xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_sli.c (revision cbdf59ad)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2019 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #ifdef CONFIG_X86
39 #include <asm/set_memory.h>
40 #endif
41 
42 #include <linux/nvme-fc-driver.h>
43 
44 #include "lpfc_hw4.h"
45 #include "lpfc_hw.h"
46 #include "lpfc_sli.h"
47 #include "lpfc_sli4.h"
48 #include "lpfc_nl.h"
49 #include "lpfc_disc.h"
50 #include "lpfc.h"
51 #include "lpfc_scsi.h"
52 #include "lpfc_nvme.h"
53 #include "lpfc_nvmet.h"
54 #include "lpfc_crtn.h"
55 #include "lpfc_logmsg.h"
56 #include "lpfc_compat.h"
57 #include "lpfc_debugfs.h"
58 #include "lpfc_vport.h"
59 #include "lpfc_version.h"
60 
61 /* There are only four IOCB completion types. */
62 typedef enum _lpfc_iocb_type {
63 	LPFC_UNKNOWN_IOCB,
64 	LPFC_UNSOL_IOCB,
65 	LPFC_SOL_IOCB,
66 	LPFC_ABORT_IOCB
67 } lpfc_iocb_type;
68 
69 
70 /* Provide function prototypes local to this module. */
71 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 				  uint32_t);
73 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
74 			      uint8_t *, uint32_t *);
75 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
76 							 struct lpfc_iocbq *);
77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
78 				      struct hbq_dmabuf *);
79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
80 					  struct hbq_dmabuf *dmabuf);
81 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
82 				   struct lpfc_queue *cq, struct lpfc_cqe *cqe);
83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
84 				       int);
85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
86 				     struct lpfc_queue *eq,
87 				     struct lpfc_eqe *eqe);
88 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
89 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
90 
91 static IOCB_t *
92 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
93 {
94 	return &iocbq->iocb;
95 }
96 
97 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
98 /**
99  * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
100  * @srcp: Source memory pointer.
101  * @destp: Destination memory pointer.
102  * @cnt: Number of words required to be copied.
103  *       Must be a multiple of sizeof(uint64_t)
104  *
105  * This function is used for copying data between driver memory
106  * and the SLI WQ. This function also changes the endianness
107  * of each word if native endianness is different from SLI
108  * endianness. This function can be called with or without
109  * lock.
110  **/
111 static void
112 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
113 {
114 	uint64_t *src = srcp;
115 	uint64_t *dest = destp;
116 	int i;
117 
118 	for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
119 		*dest++ = *src++;
120 }
121 #else
122 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
123 #endif
124 
125 /**
126  * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
127  * @q: The Work Queue to operate on.
128  * @wqe: The work Queue Entry to put on the Work queue.
129  *
130  * This routine will copy the contents of @wqe to the next available entry on
131  * the @q. This function will then ring the Work Queue Doorbell to signal the
132  * HBA to start processing the Work Queue Entry. This function returns 0 if
133  * successful. If no entries are available on @q then this function will return
134  * -ENOMEM.
135  * The caller is expected to hold the hbalock when calling this routine.
136  **/
137 static int
138 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
139 {
140 	union lpfc_wqe *temp_wqe;
141 	struct lpfc_register doorbell;
142 	uint32_t host_index;
143 	uint32_t idx;
144 	uint32_t i = 0;
145 	uint8_t *tmp;
146 	u32 if_type;
147 
148 	/* sanity check on queue memory */
149 	if (unlikely(!q))
150 		return -ENOMEM;
151 	temp_wqe = lpfc_sli4_qe(q, q->host_index);
152 
153 	/* If the host has not yet processed the next entry then we are done */
154 	idx = ((q->host_index + 1) % q->entry_count);
155 	if (idx == q->hba_index) {
156 		q->WQ_overflow++;
157 		return -EBUSY;
158 	}
159 	q->WQ_posted++;
160 	/* set consumption flag every once in a while */
161 	if (!((q->host_index + 1) % q->notify_interval))
162 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
163 	else
164 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
165 	if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
166 		bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
167 	lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
168 	if (q->dpp_enable && q->phba->cfg_enable_dpp) {
169 		/* write to DPP aperture taking advatage of Combined Writes */
170 		tmp = (uint8_t *)temp_wqe;
171 #ifdef __raw_writeq
172 		for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
173 			__raw_writeq(*((uint64_t *)(tmp + i)),
174 					q->dpp_regaddr + i);
175 #else
176 		for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
177 			__raw_writel(*((uint32_t *)(tmp + i)),
178 					q->dpp_regaddr + i);
179 #endif
180 	}
181 	/* ensure WQE bcopy and DPP flushed before doorbell write */
182 	wmb();
183 
184 	/* Update the host index before invoking device */
185 	host_index = q->host_index;
186 
187 	q->host_index = idx;
188 
189 	/* Ring Doorbell */
190 	doorbell.word0 = 0;
191 	if (q->db_format == LPFC_DB_LIST_FORMAT) {
192 		if (q->dpp_enable && q->phba->cfg_enable_dpp) {
193 			bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
194 			bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
195 			bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
196 			    q->dpp_id);
197 			bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
198 			    q->queue_id);
199 		} else {
200 			bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
201 			bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
202 
203 			/* Leave bits <23:16> clear for if_type 6 dpp */
204 			if_type = bf_get(lpfc_sli_intf_if_type,
205 					 &q->phba->sli4_hba.sli_intf);
206 			if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
207 				bf_set(lpfc_wq_db_list_fm_index, &doorbell,
208 				       host_index);
209 		}
210 	} else if (q->db_format == LPFC_DB_RING_FORMAT) {
211 		bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
212 		bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
213 	} else {
214 		return -EINVAL;
215 	}
216 	writel(doorbell.word0, q->db_regaddr);
217 
218 	return 0;
219 }
220 
221 /**
222  * lpfc_sli4_wq_release - Updates internal hba index for WQ
223  * @q: The Work Queue to operate on.
224  * @index: The index to advance the hba index to.
225  *
226  * This routine will update the HBA index of a queue to reflect consumption of
227  * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
228  * an entry the host calls this function to update the queue's internal
229  * pointers. This routine returns the number of entries that were consumed by
230  * the HBA.
231  **/
232 static uint32_t
233 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
234 {
235 	uint32_t released = 0;
236 
237 	/* sanity check on queue memory */
238 	if (unlikely(!q))
239 		return 0;
240 
241 	if (q->hba_index == index)
242 		return 0;
243 	do {
244 		q->hba_index = ((q->hba_index + 1) % q->entry_count);
245 		released++;
246 	} while (q->hba_index != index);
247 	return released;
248 }
249 
250 /**
251  * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
252  * @q: The Mailbox Queue to operate on.
253  * @wqe: The Mailbox Queue Entry to put on the Work queue.
254  *
255  * This routine will copy the contents of @mqe to the next available entry on
256  * the @q. This function will then ring the Work Queue Doorbell to signal the
257  * HBA to start processing the Work Queue Entry. This function returns 0 if
258  * successful. If no entries are available on @q then this function will return
259  * -ENOMEM.
260  * The caller is expected to hold the hbalock when calling this routine.
261  **/
262 static uint32_t
263 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
264 {
265 	struct lpfc_mqe *temp_mqe;
266 	struct lpfc_register doorbell;
267 
268 	/* sanity check on queue memory */
269 	if (unlikely(!q))
270 		return -ENOMEM;
271 	temp_mqe = lpfc_sli4_qe(q, q->host_index);
272 
273 	/* If the host has not yet processed the next entry then we are done */
274 	if (((q->host_index + 1) % q->entry_count) == q->hba_index)
275 		return -ENOMEM;
276 	lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
277 	/* Save off the mailbox pointer for completion */
278 	q->phba->mbox = (MAILBOX_t *)temp_mqe;
279 
280 	/* Update the host index before invoking device */
281 	q->host_index = ((q->host_index + 1) % q->entry_count);
282 
283 	/* Ring Doorbell */
284 	doorbell.word0 = 0;
285 	bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
286 	bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
287 	writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
288 	return 0;
289 }
290 
291 /**
292  * lpfc_sli4_mq_release - Updates internal hba index for MQ
293  * @q: The Mailbox Queue to operate on.
294  *
295  * This routine will update the HBA index of a queue to reflect consumption of
296  * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
297  * an entry the host calls this function to update the queue's internal
298  * pointers. This routine returns the number of entries that were consumed by
299  * the HBA.
300  **/
301 static uint32_t
302 lpfc_sli4_mq_release(struct lpfc_queue *q)
303 {
304 	/* sanity check on queue memory */
305 	if (unlikely(!q))
306 		return 0;
307 
308 	/* Clear the mailbox pointer for completion */
309 	q->phba->mbox = NULL;
310 	q->hba_index = ((q->hba_index + 1) % q->entry_count);
311 	return 1;
312 }
313 
314 /**
315  * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
316  * @q: The Event Queue to get the first valid EQE from
317  *
318  * This routine will get the first valid Event Queue Entry from @q, update
319  * the queue's internal hba index, and return the EQE. If no valid EQEs are in
320  * the Queue (no more work to do), or the Queue is full of EQEs that have been
321  * processed, but not popped back to the HBA then this routine will return NULL.
322  **/
323 static struct lpfc_eqe *
324 lpfc_sli4_eq_get(struct lpfc_queue *q)
325 {
326 	struct lpfc_eqe *eqe;
327 
328 	/* sanity check on queue memory */
329 	if (unlikely(!q))
330 		return NULL;
331 	eqe = lpfc_sli4_qe(q, q->host_index);
332 
333 	/* If the next EQE is not valid then we are done */
334 	if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
335 		return NULL;
336 
337 	/*
338 	 * insert barrier for instruction interlock : data from the hardware
339 	 * must have the valid bit checked before it can be copied and acted
340 	 * upon. Speculative instructions were allowing a bcopy at the start
341 	 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
342 	 * after our return, to copy data before the valid bit check above
343 	 * was done. As such, some of the copied data was stale. The barrier
344 	 * ensures the check is before any data is copied.
345 	 */
346 	mb();
347 	return eqe;
348 }
349 
350 /**
351  * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
352  * @q: The Event Queue to disable interrupts
353  *
354  **/
355 void
356 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
357 {
358 	struct lpfc_register doorbell;
359 
360 	doorbell.word0 = 0;
361 	bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
362 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
363 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
364 		(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
365 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
366 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
367 }
368 
369 /**
370  * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
371  * @q: The Event Queue to disable interrupts
372  *
373  **/
374 void
375 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
376 {
377 	struct lpfc_register doorbell;
378 
379 	doorbell.word0 = 0;
380 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
381 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
382 }
383 
384 /**
385  * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
386  * @phba: adapter with EQ
387  * @q: The Event Queue that the host has completed processing for.
388  * @count: Number of elements that have been consumed
389  * @arm: Indicates whether the host wants to arms this CQ.
390  *
391  * This routine will notify the HBA, by ringing the doorbell, that count
392  * number of EQEs have been processed. The @arm parameter indicates whether
393  * the queue should be rearmed when ringing the doorbell.
394  **/
395 void
396 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
397 		     uint32_t count, bool arm)
398 {
399 	struct lpfc_register doorbell;
400 
401 	/* sanity check on queue memory */
402 	if (unlikely(!q || (count == 0 && !arm)))
403 		return;
404 
405 	/* ring doorbell for number popped */
406 	doorbell.word0 = 0;
407 	if (arm) {
408 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
409 		bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
410 	}
411 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
412 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
413 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
414 			(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
415 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
416 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
417 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
418 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
419 		readl(q->phba->sli4_hba.EQDBregaddr);
420 }
421 
422 /**
423  * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
424  * @phba: adapter with EQ
425  * @q: The Event Queue that the host has completed processing for.
426  * @count: Number of elements that have been consumed
427  * @arm: Indicates whether the host wants to arms this CQ.
428  *
429  * This routine will notify the HBA, by ringing the doorbell, that count
430  * number of EQEs have been processed. The @arm parameter indicates whether
431  * the queue should be rearmed when ringing the doorbell.
432  **/
433 void
434 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
435 			  uint32_t count, bool arm)
436 {
437 	struct lpfc_register doorbell;
438 
439 	/* sanity check on queue memory */
440 	if (unlikely(!q || (count == 0 && !arm)))
441 		return;
442 
443 	/* ring doorbell for number popped */
444 	doorbell.word0 = 0;
445 	if (arm)
446 		bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
447 	bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
448 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
449 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
450 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
451 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
452 		readl(q->phba->sli4_hba.EQDBregaddr);
453 }
454 
455 static void
456 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
457 			struct lpfc_eqe *eqe)
458 {
459 	if (!phba->sli4_hba.pc_sli4_params.eqav)
460 		bf_set_le32(lpfc_eqe_valid, eqe, 0);
461 
462 	eq->host_index = ((eq->host_index + 1) % eq->entry_count);
463 
464 	/* if the index wrapped around, toggle the valid bit */
465 	if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
466 		eq->qe_valid = (eq->qe_valid) ? 0 : 1;
467 }
468 
469 static void
470 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
471 {
472 	struct lpfc_eqe *eqe;
473 	uint32_t count = 0;
474 
475 	/* walk all the EQ entries and drop on the floor */
476 	eqe = lpfc_sli4_eq_get(eq);
477 	while (eqe) {
478 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
479 		count++;
480 		eqe = lpfc_sli4_eq_get(eq);
481 	}
482 
483 	/* Clear and re-arm the EQ */
484 	phba->sli4_hba.sli4_write_eq_db(phba, eq, count, LPFC_QUEUE_REARM);
485 }
486 
487 static int
488 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq)
489 {
490 	struct lpfc_eqe *eqe;
491 	int count = 0, consumed = 0;
492 
493 	if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
494 		goto rearm_and_exit;
495 
496 	eqe = lpfc_sli4_eq_get(eq);
497 	while (eqe) {
498 		lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
499 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
500 
501 		consumed++;
502 		if (!(++count % eq->max_proc_limit))
503 			break;
504 
505 		if (!(count % eq->notify_interval)) {
506 			phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
507 							LPFC_QUEUE_NOARM);
508 			consumed = 0;
509 		}
510 
511 		eqe = lpfc_sli4_eq_get(eq);
512 	}
513 	eq->EQ_processed += count;
514 
515 	/* Track the max number of EQEs processed in 1 intr */
516 	if (count > eq->EQ_max_eqe)
517 		eq->EQ_max_eqe = count;
518 
519 	eq->queue_claimed = 0;
520 
521 rearm_and_exit:
522 	/* Always clear and re-arm the EQ */
523 	phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, LPFC_QUEUE_REARM);
524 
525 	return count;
526 }
527 
528 /**
529  * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
530  * @q: The Completion Queue to get the first valid CQE from
531  *
532  * This routine will get the first valid Completion Queue Entry from @q, update
533  * the queue's internal hba index, and return the CQE. If no valid CQEs are in
534  * the Queue (no more work to do), or the Queue is full of CQEs that have been
535  * processed, but not popped back to the HBA then this routine will return NULL.
536  **/
537 static struct lpfc_cqe *
538 lpfc_sli4_cq_get(struct lpfc_queue *q)
539 {
540 	struct lpfc_cqe *cqe;
541 
542 	/* sanity check on queue memory */
543 	if (unlikely(!q))
544 		return NULL;
545 	cqe = lpfc_sli4_qe(q, q->host_index);
546 
547 	/* If the next CQE is not valid then we are done */
548 	if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
549 		return NULL;
550 
551 	/*
552 	 * insert barrier for instruction interlock : data from the hardware
553 	 * must have the valid bit checked before it can be copied and acted
554 	 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
555 	 * instructions allowing action on content before valid bit checked,
556 	 * add barrier here as well. May not be needed as "content" is a
557 	 * single 32-bit entity here (vs multi word structure for cq's).
558 	 */
559 	mb();
560 	return cqe;
561 }
562 
563 static void
564 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
565 			struct lpfc_cqe *cqe)
566 {
567 	if (!phba->sli4_hba.pc_sli4_params.cqav)
568 		bf_set_le32(lpfc_cqe_valid, cqe, 0);
569 
570 	cq->host_index = ((cq->host_index + 1) % cq->entry_count);
571 
572 	/* if the index wrapped around, toggle the valid bit */
573 	if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
574 		cq->qe_valid = (cq->qe_valid) ? 0 : 1;
575 }
576 
577 /**
578  * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
579  * @phba: the adapter with the CQ
580  * @q: The Completion Queue that the host has completed processing for.
581  * @count: the number of elements that were consumed
582  * @arm: Indicates whether the host wants to arms this CQ.
583  *
584  * This routine will notify the HBA, by ringing the doorbell, that the
585  * CQEs have been processed. The @arm parameter specifies whether the
586  * queue should be rearmed when ringing the doorbell.
587  **/
588 void
589 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
590 		     uint32_t count, bool arm)
591 {
592 	struct lpfc_register doorbell;
593 
594 	/* sanity check on queue memory */
595 	if (unlikely(!q || (count == 0 && !arm)))
596 		return;
597 
598 	/* ring doorbell for number popped */
599 	doorbell.word0 = 0;
600 	if (arm)
601 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
602 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
603 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
604 	bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
605 			(q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
606 	bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
607 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
608 }
609 
610 /**
611  * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
612  * @phba: the adapter with the CQ
613  * @q: The Completion Queue that the host has completed processing for.
614  * @count: the number of elements that were consumed
615  * @arm: Indicates whether the host wants to arms this CQ.
616  *
617  * This routine will notify the HBA, by ringing the doorbell, that the
618  * CQEs have been processed. The @arm parameter specifies whether the
619  * queue should be rearmed when ringing the doorbell.
620  **/
621 void
622 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
623 			 uint32_t count, bool arm)
624 {
625 	struct lpfc_register doorbell;
626 
627 	/* sanity check on queue memory */
628 	if (unlikely(!q || (count == 0 && !arm)))
629 		return;
630 
631 	/* ring doorbell for number popped */
632 	doorbell.word0 = 0;
633 	if (arm)
634 		bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
635 	bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
636 	bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
637 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
638 }
639 
640 /**
641  * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
642  * @q: The Header Receive Queue to operate on.
643  * @wqe: The Receive Queue Entry to put on the Receive queue.
644  *
645  * This routine will copy the contents of @wqe to the next available entry on
646  * the @q. This function will then ring the Receive Queue Doorbell to signal the
647  * HBA to start processing the Receive Queue Entry. This function returns the
648  * index that the rqe was copied to if successful. If no entries are available
649  * on @q then this function will return -ENOMEM.
650  * The caller is expected to hold the hbalock when calling this routine.
651  **/
652 int
653 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
654 		 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
655 {
656 	struct lpfc_rqe *temp_hrqe;
657 	struct lpfc_rqe *temp_drqe;
658 	struct lpfc_register doorbell;
659 	int hq_put_index;
660 	int dq_put_index;
661 
662 	/* sanity check on queue memory */
663 	if (unlikely(!hq) || unlikely(!dq))
664 		return -ENOMEM;
665 	hq_put_index = hq->host_index;
666 	dq_put_index = dq->host_index;
667 	temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
668 	temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
669 
670 	if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
671 		return -EINVAL;
672 	if (hq_put_index != dq_put_index)
673 		return -EINVAL;
674 	/* If the host has not yet processed the next entry then we are done */
675 	if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
676 		return -EBUSY;
677 	lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
678 	lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
679 
680 	/* Update the host index to point to the next slot */
681 	hq->host_index = ((hq_put_index + 1) % hq->entry_count);
682 	dq->host_index = ((dq_put_index + 1) % dq->entry_count);
683 	hq->RQ_buf_posted++;
684 
685 	/* Ring The Header Receive Queue Doorbell */
686 	if (!(hq->host_index % hq->notify_interval)) {
687 		doorbell.word0 = 0;
688 		if (hq->db_format == LPFC_DB_RING_FORMAT) {
689 			bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
690 			       hq->notify_interval);
691 			bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
692 		} else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
693 			bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
694 			       hq->notify_interval);
695 			bf_set(lpfc_rq_db_list_fm_index, &doorbell,
696 			       hq->host_index);
697 			bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
698 		} else {
699 			return -EINVAL;
700 		}
701 		writel(doorbell.word0, hq->db_regaddr);
702 	}
703 	return hq_put_index;
704 }
705 
706 /**
707  * lpfc_sli4_rq_release - Updates internal hba index for RQ
708  * @q: The Header Receive Queue to operate on.
709  *
710  * This routine will update the HBA index of a queue to reflect consumption of
711  * one Receive Queue Entry by the HBA. When the HBA indicates that it has
712  * consumed an entry the host calls this function to update the queue's
713  * internal pointers. This routine returns the number of entries that were
714  * consumed by the HBA.
715  **/
716 static uint32_t
717 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
718 {
719 	/* sanity check on queue memory */
720 	if (unlikely(!hq) || unlikely(!dq))
721 		return 0;
722 
723 	if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
724 		return 0;
725 	hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
726 	dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
727 	return 1;
728 }
729 
730 /**
731  * lpfc_cmd_iocb - Get next command iocb entry in the ring
732  * @phba: Pointer to HBA context object.
733  * @pring: Pointer to driver SLI ring object.
734  *
735  * This function returns pointer to next command iocb entry
736  * in the command ring. The caller must hold hbalock to prevent
737  * other threads consume the next command iocb.
738  * SLI-2/SLI-3 provide different sized iocbs.
739  **/
740 static inline IOCB_t *
741 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
742 {
743 	return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
744 			   pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
745 }
746 
747 /**
748  * lpfc_resp_iocb - Get next response iocb entry in the ring
749  * @phba: Pointer to HBA context object.
750  * @pring: Pointer to driver SLI ring object.
751  *
752  * This function returns pointer to next response iocb entry
753  * in the response ring. The caller must hold hbalock to make sure
754  * that no other thread consume the next response iocb.
755  * SLI-2/SLI-3 provide different sized iocbs.
756  **/
757 static inline IOCB_t *
758 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
759 {
760 	return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
761 			   pring->sli.sli3.rspidx * phba->iocb_rsp_size);
762 }
763 
764 /**
765  * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
766  * @phba: Pointer to HBA context object.
767  *
768  * This function is called with hbalock held. This function
769  * allocates a new driver iocb object from the iocb pool. If the
770  * allocation is successful, it returns pointer to the newly
771  * allocated iocb object else it returns NULL.
772  **/
773 struct lpfc_iocbq *
774 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
775 {
776 	struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
777 	struct lpfc_iocbq * iocbq = NULL;
778 
779 	lockdep_assert_held(&phba->hbalock);
780 
781 	list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
782 	if (iocbq)
783 		phba->iocb_cnt++;
784 	if (phba->iocb_cnt > phba->iocb_max)
785 		phba->iocb_max = phba->iocb_cnt;
786 	return iocbq;
787 }
788 
789 /**
790  * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
791  * @phba: Pointer to HBA context object.
792  * @xritag: XRI value.
793  *
794  * This function clears the sglq pointer from the array of acive
795  * sglq's. The xritag that is passed in is used to index into the
796  * array. Before the xritag can be used it needs to be adjusted
797  * by subtracting the xribase.
798  *
799  * Returns sglq ponter = success, NULL = Failure.
800  **/
801 struct lpfc_sglq *
802 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
803 {
804 	struct lpfc_sglq *sglq;
805 
806 	sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
807 	phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
808 	return sglq;
809 }
810 
811 /**
812  * __lpfc_get_active_sglq - Get the active sglq for this XRI.
813  * @phba: Pointer to HBA context object.
814  * @xritag: XRI value.
815  *
816  * This function returns the sglq pointer from the array of acive
817  * sglq's. The xritag that is passed in is used to index into the
818  * array. Before the xritag can be used it needs to be adjusted
819  * by subtracting the xribase.
820  *
821  * Returns sglq ponter = success, NULL = Failure.
822  **/
823 struct lpfc_sglq *
824 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
825 {
826 	struct lpfc_sglq *sglq;
827 
828 	sglq =  phba->sli4_hba.lpfc_sglq_active_list[xritag];
829 	return sglq;
830 }
831 
832 /**
833  * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
834  * @phba: Pointer to HBA context object.
835  * @xritag: xri used in this exchange.
836  * @rrq: The RRQ to be cleared.
837  *
838  **/
839 void
840 lpfc_clr_rrq_active(struct lpfc_hba *phba,
841 		    uint16_t xritag,
842 		    struct lpfc_node_rrq *rrq)
843 {
844 	struct lpfc_nodelist *ndlp = NULL;
845 
846 	if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
847 		ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
848 
849 	/* The target DID could have been swapped (cable swap)
850 	 * we should use the ndlp from the findnode if it is
851 	 * available.
852 	 */
853 	if ((!ndlp) && rrq->ndlp)
854 		ndlp = rrq->ndlp;
855 
856 	if (!ndlp)
857 		goto out;
858 
859 	if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
860 		rrq->send_rrq = 0;
861 		rrq->xritag = 0;
862 		rrq->rrq_stop_time = 0;
863 	}
864 out:
865 	mempool_free(rrq, phba->rrq_pool);
866 }
867 
868 /**
869  * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
870  * @phba: Pointer to HBA context object.
871  *
872  * This function is called with hbalock held. This function
873  * Checks if stop_time (ratov from setting rrq active) has
874  * been reached, if it has and the send_rrq flag is set then
875  * it will call lpfc_send_rrq. If the send_rrq flag is not set
876  * then it will just call the routine to clear the rrq and
877  * free the rrq resource.
878  * The timer is set to the next rrq that is going to expire before
879  * leaving the routine.
880  *
881  **/
882 void
883 lpfc_handle_rrq_active(struct lpfc_hba *phba)
884 {
885 	struct lpfc_node_rrq *rrq;
886 	struct lpfc_node_rrq *nextrrq;
887 	unsigned long next_time;
888 	unsigned long iflags;
889 	LIST_HEAD(send_rrq);
890 
891 	spin_lock_irqsave(&phba->hbalock, iflags);
892 	phba->hba_flag &= ~HBA_RRQ_ACTIVE;
893 	next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
894 	list_for_each_entry_safe(rrq, nextrrq,
895 				 &phba->active_rrq_list, list) {
896 		if (time_after(jiffies, rrq->rrq_stop_time))
897 			list_move(&rrq->list, &send_rrq);
898 		else if (time_before(rrq->rrq_stop_time, next_time))
899 			next_time = rrq->rrq_stop_time;
900 	}
901 	spin_unlock_irqrestore(&phba->hbalock, iflags);
902 	if ((!list_empty(&phba->active_rrq_list)) &&
903 	    (!(phba->pport->load_flag & FC_UNLOADING)))
904 		mod_timer(&phba->rrq_tmr, next_time);
905 	list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
906 		list_del(&rrq->list);
907 		if (!rrq->send_rrq) {
908 			/* this call will free the rrq */
909 			lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
910 		} else if (lpfc_send_rrq(phba, rrq)) {
911 			/* if we send the rrq then the completion handler
912 			*  will clear the bit in the xribitmap.
913 			*/
914 			lpfc_clr_rrq_active(phba, rrq->xritag,
915 					    rrq);
916 		}
917 	}
918 }
919 
920 /**
921  * lpfc_get_active_rrq - Get the active RRQ for this exchange.
922  * @vport: Pointer to vport context object.
923  * @xri: The xri used in the exchange.
924  * @did: The targets DID for this exchange.
925  *
926  * returns NULL = rrq not found in the phba->active_rrq_list.
927  *         rrq = rrq for this xri and target.
928  **/
929 struct lpfc_node_rrq *
930 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
931 {
932 	struct lpfc_hba *phba = vport->phba;
933 	struct lpfc_node_rrq *rrq;
934 	struct lpfc_node_rrq *nextrrq;
935 	unsigned long iflags;
936 
937 	if (phba->sli_rev != LPFC_SLI_REV4)
938 		return NULL;
939 	spin_lock_irqsave(&phba->hbalock, iflags);
940 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
941 		if (rrq->vport == vport && rrq->xritag == xri &&
942 				rrq->nlp_DID == did){
943 			list_del(&rrq->list);
944 			spin_unlock_irqrestore(&phba->hbalock, iflags);
945 			return rrq;
946 		}
947 	}
948 	spin_unlock_irqrestore(&phba->hbalock, iflags);
949 	return NULL;
950 }
951 
952 /**
953  * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
954  * @vport: Pointer to vport context object.
955  * @ndlp: Pointer to the lpfc_node_list structure.
956  * If ndlp is NULL Remove all active RRQs for this vport from the
957  * phba->active_rrq_list and clear the rrq.
958  * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
959  **/
960 void
961 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
962 
963 {
964 	struct lpfc_hba *phba = vport->phba;
965 	struct lpfc_node_rrq *rrq;
966 	struct lpfc_node_rrq *nextrrq;
967 	unsigned long iflags;
968 	LIST_HEAD(rrq_list);
969 
970 	if (phba->sli_rev != LPFC_SLI_REV4)
971 		return;
972 	if (!ndlp) {
973 		lpfc_sli4_vport_delete_els_xri_aborted(vport);
974 		lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
975 	}
976 	spin_lock_irqsave(&phba->hbalock, iflags);
977 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
978 		if ((rrq->vport == vport) && (!ndlp  || rrq->ndlp == ndlp))
979 			list_move(&rrq->list, &rrq_list);
980 	spin_unlock_irqrestore(&phba->hbalock, iflags);
981 
982 	list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
983 		list_del(&rrq->list);
984 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
985 	}
986 }
987 
988 /**
989  * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
990  * @phba: Pointer to HBA context object.
991  * @ndlp: Targets nodelist pointer for this exchange.
992  * @xritag the xri in the bitmap to test.
993  *
994  * This function returns:
995  * 0 = rrq not active for this xri
996  * 1 = rrq is valid for this xri.
997  **/
998 int
999 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1000 			uint16_t  xritag)
1001 {
1002 	if (!ndlp)
1003 		return 0;
1004 	if (!ndlp->active_rrqs_xri_bitmap)
1005 		return 0;
1006 	if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1007 		return 1;
1008 	else
1009 		return 0;
1010 }
1011 
1012 /**
1013  * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1014  * @phba: Pointer to HBA context object.
1015  * @ndlp: nodelist pointer for this target.
1016  * @xritag: xri used in this exchange.
1017  * @rxid: Remote Exchange ID.
1018  * @send_rrq: Flag used to determine if we should send rrq els cmd.
1019  *
1020  * This function takes the hbalock.
1021  * The active bit is always set in the active rrq xri_bitmap even
1022  * if there is no slot avaiable for the other rrq information.
1023  *
1024  * returns 0 rrq actived for this xri
1025  *         < 0 No memory or invalid ndlp.
1026  **/
1027 int
1028 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1029 		    uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1030 {
1031 	unsigned long iflags;
1032 	struct lpfc_node_rrq *rrq;
1033 	int empty;
1034 
1035 	if (!ndlp)
1036 		return -EINVAL;
1037 
1038 	if (!phba->cfg_enable_rrq)
1039 		return -EINVAL;
1040 
1041 	spin_lock_irqsave(&phba->hbalock, iflags);
1042 	if (phba->pport->load_flag & FC_UNLOADING) {
1043 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1044 		goto out;
1045 	}
1046 
1047 	/*
1048 	 * set the active bit even if there is no mem available.
1049 	 */
1050 	if (NLP_CHK_FREE_REQ(ndlp))
1051 		goto out;
1052 
1053 	if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1054 		goto out;
1055 
1056 	if (!ndlp->active_rrqs_xri_bitmap)
1057 		goto out;
1058 
1059 	if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1060 		goto out;
1061 
1062 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1063 	rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL);
1064 	if (!rrq) {
1065 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1066 				"3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1067 				" DID:0x%x Send:%d\n",
1068 				xritag, rxid, ndlp->nlp_DID, send_rrq);
1069 		return -EINVAL;
1070 	}
1071 	if (phba->cfg_enable_rrq == 1)
1072 		rrq->send_rrq = send_rrq;
1073 	else
1074 		rrq->send_rrq = 0;
1075 	rrq->xritag = xritag;
1076 	rrq->rrq_stop_time = jiffies +
1077 				msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1078 	rrq->ndlp = ndlp;
1079 	rrq->nlp_DID = ndlp->nlp_DID;
1080 	rrq->vport = ndlp->vport;
1081 	rrq->rxid = rxid;
1082 	spin_lock_irqsave(&phba->hbalock, iflags);
1083 	empty = list_empty(&phba->active_rrq_list);
1084 	list_add_tail(&rrq->list, &phba->active_rrq_list);
1085 	phba->hba_flag |= HBA_RRQ_ACTIVE;
1086 	if (empty)
1087 		lpfc_worker_wake_up(phba);
1088 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1089 	return 0;
1090 out:
1091 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1092 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1093 			"2921 Can't set rrq active xri:0x%x rxid:0x%x"
1094 			" DID:0x%x Send:%d\n",
1095 			xritag, rxid, ndlp->nlp_DID, send_rrq);
1096 	return -EINVAL;
1097 }
1098 
1099 /**
1100  * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1101  * @phba: Pointer to HBA context object.
1102  * @piocb: Pointer to the iocbq.
1103  *
1104  * The driver calls this function with either the nvme ls ring lock
1105  * or the fc els ring lock held depending on the iocb usage.  This function
1106  * gets a new driver sglq object from the sglq list. If the list is not empty
1107  * then it is successful, it returns pointer to the newly allocated sglq
1108  * object else it returns NULL.
1109  **/
1110 static struct lpfc_sglq *
1111 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1112 {
1113 	struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1114 	struct lpfc_sglq *sglq = NULL;
1115 	struct lpfc_sglq *start_sglq = NULL;
1116 	struct lpfc_io_buf *lpfc_cmd;
1117 	struct lpfc_nodelist *ndlp;
1118 	struct lpfc_sli_ring *pring = NULL;
1119 	int found = 0;
1120 
1121 	if (piocbq->iocb_flag & LPFC_IO_NVME_LS)
1122 		pring =  phba->sli4_hba.nvmels_wq->pring;
1123 	else
1124 		pring = lpfc_phba_elsring(phba);
1125 
1126 	lockdep_assert_held(&pring->ring_lock);
1127 
1128 	if (piocbq->iocb_flag &  LPFC_IO_FCP) {
1129 		lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1;
1130 		ndlp = lpfc_cmd->rdata->pnode;
1131 	} else  if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
1132 			!(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
1133 		ndlp = piocbq->context_un.ndlp;
1134 	} else  if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
1135 		if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
1136 			ndlp = NULL;
1137 		else
1138 			ndlp = piocbq->context_un.ndlp;
1139 	} else {
1140 		ndlp = piocbq->context1;
1141 	}
1142 
1143 	spin_lock(&phba->sli4_hba.sgl_list_lock);
1144 	list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1145 	start_sglq = sglq;
1146 	while (!found) {
1147 		if (!sglq)
1148 			break;
1149 		if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1150 		    test_bit(sglq->sli4_lxritag,
1151 		    ndlp->active_rrqs_xri_bitmap)) {
1152 			/* This xri has an rrq outstanding for this DID.
