w5p->hcsw.Type; 3604 3605 /* Firmware Workaround */ 3606 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3607 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3608 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3609 Rctl = FC_RCTL_ELS_REQ; 3610 Type = FC_TYPE_ELS; 3611 w5p->hcsw.Rctl = Rctl; 3612 w5p->hcsw.Type = Type; 3613 } 3614 } 3615 3616 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3617 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3618 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3619 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3620 saveq->vport = phba->pport; 3621 else 3622 saveq->vport = lpfc_find_vport_by_vpid(phba, 3623 irsp->unsli3.rcvsli3.vpi); 3624 } 3625 3626 /* Prepare WQE with Unsol frame */ 3627 lpfc_sli_prep_unsol_wqe(phba, saveq); 3628 3629 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3630 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3631 "0313 Ring %d handler: unexpected Rctl x%x " 3632 "Type x%x received\n", 3633 pring->ringno, Rctl, Type); 3634 3635 return 1; 3636 } 3637 3638 /** 3639 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3640 * @phba: Pointer to HBA context object. 3641 * @pring: Pointer to driver SLI ring object. 3642 * @prspiocb: Pointer to response iocb object. 3643 * 3644 * This function looks up the iocb_lookup table to get the command iocb 3645 * corresponding to the given response iocb using the iotag of the 3646 * response iocb. The driver calls this function with the hbalock held 3647 * for SLI3 ports or the ring lock held for SLI4 ports. 3648 * This function returns the command iocb object if it finds the command 3649 * iocb else returns NULL. 3650 **/ 3651 static struct lpfc_iocbq * 3652 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3653 struct lpfc_sli_ring *pring, 3654 struct lpfc_iocbq *prspiocb) 3655 { 3656 struct lpfc_iocbq *cmd_iocb = NULL; 3657 u16 iotag; 3658 3659 if (phba->sli_rev == LPFC_SLI_REV4) 3660 iotag = get_wqe_reqtag(prspiocb); 3661 else 3662 iotag = prspiocb->iocb.ulpIoTag; 3663 3664 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3665 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3666 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3667 /* remove from txcmpl queue list */ 3668 list_del_init(&cmd_iocb->list); 3669 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3670 pring->txcmplq_cnt--; 3671 return cmd_iocb; 3672 } 3673 } 3674 3675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3676 "0317 iotag x%x is out of " 3677 "range: max iotag x%x\n", 3678 iotag, phba->sli.last_iotag); 3679 return NULL; 3680 } 3681 3682 /** 3683 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3684 * @phba: Pointer to HBA context object. 3685 * @pring: Pointer to driver SLI ring object. 3686 * @iotag: IOCB tag. 3687 * 3688 * This function looks up the iocb_lookup table to get the command iocb 3689 * corresponding to the given iotag. The driver calls this function with 3690 * the ring lock held because this function is an SLI4 port only helper. 3691 * This function returns the command iocb object if it finds the command 3692 * iocb else returns NULL. 3693 **/ 3694 static struct lpfc_iocbq * 3695 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3696 struct lpfc_sli_ring *pring, uint16_t iotag) 3697 { 3698 struct lpfc_iocbq *cmd_iocb = NULL; 3699 3700 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3701 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3702 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3703 /* remove from txcmpl queue list */ 3704 list_del_init(&cmd_iocb->list); 3705 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3706 pring->txcmplq_cnt--; 3707 return cmd_iocb; 3708 } 3709 } 3710 3711 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3712 "0372 iotag x%x lookup error: max iotag (x%x) " 3713 "cmd_flag x%x\n", 3714 iotag, phba->sli.last_iotag, 3715 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3716 return NULL; 3717 } 3718 3719 /** 3720 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3721 * @phba: Pointer to HBA context object. 3722 * @pring: Pointer to driver SLI ring object. 3723 * @saveq: Pointer to the response iocb to be processed. 3724 * 3725 * This function is called by the ring event handler for non-fcp 3726 * rings when there is a new response iocb in the response ring. 3727 * The caller is not required to hold any locks. This function 3728 * gets the command iocb associated with the response iocb and 3729 * calls the completion handler for the command iocb. If there 3730 * is no completion handler, the function will free the resources 3731 * associated with command iocb. If the response iocb is for 3732 * an already aborted command iocb, the status of the completion 3733 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3734 * This function always returns 1. 3735 **/ 3736 static int 3737 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3738 struct lpfc_iocbq *saveq) 3739 { 3740 struct lpfc_iocbq *cmdiocbp; 3741 unsigned long iflag; 3742 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3743 3744 if (phba->sli_rev == LPFC_SLI_REV4) 3745 spin_lock_irqsave(&pring->ring_lock, iflag); 3746 else 3747 spin_lock_irqsave(&phba->hbalock, iflag); 3748 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3749 if (phba->sli_rev == LPFC_SLI_REV4) 3750 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3751 else 3752 spin_unlock_irqrestore(&phba->hbalock, iflag); 3753 3754 ulp_command = get_job_cmnd(phba, saveq); 3755 ulp_status = get_job_ulpstatus(phba, saveq); 3756 ulp_word4 = get_job_word4(phba, saveq); 3757 ulp_context = get_job_ulpcontext(phba, saveq); 3758 if (phba->sli_rev == LPFC_SLI_REV4) 3759 iotag = get_wqe_reqtag(saveq); 3760 else 3761 iotag = saveq->iocb.ulpIoTag; 3762 3763 if (cmdiocbp) { 3764 ulp_command = get_job_cmnd(phba, cmdiocbp); 3765 if (cmdiocbp->cmd_cmpl) { 3766 /* 3767 * If an ELS command failed send an event to mgmt 3768 * application. 3769 */ 3770 if (ulp_status && 3771 (pring->ringno == LPFC_ELS_RING) && 3772 (ulp_command == CMD_ELS_REQUEST64_CR)) 3773 lpfc_send_els_failure_event(phba, 3774 cmdiocbp, saveq); 3775 3776 /* 3777 * Post all ELS completions to the worker thread. 3778 * All other are passed to the completion callback. 3779 */ 3780 if (pring->ringno == LPFC_ELS_RING) { 3781 if ((phba->sli_rev < LPFC_SLI_REV4) && 3782 (cmdiocbp->cmd_flag & 3783 LPFC_DRIVER_ABORTED)) { 3784 spin_lock_irqsave(&phba->hbalock, 3785 iflag); 3786 cmdiocbp->cmd_flag &= 3787 ~LPFC_DRIVER_ABORTED; 3788 spin_unlock_irqrestore(&phba->hbalock, 3789 iflag); 3790 saveq->iocb.ulpStatus = 3791 IOSTAT_LOCAL_REJECT; 3792 saveq->iocb.un.ulpWord[4] = 3793 IOERR_SLI_ABORTED; 3794 3795 /* Firmware could still be in progress 3796 * of DMAing payload, so don't free data 3797 * buffer till after a hbeat. 3798 */ 3799 spin_lock_irqsave(&phba->hbalock, 3800 iflag); 3801 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3802 spin_unlock_irqrestore(&phba->hbalock, 3803 iflag); 3804 } 3805 if (phba->sli_rev == LPFC_SLI_REV4) { 3806 if (saveq->cmd_flag & 3807 LPFC_EXCHANGE_BUSY) { 3808 /* Set cmdiocb flag for the 3809 * exchange busy so sgl (xri) 3810 * will not be released until 3811 * the abort xri is received 3812 * from hba. 3813 */ 3814 spin_lock_irqsave( 3815 &phba->hbalock, iflag); 3816 cmdiocbp->cmd_flag |= 3817 LPFC_EXCHANGE_BUSY; 3818 spin_unlock_irqrestore( 3819 &phba->hbalock, iflag); 3820 } 3821 if (cmdiocbp->cmd_flag & 3822 LPFC_DRIVER_ABORTED) { 3823 /* 3824 * Clear LPFC_DRIVER_ABORTED 3825 * bit in case it was driver 3826 * initiated abort. 3827 */ 3828 spin_lock_irqsave( 3829 &phba->hbalock, iflag); 3830 cmdiocbp->cmd_flag &= 3831 ~LPFC_DRIVER_ABORTED; 3832 spin_unlock_irqrestore( 3833 &phba->hbalock, iflag); 3834 set_job_ulpstatus(cmdiocbp, 3835 IOSTAT_LOCAL_REJECT); 3836 set_job_ulpword4(cmdiocbp, 3837 IOERR_ABORT_REQUESTED); 3838 /* 3839 * For SLI4, irspiocb contains 3840 * NO_XRI in sli_xritag, it 3841 * shall not affect releasing 3842 * sgl (xri) process. 3843 */ 3844 set_job_ulpstatus(saveq, 3845 IOSTAT_LOCAL_REJECT); 3846 set_job_ulpword4(saveq, 3847 IOERR_SLI_ABORTED); 3848 spin_lock_irqsave( 3849 &phba->hbalock, iflag); 3850 saveq->cmd_flag |= 3851 LPFC_DELAY_MEM_FREE; 3852 spin_unlock_irqrestore( 3853 &phba->hbalock, iflag); 3854 } 3855 } 3856 } 3857 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq); 3858 } else 3859 lpfc_sli_release_iocbq(phba, cmdiocbp); 3860 } else { 3861 /* 3862 * Unknown initiating command based on the response iotag. 3863 * This could be the case on the ELS ring because of 3864 * lpfc_els_abort(). 3865 */ 3866 if (pring->ringno != LPFC_ELS_RING) { 3867 /* 3868 * Ring <ringno> handler: unexpected completion IoTag 3869 * <IoTag> 3870 */ 3871 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3872 "0322 Ring %d handler: " 3873 "unexpected completion IoTag x%x " 3874 "Data: x%x x%x x%x x%x\n", 3875 pring->ringno, iotag, ulp_status, 3876 ulp_word4, ulp_command, ulp_context); 3877 } 3878 } 3879 3880 return 1; 3881 } 3882 3883 /** 3884 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3885 * @phba: Pointer to HBA context object. 3886 * @pring: Pointer to driver SLI ring object. 3887 * 3888 * This function is called from the iocb ring event handlers when 3889 * put pointer is ahead of the get pointer for a ring. This function signal 3890 * an error attention condition to the worker thread and the worker 3891 * thread will transition the HBA to offline state. 3892 **/ 3893 static void 3894 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3895 { 3896 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3897 /* 3898 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3899 * rsp ring <portRspMax> 3900 */ 3901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3902 "0312 Ring %d handler: portRspPut %d " 3903 "is bigger than rsp ring %d\n", 3904 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3905 pring->sli.sli3.numRiocb); 3906 3907 phba->link_state = LPFC_HBA_ERROR; 3908 3909 /* 3910 * All error attention handlers are posted to 3911 * worker thread 3912 */ 3913 phba->work_ha |= HA_ERATT; 3914 phba->work_hs = HS_FFER3; 3915 3916 lpfc_worker_wake_up(phba); 3917 3918 return; 3919 } 3920 3921 /** 3922 * lpfc_poll_eratt - Error attention polling timer timeout handler 3923 * @t: Context to fetch pointer to address of HBA context object from. 3924 * 3925 * This function is invoked by the Error Attention polling timer when the 3926 * timer times out. It will check the SLI Error Attention register for 3927 * possible attention events. If so, it will post an Error Attention event 3928 * and wake up worker thread to process it. Otherwise, it will set up the 3929 * Error Attention polling timer for the next poll. 3930 **/ 3931 void lpfc_poll_eratt(struct timer_list *t) 3932 { 3933 struct lpfc_hba *phba; 3934 uint32_t eratt = 0; 3935 uint64_t sli_intr, cnt; 3936 3937 phba = from_timer(phba, t, eratt_poll); 3938 if (!(phba->hba_flag & HBA_SETUP)) 3939 return; 3940 3941 /* Here we will also keep track of interrupts per sec of the hba */ 3942 sli_intr = phba->sli.slistat.sli_intr; 3943 3944 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3945 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3946 sli_intr); 3947 else 3948 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3949 3950 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3951 do_div(cnt, phba->eratt_poll_interval); 3952 phba->sli.slistat.sli_ips = cnt; 3953 3954 phba->sli.slistat.sli_prev_intr = sli_intr; 3955 3956 /* Check chip HA register for error event */ 3957 eratt = lpfc_sli_check_eratt(phba); 3958 3959 if (eratt) 3960 /* Tell the worker thread there is work to do */ 3961 lpfc_worker_wake_up(phba); 3962 else 3963 /* Restart the timer for next eratt poll */ 3964 mod_timer(&phba->eratt_poll, 3965 jiffies + 3966 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3967 return; 3968 } 3969 3970 3971 /** 3972 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3973 * @phba: Pointer to HBA context object. 3974 * @pring: Pointer to driver SLI ring object. 3975 * @mask: Host attention register mask for this ring. 3976 * 3977 * This function is called from the interrupt context when there is a ring 3978 * event for the fcp ring. The caller does not hold any lock. 3979 * The function processes each response iocb in the response ring until it 3980 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3981 * LE bit set. The function will call the completion handler of the command iocb 3982 * if the response iocb indicates a completion for a command iocb or it is 3983 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3984 * function if this is an unsolicited iocb. 3985 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3986 * to check it explicitly. 3987 */ 3988 int 3989 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3990 struct lpfc_sli_ring *pring, uint32_t mask) 3991 { 3992 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3993 IOCB_t *irsp = NULL; 3994 IOCB_t *entry = NULL; 3995 struct lpfc_iocbq *cmdiocbq = NULL; 3996 struct lpfc_iocbq rspiocbq; 3997 uint32_t status; 3998 uint32_t portRspPut, portRspMax; 3999 int rc = 1; 4000 lpfc_iocb_type type; 4001 unsigned long iflag; 4002 uint32_t rsp_cmpl = 0; 4003 4004 spin_lock_irqsave(&phba->hbalock, iflag); 4005 pring->stats.iocb_event++; 4006 4007 /* 4008 * The next available response entry should never exceed the maximum 4009 * entries. If it does, treat it as an adapter hardware error. 4010 */ 4011 portRspMax = pring->sli.sli3.numRiocb; 4012 portRspPut = le32_to_cpu(pgp->rspPutInx); 4013 if (unlikely(portRspPut >= portRspMax)) { 4014 lpfc_sli_rsp_pointers_error(phba, pring); 4015 spin_unlock_irqrestore(&phba->hbalock, iflag); 4016 return 1; 4017 } 4018 if (phba->fcp_ring_in_use) { 4019 spin_unlock_irqrestore(&phba->hbalock, iflag); 4020 return 1; 4021 } else 4022 phba->fcp_ring_in_use = 1; 4023 4024 rmb(); 4025 while (pring->sli.sli3.rspidx != portRspPut) { 4026 /* 4027 * Fetch an entry off the ring and copy it into a local data 4028 * structure. The copy involves a byte-swap since the 4029 * network byte order and pci byte orders are different. 4030 */ 4031 entry = lpfc_resp_iocb(phba, pring); 4032 phba->last_completion_time = jiffies; 4033 4034 if (++pring->sli.sli3.rspidx >= portRspMax) 4035 pring->sli.sli3.rspidx = 0; 4036 4037 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4038 (uint32_t *) &rspiocbq.iocb, 4039 phba->iocb_rsp_size); 4040 INIT_LIST_HEAD(&(rspiocbq.list)); 4041 irsp = &rspiocbq.iocb; 4042 4043 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4044 pring->stats.iocb_rsp++; 4045 rsp_cmpl++; 4046 4047 if (unlikely(irsp->ulpStatus)) { 4048 /* 4049 * If resource errors reported from HBA, reduce 4050 * queuedepths of the SCSI device. 4051 */ 4052 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4053 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4054 IOERR_NO_RESOURCES)) { 4055 spin_unlock_irqrestore(&phba->hbalock, iflag); 4056 phba->lpfc_rampdown_queue_depth(phba); 4057 spin_lock_irqsave(&phba->hbalock, iflag); 4058 } 4059 4060 /* Rsp ring <ringno> error: IOCB */ 4061 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4062 "0336 Rsp Ring %d error: IOCB Data: " 4063 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4064 pring->ringno, 4065 irsp->un.ulpWord[0], 4066 irsp->un.ulpWord[1], 4067 irsp->un.ulpWord[2], 4068 irsp->un.ulpWord[3], 4069 irsp->un.ulpWord[4], 4070 irsp->un.ulpWord[5], 4071 *(uint32_t *)&irsp->un1, 4072 *((uint32_t *)&irsp->un1 + 1)); 4073 } 4074 4075 switch (type) { 4076 case LPFC_ABORT_IOCB: 4077 case LPFC_SOL_IOCB: 4078 /* 4079 * Idle exchange closed via ABTS from port. No iocb 4080 * resources need to be recovered. 4081 */ 4082 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4083 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4084 "0333 IOCB cmd 0x%x" 4085 " processed. Skipping" 4086 " completion\n", 4087 irsp->ulpCommand); 4088 break; 4089 } 4090 4091 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4092 &rspiocbq); 4093 if (unlikely(!cmdiocbq)) 4094 break; 4095 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4096 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4097 if (cmdiocbq->cmd_cmpl) { 4098 spin_unlock_irqrestore(&phba->hbalock, iflag); 4099 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq); 4100 spin_lock_irqsave(&phba->hbalock, iflag); 4101 } 4102 break; 4103 case LPFC_UNSOL_IOCB: 4104 spin_unlock_irqrestore(&phba->hbalock, iflag); 4105 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4106 spin_lock_irqsave(&phba->hbalock, iflag); 4107 break; 4108 default: 4109 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4110 char adaptermsg[LPFC_MAX_ADPTMSG]; 4111 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4112 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4113 MAX_MSG_DATA); 4114 dev_warn(&((phba->pcidev)->dev), 4115 "lpfc%d: %s\n", 4116 phba->brd_no, adaptermsg); 4117 } else { 4118 /* Unknown IOCB command */ 4119 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4120 "0334 Unknown IOCB command " 4121 "Data: x%x, x%x x%x x%x x%x\n", 4122 type, irsp->ulpCommand, 4123 irsp->ulpStatus, 4124 irsp->ulpIoTag, 4125 irsp->ulpContext); 4126 } 4127 break; 4128 } 4129 4130 /* 4131 * The response IOCB has been processed. Update the ring 4132 * pointer in SLIM. If the port response put pointer has not 4133 * been updated, sync the pgp->rspPutInx and fetch the new port 4134 * response put pointer. 4135 */ 4136 writel(pring->sli.sli3.rspidx, 4137 &phba->host_gp[pring->ringno].rspGetInx); 4138 4139 if (pring->sli.sli3.rspidx == portRspPut) 4140 portRspPut = le32_to_cpu(pgp->rspPutInx); 4141 } 4142 4143 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4144 pring->stats.iocb_rsp_full++; 4145 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4146 writel(status, phba->CAregaddr); 4147 readl(phba->CAregaddr); 4148 } 4149 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4150 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4151 pring->stats.iocb_cmd_empty++; 4152 4153 /* Force update of the local copy of cmdGetInx */ 4154 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4155 lpfc_sli_resume_iocb(phba, pring); 4156 4157 if ((pring->lpfc_sli_cmd_available)) 4158 (pring->lpfc_sli_cmd_available) (phba, pring); 4159 4160 } 4161 4162 phba->fcp_ring_in_use = 0; 4163 spin_unlock_irqrestore(&phba->hbalock, iflag); 4164 return rc; 4165 } 4166 4167 /** 4168 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4169 * @phba: Pointer to HBA context object. 4170 * @pring: Pointer to driver SLI ring object. 4171 * @rspiocbp: Pointer to driver response IOCB object. 4172 * 4173 * This function is called from the worker thread when there is a slow-path 4174 * response IOCB to process. This function chains all the response iocbs until 4175 * seeing the iocb with the LE bit set. The function will call 4176 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4177 * completion of a command iocb. The function will call the 4178 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4179 * The function frees the resources or calls the completion handler if this 4180 * iocb is an abort completion. The function returns NULL when the response 4181 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4182 * this function shall chain the iocb on to the iocb_continueq and return the 4183 * response iocb passed in. 4184 **/ 4185 static struct lpfc_iocbq * 4186 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4187 struct lpfc_iocbq *rspiocbp) 4188 { 4189 struct lpfc_iocbq *saveq; 4190 struct lpfc_iocbq *cmdiocb; 4191 struct lpfc_iocbq *next_iocb; 4192 IOCB_t *irsp; 4193 uint32_t free_saveq; 4194 u8 cmd_type; 4195 lpfc_iocb_type type; 4196 unsigned long iflag; 4197 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4198 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4199 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4200 int rc; 4201 4202 spin_lock_irqsave(&phba->hbalock, iflag); 4203 /* First add the response iocb to the countinueq list */ 4204 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4205 pring->iocb_continueq_cnt++; 4206 4207 /* 4208 * By default, the driver expects to free all resources 4209 * associated with this iocb completion. 4210 */ 4211 free_saveq = 1; 4212 saveq = list_get_first(&pring->iocb_continueq, 4213 struct lpfc_iocbq, list); 4214 list_del_init(&pring->iocb_continueq); 4215 pring->iocb_continueq_cnt = 0; 4216 4217 pring->stats.iocb_rsp++; 4218 4219 /* 4220 * If resource errors reported from HBA, reduce 4221 * queuedepths of the SCSI device. 4222 */ 4223 if (ulp_status == IOSTAT_LOCAL_REJECT && 4224 ((ulp_word4 & IOERR_PARAM_MASK) == 4225 IOERR_NO_RESOURCES)) { 4226 spin_unlock_irqrestore(&phba->hbalock, iflag); 4227 phba->lpfc_rampdown_queue_depth(phba); 4228 spin_lock_irqsave(&phba->hbalock, iflag); 4229 } 4230 4231 if (ulp_status) { 4232 /* Rsp ring <ringno> error: IOCB */ 4233 if (phba->sli_rev < LPFC_SLI_REV4) { 4234 irsp = &rspiocbp->iocb; 4235 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4236 "0328 Rsp Ring %d error: ulp_status x%x " 4237 "IOCB Data: " 4238 "x%08x x%08x x%08x x%08x " 4239 "x%08x x%08x x%08x x%08x " 4240 "x%08x x%08x x%08x x%08x " 4241 "x%08x x%08x x%08x x%08x\n", 4242 pring->ringno, ulp_status, 4243 get_job_ulpword(rspiocbp, 0), 4244 get_job_ulpword(rspiocbp, 1), 4245 get_job_ulpword(rspiocbp, 2), 4246 get_job_ulpword(rspiocbp, 3), 4247 get_job_ulpword(rspiocbp, 4), 4248 get_job_ulpword(rspiocbp, 5), 4249 *(((uint32_t *)irsp) + 6), 4250 *(((uint32_t *)irsp) + 7), 4251 *(((uint32_t *)irsp) + 8), 4252 *(((uint32_t *)irsp) + 9), 4253 *(((uint32_t *)irsp) + 10), 4254 *(((uint32_t *)irsp) + 11), 4255 *(((uint32_t *)irsp) + 12), 4256 *(((uint32_t *)irsp) + 13), 4257 *(((uint32_t *)irsp) + 14), 4258 *(((uint32_t *)irsp) + 15)); 4259 } else { 4260 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4261 "0321 Rsp Ring %d error: " 4262 "IOCB Data: " 4263 "x%x x%x x%x x%x\n", 4264 pring->ringno, 4265 rspiocbp->wcqe_cmpl.word0, 4266 rspiocbp->wcqe_cmpl.total_data_placed, 4267 rspiocbp->wcqe_cmpl.parameter, 4268 rspiocbp->wcqe_cmpl.word3); 4269 } 4270 } 4271 4272 4273 /* 4274 * Fetch the iocb command type and call the correct completion 4275 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4276 * get freed back to the lpfc_iocb_list by the discovery 4277 * kernel thread. 4278 */ 4279 cmd_type = ulp_command & CMD_IOCB_MASK; 4280 type = lpfc_sli_iocb_cmd_type(cmd_type); 4281 switch (type) { 4282 case LPFC_SOL_IOCB: 4283 spin_unlock_irqrestore(&phba->hbalock, iflag); 4284 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4285 spin_lock_irqsave(&phba->hbalock, iflag); 4286 break; 4287 case LPFC_UNSOL_IOCB: 4288 spin_unlock_irqrestore(&phba->hbalock, iflag); 4289 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4290 spin_lock_irqsave(&phba->hbalock, iflag); 4291 if (!rc) 4292 free_saveq = 0; 4293 break; 4294 case LPFC_ABORT_IOCB: 4295 cmdiocb = NULL; 4296 if (ulp_command != CMD_XRI_ABORTED_CX) 4297 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4298 saveq); 4299 if (cmdiocb) { 4300 /* Call the specified completion routine */ 4301 if (cmdiocb->cmd_cmpl) { 4302 spin_unlock_irqrestore(&phba->hbalock, iflag); 4303 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4304 spin_lock_irqsave(&phba->hbalock, iflag); 4305 } else { 4306 __lpfc_sli_release_iocbq(phba, cmdiocb); 4307 } 4308 } 4309 break; 4310 case LPFC_UNKNOWN_IOCB: 4311 if (ulp_command == CMD_ADAPTER_MSG) { 4312 char adaptermsg[LPFC_MAX_ADPTMSG]; 4313 4314 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4315 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4316 MAX_MSG_DATA); 4317 dev_warn(&((phba->pcidev)->dev), 4318 "lpfc%d: %s\n", 4319 phba->brd_no, adaptermsg); 4320 } else { 4321 /* Unknown command */ 4322 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4323 "0335 Unknown IOCB " 4324 "command Data: x%x " 4325 "x%x x%x x%x\n", 4326 ulp_command, 4327 ulp_status, 4328 get_wqe_reqtag(rspiocbp), 4329 get_job_ulpcontext(phba, rspiocbp)); 4330 } 4331 break; 4332 } 4333 4334 if (free_saveq) { 4335 list_for_each_entry_safe(rspiocbp, next_iocb, 4336 &saveq->list, list) { 4337 list_del_init(&rspiocbp->list); 4338 __lpfc_sli_release_iocbq(phba, rspiocbp); 4339 } 4340 __lpfc_sli_release_iocbq(phba, saveq); 4341 } 4342 rspiocbp = NULL; 4343 spin_unlock_irqrestore(&phba->hbalock, iflag); 4344 return rspiocbp; 4345 } 4346 4347 /** 4348 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4349 * @phba: Pointer to HBA context object. 4350 * @pring: Pointer to driver SLI ring object. 4351 * @mask: Host attention register mask for this ring. 4352 * 4353 * This routine wraps the actual slow_ring event process routine from the 4354 * API jump table function pointer from the lpfc_hba struct. 4355 **/ 4356 void 4357 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4358 struct lpfc_sli_ring *pring, uint32_t mask) 4359 { 4360 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4361 } 4362 4363 /** 4364 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4365 * @phba: Pointer to HBA context object. 4366 * @pring: Pointer to driver SLI ring object. 4367 * @mask: Host attention register mask for this ring. 4368 * 4369 * This function is called from the worker thread when there is a ring event 4370 * for non-fcp rings. The caller does not hold any lock. The function will 4371 * remove each response iocb in the response ring and calls the handle 4372 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4373 **/ 4374 static void 4375 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4376 struct lpfc_sli_ring *pring, uint32_t mask) 4377 { 4378 struct lpfc_pgp *pgp; 4379 IOCB_t *entry; 4380 IOCB_t *irsp = NULL; 4381 struct lpfc_iocbq *rspiocbp = NULL; 4382 uint32_t portRspPut, portRspMax; 4383 unsigned long iflag; 4384 uint32_t status; 4385 4386 pgp = &phba->port_gp[pring->ringno]; 4387 spin_lock_irqsave(&phba->hbalock, iflag); 4388 pring->stats.iocb_event++; 4389 4390 /* 4391 * The next available response entry should never exceed the maximum 4392 * entries. If it does, treat it as an adapter hardware error. 4393 */ 4394 portRspMax = pring->sli.sli3.numRiocb; 4395 portRspPut = le32_to_cpu(pgp->rspPutInx); 4396 if (portRspPut >= portRspMax) { 4397 /* 4398 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4399 * rsp ring <portRspMax> 4400 */ 4401 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4402 "0303 Ring %d handler: portRspPut %d " 4403 "is bigger than rsp ring %d\n", 4404 pring->ringno, portRspPut, portRspMax); 4405 4406 phba->link_state = LPFC_HBA_ERROR; 4407 spin_unlock_irqrestore(&phba->hbalock, iflag); 4408 4409 phba->work_hs = HS_FFER3; 4410 lpfc_handle_eratt(phba); 4411 4412 return; 4413 } 4414 4415 rmb(); 4416 while (pring->sli.sli3.rspidx != portRspPut) { 4417 /* 4418 * Build a completion list and call the appropriate handler. 4419 * The process is to get the next available response iocb, get 4420 * a free iocb from the list, copy the response data into the 4421 * free iocb, insert to the continuation list, and update the 4422 * next response index to slim. This process makes response 4423 * iocb's in the ring available to DMA as fast as possible but 4424 * pays a penalty for a copy operation. Since the iocb is 4425 * only 32 bytes, this penalty is considered small relative to 4426 * the PCI reads for register values and a slim write. When 4427 * the ulpLe field is set, the entire Command has been 4428 * received. 4429 */ 4430 entry = lpfc_resp_iocb(phba, pring); 4431 4432 phba->last_completion_time = jiffies; 4433 rspiocbp = __lpfc_sli_get_iocbq(phba); 4434 if (rspiocbp == NULL) { 4435 printk(KERN_ERR "%s: out of buffers! Failing " 4436 "completion.\n", __func__); 4437 break; 4438 } 4439 4440 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4441 phba->iocb_rsp_size); 4442 irsp = &rspiocbp->iocb; 4443 4444 if (++pring->sli.sli3.rspidx >= portRspMax) 4445 pring->sli.sli3.rspidx = 0; 4446 4447 if (pring->ringno == LPFC_ELS_RING) { 4448 lpfc_debugfs_slow_ring_trc(phba, 4449 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4450 *(((uint32_t *) irsp) + 4), 4451 *(((uint32_t *) irsp) + 6), 4452 *(((uint32_t *) irsp) + 7)); 4453 } 4454 4455 writel(pring->sli.sli3.rspidx, 4456 &phba->host_gp[pring->ringno].rspGetInx); 4457 4458 spin_unlock_irqrestore(&phba->hbalock, iflag); 4459 /* Handle the response IOCB */ 4460 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4461 spin_lock_irqsave(&phba->hbalock, iflag); 4462 4463 /* 4464 * If the port response put pointer has not been updated, sync 4465 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4466 * response put pointer. 4467 */ 4468 if (pring->sli.sli3.rspidx == portRspPut) { 4469 portRspPut = le32_to_cpu(pgp->rspPutInx); 4470 } 4471 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4472 4473 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4474 /* At least one response entry has been freed */ 4475 pring->stats.iocb_rsp_full++; 4476 /* SET RxRE_RSP in Chip Att register */ 4477 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4478 writel(status, phba->CAregaddr); 4479 readl(phba->CAregaddr); /* flush */ 4480 } 4481 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4482 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4483 pring->stats.iocb_cmd_empty++; 4484 4485 /* Force update of the local copy of cmdGetInx */ 4486 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4487 lpfc_sli_resume_iocb(phba, pring); 4488 4489 if ((pring->lpfc_sli_cmd_available)) 4490 (pring->lpfc_sli_cmd_available) (phba, pring); 4491 4492 } 4493 4494 spin_unlock_irqrestore(&phba->hbalock, iflag); 4495 return; 4496 } 4497 4498 /** 4499 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4500 * @phba: Pointer to HBA context object. 4501 * @pring: Pointer to driver SLI ring object. 4502 * @mask: Host attention register mask for this ring. 4503 * 4504 * This function is called from the worker thread when there is a pending 4505 * ELS response iocb on the driver internal slow-path response iocb worker 4506 * queue. The caller does not hold any lock. The function will remove each 4507 * response iocb from the response worker queue and calls the handle 4508 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4509 **/ 4510 static void 4511 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4512 struct lpfc_sli_ring *pring, uint32_t mask) 4513 { 4514 struct lpfc_iocbq *irspiocbq; 4515 struct hbq_dmabuf *dmabuf; 4516 struct lpfc_cq_event *cq_event; 4517 unsigned long iflag; 4518 int count = 0; 4519 4520 spin_lock_irqsave(&phba->hbalock, iflag); 4521 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4522 spin_unlock_irqrestore(&phba->hbalock, iflag); 4523 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4524 /* Get the response iocb from the head of work queue */ 4525 spin_lock_irqsave(&phba->hbalock, iflag); 4526 list_remove_head(&phba->sli4_hba.sp_queue_event, 4527 cq_event, struct lpfc_cq_event, list); 4528 spin_unlock_irqrestore(&phba->hbalock, iflag); 4529 4530 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4531 case CQE_CODE_COMPL_WQE: 4532 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4533 cq_event); 4534 /* Translate ELS WCQE to response IOCBQ */ 4535 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4536 irspiocbq); 4537 if (irspiocbq) 4538 lpfc_sli_sp_handle_rspiocb(phba, pring, 4539 irspiocbq); 4540 count++; 4541 break; 4542 case CQE_CODE_RECEIVE: 4543 case CQE_CODE_RECEIVE_V1: 4544 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4545 cq_event); 4546 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4547 count++; 4548 break; 4549 default: 4550 break; 4551 } 4552 4553 /* Limit the number of events to 64 to avoid soft lockups */ 4554 if (count == 64) 4555 break; 4556 } 4557 } 4558 4559 /** 4560 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4561 * @phba: Pointer to HBA context object. 4562 * @pring: Pointer to driver SLI ring object. 4563 * 4564 * This function aborts all iocbs in the given ring and frees all the iocb 4565 * objects in txq. This function issues an abort iocb for all the iocb commands 4566 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4567 * the return of this function. The caller is not required to hold any locks. 4568 **/ 4569 void 4570 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4571 { 4572 LIST_HEAD(tx_completions); 4573 LIST_HEAD(txcmplq_completions); 4574 struct lpfc_iocbq *iocb, *next_iocb; 4575 int offline; 4576 4577 if (pring->ringno == LPFC_ELS_RING) { 4578 lpfc_fabric_abort_hba(phba); 4579 } 4580 offline = pci_channel_offline(phba->pcidev); 4581 4582 /* Error everything on txq and txcmplq 4583 * First do the txq. 4584 */ 4585 if (phba->sli_rev >= LPFC_SLI_REV4) { 4586 spin_lock_irq(&pring->ring_lock); 4587 list_splice_init(&pring->txq, &tx_completions); 4588 pring->txq_cnt = 0; 4589 4590 if (offline) { 4591 list_splice_init(&pring->txcmplq, 4592 &txcmplq_completions); 4593 } else { 4594 /* Next issue ABTS for everything on the txcmplq */ 4595 list_for_each_entry_safe(iocb, next_iocb, 4596 &pring->txcmplq, list) 4597 lpfc_sli_issue_abort_iotag(phba, pring, 4598 iocb, NULL); 4599 } 4600 spin_unlock_irq(&pring->ring_lock); 4601 } else { 4602 spin_lock_irq(&phba->hbalock); 4603 list_splice_init(&pring->txq, &tx_completions); 4604 pring->txq_cnt = 0; 4605 4606 if (offline) { 4607 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4608 } else { 4609 /* Next issue ABTS for everything on the txcmplq */ 4610 list_for_each_entry_safe(iocb, next_iocb, 4611 &pring->txcmplq, list) 4612 lpfc_sli_issue_abort_iotag(phba, pring, 4613 iocb, NULL); 4614 } 4615 spin_unlock_irq(&phba->hbalock); 4616 } 4617 4618 if (offline) { 4619 /* Cancel all the IOCBs from the completions list */ 4620 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4621 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4622 } else { 4623 /* Make sure HBA is alive */ 4624 lpfc_issue_hb_tmo(phba); 4625 } 4626 /* Cancel all the IOCBs from the completions list */ 4627 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4628 IOERR_SLI_ABORTED); 4629 } 4630 4631 /** 4632 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4633 * @phba: Pointer to HBA context object. 4634 * 4635 * This function aborts all iocbs in FCP rings and frees all the iocb 4636 * objects in txq. This function issues an abort iocb for all the iocb commands 4637 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4638 * the return of this function. The caller is not required to hold any locks. 4639 **/ 4640 void 4641 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4642 { 4643 struct lpfc_sli *psli = &phba->sli; 4644 struct lpfc_sli_ring *pring; 4645 uint32_t i; 4646 4647 /* Look on all the FCP Rings for the iotag */ 4648 if (phba->sli_rev >= LPFC_SLI_REV4) { 4649 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4650 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4651 lpfc_sli_abort_iocb_ring(phba, pring); 4652 } 4653 } else { 4654 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4655 lpfc_sli_abort_iocb_ring(phba, pring); 4656 } 4657 } 4658 4659 /** 4660 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4661 * @phba: Pointer to HBA context object. 4662 * 4663 * This function flushes all iocbs in the IO ring and frees all the iocb 4664 * objects in txq and txcmplq. This function will not issue abort iocbs 4665 * for all the iocb commands in txcmplq, they will just be returned with 4666 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4667 * slot has been permanently disabled. 4668 **/ 4669 void 4670 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4671 { 4672 LIST_HEAD(txq); 4673 LIST_HEAD(txcmplq); 4674 struct lpfc_sli *psli = &phba->sli; 4675 struct lpfc_sli_ring *pring; 4676 uint32_t i; 4677 struct lpfc_iocbq *piocb, *next_iocb; 4678 4679 spin_lock_irq(&phba->hbalock); 4680 /* Indicate the I/O queues are flushed */ 4681 phba->hba_flag |= HBA_IOQ_FLUSH; 4682 spin_unlock_irq(&phba->hbalock); 4683 4684 /* Look on all the FCP Rings for the iotag */ 4685 if (phba->sli_rev >= LPFC_SLI_REV4) { 4686 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4687 if (!phba->sli4_hba.hdwq || 4688 !phba->sli4_hba.hdwq[i].io_wq) { 4689 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4690 "7777 hdwq's deleted %lx " 4691 "%lx %x %x\n", 4692 (unsigned long)phba->pport->load_flag, 4693 (unsigned long)phba->hba_flag, 4694 phba->link_state, 4695 phba->sli.sli_flag); 4696 return; 4697 } 4698 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4699 4700 spin_lock_irq(&pring->ring_lock); 4701 /* Retrieve everything on txq */ 4702 list_splice_init(&pring->txq, &txq); 4703 list_for_each_entry_safe(piocb, next_iocb, 4704 &pring->txcmplq, list) 4705 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4706 /* Retrieve everything on the txcmplq */ 4707 list_splice_init(&pring->txcmplq, &txcmplq); 4708 pring->txq_cnt = 0; 4709 pring->txcmplq_cnt = 0; 4710 spin_unlock_irq(&pring->ring_lock); 4711 4712 /* Flush the txq */ 4713 lpfc_sli_cancel_iocbs(phba, &txq, 4714 IOSTAT_LOCAL_REJECT, 4715 IOERR_SLI_DOWN); 4716 /* Flush the txcmplq */ 4717 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4718 IOSTAT_LOCAL_REJECT, 4719 IOERR_SLI_DOWN); 4720 if (unlikely(pci_channel_offline(phba->pcidev))) 4721 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4722 } 4723 } else { 4724 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4725 4726 spin_lock_irq(&phba->hbalock); 4727 /* Retrieve everything on txq */ 4728 list_splice_init(&pring->txq, &txq); 4729 list_for_each_entry_safe(piocb, next_iocb, 4730 &pring->txcmplq, list) 4731 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4732 /* Retrieve everything on the txcmplq */ 4733 list_splice_init(&pring->txcmplq, &txcmplq); 4734 pring->txq_cnt = 0; 4735 pring->txcmplq_cnt = 0; 4736 spin_unlock_irq(&phba->hbalock); 4737 4738 /* Flush the txq */ 4739 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4740 IOERR_SLI_DOWN); 4741 /* Flush the txcmpq */ 4742 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4743 IOERR_SLI_DOWN); 4744 } 4745 } 4746 4747 /** 4748 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4749 * @phba: Pointer to HBA context object. 4750 * @mask: Bit mask to be checked. 4751 * 4752 * This function reads the host status register and compares 4753 * with the provided bit mask to check if HBA completed 4754 * the restart. This function will wait in a loop for the 4755 * HBA to complete restart. If the HBA does not restart within 4756 * 15 iterations, the function will reset the HBA again. The 4757 * function returns 1 when HBA fail to restart otherwise returns 4758 * zero. 4759 **/ 4760 static int 4761 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4762 { 4763 uint32_t status; 4764 int i = 0; 4765 int retval = 0; 4766 4767 /* Read the HBA Host Status Register */ 4768 if (lpfc_readl(phba->HSregaddr, &status)) 4769 return 1; 4770 4771 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4772 4773 /* 4774 * Check status register every 100ms for 5 retries, then every 4775 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4776 * every 2.5 sec for 4. 4777 * Break our of the loop if errors occurred during init. 4778 */ 4779 while (((status & mask) != mask) && 4780 !(status & HS_FFERM) && 4781 i++ < 20) { 4782 4783 if (i <= 5) 4784 msleep(10); 4785 else if (i <= 10) 4786 msleep(500); 4787 else 4788 msleep(2500); 4789 4790 if (i == 15) { 4791 /* Do post */ 4792 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4793 lpfc_sli_brdrestart(phba); 4794 } 4795 /* Read the HBA Host Status Register */ 4796 if (lpfc_readl(phba->HSregaddr, &status)) { 4797 retval = 1; 4798 break; 4799 } 4800 } 4801 4802 /* Check to see if any errors occurred during init */ 4803 if ((status & HS_FFERM) || (i >= 20)) { 4804 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4805 "2751 Adapter failed to restart, " 4806 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4807 status, 4808 readl(phba->MBslimaddr + 0xa8), 4809 readl(phba->MBslimaddr + 0xac)); 4810 phba->link_state = LPFC_HBA_ERROR; 4811 retval = 1; 4812 } 4813 4814 return retval; 4815 } 4816 4817 /** 4818 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4819 * @phba: Pointer to HBA context object. 4820 * @mask: Bit mask to be checked. 4821 * 4822 * This function checks the host status register to check if HBA is 4823 * ready. This function will wait in a loop for the HBA to be ready 4824 * If the HBA is not ready , the function will will reset the HBA PCI 4825 * function again. The function returns 1 when HBA fail to be ready 4826 * otherwise returns zero. 4827 **/ 4828 static int 4829 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4830 { 4831 uint32_t status; 4832 int retval = 0; 4833 4834 /* Read the HBA Host Status Register */ 4835 status = lpfc_sli4_post_status_check(phba); 4836 4837 if (status) { 4838 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4839 lpfc_sli_brdrestart(phba); 4840 status = lpfc_sli4_post_status_check(phba); 4841 } 4842 4843 /* Check to see if any errors occurred during init */ 4844 if (status) { 4845 phba->link_state = LPFC_HBA_ERROR; 4846 retval = 1; 4847 } else 4848 phba->sli4_hba.intr_enable = 0; 4849 4850 phba->hba_flag &= ~HBA_SETUP; 4851 return retval; 4852 } 4853 4854 /** 4855 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4856 * @phba: Pointer to HBA context object. 4857 * @mask: Bit mask to be checked. 4858 * 4859 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4860 * from the API jump table function pointer from the lpfc_hba struct. 4861 **/ 4862 int 4863 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4864 { 4865 return phba->lpfc_sli_brdready(phba, mask); 4866 } 4867 4868 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4869 4870 /** 4871 * lpfc_reset_barrier - Make HBA ready for HBA reset 4872 * @phba: Pointer to HBA context object. 4873 * 4874 * This function is called before resetting an HBA. This function is called 4875 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4876 **/ 4877 void lpfc_reset_barrier(struct lpfc_hba *phba) 4878 { 4879 uint32_t __iomem *resp_buf; 4880 uint32_t __iomem *mbox_buf; 4881 volatile struct MAILBOX_word0 mbox; 4882 uint32_t hc_copy, ha_copy, resp_data; 4883 int i; 4884 uint8_t hdrtype; 4885 4886 lockdep_assert_held(&phba->hbalock); 4887 4888 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4889 if (hdrtype != 0x80 || 4890 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4891 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4892 return; 4893 4894 /* 4895 * Tell the other part of the chip to suspend temporarily all 4896 * its DMA activity. 4897 */ 4898 resp_buf = phba->MBslimaddr; 4899 4900 /* Disable the error attention */ 4901 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4902 return; 4903 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4904 readl(phba->HCregaddr); /* flush */ 4905 phba->link_flag |= LS_IGNORE_ERATT; 4906 4907 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4908 return; 4909 if (ha_copy & HA_ERATT) { 4910 /* Clear Chip error bit */ 4911 writel(HA_ERATT, phba->HAregaddr); 4912 phba->pport->stopped = 1; 4913 } 4914 4915 mbox.word0 = 0; 4916 mbox.mbxCommand = MBX_KILL_BOARD; 4917 mbox.mbxOwner = OWN_CHIP; 4918 4919 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4920 mbox_buf = phba->MBslimaddr; 4921 writel(mbox.word0, mbox_buf); 4922 4923 for (i = 0; i < 50; i++) { 4924 if (lpfc_readl((resp_buf + 1), &resp_data)) 4925 return; 4926 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4927 mdelay(1); 4928 else 4929 break; 4930 } 4931 resp_data = 0; 4932 if (lpfc_readl((resp_buf + 1), &resp_data)) 4933 return; 4934 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4935 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4936 phba->pport->stopped) 4937 goto restore_hc; 4938 else 4939 goto clear_errat; 4940 } 4941 4942 mbox.mbxOwner = OWN_HOST; 4943 resp_data = 0; 4944 for (i = 0; i < 500; i++) { 4945 if (lpfc_readl(resp_buf, &resp_data)) 4946 return; 4947 if (resp_data != mbox.word0) 4948 mdelay(1); 4949 else 4950 break; 4951 } 4952 4953 clear_errat: 4954 4955 while (++i < 500) { 4956 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4957 return; 4958 if (!(ha_copy & HA_ERATT)) 4959 mdelay(1); 4960 else 4961 break; 4962 } 4963 4964 if (readl(phba->HAregaddr) & HA_ERATT) { 4965 writel(HA_ERATT, phba->HAregaddr); 4966 phba->pport->stopped = 1; 4967 } 4968 4969 restore_hc: 4970 phba->link_flag &= ~LS_IGNORE_ERATT; 4971 writel(hc_copy, phba->HCregaddr); 4972 readl(phba->HCregaddr); /* flush */ 4973 } 4974 4975 /** 4976 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4977 * @phba: Pointer to HBA context object. 4978 * 4979 * This function issues a kill_board mailbox command and waits for 4980 * the error attention interrupt. This function is called for stopping 4981 * the firmware processing. The caller is not required to hold any 4982 * locks. This function calls lpfc_hba_down_post function to free 4983 * any pending commands after the kill. The function will return 1 when it 4984 * fails to kill the board else will return 0. 4985 **/ 4986 int 4987 lpfc_sli_brdkill(struct lpfc_hba *phba) 4988 { 4989 struct lpfc_sli *psli; 4990 LPFC_MBOXQ_t *pmb; 4991 uint32_t status; 4992 uint32_t ha_copy; 4993 int retval; 4994 int i = 0; 4995 4996 psli = &phba->sli; 4997 4998 /* Kill HBA */ 4999 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5000 "0329 Kill HBA Data: x%x x%x\n", 5001 phba->pport->port_state, psli->sli_flag); 5002 5003 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5004 if (!pmb) 5005 return 1; 5006 5007 /* Disable the error attention */ 5008 spin_lock_irq(&phba->hbalock); 5009 if (lpfc_readl(phba->HCregaddr, &status)) { 5010 spin_unlock_irq(&phba->hbalock); 5011 mempool_free(pmb, phba->mbox_mem_pool); 5012 return 1; 5013 } 5014 status &= ~HC_ERINT_ENA; 5015 writel(status, phba->HCregaddr); 5016 readl(phba->HCregaddr); /* flush */ 5017 phba->link_flag |= LS_IGNORE_ERATT; 5018 spin_unlock_irq(&phba->hbalock); 5019 5020 lpfc_kill_board(phba, pmb); 5021 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 5022 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5023 5024 if (retval != MBX_SUCCESS) { 5025 if (retval != MBX_BUSY) 5026 mempool_free(pmb, phba->mbox_mem_pool); 5027 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5028 "2752 KILL_BOARD command failed retval %d\n", 5029 retval); 5030 spin_lock_irq(&phba->hbalock); 5031 phba->link_flag &= ~LS_IGNORE_ERATT; 5032 spin_unlock_irq(&phba->hbalock); 5033 return 1; 5034 } 5035 5036 spin_lock_irq(&phba->hbalock); 5037 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 5038 spin_unlock_irq(&phba->hbalock); 5039 5040 mempool_free(pmb, phba->mbox_mem_pool); 5041 5042 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 5043 * attention every 100ms for 3 seconds. If we don't get ERATT after 5044 * 3 seconds we still set HBA_ERROR state because the status of the 5045 * board is now undefined. 5046 */ 5047 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5048 return 1; 5049 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5050 mdelay(100); 5051 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5052 return 1; 5053 } 5054 5055 del_timer_sync(&psli->mbox_tmo); 5056 if (ha_copy & HA_ERATT) { 5057 writel(HA_ERATT, phba->HAregaddr); 5058 phba->pport->stopped = 1; 5059 } 5060 spin_lock_irq(&phba->hbalock); 5061 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5062 psli->mbox_active = NULL; 5063 phba->link_flag &= ~LS_IGNORE_ERATT; 5064 spin_unlock_irq(&phba->hbalock); 5065 5066 lpfc_hba_down_post(phba); 5067 phba->link_state = LPFC_HBA_ERROR; 5068 5069 return ha_copy & HA_ERATT ? 0 : 1; 5070 } 5071 5072 /** 5073 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5074 * @phba: Pointer to HBA context object. 5075 * 5076 * This function resets the HBA by writing HC_INITFF to the control 5077 * register. After the HBA resets, this function resets all the iocb ring 5078 * indices. This function disables PCI layer parity checking during 5079 * the reset. 5080 * This function returns 0 always. 5081 * The caller is not required to hold any locks. 5082 **/ 5083 int 5084 lpfc_sli_brdreset(struct lpfc_hba *phba) 5085 { 5086 struct lpfc_sli *psli; 5087 struct lpfc_sli_ring *pring; 5088 uint16_t cfg_value; 5089 int i; 5090 5091 psli = &phba->sli; 5092 5093 /* Reset HBA */ 5094 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5095 "0325 Reset HBA Data: x%x x%x\n", 5096 (phba->pport) ? phba->pport->port_state : 0, 5097 psli->sli_flag); 5098 5099 /* perform board reset */ 5100 phba->fc_eventTag = 0; 5101 phba->link_events = 0; 5102 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5103 if (phba->pport) { 5104 phba->pport->fc_myDID = 0; 5105 phba->pport->fc_prevDID = 0; 5106 } 5107 5108 /* Turn off parity checking and serr during the physical reset */ 5109 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5110 return -EIO; 5111 5112 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5113 (cfg_value & 5114 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5115 5116 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5117 5118 /* Now toggle INITFF bit in the Host Control Register */ 5119 writel(HC_INITFF, phba->HCregaddr); 5120 mdelay(1); 5121 readl(phba->HCregaddr); /* flush */ 5122 writel(0, phba->HCregaddr); 5123 readl(phba->HCregaddr); /* flush */ 5124 5125 /* Restore PCI cmd register */ 5126 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5127 5128 /* Initialize relevant SLI info */ 5129 for (i = 0; i < psli->num_rings; i++) { 5130 pring = &psli->sli3_ring[i]; 5131 pring->flag = 0; 5132 pring->sli.sli3.rspidx = 0; 5133 pring->sli.sli3.next_cmdidx = 0; 5134 pring->sli.sli3.local_getidx = 0; 5135 pring->sli.sli3.cmdidx = 0; 5136 pring->missbufcnt = 0; 5137 } 5138 5139 phba->link_state = LPFC_WARM_START; 5140 return 0; 5141 } 5142 5143 /** 5144 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5145 * @phba: Pointer to HBA context object. 5146 * 5147 * This function resets a SLI4 HBA. This function disables PCI layer parity 5148 * checking during resets the device. The caller is not required to hold 5149 * any locks. 5150 * 5151 * This function returns 0 on success else returns negative error code. 5152 **/ 5153 int 5154 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5155 { 5156 struct lpfc_sli *psli = &phba->sli; 5157 uint16_t cfg_value; 5158 int rc = 0; 5159 5160 /* Reset HBA */ 5161 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5162 "0295 Reset HBA Data: x%x x%x x%x\n", 5163 phba->pport->port_state, psli->sli_flag, 5164 phba->hba_flag); 5165 5166 /* perform board reset */ 5167 phba->fc_eventTag = 0; 5168 phba->link_events = 0; 5169 phba->pport->fc_myDID = 0; 5170 phba->pport->fc_prevDID = 0; 5171 phba->hba_flag &= ~HBA_SETUP; 5172 5173 spin_lock_irq(&phba->hbalock); 5174 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5175 phba->fcf.fcf_flag = 0; 5176 spin_unlock_irq(&phba->hbalock); 5177 5178 /* Now physically reset the device */ 5179 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5180 "0389 Performing PCI function reset!\n"); 5181 5182 /* Turn off parity checking and serr during the physical reset */ 5183 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5184 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5185 "3205 PCI read Config failed\n"); 5186 return -EIO; 5187 } 5188 5189 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5190 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5191 5192 /* Perform FCoE PCI function reset before freeing queue memory */ 5193 rc = lpfc_pci_function_reset(phba); 5194 5195 /* Restore PCI cmd register */ 5196 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5197 5198 return rc; 5199 } 5200 5201 /** 5202 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5203 * @phba: Pointer to HBA context object. 5204 * 5205 * This function is called in the SLI initialization code path to 5206 * restart the HBA. The caller is not required to hold any lock. 5207 * This function writes MBX_RESTART mailbox command to the SLIM and 5208 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5209 * function to free any pending commands. The function enables 5210 * POST only during the first initialization. The function returns zero. 5211 * The function does not guarantee completion of MBX_RESTART mailbox 5212 * command before the return of this function. 5213 **/ 5214 static int 5215 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5216 { 5217 volatile struct MAILBOX_word0 mb; 5218 struct lpfc_sli *psli; 5219 void __iomem *to_slim; 5220 5221 spin_lock_irq(&phba->hbalock); 5222 5223 psli = &phba->sli; 5224 5225 /* Restart HBA */ 5226 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5227 "0337 Restart HBA Data: x%x x%x\n", 5228 (phba->pport) ? phba->pport->port_state : 0, 5229 psli->sli_flag); 5230 5231 mb.word0 = 0; 5232 mb.mbxCommand = MBX_RESTART; 5233 mb.mbxHc = 1; 5234 5235 lpfc_reset_barrier(phba); 5236 5237 to_slim = phba->MBslimaddr; 5238 writel(mb.word0, to_slim); 5239 readl(to_slim); /* flush */ 5240 5241 /* Only skip post after fc_ffinit is completed */ 5242 if (phba->pport && phba->pport->port_state) 5243 mb.word0 = 1; /* This is really setting up word1 */ 5244 else 5245 mb.word0 = 0; /* This is really setting up word1 */ 5246 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5247 writel(mb.word0, to_slim); 5248 readl(to_slim); /* flush */ 5249 5250 lpfc_sli_brdreset(phba); 5251 if (phba->pport) 5252 phba->pport->stopped = 0; 5253 phba->link_state = LPFC_INIT_START; 5254 phba->hba_flag = 0; 5255 spin_unlock_irq(&phba->hbalock); 5256 5257 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5258 psli->stats_start = ktime_get_seconds(); 5259 5260 /* Give the INITFF and Post time to settle. */ 5261 mdelay(100); 5262 5263 lpfc_hba_down_post(phba); 5264 5265 return 0; 5266 } 5267 5268 /** 5269 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5270 * @phba: Pointer to HBA context object. 5271 * 5272 * This function is called in the SLI initialization code path to restart 5273 * a SLI4 HBA. The caller is not required to hold any lock. 5274 * At the end of the function, it calls lpfc_hba_down_post function to 5275 * free any pending commands. 5276 **/ 5277 static int 5278 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5279 { 5280 struct lpfc_sli *psli = &phba->sli; 5281 int rc; 5282 5283 /* Restart HBA */ 5284 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5285 "0296 Restart HBA Data: x%x x%x\n", 5286 phba->pport->port_state, psli->sli_flag); 5287 5288 rc = lpfc_sli4_brdreset(phba); 5289 if (rc) { 5290 phba->link_state = LPFC_HBA_ERROR; 5291 goto hba_down_queue; 5292 } 5293 5294 spin_lock_irq(&phba->hbalock); 5295 phba->pport->stopped = 0; 5296 phba->link_state = LPFC_INIT_START; 5297 phba->hba_flag = 0; 5298 /* Preserve FA-PWWN expectation */ 5299 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC; 5300 spin_unlock_irq(&phba->hbalock); 5301 5302 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5303 psli->stats_start = ktime_get_seconds(); 5304 5305 hba_down_queue: 5306 lpfc_hba_down_post(phba); 5307 lpfc_sli4_queue_destroy(phba); 5308 5309 return rc; 5310 } 5311 5312 /** 5313 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5314 * @phba: Pointer to HBA context object. 5315 * 5316 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5317 * API jump table function pointer from the lpfc_hba struct. 5318 **/ 5319 int 5320 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5321 { 5322 return phba->lpfc_sli_brdrestart(phba); 5323 } 5324 5325 /** 5326 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5327 * @phba: Pointer to HBA context object. 5328 * 5329 * This function is called after a HBA restart to wait for successful 5330 * restart of the HBA. Successful restart of the HBA is indicated by 5331 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5332 * iteration, the function will restart the HBA again. The function returns 5333 * zero if HBA successfully restarted else returns negative error code. 5334 **/ 5335 int 5336 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5337 { 5338 uint32_t status, i = 0; 5339 5340 /* Read the HBA Host Status Register */ 5341 if (lpfc_readl(phba->HSregaddr, &status)) 5342 return -EIO; 5343 5344 /* Check status register to see what current state is */ 5345 i = 0; 5346 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5347 5348 /* Check every 10ms for 10 retries, then every 100ms for 90 5349 * retries, then every 1 sec for 50 retires for a total of 5350 * ~60 seconds before reset the board again and check every 5351 * 1 sec for 50 retries. The up to 60 seconds before the 5352 * board ready is required by the Falcon FIPS zeroization 5353 * complete, and any reset the board in between shall cause 5354 * restart of zeroization, further delay the board ready. 5355 */ 5356 if (i++ >= 200) { 5357 /* Adapter failed to init, timeout, status reg 5358 <status> */ 5359 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5360 "0436 Adapter failed to init, " 5361 "timeout, status reg x%x, " 5362 "FW Data: A8 x%x AC x%x\n", status, 5363 readl(phba->MBslimaddr + 0xa8), 5364 readl(phba->MBslimaddr + 0xac)); 5365 phba->link_state = LPFC_HBA_ERROR; 5366 return -ETIMEDOUT; 5367 } 5368 5369 /* Check to see if any errors occurred during init */ 5370 if (status & HS_FFERM) { 5371 /* ERROR: During chipset initialization */ 5372 /* Adapter failed to init, chipset, status reg 5373 <status> */ 5374 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5375 "0437 Adapter failed to init, " 5376 "chipset, status reg x%x, " 5377 "FW Data: A8 x%x AC x%x\n", status, 5378 readl(phba->MBslimaddr + 0xa8), 5379 readl(phba->MBslimaddr + 0xac)); 5380 phba->link_state = LPFC_HBA_ERROR; 5381 return -EIO; 5382 } 5383 5384 if (i <= 10) 5385 msleep(10); 5386 else if (i <= 100) 5387 msleep(100); 5388 else 5389 msleep(1000); 5390 5391 if (i == 150) { 5392 /* Do post */ 5393 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5394 lpfc_sli_brdrestart(phba); 5395 } 5396 /* Read the HBA Host Status Register */ 5397 if (lpfc_readl(phba->HSregaddr, &status)) 5398 return -EIO; 5399 } 5400 5401 /* Check to see if any errors occurred during init */ 5402 if (status & HS_FFERM) { 5403 /* ERROR: During chipset initialization */ 5404 /* Adapter failed to init, chipset, status reg <status> */ 5405 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5406 "0438 Adapter failed to init, chipset, " 5407 "status reg x%x, " 5408 "FW Data: A8 x%x AC x%x\n", status, 5409 readl(phba->MBslimaddr + 0xa8), 5410 readl(phba->MBslimaddr + 0xac)); 5411 phba->link_state = LPFC_HBA_ERROR; 5412 return -EIO; 5413 } 5414 5415 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5416 5417 /* Clear all interrupt enable conditions */ 5418 writel(0, phba->HCregaddr); 5419 readl(phba->HCregaddr); /* flush */ 5420 5421 /* setup host attn register */ 5422 writel(0xffffffff, phba->HAregaddr); 5423 readl(phba->HAregaddr); /* flush */ 5424 return 0; 5425 } 5426 5427 /** 5428 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5429 * 5430 * This function calculates and returns the number of HBQs required to be 5431 * configured. 5432 **/ 5433 int 5434 lpfc_sli_hbq_count(void) 5435 { 5436 return ARRAY_SIZE(lpfc_hbq_defs); 5437 } 5438 5439 /** 5440 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5441 * 5442 * This function adds the number of hbq entries in every HBQ to get 5443 * the total number of hbq entries required for the HBA and returns 5444 * the total count. 5445 **/ 5446 static int 5447 lpfc_sli_hbq_entry_count(void) 5448 { 5449 int hbq_count = lpfc_sli_hbq_count(); 5450 int count = 0; 5451 int i; 5452 5453 for (i = 0; i < hbq_count; ++i) 5454 count += lpfc_hbq_defs[i]->entry_count; 5455 return count; 5456 } 5457 5458 /** 5459 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5460 * 5461 * This function calculates amount of memory required for all hbq entries 5462 * to be configured and returns the total memory required. 5463 **/ 5464 int 5465 lpfc_sli_hbq_size(void) 5466 { 5467 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5468 } 5469 5470 /** 5471 * lpfc_sli_hbq_setup - configure and initialize HBQs 5472 * @phba: Pointer to HBA context object. 5473 * 5474 * This function is called during the SLI initialization to configure 5475 * all the HBQs and post buffers to the HBQ. The caller is not 5476 * required to hold any locks. This function will return zero if successful 5477 * else it will return negative error code. 5478 **/ 5479 static int 5480 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5481 { 5482 int hbq_count = lpfc_sli_hbq_count(); 5483 LPFC_MBOXQ_t *pmb; 5484 MAILBOX_t *pmbox; 5485 uint32_t hbqno; 5486 uint32_t hbq_entry_index; 5487 5488 /* Get a Mailbox buffer to setup mailbox 5489 * commands for HBA initialization 5490 */ 5491 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5492 5493 if (!pmb) 5494 return -ENOMEM; 5495 5496 pmbox = &pmb->u.mb; 5497 5498 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5499 phba->link_state = LPFC_INIT_MBX_CMDS; 5500 phba->hbq_in_use = 1; 5501 5502 hbq_entry_index = 0; 5503 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5504 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5505 phba->hbqs[hbqno].hbqPutIdx = 0; 5506 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5507 phba->hbqs[hbqno].entry_count = 5508 lpfc_hbq_defs[hbqno]->entry_count; 5509 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5510 hbq_entry_index, pmb); 5511 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5512 5513 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5514 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5515 mbxStatus <status>, ring <num> */ 5516 5517 lpfc_printf_log(phba, KERN_ERR, 5518 LOG_SLI | LOG_VPORT, 5519 "1805 Adapter failed to init. " 5520 "Data: x%x x%x x%x\n", 5521 pmbox->mbxCommand, 5522 pmbox->mbxStatus, hbqno); 5523 5524 phba->link_state = LPFC_HBA_ERROR; 5525 mempool_free(pmb, phba->mbox_mem_pool); 5526 return -ENXIO; 5527 } 5528 } 5529 phba->hbq_count = hbq_count; 5530 5531 mempool_free(pmb, phba->mbox_mem_pool); 5532 5533 /* Initially populate or replenish the HBQs */ 5534 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5535 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5536 return 0; 5537 } 5538 5539 /** 5540 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5541 * @phba: Pointer to HBA context object. 5542 * 5543 * This function is called during the SLI initialization to configure 5544 * all the HBQs and post buffers to the HBQ. The caller is not 5545 * required to hold any locks. This function will return zero if successful 5546 * else it will return negative error code. 5547 **/ 5548 static int 5549 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5550 { 5551 phba->hbq_in_use = 1; 5552 /** 5553 * Specific case when the MDS diagnostics is enabled and supported. 5554 * The receive buffer count is truncated to manage the incoming 5555 * traffic. 5556 **/ 5557 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5558 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5559 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5560 else 5561 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5562 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5563 phba->hbq_count = 1; 5564 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5565 /* Initially populate or replenish the HBQs */ 5566 return 0; 5567 } 5568 5569 /** 5570 * lpfc_sli_config_port - Issue config port mailbox command 5571 * @phba: Pointer to HBA context object. 5572 * @sli_mode: sli mode - 2/3 5573 * 5574 * This function is called by the sli initialization code path 5575 * to issue config_port mailbox command. This function restarts the 5576 * HBA firmware and issues a config_port mailbox command to configure 5577 * the SLI interface in the sli mode specified by sli_mode 5578 * variable. The caller is not required to hold any locks. 5579 * The function returns 0 if successful, else returns negative error 5580 * code. 5581 **/ 5582 int 5583 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5584 { 5585 LPFC_MBOXQ_t *pmb; 5586 uint32_t resetcount = 0, rc = 0, done = 0; 5587 5588 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5589 if (!pmb) { 5590 phba->link_state = LPFC_HBA_ERROR; 5591 return -ENOMEM; 5592 } 5593 5594 phba->sli_rev = sli_mode; 5595 while (resetcount < 2 && !done) { 5596 spin_lock_irq(&phba->hbalock); 5597 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5598 spin_unlock_irq(&phba->hbalock); 5599 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5600 lpfc_sli_brdrestart(phba); 5601 rc = lpfc_sli_chipset_init(phba); 5602 if (rc) 5603 break; 5604 5605 spin_lock_irq(&phba->hbalock); 5606 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5607 spin_unlock_irq(&phba->hbalock); 5608 resetcount++; 5609 5610 /* Call pre CONFIG_PORT mailbox command initialization. A 5611 * value of 0 means the call was successful. Any other 5612 * nonzero value is a failure, but if ERESTART is returned, 5613 * the driver may reset the HBA and try again. 5614 */ 5615 rc = lpfc_config_port_prep(phba); 5616 if (rc == -ERESTART) { 5617 phba->link_state = LPFC_LINK_UNKNOWN; 5618 continue; 5619 } else if (rc) 5620 break; 5621 5622 phba->link_state = LPFC_INIT_MBX_CMDS; 5623 lpfc_config_port(phba, pmb); 5624 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5625 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5626 LPFC_SLI3_HBQ_ENABLED | 5627 LPFC_SLI3_CRP_ENABLED | 5628 LPFC_SLI3_DSS_ENABLED); 5629 if (rc != MBX_SUCCESS) { 5630 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5631 "0442 Adapter failed to init, mbxCmd x%x " 5632 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5633 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5634 spin_lock_irq(&phba->hbalock); 5635 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5636 spin_unlock_irq(&phba->hbalock); 5637 rc = -ENXIO; 5638 } else { 5639 /* Allow asynchronous mailbox command to go through */ 5640 spin_lock_irq(&phba->hbalock); 5641 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5642 spin_unlock_irq(&phba->hbalock); 5643 done = 1; 5644 5645 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5646 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5647 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5648 "3110 Port did not grant ASABT\n"); 5649 } 5650 } 5651 if (!done) { 5652 rc = -EINVAL; 5653 goto do_prep_failed; 5654 } 5655 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5656 if (!pmb->u.mb.un.varCfgPort.cMA) { 5657 rc = -ENXIO; 5658 goto do_prep_failed; 5659 } 5660 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5661 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5662 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5663 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5664 phba->max_vpi : phba->max_vports; 5665 5666 } else 5667 phba->max_vpi = 0; 5668 if (pmb->u.mb.un.varCfgPort.gerbm) 5669 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5670 if (pmb->u.mb.un.varCfgPort.gcrp) 5671 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5672 5673 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5674 phba->port_gp = phba->mbox->us.s3_pgp.port; 5675 5676 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5677 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5678 phba->cfg_enable_bg = 0; 5679 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5680 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5681 "0443 Adapter did not grant " 5682 "BlockGuard\n"); 5683 } 5684 } 5685 } else { 5686 phba->hbq_get = NULL; 5687 phba->port_gp = phba->mbox->us.s2.port; 5688 phba->max_vpi = 0; 5689 } 5690 do_prep_failed: 5691 mempool_free(pmb, phba->mbox_mem_pool); 5692 return rc; 5693 } 5694 5695 5696 /** 5697 * lpfc_sli_hba_setup - SLI initialization function 5698 * @phba: Pointer to HBA context object. 5699 * 5700 * This function is the main SLI initialization function. This function 5701 * is called by the HBA initialization code, HBA reset code and HBA 5702 * error attention handler code. Caller is not required to hold any 5703 * locks. This function issues config_port mailbox command to configure 5704 * the SLI, setup iocb rings and HBQ rings. In the end the function 5705 * calls the config_port_post function to issue init_link mailbox 5706 * command and to start the discovery. The function will return zero 5707 * if successful, else it will return negative error code. 5708 **/ 5709 int 5710 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5711 { 5712 uint32_t rc; 5713 int i; 5714 int longs; 5715 5716 /* Enable ISR already does config_port because of config_msi mbx */ 5717 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5718 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5719 if (rc) 5720 return -EIO; 5721 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5722 } 5723 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5724 5725 if (phba->sli_rev == 3) { 5726 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5727 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5728 } else { 5729 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5730 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5731 phba->sli3_options = 0; 5732 } 5733 5734 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5735 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5736 phba->sli_rev, phba->max_vpi); 5737 rc = lpfc_sli_ring_map(phba); 5738 5739 if (rc) 5740 goto lpfc_sli_hba_setup_error; 5741 5742 /* Initialize VPIs. */ 5743 if (phba->sli_rev == LPFC_SLI_REV3) { 5744 /* 5745 * The VPI bitmask and physical ID array are allocated 5746 * and initialized once only - at driver load. A port 5747 * reset doesn't need to reinitialize this memory. 5748 */ 5749 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5750 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5751 phba->vpi_bmask = kcalloc(longs, 5752 sizeof(unsigned long), 5753 GFP_KERNEL); 5754 if (!phba->vpi_bmask) { 5755 rc = -ENOMEM; 5756 goto lpfc_sli_hba_setup_error; 5757 } 5758 5759 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5760 sizeof(uint16_t), 5761 GFP_KERNEL); 5762 if (!phba->vpi_ids) { 5763 kfree(phba->vpi_bmask); 5764 rc = -ENOMEM; 5765 goto lpfc_sli_hba_setup_error; 5766 } 5767 for (i = 0; i < phba->max_vpi; i++) 5768 phba->vpi_ids[i] = i; 5769 } 5770 } 5771 5772 /* Init HBQs */ 5773 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5774 rc = lpfc_sli_hbq_setup(phba); 5775 if (rc) 5776 goto lpfc_sli_hba_setup_error; 5777 } 5778 spin_lock_irq(&phba->hbalock); 5779 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5780 spin_unlock_irq(&phba->hbalock); 5781 5782 rc = lpfc_config_port_post(phba); 5783 if (rc) 5784 goto lpfc_sli_hba_setup_error; 5785 5786 return rc; 5787 5788 lpfc_sli_hba_setup_error: 5789 phba->link_state = LPFC_HBA_ERROR; 5790 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5791 "0445 Firmware initialization failed\n"); 5792 return rc; 5793 } 5794 5795 /** 5796 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5797 * @phba: Pointer to HBA context object. 5798 * 5799 * This function issue a dump mailbox command to read config region 5800 * 23 and parse the records in the region and populate driver 5801 * data structure. 5802 **/ 5803 static int 5804 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5805 { 5806 LPFC_MBOXQ_t *mboxq; 5807 struct lpfc_dmabuf *mp; 5808 struct lpfc_mqe *mqe; 5809 uint32_t data_length; 5810 int rc; 5811 5812 /* Program the default value of vlan_id and fc_map */ 5813 phba->valid_vlan = 0; 5814 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5815 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5816 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5817 5818 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5819 if (!mboxq) 5820 return -ENOMEM; 5821 5822 mqe = &mboxq->u.mqe; 5823 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5824 rc = -ENOMEM; 5825 goto out_free_mboxq; 5826 } 5827 5828 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5829 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5830 5831 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5832 "(%d):2571 Mailbox cmd x%x Status x%x " 5833 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5834 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5835 "CQ: x%x x%x x%x x%x\n", 5836 mboxq->vport ? mboxq->vport->vpi : 0, 5837 bf_get(lpfc_mqe_command, mqe), 5838 bf_get(lpfc_mqe_status, mqe), 5839 mqe->un.mb_words[0], mqe->un.mb_words[1], 5840 mqe->un.mb_words[2], mqe->un.mb_words[3], 5841 mqe->un.mb_words[4], mqe->un.mb_words[5], 5842 mqe->un.mb_words[6], mqe->un.mb_words[7], 5843 mqe->un.mb_words[8], mqe->un.mb_words[9], 5844 mqe->un.mb_words[10], mqe->un.mb_words[11], 5845 mqe->un.mb_words[12], mqe->un.mb_words[13], 5846 mqe->un.mb_words[14], mqe->un.mb_words[15], 5847 mqe->un.mb_words[16], mqe->un.mb_words[50], 5848 mboxq->mcqe.word0, 5849 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5850 mboxq->mcqe.trailer); 5851 5852 if (rc) { 5853 rc = -EIO; 5854 goto out_free_mboxq; 5855 } 5856 data_length = mqe->un.mb_words[5]; 5857 if (data_length > DMP_RGN23_SIZE) { 5858 rc = -EIO; 5859 goto out_free_mboxq; 5860 } 5861 5862 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5863 rc = 0; 5864 5865 out_free_mboxq: 5866 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 5867 return rc; 5868 } 5869 5870 /** 5871 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5872 * @phba: pointer to lpfc hba data structure. 5873 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5874 * @vpd: pointer to the memory to hold resulting port vpd data. 5875 * @vpd_size: On input, the number of bytes allocated to @vpd. 5876 * On output, the number of data bytes in @vpd. 5877 * 5878 * This routine executes a READ_REV SLI4 mailbox command. In 5879 * addition, this routine gets the port vpd data. 5880 * 5881 * Return codes 5882 * 0 - successful 5883 * -ENOMEM - could not allocated memory. 5884 **/ 5885 static int 5886 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5887 uint8_t *vpd, uint32_t *vpd_size) 5888 { 5889 int rc = 0; 5890 uint32_t dma_size; 5891 struct lpfc_dmabuf *dmabuf; 5892 struct lpfc_mqe *mqe; 5893 5894 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5895 if (!dmabuf) 5896 return -ENOMEM; 5897 5898 /* 5899 * Get a DMA buffer for the vpd data resulting from the READ_REV 5900 * mailbox command. 5901 */ 5902 dma_size = *vpd_size; 5903 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5904 &dmabuf->phys, GFP_KERNEL); 5905 if (!dmabuf->virt) { 5906 kfree(dmabuf); 5907 return -ENOMEM; 5908 } 5909 5910 /* 5911 * The SLI4 implementation of READ_REV conflicts at word1, 5912 * bits 31:16 and SLI4 adds vpd functionality not present 5913 * in SLI3. This code corrects the conflicts. 5914 */ 5915 lpfc_read_rev(phba, mboxq); 5916 mqe = &mboxq->u.mqe; 5917 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5918 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5919 mqe->un.read_rev.word1 &= 0x0000FFFF; 5920 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5921 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5922 5923 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5924 if (rc) { 5925 dma_free_coherent(&phba->pcidev->dev, dma_size, 5926 dmabuf->virt, dmabuf->phys); 5927 kfree(dmabuf); 5928 return -EIO; 5929 } 5930 5931 /* 5932 * The available vpd length cannot be bigger than the 5933 * DMA buffer passed to the port. Catch the less than 5934 * case and update the caller's size. 5935 */ 5936 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5937 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5938 5939 memcpy(vpd, dmabuf->virt, *vpd_size); 5940 5941 dma_free_coherent(&phba->pcidev->dev, dma_size, 5942 dmabuf->virt, dmabuf->phys); 5943 kfree(dmabuf); 5944 return 0; 5945 } 5946 5947 /** 5948 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5949 * @phba: pointer to lpfc hba data structure. 5950 * 5951 * This routine retrieves SLI4 device physical port name this PCI function 5952 * is attached to. 5953 * 5954 * Return codes 5955 * 0 - successful 5956 * otherwise - failed to retrieve controller attributes 5957 **/ 5958 static int 5959 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5960 { 5961 LPFC_MBOXQ_t *mboxq; 5962 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5963 struct lpfc_controller_attribute *cntl_attr; 5964 void *virtaddr = NULL; 5965 uint32_t alloclen, reqlen; 5966 uint32_t shdr_status, shdr_add_status; 5967 union lpfc_sli4_cfg_shdr *shdr; 5968 int rc; 5969 5970 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5971 if (!mboxq) 5972 return -ENOMEM; 5973 5974 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5975 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5976 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5977 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5978 LPFC_SLI4_MBX_NEMBED); 5979 5980 if (alloclen < reqlen) { 5981 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5982 "3084 Allocated DMA memory size (%d) is " 5983 "less than the requested DMA memory size " 5984 "(%d)\n", alloclen, reqlen); 5985 rc = -ENOMEM; 5986 goto out_free_mboxq; 5987 } 5988 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5989 virtaddr = mboxq->sge_array->addr[0]; 5990 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5991 shdr = &mbx_cntl_attr->cfg_shdr; 5992 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5993 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5994 if (shdr_status || shdr_add_status || rc) { 5995 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5996 "3085 Mailbox x%x (x%x/x%x) failed, " 5997 "rc:x%x, status:x%x, add_status:x%x\n", 5998 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5999 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6000 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6001 rc, shdr_status, shdr_add_status); 6002 rc = -ENXIO; 6003 goto out_free_mboxq; 6004 } 6005 6006 cntl_attr = &mbx_cntl_attr->cntl_attr; 6007 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 6008 phba->sli4_hba.lnk_info.lnk_tp = 6009 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 6010 phba->sli4_hba.lnk_info.lnk_no = 6011 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 6012 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 6013 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6014 6015 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 6016 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 6017 sizeof(phba->BIOSVersion)); 6018 6019 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6020 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6021 "flash_id: x%02x, asic_rev: x%02x\n", 6022 phba->sli4_hba.lnk_info.lnk_tp, 6023 phba->sli4_hba.lnk_info.lnk_no, 6024 phba->BIOSVersion, phba->sli4_hba.flash_id, 6025 phba->sli4_hba.asic_rev); 6026 out_free_mboxq: 6027 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6028 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6029 else 6030 mempool_free(mboxq, phba->mbox_mem_pool); 6031 return rc; 6032 } 6033 6034 /** 6035 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6036 * @phba: pointer to lpfc hba data structure. 6037 * 6038 * This routine retrieves SLI4 device physical port name this PCI function 6039 * is attached to. 6040 * 6041 * Return codes 6042 * 0 - successful 6043 * otherwise - failed to retrieve physical port name 6044 **/ 6045 static int 6046 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6047 { 6048 LPFC_MBOXQ_t *mboxq; 6049 struct lpfc_mbx_get_port_name *get_port_name; 6050 uint32_t shdr_status, shdr_add_status; 6051 union lpfc_sli4_cfg_shdr *shdr; 6052 char cport_name = 0; 6053 int rc; 6054 6055 /* We assume nothing at this point */ 6056 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6057 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6058 6059 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6060 if (!mboxq) 6061 return -ENOMEM; 6062 /* obtain link type and link number via READ_CONFIG */ 6063 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6064 lpfc_sli4_read_config(phba); 6065 6066 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) 6067 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 6068 6069 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6070 goto retrieve_ppname; 6071 6072 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6073 rc = lpfc_sli4_get_ctl_attr(phba); 6074 if (rc) 6075 goto out_free_mboxq; 6076 6077 retrieve_ppname: 6078 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6079 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6080 sizeof(struct lpfc_mbx_get_port_name) - 6081 sizeof(struct lpfc_sli4_cfg_mhdr), 6082 LPFC_SLI4_MBX_EMBED); 6083 get_port_name = &mboxq->u.mqe.un.get_port_name; 6084 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6085 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6086 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6087 phba->sli4_hba.lnk_info.lnk_tp); 6088 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6089 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6090 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6091 if (shdr_status || shdr_add_status || rc) { 6092 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6093 "3087 Mailbox x%x (x%x/x%x) failed: " 6094 "rc:x%x, status:x%x, add_status:x%x\n", 6095 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6096 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6097 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6098 rc, shdr_status, shdr_add_status); 6099 rc = -ENXIO; 6100 goto out_free_mboxq; 6101 } 6102 switch (phba->sli4_hba.lnk_info.lnk_no) { 6103 case LPFC_LINK_NUMBER_0: 6104 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6105 &get_port_name->u.response); 6106 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6107 break; 6108 case LPFC_LINK_NUMBER_1: 6109 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6110 &get_port_name->u.response); 6111 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6112 break; 6113 case LPFC_LINK_NUMBER_2: 6114 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6115 &get_port_name->u.response); 6116 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6117 break; 6118 case LPFC_LINK_NUMBER_3: 6119 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6120 &get_port_name->u.response); 6121 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6122 break; 6123 default: 6124 break; 6125 } 6126 6127 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6128 phba->Port[0] = cport_name; 6129 phba->Port[1] = '\0'; 6130 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6131 "3091 SLI get port name: %s\n", phba->Port); 6132 } 6133 6134 out_free_mboxq: 6135 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6136 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6137 else 6138 mempool_free(mboxq, phba->mbox_mem_pool); 6139 return rc; 6140 } 6141 6142 /** 6143 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6144 * @phba: pointer to lpfc hba data structure. 