1153 			 * put it back in the list and get another xri.
1154 			 */
1155 			list_add_tail(&sglq->list, lpfc_els_sgl_list);
1156 			sglq = NULL;
1157 			list_remove_head(lpfc_els_sgl_list, sglq,
1158 						struct lpfc_sglq, list);
1159 			if (sglq == start_sglq) {
1160 				list_add_tail(&sglq->list, lpfc_els_sgl_list);
1161 				sglq = NULL;
1162 				break;
1163 			} else
1164 				continue;
1165 		}
1166 		sglq->ndlp = ndlp;
1167 		found = 1;
1168 		phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1169 		sglq->state = SGL_ALLOCATED;
1170 	}
1171 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
1172 	return sglq;
1173 }
1174 
1175 /**
1176  * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1177  * @phba: Pointer to HBA context object.
1178  * @piocb: Pointer to the iocbq.
1179  *
1180  * This function is called with the sgl_list lock held. This function
1181  * gets a new driver sglq object from the sglq list. If the
1182  * list is not empty then it is successful, it returns pointer to the newly
1183  * allocated sglq object else it returns NULL.
1184  **/
1185 struct lpfc_sglq *
1186 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1187 {
1188 	struct list_head *lpfc_nvmet_sgl_list;
1189 	struct lpfc_sglq *sglq = NULL;
1190 
1191 	lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1192 
1193 	lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1194 
1195 	list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1196 	if (!sglq)
1197 		return NULL;
1198 	phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1199 	sglq->state = SGL_ALLOCATED;
1200 	return sglq;
1201 }
1202 
1203 /**
1204  * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1205  * @phba: Pointer to HBA context object.
1206  *
1207  * This function is called with no lock held. This function
1208  * allocates a new driver iocb object from the iocb pool. If the
1209  * allocation is successful, it returns pointer to the newly
1210  * allocated iocb object else it returns NULL.
1211  **/
1212 struct lpfc_iocbq *
1213 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1214 {
1215 	struct lpfc_iocbq * iocbq = NULL;
1216 	unsigned long iflags;
1217 
1218 	spin_lock_irqsave(&phba->hbalock, iflags);
1219 	iocbq = __lpfc_sli_get_iocbq(phba);
1220 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1221 	return iocbq;
1222 }
1223 
1224 /**
1225  * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1226  * @phba: Pointer to HBA context object.
1227  * @iocbq: Pointer to driver iocb object.
1228  *
1229  * This function is called with hbalock held to release driver
1230  * iocb object to the iocb pool. The iotag in the iocb object
1231  * does not change for each use of the iocb object. This function
1232  * clears all other fields of the iocb object when it is freed.
1233  * The sqlq structure that holds the xritag and phys and virtual
1234  * mappings for the scatter gather list is retrieved from the
1235  * active array of sglq. The get of the sglq pointer also clears
1236  * the entry in the array. If the status of the IO indiactes that
1237  * this IO was aborted then the sglq entry it put on the
1238  * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1239  * IO has good status or fails for any other reason then the sglq
1240  * entry is added to the free list (lpfc_els_sgl_list).
1241  **/
1242 static void
1243 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1244 {
1245 	struct lpfc_sglq *sglq;
1246 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1247 	unsigned long iflag = 0;
1248 	struct lpfc_sli_ring *pring;
1249 
1250 	lockdep_assert_held(&phba->hbalock);
1251 
1252 	if (iocbq->sli4_xritag == NO_XRI)
1253 		sglq = NULL;
1254 	else
1255 		sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1256 
1257 
1258 	if (sglq)  {
1259 		if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1260 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1261 					  iflag);
1262 			sglq->state = SGL_FREED;
1263 			sglq->ndlp = NULL;
1264 			list_add_tail(&sglq->list,
1265 				      &phba->sli4_hba.lpfc_nvmet_sgl_list);
1266 			spin_unlock_irqrestore(
1267 				&phba->sli4_hba.sgl_list_lock, iflag);
1268 			goto out;
1269 		}
1270 
1271 		pring = phba->sli4_hba.els_wq->pring;
1272 		if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1273 			(sglq->state != SGL_XRI_ABORTED)) {
1274 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1275 					  iflag);
1276 			list_add(&sglq->list,
1277 				 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1278 			spin_unlock_irqrestore(
1279 				&phba->sli4_hba.sgl_list_lock, iflag);
1280 		} else {
1281 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1282 					  iflag);
1283 			sglq->state = SGL_FREED;
1284 			sglq->ndlp = NULL;
1285 			list_add_tail(&sglq->list,
1286 				      &phba->sli4_hba.lpfc_els_sgl_list);
1287 			spin_unlock_irqrestore(
1288 				&phba->sli4_hba.sgl_list_lock, iflag);
1289 
1290 			/* Check if TXQ queue needs to be serviced */
1291 			if (!list_empty(&pring->txq))
1292 				lpfc_worker_wake_up(phba);
1293 		}
1294 	}
1295 
1296 out:
1297 	/*
1298 	 * Clean all volatile data fields, preserve iotag and node struct.
1299 	 */
1300 	memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1301 	iocbq->sli4_lxritag = NO_XRI;
1302 	iocbq->sli4_xritag = NO_XRI;
1303 	iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1304 			      LPFC_IO_NVME_LS);
1305 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1306 }
1307 
1308 
1309 /**
1310  * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1311  * @phba: Pointer to HBA context object.
1312  * @iocbq: Pointer to driver iocb object.
1313  *
1314  * This function is called with hbalock held to release driver
1315  * iocb object to the iocb pool. The iotag in the iocb object
1316  * does not change for each use of the iocb object. This function
1317  * clears all other fields of the iocb object when it is freed.
1318  **/
1319 static void
1320 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1321 {
1322 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1323 
1324 	lockdep_assert_held(&phba->hbalock);
1325 
1326 	/*
1327 	 * Clean all volatile data fields, preserve iotag and node struct.
1328 	 */
1329 	memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1330 	iocbq->sli4_xritag = NO_XRI;
1331 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1332 }
1333 
1334 /**
1335  * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1336  * @phba: Pointer to HBA context object.
1337  * @iocbq: Pointer to driver iocb object.
1338  *
1339  * This function is called with hbalock held to release driver
1340  * iocb object to the iocb pool. The iotag in the iocb object
1341  * does not change for each use of the iocb object. This function
1342  * clears all other fields of the iocb object when it is freed.
1343  **/
1344 static void
1345 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1346 {
1347 	lockdep_assert_held(&phba->hbalock);
1348 
1349 	phba->__lpfc_sli_release_iocbq(phba, iocbq);
1350 	phba->iocb_cnt--;
1351 }
1352 
1353 /**
1354  * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1355  * @phba: Pointer to HBA context object.
1356  * @iocbq: Pointer to driver iocb object.
1357  *
1358  * This function is called with no lock held to release the iocb to
1359  * iocb pool.
1360  **/
1361 void
1362 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1363 {
1364 	unsigned long iflags;
1365 
1366 	/*
1367 	 * Clean all volatile data fields, preserve iotag and node struct.
1368 	 */
1369 	spin_lock_irqsave(&phba->hbalock, iflags);
1370 	__lpfc_sli_release_iocbq(phba, iocbq);
1371 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1372 }
1373 
1374 /**
1375  * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1376  * @phba: Pointer to HBA context object.
1377  * @iocblist: List of IOCBs.
1378  * @ulpstatus: ULP status in IOCB command field.
1379  * @ulpWord4: ULP word-4 in IOCB command field.
1380  *
1381  * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1382  * on the list by invoking the complete callback function associated with the
1383  * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1384  * fields.
1385  **/
1386 void
1387 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1388 		      uint32_t ulpstatus, uint32_t ulpWord4)
1389 {
1390 	struct lpfc_iocbq *piocb;
1391 
1392 	while (!list_empty(iocblist)) {
1393 		list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1394 		if (!piocb->iocb_cmpl)
1395 			lpfc_sli_release_iocbq(phba, piocb);
1396 		else {
1397 			piocb->iocb.ulpStatus = ulpstatus;
1398 			piocb->iocb.un.ulpWord[4] = ulpWord4;
1399 			(piocb->iocb_cmpl) (phba, piocb, piocb);
1400 		}
1401 	}
1402 	return;
1403 }
1404 
1405 /**
1406  * lpfc_sli_iocb_cmd_type - Get the iocb type
1407  * @iocb_cmnd: iocb command code.
1408  *
1409  * This function is called by ring event handler function to get the iocb type.
1410  * This function translates the iocb command to an iocb command type used to
1411  * decide the final disposition of each completed IOCB.
1412  * The function returns
1413  * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1414  * LPFC_SOL_IOCB     if it is a solicited iocb completion
1415  * LPFC_ABORT_IOCB   if it is an abort iocb
1416  * LPFC_UNSOL_IOCB   if it is an unsolicited iocb
1417  *
1418  * The caller is not required to hold any lock.
1419  **/
1420 static lpfc_iocb_type
1421 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1422 {
1423 	lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1424 
1425 	if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1426 		return 0;
1427 
1428 	switch (iocb_cmnd) {
1429 	case CMD_XMIT_SEQUENCE_CR:
1430 	case CMD_XMIT_SEQUENCE_CX:
1431 	case CMD_XMIT_BCAST_CN:
1432 	case CMD_XMIT_BCAST_CX:
1433 	case CMD_ELS_REQUEST_CR:
1434 	case CMD_ELS_REQUEST_CX:
1435 	case CMD_CREATE_XRI_CR:
1436 	case CMD_CREATE_XRI_CX:
1437 	case CMD_GET_RPI_CN:
1438 	case CMD_XMIT_ELS_RSP_CX:
1439 	case CMD_GET_RPI_CR:
1440 	case CMD_FCP_IWRITE_CR:
1441 	case CMD_FCP_IWRITE_CX:
1442 	case CMD_FCP_IREAD_CR:
1443 	case CMD_FCP_IREAD_CX:
1444 	case CMD_FCP_ICMND_CR:
1445 	case CMD_FCP_ICMND_CX:
1446 	case CMD_FCP_TSEND_CX:
1447 	case CMD_FCP_TRSP_CX:
1448 	case CMD_FCP_TRECEIVE_CX:
1449 	case CMD_FCP_AUTO_TRSP_CX:
1450 	case CMD_ADAPTER_MSG:
1451 	case CMD_ADAPTER_DUMP:
1452 	case CMD_XMIT_SEQUENCE64_CR:
1453 	case CMD_XMIT_SEQUENCE64_CX:
1454 	case CMD_XMIT_BCAST64_CN:
1455 	case CMD_XMIT_BCAST64_CX:
1456 	case CMD_ELS_REQUEST64_CR:
1457 	case CMD_ELS_REQUEST64_CX:
1458 	case CMD_FCP_IWRITE64_CR:
1459 	case CMD_FCP_IWRITE64_CX:
1460 	case CMD_FCP_IREAD64_CR:
1461 	case CMD_FCP_IREAD64_CX:
1462 	case CMD_FCP_ICMND64_CR:
1463 	case CMD_FCP_ICMND64_CX:
1464 	case CMD_FCP_TSEND64_CX:
1465 	case CMD_FCP_TRSP64_CX:
1466 	case CMD_FCP_TRECEIVE64_CX:
1467 	case CMD_GEN_REQUEST64_CR:
1468 	case CMD_GEN_REQUEST64_CX:
1469 	case CMD_XMIT_ELS_RSP64_CX:
1470 	case DSSCMD_IWRITE64_CR:
1471 	case DSSCMD_IWRITE64_CX:
1472 	case DSSCMD_IREAD64_CR:
1473 	case DSSCMD_IREAD64_CX:
1474 		type = LPFC_SOL_IOCB;
1475 		break;
1476 	case CMD_ABORT_XRI_CN:
1477 	case CMD_ABORT_XRI_CX:
1478 	case CMD_CLOSE_XRI_CN:
1479 	case CMD_CLOSE_XRI_CX:
1480 	case CMD_XRI_ABORTED_CX:
1481 	case CMD_ABORT_MXRI64_CN:
1482 	case CMD_XMIT_BLS_RSP64_CX:
1483 		type = LPFC_ABORT_IOCB;
1484 		break;
1485 	case CMD_RCV_SEQUENCE_CX:
1486 	case CMD_RCV_ELS_REQ_CX:
1487 	case CMD_RCV_SEQUENCE64_CX:
1488 	case CMD_RCV_ELS_REQ64_CX:
1489 	case CMD_ASYNC_STATUS:
1490 	case CMD_IOCB_RCV_SEQ64_CX:
1491 	case CMD_IOCB_RCV_ELS64_CX:
1492 	case CMD_IOCB_RCV_CONT64_CX:
1493 	case CMD_IOCB_RET_XRI64_CX:
1494 		type = LPFC_UNSOL_IOCB;
1495 		break;
1496 	case CMD_IOCB_XMIT_MSEQ64_CR:
1497 	case CMD_IOCB_XMIT_MSEQ64_CX:
1498 	case CMD_IOCB_RCV_SEQ_LIST64_CX:
1499 	case CMD_IOCB_RCV_ELS_LIST64_CX:
1500 	case CMD_IOCB_CLOSE_EXTENDED_CN:
1501 	case CMD_IOCB_ABORT_EXTENDED_CN:
1502 	case CMD_IOCB_RET_HBQE64_CN:
1503 	case CMD_IOCB_FCP_IBIDIR64_CR:
1504 	case CMD_IOCB_FCP_IBIDIR64_CX:
1505 	case CMD_IOCB_FCP_ITASKMGT64_CX:
1506 	case CMD_IOCB_LOGENTRY_CN:
1507 	case CMD_IOCB_LOGENTRY_ASYNC_CN:
1508 		printk("%s - Unhandled SLI-3 Command x%x\n",
1509 				__func__, iocb_cmnd);
1510 		type = LPFC_UNKNOWN_IOCB;
1511 		break;
1512 	default:
1513 		type = LPFC_UNKNOWN_IOCB;
1514 		break;
1515 	}
1516 
1517 	return type;
1518 }
1519 
1520 /**
1521  * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1522  * @phba: Pointer to HBA context object.
1523  *
1524  * This function is called from SLI initialization code
1525  * to configure every ring of the HBA's SLI interface. The
1526  * caller is not required to hold any lock. This function issues
1527  * a config_ring mailbox command for each ring.
1528  * This function returns zero if successful else returns a negative
1529  * error code.
1530  **/
1531 static int
1532 lpfc_sli_ring_map(struct lpfc_hba *phba)
1533 {
1534 	struct lpfc_sli *psli = &phba->sli;
1535 	LPFC_MBOXQ_t *pmb;
1536 	MAILBOX_t *pmbox;
1537 	int i, rc, ret = 0;
1538 
1539 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1540 	if (!pmb)
1541 		return -ENOMEM;
1542 	pmbox = &pmb->u.mb;
1543 	phba->link_state = LPFC_INIT_MBX_CMDS;
1544 	for (i = 0; i < psli->num_rings; i++) {
1545 		lpfc_config_ring(phba, i, pmb);
1546 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1547 		if (rc != MBX_SUCCESS) {
1548 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1549 					"0446 Adapter failed to init (%d), "
1550 					"mbxCmd x%x CFG_RING, mbxStatus x%x, "
1551 					"ring %d\n",
1552 					rc, pmbox->mbxCommand,
1553 					pmbox->mbxStatus, i);
1554 			phba->link_state = LPFC_HBA_ERROR;
1555 			ret = -ENXIO;
1556 			break;
1557 		}
1558 	}
1559 	mempool_free(pmb, phba->mbox_mem_pool);
1560 	return ret;
1561 }
1562 
1563 /**
1564  * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1565  * @phba: Pointer to HBA context object.
1566  * @pring: Pointer to driver SLI ring object.
1567  * @piocb: Pointer to the driver iocb object.
1568  *
1569  * The driver calls this function with the hbalock held for SLI3 ports or
1570  * the ring lock held for SLI4 ports. The function adds the
1571  * new iocb to txcmplq of the given ring. This function always returns
1572  * 0. If this function is called for ELS ring, this function checks if
1573  * there is a vport associated with the ELS command. This function also
1574  * starts els_tmofunc timer if this is an ELS command.
1575  **/
1576 static int
1577 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1578 			struct lpfc_iocbq *piocb)
1579 {
1580 	if (phba->sli_rev == LPFC_SLI_REV4)
1581 		lockdep_assert_held(&pring->ring_lock);
1582 	else
1583 		lockdep_assert_held(&phba->hbalock);
1584 
1585 	BUG_ON(!piocb);
1586 
1587 	list_add_tail(&piocb->list, &pring->txcmplq);
1588 	piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1589 	pring->txcmplq_cnt++;
1590 
1591 	if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1592 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1593 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1594 		BUG_ON(!piocb->vport);
1595 		if (!(piocb->vport->load_flag & FC_UNLOADING))
1596 			mod_timer(&piocb->vport->els_tmofunc,
1597 				  jiffies +
1598 				  msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1599 	}
1600 
1601 	return 0;
1602 }
1603 
1604 /**
1605  * lpfc_sli_ringtx_get - Get first element of the txq
1606  * @phba: Pointer to HBA context object.
1607  * @pring: Pointer to driver SLI ring object.
1608  *
1609  * This function is called with hbalock held to get next
1610  * iocb in txq of the given ring. If there is any iocb in
1611  * the txq, the function returns first iocb in the list after
1612  * removing the iocb from the list, else it returns NULL.
1613  **/
1614 struct lpfc_iocbq *
1615 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1616 {
1617 	struct lpfc_iocbq *cmd_iocb;
1618 
1619 	lockdep_assert_held(&phba->hbalock);
1620 
1621 	list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1622 	return cmd_iocb;
1623 }
1624 
1625 /**
1626  * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1627  * @phba: Pointer to HBA context object.
1628  * @pring: Pointer to driver SLI ring object.
1629  *
1630  * This function is called with hbalock held and the caller must post the
1631  * iocb without releasing the lock. If the caller releases the lock,
1632  * iocb slot returned by the function is not guaranteed to be available.
1633  * The function returns pointer to the next available iocb slot if there
1634  * is available slot in the ring, else it returns NULL.
1635  * If the get index of the ring is ahead of the put index, the function
1636  * will post an error attention event to the worker thread to take the
1637  * HBA to offline state.
1638  **/
1639 static IOCB_t *
1640 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1641 {
1642 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1643 	uint32_t  max_cmd_idx = pring->sli.sli3.numCiocb;
1644 
1645 	lockdep_assert_held(&phba->hbalock);
1646 
1647 	if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1648 	   (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1649 		pring->sli.sli3.next_cmdidx = 0;
1650 
1651 	if (unlikely(pring->sli.sli3.local_getidx ==
1652 		pring->sli.sli3.next_cmdidx)) {
1653 
1654 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1655 
1656 		if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1657 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1658 					"0315 Ring %d issue: portCmdGet %d "
1659 					"is bigger than cmd ring %d\n",
1660 					pring->ringno,
1661 					pring->sli.sli3.local_getidx,
1662 					max_cmd_idx);
1663 
1664 			phba->link_state = LPFC_HBA_ERROR;
1665 			/*
1666 			 * All error attention handlers are posted to
1667 			 * worker thread
1668 			 */
1669 			phba->work_ha |= HA_ERATT;
1670 			phba->work_hs = HS_FFER3;
1671 
1672 			lpfc_worker_wake_up(phba);
1673 
1674 			return NULL;
1675 		}
1676 
1677 		if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1678 			return NULL;
1679 	}
1680 
1681 	return lpfc_cmd_iocb(phba, pring);
1682 }
1683 
1684 /**
1685  * lpfc_sli_next_iotag - Get an iotag for the iocb
1686  * @phba: Pointer to HBA context object.
1687  * @iocbq: Pointer to driver iocb object.
1688  *
1689  * This function gets an iotag for the iocb. If there is no unused iotag and
1690  * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1691  * array and assigns a new iotag.
1692  * The function returns the allocated iotag if successful, else returns zero.
1693  * Zero is not a valid iotag.
1694  * The caller is not required to hold any lock.
1695  **/
1696 uint16_t
1697 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1698 {
1699 	struct lpfc_iocbq **new_arr;
1700 	struct lpfc_iocbq **old_arr;
1701 	size_t new_len;
1702 	struct lpfc_sli *psli = &phba->sli;
1703 	uint16_t iotag;
1704 
1705 	spin_lock_irq(&phba->hbalock);
1706 	iotag = psli->last_iotag;
1707 	if(++iotag < psli->iocbq_lookup_len) {
1708 		psli->last_iotag = iotag;
1709 		psli->iocbq_lookup[iotag] = iocbq;
1710 		spin_unlock_irq(&phba->hbalock);
1711 		iocbq->iotag = iotag;
1712 		return iotag;
1713 	} else if (psli->iocbq_lookup_len < (0xffff
1714 					   - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1715 		new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1716 		spin_unlock_irq(&phba->hbalock);
1717 		new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
1718 				  GFP_KERNEL);
1719 		if (new_arr) {
1720 			spin_lock_irq(&phba->hbalock);
1721 			old_arr = psli->iocbq_lookup;
1722 			if (new_len <= psli->iocbq_lookup_len) {
1723 				/* highly unprobable case */
1724 				kfree(new_arr);
1725 				iotag = psli->last_iotag;
1726 				if(++iotag < psli->iocbq_lookup_len) {
1727 					psli->last_iotag = iotag;
1728 					psli->iocbq_lookup[iotag] = iocbq;
1729 					spin_unlock_irq(&phba->hbalock);
1730 					iocbq->iotag = iotag;
1731 					return iotag;
1732 				}
1733 				spin_unlock_irq(&phba->hbalock);
1734 				return 0;
1735 			}
1736 			if (psli->iocbq_lookup)
1737 				memcpy(new_arr, old_arr,
1738 				       ((psli->last_iotag  + 1) *
1739 					sizeof (struct lpfc_iocbq *)));
1740 			psli->iocbq_lookup = new_arr;
1741 			psli->iocbq_lookup_len = new_len;
1742 			psli->last_iotag = iotag;
1743 			psli->iocbq_lookup[iotag] = iocbq;
1744 			spin_unlock_irq(&phba->hbalock);
1745 			iocbq->iotag = iotag;
1746 			kfree(old_arr);
1747 			return iotag;
1748 		}
1749 	} else
1750 		spin_unlock_irq(&phba->hbalock);
1751 
1752 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1753 			"0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1754 			psli->last_iotag);
1755 
1756 	return 0;
1757 }
1758 
1759 /**
1760  * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1761  * @phba: Pointer to HBA context object.
1762  * @pring: Pointer to driver SLI ring object.
1763  * @iocb: Pointer to iocb slot in the ring.
1764  * @nextiocb: Pointer to driver iocb object which need to be
1765  *            posted to firmware.
1766  *
1767  * This function is called with hbalock held to post a new iocb to
1768  * the firmware. This function copies the new iocb to ring iocb slot and
1769  * updates the ring pointers. It adds the new iocb to txcmplq if there is
1770  * a completion call back for this iocb else the function will free the
1771  * iocb object.
1772  **/
1773 static void
1774 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1775 		IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1776 {
1777 	lockdep_assert_held(&phba->hbalock);
1778 	/*
1779 	 * Set up an iotag
1780 	 */
1781 	nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1782 
1783 
1784 	if (pring->ringno == LPFC_ELS_RING) {
1785 		lpfc_debugfs_slow_ring_trc(phba,
1786 			"IOCB cmd ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
1787 			*(((uint32_t *) &nextiocb->iocb) + 4),
1788 			*(((uint32_t *) &nextiocb->iocb) + 6),
1789 			*(((uint32_t *) &nextiocb->iocb) + 7));
1790 	}
1791 
1792 	/*
1793 	 * Issue iocb command to adapter
1794 	 */
1795 	lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1796 	wmb();
1797 	pring->stats.iocb_cmd++;
1798 
1799 	/*
1800 	 * If there is no completion routine to call, we can release the
1801 	 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1802 	 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1803 	 */
1804 	if (nextiocb->iocb_cmpl)
1805 		lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1806 	else
1807 		__lpfc_sli_release_iocbq(phba, nextiocb);
1808 
1809 	/*
1810 	 * Let the HBA know what IOCB slot will be the next one the
1811 	 * driver will put a command into.
1812 	 */
1813 	pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1814 	writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1815 }
1816 
1817 /**
1818  * lpfc_sli_update_full_ring - Update the chip attention register
1819  * @phba: Pointer to HBA context object.
1820  * @pring: Pointer to driver SLI ring object.
1821  *
1822  * The caller is not required to hold any lock for calling this function.
1823  * This function updates the chip attention bits for the ring to inform firmware
1824  * that there are pending work to be done for this ring and requests an
1825  * interrupt when there is space available in the ring. This function is
1826  * called when the driver is unable to post more iocbs to the ring due
1827  * to unavailability of space in the ring.
1828  **/
1829 static void
1830 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1831 {
1832 	int ringno = pring->ringno;
1833 
1834 	pring->flag |= LPFC_CALL_RING_AVAILABLE;
1835 
1836 	wmb();
1837 
1838 	/*
1839 	 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1840 	 * The HBA will tell us when an IOCB entry is available.
1841 	 */
1842 	writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1843 	readl(phba->CAregaddr); /* flush */
1844 
1845 	pring->stats.iocb_cmd_full++;
1846 }
1847 
1848 /**
1849  * lpfc_sli_update_ring - Update chip attention register
1850  * @phba: Pointer to HBA context object.
1851  * @pring: Pointer to driver SLI ring object.
1852  *
1853  * This function updates the chip attention register bit for the
1854  * given ring to inform HBA that there is more work to be done
1855  * in this ring. The caller is not required to hold any lock.
1856  **/
1857 static void
1858 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1859 {
1860 	int ringno = pring->ringno;
1861 
1862 	/*
1863 	 * Tell the HBA that there is work to do in this ring.
1864 	 */
1865 	if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1866 		wmb();
1867 		writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1868 		readl(phba->CAregaddr); /* flush */
1869 	}
1870 }
1871 
1872 /**
1873  * lpfc_sli_resume_iocb - Process iocbs in the txq
1874  * @phba: Pointer to HBA context object.
1875  * @pring: Pointer to driver SLI ring object.
1876  *
1877  * This function is called with hbalock held to post pending iocbs
1878  * in the txq to the firmware. This function is called when driver
1879  * detects space available in the ring.
1880  **/
1881 static void
1882 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1883 {
1884 	IOCB_t *iocb;
1885 	struct lpfc_iocbq *nextiocb;
1886 
1887 	lockdep_assert_held(&phba->hbalock);
1888 
1889 	/*
1890 	 * Check to see if:
1891 	 *  (a) there is anything on the txq to send
1892 	 *  (b) link is up
1893 	 *  (c) link attention events can be processed (fcp ring only)
1894 	 *  (d) IOCB processing is not blocked by the outstanding mbox command.
1895 	 */
1896 
1897 	if (lpfc_is_link_up(phba) &&
1898 	    (!list_empty(&pring->txq)) &&
1899 	    (pring->ringno != LPFC_FCP_RING ||
1900 	     phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1901 
1902 		while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1903 		       (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1904 			lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1905 
1906 		if (iocb)
1907 			lpfc_sli_update_ring(phba, pring);
1908 		else
1909 			lpfc_sli_update_full_ring(phba, pring);
1910 	}
1911 
1912 	return;
1913 }
1914 
1915 /**
1916  * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1917  * @phba: Pointer to HBA context object.
1918  * @hbqno: HBQ number.
1919  *
1920  * This function is called with hbalock held to get the next
1921  * available slot for the given HBQ. If there is free slot
1922  * available for the HBQ it will return pointer to the next available
1923  * HBQ entry else it will return NULL.
1924  **/
1925 static struct lpfc_hbq_entry *
1926 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1927 {
1928 	struct hbq_s *hbqp = &phba->hbqs[hbqno];
1929 
1930 	lockdep_assert_held(&phba->hbalock);
1931 
1932 	if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1933 	    ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1934 		hbqp->next_hbqPutIdx = 0;
1935 
1936 	if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1937 		uint32_t raw_index = phba->hbq_get[hbqno];
1938 		uint32_t getidx = le32_to_cpu(raw_index);
1939 
1940 		hbqp->local_hbqGetIdx = getidx;
1941 
1942 		if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1943 			lpfc_printf_log(phba, KERN_ERR,
1944 					LOG_SLI | LOG_VPORT,
1945 					"1802 HBQ %d: local_hbqGetIdx "
1946 					"%u is > than hbqp->entry_count %u\n",
1947 					hbqno, hbqp->local_hbqGetIdx,
1948 					hbqp->entry_count);
1949 
1950 			phba->link_state = LPFC_HBA_ERROR;
1951 			return NULL;
1952 		}
1953 
1954 		if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1955 			return NULL;
1956 	}
1957 
1958 	return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1959 			hbqp->hbqPutIdx;
1960 }
1961 
1962 /**
1963  * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1964  * @phba: Pointer to HBA context object.
1965  *
1966  * This function is called with no lock held to free all the
1967  * hbq buffers while uninitializing the SLI interface. It also
1968  * frees the HBQ buffers returned by the firmware but not yet
1969  * processed by the upper layers.
1970  **/
1971 void
1972 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
1973 {
1974 	struct lpfc_dmabuf *dmabuf, *next_dmabuf;
1975 	struct hbq_dmabuf *hbq_buf;
1976 	unsigned long flags;
1977 	int i, hbq_count;
1978 
1979 	hbq_count = lpfc_sli_hbq_count();
1980 	/* Return all memory used by all HBQs */
1981 	spin_lock_irqsave(&phba->hbalock, flags);
1982 	for (i = 0; i < hbq_count; ++i) {
1983 		list_for_each_entry_safe(dmabuf, next_dmabuf,
1984 				&phba->hbqs[i].hbq_buffer_list, list) {
1985 			hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1986 			list_del(&hbq_buf->dbuf.list);
1987 			(phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
1988 		}
1989 		phba->hbqs[i].buffer_count = 0;
1990 	}
1991 
1992 	/* Mark the HBQs not in use */
1993 	phba->hbq_in_use = 0;
1994 	spin_unlock_irqrestore(&phba->hbalock, flags);
1995 }
1996 
1997 /**
1998  * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
1999  * @phba: Pointer to HBA context object.
2000  * @hbqno: HBQ number.
2001  * @hbq_buf: Pointer to HBQ buffer.
2002  *
2003  * This function is called with the hbalock held to post a
2004  * hbq buffer to the firmware. If the function finds an empty
2005  * slot in the HBQ, it will post the buffer. The function will return
2006  * pointer to the hbq entry if it successfully post the buffer
2007  * else it will return NULL.
2008  **/
2009 static int
2010 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2011 			 struct hbq_dmabuf *hbq_buf)
2012 {
2013 	lockdep_assert_held(&phba->hbalock);
2014 	return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2015 }
2016 
2017 /**
2018  * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2019  * @phba: Pointer to HBA context object.
2020  * @hbqno: HBQ number.
2021  * @hbq_buf: Pointer to HBQ buffer.
2022  *
2023  * This function is called with the hbalock held to post a hbq buffer to the
2024  * firmware. If the function finds an empty slot in the HBQ, it will post the
2025  * buffer and place it on the hbq_buffer_list. The function will return zero if
2026  * it successfully post the buffer else it will return an error.
2027  **/
2028 static int
2029 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2030 			    struct hbq_dmabuf *hbq_buf)
2031 {
2032 	struct lpfc_hbq_entry *hbqe;
2033 	dma_addr_t physaddr = hbq_buf->dbuf.phys;
2034 
2035 	lockdep_assert_held(&phba->hbalock);
2036 	/* Get next HBQ entry slot to use */
2037 	hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2038 	if (hbqe) {
2039 		struct hbq_s *hbqp = &phba->hbqs[hbqno];
2040 
2041 		hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2042 		hbqe->bde.addrLow  = le32_to_cpu(putPaddrLow(physaddr));
2043 		hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2044 		hbqe->bde.tus.f.bdeFlags = 0;
2045 		hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2046 		hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2047 				/* Sync SLIM */
2048 		hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2049 		writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2050 				/* flush */
2051 		readl(phba->hbq_put + hbqno);
2052 		list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2053 		return 0;
2054 	} else
2055 		return -ENOMEM;
2056 }
2057 
2058 /**
2059  * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2060  * @phba: Pointer to HBA context object.
2061  * @hbqno: HBQ number.
2062  * @hbq_buf: Pointer to HBQ buffer.
2063  *
2064  * This function is called with the hbalock held to post an RQE to the SLI4
2065  * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2066  * the hbq_buffer_list and return zero, otherwise it will return an error.
2067  **/
2068 static int
2069 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2070 			    struct hbq_dmabuf *hbq_buf)
2071 {
2072 	int rc;
2073 	struct lpfc_rqe hrqe;
2074 	struct lpfc_rqe drqe;
2075 	struct lpfc_queue *hrq;
2076 	struct lpfc_queue *drq;
2077 
2078 	if (hbqno != LPFC_ELS_HBQ)
2079 		return 1;
2080 	hrq = phba->sli4_hba.hdr_rq;
2081 	drq = phba->sli4_hba.dat_rq;
2082 
2083 	lockdep_assert_held(&phba->hbalock);
2084 	hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2085 	hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2086 	drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2087 	drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2088 	rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2089 	if (rc < 0)
2090 		return rc;
2091 	hbq_buf->tag = (rc | (hbqno << 16));
2092 	list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2093 	return 0;
2094 }
2095 
2096 /* HBQ for ELS and CT traffic. */
2097 static struct lpfc_hbq_init lpfc_els_hbq = {
2098 	.rn = 1,
2099 	.entry_count = 256,
2100 	.mask_count = 0,
2101 	.profile = 0,
2102 	.ring_mask = (1 << LPFC_ELS_RING),
2103 	.buffer_count = 0,
2104 	.init_count = 40,
2105 	.add_count = 40,
2106 };
2107 
2108 /* Array of HBQs */
2109 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2110 	&lpfc_els_hbq,
2111 };
2112 
2113 /**
2114  * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2115  * @phba: Pointer to HBA context object.
2116  * @hbqno: HBQ number.
2117  * @count: Number of HBQ buffers to be posted.
2118  *
2119  * This function is called with no lock held to post more hbq buffers to the
2120  * given HBQ. The function returns the number of HBQ buffers successfully
2121  * posted.
2122  **/
2123 static int
2124 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2125 {
2126 	uint32_t i, posted = 0;
2127 	unsigned long flags;
2128 	struct hbq_dmabuf *hbq_buffer;
2129 	LIST_HEAD(hbq_buf_list);
2130 	if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2131 		return 0;
2132 
2133 	if ((phba->hbqs[hbqno].buffer_count + count) >
2134 	    lpfc_hbq_defs[hbqno]->entry_count)
2135 		count = lpfc_hbq_defs[hbqno]->entry_count -
2136 					phba->hbqs[hbqno].buffer_count;
2137 	if (!count)
2138 		return 0;
2139 	/* Allocate HBQ entries */
2140 	for (i = 0; i < count; i++) {
2141 		hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2142 		if (!hbq_buffer)
2143 			break;
2144 		list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2145 	}
2146 	/* Check whether HBQ is still in use */
2147 	spin_lock_irqsave(&phba->hbalock, flags);
2148 	if (!phba->hbq_in_use)
2149 		goto err;
2150 	while (!list_empty(&hbq_buf_list)) {
2151 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2152 				 dbuf.list);
2153 		hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2154 				      (hbqno << 16));
2155 		if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2156 			phba->hbqs[hbqno].buffer_count++;
2157 			posted++;
2158 		} else
2159 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2160 	}
2161 	spin_unlock_irqrestore(&phba->hbalock, flags);
2162 	return posted;
2163 err:
2164 	spin_unlock_irqrestore(&phba->hbalock, flags);
2165 	while (!list_empty(&hbq_buf_list)) {
2166 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2167 				 dbuf.list);
2168 		(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2169 	}
2170 	return 0;
2171 }
2172 
2173 /**
2174  * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2175  * @phba: Pointer to HBA context object.
2176  * @qno: HBQ number.
2177  *
2178  * This function posts more buffers to the HBQ. This function
2179  * is called with no lock held. The function returns the number of HBQ entries
2180  * successfully allocated.
2181  **/
2182 int
2183 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2184 {
2185 	if (phba->sli_rev == LPFC_SLI_REV4)
2186 		return 0;
2187 	else
2188 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2189 					 lpfc_hbq_defs[qno]->add_count);
2190 }
2191 
2192 /**
2193  * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2194  * @phba: Pointer to HBA context object.
2195  * @qno:  HBQ queue number.
2196  *
2197  * This function is called from SLI initialization code path with
2198  * no lock held to post initial HBQ buffers to firmware. The
2199  * function returns the number of HBQ entries successfully allocated.
2200  **/
2201 static int
2202 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2203 {
2204 	if (phba->sli_rev == LPFC_SLI_REV4)
2205 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2206 					lpfc_hbq_defs[qno]->entry_count);
2207 	else
2208 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2209 					 lpfc_hbq_defs[qno]->init_count);
2210 }
2211 
2212 /**
2213  * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2214  * @phba: Pointer to HBA context object.
2215  * @hbqno: HBQ number.
2216  *
2217  * This function removes the first hbq buffer on an hbq list and returns a
2218  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2219  **/
2220 static struct hbq_dmabuf *
2221 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2222 {
2223 	struct lpfc_dmabuf *d_buf;
2224 
2225 	list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2226 	if (!d_buf)
2227 		return NULL;
2228 	return container_of(d_buf, struct hbq_dmabuf, dbuf);
2229 }
2230 
2231 /**
2232  * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2233  * @phba: Pointer to HBA context object.
2234  * @hbqno: HBQ number.
2235  *
2236  * This function removes the first RQ buffer on an RQ buffer list and returns a
2237  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2238  **/
2239 static struct rqb_dmabuf *
2240 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2241 {
2242 	struct lpfc_dmabuf *h_buf;
2243 	struct lpfc_rqb *rqbp;
2244 
2245 	rqbp = hrq->rqbp;
2246 	list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2247 			 struct lpfc_dmabuf, list);
2248 	if (!h_buf)
2249 		return NULL;
2250 	rqbp->buffer_count--;
2251 	return container_of(h_buf, struct rqb_dmabuf, hbuf);
2252 }
2253 
2254 /**
2255  * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2256  * @phba: Pointer to HBA context object.
2257  * @tag: Tag of the hbq buffer.
2258  *
2259  * This function searches for the hbq buffer associated with the given tag in
2260  * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2261  * otherwise it returns NULL.
2262  **/
2263 static struct hbq_dmabuf *
2264 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2265 {
2266 	struct lpfc_dmabuf *d_buf;
2267 	struct hbq_dmabuf *hbq_buf;
2268 	uint32_t hbqno;
2269 
2270 	hbqno = tag >> 16;
2271 	if (hbqno >= LPFC_MAX_HBQS)
2272 		return NULL;
2273 
2274 	spin_lock_irq(&phba->hbalock);
2275 	list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2276 		hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2277 		if (hbq_buf->tag == tag) {
2278 			spin_unlock_irq(&phba->hbalock);
2279 			return hbq_buf;
2280 		}
2281 	}
2282 	spin_unlock_irq(&phba->hbalock);
2283 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
2284 			"1803 Bad hbq tag. Data: x%x x%x\n",
2285 			tag, phba->hbqs[tag >> 16].buffer_count);
2286 	return NULL;
2287 }
2288 
2289 /**
2290  * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2291  * @phba: Pointer to HBA context object.
2292  * @hbq_buffer: Pointer to HBQ buffer.
2293  *
2294  * This function is called with hbalock. This function gives back
2295  * the hbq buffer to firmware. If the HBQ does not have space to
2296  * post the buffer, it will free the buffer.
2297  **/
2298 void
2299 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2300 {
2301 	uint32_t hbqno;
2302 
2303 	if (hbq_buffer) {
2304 		hbqno = hbq_buffer->tag >> 16;
2305 		if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2306 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2307 	}
2308 }
2309 
2310 /**
2311  * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2312  * @mbxCommand: mailbox command code.
2313  *
2314  * This function is called by the mailbox event handler function to verify
2315  * that the completed mailbox command is a legitimate mailbox command. If the
2316  * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2317  * and the mailbox event handler will take the HBA offline.
2318  **/
2319 static int
2320 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2321 {
2322 	uint8_t ret;
2323 
2324 	switch (mbxCommand) {
2325 	case MBX_LOAD_SM:
2326 	case MBX_READ_NV:
2327 	case MBX_WRITE_NV:
2328 	case MBX_WRITE_VPARMS:
2329 	case MBX_RUN_BIU_DIAG:
2330 	case MBX_INIT_LINK:
2331 	case MBX_DOWN_LINK:
2332 	case MBX_CONFIG_LINK:
2333 	case MBX_CONFIG_RING:
2334 	case MBX_RESET_RING:
2335 	case MBX_READ_CONFIG:
2336 	case MBX_READ_RCONFIG:
2337 	case MBX_READ_SPARM:
2338 	case MBX_READ_STATUS:
2339 	case MBX_READ_RPI:
2340 	case MBX_READ_XRI:
2341 	case MBX_READ_REV:
2342 	case MBX_READ_LNK_STAT:
2343 	case MBX_REG_LOGIN:
2344 	case MBX_UNREG_LOGIN:
2345 	case MBX_CLEAR_LA:
2346 	case MBX_DUMP_MEMORY:
2347 	case MBX_DUMP_CONTEXT:
2348 	case MBX_RUN_DIAGS:
2349 	case MBX_RESTART:
2350 	case MBX_UPDATE_CFG:
2351 	case MBX_DOWN_LOAD:
2352 	case MBX_DEL_LD_ENTRY:
2353 	case MBX_RUN_PROGRAM:
2354 	case MBX_SET_MASK:
2355 	case MBX_SET_VARIABLE:
2356 	case MBX_UNREG_D_ID:
2357 	case MBX_KILL_BOARD:
2358 	case MBX_CONFIG_FARP:
2359 	case MBX_BEACON:
2360 	case MBX_LOAD_AREA:
2361 	case MBX_RUN_BIU_DIAG64:
2362 	case MBX_CONFIG_PORT:
2363 	case MBX_READ_SPARM64:
2364 	case MBX_READ_RPI64:
2365 	case MBX_REG_LOGIN64:
2366 	case MBX_READ_TOPOLOGY:
2367 	case MBX_WRITE_WWN:
2368 	case MBX_SET_DEBUG:
2369 	case MBX_LOAD_EXP_ROM:
2370 	case MBX_ASYNCEVT_ENABLE:
2371 	case MBX_REG_VPI:
2372 	case MBX_UNREG_VPI:
2373 	case MBX_HEARTBEAT:
2374 	case MBX_PORT_CAPABILITIES:
2375 	case MBX_PORT_IOV_CONTROL:
2376 	case MBX_SLI4_CONFIG:
2377 	case MBX_SLI4_REQ_FTRS:
2378 	case MBX_REG_FCFI:
2379 	case MBX_UNREG_FCFI:
2380 	case MBX_REG_VFI:
2381 	case MBX_UNREG_VFI:
2382 	case MBX_INIT_VPI:
2383 	case MBX_INIT_VFI:
2384 	case MBX_RESUME_RPI:
2385 	case MBX_READ_EVENT_LOG_STATUS:
2386 	case MBX_READ_EVENT_LOG:
2387 	case MBX_SECURITY_MGMT:
2388 	case MBX_AUTH_PORT:
2389 	case MBX_ACCESS_VDATA:
2390 		ret = mbxCommand;
2391 		break;
2392 	default:
2393 		ret = MBX_SHUTDOWN;
2394 		break;
2395 	}
2396 	return ret;
2397 }
2398 
2399 /**
2400  * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2401  * @phba: Pointer to HBA context object.
2402  * @pmboxq: Pointer to mailbox command.
2403  *
2404  * This is completion handler function for mailbox commands issued from
2405  * lpfc_sli_issue_mbox_wait function. This function is called by the
2406  * mailbox event handler function with no lock held. This function
2407  * will wake up thread waiting on the wait queue pointed by context1
2408  * of the mailbox.
2409  **/
2410 void
2411 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2412 {
2413 	unsigned long drvr_flag;
2414 	struct completion *pmbox_done;
2415 
2416 	/*
2417 	 * If pmbox_done is empty, the driver thread gave up waiting and
2418 	 * continued running.
2419 	 */
2420 	pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2421 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
2422 	pmbox_done = (struct completion *)pmboxq->context3;
2423 	if (pmbox_done)
2424 		complete(pmbox_done);
2425 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2426 	return;
2427 }
2428 
2429 
2430 /**
2431  * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2432  * @phba: Pointer to HBA context object.
2433  * @pmb: Pointer to mailbox object.
2434  *
2435  * This function is the default mailbox completion handler. It
2436  * frees the memory resources associated with the completed mailbox
2437  * command. If the completed command is a REG_LOGIN mailbox command,
2438  * this function will issue a UREG_LOGIN to re-claim the RPI.
2439  **/
2440 void
2441 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2442 {
2443 	struct lpfc_vport  *vport = pmb->vport;
2444 	struct lpfc_dmabuf *mp;
2445 	struct lpfc_nodelist *ndlp;
2446 	struct Scsi_Host *shost;
2447 	uint16_t rpi, vpi;
2448 	int rc;
2449 
2450 	mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
2451 
2452 	if (mp) {
2453 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
2454 		kfree(mp);
2455 	}
2456 
2457 	/*
2458 	 * If a REG_LOGIN succeeded  after node is destroyed or node
2459 	 * is in re-discovery driver need to cleanup the RPI.
2460 	 */
2461 	if (!(phba->pport->load_flag & FC_UNLOADING) &&
2462 	    pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2463 	    !pmb->u.mb.mbxStatus) {
2464 		rpi = pmb->u.mb.un.varWords[0];
2465 		vpi = pmb->u.mb.un.varRegLogin.vpi;
2466 		lpfc_unreg_login(phba, vpi, rpi, pmb);
2467 		pmb->vport = vport;
2468 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2469 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2470 		if (rc != MBX_NOT_FINISHED)
2471 			return;
2472 	}
2473 
2474 	if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2475 		!(phba->pport->load_flag & FC_UNLOADING) &&
2476 		!pmb->u.mb.mbxStatus) {
2477 		shost = lpfc_shost_from_vport(vport);
2478 		spin_lock_irq(shost->host_lock);
2479 		vport->vpi_state |= LPFC_VPI_REGISTERED;
2480 		vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2481 		spin_unlock_irq(shost->host_lock);
2482 	}
2483 
2484 	if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2485 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2486 		lpfc_nlp_put(ndlp);
2487 		pmb->ctx_buf = NULL;
2488 		pmb->ctx_ndlp = NULL;
2489 	}
2490 
2491 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2492 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2493 
2494 		/* Check to see if there are any deferred events to process */
2495 		if (ndlp) {
2496 			lpfc_printf_vlog(
2497 				vport,
2498 				KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2499 				"1438 UNREG cmpl deferred mbox x%x "
2500 				"on NPort x%x Data: x%x x%x %p\n",
2501 				ndlp->nlp_rpi, ndlp->nlp_DID,
2502 				ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp);
2503 
2504 			if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2505 			    (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2506 				ndlp->nlp_flag &= ~NLP_UNREG_INP;
2507 				ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2508 				lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2509 			} else {
2510 				ndlp->nlp_flag &= ~NLP_UNREG_INP;
2511 			}
2512 			pmb->ctx_ndlp = NULL;
2513 		}
2514 	}
2515 
2516 	/* Check security permission status on INIT_LINK mailbox command */
2517 	if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2518 	    (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2519 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2520 				"2860 SLI authentication is required "
2521 				"for INIT_LINK but has not done yet\n");
2522 
2523 	if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2524 		lpfc_sli4_mbox_cmd_free(phba, pmb);
2525 	else
2526 		mempool_free(pmb, phba->mbox_mem_pool);
2527 }
2528  /**
2529  * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2530  * @phba: Pointer to HBA context object.
2531  * @pmb: Pointer to mailbox object.
2532  *
2533  * This function is the unreg rpi mailbox completion handler. It
2534  * frees the memory resources associated with the completed mailbox
2535  * command. An additional refrenece is put on the ndlp to prevent
2536  * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2537  * the unreg mailbox command completes, this routine puts the
2538  * reference back.
2539  *
2540  **/
2541 void
2542 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2543 {
2544 	struct lpfc_vport  *vport = pmb->vport;
2545 	struct lpfc_nodelist *ndlp;
2546 
2547 	ndlp = pmb->ctx_ndlp;
2548 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2549 		if (phba->sli_rev == LPFC_SLI_REV4 &&
2550 		    (bf_get(lpfc_sli_intf_if_type,
2551 		     &phba->sli4_hba.sli_intf) >=
2552 		     LPFC_SLI_INTF_IF_TYPE_2)) {
2553 			if (ndlp) {
2554 				lpfc_printf_vlog(
2555 					vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2556 					 "0010 UNREG_LOGIN vpi:%x "
2557 					 "rpi:%x DID:%x defer x%x flg x%x "
2558 					 "map:%x %p\n",
2559 					 vport->vpi, ndlp->nlp_rpi,
2560 					 ndlp->nlp_DID, ndlp->nlp_defer_did,
2561 					 ndlp->nlp_flag,
2562 					 ndlp->nlp_usg_map, ndlp);
2563 				ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2564 				lpfc_nlp_put(ndlp);
2565 
2566 				/* Check to see if there are any deferred
2567 				 * events to process
2568 				 */
2569 				if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2570 				    (ndlp->nlp_defer_did !=
2571 				    NLP_EVT_NOTHING_PENDING)) {
2572 					lpfc_printf_vlog(
2573 						vport, KERN_INFO, LOG_DISCOVERY,
2574 						"4111 UNREG cmpl deferred "
2575 						"clr x%x on "
2576 						"NPort x%x Data: x%x %p\n",
2577 						ndlp->nlp_rpi, ndlp->nlp_DID,
2578 						ndlp->nlp_defer_did, ndlp);
2579 					ndlp->nlp_flag &= ~NLP_UNREG_INP;
2580 					ndlp->nlp_defer_did =
2581 						NLP_EVT_NOTHING_PENDING;
2582 					lpfc_issue_els_plogi(
2583 						vport, ndlp->nlp_DID, 0);
2584 				} else {
2585 					ndlp->nlp_flag &= ~NLP_UNREG_INP;
2586 				}
2587 			}
2588 		}
2589 	}
2590 
2591 	mempool_free(pmb, phba->mbox_mem_pool);
2592 }
2593 
2594 /**
2595  * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2596  * @phba: Pointer to HBA context object.
2597  *
2598  * This function is called with no lock held. This function processes all
2599  * the completed mailbox commands and gives it to upper layers. The interrupt
2600  * service routine processes mailbox completion interrupt and adds completed
2601  * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2602  * Worker thread call lpfc_sli_handle_mb_event, which will return the
2603  * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2604  * function returns the mailbox commands to the upper layer by calling the
2605  * completion handler function of each mailbox.
2606  **/
2607 int
2608 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2609 {
2610 	MAILBOX_t *pmbox;
2611 	LPFC_MBOXQ_t *pmb;
2612 	int rc;
2613 	LIST_HEAD(cmplq);
2614 
2615 	phba->sli.slistat.mbox_event++;
2616 
2617 	/* Get all completed mailboxe buffers into the cmplq */
2618 	spin_lock_irq(&phba->hbalock);
2619 	list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2620 	spin_unlock_irq(&phba->hbalock);
2621 
2622 	/* Get a Mailbox buffer to setup mailbox commands for callback */
2623 	do {
2624 		list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2625 		if (pmb == NULL)
2626 			break;
2627 
2628 		pmbox = &pmb->u.mb;
2629 
2630 		if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2631 			if (pmb->vport) {
2632 				lpfc_debugfs_disc_trc(pmb->vport,
2633 					LPFC_DISC_TRC_MBOX_VPORT,
2634 					"MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2635 					(uint32_t)pmbox->mbxCommand,
2636 					pmbox->un.varWords[0],
2637 					pmbox->un.varWords[1]);
2638 			}
2639 			else {
2640 				lpfc_debugfs_disc_trc(phba->pport,
2641 					LPFC_DISC_TRC_MBOX,
2642 					"MBOX cmpl:       cmd:x%x mb:x%x x%x",
2643 					(uint32_t)pmbox->mbxCommand,
2644 					pmbox->un.varWords[0],
2645 					pmbox->un.varWords[1]);
2646 			}
2647 		}
2648 
2649 		/*
2650 		 * It is a fatal error if unknown mbox command completion.
2651 		 */
2652 		if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2653 		    MBX_SHUTDOWN) {
2654 			/* Unknown mailbox command compl */
2655 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2656 					"(%d):0323 Unknown Mailbox command "
2657 					"x%x (x%x/x%x) Cmpl\n",
2658 					pmb->vport ? pmb->vport->vpi : 0,
2659 					pmbox->mbxCommand,
2660 					lpfc_sli_config_mbox_subsys_get(phba,
2661 									pmb),
2662 					lpfc_sli_config_mbox_opcode_get(phba,
2663 									pmb));
2664 			phba->link_state = LPFC_HBA_ERROR;
2665 			phba->work_hs = HS_FFER3;
2666 			lpfc_handle_eratt(phba);
2667 			continue;
2668 		}
2669 
2670 		if (pmbox->mbxStatus) {
2671 			phba->sli.slistat.mbox_stat_err++;
2672 			if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2673 				/* Mbox cmd cmpl error - RETRYing */
2674 				lpfc_printf_log(phba, KERN_INFO,
2675 					LOG_MBOX | LOG_SLI,
2676 					"(%d):0305 Mbox cmd cmpl "
2677 					"error - RETRYing Data: x%x "
2678 					"(x%x/x%x) x%x x%x x%x\n",
2679 					pmb->vport ? pmb->vport->vpi : 0,
2680 					pmbox->mbxCommand,
2681 					lpfc_sli_config_mbox_subsys_get(phba,
2682 									pmb),
2683 					lpfc_sli_config_mbox_opcode_get(phba,
2684 									pmb),
2685 					pmbox->mbxStatus,
2686 					pmbox->un.varWords[0],
2687 					pmb->vport->port_state);
2688 				pmbox->mbxStatus = 0;
2689 				pmbox->mbxOwner = OWN_HOST;
2690 				rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2691 				if (rc != MBX_NOT_FINISHED)
2692 					continue;
2693 			}
2694 		}
2695 
2696 		/* Mailbox cmd <cmd> Cmpl <cmpl> */
2697 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2698 				"(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p "
2699 				"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2700 				"x%x x%x x%x\n",
2701 				pmb->vport ? pmb->vport->vpi : 0,
2702 				pmbox->mbxCommand,
2703 				lpfc_sli_config_mbox_subsys_get(phba, pmb),
2704 				lpfc_sli_config_mbox_opcode_get(phba, pmb),
2705 				pmb->mbox_cmpl,
2706 				*((uint32_t *) pmbox),
2707 				pmbox->un.varWords[0],
2708 				pmbox->un.varWords[1],
2709 				pmbox->un.varWords[2],
2710 				pmbox->un.varWords[3],
2711 				pmbox->un.varWords[4],
2712 				pmbox->un.varWords[5],
2713 				pmbox->un.varWords[6],
2714 				pmbox->un.varWords[7],
2715 				pmbox->un.varWords[8],
2716 				pmbox->un.varWords[9],
2717 				pmbox->un.varWords[10]);
2718 
2719 		if (pmb->mbox_cmpl)
2720 			pmb->mbox_cmpl(phba,pmb);
2721 	} while (1);
2722 	return 0;
2723 }
2724 
2725 /**
2726  * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2727  * @phba: Pointer to HBA context object.
2728  * @pring: Pointer to driver SLI ring object.
2729  * @tag: buffer tag.
2730  *
2731  * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2732  * is set in the tag the buffer is posted for a particular exchange,
2733  * the function will return the buffer without replacing the buffer.
2734  * If the buffer is for unsolicited ELS or CT traffic, this function
2735  * returns the buffer and also posts another buffer to the firmware.
2736  **/
2737 static struct lpfc_dmabuf *
2738 lpfc_sli_get_buff(struct lpfc_hba *phba,
2739 		  struct lpfc_sli_ring *pring,
2740 		  uint32_t tag)
2741 {
2742 	struct hbq_dmabuf *hbq_entry;
2743 
2744 	if (tag & QUE_BUFTAG_BIT)
2745 		return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2746 	hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2747 	if (!hbq_entry)
2748 		return NULL;
2749 	return &hbq_entry->dbuf;
2750 }
2751 
2752 /**
2753  * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2754  * @phba: Pointer to HBA context object.
2755  * @pring: Pointer to driver SLI ring object.
2756  * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2757  * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2758  * @fch_type: the type for the first frame of the sequence.
2759  *
2760  * This function is called with no lock held. This function uses the r_ctl and
2761  * type of the received sequence to find the correct callback function to call
2762  * to process the sequence.
2763  **/
2764 static int
2765 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2766 			 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2767 			 uint32_t fch_type)
2768 {
2769 	int i;
2770 
2771 	switch (fch_type) {
2772 	case FC_TYPE_NVME:
2773 		lpfc_nvmet_unsol_ls_event(phba, pring, saveq);
2774 		return 1;
2775 	default:
2776 		break;
2777 	}
2778 
2779 	/* unSolicited Responses */
2780 	if (pring->prt[0].profile) {
2781 		if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2782 			(pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2783 									saveq);
2784 		return 1;
2785 	}
2786 	/* We must search, based on rctl / type
2787 	   for the right routine */
2788 	for (i = 0; i < pring->num_mask; i++) {
2789 		if ((pring->prt[i].rctl == fch_r_ctl) &&
2790 		    (pring->prt[i].type == fch_type)) {
2791 			if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2792 				(pring->prt[i].lpfc_sli_rcv_unsol_event)
2793 						(phba, pring, saveq);
2794 			return 1;
2795 		}
2796 	}
2797 	return 0;
2798 }
2799 
2800 /**
2801  * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2802  * @phba: Pointer to HBA context object.
2803  * @pring: Pointer to driver SLI ring object.
2804  * @saveq: Pointer to the unsolicited iocb.
2805  *
2806  * This function is called with no lock held by the ring event handler
2807  * when there is an unsolicited iocb posted to the response ring by the
2808  * firmware. This function gets the buffer associated with the iocbs
2809  * and calls the event handler for the ring. This function handles both
2810  * qring buffers and hbq buffers.
2811  * When the function returns 1 the caller can free the iocb object otherwise
2812  * upper layer functions will free the iocb objects.
2813  **/
2814 static int
2815 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2816 			    struct lpfc_iocbq *saveq)
2817 {
2818 	IOCB_t           * irsp;
2819 	WORD5            * w5p;
2820 	uint32_t           Rctl, Type;
2821 	struct lpfc_iocbq *iocbq;
2822 	struct lpfc_dmabuf *dmzbuf;
2823 
2824 	irsp = &(saveq->iocb);
2825 
2826 	if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2827 		if (pring->lpfc_sli_rcv_async_status)
2828 			pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2829 		else
2830 			lpfc_printf_log(phba,
2831 					KERN_WARNING,
2832 					LOG_SLI,
2833 					"0316 Ring %d handler: unexpected "
2834 					"ASYNC_STATUS iocb received evt_code "
2835 					"0x%x\n",
2836 					pring->ringno,
2837 					irsp->un.asyncstat.evt_code);
2838 		return 1;
2839 	}
2840 
2841 	if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2842 		(phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2843 		if (irsp->ulpBdeCount > 0) {
2844 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2845 					irsp->un.ulpWord[3]);
2846 			lpfc_in_buf_free(phba, dmzbuf);
2847 		}
2848 
2849 		if (irsp->ulpBdeCount > 1) {
2850 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2851 					irsp->unsli3.sli3Words[3]);
2852 			lpfc_in_buf_free(phba, dmzbuf);
2853 		}
2854 
2855 		if (irsp->ulpBdeCount > 2) {
2856 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2857 				irsp->unsli3.sli3Words[7]);
2858 			lpfc_in_buf_free(phba, dmzbuf);
2859 		}
2860 
2861 		return 1;
2862 	}
2863 
2864 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
2865 		if (irsp->ulpBdeCount != 0) {
2866 			saveq->context2 = lpfc_sli_get_buff(phba, pring,
2867 						irsp->un.ulpWord[3]);
2868 			if (!saveq->context2)
2869 				lpfc_printf_log(phba,
2870 					KERN_ERR,
2871 					LOG_SLI,
2872 					"0341 Ring %d Cannot find buffer for "
2873 					"an unsolicited iocb. tag 0x%x\n",
2874 					pring->ringno,
2875 					irsp->un.ulpWord[3]);
2876 		}
2877 		if (irsp->ulpBdeCount == 2) {
2878 			saveq->context3 = lpfc_sli_get_buff(phba, pring,
2879 						irsp->unsli3.sli3Words[7]);
2880 			if (!saveq->context3)
2881 				lpfc_printf_log(phba,
2882 					KERN_ERR,
2883 					LOG_SLI,
2884 					"0342 Ring %d Cannot find buffer for an"
2885 					" unsolicited iocb. tag 0x%x\n",
2886 					pring->ringno,
2887 					irsp->unsli3.sli3Words[7]);
2888 		}
2889 		list_for_each_entry(iocbq, &saveq->list, list) {
2890 			irsp = &(iocbq->iocb);
2891 			if (irsp->ulpBdeCount != 0) {
2892 				iocbq->context2 = lpfc_sli_get_buff(phba, pring,
2893 							irsp->un.ulpWord[3]);
2894 				if (!iocbq->context2)
2895 					lpfc_printf_log(phba,
2896 						KERN_ERR,
2897 						LOG_SLI,
2898 						"0343 Ring %d Cannot find "
2899 						"buffer for an unsolicited iocb"
2900 						". tag 0x%x\n", pring->ringno,
2901 						irsp->un.ulpWord[3]);
2902 			}
2903 			if (irsp->ulpBdeCount == 2) {
2904 				iocbq->context3 = lpfc_sli_get_buff(phba, pring,
2905 						irsp->unsli3.sli3Words[7]);
2906 				if (!iocbq->context3)
2907 					lpfc_printf_log(phba,
2908 						KERN_ERR,
2909 						LOG_SLI,
2910 						"0344 Ring %d Cannot find "
2911 						"buffer for an unsolicited "
2912 						"iocb. tag 0x%x\n",
2913 						pring->ringno,
2914 						irsp->unsli3.sli3Words[7]);
2915 			}
2916 		}
2917 	}
2918 	if (irsp->ulpBdeCount != 0 &&
2919 	    (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
2920 	     irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
2921 		int found = 0;
2922 
2923 		/* search continue save q for same XRI */
2924 		list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
2925 			if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
2926 				saveq->iocb.unsli3.rcvsli3.ox_id) {
2927 				list_add_tail(&saveq->list, &iocbq->list);
2928 				found = 1;
2929 				break;
2930 			}
2931 		}
2932 		if (!found)
2933 			list_add_tail(&saveq->clist,
2934 				      &pring->iocb_continue_saveq);
2935 		if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
2936 			list_del_init(&iocbq->clist);
2937 			saveq = iocbq;
2938 			irsp = &(saveq->iocb);
2939 		} else
2940 			return 0;
2941 	}
2942 	if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
2943 	    (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
2944 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
2945 		Rctl = FC_RCTL_ELS_REQ;
2946 		Type = FC_TYPE_ELS;
2947 	} else {
2948 		w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
2949 		Rctl = w5p->hcsw.Rctl;
2950 		Type = w5p->hcsw.Type;
2951 
2952 		/* Firmware Workaround */
2953 		if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
2954 			(irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
2955 			 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
2956 			Rctl = FC_RCTL_ELS_REQ;
2957 			Type = FC_TYPE_ELS;
2958 			w5p->hcsw.Rctl = Rctl;
2959 			w5p->hcsw.Type = Type;
2960 		}
2961 	}
2962 
2963 	if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
2964 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2965 				"0313 Ring %d handler: unexpected Rctl x%x "
2966 				"Type x%x received\n",
2967 				pring->ringno, Rctl, Type);
2968 
2969 	return 1;
2970 }
2971 
2972 /**
2973  * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
2974  * @phba: Pointer to HBA context object.
2975  * @pring: Pointer to driver SLI ring object.
2976  * @prspiocb: Pointer to response iocb object.
2977  *
2978  * This function looks up the iocb_lookup table to get the command iocb
2979  * corresponding to the given response iocb using the iotag of the
2980  * response iocb. The driver calls this function with the hbalock held
2981  * for SLI3 ports or the ring lock held for SLI4 ports.
2982  * This function returns the command iocb object if it finds the command
2983  * iocb else returns NULL.
2984  **/
2985 static struct lpfc_iocbq *
2986 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
2987 		      struct lpfc_sli_ring *pring,
2988 		      struct lpfc_iocbq *prspiocb)
2989 {
2990 	struct lpfc_iocbq *cmd_iocb = NULL;
2991 	uint16_t iotag;
2992 	spinlock_t *temp_lock = NULL;
2993 	unsigned long iflag = 0;
2994 
2995 	if (phba->sli_rev == LPFC_SLI_REV4)
2996 		temp_lock = &pring->ring_lock;
2997 	else
2998 		temp_lock = &phba->hbalock;
2999 
3000 	spin_lock_irqsave(temp_lock, iflag);
3001 	iotag = prspiocb->iocb.ulpIoTag;
3002 
3003 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3004 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3005 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3006 			/* remove from txcmpl queue list */
3007 			list_del_init(&cmd_iocb->list);
3008 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3009 			pring->txcmplq_cnt--;
3010 			spin_unlock_irqrestore(temp_lock, iflag);
3011 			return cmd_iocb;
3012 		}
3013 	}
3014 
3015 	spin_unlock_irqrestore(temp_lock, iflag);
3016 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3017 			"0317 iotag x%x is out of "
3018 			"range: max iotag x%x wd0 x%x\n",
3019 			iotag, phba->sli.last_iotag,
3020 			*(((uint32_t *) &prspiocb->iocb) + 7));
3021 	return NULL;
3022 }
3023 
3024 /**
3025  * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3026  * @phba: Pointer to HBA context object.
3027  * @pring: Pointer to driver SLI ring object.
3028  * @iotag: IOCB tag.
3029  *
3030  * This function looks up the iocb_lookup table to get the command iocb
3031  * corresponding to the given iotag. The driver calls this function with
3032  * the ring lock held because this function is an SLI4 port only helper.
3033  * This function returns the command iocb object if it finds the command
3034  * iocb else returns NULL.
3035  **/
3036 static struct lpfc_iocbq *
3037 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3038 			     struct lpfc_sli_ring *pring, uint16_t iotag)
3039 {
3040 	struct lpfc_iocbq *cmd_iocb = NULL;
3041 	spinlock_t *temp_lock = NULL;
3042 	unsigned long iflag = 0;
3043 
3044 	if (phba->sli_rev == LPFC_SLI_REV4)
3045 		temp_lock = &pring->ring_lock;
3046 	else
3047 		temp_lock = &phba->hbalock;
3048 
3049 	spin_lock_irqsave(temp_lock, iflag);
3050 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3051 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3052 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3053 			/* remove from txcmpl queue list */
3054 			list_del_init(&cmd_iocb->list);
3055 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3056 			pring->txcmplq_cnt--;
3057 			spin_unlock_irqrestore(temp_lock, iflag);
3058 			return cmd_iocb;
3059 		}
3060 	}
3061 
3062 	spin_unlock_irqrestore(temp_lock, iflag);
3063 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3064 			"0372 iotag x%x lookup error: max iotag (x%x) "
3065 			"iocb_flag x%x\n",
3066 			iotag, phba->sli.last_iotag,
3067 			cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
3068 	return NULL;
3069 }
3070 
3071 /**
3072  * lpfc_sli_process_sol_iocb - process solicited iocb completion
3073  * @phba: Pointer to HBA context object.
3074  * @pring: Pointer to driver SLI ring object.
3075  * @saveq: Pointer to the response iocb to be processed.
3076  *
3077  * This function is called by the ring event handler for non-fcp
3078  * rings when there is a new response iocb in the response ring.
3079  * The caller is not required to hold any locks. This function
3080  * gets the command iocb associated with the response iocb and
3081  * calls the completion handler for the command iocb. If there
3082  * is no completion handler, the function will free the resources
3083  * associated with command iocb. If the response iocb is for
3084  * an already aborted command iocb, the status of the completion
3085  * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3086  * This function always returns 1.
3087  **/
3088 static int
3089 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3090 			  struct lpfc_iocbq *saveq)
3091 {
3092 	struct lpfc_iocbq *cmdiocbp;
3093 	int rc = 1;
3094 	unsigned long iflag;
3095 
3096 	cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3097 	if (cmdiocbp) {
3098 		if (cmdiocbp->iocb_cmpl) {
3099 			/*
3100 			 * If an ELS command failed send an event to mgmt
3101 			 * application.