6145 * 6146 * This routine is called to explicitly arm the SLI4 device's completion and 6147 * event queues 6148 **/ 6149 static void 6150 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6151 { 6152 int qidx; 6153 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6154 struct lpfc_sli4_hdw_queue *qp; 6155 struct lpfc_queue *eq; 6156 6157 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6158 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6159 if (sli4_hba->nvmels_cq) 6160 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6161 LPFC_QUEUE_REARM); 6162 6163 if (sli4_hba->hdwq) { 6164 /* Loop thru all Hardware Queues */ 6165 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6166 qp = &sli4_hba->hdwq[qidx]; 6167 /* ARM the corresponding CQ */ 6168 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6169 LPFC_QUEUE_REARM); 6170 } 6171 6172 /* Loop thru all IRQ vectors */ 6173 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6174 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6175 /* ARM the corresponding EQ */ 6176 sli4_hba->sli4_write_eq_db(phba, eq, 6177 0, LPFC_QUEUE_REARM); 6178 } 6179 } 6180 6181 if (phba->nvmet_support) { 6182 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6183 sli4_hba->sli4_write_cq_db(phba, 6184 sli4_hba->nvmet_cqset[qidx], 0, 6185 LPFC_QUEUE_REARM); 6186 } 6187 } 6188 } 6189 6190 /** 6191 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6192 * @phba: Pointer to HBA context object. 6193 * @type: The resource extent type. 6194 * @extnt_count: buffer to hold port available extent count. 6195 * @extnt_size: buffer to hold element count per extent. 6196 * 6197 * This function calls the port and retrievs the number of available 6198 * extents and their size for a particular extent type. 6199 * 6200 * Returns: 0 if successful. Nonzero otherwise. 6201 **/ 6202 int 6203 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6204 uint16_t *extnt_count, uint16_t *extnt_size) 6205 { 6206 int rc = 0; 6207 uint32_t length; 6208 uint32_t mbox_tmo; 6209 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6210 LPFC_MBOXQ_t *mbox; 6211 6212 *extnt_count = 0; 6213 *extnt_size = 0; 6214 6215 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6216 if (!mbox) 6217 return -ENOMEM; 6218 6219 /* Find out how many extents are available for this resource type */ 6220 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6221 sizeof(struct lpfc_sli4_cfg_mhdr)); 6222 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6223 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6224 length, LPFC_SLI4_MBX_EMBED); 6225 6226 /* Send an extents count of 0 - the GET doesn't use it. */ 6227 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6228 LPFC_SLI4_MBX_EMBED); 6229 if (unlikely(rc)) { 6230 rc = -EIO; 6231 goto err_exit; 6232 } 6233 6234 if (!phba->sli4_hba.intr_enable) 6235 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6236 else { 6237 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6238 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6239 } 6240 if (unlikely(rc)) { 6241 rc = -EIO; 6242 goto err_exit; 6243 } 6244 6245 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6246 if (bf_get(lpfc_mbox_hdr_status, 6247 &rsrc_info->header.cfg_shdr.response)) { 6248 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6249 "2930 Failed to get resource extents " 6250 "Status 0x%x Add'l Status 0x%x\n", 6251 bf_get(lpfc_mbox_hdr_status, 6252 &rsrc_info->header.cfg_shdr.response), 6253 bf_get(lpfc_mbox_hdr_add_status, 6254 &rsrc_info->header.cfg_shdr.response)); 6255 rc = -EIO; 6256 goto err_exit; 6257 } 6258 6259 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6260 &rsrc_info->u.rsp); 6261 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6262 &rsrc_info->u.rsp); 6263 6264 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6265 "3162 Retrieved extents type-%d from port: count:%d, " 6266 "size:%d\n", type, *extnt_count, *extnt_size); 6267 6268 err_exit: 6269 mempool_free(mbox, phba->mbox_mem_pool); 6270 return rc; 6271 } 6272 6273 /** 6274 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6275 * @phba: Pointer to HBA context object. 6276 * @type: The extent type to check. 6277 * 6278 * This function reads the current available extents from the port and checks 6279 * if the extent count or extent size has changed since the last access. 6280 * Callers use this routine post port reset to understand if there is a 6281 * extent reprovisioning requirement. 6282 * 6283 * Returns: 6284 * -Error: error indicates problem. 6285 * 1: Extent count or size has changed. 6286 * 0: No changes. 6287 **/ 6288 static int 6289 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6290 { 6291 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6292 uint16_t size_diff, rsrc_ext_size; 6293 int rc = 0; 6294 struct lpfc_rsrc_blks *rsrc_entry; 6295 struct list_head *rsrc_blk_list = NULL; 6296 6297 size_diff = 0; 6298 curr_ext_cnt = 0; 6299 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6300 &rsrc_ext_cnt, 6301 &rsrc_ext_size); 6302 if (unlikely(rc)) 6303 return -EIO; 6304 6305 switch (type) { 6306 case LPFC_RSC_TYPE_FCOE_RPI: 6307 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6308 break; 6309 case LPFC_RSC_TYPE_FCOE_VPI: 6310 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6311 break; 6312 case LPFC_RSC_TYPE_FCOE_XRI: 6313 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6314 break; 6315 case LPFC_RSC_TYPE_FCOE_VFI: 6316 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6317 break; 6318 default: 6319 break; 6320 } 6321 6322 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6323 curr_ext_cnt++; 6324 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6325 size_diff++; 6326 } 6327 6328 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6329 rc = 1; 6330 6331 return rc; 6332 } 6333 6334 /** 6335 * lpfc_sli4_cfg_post_extnts - 6336 * @phba: Pointer to HBA context object. 6337 * @extnt_cnt: number of available extents. 6338 * @type: the extent type (rpi, xri, vfi, vpi). 6339 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6340 * @mbox: pointer to the caller's allocated mailbox structure. 6341 * 6342 * This function executes the extents allocation request. It also 6343 * takes care of the amount of memory needed to allocate or get the 6344 * allocated extents. It is the caller's responsibility to evaluate 6345 * the response. 6346 * 6347 * Returns: 6348 * -Error: Error value describes the condition found. 6349 * 0: if successful 6350 **/ 6351 static int 6352 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6353 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6354 { 6355 int rc = 0; 6356 uint32_t req_len; 6357 uint32_t emb_len; 6358 uint32_t alloc_len, mbox_tmo; 6359 6360 /* Calculate the total requested length of the dma memory */ 6361 req_len = extnt_cnt * sizeof(uint16_t); 6362 6363 /* 6364 * Calculate the size of an embedded mailbox. The uint32_t 6365 * accounts for extents-specific word. 6366 */ 6367 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6368 sizeof(uint32_t); 6369 6370 /* 6371 * Presume the allocation and response will fit into an embedded 6372 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6373 */ 6374 *emb = LPFC_SLI4_MBX_EMBED; 6375 if (req_len > emb_len) { 6376 req_len = extnt_cnt * sizeof(uint16_t) + 6377 sizeof(union lpfc_sli4_cfg_shdr) + 6378 sizeof(uint32_t); 6379 *emb = LPFC_SLI4_MBX_NEMBED; 6380 } 6381 6382 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6383 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6384 req_len, *emb); 6385 if (alloc_len < req_len) { 6386 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6387 "2982 Allocated DMA memory size (x%x) is " 6388 "less than the requested DMA memory " 6389 "size (x%x)\n", alloc_len, req_len); 6390 return -ENOMEM; 6391 } 6392 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6393 if (unlikely(rc)) 6394 return -EIO; 6395 6396 if (!phba->sli4_hba.intr_enable) 6397 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6398 else { 6399 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6400 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6401 } 6402 6403 if (unlikely(rc)) 6404 rc = -EIO; 6405 return rc; 6406 } 6407 6408 /** 6409 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6410 * @phba: Pointer to HBA context object. 6411 * @type: The resource extent type to allocate. 6412 * 6413 * This function allocates the number of elements for the specified 6414 * resource type. 6415 **/ 6416 static int 6417 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6418 { 6419 bool emb = false; 6420 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6421 uint16_t rsrc_id, rsrc_start, j, k; 6422 uint16_t *ids; 6423 int i, rc; 6424 unsigned long longs; 6425 unsigned long *bmask; 6426 struct lpfc_rsrc_blks *rsrc_blks; 6427 LPFC_MBOXQ_t *mbox; 6428 uint32_t length; 6429 struct lpfc_id_range *id_array = NULL; 6430 void *virtaddr = NULL; 6431 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6432 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6433 struct list_head *ext_blk_list; 6434 6435 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6436 &rsrc_cnt, 6437 &rsrc_size); 6438 if (unlikely(rc)) 6439 return -EIO; 6440 6441 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6442 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6443 "3009 No available Resource Extents " 6444 "for resource type 0x%x: Count: 0x%x, " 6445 "Size 0x%x\n", type, rsrc_cnt, 6446 rsrc_size); 6447 return -ENOMEM; 6448 } 6449 6450 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6451 "2903 Post resource extents type-0x%x: " 6452 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6453 6454 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6455 if (!mbox) 6456 return -ENOMEM; 6457 6458 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6459 if (unlikely(rc)) { 6460 rc = -EIO; 6461 goto err_exit; 6462 } 6463 6464 /* 6465 * Figure out where the response is located. Then get local pointers 6466 * to the response data. The port does not guarantee to respond to 6467 * all extents counts request so update the local variable with the 6468 * allocated count from the port. 6469 */ 6470 if (emb == LPFC_SLI4_MBX_EMBED) { 6471 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6472 id_array = &rsrc_ext->u.rsp.id[0]; 6473 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6474 } else { 6475 virtaddr = mbox->sge_array->addr[0]; 6476 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6477 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6478 id_array = &n_rsrc->id; 6479 } 6480 6481 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6482 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6483 6484 /* 6485 * Based on the resource size and count, correct the base and max 6486 * resource values. 6487 */ 6488 length = sizeof(struct lpfc_rsrc_blks); 6489 switch (type) { 6490 case LPFC_RSC_TYPE_FCOE_RPI: 6491 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6492 sizeof(unsigned long), 6493 GFP_KERNEL); 6494 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6495 rc = -ENOMEM; 6496 goto err_exit; 6497 } 6498 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6499 sizeof(uint16_t), 6500 GFP_KERNEL); 6501 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6502 kfree(phba->sli4_hba.rpi_bmask); 6503 rc = -ENOMEM; 6504 goto err_exit; 6505 } 6506 6507 /* 6508 * The next_rpi was initialized with the maximum available 6509 * count but the port may allocate a smaller number. Catch 6510 * that case and update the next_rpi. 6511 */ 6512 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6513 6514 /* Initialize local ptrs for common extent processing later. */ 6515 bmask = phba->sli4_hba.rpi_bmask; 6516 ids = phba->sli4_hba.rpi_ids; 6517 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6518 break; 6519 case LPFC_RSC_TYPE_FCOE_VPI: 6520 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6521 GFP_KERNEL); 6522 if (unlikely(!phba->vpi_bmask)) { 6523 rc = -ENOMEM; 6524 goto err_exit; 6525 } 6526 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6527 GFP_KERNEL); 6528 if (unlikely(!phba->vpi_ids)) { 6529 kfree(phba->vpi_bmask); 6530 rc = -ENOMEM; 6531 goto err_exit; 6532 } 6533 6534 /* Initialize local ptrs for common extent processing later. */ 6535 bmask = phba->vpi_bmask; 6536 ids = phba->vpi_ids; 6537 ext_blk_list = &phba->lpfc_vpi_blk_list; 6538 break; 6539 case LPFC_RSC_TYPE_FCOE_XRI: 6540 phba->sli4_hba.xri_bmask = kcalloc(longs, 6541 sizeof(unsigned long), 6542 GFP_KERNEL); 6543 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6544 rc = -ENOMEM; 6545 goto err_exit; 6546 } 6547 phba->sli4_hba.max_cfg_param.xri_used = 0; 6548 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6549 sizeof(uint16_t), 6550 GFP_KERNEL); 6551 if (unlikely(!phba->sli4_hba.xri_ids)) { 6552 kfree(phba->sli4_hba.xri_bmask); 6553 rc = -ENOMEM; 6554 goto err_exit; 6555 } 6556 6557 /* Initialize local ptrs for common extent processing later. */ 6558 bmask = phba->sli4_hba.xri_bmask; 6559 ids = phba->sli4_hba.xri_ids; 6560 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6561 break; 6562 case LPFC_RSC_TYPE_FCOE_VFI: 6563 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6564 sizeof(unsigned long), 6565 GFP_KERNEL); 6566 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6567 rc = -ENOMEM; 6568 goto err_exit; 6569 } 6570 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6571 sizeof(uint16_t), 6572 GFP_KERNEL); 6573 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6574 kfree(phba->sli4_hba.vfi_bmask); 6575 rc = -ENOMEM; 6576 goto err_exit; 6577 } 6578 6579 /* Initialize local ptrs for common extent processing later. */ 6580 bmask = phba->sli4_hba.vfi_bmask; 6581 ids = phba->sli4_hba.vfi_ids; 6582 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6583 break; 6584 default: 6585 /* Unsupported Opcode. Fail call. */ 6586 id_array = NULL; 6587 bmask = NULL; 6588 ids = NULL; 6589 ext_blk_list = NULL; 6590 goto err_exit; 6591 } 6592 6593 /* 6594 * Complete initializing the extent configuration with the 6595 * allocated ids assigned to this function. The bitmask serves 6596 * as an index into the array and manages the available ids. The 6597 * array just stores the ids communicated to the port via the wqes. 6598 */ 6599 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6600 if ((i % 2) == 0) 6601 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6602 &id_array[k]); 6603 else 6604 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6605 &id_array[k]); 6606 6607 rsrc_blks = kzalloc(length, GFP_KERNEL); 6608 if (unlikely(!rsrc_blks)) { 6609 rc = -ENOMEM; 6610 kfree(bmask); 6611 kfree(ids); 6612 goto err_exit; 6613 } 6614 rsrc_blks->rsrc_start = rsrc_id; 6615 rsrc_blks->rsrc_size = rsrc_size; 6616 list_add_tail(&rsrc_blks->list, ext_blk_list); 6617 rsrc_start = rsrc_id; 6618 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6619 phba->sli4_hba.io_xri_start = rsrc_start + 6620 lpfc_sli4_get_iocb_cnt(phba); 6621 } 6622 6623 while (rsrc_id < (rsrc_start + rsrc_size)) { 6624 ids[j] = rsrc_id; 6625 rsrc_id++; 6626 j++; 6627 } 6628 /* Entire word processed. Get next word.*/ 6629 if ((i % 2) == 1) 6630 k++; 6631 } 6632 err_exit: 6633 lpfc_sli4_mbox_cmd_free(phba, mbox); 6634 return rc; 6635 } 6636 6637 6638 6639 /** 6640 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6641 * @phba: Pointer to HBA context object. 6642 * @type: the extent's type. 6643 * 6644 * This function deallocates all extents of a particular resource type. 6645 * SLI4 does not allow for deallocating a particular extent range. It 6646 * is the caller's responsibility to release all kernel memory resources. 6647 **/ 6648 static int 6649 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6650 { 6651 int rc; 6652 uint32_t length, mbox_tmo = 0; 6653 LPFC_MBOXQ_t *mbox; 6654 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6655 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6656 6657 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6658 if (!mbox) 6659 return -ENOMEM; 6660 6661 /* 6662 * This function sends an embedded mailbox because it only sends the 6663 * the resource type. All extents of this type are released by the 6664 * port. 6665 */ 6666 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6667 sizeof(struct lpfc_sli4_cfg_mhdr)); 6668 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6669 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6670 length, LPFC_SLI4_MBX_EMBED); 6671 6672 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6673 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6674 LPFC_SLI4_MBX_EMBED); 6675 if (unlikely(rc)) { 6676 rc = -EIO; 6677 goto out_free_mbox; 6678 } 6679 if (!phba->sli4_hba.intr_enable) 6680 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6681 else { 6682 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6683 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6684 } 6685 if (unlikely(rc)) { 6686 rc = -EIO; 6687 goto out_free_mbox; 6688 } 6689 6690 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6691 if (bf_get(lpfc_mbox_hdr_status, 6692 &dealloc_rsrc->header.cfg_shdr.response)) { 6693 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6694 "2919 Failed to release resource extents " 6695 "for type %d - Status 0x%x Add'l Status 0x%x. " 6696 "Resource memory not released.\n", 6697 type, 6698 bf_get(lpfc_mbox_hdr_status, 6699 &dealloc_rsrc->header.cfg_shdr.response), 6700 bf_get(lpfc_mbox_hdr_add_status, 6701 &dealloc_rsrc->header.cfg_shdr.response)); 6702 rc = -EIO; 6703 goto out_free_mbox; 6704 } 6705 6706 /* Release kernel memory resources for the specific type. */ 6707 switch (type) { 6708 case LPFC_RSC_TYPE_FCOE_VPI: 6709 kfree(phba->vpi_bmask); 6710 kfree(phba->vpi_ids); 6711 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6712 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6713 &phba->lpfc_vpi_blk_list, list) { 6714 list_del_init(&rsrc_blk->list); 6715 kfree(rsrc_blk); 6716 } 6717 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6718 break; 6719 case LPFC_RSC_TYPE_FCOE_XRI: 6720 kfree(phba->sli4_hba.xri_bmask); 6721 kfree(phba->sli4_hba.xri_ids); 6722 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6723 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6724 list_del_init(&rsrc_blk->list); 6725 kfree(rsrc_blk); 6726 } 6727 break; 6728 case LPFC_RSC_TYPE_FCOE_VFI: 6729 kfree(phba->sli4_hba.vfi_bmask); 6730 kfree(phba->sli4_hba.vfi_ids); 6731 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6732 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6733 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6734 list_del_init(&rsrc_blk->list); 6735 kfree(rsrc_blk); 6736 } 6737 break; 6738 case LPFC_RSC_TYPE_FCOE_RPI: 6739 /* RPI bitmask and physical id array are cleaned up earlier. */ 6740 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6741 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6742 list_del_init(&rsrc_blk->list); 6743 kfree(rsrc_blk); 6744 } 6745 break; 6746 default: 6747 break; 6748 } 6749 6750 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6751 6752 out_free_mbox: 6753 mempool_free(mbox, phba->mbox_mem_pool); 6754 return rc; 6755 } 6756 6757 static void 6758 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6759 uint32_t feature) 6760 { 6761 uint32_t len; 6762 u32 sig_freq = 0; 6763 6764 len = sizeof(struct lpfc_mbx_set_feature) - 6765 sizeof(struct lpfc_sli4_cfg_mhdr); 6766 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6767 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6768 LPFC_SLI4_MBX_EMBED); 6769 6770 switch (feature) { 6771 case LPFC_SET_UE_RECOVERY: 6772 bf_set(lpfc_mbx_set_feature_UER, 6773 &mbox->u.mqe.un.set_feature, 1); 6774 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6775 mbox->u.mqe.un.set_feature.param_len = 8; 6776 break; 6777 case LPFC_SET_MDS_DIAGS: 6778 bf_set(lpfc_mbx_set_feature_mds, 6779 &mbox->u.mqe.un.set_feature, 1); 6780 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6781 &mbox->u.mqe.un.set_feature, 1); 6782 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6783 mbox->u.mqe.un.set_feature.param_len = 8; 6784 break; 6785 case LPFC_SET_CGN_SIGNAL: 6786 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6787 sig_freq = 0; 6788 else 6789 sig_freq = phba->cgn_sig_freq; 6790 6791 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6792 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6793 &mbox->u.mqe.un.set_feature, sig_freq); 6794 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6795 &mbox->u.mqe.un.set_feature, sig_freq); 6796 } 6797 6798 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6799 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6800 &mbox->u.mqe.un.set_feature, sig_freq); 6801 6802 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6803 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6804 sig_freq = 0; 6805 else 6806 sig_freq = lpfc_acqe_cgn_frequency; 6807 6808 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6809 &mbox->u.mqe.un.set_feature, sig_freq); 6810 6811 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6812 mbox->u.mqe.un.set_feature.param_len = 12; 6813 break; 6814 case LPFC_SET_DUAL_DUMP: 6815 bf_set(lpfc_mbx_set_feature_dd, 6816 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6817 bf_set(lpfc_mbx_set_feature_ddquery, 6818 &mbox->u.mqe.un.set_feature, 0); 6819 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6820 mbox->u.mqe.un.set_feature.param_len = 4; 6821 break; 6822 case LPFC_SET_ENABLE_MI: 6823 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6824 mbox->u.mqe.un.set_feature.param_len = 4; 6825 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6826 phba->pport->cfg_lun_queue_depth); 6827 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6828 phba->sli4_hba.pc_sli4_params.mi_ver); 6829 break; 6830 case LPFC_SET_LD_SIGNAL: 6831 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL; 6832 mbox->u.mqe.un.set_feature.param_len = 16; 6833 bf_set(lpfc_mbx_set_feature_lds_qry, 6834 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP); 6835 break; 6836 case LPFC_SET_ENABLE_CMF: 6837 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6838 mbox->u.mqe.un.set_feature.param_len = 4; 6839 bf_set(lpfc_mbx_set_feature_cmf, 6840 &mbox->u.mqe.un.set_feature, 1); 6841 break; 6842 } 6843 return; 6844 } 6845 6846 /** 6847 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6848 * @phba: Pointer to HBA context object. 6849 * 6850 * Disable FW logging into host memory on the adapter. To 6851 * be done before reading logs from the host memory. 6852 **/ 6853 void 6854 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6855 { 6856 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6857 6858 spin_lock_irq(&phba->ras_fwlog_lock); 6859 ras_fwlog->state = INACTIVE; 6860 spin_unlock_irq(&phba->ras_fwlog_lock); 6861 6862 /* Disable FW logging to host memory */ 6863 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6864 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6865 6866 /* Wait 10ms for firmware to stop using DMA buffer */ 6867 usleep_range(10 * 1000, 20 * 1000); 6868 } 6869 6870 /** 6871 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6872 * @phba: Pointer to HBA context object. 6873 * 6874 * This function is called to free memory allocated for RAS FW logging 6875 * support in the driver. 6876 **/ 6877 void 6878 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6879 { 6880 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6881 struct lpfc_dmabuf *dmabuf, *next; 6882 6883 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6884 list_for_each_entry_safe(dmabuf, next, 6885 &ras_fwlog->fwlog_buff_list, 6886 list) { 6887 list_del(&dmabuf->list); 6888 dma_free_coherent(&phba->pcidev->dev, 6889 LPFC_RAS_MAX_ENTRY_SIZE, 6890 dmabuf->virt, dmabuf->phys); 6891 kfree(dmabuf); 6892 } 6893 } 6894 6895 if (ras_fwlog->lwpd.virt) { 6896 dma_free_coherent(&phba->pcidev->dev, 6897 sizeof(uint32_t) * 2, 6898 ras_fwlog->lwpd.virt, 6899 ras_fwlog->lwpd.phys); 6900 ras_fwlog->lwpd.virt = NULL; 6901 } 6902 6903 spin_lock_irq(&phba->ras_fwlog_lock); 6904 ras_fwlog->state = INACTIVE; 6905 spin_unlock_irq(&phba->ras_fwlog_lock); 6906 } 6907 6908 /** 6909 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6910 * @phba: Pointer to HBA context object. 6911 * @fwlog_buff_count: Count of buffers to be created. 6912 * 6913 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6914 * to update FW log is posted to the adapter. 6915 * Buffer count is calculated based on module param ras_fwlog_buffsize 6916 * Size of each buffer posted to FW is 64K. 6917 **/ 6918 6919 static int 6920 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6921 uint32_t fwlog_buff_count) 6922 { 6923 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6924 struct lpfc_dmabuf *dmabuf; 6925 int rc = 0, i = 0; 6926 6927 /* Initialize List */ 6928 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6929 6930 /* Allocate memory for the LWPD */ 6931 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6932 sizeof(uint32_t) * 2, 6933 &ras_fwlog->lwpd.phys, 6934 GFP_KERNEL); 6935 if (!ras_fwlog->lwpd.virt) { 6936 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6937 "6185 LWPD Memory Alloc Failed\n"); 6938 6939 return -ENOMEM; 6940 } 6941 6942 ras_fwlog->fw_buffcount = fwlog_buff_count; 6943 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6944 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6945 GFP_KERNEL); 6946 if (!dmabuf) { 6947 rc = -ENOMEM; 6948 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6949 "6186 Memory Alloc failed FW logging"); 6950 goto free_mem; 6951 } 6952 6953 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6954 LPFC_RAS_MAX_ENTRY_SIZE, 6955 &dmabuf->phys, GFP_KERNEL); 6956 if (!dmabuf->virt) { 6957 kfree(dmabuf); 6958 rc = -ENOMEM; 6959 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6960 "6187 DMA Alloc Failed FW logging"); 6961 goto free_mem; 6962 } 6963 dmabuf->buffer_tag = i; 6964 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6965 } 6966 6967 free_mem: 6968 if (rc) 6969 lpfc_sli4_ras_dma_free(phba); 6970 6971 return rc; 6972 } 6973 6974 /** 6975 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6976 * @phba: pointer to lpfc hba data structure. 6977 * @pmb: pointer to the driver internal queue element for mailbox command. 6978 * 6979 * Completion handler for driver's RAS MBX command to the device. 6980 **/ 6981 static void 6982 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6983 { 6984 MAILBOX_t *mb; 6985 union lpfc_sli4_cfg_shdr *shdr; 6986 uint32_t shdr_status, shdr_add_status; 6987 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6988 6989 mb = &pmb->u.mb; 6990 6991 shdr = (union lpfc_sli4_cfg_shdr *) 6992 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6993 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6994 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6995 6996 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6997 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6998 "6188 FW LOG mailbox " 6999 "completed with status x%x add_status x%x," 7000 " mbx status x%x\n", 7001 shdr_status, shdr_add_status, mb->mbxStatus); 7002 7003 ras_fwlog->ras_hwsupport = false; 7004 goto disable_ras; 7005 } 7006 7007 spin_lock_irq(&phba->ras_fwlog_lock); 7008 ras_fwlog->state = ACTIVE; 7009 spin_unlock_irq(&phba->ras_fwlog_lock); 7010 mempool_free(pmb, phba->mbox_mem_pool); 7011 7012 return; 7013 7014 disable_ras: 7015 /* Free RAS DMA memory */ 7016 lpfc_sli4_ras_dma_free(phba); 7017 mempool_free(pmb, phba->mbox_mem_pool); 7018 } 7019 7020 /** 7021 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7022 * @phba: pointer to lpfc hba data structure. 7023 * @fwlog_level: Logging verbosity level. 7024 * @fwlog_enable: Enable/Disable logging. 7025 * 7026 * Initialize memory and post mailbox command to enable FW logging in host 7027 * memory. 7028 **/ 7029 int 7030 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7031 uint32_t fwlog_level, 7032 uint32_t fwlog_enable) 7033 { 7034 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7035 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7036 struct lpfc_dmabuf *dmabuf; 7037 LPFC_MBOXQ_t *mbox; 7038 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7039 int rc = 0; 7040 7041 spin_lock_irq(&phba->ras_fwlog_lock); 7042 ras_fwlog->state = INACTIVE; 7043 spin_unlock_irq(&phba->ras_fwlog_lock); 7044 7045 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7046 phba->cfg_ras_fwlog_buffsize); 7047 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7048 7049 /* 7050 * If re-enabling FW logging support use earlier allocated 7051 * DMA buffers while posting MBX command. 7052 **/ 7053 if (!ras_fwlog->lwpd.virt) { 7054 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7055 if (rc) { 7056 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7057 "6189 FW Log Memory Allocation Failed"); 7058 return rc; 7059 } 7060 } 7061 7062 /* Setup Mailbox command */ 7063 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7064 if (!mbox) { 7065 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7066 "6190 RAS MBX Alloc Failed"); 7067 rc = -ENOMEM; 7068 goto mem_free; 7069 } 7070 7071 ras_fwlog->fw_loglevel = fwlog_level; 7072 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7073 sizeof(struct lpfc_sli4_cfg_mhdr)); 7074 7075 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7076 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7077 len, LPFC_SLI4_MBX_EMBED); 7078 7079 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7080 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7081 fwlog_enable); 7082 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7083 ras_fwlog->fw_loglevel); 7084 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7085 ras_fwlog->fw_buffcount); 7086 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7087 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7088 7089 /* Update DMA buffer address */ 7090 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7091 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7092 7093 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7094 putPaddrLow(dmabuf->phys); 7095 7096 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7097 putPaddrHigh(dmabuf->phys); 7098 } 7099 7100 /* Update LPWD address */ 7101 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7102 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7103 7104 spin_lock_irq(&phba->ras_fwlog_lock); 7105 ras_fwlog->state = REG_INPROGRESS; 7106 spin_unlock_irq(&phba->ras_fwlog_lock); 7107 mbox->vport = phba->pport; 7108 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7109 7110 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7111 7112 if (rc == MBX_NOT_FINISHED) { 7113 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7114 "6191 FW-Log Mailbox failed. " 7115 "status %d mbxStatus : x%x", rc, 7116 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7117 mempool_free(mbox, phba->mbox_mem_pool); 7118 rc = -EIO; 7119 goto mem_free; 7120 } else 7121 rc = 0; 7122 mem_free: 7123 if (rc) 7124 lpfc_sli4_ras_dma_free(phba); 7125 7126 return rc; 7127 } 7128 7129 /** 7130 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7131 * @phba: Pointer to HBA context object. 7132 * 7133 * Check if RAS is supported on the adapter and initialize it. 7134 **/ 7135 void 7136 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7137 { 7138 /* Check RAS FW Log needs to be enabled or not */ 7139 if (lpfc_check_fwlog_support(phba)) 7140 return; 7141 7142 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7143 LPFC_RAS_ENABLE_LOGGING); 7144 } 7145 7146 /** 7147 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7148 * @phba: Pointer to HBA context object. 7149 * 7150 * This function allocates all SLI4 resource identifiers. 7151 **/ 7152 int 7153 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7154 { 7155 int i, rc, error = 0; 7156 uint16_t count, base; 7157 unsigned long longs; 7158 7159 if (!phba->sli4_hba.rpi_hdrs_in_use) 7160 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7161 if (phba->sli4_hba.extents_in_use) { 7162 /* 7163 * The port supports resource extents. The XRI, VPI, VFI, RPI 7164 * resource extent count must be read and allocated before 7165 * provisioning the resource id arrays. 7166 */ 7167 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7168 LPFC_IDX_RSRC_RDY) { 7169 /* 7170 * Extent-based resources are set - the driver could 7171 * be in a port reset. Figure out if any corrective 7172 * actions need to be taken. 7173 */ 7174 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7175 LPFC_RSC_TYPE_FCOE_VFI); 7176 if (rc != 0) 7177 error++; 7178 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7179 LPFC_RSC_TYPE_FCOE_VPI); 7180 if (rc != 0) 7181 error++; 7182 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7183 LPFC_RSC_TYPE_FCOE_XRI); 7184 if (rc != 0) 7185 error++; 7186 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7187 LPFC_RSC_TYPE_FCOE_RPI); 7188 if (rc != 0) 7189 error++; 7190 7191 /* 7192 * It's possible that the number of resources 7193 * provided to this port instance changed between 7194 * resets. Detect this condition and reallocate 7195 * resources. Otherwise, there is no action. 7196 */ 7197 if (error) { 7198 lpfc_printf_log(phba, KERN_INFO, 7199 LOG_MBOX | LOG_INIT, 7200 "2931 Detected extent resource " 7201 "change. Reallocating all " 7202 "extents.\n"); 7203 rc = lpfc_sli4_dealloc_extent(phba, 7204 LPFC_RSC_TYPE_FCOE_VFI); 7205 rc = lpfc_sli4_dealloc_extent(phba, 7206 LPFC_RSC_TYPE_FCOE_VPI); 7207 rc = lpfc_sli4_dealloc_extent(phba, 7208 LPFC_RSC_TYPE_FCOE_XRI); 7209 rc = lpfc_sli4_dealloc_extent(phba, 7210 LPFC_RSC_TYPE_FCOE_RPI); 7211 } else 7212 return 0; 7213 } 7214 7215 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7216 if (unlikely(rc)) 7217 goto err_exit; 7218 7219 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7220 if (unlikely(rc)) 7221 goto err_exit; 7222 7223 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7224 if (unlikely(rc)) 7225 goto err_exit; 7226 7227 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7228 if (unlikely(rc)) 7229 goto err_exit; 7230 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7231 LPFC_IDX_RSRC_RDY); 7232 return rc; 7233 } else { 7234 /* 7235 * The port does not support resource extents. The XRI, VPI, 7236 * VFI, RPI resource ids were determined from READ_CONFIG. 7237 * Just allocate the bitmasks and provision the resource id 7238 * arrays. If a port reset is active, the resources don't 7239 * need any action - just exit. 7240 */ 7241 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7242 LPFC_IDX_RSRC_RDY) { 7243 lpfc_sli4_dealloc_resource_identifiers(phba); 7244 lpfc_sli4_remove_rpis(phba); 7245 } 7246 /* RPIs. */ 7247 count = phba->sli4_hba.max_cfg_param.max_rpi; 7248 if (count <= 0) { 7249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7250 "3279 Invalid provisioning of " 7251 "rpi:%d\n", count); 7252 rc = -EINVAL; 7253 goto err_exit; 7254 } 7255 base = phba->sli4_hba.max_cfg_param.rpi_base; 7256 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7257 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7258 sizeof(unsigned long), 7259 GFP_KERNEL); 7260 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7261 rc = -ENOMEM; 7262 goto err_exit; 7263 } 7264 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7265 GFP_KERNEL); 7266 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7267 rc = -ENOMEM; 7268 goto free_rpi_bmask; 7269 } 7270 7271 for (i = 0; i < count; i++) 7272 phba->sli4_hba.rpi_ids[i] = base + i; 7273 7274 /* VPIs. */ 7275 count = phba->sli4_hba.max_cfg_param.max_vpi; 7276 if (count <= 0) { 7277 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7278 "3280 Invalid provisioning of " 7279 "vpi:%d\n", count); 7280 rc = -EINVAL; 7281 goto free_rpi_ids; 7282 } 7283 base = phba->sli4_hba.max_cfg_param.vpi_base; 7284 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7285 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7286 GFP_KERNEL); 7287 if (unlikely(!phba->vpi_bmask)) { 7288 rc = -ENOMEM; 7289 goto free_rpi_ids; 7290 } 7291 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7292 GFP_KERNEL); 7293 if (unlikely(!phba->vpi_ids)) { 7294 rc = -ENOMEM; 7295 goto free_vpi_bmask; 7296 } 7297 7298 for (i = 0; i < count; i++) 7299 phba->vpi_ids[i] = base + i; 7300 7301 /* XRIs. */ 7302 count = phba->sli4_hba.max_cfg_param.max_xri; 7303 if (count <= 0) { 7304 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7305 "3281 Invalid provisioning of " 7306 "xri:%d\n", count); 7307 rc = -EINVAL; 7308 goto free_vpi_ids; 7309 } 7310 base = phba->sli4_hba.max_cfg_param.xri_base; 7311 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7312 phba->sli4_hba.xri_bmask = kcalloc(longs, 7313 sizeof(unsigned long), 7314 GFP_KERNEL); 7315 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7316 rc = -ENOMEM; 7317 goto free_vpi_ids; 7318 } 7319 phba->sli4_hba.max_cfg_param.xri_used = 0; 7320 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7321 GFP_KERNEL); 7322 if (unlikely(!phba->sli4_hba.xri_ids)) { 7323 rc = -ENOMEM; 7324 goto free_xri_bmask; 7325 } 7326 7327 for (i = 0; i < count; i++) 7328 phba->sli4_hba.xri_ids[i] = base + i; 7329 7330 /* VFIs. */ 7331 count = phba->sli4_hba.max_cfg_param.max_vfi; 7332 if (count <= 0) { 7333 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7334 "3282 Invalid provisioning of " 7335 "vfi:%d\n", count); 7336 rc = -EINVAL; 7337 goto free_xri_ids; 7338 } 7339 base = phba->sli4_hba.max_cfg_param.vfi_base; 7340 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7341 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7342 sizeof(unsigned long), 7343 GFP_KERNEL); 7344 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7345 rc = -ENOMEM; 7346 goto free_xri_ids; 7347 } 7348 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7349 GFP_KERNEL); 7350 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7351 rc = -ENOMEM; 7352 goto free_vfi_bmask; 7353 } 7354 7355 for (i = 0; i < count; i++) 7356 phba->sli4_hba.vfi_ids[i] = base + i; 7357 7358 /* 7359 * Mark all resources ready. An HBA reset doesn't need 7360 * to reset the initialization. 7361 */ 7362 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7363 LPFC_IDX_RSRC_RDY); 7364 return 0; 7365 } 7366 7367 free_vfi_bmask: 7368 kfree(phba->sli4_hba.vfi_bmask); 7369 phba->sli4_hba.vfi_bmask = NULL; 7370 free_xri_ids: 7371 kfree(phba->sli4_hba.xri_ids); 7372 phba->sli4_hba.xri_ids = NULL; 7373 free_xri_bmask: 7374 kfree(phba->sli4_hba.xri_bmask); 7375 phba->sli4_hba.xri_bmask = NULL; 7376 free_vpi_ids: 7377 kfree(phba->vpi_ids); 7378 phba->vpi_ids = NULL; 7379 free_vpi_bmask: 7380 kfree(phba->vpi_bmask); 7381 phba->vpi_bmask = NULL; 7382 free_rpi_ids: 7383 kfree(phba->sli4_hba.rpi_ids); 7384 phba->sli4_hba.rpi_ids = NULL; 7385 free_rpi_bmask: 7386 kfree(phba->sli4_hba.rpi_bmask); 7387 phba->sli4_hba.rpi_bmask = NULL; 7388 err_exit: 7389 return rc; 7390 } 7391 7392 /** 7393 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7394 * @phba: Pointer to HBA context object. 7395 * 7396 * This function allocates the number of elements for the specified 7397 * resource type. 7398 **/ 7399 int 7400 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7401 { 7402 if (phba->sli4_hba.extents_in_use) { 7403 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7404 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7405 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7406 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7407 } else { 7408 kfree(phba->vpi_bmask); 7409 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7410 kfree(phba->vpi_ids); 7411 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7412 kfree(phba->sli4_hba.xri_bmask); 7413 kfree(phba->sli4_hba.xri_ids); 7414 kfree(phba->sli4_hba.vfi_bmask); 7415 kfree(phba->sli4_hba.vfi_ids); 7416 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7417 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7418 } 7419 7420 return 0; 7421 } 7422 7423 /** 7424 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7425 * @phba: Pointer to HBA context object. 7426 * @type: The resource extent type. 7427 * @extnt_cnt: buffer to hold port extent count response 7428 * @extnt_size: buffer to hold port extent size response. 7429 * 7430 * This function calls the port to read the host allocated extents 7431 * for a particular type. 7432 **/ 7433 int 7434 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7435 uint16_t *extnt_cnt, uint16_t *extnt_size) 7436 { 7437 bool emb; 7438 int rc = 0; 7439 uint16_t curr_blks = 0; 7440 uint32_t req_len, emb_len; 7441 uint32_t alloc_len, mbox_tmo; 7442 struct list_head *blk_list_head; 7443 struct lpfc_rsrc_blks *rsrc_blk; 7444 LPFC_MBOXQ_t *mbox; 7445 void *virtaddr = NULL; 7446 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7447 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7448 union lpfc_sli4_cfg_shdr *shdr; 7449 7450 switch (type) { 7451 case LPFC_RSC_TYPE_FCOE_VPI: 7452 blk_list_head = &phba->lpfc_vpi_blk_list; 7453 break; 7454 case LPFC_RSC_TYPE_FCOE_XRI: 7455 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7456 break; 7457 case LPFC_RSC_TYPE_FCOE_VFI: 7458 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7459 break; 7460 case LPFC_RSC_TYPE_FCOE_RPI: 7461 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7462 break; 7463 default: 7464 return -EIO; 7465 } 7466 7467 /* Count the number of extents currently allocatd for this type. */ 7468 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7469 if (curr_blks == 0) { 7470 /* 7471 * The GET_ALLOCATED mailbox does not return the size, 7472 * just the count. The size should be just the size 7473 * stored in the current allocated block and all sizes 7474 * for an extent type are the same so set the return 7475 * value now. 7476 */ 7477 *extnt_size = rsrc_blk->rsrc_size; 7478 } 7479 curr_blks++; 7480 } 7481 7482 /* 7483 * Calculate the size of an embedded mailbox. The uint32_t 7484 * accounts for extents-specific word. 7485 */ 7486 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7487 sizeof(uint32_t); 7488 7489 /* 7490 * Presume the allocation and response will fit into an embedded 7491 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7492 */ 7493 emb = LPFC_SLI4_MBX_EMBED; 7494 req_len = emb_len; 7495 if (req_len > emb_len) { 7496 req_len = curr_blks * sizeof(uint16_t) + 7497 sizeof(union lpfc_sli4_cfg_shdr) + 7498 sizeof(uint32_t); 7499 emb = LPFC_SLI4_MBX_NEMBED; 7500 } 7501 7502 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7503 if (!mbox) 7504 return -ENOMEM; 7505 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7506 7507 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7508 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7509 req_len, emb); 7510 if (alloc_len < req_len) { 7511 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7512 "2983 Allocated DMA memory size (x%x) is " 7513 "less than the requested DMA memory " 7514 "size (x%x)\n", alloc_len, req_len); 7515 rc = -ENOMEM; 7516 goto err_exit; 7517 } 7518 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7519 if (unlikely(rc)) { 7520 rc = -EIO; 7521 goto err_exit; 7522 } 7523 7524 if (!phba->sli4_hba.intr_enable) 7525 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7526 else { 7527 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7528 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7529 } 7530 7531 if (unlikely(rc)) { 7532 rc = -EIO; 7533 goto err_exit; 7534 } 7535 7536 /* 7537 * Figure out where the response is located. Then get local pointers 7538 * to the response data. The port does not guarantee to respond to 7539 * all extents counts request so update the local variable with the 7540 * allocated count from the port. 7541 */ 7542 if (emb == LPFC_SLI4_MBX_EMBED) { 7543 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7544 shdr = &rsrc_ext->header.cfg_shdr; 7545 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7546 } else { 7547 virtaddr = mbox->sge_array->addr[0]; 7548 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7549 shdr = &n_rsrc->cfg_shdr; 7550 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7551 } 7552 7553 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7554 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7555 "2984 Failed to read allocated resources " 7556 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7557 type, 7558 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7559 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7560 rc = -EIO; 7561 goto err_exit; 7562 } 7563 err_exit: 7564 lpfc_sli4_mbox_cmd_free(phba, mbox); 7565 return rc; 7566 } 7567 7568 /** 7569 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7570 * @phba: pointer to lpfc hba data structure. 7571 * @sgl_list: linked link of sgl buffers to post 7572 * @cnt: number of linked list buffers 7573 * 7574 * This routine walks the list of buffers that have been allocated and 7575 * repost them to the port by using SGL block post. This is needed after a 7576 * pci_function_reset/warm_start or start. It attempts to construct blocks 7577 * of buffer sgls which contains contiguous xris and uses the non-embedded 7578 * SGL block post mailbox commands to post them to the port. For single 7579 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7580 * mailbox command for posting. 7581 * 7582 * Returns: 0 = success, non-zero failure. 7583 **/ 7584 static int 7585 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7586 struct list_head *sgl_list, int cnt) 7587 { 7588 struct lpfc_sglq *sglq_entry = NULL; 7589 struct lpfc_sglq *sglq_entry_next = NULL; 7590 struct lpfc_sglq *sglq_entry_first = NULL; 7591 int status = 0, total_cnt; 7592 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7593 int last_xritag = NO_XRI; 7594 LIST_HEAD(prep_sgl_list); 7595 LIST_HEAD(blck_sgl_list); 7596 LIST_HEAD(allc_sgl_list); 7597 LIST_HEAD(post_sgl_list); 7598 LIST_HEAD(free_sgl_list); 7599 7600 spin_lock_irq(&phba->hbalock); 7601 spin_lock(&phba->sli4_hba.sgl_list_lock); 7602 list_splice_init(sgl_list, &allc_sgl_list); 7603 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7604 spin_unlock_irq(&phba->hbalock); 7605 7606 total_cnt = cnt; 7607 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7608 &allc_sgl_list, list) { 7609 list_del_init(&sglq_entry->list); 7610 block_cnt++; 7611 if ((last_xritag != NO_XRI) && 7612 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7613 /* a hole in xri block, form a sgl posting block */ 7614 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7615 post_cnt = block_cnt - 1; 7616 /* prepare list for next posting block */ 7617 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7618 block_cnt = 1; 7619 } else { 7620 /* prepare list for next posting block */ 7621 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7622 /* enough sgls for non-embed sgl mbox command */ 7623 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7624 list_splice_init(&prep_sgl_list, 7625 &blck_sgl_list); 7626 post_cnt = block_cnt; 7627 block_cnt = 0; 7628 } 7629 } 7630 num_posted++; 7631 7632 /* keep track of last sgl's xritag */ 7633 last_xritag = sglq_entry->sli4_xritag; 7634 7635 /* end of repost sgl list condition for buffers */ 7636 if (num_posted == total_cnt) { 7637 if (post_cnt == 0) { 7638 list_splice_init(&prep_sgl_list, 7639 &blck_sgl_list); 7640 post_cnt = block_cnt; 7641 } else if (block_cnt == 1) { 7642 status = lpfc_sli4_post_sgl(phba, 7643 sglq_entry->phys, 0, 7644 sglq_entry->sli4_xritag); 7645 if (!status) { 7646 /* successful, put sgl to posted list */ 7647 list_add_tail(&sglq_entry->list, 7648 &post_sgl_list); 7649 } else { 7650 /* Failure, put sgl to free list */ 7651 lpfc_printf_log(phba, KERN_WARNING, 7652 LOG_SLI, 7653 "3159 Failed to post " 7654 "sgl, xritag:x%x\n", 7655 sglq_entry->sli4_xritag); 7656 list_add_tail(&sglq_entry->list, 7657 &free_sgl_list); 7658 total_cnt--; 7659 } 7660 } 7661 } 7662 7663 /* continue until a nembed page worth of sgls */ 7664 if (post_cnt == 0) 7665 continue; 7666 7667 /* post the buffer list sgls as a block */ 7668 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7669 post_cnt); 7670 7671 if (!status) { 7672 /* success, put sgl list to posted sgl list */ 7673 list_splice_init(&blck_sgl_list, &post_sgl_list); 7674 } else { 7675 /* Failure, put sgl list to free sgl list */ 7676 sglq_entry_first = list_first_entry(&blck_sgl_list, 7677 struct lpfc_sglq, 7678 list); 7679 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7680 "3160 Failed to post sgl-list, " 7681 "xritag:x%x-x%x\n", 7682 sglq_entry_first->sli4_xritag, 7683 (sglq_entry_first->sli4_xritag + 7684 post_cnt - 1)); 7685 list_splice_init(&blck_sgl_list, &free_sgl_list); 7686 total_cnt -= post_cnt; 7687 } 7688 7689 /* don't reset xirtag due to hole in xri block */ 7690 if (block_cnt == 0) 7691 last_xritag = NO_XRI; 7692 7693 /* reset sgl post count for next round of posting */ 7694 post_cnt = 0; 7695 } 7696 7697 /* free the sgls failed to post */ 7698 lpfc_free_sgl_list(phba, &free_sgl_list); 7699 7700 /* push sgls posted to the available list */ 7701 if (!list_empty(&post_sgl_list)) { 7702 spin_lock_irq(&phba->hbalock); 7703 spin_lock(&phba->sli4_hba.sgl_list_lock); 7704 list_splice_init(&post_sgl_list, sgl_list); 7705 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7706 spin_unlock_irq(&phba->hbalock); 7707 } else { 7708 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7709 "3161 Failure to post sgl to port,status %x " 7710 "blkcnt %d totalcnt %d postcnt %d\n", 7711 status, block_cnt, total_cnt, post_cnt); 7712 return -EIO; 7713 } 7714 7715 /* return the number of XRIs actually posted */ 7716 return total_cnt; 7717 } 7718 7719 /** 7720 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7721 * @phba: pointer to lpfc hba data structure. 7722 * 7723 * This routine walks the list of nvme buffers that have been allocated and 7724 * repost them to the port by using SGL block post. This is needed after a 7725 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7726 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7727 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7728 * 7729 * Returns: 0 = success, non-zero failure. 7730 **/ 7731 static int 7732 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7733 { 7734 LIST_HEAD(post_nblist); 7735 int num_posted, rc = 0; 7736 7737 /* get all NVME buffers need to repost to a local list */ 7738 lpfc_io_buf_flush(phba, &post_nblist); 7739 7740 /* post the list of nvme buffer sgls to port if available */ 7741 if (!list_empty(&post_nblist)) { 7742 num_posted = lpfc_sli4_post_io_sgl_list( 7743 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7744 /* failed to post any nvme buffer, return error */ 7745 if (num_posted == 0) 7746 rc = -EIO; 7747 } 7748 return rc; 7749 } 7750 7751 static void 7752 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7753 { 7754 uint32_t len; 7755 7756 len = sizeof(struct lpfc_mbx_set_host_data) - 7757 sizeof(struct lpfc_sli4_cfg_mhdr); 7758 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7759 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7760 LPFC_SLI4_MBX_EMBED); 7761 7762 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7763 mbox->u.mqe.un.set_host_data.param_len = 7764 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7765 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7766 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7767 "Linux %s v"LPFC_DRIVER_VERSION, 7768 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7769 } 7770 7771 int 7772 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7773 struct lpfc_queue *drq, int count, int idx) 7774 { 7775 int rc, i; 7776 struct lpfc_rqe hrqe; 7777 struct lpfc_rqe drqe; 7778 struct lpfc_rqb *rqbp; 7779 unsigned long flags; 7780 struct rqb_dmabuf *rqb_buffer; 7781 LIST_HEAD(rqb_buf_list); 7782 7783 rqbp = hrq->rqbp; 7784 for (i = 0; i < count; i++) { 7785 spin_lock_irqsave(&phba->hbalock, flags); 7786 /* IF RQ is already full, don't bother */ 7787 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7788 spin_unlock_irqrestore(&phba->hbalock, flags); 7789 break; 7790 } 7791 spin_unlock_irqrestore(&phba->hbalock, flags); 7792 7793 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7794 if (!rqb_buffer) 7795 break; 7796 rqb_buffer->hrq = hrq; 7797 rqb_buffer->drq = drq; 7798 rqb_buffer->idx = idx; 7799 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7800 } 7801 7802 spin_lock_irqsave(&phba->hbalock, flags); 7803 while (!list_empty(&rqb_buf_list)) { 7804 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7805 hbuf.list); 7806 7807 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7808 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7809 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7810 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7811 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7812 if (rc < 0) { 7813 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7814 "6421 Cannot post to HRQ %d: %x %x %x " 7815 "DRQ %x %x\n", 7816 hrq->queue_id, 7817 hrq->host_index, 7818 hrq->hba_index, 7819 hrq->entry_count, 7820 drq->host_index, 7821 drq->hba_index); 7822 rqbp->rqb_free_buffer(phba, rqb_buffer); 7823 } else { 7824 list_add_tail(&rqb_buffer->hbuf.list, 7825 &rqbp->rqb_buffer_list); 7826 rqbp->buffer_count++; 7827 } 7828 } 7829 spin_unlock_irqrestore(&phba->hbalock, flags); 7830 return 1; 7831 } 7832 7833 static void 7834 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7835 { 7836 union lpfc_sli4_cfg_shdr *shdr; 7837 u32 shdr_status, shdr_add_status; 7838 7839 shdr = (union lpfc_sli4_cfg_shdr *) 7840 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7841 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7842 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7843 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7844 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX, 7845 "4622 SET_FEATURE (x%x) mbox failed, " 7846 "status x%x add_status x%x, mbx status x%x\n", 7847 LPFC_SET_LD_SIGNAL, shdr_status, 7848 shdr_add_status, pmb->u.mb.mbxStatus); 7849 phba->degrade_activate_threshold = 0; 7850 phba->degrade_deactivate_threshold = 0; 7851 phba->fec_degrade_interval = 0; 7852 goto out; 7853 } 7854 7855 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7; 7856 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8; 7857 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10; 7858 7859 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT, 7860 "4624 Success: da x%x dd x%x interval x%x\n", 7861 phba->degrade_activate_threshold, 7862 phba->degrade_deactivate_threshold, 7863 phba->fec_degrade_interval); 7864 out: 7865 mempool_free(pmb, phba->mbox_mem_pool); 7866 } 7867 7868 int 7869 lpfc_read_lds_params(struct lpfc_hba *phba) 7870 { 7871 LPFC_MBOXQ_t *mboxq; 7872 int rc; 7873 7874 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7875 if (!mboxq) 7876 return -ENOMEM; 7877 7878 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL); 7879 mboxq->vport = phba->pport; 7880 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params; 7881 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7882 if (rc == MBX_NOT_FINISHED) { 7883 mempool_free(mboxq, phba->mbox_mem_pool); 7884 return -EIO; 7885 } 7886 return 0; 7887 } 7888 7889 static void 7890 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7891 { 7892 struct lpfc_vport *vport = pmb->vport; 7893 union lpfc_sli4_cfg_shdr *shdr; 7894 u32 shdr_status, shdr_add_status; 7895 u32 sig, acqe; 7896 7897 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7898 * is done. (2) Mailbox failed and send FPIN support only. 7899 */ 7900 shdr = (union lpfc_sli4_cfg_shdr *) 7901 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7902 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7903 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7904 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7905 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7906 "2516 CGN SET_FEATURE mbox failed with " 7907 "status x%x add_status x%x, mbx status x%x " 7908 "Reset Congestion to FPINs only\n", 7909 shdr_status, shdr_add_status, 7910 pmb->u.mb.mbxStatus); 7911 /* If there is a mbox error, move on to RDF */ 7912 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7913 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7914 goto out; 7915 } 7916 7917 /* Zero out Congestion Signal ACQE counter */ 7918 phba->cgn_acqe_cnt = 0; 7919 7920 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7921 &pmb->u.mqe.un.set_feature); 7922 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7923 &pmb->u.mqe.un.set_feature); 7924 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7925 "4620 SET_FEATURES Success: Freq: %ds %dms " 7926 " Reg: x%x x%x\n", acqe, sig, 7927 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7928 out: 7929 mempool_free(pmb, phba->mbox_mem_pool); 7930 7931 /* Register for FPIN events from the fabric now that the 7932 * EDC common_set_features has completed. 7933 */ 7934 lpfc_issue_els_rdf(vport, 0); 7935 } 7936 7937 int 7938 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7939 { 7940 LPFC_MBOXQ_t *mboxq; 7941 u32 rc; 7942 7943 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7944 if (!mboxq) 7945 goto out_rdf; 7946 7947 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7948 mboxq->vport = phba->pport; 7949 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7950 7951 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7952 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7953 "Reg: x%x x%x\n", 7954 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7955 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7956 7957 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7958 if (rc == MBX_NOT_FINISHED) 7959 goto out; 7960 return 0; 7961 7962 out: 7963 mempool_free(mboxq, phba->mbox_mem_pool); 7964 out_rdf: 7965 /* If there is a mbox error, move on to RDF */ 7966 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7967 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7968 lpfc_issue_els_rdf(phba->pport, 0); 7969 return -EIO; 7970 } 7971 7972 /** 7973 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7974 * @phba: pointer to lpfc hba data structure. 7975 * 7976 * This routine initializes the per-eq idle_stat to dynamically dictate 7977 * polling decisions. 7978 * 7979 * Return codes: 7980 * None 7981 **/ 7982 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7983 { 7984 int i; 7985 struct lpfc_sli4_hdw_queue *hdwq; 7986 struct lpfc_queue *eq; 7987 struct lpfc_idle_stat *idle_stat; 7988 u64 wall; 7989 7990 for_each_present_cpu(i) { 7991 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7992 eq = hdwq->hba_eq; 7993 7994 /* Skip if we've already handled this eq's primary CPU */ 7995 if (eq->chann != i) 7996 continue; 7997 7998 idle_stat = &phba->sli4_hba.idle_stat[i]; 7999 8000 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 8001 idle_stat->prev_wall = wall; 8002 8003 if (phba->nvmet_support || 8004 phba->cmf_active_mode != LPFC_CFG_OFF || 8005 phba->intr_type != MSIX) 8006 eq->poll_mode = LPFC_QUEUE_WORK; 8007 else 8008 eq->poll_mode = LPFC_THREADED_IRQ; 8009 } 8010 8011 if (!phba->nvmet_support && phba->intr_type == MSIX) 8012 schedule_delayed_work(&phba->idle_stat_delay_work, 8013 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 8014 } 8015 8016 static void lpfc_sli4_dip(struct lpfc_hba *phba) 8017 { 8018 uint32_t if_type; 8019 8020 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8021 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 8022 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 8023 struct lpfc_register reg_data; 8024 8025 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8026 ®_data.word0)) 8027 return; 8028 8029 if (bf_get(lpfc_sliport_status_dip, ®_data)) 8030 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8031 "2904 Firmware Dump Image Present" 8032 " on Adapter"); 8033 } 8034 } 8035 8036 /** 8037 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor 8038 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8039 * @entries: Number of rx_info_entry objects to allocate in ring 8040 * 8041 * Return: 8042 * 0 - Success 8043 * ENOMEM - Failure to kmalloc 8044 **/ 8045 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor, 8046 u32 entries) 8047 { 8048 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry), 8049 GFP_KERNEL); 8050 if (!rx_monitor->ring) 8051 return -ENOMEM; 8052 8053 rx_monitor->head_idx = 0; 8054 rx_monitor->tail_idx = 0; 8055 spin_lock_init(&rx_monitor->lock); 8056 rx_monitor->entries = entries; 8057 8058 return 0; 8059 } 8060 8061 /** 8062 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor 8063 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8064 * 8065 * Called after cancellation of cmf_timer. 8066 **/ 8067 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor) 8068 { 8069 kfree(rx_monitor->ring); 8070 rx_monitor->ring = NULL; 8071 rx_monitor->entries = 0; 8072 rx_monitor->head_idx = 0; 8073 rx_monitor->tail_idx = 0; 8074 } 8075 8076 /** 8077 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring 8078 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8079 * @entry: Pointer to rx_info_entry 8080 * 8081 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a 8082 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr. 8083 * 8084 * This is called from lpfc_cmf_timer, which is in timer/softirq context. 8085 * 8086 * In cases of old data overflow, we do a best effort of FIFO order. 8087 **/ 8088 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor, 8089 struct rx_info_entry *entry) 8090 { 8091 struct rx_info_entry *ring = rx_monitor->ring; 8092 u32 *head_idx = &rx_monitor->head_idx; 8093 u32 *tail_idx = &rx_monitor->tail_idx; 8094 spinlock_t *ring_lock = &rx_monitor->lock; 8095 u32 ring_size = rx_monitor->entries; 8096 8097 spin_lock(ring_lock); 8098 memcpy(&ring[*tail_idx], entry, sizeof(*entry)); 8099 *tail_idx = (*tail_idx + 1) % ring_size; 8100 8101 /* Best effort of FIFO saved data */ 8102 if (*tail_idx == *head_idx) 8103 *head_idx = (*head_idx + 1) % ring_size; 8104 8105 spin_unlock(ring_lock); 8106 } 8107 8108 /** 8109 * lpfc_rx_monitor_report - Read out rx_monitor's ring 8110 * @phba: Pointer to lpfc_hba object 8111 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8112 * @buf: Pointer to char buffer that will contain rx monitor info data 8113 * @buf_len: Length buf including null char 8114 * @max_read_entries: Maximum number of entries to read out of ring 8115 * 8116 * Used to dump/read what's in rx_monitor's ring buffer. 8117 * 8118 * If buf is NULL || buf_len == 0, then it is implied that we want to log the 8119 * information to kmsg instead of filling out buf. 8120 * 8121 * Return: 8122 * Number of entries read out of the ring 8123 **/ 8124 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba, 8125 struct lpfc_rx_info_monitor *rx_monitor, char *buf, 8126 u32 buf_len, u32 max_read_entries) 8127 { 8128 struct rx_info_entry *ring = rx_monitor->ring; 8129 struct rx_info_entry *entry; 8130 u32 *head_idx = &rx_monitor->head_idx; 8131 u32 *tail_idx = &rx_monitor->tail_idx; 8132 spinlock_t *ring_lock = &rx_monitor->lock; 8133 u32 ring_size = rx_monitor->entries; 8134 u32 cnt = 0; 8135 char tmp[DBG_LOG_STR_SZ] = {0}; 8136 bool log_to_kmsg = (!buf || !buf_len) ? true : false; 8137 8138 if (!log_to_kmsg) { 8139 /* clear the buffer to be sure */ 8140 memset(buf, 0, buf_len); 8141 8142 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s" 8143 "%-8s%-8s%-8s%-16s\n", 8144 "MaxBPI", "Tot_Data_CMF", 8145 "Tot_Data_Cmd", "Tot_Data_Cmpl", 8146 "Lat(us)", "Avg_IO", "Max_IO", "Bsy", 8147 "IO_cnt", "Info", "BWutil(ms)"); 8148 } 8149 8150 /* Needs to be _irq because record is called from timer interrupt 8151 * context 8152 */ 8153 spin_lock_irq(ring_lock); 8154 while (*head_idx != *tail_idx) { 8155 entry = &ring[*head_idx]; 8156 8157 /* Read out this entry's data. */ 8158 if (!log_to_kmsg) { 8159 /* If !log_to_kmsg, then store to buf. */ 8160 scnprintf(tmp, sizeof(tmp), 8161 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu" 8162 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n", 8163 *head_idx, entry->max_bytes_per_interval, 8164 entry->cmf_bytes, entry->total_bytes, 8165 entry->rcv_bytes, entry->avg_io_latency, 8166 entry->avg_io_size, entry->max_read_cnt, 8167 entry->cmf_busy, entry->io_cnt, 8168 entry->cmf_info, entry->timer_utilization, 8169 entry->timer_interval); 8170 8171 /* Check for buffer overflow */ 8172 if ((strlen(buf) + strlen(tmp)) >= buf_len) 8173 break; 8174 8175 /* Append entry's data to buffer */ 8176 strlcat(buf, tmp, buf_len); 8177 } else { 8178 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 8179 "4410 %02u: MBPI %llu Xmit %llu " 8180 "Cmpl %llu Lat %llu ASz %llu Info %02u " 8181 "BWUtil %u Int %u slot %u\n", 8182 cnt, entry->max_bytes_per_interval, 8183 entry->total_bytes, entry->rcv_bytes, 8184 entry->avg_io_latency, 8185 entry->avg_io_size, entry->cmf_info, 8186 entry->timer_utilization, 8187 entry->timer_interval, *head_idx); 8188 } 8189 8190 *head_idx = (*head_idx + 1) % ring_size; 8191 8192 /* Don't feed more than max_read_entries */ 8193 cnt++; 8194 if (cnt >= max_read_entries) 8195 break; 8196 } 8197 spin_unlock_irq(ring_lock); 8198 8199 return cnt; 8200 } 8201 8202 /** 8203 * lpfc_cmf_setup - Initialize idle_stat tracking 8204 * @phba: Pointer to HBA context object. 8205 * 8206 * This is called from HBA setup during driver load or when the HBA 8207 * comes online. this does all the initialization to support CMF and MI. 8208 **/ 8209 static int 8210 lpfc_cmf_setup(struct lpfc_hba *phba) 8211 { 8212 LPFC_MBOXQ_t *mboxq; 8213 struct lpfc_dmabuf *mp; 8214 struct lpfc_pc_sli4_params *sli4_params; 8215 int rc, cmf, mi_ver; 8216 8217 rc = lpfc_sli4_refresh_params(phba); 8218 if (unlikely(rc)) 8219 return rc; 8220 8221 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8222 if (!mboxq) 8223 return -ENOMEM; 8224 8225 sli4_params = &phba->sli4_hba.pc_sli4_params; 8226 8227 /* Always try to enable MI feature if we can */ 8228 if (sli4_params->mi_ver) { 8229 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 8230 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8231 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 8232 &mboxq->u.mqe.un.set_feature); 8233 8234 if (rc == MBX_SUCCESS) { 8235 if (mi_ver) { 8236 lpfc_printf_log(phba, 8237 KERN_WARNING, LOG_CGN_MGMT, 8238 "6215 MI is enabled\n"); 8239 sli4_params->mi_ver = mi_ver; 8240 } else { 8241 lpfc_printf_log(phba, 8242 KERN_WARNING, LOG_CGN_MGMT, 8243 "6338 MI is disabled\n"); 8244 sli4_params->mi_ver = 0; 8245 } 8246 } else { 8247 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8248 lpfc_printf_log(phba, KERN_INFO, 8249 LOG_CGN_MGMT | LOG_INIT, 8250 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8251 "failed, rc:x%x mi:x%x\n", 8252 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8253 lpfc_sli_config_mbox_subsys_get 8254 (phba, mboxq), 8255 lpfc_sli_config_mbox_opcode_get 8256 (phba, mboxq), 8257 rc, sli4_params->mi_ver); 8258 } 8259 } else { 8260 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8261 "6217 MI is disabled\n"); 8262 } 8263 8264 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8265 if (sli4_params->mi_ver) 8266 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8267 8268 /* Always try to enable CMF feature if we can */ 8269 if (sli4_params->cmf) { 8270 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8271 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8272 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8273 &mboxq->u.mqe.un.set_feature); 8274 if (rc == MBX_SUCCESS && cmf) { 8275 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8276 "6218 CMF is enabled: mode %d\n", 8277 phba->cmf_active_mode); 8278 } else { 8279 lpfc_printf_log(phba, KERN_WARNING, 8280 LOG_CGN_MGMT | LOG_INIT, 8281 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8282 "failed, rc:x%x dd:x%x\n", 8283 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8284 lpfc_sli_config_mbox_subsys_get 8285 (phba, mboxq), 8286 lpfc_sli_config_mbox_opcode_get 8287 (phba, mboxq), 8288 rc, cmf); 8289 sli4_params->cmf = 0; 8290 phba->cmf_active_mode = LPFC_CFG_OFF; 8291 goto no_cmf; 8292 } 8293 8294 /* Allocate Congestion Information Buffer */ 8295 if (!phba->cgn_i) { 8296 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8297 if (mp) 8298 mp->virt = dma_alloc_coherent 8299 (&phba->pcidev->dev, 8300 sizeof(struct lpfc_cgn_info), 8301 &mp->phys, GFP_KERNEL); 8302 if (!mp || !mp->virt) { 8303 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8304 "2640 Failed to alloc memory " 8305 "for Congestion Info\n"); 8306 kfree(mp); 8307 sli4_params->cmf = 0; 8308 phba->cmf_active_mode = LPFC_CFG_OFF; 8309 goto no_cmf; 8310 } 8311 phba->cgn_i = mp; 8312 8313 /* initialize congestion buffer info */ 8314 lpfc_init_congestion_buf(phba); 8315 lpfc_init_congestion_stat(phba); 8316 8317 /* Zero out Congestion Signal counters */ 8318 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8319 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8320 } 8321 8322 rc = lpfc_sli4_cgn_params_read(phba); 8323 if (rc < 0) { 8324 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8325 "6242 Error reading Cgn Params (%d)\n", 8326 rc); 8327 /* Ensure CGN Mode is off */ 8328 sli4_params->cmf = 0; 8329 } else if (!rc) { 8330 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8331 "6243 CGN Event empty object.\n"); 8332 /* Ensure CGN Mode is off */ 8333 sli4_params->cmf = 0; 8334 } 8335 } else { 8336 no_cmf: 8337 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8338 "6220 CMF is disabled\n"); 8339 } 8340 8341 /* Only register congestion buffer with firmware if BOTH 8342 * CMF and E2E are enabled. 8343 */ 8344 if (sli4_params->cmf && sli4_params->mi_ver) { 8345 rc = lpfc_reg_congestion_buf(phba); 8346 if (rc) { 8347 dma_free_coherent(&phba->pcidev->dev, 8348 sizeof(struct lpfc_cgn_info), 8349 phba->cgn_i->virt, phba->cgn_i->phys); 8350 kfree(phba->cgn_i); 8351 phba->cgn_i = NULL; 8352 /* Ensure CGN Mode is off */ 8353 phba->cmf_active_mode = LPFC_CFG_OFF; 8354 sli4_params->cmf = 0; 8355 return 0; 8356 } 8357 } 8358 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8359 "6470 Setup MI version %d CMF %d mode %d\n", 8360 sli4_params->mi_ver, sli4_params->cmf, 8361 phba->cmf_active_mode); 8362 8363 mempool_free(mboxq, phba->mbox_mem_pool); 8364 8365 /* Initialize atomic counters */ 8366 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8367 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8368 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8369 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8370 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8371 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8372 atomic64_set(&phba->cgn_latency_evt, 0); 8373 8374 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8375 8376 /* Allocate RX Monitor Buffer */ 8377 if (!phba->rx_monitor) { 8378 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor), 8379 GFP_KERNEL); 8380 8381 if (!phba->rx_monitor) { 8382 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8383 "2644 Failed to alloc memory " 8384 "for RX Monitor Buffer\n"); 8385 return -ENOMEM; 8386 } 8387 8388 /* Instruct the rx_monitor object to instantiate its ring */ 8389 if (lpfc_rx_monitor_create_ring(phba->rx_monitor, 8390 LPFC_MAX_RXMONITOR_ENTRY)) { 8391 kfree(phba->rx_monitor); 8392 phba->rx_monitor = NULL; 8393 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8394 "2645 Failed to alloc memory " 8395 "for RX Monitor's Ring\n"); 8396 return -ENOMEM; 8397 } 8398 } 8399 8400 return 0; 8401 } 8402 8403 static int 8404 lpfc_set_host_tm(struct lpfc_hba *phba) 8405 { 8406 LPFC_MBOXQ_t *mboxq; 8407 uint32_t len, rc; 8408 struct timespec64 cur_time; 8409 struct tm broken; 8410 uint32_t month, day, year; 8411 uint32_t hour, minute, second; 8412 struct lpfc_mbx_set_host_date_time *tm; 8413 8414 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8415 if (!mboxq) 8416 return -ENOMEM; 8417 8418 len = sizeof(struct lpfc_mbx_set_host_data) - 8419 sizeof(struct lpfc_sli4_cfg_mhdr); 8420 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8421 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8422 LPFC_SLI4_MBX_EMBED); 8423 8424 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8425 mboxq->u.mqe.un.set_host_data.param_len = 8426 sizeof(struct lpfc_mbx_set_host_date_time); 8427 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8428 ktime_get_real_ts64(&cur_time); 8429 time64_to_tm(cur_time.tv_sec, 0, &broken); 8430 month = broken.tm_mon + 1; 8431 day = broken.tm_mday; 8432 year = broken.tm_year - 100; 8433 hour = broken.tm_hour; 8434 minute = broken.tm_min; 8435 second = broken.tm_sec; 8436 bf_set(lpfc_mbx_set_host_month, tm, month); 8437 bf_set(lpfc_mbx_set_host_day, tm, day); 8438 bf_set(lpfc_mbx_set_host_year, tm, year); 8439 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8440 bf_set(lpfc_mbx_set_host_min, tm, minute); 8441 bf_set(lpfc_mbx_set_host_sec, tm, second); 8442 8443 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8444 mempool_free(mboxq, phba->mbox_mem_pool); 8445 return rc; 8446 } 8447 8448 /** 8449 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8450 * @phba: Pointer to HBA context object. 8451 * 8452 * This function is the main SLI4 device initialization PCI function. This 8453 * function is called by the HBA initialization code, HBA reset code and 8454 * HBA error attention handler code. Caller is not required to hold any 8455 * locks. 8456 **/ 8457 int 8458 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8459 { 8460 int rc, i, cnt, len, dd; 8461 LPFC_MBOXQ_t *mboxq; 8462 struct lpfc_mqe *mqe; 8463 uint8_t *vpd; 8464 uint32_t vpd_size; 8465 uint32_t ftr_rsp = 0; 8466 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8467 struct lpfc_vport *vport = phba->pport; 8468 struct lpfc_dmabuf *mp; 8469 struct lpfc_rqb *rqbp; 8470 u32 flg; 8471 8472 /* Perform a PCI function reset to start from clean */ 8473 rc = lpfc_pci_function_reset(phba); 8474 if (unlikely(rc)) 8475 return -ENODEV; 8476 8477 /* Check the HBA Host Status Register for readyness */ 8478 rc = lpfc_sli4_post_status_check(phba); 8479 if (unlikely(rc)) 8480 return -ENODEV; 8481 else { 8482 spin_lock_irq(&phba->hbalock); 8483 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8484 flg = phba->sli.sli_flag; 8485 spin_unlock_irq(&phba->hbalock); 8486 /* Allow a little time after setting SLI_ACTIVE for any polled 8487 * MBX commands to complete via BSG. 8488 */ 8489 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8490 msleep(20); 8491 spin_lock_irq(&phba->hbalock); 8492 flg = phba->sli.sli_flag; 8493 spin_unlock_irq(&phba->hbalock); 8494 } 8495 } 8496 phba->hba_flag &= ~HBA_SETUP; 8497 8498 lpfc_sli4_dip(phba); 8499 8500 /* 8501 * Allocate a single mailbox container for initializing the 8502 * port. 8503 */ 8504 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8505 if (!mboxq) 8506 return -ENOMEM; 8507 8508 /* Issue READ_REV to collect vpd and FW information. */ 8509 vpd_size = SLI4_PAGE_SIZE; 8510 vpd = kzalloc(vpd_size, GFP_KERNEL); 8511 if (!vpd) { 8512 rc = -ENOMEM; 8513 goto out_free_mbox; 8514 } 8515 8516 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8517 if (unlikely(rc)) { 8518 kfree(vpd); 8519 goto out_free_mbox; 8520 } 8521 8522 mqe = &mboxq->u.mqe; 8523 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8524 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8525 phba->hba_flag |= HBA_FCOE_MODE; 8526 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8527 } else { 8528 phba->hba_flag &= ~HBA_FCOE_MODE; 8529 } 8530 8531 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8532 LPFC_DCBX_CEE_MODE) 8533 phba->hba_flag |= HBA_FIP_SUPPORT; 8534 else 8535 phba->hba_flag &= ~HBA_FIP_SUPPORT; 8536 8537 phba->hba_flag &= ~HBA_IOQ_FLUSH; 8538 8539 if (phba->sli_rev != LPFC_SLI_REV4) { 8540 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8541 "0376 READ_REV Error. SLI Level %d " 8542 "FCoE enabled %d\n", 8543 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 8544 rc = -EIO; 8545 kfree(vpd); 8546 goto out_free_mbox; 8547 } 8548 8549 rc = lpfc_set_host_tm(phba); 8550 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8551 "6468 Set host date / time: Status x%x:\n", rc); 8552 8553 /* 8554 * Continue initialization with default values even if driver failed 8555 * to read FCoE param config regions, only read parameters if the 8556 * board is FCoE 8557 */ 8558 if (phba->hba_flag & HBA_FCOE_MODE && 8559 lpfc_sli4_read_fcoe_params(phba)) 8560 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8561 "2570 Failed to read FCoE parameters\n"); 8562 8563 /* 8564 * Retrieve sli4 device physical port name, failure of doing it 8565 * is considered as non-fatal. 8566 */ 8567 rc = lpfc_sli4_retrieve_pport_name(phba); 8568 if (!rc) 8569 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8570 "3080 Successful retrieving SLI4 device " 8571 "physical port name: %s.\n", phba->Port); 8572 8573 rc = lpfc_sli4_get_ctl_attr(phba); 8574 if (!rc) 8575 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8576 "8351 Successful retrieving SLI4 device " 8577 "CTL ATTR\n"); 8578 8579 /* 8580 * Evaluate the read rev and vpd data. Populate the driver 8581 * state with the results. If this routine fails, the failure 8582 * is not fatal as the driver will use generic values. 8583 */ 8584 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8585 if (unlikely(!rc)) { 8586 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8587 "0377 Error %d parsing vpd. " 8588 "Using defaults.\n", rc); 8589 rc = 0; 8590 } 8591 kfree(vpd); 8592 8593 /* Save information as VPD data */ 8594 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8595 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8596 8597 /* 8598 * This is because first G7 ASIC doesn't support the standard 8599 * 0x5a NVME cmd descriptor type/subtype 8600 */ 8601 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8602 LPFC_SLI_INTF_IF_TYPE_6) && 8603 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8604 (phba->vpd.rev.smRev == 0) && 8605 (phba->cfg_nvme_embed_cmd == 1)) 8606 phba->cfg_nvme_embed_cmd = 0; 8607 8608 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8609 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8610 &mqe->un.read_rev); 8611 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8612 &mqe->un.read_rev); 8613 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8614 &mqe->un.read_rev); 8615 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8616 &mqe->un.read_rev); 8617 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8618 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8619 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8620 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8621 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8622 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8623 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8624 "(%d):0380 READ_REV Status x%x " 8625 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8626 mboxq->vport ? mboxq->vport->vpi : 0, 8627 bf_get(lpfc_mqe_status, mqe), 8628 phba->vpd.rev.opFwName, 8629 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8630 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8631 8632 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8633 LPFC_SLI_INTF_IF_TYPE_0) { 8634 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8635 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8636 if (rc == MBX_SUCCESS) { 8637 phba->hba_flag |= HBA_RECOVERABLE_UE; 8638 /* Set 1Sec interval to detect UE */ 8639 phba->eratt_poll_interval = 1; 8640 phba->sli4_hba.ue_to_sr = bf_get( 8641 lpfc_mbx_set_feature_UESR, 8642 &mboxq->u.mqe.un.set_feature); 8643 phba->sli4_hba.ue_to_rp = bf_get( 8644 lpfc_mbx_set_feature_UERP, 8645 &mboxq->u.mqe.un.set_feature); 8646 } 8647 } 8648 8649 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8650 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8651 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8652 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8653 if (rc != MBX_SUCCESS) 8654 phba->mds_diags_support = 0; 8655 } 8656 8657 /* 8658 * Discover the port's supported feature set and match it against the 8659 * hosts requests. 8660 */ 8661 lpfc_request_features(phba, mboxq); 8662 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8663 if (unlikely(rc)) { 8664 rc = -EIO; 8665 goto out_free_mbox; 8666 } 8667 8668 /* Disable VMID if app header is not supported */ 8669 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8670 &mqe->un.req_ftrs))) { 8671 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8672 phba->cfg_vmid_app_header = 0; 8673 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8674 "1242 vmid feature not supported\n"); 8675 } 8676 8677 /* 8678 * The port must support FCP initiator mode as this is the 8679 * only mode running in the host. 8680 */ 8681 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8682 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8683 "0378 No support for fcpi mode.