3102 			 */
3103 			if (saveq->iocb.ulpStatus &&
3104 			     (pring->ringno == LPFC_ELS_RING) &&
3105 			     (cmdiocbp->iocb.ulpCommand ==
3106 				CMD_ELS_REQUEST64_CR))
3107 				lpfc_send_els_failure_event(phba,
3108 					cmdiocbp, saveq);
3109 
3110 			/*
3111 			 * Post all ELS completions to the worker thread.
3112 			 * All other are passed to the completion callback.
3113 			 */
3114 			if (pring->ringno == LPFC_ELS_RING) {
3115 				if ((phba->sli_rev < LPFC_SLI_REV4) &&
3116 				    (cmdiocbp->iocb_flag &
3117 							LPFC_DRIVER_ABORTED)) {
3118 					spin_lock_irqsave(&phba->hbalock,
3119 							  iflag);
3120 					cmdiocbp->iocb_flag &=
3121 						~LPFC_DRIVER_ABORTED;
3122 					spin_unlock_irqrestore(&phba->hbalock,
3123 							       iflag);
3124 					saveq->iocb.ulpStatus =
3125 						IOSTAT_LOCAL_REJECT;
3126 					saveq->iocb.un.ulpWord[4] =
3127 						IOERR_SLI_ABORTED;
3128 
3129 					/* Firmware could still be in progress
3130 					 * of DMAing payload, so don't free data
3131 					 * buffer till after a hbeat.
3132 					 */
3133 					spin_lock_irqsave(&phba->hbalock,
3134 							  iflag);
3135 					saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
3136 					spin_unlock_irqrestore(&phba->hbalock,
3137 							       iflag);
3138 				}
3139 				if (phba->sli_rev == LPFC_SLI_REV4) {
3140 					if (saveq->iocb_flag &
3141 					    LPFC_EXCHANGE_BUSY) {
3142 						/* Set cmdiocb flag for the
3143 						 * exchange busy so sgl (xri)
3144 						 * will not be released until
3145 						 * the abort xri is received
3146 						 * from hba.
3147 						 */
3148 						spin_lock_irqsave(
3149 							&phba->hbalock, iflag);
3150 						cmdiocbp->iocb_flag |=
3151 							LPFC_EXCHANGE_BUSY;
3152 						spin_unlock_irqrestore(
3153 							&phba->hbalock, iflag);
3154 					}
3155 					if (cmdiocbp->iocb_flag &
3156 					    LPFC_DRIVER_ABORTED) {
3157 						/*
3158 						 * Clear LPFC_DRIVER_ABORTED
3159 						 * bit in case it was driver
3160 						 * initiated abort.
3161 						 */
3162 						spin_lock_irqsave(
3163 							&phba->hbalock, iflag);
3164 						cmdiocbp->iocb_flag &=
3165 							~LPFC_DRIVER_ABORTED;
3166 						spin_unlock_irqrestore(
3167 							&phba->hbalock, iflag);
3168 						cmdiocbp->iocb.ulpStatus =
3169 							IOSTAT_LOCAL_REJECT;
3170 						cmdiocbp->iocb.un.ulpWord[4] =
3171 							IOERR_ABORT_REQUESTED;
3172 						/*
3173 						 * For SLI4, irsiocb contains
3174 						 * NO_XRI in sli_xritag, it
3175 						 * shall not affect releasing
3176 						 * sgl (xri) process.
3177 						 */
3178 						saveq->iocb.ulpStatus =
3179 							IOSTAT_LOCAL_REJECT;
3180 						saveq->iocb.un.ulpWord[4] =
3181 							IOERR_SLI_ABORTED;
3182 						spin_lock_irqsave(
3183 							&phba->hbalock, iflag);
3184 						saveq->iocb_flag |=
3185 							LPFC_DELAY_MEM_FREE;
3186 						spin_unlock_irqrestore(
3187 							&phba->hbalock, iflag);
3188 					}
3189 				}
3190 			}
3191 			(cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
3192 		} else
3193 			lpfc_sli_release_iocbq(phba, cmdiocbp);
3194 	} else {
3195 		/*
3196 		 * Unknown initiating command based on the response iotag.
3197 		 * This could be the case on the ELS ring because of
3198 		 * lpfc_els_abort().
3199 		 */
3200 		if (pring->ringno != LPFC_ELS_RING) {
3201 			/*
3202 			 * Ring <ringno> handler: unexpected completion IoTag
3203 			 * <IoTag>
3204 			 */
3205 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3206 					 "0322 Ring %d handler: "
3207 					 "unexpected completion IoTag x%x "
3208 					 "Data: x%x x%x x%x x%x\n",
3209 					 pring->ringno,
3210 					 saveq->iocb.ulpIoTag,
3211 					 saveq->iocb.ulpStatus,
3212 					 saveq->iocb.un.ulpWord[4],
3213 					 saveq->iocb.ulpCommand,
3214 					 saveq->iocb.ulpContext);
3215 		}
3216 	}
3217 
3218 	return rc;
3219 }
3220 
3221 /**
3222  * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3223  * @phba: Pointer to HBA context object.
3224  * @pring: Pointer to driver SLI ring object.
3225  *
3226  * This function is called from the iocb ring event handlers when
3227  * put pointer is ahead of the get pointer for a ring. This function signal
3228  * an error attention condition to the worker thread and the worker
3229  * thread will transition the HBA to offline state.
3230  **/
3231 static void
3232 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3233 {
3234 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3235 	/*
3236 	 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3237 	 * rsp ring <portRspMax>
3238 	 */
3239 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3240 			"0312 Ring %d handler: portRspPut %d "
3241 			"is bigger than rsp ring %d\n",
3242 			pring->ringno, le32_to_cpu(pgp->rspPutInx),
3243 			pring->sli.sli3.numRiocb);
3244 
3245 	phba->link_state = LPFC_HBA_ERROR;
3246 
3247 	/*
3248 	 * All error attention handlers are posted to
3249 	 * worker thread
3250 	 */
3251 	phba->work_ha |= HA_ERATT;
3252 	phba->work_hs = HS_FFER3;
3253 
3254 	lpfc_worker_wake_up(phba);
3255 
3256 	return;
3257 }
3258 
3259 /**
3260  * lpfc_poll_eratt - Error attention polling timer timeout handler
3261  * @ptr: Pointer to address of HBA context object.
3262  *
3263  * This function is invoked by the Error Attention polling timer when the
3264  * timer times out. It will check the SLI Error Attention register for
3265  * possible attention events. If so, it will post an Error Attention event
3266  * and wake up worker thread to process it. Otherwise, it will set up the
3267  * Error Attention polling timer for the next poll.
3268  **/
3269 void lpfc_poll_eratt(struct timer_list *t)
3270 {
3271 	struct lpfc_hba *phba;
3272 	uint32_t eratt = 0;
3273 	uint64_t sli_intr, cnt;
3274 
3275 	phba = from_timer(phba, t, eratt_poll);
3276 
3277 	/* Here we will also keep track of interrupts per sec of the hba */
3278 	sli_intr = phba->sli.slistat.sli_intr;
3279 
3280 	if (phba->sli.slistat.sli_prev_intr > sli_intr)
3281 		cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3282 			sli_intr);
3283 	else
3284 		cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3285 
3286 	/* 64-bit integer division not supported on 32-bit x86 - use do_div */
3287 	do_div(cnt, phba->eratt_poll_interval);
3288 	phba->sli.slistat.sli_ips = cnt;
3289 
3290 	phba->sli.slistat.sli_prev_intr = sli_intr;
3291 
3292 	/* Check chip HA register for error event */
3293 	eratt = lpfc_sli_check_eratt(phba);
3294 
3295 	if (eratt)
3296 		/* Tell the worker thread there is work to do */
3297 		lpfc_worker_wake_up(phba);
3298 	else
3299 		/* Restart the timer for next eratt poll */
3300 		mod_timer(&phba->eratt_poll,
3301 			  jiffies +
3302 			  msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3303 	return;
3304 }
3305 
3306 
3307 /**
3308  * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3309  * @phba: Pointer to HBA context object.
3310  * @pring: Pointer to driver SLI ring object.
3311  * @mask: Host attention register mask for this ring.
3312  *
3313  * This function is called from the interrupt context when there is a ring
3314  * event for the fcp ring. The caller does not hold any lock.
3315  * The function processes each response iocb in the response ring until it
3316  * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3317  * LE bit set. The function will call the completion handler of the command iocb
3318  * if the response iocb indicates a completion for a command iocb or it is
3319  * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3320  * function if this is an unsolicited iocb.
3321  * This routine presumes LPFC_FCP_RING handling and doesn't bother
3322  * to check it explicitly.
3323  */
3324 int
3325 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3326 				struct lpfc_sli_ring *pring, uint32_t mask)
3327 {
3328 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3329 	IOCB_t *irsp = NULL;
3330 	IOCB_t *entry = NULL;
3331 	struct lpfc_iocbq *cmdiocbq = NULL;
3332 	struct lpfc_iocbq rspiocbq;
3333 	uint32_t status;
3334 	uint32_t portRspPut, portRspMax;
3335 	int rc = 1;
3336 	lpfc_iocb_type type;
3337 	unsigned long iflag;
3338 	uint32_t rsp_cmpl = 0;
3339 
3340 	spin_lock_irqsave(&phba->hbalock, iflag);
3341 	pring->stats.iocb_event++;
3342 
3343 	/*
3344 	 * The next available response entry should never exceed the maximum
3345 	 * entries.  If it does, treat it as an adapter hardware error.
3346 	 */
3347 	portRspMax = pring->sli.sli3.numRiocb;
3348 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3349 	if (unlikely(portRspPut >= portRspMax)) {
3350 		lpfc_sli_rsp_pointers_error(phba, pring);
3351 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3352 		return 1;
3353 	}
3354 	if (phba->fcp_ring_in_use) {
3355 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3356 		return 1;
3357 	} else
3358 		phba->fcp_ring_in_use = 1;
3359 
3360 	rmb();
3361 	while (pring->sli.sli3.rspidx != portRspPut) {
3362 		/*
3363 		 * Fetch an entry off the ring and copy it into a local data
3364 		 * structure.  The copy involves a byte-swap since the
3365 		 * network byte order and pci byte orders are different.
3366 		 */
3367 		entry = lpfc_resp_iocb(phba, pring);
3368 		phba->last_completion_time = jiffies;
3369 
3370 		if (++pring->sli.sli3.rspidx >= portRspMax)
3371 			pring->sli.sli3.rspidx = 0;
3372 
3373 		lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3374 				      (uint32_t *) &rspiocbq.iocb,
3375 				      phba->iocb_rsp_size);
3376 		INIT_LIST_HEAD(&(rspiocbq.list));
3377 		irsp = &rspiocbq.iocb;
3378 
3379 		type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3380 		pring->stats.iocb_rsp++;
3381 		rsp_cmpl++;
3382 
3383 		if (unlikely(irsp->ulpStatus)) {
3384 			/*
3385 			 * If resource errors reported from HBA, reduce
3386 			 * queuedepths of the SCSI device.
3387 			 */
3388 			if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3389 			    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3390 			     IOERR_NO_RESOURCES)) {
3391 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3392 				phba->lpfc_rampdown_queue_depth(phba);
3393 				spin_lock_irqsave(&phba->hbalock, iflag);
3394 			}
3395 
3396 			/* Rsp ring <ringno> error: IOCB */
3397 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3398 					"0336 Rsp Ring %d error: IOCB Data: "
3399 					"x%x x%x x%x x%x x%x x%x x%x x%x\n",
3400 					pring->ringno,
3401 					irsp->un.ulpWord[0],
3402 					irsp->un.ulpWord[1],
3403 					irsp->un.ulpWord[2],
3404 					irsp->un.ulpWord[3],
3405 					irsp->un.ulpWord[4],
3406 					irsp->un.ulpWord[5],
3407 					*(uint32_t *)&irsp->un1,
3408 					*((uint32_t *)&irsp->un1 + 1));
3409 		}
3410 
3411 		switch (type) {
3412 		case LPFC_ABORT_IOCB:
3413 		case LPFC_SOL_IOCB:
3414 			/*
3415 			 * Idle exchange closed via ABTS from port.  No iocb
3416 			 * resources need to be recovered.
3417 			 */
3418 			if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3419 				lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3420 						"0333 IOCB cmd 0x%x"
3421 						" processed. Skipping"
3422 						" completion\n",
3423 						irsp->ulpCommand);
3424 				break;
3425 			}
3426 
3427 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3428 			cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3429 							 &rspiocbq);
3430 			spin_lock_irqsave(&phba->hbalock, iflag);
3431 			if (unlikely(!cmdiocbq))
3432 				break;
3433 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3434 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3435 			if (cmdiocbq->iocb_cmpl) {
3436 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3437 				(cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3438 						      &rspiocbq);
3439 				spin_lock_irqsave(&phba->hbalock, iflag);
3440 			}
3441 			break;
3442 		case LPFC_UNSOL_IOCB:
3443 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3444 			lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3445 			spin_lock_irqsave(&phba->hbalock, iflag);
3446 			break;
3447 		default:
3448 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3449 				char adaptermsg[LPFC_MAX_ADPTMSG];
3450 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3451 				memcpy(&adaptermsg[0], (uint8_t *) irsp,
3452 				       MAX_MSG_DATA);
3453 				dev_warn(&((phba->pcidev)->dev),
3454 					 "lpfc%d: %s\n",
3455 					 phba->brd_no, adaptermsg);
3456 			} else {
3457 				/* Unknown IOCB command */
3458 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3459 						"0334 Unknown IOCB command "
3460 						"Data: x%x, x%x x%x x%x x%x\n",
3461 						type, irsp->ulpCommand,
3462 						irsp->ulpStatus,
3463 						irsp->ulpIoTag,
3464 						irsp->ulpContext);
3465 			}
3466 			break;
3467 		}
3468 
3469 		/*
3470 		 * The response IOCB has been processed.  Update the ring
3471 		 * pointer in SLIM.  If the port response put pointer has not
3472 		 * been updated, sync the pgp->rspPutInx and fetch the new port
3473 		 * response put pointer.
3474 		 */
3475 		writel(pring->sli.sli3.rspidx,
3476 			&phba->host_gp[pring->ringno].rspGetInx);
3477 
3478 		if (pring->sli.sli3.rspidx == portRspPut)
3479 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3480 	}
3481 
3482 	if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3483 		pring->stats.iocb_rsp_full++;
3484 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3485 		writel(status, phba->CAregaddr);
3486 		readl(phba->CAregaddr);
3487 	}
3488 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3489 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3490 		pring->stats.iocb_cmd_empty++;
3491 
3492 		/* Force update of the local copy of cmdGetInx */
3493 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3494 		lpfc_sli_resume_iocb(phba, pring);
3495 
3496 		if ((pring->lpfc_sli_cmd_available))
3497 			(pring->lpfc_sli_cmd_available) (phba, pring);
3498 
3499 	}
3500 
3501 	phba->fcp_ring_in_use = 0;
3502 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3503 	return rc;
3504 }
3505 
3506 /**
3507  * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3508  * @phba: Pointer to HBA context object.
3509  * @pring: Pointer to driver SLI ring object.
3510  * @rspiocbp: Pointer to driver response IOCB object.
3511  *
3512  * This function is called from the worker thread when there is a slow-path
3513  * response IOCB to process. This function chains all the response iocbs until
3514  * seeing the iocb with the LE bit set. The function will call
3515  * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3516  * completion of a command iocb. The function will call the
3517  * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3518  * The function frees the resources or calls the completion handler if this
3519  * iocb is an abort completion. The function returns NULL when the response
3520  * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3521  * this function shall chain the iocb on to the iocb_continueq and return the
3522  * response iocb passed in.
3523  **/
3524 static struct lpfc_iocbq *
3525 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3526 			struct lpfc_iocbq *rspiocbp)
3527 {
3528 	struct lpfc_iocbq *saveq;
3529 	struct lpfc_iocbq *cmdiocbp;
3530 	struct lpfc_iocbq *next_iocb;
3531 	IOCB_t *irsp = NULL;
3532 	uint32_t free_saveq;
3533 	uint8_t iocb_cmd_type;
3534 	lpfc_iocb_type type;
3535 	unsigned long iflag;
3536 	int rc;
3537 
3538 	spin_lock_irqsave(&phba->hbalock, iflag);
3539 	/* First add the response iocb to the countinueq list */
3540 	list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3541 	pring->iocb_continueq_cnt++;
3542 
3543 	/* Now, determine whether the list is completed for processing */
3544 	irsp = &rspiocbp->iocb;
3545 	if (irsp->ulpLe) {
3546 		/*
3547 		 * By default, the driver expects to free all resources
3548 		 * associated with this iocb completion.
3549 		 */
3550 		free_saveq = 1;
3551 		saveq = list_get_first(&pring->iocb_continueq,
3552 				       struct lpfc_iocbq, list);
3553 		irsp = &(saveq->iocb);
3554 		list_del_init(&pring->iocb_continueq);
3555 		pring->iocb_continueq_cnt = 0;
3556 
3557 		pring->stats.iocb_rsp++;
3558 
3559 		/*
3560 		 * If resource errors reported from HBA, reduce
3561 		 * queuedepths of the SCSI device.
3562 		 */
3563 		if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3564 		    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3565 		     IOERR_NO_RESOURCES)) {
3566 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3567 			phba->lpfc_rampdown_queue_depth(phba);
3568 			spin_lock_irqsave(&phba->hbalock, iflag);
3569 		}
3570 
3571 		if (irsp->ulpStatus) {
3572 			/* Rsp ring <ringno> error: IOCB */
3573 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3574 					"0328 Rsp Ring %d error: "
3575 					"IOCB Data: "
3576 					"x%x x%x x%x x%x "
3577 					"x%x x%x x%x x%x "
3578 					"x%x x%x x%x x%x "
3579 					"x%x x%x x%x x%x\n",
3580 					pring->ringno,
3581 					irsp->un.ulpWord[0],
3582 					irsp->un.ulpWord[1],
3583 					irsp->un.ulpWord[2],
3584 					irsp->un.ulpWord[3],
3585 					irsp->un.ulpWord[4],
3586 					irsp->un.ulpWord[5],
3587 					*(((uint32_t *) irsp) + 6),
3588 					*(((uint32_t *) irsp) + 7),
3589 					*(((uint32_t *) irsp) + 8),
3590 					*(((uint32_t *) irsp) + 9),
3591 					*(((uint32_t *) irsp) + 10),
3592 					*(((uint32_t *) irsp) + 11),
3593 					*(((uint32_t *) irsp) + 12),
3594 					*(((uint32_t *) irsp) + 13),
3595 					*(((uint32_t *) irsp) + 14),
3596 					*(((uint32_t *) irsp) + 15));
3597 		}
3598 
3599 		/*
3600 		 * Fetch the IOCB command type and call the correct completion
3601 		 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3602 		 * get freed back to the lpfc_iocb_list by the discovery
3603 		 * kernel thread.
3604 		 */
3605 		iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3606 		type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3607 		switch (type) {
3608 		case LPFC_SOL_IOCB:
3609 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3610 			rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3611 			spin_lock_irqsave(&phba->hbalock, iflag);
3612 			break;
3613 
3614 		case LPFC_UNSOL_IOCB:
3615 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3616 			rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3617 			spin_lock_irqsave(&phba->hbalock, iflag);
3618 			if (!rc)
3619 				free_saveq = 0;
3620 			break;
3621 
3622 		case LPFC_ABORT_IOCB:
3623 			cmdiocbp = NULL;
3624 			if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) {
3625 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3626 				cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3627 								 saveq);
3628 				spin_lock_irqsave(&phba->hbalock, iflag);
3629 			}
3630 			if (cmdiocbp) {
3631 				/* Call the specified completion routine */
3632 				if (cmdiocbp->iocb_cmpl) {
3633 					spin_unlock_irqrestore(&phba->hbalock,
3634 							       iflag);
3635 					(cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3636 							      saveq);
3637 					spin_lock_irqsave(&phba->hbalock,
3638 							  iflag);
3639 				} else
3640 					__lpfc_sli_release_iocbq(phba,
3641 								 cmdiocbp);
3642 			}
3643 			break;
3644 
3645 		case LPFC_UNKNOWN_IOCB:
3646 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3647 				char adaptermsg[LPFC_MAX_ADPTMSG];
3648 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3649 				memcpy(&adaptermsg[0], (uint8_t *)irsp,
3650 				       MAX_MSG_DATA);
3651 				dev_warn(&((phba->pcidev)->dev),
3652 					 "lpfc%d: %s\n",
3653 					 phba->brd_no, adaptermsg);
3654 			} else {
3655 				/* Unknown IOCB command */
3656 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3657 						"0335 Unknown IOCB "
3658 						"command Data: x%x "
3659 						"x%x x%x x%x\n",
3660 						irsp->ulpCommand,
3661 						irsp->ulpStatus,
3662 						irsp->ulpIoTag,
3663 						irsp->ulpContext);
3664 			}
3665 			break;
3666 		}
3667 
3668 		if (free_saveq) {
3669 			list_for_each_entry_safe(rspiocbp, next_iocb,
3670 						 &saveq->list, list) {
3671 				list_del_init(&rspiocbp->list);
3672 				__lpfc_sli_release_iocbq(phba, rspiocbp);
3673 			}
3674 			__lpfc_sli_release_iocbq(phba, saveq);
3675 		}
3676 		rspiocbp = NULL;
3677 	}
3678 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3679 	return rspiocbp;
3680 }
3681 
3682 /**
3683  * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3684  * @phba: Pointer to HBA context object.
3685  * @pring: Pointer to driver SLI ring object.
3686  * @mask: Host attention register mask for this ring.
3687  *
3688  * This routine wraps the actual slow_ring event process routine from the
3689  * API jump table function pointer from the lpfc_hba struct.
3690  **/
3691 void
3692 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3693 				struct lpfc_sli_ring *pring, uint32_t mask)
3694 {
3695 	phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3696 }
3697 
3698 /**
3699  * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3700  * @phba: Pointer to HBA context object.
3701  * @pring: Pointer to driver SLI ring object.
3702  * @mask: Host attention register mask for this ring.
3703  *
3704  * This function is called from the worker thread when there is a ring event
3705  * for non-fcp rings. The caller does not hold any lock. The function will
3706  * remove each response iocb in the response ring and calls the handle
3707  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3708  **/
3709 static void
3710 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3711 				   struct lpfc_sli_ring *pring, uint32_t mask)
3712 {
3713 	struct lpfc_pgp *pgp;
3714 	IOCB_t *entry;
3715 	IOCB_t *irsp = NULL;
3716 	struct lpfc_iocbq *rspiocbp = NULL;
3717 	uint32_t portRspPut, portRspMax;
3718 	unsigned long iflag;
3719 	uint32_t status;
3720 
3721 	pgp = &phba->port_gp[pring->ringno];
3722 	spin_lock_irqsave(&phba->hbalock, iflag);
3723 	pring->stats.iocb_event++;
3724 
3725 	/*
3726 	 * The next available response entry should never exceed the maximum
3727 	 * entries.  If it does, treat it as an adapter hardware error.
3728 	 */
3729 	portRspMax = pring->sli.sli3.numRiocb;
3730 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3731 	if (portRspPut >= portRspMax) {
3732 		/*
3733 		 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3734 		 * rsp ring <portRspMax>
3735 		 */
3736 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3737 				"0303 Ring %d handler: portRspPut %d "
3738 				"is bigger than rsp ring %d\n",
3739 				pring->ringno, portRspPut, portRspMax);
3740 
3741 		phba->link_state = LPFC_HBA_ERROR;
3742 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3743 
3744 		phba->work_hs = HS_FFER3;
3745 		lpfc_handle_eratt(phba);
3746 
3747 		return;
3748 	}
3749 
3750 	rmb();
3751 	while (pring->sli.sli3.rspidx != portRspPut) {
3752 		/*
3753 		 * Build a completion list and call the appropriate handler.
3754 		 * The process is to get the next available response iocb, get
3755 		 * a free iocb from the list, copy the response data into the
3756 		 * free iocb, insert to the continuation list, and update the
3757 		 * next response index to slim.  This process makes response
3758 		 * iocb's in the ring available to DMA as fast as possible but
3759 		 * pays a penalty for a copy operation.  Since the iocb is
3760 		 * only 32 bytes, this penalty is considered small relative to
3761 		 * the PCI reads for register values and a slim write.  When
3762 		 * the ulpLe field is set, the entire Command has been
3763 		 * received.
3764 		 */
3765 		entry = lpfc_resp_iocb(phba, pring);
3766 
3767 		phba->last_completion_time = jiffies;
3768 		rspiocbp = __lpfc_sli_get_iocbq(phba);
3769 		if (rspiocbp == NULL) {
3770 			printk(KERN_ERR "%s: out of buffers! Failing "
3771 			       "completion.\n", __func__);
3772 			break;
3773 		}
3774 
3775 		lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3776 				      phba->iocb_rsp_size);
3777 		irsp = &rspiocbp->iocb;
3778 
3779 		if (++pring->sli.sli3.rspidx >= portRspMax)
3780 			pring->sli.sli3.rspidx = 0;
3781 
3782 		if (pring->ringno == LPFC_ELS_RING) {
3783 			lpfc_debugfs_slow_ring_trc(phba,
3784 			"IOCB rsp ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
3785 				*(((uint32_t *) irsp) + 4),
3786 				*(((uint32_t *) irsp) + 6),
3787 				*(((uint32_t *) irsp) + 7));
3788 		}
3789 
3790 		writel(pring->sli.sli3.rspidx,
3791 			&phba->host_gp[pring->ringno].rspGetInx);
3792 
3793 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3794 		/* Handle the response IOCB */
3795 		rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3796 		spin_lock_irqsave(&phba->hbalock, iflag);
3797 
3798 		/*
3799 		 * If the port response put pointer has not been updated, sync
3800 		 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3801 		 * response put pointer.
3802 		 */
3803 		if (pring->sli.sli3.rspidx == portRspPut) {
3804 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3805 		}
3806 	} /* while (pring->sli.sli3.rspidx != portRspPut) */
3807 
3808 	if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3809 		/* At least one response entry has been freed */
3810 		pring->stats.iocb_rsp_full++;
3811 		/* SET RxRE_RSP in Chip Att register */
3812 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3813 		writel(status, phba->CAregaddr);
3814 		readl(phba->CAregaddr); /* flush */
3815 	}
3816 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3817 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3818 		pring->stats.iocb_cmd_empty++;
3819 
3820 		/* Force update of the local copy of cmdGetInx */
3821 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3822 		lpfc_sli_resume_iocb(phba, pring);
3823 
3824 		if ((pring->lpfc_sli_cmd_available))
3825 			(pring->lpfc_sli_cmd_available) (phba, pring);
3826 
3827 	}
3828 
3829 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3830 	return;
3831 }
3832 
3833 /**
3834  * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3835  * @phba: Pointer to HBA context object.
3836  * @pring: Pointer to driver SLI ring object.
3837  * @mask: Host attention register mask for this ring.
3838  *
3839  * This function is called from the worker thread when there is a pending
3840  * ELS response iocb on the driver internal slow-path response iocb worker
3841  * queue. The caller does not hold any lock. The function will remove each
3842  * response iocb from the response worker queue and calls the handle
3843  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3844  **/
3845 static void
3846 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
3847 				   struct lpfc_sli_ring *pring, uint32_t mask)
3848 {
3849 	struct lpfc_iocbq *irspiocbq;
3850 	struct hbq_dmabuf *dmabuf;
3851 	struct lpfc_cq_event *cq_event;
3852 	unsigned long iflag;
3853 	int count = 0;
3854 
3855 	spin_lock_irqsave(&phba->hbalock, iflag);
3856 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
3857 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3858 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
3859 		/* Get the response iocb from the head of work queue */
3860 		spin_lock_irqsave(&phba->hbalock, iflag);
3861 		list_remove_head(&phba->sli4_hba.sp_queue_event,
3862 				 cq_event, struct lpfc_cq_event, list);
3863 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3864 
3865 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
3866 		case CQE_CODE_COMPL_WQE:
3867 			irspiocbq = container_of(cq_event, struct lpfc_iocbq,
3868 						 cq_event);
3869 			/* Translate ELS WCQE to response IOCBQ */
3870 			irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
3871 								   irspiocbq);
3872 			if (irspiocbq)
3873 				lpfc_sli_sp_handle_rspiocb(phba, pring,
3874 							   irspiocbq);
3875 			count++;
3876 			break;
3877 		case CQE_CODE_RECEIVE:
3878 		case CQE_CODE_RECEIVE_V1:
3879 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
3880 					      cq_event);
3881 			lpfc_sli4_handle_received_buffer(phba, dmabuf);
3882 			count++;
3883 			break;
3884 		default:
3885 			break;
3886 		}
3887 
3888 		/* Limit the number of events to 64 to avoid soft lockups */
3889 		if (count == 64)
3890 			break;
3891 	}
3892 }
3893 
3894 /**
3895  * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
3896  * @phba: Pointer to HBA context object.
3897  * @pring: Pointer to driver SLI ring object.
3898  *
3899  * This function aborts all iocbs in the given ring and frees all the iocb
3900  * objects in txq. This function issues an abort iocb for all the iocb commands
3901  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3902  * the return of this function. The caller is not required to hold any locks.
3903  **/
3904 void
3905 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3906 {
3907 	LIST_HEAD(completions);
3908 	struct lpfc_iocbq *iocb, *next_iocb;
3909 
3910 	if (pring->ringno == LPFC_ELS_RING) {
3911 		lpfc_fabric_abort_hba(phba);
3912 	}
3913 
3914 	/* Error everything on txq and txcmplq
3915 	 * First do the txq.
3916 	 */
3917 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3918 		spin_lock_irq(&pring->ring_lock);
3919 		list_splice_init(&pring->txq, &completions);
3920 		pring->txq_cnt = 0;
3921 		spin_unlock_irq(&pring->ring_lock);
3922 
3923 		spin_lock_irq(&phba->hbalock);
3924 		/* Next issue ABTS for everything on the txcmplq */
3925 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3926 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3927 		spin_unlock_irq(&phba->hbalock);
3928 	} else {
3929 		spin_lock_irq(&phba->hbalock);
3930 		list_splice_init(&pring->txq, &completions);
3931 		pring->txq_cnt = 0;
3932 
3933 		/* Next issue ABTS for everything on the txcmplq */
3934 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3935 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3936 		spin_unlock_irq(&phba->hbalock);
3937 	}
3938 
3939 	/* Cancel all the IOCBs from the completions list */
3940 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
3941 			      IOERR_SLI_ABORTED);
3942 }
3943 
3944 /**
3945  * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
3946  * @phba: Pointer to HBA context object.
3947  * @pring: Pointer to driver SLI ring object.
3948  *
3949  * This function aborts all iocbs in FCP rings and frees all the iocb
3950  * objects in txq. This function issues an abort iocb for all the iocb commands
3951  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3952  * the return of this function. The caller is not required to hold any locks.
3953  **/
3954 void
3955 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
3956 {
3957 	struct lpfc_sli *psli = &phba->sli;
3958 	struct lpfc_sli_ring  *pring;
3959 	uint32_t i;
3960 
3961 	/* Look on all the FCP Rings for the iotag */
3962 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3963 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
3964 			pring = phba->sli4_hba.hdwq[i].fcp_wq->pring;
3965 			lpfc_sli_abort_iocb_ring(phba, pring);
3966 		}
3967 	} else {
3968 		pring = &psli->sli3_ring[LPFC_FCP_RING];
3969 		lpfc_sli_abort_iocb_ring(phba, pring);
3970 	}
3971 }
3972 
3973 /**
3974  * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring
3975  * @phba: Pointer to HBA context object.
3976  *
3977  * This function flushes all iocbs in the fcp ring and frees all the iocb
3978  * objects in txq and txcmplq. This function will not issue abort iocbs
3979  * for all the iocb commands in txcmplq, they will just be returned with
3980  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
3981  * slot has been permanently disabled.
3982  **/
3983 void
3984 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba)
3985 {
3986 	LIST_HEAD(txq);
3987 	LIST_HEAD(txcmplq);
3988 	struct lpfc_sli *psli = &phba->sli;
3989 	struct lpfc_sli_ring  *pring;
3990 	uint32_t i;
3991 	struct lpfc_iocbq *piocb, *next_iocb;
3992 
3993 	spin_lock_irq(&phba->hbalock);
3994 	/* Indicate the I/O queues are flushed */
3995 	phba->hba_flag |= HBA_FCP_IOQ_FLUSH;
3996 	spin_unlock_irq(&phba->hbalock);
3997 
3998 	/* Look on all the FCP Rings for the iotag */
3999 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4000 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4001 			pring = phba->sli4_hba.hdwq[i].fcp_wq->pring;
4002 
4003 			spin_lock_irq(&pring->ring_lock);
4004 			/* Retrieve everything on txq */
4005 			list_splice_init(&pring->txq, &txq);
4006 			list_for_each_entry_safe(piocb, next_iocb,
4007 						 &pring->txcmplq, list)
4008 				piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4009 			/* Retrieve everything on the txcmplq */
4010 			list_splice_init(&pring->txcmplq, &txcmplq);
4011 			pring->txq_cnt = 0;
4012 			pring->txcmplq_cnt = 0;
4013 			spin_unlock_irq(&pring->ring_lock);
4014 
4015 			/* Flush the txq */
4016 			lpfc_sli_cancel_iocbs(phba, &txq,
4017 					      IOSTAT_LOCAL_REJECT,
4018 					      IOERR_SLI_DOWN);
4019 			/* Flush the txcmpq */
4020 			lpfc_sli_cancel_iocbs(phba, &txcmplq,
4021 					      IOSTAT_LOCAL_REJECT,
4022 					      IOERR_SLI_DOWN);
4023 		}
4024 	} else {
4025 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4026 
4027 		spin_lock_irq(&phba->hbalock);
4028 		/* Retrieve everything on txq */
4029 		list_splice_init(&pring->txq, &txq);
4030 		list_for_each_entry_safe(piocb, next_iocb,
4031 					 &pring->txcmplq, list)
4032 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4033 		/* Retrieve everything on the txcmplq */
4034 		list_splice_init(&pring->txcmplq, &txcmplq);
4035 		pring->txq_cnt = 0;
4036 		pring->txcmplq_cnt = 0;
4037 		spin_unlock_irq(&phba->hbalock);
4038 
4039 		/* Flush the txq */
4040 		lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4041 				      IOERR_SLI_DOWN);
4042 		/* Flush the txcmpq */
4043 		lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4044 				      IOERR_SLI_DOWN);
4045 	}
4046 }
4047 
4048 /**
4049  * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings
4050  * @phba: Pointer to HBA context object.