\n"); 8684 ftr_rsp++; 8685 } 8686 8687 /* Performance Hints are ONLY for FCoE */ 8688 if (phba->hba_flag & HBA_FCOE_MODE) { 8689 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8690 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8691 else 8692 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8693 } 8694 8695 /* 8696 * If the port cannot support the host's requested features 8697 * then turn off the global config parameters to disable the 8698 * feature in the driver. This is not a fatal error. 8699 */ 8700 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8701 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8702 phba->cfg_enable_bg = 0; 8703 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8704 ftr_rsp++; 8705 } 8706 } 8707 8708 if (phba->max_vpi && phba->cfg_enable_npiv && 8709 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8710 ftr_rsp++; 8711 8712 if (ftr_rsp) { 8713 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8714 "0379 Feature Mismatch Data: x%08x %08x " 8715 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8716 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8717 phba->cfg_enable_npiv, phba->max_vpi); 8718 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8719 phba->cfg_enable_bg = 0; 8720 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8721 phba->cfg_enable_npiv = 0; 8722 } 8723 8724 /* These SLI3 features are assumed in SLI4 */ 8725 spin_lock_irq(&phba->hbalock); 8726 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8727 spin_unlock_irq(&phba->hbalock); 8728 8729 /* Always try to enable dual dump feature if we can */ 8730 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8731 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8732 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8733 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8734 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8735 "6448 Dual Dump is enabled\n"); 8736 else 8737 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8738 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8739 "rc:x%x dd:x%x\n", 8740 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8741 lpfc_sli_config_mbox_subsys_get( 8742 phba, mboxq), 8743 lpfc_sli_config_mbox_opcode_get( 8744 phba, mboxq), 8745 rc, dd); 8746 /* 8747 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8748 * calls depends on these resources to complete port setup. 8749 */ 8750 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8751 if (rc) { 8752 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8753 "2920 Failed to alloc Resource IDs " 8754 "rc = x%x\n", rc); 8755 goto out_free_mbox; 8756 } 8757 8758 lpfc_set_host_data(phba, mboxq); 8759 8760 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8761 if (rc) { 8762 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8763 "2134 Failed to set host os driver version %x", 8764 rc); 8765 } 8766 8767 /* Read the port's service parameters. */ 8768 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8769 if (rc) { 8770 phba->link_state = LPFC_HBA_ERROR; 8771 rc = -ENOMEM; 8772 goto out_free_mbox; 8773 } 8774 8775 mboxq->vport = vport; 8776 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8777 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 8778 if (rc == MBX_SUCCESS) { 8779 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8780 rc = 0; 8781 } 8782 8783 /* 8784 * This memory was allocated by the lpfc_read_sparam routine but is 8785 * no longer needed. It is released and ctx_buf NULLed to prevent 8786 * unintended pointer access as the mbox is reused. 8787 */ 8788 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8789 kfree(mp); 8790 mboxq->ctx_buf = NULL; 8791 if (unlikely(rc)) { 8792 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8793 "0382 READ_SPARAM command failed " 8794 "status %d, mbxStatus x%x\n", 8795 rc, bf_get(lpfc_mqe_status, mqe)); 8796 phba->link_state = LPFC_HBA_ERROR; 8797 rc = -EIO; 8798 goto out_free_mbox; 8799 } 8800 8801 lpfc_update_vport_wwn(vport); 8802 8803 /* Update the fc_host data structures with new wwn. */ 8804 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8805 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8806 8807 /* Create all the SLI4 queues */ 8808 rc = lpfc_sli4_queue_create(phba); 8809 if (rc) { 8810 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8811 "3089 Failed to allocate queues\n"); 8812 rc = -ENODEV; 8813 goto out_free_mbox; 8814 } 8815 /* Set up all the queues to the device */ 8816 rc = lpfc_sli4_queue_setup(phba); 8817 if (unlikely(rc)) { 8818 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8819 "0381 Error %d during queue setup.\n ", rc); 8820 goto out_stop_timers; 8821 } 8822 /* Initialize the driver internal SLI layer lists. */ 8823 lpfc_sli4_setup(phba); 8824 lpfc_sli4_queue_init(phba); 8825 8826 /* update host els xri-sgl sizes and mappings */ 8827 rc = lpfc_sli4_els_sgl_update(phba); 8828 if (unlikely(rc)) { 8829 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8830 "1400 Failed to update xri-sgl size and " 8831 "mapping: %d\n", rc); 8832 goto out_destroy_queue; 8833 } 8834 8835 /* register the els sgl pool to the port */ 8836 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8837 phba->sli4_hba.els_xri_cnt); 8838 if (unlikely(rc < 0)) { 8839 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8840 "0582 Error %d during els sgl post " 8841 "operation\n", rc); 8842 rc = -ENODEV; 8843 goto out_destroy_queue; 8844 } 8845 phba->sli4_hba.els_xri_cnt = rc; 8846 8847 if (phba->nvmet_support) { 8848 /* update host nvmet xri-sgl sizes and mappings */ 8849 rc = lpfc_sli4_nvmet_sgl_update(phba); 8850 if (unlikely(rc)) { 8851 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8852 "6308 Failed to update nvmet-sgl size " 8853 "and mapping: %d\n", rc); 8854 goto out_destroy_queue; 8855 } 8856 8857 /* register the nvmet sgl pool to the port */ 8858 rc = lpfc_sli4_repost_sgl_list( 8859 phba, 8860 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8861 phba->sli4_hba.nvmet_xri_cnt); 8862 if (unlikely(rc < 0)) { 8863 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8864 "3117 Error %d during nvmet " 8865 "sgl post\n", rc); 8866 rc = -ENODEV; 8867 goto out_destroy_queue; 8868 } 8869 phba->sli4_hba.nvmet_xri_cnt = rc; 8870 8871 /* We allocate an iocbq for every receive context SGL. 8872 * The additional allocation is for abort and ls handling. 8873 */ 8874 cnt = phba->sli4_hba.nvmet_xri_cnt + 8875 phba->sli4_hba.max_cfg_param.max_xri; 8876 } else { 8877 /* update host common xri-sgl sizes and mappings */ 8878 rc = lpfc_sli4_io_sgl_update(phba); 8879 if (unlikely(rc)) { 8880 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8881 "6082 Failed to update nvme-sgl size " 8882 "and mapping: %d\n", rc); 8883 goto out_destroy_queue; 8884 } 8885 8886 /* register the allocated common sgl pool to the port */ 8887 rc = lpfc_sli4_repost_io_sgl_list(phba); 8888 if (unlikely(rc)) { 8889 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8890 "6116 Error %d during nvme sgl post " 8891 "operation\n", rc); 8892 /* Some NVME buffers were moved to abort nvme list */ 8893 /* A pci function reset will repost them */ 8894 rc = -ENODEV; 8895 goto out_destroy_queue; 8896 } 8897 /* Each lpfc_io_buf job structure has an iocbq element. 8898 * This cnt provides for abort, els, ct and ls requests. 8899 */ 8900 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8901 } 8902 8903 if (!phba->sli.iocbq_lookup) { 8904 /* Initialize and populate the iocb list per host */ 8905 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8906 "2821 initialize iocb list with %d entries\n", 8907 cnt); 8908 rc = lpfc_init_iocb_list(phba, cnt); 8909 if (rc) { 8910 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8911 "1413 Failed to init iocb list.\n"); 8912 goto out_destroy_queue; 8913 } 8914 } 8915 8916 if (phba->nvmet_support) 8917 lpfc_nvmet_create_targetport(phba); 8918 8919 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8920 /* Post initial buffers to all RQs created */ 8921 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8922 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8923 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8924 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8925 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8926 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8927 rqbp->buffer_count = 0; 8928 8929 lpfc_post_rq_buffer( 8930 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8931 phba->sli4_hba.nvmet_mrq_data[i], 8932 phba->cfg_nvmet_mrq_post, i); 8933 } 8934 } 8935 8936 /* Post the rpi header region to the device. */ 8937 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8938 if (unlikely(rc)) { 8939 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8940 "0393 Error %d during rpi post operation\n", 8941 rc); 8942 rc = -ENODEV; 8943 goto out_free_iocblist; 8944 } 8945 lpfc_sli4_node_prep(phba); 8946 8947 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 8948 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8949 /* 8950 * The FC Port needs to register FCFI (index 0) 8951 */ 8952 lpfc_reg_fcfi(phba, mboxq); 8953 mboxq->vport = phba->pport; 8954 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8955 if (rc != MBX_SUCCESS) 8956 goto out_unset_queue; 8957 rc = 0; 8958 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8959 &mboxq->u.mqe.un.reg_fcfi); 8960 } else { 8961 /* We are a NVME Target mode with MRQ > 1 */ 8962 8963 /* First register the FCFI */ 8964 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8965 mboxq->vport = phba->pport; 8966 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8967 if (rc != MBX_SUCCESS) 8968 goto out_unset_queue; 8969 rc = 0; 8970 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8971 &mboxq->u.mqe.un.reg_fcfi_mrq); 8972 8973 /* Next register the MRQs */ 8974 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8975 mboxq->vport = phba->pport; 8976 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8977 if (rc != MBX_SUCCESS) 8978 goto out_unset_queue; 8979 rc = 0; 8980 } 8981 /* Check if the port is configured to be disabled */ 8982 lpfc_sli_read_link_ste(phba); 8983 } 8984 8985 /* Don't post more new bufs if repost already recovered 8986 * the nvme sgls. 8987 */ 8988 if (phba->nvmet_support == 0) { 8989 if (phba->sli4_hba.io_xri_cnt == 0) { 8990 len = lpfc_new_io_buf( 8991 phba, phba->sli4_hba.io_xri_max); 8992 if (len == 0) { 8993 rc = -ENOMEM; 8994 goto out_unset_queue; 8995 } 8996 8997 if (phba->cfg_xri_rebalancing) 8998 lpfc_create_multixri_pools(phba); 8999 } 9000 } else { 9001 phba->cfg_xri_rebalancing = 0; 9002 } 9003 9004 /* Allow asynchronous mailbox command to go through */ 9005 spin_lock_irq(&phba->hbalock); 9006 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9007 spin_unlock_irq(&phba->hbalock); 9008 9009 /* Post receive buffers to the device */ 9010 lpfc_sli4_rb_setup(phba); 9011 9012 /* Reset HBA FCF states after HBA reset */ 9013 phba->fcf.fcf_flag = 0; 9014 phba->fcf.current_rec.flag = 0; 9015 9016 /* Start the ELS watchdog timer */ 9017 mod_timer(&vport->els_tmofunc, 9018 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 9019 9020 /* Start heart beat timer */ 9021 mod_timer(&phba->hb_tmofunc, 9022 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 9023 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 9024 phba->last_completion_time = jiffies; 9025 9026 /* start eq_delay heartbeat */ 9027 if (phba->cfg_auto_imax) 9028 queue_delayed_work(phba->wq, &phba->eq_delay_work, 9029 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 9030 9031 /* start per phba idle_stat_delay heartbeat */ 9032 lpfc_init_idle_stat_hb(phba); 9033 9034 /* Start error attention (ERATT) polling timer */ 9035 mod_timer(&phba->eratt_poll, 9036 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 9037 9038 /* 9039 * The port is ready, set the host's link state to LINK_DOWN 9040 * in preparation for link interrupts. 9041 */ 9042 spin_lock_irq(&phba->hbalock); 9043 phba->link_state = LPFC_LINK_DOWN; 9044 9045 /* Check if physical ports are trunked */ 9046 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 9047 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 9048 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 9049 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 9050 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 9051 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 9052 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 9053 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 9054 spin_unlock_irq(&phba->hbalock); 9055 9056 /* Arm the CQs and then EQs on device */ 9057 lpfc_sli4_arm_cqeq_intr(phba); 9058 9059 /* Indicate device interrupt mode */ 9060 phba->sli4_hba.intr_enable = 1; 9061 9062 /* Setup CMF after HBA is initialized */ 9063 lpfc_cmf_setup(phba); 9064 9065 if (!(phba->hba_flag & HBA_FCOE_MODE) && 9066 (phba->hba_flag & LINK_DISABLED)) { 9067 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9068 "3103 Adapter Link is disabled.\n"); 9069 lpfc_down_link(phba, mboxq); 9070 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9071 if (rc != MBX_SUCCESS) { 9072 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9073 "3104 Adapter failed to issue " 9074 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 9075 goto out_io_buff_free; 9076 } 9077 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 9078 /* don't perform init_link on SLI4 FC port loopback test */ 9079 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 9080 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 9081 if (rc) 9082 goto out_io_buff_free; 9083 } 9084 } 9085 mempool_free(mboxq, phba->mbox_mem_pool); 9086 9087 /* Enable RAS FW log support */ 9088 lpfc_sli4_ras_setup(phba); 9089 9090 phba->hba_flag |= HBA_SETUP; 9091 return rc; 9092 9093 out_io_buff_free: 9094 /* Free allocated IO Buffers */ 9095 lpfc_io_free(phba); 9096 out_unset_queue: 9097 /* Unset all the queues set up in this routine when error out */ 9098 lpfc_sli4_queue_unset(phba); 9099 out_free_iocblist: 9100 lpfc_free_iocb_list(phba); 9101 out_destroy_queue: 9102 lpfc_sli4_queue_destroy(phba); 9103 out_stop_timers: 9104 lpfc_stop_hba_timers(phba); 9105 out_free_mbox: 9106 mempool_free(mboxq, phba->mbox_mem_pool); 9107 return rc; 9108 } 9109 9110 /** 9111 * lpfc_mbox_timeout - Timeout call back function for mbox timer 9112 * @t: Context to fetch pointer to hba structure from. 9113 * 9114 * This is the callback function for mailbox timer. The mailbox 9115 * timer is armed when a new mailbox command is issued and the timer 9116 * is deleted when the mailbox complete. The function is called by 9117 * the kernel timer code when a mailbox does not complete within 9118 * expected time. This function wakes up the worker thread to 9119 * process the mailbox timeout and returns. All the processing is 9120 * done by the worker thread function lpfc_mbox_timeout_handler. 9121 **/ 9122 void 9123 lpfc_mbox_timeout(struct timer_list *t) 9124 { 9125 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 9126 unsigned long iflag; 9127 uint32_t tmo_posted; 9128 9129 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 9130 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 9131 if (!tmo_posted) 9132 phba->pport->work_port_events |= WORKER_MBOX_TMO; 9133 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 9134 9135 if (!tmo_posted) 9136 lpfc_worker_wake_up(phba); 9137 return; 9138 } 9139 9140 /** 9141 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 9142 * are pending 9143 * @phba: Pointer to HBA context object. 9144 * 9145 * This function checks if any mailbox completions are present on the mailbox 9146 * completion queue. 9147 **/ 9148 static bool 9149 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 9150 { 9151 9152 uint32_t idx; 9153 struct lpfc_queue *mcq; 9154 struct lpfc_mcqe *mcqe; 9155 bool pending_completions = false; 9156 uint8_t qe_valid; 9157 9158 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9159 return false; 9160 9161 /* Check for completions on mailbox completion queue */ 9162 9163 mcq = phba->sli4_hba.mbx_cq; 9164 idx = mcq->hba_index; 9165 qe_valid = mcq->qe_valid; 9166 while (bf_get_le32(lpfc_cqe_valid, 9167 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 9168 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 9169 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 9170 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 9171 pending_completions = true; 9172 break; 9173 } 9174 idx = (idx + 1) % mcq->entry_count; 9175 if (mcq->hba_index == idx) 9176 break; 9177 9178 /* if the index wrapped around, toggle the valid bit */ 9179 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 9180 qe_valid = (qe_valid) ? 0 : 1; 9181 } 9182 return pending_completions; 9183 9184 } 9185 9186 /** 9187 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 9188 * that were missed. 9189 * @phba: Pointer to HBA context object. 9190 * 9191 * For sli4, it is possible to miss an interrupt. As such mbox completions 9192 * maybe missed causing erroneous mailbox timeouts to occur. This function 9193 * checks to see if mbox completions are on the mailbox completion queue 9194 * and will process all the completions associated with the eq for the 9195 * mailbox completion queue. 9196 **/ 9197 static bool 9198 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 9199 { 9200 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 9201 uint32_t eqidx; 9202 struct lpfc_queue *fpeq = NULL; 9203 struct lpfc_queue *eq; 9204 bool mbox_pending; 9205 9206 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9207 return false; 9208 9209 /* Find the EQ associated with the mbox CQ */ 9210 if (sli4_hba->hdwq) { 9211 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 9212 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 9213 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 9214 fpeq = eq; 9215 break; 9216 } 9217 } 9218 } 9219 if (!fpeq) 9220 return false; 9221 9222 /* Turn off interrupts from this EQ */ 9223 9224 sli4_hba->sli4_eq_clr_intr(fpeq); 9225 9226 /* Check to see if a mbox completion is pending */ 9227 9228 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 9229 9230 /* 9231 * If a mbox completion is pending, process all the events on EQ 9232 * associated with the mbox completion queue (this could include 9233 * mailbox commands, async events, els commands, receive queue data 9234 * and fcp commands) 9235 */ 9236 9237 if (mbox_pending) 9238 /* process and rearm the EQ */ 9239 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 9240 LPFC_QUEUE_WORK); 9241 else 9242 /* Always clear and re-arm the EQ */ 9243 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9244 9245 return mbox_pending; 9246 9247 } 9248 9249 /** 9250 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9251 * @phba: Pointer to HBA context object. 9252 * 9253 * This function is called from worker thread when a mailbox command times out. 9254 * The caller is not required to hold any locks. This function will reset the 9255 * HBA and recover all the pending commands. 9256 **/ 9257 void 9258 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9259 { 9260 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9261 MAILBOX_t *mb = NULL; 9262 9263 struct lpfc_sli *psli = &phba->sli; 9264 9265 /* If the mailbox completed, process the completion */ 9266 lpfc_sli4_process_missed_mbox_completions(phba); 9267 9268 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9269 return; 9270 9271 if (pmbox != NULL) 9272 mb = &pmbox->u.mb; 9273 /* Check the pmbox pointer first. There is a race condition 9274 * between the mbox timeout handler getting executed in the 9275 * worklist and the mailbox actually completing. When this 9276 * race condition occurs, the mbox_active will be NULL. 9277 */ 9278 spin_lock_irq(&phba->hbalock); 9279 if (pmbox == NULL) { 9280 lpfc_printf_log(phba, KERN_WARNING, 9281 LOG_MBOX | LOG_SLI, 9282 "0353 Active Mailbox cleared - mailbox timeout " 9283 "exiting\n"); 9284 spin_unlock_irq(&phba->hbalock); 9285 return; 9286 } 9287 9288 /* Mbox cmd <mbxCommand> timeout */ 9289 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9290 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9291 mb->mbxCommand, 9292 phba->pport->port_state, 9293 phba->sli.sli_flag, 9294 phba->sli.mbox_active); 9295 spin_unlock_irq(&phba->hbalock); 9296 9297 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9298 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9299 * it to fail all outstanding SCSI IO. 9300 */ 9301 set_bit(MBX_TMO_ERR, &phba->bit_flags); 9302 spin_lock_irq(&phba->pport->work_port_lock); 9303 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9304 spin_unlock_irq(&phba->pport->work_port_lock); 9305 spin_lock_irq(&phba->hbalock); 9306 phba->link_state = LPFC_LINK_UNKNOWN; 9307 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9308 spin_unlock_irq(&phba->hbalock); 9309 9310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9311 "0345 Resetting board due to mailbox timeout\n"); 9312 9313 /* Reset the HBA device */ 9314 lpfc_reset_hba(phba); 9315 } 9316 9317 /** 9318 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9319 * @phba: Pointer to HBA context object. 9320 * @pmbox: Pointer to mailbox object. 9321 * @flag: Flag indicating how the mailbox need to be processed. 9322 * 9323 * This function is called by discovery code and HBA management code 9324 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9325 * function gets the hbalock to protect the data structures. 9326 * The mailbox command can be submitted in polling mode, in which case 9327 * this function will wait in a polling loop for the completion of the 9328 * mailbox. 9329 * If the mailbox is submitted in no_wait mode (not polling) the 9330 * function will submit the command and returns immediately without waiting 9331 * for the mailbox completion. The no_wait is supported only when HBA 9332 * is in SLI2/SLI3 mode - interrupts are enabled. 9333 * The SLI interface allows only one mailbox pending at a time. If the 9334 * mailbox is issued in polling mode and there is already a mailbox 9335 * pending, then the function will return an error. If the mailbox is issued 9336 * in NO_WAIT mode and there is a mailbox pending already, the function 9337 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9338 * The sli layer owns the mailbox object until the completion of mailbox 9339 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9340 * return codes the caller owns the mailbox command after the return of 9341 * the function. 9342 **/ 9343 static int 9344 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9345 uint32_t flag) 9346 { 9347 MAILBOX_t *mbx; 9348 struct lpfc_sli *psli = &phba->sli; 9349 uint32_t status, evtctr; 9350 uint32_t ha_copy, hc_copy; 9351 int i; 9352 unsigned long timeout; 9353 unsigned long drvr_flag = 0; 9354 uint32_t word0, ldata; 9355 void __iomem *to_slim; 9356 int processing_queue = 0; 9357 9358 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9359 if (!pmbox) { 9360 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9361 /* processing mbox queue from intr_handler */ 9362 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9363 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9364 return MBX_SUCCESS; 9365 } 9366 processing_queue = 1; 9367 pmbox = lpfc_mbox_get(phba); 9368 if (!pmbox) { 9369 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9370 return MBX_SUCCESS; 9371 } 9372 } 9373 9374 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9375 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9376 if(!pmbox->vport) { 9377 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9378 lpfc_printf_log(phba, KERN_ERR, 9379 LOG_MBOX | LOG_VPORT, 9380 "1806 Mbox x%x failed. No vport\n", 9381 pmbox->u.mb.mbxCommand); 9382 dump_stack(); 9383 goto out_not_finished; 9384 } 9385 } 9386 9387 /* If the PCI channel is in offline state, do not post mbox. */ 9388 if (unlikely(pci_channel_offline(phba->pcidev))) { 9389 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9390 goto out_not_finished; 9391 } 9392 9393 /* If HBA has a deferred error attention, fail the iocb. */ 9394 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 9395 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9396 goto out_not_finished; 9397 } 9398 9399 psli = &phba->sli; 9400 9401 mbx = &pmbox->u.mb; 9402 status = MBX_SUCCESS; 9403 9404 if (phba->link_state == LPFC_HBA_ERROR) { 9405 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9406 9407 /* Mbox command <mbxCommand> cannot issue */ 9408 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9409 "(%d):0311 Mailbox command x%x cannot " 9410 "issue Data: x%x x%x\n", 9411 pmbox->vport ? pmbox->vport->vpi : 0, 9412 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9413 goto out_not_finished; 9414 } 9415 9416 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9417 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9418 !(hc_copy & HC_MBINT_ENA)) { 9419 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9420 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9421 "(%d):2528 Mailbox command x%x cannot " 9422 "issue Data: x%x x%x\n", 9423 pmbox->vport ? pmbox->vport->vpi : 0, 9424 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9425 goto out_not_finished; 9426 } 9427 } 9428 9429 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9430 /* Polling for a mbox command when another one is already active 9431 * is not allowed in SLI. Also, the driver must have established 9432 * SLI2 mode to queue and process multiple mbox commands. 9433 */ 9434 9435 if (flag & MBX_POLL) { 9436 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9437 9438 /* Mbox command <mbxCommand> cannot issue */ 9439 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9440 "(%d):2529 Mailbox command x%x " 9441 "cannot issue Data: x%x x%x\n", 9442 pmbox->vport ? pmbox->vport->vpi : 0, 9443 pmbox->u.mb.mbxCommand, 9444 psli->sli_flag, flag); 9445 goto out_not_finished; 9446 } 9447 9448 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9449 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9450 /* Mbox command <mbxCommand> cannot issue */ 9451 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9452 "(%d):2530 Mailbox command x%x " 9453 "cannot issue Data: x%x x%x\n", 9454 pmbox->vport ? pmbox->vport->vpi : 0, 9455 pmbox->u.mb.mbxCommand, 9456 psli->sli_flag, flag); 9457 goto out_not_finished; 9458 } 9459 9460 /* Another mailbox command is still being processed, queue this 9461 * command to be processed later. 9462 */ 9463 lpfc_mbox_put(phba, pmbox); 9464 9465 /* Mbox cmd issue - BUSY */ 9466 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9467 "(%d):0308 Mbox cmd issue - BUSY Data: " 9468 "x%x x%x x%x x%x\n", 9469 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9470 mbx->mbxCommand, 9471 phba->pport ? phba->pport->port_state : 0xff, 9472 psli->sli_flag, flag); 9473 9474 psli->slistat.mbox_busy++; 9475 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9476 9477 if (pmbox->vport) { 9478 lpfc_debugfs_disc_trc(pmbox->vport, 9479 LPFC_DISC_TRC_MBOX_VPORT, 9480 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9481 (uint32_t)mbx->mbxCommand, 9482 mbx->un.varWords[0], mbx->un.varWords[1]); 9483 } 9484 else { 9485 lpfc_debugfs_disc_trc(phba->pport, 9486 LPFC_DISC_TRC_MBOX, 9487 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9488 (uint32_t)mbx->mbxCommand, 9489 mbx->un.varWords[0], mbx->un.varWords[1]); 9490 } 9491 9492 return MBX_BUSY; 9493 } 9494 9495 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9496 9497 /* If we are not polling, we MUST be in SLI2 mode */ 9498 if (flag != MBX_POLL) { 9499 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9500 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9501 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9502 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9503 /* Mbox command <mbxCommand> cannot issue */ 9504 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9505 "(%d):2531 Mailbox command x%x " 9506 "cannot issue Data: x%x x%x\n", 9507 pmbox->vport ? pmbox->vport->vpi : 0, 9508 pmbox->u.mb.mbxCommand, 9509 psli->sli_flag, flag); 9510 goto out_not_finished; 9511 } 9512 /* timeout active mbox command */ 9513 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9514 1000); 9515 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9516 } 9517 9518 /* Mailbox cmd <cmd> issue */ 9519 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9520 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9521 "x%x\n", 9522 pmbox->vport ? pmbox->vport->vpi : 0, 9523 mbx->mbxCommand, 9524 phba->pport ? phba->pport->port_state : 0xff, 9525 psli->sli_flag, flag); 9526 9527 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9528 if (pmbox->vport) { 9529 lpfc_debugfs_disc_trc(pmbox->vport, 9530 LPFC_DISC_TRC_MBOX_VPORT, 9531 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9532 (uint32_t)mbx->mbxCommand, 9533 mbx->un.varWords[0], mbx->un.varWords[1]); 9534 } 9535 else { 9536 lpfc_debugfs_disc_trc(phba->pport, 9537 LPFC_DISC_TRC_MBOX, 9538 "MBOX Send: cmd:x%x mb:x%x x%x", 9539 (uint32_t)mbx->mbxCommand, 9540 mbx->un.varWords[0], mbx->un.varWords[1]); 9541 } 9542 } 9543 9544 psli->slistat.mbox_cmd++; 9545 evtctr = psli->slistat.mbox_event; 9546 9547 /* next set own bit for the adapter and copy over command word */ 9548 mbx->mbxOwner = OWN_CHIP; 9549 9550 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9551 /* Populate mbox extension offset word. */ 9552 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9553 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9554 = (uint8_t *)phba->mbox_ext 9555 - (uint8_t *)phba->mbox; 9556 } 9557 9558 /* Copy the mailbox extension data */ 9559 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 9560 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 9561 (uint8_t *)phba->mbox_ext, 9562 pmbox->in_ext_byte_len); 9563 } 9564 /* Copy command data to host SLIM area */ 9565 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9566 } else { 9567 /* Populate mbox extension offset word. */ 9568 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9569 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9570 = MAILBOX_HBA_EXT_OFFSET; 9571 9572 /* Copy the mailbox extension data */ 9573 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 9574 lpfc_memcpy_to_slim(phba->MBslimaddr + 9575 MAILBOX_HBA_EXT_OFFSET, 9576 pmbox->ctx_buf, pmbox->in_ext_byte_len); 9577 9578 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9579 /* copy command data into host mbox for cmpl */ 9580 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9581 MAILBOX_CMD_SIZE); 9582 9583 /* First copy mbox command data to HBA SLIM, skip past first 9584 word */ 9585 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9586 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9587 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9588 9589 /* Next copy over first word, with mbxOwner set */ 9590 ldata = *((uint32_t *)mbx); 9591 to_slim = phba->MBslimaddr; 9592 writel(ldata, to_slim); 9593 readl(to_slim); /* flush */ 9594 9595 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9596 /* switch over to host mailbox */ 9597 psli->sli_flag |= LPFC_SLI_ACTIVE; 9598 } 9599 9600 wmb(); 9601 9602 switch (flag) { 9603 case MBX_NOWAIT: 9604 /* Set up reference to mailbox command */ 9605 psli->mbox_active = pmbox; 9606 /* Interrupt board to do it */ 9607 writel(CA_MBATT, phba->CAregaddr); 9608 readl(phba->CAregaddr); /* flush */ 9609 /* Don't wait for it to finish, just return */ 9610 break; 9611 9612 case MBX_POLL: 9613 /* Set up null reference to mailbox command */ 9614 psli->mbox_active = NULL; 9615 /* Interrupt board to do it */ 9616 writel(CA_MBATT, phba->CAregaddr); 9617 readl(phba->CAregaddr); /* flush */ 9618 9619 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9620 /* First read mbox status word */ 9621 word0 = *((uint32_t *)phba->mbox); 9622 word0 = le32_to_cpu(word0); 9623 } else { 9624 /* First read mbox status word */ 9625 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9626 spin_unlock_irqrestore(&phba->hbalock, 9627 drvr_flag); 9628 goto out_not_finished; 9629 } 9630 } 9631 9632 /* Read the HBA Host Attention Register */ 9633 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9634 spin_unlock_irqrestore(&phba->hbalock, 9635 drvr_flag); 9636 goto out_not_finished; 9637 } 9638 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9639 1000) + jiffies; 9640 i = 0; 9641 /* Wait for command to complete */ 9642 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9643 (!(ha_copy & HA_MBATT) && 9644 (phba->link_state > LPFC_WARM_START))) { 9645 if (time_after(jiffies, timeout)) { 9646 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9647 spin_unlock_irqrestore(&phba->hbalock, 9648 drvr_flag); 9649 goto out_not_finished; 9650 } 9651 9652 /* Check if we took a mbox interrupt while we were 9653 polling */ 9654 if (((word0 & OWN_CHIP) != OWN_CHIP) 9655 && (evtctr != psli->slistat.mbox_event)) 9656 break; 9657 9658 if (i++ > 10) { 9659 spin_unlock_irqrestore(&phba->hbalock, 9660 drvr_flag); 9661 msleep(1); 9662 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9663 } 9664 9665 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9666 /* First copy command data */ 9667 word0 = *((uint32_t *)phba->mbox); 9668 word0 = le32_to_cpu(word0); 9669 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9670 MAILBOX_t *slimmb; 9671 uint32_t slimword0; 9672 /* Check real SLIM for any errors */ 9673 slimword0 = readl(phba->MBslimaddr); 9674 slimmb = (MAILBOX_t *) & slimword0; 9675 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9676 && slimmb->mbxStatus) { 9677 psli->sli_flag &= 9678 ~LPFC_SLI_ACTIVE; 9679 word0 = slimword0; 9680 } 9681 } 9682 } else { 9683 /* First copy command data */ 9684 word0 = readl(phba->MBslimaddr); 9685 } 9686 /* Read the HBA Host Attention Register */ 9687 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9688 spin_unlock_irqrestore(&phba->hbalock, 9689 drvr_flag); 9690 goto out_not_finished; 9691 } 9692 } 9693 9694 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9695 /* copy results back to user */ 9696 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9697 MAILBOX_CMD_SIZE); 9698 /* Copy the mailbox extension data */ 9699 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9700 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9701 pmbox->ctx_buf, 9702 pmbox->out_ext_byte_len); 9703 } 9704 } else { 9705 /* First copy command data */ 9706 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9707 MAILBOX_CMD_SIZE); 9708 /* Copy the mailbox extension data */ 9709 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9710 lpfc_memcpy_from_slim( 9711 pmbox->ctx_buf, 9712 phba->MBslimaddr + 9713 MAILBOX_HBA_EXT_OFFSET, 9714 pmbox->out_ext_byte_len); 9715 } 9716 } 9717 9718 writel(HA_MBATT, phba->HAregaddr); 9719 readl(phba->HAregaddr); /* flush */ 9720 9721 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9722 status = mbx->mbxStatus; 9723 } 9724 9725 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9726 return status; 9727 9728 out_not_finished: 9729 if (processing_queue) { 9730 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9731 lpfc_mbox_cmpl_put(phba, pmbox); 9732 } 9733 return MBX_NOT_FINISHED; 9734 } 9735 9736 /** 9737 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9738 * @phba: Pointer to HBA context object. 9739 * 9740 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9741 * the driver internal pending mailbox queue. It will then try to wait out the 9742 * possible outstanding mailbox command before return. 9743 * 9744 * Returns: 9745 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9746 * the outstanding mailbox command timed out. 9747 **/ 9748 static int 9749 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9750 { 9751 struct lpfc_sli *psli = &phba->sli; 9752 LPFC_MBOXQ_t *mboxq; 9753 int rc = 0; 9754 unsigned long timeout = 0; 9755 u32 sli_flag; 9756 u8 cmd, subsys, opcode; 9757 9758 /* Mark the asynchronous mailbox command posting as blocked */ 9759 spin_lock_irq(&phba->hbalock); 9760 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9761 /* Determine how long we might wait for the active mailbox 9762 * command to be gracefully completed by firmware. 9763 */ 9764 if (phba->sli.mbox_active) 9765 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9766 phba->sli.mbox_active) * 9767 1000) + jiffies; 9768 spin_unlock_irq(&phba->hbalock); 9769 9770 /* Make sure the mailbox is really active */ 9771 if (timeout) 9772 lpfc_sli4_process_missed_mbox_completions(phba); 9773 9774 /* Wait for the outstanding mailbox command to complete */ 9775 while (phba->sli.mbox_active) { 9776 /* Check active mailbox complete status every 2ms */ 9777 msleep(2); 9778 if (time_after(jiffies, timeout)) { 9779 /* Timeout, mark the outstanding cmd not complete */ 9780 9781 /* Sanity check sli.mbox_active has not completed or 9782 * cancelled from another context during last 2ms sleep, 9783 * so take hbalock to be sure before logging. 9784 */ 9785 spin_lock_irq(&phba->hbalock); 9786 if (phba->sli.mbox_active) { 9787 mboxq = phba->sli.mbox_active; 9788 cmd = mboxq->u.mb.mbxCommand; 9789 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9790 mboxq); 9791 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9792 mboxq); 9793 sli_flag = psli->sli_flag; 9794 spin_unlock_irq(&phba->hbalock); 9795 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9796 "2352 Mailbox command x%x " 9797 "(x%x/x%x) sli_flag x%x could " 9798 "not complete\n", 9799 cmd, subsys, opcode, 9800 sli_flag); 9801 } else { 9802 spin_unlock_irq(&phba->hbalock); 9803 } 9804 9805 rc = 1; 9806 break; 9807 } 9808 } 9809 9810 /* Can not cleanly block async mailbox command, fails it */ 9811 if (rc) { 9812 spin_lock_irq(&phba->hbalock); 9813 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9814 spin_unlock_irq(&phba->hbalock); 9815 } 9816 return rc; 9817 } 9818 9819 /** 9820 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9821 * @phba: Pointer to HBA context object. 9822 * 9823 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9824 * commands from the driver internal pending mailbox queue. It makes sure 9825 * that there is no outstanding mailbox command before resuming posting 9826 * asynchronous mailbox commands. If, for any reason, there is outstanding 9827 * mailbox command, it will try to wait it out before resuming asynchronous 9828 * mailbox command posting. 9829 **/ 9830 static void 9831 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9832 { 9833 struct lpfc_sli *psli = &phba->sli; 9834 9835 spin_lock_irq(&phba->hbalock); 9836 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9837 /* Asynchronous mailbox posting is not blocked, do nothing */ 9838 spin_unlock_irq(&phba->hbalock); 9839 return; 9840 } 9841 9842 /* Outstanding synchronous mailbox command is guaranteed to be done, 9843 * successful or timeout, after timing-out the outstanding mailbox 9844 * command shall always be removed, so just unblock posting async 9845 * mailbox command and resume 9846 */ 9847 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9848 spin_unlock_irq(&phba->hbalock); 9849 9850 /* wake up worker thread to post asynchronous mailbox command */ 9851 lpfc_worker_wake_up(phba); 9852 } 9853 9854 /** 9855 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9856 * @phba: Pointer to HBA context object. 9857 * @mboxq: Pointer to mailbox object. 9858 * 9859 * The function waits for the bootstrap mailbox register ready bit from 9860 * port for twice the regular mailbox command timeout value. 9861 * 9862 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9863 * MBXERR_ERROR - wait for bootstrap mailbox register timed out or port 9864 * is in an unrecoverable state. 9865 **/ 9866 static int 9867 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9868 { 9869 uint32_t db_ready; 9870 unsigned long timeout; 9871 struct lpfc_register bmbx_reg; 9872 struct lpfc_register portstat_reg = {-1}; 9873 9874 /* Sanity check - there is no point to wait if the port is in an 9875 * unrecoverable state. 9876 */ 9877 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 9878 LPFC_SLI_INTF_IF_TYPE_2) { 9879 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9880 &portstat_reg.word0) || 9881 lpfc_sli4_unrecoverable_port(&portstat_reg)) { 9882 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9883 "3858 Skipping bmbx ready because " 9884 "Port Status x%x\n", 9885 portstat_reg.word0); 9886 return MBXERR_ERROR; 9887 } 9888 } 9889 9890 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9891 * 1000) + jiffies; 9892 9893 do { 9894 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9895 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9896 if (!db_ready) 9897 mdelay(2); 9898 9899 if (time_after(jiffies, timeout)) 9900 return MBXERR_ERROR; 9901 } while (!db_ready); 9902 9903 return 0; 9904 } 9905 9906 /** 9907 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9908 * @phba: Pointer to HBA context object. 9909 * @mboxq: Pointer to mailbox object. 9910 * 9911 * The function posts a mailbox to the port. The mailbox is expected 9912 * to be comletely filled in and ready for the port to operate on it. 9913 * This routine executes a synchronous completion operation on the 9914 * mailbox by polling for its completion. 9915 * 9916 * The caller must not be holding any locks when calling this routine. 9917 * 9918 * Returns: 9919 * MBX_SUCCESS - mailbox posted successfully 9920 * Any of the MBX error values. 9921 **/ 9922 static int 9923 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9924 { 9925 int rc = MBX_SUCCESS; 9926 unsigned long iflag; 9927 uint32_t mcqe_status; 9928 uint32_t mbx_cmnd; 9929 struct lpfc_sli *psli = &phba->sli; 9930 struct lpfc_mqe *mb = &mboxq->u.mqe; 9931 struct lpfc_bmbx_create *mbox_rgn; 9932 struct dma_address *dma_address; 9933 9934 /* 9935 * Only one mailbox can be active to the bootstrap mailbox region 9936 * at a time and there is no queueing provided. 9937 */ 9938 spin_lock_irqsave(&phba->hbalock, iflag); 9939 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9940 spin_unlock_irqrestore(&phba->hbalock, iflag); 9941 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9942 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9943 "cannot issue Data: x%x x%x\n", 9944 mboxq->vport ? mboxq->vport->vpi : 0, 9945 mboxq->u.mb.mbxCommand, 9946 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9947 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9948 psli->sli_flag, MBX_POLL); 9949 return MBXERR_ERROR; 9950 } 9951 /* The server grabs the token and owns it until release */ 9952 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9953 phba->sli.mbox_active = mboxq; 9954 spin_unlock_irqrestore(&phba->hbalock, iflag); 9955 9956 /* wait for bootstrap mbox register for readyness */ 9957 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9958 if (rc) 9959 goto exit; 9960 /* 9961 * Initialize the bootstrap memory region to avoid stale data areas 9962 * in the mailbox post. Then copy the caller's mailbox contents to 9963 * the bmbx mailbox region. 9964 */ 9965 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9966 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9967 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9968 sizeof(struct lpfc_mqe)); 9969 9970 /* Post the high mailbox dma address to the port and wait for ready. */ 9971 dma_address = &phba->sli4_hba.bmbx.dma_address; 9972 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9973 9974 /* wait for bootstrap mbox register for hi-address write done */ 9975 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9976 if (rc) 9977 goto exit; 9978 9979 /* Post the low mailbox dma address to the port. */ 9980 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9981 9982 /* wait for bootstrap mbox register for low address write done */ 9983 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9984 if (rc) 9985 goto exit; 9986 9987 /* 9988 * Read the CQ to ensure the mailbox has completed. 9989 * If so, update the mailbox status so that the upper layers 9990 * can complete the request normally. 9991 */ 9992 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9993 sizeof(struct lpfc_mqe)); 9994 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9995 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9996 sizeof(struct lpfc_mcqe)); 9997 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9998 /* 9999 * When the CQE status indicates a failure and the mailbox status 10000 * indicates success then copy the CQE status into the mailbox status 10001 * (and prefix it with x4000). 10002 */ 10003 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 10004 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 10005 bf_set(lpfc_mqe_status, mb, 10006 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 10007 rc = MBXERR_ERROR; 10008 } else 10009 lpfc_sli4_swap_str(phba, mboxq); 10010 10011 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10012 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 10013 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 10014 " x%x x%x CQ: x%x x%x x%x x%x\n", 10015 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10016 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10017 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10018 bf_get(lpfc_mqe_status, mb), 10019 mb->un.mb_words[0], mb->un.mb_words[1], 10020 mb->un.mb_words[2], mb->un.mb_words[3], 10021 mb->un.mb_words[4], mb->un.mb_words[5], 10022 mb->un.mb_words[6], mb->un.mb_words[7], 10023 mb->un.mb_words[8], mb->un.mb_words[9], 10024 mb->un.mb_words[10], mb->un.mb_words[11], 10025 mb->un.mb_words[12], mboxq->mcqe.word0, 10026 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 10027 mboxq->mcqe.trailer); 10028 exit: 10029 /* We are holding the token, no needed for lock when release */ 10030 spin_lock_irqsave(&phba->hbalock, iflag); 10031 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10032 phba->sli.mbox_active = NULL; 10033 spin_unlock_irqrestore(&phba->hbalock, iflag); 10034 return rc; 10035 } 10036 10037 /** 10038 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 10039 * @phba: Pointer to HBA context object. 10040 * @mboxq: Pointer to mailbox object. 10041 * @flag: Flag indicating how the mailbox need to be processed. 10042 * 10043 * This function is called by discovery code and HBA management code to submit 10044 * a mailbox command to firmware with SLI-4 interface spec. 10045 * 10046 * Return codes the caller owns the mailbox command after the return of the 10047 * function. 10048 **/ 10049 static int 10050 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 10051 uint32_t flag) 10052 { 10053 struct lpfc_sli *psli = &phba->sli; 10054 unsigned long iflags; 10055 int rc; 10056 10057 /* dump from issue mailbox command if setup */ 10058 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 10059 10060 rc = lpfc_mbox_dev_check(phba); 10061 if (unlikely(rc)) { 10062 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10063 "(%d):2544 Mailbox command x%x (x%x/x%x) " 10064 "cannot issue Data: x%x x%x\n", 10065 mboxq->vport ? mboxq->vport->vpi : 0, 10066 mboxq->u.mb.mbxCommand, 10067 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10068 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10069 psli->sli_flag, flag); 10070 goto out_not_finished; 10071 } 10072 10073 /* Detect polling mode and jump to a handler */ 10074 if (!phba->sli4_hba.intr_enable) { 10075 if (flag == MBX_POLL) 10076 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10077 else 10078 rc = -EIO; 10079 if (rc != MBX_SUCCESS) 10080 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10081 "(%d):2541 Mailbox command x%x " 10082 "(x%x/x%x) failure: " 10083 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10084 "Data: x%x x%x\n", 10085 mboxq->vport ? mboxq->vport->vpi : 0, 10086 mboxq->u.mb.mbxCommand, 10087 lpfc_sli_config_mbox_subsys_get(phba, 10088 mboxq), 10089 lpfc_sli_config_mbox_opcode_get(phba, 10090 mboxq), 10091 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10092 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10093 bf_get(lpfc_mcqe_ext_status, 10094 &mboxq->mcqe), 10095 psli->sli_flag, flag); 10096 return rc; 10097 } else if (flag == MBX_POLL) { 10098 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10099 "(%d):2542 Try to issue mailbox command " 10100 "x%x (x%x/x%x) synchronously ahead of async " 10101 "mailbox command queue: x%x x%x\n", 10102 mboxq->vport ? mboxq->vport->vpi : 0, 10103 mboxq->u.mb.mbxCommand, 10104 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10105 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10106 psli->sli_flag, flag); 10107 /* Try to block the asynchronous mailbox posting */ 10108 rc = lpfc_sli4_async_mbox_block(phba); 10109 if (!rc) { 10110 /* Successfully blocked, now issue sync mbox cmd */ 10111 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10112 if (rc != MBX_SUCCESS) 10113 lpfc_printf_log(phba, KERN_WARNING, 10114 LOG_MBOX | LOG_SLI, 10115 "(%d):2597 Sync Mailbox command " 10116 "x%x (x%x/x%x) failure: " 10117 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10118 "Data: x%x x%x\n", 10119 mboxq->vport ? mboxq->vport->vpi : 0, 10120 mboxq->u.mb.mbxCommand, 10121 lpfc_sli_config_mbox_subsys_get(phba, 10122 mboxq), 10123 lpfc_sli_config_mbox_opcode_get(phba, 10124 mboxq), 10125 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10126 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10127 bf_get(lpfc_mcqe_ext_status, 10128 &mboxq->mcqe), 10129 psli->sli_flag, flag); 10130 /* Unblock the async mailbox posting afterward */ 10131 lpfc_sli4_async_mbox_unblock(phba); 10132 } 10133 return rc; 10134 } 10135 10136 /* Now, interrupt mode asynchronous mailbox command */ 10137 rc = lpfc_mbox_cmd_check(phba, mboxq); 10138 if (rc) { 10139 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10140 "(%d):2543 Mailbox command x%x (x%x/x%x) " 10141 "cannot issue Data: x%x x%x\n", 10142 mboxq->vport ? mboxq->vport->vpi : 0, 10143 mboxq->u.mb.mbxCommand, 10144 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10145 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10146 psli->sli_flag, flag); 10147 goto out_not_finished; 10148 } 10149 10150 /* Put the mailbox command to the driver internal FIFO */ 10151 psli->slistat.mbox_busy++; 10152 spin_lock_irqsave(&phba->hbalock, iflags); 10153 lpfc_mbox_put(phba, mboxq); 10154 spin_unlock_irqrestore(&phba->hbalock, iflags); 10155 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10156 "(%d):0354 Mbox cmd issue - Enqueue Data: " 10157 "x%x (x%x/x%x) x%x x%x x%x\n", 10158 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 10159 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 10160 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10161 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10162 phba->pport->port_state, 10163 psli->sli_flag, MBX_NOWAIT); 10164 /* Wake up worker thread to transport mailbox command from head */ 10165 lpfc_worker_wake_up(phba); 10166 10167 return MBX_BUSY; 10168 10169 out_not_finished: 10170 return MBX_NOT_FINISHED; 10171 } 10172 10173 /** 10174 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 10175 * @phba: Pointer to HBA context object. 10176 * 10177 * This function is called by worker thread to send a mailbox command to 10178 * SLI4 HBA firmware. 10179 * 10180 **/ 10181 int 10182 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 10183 { 10184 struct lpfc_sli *psli = &phba->sli; 10185 LPFC_MBOXQ_t *mboxq; 10186 int rc = MBX_SUCCESS; 10187 unsigned long iflags; 10188 struct lpfc_mqe *mqe; 10189 uint32_t mbx_cmnd; 10190 10191 /* Check interrupt mode before post async mailbox command */ 10192 if (unlikely(!phba->sli4_hba.intr_enable)) 10193 return MBX_NOT_FINISHED; 10194 10195 /* Check for mailbox command service token */ 10196 spin_lock_irqsave(&phba->hbalock, iflags); 10197 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 10198 spin_unlock_irqrestore(&phba->hbalock, iflags); 10199 return MBX_NOT_FINISHED; 10200 } 10201 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 10202 spin_unlock_irqrestore(&phba->hbalock, iflags); 10203 return MBX_NOT_FINISHED; 10204 } 10205 if (unlikely(phba->sli.mbox_active)) { 10206 spin_unlock_irqrestore(&phba->hbalock, iflags); 10207 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10208 "0384 There is pending active mailbox cmd\n"); 10209 return MBX_NOT_FINISHED; 10210 } 10211 /* Take the mailbox command service token */ 10212 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 10213 10214 /* Get the next mailbox command from head of queue */ 10215 mboxq = lpfc_mbox_get(phba); 10216 10217 /* If no more mailbox command waiting for post, we're done */ 10218 if (!mboxq) { 10219 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10220 spin_unlock_irqrestore(&phba->hbalock, iflags); 10221 return MBX_SUCCESS; 10222 } 10223 phba->sli.mbox_active = mboxq; 10224 spin_unlock_irqrestore(&phba->hbalock, iflags); 10225 10226 /* Check device readiness for posting mailbox command */ 10227 rc = lpfc_mbox_dev_check(phba); 10228 if (unlikely(rc)) 10229 /* Driver clean routine will clean up pending mailbox */ 10230 goto out_not_finished; 10231 10232 /* Prepare the mbox command to be posted */ 10233 mqe = &mboxq->u.mqe; 10234 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 10235 10236 /* Start timer for the mbox_tmo and log some mailbox post messages */ 10237 mod_timer(&psli->mbox_tmo, (jiffies + 10238 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 10239 10240 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10241 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 10242 "x%x x%x\n", 10243 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10244 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10245 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10246 phba->pport->port_state, psli->sli_flag); 10247 10248 if (mbx_cmnd != MBX_HEARTBEAT) { 10249 if (mboxq->vport) { 10250 lpfc_debugfs_disc_trc(mboxq->vport, 10251 LPFC_DISC_TRC_MBOX_VPORT, 10252 "MBOX Send vport: cmd:x%x mb:x%x x%x", 10253 mbx_cmnd, mqe->un.mb_words[0], 10254 mqe->un.mb_words[1]); 10255 } else { 10256 lpfc_debugfs_disc_trc(phba->pport, 10257 LPFC_DISC_TRC_MBOX, 10258 "MBOX Send: cmd:x%x mb:x%x x%x", 10259 mbx_cmnd, mqe->un.mb_words[0], 10260 mqe->un.mb_words[1]); 10261 } 10262 } 10263 psli->slistat.mbox_cmd++; 10264 10265 /* Post the mailbox command to the port */ 10266 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10267 if (rc != MBX_SUCCESS) { 10268 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10269 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10270 "cannot issue Data: x%x x%x\n", 10271 mboxq->vport ? mboxq->vport->vpi : 0, 10272 mboxq->u.mb.mbxCommand, 10273 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10274 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10275 psli->sli_flag, MBX_NOWAIT); 10276 goto out_not_finished; 10277 } 10278 10279 return rc; 10280 10281 out_not_finished: 10282 spin_lock_irqsave(&phba->hbalock, iflags); 10283 if (phba->sli.mbox_active) { 10284 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10285 __lpfc_mbox_cmpl_put(phba, mboxq); 10286 /* Release the token */ 10287 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10288 phba->sli.mbox_active = NULL; 10289 } 10290 spin_unlock_irqrestore(&phba->hbalock, iflags); 10291 10292 return MBX_NOT_FINISHED; 10293 } 10294 10295 /** 10296 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10297 * @phba: Pointer to HBA context object. 10298 * @pmbox: Pointer to mailbox object. 10299 * @flag: Flag indicating how the mailbox need to be processed. 10300 * 10301 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10302 * the API jump table function pointer from the lpfc_hba struct. 10303 * 10304 * Return codes the caller owns the mailbox command after the return of the 10305 * function. 10306 **/ 10307 int 10308 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10309 { 10310 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10311 } 10312 10313 /** 10314 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10315 * @phba: The hba struct for which this call is being executed. 10316 * @dev_grp: The HBA PCI-Device group number. 10317 * 10318 * This routine sets up the mbox interface API function jump table in @phba 10319 * struct. 10320 * Returns: 0 - success, -ENODEV - failure. 10321 **/ 10322 int 10323 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10324 { 10325 10326 switch (dev_grp) { 10327 case LPFC_PCI_DEV_LP: 10328 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10329 phba->lpfc_sli_handle_slow_ring_event = 10330 lpfc_sli_handle_slow_ring_event_s3; 10331 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10332 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10333 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10334 break; 10335 case LPFC_PCI_DEV_OC: 10336 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10337 phba->lpfc_sli_handle_slow_ring_event = 10338 lpfc_sli_handle_slow_ring_event_s4; 10339 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10340 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10341 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10342 break; 10343 default: 10344 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10345 "1420 Invalid HBA PCI-device group: 0x%x\n", 10346 dev_grp); 10347 return -ENODEV; 10348 } 10349 return 0; 10350 } 10351 10352 /** 10353 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10354 * @phba: Pointer to HBA context object. 10355 * @pring: Pointer to driver SLI ring object. 10356 * @piocb: Pointer to address of newly added command iocb. 10357 * 10358 * This function is called with hbalock held for SLI3 ports or 10359 * the ring lock held for SLI4 ports to add a command 10360 * iocb to the txq when SLI layer cannot submit the command iocb 10361 * to the ring. 10362 **/ 10363 void 10364 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10365 struct lpfc_iocbq *piocb) 10366 { 10367 if (phba->sli_rev == LPFC_SLI_REV4) 10368 lockdep_assert_held(&pring->ring_lock); 10369 else 10370 lockdep_assert_held(&phba->hbalock); 10371 /* Insert the caller's iocb in the txq tail for later processing. */ 10372 list_add_tail(&piocb->list, &pring->txq); 10373 } 10374 10375 /** 10376 * lpfc_sli_next_iocb - Get the next iocb in the txq 10377 * @phba: Pointer to HBA context object. 10378 * @pring: Pointer to driver SLI ring object. 10379 * @piocb: Pointer to address of newly added command iocb. 10380 * 10381 * This function is called with hbalock held before a new 10382 * iocb is submitted to the firmware. This function checks 10383 * txq to flush the iocbs in txq to Firmware before 10384 * submitting new iocbs to the Firmware. 10385 * If there are iocbs in the txq which need to be submitted 10386 * to firmware, lpfc_sli_next_iocb returns the first element 10387 * of the txq after dequeuing it from txq. 10388 * If there is no iocb in the txq then the function will return 10389 * *piocb and *piocb is set to NULL. Caller needs to check 10390 * *piocb to find if there are more commands in the txq. 10391 **/ 10392 static struct lpfc_iocbq * 10393 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10394 struct lpfc_iocbq **piocb) 10395 { 10396 struct lpfc_iocbq * nextiocb; 10397 10398 lockdep_assert_held(&phba->hbalock); 10399 10400 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10401 if (!nextiocb) { 10402 nextiocb = *piocb; 10403 *piocb = NULL; 10404 } 10405 10406 return nextiocb; 10407 } 10408 10409 /** 10410 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10411 * @phba: Pointer to HBA context object. 10412 * @ring_number: SLI ring number to issue iocb on. 10413 * @piocb: Pointer to command iocb. 10414 * @flag: Flag indicating if this command can be put into txq. 10415 * 10416 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10417 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10418 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10419 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10420 * this function allows only iocbs for posting buffers. This function finds 10421 * next available slot in the command ring and posts the command to the 10422 * available slot and writes the port attention register to request HBA start 10423 * processing new iocb. If there is no slot available in the ring and 10424 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10425 * the function returns IOCB_BUSY. 10426 * 10427 * This function is called with hbalock held. The function will return success 10428 * after it successfully submit the iocb to firmware or after adding to the 10429 * txq. 10430 **/ 10431 static int 10432 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10433 struct lpfc_iocbq *piocb, uint32_t flag) 10434 { 10435 struct lpfc_iocbq *nextiocb; 10436 IOCB_t *iocb; 10437 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10438 10439 lockdep_assert_held(&phba->hbalock); 10440 10441 if (piocb->cmd_cmpl && (!piocb->vport) && 10442 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10443 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10444 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10445 "1807 IOCB x%x failed. No vport\n", 10446 piocb->iocb.ulpCommand); 10447 dump_stack(); 10448 return IOCB_ERROR; 10449 } 10450 10451 10452 /* If the PCI channel is in offline state, do not post iocbs. */ 10453 if (unlikely(pci_channel_offline(phba->pcidev))) 10454 return IOCB_ERROR; 10455 10456 /* If HBA has a deferred error attention, fail the iocb. */ 10457 if (unlikely(phba->hba_flag & DEFER_ERATT)) 10458 return IOCB_ERROR; 10459 10460 /* 10461 * We should never get an IOCB if we are in a < LINK_DOWN state 10462 */ 10463 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10464 return IOCB_ERROR; 10465 10466 /* 10467 * Check to see if we are blocking IOCB processing because of a 10468 * outstanding event. 10469 */ 10470 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10471 goto iocb_busy; 10472 10473 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10474 /* 10475 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10476 * can be issued if the link is not up. 10477 */ 10478 switch (piocb->iocb.ulpCommand) { 10479 case CMD_QUE_RING_BUF_CN: 10480 case CMD_QUE_RING_BUF64_CN: 10481 /* 10482 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10483 * completion, cmd_cmpl MUST be 0. 10484 */ 10485 if (piocb->cmd_cmpl) 10486 piocb->cmd_cmpl = NULL; 10487 fallthrough; 10488 case CMD_CREATE_XRI_CR: 10489 case CMD_CLOSE_XRI_CN: 10490 case CMD_CLOSE_XRI_CX: 10491 break; 10492 default: 10493 goto iocb_busy; 10494 } 10495 10496 /* 10497 * For FCP commands, we must be in a state where we can process link 10498 * attention events. 10499 */ 10500 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10501 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10502 goto iocb_busy; 10503 } 10504 10505 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10506 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10507 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10508 10509 if (iocb) 10510 lpfc_sli_update_ring(phba, pring); 10511 else 10512 lpfc_sli_update_full_ring(phba, pring); 10513 10514 if (!piocb) 10515 return IOCB_SUCCESS; 10516 10517 goto out_busy; 10518 10519 iocb_busy: 10520 pring->stats.iocb_cmd_delay++; 10521 10522 out_busy: 10523 10524 if (!(flag & SLI_IOCB_RET_IOCB)) { 10525 __lpfc_sli_ringtx_put(phba, pring, piocb); 10526 return IOCB_SUCCESS; 10527 } 10528 10529 return IOCB_BUSY; 10530 } 10531 10532 /** 10533 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10534 * @phba: Pointer to HBA context object. 10535 * @ring_number: SLI ring number to issue wqe on. 10536 * @piocb: Pointer to command iocb. 10537 * @flag: Flag indicating if this command can be put into txq. 10538 * 10539 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10540 * send an iocb command to an HBA with SLI-3 interface spec. 10541 * 10542 * This function takes the hbalock before invoking the lockless version. 10543 * The function will return success after it successfully submit the wqe to 10544 * firmware or after adding to the txq. 10545 **/ 10546 static int 10547 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10548 struct lpfc_iocbq *piocb, uint32_t flag) 10549 { 10550 unsigned long iflags; 10551 int rc; 10552 10553 spin_lock_irqsave(&phba->hbalock, iflags); 10554 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10555 spin_unlock_irqrestore(&phba->hbalock, iflags); 10556 10557 return rc; 10558 } 10559 10560 /** 10561 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10562 * @phba: Pointer to HBA context object. 10563 * @ring_number: SLI ring number to issue wqe on. 10564 * @piocb: Pointer to command iocb. 10565 * @flag: Flag indicating if this command can be put into txq. 10566 * 10567 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10568 * an wqe command to an HBA with SLI-4 interface spec. 10569 * 10570 * This function is a lockless version. The function will return success 10571 * after it successfully submit the wqe to firmware or after adding to the 10572 * txq. 10573 **/ 10574 static int 10575 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10576 struct lpfc_iocbq *piocb, uint32_t flag) 10577 { 10578 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf; 10579 10580 lpfc_prep_embed_io(phba, lpfc_cmd); 10581 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10582 } 10583 10584 void 10585 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10586 { 10587 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10588 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10589 struct sli4_sge *sgl; 10590 10591 /* 128 byte wqe support here */ 10592 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10593 10594 if (phba->fcp_embed_io) { 10595 struct fcp_cmnd *fcp_cmnd; 10596 u32 *ptr; 10597 10598 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10599 10600 /* Word 0-2 - FCP_CMND */ 10601 wqe->generic.bde.tus.f.bdeFlags = 10602 BUFF_TYPE_BDE_IMMED; 10603 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10604 wqe->generic.bde.addrHigh = 0; 10605 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10606 10607 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10608 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10609 10610 /* Word 22-29 FCP CMND Payload */ 10611 ptr = &wqe->words[22]; 10612 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10613 } else { 10614 /* Word 0-2 - Inline BDE */ 10615 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10616 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10617 wqe->generic.bde.addrHigh = sgl->addr_hi; 10618 wqe->generic.bde.addrLow = sgl->addr_lo; 10619 10620 /* Word 10 */ 10621 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10622 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10623 } 10624 10625 /* add the VMID tags as per switch response */ 10626 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10627 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) { 10628 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10629 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10630 (piocb->vmid_tag.cs_ctl_vmid)); 10631 } else if (phba->cfg_vmid_app_header) { 10632 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10633 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10634 wqe->words[31] = piocb->vmid_tag.app_id; 10635 } 10636 } 10637 } 10638 10639 /** 10640 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10641 * @phba: Pointer to HBA context object. 10642 * @ring_number: SLI ring number to issue iocb on. 10643 * @piocb: Pointer to command iocb. 10644 * @flag: Flag indicating if this command can be put into txq. 10645 * 10646 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10647 * an iocb command to an HBA with SLI-4 interface spec. 10648 * 10649 * This function is called with ringlock held. The function will return success 10650 * after it successfully submit the iocb to firmware or after adding to the 10651 * txq. 10652 **/ 10653 static int 10654 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10655 struct lpfc_iocbq *piocb, uint32_t flag) 10656 { 10657 struct lpfc_sglq *sglq; 10658 union lpfc_wqe128 *wqe; 10659 struct lpfc_queue *wq; 10660 struct lpfc_sli_ring *pring; 10661 u32 ulp_command = get_job_cmnd(phba, piocb); 10662 10663 /* Get the WQ */ 10664 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10665 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10666 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10667 } else { 10668 wq = phba->sli4_hba.els_wq; 10669 } 10670 10671 /* Get corresponding ring */ 10672 pring = wq->pring; 10673 10674 /* 10675 * The WQE can be either 64 or 128 bytes, 10676 */ 10677 10678 lockdep_assert_held(&pring->ring_lock); 10679 wqe = &piocb->wqe; 10680 if (piocb->sli4_xritag == NO_XRI) { 10681 if (ulp_command == CMD_ABORT_XRI_CX) 10682 sglq = NULL; 10683 else { 10684 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10685 if (!sglq) { 10686 if (!(flag & SLI_IOCB_RET_IOCB)) { 10687 __lpfc_sli_ringtx_put(phba, 10688 pring, 10689 piocb); 10690 return IOCB_SUCCESS; 10691 } else { 10692 return IOCB_BUSY; 10693 } 10694 } 10695 } 10696 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10697 /* These IO's already have an XRI and a mapped sgl. */ 10698 sglq = NULL; 10699 } 10700 else { 10701 /* 10702 * This is a continuation of a commandi,(CX) so this 10703 * sglq is on the active list 10704 */ 10705 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10706 if (!sglq) 10707 return IOCB_ERROR; 10708 } 10709 10710 if (sglq) { 10711 piocb->sli4_lxritag = sglq->sli4_lxritag; 10712 piocb->sli4_xritag = sglq->sli4_xritag; 10713 10714 /* ABTS sent by initiator to CT exchange, the 10715 * RX_ID field will be filled with the newly 10716 * allocated responder XRI. 10717 */ 10718 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10719 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10720 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10721 piocb->sli4_xritag); 10722 10723 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10724 piocb->sli4_xritag); 10725 10726 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10727 return IOCB_ERROR; 10728 } 10729 10730 if (lpfc_sli4_wq_put(wq, wqe)) 10731 return IOCB_ERROR; 10732 10733 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10734 10735 return 0; 10736 } 10737 10738 /* 10739 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10740 * 10741 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10742 * or IOCB for sli-3 function. 10743 * pointer from the lpfc_hba struct. 10744 * 10745 * Return codes: 10746 * IOCB_ERROR - Error 10747 * IOCB_SUCCESS - Success 10748 * IOCB_BUSY - Busy 10749 **/ 10750 int 10751 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10752 struct lpfc_iocbq *piocb, uint32_t flag) 10753 { 10754 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10755 } 10756 10757 /* 10758 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10759 * 10760 * This routine wraps the actual lockless version for issusing IOCB function 10761 * pointer from the lpfc_hba struct. 10762 * 10763 * Return codes: 10764 * IOCB_ERROR - Error 10765 * IOCB_SUCCESS - Success 10766 * IOCB_BUSY - Busy 10767 **/ 10768 int 10769 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10770 struct lpfc_iocbq *piocb, uint32_t flag) 10771 { 10772 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10773 } 10774 10775 static void 10776 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10777 struct lpfc_vport *vport, 10778 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10779 u32 elscmd, u8 tmo, u8 expect_rsp) 10780 { 10781 struct lpfc_hba *phba = vport->phba; 10782 IOCB_t *cmd; 10783 10784 cmd = &cmdiocbq->iocb; 10785 memset(cmd, 0, sizeof(*cmd)); 10786 10787 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10788 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10789 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10790 10791 if (expect_rsp) { 10792 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10793 cmd->un.elsreq64.remoteID = did; /* DID */ 10794 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10795 cmd->ulpTimeout = tmo; 10796 } else { 10797 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10798 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10799 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10800 cmd->ulpPU = PARM_NPIV_DID; 10801 } 10802 cmd->ulpBdeCount = 1; 10803 cmd->ulpLe = 1; 10804 cmd->ulpClass = CLASS3; 10805 10806 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10807 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10808 if (expect_rsp) { 10809 cmd->un.elsreq64.myID = vport->fc_myDID; 10810 10811 /* For ELS_REQUEST64_CR, use the VPI by default */ 10812 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10813 } 10814 10815 cmd->ulpCt_h = 0; 10816 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10817 if (elscmd == ELS_CMD_ECHO) 10818 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10819 else 10820 cmd->ulpCt_l = 1; /* context = VPI */ 10821 } 10822 } 10823 10824 static void 10825 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10826 struct lpfc_vport *vport, 10827 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10828 u32 elscmd, u8 tmo, u8 expect_rsp) 10829 { 10830 struct lpfc_hba *phba = vport->phba; 10831 union lpfc_wqe128 *wqe; 10832 struct ulp_bde64_le *bde; 10833 u8 els_id; 10834 10835 wqe = &cmdiocbq->wqe; 10836 memset(wqe, 0, sizeof(*wqe)); 10837 10838 /* Word 0 - 2 BDE */ 10839 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10840 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10841 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10842 bde->type_size = cpu_to_le32(cmd_size); 10843 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10844 10845 if (expect_rsp) { 10846 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE); 10847 10848 /* Transfer length */ 10849 wqe->els_req.payload_len = cmd_size; 10850 wqe->els_req.max_response_payload_len = FCELSSIZE; 10851 10852 /* DID */ 10853 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10854 10855 /* Word 11 - ELS_ID */ 10856 switch (elscmd) { 10857 case ELS_CMD_PLOGI: 10858 els_id = LPFC_ELS_ID_PLOGI; 10859 break; 10860 case ELS_CMD_FLOGI: 10861 els_id = LPFC_ELS_ID_FLOGI; 10862 break; 10863 case ELS_CMD_LOGO: 10864 els_id = LPFC_ELS_ID_LOGO; 10865 break; 10866 case ELS_CMD_FDISC: 10867 if (!vport->fc_myDID) { 10868 els_id = LPFC_ELS_ID_FDISC; 10869 break; 10870 } 10871 fallthrough; 10872 default: 10873 els_id = LPFC_ELS_ID_DEFAULT; 10874 break; 10875 } 10876 10877 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10878 } else { 10879 /* DID */ 10880 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10881 10882 /* Transfer length */ 10883 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10884 10885 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10886 CMD_XMIT_ELS_RSP64_WQE); 10887 } 10888 10889 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10890 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10891 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10892 10893 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10894 * For SLI4, since the driver controls VPIs we also want to include 10895 * all ELS pt2pt protocol traffic as well. 10896 */ 10897 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10898 (vport->fc_flag & FC_PT2PT)) { 10899 if (expect_rsp) { 10900 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10901 10902 /* For ELS_REQUEST64_WQE, use the VPI by default */ 10903 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10904 phba->vpi_ids[vport->vpi]); 10905 } 10906 10907 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10908 if (elscmd == ELS_CMD_ECHO) 10909 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10910 else 10911 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10912 } 10913 } 10914 10915 void 10916 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10917 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10918 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10919 u8 expect_rsp) 10920 { 10921 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10922 elscmd, tmo, expect_rsp); 10923 } 10924 10925 static void 10926 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10927 u16 rpi, u32 num_entry, u8 tmo) 10928 { 10929 IOCB_t *cmd; 10930 10931 cmd = &cmdiocbq->iocb; 10932 memset(cmd, 0, sizeof(*cmd)); 10933 10934 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10935 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10936 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10937 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10938 10939 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10940 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10941 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10942 10943 cmd->ulpContext = rpi; 10944 cmd->ulpClass = CLASS3; 10945 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10946 cmd->ulpBdeCount = 1; 10947 cmd->ulpLe = 1; 10948 cmd->ulpOwner = OWN_CHIP; 10949 cmd->ulpTimeout = tmo; 10950 } 10951 10952 static void 10953 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10954 u16 rpi, u32 num_entry, u8 tmo) 10955 { 10956 union lpfc_wqe128 *cmdwqe; 10957 struct ulp_bde64_le *bde, *bpl; 10958 u32 xmit_len = 0, total_len = 0, size, type, i; 10959 10960 cmdwqe = &cmdiocbq->wqe; 10961 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10962 10963 /* Calculate total_len and xmit_len */ 10964 bpl = (struct ulp_bde64_le *)bmp->virt; 10965 for (i = 0; i < num_entry; i++) { 10966 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10967 total_len += size; 10968 } 10969 for (i = 0; i < num_entry; i++) { 10970 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10971 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10972 if (type != ULP_BDE64_TYPE_BDE_64) 10973 break; 10974 xmit_len += size; 10975 } 10976 10977 /* Words 0 - 2 */ 10978 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10979 bde->addr_low = bpl->addr_low; 10980 bde->addr_high = bpl->addr_high; 10981 bde->type_size = cpu_to_le32(xmit_len); 10982 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10983 10984 /* Word 3 */ 10985 cmdwqe->gen_req.request_payload_len = xmit_len; 10986 10987 /* Word 5 */ 10988 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 10989 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 10990 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 10991 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 10992 10993 /* Word 6 */ 10994 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 10995 10996 /* Word 7 */ 10997 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 10998 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 10999 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 11000 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 11001 11002 /* Word 12 */ 11003 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 11004 } 11005 11006 void 11007 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11008 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 11009 { 11010 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 11011 } 11012 11013 static void 11014 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 11015 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11016 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11017 { 11018 IOCB_t *icmd; 11019 11020 icmd = &cmdiocbq->iocb; 11021 memset(icmd, 0, sizeof(*icmd)); 11022 11023 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 11024 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 11025 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 11026 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 11027 icmd->un.xseq64.w5.hcsw.Fctl = LA; 11028 if (last_seq) 11029 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 11030 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 11031 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 11032 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 11033 11034 icmd->ulpBdeCount = 1; 11035 icmd->ulpLe = 1; 11036 icmd->ulpClass = CLASS3; 11037 11038 switch (cr_cx_cmd) { 11039 case CMD_XMIT_SEQUENCE64_CR: 11040 icmd->ulpContext = rpi; 11041 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 11042 break; 11043 case CMD_XMIT_SEQUENCE64_CX: 11044 icmd->ulpContext = ox_id; 11045 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 11046 break; 11047 default: 11048 break; 11049 } 11050 } 11051 11052 static void 11053 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 11054 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11055 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11056 { 11057 union lpfc_wqe128 *wqe; 11058 struct ulp_bde64 *bpl; 11059 11060 wqe = &cmdiocbq->wqe; 11061 memset(wqe, 0, sizeof(*wqe)); 11062 11063 /* Words 0 - 2 */ 11064 bpl = (struct ulp_bde64 *)bmp->virt; 11065 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 11066 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 11067 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 11068 11069 /* Word 5 */ 11070 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 11071 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 11072 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 11073 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 11074 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 11075 11076 /* Word 6 */ 11077 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 11078 11079 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 11080 CMD_XMIT_SEQUENCE64_WQE); 11081 11082 /* Word 7 */ 11083 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 11084 11085 /* Word 9 */ 11086 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 11087 11088 /* Word 12 */ 11089 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) 11090 wqe->xmit_sequence.xmit_len = full_size; 11091 else 11092 wqe->xmit_sequence.xmit_len = 11093 wqe->xmit_sequence.bde.tus.f.bdeSize; 11094 } 11095 11096 void 11097 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11098 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11099 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11100 { 11101 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 11102 rctl, last_seq, cr_cx_cmd); 11103 } 11104 11105 static void 11106 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11107 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11108 bool wqec) 11109 { 11110 IOCB_t *icmd = NULL; 11111 11112 icmd = &cmdiocbq->iocb; 11113 memset(icmd, 0, sizeof(*icmd)); 11114 11115 /* Word 5 */ 11116 icmd->un.acxri.abortContextTag = ulp_context; 11117 icmd->un.acxri.abortIoTag = iotag; 11118 11119 if (ia) { 11120 /* Word 7 */ 11121 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 11122 } else { 11123 /* Word 3 */ 11124 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 11125 11126 /* Word 7 */ 11127 icmd->ulpClass = ulp_class; 11128 icmd->ulpCommand = CMD_ABORT_XRI_CN; 11129 } 11130 11131 /* Word 7 */ 11132 icmd->ulpLe = 1; 11133 } 11134 11135 static void 11136 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11137 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11138 bool wqec) 11139 { 11140 union lpfc_wqe128 *wqe; 11141 11142 wqe = &cmdiocbq->wqe; 11143 memset(wqe, 0, sizeof(*wqe)); 11144 11145 /* Word 3 */ 11146 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 11147 if (ia) 11148 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 11149 else 11150 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 11151 11152 /* Word 7 */ 11153 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 11154 11155 /* Word 8 */ 11156 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 11157 11158 /* Word 9 */ 11159 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 11160 11161 /* Word 10 */ 11162 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 11163 11164 /* Word 11 */ 11165 if (wqec) 11166 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 11167 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 11168 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11169 } 11170 11171 void 11172 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11173 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 11174 bool ia, bool wqec) 11175 { 11176 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 11177 cqid, ia, wqec); 11178 } 11179 11180 /** 11181 * lpfc_sli_api_table_setup - Set up sli api function jump table 11182 * @phba: The hba struct for which this call is being executed. 