4051  *
4052  * This function flushes all wqes in the nvme rings and frees all resources
4053  * in the txcmplq. This function does not issue abort wqes for the IO
4054  * commands in txcmplq, they will just be returned with
4055  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4056  * slot has been permanently disabled.
4057  **/
4058 void
4059 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba)
4060 {
4061 	LIST_HEAD(txcmplq);
4062 	struct lpfc_sli_ring  *pring;
4063 	uint32_t i;
4064 	struct lpfc_iocbq *piocb, *next_iocb;
4065 
4066 	if ((phba->sli_rev < LPFC_SLI_REV4) ||
4067 	    !(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME))
4068 		return;
4069 
4070 	/* Hint to other driver operations that a flush is in progress. */
4071 	spin_lock_irq(&phba->hbalock);
4072 	phba->hba_flag |= HBA_NVME_IOQ_FLUSH;
4073 	spin_unlock_irq(&phba->hbalock);
4074 
4075 	/* Cycle through all NVME rings and complete each IO with
4076 	 * a local driver reason code.  This is a flush so no
4077 	 * abort exchange to FW.
4078 	 */
4079 	for (i = 0; i < phba->cfg_hdw_queue; i++) {
4080 		pring = phba->sli4_hba.hdwq[i].nvme_wq->pring;
4081 
4082 		spin_lock_irq(&pring->ring_lock);
4083 		list_for_each_entry_safe(piocb, next_iocb,
4084 					 &pring->txcmplq, list)
4085 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4086 		/* Retrieve everything on the txcmplq */
4087 		list_splice_init(&pring->txcmplq, &txcmplq);
4088 		pring->txcmplq_cnt = 0;
4089 		spin_unlock_irq(&pring->ring_lock);
4090 
4091 		/* Flush the txcmpq &&&PAE */
4092 		lpfc_sli_cancel_iocbs(phba, &txcmplq,
4093 				      IOSTAT_LOCAL_REJECT,
4094 				      IOERR_SLI_DOWN);
4095 	}
4096 }
4097 
4098 /**
4099  * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4100  * @phba: Pointer to HBA context object.
4101  * @mask: Bit mask to be checked.
4102  *
4103  * This function reads the host status register and compares
4104  * with the provided bit mask to check if HBA completed
4105  * the restart. This function will wait in a loop for the
4106  * HBA to complete restart. If the HBA does not restart within
4107  * 15 iterations, the function will reset the HBA again. The
4108  * function returns 1 when HBA fail to restart otherwise returns
4109  * zero.
4110  **/
4111 static int
4112 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4113 {
4114 	uint32_t status;
4115 	int i = 0;
4116 	int retval = 0;
4117 
4118 	/* Read the HBA Host Status Register */
4119 	if (lpfc_readl(phba->HSregaddr, &status))
4120 		return 1;
4121 
4122 	/*
4123 	 * Check status register every 100ms for 5 retries, then every
4124 	 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4125 	 * every 2.5 sec for 4.
4126 	 * Break our of the loop if errors occurred during init.
4127 	 */
4128 	while (((status & mask) != mask) &&
4129 	       !(status & HS_FFERM) &&
4130 	       i++ < 20) {
4131 
4132 		if (i <= 5)
4133 			msleep(10);
4134 		else if (i <= 10)
4135 			msleep(500);
4136 		else
4137 			msleep(2500);
4138 
4139 		if (i == 15) {
4140 				/* Do post */
4141 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4142 			lpfc_sli_brdrestart(phba);
4143 		}
4144 		/* Read the HBA Host Status Register */
4145 		if (lpfc_readl(phba->HSregaddr, &status)) {
4146 			retval = 1;
4147 			break;
4148 		}
4149 	}
4150 
4151 	/* Check to see if any errors occurred during init */
4152 	if ((status & HS_FFERM) || (i >= 20)) {
4153 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4154 				"2751 Adapter failed to restart, "
4155 				"status reg x%x, FW Data: A8 x%x AC x%x\n",
4156 				status,
4157 				readl(phba->MBslimaddr + 0xa8),
4158 				readl(phba->MBslimaddr + 0xac));
4159 		phba->link_state = LPFC_HBA_ERROR;
4160 		retval = 1;
4161 	}
4162 
4163 	return retval;
4164 }
4165 
4166 /**
4167  * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4168  * @phba: Pointer to HBA context object.
4169  * @mask: Bit mask to be checked.
4170  *
4171  * This function checks the host status register to check if HBA is
4172  * ready. This function will wait in a loop for the HBA to be ready
4173  * If the HBA is not ready , the function will will reset the HBA PCI
4174  * function again. The function returns 1 when HBA fail to be ready
4175  * otherwise returns zero.
4176  **/
4177 static int
4178 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4179 {
4180 	uint32_t status;
4181 	int retval = 0;
4182 
4183 	/* Read the HBA Host Status Register */
4184 	status = lpfc_sli4_post_status_check(phba);
4185 
4186 	if (status) {
4187 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4188 		lpfc_sli_brdrestart(phba);
4189 		status = lpfc_sli4_post_status_check(phba);
4190 	}
4191 
4192 	/* Check to see if any errors occurred during init */
4193 	if (status) {
4194 		phba->link_state = LPFC_HBA_ERROR;
4195 		retval = 1;
4196 	} else
4197 		phba->sli4_hba.intr_enable = 0;
4198 
4199 	return retval;
4200 }
4201 
4202 /**
4203  * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4204  * @phba: Pointer to HBA context object.
4205  * @mask: Bit mask to be checked.
4206  *
4207  * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4208  * from the API jump table function pointer from the lpfc_hba struct.
4209  **/
4210 int
4211 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4212 {
4213 	return phba->lpfc_sli_brdready(phba, mask);
4214 }
4215 
4216 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4217 
4218 /**
4219  * lpfc_reset_barrier - Make HBA ready for HBA reset
4220  * @phba: Pointer to HBA context object.
4221  *
4222  * This function is called before resetting an HBA. This function is called
4223  * with hbalock held and requests HBA to quiesce DMAs before a reset.
4224  **/
4225 void lpfc_reset_barrier(struct lpfc_hba *phba)
4226 {
4227 	uint32_t __iomem *resp_buf;
4228 	uint32_t __iomem *mbox_buf;
4229 	volatile uint32_t mbox;
4230 	uint32_t hc_copy, ha_copy, resp_data;
4231 	int  i;
4232 	uint8_t hdrtype;
4233 
4234 	lockdep_assert_held(&phba->hbalock);
4235 
4236 	pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4237 	if (hdrtype != 0x80 ||
4238 	    (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4239 	     FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4240 		return;
4241 
4242 	/*
4243 	 * Tell the other part of the chip to suspend temporarily all
4244 	 * its DMA activity.
4245 	 */
4246 	resp_buf = phba->MBslimaddr;
4247 
4248 	/* Disable the error attention */
4249 	if (lpfc_readl(phba->HCregaddr, &hc_copy))
4250 		return;
4251 	writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4252 	readl(phba->HCregaddr); /* flush */
4253 	phba->link_flag |= LS_IGNORE_ERATT;
4254 
4255 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4256 		return;
4257 	if (ha_copy & HA_ERATT) {
4258 		/* Clear Chip error bit */
4259 		writel(HA_ERATT, phba->HAregaddr);
4260 		phba->pport->stopped = 1;
4261 	}
4262 
4263 	mbox = 0;
4264 	((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4265 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4266 
4267 	writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4268 	mbox_buf = phba->MBslimaddr;
4269 	writel(mbox, mbox_buf);
4270 
4271 	for (i = 0; i < 50; i++) {
4272 		if (lpfc_readl((resp_buf + 1), &resp_data))
4273 			return;
4274 		if (resp_data != ~(BARRIER_TEST_PATTERN))
4275 			mdelay(1);
4276 		else
4277 			break;
4278 	}
4279 	resp_data = 0;
4280 	if (lpfc_readl((resp_buf + 1), &resp_data))
4281 		return;
4282 	if (resp_data  != ~(BARRIER_TEST_PATTERN)) {
4283 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4284 		    phba->pport->stopped)
4285 			goto restore_hc;
4286 		else
4287 			goto clear_errat;
4288 	}
4289 
4290 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4291 	resp_data = 0;
4292 	for (i = 0; i < 500; i++) {
4293 		if (lpfc_readl(resp_buf, &resp_data))
4294 			return;
4295 		if (resp_data != mbox)
4296 			mdelay(1);
4297 		else
4298 			break;
4299 	}
4300 
4301 clear_errat:
4302 
4303 	while (++i < 500) {
4304 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4305 			return;
4306 		if (!(ha_copy & HA_ERATT))
4307 			mdelay(1);
4308 		else
4309 			break;
4310 	}
4311 
4312 	if (readl(phba->HAregaddr) & HA_ERATT) {
4313 		writel(HA_ERATT, phba->HAregaddr);
4314 		phba->pport->stopped = 1;
4315 	}
4316 
4317 restore_hc:
4318 	phba->link_flag &= ~LS_IGNORE_ERATT;
4319 	writel(hc_copy, phba->HCregaddr);
4320 	readl(phba->HCregaddr); /* flush */
4321 }
4322 
4323 /**
4324  * lpfc_sli_brdkill - Issue a kill_board mailbox command
4325  * @phba: Pointer to HBA context object.
4326  *
4327  * This function issues a kill_board mailbox command and waits for
4328  * the error attention interrupt. This function is called for stopping
4329  * the firmware processing. The caller is not required to hold any
4330  * locks. This function calls lpfc_hba_down_post function to free
4331  * any pending commands after the kill. The function will return 1 when it
4332  * fails to kill the board else will return 0.
4333  **/
4334 int
4335 lpfc_sli_brdkill(struct lpfc_hba *phba)
4336 {
4337 	struct lpfc_sli *psli;
4338 	LPFC_MBOXQ_t *pmb;
4339 	uint32_t status;
4340 	uint32_t ha_copy;
4341 	int retval;
4342 	int i = 0;
4343 
4344 	psli = &phba->sli;
4345 
4346 	/* Kill HBA */
4347 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4348 			"0329 Kill HBA Data: x%x x%x\n",
4349 			phba->pport->port_state, psli->sli_flag);
4350 
4351 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4352 	if (!pmb)
4353 		return 1;
4354 
4355 	/* Disable the error attention */
4356 	spin_lock_irq(&phba->hbalock);
4357 	if (lpfc_readl(phba->HCregaddr, &status)) {
4358 		spin_unlock_irq(&phba->hbalock);
4359 		mempool_free(pmb, phba->mbox_mem_pool);
4360 		return 1;
4361 	}
4362 	status &= ~HC_ERINT_ENA;
4363 	writel(status, phba->HCregaddr);
4364 	readl(phba->HCregaddr); /* flush */
4365 	phba->link_flag |= LS_IGNORE_ERATT;
4366 	spin_unlock_irq(&phba->hbalock);
4367 
4368 	lpfc_kill_board(phba, pmb);
4369 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4370 	retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4371 
4372 	if (retval != MBX_SUCCESS) {
4373 		if (retval != MBX_BUSY)
4374 			mempool_free(pmb, phba->mbox_mem_pool);
4375 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4376 				"2752 KILL_BOARD command failed retval %d\n",
4377 				retval);
4378 		spin_lock_irq(&phba->hbalock);
4379 		phba->link_flag &= ~LS_IGNORE_ERATT;
4380 		spin_unlock_irq(&phba->hbalock);
4381 		return 1;
4382 	}
4383 
4384 	spin_lock_irq(&phba->hbalock);
4385 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4386 	spin_unlock_irq(&phba->hbalock);
4387 
4388 	mempool_free(pmb, phba->mbox_mem_pool);
4389 
4390 	/* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4391 	 * attention every 100ms for 3 seconds. If we don't get ERATT after
4392 	 * 3 seconds we still set HBA_ERROR state because the status of the
4393 	 * board is now undefined.
4394 	 */
4395 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4396 		return 1;
4397 	while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4398 		mdelay(100);
4399 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4400 			return 1;
4401 	}
4402 
4403 	del_timer_sync(&psli->mbox_tmo);
4404 	if (ha_copy & HA_ERATT) {
4405 		writel(HA_ERATT, phba->HAregaddr);
4406 		phba->pport->stopped = 1;
4407 	}
4408 	spin_lock_irq(&phba->hbalock);
4409 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4410 	psli->mbox_active = NULL;
4411 	phba->link_flag &= ~LS_IGNORE_ERATT;
4412 	spin_unlock_irq(&phba->hbalock);
4413 
4414 	lpfc_hba_down_post(phba);
4415 	phba->link_state = LPFC_HBA_ERROR;
4416 
4417 	return ha_copy & HA_ERATT ? 0 : 1;
4418 }
4419 
4420 /**
4421  * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4422  * @phba: Pointer to HBA context object.
4423  *
4424  * This function resets the HBA by writing HC_INITFF to the control
4425  * register. After the HBA resets, this function resets all the iocb ring
4426  * indices. This function disables PCI layer parity checking during
4427  * the reset.
4428  * This function returns 0 always.
4429  * The caller is not required to hold any locks.
4430  **/
4431 int
4432 lpfc_sli_brdreset(struct lpfc_hba *phba)
4433 {
4434 	struct lpfc_sli *psli;
4435 	struct lpfc_sli_ring *pring;
4436 	uint16_t cfg_value;
4437 	int i;
4438 
4439 	psli = &phba->sli;
4440 
4441 	/* Reset HBA */
4442 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4443 			"0325 Reset HBA Data: x%x x%x\n",
4444 			(phba->pport) ? phba->pport->port_state : 0,
4445 			psli->sli_flag);
4446 
4447 	/* perform board reset */
4448 	phba->fc_eventTag = 0;
4449 	phba->link_events = 0;
4450 	if (phba->pport) {
4451 		phba->pport->fc_myDID = 0;
4452 		phba->pport->fc_prevDID = 0;
4453 	}
4454 
4455 	/* Turn off parity checking and serr during the physical reset */
4456 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
4457 		return -EIO;
4458 
4459 	pci_write_config_word(phba->pcidev, PCI_COMMAND,
4460 			      (cfg_value &
4461 			       ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4462 
4463 	psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4464 
4465 	/* Now toggle INITFF bit in the Host Control Register */
4466 	writel(HC_INITFF, phba->HCregaddr);
4467 	mdelay(1);
4468 	readl(phba->HCregaddr); /* flush */
4469 	writel(0, phba->HCregaddr);
4470 	readl(phba->HCregaddr); /* flush */
4471 
4472 	/* Restore PCI cmd register */
4473 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4474 
4475 	/* Initialize relevant SLI info */
4476 	for (i = 0; i < psli->num_rings; i++) {
4477 		pring = &psli->sli3_ring[i];
4478 		pring->flag = 0;
4479 		pring->sli.sli3.rspidx = 0;
4480 		pring->sli.sli3.next_cmdidx  = 0;
4481 		pring->sli.sli3.local_getidx = 0;
4482 		pring->sli.sli3.cmdidx = 0;
4483 		pring->missbufcnt = 0;
4484 	}
4485 
4486 	phba->link_state = LPFC_WARM_START;
4487 	return 0;
4488 }
4489 
4490 /**
4491  * lpfc_sli4_brdreset - Reset a sli-4 HBA
4492  * @phba: Pointer to HBA context object.
4493  *
4494  * This function resets a SLI4 HBA. This function disables PCI layer parity
4495  * checking during resets the device. The caller is not required to hold
4496  * any locks.
4497  *
4498  * This function returns 0 always.
4499  **/
4500 int
4501 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4502 {
4503 	struct lpfc_sli *psli = &phba->sli;
4504 	uint16_t cfg_value;
4505 	int rc = 0;
4506 
4507 	/* Reset HBA */
4508 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4509 			"0295 Reset HBA Data: x%x x%x x%x\n",
4510 			phba->pport->port_state, psli->sli_flag,
4511 			phba->hba_flag);
4512 
4513 	/* perform board reset */
4514 	phba->fc_eventTag = 0;
4515 	phba->link_events = 0;
4516 	phba->pport->fc_myDID = 0;
4517 	phba->pport->fc_prevDID = 0;
4518 
4519 	spin_lock_irq(&phba->hbalock);
4520 	psli->sli_flag &= ~(LPFC_PROCESS_LA);
4521 	phba->fcf.fcf_flag = 0;
4522 	spin_unlock_irq(&phba->hbalock);
4523 
4524 	/* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4525 	if (phba->hba_flag & HBA_FW_DUMP_OP) {
4526 		phba->hba_flag &= ~HBA_FW_DUMP_OP;
4527 		return rc;
4528 	}
4529 
4530 	/* Now physically reset the device */
4531 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4532 			"0389 Performing PCI function reset!\n");
4533 
4534 	/* Turn off parity checking and serr during the physical reset */
4535 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
4536 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4537 				"3205 PCI read Config failed\n");
4538 		return -EIO;
4539 	}
4540 
4541 	pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4542 			      ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4543 
4544 	/* Perform FCoE PCI function reset before freeing queue memory */
4545 	rc = lpfc_pci_function_reset(phba);
4546 
4547 	/* Restore PCI cmd register */
4548 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4549 
4550 	return rc;
4551 }
4552 
4553 /**
4554  * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4555  * @phba: Pointer to HBA context object.
4556  *
4557  * This function is called in the SLI initialization code path to
4558  * restart the HBA. The caller is not required to hold any lock.
4559  * This function writes MBX_RESTART mailbox command to the SLIM and
4560  * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4561  * function to free any pending commands. The function enables
4562  * POST only during the first initialization. The function returns zero.
4563  * The function does not guarantee completion of MBX_RESTART mailbox
4564  * command before the return of this function.
4565  **/
4566 static int
4567 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4568 {
4569 	MAILBOX_t *mb;
4570 	struct lpfc_sli *psli;
4571 	volatile uint32_t word0;
4572 	void __iomem *to_slim;
4573 	uint32_t hba_aer_enabled;
4574 
4575 	spin_lock_irq(&phba->hbalock);
4576 
4577 	/* Take PCIe device Advanced Error Reporting (AER) state */
4578 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4579 
4580 	psli = &phba->sli;
4581 
4582 	/* Restart HBA */
4583 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4584 			"0337 Restart HBA Data: x%x x%x\n",
4585 			(phba->pport) ? phba->pport->port_state : 0,
4586 			psli->sli_flag);
4587 
4588 	word0 = 0;
4589 	mb = (MAILBOX_t *) &word0;
4590 	mb->mbxCommand = MBX_RESTART;
4591 	mb->mbxHc = 1;
4592 
4593 	lpfc_reset_barrier(phba);
4594 
4595 	to_slim = phba->MBslimaddr;
4596 	writel(*(uint32_t *) mb, to_slim);
4597 	readl(to_slim); /* flush */
4598 
4599 	/* Only skip post after fc_ffinit is completed */
4600 	if (phba->pport && phba->pport->port_state)
4601 		word0 = 1;	/* This is really setting up word1 */
4602 	else
4603 		word0 = 0;	/* This is really setting up word1 */
4604 	to_slim = phba->MBslimaddr + sizeof (uint32_t);
4605 	writel(*(uint32_t *) mb, to_slim);
4606 	readl(to_slim); /* flush */
4607 
4608 	lpfc_sli_brdreset(phba);
4609 	if (phba->pport)
4610 		phba->pport->stopped = 0;
4611 	phba->link_state = LPFC_INIT_START;
4612 	phba->hba_flag = 0;
4613 	spin_unlock_irq(&phba->hbalock);
4614 
4615 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4616 	psli->stats_start = ktime_get_seconds();
4617 
4618 	/* Give the INITFF and Post time to settle. */
4619 	mdelay(100);
4620 
4621 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4622 	if (hba_aer_enabled)
4623 		pci_disable_pcie_error_reporting(phba->pcidev);
4624 
4625 	lpfc_hba_down_post(phba);
4626 
4627 	return 0;
4628 }
4629 
4630 /**
4631  * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4632  * @phba: Pointer to HBA context object.
4633  *
4634  * This function is called in the SLI initialization code path to restart
4635  * a SLI4 HBA. The caller is not required to hold any lock.
4636  * At the end of the function, it calls lpfc_hba_down_post function to
4637  * free any pending commands.
4638  **/
4639 static int
4640 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4641 {
4642 	struct lpfc_sli *psli = &phba->sli;
4643 	uint32_t hba_aer_enabled;
4644 	int rc;
4645 
4646 	/* Restart HBA */
4647 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4648 			"0296 Restart HBA Data: x%x x%x\n",
4649 			phba->pport->port_state, psli->sli_flag);
4650 
4651 	/* Take PCIe device Advanced Error Reporting (AER) state */
4652 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4653 
4654 	rc = lpfc_sli4_brdreset(phba);
4655 	if (rc)
4656 		return rc;
4657 
4658 	spin_lock_irq(&phba->hbalock);
4659 	phba->pport->stopped = 0;
4660 	phba->link_state = LPFC_INIT_START;
4661 	phba->hba_flag = 0;
4662 	spin_unlock_irq(&phba->hbalock);
4663 
4664 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4665 	psli->stats_start = ktime_get_seconds();
4666 
4667 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4668 	if (hba_aer_enabled)
4669 		pci_disable_pcie_error_reporting(phba->pcidev);
4670 
4671 	lpfc_hba_down_post(phba);
4672 	lpfc_sli4_queue_destroy(phba);
4673 
4674 	return rc;
4675 }
4676 
4677 /**
4678  * lpfc_sli_brdrestart - Wrapper func for restarting hba
4679  * @phba: Pointer to HBA context object.
4680  *
4681  * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4682  * API jump table function pointer from the lpfc_hba struct.
4683 **/
4684 int
4685 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4686 {
4687 	return phba->lpfc_sli_brdrestart(phba);
4688 }
4689 
4690 /**
4691  * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4692  * @phba: Pointer to HBA context object.
4693  *
4694  * This function is called after a HBA restart to wait for successful
4695  * restart of the HBA. Successful restart of the HBA is indicated by
4696  * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4697  * iteration, the function will restart the HBA again. The function returns
4698  * zero if HBA successfully restarted else returns negative error code.
4699  **/
4700 int
4701 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4702 {
4703 	uint32_t status, i = 0;
4704 
4705 	/* Read the HBA Host Status Register */
4706 	if (lpfc_readl(phba->HSregaddr, &status))
4707 		return -EIO;
4708 
4709 	/* Check status register to see what current state is */
4710 	i = 0;
4711 	while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4712 
4713 		/* Check every 10ms for 10 retries, then every 100ms for 90
4714 		 * retries, then every 1 sec for 50 retires for a total of
4715 		 * ~60 seconds before reset the board again and check every
4716 		 * 1 sec for 50 retries. The up to 60 seconds before the
4717 		 * board ready is required by the Falcon FIPS zeroization
4718 		 * complete, and any reset the board in between shall cause
4719 		 * restart of zeroization, further delay the board ready.
4720 		 */
4721 		if (i++ >= 200) {
4722 			/* Adapter failed to init, timeout, status reg
4723 			   <status> */
4724 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4725 					"0436 Adapter failed to init, "
4726 					"timeout, status reg x%x, "
4727 					"FW Data: A8 x%x AC x%x\n", status,
4728 					readl(phba->MBslimaddr + 0xa8),
4729 					readl(phba->MBslimaddr + 0xac));
4730 			phba->link_state = LPFC_HBA_ERROR;
4731 			return -ETIMEDOUT;
4732 		}
4733 
4734 		/* Check to see if any errors occurred during init */
4735 		if (status & HS_FFERM) {
4736 			/* ERROR: During chipset initialization */
4737 			/* Adapter failed to init, chipset, status reg
4738 			   <status> */
4739 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4740 					"0437 Adapter failed to init, "
4741 					"chipset, status reg x%x, "
4742 					"FW Data: A8 x%x AC x%x\n", status,
4743 					readl(phba->MBslimaddr + 0xa8),
4744 					readl(phba->MBslimaddr + 0xac));
4745 			phba->link_state = LPFC_HBA_ERROR;
4746 			return -EIO;
4747 		}
4748 
4749 		if (i <= 10)
4750 			msleep(10);
4751 		else if (i <= 100)
4752 			msleep(100);
4753 		else
4754 			msleep(1000);
4755 
4756 		if (i == 150) {
4757 			/* Do post */
4758 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4759 			lpfc_sli_brdrestart(phba);
4760 		}
4761 		/* Read the HBA Host Status Register */
4762 		if (lpfc_readl(phba->HSregaddr, &status))
4763 			return -EIO;
4764 	}
4765 
4766 	/* Check to see if any errors occurred during init */
4767 	if (status & HS_FFERM) {
4768 		/* ERROR: During chipset initialization */
4769 		/* Adapter failed to init, chipset, status reg <status> */
4770 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4771 				"0438 Adapter failed to init, chipset, "
4772 				"status reg x%x, "
4773 				"FW Data: A8 x%x AC x%x\n", status,
4774 				readl(phba->MBslimaddr + 0xa8),
4775 				readl(phba->MBslimaddr + 0xac));
4776 		phba->link_state = LPFC_HBA_ERROR;
4777 		return -EIO;
4778 	}
4779 
4780 	/* Clear all interrupt enable conditions */
4781 	writel(0, phba->HCregaddr);
4782 	readl(phba->HCregaddr); /* flush */
4783 
4784 	/* setup host attn register */
4785 	writel(0xffffffff, phba->HAregaddr);
4786 	readl(phba->HAregaddr); /* flush */
4787 	return 0;
4788 }
4789 
4790 /**
4791  * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4792  *
4793  * This function calculates and returns the number of HBQs required to be
4794  * configured.
4795  **/
4796 int
4797 lpfc_sli_hbq_count(void)
4798 {
4799 	return ARRAY_SIZE(lpfc_hbq_defs);
4800 }
4801 
4802 /**
4803  * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4804  *
4805  * This function adds the number of hbq entries in every HBQ to get
4806  * the total number of hbq entries required for the HBA and returns
4807  * the total count.
4808  **/
4809 static int
4810 lpfc_sli_hbq_entry_count(void)
4811 {
4812 	int  hbq_count = lpfc_sli_hbq_count();
4813 	int  count = 0;
4814 	int  i;
4815 
4816 	for (i = 0; i < hbq_count; ++i)
4817 		count += lpfc_hbq_defs[i]->entry_count;
4818 	return count;
4819 }
4820 
4821 /**
4822  * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4823  *
4824  * This function calculates amount of memory required for all hbq entries
4825  * to be configured and returns the total memory required.
4826  **/
4827 int
4828 lpfc_sli_hbq_size(void)
4829 {
4830 	return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4831 }
4832 
4833 /**
4834  * lpfc_sli_hbq_setup - configure and initialize HBQs
4835  * @phba: Pointer to HBA context object.
4836  *
4837  * This function is called during the SLI initialization to configure
4838  * all the HBQs and post buffers to the HBQ. The caller is not
4839  * required to hold any locks. This function will return zero if successful
4840  * else it will return negative error code.
4841  **/
4842 static int
4843 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4844 {
4845 	int  hbq_count = lpfc_sli_hbq_count();
4846 	LPFC_MBOXQ_t *pmb;
4847 	MAILBOX_t *pmbox;
4848 	uint32_t hbqno;
4849 	uint32_t hbq_entry_index;
4850 
4851 				/* Get a Mailbox buffer to setup mailbox
4852 				 * commands for HBA initialization
4853 				 */
4854 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4855 
4856 	if (!pmb)
4857 		return -ENOMEM;
4858 
4859 	pmbox = &pmb->u.mb;
4860 
4861 	/* Initialize the struct lpfc_sli_hbq structure for each hbq */
4862 	phba->link_state = LPFC_INIT_MBX_CMDS;
4863 	phba->hbq_in_use = 1;
4864 
4865 	hbq_entry_index = 0;
4866 	for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4867 		phba->hbqs[hbqno].next_hbqPutIdx = 0;
4868 		phba->hbqs[hbqno].hbqPutIdx      = 0;
4869 		phba->hbqs[hbqno].local_hbqGetIdx   = 0;
4870 		phba->hbqs[hbqno].entry_count =
4871 			lpfc_hbq_defs[hbqno]->entry_count;
4872 		lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4873 			hbq_entry_index, pmb);
4874 		hbq_entry_index += phba->hbqs[hbqno].entry_count;
4875 
4876 		if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4877 			/* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4878 			   mbxStatus <status>, ring <num> */
4879 
4880 			lpfc_printf_log(phba, KERN_ERR,
4881 					LOG_SLI | LOG_VPORT,
4882 					"1805 Adapter failed to init. "
4883 					"Data: x%x x%x x%x\n",
4884 					pmbox->mbxCommand,
4885 					pmbox->mbxStatus, hbqno);
4886 
4887 			phba->link_state = LPFC_HBA_ERROR;
4888 			mempool_free(pmb, phba->mbox_mem_pool);
4889 			return -ENXIO;
4890 		}
4891 	}
4892 	phba->hbq_count = hbq_count;
4893 
4894 	mempool_free(pmb, phba->mbox_mem_pool);
4895 
4896 	/* Initially populate or replenish the HBQs */
4897 	for (hbqno = 0; hbqno < hbq_count; ++hbqno)
4898 		lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
4899 	return 0;
4900 }
4901 
4902 /**
4903  * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
4904  * @phba: Pointer to HBA context object.
4905  *
4906  * This function is called during the SLI initialization to configure
4907  * all the HBQs and post buffers to the HBQ. The caller is not
4908  * required to hold any locks. This function will return zero if successful
4909  * else it will return negative error code.
4910  **/
4911 static int
4912 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
4913 {
4914 	phba->hbq_in_use = 1;
4915 	phba->hbqs[LPFC_ELS_HBQ].entry_count =
4916 		lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
4917 	phba->hbq_count = 1;
4918 	lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
4919 	/* Initially populate or replenish the HBQs */
4920 	return 0;
4921 }
4922 
4923 /**
4924  * lpfc_sli_config_port - Issue config port mailbox command
4925  * @phba: Pointer to HBA context object.
4926  * @sli_mode: sli mode - 2/3
4927  *
4928  * This function is called by the sli initialization code path
4929  * to issue config_port mailbox command. This function restarts the
4930  * HBA firmware and issues a config_port mailbox command to configure
4931  * the SLI interface in the sli mode specified by sli_mode
4932  * variable. The caller is not required to hold any locks.
4933  * The function returns 0 if successful, else returns negative error
4934  * code.
4935  **/
4936 int
4937 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
4938 {
4939 	LPFC_MBOXQ_t *pmb;
4940 	uint32_t resetcount = 0, rc = 0, done = 0;
4941 
4942 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4943 	if (!pmb) {
4944 		phba->link_state = LPFC_HBA_ERROR;
4945 		return -ENOMEM;
4946 	}
4947 
4948 	phba->sli_rev = sli_mode;
4949 	while (resetcount < 2 && !done) {
4950 		spin_lock_irq(&phba->hbalock);
4951 		phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
4952 		spin_unlock_irq(&phba->hbalock);
4953 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4954 		lpfc_sli_brdrestart(phba);
4955 		rc = lpfc_sli_chipset_init(phba);
4956 		if (rc)
4957 			break;
4958 
4959 		spin_lock_irq(&phba->hbalock);
4960 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4961 		spin_unlock_irq(&phba->hbalock);
4962 		resetcount++;
4963 
4964 		/* Call pre CONFIG_PORT mailbox command initialization.  A
4965 		 * value of 0 means the call was successful.  Any other
4966 		 * nonzero value is a failure, but if ERESTART is returned,
4967 		 * the driver may reset the HBA and try again.
4968 		 */
4969 		rc = lpfc_config_port_prep(phba);
4970 		if (rc == -ERESTART) {
4971 			phba->link_state = LPFC_LINK_UNKNOWN;
4972 			continue;
4973 		} else if (rc)
4974 			break;
4975 
4976 		phba->link_state = LPFC_INIT_MBX_CMDS;
4977 		lpfc_config_port(phba, pmb);
4978 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
4979 		phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
4980 					LPFC_SLI3_HBQ_ENABLED |
4981 					LPFC_SLI3_CRP_ENABLED |
4982 					LPFC_SLI3_DSS_ENABLED);
4983 		if (rc != MBX_SUCCESS) {
4984 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4985 				"0442 Adapter failed to init, mbxCmd x%x "
4986 				"CONFIG_PORT, mbxStatus x%x Data: x%x\n",
4987 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
4988 			spin_lock_irq(&phba->hbalock);
4989 			phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
4990 			spin_unlock_irq(&phba->hbalock);
4991 			rc = -ENXIO;
4992 		} else {
4993 			/* Allow asynchronous mailbox command to go through */
4994 			spin_lock_irq(&phba->hbalock);
4995 			phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
4996 			spin_unlock_irq(&phba->hbalock);
4997 			done = 1;
4998 
4999 			if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5000 			    (pmb->u.mb.un.varCfgPort.gasabt == 0))
5001 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5002 					"3110 Port did not grant ASABT\n");
5003 		}
5004 	}
5005 	if (!done) {
5006 		rc = -EINVAL;
5007 		goto do_prep_failed;
5008 	}
5009 	if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5010 		if (!pmb->u.mb.un.varCfgPort.cMA) {
5011 			rc = -ENXIO;
5012 			goto do_prep_failed;
5013 		}
5014 		if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5015 			phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5016 			phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5017 			phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5018 				phba->max_vpi : phba->max_vports;
5019 
5020 		} else
5021 			phba->max_vpi = 0;
5022 		phba->fips_level = 0;
5023 		phba->fips_spec_rev = 0;
5024 		if (pmb->u.mb.un.varCfgPort.gdss) {
5025 			phba->sli3_options |= LPFC_SLI3_DSS_ENABLED;
5026 			phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level;
5027 			phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev;
5028 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5029 					"2850 Security Crypto Active. FIPS x%d "
5030 					"(Spec Rev: x%d)",
5031 					phba->fips_level, phba->fips_spec_rev);
5032 		}
5033 		if (pmb->u.mb.un.varCfgPort.sec_err) {
5034 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5035 					"2856 Config Port Security Crypto "
5036 					"Error: x%x ",
5037 					pmb->u.mb.un.varCfgPort.sec_err);
5038 		}
5039 		if (pmb->u.mb.un.varCfgPort.gerbm)
5040 			phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5041 		if (pmb->u.mb.un.varCfgPort.gcrp)
5042 			phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5043 
5044 		phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5045 		phba->port_gp = phba->mbox->us.s3_pgp.port;
5046 
5047 		if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5048 			if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5049 				phba->cfg_enable_bg = 0;
5050 				phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5051 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5052 						"0443 Adapter did not grant "
5053 						"BlockGuard\n");
5054 			}
5055 		}
5056 	} else {
5057 		phba->hbq_get = NULL;
5058 		phba->port_gp = phba->mbox->us.s2.port;
5059 		phba->max_vpi = 0;
5060 	}
5061 do_prep_failed:
5062 	mempool_free(pmb, phba->mbox_mem_pool);
5063 	return rc;
5064 }
5065 
5066 
5067 /**
5068  * lpfc_sli_hba_setup - SLI initialization function
5069  * @phba: Pointer to HBA context object.