11183 * @dev_grp: The HBA PCI-Device group number. 11184 * 11185 * This routine sets up the SLI interface API function jump table in @phba 11186 * struct. 11187 * Returns: 0 - success, -ENODEV - failure. 11188 **/ 11189 int 11190 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11191 { 11192 11193 switch (dev_grp) { 11194 case LPFC_PCI_DEV_LP: 11195 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11196 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11197 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11198 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 11199 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 11200 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 11201 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 11202 break; 11203 case LPFC_PCI_DEV_OC: 11204 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11205 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11206 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11207 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 11208 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 11209 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 11210 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 11211 break; 11212 default: 11213 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11214 "1419 Invalid HBA PCI-device group: 0x%x\n", 11215 dev_grp); 11216 return -ENODEV; 11217 } 11218 return 0; 11219 } 11220 11221 /** 11222 * lpfc_sli4_calc_ring - Calculates which ring to use 11223 * @phba: Pointer to HBA context object. 11224 * @piocb: Pointer to command iocb. 11225 * 11226 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11227 * hba_wqidx, thus we need to calculate the corresponding ring. 11228 * Since ABORTS must go on the same WQ of the command they are 11229 * aborting, we use command's hba_wqidx. 11230 */ 11231 struct lpfc_sli_ring * 11232 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11233 { 11234 struct lpfc_io_buf *lpfc_cmd; 11235 11236 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11237 if (unlikely(!phba->sli4_hba.hdwq)) 11238 return NULL; 11239 /* 11240 * for abort iocb hba_wqidx should already 11241 * be setup based on what work queue we used. 11242 */ 11243 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 11244 lpfc_cmd = piocb->io_buf; 11245 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11246 } 11247 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11248 } else { 11249 if (unlikely(!phba->sli4_hba.els_wq)) 11250 return NULL; 11251 piocb->hba_wqidx = 0; 11252 return phba->sli4_hba.els_wq->pring; 11253 } 11254 } 11255 11256 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq) 11257 { 11258 struct lpfc_hba *phba = eq->phba; 11259 11260 /* 11261 * Unlocking an irq is one of the entry point to check 11262 * for re-schedule, but we are good for io submission 11263 * path as midlayer does a get_cpu to glue us in. Flush 11264 * out the invalidate queue so we can see the updated 11265 * value for flag. 11266 */ 11267 smp_rmb(); 11268 11269 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 11270 /* We will not likely get the completion for the caller 11271 * during this iteration but i guess that's fine. 11272 * Future io's coming on this eq should be able to 11273 * pick it up. As for the case of single io's, they 11274 * will be handled through a sched from polling timer 11275 * function which is currently triggered every 1msec. 11276 */ 11277 lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM, 11278 LPFC_QUEUE_WORK); 11279 } 11280 11281 /** 11282 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11283 * @phba: Pointer to HBA context object. 11284 * @ring_number: Ring number 11285 * @piocb: Pointer to command iocb. 11286 * @flag: Flag indicating if this command can be put into txq. 11287 * 11288 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11289 * function. This function gets the hbalock and calls 11290 * __lpfc_sli_issue_iocb function and will return the error returned 11291 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11292 * functions which do not hold hbalock. 11293 **/ 11294 int 11295 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11296 struct lpfc_iocbq *piocb, uint32_t flag) 11297 { 11298 struct lpfc_sli_ring *pring; 11299 struct lpfc_queue *eq; 11300 unsigned long iflags; 11301 int rc; 11302 11303 /* If the PCI channel is in offline state, do not post iocbs. */ 11304 if (unlikely(pci_channel_offline(phba->pcidev))) 11305 return IOCB_ERROR; 11306 11307 if (phba->sli_rev == LPFC_SLI_REV4) { 11308 lpfc_sli_prep_wqe(phba, piocb); 11309 11310 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11311 11312 pring = lpfc_sli4_calc_ring(phba, piocb); 11313 if (unlikely(pring == NULL)) 11314 return IOCB_ERROR; 11315 11316 spin_lock_irqsave(&pring->ring_lock, iflags); 11317 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11318 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11319 11320 lpfc_sli4_poll_eq(eq); 11321 } else { 11322 /* For now, SLI2/3 will still use hbalock */ 11323 spin_lock_irqsave(&phba->hbalock, iflags); 11324 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11325 spin_unlock_irqrestore(&phba->hbalock, iflags); 11326 } 11327 return rc; 11328 } 11329 11330 /** 11331 * lpfc_extra_ring_setup - Extra ring setup function 11332 * @phba: Pointer to HBA context object. 11333 * 11334 * This function is called while driver attaches with the 11335 * HBA to setup the extra ring. The extra ring is used 11336 * only when driver needs to support target mode functionality 11337 * or IP over FC functionalities. 11338 * 11339 * This function is called with no lock held. SLI3 only. 11340 **/ 11341 static int 11342 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11343 { 11344 struct lpfc_sli *psli; 11345 struct lpfc_sli_ring *pring; 11346 11347 psli = &phba->sli; 11348 11349 /* Adjust cmd/rsp ring iocb entries more evenly */ 11350 11351 /* Take some away from the FCP ring */ 11352 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11353 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11354 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11355 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11356 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11357 11358 /* and give them to the extra ring */ 11359 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11360 11361 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11362 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11363 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11364 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11365 11366 /* Setup default profile for this ring */ 11367 pring->iotag_max = 4096; 11368 pring->num_mask = 1; 11369 pring->prt[0].profile = 0; /* Mask 0 */ 11370 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11371 pring->prt[0].type = phba->cfg_multi_ring_type; 11372 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11373 return 0; 11374 } 11375 11376 static void 11377 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11378 struct lpfc_nodelist *ndlp) 11379 { 11380 unsigned long iflags; 11381 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11382 11383 /* Hold a node reference for outstanding queued work */ 11384 if (!lpfc_nlp_get(ndlp)) 11385 return; 11386 11387 spin_lock_irqsave(&phba->hbalock, iflags); 11388 if (!list_empty(&evtp->evt_listp)) { 11389 spin_unlock_irqrestore(&phba->hbalock, iflags); 11390 lpfc_nlp_put(ndlp); 11391 return; 11392 } 11393 11394 evtp->evt_arg1 = ndlp; 11395 evtp->evt = LPFC_EVT_RECOVER_PORT; 11396 list_add_tail(&evtp->evt_listp, &phba->work_list); 11397 spin_unlock_irqrestore(&phba->hbalock, iflags); 11398 11399 lpfc_worker_wake_up(phba); 11400 } 11401 11402 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11403 * @phba: Pointer to HBA context object. 11404 * @iocbq: Pointer to iocb object. 11405 * 11406 * The async_event handler calls this routine when it receives 11407 * an ASYNC_STATUS_CN event from the port. The port generates 11408 * this event when an Abort Sequence request to an rport fails 11409 * twice in succession. The abort could be originated by the 11410 * driver or by the port. The ABTS could have been for an ELS 11411 * or FCP IO. The port only generates this event when an ABTS 11412 * fails to complete after one retry. 11413 */ 11414 static void 11415 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11416 struct lpfc_iocbq *iocbq) 11417 { 11418 struct lpfc_nodelist *ndlp = NULL; 11419 uint16_t rpi = 0, vpi = 0; 11420 struct lpfc_vport *vport = NULL; 11421 11422 /* The rpi in the ulpContext is vport-sensitive. */ 11423 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11424 rpi = iocbq->iocb.ulpContext; 11425 11426 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11427 "3092 Port generated ABTS async event " 11428 "on vpi %d rpi %d status 0x%x\n", 11429 vpi, rpi, iocbq->iocb.ulpStatus); 11430 11431 vport = lpfc_find_vport_by_vpid(phba, vpi); 11432 if (!vport) 11433 goto err_exit; 11434 ndlp = lpfc_findnode_rpi(vport, rpi); 11435 if (!ndlp) 11436 goto err_exit; 11437 11438 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11439 lpfc_sli_abts_recover_port(vport, ndlp); 11440 return; 11441 11442 err_exit: 11443 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11444 "3095 Event Context not found, no " 11445 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11446 vpi, rpi, iocbq->iocb.ulpStatus, 11447 iocbq->iocb.ulpContext); 11448 } 11449 11450 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11451 * @phba: pointer to HBA context object. 11452 * @ndlp: nodelist pointer for the impacted rport. 11453 * @axri: pointer to the wcqe containing the failed exchange. 11454 * 11455 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11456 * port. The port generates this event when an abort exchange request to an 11457 * rport fails twice in succession with no reply. The abort could be originated 11458 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11459 */ 11460 void 11461 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11462 struct lpfc_nodelist *ndlp, 11463 struct sli4_wcqe_xri_aborted *axri) 11464 { 11465 uint32_t ext_status = 0; 11466 11467 if (!ndlp) { 11468 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11469 "3115 Node Context not found, driver " 11470 "ignoring abts err event\n"); 11471 return; 11472 } 11473 11474 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11475 "3116 Port generated FCP XRI ABORT event on " 11476 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11477 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11478 bf_get(lpfc_wcqe_xa_xri, axri), 11479 bf_get(lpfc_wcqe_xa_status, axri), 11480 axri->parameter); 11481 11482 /* 11483 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11484 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11485 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11486 */ 11487 ext_status = axri->parameter & IOERR_PARAM_MASK; 11488 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11489 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11490 lpfc_sli_post_recovery_event(phba, ndlp); 11491 } 11492 11493 /** 11494 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11495 * @phba: Pointer to HBA context object. 11496 * @pring: Pointer to driver SLI ring object. 11497 * @iocbq: Pointer to iocb object. 11498 * 11499 * This function is called by the slow ring event handler 11500 * function when there is an ASYNC event iocb in the ring. 11501 * This function is called with no lock held. 11502 * Currently this function handles only temperature related 11503 * ASYNC events. The function decodes the temperature sensor 11504 * event message and posts events for the management applications. 11505 **/ 11506 static void 11507 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11508 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11509 { 11510 IOCB_t *icmd; 11511 uint16_t evt_code; 11512 struct temp_event temp_event_data; 11513 struct Scsi_Host *shost; 11514 uint32_t *iocb_w; 11515 11516 icmd = &iocbq->iocb; 11517 evt_code = icmd->un.asyncstat.evt_code; 11518 11519 switch (evt_code) { 11520 case ASYNC_TEMP_WARN: 11521 case ASYNC_TEMP_SAFE: 11522 temp_event_data.data = (uint32_t) icmd->ulpContext; 11523 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11524 if (evt_code == ASYNC_TEMP_WARN) { 11525 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11526 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11527 "0347 Adapter is very hot, please take " 11528 "corrective action. temperature : %d Celsius\n", 11529 (uint32_t) icmd->ulpContext); 11530 } else { 11531 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11532 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11533 "0340 Adapter temperature is OK now. " 11534 "temperature : %d Celsius\n", 11535 (uint32_t) icmd->ulpContext); 11536 } 11537 11538 /* Send temperature change event to applications */ 11539 shost = lpfc_shost_from_vport(phba->pport); 11540 fc_host_post_vendor_event(shost, fc_get_event_number(), 11541 sizeof(temp_event_data), (char *) &temp_event_data, 11542 LPFC_NL_VENDOR_ID); 11543 break; 11544 case ASYNC_STATUS_CN: 11545 lpfc_sli_abts_err_handler(phba, iocbq); 11546 break; 11547 default: 11548 iocb_w = (uint32_t *) icmd; 11549 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11550 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11551 " evt_code 0x%x\n" 11552 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11553 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11554 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11555 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11556 pring->ringno, icmd->un.asyncstat.evt_code, 11557 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11558 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11559 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11560 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11561 11562 break; 11563 } 11564 } 11565 11566 11567 /** 11568 * lpfc_sli4_setup - SLI ring setup function 11569 * @phba: Pointer to HBA context object. 11570 * 11571 * lpfc_sli_setup sets up rings of the SLI interface with 11572 * number of iocbs per ring and iotags. This function is 11573 * called while driver attach to the HBA and before the 11574 * interrupts are enabled. So there is no need for locking. 11575 * 11576 * This function always returns 0. 11577 **/ 11578 int 11579 lpfc_sli4_setup(struct lpfc_hba *phba) 11580 { 11581 struct lpfc_sli_ring *pring; 11582 11583 pring = phba->sli4_hba.els_wq->pring; 11584 pring->num_mask = LPFC_MAX_RING_MASK; 11585 pring->prt[0].profile = 0; /* Mask 0 */ 11586 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11587 pring->prt[0].type = FC_TYPE_ELS; 11588 pring->prt[0].lpfc_sli_rcv_unsol_event = 11589 lpfc_els_unsol_event; 11590 pring->prt[1].profile = 0; /* Mask 1 */ 11591 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11592 pring->prt[1].type = FC_TYPE_ELS; 11593 pring->prt[1].lpfc_sli_rcv_unsol_event = 11594 lpfc_els_unsol_event; 11595 pring->prt[2].profile = 0; /* Mask 2 */ 11596 /* NameServer Inquiry */ 11597 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11598 /* NameServer */ 11599 pring->prt[2].type = FC_TYPE_CT; 11600 pring->prt[2].lpfc_sli_rcv_unsol_event = 11601 lpfc_ct_unsol_event; 11602 pring->prt[3].profile = 0; /* Mask 3 */ 11603 /* NameServer response */ 11604 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11605 /* NameServer */ 11606 pring->prt[3].type = FC_TYPE_CT; 11607 pring->prt[3].lpfc_sli_rcv_unsol_event = 11608 lpfc_ct_unsol_event; 11609 return 0; 11610 } 11611 11612 /** 11613 * lpfc_sli_setup - SLI ring setup function 11614 * @phba: Pointer to HBA context object. 11615 * 11616 * lpfc_sli_setup sets up rings of the SLI interface with 11617 * number of iocbs per ring and iotags. This function is 11618 * called while driver attach to the HBA and before the 11619 * interrupts are enabled. So there is no need for locking. 11620 * 11621 * This function always returns 0. SLI3 only. 11622 **/ 11623 int 11624 lpfc_sli_setup(struct lpfc_hba *phba) 11625 { 11626 int i, totiocbsize = 0; 11627 struct lpfc_sli *psli = &phba->sli; 11628 struct lpfc_sli_ring *pring; 11629 11630 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11631 psli->sli_flag = 0; 11632 11633 psli->iocbq_lookup = NULL; 11634 psli->iocbq_lookup_len = 0; 11635 psli->last_iotag = 0; 11636 11637 for (i = 0; i < psli->num_rings; i++) { 11638 pring = &psli->sli3_ring[i]; 11639 switch (i) { 11640 case LPFC_FCP_RING: /* ring 0 - FCP */ 11641 /* numCiocb and numRiocb are used in config_port */ 11642 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11643 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11644 pring->sli.sli3.numCiocb += 11645 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11646 pring->sli.sli3.numRiocb += 11647 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11648 pring->sli.sli3.numCiocb += 11649 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11650 pring->sli.sli3.numRiocb += 11651 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11652 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11653 SLI3_IOCB_CMD_SIZE : 11654 SLI2_IOCB_CMD_SIZE; 11655 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11656 SLI3_IOCB_RSP_SIZE : 11657 SLI2_IOCB_RSP_SIZE; 11658 pring->iotag_ctr = 0; 11659 pring->iotag_max = 11660 (phba->cfg_hba_queue_depth * 2); 11661 pring->fast_iotag = pring->iotag_max; 11662 pring->num_mask = 0; 11663 break; 11664 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11665 /* numCiocb and numRiocb are used in config_port */ 11666 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11667 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11668 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11669 SLI3_IOCB_CMD_SIZE : 11670 SLI2_IOCB_CMD_SIZE; 11671 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11672 SLI3_IOCB_RSP_SIZE : 11673 SLI2_IOCB_RSP_SIZE; 11674 pring->iotag_max = phba->cfg_hba_queue_depth; 11675 pring->num_mask = 0; 11676 break; 11677 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11678 /* numCiocb and numRiocb are used in config_port */ 11679 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11680 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11681 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11682 SLI3_IOCB_CMD_SIZE : 11683 SLI2_IOCB_CMD_SIZE; 11684 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11685 SLI3_IOCB_RSP_SIZE : 11686 SLI2_IOCB_RSP_SIZE; 11687 pring->fast_iotag = 0; 11688 pring->iotag_ctr = 0; 11689 pring->iotag_max = 4096; 11690 pring->lpfc_sli_rcv_async_status = 11691 lpfc_sli_async_event_handler; 11692 pring->num_mask = LPFC_MAX_RING_MASK; 11693 pring->prt[0].profile = 0; /* Mask 0 */ 11694 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11695 pring->prt[0].type = FC_TYPE_ELS; 11696 pring->prt[0].lpfc_sli_rcv_unsol_event = 11697 lpfc_els_unsol_event; 11698 pring->prt[1].profile = 0; /* Mask 1 */ 11699 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11700 pring->prt[1].type = FC_TYPE_ELS; 11701 pring->prt[1].lpfc_sli_rcv_unsol_event = 11702 lpfc_els_unsol_event; 11703 pring->prt[2].profile = 0; /* Mask 2 */ 11704 /* NameServer Inquiry */ 11705 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11706 /* NameServer */ 11707 pring->prt[2].type = FC_TYPE_CT; 11708 pring->prt[2].lpfc_sli_rcv_unsol_event = 11709 lpfc_ct_unsol_event; 11710 pring->prt[3].profile = 0; /* Mask 3 */ 11711 /* NameServer response */ 11712 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11713 /* NameServer */ 11714 pring->prt[3].type = FC_TYPE_CT; 11715 pring->prt[3].lpfc_sli_rcv_unsol_event = 11716 lpfc_ct_unsol_event; 11717 break; 11718 } 11719 totiocbsize += (pring->sli.sli3.numCiocb * 11720 pring->sli.sli3.sizeCiocb) + 11721 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11722 } 11723 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11724 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11725 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11726 "SLI2 SLIM Data: x%x x%lx\n", 11727 phba->brd_no, totiocbsize, 11728 (unsigned long) MAX_SLIM_IOCB_SIZE); 11729 } 11730 if (phba->cfg_multi_ring_support == 2) 11731 lpfc_extra_ring_setup(phba); 11732 11733 return 0; 11734 } 11735 11736 /** 11737 * lpfc_sli4_queue_init - Queue initialization function 11738 * @phba: Pointer to HBA context object. 11739 * 11740 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11741 * ring. This function also initializes ring indices of each ring. 11742 * This function is called during the initialization of the SLI 11743 * interface of an HBA. 11744 * This function is called with no lock held and always returns 11745 * 1. 11746 **/ 11747 void 11748 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11749 { 11750 struct lpfc_sli *psli; 11751 struct lpfc_sli_ring *pring; 11752 int i; 11753 11754 psli = &phba->sli; 11755 spin_lock_irq(&phba->hbalock); 11756 INIT_LIST_HEAD(&psli->mboxq); 11757 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11758 /* Initialize list headers for txq and txcmplq as double linked lists */ 11759 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11760 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11761 pring->flag = 0; 11762 pring->ringno = LPFC_FCP_RING; 11763 pring->txcmplq_cnt = 0; 11764 INIT_LIST_HEAD(&pring->txq); 11765 INIT_LIST_HEAD(&pring->txcmplq); 11766 INIT_LIST_HEAD(&pring->iocb_continueq); 11767 spin_lock_init(&pring->ring_lock); 11768 } 11769 pring = phba->sli4_hba.els_wq->pring; 11770 pring->flag = 0; 11771 pring->ringno = LPFC_ELS_RING; 11772 pring->txcmplq_cnt = 0; 11773 INIT_LIST_HEAD(&pring->txq); 11774 INIT_LIST_HEAD(&pring->txcmplq); 11775 INIT_LIST_HEAD(&pring->iocb_continueq); 11776 spin_lock_init(&pring->ring_lock); 11777 11778 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11779 pring = phba->sli4_hba.nvmels_wq->pring; 11780 pring->flag = 0; 11781 pring->ringno = LPFC_ELS_RING; 11782 pring->txcmplq_cnt = 0; 11783 INIT_LIST_HEAD(&pring->txq); 11784 INIT_LIST_HEAD(&pring->txcmplq); 11785 INIT_LIST_HEAD(&pring->iocb_continueq); 11786 spin_lock_init(&pring->ring_lock); 11787 } 11788 11789 spin_unlock_irq(&phba->hbalock); 11790 } 11791 11792 /** 11793 * lpfc_sli_queue_init - Queue initialization function 11794 * @phba: Pointer to HBA context object. 11795 * 11796 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11797 * ring. This function also initializes ring indices of each ring. 11798 * This function is called during the initialization of the SLI 11799 * interface of an HBA. 11800 * This function is called with no lock held and always returns 11801 * 1. 11802 **/ 11803 void 11804 lpfc_sli_queue_init(struct lpfc_hba *phba) 11805 { 11806 struct lpfc_sli *psli; 11807 struct lpfc_sli_ring *pring; 11808 int i; 11809 11810 psli = &phba->sli; 11811 spin_lock_irq(&phba->hbalock); 11812 INIT_LIST_HEAD(&psli->mboxq); 11813 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11814 /* Initialize list headers for txq and txcmplq as double linked lists */ 11815 for (i = 0; i < psli->num_rings; i++) { 11816 pring = &psli->sli3_ring[i]; 11817 pring->ringno = i; 11818 pring->sli.sli3.next_cmdidx = 0; 11819 pring->sli.sli3.local_getidx = 0; 11820 pring->sli.sli3.cmdidx = 0; 11821 INIT_LIST_HEAD(&pring->iocb_continueq); 11822 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11823 INIT_LIST_HEAD(&pring->postbufq); 11824 pring->flag = 0; 11825 INIT_LIST_HEAD(&pring->txq); 11826 INIT_LIST_HEAD(&pring->txcmplq); 11827 spin_lock_init(&pring->ring_lock); 11828 } 11829 spin_unlock_irq(&phba->hbalock); 11830 } 11831 11832 /** 11833 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11834 * @phba: Pointer to HBA context object. 11835 * 11836 * This routine flushes the mailbox command subsystem. It will unconditionally 11837 * flush all the mailbox commands in the three possible stages in the mailbox 11838 * command sub-system: pending mailbox command queue; the outstanding mailbox 11839 * command; and completed mailbox command queue. It is caller's responsibility 11840 * to make sure that the driver is in the proper state to flush the mailbox 11841 * command sub-system. Namely, the posting of mailbox commands into the 11842 * pending mailbox command queue from the various clients must be stopped; 11843 * either the HBA is in a state that it will never works on the outstanding 11844 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11845 * mailbox command has been completed. 11846 **/ 11847 static void 11848 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11849 { 11850 LIST_HEAD(completions); 11851 struct lpfc_sli *psli = &phba->sli; 11852 LPFC_MBOXQ_t *pmb; 11853 unsigned long iflag; 11854 11855 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11856 local_bh_disable(); 11857 11858 /* Flush all the mailbox commands in the mbox system */ 11859 spin_lock_irqsave(&phba->hbalock, iflag); 11860 11861 /* The pending mailbox command queue */ 11862 list_splice_init(&phba->sli.mboxq, &completions); 11863 /* The outstanding active mailbox command */ 11864 if (psli->mbox_active) { 11865 list_add_tail(&psli->mbox_active->list, &completions); 11866 psli->mbox_active = NULL; 11867 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11868 } 11869 /* The completed mailbox command queue */ 11870 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11871 spin_unlock_irqrestore(&phba->hbalock, iflag); 11872 11873 /* Enable softirqs again, done with phba->hbalock */ 11874 local_bh_enable(); 11875 11876 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11877 while (!list_empty(&completions)) { 11878 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11879 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11880 if (pmb->mbox_cmpl) 11881 pmb->mbox_cmpl(phba, pmb); 11882 } 11883 } 11884 11885 /** 11886 * lpfc_sli_host_down - Vport cleanup function 11887 * @vport: Pointer to virtual port object. 11888 * 11889 * lpfc_sli_host_down is called to clean up the resources 11890 * associated with a vport before destroying virtual 11891 * port data structures. 11892 * This function does following operations: 11893 * - Free discovery resources associated with this virtual 11894 * port. 11895 * - Free iocbs associated with this virtual port in 11896 * the txq. 11897 * - Send abort for all iocb commands associated with this 11898 * vport in txcmplq. 11899 * 11900 * This function is called with no lock held and always returns 1. 11901 **/ 11902 int 11903 lpfc_sli_host_down(struct lpfc_vport *vport) 11904 { 11905 LIST_HEAD(completions); 11906 struct lpfc_hba *phba = vport->phba; 11907 struct lpfc_sli *psli = &phba->sli; 11908 struct lpfc_queue *qp = NULL; 11909 struct lpfc_sli_ring *pring; 11910 struct lpfc_iocbq *iocb, *next_iocb; 11911 int i; 11912 unsigned long flags = 0; 11913 uint16_t prev_pring_flag; 11914 11915 lpfc_cleanup_discovery_resources(vport); 11916 11917 spin_lock_irqsave(&phba->hbalock, flags); 11918 11919 /* 11920 * Error everything on the txq since these iocbs 11921 * have not been given to the FW yet. 11922 * Also issue ABTS for everything on the txcmplq 11923 */ 11924 if (phba->sli_rev != LPFC_SLI_REV4) { 11925 for (i = 0; i < psli->num_rings; i++) { 11926 pring = &psli->sli3_ring[i]; 11927 prev_pring_flag = pring->flag; 11928 /* Only slow rings */ 11929 if (pring->ringno == LPFC_ELS_RING) { 11930 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11931 /* Set the lpfc data pending flag */ 11932 set_bit(LPFC_DATA_READY, &phba->data_flags); 11933 } 11934 list_for_each_entry_safe(iocb, next_iocb, 11935 &pring->txq, list) { 11936 if (iocb->vport != vport) 11937 continue; 11938 list_move_tail(&iocb->list, &completions); 11939 } 11940 list_for_each_entry_safe(iocb, next_iocb, 11941 &pring->txcmplq, list) { 11942 if (iocb->vport != vport) 11943 continue; 11944 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11945 NULL); 11946 } 11947 pring->flag = prev_pring_flag; 11948 } 11949 } else { 11950 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11951 pring = qp->pring; 11952 if (!pring) 11953 continue; 11954 if (pring == phba->sli4_hba.els_wq->pring) { 11955 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11956 /* Set the lpfc data pending flag */ 11957 set_bit(LPFC_DATA_READY, &phba->data_flags); 11958 } 11959 prev_pring_flag = pring->flag; 11960 spin_lock(&pring->ring_lock); 11961 list_for_each_entry_safe(iocb, next_iocb, 11962 &pring->txq, list) { 11963 if (iocb->vport != vport) 11964 continue; 11965 list_move_tail(&iocb->list, &completions); 11966 } 11967 spin_unlock(&pring->ring_lock); 11968 list_for_each_entry_safe(iocb, next_iocb, 11969 &pring->txcmplq, list) { 11970 if (iocb->vport != vport) 11971 continue; 11972 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11973 NULL); 11974 } 11975 pring->flag = prev_pring_flag; 11976 } 11977 } 11978 spin_unlock_irqrestore(&phba->hbalock, flags); 11979 11980 /* Make sure HBA is alive */ 11981 lpfc_issue_hb_tmo(phba); 11982 11983 /* Cancel all the IOCBs from the completions list */ 11984 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11985 IOERR_SLI_DOWN); 11986 return 1; 11987 } 11988 11989 /** 11990 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11991 * @phba: Pointer to HBA context object. 11992 * 11993 * This function cleans up all iocb, buffers, mailbox commands 11994 * while shutting down the HBA. This function is called with no 11995 * lock held and always returns 1. 11996 * This function does the following to cleanup driver resources: 11997 * - Free discovery resources for each virtual port 11998 * - Cleanup any pending fabric iocbs 11999 * - Iterate through the iocb txq and free each entry 12000 * in the list. 12001 * - Free up any buffer posted to the HBA 12002 * - Free mailbox commands in the mailbox queue. 12003 **/ 12004 int 12005 lpfc_sli_hba_down(struct lpfc_hba *phba) 12006 { 12007 LIST_HEAD(completions); 12008 struct lpfc_sli *psli = &phba->sli; 12009 struct lpfc_queue *qp = NULL; 12010 struct lpfc_sli_ring *pring; 12011 struct lpfc_dmabuf *buf_ptr; 12012 unsigned long flags = 0; 12013 int i; 12014 12015 /* Shutdown the mailbox command sub-system */ 12016 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 12017 12018 lpfc_hba_down_prep(phba); 12019 12020 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12021 local_bh_disable(); 12022 12023 lpfc_fabric_abort_hba(phba); 12024 12025 spin_lock_irqsave(&phba->hbalock, flags); 12026 12027 /* 12028 * Error everything on the txq since these iocbs 12029 * have not been given to the FW yet. 12030 */ 12031 if (phba->sli_rev != LPFC_SLI_REV4) { 12032 for (i = 0; i < psli->num_rings; i++) { 12033 pring = &psli->sli3_ring[i]; 12034 /* Only slow rings */ 12035 if (pring->ringno == LPFC_ELS_RING) { 12036 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12037 /* Set the lpfc data pending flag */ 12038 set_bit(LPFC_DATA_READY, &phba->data_flags); 12039 } 12040 list_splice_init(&pring->txq, &completions); 12041 } 12042 } else { 12043 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12044 pring = qp->pring; 12045 if (!pring) 12046 continue; 12047 spin_lock(&pring->ring_lock); 12048 list_splice_init(&pring->txq, &completions); 12049 spin_unlock(&pring->ring_lock); 12050 if (pring == phba->sli4_hba.els_wq->pring) { 12051 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12052 /* Set the lpfc data pending flag */ 12053 set_bit(LPFC_DATA_READY, &phba->data_flags); 12054 } 12055 } 12056 } 12057 spin_unlock_irqrestore(&phba->hbalock, flags); 12058 12059 /* Cancel all the IOCBs from the completions list */ 12060 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12061 IOERR_SLI_DOWN); 12062 12063 spin_lock_irqsave(&phba->hbalock, flags); 12064 list_splice_init(&phba->elsbuf, &completions); 12065 phba->elsbuf_cnt = 0; 12066 phba->elsbuf_prev_cnt = 0; 12067 spin_unlock_irqrestore(&phba->hbalock, flags); 12068 12069 while (!list_empty(&completions)) { 12070 list_remove_head(&completions, buf_ptr, 12071 struct lpfc_dmabuf, list); 12072 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12073 kfree(buf_ptr); 12074 } 12075 12076 /* Enable softirqs again, done with phba->hbalock */ 12077 local_bh_enable(); 12078 12079 /* Return any active mbox cmds */ 12080 del_timer_sync(&psli->mbox_tmo); 12081 12082 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12083 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12084 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12085 12086 return 1; 12087 } 12088 12089 /** 12090 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12091 * @srcp: Source memory pointer. 12092 * @destp: Destination memory pointer. 12093 * @cnt: Number of words required to be copied. 12094 * 12095 * This function is used for copying data between driver memory 12096 * and the SLI memory. This function also changes the endianness 12097 * of each word if native endianness is different from SLI 12098 * endianness. This function can be called with or without 12099 * lock. 12100 **/ 12101 void 12102 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12103 { 12104 uint32_t *src = srcp; 12105 uint32_t *dest = destp; 12106 uint32_t ldata; 12107 int i; 12108 12109 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12110 ldata = *src; 12111 ldata = le32_to_cpu(ldata); 12112 *dest = ldata; 12113 src++; 12114 dest++; 12115 } 12116 } 12117 12118 12119 /** 12120 * lpfc_sli_bemem_bcopy - SLI memory copy function 12121 * @srcp: Source memory pointer. 12122 * @destp: Destination memory pointer. 12123 * @cnt: Number of words required to be copied. 12124 * 12125 * This function is used for copying data between a data structure 12126 * with big endian representation to local endianness. 12127 * This function can be called with or without lock. 12128 **/ 12129 void 12130 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12131 { 12132 uint32_t *src = srcp; 12133 uint32_t *dest = destp; 12134 uint32_t ldata; 12135 int i; 12136 12137 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12138 ldata = *src; 12139 ldata = be32_to_cpu(ldata); 12140 *dest = ldata; 12141 src++; 12142 dest++; 12143 } 12144 } 12145 12146 /** 12147 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12148 * @phba: Pointer to HBA context object. 12149 * @pring: Pointer to driver SLI ring object. 12150 * @mp: Pointer to driver buffer object. 12151 * 12152 * This function is called with no lock held. 12153 * It always return zero after adding the buffer to the postbufq 12154 * buffer list. 12155 **/ 12156 int 12157 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12158 struct lpfc_dmabuf *mp) 12159 { 12160 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12161 later */ 12162 spin_lock_irq(&phba->hbalock); 12163 list_add_tail(&mp->list, &pring->postbufq); 12164 pring->postbufq_cnt++; 12165 spin_unlock_irq(&phba->hbalock); 12166 return 0; 12167 } 12168 12169 /** 12170 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12171 * @phba: Pointer to HBA context object. 12172 * 12173 * When HBQ is enabled, buffers are searched based on tags. This function 12174 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12175 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12176 * does not conflict with tags of buffer posted for unsolicited events. 12177 * The function returns the allocated tag. The function is called with 12178 * no locks held. 12179 **/ 12180 uint32_t 12181 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12182 { 12183 spin_lock_irq(&phba->hbalock); 12184 phba->buffer_tag_count++; 12185 /* 12186 * Always set the QUE_BUFTAG_BIT to distiguish between 12187 * a tag assigned by HBQ. 12188 */ 12189 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12190 spin_unlock_irq(&phba->hbalock); 12191 return phba->buffer_tag_count; 12192 } 12193 12194 /** 12195 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12196 * @phba: Pointer to HBA context object. 12197 * @pring: Pointer to driver SLI ring object. 12198 * @tag: Buffer tag. 12199 * 12200 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12201 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12202 * iocb is posted to the response ring with the tag of the buffer. 12203 * This function searches the pring->postbufq list using the tag 12204 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12205 * iocb. If the buffer is found then lpfc_dmabuf object of the 12206 * buffer is returned to the caller else NULL is returned. 12207 * This function is called with no lock held. 12208 **/ 12209 struct lpfc_dmabuf * 12210 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12211 uint32_t tag) 12212 { 12213 struct lpfc_dmabuf *mp, *next_mp; 12214 struct list_head *slp = &pring->postbufq; 12215 12216 /* Search postbufq, from the beginning, looking for a match on tag */ 12217 spin_lock_irq(&phba->hbalock); 12218 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12219 if (mp->buffer_tag == tag) { 12220 list_del_init(&mp->list); 12221 pring->postbufq_cnt--; 12222 spin_unlock_irq(&phba->hbalock); 12223 return mp; 12224 } 12225 } 12226 12227 spin_unlock_irq(&phba->hbalock); 12228 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12229 "0402 Cannot find virtual addr for buffer tag on " 12230 "ring %d Data x%lx x%px x%px x%x\n", 12231 pring->ringno, (unsigned long) tag, 12232 slp->next, slp->prev, pring->postbufq_cnt); 12233 12234 return NULL; 12235 } 12236 12237 /** 12238 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12239 * @phba: Pointer to HBA context object. 12240 * @pring: Pointer to driver SLI ring object. 12241 * @phys: DMA address of the buffer. 12242 * 12243 * This function searches the buffer list using the dma_address 12244 * of unsolicited event to find the driver's lpfc_dmabuf object 12245 * corresponding to the dma_address. The function returns the 12246 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12247 * This function is called by the ct and els unsolicited event 12248 * handlers to get the buffer associated with the unsolicited 12249 * event. 12250 * 12251 * This function is called with no lock held. 12252 **/ 12253 struct lpfc_dmabuf * 12254 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12255 dma_addr_t phys) 12256 { 12257 struct lpfc_dmabuf *mp, *next_mp; 12258 struct list_head *slp = &pring->postbufq; 12259 12260 /* Search postbufq, from the beginning, looking for a match on phys */ 12261 spin_lock_irq(&phba->hbalock); 12262 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12263 if (mp->phys == phys) { 12264 list_del_init(&mp->list); 12265 pring->postbufq_cnt--; 12266 spin_unlock_irq(&phba->hbalock); 12267 return mp; 12268 } 12269 } 12270 12271 spin_unlock_irq(&phba->hbalock); 12272 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12273 "0410 Cannot find virtual addr for mapped buf on " 12274 "ring %d Data x%llx x%px x%px x%x\n", 12275 pring->ringno, (unsigned long long)phys, 12276 slp->next, slp->prev, pring->postbufq_cnt); 12277 return NULL; 12278 } 12279 12280 /** 12281 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12282 * @phba: Pointer to HBA context object. 12283 * @cmdiocb: Pointer to driver command iocb object. 12284 * @rspiocb: Pointer to driver response iocb object. 12285 * 12286 * This function is the completion handler for the abort iocbs for 12287 * ELS commands. This function is called from the ELS ring event 12288 * handler with no lock held. This function frees memory resources 12289 * associated with the abort iocb. 12290 **/ 12291 static void 12292 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12293 struct lpfc_iocbq *rspiocb) 12294 { 12295 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12296 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12297 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12298 12299 if (ulp_status) { 12300 /* 12301 * Assume that the port already completed and returned, or 12302 * will return the iocb. Just Log the message. 12303 */ 12304 if (phba->sli_rev < LPFC_SLI_REV4) { 12305 if (cmnd == CMD_ABORT_XRI_CX && 12306 ulp_status == IOSTAT_LOCAL_REJECT && 12307 ulp_word4 == IOERR_ABORT_REQUESTED) { 12308 goto release_iocb; 12309 } 12310 } 12311 12312 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12313 "0327 Cannot abort els iocb x%px " 12314 "with io cmd xri %x abort tag : x%x, " 12315 "abort status %x abort code %x\n", 12316 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12317 (phba->sli_rev == LPFC_SLI_REV4) ? 12318 get_wqe_reqtag(cmdiocb) : 12319 cmdiocb->iocb.un.acxri.abortContextTag, 12320 ulp_status, ulp_word4); 12321 12322 } 12323 release_iocb: 12324 lpfc_sli_release_iocbq(phba, cmdiocb); 12325 return; 12326 } 12327 12328 /** 12329 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12330 * @phba: Pointer to HBA context object. 12331 * @cmdiocb: Pointer to driver command iocb object. 12332 * @rspiocb: Pointer to driver response iocb object. 12333 * 12334 * The function is called from SLI ring event handler with no 12335 * lock held. This function is the completion handler for ELS commands 12336 * which are aborted. The function frees memory resources used for 12337 * the aborted ELS commands. 12338 **/ 12339 void 12340 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12341 struct lpfc_iocbq *rspiocb) 12342 { 12343 struct lpfc_nodelist *ndlp = cmdiocb->ndlp; 12344 IOCB_t *irsp; 12345 LPFC_MBOXQ_t *mbox; 12346 u32 ulp_command, ulp_status, ulp_word4, iotag; 12347 12348 ulp_command = get_job_cmnd(phba, cmdiocb); 12349 ulp_status = get_job_ulpstatus(phba, rspiocb); 12350 ulp_word4 = get_job_word4(phba, rspiocb); 12351 12352 if (phba->sli_rev == LPFC_SLI_REV4) { 12353 iotag = get_wqe_reqtag(cmdiocb); 12354 } else { 12355 irsp = &rspiocb->iocb; 12356 iotag = irsp->ulpIoTag; 12357 12358 /* It is possible a PLOGI_RJT for NPIV ports to get aborted. 12359 * The MBX_REG_LOGIN64 mbox command is freed back to the 12360 * mbox_mem_pool here. 12361 */ 12362 if (cmdiocb->context_un.mbox) { 12363 mbox = cmdiocb->context_un.mbox; 12364 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED); 12365 cmdiocb->context_un.mbox = NULL; 12366 } 12367 } 12368 12369 /* ELS cmd tag <ulpIoTag> completes */ 12370 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12371 "0139 Ignoring ELS cmd code x%x completion Data: " 12372 "x%x x%x x%x x%px\n", 12373 ulp_command, ulp_status, ulp_word4, iotag, 12374 cmdiocb->ndlp); 12375 /* 12376 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12377 * if exchange is busy. 12378 */ 12379 if (ulp_command == CMD_GEN_REQUEST64_CR) 12380 lpfc_ct_free_iocb(phba, cmdiocb); 12381 else 12382 lpfc_els_free_iocb(phba, cmdiocb); 12383 12384 lpfc_nlp_put(ndlp); 12385 } 12386 12387 /** 12388 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12389 * @phba: Pointer to HBA context object. 12390 * @pring: Pointer to driver SLI ring object. 12391 * @cmdiocb: Pointer to driver command iocb object. 12392 * @cmpl: completion function. 12393 * 12394 * This function issues an abort iocb for the provided command iocb. In case 12395 * of unloading, the abort iocb will not be issued to commands on the ELS 12396 * ring. Instead, the callback function shall be changed to those commands 12397 * so that nothing happens when them finishes. This function is called with 12398 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12399 * when the command iocb is an abort request. 12400 * 12401 **/ 12402 int 12403 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12404 struct lpfc_iocbq *cmdiocb, void *cmpl) 12405 { 12406 struct lpfc_vport *vport = cmdiocb->vport; 12407 struct lpfc_iocbq *abtsiocbp; 12408 int retval = IOCB_ERROR; 12409 unsigned long iflags; 12410 struct lpfc_nodelist *ndlp = NULL; 12411 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12412 u16 ulp_context, iotag; 12413 bool ia; 12414 12415 /* 12416 * There are certain command types we don't want to abort. And we 12417 * don't want to abort commands that are already in the process of 12418 * being aborted. 12419 */ 12420 if (ulp_command == CMD_ABORT_XRI_WQE || 12421 ulp_command == CMD_ABORT_XRI_CN || 12422 ulp_command == CMD_CLOSE_XRI_CN || 12423 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12424 return IOCB_ABORTING; 12425 12426 if (!pring) { 12427 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12428 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12429 else 12430 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12431 return retval; 12432 } 12433 12434 /* 12435 * If we're unloading, don't abort iocb on the ELS ring, but change 12436 * the callback so that nothing happens when it finishes. 12437 */ 12438 if ((vport->load_flag & FC_UNLOADING) && 12439 pring->ringno == LPFC_ELS_RING) { 12440 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12441 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12442 else 12443 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12444 return retval; 12445 } 12446 12447 /* issue ABTS for this IOCB based on iotag */ 12448 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12449 if (abtsiocbp == NULL) 12450 return IOCB_NORESOURCE; 12451 12452 /* This signals the response to set the correct status 12453 * before calling the completion handler 12454 */ 12455 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12456 12457 if (phba->sli_rev == LPFC_SLI_REV4) { 12458 ulp_context = cmdiocb->sli4_xritag; 12459 iotag = abtsiocbp->iotag; 12460 } else { 12461 iotag = cmdiocb->iocb.ulpIoTag; 12462 if (pring->ringno == LPFC_ELS_RING) { 12463 ndlp = cmdiocb->ndlp; 12464 ulp_context = ndlp->nlp_rpi; 12465 } else { 12466 ulp_context = cmdiocb->iocb.ulpContext; 12467 } 12468 } 12469 12470 if (phba->link_state < LPFC_LINK_UP || 12471 (phba->sli_rev == LPFC_SLI_REV4 && 12472 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) || 12473 (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12474 ia = true; 12475 else 12476 ia = false; 12477 12478 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12479 cmdiocb->iocb.ulpClass, 12480 LPFC_WQE_CQ_ID_DEFAULT, ia, false); 12481 12482 abtsiocbp->vport = vport; 12483 12484 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12485 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12486 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12487 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12488 12489 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12490 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12491 12492 if (cmpl) 12493 abtsiocbp->cmd_cmpl = cmpl; 12494 else 12495 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12496 abtsiocbp->vport = vport; 12497 12498 if (phba->sli_rev == LPFC_SLI_REV4) { 12499 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12500 if (unlikely(pring == NULL)) 12501 goto abort_iotag_exit; 12502 /* Note: both hbalock and ring_lock need to be set here */ 12503 spin_lock_irqsave(&pring->ring_lock, iflags); 12504 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12505 abtsiocbp, 0); 12506 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12507 } else { 12508 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12509 abtsiocbp, 0); 12510 } 12511 12512 abort_iotag_exit: 12513 12514 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12515 "0339 Abort IO XRI x%x, Original iotag x%x, " 12516 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12517 "retval x%x\n", 12518 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12519 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12520 retval); 12521 if (retval) { 12522 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12523 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12524 } 12525 12526 /* 12527 * Caller to this routine should check for IOCB_ERROR 12528 * and handle it properly. This routine no longer removes 12529 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12530 */ 12531 return retval; 12532 } 12533 12534 /** 12535 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12536 * @phba: pointer to lpfc HBA data structure. 12537 * 12538 * This routine will abort all pending and outstanding iocbs to an HBA. 12539 **/ 12540 void 12541 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12542 { 12543 struct lpfc_sli *psli = &phba->sli; 12544 struct lpfc_sli_ring *pring; 12545 struct lpfc_queue *qp = NULL; 12546 int i; 12547 12548 if (phba->sli_rev != LPFC_SLI_REV4) { 12549 for (i = 0; i < psli->num_rings; i++) { 12550 pring = &psli->sli3_ring[i]; 12551 lpfc_sli_abort_iocb_ring(phba, pring); 12552 } 12553 return; 12554 } 12555 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12556 pring = qp->pring; 12557 if (!pring) 12558 continue; 12559 lpfc_sli_abort_iocb_ring(phba, pring); 12560 } 12561 } 12562 12563 /** 12564 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12565 * @iocbq: Pointer to iocb object. 12566 * @vport: Pointer to driver virtual port object. 12567 * 12568 * This function acts as an iocb filter for functions which abort FCP iocbs. 12569 * 12570 * Return values 12571 * -ENODEV, if a null iocb or vport ptr is encountered 12572 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12573 * driver already started the abort process, or is an abort iocb itself 12574 * 0, passes criteria for aborting the FCP I/O iocb 12575 **/ 12576 static int 12577 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12578 struct lpfc_vport *vport) 12579 { 12580 u8 ulp_command; 12581 12582 /* No null ptr vports */ 12583 if (!iocbq || iocbq->vport != vport) 12584 return -ENODEV; 12585 12586 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12587 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12588 */ 12589 ulp_command = get_job_cmnd(vport->phba, iocbq); 12590 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12591 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12592 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12593 (ulp_command == CMD_ABORT_XRI_CN || 12594 ulp_command == CMD_CLOSE_XRI_CN || 12595 ulp_command == CMD_ABORT_XRI_WQE)) 12596 return -EINVAL; 12597 12598 return 0; 12599 } 12600 12601 /** 12602 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12603 * @iocbq: Pointer to driver iocb object. 12604 * @vport: Pointer to driver virtual port object. 12605 * @tgt_id: SCSI ID of the target. 12606 * @lun_id: LUN ID of the scsi device. 12607 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12608 * 12609 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12610 * host. 12611 * 12612 * It will return 12613 * 0 if the filtering criteria is met for the given iocb and will return 12614 * 1 if the filtering criteria is not met. 12615 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12616 * given iocb is for the SCSI device specified by vport, tgt_id and 12617 * lun_id parameter. 12618 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12619 * given iocb is for the SCSI target specified by vport and tgt_id 12620 * parameters. 12621 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12622 * given iocb is for the SCSI host associated with the given vport. 12623 * This function is called with no locks held. 12624 **/ 12625 static int 12626 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12627 uint16_t tgt_id, uint64_t lun_id, 12628 lpfc_ctx_cmd ctx_cmd) 12629 { 12630 struct lpfc_io_buf *lpfc_cmd; 12631 int rc = 1; 12632 12633 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12634 12635 if (lpfc_cmd->pCmd == NULL) 12636 return rc; 12637 12638 switch (ctx_cmd) { 12639 case LPFC_CTX_LUN: 12640 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12641 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12642 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12643 rc = 0; 12644 break; 12645 case LPFC_CTX_TGT: 12646 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12647 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12648 rc = 0; 12649 break; 12650 case LPFC_CTX_HOST: 12651 rc = 0; 12652 break; 12653 default: 12654 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12655 __func__, ctx_cmd); 12656 break; 12657 } 12658 12659 return rc; 12660 } 12661 12662 /** 12663 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12664 * @vport: Pointer to virtual port. 12665 * @tgt_id: SCSI ID of the target. 12666 * @lun_id: LUN ID of the scsi device. 12667 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12668 * 12669 * This function returns number of FCP commands pending for the vport. 12670 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12671 * commands pending on the vport associated with SCSI device specified 12672 * by tgt_id and lun_id parameters. 12673 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12674 * commands pending on the vport associated with SCSI target specified 12675 * by tgt_id parameter. 12676 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12677 * commands pending on the vport. 12678 * This function returns the number of iocbs which satisfy the filter. 12679 * This function is called without any lock held. 12680 **/ 12681 int 12682 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12683 lpfc_ctx_cmd ctx_cmd) 12684 { 12685 struct lpfc_hba *phba = vport->phba; 12686 struct lpfc_iocbq *iocbq; 12687 int sum, i; 12688 unsigned long iflags; 12689 u8 ulp_command; 12690 12691 spin_lock_irqsave(&phba->hbalock, iflags); 12692 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12693 iocbq = phba->sli.iocbq_lookup[i]; 12694 12695 if (!iocbq || iocbq->vport != vport) 12696 continue; 12697 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12698 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12699 continue; 12700 12701 /* Include counting outstanding aborts */ 12702 ulp_command = get_job_cmnd(phba, iocbq); 12703 if (ulp_command == CMD_ABORT_XRI_CN || 12704 ulp_command == CMD_CLOSE_XRI_CN || 12705 ulp_command == CMD_ABORT_XRI_WQE) { 12706 sum++; 12707 continue; 12708 } 12709 12710 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12711 ctx_cmd) == 0) 12712 sum++; 12713 } 12714 spin_unlock_irqrestore(&phba->hbalock, iflags); 12715 12716 return sum; 12717 } 12718 12719 /** 12720 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12721 * @phba: Pointer to HBA context object 12722 * @cmdiocb: Pointer to command iocb object. 12723 * @rspiocb: Pointer to response iocb object. 12724 * 12725 * This function is called when an aborted FCP iocb completes. This 12726 * function is called by the ring event handler with no lock held. 12727 * This function frees the iocb. 12728 **/ 12729 void 12730 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12731 struct lpfc_iocbq *rspiocb) 12732 { 12733 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12734 "3096 ABORT_XRI_CX completing on rpi x%x " 12735 "original iotag x%x, abort cmd iotag x%x " 12736 "status 0x%x, reason 0x%x\n", 12737 (phba->sli_rev == LPFC_SLI_REV4) ? 12738 cmdiocb->sli4_xritag : 12739 cmdiocb->iocb.un.acxri.abortContextTag, 12740 get_job_abtsiotag(phba, cmdiocb), 12741 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12742 get_job_word4(phba, rspiocb)); 12743 lpfc_sli_release_iocbq(phba, cmdiocb); 12744 return; 12745 } 12746 12747 /** 12748 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12749 * @vport: Pointer to virtual port. 12750 * @tgt_id: SCSI ID of the target. 12751 * @lun_id: LUN ID of the scsi device. 12752 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12753 * 12754 * This function sends an abort command for every SCSI command 12755 * associated with the given virtual port pending on the ring 12756 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12757 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12758 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12759 * followed by lpfc_sli_validate_fcp_iocb. 12760 * 12761 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12762 * FCP iocbs associated with lun specified by tgt_id and lun_id 12763 * parameters 12764 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12765 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12766 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12767 * FCP iocbs associated with virtual port. 12768 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12769 * lpfc_sli4_calc_ring is used. 12770 * This function returns number of iocbs it failed to abort. 12771 * This function is called with no locks held. 12772 **/ 12773 int 12774 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12775 lpfc_ctx_cmd abort_cmd) 12776 { 12777 struct lpfc_hba *phba = vport->phba; 12778 struct lpfc_sli_ring *pring = NULL; 12779 struct lpfc_iocbq *iocbq; 12780 int errcnt = 0, ret_val = 0; 12781 unsigned long iflags; 12782 int i; 12783 12784 /* all I/Os are in process of being flushed */ 12785 if (phba->hba_flag & HBA_IOQ_FLUSH) 12786 return errcnt; 12787 12788 for (i = 1; i <= phba->sli.last_iotag; i++) { 12789 iocbq = phba->sli.iocbq_lookup[i]; 12790 12791 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12792 continue; 12793 12794 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12795 abort_cmd) != 0) 12796 continue; 12797 12798 spin_lock_irqsave(&phba->hbalock, iflags); 12799 if (phba->sli_rev == LPFC_SLI_REV3) { 12800 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12801 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12802 pring = lpfc_sli4_calc_ring(phba, iocbq); 12803 } 12804 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12805 lpfc_sli_abort_fcp_cmpl); 12806 spin_unlock_irqrestore(&phba->hbalock, iflags); 12807 if (ret_val != IOCB_SUCCESS) 12808 errcnt++; 12809 } 12810 12811 return errcnt; 12812 } 12813 12814 /** 12815 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12816 * @vport: Pointer to virtual port. 12817 * @pring: Pointer to driver SLI ring object. 12818 * @tgt_id: SCSI ID of the target. 12819 * @lun_id: LUN ID of the scsi device. 12820 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12821 * 12822 * This function sends an abort command for every SCSI command 12823 * associated with the given virtual port pending on the ring 12824 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12825 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12826 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12827 * followed by lpfc_sli_validate_fcp_iocb. 12828 * 12829 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12830 * FCP iocbs associated with lun specified by tgt_id and lun_id 12831 * parameters 12832 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12833 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12834 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12835 * FCP iocbs associated with virtual port. 12836 * This function returns number of iocbs it aborted . 12837 * This function is called with no locks held right after a taskmgmt 12838 * command is sent. 12839 **/ 12840 int 12841 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12842 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12843 { 12844 struct lpfc_hba *phba = vport->phba; 12845 struct lpfc_io_buf *lpfc_cmd; 12846 struct lpfc_iocbq *abtsiocbq; 12847 struct lpfc_nodelist *ndlp = NULL; 12848 struct lpfc_iocbq *iocbq; 12849 int sum, i, ret_val; 12850 unsigned long iflags; 12851 struct lpfc_sli_ring *pring_s4 = NULL; 12852 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12853 bool ia; 12854 12855 spin_lock_irqsave(&phba->hbalock, iflags); 12856 12857 /* all I/Os are in process of being flushed */ 12858 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12859 spin_unlock_irqrestore(&phba->hbalock, iflags); 12860 return 0; 12861 } 12862 sum = 0; 12863 12864 for (i = 1; i <= phba->sli.last_iotag; i++) { 12865 iocbq = phba->sli.iocbq_lookup[i]; 12866 12867 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12868 continue; 12869 12870 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12871 cmd) != 0) 12872 continue; 12873 12874 /* Guard against IO completion being called at same time */ 12875 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12876 spin_lock(&lpfc_cmd->buf_lock); 12877 12878 if (!lpfc_cmd->pCmd) { 12879 spin_unlock(&lpfc_cmd->buf_lock); 12880 continue; 12881 } 12882 12883 if (phba->sli_rev == LPFC_SLI_REV4) { 12884 pring_s4 = 12885 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12886 if (!pring_s4) { 12887 spin_unlock(&lpfc_cmd->buf_lock); 12888 continue; 12889 } 12890 /* Note: both hbalock and ring_lock must be set here */ 12891 spin_lock(&pring_s4->ring_lock); 12892 } 12893 12894 /* 12895 * If the iocbq is already being aborted, don't take a second 12896 * action, but do count it. 12897 */ 12898 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12899 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12900 if (phba->sli_rev == LPFC_SLI_REV4) 12901 spin_unlock(&pring_s4->ring_lock); 12902 spin_unlock(&lpfc_cmd->buf_lock); 12903 continue; 12904 } 12905 12906 /* issue ABTS for this IOCB based on iotag */ 12907 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12908 if (!abtsiocbq) { 12909 if (phba->sli_rev == LPFC_SLI_REV4) 12910 spin_unlock(&pring_s4->ring_lock); 12911 spin_unlock(&lpfc_cmd->buf_lock); 12912 continue; 12913 } 12914 12915 if (phba->sli_rev == LPFC_SLI_REV4) { 12916 iotag = abtsiocbq->iotag; 12917 ulp_context = iocbq->sli4_xritag; 12918 cqid = lpfc_cmd->hdwq->io_cq_map; 12919 } else { 12920 iotag = iocbq->iocb.ulpIoTag; 12921 if (pring->ringno == LPFC_ELS_RING) { 12922 ndlp = iocbq->ndlp; 12923 ulp_context = ndlp->nlp_rpi; 12924 } else { 12925 ulp_context = iocbq->iocb.ulpContext; 12926 } 12927 } 12928 12929 ndlp = lpfc_cmd->rdata->pnode; 12930 12931 if (lpfc_is_link_up(phba) && 12932 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) && 12933 !(phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12934 ia = false; 12935 else 12936 ia = true; 12937 12938 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12939 iocbq->iocb.ulpClass, cqid, 12940 ia, false); 12941 12942 abtsiocbq->vport = vport; 12943 12944 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12945 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12946 if (iocbq->cmd_flag & LPFC_IO_FCP) 12947 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12948 if (iocbq->cmd_flag & LPFC_IO_FOF) 12949 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12950 12951 /* Setup callback routine and issue the command. */ 12952 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12953 12954 /* 12955 * Indicate the IO is being aborted by the driver and set 12956 * the caller's flag into the aborted IO. 12957 */ 12958 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12959 12960 if (phba->sli_rev == LPFC_SLI_REV4) { 12961 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12962 abtsiocbq, 0); 12963 spin_unlock(&pring_s4->ring_lock); 12964 } else { 12965 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12966 abtsiocbq, 0); 12967 } 12968 12969 spin_unlock(&lpfc_cmd->buf_lock); 12970 12971 if (ret_val == IOCB_ERROR) 12972 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12973 else 12974 sum++; 12975 } 12976 spin_unlock_irqrestore(&phba->hbalock, iflags); 12977 return sum; 12978 } 12979 12980 /** 12981 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12982 * @phba: Pointer to HBA context object. 12983 * @cmdiocbq: Pointer to command iocb. 12984 * @rspiocbq: Pointer to response iocb. 12985 * 12986 * This function is the completion handler for iocbs issued using 12987 * lpfc_sli_issue_iocb_wait function. This function is called by the 12988 * ring event handler function without any lock held. This function 12989 * can be called from both worker thread context and interrupt 12990 * context. This function also can be called from other thread which 12991 * cleans up the SLI layer objects. 12992 * This function copy the contents of the response iocb to the 12993 * response iocb memory object provided by the caller of 12994 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12995 * sleeps for the iocb completion. 12996 **/ 12997 static void 12998 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12999 struct lpfc_iocbq *cmdiocbq, 13000 struct lpfc_iocbq *rspiocbq) 13001 { 13002 wait_queue_head_t *pdone_q; 13003 unsigned long iflags; 13004 struct lpfc_io_buf *lpfc_cmd; 13005 size_t offset = offsetof(struct lpfc_iocbq, wqe); 13006 13007 spin_lock_irqsave(&phba->hbalock, iflags); 13008 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 13009 13010 /* 13011 * A time out has occurred for the iocb. If a time out 13012 * completion handler has been supplied, call it. Otherwise, 13013 * just free the iocbq. 13014 */ 13015 13016 spin_unlock_irqrestore(&phba->hbalock, iflags); 13017 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 13018 cmdiocbq->wait_cmd_cmpl = NULL; 13019 if (cmdiocbq->cmd_cmpl) 13020 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL); 13021 else 13022 lpfc_sli_release_iocbq(phba, cmdiocbq); 13023 return; 13024 } 13025 13026 /* Copy the contents of the local rspiocb into the caller's buffer. */ 13027 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 13028 if (cmdiocbq->rsp_iocb && rspiocbq) 13029 memcpy((char *)cmdiocbq->rsp_iocb + offset, 13030 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 13031 13032 /* Set the exchange busy flag for task management commands */ 13033 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 13034 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 13035 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 13036 cur_iocbq); 13037 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 13038 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 13039 else 13040 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 13041 } 13042 13043 pdone_q = cmdiocbq->context_un.wait_queue; 13044 if (pdone_q) 13045 wake_up(pdone_q); 13046 spin_unlock_irqrestore(&phba->hbalock, iflags); 13047 return; 13048 } 13049 13050 /** 13051 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 13052 * @phba: Pointer to HBA context object.. 13053 * @piocbq: Pointer to command iocb. 13054 * @flag: Flag to test. 13055 * 13056 * This routine grabs the hbalock and then test the cmd_flag to 13057 * see if the passed in flag is set. 13058 * Returns: 13059 * 1 if flag is set. 13060 * 0 if flag is not set. 13061 **/ 13062 static int 13063 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 13064 struct lpfc_iocbq *piocbq, uint32_t flag) 13065 { 13066 unsigned long iflags; 13067 int ret; 13068 13069 spin_lock_irqsave(&phba->hbalock, iflags); 13070 ret = piocbq->cmd_flag & flag; 13071 spin_unlock_irqrestore(&phba->hbalock, iflags); 13072 return ret; 13073 13074 } 13075 13076 /** 13077 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13078 * @phba: Pointer to HBA context object.. 13079 * @ring_number: Ring number 13080 * @piocb: Pointer to command iocb. 13081 * @prspiocbq: Pointer to response iocb. 13082 * @timeout: Timeout in number of seconds. 13083 * 13084 * This function issues the iocb to firmware and waits for the 13085 * iocb to complete. The cmd_cmpl field of the shall be used 13086 * to handle iocbs which time out. If the field is NULL, the 13087 * function shall free the iocbq structure. If more clean up is 13088 * needed, the caller is expected to provide a completion function 13089 * that will provide the needed clean up. If the iocb command is 13090 * not completed within timeout seconds, the function will either 13091 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 13092 * completion function set in the cmd_cmpl field and then return 13093 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13094 * resources if this function returns IOCB_TIMEDOUT. 13095 * The function waits for the iocb completion using an 13096 * non-interruptible wait. 13097 * This function will sleep while waiting for iocb completion. 13098 * So, this function should not be called from any context which 13099 * does not allow sleeping. Due to the same reason, this function 13100 * cannot be called with interrupt disabled. 13101 * This function assumes that the iocb completions occur while 13102 * this function sleep. So, this function cannot be called from 13103 * the thread which process iocb completion for this ring. 13104 * This function clears the cmd_flag of the iocb object before 13105 * issuing the iocb and the iocb completion handler sets this 13106 * flag and wakes this thread when the iocb completes. 13107 * The contents of the response iocb will be copied to prspiocbq 13108 * by the completion handler when the command completes. 13109 * This function returns IOCB_SUCCESS when success. 13110 * This function is called with no lock held. 13111 **/ 13112 int 13113 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13114 uint32_t ring_number, 13115 struct lpfc_iocbq *piocb, 13116 struct lpfc_iocbq *prspiocbq, 13117 uint32_t timeout) 13118 { 13119 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13120 long timeleft, timeout_req = 0; 13121 int retval = IOCB_SUCCESS; 13122 uint32_t creg_val; 13123 struct lpfc_iocbq *iocb; 13124 int txq_cnt = 0; 13125 int txcmplq_cnt = 0; 13126 struct lpfc_sli_ring *pring; 13127 unsigned long iflags; 13128 bool iocb_completed = true; 13129 13130 if (phba->sli_rev >= LPFC_SLI_REV4) { 13131 lpfc_sli_prep_wqe(phba, piocb); 13132 13133 pring = lpfc_sli4_calc_ring(phba, piocb); 13134 } else 13135 pring = &phba->sli.sli3_ring[ring_number]; 13136 /* 13137 * If the caller has provided a response iocbq buffer, then rsp_iocb 13138 * is NULL or its an error. 13139 */ 13140 if (prspiocbq) { 13141 if (piocb->rsp_iocb) 13142 return IOCB_ERROR; 13143 piocb->rsp_iocb = prspiocbq; 13144 } 13145 13146 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 13147 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 13148 piocb->context_un.wait_queue = &done_q; 13149 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13150 13151 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13152 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13153 return IOCB_ERROR; 13154 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13155 writel(creg_val, phba->HCregaddr); 13156 readl(phba->HCregaddr); /* flush */ 13157 } 13158 13159 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13160 SLI_IOCB_RET_IOCB); 13161 if (retval == IOCB_SUCCESS) { 13162 timeout_req = msecs_to_jiffies(timeout * 1000); 13163 timeleft = wait_event_timeout(done_q, 13164 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13165 timeout_req); 13166 spin_lock_irqsave(&phba->hbalock, iflags); 13167 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 13168 13169 /* 13170 * IOCB timed out. Inform the wake iocb wait 13171 * completion function and set local status 13172 */ 13173 13174 iocb_completed = false; 13175 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 13176 } 13177 spin_unlock_irqrestore(&phba->hbalock, iflags); 13178 if (iocb_completed) { 13179 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13180 "0331 IOCB wake signaled\n"); 13181 /* Note: we are not indicating if the IOCB has a success 13182 * status or not - that's for the caller to check. 13183 * IOCB_SUCCESS means just that the command was sent and 13184 * completed. Not that it completed successfully. 13185 * */ 13186 } else if (timeleft == 0) { 13187 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13188 "0338 IOCB wait timeout error - no " 13189 "wake response Data x%x\n", timeout); 13190 retval = IOCB_TIMEDOUT; 13191 } else { 13192 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13193 "0330 IOCB wake NOT set, " 13194 "Data x%x x%lx\n", 13195 timeout, (timeleft / jiffies)); 13196 retval = IOCB_TIMEDOUT; 13197 } 13198 } else if (retval == IOCB_BUSY) { 13199 if (phba->cfg_log_verbose & LOG_SLI) { 13200 list_for_each_entry(iocb, &pring->txq, list) { 13201 txq_cnt++; 13202 } 13203 list_for_each_entry(iocb, &pring->txcmplq, list) { 13204 txcmplq_cnt++; 13205 } 13206 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13207 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13208 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13209 } 13210 return retval; 13211 } else { 13212 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13213 "0332 IOCB wait issue failed, Data x%x\n", 13214 retval); 13215 retval = IOCB_ERROR; 13216 } 13217 13218 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13219 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13220 return IOCB_ERROR; 13221 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13222 writel(creg_val, phba->HCregaddr); 13223 readl(phba->HCregaddr); /* flush */ 13224 } 13225 13226 if (prspiocbq) 13227 piocb->rsp_iocb = NULL; 13228 13229 piocb->context_un.wait_queue = NULL; 13230 piocb->cmd_cmpl = NULL; 13231 return retval; 13232 } 13233 13234 /** 13235 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13236 * @phba: Pointer to HBA context object. 13237 * @pmboxq: Pointer to driver mailbox object. 13238 * @timeout: Timeout in number of seconds. 13239 * 13240 * This function issues the mailbox to firmware and waits for the 13241 * mailbox command to complete. If the mailbox command is not 13242 * completed within timeout seconds, it returns MBX_TIMEOUT. 13243 * The function waits for the mailbox completion using an 13244 * interruptible wait. If the thread is woken up due to a 13245 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13246 * should not free the mailbox resources, if this function returns 13247 * MBX_TIMEOUT. 13248 * This function will sleep while waiting for mailbox completion. 13249 * So, this function should not be called from any context which 13250 * does not allow sleeping. Due to the same reason, this function 13251 * cannot be called with interrupt disabled. 13252 * This function assumes that the mailbox completion occurs while 13253 * this function sleep. So, this function cannot be called from 13254 * the worker thread which processes mailbox completion. 13255 * This function is called in the context of HBA management 13256 * applications. 13257 * This function returns MBX_SUCCESS when successful. 13258 * This function is called with no lock held. 13259 **/ 13260 int 13261 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13262 uint32_t timeout) 13263 { 13264 struct completion mbox_done; 13265 int retval; 13266 unsigned long flag; 13267 13268 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13269 /* setup wake call as IOCB callback */ 13270 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13271 13272 /* setup context3 field to pass wait_queue pointer to wake function */ 13273 init_completion(&mbox_done); 13274 pmboxq->context3 = &mbox_done; 13275 /* now issue the command */ 13276 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13277 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13278 wait_for_completion_timeout(&mbox_done, 13279 msecs_to_jiffies(timeout * 1000)); 13280 13281 spin_lock_irqsave(&phba->hbalock, flag); 13282 pmboxq->context3 = NULL; 13283 /* 13284 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13285 * else do not free the resources. 13286 */ 13287 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13288 retval = MBX_SUCCESS; 13289 } else { 13290 retval = MBX_TIMEOUT; 13291 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13292 } 13293 spin_unlock_irqrestore(&phba->hbalock, flag); 13294 } 13295 return retval; 13296 } 13297 13298 /** 13299 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13300 * @phba: Pointer to HBA context. 13301 * @mbx_action: Mailbox shutdown options. 13302 * 13303 * This function is called to shutdown the driver's mailbox sub-system. 13304 * It first marks the mailbox sub-system is in a block state to prevent 13305 * the asynchronous mailbox command from issued off the pending mailbox 13306 * command queue. If the mailbox command sub-system shutdown is due to 13307 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13308 * the mailbox sub-system flush routine to forcefully bring down the 13309 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13310 * as with offline or HBA function reset), this routine will wait for the 13311 * outstanding mailbox command to complete before invoking the mailbox 13312 * sub-system flush routine to gracefully bring down mailbox sub-system. 13313 **/ 13314 void 13315 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13316 { 13317 struct lpfc_sli *psli = &phba->sli; 13318 unsigned long timeout; 13319 13320 if (mbx_action == LPFC_MBX_NO_WAIT) { 13321 /* delay 100ms for port state */ 13322 msleep(100); 13323 lpfc_sli_mbox_sys_flush(phba); 13324 return; 13325 } 13326 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13327 13328 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13329 local_bh_disable(); 13330 13331 spin_lock_irq(&phba->hbalock); 13332 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13333 13334 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13335 /* Determine how long we might wait for the active mailbox 13336 * command to be gracefully completed by firmware. 13337 */ 13338 if (phba->sli.mbox_active) 13339 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13340 phba->sli.mbox_active) * 13341 1000) + jiffies; 13342 spin_unlock_irq(&phba->hbalock); 13343 13344 /* Enable softirqs again, done with phba->hbalock */ 13345 local_bh_enable(); 13346 13347 while (phba->sli.mbox_active) { 13348 /* Check active mailbox complete status every 2ms */ 13349 msleep(2); 13350 if (time_after(jiffies, timeout)) 13351 /* Timeout, let the mailbox flush routine to 13352 * forcefully release active mailbox command 13353 */ 13354 break; 13355 } 13356 } else { 13357 spin_unlock_irq(&phba->hbalock); 13358 13359 /* Enable softirqs again, done with phba->hbalock */ 13360 local_bh_enable(); 13361 } 13362 13363 lpfc_sli_mbox_sys_flush(phba); 13364 } 13365 13366 /** 13367 * lpfc_sli_eratt_read - read sli-3 error attention events 13368 * @phba: Pointer to HBA context. 13369 * 13370 * This function is called to read the SLI3 device error attention registers 13371 * for possible error attention events. The caller must hold the hostlock 13372 * with spin_lock_irq(). 13373 * 13374 * This function returns 1 when there is Error Attention in the Host Attention 13375 * Register and returns 0 otherwise. 13376 **/ 13377 static int 13378 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13379 { 13380 uint32_t ha_copy; 13381 13382 /* Read chip Host Attention (HA) register */ 13383 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13384 goto unplug_err; 13385 13386 if (ha_copy & HA_ERATT) { 13387 /* Read host status register to retrieve error event */ 13388 if (lpfc_sli_read_hs(phba)) 13389 goto unplug_err; 13390 13391 /* Check if there is a deferred error condition is active */ 13392 if ((HS_FFER1 & phba->work_hs) && 13393 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13394 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13395 phba->hba_flag |= DEFER_ERATT; 13396 /* Clear all interrupt enable conditions */ 13397 writel(0, phba->HCregaddr); 13398 readl(phba->HCregaddr); 13399 } 13400 13401 /* Set the driver HA work bitmap */ 13402 phba->work_ha |= HA_ERATT; 13403 /* Indicate polling handles this ERATT */ 13404 phba->hba_flag |= HBA_ERATT_HANDLED; 13405 return 1; 13406 } 13407 return 0; 13408 13409 unplug_err: 13410 /* Set the driver HS work bitmap */ 13411 phba->work_hs |= UNPLUG_ERR; 13412 /* Set the driver HA work bitmap */ 13413 phba->work_ha |= HA_ERATT; 13414 /* Indicate polling handles this ERATT */ 13415 phba->hba_flag |= HBA_ERATT_HANDLED; 13416 return 1; 13417 } 13418 13419 /** 13420 * lpfc_sli4_eratt_read - read sli-4 error attention events 13421 * @phba: Pointer to HBA context. 13422 * 13423 * This function is called to read the SLI4 device error attention registers 13424 * for possible error attention events. The caller must hold the hostlock 13425 * with spin_lock_irq(). 13426 * 13427 * This function returns 1 when there is Error Attention in the Host Attention 13428 * Register and returns 0 otherwise. 