5070  *
5071  * This function is the main SLI initialization function. This function
5072  * is called by the HBA initialization code, HBA reset code and HBA
5073  * error attention handler code. Caller is not required to hold any
5074  * locks. This function issues config_port mailbox command to configure
5075  * the SLI, setup iocb rings and HBQ rings. In the end the function
5076  * calls the config_port_post function to issue init_link mailbox
5077  * command and to start the discovery. The function will return zero
5078  * if successful, else it will return negative error code.
5079  **/
5080 int
5081 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5082 {
5083 	uint32_t rc;
5084 	int  mode = 3, i;
5085 	int longs;
5086 
5087 	switch (phba->cfg_sli_mode) {
5088 	case 2:
5089 		if (phba->cfg_enable_npiv) {
5090 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5091 				"1824 NPIV enabled: Override sli_mode "
5092 				"parameter (%d) to auto (0).\n",
5093 				phba->cfg_sli_mode);
5094 			break;
5095 		}
5096 		mode = 2;
5097 		break;
5098 	case 0:
5099 	case 3:
5100 		break;
5101 	default:
5102 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5103 				"1819 Unrecognized sli_mode parameter: %d.\n",
5104 				phba->cfg_sli_mode);
5105 
5106 		break;
5107 	}
5108 	phba->fcp_embed_io = 0;	/* SLI4 FC support only */
5109 
5110 	rc = lpfc_sli_config_port(phba, mode);
5111 
5112 	if (rc && phba->cfg_sli_mode == 3)
5113 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5114 				"1820 Unable to select SLI-3.  "
5115 				"Not supported by adapter.\n");
5116 	if (rc && mode != 2)
5117 		rc = lpfc_sli_config_port(phba, 2);
5118 	else if (rc && mode == 2)
5119 		rc = lpfc_sli_config_port(phba, 3);
5120 	if (rc)
5121 		goto lpfc_sli_hba_setup_error;
5122 
5123 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
5124 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5125 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
5126 		if (!rc) {
5127 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5128 					"2709 This device supports "
5129 					"Advanced Error Reporting (AER)\n");
5130 			spin_lock_irq(&phba->hbalock);
5131 			phba->hba_flag |= HBA_AER_ENABLED;
5132 			spin_unlock_irq(&phba->hbalock);
5133 		} else {
5134 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5135 					"2708 This device does not support "
5136 					"Advanced Error Reporting (AER): %d\n",
5137 					rc);
5138 			phba->cfg_aer_support = 0;
5139 		}
5140 	}
5141 
5142 	if (phba->sli_rev == 3) {
5143 		phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5144 		phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5145 	} else {
5146 		phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5147 		phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5148 		phba->sli3_options = 0;
5149 	}
5150 
5151 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5152 			"0444 Firmware in SLI %x mode. Max_vpi %d\n",
5153 			phba->sli_rev, phba->max_vpi);
5154 	rc = lpfc_sli_ring_map(phba);
5155 
5156 	if (rc)
5157 		goto lpfc_sli_hba_setup_error;
5158 
5159 	/* Initialize VPIs. */
5160 	if (phba->sli_rev == LPFC_SLI_REV3) {
5161 		/*
5162 		 * The VPI bitmask and physical ID array are allocated
5163 		 * and initialized once only - at driver load.  A port
5164 		 * reset doesn't need to reinitialize this memory.
5165 		 */
5166 		if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5167 			longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5168 			phba->vpi_bmask = kcalloc(longs,
5169 						  sizeof(unsigned long),
5170 						  GFP_KERNEL);
5171 			if (!phba->vpi_bmask) {
5172 				rc = -ENOMEM;
5173 				goto lpfc_sli_hba_setup_error;
5174 			}
5175 
5176 			phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5177 						sizeof(uint16_t),
5178 						GFP_KERNEL);
5179 			if (!phba->vpi_ids) {
5180 				kfree(phba->vpi_bmask);
5181 				rc = -ENOMEM;
5182 				goto lpfc_sli_hba_setup_error;
5183 			}
5184 			for (i = 0; i < phba->max_vpi; i++)
5185 				phba->vpi_ids[i] = i;
5186 		}
5187 	}
5188 
5189 	/* Init HBQs */
5190 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5191 		rc = lpfc_sli_hbq_setup(phba);
5192 		if (rc)
5193 			goto lpfc_sli_hba_setup_error;
5194 	}
5195 	spin_lock_irq(&phba->hbalock);
5196 	phba->sli.sli_flag |= LPFC_PROCESS_LA;
5197 	spin_unlock_irq(&phba->hbalock);
5198 
5199 	rc = lpfc_config_port_post(phba);
5200 	if (rc)
5201 		goto lpfc_sli_hba_setup_error;
5202 
5203 	return rc;
5204 
5205 lpfc_sli_hba_setup_error:
5206 	phba->link_state = LPFC_HBA_ERROR;
5207 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5208 			"0445 Firmware initialization failed\n");
5209 	return rc;
5210 }
5211 
5212 /**
5213  * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5214  * @phba: Pointer to HBA context object.
5215  * @mboxq: mailbox pointer.
5216  * This function issue a dump mailbox command to read config region
5217  * 23 and parse the records in the region and populate driver
5218  * data structure.
5219  **/
5220 static int
5221 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5222 {
5223 	LPFC_MBOXQ_t *mboxq;
5224 	struct lpfc_dmabuf *mp;
5225 	struct lpfc_mqe *mqe;
5226 	uint32_t data_length;
5227 	int rc;
5228 
5229 	/* Program the default value of vlan_id and fc_map */
5230 	phba->valid_vlan = 0;
5231 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5232 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5233 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5234 
5235 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5236 	if (!mboxq)
5237 		return -ENOMEM;
5238 
5239 	mqe = &mboxq->u.mqe;
5240 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5241 		rc = -ENOMEM;
5242 		goto out_free_mboxq;
5243 	}
5244 
5245 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5246 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5247 
5248 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5249 			"(%d):2571 Mailbox cmd x%x Status x%x "
5250 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5251 			"x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5252 			"CQ: x%x x%x x%x x%x\n",
5253 			mboxq->vport ? mboxq->vport->vpi : 0,
5254 			bf_get(lpfc_mqe_command, mqe),
5255 			bf_get(lpfc_mqe_status, mqe),
5256 			mqe->un.mb_words[0], mqe->un.mb_words[1],
5257 			mqe->un.mb_words[2], mqe->un.mb_words[3],
5258 			mqe->un.mb_words[4], mqe->un.mb_words[5],
5259 			mqe->un.mb_words[6], mqe->un.mb_words[7],
5260 			mqe->un.mb_words[8], mqe->un.mb_words[9],
5261 			mqe->un.mb_words[10], mqe->un.mb_words[11],
5262 			mqe->un.mb_words[12], mqe->un.mb_words[13],
5263 			mqe->un.mb_words[14], mqe->un.mb_words[15],
5264 			mqe->un.mb_words[16], mqe->un.mb_words[50],
5265 			mboxq->mcqe.word0,
5266 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
5267 			mboxq->mcqe.trailer);
5268 
5269 	if (rc) {
5270 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5271 		kfree(mp);
5272 		rc = -EIO;
5273 		goto out_free_mboxq;
5274 	}
5275 	data_length = mqe->un.mb_words[5];
5276 	if (data_length > DMP_RGN23_SIZE) {
5277 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5278 		kfree(mp);
5279 		rc = -EIO;
5280 		goto out_free_mboxq;
5281 	}
5282 
5283 	lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5284 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
5285 	kfree(mp);
5286 	rc = 0;
5287 
5288 out_free_mboxq:
5289 	mempool_free(mboxq, phba->mbox_mem_pool);
5290 	return rc;
5291 }
5292 
5293 /**
5294  * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5295  * @phba: pointer to lpfc hba data structure.
5296  * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5297  * @vpd: pointer to the memory to hold resulting port vpd data.
5298  * @vpd_size: On input, the number of bytes allocated to @vpd.
5299  *	      On output, the number of data bytes in @vpd.
5300  *
5301  * This routine executes a READ_REV SLI4 mailbox command.  In
5302  * addition, this routine gets the port vpd data.
5303  *
5304  * Return codes
5305  * 	0 - successful
5306  * 	-ENOMEM - could not allocated memory.
5307  **/
5308 static int
5309 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5310 		    uint8_t *vpd, uint32_t *vpd_size)
5311 {
5312 	int rc = 0;
5313 	uint32_t dma_size;
5314 	struct lpfc_dmabuf *dmabuf;
5315 	struct lpfc_mqe *mqe;
5316 
5317 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5318 	if (!dmabuf)
5319 		return -ENOMEM;
5320 
5321 	/*
5322 	 * Get a DMA buffer for the vpd data resulting from the READ_REV
5323 	 * mailbox command.
5324 	 */
5325 	dma_size = *vpd_size;
5326 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5327 					  &dmabuf->phys, GFP_KERNEL);
5328 	if (!dmabuf->virt) {
5329 		kfree(dmabuf);
5330 		return -ENOMEM;
5331 	}
5332 
5333 	/*
5334 	 * The SLI4 implementation of READ_REV conflicts at word1,
5335 	 * bits 31:16 and SLI4 adds vpd functionality not present
5336 	 * in SLI3.  This code corrects the conflicts.
5337 	 */
5338 	lpfc_read_rev(phba, mboxq);
5339 	mqe = &mboxq->u.mqe;
5340 	mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5341 	mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5342 	mqe->un.read_rev.word1 &= 0x0000FFFF;
5343 	bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5344 	bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5345 
5346 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5347 	if (rc) {
5348 		dma_free_coherent(&phba->pcidev->dev, dma_size,
5349 				  dmabuf->virt, dmabuf->phys);
5350 		kfree(dmabuf);
5351 		return -EIO;
5352 	}
5353 
5354 	/*
5355 	 * The available vpd length cannot be bigger than the
5356 	 * DMA buffer passed to the port.  Catch the less than
5357 	 * case and update the caller's size.
5358 	 */
5359 	if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5360 		*vpd_size = mqe->un.read_rev.avail_vpd_len;
5361 
5362 	memcpy(vpd, dmabuf->virt, *vpd_size);
5363 
5364 	dma_free_coherent(&phba->pcidev->dev, dma_size,
5365 			  dmabuf->virt, dmabuf->phys);
5366 	kfree(dmabuf);
5367 	return 0;
5368 }
5369 
5370 /**
5371  * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5372  * @phba: pointer to lpfc hba data structure.
5373  *
5374  * This routine retrieves SLI4 device physical port name this PCI function
5375  * is attached to.
5376  *
5377  * Return codes
5378  *      0 - successful
5379  *      otherwise - failed to retrieve controller attributes
5380  **/
5381 static int
5382 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5383 {
5384 	LPFC_MBOXQ_t *mboxq;
5385 	struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5386 	struct lpfc_controller_attribute *cntl_attr;
5387 	void *virtaddr = NULL;
5388 	uint32_t alloclen, reqlen;
5389 	uint32_t shdr_status, shdr_add_status;
5390 	union lpfc_sli4_cfg_shdr *shdr;
5391 	int rc;
5392 
5393 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5394 	if (!mboxq)
5395 		return -ENOMEM;
5396 
5397 	/* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5398 	reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5399 	alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5400 			LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5401 			LPFC_SLI4_MBX_NEMBED);
5402 
5403 	if (alloclen < reqlen) {
5404 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5405 				"3084 Allocated DMA memory size (%d) is "
5406 				"less than the requested DMA memory size "
5407 				"(%d)\n", alloclen, reqlen);
5408 		rc = -ENOMEM;
5409 		goto out_free_mboxq;
5410 	}
5411 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5412 	virtaddr = mboxq->sge_array->addr[0];
5413 	mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5414 	shdr = &mbx_cntl_attr->cfg_shdr;
5415 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5416 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5417 	if (shdr_status || shdr_add_status || rc) {
5418 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5419 				"3085 Mailbox x%x (x%x/x%x) failed, "
5420 				"rc:x%x, status:x%x, add_status:x%x\n",
5421 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5422 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5423 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5424 				rc, shdr_status, shdr_add_status);
5425 		rc = -ENXIO;
5426 		goto out_free_mboxq;
5427 	}
5428 
5429 	cntl_attr = &mbx_cntl_attr->cntl_attr;
5430 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5431 	phba->sli4_hba.lnk_info.lnk_tp =
5432 		bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5433 	phba->sli4_hba.lnk_info.lnk_no =
5434 		bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5435 
5436 	memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
5437 	strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
5438 		sizeof(phba->BIOSVersion));
5439 
5440 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5441 			"3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n",
5442 			phba->sli4_hba.lnk_info.lnk_tp,
5443 			phba->sli4_hba.lnk_info.lnk_no,
5444 			phba->BIOSVersion);
5445 out_free_mboxq:
5446 	if (rc != MBX_TIMEOUT) {
5447 		if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5448 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
5449 		else
5450 			mempool_free(mboxq, phba->mbox_mem_pool);
5451 	}
5452 	return rc;
5453 }
5454 
5455 /**
5456  * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5457  * @phba: pointer to lpfc hba data structure.
5458  *
5459  * This routine retrieves SLI4 device physical port name this PCI function
5460  * is attached to.
5461  *
5462  * Return codes
5463  *      0 - successful
5464  *      otherwise - failed to retrieve physical port name
5465  **/
5466 static int
5467 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5468 {
5469 	LPFC_MBOXQ_t *mboxq;
5470 	struct lpfc_mbx_get_port_name *get_port_name;
5471 	uint32_t shdr_status, shdr_add_status;
5472 	union lpfc_sli4_cfg_shdr *shdr;
5473 	char cport_name = 0;
5474 	int rc;
5475 
5476 	/* We assume nothing at this point */
5477 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5478 	phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5479 
5480 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5481 	if (!mboxq)
5482 		return -ENOMEM;
5483 	/* obtain link type and link number via READ_CONFIG */
5484 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5485 	lpfc_sli4_read_config(phba);
5486 	if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5487 		goto retrieve_ppname;
5488 
5489 	/* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5490 	rc = lpfc_sli4_get_ctl_attr(phba);
5491 	if (rc)
5492 		goto out_free_mboxq;
5493 
5494 retrieve_ppname:
5495 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5496 		LPFC_MBOX_OPCODE_GET_PORT_NAME,
5497 		sizeof(struct lpfc_mbx_get_port_name) -
5498 		sizeof(struct lpfc_sli4_cfg_mhdr),
5499 		LPFC_SLI4_MBX_EMBED);
5500 	get_port_name = &mboxq->u.mqe.un.get_port_name;
5501 	shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5502 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5503 	bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5504 		phba->sli4_hba.lnk_info.lnk_tp);
5505 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5506 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5507 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5508 	if (shdr_status || shdr_add_status || rc) {
5509 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5510 				"3087 Mailbox x%x (x%x/x%x) failed: "
5511 				"rc:x%x, status:x%x, add_status:x%x\n",
5512 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5513 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5514 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5515 				rc, shdr_status, shdr_add_status);
5516 		rc = -ENXIO;
5517 		goto out_free_mboxq;
5518 	}
5519 	switch (phba->sli4_hba.lnk_info.lnk_no) {
5520 	case LPFC_LINK_NUMBER_0:
5521 		cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5522 				&get_port_name->u.response);
5523 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5524 		break;
5525 	case LPFC_LINK_NUMBER_1:
5526 		cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5527 				&get_port_name->u.response);
5528 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5529 		break;
5530 	case LPFC_LINK_NUMBER_2:
5531 		cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5532 				&get_port_name->u.response);
5533 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5534 		break;
5535 	case LPFC_LINK_NUMBER_3:
5536 		cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5537 				&get_port_name->u.response);
5538 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5539 		break;
5540 	default:
5541 		break;
5542 	}
5543 
5544 	if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5545 		phba->Port[0] = cport_name;
5546 		phba->Port[1] = '\0';
5547 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5548 				"3091 SLI get port name: %s\n", phba->Port);
5549 	}
5550 
5551 out_free_mboxq:
5552 	if (rc != MBX_TIMEOUT) {
5553 		if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5554 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
5555 		else
5556 			mempool_free(mboxq, phba->mbox_mem_pool);
5557 	}
5558 	return rc;
5559 }
5560 
5561 /**
5562  * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5563  * @phba: pointer to lpfc hba data structure.
5564  *
5565  * This routine is called to explicitly arm the SLI4 device's completion and
5566  * event queues
5567  **/
5568 static void
5569 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5570 {
5571 	int qidx;
5572 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
5573 	struct lpfc_sli4_hdw_queue *qp;
5574 	struct lpfc_queue *eq;
5575 
5576 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
5577 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
5578 	if (sli4_hba->nvmels_cq)
5579 		sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
5580 					   LPFC_QUEUE_REARM);
5581 
5582 	if (sli4_hba->hdwq) {
5583 		/* Loop thru all Hardware Queues */
5584 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
5585 			qp = &sli4_hba->hdwq[qidx];
5586 			/* ARM the corresponding CQ */
5587 			sli4_hba->sli4_write_cq_db(phba, qp->fcp_cq, 0,
5588 						   LPFC_QUEUE_REARM);
5589 			sli4_hba->sli4_write_cq_db(phba, qp->nvme_cq, 0,
5590 						   LPFC_QUEUE_REARM);
5591 		}
5592 
5593 		/* Loop thru all IRQ vectors */
5594 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
5595 			eq = sli4_hba->hba_eq_hdl[qidx].eq;
5596 			/* ARM the corresponding EQ */
5597 			sli4_hba->sli4_write_eq_db(phba, eq,
5598 						   0, LPFC_QUEUE_REARM);
5599 		}
5600 	}
5601 
5602 	if (phba->nvmet_support) {
5603 		for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5604 			sli4_hba->sli4_write_cq_db(phba,
5605 				sli4_hba->nvmet_cqset[qidx], 0,
5606 				LPFC_QUEUE_REARM);
5607 		}
5608 	}
5609 }
5610 
5611 /**
5612  * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5613  * @phba: Pointer to HBA context object.
5614  * @type: The resource extent type.
5615  * @extnt_count: buffer to hold port available extent count.
5616  * @extnt_size: buffer to hold element count per extent.
5617  *
5618  * This function calls the port and retrievs the number of available
5619  * extents and their size for a particular extent type.
5620  *
5621  * Returns: 0 if successful.  Nonzero otherwise.
5622  **/
5623 int
5624 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5625 			       uint16_t *extnt_count, uint16_t *extnt_size)
5626 {
5627 	int rc = 0;
5628 	uint32_t length;
5629 	uint32_t mbox_tmo;
5630 	struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5631 	LPFC_MBOXQ_t *mbox;
5632 
5633 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5634 	if (!mbox)
5635 		return -ENOMEM;
5636 
5637 	/* Find out how many extents are available for this resource type */
5638 	length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5639 		  sizeof(struct lpfc_sli4_cfg_mhdr));
5640 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5641 			 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5642 			 length, LPFC_SLI4_MBX_EMBED);
5643 
5644 	/* Send an extents count of 0 - the GET doesn't use it. */
5645 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5646 					LPFC_SLI4_MBX_EMBED);
5647 	if (unlikely(rc)) {
5648 		rc = -EIO;
5649 		goto err_exit;
5650 	}
5651 
5652 	if (!phba->sli4_hba.intr_enable)
5653 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5654 	else {
5655 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5656 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5657 	}
5658 	if (unlikely(rc)) {
5659 		rc = -EIO;
5660 		goto err_exit;
5661 	}
5662 
5663 	rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5664 	if (bf_get(lpfc_mbox_hdr_status,
5665 		   &rsrc_info->header.cfg_shdr.response)) {
5666 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5667 				"2930 Failed to get resource extents "
5668 				"Status 0x%x Add'l Status 0x%x\n",
5669 				bf_get(lpfc_mbox_hdr_status,
5670 				       &rsrc_info->header.cfg_shdr.response),
5671 				bf_get(lpfc_mbox_hdr_add_status,
5672 				       &rsrc_info->header.cfg_shdr.response));
5673 		rc = -EIO;
5674 		goto err_exit;
5675 	}
5676 
5677 	*extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5678 			      &rsrc_info->u.rsp);
5679 	*extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5680 			     &rsrc_info->u.rsp);
5681 
5682 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5683 			"3162 Retrieved extents type-%d from port: count:%d, "
5684 			"size:%d\n", type, *extnt_count, *extnt_size);
5685 
5686 err_exit:
5687 	mempool_free(mbox, phba->mbox_mem_pool);
5688 	return rc;
5689 }
5690 
5691 /**
5692  * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5693  * @phba: Pointer to HBA context object.
5694  * @type: The extent type to check.
5695  *
5696  * This function reads the current available extents from the port and checks
5697  * if the extent count or extent size has changed since the last access.
5698  * Callers use this routine post port reset to understand if there is a
5699  * extent reprovisioning requirement.
5700  *
5701  * Returns:
5702  *   -Error: error indicates problem.
5703  *   1: Extent count or size has changed.
5704  *   0: No changes.
5705  **/
5706 static int
5707 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5708 {
5709 	uint16_t curr_ext_cnt, rsrc_ext_cnt;
5710 	uint16_t size_diff, rsrc_ext_size;
5711 	int rc = 0;
5712 	struct lpfc_rsrc_blks *rsrc_entry;
5713 	struct list_head *rsrc_blk_list = NULL;
5714 
5715 	size_diff = 0;
5716 	curr_ext_cnt = 0;
5717 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5718 					    &rsrc_ext_cnt,
5719 					    &rsrc_ext_size);
5720 	if (unlikely(rc))
5721 		return -EIO;
5722 
5723 	switch (type) {
5724 	case LPFC_RSC_TYPE_FCOE_RPI:
5725 		rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5726 		break;
5727 	case LPFC_RSC_TYPE_FCOE_VPI:
5728 		rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5729 		break;
5730 	case LPFC_RSC_TYPE_FCOE_XRI:
5731 		rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5732 		break;
5733 	case LPFC_RSC_TYPE_FCOE_VFI:
5734 		rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5735 		break;
5736 	default:
5737 		break;
5738 	}
5739 
5740 	list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5741 		curr_ext_cnt++;
5742 		if (rsrc_entry->rsrc_size != rsrc_ext_size)
5743 			size_diff++;
5744 	}
5745 
5746 	if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5747 		rc = 1;
5748 
5749 	return rc;
5750 }
5751 
5752 /**
5753  * lpfc_sli4_cfg_post_extnts -
5754  * @phba: Pointer to HBA context object.
5755  * @extnt_cnt - number of available extents.
5756  * @type - the extent type (rpi, xri, vfi, vpi).
5757  * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5758  * @mbox - pointer to the caller's allocated mailbox structure.
5759  *
5760  * This function executes the extents allocation request.  It also
5761  * takes care of the amount of memory needed to allocate or get the
5762  * allocated extents. It is the caller's responsibility to evaluate
5763  * the response.
5764  *
5765  * Returns:
5766  *   -Error:  Error value describes the condition found.
5767  *   0: if successful
5768  **/
5769 static int
5770 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5771 			  uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5772 {
5773 	int rc = 0;
5774 	uint32_t req_len;
5775 	uint32_t emb_len;
5776 	uint32_t alloc_len, mbox_tmo;
5777 
5778 	/* Calculate the total requested length of the dma memory */
5779 	req_len = extnt_cnt * sizeof(uint16_t);
5780 
5781 	/*
5782 	 * Calculate the size of an embedded mailbox.  The uint32_t
5783 	 * accounts for extents-specific word.
5784 	 */
5785 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5786 		sizeof(uint32_t);
5787 
5788 	/*
5789 	 * Presume the allocation and response will fit into an embedded
5790 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
5791 	 */
5792 	*emb = LPFC_SLI4_MBX_EMBED;
5793 	if (req_len > emb_len) {
5794 		req_len = extnt_cnt * sizeof(uint16_t) +
5795 			sizeof(union lpfc_sli4_cfg_shdr) +
5796 			sizeof(uint32_t);
5797 		*emb = LPFC_SLI4_MBX_NEMBED;
5798 	}
5799 
5800 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5801 				     LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5802 				     req_len, *emb);
5803 	if (alloc_len < req_len) {
5804 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5805 			"2982 Allocated DMA memory size (x%x) is "
5806 			"less than the requested DMA memory "
5807 			"size (x%x)\n", alloc_len, req_len);
5808 		return -ENOMEM;
5809 	}
5810 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5811 	if (unlikely(rc))
5812 		return -EIO;
5813 
5814 	if (!phba->sli4_hba.intr_enable)
5815 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5816 	else {
5817 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5818 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5819 	}
5820 
5821 	if (unlikely(rc))
5822 		rc = -EIO;
5823 	return rc;
5824 }
5825 
5826 /**
5827  * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5828  * @phba: Pointer to HBA context object.
5829  * @type:  The resource extent type to allocate.
5830  *
5831  * This function allocates the number of elements for the specified
5832  * resource type.
5833  **/
5834 static int
5835 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5836 {
5837 	bool emb = false;
5838 	uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5839 	uint16_t rsrc_id, rsrc_start, j, k;
5840 	uint16_t *ids;
5841 	int i, rc;
5842 	unsigned long longs;
5843 	unsigned long *bmask;
5844 	struct lpfc_rsrc_blks *rsrc_blks;
5845 	LPFC_MBOXQ_t *mbox;
5846 	uint32_t length;
5847 	struct lpfc_id_range *id_array = NULL;
5848 	void *virtaddr = NULL;
5849 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5850 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5851 	struct list_head *ext_blk_list;
5852 
5853 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5854 					    &rsrc_cnt,
5855 					    &rsrc_size);
5856 	if (unlikely(rc))
5857 		return -EIO;
5858 
5859 	if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5860 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5861 			"3009 No available Resource Extents "
5862 			"for resource type 0x%x: Count: 0x%x, "
5863 			"Size 0x%x\n", type, rsrc_cnt,
5864 			rsrc_size);
5865 		return -ENOMEM;
5866 	}
5867 
5868 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5869 			"2903 Post resource extents type-0x%x: "
5870 			"count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5871 
5872 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5873 	if (!mbox)
5874 		return -ENOMEM;
5875 
5876 	rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5877 	if (unlikely(rc)) {
5878 		rc = -EIO;
5879 		goto err_exit;
5880 	}
5881 
5882 	/*
5883 	 * Figure out where the response is located.  Then get local pointers
5884 	 * to the response data.  The port does not guarantee to respond to
5885 	 * all extents counts request so update the local variable with the
5886 	 * allocated count from the port.
5887 	 */
5888 	if (emb == LPFC_SLI4_MBX_EMBED) {
5889 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5890 		id_array = &rsrc_ext->u.rsp.id[0];
5891 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5892 	} else {
5893 		virtaddr = mbox->sge_array->addr[0];
5894 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5895 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5896 		id_array = &n_rsrc->id;
5897 	}
5898 
5899 	longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
5900 	rsrc_id_cnt = rsrc_cnt * rsrc_size;
5901 
5902 	/*
5903 	 * Based on the resource size and count, correct the base and max
5904 	 * resource values.
5905 	 */
5906 	length = sizeof(struct lpfc_rsrc_blks);
5907 	switch (type) {
5908 	case LPFC_RSC_TYPE_FCOE_RPI:
5909 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
5910 						   sizeof(unsigned long),
5911 						   GFP_KERNEL);
5912 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5913 			rc = -ENOMEM;
5914 			goto err_exit;
5915 		}
5916 		phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
5917 						 sizeof(uint16_t),
5918 						 GFP_KERNEL);
5919 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
5920 			kfree(phba->sli4_hba.rpi_bmask);
5921 			rc = -ENOMEM;
5922 			goto err_exit;
5923 		}
5924 
5925 		/*
5926 		 * The next_rpi was initialized with the maximum available
5927 		 * count but the port may allocate a smaller number.  Catch
5928 		 * that case and update the next_rpi.
5929 		 */
5930 		phba->sli4_hba.next_rpi = rsrc_id_cnt;
5931 
5932 		/* Initialize local ptrs for common extent processing later. */
5933 		bmask = phba->sli4_hba.rpi_bmask;
5934 		ids = phba->sli4_hba.rpi_ids;
5935 		ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5936 		break;
5937 	case LPFC_RSC_TYPE_FCOE_VPI:
5938 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
5939 					  GFP_KERNEL);
5940 		if (unlikely(!phba->vpi_bmask)) {
5941 			rc = -ENOMEM;
5942 			goto err_exit;
5943 		}
5944 		phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
5945 					 GFP_KERNEL);
5946 		if (unlikely(!phba->vpi_ids)) {
5947 			kfree(phba->vpi_bmask);
5948 			rc = -ENOMEM;
5949 			goto err_exit;
5950 		}
5951 
5952 		/* Initialize local ptrs for common extent processing later. */
5953 		bmask = phba->vpi_bmask;
5954 		ids = phba->vpi_ids;
5955 		ext_blk_list = &phba->lpfc_vpi_blk_list;
5956 		break;
5957 	case LPFC_RSC_TYPE_FCOE_XRI:
5958 		phba->sli4_hba.xri_bmask = kcalloc(longs,
5959 						   sizeof(unsigned long),
5960 						   GFP_KERNEL);
5961 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
5962 			rc = -ENOMEM;
5963 			goto err_exit;
5964 		}
5965 		phba->sli4_hba.max_cfg_param.xri_used = 0;
5966 		phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
5967 						 sizeof(uint16_t),
5968 						 GFP_KERNEL);
5969 		if (unlikely(!phba->sli4_hba.xri_ids)) {
5970 			kfree(phba->sli4_hba.xri_bmask);
5971 			rc = -ENOMEM;
5972 			goto err_exit;
5973 		}
5974 
5975 		/* Initialize local ptrs for common extent processing later. */
5976 		bmask = phba->sli4_hba.xri_bmask;
5977 		ids = phba->sli4_hba.xri_ids;
5978 		ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5979 		break;
5980 	case LPFC_RSC_TYPE_FCOE_VFI:
5981 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
5982 						   sizeof(unsigned long),
5983 						   GFP_KERNEL);
5984 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5985 			rc = -ENOMEM;
5986 			goto err_exit;
5987 		}
5988 		phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
5989 						 sizeof(uint16_t),
5990 						 GFP_KERNEL);
5991 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
5992 			kfree(phba->sli4_hba.vfi_bmask);
5993 			rc = -ENOMEM;
5994 			goto err_exit;
5995 		}
5996 
5997 		/* Initialize local ptrs for common extent processing later. */
5998 		bmask = phba->sli4_hba.vfi_bmask;
5999 		ids = phba->sli4_hba.vfi_ids;
6000 		ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6001 		break;
6002 	default:
6003 		/* Unsupported Opcode.  Fail call. */
6004 		id_array = NULL;
6005 		bmask = NULL;
6006 		ids = NULL;
6007 		ext_blk_list = NULL;
6008 		goto err_exit;
6009 	}
6010 
6011 	/*
6012 	 * Complete initializing the extent configuration with the
6013 	 * allocated ids assigned to this function.  The bitmask serves
6014 	 * as an index into the array and manages the available ids.  The
6015 	 * array just stores the ids communicated to the port via the wqes.
6016 	 */
6017 	for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
6018 		if ((i % 2) == 0)
6019 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
6020 					 &id_array[k]);
6021 		else
6022 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
6023 					 &id_array[k]);
6024 
6025 		rsrc_blks = kzalloc(length, GFP_KERNEL);
6026 		if (unlikely(!rsrc_blks)) {
6027 			rc = -ENOMEM;
6028 			kfree(bmask);
6029 			kfree(ids);
6030 			goto err_exit;
6031 		}
6032 		rsrc_blks->rsrc_start = rsrc_id;
6033 		rsrc_blks->rsrc_size = rsrc_size;
6034 		list_add_tail(&rsrc_blks->list, ext_blk_list);
6035 		rsrc_start = rsrc_id;
6036 		if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6037 			phba->sli4_hba.io_xri_start = rsrc_start +
6038 				lpfc_sli4_get_iocb_cnt(phba);
6039 		}
6040 
6041 		while (rsrc_id < (rsrc_start + rsrc_size)) {
6042 			ids[j] = rsrc_id;
6043 			rsrc_id++;
6044 			j++;
6045 		}
6046 		/* Entire word processed.  Get next word.*/
6047 		if ((i % 2) == 1)
6048 			k++;
6049 	}
6050  err_exit:
6051 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6052 	return rc;
6053 }
6054 
6055 
6056 
6057 /**
6058  * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6059  * @phba: Pointer to HBA context object.
6060  * @type: the extent's type.
6061  *
6062  * This function deallocates all extents of a particular resource type.
6063  * SLI4 does not allow for deallocating a particular extent range.  It
6064  * is the caller's responsibility to release all kernel memory resources.
6065  **/
6066 static int
6067 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6068 {
6069 	int rc;
6070 	uint32_t length, mbox_tmo = 0;
6071 	LPFC_MBOXQ_t *mbox;
6072 	struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6073 	struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6074 
6075 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6076 	if (!mbox)
6077 		return -ENOMEM;
6078 
6079 	/*
6080 	 * This function sends an embedded mailbox because it only sends the
6081 	 * the resource type.  All extents of this type are released by the
6082 	 * port.
6083 	 */
6084 	length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6085 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6086 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6087 			 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6088 			 length, LPFC_SLI4_MBX_EMBED);
6089 
6090 	/* Send an extents count of 0 - the dealloc doesn't use it. */
6091 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6092 					LPFC_SLI4_MBX_EMBED);
6093 	if (unlikely(rc)) {
6094 		rc = -EIO;
6095 		goto out_free_mbox;
6096 	}
6097 	if (!phba->sli4_hba.intr_enable)
6098 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6099 	else {
6100 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6101 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6102 	}
6103 	if (unlikely(rc)) {
6104 		rc = -EIO;
6105 		goto out_free_mbox;
6106 	}
6107 
6108 	dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6109 	if (bf_get(lpfc_mbox_hdr_status,
6110 		   &dealloc_rsrc->header.cfg_shdr.response)) {
6111 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6112 				"2919 Failed to release resource extents "
6113 				"for type %d - Status 0x%x Add'l Status 0x%x. "
6114 				"Resource memory not released.\n",
6115 				type,
6116 				bf_get(lpfc_mbox_hdr_status,
6117 				    &dealloc_rsrc->header.cfg_shdr.response),
6118 				bf_get(lpfc_mbox_hdr_add_status,
6119 				    &dealloc_rsrc->header.cfg_shdr.response));
6120 		rc = -EIO;
6121 		goto out_free_mbox;
6122 	}
6123 
6124 	/* Release kernel memory resources for the specific type. */
6125 	switch (type) {
6126 	case LPFC_RSC_TYPE_FCOE_VPI:
6127 		kfree(phba->vpi_bmask);
6128 		kfree(phba->vpi_ids);
6129 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6130 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6131 				    &phba->lpfc_vpi_blk_list, list) {
6132 			list_del_init(&rsrc_blk->list);
6133 			kfree(rsrc_blk);
6134 		}
6135 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6136 		break;
6137 	case LPFC_RSC_TYPE_FCOE_XRI:
6138 		kfree(phba->sli4_hba.xri_bmask);
6139 		kfree(phba->sli4_hba.xri_ids);
6140 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6141 				    &phba->sli4_hba.lpfc_xri_blk_list, list) {
6142 			list_del_init(&rsrc_blk->list);
6143 			kfree(rsrc_blk);
6144 		}
6145 		break;
6146 	case LPFC_RSC_TYPE_FCOE_VFI:
6147 		kfree(phba->sli4_hba.vfi_bmask);
6148 		kfree(phba->sli4_hba.vfi_ids);
6149 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6150 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6151 				    &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6152 			list_del_init(&rsrc_blk->list);
6153 			kfree(rsrc_blk);
6154 		}
6155 		break;
6156 	case LPFC_RSC_TYPE_FCOE_RPI:
6157 		/* RPI bitmask and physical id array are cleaned up earlier. */
6158 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6159 				    &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6160 			list_del_init(&rsrc_blk->list);
6161 			kfree(rsrc_blk);
6162 		}
6163 		break;
6164 	default:
6165 		break;
6166 	}
6167 
6168 	bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6169 
6170  out_free_mbox:
6171 	mempool_free(mbox, phba->mbox_mem_pool);
6172 	return rc;
6173 }
6174 
6175 static void
6176 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6177 		  uint32_t feature)
6178 {
6179 	uint32_t len;
6180 
6181 	len = sizeof(struct lpfc_mbx_set_feature) -
6182 		sizeof(struct lpfc_sli4_cfg_mhdr);
6183 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6184 			 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6185 			 LPFC_SLI4_MBX_EMBED);
6186 
6187 	switch (feature) {
6188 	case LPFC_SET_UE_RECOVERY:
6189 		bf_set(lpfc_mbx_set_feature_UER,
6190 		       &mbox->u.mqe.un.set_feature, 1);
6191 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6192 		mbox->u.mqe.un.set_feature.param_len = 8;
6193 		break;
6194 	case LPFC_SET_MDS_DIAGS:
6195 		bf_set(lpfc_mbx_set_feature_mds,
6196 		       &mbox->u.mqe.un.set_feature, 1);
6197 		bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6198 		       &mbox->u.mqe.un.set_feature, 1);
6199 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6200 		mbox->u.mqe.un.set_feature.param_len = 8;
6201 		break;
6202 	}
6203 
6204 	return;
6205 }
6206 
6207 /**
6208  * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6209  * @phba: Pointer to HBA context object.
6210  *
6211  * Disable FW logging into host memory on the adapter. To
6212  * be done before reading logs from the host memory.
6213  **/
6214 void
6215 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6216 {
6217 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6218 
6219 	ras_fwlog->ras_active = false;
6220 
6221 	/* Disable FW logging to host memory */
6222 	writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6223 	       phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6224 }
6225 
6226 /**
6227  * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6228  * @phba: Pointer to HBA context object.
6229  *
6230  * This function is called to free memory allocated for RAS FW logging
6231  * support in the driver.
6232  **/
6233 void
6234 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6235 {
6236 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6237 	struct lpfc_dmabuf *dmabuf, *next;
6238 
6239 	if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6240 		list_for_each_entry_safe(dmabuf, next,
6241 				    &ras_fwlog->fwlog_buff_list,
6242 				    list) {
6243 			list_del(&dmabuf->list);
6244 			dma_free_coherent(&phba->pcidev->dev,
6245 					  LPFC_RAS_MAX_ENTRY_SIZE,
6246 					  dmabuf->virt, dmabuf->phys);
6247 			kfree(dmabuf);
6248 		}
6249 	}
6250 
6251 	if (ras_fwlog->lwpd.virt) {
6252 		dma_free_coherent(&phba->pcidev->dev,
6253 				  sizeof(uint32_t) * 2,
6254 				  ras_fwlog->lwpd.virt,
6255 				  ras_fwlog->lwpd.phys);
6256 		ras_fwlog->lwpd.virt = NULL;
6257 	}
6258 
6259 	ras_fwlog->ras_active = false;
6260 }
6261 
6262 /**
6263  * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6264  * @phba: Pointer to HBA context object.
6265  * @fwlog_buff_count: Count of buffers to be created.
6266  *
6267  * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6268  * to update FW log is posted to the adapter.
6269  * Buffer count is calculated based on module param ras_fwlog_buffsize
6270  * Size of each buffer posted to FW is 64K.
6271  **/
6272 
6273 static int
6274 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6275 			uint32_t fwlog_buff_count)
6276 {
6277 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6278 	struct lpfc_dmabuf *dmabuf;
6279 	int rc = 0, i = 0;
6280 
6281 	/* Initialize List */
6282 	INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6283 
6284 	/* Allocate memory for the LWPD */
6285 	ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6286 					    sizeof(uint32_t) * 2,
6287 					    &ras_fwlog->lwpd.phys,
6288 					    GFP_KERNEL);
6289 	if (!ras_fwlog->lwpd.virt) {
6290 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6291 				"6185 LWPD Memory Alloc Failed\n");
6292 
6293 		return -ENOMEM;
6294 	}
6295 
6296 	ras_fwlog->fw_buffcount = fwlog_buff_count;
6297 	for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6298 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6299 				 GFP_KERNEL);
6300 		if (!dmabuf) {
6301 			rc = -ENOMEM;
6302 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6303 					"6186 Memory Alloc failed FW logging");
6304 			goto free_mem;
6305 		}
6306 
6307 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6308 						  LPFC_RAS_MAX_ENTRY_SIZE,
6309 						  &dmabuf->phys, GFP_KERNEL);
6310 		if (!dmabuf->virt) {
6311 			kfree(dmabuf);
6312 			rc = -ENOMEM;
6313 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6314 					"6187 DMA Alloc Failed FW logging");
6315 			goto free_mem;
6316 		}
6317 		dmabuf->buffer_tag = i;
6318 		list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6319 	}
6320 
6321 free_mem:
6322 	if (rc)
6323 		lpfc_sli4_ras_dma_free(phba);
6324 
6325 	return rc;
6326 }
6327 
6328 /**
6329  * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6330  * @phba: pointer to lpfc hba data structure.
6331  * @pmboxq: pointer to the driver internal queue element for mailbox command.
6332  *
6333  * Completion handler for driver's RAS MBX command to the device.
6334  **/
6335 static void
6336 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6337 {
6338 	MAILBOX_t *mb;
6339 	union lpfc_sli4_cfg_shdr *shdr;
6340 	uint32_t shdr_status, shdr_add_status;
6341 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6342 
6343 	mb = &pmb->u.mb;
6344 
6345 	shdr = (union lpfc_sli4_cfg_shdr *)
6346 		&pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6347 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6348 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6349 
6350 	if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6351 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
6352 				"6188 FW LOG mailbox "
6353 				"completed with status x%x add_status x%x,"
6354 				" mbx status x%x\n",
6355 				shdr_status, shdr_add_status, mb->mbxStatus);
6356 
6357 		ras_fwlog->ras_hwsupport = false;
6358 		goto disable_ras;
6359 	}
6360 
6361 	ras_fwlog->ras_active = true;
6362 	mempool_free(pmb, phba->mbox_mem_pool);
6363 
6364 	return;
6365 
6366 disable_ras:
6367 	/* Free RAS DMA memory */
6368 	lpfc_sli4_ras_dma_free(phba);
6369 	mempool_free(pmb, phba->mbox_mem_pool);
6370 }
6371 
6372 /**
6373  * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6374  * @phba: pointer to lpfc hba data structure.
6375  * @fwlog_level: Logging verbosity level.
6376  * @fwlog_enable: Enable/Disable logging.
6377  *
6378  * Initialize memory and post mailbox command to enable FW logging in host
6379  * memory.
6380  **/
6381 int
6382 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6383 			 uint32_t fwlog_level,
6384 			 uint32_t fwlog_enable)
6385 {
6386 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6387 	struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
6388 	struct lpfc_dmabuf *dmabuf;
6389 	LPFC_MBOXQ_t *mbox;
6390 	uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
6391 	int rc = 0;
6392 
6393 	fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
6394 			  phba->cfg_ras_fwlog_buffsize);
6395 	fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
6396 
6397 	/*
6398 	 * If re-enabling FW logging support use earlier allocated
6399 	 * DMA buffers while posting MBX command.
6400 	 **/
6401 	if (!ras_fwlog->lwpd.virt) {
6402 		rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
6403 		if (rc) {
6404 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6405 					"6189 FW Log Memory Allocation Failed");
6406 			return rc;
6407 		}
6408 	}
6409 
6410 	/* Setup Mailbox command */
6411 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6412 	if (!mbox) {
6413 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6414 				"6190 RAS MBX Alloc Failed");
6415 		rc = -ENOMEM;
6416 		goto mem_free;
6417 	}
6418 
6419 	ras_fwlog->fw_loglevel = fwlog_level;
6420 	len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
6421 		sizeof(struct lpfc_sli4_cfg_mhdr));
6422 
6423 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
6424 			 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
6425 			 len, LPFC_SLI4_MBX_EMBED);
6426 
6427 	mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
6428 	bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
6429 	       fwlog_enable);
6430 	bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
6431 	       ras_fwlog->fw_loglevel);
6432 	bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
6433 	       ras_fwlog->fw_buffcount);
6434 	bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
6435 	       LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
6436 
6437 	/* Update DMA buffer address */
6438 	list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
6439 		memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6440 
6441 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
6442 			putPaddrLow(dmabuf->phys);
6443 
6444 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
6445 			putPaddrHigh(dmabuf->phys);
6446 	}
6447 
6448 	/* Update LPWD address */
6449 	mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
6450 	mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
6451 
6452 	mbox->vport = phba->pport;
6453 	mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
6454 
6455 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
6456 
6457 	if (rc == MBX_NOT_FINISHED) {
6458 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6459 				"6191 FW-Log Mailbox failed. "
6460 				"status %d mbxStatus : x%x", rc,
6461 				bf_get(lpfc_mqe_status, &mbox->u.mqe));
6462 		mempool_free(mbox, phba->mbox_mem_pool);
6463 		rc = -EIO;
6464 		goto mem_free;
6465 	} else
6466 		rc = 0;
6467 mem_free:
6468 	if (rc)
6469 		lpfc_sli4_ras_dma_free(phba);
6470 
6471 	return rc;
6472 }
6473 
6474 /**
6475  * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
6476  * @phba: Pointer to HBA context object.
6477  *
6478  * Check if RAS is supported on the adapter and initialize it.
6479  **/
6480 void
6481 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
6482 {
6483 	/* Check RAS FW Log needs to be enabled or not */
6484 	if (lpfc_check_fwlog_support(phba))
6485 		return;
6486 
6487 	lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
6488 				 LPFC_RAS_ENABLE_LOGGING);
6489 }
6490 
6491 /**
6492  * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
6493  * @phba: Pointer to HBA context object.
6494  *
6495  * This function allocates all SLI4 resource identifiers.
6496  **/
6497 int
6498 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
6499 {
6500 	int i, rc, error = 0;
6501 	uint16_t count, base;
6502 	unsigned long longs;
6503 
6504 	if (!phba->sli4_hba.rpi_hdrs_in_use)
6505 		phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
6506 	if (phba->sli4_hba.extents_in_use) {
6507 		/*
6508 		 * The port supports resource extents. The XRI, VPI, VFI, RPI
6509 		 * resource extent count must be read and allocated before
6510 		 * provisioning the resource id arrays.
6511 		 */
6512 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6513 		    LPFC_IDX_RSRC_RDY) {
6514 			/*
6515 			 * Extent-based resources are set - the driver could
6516 			 * be in a port reset. Figure out if any corrective
6517 			 * actions need to be taken.
6518 			 */
6519 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6520 						 LPFC_RSC_TYPE_FCOE_VFI);
6521 			if (rc != 0)
6522 				error++;
6523 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6524 						 LPFC_RSC_TYPE_FCOE_VPI);
6525 			if (rc != 0)
6526 				error++;
6527 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6528 						 LPFC_RSC_TYPE_FCOE_XRI);
6529 			if (rc != 0)
6530 				error++;
6531 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6532 						 LPFC_RSC_TYPE_FCOE_RPI);
6533 			if (rc != 0)
6534 				error++;
6535 
6536 			/*
6537 			 * It's possible that the number of resources
6538 			 * provided to this port instance changed between
6539 			 * resets.  Detect this condition and reallocate
6540 			 * resources.  Otherwise, there is no action.
6541 			 */
6542 			if (error) {
6543 				lpfc_printf_log(phba, KERN_INFO,
6544 						LOG_MBOX | LOG_INIT,
6545 						"2931 Detected extent resource "
6546 						"change.  Reallocating all "
6547 						"extents.\n");
6548 				rc = lpfc_sli4_dealloc_extent(phba,
6549 						 LPFC_RSC_TYPE_FCOE_VFI);
6550 				rc = lpfc_sli4_dealloc_extent(phba,
6551 						 LPFC_RSC_TYPE_FCOE_VPI);
6552 				rc = lpfc_sli4_dealloc_extent(phba,
6553 						 LPFC_RSC_TYPE_FCOE_XRI);
6554 				rc = lpfc_sli4_dealloc_extent(phba,
6555 						 LPFC_RSC_TYPE_FCOE_RPI);
6556 			} else
6557 				return 0;
6558 		}
6559 
6560 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6561 		if (unlikely(rc))
6562 			goto err_exit;
6563 
6564 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6565 		if (unlikely(rc))
6566 			goto err_exit;
6567 
6568 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6569 		if (unlikely(rc))
6570 			goto err_exit;
6571 
6572 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6573 		if (unlikely(rc))
6574 			goto err_exit;
6575 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6576 		       LPFC_IDX_RSRC_RDY);
6577 		return rc;
6578 	} else {
6579 		/*
6580 		 * The port does not support resource extents.  The XRI, VPI,
6581 		 * VFI, RPI resource ids were determined from READ_CONFIG.
6582 		 * Just allocate the bitmasks and provision the resource id
6583 		 * arrays.  If a port reset is active, the resources don't
6584 		 * need any action - just exit.
6585 		 */
6586 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6587 		    LPFC_IDX_RSRC_RDY) {
6588 			lpfc_sli4_dealloc_resource_identifiers(phba);
6589 			lpfc_sli4_remove_rpis(phba);
6590 		}
6591 		/* RPIs. */
6592 		count = phba->sli4_hba.max_cfg_param.max_rpi;
6593 		if (count <= 0) {
6594 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6595 					"3279 Invalid provisioning of "
6596 					"rpi:%d\n", count);
6597 			rc = -EINVAL;
6598 			goto err_exit;
6599 		}
6600 		base = phba->sli4_hba.max_cfg_param.rpi_base;
6601 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6602 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6603 						   sizeof(unsigned long),
6604 						   GFP_KERNEL);
6605 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6606 			rc = -ENOMEM;
6607 			goto err_exit;
6608 		}
6609 		phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
6610 						 GFP_KERNEL);
6611 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6612 			rc = -ENOMEM;
6613 			goto free_rpi_bmask;
6614 		}
6615 
6616 		for (i = 0; i < count; i++)
6617 			phba->sli4_hba.rpi_ids[i] = base + i;
6618 
6619 		/* VPIs. */
6620 		count = phba->sli4_hba.max_cfg_param.max_vpi;
6621 		if (count <= 0) {
6622 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6623 					"3280 Invalid provisioning of "
6624 					"vpi:%d\n", count);
6625 			rc = -EINVAL;
6626 			goto free_rpi_ids;
6627 		}
6628 		base = phba->sli4_hba.max_cfg_param.vpi_base;
6629 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6630 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6631 					  GFP_KERNEL);
6632 		if (unlikely(!phba->vpi_bmask)) {
6633 			rc = -ENOMEM;
6634 			goto free_rpi_ids;
6635 		}
6636 		phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
6637 					GFP_KERNEL);
6638 		if (unlikely(!phba->vpi_ids)) {
6639 			rc = -ENOMEM;
6640 			goto free_vpi_bmask;
6641 		}
6642 
6643 		for (i = 0; i < count; i++)
6644 			phba->vpi_ids[i] = base + i;
6645 
6646 		/* XRIs. */
6647 		count = phba->sli4_hba.max_cfg_param.max_xri;
6648 		if (count <= 0) {
6649 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6650 					"3281 Invalid provisioning of "
6651 					"xri:%d\n", count);
6652 			rc = -EINVAL;
6653 			goto free_vpi_ids;
6654 		}
6655 		base = phba->sli4_hba.max_cfg_param.xri_base;
6656 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6657 		phba->sli4_hba.xri_bmask = kcalloc(longs,
6658 						   sizeof(unsigned long),
6659 						   GFP_KERNEL);
6660 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6661 			rc = -ENOMEM;
6662 			goto free_vpi_ids;
6663 		}
6664 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6665 		phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
6666 						 GFP_KERNEL);
6667 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6668 			rc = -ENOMEM;
6669 			goto free_xri_bmask;
6670 		}
6671 
6672 		for (i = 0; i < count; i++)
6673 			phba->sli4_hba.xri_ids[i] = base + i;
6674 
6675 		/* VFIs. */
6676 		count = phba->sli4_hba.max_cfg_param.max_vfi;
6677 		if (count <= 0) {
6678 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6679 					"3282 Invalid provisioning of "
6680 					"vfi:%d\n", count);
6681 			rc = -EINVAL;
6682 			goto free_xri_ids;
6683 		}
6684 		base = phba->sli4_hba.max_cfg_param.vfi_base;
6685 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6686 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6687 						   sizeof(unsigned long),
6688 						   GFP_KERNEL);
6689 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6690 			rc = -ENOMEM;
6691 			goto free_xri_ids;
6692 		}
6693 		phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
6694 						 GFP_KERNEL);
6695 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6696 			rc = -ENOMEM;
6697 			goto free_vfi_bmask;
6698 		}
6699 
6700 		for (i = 0; i < count; i++)
6701 			phba->sli4_hba.vfi_ids[i] = base + i;
6702 
6703 		/*
6704 		 * Mark all resources ready.  An HBA reset doesn't need
6705 		 * to reset the initialization.
6706 		 */
6707 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6708 		       LPFC_IDX_RSRC_RDY);
6709 		return 0;
6710 	}
6711 
6712  free_vfi_bmask:
6713 	kfree(phba->sli4_hba.vfi_bmask);
6714 	phba->sli4_hba.vfi_bmask = NULL;
6715  free_xri_ids:
6716 	kfree(phba->sli4_hba.xri_ids);
6717 	phba->sli4_hba.xri_ids = NULL;
6718  free_xri_bmask:
6719 	kfree(phba->sli4_hba.xri_bmask);
6720 	phba->sli4_hba.xri_bmask = NULL;
6721  free_vpi_ids:
6722 	kfree(phba->vpi_ids);
6723 	phba->vpi_ids = NULL;
6724  free_vpi_bmask:
6725 	kfree(phba->vpi_bmask);
6726 	phba->vpi_bmask = NULL;
6727  free_rpi_ids:
6728 	kfree(phba->sli4_hba.rpi_ids);
6729 	phba->sli4_hba.rpi_ids = NULL;
6730  free_rpi_bmask:
6731 	kfree(phba->sli4_hba.rpi_bmask);
6732 	phba->sli4_hba.rpi_bmask = NULL;
6733  err_exit:
6734 	return rc;
6735 }
6736 
6737 /**
6738  * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6739  * @phba: Pointer to HBA context object.
6740  *
6741  * This function allocates the number of elements for the specified
6742  * resource type.
6743  **/
6744 int
6745 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
6746 {
6747 	if (phba->sli4_hba.extents_in_use) {
6748 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6749 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6750 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6751 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6752 	} else {
6753 		kfree(phba->vpi_bmask);
6754 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6755 		kfree(phba->vpi_ids);
6756 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6757 		kfree(phba->sli4_hba.xri_bmask);
6758 		kfree(phba->sli4_hba.xri_ids);
6759 		kfree(phba->sli4_hba.vfi_bmask);
6760 		kfree(phba->sli4_hba.vfi_ids);
6761 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6762 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6763 	}
6764 
6765 	return 0;
6766 }
6767 
6768 /**
6769  * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6770  * @phba: Pointer to HBA context object.
6771  * @type: The resource extent type.
6772  * @extnt_count: buffer to hold port extent count response
6773  * @extnt_size: buffer to hold port extent size response.
6774  *
6775  * This function calls the port to read the host allocated extents
6776  * for a particular type.
6777  **/
6778 int
6779 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6780 			       uint16_t *extnt_cnt, uint16_t *extnt_size)
6781 {
6782 	bool emb;
6783 	int rc = 0;
6784 	uint16_t curr_blks = 0;
6785 	uint32_t req_len, emb_len;
6786 	uint32_t alloc_len, mbox_tmo;
6787 	struct list_head *blk_list_head;
6788 	struct lpfc_rsrc_blks *rsrc_blk;
6789 	LPFC_MBOXQ_t *mbox;
6790 	void *virtaddr = NULL;
6791 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6792 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6793 	union  lpfc_sli4_cfg_shdr *shdr;
6794 
6795 	switch (type) {
6796 	case LPFC_RSC_TYPE_FCOE_VPI:
6797 		blk_list_head = &phba->lpfc_vpi_blk_list;
6798 		break;
6799 	case LPFC_RSC_TYPE_FCOE_XRI:
6800 		blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6801 		break;
6802 	case LPFC_RSC_TYPE_FCOE_VFI:
6803 		blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6804 		break;
6805 	case LPFC_RSC_TYPE_FCOE_RPI:
6806 		blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6807 		break;
6808 	default:
6809 		return -EIO;
6810 	}
6811 
6812 	/* Count the number of extents currently allocatd for this type. */
6813 	list_for_each_entry(rsrc_blk, blk_list_head, list) {
6814 		if (curr_blks == 0) {
6815 			/*
6816 			 * The GET_ALLOCATED mailbox does not return the size,
6817 			 * just the count.  The size should be just the size
6818 			 * stored in the current allocated block and all sizes
6819 			 * for an extent type are the same so set the return
6820 			 * value now.
6821 			 */
6822 			*extnt_size = rsrc_blk->rsrc_size;
6823 		}
6824 		curr_blks++;
6825 	}
6826 
6827 	/*
6828 	 * Calculate the size of an embedded mailbox.  The uint32_t
6829 	 * accounts for extents-specific word.
6830 	 */
6831 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6832 		sizeof(uint32_t);
6833 
6834 	/*
6835 	 * Presume the allocation and response will fit into an embedded
6836 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
6837 	 */
6838 	emb = LPFC_SLI4_MBX_EMBED;
6839 	req_len = emb_len;
6840 	if (req_len > emb_len) {
6841 		req_len = curr_blks * sizeof(uint16_t) +
6842 			sizeof(union lpfc_sli4_cfg_shdr) +
6843 			sizeof(uint32_t);
6844 		emb = LPFC_SLI4_MBX_NEMBED;
6845 	}
6846 
6847 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6848 	if (!mbox)
6849 		return -ENOMEM;
6850 	memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6851 
6852 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6853 				     LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6854 				     req_len, emb);
6855 	if (alloc_len < req_len) {
6856 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6857 			"2983 Allocated DMA memory size (x%x) is "
6858 			"less than the requested DMA memory "
6859 			"size (x%x)\n", alloc_len, req_len);
6860 		rc = -ENOMEM;
6861 		goto err_exit;
6862 	}
6863 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6864 	if (unlikely(rc)) {
6865 		rc = -EIO;
6866 		goto err_exit;
6867 	}
6868 
6869 	if (!phba->sli4_hba.intr_enable)
6870 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6871 	else {
6872 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6873 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6874 	}
6875 
6876 	if (unlikely(rc)) {
6877 		rc = -EIO;
6878 		goto err_exit;
6879 	}
6880 
6881 	/*
6882 	 * Figure out where the response is located.  Then get local pointers
6883 	 * to the response data.  The port does not guarantee to respond to
6884 	 * all extents counts request so update the local variable with the
6885 	 * allocated count from the port.
6886 	 */
6887 	if (emb == LPFC_SLI4_MBX_EMBED) {
6888 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6889 		shdr = &rsrc_ext->header.cfg_shdr;
6890 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6891 	} else {
6892 		virtaddr = mbox->sge_array->addr[0];
6893 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6894 		shdr = &n_rsrc->cfg_shdr;
6895 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6896 	}
6897 
6898 	if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
6899 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6900 			"2984 Failed to read allocated resources "
6901 			"for type %d - Status 0x%x Add'l Status 0x%x.\n",
6902 			type,
6903 			bf_get(lpfc_mbox_hdr_status, &shdr->response),
6904 			bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
6905 		rc = -EIO;
6906 		goto err_exit;
6907 	}
6908  err_exit:
6909 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6910 	return rc;
6911 }
6912 
6913 /**
6914  * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
6915  * @phba: pointer to lpfc hba data structure.
6916  * @pring: Pointer to driver SLI ring object.
6917  * @sgl_list: linked link of sgl buffers to post
6918  * @cnt: number of linked list buffers
6919  *
6920  * This routine walks the list of buffers that have been allocated and
6921  * repost them to the port by using SGL block post. This is needed after a
6922  * pci_function_reset/warm_start or start. It attempts to construct blocks
6923  * of buffer sgls which contains contiguous xris and uses the non-embedded
6924  * SGL block post mailbox commands to post them to the port. For single
6925  * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
6926  * mailbox command for posting.
6927  *
6928  * Returns: 0 = success, non-zero failure.
6929  **/
6930 static int
6931 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
6932 			  struct list_head *sgl_list, int cnt)
6933 {
6934 	struct lpfc_sglq *sglq_entry = NULL;
6935 	struct lpfc_sglq *sglq_entry_next = NULL;
6936 	struct lpfc_sglq *sglq_entry_first = NULL;
6937 	int status, total_cnt;
6938 	int post_cnt = 0, num_posted = 0, block_cnt = 0;
6939 	int last_xritag = NO_XRI;
6940 	LIST_HEAD(prep_sgl_list);
6941 	LIST_HEAD(blck_sgl_list);
6942 	LIST_HEAD(allc_sgl_list);
6943 	LIST_HEAD(post_sgl_list);
6944 	LIST_HEAD(free_sgl_list);
6945 
6946 	spin_lock_irq(&phba->hbalock);
6947 	spin_lock(&phba->sli4_hba.sgl_list_lock);
6948 	list_splice_init(sgl_list, &allc_sgl_list);
6949 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
6950 	spin_unlock_irq(&phba->hbalock);
6951 
6952 	total_cnt = cnt;
6953 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
6954 				 &allc_sgl_list, list) {
6955 		list_del_init(&sglq_entry->list);
6956 		block_cnt++;
6957 		if ((last_xritag != NO_XRI) &&
6958 		    (sglq_entry->sli4_xritag != last_xritag + 1)) {
6959 			/* a hole in xri block, form a sgl posting block */
6960 			list_splice_init(&prep_sgl_list, &blck_sgl_list);
6961 			post_cnt = block_cnt - 1;
6962 			/* prepare list for next posting block */
6963 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
6964 			block_cnt = 1;
6965 		} else {
6966 			/* prepare list for next posting block */
6967 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
6968 			/* enough sgls for non-embed sgl mbox command */
6969 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
6970 				list_splice_init(&prep_sgl_list,
6971 						 &blck_sgl_list);
6972 				post_cnt = block_cnt;
6973 				block_cnt = 0;
6974 			}
6975 		}
6976 		num_posted++;
6977 
6978 		/* keep track of last sgl's xritag */
6979 		last_xritag = sglq_entry->sli4_xritag;
6980 
6981 		/* end of repost sgl list condition for buffers */
6982 		if (num_posted == total_cnt) {
6983 			if (post_cnt == 0) {
6984 				list_splice_init(&prep_sgl_list,
6985 						 &blck_sgl_list);
6986 				post_cnt = block_cnt;
6987 			} else if (block_cnt == 1) {
6988 				status = lpfc_sli4_post_sgl(phba,
6989 						sglq_entry->phys, 0,
6990 						sglq_entry->sli4_xritag);
6991 				if (!status) {
6992 					/* successful, put sgl to posted list */
6993 					list_add_tail(&sglq_entry->list,
6994 						      &post_sgl_list);
6995 				} else {
6996 					/* Failure, put sgl to free list */
6997 					lpfc_printf_log(phba, KERN_WARNING,
6998 						LOG_SLI,
6999 						"3159 Failed to post "
7000 						"sgl, xritag:x%x\n",
7001 						sglq_entry->sli4_xritag);
7002 					list_add_tail(&sglq_entry->list,
7003 						      &free_sgl_list);
7004 					total_cnt--;
7005 				}
7006 			}
7007 		}
7008 
7009 		/* continue until a nembed page worth of sgls */
7010 		if (post_cnt == 0)
7011 			continue;
7012 
7013 		/* post the buffer list sgls as a block */
7014 		status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
7015 						 post_cnt);
7016 
7017 		if (!status) {
7018 			/* success, put sgl list to posted sgl list */
7019 			list_splice_init(&blck_sgl_list, &post_sgl_list);
7020 		} else {
7021 			/* Failure, put sgl list to free sgl list */
7022 			sglq_entry_first = list_first_entry(&blck_sgl_list,
7023 							    struct lpfc_sglq,
7024 							    list);
7025 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7026 					"3160 Failed to post sgl-list, "
7027 					"xritag:x%x-x%x\n",
7028 					sglq_entry_first->sli4_xritag,
7029 					(sglq_entry_first->sli4_xritag +
7030 					 post_cnt - 1));
7031 			list_splice_init(&blck_sgl_list, &free_sgl_list);
7032 			total_cnt -= post_cnt;
7033 		}
7034 
7035 		/* don't reset xirtag due to hole in xri block */
7036 		if (block_cnt == 0)
7037 			last_xritag = NO_XRI;
7038 
7039 		/* reset sgl post count for next round of posting */
7040 		post_cnt = 0;
7041 	}
7042 
7043 	/* free the sgls failed to post */
7044 	lpfc_free_sgl_list(phba, &free_sgl_list);
7045 
7046 	/* push sgls posted to the available list */
7047 	if (!list_empty(&post_sgl_list)) {
7048 		spin_lock_irq(&phba->hbalock);
7049 		spin_lock(&phba->sli4_hba.sgl_list_lock);
7050 		list_splice_init(&post_sgl_list, sgl_list);
7051 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
7052 		spin_unlock_irq(&phba->hbalock);
7053 	} else {
7054 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7055 				"3161 Failure to post sgl to port.\n");
7056 		return -EIO;
7057 	}
7058 
7059 	/* return the number of XRIs actually posted */
7060 	return total_cnt;
7061 }
7062 
7063 /**
7064  * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7065  * @phba: pointer to lpfc hba data structure.
7066  *
7067  * This routine walks the list of nvme buffers that have been allocated and
7068  * repost them to the port by using SGL block post. This is needed after a
7069  * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7070  * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7071  * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7072  *
7073  * Returns: 0 = success, non-zero failure.
7074  **/
7075 static int
7076 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7077 {
7078 	LIST_HEAD(post_nblist);
7079 	int num_posted, rc = 0;
7080 
7081 	/* get all NVME buffers need to repost to a local list */
7082 	lpfc_io_buf_flush(phba, &post_nblist);
7083 
7084 	/* post the list of nvme buffer sgls to port if available */
7085 	if (!list_empty(&post_nblist)) {
7086 		num_posted = lpfc_sli4_post_io_sgl_list(
7087 			phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7088 		/* failed to post any nvme buffer, return error */
7089 		if (num_posted == 0)
7090 			rc = -EIO;
7091 	}
7092 	return rc;
7093 }
7094 
7095 static void
7096 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7097 {
7098 	uint32_t len;
7099 
7100 	len = sizeof(struct lpfc_mbx_set_host_data) -
7101 		sizeof(struct lpfc_sli4_cfg_mhdr);
7102 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7103 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7104 			 LPFC_SLI4_MBX_EMBED);
7105 
7106 	mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7107 	mbox->u.mqe.un.set_host_data.param_len =
7108 					LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7109 	snprintf(mbox->u.mqe.un.set_host_data.data,
7110 		 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7111 		 "Linux %s v"LPFC_DRIVER_VERSION,
7112 		 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7113 }
7114 
7115 int
7116 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7117 		    struct lpfc_queue *drq, int count, int idx)
7118 {
7119 	int rc, i;
7120 	struct lpfc_rqe hrqe;
7121 	struct lpfc_rqe drqe;
7122 	struct lpfc_rqb *rqbp;
7123 	unsigned long flags;
7124 	struct rqb_dmabuf *rqb_buffer;
7125 	LIST_HEAD(rqb_buf_list);
7126 
7127 	spin_lock_irqsave(&phba->hbalock, flags);
7128 	rqbp = hrq->rqbp;
7129 	for (i = 0; i < count; i++) {
7130 		/* IF RQ is already full, don't bother */
7131 		if (rqbp->buffer_count + i >= rqbp->entry_count - 1)
7132 			break;
7133 		rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7134 		if (!rqb_buffer)
7135 			break;
7136 		rqb_buffer->hrq = hrq;
7137 		rqb_buffer->drq = drq;
7138 		rqb_buffer->idx = idx;
7139 		list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7140 	}
7141 	while (!list_empty(&rqb_buf_list)) {
7142 		list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7143 				 hbuf.list);
7144 
7145 		hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7146 		hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7147 		drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7148 		drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7149 		rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7150 		if (rc < 0) {
7151 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7152 					"6421 Cannot post to HRQ %d: %x %x %x "
7153 					"DRQ %x %x\n",
7154 					hrq->queue_id,
7155 					hrq->host_index,
7156 					hrq->hba_index,
7157 					hrq->entry_count,
7158 					drq->host_index,
7159 					drq->hba_index);
7160 			rqbp->rqb_free_buffer(phba, rqb_buffer);
7161 		} else {
7162 			list_add_tail(&rqb_buffer->hbuf.list,
7163 				      &rqbp->rqb_buffer_list);
7164 			rqbp->buffer_count++;
7165 		}
7166 	}
7167 	spin_unlock_irqrestore(&phba->hbalock, flags);
7168 	return 1;
7169 }
7170 
7171 /**
7172  * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
7173  * @phba: Pointer to HBA context object.