13429 **/ 13430 static int 13431 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13432 { 13433 uint32_t uerr_sta_hi, uerr_sta_lo; 13434 uint32_t if_type, portsmphr; 13435 struct lpfc_register portstat_reg; 13436 u32 logmask; 13437 13438 /* 13439 * For now, use the SLI4 device internal unrecoverable error 13440 * registers for error attention. This can be changed later. 13441 */ 13442 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13443 switch (if_type) { 13444 case LPFC_SLI_INTF_IF_TYPE_0: 13445 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13446 &uerr_sta_lo) || 13447 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13448 &uerr_sta_hi)) { 13449 phba->work_hs |= UNPLUG_ERR; 13450 phba->work_ha |= HA_ERATT; 13451 phba->hba_flag |= HBA_ERATT_HANDLED; 13452 return 1; 13453 } 13454 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13455 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13456 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13457 "1423 HBA Unrecoverable error: " 13458 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13459 "ue_mask_lo_reg=0x%x, " 13460 "ue_mask_hi_reg=0x%x\n", 13461 uerr_sta_lo, uerr_sta_hi, 13462 phba->sli4_hba.ue_mask_lo, 13463 phba->sli4_hba.ue_mask_hi); 13464 phba->work_status[0] = uerr_sta_lo; 13465 phba->work_status[1] = uerr_sta_hi; 13466 phba->work_ha |= HA_ERATT; 13467 phba->hba_flag |= HBA_ERATT_HANDLED; 13468 return 1; 13469 } 13470 break; 13471 case LPFC_SLI_INTF_IF_TYPE_2: 13472 case LPFC_SLI_INTF_IF_TYPE_6: 13473 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13474 &portstat_reg.word0) || 13475 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13476 &portsmphr)){ 13477 phba->work_hs |= UNPLUG_ERR; 13478 phba->work_ha |= HA_ERATT; 13479 phba->hba_flag |= HBA_ERATT_HANDLED; 13480 return 1; 13481 } 13482 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13483 phba->work_status[0] = 13484 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13485 phba->work_status[1] = 13486 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13487 logmask = LOG_TRACE_EVENT; 13488 if (phba->work_status[0] == 13489 SLIPORT_ERR1_REG_ERR_CODE_2 && 13490 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13491 logmask = LOG_SLI; 13492 lpfc_printf_log(phba, KERN_ERR, logmask, 13493 "2885 Port Status Event: " 13494 "port status reg 0x%x, " 13495 "port smphr reg 0x%x, " 13496 "error 1=0x%x, error 2=0x%x\n", 13497 portstat_reg.word0, 13498 portsmphr, 13499 phba->work_status[0], 13500 phba->work_status[1]); 13501 phba->work_ha |= HA_ERATT; 13502 phba->hba_flag |= HBA_ERATT_HANDLED; 13503 return 1; 13504 } 13505 break; 13506 case LPFC_SLI_INTF_IF_TYPE_1: 13507 default: 13508 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13509 "2886 HBA Error Attention on unsupported " 13510 "if type %d.", if_type); 13511 return 1; 13512 } 13513 13514 return 0; 13515 } 13516 13517 /** 13518 * lpfc_sli_check_eratt - check error attention events 13519 * @phba: Pointer to HBA context. 13520 * 13521 * This function is called from timer soft interrupt context to check HBA's 13522 * error attention register bit for error attention events. 13523 * 13524 * This function returns 1 when there is Error Attention in the Host Attention 13525 * Register and returns 0 otherwise. 13526 **/ 13527 int 13528 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13529 { 13530 uint32_t ha_copy; 13531 13532 /* If somebody is waiting to handle an eratt, don't process it 13533 * here. The brdkill function will do this. 13534 */ 13535 if (phba->link_flag & LS_IGNORE_ERATT) 13536 return 0; 13537 13538 /* Check if interrupt handler handles this ERATT */ 13539 spin_lock_irq(&phba->hbalock); 13540 if (phba->hba_flag & HBA_ERATT_HANDLED) { 13541 /* Interrupt handler has handled ERATT */ 13542 spin_unlock_irq(&phba->hbalock); 13543 return 0; 13544 } 13545 13546 /* 13547 * If there is deferred error attention, do not check for error 13548 * attention 13549 */ 13550 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13551 spin_unlock_irq(&phba->hbalock); 13552 return 0; 13553 } 13554 13555 /* If PCI channel is offline, don't process it */ 13556 if (unlikely(pci_channel_offline(phba->pcidev))) { 13557 spin_unlock_irq(&phba->hbalock); 13558 return 0; 13559 } 13560 13561 switch (phba->sli_rev) { 13562 case LPFC_SLI_REV2: 13563 case LPFC_SLI_REV3: 13564 /* Read chip Host Attention (HA) register */ 13565 ha_copy = lpfc_sli_eratt_read(phba); 13566 break; 13567 case LPFC_SLI_REV4: 13568 /* Read device Uncoverable Error (UERR) registers */ 13569 ha_copy = lpfc_sli4_eratt_read(phba); 13570 break; 13571 default: 13572 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13573 "0299 Invalid SLI revision (%d)\n", 13574 phba->sli_rev); 13575 ha_copy = 0; 13576 break; 13577 } 13578 spin_unlock_irq(&phba->hbalock); 13579 13580 return ha_copy; 13581 } 13582 13583 /** 13584 * lpfc_intr_state_check - Check device state for interrupt handling 13585 * @phba: Pointer to HBA context. 13586 * 13587 * This inline routine checks whether a device or its PCI slot is in a state 13588 * that the interrupt should be handled. 13589 * 13590 * This function returns 0 if the device or the PCI slot is in a state that 13591 * interrupt should be handled, otherwise -EIO. 13592 */ 13593 static inline int 13594 lpfc_intr_state_check(struct lpfc_hba *phba) 13595 { 13596 /* If the pci channel is offline, ignore all the interrupts */ 13597 if (unlikely(pci_channel_offline(phba->pcidev))) 13598 return -EIO; 13599 13600 /* Update device level interrupt statistics */ 13601 phba->sli.slistat.sli_intr++; 13602 13603 /* Ignore all interrupts during initialization. */ 13604 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13605 return -EIO; 13606 13607 return 0; 13608 } 13609 13610 /** 13611 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13612 * @irq: Interrupt number. 13613 * @dev_id: The device context pointer. 13614 * 13615 * This function is directly called from the PCI layer as an interrupt 13616 * service routine when device with SLI-3 interface spec is enabled with 13617 * MSI-X multi-message interrupt mode and there are slow-path events in 13618 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13619 * interrupt mode, this function is called as part of the device-level 13620 * interrupt handler. When the PCI slot is in error recovery or the HBA 13621 * is undergoing initialization, the interrupt handler will not process 13622 * the interrupt. The link attention and ELS ring attention events are 13623 * handled by the worker thread. The interrupt handler signals the worker 13624 * thread and returns for these events. This function is called without 13625 * any lock held. It gets the hbalock to access and update SLI data 13626 * structures. 13627 * 13628 * This function returns IRQ_HANDLED when interrupt is handled else it 13629 * returns IRQ_NONE. 13630 **/ 13631 irqreturn_t 13632 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13633 { 13634 struct lpfc_hba *phba; 13635 uint32_t ha_copy, hc_copy; 13636 uint32_t work_ha_copy; 13637 unsigned long status; 13638 unsigned long iflag; 13639 uint32_t control; 13640 13641 MAILBOX_t *mbox, *pmbox; 13642 struct lpfc_vport *vport; 13643 struct lpfc_nodelist *ndlp; 13644 struct lpfc_dmabuf *mp; 13645 LPFC_MBOXQ_t *pmb; 13646 int rc; 13647 13648 /* 13649 * Get the driver's phba structure from the dev_id and 13650 * assume the HBA is not interrupting. 13651 */ 13652 phba = (struct lpfc_hba *)dev_id; 13653 13654 if (unlikely(!phba)) 13655 return IRQ_NONE; 13656 13657 /* 13658 * Stuff needs to be attented to when this function is invoked as an 13659 * individual interrupt handler in MSI-X multi-message interrupt mode 13660 */ 13661 if (phba->intr_type == MSIX) { 13662 /* Check device state for handling interrupt */ 13663 if (lpfc_intr_state_check(phba)) 13664 return IRQ_NONE; 13665 /* Need to read HA REG for slow-path events */ 13666 spin_lock_irqsave(&phba->hbalock, iflag); 13667 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13668 goto unplug_error; 13669 /* If somebody is waiting to handle an eratt don't process it 13670 * here. The brdkill function will do this. 13671 */ 13672 if (phba->link_flag & LS_IGNORE_ERATT) 13673 ha_copy &= ~HA_ERATT; 13674 /* Check the need for handling ERATT in interrupt handler */ 13675 if (ha_copy & HA_ERATT) { 13676 if (phba->hba_flag & HBA_ERATT_HANDLED) 13677 /* ERATT polling has handled ERATT */ 13678 ha_copy &= ~HA_ERATT; 13679 else 13680 /* Indicate interrupt handler handles ERATT */ 13681 phba->hba_flag |= HBA_ERATT_HANDLED; 13682 } 13683 13684 /* 13685 * If there is deferred error attention, do not check for any 13686 * interrupt. 13687 */ 13688 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13689 spin_unlock_irqrestore(&phba->hbalock, iflag); 13690 return IRQ_NONE; 13691 } 13692 13693 /* Clear up only attention source related to slow-path */ 13694 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13695 goto unplug_error; 13696 13697 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13698 HC_LAINT_ENA | HC_ERINT_ENA), 13699 phba->HCregaddr); 13700 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13701 phba->HAregaddr); 13702 writel(hc_copy, phba->HCregaddr); 13703 readl(phba->HAregaddr); /* flush */ 13704 spin_unlock_irqrestore(&phba->hbalock, iflag); 13705 } else 13706 ha_copy = phba->ha_copy; 13707 13708 work_ha_copy = ha_copy & phba->work_ha_mask; 13709 13710 if (work_ha_copy) { 13711 if (work_ha_copy & HA_LATT) { 13712 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13713 /* 13714 * Turn off Link Attention interrupts 13715 * until CLEAR_LA done 13716 */ 13717 spin_lock_irqsave(&phba->hbalock, iflag); 13718 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13719 if (lpfc_readl(phba->HCregaddr, &control)) 13720 goto unplug_error; 13721 control &= ~HC_LAINT_ENA; 13722 writel(control, phba->HCregaddr); 13723 readl(phba->HCregaddr); /* flush */ 13724 spin_unlock_irqrestore(&phba->hbalock, iflag); 13725 } 13726 else 13727 work_ha_copy &= ~HA_LATT; 13728 } 13729 13730 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13731 /* 13732 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13733 * the only slow ring. 13734 */ 13735 status = (work_ha_copy & 13736 (HA_RXMASK << (4*LPFC_ELS_RING))); 13737 status >>= (4*LPFC_ELS_RING); 13738 if (status & HA_RXMASK) { 13739 spin_lock_irqsave(&phba->hbalock, iflag); 13740 if (lpfc_readl(phba->HCregaddr, &control)) 13741 goto unplug_error; 13742 13743 lpfc_debugfs_slow_ring_trc(phba, 13744 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13745 control, status, 13746 (uint32_t)phba->sli.slistat.sli_intr); 13747 13748 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13749 lpfc_debugfs_slow_ring_trc(phba, 13750 "ISR Disable ring:" 13751 "pwork:x%x hawork:x%x wait:x%x", 13752 phba->work_ha, work_ha_copy, 13753 (uint32_t)((unsigned long) 13754 &phba->work_waitq)); 13755 13756 control &= 13757 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13758 writel(control, phba->HCregaddr); 13759 readl(phba->HCregaddr); /* flush */ 13760 } 13761 else { 13762 lpfc_debugfs_slow_ring_trc(phba, 13763 "ISR slow ring: pwork:" 13764 "x%x hawork:x%x wait:x%x", 13765 phba->work_ha, work_ha_copy, 13766 (uint32_t)((unsigned long) 13767 &phba->work_waitq)); 13768 } 13769 spin_unlock_irqrestore(&phba->hbalock, iflag); 13770 } 13771 } 13772 spin_lock_irqsave(&phba->hbalock, iflag); 13773 if (work_ha_copy & HA_ERATT) { 13774 if (lpfc_sli_read_hs(phba)) 13775 goto unplug_error; 13776 /* 13777 * Check if there is a deferred error condition 13778 * is active 13779 */ 13780 if ((HS_FFER1 & phba->work_hs) && 13781 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13782 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13783 phba->work_hs)) { 13784 phba->hba_flag |= DEFER_ERATT; 13785 /* Clear all interrupt enable conditions */ 13786 writel(0, phba->HCregaddr); 13787 readl(phba->HCregaddr); 13788 } 13789 } 13790 13791 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13792 pmb = phba->sli.mbox_active; 13793 pmbox = &pmb->u.mb; 13794 mbox = phba->mbox; 13795 vport = pmb->vport; 13796 13797 /* First check out the status word */ 13798 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13799 if (pmbox->mbxOwner != OWN_HOST) { 13800 spin_unlock_irqrestore(&phba->hbalock, iflag); 13801 /* 13802 * Stray Mailbox Interrupt, mbxCommand <cmd> 13803 * mbxStatus <status> 13804 */ 13805 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13806 "(%d):0304 Stray Mailbox " 13807 "Interrupt mbxCommand x%x " 13808 "mbxStatus x%x\n", 13809 (vport ? vport->vpi : 0), 13810 pmbox->mbxCommand, 13811 pmbox->mbxStatus); 13812 /* clear mailbox attention bit */ 13813 work_ha_copy &= ~HA_MBATT; 13814 } else { 13815 phba->sli.mbox_active = NULL; 13816 spin_unlock_irqrestore(&phba->hbalock, iflag); 13817 phba->last_completion_time = jiffies; 13818 del_timer(&phba->sli.mbox_tmo); 13819 if (pmb->mbox_cmpl) { 13820 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13821 MAILBOX_CMD_SIZE); 13822 if (pmb->out_ext_byte_len && 13823 pmb->ctx_buf) 13824 lpfc_sli_pcimem_bcopy( 13825 phba->mbox_ext, 13826 pmb->ctx_buf, 13827 pmb->out_ext_byte_len); 13828 } 13829 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13830 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13831 13832 lpfc_debugfs_disc_trc(vport, 13833 LPFC_DISC_TRC_MBOX_VPORT, 13834 "MBOX dflt rpi: : " 13835 "status:x%x rpi:x%x", 13836 (uint32_t)pmbox->mbxStatus, 13837 pmbox->un.varWords[0], 0); 13838 13839 if (!pmbox->mbxStatus) { 13840 mp = (struct lpfc_dmabuf *) 13841 (pmb->ctx_buf); 13842 ndlp = (struct lpfc_nodelist *) 13843 pmb->ctx_ndlp; 13844 13845 /* Reg_LOGIN of dflt RPI was 13846 * successful. new lets get 13847 * rid of the RPI using the 13848 * same mbox buffer. 13849 */ 13850 lpfc_unreg_login(phba, 13851 vport->vpi, 13852 pmbox->un.varWords[0], 13853 pmb); 13854 pmb->mbox_cmpl = 13855 lpfc_mbx_cmpl_dflt_rpi; 13856 pmb->ctx_buf = mp; 13857 pmb->ctx_ndlp = ndlp; 13858 pmb->vport = vport; 13859 rc = lpfc_sli_issue_mbox(phba, 13860 pmb, 13861 MBX_NOWAIT); 13862 if (rc != MBX_BUSY) 13863 lpfc_printf_log(phba, 13864 KERN_ERR, 13865 LOG_TRACE_EVENT, 13866 "0350 rc should have" 13867 "been MBX_BUSY\n"); 13868 if (rc != MBX_NOT_FINISHED) 13869 goto send_current_mbox; 13870 } 13871 } 13872 spin_lock_irqsave( 13873 &phba->pport->work_port_lock, 13874 iflag); 13875 phba->pport->work_port_events &= 13876 ~WORKER_MBOX_TMO; 13877 spin_unlock_irqrestore( 13878 &phba->pport->work_port_lock, 13879 iflag); 13880 13881 /* Do NOT queue MBX_HEARTBEAT to the worker 13882 * thread for processing. 13883 */ 13884 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13885 /* Process mbox now */ 13886 phba->sli.mbox_active = NULL; 13887 phba->sli.sli_flag &= 13888 ~LPFC_SLI_MBOX_ACTIVE; 13889 if (pmb->mbox_cmpl) 13890 pmb->mbox_cmpl(phba, pmb); 13891 } else { 13892 /* Queue to worker thread to process */ 13893 lpfc_mbox_cmpl_put(phba, pmb); 13894 } 13895 } 13896 } else 13897 spin_unlock_irqrestore(&phba->hbalock, iflag); 13898 13899 if ((work_ha_copy & HA_MBATT) && 13900 (phba->sli.mbox_active == NULL)) { 13901 send_current_mbox: 13902 /* Process next mailbox command if there is one */ 13903 do { 13904 rc = lpfc_sli_issue_mbox(phba, NULL, 13905 MBX_NOWAIT); 13906 } while (rc == MBX_NOT_FINISHED); 13907 if (rc != MBX_SUCCESS) 13908 lpfc_printf_log(phba, KERN_ERR, 13909 LOG_TRACE_EVENT, 13910 "0349 rc should be " 13911 "MBX_SUCCESS\n"); 13912 } 13913 13914 spin_lock_irqsave(&phba->hbalock, iflag); 13915 phba->work_ha |= work_ha_copy; 13916 spin_unlock_irqrestore(&phba->hbalock, iflag); 13917 lpfc_worker_wake_up(phba); 13918 } 13919 return IRQ_HANDLED; 13920 unplug_error: 13921 spin_unlock_irqrestore(&phba->hbalock, iflag); 13922 return IRQ_HANDLED; 13923 13924 } /* lpfc_sli_sp_intr_handler */ 13925 13926 /** 13927 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13928 * @irq: Interrupt number. 13929 * @dev_id: The device context pointer. 13930 * 13931 * This function is directly called from the PCI layer as an interrupt 13932 * service routine when device with SLI-3 interface spec is enabled with 13933 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13934 * ring event in the HBA. However, when the device is enabled with either 13935 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13936 * device-level interrupt handler. When the PCI slot is in error recovery 13937 * or the HBA is undergoing initialization, the interrupt handler will not 13938 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13939 * the intrrupt context. This function is called without any lock held. 13940 * It gets the hbalock to access and update SLI data structures. 13941 * 13942 * This function returns IRQ_HANDLED when interrupt is handled else it 13943 * returns IRQ_NONE. 13944 **/ 13945 irqreturn_t 13946 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13947 { 13948 struct lpfc_hba *phba; 13949 uint32_t ha_copy; 13950 unsigned long status; 13951 unsigned long iflag; 13952 struct lpfc_sli_ring *pring; 13953 13954 /* Get the driver's phba structure from the dev_id and 13955 * assume the HBA is not interrupting. 13956 */ 13957 phba = (struct lpfc_hba *) dev_id; 13958 13959 if (unlikely(!phba)) 13960 return IRQ_NONE; 13961 13962 /* 13963 * Stuff needs to be attented to when this function is invoked as an 13964 * individual interrupt handler in MSI-X multi-message interrupt mode 13965 */ 13966 if (phba->intr_type == MSIX) { 13967 /* Check device state for handling interrupt */ 13968 if (lpfc_intr_state_check(phba)) 13969 return IRQ_NONE; 13970 /* Need to read HA REG for FCP ring and other ring events */ 13971 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13972 return IRQ_HANDLED; 13973 /* Clear up only attention source related to fast-path */ 13974 spin_lock_irqsave(&phba->hbalock, iflag); 13975 /* 13976 * If there is deferred error attention, do not check for 13977 * any interrupt. 13978 */ 13979 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13980 spin_unlock_irqrestore(&phba->hbalock, iflag); 13981 return IRQ_NONE; 13982 } 13983 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13984 phba->HAregaddr); 13985 readl(phba->HAregaddr); /* flush */ 13986 spin_unlock_irqrestore(&phba->hbalock, iflag); 13987 } else 13988 ha_copy = phba->ha_copy; 13989 13990 /* 13991 * Process all events on FCP ring. Take the optimized path for FCP IO. 13992 */ 13993 ha_copy &= ~(phba->work_ha_mask); 13994 13995 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13996 status >>= (4*LPFC_FCP_RING); 13997 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13998 if (status & HA_RXMASK) 13999 lpfc_sli_handle_fast_ring_event(phba, pring, status); 14000 14001 if (phba->cfg_multi_ring_support == 2) { 14002 /* 14003 * Process all events on extra ring. Take the optimized path 14004 * for extra ring IO. 14005 */ 14006 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14007 status >>= (4*LPFC_EXTRA_RING); 14008 if (status & HA_RXMASK) { 14009 lpfc_sli_handle_fast_ring_event(phba, 14010 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 14011 status); 14012 } 14013 } 14014 return IRQ_HANDLED; 14015 } /* lpfc_sli_fp_intr_handler */ 14016 14017 /** 14018 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 14019 * @irq: Interrupt number. 14020 * @dev_id: The device context pointer. 14021 * 14022 * This function is the HBA device-level interrupt handler to device with 14023 * SLI-3 interface spec, called from the PCI layer when either MSI or 14024 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 14025 * requires driver attention. This function invokes the slow-path interrupt 14026 * attention handling function and fast-path interrupt attention handling 14027 * function in turn to process the relevant HBA attention events. This 14028 * function is called without any lock held. It gets the hbalock to access 14029 * and update SLI data structures. 14030 * 14031 * This function returns IRQ_HANDLED when interrupt is handled, else it 14032 * returns IRQ_NONE. 14033 **/ 14034 irqreturn_t 14035 lpfc_sli_intr_handler(int irq, void *dev_id) 14036 { 14037 struct lpfc_hba *phba; 14038 irqreturn_t sp_irq_rc, fp_irq_rc; 14039 unsigned long status1, status2; 14040 uint32_t hc_copy; 14041 14042 /* 14043 * Get the driver's phba structure from the dev_id and 14044 * assume the HBA is not interrupting. 14045 */ 14046 phba = (struct lpfc_hba *) dev_id; 14047 14048 if (unlikely(!phba)) 14049 return IRQ_NONE; 14050 14051 /* Check device state for handling interrupt */ 14052 if (lpfc_intr_state_check(phba)) 14053 return IRQ_NONE; 14054 14055 spin_lock(&phba->hbalock); 14056 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 14057 spin_unlock(&phba->hbalock); 14058 return IRQ_HANDLED; 14059 } 14060 14061 if (unlikely(!phba->ha_copy)) { 14062 spin_unlock(&phba->hbalock); 14063 return IRQ_NONE; 14064 } else if (phba->ha_copy & HA_ERATT) { 14065 if (phba->hba_flag & HBA_ERATT_HANDLED) 14066 /* ERATT polling has handled ERATT */ 14067 phba->ha_copy &= ~HA_ERATT; 14068 else 14069 /* Indicate interrupt handler handles ERATT */ 14070 phba->hba_flag |= HBA_ERATT_HANDLED; 14071 } 14072 14073 /* 14074 * If there is deferred error attention, do not check for any interrupt. 14075 */ 14076 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 14077 spin_unlock(&phba->hbalock); 14078 return IRQ_NONE; 14079 } 14080 14081 /* Clear attention sources except link and error attentions */ 14082 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14083 spin_unlock(&phba->hbalock); 14084 return IRQ_HANDLED; 14085 } 14086 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14087 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14088 phba->HCregaddr); 14089 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14090 writel(hc_copy, phba->HCregaddr); 14091 readl(phba->HAregaddr); /* flush */ 14092 spin_unlock(&phba->hbalock); 14093 14094 /* 14095 * Invokes slow-path host attention interrupt handling as appropriate. 14096 */ 14097 14098 /* status of events with mailbox and link attention */ 14099 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14100 14101 /* status of events with ELS ring */ 14102 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14103 status2 >>= (4*LPFC_ELS_RING); 14104 14105 if (status1 || (status2 & HA_RXMASK)) 14106 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14107 else 14108 sp_irq_rc = IRQ_NONE; 14109 14110 /* 14111 * Invoke fast-path host attention interrupt handling as appropriate. 14112 */ 14113 14114 /* status of events with FCP ring */ 14115 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14116 status1 >>= (4*LPFC_FCP_RING); 14117 14118 /* status of events with extra ring */ 14119 if (phba->cfg_multi_ring_support == 2) { 14120 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14121 status2 >>= (4*LPFC_EXTRA_RING); 14122 } else 14123 status2 = 0; 14124 14125 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14126 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14127 else 14128 fp_irq_rc = IRQ_NONE; 14129 14130 /* Return device-level interrupt handling status */ 14131 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14132 } /* lpfc_sli_intr_handler */ 14133 14134 /** 14135 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14136 * @phba: pointer to lpfc hba data structure. 14137 * 14138 * This routine is invoked by the worker thread to process all the pending 14139 * SLI4 els abort xri events. 14140 **/ 14141 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14142 { 14143 struct lpfc_cq_event *cq_event; 14144 unsigned long iflags; 14145 14146 /* First, declare the els xri abort event has been handled */ 14147 spin_lock_irqsave(&phba->hbalock, iflags); 14148 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 14149 spin_unlock_irqrestore(&phba->hbalock, iflags); 14150 14151 /* Now, handle all the els xri abort events */ 14152 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14153 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14154 /* Get the first event from the head of the event queue */ 14155 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14156 cq_event, struct lpfc_cq_event, list); 14157 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14158 iflags); 14159 /* Notify aborted XRI for ELS work queue */ 14160 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14161 14162 /* Free the event processed back to the free pool */ 14163 lpfc_sli4_cq_event_release(phba, cq_event); 14164 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14165 iflags); 14166 } 14167 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14168 } 14169 14170 /** 14171 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 14172 * @phba: Pointer to HBA context object. 14173 * @irspiocbq: Pointer to work-queue completion queue entry. 14174 * 14175 * This routine handles an ELS work-queue completion event and construct 14176 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common 14177 * discovery engine to handle. 14178 * 14179 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14180 **/ 14181 static struct lpfc_iocbq * 14182 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 14183 struct lpfc_iocbq *irspiocbq) 14184 { 14185 struct lpfc_sli_ring *pring; 14186 struct lpfc_iocbq *cmdiocbq; 14187 struct lpfc_wcqe_complete *wcqe; 14188 unsigned long iflags; 14189 14190 pring = lpfc_phba_elsring(phba); 14191 if (unlikely(!pring)) 14192 return NULL; 14193 14194 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14195 spin_lock_irqsave(&pring->ring_lock, iflags); 14196 pring->stats.iocb_event++; 14197 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14198 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14199 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14200 if (unlikely(!cmdiocbq)) { 14201 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14202 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14203 "0386 ELS complete with no corresponding " 14204 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14205 wcqe->word0, wcqe->total_data_placed, 14206 wcqe->parameter, wcqe->word3); 14207 lpfc_sli_release_iocbq(phba, irspiocbq); 14208 return NULL; 14209 } 14210 14211 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 14212 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 14213 14214 /* Put the iocb back on the txcmplq */ 14215 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14216 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14217 14218 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14219 spin_lock_irqsave(&phba->hbalock, iflags); 14220 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14221 spin_unlock_irqrestore(&phba->hbalock, iflags); 14222 } 14223 14224 return irspiocbq; 14225 } 14226 14227 inline struct lpfc_cq_event * 14228 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14229 { 14230 struct lpfc_cq_event *cq_event; 14231 14232 /* Allocate a new internal CQ_EVENT entry */ 14233 cq_event = lpfc_sli4_cq_event_alloc(phba); 14234 if (!cq_event) { 14235 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14236 "0602 Failed to alloc CQ_EVENT entry\n"); 14237 return NULL; 14238 } 14239 14240 /* Move the CQE into the event */ 14241 memcpy(&cq_event->cqe, entry, size); 14242 return cq_event; 14243 } 14244 14245 /** 14246 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14247 * @phba: Pointer to HBA context object. 14248 * @mcqe: Pointer to mailbox completion queue entry. 14249 * 14250 * This routine process a mailbox completion queue entry with asynchronous 14251 * event. 14252 * 14253 * Return: true if work posted to worker thread, otherwise false. 14254 **/ 14255 static bool 14256 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14257 { 14258 struct lpfc_cq_event *cq_event; 14259 unsigned long iflags; 14260 14261 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14262 "0392 Async Event: word0:x%x, word1:x%x, " 14263 "word2:x%x, word3:x%x\n", mcqe->word0, 14264 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14265 14266 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14267 if (!cq_event) 14268 return false; 14269 14270 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14271 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14272 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14273 14274 /* Set the async event flag */ 14275 spin_lock_irqsave(&phba->hbalock, iflags); 14276 phba->hba_flag |= ASYNC_EVENT; 14277 spin_unlock_irqrestore(&phba->hbalock, iflags); 14278 14279 return true; 14280 } 14281 14282 /** 14283 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14284 * @phba: Pointer to HBA context object. 14285 * @mcqe: Pointer to mailbox completion queue entry. 14286 * 14287 * This routine process a mailbox completion queue entry with mailbox 14288 * completion event. 14289 * 14290 * Return: true if work posted to worker thread, otherwise false. 14291 **/ 14292 static bool 14293 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14294 { 14295 uint32_t mcqe_status; 14296 MAILBOX_t *mbox, *pmbox; 14297 struct lpfc_mqe *mqe; 14298 struct lpfc_vport *vport; 14299 struct lpfc_nodelist *ndlp; 14300 struct lpfc_dmabuf *mp; 14301 unsigned long iflags; 14302 LPFC_MBOXQ_t *pmb; 14303 bool workposted = false; 14304 int rc; 14305 14306 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14307 if (!bf_get(lpfc_trailer_completed, mcqe)) 14308 goto out_no_mqe_complete; 14309 14310 /* Get the reference to the active mbox command */ 14311 spin_lock_irqsave(&phba->hbalock, iflags); 14312 pmb = phba->sli.mbox_active; 14313 if (unlikely(!pmb)) { 14314 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14315 "1832 No pending MBOX command to handle\n"); 14316 spin_unlock_irqrestore(&phba->hbalock, iflags); 14317 goto out_no_mqe_complete; 14318 } 14319 spin_unlock_irqrestore(&phba->hbalock, iflags); 14320 mqe = &pmb->u.mqe; 14321 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14322 mbox = phba->mbox; 14323 vport = pmb->vport; 14324 14325 /* Reset heartbeat timer */ 14326 phba->last_completion_time = jiffies; 14327 del_timer(&phba->sli.mbox_tmo); 14328 14329 /* Move mbox data to caller's mailbox region, do endian swapping */ 14330 if (pmb->mbox_cmpl && mbox) 14331 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14332 14333 /* 14334 * For mcqe errors, conditionally move a modified error code to 14335 * the mbox so that the error will not be missed. 14336 */ 14337 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14338 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14339 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14340 bf_set(lpfc_mqe_status, mqe, 14341 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14342 } 14343 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14344 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14345 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14346 "MBOX dflt rpi: status:x%x rpi:x%x", 14347 mcqe_status, 14348 pmbox->un.varWords[0], 0); 14349 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14350 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 14351 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 14352 14353 /* Reg_LOGIN of dflt RPI was successful. Mark the 14354 * node as having an UNREG_LOGIN in progress to stop 14355 * an unsolicited PLOGI from the same NPortId from 14356 * starting another mailbox transaction. 14357 */ 14358 spin_lock_irqsave(&ndlp->lock, iflags); 14359 ndlp->nlp_flag |= NLP_UNREG_INP; 14360 spin_unlock_irqrestore(&ndlp->lock, iflags); 14361 lpfc_unreg_login(phba, vport->vpi, 14362 pmbox->un.varWords[0], pmb); 14363 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14364 pmb->ctx_buf = mp; 14365 14366 /* No reference taken here. This is a default 14367 * RPI reg/immediate unreg cycle. The reference was 14368 * taken in the reg rpi path and is released when 14369 * this mailbox completes. 14370 */ 14371 pmb->ctx_ndlp = ndlp; 14372 pmb->vport = vport; 14373 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14374 if (rc != MBX_BUSY) 14375 lpfc_printf_log(phba, KERN_ERR, 14376 LOG_TRACE_EVENT, 14377 "0385 rc should " 14378 "have been MBX_BUSY\n"); 14379 if (rc != MBX_NOT_FINISHED) 14380 goto send_current_mbox; 14381 } 14382 } 14383 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14384 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14385 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14386 14387 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14388 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14389 spin_lock_irqsave(&phba->hbalock, iflags); 14390 /* Release the mailbox command posting token */ 14391 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14392 phba->sli.mbox_active = NULL; 14393 if (bf_get(lpfc_trailer_consumed, mcqe)) 14394 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14395 spin_unlock_irqrestore(&phba->hbalock, iflags); 14396 14397 /* Post the next mbox command, if there is one */ 14398 lpfc_sli4_post_async_mbox(phba); 14399 14400 /* Process cmpl now */ 14401 if (pmb->mbox_cmpl) 14402 pmb->mbox_cmpl(phba, pmb); 14403 return false; 14404 } 14405 14406 /* There is mailbox completion work to queue to the worker thread */ 14407 spin_lock_irqsave(&phba->hbalock, iflags); 14408 __lpfc_mbox_cmpl_put(phba, pmb); 14409 phba->work_ha |= HA_MBATT; 14410 spin_unlock_irqrestore(&phba->hbalock, iflags); 14411 workposted = true; 14412 14413 send_current_mbox: 14414 spin_lock_irqsave(&phba->hbalock, iflags); 14415 /* Release the mailbox command posting token */ 14416 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14417 /* Setting active mailbox pointer need to be in sync to flag clear */ 14418 phba->sli.mbox_active = NULL; 14419 if (bf_get(lpfc_trailer_consumed, mcqe)) 14420 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14421 spin_unlock_irqrestore(&phba->hbalock, iflags); 14422 /* Wake up worker thread to post the next pending mailbox command */ 14423 lpfc_worker_wake_up(phba); 14424 return workposted; 14425 14426 out_no_mqe_complete: 14427 spin_lock_irqsave(&phba->hbalock, iflags); 14428 if (bf_get(lpfc_trailer_consumed, mcqe)) 14429 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14430 spin_unlock_irqrestore(&phba->hbalock, iflags); 14431 return false; 14432 } 14433 14434 /** 14435 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14436 * @phba: Pointer to HBA context object. 14437 * @cq: Pointer to associated CQ 14438 * @cqe: Pointer to mailbox completion queue entry. 14439 * 14440 * This routine process a mailbox completion queue entry, it invokes the 14441 * proper mailbox complete handling or asynchronous event handling routine 14442 * according to the MCQE's async bit. 14443 * 14444 * Return: true if work posted to worker thread, otherwise false. 14445 **/ 14446 static bool 14447 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14448 struct lpfc_cqe *cqe) 14449 { 14450 struct lpfc_mcqe mcqe; 14451 bool workposted; 14452 14453 cq->CQ_mbox++; 14454 14455 /* Copy the mailbox MCQE and convert endian order as needed */ 14456 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14457 14458 /* Invoke the proper event handling routine */ 14459 if (!bf_get(lpfc_trailer_async, &mcqe)) 14460 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14461 else 14462 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14463 return workposted; 14464 } 14465 14466 /** 14467 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14468 * @phba: Pointer to HBA context object. 14469 * @cq: Pointer to associated CQ 14470 * @wcqe: Pointer to work-queue completion queue entry. 14471 * 14472 * This routine handles an ELS work-queue completion event. 14473 * 14474 * Return: true if work posted to worker thread, otherwise false. 14475 **/ 14476 static bool 14477 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14478 struct lpfc_wcqe_complete *wcqe) 14479 { 14480 struct lpfc_iocbq *irspiocbq; 14481 unsigned long iflags; 14482 struct lpfc_sli_ring *pring = cq->pring; 14483 int txq_cnt = 0; 14484 int txcmplq_cnt = 0; 14485 14486 /* Check for response status */ 14487 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14488 /* Log the error status */ 14489 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14490 "0357 ELS CQE error: status=x%x: " 14491 "CQE: %08x %08x %08x %08x\n", 14492 bf_get(lpfc_wcqe_c_status, wcqe), 14493 wcqe->word0, wcqe->total_data_placed, 14494 wcqe->parameter, wcqe->word3); 14495 } 14496 14497 /* Get an irspiocbq for later ELS response processing use */ 14498 irspiocbq = lpfc_sli_get_iocbq(phba); 14499 if (!irspiocbq) { 14500 if (!list_empty(&pring->txq)) 14501 txq_cnt++; 14502 if (!list_empty(&pring->txcmplq)) 14503 txcmplq_cnt++; 14504 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14505 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14506 "els_txcmplq_cnt=%d\n", 14507 txq_cnt, phba->iocb_cnt, 14508 txcmplq_cnt); 14509 return false; 14510 } 14511 14512 /* Save off the slow-path queue event for work thread to process */ 14513 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14514 spin_lock_irqsave(&phba->hbalock, iflags); 14515 list_add_tail(&irspiocbq->cq_event.list, 14516 &phba->sli4_hba.sp_queue_event); 14517 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14518 spin_unlock_irqrestore(&phba->hbalock, iflags); 14519 14520 return true; 14521 } 14522 14523 /** 14524 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14525 * @phba: Pointer to HBA context object. 14526 * @wcqe: Pointer to work-queue completion queue entry. 14527 * 14528 * This routine handles slow-path WQ entry consumed event by invoking the 14529 * proper WQ release routine to the slow-path WQ. 14530 **/ 14531 static void 14532 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14533 struct lpfc_wcqe_release *wcqe) 14534 { 14535 /* sanity check on queue memory */ 14536 if (unlikely(!phba->sli4_hba.els_wq)) 14537 return; 14538 /* Check for the slow-path ELS work queue */ 14539 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14540 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14541 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14542 else 14543 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14544 "2579 Slow-path wqe consume event carries " 14545 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14546 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14547 phba->sli4_hba.els_wq->queue_id); 14548 } 14549 14550 /** 14551 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14552 * @phba: Pointer to HBA context object. 14553 * @cq: Pointer to a WQ completion queue. 14554 * @wcqe: Pointer to work-queue completion queue entry. 14555 * 14556 * This routine handles an XRI abort event. 14557 * 14558 * Return: true if work posted to worker thread, otherwise false. 14559 **/ 14560 static bool 14561 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14562 struct lpfc_queue *cq, 14563 struct sli4_wcqe_xri_aborted *wcqe) 14564 { 14565 bool workposted = false; 14566 struct lpfc_cq_event *cq_event; 14567 unsigned long iflags; 14568 14569 switch (cq->subtype) { 14570 case LPFC_IO: 14571 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14572 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14573 /* Notify aborted XRI for NVME work queue */ 14574 if (phba->nvmet_support) 14575 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14576 } 14577 workposted = false; 14578 break; 14579 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14580 case LPFC_ELS: 14581 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14582 if (!cq_event) { 14583 workposted = false; 14584 break; 14585 } 14586 cq_event->hdwq = cq->hdwq; 14587 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14588 iflags); 14589 list_add_tail(&cq_event->list, 14590 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14591 /* Set the els xri abort event flag */ 14592 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 14593 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14594 iflags); 14595 workposted = true; 14596 break; 14597 default: 14598 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14599 "0603 Invalid CQ subtype %d: " 14600 "%08x %08x %08x %08x\n", 14601 cq->subtype, wcqe->word0, wcqe->parameter, 14602 wcqe->word2, wcqe->word3); 14603 workposted = false; 14604 break; 14605 } 14606 return workposted; 14607 } 14608 14609 #define FC_RCTL_MDS_DIAGS 0xF4 14610 14611 /** 14612 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14613 * @phba: Pointer to HBA context object. 14614 * @rcqe: Pointer to receive-queue completion queue entry. 14615 * 14616 * This routine process a receive-queue completion queue entry. 14617 * 14618 * Return: true if work posted to worker thread, otherwise false. 14619 **/ 14620 static bool 14621 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14622 { 14623 bool workposted = false; 14624 struct fc_frame_header *fc_hdr; 14625 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14626 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14627 struct lpfc_nvmet_tgtport *tgtp; 14628 struct hbq_dmabuf *dma_buf; 14629 uint32_t status, rq_id; 14630 unsigned long iflags; 14631 14632 /* sanity check on queue memory */ 14633 if (unlikely(!hrq) || unlikely(!drq)) 14634 return workposted; 14635 14636 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14637 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14638 else 14639 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14640 if (rq_id != hrq->queue_id) 14641 goto out; 14642 14643 status = bf_get(lpfc_rcqe_status, rcqe); 14644 switch (status) { 14645 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14646 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14647 "2537 Receive Frame Truncated!!\n"); 14648 fallthrough; 14649 case FC_STATUS_RQ_SUCCESS: 14650 spin_lock_irqsave(&phba->hbalock, iflags); 14651 lpfc_sli4_rq_release(hrq, drq); 14652 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14653 if (!dma_buf) { 14654 hrq->RQ_no_buf_found++; 14655 spin_unlock_irqrestore(&phba->hbalock, iflags); 14656 goto out; 14657 } 14658 hrq->RQ_rcv_buf++; 14659 hrq->RQ_buf_posted--; 14660 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14661 14662 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14663 14664 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14665 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14666 spin_unlock_irqrestore(&phba->hbalock, iflags); 14667 /* Handle MDS Loopback frames */ 14668 if (!(phba->pport->load_flag & FC_UNLOADING)) 14669 lpfc_sli4_handle_mds_loopback(phba->pport, 14670 dma_buf); 14671 else 14672 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14673 break; 14674 } 14675 14676 /* save off the frame for the work thread to process */ 14677 list_add_tail(&dma_buf->cq_event.list, 14678 &phba->sli4_hba.sp_queue_event); 14679 /* Frame received */ 14680 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14681 spin_unlock_irqrestore(&phba->hbalock, iflags); 14682 workposted = true; 14683 break; 14684 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14685 if (phba->nvmet_support) { 14686 tgtp = phba->targetport->private; 14687 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14688 "6402 RQE Error x%x, posted %d err_cnt " 14689 "%d: %x %x %x\n", 14690 status, hrq->RQ_buf_posted, 14691 hrq->RQ_no_posted_buf, 14692 atomic_read(&tgtp->rcv_fcp_cmd_in), 14693 atomic_read(&tgtp->rcv_fcp_cmd_out), 14694 atomic_read(&tgtp->xmt_fcp_release)); 14695 } 14696 fallthrough; 14697 14698 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14699 hrq->RQ_no_posted_buf++; 14700 /* Post more buffers if possible */ 14701 spin_lock_irqsave(&phba->hbalock, iflags); 14702 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14703 spin_unlock_irqrestore(&phba->hbalock, iflags); 14704 workposted = true; 14705 break; 14706 case FC_STATUS_RQ_DMA_FAILURE: 14707 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14708 "2564 RQE DMA Error x%x, x%08x x%08x x%08x " 14709 "x%08x\n", 14710 status, rcqe->word0, rcqe->word1, 14711 rcqe->word2, rcqe->word3); 14712 14713 /* If IV set, no further recovery */ 14714 if (bf_get(lpfc_rcqe_iv, rcqe)) 14715 break; 14716 14717 /* recycle consumed resource */ 14718 spin_lock_irqsave(&phba->hbalock, iflags); 14719 lpfc_sli4_rq_release(hrq, drq); 14720 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14721 if (!dma_buf) { 14722 hrq->RQ_no_buf_found++; 14723 spin_unlock_irqrestore(&phba->hbalock, iflags); 14724 break; 14725 } 14726 hrq->RQ_rcv_buf++; 14727 hrq->RQ_buf_posted--; 14728 spin_unlock_irqrestore(&phba->hbalock, iflags); 14729 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14730 break; 14731 default: 14732 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14733 "2565 Unexpected RQE Status x%x, w0-3 x%08x " 14734 "x%08x x%08x x%08x\n", 14735 status, rcqe->word0, rcqe->word1, 14736 rcqe->word2, rcqe->word3); 14737 break; 14738 } 14739 out: 14740 return workposted; 14741 } 14742 14743 /** 14744 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14745 * @phba: Pointer to HBA context object. 14746 * @cq: Pointer to the completion queue. 14747 * @cqe: Pointer to a completion queue entry. 14748 * 14749 * This routine process a slow-path work-queue or receive queue completion queue 14750 * entry. 14751 * 14752 * Return: true if work posted to worker thread, otherwise false. 14753 **/ 14754 static bool 14755 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14756 struct lpfc_cqe *cqe) 14757 { 14758 struct lpfc_cqe cqevt; 14759 bool workposted = false; 14760 14761 /* Copy the work queue CQE and convert endian order if needed */ 14762 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14763 14764 /* Check and process for different type of WCQE and dispatch */ 14765 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14766 case CQE_CODE_COMPL_WQE: 14767 /* Process the WQ/RQ complete event */ 14768 phba->last_completion_time = jiffies; 14769 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14770 (struct lpfc_wcqe_complete *)&cqevt); 14771 break; 14772 case CQE_CODE_RELEASE_WQE: 14773 /* Process the WQ release event */ 14774 lpfc_sli4_sp_handle_rel_wcqe(phba, 14775 (struct lpfc_wcqe_release *)&cqevt); 14776 break; 14777 case CQE_CODE_XRI_ABORTED: 14778 /* Process the WQ XRI abort event */ 14779 phba->last_completion_time = jiffies; 14780 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14781 (struct sli4_wcqe_xri_aborted *)&cqevt); 14782 break; 14783 case CQE_CODE_RECEIVE: 14784 case CQE_CODE_RECEIVE_V1: 14785 /* Process the RQ event */ 14786 phba->last_completion_time = jiffies; 14787 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14788 (struct lpfc_rcqe *)&cqevt); 14789 break; 14790 default: 14791 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14792 "0388 Not a valid WCQE code: x%x\n", 14793 bf_get(lpfc_cqe_code, &cqevt)); 14794 break; 14795 } 14796 return workposted; 14797 } 14798 14799 /** 14800 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14801 * @phba: Pointer to HBA context object. 14802 * @eqe: Pointer to fast-path event queue entry. 14803 * @speq: Pointer to slow-path event queue. 14804 * 14805 * This routine process a event queue entry from the slow-path event queue. 14806 * It will check the MajorCode and MinorCode to determine this is for a 14807 * completion event on a completion queue, if not, an error shall be logged 14808 * and just return. Otherwise, it will get to the corresponding completion 14809 * queue and process all the entries on that completion queue, rearm the 14810 * completion queue, and then return. 14811 * 14812 **/ 14813 static void 14814 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14815 struct lpfc_queue *speq) 14816 { 14817 struct lpfc_queue *cq = NULL, *childq; 14818 uint16_t cqid; 14819 int ret = 0; 14820 14821 /* Get the reference to the corresponding CQ */ 14822 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14823 14824 list_for_each_entry(childq, &speq->child_list, list) { 14825 if (childq->queue_id == cqid) { 14826 cq = childq; 14827 break; 14828 } 14829 } 14830 if (unlikely(!cq)) { 14831 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14832 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14833 "0365 Slow-path CQ identifier " 14834 "(%d) does not exist\n", cqid); 14835 return; 14836 } 14837 14838 /* Save EQ associated with this CQ */ 14839 cq->assoc_qp = speq; 14840 14841 if (is_kdump_kernel()) 14842 ret = queue_work(phba->wq, &cq->spwork); 14843 else 14844 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14845 14846 if (!ret) 14847 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14848 "0390 Cannot schedule queue work " 14849 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14850 cqid, cq->queue_id, raw_smp_processor_id()); 14851 } 14852 14853 /** 14854 * __lpfc_sli4_process_cq - Process elements of a CQ 14855 * @phba: Pointer to HBA context object. 14856 * @cq: Pointer to CQ to be processed 14857 * @handler: Routine to process each cqe 14858 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14859 * 14860 * This routine processes completion queue entries in a CQ. While a valid 14861 * queue element is found, the handler is called. During processing checks 14862 * are made for periodic doorbell writes to let the hardware know of 14863 * element consumption. 14864 * 14865 * If the max limit on cqes to process is hit, or there are no more valid 14866 * entries, the loop stops. If we processed a sufficient number of elements, 14867 * meaning there is sufficient load, rather than rearming and generating 14868 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14869 * indicates no rescheduling. 14870 * 14871 * Returns True if work scheduled, False otherwise. 14872 **/ 14873 static bool 14874 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14875 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14876 struct lpfc_cqe *), unsigned long *delay) 14877 { 14878 struct lpfc_cqe *cqe; 14879 bool workposted = false; 14880 int count = 0, consumed = 0; 14881 bool arm = true; 14882 14883 /* default - no reschedule */ 14884 *delay = 0; 14885 14886 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14887 goto rearm_and_exit; 14888 14889 /* Process all the entries to the CQ */ 14890 cq->q_flag = 0; 14891 cqe = lpfc_sli4_cq_get(cq); 14892 while (cqe) { 14893 workposted |= handler(phba, cq, cqe); 14894 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14895 14896 consumed++; 14897 if (!(++count % cq->max_proc_limit)) 14898 break; 14899 14900 if (!(count % cq->notify_interval)) { 14901 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14902 LPFC_QUEUE_NOARM); 14903 consumed = 0; 14904 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14905 } 14906 14907 if (count == LPFC_NVMET_CQ_NOTIFY) 14908 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14909 14910 cqe = lpfc_sli4_cq_get(cq); 14911 } 14912 if (count >= phba->cfg_cq_poll_threshold) { 14913 *delay = 1; 14914 arm = false; 14915 } 14916 14917 /* Track the max number of CQEs processed in 1 EQ */ 14918 if (count > cq->CQ_max_cqe) 14919 cq->CQ_max_cqe = count; 14920 14921 cq->assoc_qp->EQ_cqe_cnt += count; 14922 14923 /* Catch the no cq entry condition */ 14924 if (unlikely(count == 0)) 14925 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14926 "0369 No entry from completion queue " 14927 "qid=%d\n", cq->queue_id); 14928 14929 xchg(&cq->queue_claimed, 0); 14930 14931 rearm_and_exit: 14932 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14933 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14934 14935 return workposted; 14936 } 14937 14938 /** 14939 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14940 * @cq: pointer to CQ to process 14941 * 14942 * This routine calls the cq processing routine with a handler specific 14943 * to the type of queue bound to it. 14944 * 14945 * The CQ routine returns two values: the first is the calling status, 14946 * which indicates whether work was queued to the background discovery 14947 * thread. If true, the routine should wakeup the discovery thread; 14948 * the second is the delay parameter. If non-zero, rather than rearming 14949 * the CQ and yet another interrupt, the CQ handler should be queued so 14950 * that it is processed in a subsequent polling action. The value of 14951 * the delay indicates when to reschedule it. 14952 **/ 14953 static void 14954 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14955 { 14956 struct lpfc_hba *phba = cq->phba; 14957 unsigned long delay; 14958 bool workposted = false; 14959 int ret = 0; 14960 14961 /* Process and rearm the CQ */ 14962 switch (cq->type) { 14963 case LPFC_MCQ: 14964 workposted |= __lpfc_sli4_process_cq(phba, cq, 14965 lpfc_sli4_sp_handle_mcqe, 14966 &delay); 14967 break; 14968 case LPFC_WCQ: 14969 if (cq->subtype == LPFC_IO) 14970 workposted |= __lpfc_sli4_process_cq(phba, cq, 14971 lpfc_sli4_fp_handle_cqe, 14972 &delay); 14973 else 14974 workposted |= __lpfc_sli4_process_cq(phba, cq, 14975 lpfc_sli4_sp_handle_cqe, 14976 &delay); 14977 break; 14978 default: 14979 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14980 "0370 Invalid completion queue type (%d)\n", 14981 cq->type); 14982 return; 14983 } 14984 14985 if (delay) { 14986 if (is_kdump_kernel()) 14987 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14988 delay); 14989 else 14990 ret = queue_delayed_work_on(cq->chann, phba->wq, 14991 &cq->sched_spwork, delay); 14992 if (!ret) 14993 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14994 "0394 Cannot schedule queue work " 14995 "for cqid=%d on CPU %d\n", 14996 cq->queue_id, cq->chann); 14997 } 14998 14999 /* wake up worker thread if there are works to be done */ 15000 if (workposted) 15001 lpfc_worker_wake_up(phba); 15002 } 15003 15004 /** 15005 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 15006 * interrupt 15007 * @work: pointer to work element 15008 * 15009 * translates from the work handler and calls the slow-path handler. 15010 **/ 15011 static void 15012 lpfc_sli4_sp_process_cq(struct work_struct *work) 15013 { 15014 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 15015 15016 __lpfc_sli4_sp_process_cq(cq); 15017 } 15018 15019 /** 15020 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 15021 * @work: pointer to work element 15022 * 15023 * translates from the work handler and calls the slow-path handler. 15024 **/ 15025 static void 15026 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 15027 { 15028 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15029 struct lpfc_queue, sched_spwork); 15030 15031 __lpfc_sli4_sp_process_cq(cq); 15032 } 15033 15034 /** 15035 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 15036 * @phba: Pointer to HBA context object. 15037 * @cq: Pointer to associated CQ 15038 * @wcqe: Pointer to work-queue completion queue entry. 15039 * 15040 * This routine process a fast-path work queue completion entry from fast-path 15041 * event queue for FCP command response completion. 15042 **/ 15043 static void 15044 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15045 struct lpfc_wcqe_complete *wcqe) 15046 { 15047 struct lpfc_sli_ring *pring = cq->pring; 15048 struct lpfc_iocbq *cmdiocbq; 15049 unsigned long iflags; 15050 15051 /* Check for response status */ 15052 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15053 /* If resource errors reported from HBA, reduce queue 15054 * depth of the SCSI device. 15055 */ 15056 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15057 IOSTAT_LOCAL_REJECT)) && 15058 ((wcqe->parameter & IOERR_PARAM_MASK) == 15059 IOERR_NO_RESOURCES)) 15060 phba->lpfc_rampdown_queue_depth(phba); 15061 15062 /* Log the cmpl status */ 15063 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15064 "0373 FCP CQE cmpl: status=x%x: " 15065 "CQE: %08x %08x %08x %08x\n", 15066 bf_get(lpfc_wcqe_c_status, wcqe), 15067 wcqe->word0, wcqe->total_data_placed, 15068 wcqe->parameter, wcqe->word3); 15069 } 15070 15071 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15072 spin_lock_irqsave(&pring->ring_lock, iflags); 15073 pring->stats.iocb_event++; 15074 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15075 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15076 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15077 if (unlikely(!cmdiocbq)) { 15078 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15079 "0374 FCP complete with no corresponding " 15080 "cmdiocb: iotag (%d)\n", 15081 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15082 return; 15083 } 15084 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15085 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15086 #endif 15087 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 15088 spin_lock_irqsave(&phba->hbalock, iflags); 15089 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 15090 spin_unlock_irqrestore(&phba->hbalock, iflags); 15091 } 15092 15093 if (cmdiocbq->cmd_cmpl) { 15094 /* For FCP the flag is cleared in cmd_cmpl */ 15095 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 15096 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 15097 spin_lock_irqsave(&phba->hbalock, iflags); 15098 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 15099 spin_unlock_irqrestore(&phba->hbalock, iflags); 15100 } 15101 15102 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15103 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 15104 sizeof(struct lpfc_wcqe_complete)); 15105 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq); 15106 } else { 15107 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15108 "0375 FCP cmdiocb not callback function " 15109 "iotag: (%d)\n", 15110 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15111 } 15112 } 15113 15114 /** 15115 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15116 * @phba: Pointer to HBA context object. 15117 * @cq: Pointer to completion queue. 15118 * @wcqe: Pointer to work-queue completion queue entry. 15119 * 15120 * This routine handles an fast-path WQ entry consumed event by invoking the 15121 * proper WQ release routine to the slow-path WQ. 15122 **/ 15123 static void 15124 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15125 struct lpfc_wcqe_release *wcqe) 15126 { 15127 struct lpfc_queue *childwq; 15128 bool wqid_matched = false; 15129 uint16_t hba_wqid; 15130 15131 /* Check for fast-path FCP work queue release */ 15132 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15133 list_for_each_entry(childwq, &cq->child_list, list) { 15134 if (childwq->queue_id == hba_wqid) { 15135 lpfc_sli4_wq_release(childwq, 15136 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15137 if (childwq->q_flag & HBA_NVMET_WQFULL) 15138 lpfc_nvmet_wqfull_process(phba, childwq); 15139 wqid_matched = true; 15140 break; 15141 } 15142 } 15143 /* Report warning log message if no match found */ 15144 if (wqid_matched != true) 15145 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15146 "2580 Fast-path wqe consume event carries " 15147 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15148 } 15149 15150 /** 15151 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15152 * @phba: Pointer to HBA context object. 15153 * @cq: Pointer to completion queue. 15154 * @rcqe: Pointer to receive-queue completion queue entry. 15155 * 15156 * This routine process a receive-queue completion queue entry. 15157 * 15158 * Return: true if work posted to worker thread, otherwise false. 15159 **/ 15160 static bool 15161 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15162 struct lpfc_rcqe *rcqe) 15163 { 15164 bool workposted = false; 15165 struct lpfc_queue *hrq; 15166 struct lpfc_queue *drq; 15167 struct rqb_dmabuf *dma_buf; 15168 struct fc_frame_header *fc_hdr; 15169 struct lpfc_nvmet_tgtport *tgtp; 15170 uint32_t status, rq_id; 15171 unsigned long iflags; 15172 uint32_t fctl, idx; 15173 15174 if ((phba->nvmet_support == 0) || 15175 (phba->sli4_hba.nvmet_cqset == NULL)) 15176 return workposted; 15177 15178 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15179 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15180 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15181 15182 /* sanity check on queue memory */ 15183 if (unlikely(!hrq) || unlikely(!drq)) 15184 return workposted; 15185 15186 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15187 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15188 else 15189 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15190 15191 if ((phba->nvmet_support == 0) || 15192 (rq_id != hrq->queue_id)) 15193 return workposted; 15194 15195 status = bf_get(lpfc_rcqe_status, rcqe); 15196 switch (status) { 15197 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15198 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15199 "6126 Receive Frame Truncated!!\n"); 15200 fallthrough; 15201 case FC_STATUS_RQ_SUCCESS: 15202 spin_lock_irqsave(&phba->hbalock, iflags); 15203 lpfc_sli4_rq_release(hrq, drq); 15204 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15205 if (!dma_buf) { 15206 hrq->RQ_no_buf_found++; 15207 spin_unlock_irqrestore(&phba->hbalock, iflags); 15208 goto out; 15209 } 15210 spin_unlock_irqrestore(&phba->hbalock, iflags); 15211 hrq->RQ_rcv_buf++; 15212 hrq->RQ_buf_posted--; 15213 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15214 15215 /* Just some basic sanity checks on FCP Command frame */ 15216 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15217 fc_hdr->fh_f_ctl[1] << 8 | 15218 fc_hdr->fh_f_ctl[2]); 15219 if (((fctl & 15220 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15221 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15222 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15223 goto drop; 15224 15225 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15226 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15227 lpfc_nvmet_unsol_fcp_event( 15228 phba, idx, dma_buf, cq->isr_timestamp, 15229 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15230 return false; 15231 } 15232 drop: 15233 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15234 break; 15235 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15236 if (phba->nvmet_support) { 15237 tgtp = phba->targetport->private; 15238 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15239 "6401 RQE Error x%x, posted %d err_cnt " 15240 "%d: %x %x %x\n", 15241 status, hrq->RQ_buf_posted, 15242 hrq->RQ_no_posted_buf, 15243 atomic_read(&tgtp->rcv_fcp_cmd_in), 15244 atomic_read(&tgtp->rcv_fcp_cmd_out), 15245 atomic_read(&tgtp->xmt_fcp_release)); 15246 } 15247 fallthrough; 15248 15249 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15250 hrq->RQ_no_posted_buf++; 15251 /* Post more buffers if possible */ 15252 break; 15253 case FC_STATUS_RQ_DMA_FAILURE: 15254 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15255 "2575 RQE DMA Error x%x, x%08x x%08x x%08x " 15256 "x%08x\n", 15257 status, rcqe->word0, rcqe->word1, 15258 rcqe->word2, rcqe->word3); 15259 15260 /* If IV set, no further recovery */ 15261 if (bf_get(lpfc_rcqe_iv, rcqe)) 15262 break; 15263 15264 /* recycle consumed resource */ 15265 spin_lock_irqsave(&phba->hbalock, iflags); 15266 lpfc_sli4_rq_release(hrq, drq); 15267 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15268 if (!dma_buf) { 15269 hrq->RQ_no_buf_found++; 15270 spin_unlock_irqrestore(&phba->hbalock, iflags); 15271 break; 15272 } 15273 hrq->RQ_rcv_buf++; 15274 hrq->RQ_buf_posted--; 15275 spin_unlock_irqrestore(&phba->hbalock, iflags); 15276 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15277 break; 15278 default: 15279 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15280 "2576 Unexpected RQE Status x%x, w0-3 x%08x " 15281 "x%08x x%08x x%08x\n", 15282 status, rcqe->word0, rcqe->word1, 15283 rcqe->word2, rcqe->word3); 15284 break; 15285 } 15286 out: 15287 return workposted; 15288 } 15289 15290 /** 15291 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15292 * @phba: adapter with cq 15293 * @cq: Pointer to the completion queue. 15294 * @cqe: Pointer to fast-path completion queue entry. 15295 * 15296 * This routine process a fast-path work queue completion entry from fast-path 15297 * event queue for FCP command response completion. 15298 * 15299 * Return: true if work posted to worker thread, otherwise false. 15300 **/ 15301 static bool 15302 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15303 struct lpfc_cqe *cqe) 15304 { 15305 struct lpfc_wcqe_release wcqe; 15306 bool workposted = false; 15307 15308 /* Copy the work queue CQE and convert endian order if needed */ 15309 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15310 15311 /* Check and process for different type of WCQE and dispatch */ 15312 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15313 case CQE_CODE_COMPL_WQE: 15314 case CQE_CODE_NVME_ERSP: 15315 cq->CQ_wq++; 15316 /* Process the WQ complete event */ 15317 phba->last_completion_time = jiffies; 15318 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15319 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15320 (struct lpfc_wcqe_complete *)&wcqe); 15321 break; 15322 case CQE_CODE_RELEASE_WQE: 15323 cq->CQ_release_wqe++; 15324 /* Process the WQ release event */ 15325 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15326 (struct lpfc_wcqe_release *)&wcqe); 15327 break; 15328 case CQE_CODE_XRI_ABORTED: 15329 cq->CQ_xri_aborted++; 15330 /* Process the WQ XRI abort event */ 15331 phba->last_completion_time = jiffies; 15332 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15333 (struct sli4_wcqe_xri_aborted *)&wcqe); 15334 break; 15335 case CQE_CODE_RECEIVE_V1: 15336 case CQE_CODE_RECEIVE: 15337 phba->last_completion_time = jiffies; 15338 if (cq->subtype == LPFC_NVMET) { 15339 workposted = lpfc_sli4_nvmet_handle_rcqe( 15340 phba, cq, (struct lpfc_rcqe *)&wcqe); 15341 } 15342 break; 15343 default: 15344 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15345 "0144 Not a valid CQE code: x%x\n", 15346 bf_get(lpfc_wcqe_c_code, &wcqe)); 15347 break; 15348 } 15349 return workposted; 15350 } 15351 15352 /** 15353 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15354 * @cq: Pointer to CQ to be processed 15355 * 15356 * This routine calls the cq processing routine with the handler for 15357 * fast path CQEs. 15358 * 15359 * The CQ routine returns two values: the first is the calling status, 15360 * which indicates whether work was queued to the background discovery 15361 * thread. If true, the routine should wakeup the discovery thread; 15362 * the second is the delay parameter. If non-zero, rather than rearming 15363 * the CQ and yet another interrupt, the CQ handler should be queued so 15364 * that it is processed in a subsequent polling action. The value of 15365 * the delay indicates when to reschedule it. 15366 **/ 15367 static void 15368 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq) 15369 { 15370 struct lpfc_hba *phba = cq->phba; 15371 unsigned long delay; 15372 bool workposted = false; 15373 int ret; 15374 15375 /* process and rearm the CQ */ 15376 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15377 &delay); 15378 15379 if (delay) { 15380 if (is_kdump_kernel()) 15381 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15382 delay); 15383 else 15384 ret = queue_delayed_work_on(cq->chann, phba->wq, 15385 &cq->sched_irqwork, delay); 15386 if (!ret) 15387 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15388 "0367 Cannot schedule queue work " 15389 "for cqid=%d on CPU %d\n", 15390 cq->queue_id, cq->chann); 15391 } 15392 15393 /* wake up worker thread if there are works to be done */ 15394 if (workposted) 15395 lpfc_worker_wake_up(phba); 15396 } 15397 15398 /** 15399 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15400 * interrupt 15401 * @work: pointer to work element 15402 * 15403 * translates from the work handler and calls the fast-path handler. 15404 **/ 15405 static void 15406 lpfc_sli4_hba_process_cq(struct work_struct *work) 15407 { 15408 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15409 15410 __lpfc_sli4_hba_process_cq(cq); 15411 } 15412 15413 /** 15414 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15415 * @phba: Pointer to HBA context object. 15416 * @eq: Pointer to the queue structure. 15417 * @eqe: Pointer to fast-path event queue entry. 15418 * @poll_mode: poll_mode to execute processing the cq. 15419 * 15420 * This routine process a event queue entry from the fast-path event queue. 15421 * It will check the MajorCode and MinorCode to determine this is for a 15422 * completion event on a completion queue, if not, an error shall be logged 15423 * and just return. Otherwise, it will get to the corresponding completion 15424 * queue and process all the entries on the completion queue, rearm the 15425 * completion queue, and then return. 15426 **/ 15427 static void 15428 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15429 struct lpfc_eqe *eqe, enum lpfc_poll_mode poll_mode) 15430 { 15431 struct lpfc_queue *cq = NULL; 15432 uint32_t qidx = eq->hdwq; 15433 uint16_t cqid, id; 15434 int ret; 15435 15436 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15437 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15438 "0366 Not a valid completion " 15439 "event: majorcode=x%x, minorcode=x%x\n", 15440 bf_get_le32(lpfc_eqe_major_code, eqe), 15441 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15442 return; 15443 } 15444 15445 /* Get the reference to the corresponding CQ */ 15446 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15447 15448 /* Use the fast lookup method first */ 15449 if (cqid <= phba->sli4_hba.cq_max) { 15450 cq = phba->sli4_hba.cq_lookup[cqid]; 15451 if (cq) 15452 goto work_cq; 15453 } 15454 15455 /* Next check for NVMET completion */ 15456 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15457 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15458 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15459 /* Process NVMET unsol rcv */ 15460 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15461 goto process_cq; 15462 } 15463 } 15464 15465 if (phba->sli4_hba.nvmels_cq && 15466 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15467 /* Process NVME unsol rcv */ 15468 cq = phba->sli4_hba.nvmels_cq; 15469 } 15470 15471 /* Otherwise this is a Slow path event */ 15472 if (cq == NULL) { 15473 lpfc_sli4_sp_handle_eqe(phba, eqe, 15474 phba->sli4_hba.hdwq[qidx].hba_eq); 15475 return; 15476 } 15477 15478 process_cq: 15479 if (unlikely(cqid != cq->queue_id)) { 15480 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15481 "0368 Miss-matched fast-path completion " 15482 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15483 cqid, cq->queue_id); 15484 return; 15485 } 15486 15487 work_cq: 15488 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15489 if (phba->ktime_on) 15490 cq->isr_timestamp = ktime_get_ns(); 15491 else 15492 cq->isr_timestamp = 0; 15493 #endif 15494 15495 switch (poll_mode) { 15496 case LPFC_THREADED_IRQ: 15497 __lpfc_sli4_hba_process_cq(cq); 15498 break; 15499 case LPFC_QUEUE_WORK: 15500 default: 15501 if (is_kdump_kernel()) 15502 ret = queue_work(phba->wq, &cq->irqwork); 15503 else 15504 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15505 if (!ret) 15506 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15507 "0383 Cannot schedule queue work " 15508 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15509 cqid, cq->queue_id, 15510 raw_smp_processor_id()); 15511 break; 15512 } 15513 } 15514 15515 /** 15516 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15517 * @work: pointer to work element 15518 * 15519 * translates from the work handler and calls the fast-path handler. 15520 **/ 15521 static void 15522 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15523 { 15524 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15525 struct lpfc_queue, sched_irqwork); 15526 15527 __lpfc_sli4_hba_process_cq(cq); 15528 } 15529 15530 /** 15531 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15532 * @irq: Interrupt number. 15533 * @dev_id: The device context pointer. 15534 * 15535 * This function is directly called from the PCI layer as an interrupt 15536 * service routine when device with SLI-4 interface spec is enabled with 15537 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15538 * ring event in the HBA. However, when the device is enabled with either 15539 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15540 * device-level interrupt handler. When the PCI slot is in error recovery 15541 * or the HBA is undergoing initialization, the interrupt handler will not 15542 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15543 * the intrrupt context. This function is called without any lock held. 15544 * It gets the hbalock to access and update SLI data structures. Note that, 15545 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15546 * equal to that of FCP CQ index. 15547 * 15548 * The link attention and ELS ring attention events are handled 15549 * by the worker thread. The interrupt handler signals the worker thread 15550 * and returns for these events. This function is called without any lock 15551 * held. It gets the hbalock to access and update SLI data structures. 15552 * 15553 * This function returns IRQ_HANDLED when interrupt is handled, IRQ_WAKE_THREAD 15554 * when interrupt is scheduled to be handled from a threaded irq context, or 15555 * else returns IRQ_NONE. 15556 **/ 15557 irqreturn_t 15558 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15559 { 15560 struct lpfc_hba *phba; 15561 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15562 struct lpfc_queue *fpeq; 15563 unsigned long iflag; 15564 int hba_eqidx; 15565 int ecount = 0; 15566 struct lpfc_eq_intr_info *eqi; 15567 15568 /* Get the driver's phba structure from the dev_id */ 15569 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15570 phba = hba_eq_hdl->phba; 15571 hba_eqidx = hba_eq_hdl->idx; 15572 15573 if (unlikely(!phba)) 15574 return IRQ_NONE; 15575 if (unlikely(!phba->sli4_hba.hdwq)) 15576 return IRQ_NONE; 15577 15578 /* Get to the EQ struct associated with this vector */ 15579 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15580 if (unlikely(!fpeq)) 15581 return IRQ_NONE; 15582 15583 /* Check device state for handling interrupt */ 15584 if (unlikely(lpfc_intr_state_check(phba))) { 15585 /* Check again for link_state with lock held */ 15586 spin_lock_irqsave(&phba->hbalock, iflag); 15587 if (phba->link_state < LPFC_LINK_DOWN) 15588 /* Flush, clear interrupt, and rearm the EQ */ 15589 lpfc_sli4_eqcq_flush(phba, fpeq); 15590 spin_unlock_irqrestore(&phba->hbalock, iflag); 15591 return IRQ_NONE; 15592 } 15593 15594 switch (fpeq->poll_mode) { 15595 case LPFC_THREADED_IRQ: 15596 /* CGN mgmt is mutually exclusive from irq processing */ 15597 if (phba->cmf_active_mode == LPFC_CFG_OFF) 15598 return IRQ_WAKE_THREAD; 15599 fallthrough; 15600 case LPFC_QUEUE_WORK: 15601 default: 15602 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15603 eqi->icnt++; 15604 15605 fpeq->last_cpu = raw_smp_processor_id(); 15606 15607 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15608 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15609 phba->cfg_auto_imax && 15610 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15611 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15612 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, 15613 LPFC_MAX_AUTO_EQ_DELAY); 15614 15615 /* process and rearm the EQ */ 15616 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 15617 LPFC_QUEUE_WORK); 15618 15619 if (unlikely(ecount == 0)) { 15620 fpeq->EQ_no_entry++; 15621 if (phba->intr_type == MSIX) 15622 /* MSI-X treated interrupt served as no EQ share INT */ 15623 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15624 "0358 MSI-X interrupt with no EQE\n"); 15625 else 15626 /* Non MSI-X treated on interrupt as EQ share INT */ 15627 return IRQ_NONE; 15628 } 15629 } 15630 15631 return IRQ_HANDLED; 15632 } /* lpfc_sli4_hba_intr_handler */ 15633 15634 /** 15635 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15636 * @irq: Interrupt number. 15637 * @dev_id: The device context pointer. 15638 * 15639 * This function is the device-level interrupt handler to device with SLI-4 15640 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15641 * interrupt mode is enabled and there is an event in the HBA which requires 15642 * driver attention. This function invokes the slow-path interrupt attention 15643 * handling function and fast-path interrupt attention handling function in 15644 * turn to process the relevant HBA attention events. This function is called 15645 * without any lock held. It gets the hbalock to access and update SLI data 15646 * structures. 15647 * 15648 * This function returns IRQ_HANDLED when interrupt is handled, else it 15649 * returns IRQ_NONE. 15650 **/ 15651 irqreturn_t 15652 lpfc_sli4_intr_handler(int irq, void *dev_id) 15653 { 15654 struct lpfc_hba *phba; 15655 irqreturn_t hba_irq_rc; 15656 bool hba_handled = false; 15657 int qidx; 15658 15659 /* Get the driver's phba structure from the dev_id */ 15660 phba = (struct lpfc_hba *)dev_id; 15661 15662 if (unlikely(!phba)) 15663 return IRQ_NONE; 15664 15665 /* 15666 * Invoke fast-path host attention interrupt handling as appropriate. 15667 */ 15668 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15669 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15670 &phba->sli4_hba.hba_eq_hdl[qidx]); 15671 if (hba_irq_rc == IRQ_HANDLED) 15672 hba_handled |= true; 15673 } 15674 15675 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15676 } /* lpfc_sli4_intr_handler */ 15677 15678 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15679 { 15680 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15681 struct lpfc_queue *eq; 15682 15683 rcu_read_lock(); 15684 15685 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15686 lpfc_sli4_poll_eq(eq); 15687 if (!list_empty(&phba->poll_list)) 15688 mod_timer(&phba->cpuhp_poll_timer, 15689 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15690 15691 rcu_read_unlock(); 15692 } 15693 15694 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15695 { 15696 struct lpfc_hba *phba = eq->phba; 15697 15698 /* kickstart slowpath processing if needed */ 15699 if (list_empty(&phba->poll_list)) 15700 mod_timer(&phba->cpuhp_poll_timer, 15701 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15702 15703 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15704 synchronize_rcu(); 15705 } 15706 15707 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15708 { 15709 struct lpfc_hba *phba = eq->phba; 15710 15711 /* Disable slowpath processing for this eq. Kick start the eq 15712 * by RE-ARMING the eq's ASAP 15713 */ 15714 list_del_rcu(&eq->_poll_list); 15715 synchronize_rcu(); 15716 15717 if (list_empty(&phba->poll_list)) 15718 del_timer_sync(&phba->cpuhp_poll_timer); 15719 } 15720 15721 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15722 { 15723 struct lpfc_queue *eq, *next; 15724 15725 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15726 list_del(&eq->_poll_list); 15727 15728 INIT_LIST_HEAD(&phba->poll_list); 15729 synchronize_rcu(); 15730 } 15731 15732 static inline void 15733 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15734 { 15735 if (mode == eq->mode) 15736 return; 15737 /* 15738 * currently this function is only called during a hotplug 15739 * event and the cpu on which this function is executing 15740 * is going offline. By now the hotplug has instructed 15741 * the scheduler to remove this cpu from cpu active mask. 15742 * So we don't need to work about being put aside by the 15743 * scheduler for a high priority process. Yes, the inte- 15744 * rrupts could come but they are known to retire ASAP. 15745 */ 15746 15747 /* Disable polling in the fastpath */ 15748 WRITE_ONCE(eq->mode, mode); 15749 /* flush out the store buffer */ 15750 smp_wmb(); 15751 15752 /* 15753 * Add this eq to the polling list and start polling. For 15754 * a grace period both interrupt handler and poller will 15755 * try to process the eq _but_ that's fine. We have a 15756 * synchronization mechanism in place (queue_claimed) to 15757 * deal with it. This is just a draining phase for int- 15758 * errupt handler (not eq's) as we have guranteed through 15759 * barrier that all the CPUs have seen the new CQ_POLLED 15760 * state. which will effectively disable the REARMING of 15761 * the EQ. The whole idea is eq's die off eventually as 15762 * we are not rearming EQ's anymore. 15763 */ 15764 mode ? lpfc_sli4_add_to_poll_list(eq) : 15765 lpfc_sli4_remove_from_poll_list(eq); 15766 } 15767 15768 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15769 { 15770 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15771 } 15772 15773 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15774 { 15775 struct lpfc_hba *phba = eq->phba; 15776 15777 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15778 15779 /* Kick start for the pending io's in h/w. 15780 * Once we switch back to interrupt processing on a eq 15781 * the io path completion will only arm eq's when it 15782 * receives a completion. But since eq's are in disa- 15783 * rmed state it doesn't receive a completion. This 15784 * creates a deadlock scenaro. 15785 */ 15786 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15787 } 15788 15789 /** 15790 * lpfc_sli4_queue_free - free a queue structure and associated memory 15791 * @queue: The queue structure to free. 15792 * 15793 * This function frees a queue structure and the DMAable memory used for 15794 * the host resident queue. This function must be called after destroying the 15795 * queue on the HBA. 15796 **/ 15797 void 15798 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15799 { 15800 struct lpfc_dmabuf *dmabuf; 15801 15802 if (!queue) 15803 return; 15804 15805 if (!list_empty(&queue->wq_list)) 15806 list_del(&queue->wq_list); 15807 15808 while (!list_empty(&queue->page_list)) { 15809 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15810 list); 15811 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15812 dmabuf->virt, dmabuf->phys); 15813 kfree(dmabuf); 15814 } 15815 if (queue->rqbp) { 15816 lpfc_free_rq_buffer(queue->phba, queue); 15817 kfree(queue->rqbp); 15818 } 15819 15820 if (!list_empty(&queue->cpu_list)) 15821 list_del(&queue->cpu_list); 15822 15823 kfree(queue); 15824 return; 15825 } 15826 15827 /** 15828 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15829 * @phba: The HBA that this queue is being created on. 15830 * @page_size: The size of a queue page 15831 * @entry_size: The size of each queue entry for this queue. 15832 * @entry_count: The number of entries that this queue will handle. 15833 * @cpu: The cpu that will primarily utilize this queue. 15834 * 15835 * This function allocates a queue structure and the DMAable memory used for 15836 * the host resident queue. This function must be called before creating the 15837 * queue on the HBA. 15838 **/ 15839 struct lpfc_queue * 15840 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15841 uint32_t entry_size, uint32_t entry_count, int cpu) 15842 { 15843 struct lpfc_queue *queue; 15844 struct lpfc_dmabuf *dmabuf; 15845 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15846 uint16_t x, pgcnt; 15847 15848 if (!phba->sli4_hba.pc_sli4_params.supported) 15849 hw_page_size = page_size; 15850 15851 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15852 15853 /* If needed, Adjust page count to match the max the adapter supports */ 15854 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15855 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15856 15857 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15858 GFP_KERNEL, cpu_to_node(cpu)); 15859 if (!queue) 15860 return NULL; 15861 15862 INIT_LIST_HEAD(&queue->list); 15863 INIT_LIST_HEAD(&queue->_poll_list); 15864 INIT_LIST_HEAD(&queue->wq_list); 15865 INIT_LIST_HEAD(&queue->wqfull_list); 15866 INIT_LIST_HEAD(&queue->page_list); 15867 INIT_LIST_HEAD(&queue->child_list); 15868 INIT_LIST_HEAD(&queue->cpu_list); 15869 15870 /* Set queue parameters now. If the system cannot provide memory 15871 * resources, the free routine needs to know what was allocated. 15872 */ 15873 queue->page_count = pgcnt; 15874 queue->q_pgs = (void **)&queue[1]; 15875 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15876 queue->entry_size = entry_size; 15877 queue->entry_count = entry_count; 15878 queue->page_size = hw_page_size; 15879 queue->phba = phba; 15880 15881 for (x = 0; x < queue->page_count; x++) { 15882 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15883 dev_to_node(&phba->pcidev->dev)); 15884 if (!dmabuf) 15885 goto out_fail; 15886 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15887 hw_page_size, &dmabuf->phys, 15888 GFP_KERNEL); 15889 if (!dmabuf->virt) { 15890 kfree(dmabuf); 15891 goto out_fail; 15892 } 15893 dmabuf->buffer_tag = x; 15894 list_add_tail(&dmabuf->list, &queue->page_list); 15895 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15896 queue->q_pgs[x] = dmabuf->virt; 15897 } 15898 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15899 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15900 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15901 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15902 15903 /* notify_interval will be set during q creation */ 15904 15905 return queue; 15906 out_fail: 15907 lpfc_sli4_queue_free(queue); 15908 return NULL; 15909 } 15910 15911 /** 15912 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15913 * @phba: HBA structure that indicates port to create a queue on. 15914 * @pci_barset: PCI BAR set flag. 15915 * 15916 * This function shall perform iomap of the specified PCI BAR address to host 15917 * memory address if not already done so and return it. The returned host 15918 * memory address can be NULL. 15919 */ 15920 static void __iomem * 15921 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15922 { 15923 if (!phba->pcidev) 15924 return NULL; 15925 15926 switch (pci_barset) { 15927 case WQ_PCI_BAR_0_AND_1: 15928 return phba->pci_bar0_memmap_p; 15929 case WQ_PCI_BAR_2_AND_3: 15930 return phba->pci_bar2_memmap_p; 15931 case WQ_PCI_BAR_4_AND_5: 15932 return phba->pci_bar4_memmap_p; 15933 default: 15934 break; 15935 } 15936 return NULL; 15937 } 15938 15939 /** 15940 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15941 * @phba: HBA structure that EQs are on. 15942 * @startq: The starting EQ index to modify 15943 * @numq: The number of EQs (consecutive indexes) to modify 15944 * @usdelay: amount of delay 15945 * 15946 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15947 * is set either by writing to a register (if supported by the SLI Port) 15948 * or by mailbox command. The mailbox command allows several EQs to be 15949 * updated at once. 15950 * 15951 * The @phba struct is used to send a mailbox command to HBA. The @startq 15952 * is used to get the starting EQ index to change. The @numq value is 15953 * used to specify how many consecutive EQ indexes, starting at EQ index, 15954 * are to be changed. This function is asynchronous and will wait for any 15955 * mailbox commands to finish before returning. 15956 * 15957 * On success this function will return a zero. If unable to allocate 15958 * enough memory this function will return -ENOMEM. If a mailbox command 15959 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15960 * have had their delay multipler changed. 15961 **/ 15962 void 15963 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15964 uint32_t numq, uint32_t usdelay) 15965 { 15966 struct lpfc_mbx_modify_eq_delay *eq_delay; 15967 LPFC_MBOXQ_t *mbox; 15968 struct lpfc_queue *eq; 15969 int cnt = 0, rc, length; 15970 uint32_t shdr_status, shdr_add_status; 15971 uint32_t dmult; 15972 int qidx; 15973 union lpfc_sli4_cfg_shdr *shdr; 15974 15975 if (startq >= phba->cfg_irq_chann) 15976 return; 15977 15978 if (usdelay > 0xFFFF) { 15979 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15980 "6429 usdelay %d too large. Scaled down to " 15981 "0xFFFF.\n", usdelay); 15982 usdelay = 0xFFFF; 15983 } 15984 15985 /* set values by EQ_DELAY register if supported */ 15986 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15987 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15988 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15989 if (!eq) 15990 continue; 15991 15992 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15993 15994 if (++cnt >= numq) 15995 break; 15996 } 15997 return; 15998 } 15999 16000 /* Otherwise, set values by mailbox cmd */ 16001 16002 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16003 if (!mbox) { 16004 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16005 "6428 Failed allocating mailbox cmd buffer." 16006 " EQ delay was not set.\n"); 16007 return; 16008 } 16009 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 16010 sizeof(struct lpfc_sli4_cfg_mhdr)); 16011 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16012 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 16013 length, LPFC_SLI4_MBX_EMBED); 16014 eq_delay = &mbox->u.mqe.un.eq_delay; 16015 16016 /* Calculate delay multiper from maximum interrupt per second */ 16017 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 16018 if (dmult) 16019 dmult--; 16020 if (dmult > LPFC_DMULT_MAX) 16021 dmult = LPFC_DMULT_MAX; 16022 16023 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16024 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16025 if (!eq) 16026 continue; 16027 eq->q_mode = usdelay; 16028 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16029 eq_delay->u.request.eq[cnt].phase = 0; 16030 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16031 16032 if (++cnt >= numq) 16033 break; 16034 } 16035 eq_delay->u.request.num_eq = cnt; 16036 16037 mbox->vport = phba->pport; 16038 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16039 mbox->ctx_ndlp = NULL; 16040 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16041 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16042 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16043 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16044 if (shdr_status || shdr_add_status || rc) { 16045 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16046 "2512 MODIFY_EQ_DELAY mailbox failed with " 16047 "status x%x add_status x%x, mbx status x%x\n", 16048 shdr_status, shdr_add_status, rc); 16049 } 16050 mempool_free(mbox, phba->mbox_mem_pool); 16051 return; 16052 } 16053 16054 /** 16055 * lpfc_eq_create - Create an Event Queue on the HBA 16056 * @phba: HBA structure that indicates port to create a queue on. 16057 * @eq: The queue structure to use to create the event queue. 16058 * @imax: The maximum interrupt per second limit. 16059 * 16060 * This function creates an event queue, as detailed in @eq, on a port, 16061 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16062 * 16063 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16064 * is used to get the entry count and entry size that are necessary to 16065 * determine the number of pages to allocate and use for this queue. This 16066 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16067 * event queue. This function is asynchronous and will wait for the mailbox 16068 * command to finish before continuing. 16069 * 16070 * On success this function will return a zero. If unable to allocate enough 16071 * memory this function will return -ENOMEM. If the queue create mailbox command 16072 * fails this function will return -ENXIO. 16073 **/ 16074 int 16075 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16076 { 16077 struct lpfc_mbx_eq_create *eq_create; 16078 LPFC_MBOXQ_t *mbox; 16079 int rc, length, status = 0; 16080 struct lpfc_dmabuf *dmabuf; 16081 uint32_t shdr_status, shdr_add_status; 16082 union lpfc_sli4_cfg_shdr *shdr; 16083 uint16_t dmult; 16084 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16085 16086 /* sanity check on queue memory */ 16087 if (!eq) 16088 return -ENODEV; 16089 if (!phba->sli4_hba.pc_sli4_params.supported) 16090 hw_page_size = SLI4_PAGE_SIZE; 16091 16092 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16093 if (!mbox) 16094 return -ENOMEM; 16095 length = (sizeof(struct lpfc_mbx_eq_create) - 16096 sizeof(struct lpfc_sli4_cfg_mhdr)); 16097 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16098 LPFC_MBOX_OPCODE_EQ_CREATE, 16099 length, LPFC_SLI4_MBX_EMBED); 16100 eq_create = &mbox->u.mqe.un.eq_create; 16101 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16102 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16103 eq->page_count); 16104 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16105 LPFC_EQE_SIZE); 16106 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16107 16108 /* Use version 2 of CREATE_EQ if eqav is set */ 16109 if (phba->sli4_hba.pc_sli4_params.eqav) { 16110 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16111 LPFC_Q_CREATE_VERSION_2); 16112 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16113 phba->sli4_hba.pc_sli4_params.eqav); 16114 } 16115 16116 /* don't setup delay multiplier using EQ_CREATE */ 16117 dmult = 0; 16118 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16119 dmult); 16120 switch (eq->entry_count) { 16121 default: 16122 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16123 "0360 Unsupported EQ count. (%d)\n", 16124 eq->entry_count); 16125 if (eq->entry_count < 256) { 16126 status = -EINVAL; 16127 goto out; 16128 } 16129 fallthrough; /* otherwise default to smallest count */ 16130 case 256: 16131 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16132 LPFC_EQ_CNT_256); 16133 break; 16134 case 512: 16135 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16136 LPFC_EQ_CNT_512); 16137 break; 16138 case 1024: 16139 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16140 LPFC_EQ_CNT_1024); 16141 break; 16142 case 2048: 16143 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16144 LPFC_EQ_CNT_2048); 16145 break; 16146 case 4096: 16147 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16148 LPFC_EQ_CNT_4096); 16149 break; 16150 } 16151 list_for_each_entry(dmabuf, &eq->page_list, list) { 16152 memset(dmabuf->virt, 0, hw_page_size); 16153 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16154 putPaddrLow(dmabuf->phys); 16155 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16156 putPaddrHigh(dmabuf->phys); 16157 } 16158 mbox->vport = phba->pport; 16159 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16160 mbox->ctx_buf = NULL; 16161 mbox->ctx_ndlp = NULL; 16162 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16163 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16164 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16165 if (shdr_status || shdr_add_status || rc) { 16166 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16167 "2500 EQ_CREATE mailbox failed with " 16168 "status x%x add_status x%x, mbx status x%x\n", 16169 shdr_status, shdr_add_status, rc); 16170 status = -ENXIO; 16171 } 16172 eq->type = LPFC_EQ; 16173 eq->subtype = LPFC_NONE; 16174 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16175 if (eq->queue_id == 0xFFFF) 16176 status = -ENXIO; 16177 eq->host_index = 0; 16178 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16179 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16180 out: 16181 mempool_free(mbox, phba->mbox_mem_pool); 16182 return status; 16183 } 16184 16185 /** 16186 * lpfc_sli4_hba_intr_handler_th - SLI4 HBA threaded interrupt handler 16187 * @irq: Interrupt number. 16188 * @dev_id: The device context pointer. 16189 * 16190 * This routine is a mirror of lpfc_sli4_hba_intr_handler, but executed within 16191 * threaded irq context. 16192 * 16193 * Returns 16194 * IRQ_HANDLED - interrupt is handled 16195 * IRQ_NONE - otherwise 16196 **/ 16197 irqreturn_t lpfc_sli4_hba_intr_handler_th(int irq, void *dev_id) 16198 { 16199 struct lpfc_hba *phba; 16200 struct lpfc_hba_eq_hdl *hba_eq_hdl; 16201 struct lpfc_queue *fpeq; 16202 int ecount = 0; 16203 int hba_eqidx; 16204 struct lpfc_eq_intr_info *eqi; 16205 16206 /* Get the driver's phba structure from the dev_id */ 16207 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 16208 phba = hba_eq_hdl->phba; 16209 hba_eqidx = hba_eq_hdl->idx; 16210 16211 if (unlikely(!phba)) 16212 return IRQ_NONE; 16213 if (unlikely(!phba->sli4_hba.hdwq)) 16214 return IRQ_NONE; 16215 16216 /* Get to the EQ struct associated with this vector */ 16217 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 16218 if (unlikely(!fpeq)) 16219 return IRQ_NONE; 16220 16221 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, raw_smp_processor_id()); 16222 eqi->icnt++; 16223 16224 fpeq->last_cpu = raw_smp_processor_id(); 16225 16226 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 16227 fpeq->q_flag & HBA_EQ_DELAY_CHK && 16228 phba->cfg_auto_imax && 16229 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 16230 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 16231 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 16232 16233 /* process and rearm the EQ */ 16234 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 16235 LPFC_THREADED_IRQ); 16236 16237 if (unlikely(ecount == 0)) { 16238 fpeq->EQ_no_entry++; 16239 if (phba->intr_type == MSIX) 16240 /* MSI-X treated interrupt served as no EQ share INT */ 16241 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16242 "3358 MSI-X interrupt with no EQE\n"); 16243 else 16244 /* Non MSI-X treated on interrupt as EQ share INT */ 16245 return IRQ_NONE; 16246 } 16247 return IRQ_HANDLED; 16248 } 16249 16250 /** 16251 * lpfc_cq_create - Create a Completion Queue on the HBA 16252 * @phba: HBA structure that indicates port to create a queue on. 16253 * @cq: The queue structure to use to create the completion queue. 16254 * @eq: The event queue to bind this completion queue to. 16255 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16256 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16257 * 16258 * This function creates a completion queue, as detailed in @wq, on a port, 16259 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16260 * 16261 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16262 * is used to get the entry count and entry size that are necessary to 16263 * determine the number of pages to allocate and use for this queue. The @eq 16264 * is used to indicate which event queue to bind this completion queue to. This 16265 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16266 * completion queue. This function is asynchronous and will wait for the mailbox 16267 * command to finish before continuing. 16268 * 16269 * On success this function will return a zero. If unable to allocate enough 16270 * memory this function will return -ENOMEM. If the queue create mailbox command 16271 * fails this function will return -ENXIO. 16272 **/ 16273 int 16274 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16275 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16276 { 16277 struct lpfc_mbx_cq_create *cq_create; 16278 struct lpfc_dmabuf *dmabuf; 16279 LPFC_MBOXQ_t *mbox; 16280 int rc, length, status = 0; 16281 uint32_t shdr_status, shdr_add_status; 16282 union lpfc_sli4_cfg_shdr *shdr; 16283 16284 /* sanity check on queue memory */ 16285 if (!cq || !eq) 16286 return -ENODEV; 16287 16288 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16289 if (!mbox) 16290 return -ENOMEM; 16291 length = (sizeof(struct lpfc_mbx_cq_create) - 16292 sizeof(struct lpfc_sli4_cfg_mhdr)); 16293 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16294 LPFC_MBOX_OPCODE_CQ_CREATE, 16295 length, LPFC_SLI4_MBX_EMBED); 16296 cq_create = &mbox->u.mqe.un.cq_create; 16297 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16298 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16299 cq->page_count); 16300 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16301 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16302 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16303 phba->sli4_hba.pc_sli4_params.cqv); 16304 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16305 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16306 (cq->page_size / SLI4_PAGE_SIZE)); 16307 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16308 eq->queue_id); 16309 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16310 phba->sli4_hba.pc_sli4_params.cqav); 16311 } else { 16312 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16313 eq->queue_id); 16314 } 16315 switch (cq->entry_count) { 16316 case 2048: 16317 case 4096: 16318 if (phba->sli4_hba.pc_sli4_params.cqv == 16319 LPFC_Q_CREATE_VERSION_2) { 16320 cq_create->u.request.context.lpfc_cq_context_count = 16321 cq->entry_count; 16322 bf_set(lpfc_cq_context_count, 16323 &cq_create->u.request.context, 16324 LPFC_CQ_CNT_WORD7); 16325 break; 16326 } 16327 fallthrough; 16328 default: 16329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16330 "0361 Unsupported CQ count: " 16331 "entry cnt %d sz %d pg cnt %d\n", 16332 cq->entry_count, cq->entry_size, 16333 cq->page_count); 16334 if (cq->entry_count < 256) { 16335 status = -EINVAL; 16336 goto out; 16337 } 16338 fallthrough; /* otherwise default to smallest count */ 16339 case 256: 16340 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16341 LPFC_CQ_CNT_256); 16342 break; 16343 case 512: 16344 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16345 LPFC_CQ_CNT_512); 16346 break; 16347 case 1024: 16348 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16349 LPFC_CQ_CNT_1024); 16350 break; 16351 } 16352 list_for_each_entry(dmabuf, &cq->page_list, list) { 16353 memset(dmabuf->virt, 0, cq->page_size); 16354 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16355 putPaddrLow(dmabuf->phys); 16356 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16357 putPaddrHigh(dmabuf->phys); 16358 } 16359 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16360 16361 /* The IOCTL status is embedded in the mailbox subheader. */ 16362 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16363 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16364 if (shdr_status || shdr_add_status || rc) { 16365 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16366 "2501 CQ_CREATE mailbox failed with " 16367 "status x%x add_status x%x, mbx status x%x\n", 16368 shdr_status, shdr_add_status, rc); 16369 status = -ENXIO; 16370 goto out; 16371 } 16372 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16373 if (cq->queue_id == 0xFFFF) { 16374 status = -ENXIO; 16375 goto out; 16376 } 16377 /* link the cq onto the parent eq child list */ 16378 list_add_tail(&cq->list, &eq->child_list); 16379 /* Set up completion queue's type and subtype */ 16380 cq->type = type; 16381 cq->subtype = subtype; 16382 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16383 cq->assoc_qid = eq->queue_id; 16384 cq->assoc_qp = eq; 16385 cq->host_index = 0; 16386 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16387 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16388 16389 if (cq->queue_id > phba->sli4_hba.cq_max) 16390 phba->sli4_hba.cq_max = cq->queue_id; 16391 out: 16392 mempool_free(mbox, phba->mbox_mem_pool); 16393 return status; 16394 } 16395 16396 /** 16397 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16398 * @phba: HBA structure that indicates port to create a queue on. 16399 * @cqp: The queue structure array to use to create the completion queues. 16400 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16401 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16402 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16403 * 16404 * This function creates a set of completion queue, s to support MRQ 16405 * as detailed in @cqp, on a port, 16406 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16407 * 16408 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16409 * is used to get the entry count and entry size that are necessary to 16410 * determine the number of pages to allocate and use for this queue. The @eq 16411 * is used to indicate which event queue to bind this completion queue to. This 16412 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16413 * completion queue. This function is asynchronous and will wait for the mailbox 16414 * command to finish before continuing. 16415 * 16416 * On success this function will return a zero. If unable to allocate enough 16417 * memory this function will return -ENOMEM. If the queue create mailbox command 16418 * fails this function will return -ENXIO. 16419 **/ 16420 int 16421 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16422 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16423 uint32_t subtype) 16424 { 16425 struct lpfc_queue *cq; 16426 struct lpfc_queue *eq; 16427 struct lpfc_mbx_cq_create_set *cq_set; 16428 struct lpfc_dmabuf *dmabuf; 16429 LPFC_MBOXQ_t *mbox; 16430 int rc, length, alloclen, status = 0; 16431 int cnt, idx, numcq, page_idx = 0; 16432 uint32_t shdr_status, shdr_add_status; 16433 union lpfc_sli4_cfg_shdr *shdr; 16434 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16435 16436 /* sanity check on queue memory */ 16437 numcq = phba->cfg_nvmet_mrq; 16438 if (!cqp || !hdwq || !numcq) 16439 return -ENODEV; 16440 16441 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16442 if (!mbox) 16443 return -ENOMEM; 16444 16445 length = sizeof(struct lpfc_mbx_cq_create_set); 16446 length += ((numcq * cqp[0]->page_count) * 16447 sizeof(struct dma_address)); 16448 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16449 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16450 LPFC_SLI4_MBX_NEMBED); 16451 if (alloclen < length) { 16452 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16453 "3098 Allocated DMA memory size (%d) is " 16454 "less than the requested DMA memory size " 16455 "(%d)\n", alloclen, length); 16456 status = -ENOMEM; 16457 goto out; 16458 } 16459 cq_set = mbox->sge_array->addr[0]; 16460 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16461 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16462 16463 for (idx = 0; idx < numcq; idx++) { 16464 cq = cqp[idx]; 16465 eq = hdwq[idx].hba_eq; 16466 if (!cq || !eq) { 16467 status = -ENOMEM; 16468 goto out; 16469 } 16470 if (!phba->sli4_hba.pc_sli4_params.supported) 16471 hw_page_size = cq->page_size; 16472 16473 switch (idx) { 16474 case 0: 16475 bf_set(lpfc_mbx_cq_create_set_page_size, 16476 &cq_set->u.request, 16477 (hw_page_size / SLI4_PAGE_SIZE)); 16478 bf_set(lpfc_mbx_cq_create_set_num_pages, 16479 &cq_set->u.request, cq->page_count); 16480 bf_set(lpfc_mbx_cq_create_set_evt, 16481 &cq_set->u.request, 1); 16482 bf_set(lpfc_mbx_cq_create_set_valid, 16483 &cq_set->u.request, 1); 16484 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16485 &cq_set->u.request, 0); 16486 bf_set(lpfc_mbx_cq_create_set_num_cq, 16487 &cq_set->u.request, numcq); 16488 bf_set(lpfc_mbx_cq_create_set_autovalid, 16489 &cq_set->u.request, 16490 phba->sli4_hba.pc_sli4_params.cqav); 16491 switch (cq->entry_count) { 16492 case 2048: 16493 case 4096: 16494 if (phba->sli4_hba.pc_sli4_params.cqv == 16495 LPFC_Q_CREATE_VERSION_2) { 16496 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16497 &cq_set->u.request, 16498 cq->entry_count); 16499 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16500 &cq_set->u.request, 16501 LPFC_CQ_CNT_WORD7); 16502 break; 16503 } 16504 fallthrough; 16505 default: 16506 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16507 "3118 Bad CQ count. (%d)\n", 16508 cq->entry_count); 16509 if (cq->entry_count < 256) { 16510 status = -EINVAL; 16511 goto out; 16512 } 16513 fallthrough; /* otherwise default to smallest */ 16514 case 256: 16515 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16516 &cq_set->u.request, LPFC_CQ_CNT_256); 16517 break; 16518 case 512: 16519 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16520 &cq_set->u.request, LPFC_CQ_CNT_512); 16521 break; 16522 case 1024: 16523 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16524 &cq_set->u.request, LPFC_CQ_CNT_1024); 16525 break; 16526 } 16527 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16528 &cq_set->u.request, eq->queue_id); 16529 break; 16530 case 1: 16531 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16532 &cq_set->u.request, eq->queue_id); 16533 break; 16534 case 2: 16535 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16536 &cq_set->u.request, eq->queue_id); 16537 break; 16538 case 3: 16539 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16540 &cq_set->u.request, eq->queue_id); 16541 break; 16542 case 4: 16543 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16544 &cq_set->u.request, eq->queue_id); 16545 break; 16546 case 5: 16547 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16548 &cq_set->u.request, eq->queue_id); 16549 break; 16550 case 6: 16551 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16552 &cq_set->u.request, eq->queue_id); 16553 break; 16554 case 7: 16555 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16556 &cq_set->u.request, eq->queue_id); 16557 break; 16558 case 8: 16559 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16560 &cq_set->u.request, eq->queue_id); 16561 break; 16562 case 9: 16563 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16564 &cq_set->u.request, eq->queue_id); 16565 break; 16566 case 10: 16567 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16568 &cq_set->u.request, eq->queue_id); 16569 break; 16570 case 11: 16571 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16572 &cq_set->u.request, eq->queue_id); 16573 break; 16574 case 12: 16575 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16576 &cq_set->u.request, eq->queue_id); 16577 break; 16578 case 13: 16579 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16580 &cq_set->u.request, eq->queue_id); 16581 break; 16582 case 14: 16583 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16584 &cq_set->u.request, eq->queue_id); 16585 break; 16586 case 15: 16587 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16588 &cq_set->u.request, eq->queue_id); 16589 break; 16590 } 16591 16592 /* link the cq onto the parent eq child list */ 16593 list_add_tail(&cq->list, &eq->child_list); 16594 /* Set up completion queue's type and subtype */ 16595 cq->type = type; 16596 cq->subtype = subtype; 16597 cq->assoc_qid = eq->queue_id; 16598 cq->assoc_qp = eq; 16599 cq->host_index = 0; 16600 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16601 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16602 cq->entry_count); 16603 cq->chann = idx; 16604 16605 rc = 0; 16606 list_for_each_entry(dmabuf, &cq->page_list, list) { 16607 memset(dmabuf->virt, 0, hw_page_size); 16608 cnt = page_idx + dmabuf->buffer_tag; 16609 cq_set->u.request.page[cnt].addr_lo = 16610 putPaddrLow(dmabuf->phys); 16611 cq_set->u.request.page[cnt].addr_hi = 16612 putPaddrHigh(dmabuf->phys); 16613 rc++; 16614 } 16615 page_idx += rc; 16616 } 16617 16618 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16619 16620 /* The IOCTL status is embedded in the mailbox subheader. */ 16621 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16622 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16623 if (shdr_status || shdr_add_status || rc) { 16624 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16625 "3119 CQ_CREATE_SET mailbox failed with " 16626 "status x%x add_status x%x, mbx status x%x\n", 16627 shdr_status, shdr_add_status, rc); 16628 status = -ENXIO; 16629 goto out; 16630 } 16631 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16632 if (rc == 0xFFFF) { 16633 status = -ENXIO; 16634 goto out; 16635 } 16636 16637 for (idx = 0; idx < numcq; idx++) { 16638 cq = cqp[idx]; 16639 cq->queue_id = rc + idx; 16640 if (cq->queue_id > phba->sli4_hba.cq_max) 16641 phba->sli4_hba.cq_max = cq->queue_id; 16642 } 16643 16644 out: 16645 lpfc_sli4_mbox_cmd_free(phba, mbox); 16646 return status; 16647 } 16648 16649 /** 16650 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16651 * @phba: HBA structure that indicates port to create a queue on. 16652 * @mq: The queue structure to use to create the mailbox queue. 16653 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16654 * @cq: The completion queue to associate with this cq. 16655 * 16656 * This function provides failback (fb) functionality when the 16657 * mq_create_ext fails on older FW generations. It's purpose is identical 16658 * to mq_create_ext otherwise. 16659 * 16660 * This routine cannot fail as all attributes were previously accessed and 16661 * initialized in mq_create_ext. 16662 **/ 16663 static void 16664 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16665 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16666 { 16667 struct lpfc_mbx_mq_create *mq_create; 16668 struct lpfc_dmabuf *dmabuf; 16669 int length; 16670 16671 length = (sizeof(struct lpfc_mbx_mq_create) - 16672 sizeof(struct lpfc_sli4_cfg_mhdr)); 16673 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16674 LPFC_MBOX_OPCODE_MQ_CREATE, 16675 length, LPFC_SLI4_MBX_EMBED); 16676 mq_create = &mbox->u.mqe.un.mq_create; 16677 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16678 mq->page_count); 16679 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16680 cq->queue_id); 16681 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16682 switch (mq->entry_count) { 16683 case 16: 16684 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16685 LPFC_MQ_RING_SIZE_16); 16686 break; 16687 case 32: 16688 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16689 LPFC_MQ_RING_SIZE_32); 16690 break; 16691 case 64: 16692 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16693 LPFC_MQ_RING_SIZE_64); 16694 break; 16695 case 128: 16696 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16697 LPFC_MQ_RING_SIZE_128); 16698 break; 16699 } 16700 list_for_each_entry(dmabuf, &mq->page_list, list) { 16701 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16702 putPaddrLow(dmabuf->phys); 16703 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16704 putPaddrHigh(dmabuf->phys); 16705 } 16706 } 16707 16708 /** 16709 * lpfc_mq_create - Create a mailbox Queue on the HBA 16710 * @phba: HBA structure that indicates port to create a queue on. 16711 * @mq: The queue structure to use to create the mailbox queue. 16712 * @cq: The completion queue to associate with this cq. 16713 * @subtype: The queue's subtype. 16714 * 16715 * This function creates a mailbox queue, as detailed in @mq, on a port, 16716 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16717 * 16718 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16719 * is used to get the entry count and entry size that are necessary to 16720 * determine the number of pages to allocate and use for this queue. This 16721 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16722 * mailbox queue. This function is asynchronous and will wait for the mailbox 16723 * command to finish before continuing. 16724 * 16725 * On success this function will return a zero. If unable to allocate enough 16726 * memory this function will return -ENOMEM. If the queue create mailbox command 16727 * fails this function will return -ENXIO. 16728 **/ 16729 int32_t 16730 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16731 struct lpfc_queue *cq, uint32_t subtype) 16732 { 16733 struct lpfc_mbx_mq_create *mq_create; 16734 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16735 struct lpfc_dmabuf *dmabuf; 16736 LPFC_MBOXQ_t *mbox; 16737 int rc, length, status = 0; 16738 uint32_t shdr_status, shdr_add_status; 16739 union lpfc_sli4_cfg_shdr *shdr; 16740 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16741 16742 /* sanity check on queue memory */ 16743 if (!mq || !cq) 16744 return -ENODEV; 16745 if (!phba->sli4_hba.pc_sli4_params.supported) 16746 hw_page_size = SLI4_PAGE_SIZE; 16747 16748 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16749 if (!mbox) 16750 return -ENOMEM; 16751 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16752 sizeof(struct lpfc_sli4_cfg_mhdr)); 16753 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16754 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16755 length, LPFC_SLI4_MBX_EMBED); 16756 16757 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16758 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16759 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16760 &mq_create_ext->u.request, mq->page_count); 16761 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16762 &mq_create_ext->u.request, 1); 16763 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16764 &mq_create_ext->u.request, 1); 16765 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16766 &mq_create_ext->u.request, 1); 16767 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16768 &mq_create_ext->u.request, 1); 16769 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16770 &mq_create_ext->u.request, 1); 16771 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16772 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16773 phba->sli4_hba.pc_sli4_params.mqv); 16774 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16775 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16776 cq->queue_id); 16777 else 16778 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16779 cq->queue_id); 16780 switch (mq->entry_count) { 16781 default: 16782 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16783 "0362 Unsupported MQ count. (%d)\n", 16784 mq->entry_count); 16785 if (mq->entry_count < 16) { 16786 status = -EINVAL; 16787 goto out; 16788 } 16789 fallthrough; /* otherwise default to smallest count */ 16790 case 16: 16791 bf_set(lpfc_mq_context_ring_size, 16792 &mq_create_ext->u.request.context, 16793 LPFC_MQ_RING_SIZE_16); 16794 break; 16795 case 32: 16796 bf_set(lpfc_mq_context_ring_size, 16797 &mq_create_ext->u.request.context, 16798 LPFC_MQ_RING_SIZE_32); 16799 break; 16800 case 64: 16801 bf_set(lpfc_mq_context_ring_size, 16802 &mq_create_ext->u.request.context, 16803 LPFC_MQ_RING_SIZE_64); 16804 break; 16805 case 128: 16806 bf_set(lpfc_mq_context_ring_size, 16807 &mq_create_ext->u.request.context, 16808 LPFC_MQ_RING_SIZE_128); 16809 break; 16810 } 16811 list_for_each_entry(dmabuf, &mq->page_list, list) { 16812 memset(dmabuf->virt, 0, hw_page_size); 16813 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16814 putPaddrLow(dmabuf->phys); 16815 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16816 putPaddrHigh(dmabuf->phys); 16817 } 16818 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16819 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16820 &mq_create_ext->u.response); 16821 if (rc != MBX_SUCCESS) { 16822 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16823 "2795 MQ_CREATE_EXT failed with " 16824 "status x%x. Failback to MQ_CREATE.\n", 16825 rc); 16826 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16827 mq_create = &mbox->u.mqe.un.mq_create; 16828 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16829 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16830 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16831 &mq_create->u.response); 16832 } 16833 16834 /* The IOCTL status is embedded in the mailbox subheader. */ 16835 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16836 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16837 if (shdr_status || shdr_add_status || rc) { 16838 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16839 "2502 MQ_CREATE mailbox failed with " 16840 "status x%x add_status x%x, mbx status x%x\n", 16841 shdr_status, shdr_add_status, rc); 16842 status = -ENXIO; 16843 goto out; 16844 } 16845 if (mq->queue_id == 0xFFFF) { 16846 status = -ENXIO; 16847 goto out; 16848 } 16849 mq->type = LPFC_MQ; 16850 mq->assoc_qid = cq->queue_id; 16851 mq->subtype = subtype; 16852 mq->host_index = 0; 16853 mq->hba_index = 0; 16854 16855 /* link the mq onto the parent cq child list */ 16856 list_add_tail(&mq->list, &cq->child_list); 16857 out: 16858 mempool_free(mbox, phba->mbox_mem_pool); 16859 return status; 16860 } 16861 16862 /** 16863 * lpfc_wq_create - Create a Work Queue on the HBA 16864 * @phba: HBA structure that indicates port to create a queue on. 16865 * @wq: The queue structure to use to create the work queue. 16866 * @cq: The completion queue to bind this work queue to. 16867 * @subtype: The subtype of the work queue indicating its functionality. 16868 * 16869 * This function creates a work queue, as detailed in @wq, on a port, described 16870 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16871 * 16872 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16873 * is used to get the entry count and entry size that are necessary to 16874 * determine the number of pages to allocate and use for this queue. The @cq 16875 * is used to indicate which completion queue to bind this work queue to. This 16876 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16877 * work queue. This function is asynchronous and will wait for the mailbox 16878 * command to finish before continuing. 16879 * 16880 * On success this function will return a zero. If unable to allocate enough 16881 * memory this function will return -ENOMEM. If the queue create mailbox command 16882 * fails this function will return -ENXIO. 16883 **/ 16884 int 16885 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16886 struct lpfc_queue *cq, uint32_t subtype) 16887 { 16888 struct lpfc_mbx_wq_create *wq_create; 16889 struct lpfc_dmabuf *dmabuf; 16890 LPFC_MBOXQ_t *mbox; 16891 int rc, length, status = 0; 16892 uint32_t shdr_status, shdr_add_status; 16893 union lpfc_sli4_cfg_shdr *shdr; 16894 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16895 struct dma_address *page; 16896 void __iomem *bar_memmap_p; 16897 uint32_t db_offset; 16898 uint16_t pci_barset; 16899 uint8_t dpp_barset; 16900 uint32_t dpp_offset; 16901 uint8_t wq_create_version; 16902 #ifdef CONFIG_X86 16903 unsigned long pg_addr; 16904 #endif 16905 16906 /* sanity check on queue memory */ 16907 if (!wq || !cq) 16908 return -ENODEV; 16909 if (!phba->sli4_hba.pc_sli4_params.supported) 16910 hw_page_size = wq->page_size; 16911 16912 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16913 if (!mbox) 16914 return -ENOMEM; 16915 length = (sizeof(struct lpfc_mbx_wq_create) - 16916 sizeof(struct lpfc_sli4_cfg_mhdr)); 16917 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16918 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16919 length, LPFC_SLI4_MBX_EMBED); 16920 wq_create = &mbox->u.mqe.un.wq_create; 16921 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16922 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16923 wq->page_count); 16924 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16925 cq->queue_id); 16926 16927 /* wqv is the earliest version supported, NOT the latest */ 16928 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16929 phba->sli4_hba.pc_sli4_params.wqv); 16930 16931 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16932 (wq->page_size > SLI4_PAGE_SIZE)) 16933 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16934 else 16935 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16936 16937 switch (wq_create_version) { 16938 case LPFC_Q_CREATE_VERSION_1: 16939 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16940 wq->entry_count); 16941 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16942 LPFC_Q_CREATE_VERSION_1); 16943 16944 switch (wq->entry_size) { 16945 default: 16946 case 64: 16947 bf_set(lpfc_mbx_wq_create_wqe_size, 16948 &wq_create->u.request_1, 16949 LPFC_WQ_WQE_SIZE_64); 16950 break; 16951 case 128: 16952 bf_set(lpfc_mbx_wq_create_wqe_size, 16953 &wq_create->u.request_1, 16954 LPFC_WQ_WQE_SIZE_128); 16955 break; 16956 } 16957 /* Request DPP by default */ 16958 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16959 bf_set(lpfc_mbx_wq_create_page_size, 16960 &wq_create->u.request_1, 16961 (wq->page_size / SLI4_PAGE_SIZE)); 16962 page = wq_create->u.request_1.page; 16963 break; 16964 default: 16965 page = wq_create->u.request.page; 16966 break; 16967 } 16968 16969 list_for_each_entry(dmabuf, &wq->page_list, list) { 16970 memset(dmabuf->virt, 0, hw_page_size); 16971 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16972 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16973 } 16974 16975 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16976 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16977 16978 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16979 /* The IOCTL status is embedded in the mailbox subheader. */ 16980 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16981 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16982 if (shdr_status || shdr_add_status || rc) { 16983 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16984 "2503 WQ_CREATE mailbox failed with " 16985 "status x%x add_status x%x, mbx status x%x\n", 16986 shdr_status, shdr_add_status, rc); 16987 status = -ENXIO; 16988 goto out; 16989 } 16990 16991 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16992 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16993 &wq_create->u.response); 16994 else 16995 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16996 &wq_create->u.response_1); 16997 16998 if (wq->queue_id == 0xFFFF) { 16999 status = -ENXIO; 17000 goto out; 17001 } 17002 17003 wq->db_format = LPFC_DB_LIST_FORMAT; 17004 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 17005 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17006 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 17007 &wq_create->u.response); 17008 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 17009 (wq->db_format != LPFC_DB_RING_FORMAT)) { 17010 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17011 "3265 WQ[%d] doorbell format " 17012 "not supported: x%x\n", 17013 wq->queue_id, wq->db_format); 17014 status = -EINVAL; 17015 goto out; 17016 } 17017 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 17018 &wq_create->u.response); 17019 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17020 pci_barset); 17021 if (!bar_memmap_p) { 17022 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17023 "3263 WQ[%d] failed to memmap " 17024 "pci barset:x%x\n", 17025 wq->queue_id, pci_barset); 17026 status = -ENOMEM; 17027 goto out; 17028 } 17029 db_offset = wq_create->u.response.doorbell_offset; 17030 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 17031 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 17032 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17033 "3252 WQ[%d] doorbell offset " 17034 "not supported: x%x\n", 17035 wq->queue_id, db_offset); 17036 status = -EINVAL; 17037 goto out; 17038 } 17039 wq->db_regaddr = bar_memmap_p + db_offset; 17040 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17041 "3264 WQ[%d]: barset:x%x, offset:x%x, " 17042 "format:x%x\n", wq->queue_id, 17043 pci_barset, db_offset, wq->db_format); 17044 } else 17045 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17046 } else { 17047 /* Check if DPP was honored by the firmware */ 17048 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 17049 &wq_create->u.response_1); 17050 if (wq->dpp_enable) { 17051 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 17052 &wq_create->u.response_1); 17053 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17054 pci_barset); 17055 if (!bar_memmap_p) { 17056 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17057 "3267 WQ[%d] failed to memmap " 17058 "pci barset:x%x\n", 17059 wq->queue_id, pci_barset); 17060 status = -ENOMEM; 17061 goto out; 17062 } 17063 db_offset = wq_create->u.response_1.doorbell_offset; 17064 wq->db_regaddr = bar_memmap_p + db_offset; 17065 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 17066 &wq_create->u.response_1); 17067 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 17068 &wq_create->u.response_1); 17069 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17070 dpp_barset); 17071 if (!bar_memmap_p) { 17072 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17073 "3268 WQ[%d] failed to memmap " 17074 "pci barset:x%x\n", 17075 wq->queue_id, dpp_barset); 17076 status = -ENOMEM; 17077 goto out; 17078 } 17079 dpp_offset = wq_create->u.response_1.dpp_offset; 17080 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17081 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17082 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17083 "dpp_id:x%x dpp_barset:x%x " 17084 "dpp_offset:x%x\n", 17085 wq->queue_id, pci_barset, db_offset, 17086 wq->dpp_id, dpp_barset, dpp_offset); 17087 17088 #ifdef CONFIG_X86 17089 /* Enable combined writes for DPP aperture */ 17090 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17091 rc = set_memory_wc(pg_addr, 1); 17092 if (rc) { 17093 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17094 "3272 Cannot setup Combined " 17095 "Write on WQ[%d] - disable DPP\n", 17096 wq->queue_id); 17097 phba->cfg_enable_dpp = 0; 17098 } 17099 #else 17100 phba->cfg_enable_dpp = 0; 17101 #endif 17102 } else 17103 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17104 } 17105 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17106 if (wq->pring == NULL) { 17107 status = -ENOMEM; 17108 goto out; 17109 } 17110 wq->type = LPFC_WQ; 17111 wq->assoc_qid = cq->queue_id; 17112 wq->subtype = subtype; 17113 wq->host_index = 0; 17114 wq->hba_index = 0; 17115 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17116 17117 /* link the wq onto the parent cq child list */ 17118 list_add_tail(&wq->list, &cq->child_list); 17119 out: 17120 mempool_free(mbox, phba->mbox_mem_pool); 17121 return status; 17122 } 17123 17124 /** 17125 * lpfc_rq_create - Create a Receive Queue on the HBA 17126 * @phba: HBA structure that indicates port to create a queue on. 17127 * @hrq: The queue structure to use to create the header receive queue. 17128 * @drq: The queue structure to use to create the data receive queue. 17129 * @cq: The completion queue to bind this work queue to. 17130 * @subtype: The subtype of the work queue indicating its functionality. 17131 * 17132 * This function creates a receive buffer queue pair , as detailed in @hrq and 17133 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17134 * to the HBA. 17135 * 17136 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17137 * struct is used to get the entry count that is necessary to determine the 17138 * number of pages to use for this queue. The @cq is used to indicate which 17139 * completion queue to bind received buffers that are posted to these queues to. 17140 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17141 * receive queue pair. This function is asynchronous and will wait for the 17142 * mailbox command to finish before continuing. 17143 * 17144 * On success this function will return a zero. If unable to allocate enough 17145 * memory this function will return -ENOMEM. If the queue create mailbox command 17146 * fails this function will return -ENXIO. 17147 **/ 17148 int 17149 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17150 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17151 { 17152 struct lpfc_mbx_rq_create *rq_create; 17153 struct lpfc_dmabuf *dmabuf; 17154 LPFC_MBOXQ_t *mbox; 17155 int rc, length, status = 0; 17156 uint32_t shdr_status, shdr_add_status; 17157 union lpfc_sli4_cfg_shdr *shdr; 17158 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17159 void __iomem *bar_memmap_p; 17160 uint32_t db_offset; 17161 uint16_t pci_barset; 17162 17163 /* sanity check on queue memory */ 17164 if (!hrq || !drq || !cq) 17165 return -ENODEV; 17166 if (!phba->sli4_hba.pc_sli4_params.supported) 17167 hw_page_size = SLI4_PAGE_SIZE; 17168 17169 if (hrq->entry_count != drq->entry_count) 17170 return -EINVAL; 17171 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17172 if (!mbox) 17173 return -ENOMEM; 17174 length = (sizeof(struct lpfc_mbx_rq_create) - 17175 sizeof(struct lpfc_sli4_cfg_mhdr)); 17176 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17177 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17178 length, LPFC_SLI4_MBX_EMBED); 17179 rq_create = &mbox->u.mqe.un.rq_create; 17180 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17181 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17182 phba->sli4_hba.pc_sli4_params.rqv); 17183 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17184 bf_set(lpfc_rq_context_rqe_count_1, 17185 &rq_create->u.request.context, 17186 hrq->entry_count); 17187 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17188 bf_set(lpfc_rq_context_rqe_size, 17189 &rq_create->u.request.context, 17190 LPFC_RQE_SIZE_8); 17191 bf_set(lpfc_rq_context_page_size, 17192 &rq_create->u.request.context, 17193 LPFC_RQ_PAGE_SIZE_4096); 17194 } else { 17195 switch (hrq->entry_count) { 17196 default: 17197 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17198 "2535 Unsupported RQ count. (%d)\n", 17199 hrq->entry_count); 17200 if (hrq->entry_count < 512) { 17201 status = -EINVAL; 17202 goto out; 17203 } 17204 fallthrough; /* otherwise default to smallest count */ 17205 case 512: 17206 bf_set(lpfc_rq_context_rqe_count, 17207 &rq_create->u.request.context, 17208 LPFC_RQ_RING_SIZE_512); 17209 break; 17210 case 1024: 17211 bf_set(lpfc_rq_context_rqe_count, 17212 &rq_create->u.request.context, 17213 LPFC_RQ_RING_SIZE_1024); 17214 break; 17215 case 2048: 17216 bf_set(lpfc_rq_context_rqe_count, 17217 &rq_create->u.request.context, 17218 LPFC_RQ_RING_SIZE_2048); 17219 break; 17220 case 4096: 17221 bf_set(lpfc_rq_context_rqe_count, 17222 &rq_create->u.request.context, 17223 LPFC_RQ_RING_SIZE_4096); 17224 break; 17225 } 17226 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17227 LPFC_HDR_BUF_SIZE); 17228 } 17229 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17230 cq->queue_id); 17231 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17232 hrq->page_count); 17233 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17234 memset(dmabuf->virt, 0, hw_page_size); 17235 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17236 putPaddrLow(dmabuf->phys); 17237 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17238 putPaddrHigh(dmabuf->phys); 17239 } 17240 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17241 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17242 17243 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17244 /* The IOCTL status is embedded in the mailbox subheader. */ 17245 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17246 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17247 if (shdr_status || shdr_add_status || rc) { 17248 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17249 "2504 RQ_CREATE mailbox failed with " 17250 "status x%x add_status x%x, mbx status x%x\n", 17251 shdr_status, shdr_add_status, rc); 17252 status = -ENXIO; 17253 goto out; 17254 } 17255 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17256 if (hrq->queue_id == 0xFFFF) { 17257 status = -ENXIO; 17258 goto out; 17259 } 17260 17261 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17262 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17263 &rq_create->u.response); 17264 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17265 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17266 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17267 "3262 RQ [%d] doorbell format not " 17268 "supported: x%x\n", hrq->queue_id, 17269 hrq->db_format); 17270 status = -EINVAL; 17271 goto out; 17272 } 17273 17274 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17275 &rq_create->u.response); 17276 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17277 if (!bar_memmap_p) { 17278 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17279 "3269 RQ[%d] failed to memmap pci " 17280 "barset:x%x\n", hrq->queue_id, 17281 pci_barset); 17282 status = -ENOMEM; 17283 goto out; 17284 } 17285 17286 db_offset = rq_create->u.response.doorbell_offset; 17287 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17288 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17289 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17290 "3270 RQ[%d] doorbell offset not " 17291 "supported: x%x\n", hrq->queue_id, 17292 db_offset); 17293 status = -EINVAL; 17294 goto out; 17295 } 17296 hrq->db_regaddr = bar_memmap_p + db_offset; 17297 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17298 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17299 "format:x%x\n", hrq->queue_id, pci_barset, 17300 db_offset, hrq->db_format); 17301 } else { 17302 hrq->db_format = LPFC_DB_RING_FORMAT; 17303 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17304 } 17305 hrq->type = LPFC_HRQ; 17306 hrq->assoc_qid = cq->queue_id; 17307 hrq->subtype = subtype; 17308 hrq->host_index = 0; 17309 hrq->hba_index = 0; 17310 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17311 17312 /* now create the data queue */ 17313 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17314 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17315 length, LPFC_SLI4_MBX_EMBED); 17316 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17317 phba->sli4_hba.pc_sli4_params.rqv); 17318 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17319 bf_set(lpfc_rq_context_rqe_count_1, 17320 &rq_create->u.request.context, hrq->entry_count); 17321 if (subtype == LPFC_NVMET) 17322 rq_create->u.request.context.buffer_size = 17323 LPFC_NVMET_DATA_BUF_SIZE; 17324 else 17325 rq_create->u.request.context.buffer_size = 17326 LPFC_DATA_BUF_SIZE; 17327 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17328 LPFC_RQE_SIZE_8); 17329 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17330 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17331 } else { 17332 switch (drq->entry_count) { 17333 default: 17334 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17335 "2536 Unsupported RQ count. (%d)\n", 17336 drq->entry_count); 17337 if (drq->entry_count < 512) { 17338 status = -EINVAL; 17339 goto out; 17340 } 17341 fallthrough; /* otherwise default to smallest count */ 17342 case 512: 17343 bf_set(lpfc_rq_context_rqe_count, 17344 &rq_create->u.request.context, 17345 LPFC_RQ_RING_SIZE_512); 17346 break; 17347 case 1024: 17348 bf_set(lpfc_rq_context_rqe_count, 17349 &rq_create->u.request.context, 17350 LPFC_RQ_RING_SIZE_1024); 17351 break; 17352 case 2048: 17353 bf_set(lpfc_rq_context_rqe_count, 17354 &rq_create->u.request.context, 17355 LPFC_RQ_RING_SIZE_2048); 17356 break; 17357 case 4096: 17358 bf_set(lpfc_rq_context_rqe_count, 17359 &rq_create->u.request.context, 17360 LPFC_RQ_RING_SIZE_4096); 17361 break; 17362 } 17363 if (subtype == LPFC_NVMET) 17364 bf_set(lpfc_rq_context_buf_size, 17365 &rq_create->u.request.context, 17366 LPFC_NVMET_DATA_BUF_SIZE); 17367 else 17368 bf_set(lpfc_rq_context_buf_size, 17369 &rq_create->u.request.context, 17370 LPFC_DATA_BUF_SIZE); 17371 } 17372 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17373 cq->queue_id); 17374 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17375 drq->page_count); 17376 list_for_each_entry(dmabuf, &drq->page_list, list) { 17377 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17378 putPaddrLow(dmabuf->phys); 17379 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17380 putPaddrHigh(dmabuf->phys); 17381 } 17382 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17383 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17384 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17385 /* The IOCTL status is embedded in the mailbox subheader. */ 17386 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17387 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17388 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17389 if (shdr_status || shdr_add_status || rc) { 17390 status = -ENXIO; 17391 goto out; 17392 } 17393 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17394 if (drq->queue_id == 0xFFFF) { 17395 status = -ENXIO; 17396 goto out; 17397 } 17398 drq->type = LPFC_DRQ; 17399 drq->assoc_qid = cq->queue_id; 17400 drq->subtype = subtype; 17401 drq->host_index = 0; 17402 drq->hba_index = 0; 17403 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17404 17405 /* link the header and data RQs onto the parent cq child list */ 17406 list_add_tail(&hrq->list, &cq->child_list); 17407 list_add_tail(&drq->list, &cq->child_list); 17408 17409 out: 17410 mempool_free(mbox, phba->mbox_mem_pool); 17411 return status; 17412 } 17413 17414 /** 17415 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17416 * @phba: HBA structure that indicates port to create a queue on. 17417 * @hrqp: The queue structure array to use to create the header receive queues. 17418 * @drqp: The queue structure array to use to create the data receive queues. 17419 * @cqp: The completion queue array to bind these receive queues to. 17420 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17421 * 17422 * This function creates a receive buffer queue pair , as detailed in @hrq and 17423 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17424 * to the HBA. 17425 * 17426 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17427 * struct is used to get the entry count that is necessary to determine the 17428 * number of pages to use for this queue. The @cq is used to indicate which 17429 * completion queue to bind received buffers that are posted to these queues to. 17430 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17431 * receive queue pair. This function is asynchronous and will wait for the 17432 * mailbox command to finish before continuing. 17433 * 17434 * On success this function will return a zero. If unable to allocate enough 17435 * memory this function will return -ENOMEM. If the queue create mailbox command 17436 * fails this function will return -ENXIO. 17437 **/ 17438 int 17439 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17440 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17441 uint32_t subtype) 17442 { 17443 struct lpfc_queue *hrq, *drq, *cq; 17444 struct lpfc_mbx_rq_create_v2 *rq_create; 17445 struct lpfc_dmabuf *dmabuf; 17446 LPFC_MBOXQ_t *mbox; 17447 int rc, length, alloclen, status = 0; 17448 int cnt, idx, numrq, page_idx = 0; 17449 uint32_t shdr_status, shdr_add_status; 17450 union lpfc_sli4_cfg_shdr *shdr; 17451 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17452 17453 numrq = phba->cfg_nvmet_mrq; 17454 /* sanity check on array memory */ 17455 if (!hrqp || !drqp || !cqp || !numrq) 17456 return -ENODEV; 17457 if (!phba->sli4_hba.pc_sli4_params.supported) 17458 hw_page_size = SLI4_PAGE_SIZE; 17459 17460 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17461 if (!mbox) 17462 return -ENOMEM; 17463 17464 length = sizeof(struct lpfc_mbx_rq_create_v2); 17465 length += ((2 * numrq * hrqp[0]->page_count) * 17466 sizeof(struct dma_address)); 17467 17468 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17469 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17470 LPFC_SLI4_MBX_NEMBED); 17471 if (alloclen < length) { 17472 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17473 "3099 Allocated DMA memory size (%d) is " 17474 "less than the requested DMA memory size " 17475 "(%d)\n", alloclen, length); 17476 status = -ENOMEM; 17477 goto out; 17478 } 17479 17480 17481 17482 rq_create = mbox->sge_array->addr[0]; 17483 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17484 17485 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17486 cnt = 0; 17487 17488 for (idx = 0; idx < numrq; idx++) { 17489 hrq = hrqp[idx]; 17490 drq = drqp[idx]; 17491 cq = cqp[idx]; 17492 17493 /* sanity check on queue memory */ 17494 if (!hrq || !drq || !cq) { 17495 status = -ENODEV; 17496 goto out; 17497 } 17498 17499 if (hrq->entry_count != drq->entry_count) { 17500 status = -EINVAL; 17501 goto out; 17502 } 17503 17504 if (idx == 0) { 17505 bf_set(lpfc_mbx_rq_create_num_pages, 17506 &rq_create->u.request, 17507 hrq->page_count); 17508 bf_set(lpfc_mbx_rq_create_rq_cnt, 17509 &rq_create->u.request, (numrq * 2)); 17510 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17511 1); 17512 bf_set(lpfc_rq_context_base_cq, 17513 &rq_create->u.request.context, 17514 cq->queue_id); 17515 bf_set(lpfc_rq_context_data_size, 17516 &rq_create->u.request.context, 17517 LPFC_NVMET_DATA_BUF_SIZE); 17518 bf_set(lpfc_rq_context_hdr_size, 17519 &rq_create->u.request.context, 17520 LPFC_HDR_BUF_SIZE); 17521 bf_set(lpfc_rq_context_rqe_count_1, 17522 &rq_create->u.request.context, 17523 hrq->entry_count); 17524 bf_set(lpfc_rq_context_rqe_size, 17525 &rq_create->u.request.context, 17526 LPFC_RQE_SIZE_8); 17527 bf_set(lpfc_rq_context_page_size, 17528 &rq_create->u.request.context, 17529 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17530 } 17531 rc = 0; 17532 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17533 memset(dmabuf->virt, 0, hw_page_size); 17534 cnt = page_idx + dmabuf->buffer_tag; 17535 rq_create->u.request.page[cnt].addr_lo = 17536 putPaddrLow(dmabuf->phys); 17537 rq_create->u.request.page[cnt].addr_hi = 17538 putPaddrHigh(dmabuf->phys); 17539 rc++; 17540 } 17541 page_idx += rc; 17542 17543 rc = 0; 17544 list_for_each_entry(dmabuf, &drq->page_list, list) { 17545 memset(dmabuf->virt, 0, hw_page_size); 17546 cnt = page_idx + dmabuf->buffer_tag; 17547 rq_create->u.request.page[cnt].addr_lo = 17548 putPaddrLow(dmabuf->phys); 17549 rq_create->u.request.page[cnt].addr_hi = 17550 putPaddrHigh(dmabuf->phys); 17551 rc++; 17552 } 17553 page_idx += rc; 17554 17555 hrq->db_format = LPFC_DB_RING_FORMAT; 17556 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17557 hrq->type = LPFC_HRQ; 17558 hrq->assoc_qid = cq->queue_id; 17559 hrq->subtype = subtype; 17560 hrq->host_index = 0; 17561 hrq->hba_index = 0; 17562 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17563 17564 drq->db_format = LPFC_DB_RING_FORMAT; 17565 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17566 drq->type = LPFC_DRQ; 17567 drq->assoc_qid = cq->queue_id; 17568 drq->subtype = subtype; 17569 drq->host_index = 0; 17570 drq->hba_index = 0; 17571 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17572 17573 list_add_tail(&hrq->list, &cq->child_list); 17574 list_add_tail(&drq->list, &cq->child_list); 17575 } 17576 17577 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17578 /* The IOCTL status is embedded in the mailbox subheader. */ 17579 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17580 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17581 if (shdr_status || shdr_add_status || rc) { 17582 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17583 "3120 RQ_CREATE mailbox failed with " 17584 "status x%x add_status x%x, mbx status x%x\n", 17585 shdr_status, shdr_add_status, rc); 17586 status = -ENXIO; 17587 goto out; 17588 } 17589 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17590 if (rc == 0xFFFF) { 17591 status = -ENXIO; 17592 goto out; 17593 } 17594 17595 /* Initialize all RQs with associated queue id */ 17596 for (idx = 0; idx < numrq; idx++) { 17597 hrq = hrqp[idx]; 17598 hrq->queue_id = rc + (2 * idx); 17599 drq = drqp[idx]; 17600 drq->queue_id = rc + (2 * idx) + 1; 17601 } 17602 17603 out: 17604 lpfc_sli4_mbox_cmd_free(phba, mbox); 17605 return status; 17606 } 17607 17608 /** 17609 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17610 * @phba: HBA structure that indicates port to destroy a queue on. 17611 * @eq: The queue structure associated with the queue to destroy. 17612 * 17613 * This function destroys a queue, as detailed in @eq by sending an mailbox 17614 * command, specific to the type of queue, to the HBA. 17615 * 17616 * The @eq struct is used to get the queue ID of the queue to destroy. 17617 * 17618 * On success this function will return a zero. If the queue destroy mailbox 17619 * command fails this function will return -ENXIO. 17620 **/ 17621 int 17622 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17623 { 17624 LPFC_MBOXQ_t *mbox; 17625 int rc, length, status = 0; 17626 uint32_t shdr_status, shdr_add_status; 17627 union lpfc_sli4_cfg_shdr *shdr; 17628 17629 /* sanity check on queue memory */ 17630 if (!eq) 17631 return -ENODEV; 17632 17633 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17634 if (!mbox) 17635 return -ENOMEM; 17636 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17637 sizeof(struct lpfc_sli4_cfg_mhdr)); 17638 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17639 LPFC_MBOX_OPCODE_EQ_DESTROY, 17640 length, LPFC_SLI4_MBX_EMBED); 17641 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17642 eq->queue_id); 17643 mbox->vport = eq->phba->pport; 17644 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17645 17646 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17647 /* The IOCTL status is embedded in the mailbox subheader. */ 17648 shdr = (union lpfc_sli4_cfg_shdr *) 17649 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17650 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17651 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17652 if (shdr_status || shdr_add_status || rc) { 17653 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17654 "2505 EQ_DESTROY mailbox failed with " 17655 "status x%x add_status x%x, mbx status x%x\n", 17656 shdr_status, shdr_add_status, rc); 17657 status = -ENXIO; 17658 } 17659 17660 /* Remove eq from any list */ 17661 list_del_init(&eq->list); 17662 mempool_free(mbox, eq->phba->mbox_mem_pool); 17663 return status; 17664 } 17665 17666 /** 17667 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17668 * @phba: HBA structure that indicates port to destroy a queue on. 17669 * @cq: The queue structure associated with the queue to destroy. 17670 * 17671 * This function destroys a queue, as detailed in @cq by sending an mailbox 17672 * command, specific to the type of queue, to the HBA. 17673 * 17674 * The @cq struct is used to get the queue ID of the queue to destroy. 17675 * 17676 * On success this function will return a zero. If the queue destroy mailbox 17677 * command fails this function will return -ENXIO. 17678 **/ 17679 int 17680 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17681 { 17682 LPFC_MBOXQ_t *mbox; 17683 int rc, length, status = 0; 17684 uint32_t shdr_status, shdr_add_status; 17685 union lpfc_sli4_cfg_shdr *shdr; 17686 17687 /* sanity check on queue memory */ 17688 if (!cq) 17689 return -ENODEV; 17690 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17691 if (!mbox) 17692 return -ENOMEM; 17693 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17694 sizeof(struct lpfc_sli4_cfg_mhdr)); 17695 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17696 LPFC_MBOX_OPCODE_CQ_DESTROY, 17697 length, LPFC_SLI4_MBX_EMBED); 17698 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17699 cq->queue_id); 17700 mbox->vport = cq->phba->pport; 17701 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17702 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17703 /* The IOCTL status is embedded in the mailbox subheader. */ 17704 shdr = (union lpfc_sli4_cfg_shdr *) 17705 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17706 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17707 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17708 if (shdr_status || shdr_add_status || rc) { 17709 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17710 "2506 CQ_DESTROY mailbox failed with " 17711 "status x%x add_status x%x, mbx status x%x\n", 17712 shdr_status, shdr_add_status, rc); 17713 status = -ENXIO; 17714 } 17715 /* Remove cq from any list */ 17716 list_del_init(&cq->list); 17717 mempool_free(mbox, cq->phba->mbox_mem_pool); 17718 return status; 17719 } 17720 17721 /** 17722 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17723 * @phba: HBA structure that indicates port to destroy a queue on. 17724 * @mq: The queue structure associated with the queue to destroy. 17725 * 17726 * This function destroys a queue, as detailed in @mq by sending an mailbox 17727 * command, specific to the type of queue, to the HBA. 17728 * 17729 * The @mq struct is used to get the queue ID of the queue to destroy. 17730 * 17731 * On success this function will return a zero. If the queue destroy mailbox 17732 * command fails this function will return -ENXIO. 17733 **/ 17734 int 17735 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17736 { 17737 LPFC_MBOXQ_t *mbox; 17738 int rc, length, status = 0; 17739 uint32_t shdr_status, shdr_add_status; 17740 union lpfc_sli4_cfg_shdr *shdr; 17741 17742 /* sanity check on queue memory */ 17743 if (!mq) 17744 return -ENODEV; 17745 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17746 if (!mbox) 17747 return -ENOMEM; 17748 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17749 sizeof(struct lpfc_sli4_cfg_mhdr)); 17750 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17751 LPFC_MBOX_OPCODE_MQ_DESTROY, 17752 length, LPFC_SLI4_MBX_EMBED); 17753 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17754 mq->queue_id); 17755 mbox->vport = mq->phba->pport; 17756 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17757 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17758 /* The IOCTL status is embedded in the mailbox subheader. */ 17759 shdr = (union lpfc_sli4_cfg_shdr *) 17760 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17761 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17762 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17763 if (shdr_status || shdr_add_status || rc) { 17764 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17765 "2507 MQ_DESTROY mailbox failed with " 17766 "status x%x add_status x%x, mbx status x%x\n", 17767 shdr_status, shdr_add_status, rc); 17768 status = -ENXIO; 17769 } 17770 /* Remove mq from any list */ 17771 list_del_init(&mq->list); 17772 mempool_free(mbox, mq->phba->mbox_mem_pool); 17773 return status; 17774 } 17775 17776 /** 17777 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17778 * @phba: HBA structure that indicates port to destroy a queue on. 17779 * @wq: The queue structure associated with the queue to destroy. 17780 * 17781 * This function destroys a queue, as detailed in @wq by sending an mailbox 17782 * command, specific to the type of queue, to the HBA. 17783 * 17784 * The @wq struct is used to get the queue ID of the queue to destroy. 17785 * 17786 * On success this function will return a zero. If the queue destroy mailbox 17787 * command fails this function will return -ENXIO. 17788 **/ 17789 int 17790 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17791 { 17792 LPFC_MBOXQ_t *mbox; 17793 int rc, length, status = 0; 17794 uint32_t shdr_status, shdr_add_status; 17795 union lpfc_sli4_cfg_shdr *shdr; 17796 17797 /* sanity check on queue memory */ 17798 if (!wq) 17799 return -ENODEV; 17800 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17801 if (!mbox) 17802 return -ENOMEM; 17803 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17804 sizeof(struct lpfc_sli4_cfg_mhdr)); 17805 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17806 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17807 length, LPFC_SLI4_MBX_EMBED); 17808 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17809 wq->queue_id); 17810 mbox->vport = wq->phba->pport; 17811 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17812 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17813 shdr = (union lpfc_sli4_cfg_shdr *) 17814 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17815 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17816 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17817 if (shdr_status || shdr_add_status || rc) { 17818 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17819 "2508 WQ_DESTROY mailbox failed with " 17820 "status x%x add_status x%x, mbx status x%x\n", 17821 shdr_status, shdr_add_status, rc); 17822 status = -ENXIO; 17823 } 17824 /* Remove wq from any list */ 17825 list_del_init(&wq->list); 17826 kfree(wq->pring); 17827 wq->pring = NULL; 17828 mempool_free(mbox, wq->phba->mbox_mem_pool); 17829 return status; 17830 } 17831 17832 /** 17833 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17834 * @phba: HBA structure that indicates port to destroy a queue on. 17835 * @hrq: The queue structure associated with the queue to destroy. 17836 * @drq: The queue structure associated with the queue to destroy. 17837 * 17838 * This function destroys a queue, as detailed in @rq by sending an mailbox 17839 * command, specific to the type of queue, to the HBA. 17840 * 17841 * The @rq struct is used to get the queue ID of the queue to destroy. 17842 * 17843 * On success this function will return a zero. If the queue destroy mailbox 17844 * command fails this function will return -ENXIO. 17845 **/ 17846 int 17847 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17848 struct lpfc_queue *drq) 17849 { 17850 LPFC_MBOXQ_t *mbox; 17851 int rc, length, status = 0; 17852 uint32_t shdr_status, shdr_add_status; 17853 union lpfc_sli4_cfg_shdr *shdr; 17854 17855 /* sanity check on queue memory */ 17856 if (!hrq || !drq) 17857 return -ENODEV; 17858 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17859 if (!mbox) 17860 return -ENOMEM; 17861 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17862 sizeof(struct lpfc_sli4_cfg_mhdr)); 17863 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17864 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17865 length, LPFC_SLI4_MBX_EMBED); 17866 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17867 hrq->queue_id); 17868 mbox->vport = hrq->phba->pport; 17869 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17870 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17871 /* The IOCTL status is embedded in the mailbox subheader. */ 17872 shdr = (union lpfc_sli4_cfg_shdr *) 17873 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17874 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17875 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17876 if (shdr_status || shdr_add_status || rc) { 17877 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17878 "2509 RQ_DESTROY mailbox failed with " 17879 "status x%x add_status x%x, mbx status x%x\n", 17880 shdr_status, shdr_add_status, rc); 17881 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17882 return -ENXIO; 17883 } 17884 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17885 drq->queue_id); 17886 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17887 shdr = (union lpfc_sli4_cfg_shdr *) 17888 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17889 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17890 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17891 if (shdr_status || shdr_add_status || rc) { 17892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17893 "2510 RQ_DESTROY mailbox failed with " 17894 "status x%x add_status x%x, mbx status x%x\n", 17895 shdr_status, shdr_add_status, rc); 17896 status = -ENXIO; 17897 } 17898 list_del_init(&hrq->list); 17899 list_del_init(&drq->list); 17900 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17901 return status; 17902 } 17903 17904 /** 17905 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17906 * @phba: The virtual port for which this call being executed. 17907 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17908 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17909 * @xritag: the xritag that ties this io to the SGL pages. 17910 * 17911 * This routine will post the sgl pages for the IO that has the xritag 17912 * that is in the iocbq structure. The xritag is assigned during iocbq 17913 * creation and persists for as long as the driver is loaded. 17914 * if the caller has fewer than 256 scatter gather segments to map then 17915 * pdma_phys_addr1 should be 0. 17916 * If the caller needs to map more than 256 scatter gather segment then 17917 * pdma_phys_addr1 should be a valid physical address. 17918 * physical address for SGLs must be 64 byte aligned. 17919 * If you are going to map 2 SGL's then the first one must have 256 entries 17920 * the second sgl can have between 1 and 256 entries. 17921 * 17922 * Return codes: 17923 * 0 - Success 17924 * -ENXIO, -ENOMEM - Failure 17925 **/ 17926 int 17927 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17928 dma_addr_t pdma_phys_addr0, 17929 dma_addr_t pdma_phys_addr1, 17930 uint16_t xritag) 17931 { 17932 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17933 LPFC_MBOXQ_t *mbox; 17934 int rc; 17935 uint32_t shdr_status, shdr_add_status; 17936 uint32_t mbox_tmo; 17937 union lpfc_sli4_cfg_shdr *shdr; 17938 17939 if (xritag == NO_XRI) { 17940 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17941 "0364 Invalid param:\n"); 17942 return -EINVAL; 17943 } 17944 17945 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17946 if (!mbox) 17947 return -ENOMEM; 17948 17949 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17950 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17951 sizeof(struct lpfc_mbx_post_sgl_pages) - 17952 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17953 17954 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17955 &mbox->u.mqe.un.post_sgl_pages; 17956 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17957 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17958 17959 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17960 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17961 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17962 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17963 17964 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17965 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17966 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17967 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17968 if (!phba->sli4_hba.intr_enable) 17969 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17970 else { 17971 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17972 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17973 } 17974 /* The IOCTL status is embedded in the mailbox subheader. */ 17975 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17976 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17977 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17978 if (!phba->sli4_hba.intr_enable) 17979 mempool_free(mbox, phba->mbox_mem_pool); 17980 else if (rc != MBX_TIMEOUT) 17981 mempool_free(mbox, phba->mbox_mem_pool); 17982 if (shdr_status || shdr_add_status || rc) { 17983 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17984 "2511 POST_SGL mailbox failed with " 17985 "status x%x add_status x%x, mbx status x%x\n", 17986 shdr_status, shdr_add_status, rc); 17987 } 17988 return 0; 17989 } 17990 17991 /** 17992 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17993 * @phba: pointer to lpfc hba data structure. 17994 * 17995 * This routine is invoked to post rpi header templates to the 17996 * HBA consistent with the SLI-4 interface spec. This routine 17997 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17998 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17999 * 18000 * Returns 18001 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18002 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18003 **/ 18004 static uint16_t 18005 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 18006 { 18007 unsigned long xri; 18008 18009 /* 18010 * Fetch the next logical xri. Because this index is logical, 18011 * the driver starts at 0 each time. 18012 */ 18013 spin_lock_irq(&phba->hbalock); 18014 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 18015 phba->sli4_hba.max_cfg_param.max_xri); 18016 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 18017 spin_unlock_irq(&phba->hbalock); 18018 return NO_XRI; 18019 } else { 18020 set_bit(xri, phba->sli4_hba.xri_bmask); 18021 phba->sli4_hba.max_cfg_param.xri_used++; 18022 } 18023 spin_unlock_irq(&phba->hbalock); 18024 return xri; 18025 } 18026 18027 /** 18028 * __lpfc_sli4_free_xri - Release an xri for reuse. 18029 * @phba: pointer to lpfc hba data structure. 18030 * @xri: xri to release. 18031 * 18032 * This routine is invoked to release an xri to the pool of 18033 * available rpis maintained by the driver. 18034 **/ 18035 static void 18036 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18037 { 18038 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 18039 phba->sli4_hba.max_cfg_param.xri_used--; 18040 } 18041 } 18042 18043 /** 18044 * lpfc_sli4_free_xri - Release an xri for reuse. 18045 * @phba: pointer to lpfc hba data structure. 18046 * @xri: xri to release. 18047 * 18048 * This routine is invoked to release an xri to the pool of 18049 * available rpis maintained by the driver. 18050 **/ 18051 void 18052 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18053 { 18054 spin_lock_irq(&phba->hbalock); 18055 __lpfc_sli4_free_xri(phba, xri); 18056 spin_unlock_irq(&phba->hbalock); 18057 } 18058 18059 /** 18060 * lpfc_sli4_next_xritag - Get an xritag for the io 18061 * @phba: Pointer to HBA context object. 18062 * 18063 * This function gets an xritag for the iocb. If there is no unused xritag 18064 * it will return 0xffff. 18065 * The function returns the allocated xritag if successful, else returns zero. 18066 * Zero is not a valid xritag. 18067 * The caller is not required to hold any lock. 18068 **/ 18069 uint16_t 18070 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 18071 { 18072 uint16_t xri_index; 18073 18074 xri_index = lpfc_sli4_alloc_xri(phba); 18075 if (xri_index == NO_XRI) 18076 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18077 "2004 Failed to allocate XRI.last XRITAG is %d" 18078 " Max XRI is %d, Used XRI is %d\n", 18079 xri_index, 18080 phba->sli4_hba.max_cfg_param.max_xri, 18081 phba->sli4_hba.max_cfg_param.xri_used); 18082 return xri_index; 18083 } 18084 18085 /** 18086 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18087 * @phba: pointer to lpfc hba data structure. 18088 * @post_sgl_list: pointer to els sgl entry list. 18089 * @post_cnt: number of els sgl entries on the list. 18090 * 18091 * This routine is invoked to post a block of driver's sgl pages to the 18092 * HBA using non-embedded mailbox command. No Lock is held. This routine 18093 * is only called when the driver is loading and after all IO has been 18094 * stopped. 18095 **/ 18096 static int 18097 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18098 struct list_head *post_sgl_list, 18099 int post_cnt) 18100 { 18101 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18102 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18103 struct sgl_page_pairs *sgl_pg_pairs; 18104 void *viraddr; 18105 LPFC_MBOXQ_t *mbox; 18106 uint32_t reqlen, alloclen, pg_pairs; 18107 uint32_t mbox_tmo; 18108 uint16_t xritag_start = 0; 18109 int rc = 0; 18110 uint32_t shdr_status, shdr_add_status; 18111 union lpfc_sli4_cfg_shdr *shdr; 18112 18113 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18114 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18115 if (reqlen > SLI4_PAGE_SIZE) { 18116 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18117 "2559 Block sgl registration required DMA " 18118 "size (%d) great than a page\n", reqlen); 18119 return -ENOMEM; 18120 } 18121 18122 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18123 if (!mbox) 18124 return -ENOMEM; 18125 18126 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18127 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18128 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18129 LPFC_SLI4_MBX_NEMBED); 18130 18131 if (alloclen < reqlen) { 18132 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18133 "0285 Allocated DMA memory size (%d) is " 18134 "less than the requested DMA memory " 18135 "size (%d)\n", alloclen, reqlen); 18136 lpfc_sli4_mbox_cmd_free(phba, mbox); 18137 return -ENOMEM; 18138 } 18139 /* Set up the SGL pages in the non-embedded DMA pages */ 18140 viraddr = mbox->sge_array->addr[0]; 18141 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18142 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18143 18144 pg_pairs = 0; 18145 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18146 /* Set up the sge entry */ 18147 sgl_pg_pairs->sgl_pg0_addr_lo = 18148 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18149 sgl_pg_pairs->sgl_pg0_addr_hi = 18150 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18151 sgl_pg_pairs->sgl_pg1_addr_lo = 18152 cpu_to_le32(putPaddrLow(0)); 18153 sgl_pg_pairs->sgl_pg1_addr_hi = 18154 cpu_to_le32(putPaddrHigh(0)); 18155 18156 /* Keep the first xritag on the list */ 18157 if (pg_pairs == 0) 18158 xritag_start = sglq_entry->sli4_xritag; 18159 sgl_pg_pairs++; 18160 pg_pairs++; 18161 } 18162 18163 /* Complete initialization and perform endian conversion. */ 18164 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18165 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18166 sgl->word0 = cpu_to_le32(sgl->word0); 18167 18168 if (!phba->sli4_hba.intr_enable) 18169 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18170 else { 18171 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18172 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18173 } 18174 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18175 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18176 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18177 if (!phba->sli4_hba.intr_enable) 18178 lpfc_sli4_mbox_cmd_free(phba, mbox); 18179 else if (rc != MBX_TIMEOUT) 18180 lpfc_sli4_mbox_cmd_free(phba, mbox); 18181 if (shdr_status || shdr_add_status || rc) { 18182 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18183 "2513 POST_SGL_BLOCK mailbox command failed " 18184 "status x%x add_status x%x mbx status x%x\n", 18185 shdr_status, shdr_add_status, rc); 18186 rc = -ENXIO; 18187 } 18188 return rc; 18189 } 18190 18191 /** 18192 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18193 * @phba: pointer to lpfc hba data structure. 18194 * @nblist: pointer to nvme buffer list. 18195 * @count: number of scsi buffers on the list. 18196 * 18197 * This routine is invoked to post a block of @count scsi sgl pages from a 18198 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18199 * No Lock is held. 18200 * 18201 **/ 18202 static int 18203 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18204 int count) 18205 { 18206 struct lpfc_io_buf *lpfc_ncmd; 18207 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18208 struct sgl_page_pairs *sgl_pg_pairs; 18209 void *viraddr; 18210 LPFC_MBOXQ_t *mbox; 18211 uint32_t reqlen, alloclen, pg_pairs; 18212 uint32_t mbox_tmo; 18213 uint16_t xritag_start = 0; 18214 int rc = 0; 18215 uint32_t shdr_status, shdr_add_status; 18216 dma_addr_t pdma_phys_bpl1; 18217 union lpfc_sli4_cfg_shdr *shdr; 18218 18219 /* Calculate the requested length of the dma memory */ 18220 reqlen = count * sizeof(struct sgl_page_pairs) + 18221 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18222 if (reqlen > SLI4_PAGE_SIZE) { 18223 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18224 "6118 Block sgl registration required DMA " 18225 "size (%d) great than a page\n", reqlen); 18226 return -ENOMEM; 18227 } 18228 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18229 if (!mbox) { 18230 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18231 "6119 Failed to allocate mbox cmd memory\n"); 18232 return -ENOMEM; 18233 } 18234 18235 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18236 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18237 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18238 reqlen, LPFC_SLI4_MBX_NEMBED); 18239 18240 if (alloclen < reqlen) { 18241 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18242 "6120 Allocated DMA memory size (%d) is " 18243 "less than the requested DMA memory " 18244 "size (%d)\n", alloclen, reqlen); 18245 lpfc_sli4_mbox_cmd_free(phba, mbox); 18246 return -ENOMEM; 18247 } 18248 18249 /* Get the first SGE entry from the non-embedded DMA memory */ 18250 viraddr = mbox->sge_array->addr[0]; 18251 18252 /* Set up the SGL pages in the non-embedded DMA pages */ 18253 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18254 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18255 18256 pg_pairs = 0; 18257 list_for_each_entry(lpfc_ncmd, nblist, list) { 18258 /* Set up the sge entry */ 18259 sgl_pg_pairs->sgl_pg0_addr_lo = 18260 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18261 sgl_pg_pairs->sgl_pg0_addr_hi = 18262 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18263 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18264 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18265 SGL_PAGE_SIZE; 18266 else 18267 pdma_phys_bpl1 = 0; 18268 sgl_pg_pairs->sgl_pg1_addr_lo = 18269 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18270 sgl_pg_pairs->sgl_pg1_addr_hi = 18271 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18272 /* Keep the first xritag on the list */ 18273 if (pg_pairs == 0) 18274 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18275 sgl_pg_pairs++; 18276 pg_pairs++; 18277 } 18278 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18279 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18280 /* Perform endian conversion if necessary */ 18281 sgl->word0 = cpu_to_le32(sgl->word0); 18282 18283 if (!phba->sli4_hba.intr_enable) { 18284 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18285 } else { 18286 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18287 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18288 } 18289 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18290 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18291 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18292 if (!phba->sli4_hba.intr_enable) 18293 lpfc_sli4_mbox_cmd_free(phba, mbox); 18294 else if (rc != MBX_TIMEOUT) 18295 lpfc_sli4_mbox_cmd_free(phba, mbox); 18296 if (shdr_status || shdr_add_status || rc) { 18297 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18298 "6125 POST_SGL_BLOCK mailbox command failed " 18299 "status x%x add_status x%x mbx status x%x\n", 18300 shdr_status, shdr_add_status, rc); 18301 rc = -ENXIO; 18302 } 18303 return rc; 18304 } 18305 18306 /** 18307 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18308 * @phba: pointer to lpfc hba data structure. 18309 * @post_nblist: pointer to the nvme buffer list. 18310 * @sb_count: number of nvme buffers. 18311 * 18312 * This routine walks a list of nvme buffers that was passed in. It attempts 18313 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18314 * uses the non-embedded SGL block post mailbox commands to post to the port. 18315 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18316 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18317 * must be local list, thus no lock is needed when manipulate the list. 18318 * 18319 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18320 **/ 18321 int 18322 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18323 struct list_head *post_nblist, int sb_count) 18324 { 18325 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18326 int status, sgl_size; 18327 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18328 dma_addr_t pdma_phys_sgl1; 18329 int last_xritag = NO_XRI; 18330 int cur_xritag; 18331 LIST_HEAD(prep_nblist); 18332 LIST_HEAD(blck_nblist); 18333 LIST_HEAD(nvme_nblist); 18334 18335 /* sanity check */ 18336 if (sb_count <= 0) 18337 return -EINVAL; 18338 18339 sgl_size = phba->cfg_sg_dma_buf_size; 18340 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18341 list_del_init(&lpfc_ncmd->list); 18342 block_cnt++; 18343 if ((last_xritag != NO_XRI) && 18344 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18345 /* a hole in xri block, form a sgl posting block */ 18346 list_splice_init(&prep_nblist, &blck_nblist); 18347 post_cnt = block_cnt - 1; 18348 /* prepare list for next posting block */ 18349 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18350 block_cnt = 1; 18351 } else { 18352 /* prepare list for next posting block */ 18353 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18354 /* enough sgls for non-embed sgl mbox command */ 18355 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18356 list_splice_init(&prep_nblist, &blck_nblist); 18357 post_cnt = block_cnt; 18358 block_cnt = 0; 18359 } 18360 } 18361 num_posting++; 18362 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18363 18364 /* end of repost sgl list condition for NVME buffers */ 18365 if (num_posting == sb_count) { 18366 if (post_cnt == 0) { 18367 /* last sgl posting block */ 18368 list_splice_init(&prep_nblist, &blck_nblist); 18369 post_cnt = block_cnt; 18370 } else if (block_cnt == 1) { 18371 /* last single sgl with non-contiguous xri */ 18372 if (sgl_size > SGL_PAGE_SIZE) 18373 pdma_phys_sgl1 = 18374 lpfc_ncmd->dma_phys_sgl + 18375 SGL_PAGE_SIZE; 18376 else 18377 pdma_phys_sgl1 = 0; 18378 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18379 status = lpfc_sli4_post_sgl( 18380 phba, lpfc_ncmd->dma_phys_sgl, 18381 pdma_phys_sgl1, cur_xritag); 18382 if (status) { 18383 /* Post error. Buffer unavailable. */ 18384 lpfc_ncmd->flags |= 18385 LPFC_SBUF_NOT_POSTED; 18386 } else { 18387 /* Post success. Bffer available. */ 18388 lpfc_ncmd->flags &= 18389 ~LPFC_SBUF_NOT_POSTED; 18390 lpfc_ncmd->status = IOSTAT_SUCCESS; 18391 num_posted++; 18392 } 18393 /* success, put on NVME buffer sgl list */ 18394 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18395 } 18396 } 18397 18398 /* continue until a nembed page worth of sgls */ 18399 if (post_cnt == 0) 18400 continue; 18401 18402 /* post block of NVME buffer list sgls */ 18403 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18404 post_cnt); 18405 18406 /* don't reset xirtag due to hole in xri block */ 18407 if (block_cnt == 0) 18408 last_xritag = NO_XRI; 18409 18410 /* reset NVME buffer post count for next round of posting */ 18411 post_cnt = 0; 18412 18413 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18414 while (!list_empty(&blck_nblist)) { 18415 list_remove_head(&blck_nblist, lpfc_ncmd, 18416 struct lpfc_io_buf, list); 18417 if (status) { 18418 /* Post error. Mark buffer unavailable. */ 18419 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18420 } else { 18421 /* Post success, Mark buffer available. */ 18422 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18423 lpfc_ncmd->status = IOSTAT_SUCCESS; 18424 num_posted++; 18425 } 18426 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18427 } 18428 } 18429 /* Push NVME buffers with sgl posted to the available list */ 18430 lpfc_io_buf_replenish(phba, &nvme_nblist); 18431 18432 return num_posted; 18433 } 18434 18435 /** 18436 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18437 * @phba: pointer to lpfc_hba struct that the frame was received on 18438 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18439 * 18440 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18441 * valid type of frame that the LPFC driver will handle. This function will 18442 * return a zero if the frame is a valid frame or a non zero value when the 18443 * frame does not pass the check. 18444 **/ 18445 static int 18446 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18447 { 18448 /* make rctl_names static to save stack space */ 18449 struct fc_vft_header *fc_vft_hdr; 18450 uint32_t *header = (uint32_t *) fc_hdr; 18451 18452 #define FC_RCTL_MDS_DIAGS 0xF4 18453 18454 switch (fc_hdr->fh_r_ctl) { 18455 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18456 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18457 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18458 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18459 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18460 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18461 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18462 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18463 case FC_RCTL_ELS_REQ: /* extended link services request */ 18464 case FC_RCTL_ELS_REP: /* extended link services reply */ 18465 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18466 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18467 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18468 case FC_RCTL_BA_RMC: /* remove connection */ 18469 case FC_RCTL_BA_ACC: /* basic accept */ 18470 case FC_RCTL_BA_RJT: /* basic reject */ 18471 case FC_RCTL_BA_PRMT: 18472 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18473 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18474 case FC_RCTL_P_RJT: /* port reject */ 18475 case FC_RCTL_F_RJT: /* fabric reject */ 18476 case FC_RCTL_P_BSY: /* port busy */ 18477 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18478 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18479 case FC_RCTL_LCR: /* link credit reset */ 18480 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18481 case FC_RCTL_END: /* end */ 18482 break; 18483 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18484 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18485 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18486 return lpfc_fc_frame_check(phba, fc_hdr); 18487 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18488 default: 18489 goto drop; 18490 } 18491 18492 switch (fc_hdr->fh_type) { 18493 case FC_TYPE_BLS: 18494 case FC_TYPE_ELS: 18495 case FC_TYPE_FCP: 18496 case FC_TYPE_CT: 18497 case FC_TYPE_NVME: 18498 break; 18499 case FC_TYPE_IP: 18500 case FC_TYPE_ILS: 18501 default: 18502 goto drop; 18503 } 18504 18505 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18506 "2538 Received frame rctl:x%x, type:x%x, " 18507 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18508 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18509 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18510 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18511 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18512 be32_to_cpu(header[6])); 18513 return 0; 18514 drop: 18515 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18516 "2539 Dropped frame rctl:x%x type:x%x\n", 18517 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18518 return 1; 18519 } 18520 18521 /** 18522 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18523 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18524 * 18525 * This function processes the FC header to retrieve the VFI from the VF 18526 * header, if one exists. This function will return the VFI if one exists 18527 * or 0 if no VSAN Header exists. 18528 **/ 18529 static uint32_t 18530 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18531 { 18532 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18533 18534 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18535 return 0; 18536 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18537 } 18538 18539 /** 18540 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18541 * @phba: Pointer to the HBA structure to search for the vport on 18542 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18543 * @fcfi: The FC Fabric ID that the frame came from 18544 * @did: Destination ID to match against 18545 * 18546 * This function searches the @phba for a vport that matches the content of the 18547 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18548 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18549 * returns the matching vport pointer or NULL if unable to match frame to a 18550 * vport. 18551 **/ 18552 static struct lpfc_vport * 18553 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18554 uint16_t fcfi, uint32_t did) 18555 { 18556 struct lpfc_vport **vports; 18557 struct lpfc_vport *vport = NULL; 18558 int i; 18559 18560 if (did == Fabric_DID) 18561 return phba->pport; 18562 if ((phba->pport->fc_flag & FC_PT2PT) && 18563 !(phba->link_state == LPFC_HBA_READY)) 18564 return phba->pport; 18565 18566 vports = lpfc_create_vport_work_array(phba); 18567 if (vports != NULL) { 18568 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18569 if (phba->fcf.fcfi == fcfi && 18570 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18571 vports[i]->fc_myDID == did) { 18572 vport = vports[i]; 18573 break; 18574 } 18575 } 18576 } 18577 lpfc_destroy_vport_work_array(phba, vports); 18578 return vport; 18579 } 18580 18581 /** 18582 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18583 * @vport: The vport to work on. 18584 * 18585 * This function updates the receive sequence time stamp for this vport. The 18586 * receive sequence time stamp indicates the time that the last frame of the 18587 * the sequence that has been idle for the longest amount of time was received. 18588 * the driver uses this time stamp to indicate if any received sequences have 18589 * timed out. 18590 **/ 18591 static void 18592 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18593 { 18594 struct lpfc_dmabuf *h_buf; 18595 struct hbq_dmabuf *dmabuf = NULL; 18596 18597 /* get the oldest sequence on the rcv list */ 18598 h_buf = list_get_first(&vport->rcv_buffer_list, 18599 struct lpfc_dmabuf, list); 18600 if (!h_buf) 18601 return; 18602 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18603 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18604 } 18605 18606 /** 18607 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18608 * @vport: The vport that the received sequences were sent to. 18609 * 18610 * This function cleans up all outstanding received sequences. This is called 18611 * by the driver when a link event or user action invalidates all the received 18612 * sequences. 18613 **/ 18614 void 18615 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18616 { 18617 struct lpfc_dmabuf *h_buf, *hnext; 18618 struct lpfc_dmabuf *d_buf, *dnext; 18619 struct hbq_dmabuf *dmabuf = NULL; 18620 18621 /* start with the oldest sequence on the rcv list */ 18622 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18623 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18624 list_del_init(&dmabuf->hbuf.list); 18625 list_for_each_entry_safe(d_buf, dnext, 18626 &dmabuf->dbuf.list, list) { 18627 list_del_init(&d_buf->list); 18628 lpfc_in_buf_free(vport->phba, d_buf); 18629 } 18630 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18631 } 18632 } 18633 18634 /** 18635 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18636 * @vport: The vport that the received sequences were sent to. 18637 * 18638 * This function determines whether any received sequences have timed out by 18639 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18640 * indicates that there is at least one timed out sequence this routine will 18641 * go through the received sequences one at a time from most inactive to most 18642 * active to determine which ones need to be cleaned up. Once it has determined 18643 * that a sequence needs to be cleaned up it will simply free up the resources 18644 * without sending an abort. 18645 **/ 18646 void 18647 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18648 { 18649 struct lpfc_dmabuf *h_buf, *hnext; 18650 struct lpfc_dmabuf *d_buf, *dnext; 18651 struct hbq_dmabuf *dmabuf = NULL; 18652 unsigned long timeout; 18653 int abort_count = 0; 18654 18655 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18656 vport->rcv_buffer_time_stamp); 18657 if (list_empty(&vport->rcv_buffer_list) || 18658 time_before(jiffies, timeout)) 18659 return; 18660 /* start with the oldest sequence on the rcv list */ 18661 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18662 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18663 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18664 dmabuf->time_stamp); 18665 if (time_before(jiffies, timeout)) 18666 break; 18667 abort_count++; 18668 list_del_init(&dmabuf->hbuf.list); 18669 list_for_each_entry_safe(d_buf, dnext, 18670 &dmabuf->dbuf.list, list) { 18671 list_del_init(&d_buf->list); 18672 lpfc_in_buf_free(vport->phba, d_buf); 18673 } 18674 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18675 } 18676 if (abort_count) 18677 lpfc_update_rcv_time_stamp(vport); 18678 } 18679 18680 /** 18681 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18682 * @vport: pointer to a vitural port 18683 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18684 * 18685 * This function searches through the existing incomplete sequences that have 18686 * been sent to this @vport. If the frame matches one of the incomplete 18687 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18688 * make up that sequence. If no sequence is found that matches this frame then 18689 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18690 * This function returns a pointer to the first dmabuf in the sequence list that 18691 * the frame was linked to. 18692 **/ 18693 static struct hbq_dmabuf * 18694 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18695 { 18696 struct fc_frame_header *new_hdr; 18697 struct fc_frame_header *temp_hdr; 18698 struct lpfc_dmabuf *d_buf; 18699 struct lpfc_dmabuf *h_buf; 18700 struct hbq_dmabuf *seq_dmabuf = NULL; 18701 struct hbq_dmabuf *temp_dmabuf = NULL; 18702 uint8_t found = 0; 18703 18704 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18705 dmabuf->time_stamp = jiffies; 18706 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18707 18708 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18709 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18710 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18711 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18712 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18713 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18714 continue; 18715 /* found a pending sequence that matches this frame */ 18716 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18717 break; 18718 } 18719 if (!seq_dmabuf) { 18720 /* 18721 * This indicates first frame received for this sequence. 18722 * Queue the buffer on the vport's rcv_buffer_list. 18723 */ 18724 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18725 lpfc_update_rcv_time_stamp(vport); 18726 return dmabuf; 18727 } 18728 temp_hdr = seq_dmabuf->hbuf.virt; 18729 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18730 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18731 list_del_init(&seq_dmabuf->hbuf.list); 18732 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18733 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18734 lpfc_update_rcv_time_stamp(vport); 18735 return dmabuf; 18736 } 18737 /* move this sequence to the tail to indicate a young sequence */ 18738 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18739 seq_dmabuf->time_stamp = jiffies; 18740 lpfc_update_rcv_time_stamp(vport); 18741 if (list_empty(&seq_dmabuf->dbuf.list)) { 18742 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18743 return seq_dmabuf; 18744 } 18745 /* find the correct place in the sequence to insert this frame */ 18746 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18747 while (!found) { 18748 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18749 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18750 /* 18751 * If the frame's sequence count is greater than the frame on 18752 * the list then insert the frame right after this frame 18753 */ 18754 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18755 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18756 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18757 found = 1; 18758 break; 18759 } 18760 18761 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18762 break; 18763 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18764 } 18765 18766 if (found) 18767 return seq_dmabuf; 18768 return NULL; 18769 } 18770 18771 /** 18772 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18773 * @vport: pointer to a vitural port 18774 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18775 * 18776 * This function tries to abort from the partially assembed sequence, described 18777 * by the information from basic abbort @dmabuf. It checks to see whether such 18778 * partially assembled sequence held by the driver. If so, it shall free up all 18779 * the frames from the partially assembled sequence. 18780 * 18781 * Return 18782 * true -- if there is matching partially assembled sequence present and all 18783 * the frames freed with the sequence; 18784 * false -- if there is no matching partially assembled sequence present so 18785 * nothing got aborted in the lower layer driver 18786 **/ 18787 static bool 18788 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18789 struct hbq_dmabuf *dmabuf) 18790 { 18791 struct fc_frame_header *new_hdr; 18792 struct fc_frame_header *temp_hdr; 18793 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18794 struct hbq_dmabuf *seq_dmabuf = NULL; 18795 18796 /* Use the hdr_buf to find the sequence that matches this frame */ 18797 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18798 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18799 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18800 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18801 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18802 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18803 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18804 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18805 continue; 18806 /* found a pending sequence that matches this frame */ 18807 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18808 break; 18809 } 18810 18811 /* Free up all the frames from the partially assembled sequence */ 18812 if (seq_dmabuf) { 18813 list_for_each_entry_safe(d_buf, n_buf, 18814 &seq_dmabuf->dbuf.list, list) { 18815 list_del_init(&d_buf->list); 18816 lpfc_in_buf_free(vport->phba, d_buf); 18817 } 18818 return true; 18819 } 18820 return false; 18821 } 18822 18823 /** 18824 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18825 * @vport: pointer to a vitural port 18826 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18827 * 18828 * This function tries to abort from the assembed sequence from upper level 18829 * protocol, described by the information from basic abbort @dmabuf. It 18830 * checks to see whether such pending context exists at upper level protocol. 18831 * If so, it shall clean up the pending context. 18832 * 18833 * Return 18834 * true -- if there is matching pending context of the sequence cleaned 18835 * at ulp; 18836 * false -- if there is no matching pending context of the sequence present 18837 * at ulp. 18838 **/ 18839 static bool 18840 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18841 { 18842 struct lpfc_hba *phba = vport->phba; 18843 int handled; 18844 18845 /* Accepting abort at ulp with SLI4 only */ 18846 if (phba->sli_rev < LPFC_SLI_REV4) 18847 return false; 18848 18849 /* Register all caring upper level protocols to attend abort */ 18850 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18851 if (handled) 18852 return true; 18853 18854 return false; 18855 } 18856 18857 /** 18858 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18859 * @phba: Pointer to HBA context object. 18860 * @cmd_iocbq: pointer to the command iocbq structure. 18861 * @rsp_iocbq: pointer to the response iocbq structure. 18862 * 18863 * This function handles the sequence abort response iocb command complete 18864 * event. It properly releases the memory allocated to the sequence abort 18865 * accept iocb. 18866 **/ 18867 static void 18868 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18869 struct lpfc_iocbq *cmd_iocbq, 18870 struct lpfc_iocbq *rsp_iocbq) 18871 { 18872 if (cmd_iocbq) { 18873 lpfc_nlp_put(cmd_iocbq->ndlp); 18874 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18875 } 18876 18877 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18878 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18879 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18880 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18881 get_job_ulpstatus(phba, rsp_iocbq), 18882 get_job_word4(phba, rsp_iocbq)); 18883 } 18884 18885 /** 18886 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18887 * @phba: Pointer to HBA context object. 18888 * @xri: xri id in transaction. 18889 * 18890 * This function validates the xri maps to the known range of XRIs allocated an 18891 * used by the driver. 18892 **/ 18893 uint16_t 18894 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18895 uint16_t xri) 18896 { 18897 uint16_t i; 18898 18899 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18900 if (xri == phba->sli4_hba.xri_ids[i]) 18901 return i; 18902 } 18903 return NO_XRI; 18904 } 18905 18906 /** 18907 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18908 * @vport: pointer to a virtual port. 18909 * @fc_hdr: pointer to a FC frame header. 18910 * @aborted: was the partially assembled receive sequence successfully aborted 18911 * 18912 * This function sends a basic response to a previous unsol sequence abort 18913 * event after aborting the sequence handling. 18914 **/ 18915 void 18916 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18917 struct fc_frame_header *fc_hdr, bool aborted) 18918 { 18919 struct lpfc_hba *phba = vport->phba; 18920 struct lpfc_iocbq *ctiocb = NULL; 18921 struct lpfc_nodelist *ndlp; 18922 uint16_t oxid, rxid, xri, lxri; 18923 uint32_t sid, fctl; 18924 union lpfc_wqe128 *icmd; 18925 int rc; 18926 18927 if (!lpfc_is_link_up(phba)) 18928 return; 18929 18930 sid = sli4_sid_from_fc_hdr(fc_hdr); 18931 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18932 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18933 18934 ndlp = lpfc_findnode_did(vport, sid); 18935 if (!ndlp) { 18936 ndlp = lpfc_nlp_init(vport, sid); 18937 if (!ndlp) { 18938 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18939 "1268 Failed to allocate ndlp for " 18940 "oxid:x%x SID:x%x\n", oxid, sid); 18941 return; 18942 } 18943 /* Put ndlp onto pport node list */ 18944 lpfc_enqueue_node(vport, ndlp); 18945 } 18946 18947 /* Allocate buffer for rsp iocb */ 18948 ctiocb = lpfc_sli_get_iocbq(phba); 18949 if (!ctiocb) 18950 return; 18951 18952 icmd = &ctiocb->wqe; 18953 18954 /* Extract the F_CTL field from FC_HDR */ 18955 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18956 18957 ctiocb->ndlp = lpfc_nlp_get(ndlp); 18958 if (!ctiocb->ndlp) { 18959 lpfc_sli_release_iocbq(phba, ctiocb); 18960 return; 18961 } 18962 18963 ctiocb->vport = phba->pport; 18964 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18965 ctiocb->sli4_lxritag = NO_XRI; 18966 ctiocb->sli4_xritag = NO_XRI; 18967 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 18968 18969 if (fctl & FC_FC_EX_CTX) 18970 /* Exchange responder sent the abort so we 18971 * own the oxid. 18972 */ 18973 xri = oxid; 18974 else 18975 xri = rxid; 18976 lxri = lpfc_sli4_xri_inrange(phba, xri); 18977 if (lxri != NO_XRI) 18978 lpfc_set_rrq_active(phba, ndlp, lxri, 18979 (xri == oxid) ? rxid : oxid, 0); 18980 /* For BA_ABTS from exchange responder, if the logical xri with 18981 * the oxid maps to the FCP XRI range, the port no longer has 18982 * that exchange context, send a BLS_RJT. Override the IOCB for 18983 * a BA_RJT. 18984 */ 18985 if ((fctl & FC_FC_EX_CTX) && 18986 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18987 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18988 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18989 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18990 FC_BA_RJT_INV_XID); 18991 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18992 FC_BA_RJT_UNABLE); 18993 } 18994 18995 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18996 * the driver no longer has that exchange, send a BLS_RJT. Override 18997 * the IOCB for a BA_RJT. 18998 */ 18999 if (aborted == false) { 19000 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 19001 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 19002 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 19003 FC_BA_RJT_INV_XID); 19004 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 19005 FC_BA_RJT_UNABLE); 19006 } 19007 19008 if (fctl & FC_FC_EX_CTX) { 19009 /* ABTS sent by responder to CT exchange, construction 19010 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 19011 * field and RX_ID from ABTS for RX_ID field. 19012 */ 19013 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 19014 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 19015 } else { 19016 /* ABTS sent by initiator to CT exchange, construction 19017 * of BA_ACC will need to allocate a new XRI as for the 19018 * XRI_TAG field. 19019 */ 19020 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 19021 } 19022 19023 /* OX_ID is invariable to who sent ABTS to CT exchange */ 19024 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 19025 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 19026 19027 /* Use CT=VPI */ 19028 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 19029 ndlp->nlp_DID); 19030 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 19031 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 19032 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 19033 19034 /* Xmit CT abts response on exchange <xid> */ 19035 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 19036 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 19037 ctiocb->abort_rctl, oxid, phba->link_state); 19038 19039 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 19040 if (rc == IOCB_ERROR) { 19041 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19042 "2925 Failed to issue CT ABTS RSP x%x on " 19043 "xri x%x, Data x%x\n", 19044 ctiocb->abort_rctl, oxid, 19045 phba->link_state); 19046 lpfc_nlp_put(ndlp); 19047 ctiocb->ndlp = NULL; 19048 lpfc_sli_release_iocbq(phba, ctiocb); 19049 } 19050 } 19051 19052 /** 19053 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 19054 * @vport: Pointer to the vport on which this sequence was received 19055 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19056 * 19057 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 19058 * receive sequence is only partially assembed by the driver, it shall abort 19059 * the partially assembled frames for the sequence. Otherwise, if the 19060 * unsolicited receive sequence has been completely assembled and passed to 19061 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 19062 * unsolicited sequence has been aborted. After that, it will issue a basic 19063 * accept to accept the abort. 19064 **/ 19065 static void 19066 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 19067 struct hbq_dmabuf *dmabuf) 19068 { 19069 struct lpfc_hba *phba = vport->phba; 19070 struct fc_frame_header fc_hdr; 19071 uint32_t fctl; 19072 bool aborted; 19073 19074 /* Make a copy of fc_hdr before the dmabuf being released */ 19075 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 19076 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 19077 19078 if (fctl & FC_FC_EX_CTX) { 19079 /* ABTS by responder to exchange, no cleanup needed */ 19080 aborted = true; 19081 } else { 19082 /* ABTS by initiator to exchange, need to do cleanup */ 19083 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19084 if (aborted == false) 19085 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19086 } 19087 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19088 19089 if (phba->nvmet_support) { 19090 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19091 return; 19092 } 19093 19094 /* Respond with BA_ACC or BA_RJT accordingly */ 19095 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19096 } 19097 19098 /** 19099 * lpfc_seq_complete - Indicates if a sequence is complete 19100 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19101 * 19102 * This function checks the sequence, starting with the frame described by 19103 * @dmabuf, to see if all the frames associated with this sequence are present. 19104 * the frames associated with this sequence are linked to the @dmabuf using the 19105 * dbuf list. This function looks for two major things. 1) That the first frame 19106 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19107 * set. 3) That there are no holes in the sequence count. The function will 19108 * return 1 when the sequence is complete, otherwise it will return 0. 19109 **/ 19110 static int 19111 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19112 { 19113 struct fc_frame_header *hdr; 19114 struct lpfc_dmabuf *d_buf; 19115 struct hbq_dmabuf *seq_dmabuf; 19116 uint32_t fctl; 19117 int seq_count = 0; 19118 19119 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19120 /* make sure first fame of sequence has a sequence count of zero */ 19121 if (hdr->fh_seq_cnt != seq_count) 19122 return 0; 19123 fctl = (hdr->fh_f_ctl[0] << 16 | 19124 hdr->fh_f_ctl[1] << 8 | 19125 hdr->fh_f_ctl[2]); 19126 /* If last frame of sequence we can return success. */ 19127 if (fctl & FC_FC_END_SEQ) 19128 return 1; 19129 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19130 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19131 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19132 /* If there is a hole in the sequence count then fail. */ 19133 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19134 return 0; 19135 fctl = (hdr->fh_f_ctl[0] << 16 | 19136 hdr->fh_f_ctl[1] << 8 | 19137 hdr->fh_f_ctl[2]); 19138 /* If last frame of sequence we can return success. */ 19139 if (fctl & FC_FC_END_SEQ) 19140 return 1; 19141 } 19142 return 0; 19143 } 19144 19145 /** 19146 * lpfc_prep_seq - Prep sequence for ULP processing 19147 * @vport: Pointer to the vport on which this sequence was received 19148 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19149 * 19150 * This function takes a sequence, described by a list of frames, and creates 19151 * a list of iocbq structures to describe the sequence. This iocbq list will be 19152 * used to issue to the generic unsolicited sequence handler. This routine 19153 * returns a pointer to the first iocbq in the list. If the function is unable 19154 * to allocate an iocbq then it throw out the received frames that were not 19155 * able to be described and return a pointer to the first iocbq. If unable to 19156 * allocate any iocbqs (including the first) this function will return NULL. 19157 **/ 19158 static struct lpfc_iocbq * 19159 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19160 { 19161 struct hbq_dmabuf *hbq_buf; 19162 struct lpfc_dmabuf *d_buf, *n_buf; 19163 struct lpfc_iocbq *first_iocbq, *iocbq; 19164 struct fc_frame_header *fc_hdr; 19165 uint32_t sid; 19166 uint32_t len, tot_len; 19167 19168 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19169 /* remove from receive buffer list */ 19170 list_del_init(&seq_dmabuf->hbuf.list); 19171 lpfc_update_rcv_time_stamp(vport); 19172 /* get the Remote Port's SID */ 19173 sid = sli4_sid_from_fc_hdr(fc_hdr); 19174 tot_len = 0; 19175 /* Get an iocbq struct to fill in. */ 19176 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19177 if (first_iocbq) { 19178 /* Initialize the first IOCB. */ 19179 first_iocbq->wcqe_cmpl.total_data_placed = 0; 19180 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 19181 IOSTAT_SUCCESS); 19182 first_iocbq->vport = vport; 19183 19184 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19185 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19186 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 19187 sli4_did_from_fc_hdr(fc_hdr)); 19188 } 19189 19190 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19191 NO_XRI); 19192 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19193 be16_to_cpu(fc_hdr->fh_ox_id)); 19194 19195 /* put the first buffer into the first iocb */ 19196 tot_len = bf_get(lpfc_rcqe_length, 19197 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19198 19199 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf; 19200 first_iocbq->bpl_dmabuf = NULL; 19201 /* Keep track of the BDE count */ 19202 first_iocbq->wcqe_cmpl.word3 = 1; 19203 19204 if (tot_len > LPFC_DATA_BUF_SIZE) 19205 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 19206 LPFC_DATA_BUF_SIZE; 19207 else 19208 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 19209 19210 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 19211 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 19212 sid); 19213 } 19214 iocbq = first_iocbq; 19215 /* 19216 * Each IOCBq can have two Buffers assigned, so go through the list 19217 * of buffers for this sequence and save two buffers in each IOCBq 19218 */ 19219 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19220 if (!iocbq) { 19221 lpfc_in_buf_free(vport->phba, d_buf); 19222 continue; 19223 } 19224 if (!iocbq->bpl_dmabuf) { 19225 iocbq->bpl_dmabuf = d_buf; 19226 iocbq->wcqe_cmpl.word3++; 19227 /* We need to get the size out of the right CQE */ 19228 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19229 len = bf_get(lpfc_rcqe_length, 19230 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19231 iocbq->unsol_rcv_len = len; 19232 iocbq->wcqe_cmpl.total_data_placed += len; 19233 tot_len += len; 19234 } else { 19235 iocbq = lpfc_sli_get_iocbq(vport->phba); 19236 if (!iocbq) { 19237 if (first_iocbq) { 19238 bf_set(lpfc_wcqe_c_status, 19239 &first_iocbq->wcqe_cmpl, 19240 IOSTAT_SUCCESS); 19241 first_iocbq->wcqe_cmpl.parameter = 19242 IOERR_NO_RESOURCES; 19243 } 19244 lpfc_in_buf_free(vport->phba, d_buf); 19245 continue; 19246 } 19247 /* We need to get the size out of the right CQE */ 19248 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19249 len = bf_get(lpfc_rcqe_length, 19250 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19251 iocbq->cmd_dmabuf = d_buf; 19252 iocbq->bpl_dmabuf = NULL; 19253 iocbq->wcqe_cmpl.word3 = 1; 19254 19255 if (len > LPFC_DATA_BUF_SIZE) 19256 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19257 LPFC_DATA_BUF_SIZE; 19258 else 19259 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19260 len; 19261 19262 tot_len += len; 19263 iocbq->wcqe_cmpl.total_data_placed = tot_len; 19264 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 19265 sid); 19266 list_add_tail(&iocbq->list, &first_iocbq->list); 19267 } 19268 } 19269 /* Free the sequence's header buffer */ 19270 if (!first_iocbq) 19271 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19272 19273 return first_iocbq; 19274 } 19275 19276 static void 19277 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19278 struct hbq_dmabuf *seq_dmabuf) 19279 { 19280 struct fc_frame_header *fc_hdr; 19281 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19282 struct lpfc_hba *phba = vport->phba; 19283 19284 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19285 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19286 if (!iocbq) { 19287 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19288 "2707 Ring %d handler: Failed to allocate " 19289 "iocb Rctl x%x Type x%x received\n", 19290 LPFC_ELS_RING, 19291 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19292 return; 19293 } 19294 if (!lpfc_complete_unsol_iocb(phba, 19295 phba->sli4_hba.els_wq->pring, 19296 iocbq, fc_hdr->fh_r_ctl, 19297 fc_hdr->fh_type)) { 19298 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19299 "2540 Ring %d handler: unexpected Rctl " 19300 "x%x Type x%x received\n", 19301 LPFC_ELS_RING, 19302 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19303 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 19304 } 19305 19306 /* Free iocb created in lpfc_prep_seq */ 19307 list_for_each_entry_safe(curr_iocb, next_iocb, 19308 &iocbq->list, list) { 19309 list_del_init(&curr_iocb->list); 19310 lpfc_sli_release_iocbq(phba, curr_iocb); 19311 } 19312 lpfc_sli_release_iocbq(phba, iocbq); 19313 } 19314 19315 static void 19316 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19317 struct lpfc_iocbq *rspiocb) 19318 { 19319 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf; 19320 19321 if (pcmd && pcmd->virt) 19322 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19323 kfree(pcmd); 19324 lpfc_sli_release_iocbq(phba, cmdiocb); 19325 lpfc_drain_txq(phba); 19326 } 19327 19328 static void 19329 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19330 struct hbq_dmabuf *dmabuf) 19331 { 19332 struct fc_frame_header *fc_hdr; 19333 struct lpfc_hba *phba = vport->phba; 19334 struct lpfc_iocbq *iocbq = NULL; 19335 union lpfc_wqe128 *pwqe; 19336 struct lpfc_dmabuf *pcmd = NULL; 19337 uint32_t frame_len; 19338 int rc; 19339 unsigned long iflags; 19340 19341 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19342 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19343 19344 /* Send the received frame back */ 19345 iocbq = lpfc_sli_get_iocbq(phba); 19346 if (!iocbq) { 19347 /* Queue cq event and wakeup worker thread to process it */ 19348 spin_lock_irqsave(&phba->hbalock, iflags); 19349 list_add_tail(&dmabuf->cq_event.list, 19350 &phba->sli4_hba.sp_queue_event); 19351 phba->hba_flag |= HBA_SP_QUEUE_EVT; 19352 spin_unlock_irqrestore(&phba->hbalock, iflags); 19353 lpfc_worker_wake_up(phba); 19354 return; 19355 } 19356 19357 /* Allocate buffer for command payload */ 19358 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19359 if (pcmd) 19360 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19361 &pcmd->phys); 19362 if (!pcmd || !pcmd->virt) 19363 goto exit; 19364 19365 INIT_LIST_HEAD(&pcmd->list); 19366 19367 /* copyin the payload */ 19368 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19369 19370 iocbq->cmd_dmabuf = pcmd; 19371 iocbq->vport = vport; 19372 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19373 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19374 iocbq->num_bdes = 0; 19375 19376 pwqe = &iocbq->wqe; 19377 /* fill in BDE's for command */ 19378 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19379 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19380 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19381 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19382 19383 pwqe->send_frame.frame_len = frame_len; 19384 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19385 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19386 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19387 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19388 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19389 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19390 19391 pwqe->generic.wqe_com.word7 = 0; 19392 pwqe->generic.wqe_com.word10 = 0; 19393 19394 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19395 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19396 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19397 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19398 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19399 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19400 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19401 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19402 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19403 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19404 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19405 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19406 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19407 19408 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19409 19410 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19411 if (rc == IOCB_ERROR) 19412 goto exit; 19413 19414 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19415 return; 19416 19417 exit: 19418 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19419 "2023 Unable to process MDS loopback frame\n"); 19420 if (pcmd && pcmd->virt) 19421 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19422 kfree(pcmd); 19423 if (iocbq) 19424 lpfc_sli_release_iocbq(phba, iocbq); 19425 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19426 } 19427 19428 /** 19429 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19430 * @phba: Pointer to HBA context object. 19431 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19432 * 19433 * This function is called with no lock held. This function processes all 19434 * the received buffers and gives it to upper layers when a received buffer 19435 * indicates that it is the final frame in the sequence. The interrupt 19436 * service routine processes received buffers at interrupt contexts. 19437 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19438 * appropriate receive function when the final frame in a sequence is received. 19439 **/ 19440 void 19441 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19442 struct hbq_dmabuf *dmabuf) 19443 { 19444 struct hbq_dmabuf *seq_dmabuf; 19445 struct fc_frame_header *fc_hdr; 19446 struct lpfc_vport *vport; 19447 uint32_t fcfi; 19448 uint32_t did; 19449 19450 /* Process each received buffer */ 19451 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19452 19453 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19454 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19455 vport = phba->pport; 19456 /* Handle MDS Loopback frames */ 19457 if (!(phba->pport->load_flag & FC_UNLOADING)) 19458 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19459 else 19460 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19461 return; 19462 } 19463 19464 /* check to see if this a valid type of frame */ 19465 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19466 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19467 return; 19468 } 19469 19470 if ((bf_get(lpfc_cqe_code, 19471 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19472 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19473 &dmabuf->cq_event.cqe.rcqe_cmpl); 19474 else 19475 fcfi = bf_get(lpfc_rcqe_fcf_id, 19476 &dmabuf->cq_event.cqe.rcqe_cmpl); 19477 19478 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19479 vport = phba->pport; 19480 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19481 "2023 MDS Loopback %d bytes\n", 19482 bf_get(lpfc_rcqe_length, 19483 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19484 /* Handle MDS Loopback frames */ 19485 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19486 return; 19487 } 19488 19489 /* d_id this frame is directed to */ 19490 did = sli4_did_from_fc_hdr(fc_hdr); 19491 19492 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19493 if (!vport) { 19494 /* throw out the frame */ 19495 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19496 return; 19497 } 19498 19499 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19500 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19501 (did != Fabric_DID)) { 19502 /* 19503 * Throw out the frame if we are not pt2pt. 19504 * The pt2pt protocol allows for discovery frames 19505 * to be received without a registered VPI. 19506 */ 19507 if (!(vport->fc_flag & FC_PT2PT) || 19508 (phba->link_state == LPFC_HBA_READY)) { 19509 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19510 return; 19511 } 19512 } 19513 19514 /* Handle the basic abort sequence (BA_ABTS) event */ 19515 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19516 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19517 return; 19518 } 19519 19520 /* Link this frame */ 19521 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19522 if (!seq_dmabuf) { 19523 /* unable to add frame to vport - throw it out */ 19524 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19525 return; 19526 } 19527 /* If not last frame in sequence continue processing frames. */ 19528 if (!lpfc_seq_complete(seq_dmabuf)) 19529 return; 19530 19531 /* Send the complete sequence to the upper layer protocol */ 19532 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19533 } 19534 19535 /** 19536 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19537 * @phba: pointer to lpfc hba data structure. 19538 * 19539 * This routine is invoked to post rpi header templates to the 19540 * HBA consistent with the SLI-4 interface spec. This routine 19541 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19542 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19543 * 19544 * This routine does not require any locks. It's usage is expected 19545 * to be driver load or reset recovery when the driver is 19546 * sequential. 19547 * 19548 * Return codes 19549 * 0 - successful 19550 * -EIO - The mailbox failed to complete successfully. 19551 * When this error occurs, the driver is not guaranteed 19552 * to have any rpi regions posted to the device and 19553 * must either attempt to repost the regions or take a 19554 * fatal error. 19555 **/ 19556 int 19557 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19558 { 19559 struct lpfc_rpi_hdr *rpi_page; 19560 uint32_t rc = 0; 19561 uint16_t lrpi = 0; 19562 19563 /* SLI4 ports that support extents do not require RPI headers. */ 19564 if (!phba->sli4_hba.rpi_hdrs_in_use) 19565 goto exit; 19566 if (phba->sli4_hba.extents_in_use) 19567 return -EIO; 19568 19569 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19570 /* 19571 * Assign the rpi headers a physical rpi only if the driver 19572 * has not initialized those resources. A port reset only 19573 * needs the headers posted. 19574 */ 19575 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19576 LPFC_RPI_RSRC_RDY) 19577 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19578 19579 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19580 if (rc != MBX_SUCCESS) { 19581 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19582 "2008 Error %d posting all rpi " 19583 "headers\n", rc); 19584 rc = -EIO; 19585 break; 19586 } 19587 } 19588 19589 exit: 19590 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19591 LPFC_RPI_RSRC_RDY); 19592 return rc; 19593 } 19594 19595 /** 19596 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19597 * @phba: pointer to lpfc hba data structure. 19598 * @rpi_page: pointer to the rpi memory region. 19599 * 19600 * This routine is invoked to post a single rpi header to the 19601 * HBA consistent with the SLI-4 interface spec. This memory region 19602 * maps up to 64 rpi context regions. 19603 * 19604 * Return codes 19605 * 0 - successful 19606 * -ENOMEM - No available memory 19607 * -EIO - The mailbox failed to complete successfully. 19608 **/ 19609 int 19610 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19611 { 19612 LPFC_MBOXQ_t *mboxq; 19613 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19614 uint32_t rc = 0; 19615 uint32_t shdr_status, shdr_add_status; 19616 union lpfc_sli4_cfg_shdr *shdr; 19617 19618 /* SLI4 ports that support extents do not require RPI headers. */ 19619 if (!phba->sli4_hba.rpi_hdrs_in_use) 19620 return rc; 19621 if (phba->sli4_hba.extents_in_use) 19622 return -EIO; 19623 19624 /* The port is notified of the header region via a mailbox command. */ 19625 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19626 if (!mboxq) { 19627 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19628 "2001 Unable to allocate memory for issuing " 19629 "SLI_CONFIG_SPECIAL mailbox command\n"); 19630 return -ENOMEM; 19631 } 19632 19633 /* Post all rpi memory regions to the port. */ 19634 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19635 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19636 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19637 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19638 sizeof(struct lpfc_sli4_cfg_mhdr), 19639 LPFC_SLI4_MBX_EMBED); 19640 19641 19642 /* Post the physical rpi to the port for this rpi header. */ 19643 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19644 rpi_page->start_rpi); 19645 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19646 hdr_tmpl, rpi_page->page_count); 19647 19648 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19649 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19650 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19651 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19652 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19653 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19654 mempool_free(mboxq, phba->mbox_mem_pool); 19655 if (shdr_status || shdr_add_status || rc) { 19656 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19657 "2514 POST_RPI_HDR mailbox failed with " 19658 "status x%x add_status x%x, mbx status x%x\n", 19659 shdr_status, shdr_add_status, rc); 19660 rc = -ENXIO; 19661 } else { 19662 /* 19663 * The next_rpi stores the next logical module-64 rpi value used 19664 * to post physical rpis in subsequent rpi postings. 19665 */ 19666 spin_lock_irq(&phba->hbalock); 19667 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19668 spin_unlock_irq(&phba->hbalock); 19669 } 19670 return rc; 19671 } 19672 19673 /** 19674 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19675 * @phba: pointer to lpfc hba data structure. 19676 * 19677 * This routine is invoked to post rpi header templates to the 19678 * HBA consistent with the SLI-4 interface spec. This routine 19679 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19680 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19681 * 19682 * Returns 19683 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19684 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19685 **/ 19686 int 19687 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19688 { 19689 unsigned long rpi; 19690 uint16_t max_rpi, rpi_limit; 19691 uint16_t rpi_remaining, lrpi = 0; 19692 struct lpfc_rpi_hdr *rpi_hdr; 19693 unsigned long iflag; 19694 19695 /* 19696 * Fetch the next logical rpi. Because this index is logical, 19697 * the driver starts at 0 each time. 19698 */ 19699 spin_lock_irqsave(&phba->hbalock, iflag); 19700 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19701 rpi_limit = phba->sli4_hba.next_rpi; 19702 19703 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19704 if (rpi >= rpi_limit) 19705 rpi = LPFC_RPI_ALLOC_ERROR; 19706 else { 19707 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19708 phba->sli4_hba.max_cfg_param.rpi_used++; 19709 phba->sli4_hba.rpi_count++; 19710 } 19711 lpfc_printf_log(phba, KERN_INFO, 19712 LOG_NODE | LOG_DISCOVERY, 19713 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19714 (int) rpi, max_rpi, rpi_limit); 19715 19716 /* 19717 * Don't try to allocate more rpi header regions if the device limit 19718 * has been exhausted. 19719 */ 19720 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19721 (phba->sli4_hba.rpi_count >= max_rpi)) { 19722 spin_unlock_irqrestore(&phba->hbalock, iflag); 19723 return rpi; 19724 } 19725 19726 /* 19727 * RPI header postings are not required for SLI4 ports capable of 19728 * extents. 19729 */ 19730 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19731 spin_unlock_irqrestore(&phba->hbalock, iflag); 19732 return rpi; 19733 } 19734 19735 /* 19736 * If the driver is running low on rpi resources, allocate another 19737 * page now. Note that the next_rpi value is used because 19738 * it represents how many are actually in use whereas max_rpi notes 19739 * how many are supported max by the device. 19740 */ 19741 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19742 spin_unlock_irqrestore(&phba->hbalock, iflag); 19743 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19744 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19745 if (!rpi_hdr) { 19746 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19747 "2002 Error Could not grow rpi " 19748 "count\n"); 19749 } else { 19750 lrpi = rpi_hdr->start_rpi; 19751 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19752 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19753 } 19754 } 19755 19756 return rpi; 19757 } 19758 19759 /** 19760 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19761 * @phba: pointer to lpfc hba data structure. 19762 * @rpi: rpi to free 19763 * 19764 * This routine is invoked to release an rpi to the pool of 19765 * available rpis maintained by the driver. 19766 **/ 19767 static void 19768 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19769 { 19770 /* 19771 * if the rpi value indicates a prior unreg has already 19772 * been done, skip the unreg. 19773 */ 19774 if (rpi == LPFC_RPI_ALLOC_ERROR) 19775 return; 19776 19777 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19778 phba->sli4_hba.rpi_count--; 19779 phba->sli4_hba.max_cfg_param.rpi_used--; 19780 } else { 19781 lpfc_printf_log(phba, KERN_INFO, 19782 LOG_NODE | LOG_DISCOVERY, 19783 "2016 rpi %x not inuse\n", 19784 rpi); 19785 } 19786 } 19787 19788 /** 19789 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19790 * @phba: pointer to lpfc hba data structure. 19791 * @rpi: rpi to free 19792 * 19793 * This routine is invoked to release an rpi to the pool of 19794 * available rpis maintained by the driver. 19795 **/ 19796 void 19797 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19798 { 19799 spin_lock_irq(&phba->hbalock); 19800 __lpfc_sli4_free_rpi(phba, rpi); 19801 spin_unlock_irq(&phba->hbalock); 19802 } 19803 19804 /** 19805 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19806 * @phba: pointer to lpfc hba data structure. 19807 * 19808 * This routine is invoked to remove the memory region that 19809 * provided rpi via a bitmask. 19810 **/ 19811 void 19812 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19813 { 19814 kfree(phba->sli4_hba.rpi_bmask); 19815 kfree(phba->sli4_hba.rpi_ids); 19816 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19817 } 19818 19819 /** 19820 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19821 * @ndlp: pointer to lpfc nodelist data structure. 19822 * @cmpl: completion call-back. 19823 * @arg: data to load as MBox 'caller buffer information' 19824 * 19825 * This routine is invoked to remove the memory region that 19826 * provided rpi via a bitmask. 19827 **/ 19828 int 19829 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19830 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19831 { 19832 LPFC_MBOXQ_t *mboxq; 19833 struct lpfc_hba *phba = ndlp->phba; 19834 int rc; 19835 19836 /* The port is notified of the header region via a mailbox command. */ 19837 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19838 if (!mboxq) 19839 return -ENOMEM; 19840 19841 /* If cmpl assigned, then this nlp_get pairs with 19842 * lpfc_mbx_cmpl_resume_rpi. 19843 * 19844 * Else cmpl is NULL, then this nlp_get pairs with 19845 * lpfc_sli_def_mbox_cmpl. 19846 */ 19847 if (!lpfc_nlp_get(ndlp)) { 19848 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19849 "2122 %s: Failed to get nlp ref\n", 19850 __func__); 19851 mempool_free(mboxq, phba->mbox_mem_pool); 19852 return -EIO; 19853 } 19854 19855 /* Post all rpi memory regions to the port. */ 19856 lpfc_resume_rpi(mboxq, ndlp); 19857 if (cmpl) { 19858 mboxq->mbox_cmpl = cmpl; 19859 mboxq->ctx_buf = arg; 19860 } else 19861 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19862 mboxq->ctx_ndlp = ndlp; 19863 mboxq->vport = ndlp->vport; 19864 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19865 if (rc == MBX_NOT_FINISHED) { 19866 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19867 "2010 Resume RPI Mailbox failed " 19868 "status %d, mbxStatus x%x\n", rc, 19869 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19870 lpfc_nlp_put(ndlp); 19871 mempool_free(mboxq, phba->mbox_mem_pool); 19872 return -EIO; 19873 } 19874 return 0; 19875 } 19876 19877 /** 19878 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19879 * @vport: Pointer to the vport for which the vpi is being initialized 19880 * 19881 * This routine is invoked to activate a vpi with the port. 19882 * 19883 * Returns: 19884 * 0 success 19885 * -Evalue otherwise 19886 **/ 19887 int 19888 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19889 { 19890 LPFC_MBOXQ_t *mboxq; 19891 int rc = 0; 19892 int retval = MBX_SUCCESS; 19893 uint32_t mbox_tmo; 19894 struct lpfc_hba *phba = vport->phba; 19895 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19896 if (!mboxq) 19897 return -ENOMEM; 19898 lpfc_init_vpi(phba, mboxq, vport->vpi); 19899 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19900 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19901 if (rc != MBX_SUCCESS) { 19902 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19903 "2022 INIT VPI Mailbox failed " 19904 "status %d, mbxStatus x%x\n", rc, 19905 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19906 retval = -EIO; 19907 } 19908 if (rc != MBX_TIMEOUT) 19909 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19910 19911 return retval; 19912 } 19913 19914 /** 19915 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19916 * @phba: pointer to lpfc hba data structure. 19917 * @mboxq: Pointer to mailbox object. 19918 * 19919 * This routine is invoked to manually add a single FCF record. The caller 19920 * must pass a completely initialized FCF_Record. This routine takes 19921 * care of the nonembedded mailbox operations. 19922 **/ 19923 static void 19924 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19925 { 19926 void *virt_addr; 19927 union lpfc_sli4_cfg_shdr *shdr; 19928 uint32_t shdr_status, shdr_add_status; 19929 19930 virt_addr = mboxq->sge_array->addr[0]; 19931 /* The IOCTL status is embedded in the mailbox subheader. */ 19932 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19933 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19934 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19935 19936 if ((shdr_status || shdr_add_status) && 19937 (shdr_status != STATUS_FCF_IN_USE)) 19938 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19939 "2558 ADD_FCF_RECORD mailbox failed with " 19940 "status x%x add_status x%x\n", 19941 shdr_status, shdr_add_status); 19942 19943 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19944 } 19945 19946 /** 19947 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19948 * @phba: pointer to lpfc hba data structure. 19949 * @fcf_record: pointer to the initialized fcf record to add. 19950 * 19951 * This routine is invoked to manually add a single FCF record. The caller 19952 * must pass a completely initialized FCF_Record. This routine takes 19953 * care of the nonembedded mailbox operations. 19954 **/ 19955 int 19956 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19957 { 19958 int rc = 0; 19959 LPFC_MBOXQ_t *mboxq; 19960 uint8_t *bytep; 19961 void *virt_addr; 19962 struct lpfc_mbx_sge sge; 19963 uint32_t alloc_len, req_len; 19964 uint32_t fcfindex; 19965 19966 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19967 if (!mboxq) { 19968 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19969 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19970 return -ENOMEM; 19971 } 19972 19973 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19974 sizeof(uint32_t); 19975 19976 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19977 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19978 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19979 req_len, LPFC_SLI4_MBX_NEMBED); 19980 if (alloc_len < req_len) { 19981 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19982 "2523 Allocated DMA memory size (x%x) is " 19983 "less than the requested DMA memory " 19984 "size (x%x)\n", alloc_len, req_len); 19985 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19986 return -ENOMEM; 19987 } 19988 19989 /* 19990 * Get the first SGE entry from the non-embedded DMA memory. This 19991 * routine only uses a single SGE. 19992 */ 19993 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19994 virt_addr = mboxq->sge_array->addr[0]; 19995 /* 19996 * Configure the FCF record for FCFI 0. This is the driver's 19997 * hardcoded default and gets used in nonFIP mode. 19998 */ 19999 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 20000 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 20001 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 20002 20003 /* 20004 * Copy the fcf_index and the FCF Record Data. The data starts after 20005 * the FCoE header plus word10. The data copy needs to be endian 20006 * correct. 20007 */ 20008 bytep += sizeof(uint32_t); 20009 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 20010 mboxq->vport = phba->pport; 20011 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 20012 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20013 if (rc == MBX_NOT_FINISHED) { 20014 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20015 "2515 ADD_FCF_RECORD mailbox failed with " 20016 "status 0x%x\n", rc); 20017 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20018 rc = -EIO; 20019 } else 20020 rc = 0; 20021 20022 return rc; 20023 } 20024 20025 /** 20026 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 20027 * @phba: pointer to lpfc hba data structure. 20028 * @fcf_record: pointer to the fcf record to write the default data. 20029 * @fcf_index: FCF table entry index. 20030 * 20031 * This routine is invoked to build the driver's default FCF record. The 20032 * values used are hardcoded. This routine handles memory initialization. 20033 * 20034 **/ 20035 void 20036 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 20037 struct fcf_record *fcf_record, 20038 uint16_t fcf_index) 20039 { 20040 memset(fcf_record, 0, sizeof(struct fcf_record)); 20041 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 20042 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 20043 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 20044 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 20045 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 20046 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 20047 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 20048 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 20049 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 20050 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 20051 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 20052 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 20053 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 20054 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 20055 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 20056 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 20057 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 20058 /* Set the VLAN bit map */ 20059 if (phba->valid_vlan) { 20060 fcf_record->vlan_bitmap[phba->vlan_id / 8] 20061 = 1 << (phba->vlan_id % 8); 20062 } 20063 } 20064 20065 /** 20066 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 20067 * @phba: pointer to lpfc hba data structure. 20068 * @fcf_index: FCF table entry offset. 20069 * 20070 * This routine is invoked to scan the entire FCF table by reading FCF 20071 * record and processing it one at a time starting from the @fcf_index 20072 * for initial FCF discovery or fast FCF failover rediscovery. 20073 * 20074 * Return 0 if the mailbox command is submitted successfully, none 0 20075 * otherwise. 20076 **/ 20077 int 20078 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20079 { 20080 int rc = 0, error; 20081 LPFC_MBOXQ_t *mboxq; 20082 20083 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 20084 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 20085 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20086 if (!mboxq) { 20087 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20088 "2000 Failed to allocate mbox for " 20089 "READ_FCF cmd\n"); 20090 error = -ENOMEM; 20091 goto fail_fcf_scan; 20092 } 20093 /* Construct the read FCF record mailbox command */ 20094 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20095 if (rc) { 20096 error = -EINVAL; 20097 goto fail_fcf_scan; 20098 } 20099 /* Issue the mailbox command asynchronously */ 20100 mboxq->vport = phba->pport; 20101 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20102 20103 spin_lock_irq(&phba->hbalock); 20104 phba->hba_flag |= FCF_TS_INPROG; 20105 spin_unlock_irq(&phba->hbalock); 20106 20107 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20108 if (rc == MBX_NOT_FINISHED) 20109 error = -EIO; 20110 else { 20111 /* Reset eligible FCF count for new scan */ 20112 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20113 phba->fcf.eligible_fcf_cnt = 0; 20114 error = 0; 20115 } 20116 fail_fcf_scan: 20117 if (error) { 20118 if (mboxq) 20119 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20120 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20121 spin_lock_irq(&phba->hbalock); 20122 phba->hba_flag &= ~FCF_TS_INPROG; 20123 spin_unlock_irq(&phba->hbalock); 20124 } 20125 return error; 20126 } 20127 20128 /** 20129 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20130 * @phba: pointer to lpfc hba data structure. 20131 * @fcf_index: FCF table entry offset. 20132 * 20133 * This routine is invoked to read an FCF record indicated by @fcf_index 20134 * and to use it for FLOGI roundrobin FCF failover. 20135 * 20136 * Return 0 if the mailbox command is submitted successfully, none 0 20137 * otherwise. 20138 **/ 20139 int 20140 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20141 { 20142 int rc = 0, error; 20143 LPFC_MBOXQ_t *mboxq; 20144 20145 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20146 if (!mboxq) { 20147 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20148 "2763 Failed to allocate mbox for " 20149 "READ_FCF cmd\n"); 20150 error = -ENOMEM; 20151 goto fail_fcf_read; 20152 } 20153 /* Construct the read FCF record mailbox command */ 20154 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20155 if (rc) { 20156 error = -EINVAL; 20157 goto fail_fcf_read; 20158 } 20159 /* Issue the mailbox command asynchronously */ 20160 mboxq->vport = phba->pport; 20161 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20162 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20163 if (rc == MBX_NOT_FINISHED) 20164 error = -EIO; 20165 else 20166 error = 0; 20167 20168 fail_fcf_read: 20169 if (error && mboxq) 20170 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20171 return error; 20172 } 20173 20174 /** 20175 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20176 * @phba: pointer to lpfc hba data structure. 20177 * @fcf_index: FCF table entry offset. 20178 * 20179 * This routine is invoked to read an FCF record indicated by @fcf_index to 20180 * determine whether it's eligible for FLOGI roundrobin failover list. 20181 * 20182 * Return 0 if the mailbox command is submitted successfully, none 0 20183 * otherwise. 20184 **/ 20185 int 20186 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20187 { 20188 int rc = 0, error; 20189 LPFC_MBOXQ_t *mboxq; 20190 20191 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20192 if (!mboxq) { 20193 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20194 "2758 Failed to allocate mbox for " 20195 "READ_FCF cmd\n"); 20196 error = -ENOMEM; 20197 goto fail_fcf_read; 20198 } 20199 /* Construct the read FCF record mailbox command */ 20200 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20201 if (rc) { 20202 error = -EINVAL; 20203 goto fail_fcf_read; 20204 } 20205 /* Issue the mailbox command asynchronously */ 20206 mboxq->vport = phba->pport; 20207 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20208 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20209 if (rc == MBX_NOT_FINISHED) 20210 error = -EIO; 20211 else 20212 error = 0; 20213 20214 fail_fcf_read: 20215 if (error && mboxq) 20216 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20217 return error; 20218 } 20219 20220 /** 20221 * lpfc_check_next_fcf_pri_level 20222 * @phba: pointer to the lpfc_hba struct for this port. 20223 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20224 * routine when the rr_bmask is empty. The FCF indecies are put into the 20225 * rr_bmask based on their priority level. Starting from the highest priority 20226 * to the lowest. The most likely FCF candidate will be in the highest 20227 * priority group. When this routine is called it searches the fcf_pri list for 20228 * next lowest priority group and repopulates the rr_bmask with only those 20229 * fcf_indexes. 20230 * returns: 20231 * 1=success 0=failure 20232 **/ 20233 static int 20234 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20235 { 20236 uint16_t next_fcf_pri; 20237 uint16_t last_index; 20238 struct lpfc_fcf_pri *fcf_pri; 20239 int rc; 20240 int ret = 0; 20241 20242 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20243 LPFC_SLI4_FCF_TBL_INDX_MAX); 20244 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20245 "3060 Last IDX %d\n", last_index); 20246 20247 /* Verify the priority list has 2 or more entries */ 20248 spin_lock_irq(&phba->hbalock); 20249 if (list_empty(&phba->fcf.fcf_pri_list) || 20250 list_is_singular(&phba->fcf.fcf_pri_list)) { 20251 spin_unlock_irq(&phba->hbalock); 20252 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20253 "3061 Last IDX %d\n", last_index); 20254 return 0; /* Empty rr list */ 20255 } 20256 spin_unlock_irq(&phba->hbalock); 20257 20258 next_fcf_pri = 0; 20259 /* 20260 * Clear the rr_bmask and set all of the bits that are at this 20261 * priority. 20262 */ 20263 memset(phba->fcf.fcf_rr_bmask, 0, 20264 sizeof(*phba->fcf.fcf_rr_bmask)); 20265 spin_lock_irq(&phba->hbalock); 20266 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20267 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20268 continue; 20269 /* 20270 * the 1st priority that has not FLOGI failed 20271 * will be the highest. 20272 */ 20273 if (!next_fcf_pri) 20274 next_fcf_pri = fcf_pri->fcf_rec.priority; 20275 spin_unlock_irq(&phba->hbalock); 20276 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20277 rc = lpfc_sli4_fcf_rr_index_set(phba, 20278 fcf_pri->fcf_rec.fcf_index); 20279 if (rc) 20280 return 0; 20281 } 20282 spin_lock_irq(&phba->hbalock); 20283 } 20284 /* 20285 * if next_fcf_pri was not set above and the list is not empty then 20286 * we have failed flogis on all of them. So reset flogi failed 20287 * and start at the beginning. 20288 */ 20289 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20290 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20291 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20292 /* 20293 * the 1st priority that has not FLOGI failed 20294 * will be the highest. 20295 */ 20296 if (!next_fcf_pri) 20297 next_fcf_pri = fcf_pri->fcf_rec.priority; 20298 spin_unlock_irq(&phba->hbalock); 20299 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20300 rc = lpfc_sli4_fcf_rr_index_set(phba, 20301 fcf_pri->fcf_rec.fcf_index); 20302 if (rc) 20303 return 0; 20304 } 20305 spin_lock_irq(&phba->hbalock); 20306 } 20307 } else 20308 ret = 1; 20309 spin_unlock_irq(&phba->hbalock); 20310 20311 return ret; 20312 } 20313 /** 20314 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20315 * @phba: pointer to lpfc hba data structure. 20316 * 20317 * This routine is to get the next eligible FCF record index in a round 20318 * robin fashion. If the next eligible FCF record index equals to the 20319 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20320 * shall be returned, otherwise, the next eligible FCF record's index 20321 * shall be returned. 20322 **/ 20323 uint16_t 20324 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20325 { 20326 uint16_t next_fcf_index; 20327 20328 initial_priority: 20329 /* Search start from next bit of currently registered FCF index */ 20330 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20331 20332 next_priority: 20333 /* Determine the next fcf index to check */ 20334 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20335 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20336 LPFC_SLI4_FCF_TBL_INDX_MAX, 20337 next_fcf_index); 20338 20339 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20340 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20341 /* 20342 * If we have wrapped then we need to clear the bits that 20343 * have been tested so that we can detect when we should 20344 * change the priority level. 20345 */ 20346 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20347 LPFC_SLI4_FCF_TBL_INDX_MAX); 20348 } 20349 20350 20351 /* Check roundrobin failover list empty condition */ 20352 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20353 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20354 /* 20355 * If next fcf index is not found check if there are lower 20356 * Priority level fcf's in the fcf_priority list. 20357 * Set up the rr_bmask with all of the avaiable fcf bits 20358 * at that level and continue the selection process. 20359 */ 20360 if (lpfc_check_next_fcf_pri_level(phba)) 20361 goto initial_priority; 20362 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20363 "2844 No roundrobin failover FCF available\n"); 20364 20365 return LPFC_FCOE_FCF_NEXT_NONE; 20366 } 20367 20368 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20369 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20370 LPFC_FCF_FLOGI_FAILED) { 20371 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20372 return LPFC_FCOE_FCF_NEXT_NONE; 20373 20374 goto next_priority; 20375 } 20376 20377 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20378 "2845 Get next roundrobin failover FCF (x%x)\n", 20379 next_fcf_index); 20380 20381 return next_fcf_index; 20382 } 20383 20384 /** 20385 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20386 * @phba: pointer to lpfc hba data structure. 20387 * @fcf_index: index into the FCF table to 'set' 20388 * 20389 * This routine sets the FCF record index in to the eligible bmask for 20390 * roundrobin failover search. It checks to make sure that the index 20391 * does not go beyond the range of the driver allocated bmask dimension 20392 * before setting the bit. 20393 * 20394 * Returns 0 if the index bit successfully set, otherwise, it returns 20395 * -EINVAL. 20396 **/ 20397 int 20398 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20399 { 20400 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20401 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20402 "2610 FCF (x%x) reached driver's book " 20403 "keeping dimension:x%x\n", 20404 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20405 return -EINVAL; 20406 } 20407 /* Set the eligible FCF record index bmask */ 20408 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20409 20410 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20411 "2790 Set FCF (x%x) to roundrobin FCF failover " 20412 "bmask\n", fcf_index); 20413 20414 return 0; 20415 } 20416 20417 /** 20418 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20419 * @phba: pointer to lpfc hba data structure. 20420 * @fcf_index: index into the FCF table to 'clear' 20421 * 20422 * This routine clears the FCF record index from the eligible bmask for 20423 * roundrobin failover search. It checks to make sure that the index 20424 * does not go beyond the range of the driver allocated bmask dimension 20425 * before clearing the bit. 20426 **/ 20427 void 20428 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20429 { 20430 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20431 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20432 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20433 "2762 FCF (x%x) reached driver's book " 20434 "keeping dimension:x%x\n", 20435 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20436 return; 20437 } 20438 /* Clear the eligible FCF record index bmask */ 20439 spin_lock_irq(&phba->hbalock); 20440 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20441 list) { 20442 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20443 list_del_init(&fcf_pri->list); 20444 break; 20445 } 20446 } 20447 spin_unlock_irq(&phba->hbalock); 20448 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20449 20450 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20451 "2791 Clear FCF (x%x) from roundrobin failover " 20452 "bmask\n", fcf_index); 20453 } 20454 20455 /** 20456 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20457 * @phba: pointer to lpfc hba data structure. 20458 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20459 * 20460 * This routine is the completion routine for the rediscover FCF table mailbox 20461 * command. If the mailbox command returned failure, it will try to stop the 20462 * FCF rediscover wait timer. 20463 **/ 20464 static void 20465 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20466 { 20467 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20468 uint32_t shdr_status, shdr_add_status; 20469 20470 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20471 20472 shdr_status = bf_get(lpfc_mbox_hdr_status, 20473 &redisc_fcf->header.cfg_shdr.response); 20474 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20475 &redisc_fcf->header.cfg_shdr.response); 20476 if (shdr_status || shdr_add_status) { 20477 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20478 "2746 Requesting for FCF rediscovery failed " 20479 "status x%x add_status x%x\n", 20480 shdr_status, shdr_add_status); 20481 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20482 spin_lock_irq(&phba->hbalock); 20483 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20484 spin_unlock_irq(&phba->hbalock); 20485 /* 20486 * CVL event triggered FCF rediscover request failed, 20487 * last resort to re-try current registered FCF entry. 20488 */ 20489 lpfc_retry_pport_discovery(phba); 20490 } else { 20491 spin_lock_irq(&phba->hbalock); 20492 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20493 spin_unlock_irq(&phba->hbalock); 20494 /* 20495 * DEAD FCF event triggered FCF rediscover request 20496 * failed, last resort to fail over as a link down 20497 * to FCF registration. 20498 */ 20499 lpfc_sli4_fcf_dead_failthrough(phba); 20500 } 20501 } else { 20502 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20503 "2775 Start FCF rediscover quiescent timer\n"); 20504 /* 20505 * Start FCF rediscovery wait timer for pending FCF 20506 * before rescan FCF record table. 20507 */ 20508 lpfc_fcf_redisc_wait_start_timer(phba); 20509 } 20510 20511 mempool_free(mbox, phba->mbox_mem_pool); 20512 } 20513 20514 /** 20515 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20516 * @phba: pointer to lpfc hba data structure. 20517 * 20518 * This routine is invoked to request for rediscovery of the entire FCF table 20519 * by the port. 20520 **/ 20521 int 20522 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20523 { 20524 LPFC_MBOXQ_t *mbox; 20525 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20526 int rc, length; 20527 20528 /* Cancel retry delay timers to all vports before FCF rediscover */ 20529 lpfc_cancel_all_vport_retry_delay_timer(phba); 20530 20531 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20532 if (!mbox) { 20533 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20534 "2745 Failed to allocate mbox for " 20535 "requesting FCF rediscover.\n"); 20536 return -ENOMEM; 20537 } 20538 20539 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20540 sizeof(struct lpfc_sli4_cfg_mhdr)); 20541 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20542 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20543 length, LPFC_SLI4_MBX_EMBED); 20544 20545 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20546 /* Set count to 0 for invalidating the entire FCF database */ 20547 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20548 20549 /* Issue the mailbox command asynchronously */ 20550 mbox->vport = phba->pport; 20551 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20552 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20553 20554 if (rc == MBX_NOT_FINISHED) { 20555 mempool_free(mbox, phba->mbox_mem_pool); 20556 return -EIO; 20557 } 20558 return 0; 20559 } 20560 20561 /** 20562 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20563 * @phba: pointer to lpfc hba data structure. 20564 * 20565 * This function is the failover routine as a last resort to the FCF DEAD 20566 * event when driver failed to perform fast FCF failover. 20567 **/ 20568 void 20569 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20570 { 20571 uint32_t link_state; 20572 20573 /* 20574 * Last resort as FCF DEAD event failover will treat this as 20575 * a link down, but save the link state because we don't want 20576 * it to be changed to Link Down unless it is already down. 20577 */ 20578 link_state = phba->link_state; 20579 lpfc_linkdown(phba); 20580 phba->link_state = link_state; 20581 20582 /* Unregister FCF if no devices connected to it */ 20583 lpfc_unregister_unused_fcf(phba); 20584 } 20585 20586 /** 20587 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20588 * @phba: pointer to lpfc hba data structure. 20589 * @rgn23_data: pointer to configure region 23 data. 20590 * 20591 * This function gets SLI3 port configure region 23 data through memory dump 20592 * mailbox command. When it successfully retrieves data, the size of the data 20593 * will be returned, otherwise, 0 will be returned. 20594 **/ 20595 static uint32_t 20596 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20597 { 20598 LPFC_MBOXQ_t *pmb = NULL; 20599 MAILBOX_t *mb; 20600 uint32_t offset = 0; 20601 int rc; 20602 20603 if (!rgn23_data) 20604 return 0; 20605 20606 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20607 if (!pmb) { 20608 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20609 "2600 failed to allocate mailbox memory\n"); 20610 return 0; 20611 } 20612 mb = &pmb->u.mb; 20613 20614 do { 20615 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20616 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20617 20618 if (rc != MBX_SUCCESS) { 20619 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20620 "2601 failed to read config " 20621 "region 23, rc 0x%x Status 0x%x\n", 20622 rc, mb->mbxStatus); 20623 mb->un.varDmp.word_cnt = 0; 20624 } 20625 /* 20626 * dump mem may return a zero when finished or we got a 20627 * mailbox error, either way we are done. 20628 */ 20629 if (mb->un.varDmp.word_cnt == 0) 20630 break; 20631 20632 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20633 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20634 20635 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20636 rgn23_data + offset, 20637 mb->un.varDmp.word_cnt); 20638 offset += mb->un.varDmp.word_cnt; 20639 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20640 20641 mempool_free(pmb, phba->mbox_mem_pool); 20642 return offset; 20643 } 20644 20645 /** 20646 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20647 * @phba: pointer to lpfc hba data structure. 20648 * @rgn23_data: pointer to configure region 23 data. 20649 * 20650 * This function gets SLI4 port configure region 23 data through memory dump 20651 * mailbox command. When it successfully retrieves data, the size of the data 20652 * will be returned, otherwise, 0 will be returned. 20653 **/ 20654 static uint32_t 20655 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20656 { 20657 LPFC_MBOXQ_t *mboxq = NULL; 20658 struct lpfc_dmabuf *mp = NULL; 20659 struct lpfc_mqe *mqe; 20660 uint32_t data_length = 0; 20661 int rc; 20662 20663 if (!rgn23_data) 20664 return 0; 20665 20666 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20667 if (!mboxq) { 20668 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20669 "3105 failed to allocate mailbox memory\n"); 20670 return 0; 20671 } 20672 20673 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20674 goto out; 20675 mqe = &mboxq->u.mqe; 20676 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 20677 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20678 if (rc) 20679 goto out; 20680 data_length = mqe->un.mb_words[5]; 20681 if (data_length == 0) 20682 goto out; 20683 if (data_length > DMP_RGN23_SIZE) { 20684 data_length = 0; 20685 goto out; 20686 } 20687 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20688 out: 20689 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 20690 return data_length; 20691 } 20692 20693 /** 20694 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20695 * @phba: pointer to lpfc hba data structure. 20696 * 20697 * This function read region 23 and parse TLV for port status to 20698 * decide if the user disaled the port. If the TLV indicates the 20699 * port is disabled, the hba_flag is set accordingly. 20700 **/ 20701 void 20702 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20703 { 20704 uint8_t *rgn23_data = NULL; 20705 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20706 uint32_t offset = 0; 20707 20708 /* Get adapter Region 23 data */ 20709 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20710 if (!rgn23_data) 20711 goto out; 20712 20713 if (phba->sli_rev < LPFC_SLI_REV4) 20714 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20715 else { 20716 if_type = bf_get(lpfc_sli_intf_if_type, 20717 &phba->sli4_hba.sli_intf); 20718 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20719 goto out; 20720 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20721 } 20722 20723 if (!data_size) 20724 goto out; 20725 20726 /* Check the region signature first */ 20727 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20728 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20729 "2619 Config region 23 has bad signature\n"); 20730 goto out; 20731 } 20732 offset += 4; 20733 20734 /* Check the data structure version */ 20735 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20736 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20737 "2620 Config region 23 has bad version\n"); 20738 goto out; 20739 } 20740 offset += 4; 20741 20742 /* Parse TLV entries in the region */ 20743 while (offset < data_size) { 20744 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20745 break; 20746 /* 20747 * If the TLV is not driver specific TLV or driver id is 20748 * not linux driver id, skip the record. 20749 */ 20750 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20751 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20752 (rgn23_data[offset + 3] != 0)) { 20753 offset += rgn23_data[offset + 1] * 4 + 4; 20754 continue; 20755 } 20756 20757 /* Driver found a driver specific TLV in the config region */ 20758 sub_tlv_len = rgn23_data[offset + 1] * 4; 20759 offset += 4; 20760 tlv_offset = 0; 20761 20762 /* 20763 * Search for configured port state sub-TLV. 20764 */ 20765 while ((offset < data_size) && 20766 (tlv_offset < sub_tlv_len)) { 20767 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20768 offset += 4; 20769 tlv_offset += 4; 20770 break; 20771 } 20772 if (rgn23_data[offset] != PORT_STE_TYPE) { 20773 offset += rgn23_data[offset + 1] * 4 + 4; 20774 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20775 continue; 20776 } 20777 20778 /* This HBA contains PORT_STE configured */ 20779 if (!rgn23_data[offset + 2]) 20780 phba->hba_flag |= LINK_DISABLED; 20781 20782 goto out; 20783 } 20784 } 20785 20786 out: 20787 kfree(rgn23_data); 20788 return; 20789 } 20790 20791 /** 20792 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20793 * @phba: pointer to lpfc hba data structure 20794 * @shdr_status: wr_object rsp's status field 20795 * @shdr_add_status: wr_object rsp's add_status field 20796 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20797 * @shdr_change_status: wr_object rsp's change_status field 20798 * @shdr_csf: wr_object rsp's csf bit 20799 * 20800 * This routine is intended to be called after a firmware write completes. 20801 * It will log next action items to be performed by the user to instantiate 20802 * the newly downloaded firmware or reason for incompatibility. 20803 **/ 20804 static void 20805 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20806 u32 shdr_add_status, u32 shdr_add_status_2, 20807 u32 shdr_change_status, u32 shdr_csf) 20808 { 20809 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20810 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20811 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20812 "change_status x%02x, csf %01x\n", __func__, 20813 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20814 shdr_status, shdr_add_status, shdr_add_status_2, 20815 shdr_change_status, shdr_csf); 20816 20817 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20818 switch (shdr_add_status_2) { 20819 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20820 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20821 "4199 Firmware write failed: " 20822 "image incompatible with flash x%02x\n", 20823 phba->sli4_hba.flash_id); 20824 break; 20825 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20826 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20827 "4200 Firmware write failed: " 20828 "image incompatible with ASIC " 20829 "architecture x%02x\n", 20830 phba->sli4_hba.asic_rev); 20831 break; 20832 default: 20833 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20834 "4210 Firmware write failed: " 20835 "add_status_2 x%02x\n", 20836 shdr_add_status_2); 20837 break; 20838 } 20839 } else if (!shdr_status && !shdr_add_status) { 20840 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20841 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20842 if (shdr_csf) 20843 shdr_change_status = 20844 LPFC_CHANGE_STATUS_PCI_RESET; 20845 } 20846 20847 switch (shdr_change_status) { 20848 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20849 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20850 "3198 Firmware write complete: System " 20851 "reboot required to instantiate\n"); 20852 break; 20853 case (LPFC_CHANGE_STATUS_FW_RESET): 20854 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20855 "3199 Firmware write complete: " 20856 "Firmware reset required to " 20857 "instantiate\n"); 20858 break; 20859 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20860 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20861 "3200 Firmware write complete: Port " 20862 "Migration or PCI Reset required to " 20863 "instantiate\n"); 20864 break; 20865 case (LPFC_CHANGE_STATUS_PCI_RESET): 20866 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20867 "3201 Firmware write complete: PCI " 20868 "Reset required to instantiate\n"); 20869 break; 20870 default: 20871 break; 20872 } 20873 } 20874 } 20875 20876 /** 20877 * lpfc_wr_object - write an object to the firmware 20878 * @phba: HBA structure that indicates port to create a queue on. 20879 * @dmabuf_list: list of dmabufs to write to the port. 20880 * @size: the total byte value of the objects to write to the port. 20881 * @offset: the current offset to be used to start the transfer. 20882 * 20883 * This routine will create a wr_object mailbox command to send to the port. 20884 * the mailbox command will be constructed using the dma buffers described in 20885 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20886 * BDEs that the imbedded mailbox can support. The @offset variable will be 20887 * used to indicate the starting offset of the transfer and will also return 20888 * the offset after the write object mailbox has completed. @size is used to 20889 * determine the end of the object and whether the eof bit should be set. 20890 * 20891 * Return 0 is successful and offset will contain the new offset to use 20892 * for the next write. 20893 * Return negative value for error cases. 20894 **/ 20895 int 20896 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20897 uint32_t size, uint32_t *offset) 20898 { 20899 struct lpfc_mbx_wr_object *wr_object; 20900 LPFC_MBOXQ_t *mbox; 20901 int rc = 0, i = 0; 20902 int mbox_status = 0; 20903 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20904 uint32_t shdr_change_status = 0, shdr_csf = 0; 20905 uint32_t mbox_tmo; 20906 struct lpfc_dmabuf *dmabuf; 20907 uint32_t written = 0; 20908 bool check_change_status = false; 20909 20910 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20911 if (!mbox) 20912 return -ENOMEM; 20913 20914 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20915 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20916 sizeof(struct lpfc_mbx_wr_object) - 20917 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20918 20919 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20920 wr_object->u.request.write_offset = *offset; 20921 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20922 wr_object->u.request.object_name[0] = 20923 cpu_to_le32(wr_object->u.request.object_name[0]); 20924 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20925 list_for_each_entry(dmabuf, dmabuf_list, list) { 20926 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20927 break; 20928 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20929 wr_object->u.request.bde[i].addrHigh = 20930 putPaddrHigh(dmabuf->phys); 20931 if (written + SLI4_PAGE_SIZE >= size) { 20932 wr_object->u.request.bde[i].tus.f.bdeSize = 20933 (size - written); 20934 written += (size - written); 20935 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20936 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20937 check_change_status = true; 20938 } else { 20939 wr_object->u.request.bde[i].tus.f.bdeSize = 20940 SLI4_PAGE_SIZE; 20941 written += SLI4_PAGE_SIZE; 20942 } 20943 i++; 20944 } 20945 wr_object->u.request.bde_count = i; 20946 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20947 if (!phba->sli4_hba.intr_enable) 20948 mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20949 else { 20950 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20951 mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20952 } 20953 20954 /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */ 20955 rc = mbox_status; 20956 20957 /* The IOCTL status is embedded in the mailbox subheader. */ 20958 shdr_status = bf_get(lpfc_mbox_hdr_status, 20959 &wr_object->header.cfg_shdr.response); 20960 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20961 &wr_object->header.cfg_shdr.response); 20962 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20963 &wr_object->header.cfg_shdr.response); 20964 if (check_change_status) { 20965 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20966 &wr_object->u.response); 20967 shdr_csf = bf_get(lpfc_wr_object_csf, 20968 &wr_object->u.response); 20969 } 20970 20971 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20972 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20973 "3025 Write Object mailbox failed with " 20974 "status x%x add_status x%x, add_status_2 x%x, " 20975 "mbx status x%x\n", 20976 shdr_status, shdr_add_status, shdr_add_status_2, 20977 rc); 20978 rc = -ENXIO; 20979 *offset = shdr_add_status; 20980 } else { 20981 *offset += wr_object->u.response.actual_write_length; 20982 } 20983 20984 if (rc || check_change_status) 20985 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20986 shdr_add_status_2, shdr_change_status, 20987 shdr_csf); 20988 20989 if (!phba->sli4_hba.intr_enable) 20990 mempool_free(mbox, phba->mbox_mem_pool); 20991 else if (mbox_status != MBX_TIMEOUT) 20992 mempool_free(mbox, phba->mbox_mem_pool); 20993 20994 return rc; 20995 } 20996 20997 /** 20998 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20999 * @vport: pointer to vport data structure. 21000 * 21001 * This function iterate through the mailboxq and clean up all REG_LOGIN 21002 * and REG_VPI mailbox commands associated with the vport. This function 21003 * is called when driver want to restart discovery of the vport due to 21004 * a Clear Virtual Link event. 21005 **/ 21006 void 21007 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 21008 { 21009 struct lpfc_hba *phba = vport->phba; 21010 LPFC_MBOXQ_t *mb, *nextmb; 21011 struct lpfc_nodelist *ndlp; 21012 struct lpfc_nodelist *act_mbx_ndlp = NULL; 21013 LIST_HEAD(mbox_cmd_list); 21014 uint8_t restart_loop; 21015 21016 /* Clean up internally queued mailbox commands with the vport */ 21017 spin_lock_irq(&phba->hbalock); 21018 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 21019 if (mb->vport != vport) 21020 continue; 21021 21022 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21023 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21024 continue; 21025 21026 list_move_tail(&mb->list, &mbox_cmd_list); 21027 } 21028 /* Clean up active mailbox command with the vport */ 21029 mb = phba->sli.mbox_active; 21030 if (mb && (mb->vport == vport)) { 21031 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 21032 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 21033 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21034 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21035 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21036 21037 /* This reference is local to this routine. The 21038 * reference is removed at routine exit. 21039 */ 21040 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 21041 21042 /* Unregister the RPI when mailbox complete */ 21043 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21044 } 21045 } 21046 /* Cleanup any mailbox completions which are not yet processed */ 21047 do { 21048 restart_loop = 0; 21049 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 21050 /* 21051 * If this mailox is already processed or it is 21052 * for another vport ignore it. 21053 */ 21054 if ((mb->vport != vport) || 21055 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 21056 continue; 21057 21058 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21059 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21060 continue; 21061 21062 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21063 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21064 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21065 /* Unregister the RPI when mailbox complete */ 21066 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21067 restart_loop = 1; 21068 spin_unlock_irq(&phba->hbalock); 21069 spin_lock(&ndlp->lock); 21070 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21071 spin_unlock(&ndlp->lock); 21072 spin_lock_irq(&phba->hbalock); 21073 break; 21074 } 21075 } 21076 } while (restart_loop); 21077 21078 spin_unlock_irq(&phba->hbalock); 21079 21080 /* Release the cleaned-up mailbox commands */ 21081 while (!list_empty(&mbox_cmd_list)) { 21082 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 21083 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21084 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21085 mb->ctx_ndlp = NULL; 21086 if (ndlp) { 21087 spin_lock(&ndlp->lock); 21088 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21089 spin_unlock(&ndlp->lock); 21090 lpfc_nlp_put(ndlp); 21091 } 21092 } 21093 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED); 21094 } 21095 21096 /* Release the ndlp with the cleaned-up active mailbox command */ 21097 if (act_mbx_ndlp) { 21098 spin_lock(&act_mbx_ndlp->lock); 21099 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21100 spin_unlock(&act_mbx_ndlp->lock); 21101 lpfc_nlp_put(act_mbx_ndlp); 21102 } 21103 } 21104 21105 /** 21106 * lpfc_drain_txq - Drain the txq 21107 * @phba: Pointer to HBA context object. 21108 * 21109 * This function attempt to submit IOCBs on the txq 21110 * to the adapter. For SLI4 adapters, the txq contains 21111 * ELS IOCBs that have been deferred because the there 21112 * are no SGLs. This congestion can occur with large 21113 * vport counts during node discovery. 21114 **/ 21115 21116 uint32_t 21117 lpfc_drain_txq(struct lpfc_hba *phba) 21118 { 21119 LIST_HEAD(completions); 21120 struct lpfc_sli_ring *pring; 21121 struct lpfc_iocbq *piocbq = NULL; 21122 unsigned long iflags = 0; 21123 char *fail_msg = NULL; 21124 uint32_t txq_cnt = 0; 21125 struct lpfc_queue *wq; 21126 int ret = 0; 21127 21128 if (phba->link_flag & LS_MDS_LOOPBACK) { 21129 /* MDS WQE are posted only to first WQ*/ 21130 wq = phba->sli4_hba.hdwq[0].io_wq; 21131 if (unlikely(!wq)) 21132 return 0; 21133 pring = wq->pring; 21134 } else { 21135 wq = phba->sli4_hba.els_wq; 21136 if (unlikely(!wq)) 21137 return 0; 21138 pring = lpfc_phba_elsring(phba); 21139 } 21140 21141 if (unlikely(!pring) || list_empty(&pring->txq)) 21142 return 0; 21143 21144 spin_lock_irqsave(&pring->ring_lock, iflags); 21145 list_for_each_entry(piocbq, &pring->txq, list) { 21146 txq_cnt++; 21147 } 21148 21149 if (txq_cnt > pring->txq_max) 21150 pring->txq_max = txq_cnt; 21151 21152 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21153 21154 while (!list_empty(&pring->txq)) { 21155 spin_lock_irqsave(&pring->ring_lock, iflags); 21156 21157 piocbq = lpfc_sli_ringtx_get(phba, pring); 21158 if (!piocbq) { 21159 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21160 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21161 "2823 txq empty and txq_cnt is %d\n ", 21162 txq_cnt); 21163 break; 21164 } 21165 txq_cnt--; 21166 21167 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 21168 21169 if (ret && ret != IOCB_BUSY) { 21170 fail_msg = " - Cannot send IO "; 21171 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21172 } 21173 if (fail_msg) { 21174 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 21175 /* Failed means we can't issue and need to cancel */ 21176 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21177 "2822 IOCB failed %s iotag 0x%x " 21178 "xri 0x%x %d flg x%x\n", 21179 fail_msg, piocbq->iotag, 21180 piocbq->sli4_xritag, ret, 21181 piocbq->cmd_flag); 21182 list_add_tail(&piocbq->list, &completions); 21183 fail_msg = NULL; 21184 } 21185 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21186 if (txq_cnt == 0 || ret == IOCB_BUSY) 21187 break; 21188 } 21189 /* Cancel all the IOCBs that cannot be issued */ 21190 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21191 IOERR_SLI_ABORTED); 21192 21193 return txq_cnt; 21194 } 21195 21196 /** 21197 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21198 * @phba: Pointer to HBA context object. 21199 * @pwqeq: Pointer to command WQE. 21200 * @sglq: Pointer to the scatter gather queue object. 21201 * 21202 * This routine converts the bpl or bde that is in the WQE 21203 * to a sgl list for the sli4 hardware. The physical address 21204 * of the bpl/bde is converted back to a virtual address. 21205 * If the WQE contains a BPL then the list of BDE's is 21206 * converted to sli4_sge's. If the WQE contains a single 21207 * BDE then it is converted to a single sli_sge. 21208 * The WQE is still in cpu endianness so the contents of 21209 * the bpl can be used without byte swapping. 21210 * 21211 * Returns valid XRI = Success, NO_XRI = Failure. 21212 */ 21213 static uint16_t 21214 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21215 struct lpfc_sglq *sglq) 21216 { 21217 uint16_t xritag = NO_XRI; 21218 struct ulp_bde64 *bpl = NULL; 21219 struct ulp_bde64 bde; 21220 struct sli4_sge *sgl = NULL; 21221 struct lpfc_dmabuf *dmabuf; 21222 union lpfc_wqe128 *wqe; 21223 int numBdes = 0; 21224 int i = 0; 21225 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21226 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21227 uint32_t cmd; 21228 21229 if (!pwqeq || !sglq) 21230 return xritag; 21231 21232 sgl = (struct sli4_sge *)sglq->sgl; 21233 wqe = &pwqeq->wqe; 21234 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21235 21236 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21237 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21238 return sglq->sli4_xritag; 21239 numBdes = pwqeq->num_bdes; 21240 if (numBdes) { 21241 /* The addrHigh and addrLow fields within the WQE 21242 * have not been byteswapped yet so there is no 21243 * need to swap them back. 21244 */ 21245 if (pwqeq->bpl_dmabuf) 21246 dmabuf = pwqeq->bpl_dmabuf; 21247 else 21248 return xritag; 21249 21250 bpl = (struct ulp_bde64 *)dmabuf->virt; 21251 if (!bpl) 21252 return xritag; 21253 21254 for (i = 0; i < numBdes; i++) { 21255 /* Should already be byte swapped. */ 21256 sgl->addr_hi = bpl->addrHigh; 21257 sgl->addr_lo = bpl->addrLow; 21258 21259 sgl->word2 = le32_to_cpu(sgl->word2); 21260 if ((i+1) == numBdes) 21261 bf_set(lpfc_sli4_sge_last, sgl, 1); 21262 else 21263 bf_set(lpfc_sli4_sge_last, sgl, 0); 21264 /* swap the size field back to the cpu so we 21265 * can assign it to the sgl. 21266 */ 21267 bde.tus.w = le32_to_cpu(bpl->tus.w); 21268 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21269 /* The offsets in the sgl need to be accumulated 21270 * separately for the request and reply lists. 21271 * The request is always first, the reply follows. 21272 */ 21273 switch (cmd) { 21274 case CMD_GEN_REQUEST64_WQE: 21275 /* add up the reply sg entries */ 21276 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21277 inbound++; 21278 /* first inbound? reset the offset */ 21279 if (inbound == 1) 21280 offset = 0; 21281 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21282 bf_set(lpfc_sli4_sge_type, sgl, 21283 LPFC_SGE_TYPE_DATA); 21284 offset += bde.tus.f.bdeSize; 21285 break; 21286 case CMD_FCP_TRSP64_WQE: 21287 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21288 bf_set(lpfc_sli4_sge_type, sgl, 21289 LPFC_SGE_TYPE_DATA); 21290 break; 21291 case CMD_FCP_TSEND64_WQE: 21292 case CMD_FCP_TRECEIVE64_WQE: 21293 bf_set(lpfc_sli4_sge_type, sgl, 21294 bpl->tus.f.bdeFlags); 21295 if (i < 3) 21296 offset = 0; 21297 else 21298 offset += bde.tus.f.bdeSize; 21299 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21300 break; 21301 } 21302 sgl->word2 = cpu_to_le32(sgl->word2); 21303 bpl++; 21304 sgl++; 21305 } 21306 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21307 /* The addrHigh and addrLow fields of the BDE have not 21308 * been byteswapped yet so they need to be swapped 21309 * before putting them in the sgl. 21310 */ 21311 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21312 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21313 sgl->word2 = le32_to_cpu(sgl->word2); 21314 bf_set(lpfc_sli4_sge_last, sgl, 1); 21315 sgl->word2 = cpu_to_le32(sgl->word2); 21316 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21317 } 21318 return sglq->sli4_xritag; 21319 } 21320 21321 /** 21322 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21323 * @phba: Pointer to HBA context object. 21324 * @qp: Pointer to HDW queue. 21325 * @pwqe: Pointer to command WQE. 21326 **/ 21327 int 21328 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21329 struct lpfc_iocbq *pwqe) 21330 { 21331 union lpfc_wqe128 *wqe = &pwqe->wqe; 21332 struct lpfc_async_xchg_ctx *ctxp; 21333 struct lpfc_queue *wq; 21334 struct lpfc_sglq *sglq; 21335 struct lpfc_sli_ring *pring; 21336 unsigned long iflags; 21337 uint32_t ret = 0; 21338 21339 /* NVME_LS and NVME_LS ABTS requests. */ 21340 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 21341 pring = phba->sli4_hba.nvmels_wq->pring; 21342 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21343 qp, wq_access); 21344 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21345 if (!sglq) { 21346 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21347 return WQE_BUSY; 21348 } 21349 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21350 pwqe->sli4_xritag = sglq->sli4_xritag; 21351 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21352 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21353 return WQE_ERROR; 21354 } 21355 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21356 pwqe->sli4_xritag); 21357 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21358 if (ret) { 21359 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21360 return ret; 21361 } 21362 21363 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21364 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21365 21366 lpfc_sli4_poll_eq(qp->hba_eq); 21367 return 0; 21368 } 21369 21370 /* NVME_FCREQ and NVME_ABTS requests */ 21371 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21372 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21373 wq = qp->io_wq; 21374 pring = wq->pring; 21375 21376 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21377 21378 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21379 qp, wq_access); 21380 ret = lpfc_sli4_wq_put(wq, wqe); 21381 if (ret) { 21382 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21383 return ret; 21384 } 21385 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21386 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21387 21388 lpfc_sli4_poll_eq(qp->hba_eq); 21389 return 0; 21390 } 21391 21392 /* NVMET requests */ 21393 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21394 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21395 wq = qp->io_wq; 21396 pring = wq->pring; 21397 21398 ctxp = pwqe->context_un.axchg; 21399 sglq = ctxp->ctxbuf->sglq; 21400 if (pwqe->sli4_xritag == NO_XRI) { 21401 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21402 pwqe->sli4_xritag = sglq->sli4_xritag; 21403 } 21404 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21405 pwqe->sli4_xritag); 21406 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21407 21408 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21409 qp, wq_access); 21410 ret = lpfc_sli4_wq_put(wq, wqe); 21411 if (ret) { 21412 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21413 return ret; 21414 } 21415 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21416 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21417 21418 lpfc_sli4_poll_eq(qp->hba_eq); 21419 return 0; 21420 } 21421 return WQE_ERROR; 21422 } 21423 21424 /** 21425 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21426 * @phba: Pointer to HBA context object. 21427 * @cmdiocb: Pointer to driver command iocb object. 21428 * @cmpl: completion function. 21429 * 21430 * Fill the appropriate fields for the abort WQE and call 21431 * internal routine lpfc_sli4_issue_wqe to send the WQE 21432 * This function is called with hbalock held and no ring_lock held. 21433 * 21434 * RETURNS 0 - SUCCESS 21435 **/ 21436 21437 int 21438 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21439 void *cmpl) 21440 { 21441 struct lpfc_vport *vport = cmdiocb->vport; 21442 struct lpfc_iocbq *abtsiocb = NULL; 21443 union lpfc_wqe128 *abtswqe; 21444 struct lpfc_io_buf *lpfc_cmd; 21445 int retval = IOCB_ERROR; 21446 u16 xritag = cmdiocb->sli4_xritag; 21447 21448 /* 21449 * The scsi command can not be in txq and it is in flight because the 21450 * pCmd is still pointing at the SCSI command we have to abort. There 21451 * is no need to search the txcmplq. Just send an abort to the FW. 21452 */ 21453 21454 abtsiocb = __lpfc_sli_get_iocbq(phba); 21455 if (!abtsiocb) 21456 return WQE_NORESOURCE; 21457 21458 /* Indicate the IO is being aborted by the driver. */ 21459 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21460 21461 abtswqe = &abtsiocb->wqe; 21462 memset(abtswqe, 0, sizeof(*abtswqe)); 21463 21464 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 21465 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21466 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21467 abtswqe->abort_cmd.rsrvd5 = 0; 21468 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21469 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21470 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21471 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21472 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21473 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21474 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21475 21476 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21477 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21478 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21479 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21480 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21481 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21482 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21483 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21484 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21485 abtsiocb->vport = vport; 21486 abtsiocb->cmd_cmpl = cmpl; 21487 21488 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21489 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21490 21491 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21492 "0359 Abort xri x%x, original iotag x%x, " 21493 "abort cmd iotag x%x retval x%x\n", 21494 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21495 21496 if (retval) { 21497 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21498 __lpfc_sli_release_iocbq(phba, abtsiocb); 21499 } 21500 21501 return retval; 21502 } 21503 21504 #ifdef LPFC_MXP_STAT 21505 /** 21506 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21507 * @phba: pointer to lpfc hba data structure. 21508 * @hwqid: belong to which HWQ. 21509 * 21510 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21511 * 15 seconds after a test case is running. 21512 * 21513 * The user should call lpfc_debugfs_multixripools_write before running a test 21514 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21515 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21516 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21517 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21518 **/ 21519 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21520 { 21521 struct lpfc_sli4_hdw_queue *qp; 21522 struct lpfc_multixri_pool *multixri_pool; 21523 struct lpfc_pvt_pool *pvt_pool; 21524 struct lpfc_pbl_pool *pbl_pool; 21525 u32 txcmplq_cnt; 21526 21527 qp = &phba->sli4_hba.hdwq[hwqid]; 21528 multixri_pool = qp->p_multixri_pool; 21529 if (!multixri_pool) 21530 return; 21531 21532 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21533 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21534 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21535 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21536 21537 multixri_pool->stat_pbl_count = pbl_pool->count; 21538 multixri_pool->stat_pvt_count = pvt_pool->count; 21539 multixri_pool->stat_busy_count = txcmplq_cnt; 21540 } 21541 21542 multixri_pool->stat_snapshot_taken++; 21543 } 21544 #endif 21545 21546 /** 21547 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21548 * @phba: pointer to lpfc hba data structure. 21549 * @hwqid: belong to which HWQ. 21550 * 21551 * This routine moves some XRIs from private to public pool when private pool 21552 * is not busy. 21553 **/ 21554 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21555 { 21556 struct lpfc_multixri_pool *multixri_pool; 21557 u32 io_req_count; 21558 u32 prev_io_req_count; 21559 21560 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21561 if (!multixri_pool) 21562 return; 21563 io_req_count = multixri_pool->io_req_count; 21564 prev_io_req_count = multixri_pool->prev_io_req_count; 21565 21566 if (prev_io_req_count != io_req_count) { 21567 /* Private pool is busy */ 21568 multixri_pool->prev_io_req_count = io_req_count; 21569 } else { 21570 /* Private pool is not busy. 21571 * Move XRIs from private to public pool. 21572 */ 21573 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21574 } 21575 } 21576 21577 /** 21578 * lpfc_adjust_high_watermark - Adjust high watermark 21579 * @phba: pointer to lpfc hba data structure. 21580 * @hwqid: belong to which HWQ. 21581 * 21582 * This routine sets high watermark as number of outstanding XRIs, 21583 * but make sure the new value is between xri_limit/2 and xri_limit. 21584 **/ 21585 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21586 { 21587 u32 new_watermark; 21588 u32 watermark_max; 21589 u32 watermark_min; 21590 u32 xri_limit; 21591 u32 txcmplq_cnt; 21592 u32 abts_io_bufs; 21593 struct lpfc_multixri_pool *multixri_pool; 21594 struct lpfc_sli4_hdw_queue *qp; 21595 21596 qp = &phba->sli4_hba.hdwq[hwqid]; 21597 multixri_pool = qp->p_multixri_pool; 21598 if (!multixri_pool) 21599 return; 21600 xri_limit = multixri_pool->xri_limit; 21601 21602 watermark_max = xri_limit; 21603 watermark_min = xri_limit / 2; 21604 21605 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21606 abts_io_bufs = qp->abts_scsi_io_bufs; 21607 abts_io_bufs += qp->abts_nvme_io_bufs; 21608 21609 new_watermark = txcmplq_cnt + abts_io_bufs; 21610 new_watermark = min(watermark_max, new_watermark); 21611 new_watermark = max(watermark_min, new_watermark); 21612 multixri_pool->pvt_pool.high_watermark = new_watermark; 21613 21614 #ifdef LPFC_MXP_STAT 21615 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21616 new_watermark); 21617 #endif 21618 } 21619 21620 /** 21621 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21622 * @phba: pointer to lpfc hba data structure. 21623 * @hwqid: belong to which HWQ. 21624 * 21625 * This routine is called from hearbeat timer when pvt_pool is idle. 21626 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21627 * The first step moves (all - low_watermark) amount of XRIs. 21628 * The second step moves the rest of XRIs. 21629 **/ 21630 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21631 { 21632 struct lpfc_pbl_pool *pbl_pool; 21633 struct lpfc_pvt_pool *pvt_pool; 21634 struct lpfc_sli4_hdw_queue *qp; 21635 struct lpfc_io_buf *lpfc_ncmd; 21636 struct lpfc_io_buf *lpfc_ncmd_next; 21637 unsigned long iflag; 21638 struct list_head tmp_list; 21639 u32 tmp_count; 21640 21641 qp = &phba->sli4_hba.hdwq[hwqid]; 21642 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21643 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21644 tmp_count = 0; 21645 21646 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21647 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21648 21649 if (pvt_pool->count > pvt_pool->low_watermark) { 21650 /* Step 1: move (all - low_watermark) from pvt_pool 21651 * to pbl_pool 21652 */ 21653 21654 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21655 INIT_LIST_HEAD(&tmp_list); 21656 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21657 &pvt_pool->list, list) { 21658 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21659 tmp_count++; 21660 if (tmp_count >= pvt_pool->low_watermark) 21661 break; 21662 } 21663 21664 /* Move all bufs from pvt_pool to pbl_pool */ 21665 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21666 21667 /* Move all bufs from tmp_list to pvt_pool */ 21668 list_splice(&tmp_list, &pvt_pool->list); 21669 21670 pbl_pool->count += (pvt_pool->count - tmp_count); 21671 pvt_pool->count = tmp_count; 21672 } else { 21673 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21674 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21675 pbl_pool->count += pvt_pool->count; 21676 pvt_pool->count = 0; 21677 } 21678 21679 spin_unlock(&pvt_pool->lock); 21680 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21681 } 21682 21683 /** 21684 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21685 * @phba: pointer to lpfc hba data structure 21686 * @qp: pointer to HDW queue 21687 * @pbl_pool: specified public free XRI pool 21688 * @pvt_pool: specified private free XRI pool 21689 * @count: number of XRIs to move 21690 * 21691 * This routine tries to move some free common bufs from the specified pbl_pool 21692 * to the specified pvt_pool. It might move less than count XRIs if there's not 21693 * enough in public pool. 21694 * 21695 * Return: 21696 * true - if XRIs are successfully moved from the specified pbl_pool to the 21697 * specified pvt_pool 21698 * false - if the specified pbl_pool is empty or locked by someone else 21699 **/ 21700 static bool 21701 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21702 struct lpfc_pbl_pool *pbl_pool, 21703 struct lpfc_pvt_pool *pvt_pool, u32 count) 21704 { 21705 struct lpfc_io_buf *lpfc_ncmd; 21706 struct lpfc_io_buf *lpfc_ncmd_next; 21707 unsigned long iflag; 21708 int ret; 21709 21710 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21711 if (ret) { 21712 if (pbl_pool->count) { 21713 /* Move a batch of XRIs from public to private pool */ 21714 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21715 list_for_each_entry_safe(lpfc_ncmd, 21716 lpfc_ncmd_next, 21717 &pbl_pool->list, 21718 list) { 21719 list_move_tail(&lpfc_ncmd->list, 21720 &pvt_pool->list); 21721 pvt_pool->count++; 21722 pbl_pool->count--; 21723 count--; 21724 if (count == 0) 21725 break; 21726 } 21727 21728 spin_unlock(&pvt_pool->lock); 21729 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21730 return true; 21731 } 21732 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21733 } 21734 21735 return false; 21736 } 21737 21738 /** 21739 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21740 * @phba: pointer to lpfc hba data structure. 21741 * @hwqid: belong to which HWQ. 21742 * @count: number of XRIs to move 21743 * 21744 * This routine tries to find some free common bufs in one of public pools with 21745 * Round Robin method. The search always starts from local hwqid, then the next 21746 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21747 * a batch of free common bufs are moved to private pool on hwqid. 21748 * It might move less than count XRIs if there's not enough in public pool. 21749 **/ 21750 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21751 { 21752 struct lpfc_multixri_pool *multixri_pool; 21753 struct lpfc_multixri_pool *next_multixri_pool; 21754 struct lpfc_pvt_pool *pvt_pool; 21755 struct lpfc_pbl_pool *pbl_pool; 21756 struct lpfc_sli4_hdw_queue *qp; 21757 u32 next_hwqid; 21758 u32 hwq_count; 21759 int ret; 21760 21761 qp = &phba->sli4_hba.hdwq[hwqid]; 21762 multixri_pool = qp->p_multixri_pool; 21763 pvt_pool = &multixri_pool->pvt_pool; 21764 pbl_pool = &multixri_pool->pbl_pool; 21765 21766 /* Check if local pbl_pool is available */ 21767 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21768 if (ret) { 21769 #ifdef LPFC_MXP_STAT 21770 multixri_pool->local_pbl_hit_count++; 21771 #endif 21772 return; 21773 } 21774 21775 hwq_count = phba->cfg_hdw_queue; 21776 21777 /* Get the next hwqid which was found last time */ 21778 next_hwqid = multixri_pool->rrb_next_hwqid; 21779 21780 do { 21781 /* Go to next hwq */ 21782 next_hwqid = (next_hwqid + 1) % hwq_count; 21783 21784 next_multixri_pool = 21785 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21786 pbl_pool = &next_multixri_pool->pbl_pool; 21787 21788 /* Check if the public free xri pool is available */ 21789 ret = _lpfc_move_xri_pbl_to_pvt( 21790 phba, qp, pbl_pool, pvt_pool, count); 21791 21792 /* Exit while-loop if success or all hwqid are checked */ 21793 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21794 21795 /* Starting point for the next time */ 21796 multixri_pool->rrb_next_hwqid = next_hwqid; 21797 21798 if (!ret) { 21799 /* stats: all public pools are empty*/ 21800 multixri_pool->pbl_empty_count++; 21801 } 21802 21803 #ifdef LPFC_MXP_STAT 21804 if (ret) { 21805 if (next_hwqid == hwqid) 21806 multixri_pool->local_pbl_hit_count++; 21807 else 21808 multixri_pool->other_pbl_hit_count++; 21809 } 21810 #endif 21811 } 21812 21813 /** 21814 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21815 * @phba: pointer to lpfc hba data structure. 21816 * @hwqid: belong to which HWQ. 21817 * 21818 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21819 * low watermark. 21820 **/ 21821 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21822 { 21823 struct lpfc_multixri_pool *multixri_pool; 21824 struct lpfc_pvt_pool *pvt_pool; 21825 21826 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21827 pvt_pool = &multixri_pool->pvt_pool; 21828 21829 if (pvt_pool->count < pvt_pool->low_watermark) 21830 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21831 } 21832 21833 /** 21834 * lpfc_release_io_buf - Return one IO buf back to free pool 21835 * @phba: pointer to lpfc hba data structure. 21836 * @lpfc_ncmd: IO buf to be returned. 21837 * @qp: belong to which HWQ. 21838 * 21839 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21840 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21841 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21842 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21843 * lpfc_io_buf_list_put. 21844 **/ 21845 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21846 struct lpfc_sli4_hdw_queue *qp) 21847 { 21848 unsigned long iflag; 21849 struct lpfc_pbl_pool *pbl_pool; 21850 struct lpfc_pvt_pool *pvt_pool; 21851 struct lpfc_epd_pool *epd_pool; 21852 u32 txcmplq_cnt; 21853 u32 xri_owned; 21854 u32 xri_limit; 21855 u32 abts_io_bufs; 21856 21857 /* MUST zero fields if buffer is reused by another protocol */ 21858 lpfc_ncmd->nvmeCmd = NULL; 21859 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21860 21861 if (phba->cfg_xpsgl && !phba->nvmet_support && 21862 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21863 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21864 21865 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21866 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21867 21868 if (phba->cfg_xri_rebalancing) { 21869 if (lpfc_ncmd->expedite) { 21870 /* Return to expedite pool */ 21871 epd_pool = &phba->epd_pool; 21872 spin_lock_irqsave(&epd_pool->lock, iflag); 21873 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21874 epd_pool->count++; 21875 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21876 return; 21877 } 21878 21879 /* Avoid invalid access if an IO sneaks in and is being rejected 21880 * just _after_ xri pools are destroyed in lpfc_offline. 21881 * Nothing much can be done at this point. 21882 */ 21883 if (!qp->p_multixri_pool) 21884 return; 21885 21886 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21887 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21888 21889 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21890 abts_io_bufs = qp->abts_scsi_io_bufs; 21891 abts_io_bufs += qp->abts_nvme_io_bufs; 21892 21893 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21894 xri_limit = qp->p_multixri_pool->xri_limit; 21895 21896 #ifdef LPFC_MXP_STAT 21897 if (xri_owned <= xri_limit) 21898 qp->p_multixri_pool->below_limit_count++; 21899 else 21900 qp->p_multixri_pool->above_limit_count++; 21901 #endif 21902 21903 /* XRI goes to either public or private free xri pool 21904 * based on watermark and xri_limit 21905 */ 21906 if ((pvt_pool->count < pvt_pool->low_watermark) || 21907 (xri_owned < xri_limit && 21908 pvt_pool->count < pvt_pool->high_watermark)) { 21909 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21910 qp, free_pvt_pool); 21911 list_add_tail(&lpfc_ncmd->list, 21912 &pvt_pool->list); 21913 pvt_pool->count++; 21914 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21915 } else { 21916 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21917 qp, free_pub_pool); 21918 list_add_tail(&lpfc_ncmd->list, 21919 &pbl_pool->list); 21920 pbl_pool->count++; 21921 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21922 } 21923 } else { 21924 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21925 qp, free_xri); 21926 list_add_tail(&lpfc_ncmd->list, 21927 &qp->lpfc_io_buf_list_put); 21928 qp->put_io_bufs++; 21929 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21930 iflag); 21931 } 21932 } 21933 21934 /** 21935 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21936 * @phba: pointer to lpfc hba data structure. 21937 * @qp: pointer to HDW queue 21938 * @pvt_pool: pointer to private pool data structure. 21939 * @ndlp: pointer to lpfc nodelist data structure. 21940 * 21941 * This routine tries to get one free IO buf from private pool. 21942 * 21943 * Return: 21944 * pointer to one free IO buf - if private pool is not empty 21945 * NULL - if private pool is empty 21946 **/ 21947 static struct lpfc_io_buf * 21948 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21949 struct lpfc_sli4_hdw_queue *qp, 21950 struct lpfc_pvt_pool *pvt_pool, 21951 struct lpfc_nodelist *ndlp) 21952 { 21953 struct lpfc_io_buf *lpfc_ncmd; 21954 struct lpfc_io_buf *lpfc_ncmd_next; 21955 unsigned long iflag; 21956 21957 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21958 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21959 &pvt_pool->list, list) { 21960 if (lpfc_test_rrq_active( 21961 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21962 continue; 21963 list_del(&lpfc_ncmd->list); 21964 pvt_pool->count--; 21965 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21966 return lpfc_ncmd; 21967 } 21968 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21969 21970 return NULL; 21971 } 21972 21973 /** 21974 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21975 * @phba: pointer to lpfc hba data structure. 21976 * 21977 * This routine tries to get one free IO buf from expedite pool. 21978 * 21979 * Return: 21980 * pointer to one free IO buf - if expedite pool is not empty 21981 * NULL - if expedite pool is empty 21982 **/ 21983 static struct lpfc_io_buf * 21984 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21985 { 21986 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter; 21987 struct lpfc_io_buf *lpfc_ncmd_next; 21988 unsigned long iflag; 21989 struct lpfc_epd_pool *epd_pool; 21990 21991 epd_pool = &phba->epd_pool; 21992 21993 spin_lock_irqsave(&epd_pool->lock, iflag); 21994 if (epd_pool->count > 0) { 21995 list_for_each_entry_safe(iter, lpfc_ncmd_next, 21996 &epd_pool->list, list) { 21997 list_del(&iter->list); 21998 epd_pool->count--; 21999 lpfc_ncmd = iter; 22000 break; 22001 } 22002 } 22003 spin_unlock_irqrestore(&epd_pool->lock, iflag); 22004 22005 return lpfc_ncmd; 22006 } 22007 22008 /** 22009 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 22010 * @phba: pointer to lpfc hba data structure. 22011 * @ndlp: pointer to lpfc nodelist data structure. 22012 * @hwqid: belong to which HWQ 22013 * @expedite: 1 means this request is urgent. 22014 * 22015 * This routine will do the following actions and then return a pointer to 22016 * one free IO buf. 22017 * 22018 * 1. If private free xri count is empty, move some XRIs from public to 22019 * private pool. 22020 * 2. Get one XRI from private free xri pool. 22021 * 3. If we fail to get one from pvt_pool and this is an expedite request, 22022 * get one free xri from expedite pool. 22023 * 22024 * Note: ndlp is only used on SCSI side for RRQ testing. 22025 * The caller should pass NULL for ndlp on NVME side. 22026 * 22027 * Return: 22028 * pointer to one free IO buf - if private pool is not empty 22029 * NULL - if private pool is empty 22030 **/ 22031 static struct lpfc_io_buf * 22032 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 22033 struct lpfc_nodelist *ndlp, 22034 int hwqid, int expedite) 22035 { 22036 struct lpfc_sli4_hdw_queue *qp; 22037 struct lpfc_multixri_pool *multixri_pool; 22038 struct lpfc_pvt_pool *pvt_pool; 22039 struct lpfc_io_buf *lpfc_ncmd; 22040 22041 qp = &phba->sli4_hba.hdwq[hwqid]; 22042 lpfc_ncmd = NULL; 22043 if (!qp) { 22044 lpfc_printf_log(phba, KERN_INFO, 22045 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22046 "5556 NULL qp for hwqid x%x\n", hwqid); 22047 return lpfc_ncmd; 22048 } 22049 multixri_pool = qp->p_multixri_pool; 22050 if (!multixri_pool) { 22051 lpfc_printf_log(phba, KERN_INFO, 22052 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22053 "5557 NULL multixri for hwqid x%x\n", hwqid); 22054 return lpfc_ncmd; 22055 } 22056 pvt_pool = &multixri_pool->pvt_pool; 22057 if (!pvt_pool) { 22058 lpfc_printf_log(phba, KERN_INFO, 22059 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22060 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 22061 return lpfc_ncmd; 22062 } 22063 multixri_pool->io_req_count++; 22064 22065 /* If pvt_pool is empty, move some XRIs from public to private pool */ 22066 if (pvt_pool->count == 0) 22067 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 22068 22069 /* Get one XRI from private free xri pool */ 22070 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 22071 22072 if (lpfc_ncmd) { 22073 lpfc_ncmd->hdwq = qp; 22074 lpfc_ncmd->hdwq_no = hwqid; 22075 } else if (expedite) { 22076 /* If we fail to get one from pvt_pool and this is an expedite 22077 * request, get one free xri from expedite pool. 22078 */ 22079 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 22080 } 22081 22082 return lpfc_ncmd; 22083 } 22084 22085 static inline struct lpfc_io_buf * 22086 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 22087 { 22088 struct lpfc_sli4_hdw_queue *qp; 22089 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 22090 22091 qp = &phba->sli4_hba.hdwq[idx]; 22092 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22093 &qp->lpfc_io_buf_list_get, list) { 22094 if (lpfc_test_rrq_active(phba, ndlp, 22095 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22096 continue; 22097 22098 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22099 continue; 22100 22101 list_del_init(&lpfc_cmd->list); 22102 qp->get_io_bufs--; 22103 lpfc_cmd->hdwq = qp; 22104 lpfc_cmd->hdwq_no = idx; 22105 return lpfc_cmd; 22106 } 22107 return NULL; 22108 } 22109 22110 /** 22111 * lpfc_get_io_buf - Get one IO buffer from free pool 22112 * @phba: The HBA for which this call is being executed. 22113 * @ndlp: pointer to lpfc nodelist data structure. 22114 * @hwqid: belong to which HWQ 22115 * @expedite: 1 means this request is urgent. 22116 * 22117 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22118 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22119 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22120 * 22121 * Note: ndlp is only used on SCSI side for RRQ testing. 22122 * The caller should pass NULL for ndlp on NVME side. 22123 * 22124 * Return codes: 22125 * NULL - Error 22126 * Pointer to lpfc_io_buf - Success 22127 **/ 22128 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22129 struct lpfc_nodelist *ndlp, 22130 u32 hwqid, int expedite) 22131 { 22132 struct lpfc_sli4_hdw_queue *qp; 22133 unsigned long iflag; 22134 struct lpfc_io_buf *lpfc_cmd; 22135 22136 qp = &phba->sli4_hba.hdwq[hwqid]; 22137 lpfc_cmd = NULL; 22138 if (!qp) { 22139 lpfc_printf_log(phba, KERN_WARNING, 22140 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22141 "5555 NULL qp for hwqid x%x\n", hwqid); 22142 return lpfc_cmd; 22143 } 22144 22145 if (phba->cfg_xri_rebalancing) 22146 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22147 phba, ndlp, hwqid, expedite); 22148 else { 22149 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22150 qp, alloc_xri_get); 22151 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22152 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22153 if (!lpfc_cmd) { 22154 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22155 qp, alloc_xri_put); 22156 list_splice(&qp->lpfc_io_buf_list_put, 22157 &qp->lpfc_io_buf_list_get); 22158 qp->get_io_bufs += qp->put_io_bufs; 22159 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22160 qp->put_io_bufs = 0; 22161 spin_unlock(&qp->io_buf_list_put_lock); 22162 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22163 expedite) 22164 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22165 } 22166 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22167 } 22168 22169 return lpfc_cmd; 22170 } 22171 22172 /** 22173 * lpfc_read_object - Retrieve object data from HBA 22174 * @phba: The HBA for which this call is being executed. 22175 * @rdobject: Pathname of object data we want to read. 22176 * @datap: Pointer to where data will be copied to. 22177 * @datasz: size of data area 22178 * 22179 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22180 * The data will be truncated if datasz is not large enough. 22181 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22182 * Returns the actual bytes read from the object. 22183 */ 22184 int 22185 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22186 uint32_t datasz) 22187 { 22188 struct lpfc_mbx_read_object *read_object; 22189 LPFC_MBOXQ_t *mbox; 22190 int rc, length, eof, j, byte_cnt = 0; 22191 uint32_t shdr_status, shdr_add_status; 22192 union lpfc_sli4_cfg_shdr *shdr; 22193 struct lpfc_dmabuf *pcmd; 22194 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22195 22196 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22197 if (!mbox) 22198 return -ENOMEM; 22199 length = (sizeof(struct lpfc_mbx_read_object) - 22200 sizeof(struct lpfc_sli4_cfg_mhdr)); 22201 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22202 LPFC_MBOX_OPCODE_READ_OBJECT, 22203 length, LPFC_SLI4_MBX_EMBED); 22204 read_object = &mbox->u.mqe.un.read_object; 22205 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22206 22207 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22208 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22209 read_object->u.request.rd_object_offset = 0; 22210 read_object->u.request.rd_object_cnt = 1; 22211 22212 memset((void *)read_object->u.request.rd_object_name, 0, 22213 LPFC_OBJ_NAME_SZ); 22214 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22215 for (j = 0; j < strlen(rdobject); j++) 22216 read_object->u.request.rd_object_name[j] = 22217 cpu_to_le32(rd_object_name[j]); 22218 22219 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22220 if (pcmd) 22221 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22222 if (!pcmd || !pcmd->virt) { 22223 kfree(pcmd); 22224 mempool_free(mbox, phba->mbox_mem_pool); 22225 return -ENOMEM; 22226 } 22227 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22228 read_object->u.request.rd_object_hbuf[0].pa_lo = 22229 putPaddrLow(pcmd->phys); 22230 read_object->u.request.rd_object_hbuf[0].pa_hi = 22231 putPaddrHigh(pcmd->phys); 22232 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22233 22234 mbox->vport = phba->pport; 22235 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22236 mbox->ctx_ndlp = NULL; 22237 22238 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22239 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22240 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22241 22242 if (shdr_status == STATUS_FAILED && 22243 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22244 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22245 "4674 No port cfg file in FW.\n"); 22246 byte_cnt = -ENOENT; 22247 } else if (shdr_status || shdr_add_status || rc) { 22248 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22249 "2625 READ_OBJECT mailbox failed with " 22250 "status x%x add_status x%x, mbx status x%x\n", 22251 shdr_status, shdr_add_status, rc); 22252 byte_cnt = -ENXIO; 22253 } else { 22254 /* Success */ 22255 length = read_object->u.response.rd_object_actual_rlen; 22256 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22257 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22258 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22259 length, datasz, eof); 22260 22261 /* Detect the port config file exists but is empty */ 22262 if (!length && eof) { 22263 byte_cnt = 0; 22264 goto exit; 22265 } 22266 22267 byte_cnt = length; 22268 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22269 } 22270 22271 exit: 22272 /* This is an embedded SLI4 mailbox with an external buffer allocated. 22273 * Free the pcmd and then cleanup with the correct routine. 22274 */ 22275 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22276 kfree(pcmd); 22277 lpfc_sli4_mbox_cmd_free(phba, mbox); 22278 return byte_cnt; 22279 } 22280 22281 /** 22282 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22283 * @phba: The HBA for which this call is being executed. 22284 * @lpfc_buf: IO buf structure to append the SGL chunk 22285 * 22286 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22287 * and will allocate an SGL chunk if the pool is empty. 22288 * 22289 * Return codes: 22290 * NULL - Error 22291 * Pointer to sli4_hybrid_sgl - Success 22292 **/ 22293 struct sli4_hybrid_sgl * 22294 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22295 { 22296 struct sli4_hybrid_sgl *list_entry = NULL; 22297 struct sli4_hybrid_sgl *tmp = NULL; 22298 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22299 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22300 struct list_head *buf_list = &hdwq->sgl_list; 22301 unsigned long iflags; 22302 22303 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22304 22305 if (likely(!list_empty(buf_list))) { 22306 /* break off 1 chunk from the sgl_list */ 22307 list_for_each_entry_safe(list_entry, tmp, 22308 buf_list, list_node) { 22309 list_move_tail(&list_entry->list_node, 22310 &lpfc_buf->dma_sgl_xtra_list); 22311 break; 22312 } 22313 } else { 22314 /* allocate more */ 22315 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22316 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22317 cpu_to_node(hdwq->io_wq->chann)); 22318 if (!tmp) { 22319 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22320 "8353 error kmalloc memory for HDWQ " 22321 "%d %s\n", 22322 lpfc_buf->hdwq_no, __func__); 22323 return NULL; 22324 } 22325 22326 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22327 GFP_ATOMIC, &tmp->dma_phys_sgl); 22328 if (!tmp->dma_sgl) { 22329 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22330 "8354 error pool_alloc memory for HDWQ " 22331 "%d %s\n", 22332 lpfc_buf->hdwq_no, __func__); 22333 kfree(tmp); 22334 return NULL; 22335 } 22336 22337 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22338 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22339 } 22340 22341 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22342 struct sli4_hybrid_sgl, 22343 list_node); 22344 22345 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22346 22347 return allocated_sgl; 22348 } 22349 22350 /** 22351 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22352 * @phba: The HBA for which this call is being executed. 22353 * @lpfc_buf: IO buf structure with the SGL chunk 22354 * 22355 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22356 * 22357 * Return codes: 22358 * 0 - Success 22359 * -EINVAL - Error 22360 **/ 22361 int 22362 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22363 { 22364 int rc = 0; 22365 struct sli4_hybrid_sgl *list_entry = NULL; 22366 struct sli4_hybrid_sgl *tmp = NULL; 22367 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22368 struct list_head *buf_list = &hdwq->sgl_list; 22369 unsigned long iflags; 22370 22371 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22372 22373 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22374 list_for_each_entry_safe(list_entry, tmp, 22375 &lpfc_buf->dma_sgl_xtra_list, 22376 list_node) { 22377 list_move_tail(&list_entry->list_node, 22378 buf_list); 22379 } 22380 } else { 22381 rc = -EINVAL; 22382 } 22383 22384 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22385 return rc; 22386 } 22387 22388 /** 22389 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22390 * @phba: phba object 22391 * @hdwq: hdwq to cleanup sgl buff resources on 22392 * 22393 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22394 * 22395 * Return codes: 22396 * None 22397 **/ 22398 void 22399 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22400 struct lpfc_sli4_hdw_queue *hdwq) 22401 { 22402 struct list_head *buf_list = &hdwq->sgl_list; 22403 struct sli4_hybrid_sgl *list_entry = NULL; 22404 struct sli4_hybrid_sgl *tmp = NULL; 22405 unsigned long iflags; 22406 22407 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22408 22409 /* Free sgl pool */ 22410 list_for_each_entry_safe(list_entry, tmp, 22411 buf_list, list_node) { 22412 list_del(&list_entry->list_node); 22413 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22414 list_entry->dma_sgl, 22415 list_entry->dma_phys_sgl); 22416 kfree(list_entry); 22417 } 22418 22419 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22420 } 22421 22422 /** 22423 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22424 * @phba: The HBA for which this call is being executed. 22425 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22426 * 22427 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22428 * and will allocate an CMD/RSP buffer if the pool is empty. 22429 * 22430 * Return codes: 22431 * NULL - Error 22432 * Pointer to fcp_cmd_rsp_buf - Success 22433 **/ 22434 struct fcp_cmd_rsp_buf * 22435 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22436 struct lpfc_io_buf *lpfc_buf) 22437 { 22438 struct fcp_cmd_rsp_buf *list_entry = NULL; 22439 struct fcp_cmd_rsp_buf *tmp = NULL; 22440 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22441 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22442 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22443 unsigned long iflags; 22444 22445 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22446 22447 if (likely(!list_empty(buf_list))) { 22448 /* break off 1 chunk from the list */ 22449 list_for_each_entry_safe(list_entry, tmp, 22450 buf_list, 22451 list_node) { 22452 list_move_tail(&list_entry->list_node, 22453 &lpfc_buf->dma_cmd_rsp_list); 22454 break; 22455 } 22456 } else { 22457 /* allocate more */ 22458 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22459 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22460 cpu_to_node(hdwq->io_wq->chann)); 22461 if (!tmp) { 22462 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22463 "8355 error kmalloc memory for HDWQ " 22464 "%d %s\n", 22465 lpfc_buf->hdwq_no, __func__); 22466 return NULL; 22467 } 22468 22469 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool, 22470 GFP_ATOMIC, 22471 &tmp->fcp_cmd_rsp_dma_handle); 22472 22473 if (!tmp->fcp_cmnd) { 22474 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22475 "8356 error pool_alloc memory for HDWQ " 22476 "%d %s\n", 22477 lpfc_buf->hdwq_no, __func__); 22478 kfree(tmp); 22479 return NULL; 22480 } 22481 22482 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22483 sizeof(struct fcp_cmnd)); 22484 22485 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22486 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22487 } 22488 22489 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22490 struct fcp_cmd_rsp_buf, 22491 list_node); 22492 22493 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22494 22495 return allocated_buf; 22496 } 22497 22498 /** 22499 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22500 * @phba: The HBA for which this call is being executed. 22501 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22502 * 22503 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22504 * 22505 * Return codes: 22506 * 0 - Success 22507 * -EINVAL - Error 22508 **/ 22509 int 22510 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22511 struct lpfc_io_buf *lpfc_buf) 22512 { 22513 int rc = 0; 22514 struct fcp_cmd_rsp_buf *list_entry = NULL; 22515 struct fcp_cmd_rsp_buf *tmp = NULL; 22516 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22517 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22518 unsigned long iflags; 22519 22520 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22521 22522 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22523 list_for_each_entry_safe(list_entry, tmp, 22524 &lpfc_buf->dma_cmd_rsp_list, 22525 list_node) { 22526 list_move_tail(&list_entry->list_node, 22527 buf_list); 22528 } 22529 } else { 22530 rc = -EINVAL; 22531 } 22532 22533 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22534 return rc; 22535 } 22536 22537 /** 22538 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22539 * @phba: phba object 22540 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22541 * 22542 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22543 * 22544 * Return codes: 22545 * None 22546 **/ 22547 void 22548 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22549 struct lpfc_sli4_hdw_queue *hdwq) 22550 { 22551 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22552 struct fcp_cmd_rsp_buf *list_entry = NULL; 22553 struct fcp_cmd_rsp_buf *tmp = NULL; 22554 unsigned long iflags; 22555 22556 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22557 22558 /* Free cmd_rsp buf pool */ 22559 list_for_each_entry_safe(list_entry, tmp, 22560 buf_list, 22561 list_node) { 22562 list_del(&list_entry->list_node); 22563 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22564 list_entry->fcp_cmnd, 22565 list_entry->fcp_cmd_rsp_dma_handle); 22566 kfree(list_entry); 22567 } 22568 22569 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22570 } 22571 22572 /** 22573 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22574 * @phba: phba object 22575 * @job: job entry of the command to be posted. 22576 * 22577 * Fill the common fields of the wqe for each of the command. 22578 * 22579 * Return codes: 22580 * None 22581 **/ 22582 void 22583 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22584 { 22585 u8 cmnd; 22586 u32 *pcmd; 22587 u32 if_type = 0; 22588 u32 fip, abort_tag; 22589 struct lpfc_nodelist *ndlp = NULL; 22590 union lpfc_wqe128 *wqe = &job->wqe; 22591 u8 command_type = ELS_COMMAND_NON_FIP; 22592 22593 fip = phba->hba_flag & HBA_FIP_SUPPORT; 22594 /* The fcp commands will set command type */ 22595 if (job->cmd_flag & LPFC_IO_FCP) 22596 command_type = FCP_COMMAND; 22597 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22598 command_type = ELS_COMMAND_FIP; 22599 else 22600 command_type = ELS_COMMAND_NON_FIP; 22601 22602 abort_tag = job->iotag; 22603 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22604 22605 switch (cmnd) { 22606 case CMD_ELS_REQUEST64_WQE: 22607 ndlp = job->ndlp; 22608 22609 if_type = bf_get(lpfc_sli_intf_if_type, 22610 &phba->sli4_hba.sli_intf); 22611 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22612 pcmd = (u32 *)job->cmd_dmabuf->virt; 22613 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22614 *pcmd == ELS_CMD_SCR || 22615 *pcmd == ELS_CMD_RDF || 22616 *pcmd == ELS_CMD_EDC || 22617 *pcmd == ELS_CMD_RSCN_XMT || 22618 *pcmd == ELS_CMD_FDISC || 22619 *pcmd == ELS_CMD_LOGO || 22620 *pcmd == ELS_CMD_QFPA || 22621 *pcmd == ELS_CMD_UVEM || 22622 *pcmd == ELS_CMD_PLOGI)) { 22623 bf_set(els_req64_sp, &wqe->els_req, 1); 22624 bf_set(els_req64_sid, &wqe->els_req, 22625 job->vport->fc_myDID); 22626 22627 if ((*pcmd == ELS_CMD_FLOGI) && 22628 !(phba->fc_topology == 22629 LPFC_TOPOLOGY_LOOP)) 22630 bf_set(els_req64_sid, &wqe->els_req, 0); 22631 22632 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22633 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22634 phba->vpi_ids[job->vport->vpi]); 22635 } else if (pcmd) { 22636 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22637 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22638 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22639 } 22640 } 22641 22642 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22643 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22644 22645 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22646 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22647 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22648 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22649 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22650 break; 22651 case CMD_XMIT_ELS_RSP64_WQE: 22652 ndlp = job->ndlp; 22653 22654 /* word4 */ 22655 wqe->xmit_els_rsp.word4 = 0; 22656 22657 if_type = bf_get(lpfc_sli_intf_if_type, 22658 &phba->sli4_hba.sli_intf); 22659 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22660 if (job->vport->fc_flag & FC_PT2PT) { 22661 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22662 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22663 job->vport->fc_myDID); 22664 if (job->vport->fc_myDID == Fabric_DID) { 22665 bf_set(wqe_els_did, 22666 &wqe->xmit_els_rsp.wqe_dest, 0); 22667 } 22668 } 22669 } 22670 22671 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22672 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22673 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22674 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22675 LPFC_WQE_LENLOC_WORD3); 22676 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22677 22678 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22679 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22680 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22681 job->vport->fc_myDID); 22682 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22683 } 22684 22685 if (phba->sli_rev == LPFC_SLI_REV4) { 22686 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22687 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22688 22689 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22690 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22691 phba->vpi_ids[job->vport->vpi]); 22692 } 22693 command_type = OTHER_COMMAND; 22694 break; 22695 case CMD_GEN_REQUEST64_WQE: 22696 /* Word 10 */ 22697 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22698 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22699 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22700 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22701 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22702 command_type = OTHER_COMMAND; 22703 break; 22704 case CMD_XMIT_SEQUENCE64_WQE: 22705 if (phba->link_flag & LS_LOOPBACK_MODE) 22706 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22707 22708 wqe->xmit_sequence.rsvd3 = 0; 22709 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22710 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22711 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22712 LPFC_WQE_IOD_WRITE); 22713 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22714 LPFC_WQE_LENLOC_WORD12); 22715 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22716 command_type = OTHER_COMMAND; 22717 break; 22718 case CMD_XMIT_BLS_RSP64_WQE: 22719 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22720 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22721 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22722 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22723 phba->vpi_ids[phba->pport->vpi]); 22724 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22725 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22726 LPFC_WQE_LENLOC_NONE); 22727 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22728 command_type = OTHER_COMMAND; 22729 break; 22730 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22731 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22732 case CMD_SEND_FRAME: /* mds loopback */ 22733 /* cases already formatted for sli4 wqe - no chgs necessary */ 22734 return; 22735 default: 22736 dump_stack(); 22737 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22738 "6207 Invalid command 0x%x\n", 22739 cmnd); 22740 break; 22741 } 22742 22743 wqe->generic.wqe_com.abort_tag = abort_tag; 22744 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22745 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22746 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22747 } 22748