7174  *
7175  * This function is the main SLI4 device initialization PCI function. This
7176  * function is called by the HBA initialization code, HBA reset code and
7177  * HBA error attention handler code. Caller is not required to hold any
7178  * locks.
7179  **/
7180 int
7181 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
7182 {
7183 	int rc, i, cnt, len;
7184 	LPFC_MBOXQ_t *mboxq;
7185 	struct lpfc_mqe *mqe;
7186 	uint8_t *vpd;
7187 	uint32_t vpd_size;
7188 	uint32_t ftr_rsp = 0;
7189 	struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
7190 	struct lpfc_vport *vport = phba->pport;
7191 	struct lpfc_dmabuf *mp;
7192 	struct lpfc_rqb *rqbp;
7193 
7194 	/* Perform a PCI function reset to start from clean */
7195 	rc = lpfc_pci_function_reset(phba);
7196 	if (unlikely(rc))
7197 		return -ENODEV;
7198 
7199 	/* Check the HBA Host Status Register for readyness */
7200 	rc = lpfc_sli4_post_status_check(phba);
7201 	if (unlikely(rc))
7202 		return -ENODEV;
7203 	else {
7204 		spin_lock_irq(&phba->hbalock);
7205 		phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
7206 		spin_unlock_irq(&phba->hbalock);
7207 	}
7208 
7209 	/*
7210 	 * Allocate a single mailbox container for initializing the
7211 	 * port.
7212 	 */
7213 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7214 	if (!mboxq)
7215 		return -ENOMEM;
7216 
7217 	/* Issue READ_REV to collect vpd and FW information. */
7218 	vpd_size = SLI4_PAGE_SIZE;
7219 	vpd = kzalloc(vpd_size, GFP_KERNEL);
7220 	if (!vpd) {
7221 		rc = -ENOMEM;
7222 		goto out_free_mbox;
7223 	}
7224 
7225 	rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
7226 	if (unlikely(rc)) {
7227 		kfree(vpd);
7228 		goto out_free_mbox;
7229 	}
7230 
7231 	mqe = &mboxq->u.mqe;
7232 	phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
7233 	if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
7234 		phba->hba_flag |= HBA_FCOE_MODE;
7235 		phba->fcp_embed_io = 0;	/* SLI4 FC support only */
7236 	} else {
7237 		phba->hba_flag &= ~HBA_FCOE_MODE;
7238 	}
7239 
7240 	if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
7241 		LPFC_DCBX_CEE_MODE)
7242 		phba->hba_flag |= HBA_FIP_SUPPORT;
7243 	else
7244 		phba->hba_flag &= ~HBA_FIP_SUPPORT;
7245 
7246 	phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH;
7247 
7248 	if (phba->sli_rev != LPFC_SLI_REV4) {
7249 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7250 			"0376 READ_REV Error. SLI Level %d "
7251 			"FCoE enabled %d\n",
7252 			phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
7253 		rc = -EIO;
7254 		kfree(vpd);
7255 		goto out_free_mbox;
7256 	}
7257 
7258 	/*
7259 	 * Continue initialization with default values even if driver failed
7260 	 * to read FCoE param config regions, only read parameters if the
7261 	 * board is FCoE
7262 	 */
7263 	if (phba->hba_flag & HBA_FCOE_MODE &&
7264 	    lpfc_sli4_read_fcoe_params(phba))
7265 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
7266 			"2570 Failed to read FCoE parameters\n");
7267 
7268 	/*
7269 	 * Retrieve sli4 device physical port name, failure of doing it
7270 	 * is considered as non-fatal.
7271 	 */
7272 	rc = lpfc_sli4_retrieve_pport_name(phba);
7273 	if (!rc)
7274 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7275 				"3080 Successful retrieving SLI4 device "
7276 				"physical port name: %s.\n", phba->Port);
7277 
7278 	rc = lpfc_sli4_get_ctl_attr(phba);
7279 	if (!rc)
7280 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7281 				"8351 Successful retrieving SLI4 device "
7282 				"CTL ATTR\n");
7283 
7284 	/*
7285 	 * Evaluate the read rev and vpd data. Populate the driver
7286 	 * state with the results. If this routine fails, the failure
7287 	 * is not fatal as the driver will use generic values.
7288 	 */
7289 	rc = lpfc_parse_vpd(phba, vpd, vpd_size);
7290 	if (unlikely(!rc)) {
7291 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7292 				"0377 Error %d parsing vpd. "
7293 				"Using defaults.\n", rc);
7294 		rc = 0;
7295 	}
7296 	kfree(vpd);
7297 
7298 	/* Save information as VPD data */
7299 	phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
7300 	phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
7301 
7302 	/*
7303 	 * This is because first G7 ASIC doesn't support the standard
7304 	 * 0x5a NVME cmd descriptor type/subtype
7305 	 */
7306 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7307 			LPFC_SLI_INTF_IF_TYPE_6) &&
7308 	    (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
7309 	    (phba->vpd.rev.smRev == 0) &&
7310 	    (phba->cfg_nvme_embed_cmd == 1))
7311 		phba->cfg_nvme_embed_cmd = 0;
7312 
7313 	phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
7314 	phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
7315 					 &mqe->un.read_rev);
7316 	phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
7317 				       &mqe->un.read_rev);
7318 	phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
7319 					    &mqe->un.read_rev);
7320 	phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
7321 					   &mqe->un.read_rev);
7322 	phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
7323 	memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
7324 	phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
7325 	memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
7326 	phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
7327 	memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
7328 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7329 			"(%d):0380 READ_REV Status x%x "
7330 			"fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
7331 			mboxq->vport ? mboxq->vport->vpi : 0,
7332 			bf_get(lpfc_mqe_status, mqe),
7333 			phba->vpd.rev.opFwName,
7334 			phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
7335 			phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
7336 
7337 	/* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3)  */
7338 	rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3);
7339 	if (phba->pport->cfg_lun_queue_depth > rc) {
7340 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7341 				"3362 LUN queue depth changed from %d to %d\n",
7342 				phba->pport->cfg_lun_queue_depth, rc);
7343 		phba->pport->cfg_lun_queue_depth = rc;
7344 	}
7345 
7346 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7347 	    LPFC_SLI_INTF_IF_TYPE_0) {
7348 		lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
7349 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7350 		if (rc == MBX_SUCCESS) {
7351 			phba->hba_flag |= HBA_RECOVERABLE_UE;
7352 			/* Set 1Sec interval to detect UE */
7353 			phba->eratt_poll_interval = 1;
7354 			phba->sli4_hba.ue_to_sr = bf_get(
7355 					lpfc_mbx_set_feature_UESR,
7356 					&mboxq->u.mqe.un.set_feature);
7357 			phba->sli4_hba.ue_to_rp = bf_get(
7358 					lpfc_mbx_set_feature_UERP,
7359 					&mboxq->u.mqe.un.set_feature);
7360 		}
7361 	}
7362 
7363 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
7364 		/* Enable MDS Diagnostics only if the SLI Port supports it */
7365 		lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
7366 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7367 		if (rc != MBX_SUCCESS)
7368 			phba->mds_diags_support = 0;
7369 	}
7370 
7371 	/*
7372 	 * Discover the port's supported feature set and match it against the
7373 	 * hosts requests.
7374 	 */
7375 	lpfc_request_features(phba, mboxq);
7376 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7377 	if (unlikely(rc)) {
7378 		rc = -EIO;
7379 		goto out_free_mbox;
7380 	}
7381 
7382 	/*
7383 	 * The port must support FCP initiator mode as this is the
7384 	 * only mode running in the host.
7385 	 */
7386 	if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
7387 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7388 				"0378 No support for fcpi mode.\n");
7389 		ftr_rsp++;
7390 	}
7391 
7392 	/* Performance Hints are ONLY for FCoE */
7393 	if (phba->hba_flag & HBA_FCOE_MODE) {
7394 		if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
7395 			phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
7396 		else
7397 			phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
7398 	}
7399 
7400 	/*
7401 	 * If the port cannot support the host's requested features
7402 	 * then turn off the global config parameters to disable the
7403 	 * feature in the driver.  This is not a fatal error.
7404 	 */
7405 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
7406 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
7407 			phba->cfg_enable_bg = 0;
7408 			phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
7409 			ftr_rsp++;
7410 		}
7411 	}
7412 
7413 	if (phba->max_vpi && phba->cfg_enable_npiv &&
7414 	    !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7415 		ftr_rsp++;
7416 
7417 	if (ftr_rsp) {
7418 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7419 				"0379 Feature Mismatch Data: x%08x %08x "
7420 				"x%x x%x x%x\n", mqe->un.req_ftrs.word2,
7421 				mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
7422 				phba->cfg_enable_npiv, phba->max_vpi);
7423 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
7424 			phba->cfg_enable_bg = 0;
7425 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7426 			phba->cfg_enable_npiv = 0;
7427 	}
7428 
7429 	/* These SLI3 features are assumed in SLI4 */
7430 	spin_lock_irq(&phba->hbalock);
7431 	phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
7432 	spin_unlock_irq(&phba->hbalock);
7433 
7434 	/*
7435 	 * Allocate all resources (xri,rpi,vpi,vfi) now.  Subsequent
7436 	 * calls depends on these resources to complete port setup.
7437 	 */
7438 	rc = lpfc_sli4_alloc_resource_identifiers(phba);
7439 	if (rc) {
7440 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7441 				"2920 Failed to alloc Resource IDs "
7442 				"rc = x%x\n", rc);
7443 		goto out_free_mbox;
7444 	}
7445 
7446 	lpfc_set_host_data(phba, mboxq);
7447 
7448 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7449 	if (rc) {
7450 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7451 				"2134 Failed to set host os driver version %x",
7452 				rc);
7453 	}
7454 
7455 	/* Read the port's service parameters. */
7456 	rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
7457 	if (rc) {
7458 		phba->link_state = LPFC_HBA_ERROR;
7459 		rc = -ENOMEM;
7460 		goto out_free_mbox;
7461 	}
7462 
7463 	mboxq->vport = vport;
7464 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7465 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
7466 	if (rc == MBX_SUCCESS) {
7467 		memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
7468 		rc = 0;
7469 	}
7470 
7471 	/*
7472 	 * This memory was allocated by the lpfc_read_sparam routine. Release
7473 	 * it to the mbuf pool.
7474 	 */
7475 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
7476 	kfree(mp);
7477 	mboxq->ctx_buf = NULL;
7478 	if (unlikely(rc)) {
7479 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7480 				"0382 READ_SPARAM command failed "
7481 				"status %d, mbxStatus x%x\n",
7482 				rc, bf_get(lpfc_mqe_status, mqe));
7483 		phba->link_state = LPFC_HBA_ERROR;
7484 		rc = -EIO;
7485 		goto out_free_mbox;
7486 	}
7487 
7488 	lpfc_update_vport_wwn(vport);
7489 
7490 	/* Update the fc_host data structures with new wwn. */
7491 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
7492 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
7493 
7494 	/* Create all the SLI4 queues */
7495 	rc = lpfc_sli4_queue_create(phba);
7496 	if (rc) {
7497 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7498 				"3089 Failed to allocate queues\n");
7499 		rc = -ENODEV;
7500 		goto out_free_mbox;
7501 	}
7502 	/* Set up all the queues to the device */
7503 	rc = lpfc_sli4_queue_setup(phba);
7504 	if (unlikely(rc)) {
7505 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7506 				"0381 Error %d during queue setup.\n ", rc);
7507 		goto out_stop_timers;
7508 	}
7509 	/* Initialize the driver internal SLI layer lists. */
7510 	lpfc_sli4_setup(phba);
7511 	lpfc_sli4_queue_init(phba);
7512 
7513 	/* update host els xri-sgl sizes and mappings */
7514 	rc = lpfc_sli4_els_sgl_update(phba);
7515 	if (unlikely(rc)) {
7516 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7517 				"1400 Failed to update xri-sgl size and "
7518 				"mapping: %d\n", rc);
7519 		goto out_destroy_queue;
7520 	}
7521 
7522 	/* register the els sgl pool to the port */
7523 	rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
7524 				       phba->sli4_hba.els_xri_cnt);
7525 	if (unlikely(rc < 0)) {
7526 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7527 				"0582 Error %d during els sgl post "
7528 				"operation\n", rc);
7529 		rc = -ENODEV;
7530 		goto out_destroy_queue;
7531 	}
7532 	phba->sli4_hba.els_xri_cnt = rc;
7533 
7534 	if (phba->nvmet_support) {
7535 		/* update host nvmet xri-sgl sizes and mappings */
7536 		rc = lpfc_sli4_nvmet_sgl_update(phba);
7537 		if (unlikely(rc)) {
7538 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7539 					"6308 Failed to update nvmet-sgl size "
7540 					"and mapping: %d\n", rc);
7541 			goto out_destroy_queue;
7542 		}
7543 
7544 		/* register the nvmet sgl pool to the port */
7545 		rc = lpfc_sli4_repost_sgl_list(
7546 			phba,
7547 			&phba->sli4_hba.lpfc_nvmet_sgl_list,
7548 			phba->sli4_hba.nvmet_xri_cnt);
7549 		if (unlikely(rc < 0)) {
7550 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7551 					"3117 Error %d during nvmet "
7552 					"sgl post\n", rc);
7553 			rc = -ENODEV;
7554 			goto out_destroy_queue;
7555 		}
7556 		phba->sli4_hba.nvmet_xri_cnt = rc;
7557 
7558 		cnt = phba->cfg_iocb_cnt * 1024;
7559 		/* We need 1 iocbq for every SGL, for IO processing */
7560 		cnt += phba->sli4_hba.nvmet_xri_cnt;
7561 	} else {
7562 		/* update host common xri-sgl sizes and mappings */
7563 		rc = lpfc_sli4_io_sgl_update(phba);
7564 		if (unlikely(rc)) {
7565 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7566 					"6082 Failed to update nvme-sgl size "
7567 					"and mapping: %d\n", rc);
7568 			goto out_destroy_queue;
7569 		}
7570 
7571 		/* register the allocated common sgl pool to the port */
7572 		rc = lpfc_sli4_repost_io_sgl_list(phba);
7573 		if (unlikely(rc)) {
7574 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7575 					"6116 Error %d during nvme sgl post "
7576 					"operation\n", rc);
7577 			/* Some NVME buffers were moved to abort nvme list */
7578 			/* A pci function reset will repost them */
7579 			rc = -ENODEV;
7580 			goto out_destroy_queue;
7581 		}
7582 		cnt = phba->cfg_iocb_cnt * 1024;
7583 	}
7584 
7585 	if (!phba->sli.iocbq_lookup) {
7586 		/* Initialize and populate the iocb list per host */
7587 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7588 				"2821 initialize iocb list %d total %d\n",
7589 				phba->cfg_iocb_cnt, cnt);
7590 		rc = lpfc_init_iocb_list(phba, cnt);
7591 		if (rc) {
7592 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7593 					"1413 Failed to init iocb list.\n");
7594 			goto out_destroy_queue;
7595 		}
7596 	}
7597 
7598 	if (phba->nvmet_support)
7599 		lpfc_nvmet_create_targetport(phba);
7600 
7601 	if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
7602 		/* Post initial buffers to all RQs created */
7603 		for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
7604 			rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
7605 			INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
7606 			rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
7607 			rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
7608 			rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
7609 			rqbp->buffer_count = 0;
7610 
7611 			lpfc_post_rq_buffer(
7612 				phba, phba->sli4_hba.nvmet_mrq_hdr[i],
7613 				phba->sli4_hba.nvmet_mrq_data[i],
7614 				phba->cfg_nvmet_mrq_post, i);
7615 		}
7616 	}
7617 
7618 	/* Post the rpi header region to the device. */
7619 	rc = lpfc_sli4_post_all_rpi_hdrs(phba);
7620 	if (unlikely(rc)) {
7621 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7622 				"0393 Error %d during rpi post operation\n",
7623 				rc);
7624 		rc = -ENODEV;
7625 		goto out_destroy_queue;
7626 	}
7627 	lpfc_sli4_node_prep(phba);
7628 
7629 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
7630 		if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
7631 			/*
7632 			 * The FC Port needs to register FCFI (index 0)
7633 			 */
7634 			lpfc_reg_fcfi(phba, mboxq);
7635 			mboxq->vport = phba->pport;
7636 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7637 			if (rc != MBX_SUCCESS)
7638 				goto out_unset_queue;
7639 			rc = 0;
7640 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
7641 						&mboxq->u.mqe.un.reg_fcfi);
7642 		} else {
7643 			/* We are a NVME Target mode with MRQ > 1 */
7644 
7645 			/* First register the FCFI */
7646 			lpfc_reg_fcfi_mrq(phba, mboxq, 0);
7647 			mboxq->vport = phba->pport;
7648 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7649 			if (rc != MBX_SUCCESS)
7650 				goto out_unset_queue;
7651 			rc = 0;
7652 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
7653 						&mboxq->u.mqe.un.reg_fcfi_mrq);
7654 
7655 			/* Next register the MRQs */
7656 			lpfc_reg_fcfi_mrq(phba, mboxq, 1);
7657 			mboxq->vport = phba->pport;
7658 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7659 			if (rc != MBX_SUCCESS)
7660 				goto out_unset_queue;
7661 			rc = 0;
7662 		}
7663 		/* Check if the port is configured to be disabled */
7664 		lpfc_sli_read_link_ste(phba);
7665 	}
7666 
7667 	/* Don't post more new bufs if repost already recovered
7668 	 * the nvme sgls.
7669 	 */
7670 	if (phba->nvmet_support == 0) {
7671 		if (phba->sli4_hba.io_xri_cnt == 0) {
7672 			len = lpfc_new_io_buf(
7673 					      phba, phba->sli4_hba.io_xri_max);
7674 			if (len == 0) {
7675 				rc = -ENOMEM;
7676 				goto out_unset_queue;
7677 			}
7678 
7679 			if (phba->cfg_xri_rebalancing)
7680 				lpfc_create_multixri_pools(phba);
7681 		}
7682 	} else {
7683 		phba->cfg_xri_rebalancing = 0;
7684 	}
7685 
7686 	/* Allow asynchronous mailbox command to go through */
7687 	spin_lock_irq(&phba->hbalock);
7688 	phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7689 	spin_unlock_irq(&phba->hbalock);
7690 
7691 	/* Post receive buffers to the device */
7692 	lpfc_sli4_rb_setup(phba);
7693 
7694 	/* Reset HBA FCF states after HBA reset */
7695 	phba->fcf.fcf_flag = 0;
7696 	phba->fcf.current_rec.flag = 0;
7697 
7698 	/* Start the ELS watchdog timer */
7699 	mod_timer(&vport->els_tmofunc,
7700 		  jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
7701 
7702 	/* Start heart beat timer */
7703 	mod_timer(&phba->hb_tmofunc,
7704 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
7705 	phba->hb_outstanding = 0;
7706 	phba->last_completion_time = jiffies;
7707 
7708 	/* start eq_delay heartbeat */
7709 	if (phba->cfg_auto_imax)
7710 		queue_delayed_work(phba->wq, &phba->eq_delay_work,
7711 				   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
7712 
7713 	/* Start error attention (ERATT) polling timer */
7714 	mod_timer(&phba->eratt_poll,
7715 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
7716 
7717 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
7718 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
7719 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
7720 		if (!rc) {
7721 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7722 					"2829 This device supports "
7723 					"Advanced Error Reporting (AER)\n");
7724 			spin_lock_irq(&phba->hbalock);
7725 			phba->hba_flag |= HBA_AER_ENABLED;
7726 			spin_unlock_irq(&phba->hbalock);
7727 		} else {
7728 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7729 					"2830 This device does not support "
7730 					"Advanced Error Reporting (AER)\n");
7731 			phba->cfg_aer_support = 0;
7732 		}
7733 		rc = 0;
7734 	}
7735 
7736 	/*
7737 	 * The port is ready, set the host's link state to LINK_DOWN
7738 	 * in preparation for link interrupts.
7739 	 */
7740 	spin_lock_irq(&phba->hbalock);
7741 	phba->link_state = LPFC_LINK_DOWN;
7742 
7743 	/* Check if physical ports are trunked */
7744 	if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
7745 		phba->trunk_link.link0.state = LPFC_LINK_DOWN;
7746 	if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
7747 		phba->trunk_link.link1.state = LPFC_LINK_DOWN;
7748 	if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
7749 		phba->trunk_link.link2.state = LPFC_LINK_DOWN;
7750 	if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
7751 		phba->trunk_link.link3.state = LPFC_LINK_DOWN;
7752 	spin_unlock_irq(&phba->hbalock);
7753 
7754 	/* Arm the CQs and then EQs on device */
7755 	lpfc_sli4_arm_cqeq_intr(phba);
7756 
7757 	/* Indicate device interrupt mode */
7758 	phba->sli4_hba.intr_enable = 1;
7759 
7760 	if (!(phba->hba_flag & HBA_FCOE_MODE) &&
7761 	    (phba->hba_flag & LINK_DISABLED)) {
7762 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7763 				"3103 Adapter Link is disabled.\n");
7764 		lpfc_down_link(phba, mboxq);
7765 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7766 		if (rc != MBX_SUCCESS) {
7767 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7768 					"3104 Adapter failed to issue "
7769 					"DOWN_LINK mbox cmd, rc:x%x\n", rc);
7770 			goto out_io_buff_free;
7771 		}
7772 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
7773 		/* don't perform init_link on SLI4 FC port loopback test */
7774 		if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
7775 			rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
7776 			if (rc)
7777 				goto out_io_buff_free;
7778 		}
7779 	}
7780 	mempool_free(mboxq, phba->mbox_mem_pool);
7781 	return rc;
7782 out_io_buff_free:
7783 	/* Free allocated IO Buffers */
7784 	lpfc_io_free(phba);
7785 out_unset_queue:
7786 	/* Unset all the queues set up in this routine when error out */
7787 	lpfc_sli4_queue_unset(phba);
7788 out_destroy_queue:
7789 	lpfc_free_iocb_list(phba);
7790 	lpfc_sli4_queue_destroy(phba);
7791 out_stop_timers:
7792 	lpfc_stop_hba_timers(phba);
7793 out_free_mbox:
7794 	mempool_free(mboxq, phba->mbox_mem_pool);
7795 	return rc;
7796 }
7797 
7798 /**
7799  * lpfc_mbox_timeout - Timeout call back function for mbox timer
7800  * @ptr: context object - pointer to hba structure.
7801  *
7802  * This is the callback function for mailbox timer. The mailbox
7803  * timer is armed when a new mailbox command is issued and the timer
7804  * is deleted when the mailbox complete. The function is called by
7805  * the kernel timer code when a mailbox does not complete within
7806  * expected time. This function wakes up the worker thread to
7807  * process the mailbox timeout and returns. All the processing is
7808  * done by the worker thread function lpfc_mbox_timeout_handler.
7809  **/
7810 void
7811 lpfc_mbox_timeout(struct timer_list *t)
7812 {
7813 	struct lpfc_hba  *phba = from_timer(phba, t, sli.mbox_tmo);
7814 	unsigned long iflag;
7815 	uint32_t tmo_posted;
7816 
7817 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
7818 	tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
7819 	if (!tmo_posted)
7820 		phba->pport->work_port_events |= WORKER_MBOX_TMO;
7821 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
7822 
7823 	if (!tmo_posted)
7824 		lpfc_worker_wake_up(phba);
7825 	return;
7826 }
7827 
7828 /**
7829  * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
7830  *                                    are pending
7831  * @phba: Pointer to HBA context object.
7832  *
7833  * This function checks if any mailbox completions are present on the mailbox
7834  * completion queue.
7835  **/
7836 static bool
7837 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
7838 {
7839 
7840 	uint32_t idx;
7841 	struct lpfc_queue *mcq;
7842 	struct lpfc_mcqe *mcqe;
7843 	bool pending_completions = false;
7844 	uint8_t	qe_valid;
7845 
7846 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7847 		return false;
7848 
7849 	/* Check for completions on mailbox completion queue */
7850 
7851 	mcq = phba->sli4_hba.mbx_cq;
7852 	idx = mcq->hba_index;
7853 	qe_valid = mcq->qe_valid;
7854 	while (bf_get_le32(lpfc_cqe_valid,
7855 	       (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
7856 		mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
7857 		if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
7858 		    (!bf_get_le32(lpfc_trailer_async, mcqe))) {
7859 			pending_completions = true;
7860 			break;
7861 		}
7862 		idx = (idx + 1) % mcq->entry_count;
7863 		if (mcq->hba_index == idx)
7864 			break;
7865 
7866 		/* if the index wrapped around, toggle the valid bit */
7867 		if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
7868 			qe_valid = (qe_valid) ? 0 : 1;
7869 	}
7870 	return pending_completions;
7871 
7872 }
7873 
7874 /**
7875  * lpfc_sli4_process_missed_mbox_completions - process mbox completions
7876  *					      that were missed.
7877  * @phba: Pointer to HBA context object.
7878  *
7879  * For sli4, it is possible to miss an interrupt. As such mbox completions
7880  * maybe missed causing erroneous mailbox timeouts to occur. This function
7881  * checks to see if mbox completions are on the mailbox completion queue
7882  * and will process all the completions associated with the eq for the
7883  * mailbox completion queue.
7884  **/
7885 static bool
7886 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
7887 {
7888 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
7889 	uint32_t eqidx;
7890 	struct lpfc_queue *fpeq = NULL;
7891 	struct lpfc_queue *eq;
7892 	bool mbox_pending;
7893 
7894 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7895 		return false;
7896 
7897 	/* Find the EQ associated with the mbox CQ */
7898 	if (sli4_hba->hdwq) {
7899 		for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
7900 			eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
7901 			if (eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
7902 				fpeq = eq;
7903 				break;
7904 			}
7905 		}
7906 	}
7907 	if (!fpeq)
7908 		return false;
7909 
7910 	/* Turn off interrupts from this EQ */
7911 
7912 	sli4_hba->sli4_eq_clr_intr(fpeq);
7913 
7914 	/* Check to see if a mbox completion is pending */
7915 
7916 	mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
7917 
7918 	/*
7919 	 * If a mbox completion is pending, process all the events on EQ
7920 	 * associated with the mbox completion queue (this could include
7921 	 * mailbox commands, async events, els commands, receive queue data
7922 	 * and fcp commands)
7923 	 */
7924 
7925 	if (mbox_pending)
7926 		/* process and rearm the EQ */
7927 		lpfc_sli4_process_eq(phba, fpeq);
7928 	else
7929 		/* Always clear and re-arm the EQ */
7930 		sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
7931 
7932 	return mbox_pending;
7933 
7934 }
7935 
7936 /**
7937  * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
7938  * @phba: Pointer to HBA context object.
7939  *
7940  * This function is called from worker thread when a mailbox command times out.
7941  * The caller is not required to hold any locks. This function will reset the
7942  * HBA and recover all the pending commands.
7943  **/
7944 void
7945 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
7946 {
7947 	LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
7948 	MAILBOX_t *mb = NULL;
7949 
7950 	struct lpfc_sli *psli = &phba->sli;
7951 
7952 	/* If the mailbox completed, process the completion and return */
7953 	if (lpfc_sli4_process_missed_mbox_completions(phba))
7954 		return;
7955 
7956 	if (pmbox != NULL)
7957 		mb = &pmbox->u.mb;
7958 	/* Check the pmbox pointer first.  There is a race condition
7959 	 * between the mbox timeout handler getting executed in the
7960 	 * worklist and the mailbox actually completing. When this
7961 	 * race condition occurs, the mbox_active will be NULL.
7962 	 */
7963 	spin_lock_irq(&phba->hbalock);
7964 	if (pmbox == NULL) {
7965 		lpfc_printf_log(phba, KERN_WARNING,
7966 				LOG_MBOX | LOG_SLI,
7967 				"0353 Active Mailbox cleared - mailbox timeout "
7968 				"exiting\n");
7969 		spin_unlock_irq(&phba->hbalock);
7970 		return;
7971 	}
7972 
7973 	/* Mbox cmd <mbxCommand> timeout */
7974 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7975 			"0310 Mailbox command x%x timeout Data: x%x x%x x%p\n",
7976 			mb->mbxCommand,
7977 			phba->pport->port_state,
7978 			phba->sli.sli_flag,
7979 			phba->sli.mbox_active);
7980 	spin_unlock_irq(&phba->hbalock);
7981 
7982 	/* Setting state unknown so lpfc_sli_abort_iocb_ring
7983 	 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
7984 	 * it to fail all outstanding SCSI IO.
7985 	 */
7986 	spin_lock_irq(&phba->pport->work_port_lock);
7987 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
7988 	spin_unlock_irq(&phba->pport->work_port_lock);
7989 	spin_lock_irq(&phba->hbalock);
7990 	phba->link_state = LPFC_LINK_UNKNOWN;
7991 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
7992 	spin_unlock_irq(&phba->hbalock);
7993 
7994 	lpfc_sli_abort_fcp_rings(phba);
7995 
7996 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7997 			"0345 Resetting board due to mailbox timeout\n");
7998 
7999 	/* Reset the HBA device */
8000 	lpfc_reset_hba(phba);
8001 }
8002 
8003 /**
8004  * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
8005  * @phba: Pointer to HBA context object.
8006  * @pmbox: Pointer to mailbox object.
8007  * @flag: Flag indicating how the mailbox need to be processed.
8008  *
8009  * This function is called by discovery code and HBA management code
8010  * to submit a mailbox command to firmware with SLI-3 interface spec. This
8011  * function gets the hbalock to protect the data structures.
8012  * The mailbox command can be submitted in polling mode, in which case
8013  * this function will wait in a polling loop for the completion of the
8014  * mailbox.
8015  * If the mailbox is submitted in no_wait mode (not polling) the
8016  * function will submit the command and returns immediately without waiting
8017  * for the mailbox completion. The no_wait is supported only when HBA
8018  * is in SLI2/SLI3 mode - interrupts are enabled.
8019  * The SLI interface allows only one mailbox pending at a time. If the
8020  * mailbox is issued in polling mode and there is already a mailbox
8021  * pending, then the function will return an error. If the mailbox is issued
8022  * in NO_WAIT mode and there is a mailbox pending already, the function
8023  * will return MBX_BUSY after queuing the mailbox into mailbox queue.
8024  * The sli layer owns the mailbox object until the completion of mailbox
8025  * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
8026  * return codes the caller owns the mailbox command after the return of
8027  * the function.
8028  **/
8029 static int
8030 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
8031 		       uint32_t flag)
8032 {
8033 	MAILBOX_t *mbx;
8034 	struct lpfc_sli *psli = &phba->sli;
8035 	uint32_t status, evtctr;
8036 	uint32_t ha_copy, hc_copy;
8037 	int i;
8038 	unsigned long timeout;
8039 	unsigned long drvr_flag = 0;
8040 	uint32_t word0, ldata;
8041 	void __iomem *to_slim;
8042 	int processing_queue = 0;
8043 
8044 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
8045 	if (!pmbox) {
8046 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8047 		/* processing mbox queue from intr_handler */
8048 		if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8049 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8050 			return MBX_SUCCESS;
8051 		}
8052 		processing_queue = 1;
8053 		pmbox = lpfc_mbox_get(phba);
8054 		if (!pmbox) {
8055 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8056 			return MBX_SUCCESS;
8057 		}
8058 	}
8059 
8060 	if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
8061 		pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
8062 		if(!pmbox->vport) {
8063 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8064 			lpfc_printf_log(phba, KERN_ERR,
8065 					LOG_MBOX | LOG_VPORT,
8066 					"1806 Mbox x%x failed. No vport\n",
8067 					pmbox->u.mb.mbxCommand);
8068 			dump_stack();
8069 			goto out_not_finished;
8070 		}
8071 	}
8072 
8073 	/* If the PCI channel is in offline state, do not post mbox. */
8074 	if (unlikely(pci_channel_offline(phba->pcidev))) {
8075 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8076 		goto out_not_finished;
8077 	}
8078 
8079 	/* If HBA has a deferred error attention, fail the iocb. */
8080 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
8081 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8082 		goto out_not_finished;
8083 	}
8084 
8085 	psli = &phba->sli;
8086 
8087 	mbx = &pmbox->u.mb;
8088 	status = MBX_SUCCESS;
8089 
8090 	if (phba->link_state == LPFC_HBA_ERROR) {
8091 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8092 
8093 		/* Mbox command <mbxCommand> cannot issue */
8094 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8095 				"(%d):0311 Mailbox command x%x cannot "
8096 				"issue Data: x%x x%x\n",
8097 				pmbox->vport ? pmbox->vport->vpi : 0,
8098 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8099 		goto out_not_finished;
8100 	}
8101 
8102 	if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
8103 		if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
8104 			!(hc_copy & HC_MBINT_ENA)) {
8105 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8106 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8107 				"(%d):2528 Mailbox command x%x cannot "
8108 				"issue Data: x%x x%x\n",
8109 				pmbox->vport ? pmbox->vport->vpi : 0,
8110 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8111 			goto out_not_finished;
8112 		}
8113 	}
8114 
8115 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8116 		/* Polling for a mbox command when another one is already active
8117 		 * is not allowed in SLI. Also, the driver must have established
8118 		 * SLI2 mode to queue and process multiple mbox commands.
8119 		 */
8120 
8121 		if (flag & MBX_POLL) {
8122 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8123 
8124 			/* Mbox command <mbxCommand> cannot issue */
8125 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8126 					"(%d):2529 Mailbox command x%x "
8127 					"cannot issue Data: x%x x%x\n",
8128 					pmbox->vport ? pmbox->vport->vpi : 0,
8129 					pmbox->u.mb.mbxCommand,
8130 					psli->sli_flag, flag);
8131 			goto out_not_finished;
8132 		}
8133 
8134 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
8135 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8136 			/* Mbox command <mbxCommand> cannot issue */
8137 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8138 					"(%d):2530 Mailbox command x%x "
8139 					"cannot issue Data: x%x x%x\n",
8140 					pmbox->vport ? pmbox->vport->vpi : 0,
8141 					pmbox->u.mb.mbxCommand,
8142 					psli->sli_flag, flag);
8143 			goto out_not_finished;
8144 		}
8145 
8146 		/* Another mailbox command is still being processed, queue this
8147 		 * command to be processed later.
8148 		 */
8149 		lpfc_mbox_put(phba, pmbox);
8150 
8151 		/* Mbox cmd issue - BUSY */
8152 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8153 				"(%d):0308 Mbox cmd issue - BUSY Data: "
8154 				"x%x x%x x%x x%x\n",
8155 				pmbox->vport ? pmbox->vport->vpi : 0xffffff,
8156 				mbx->mbxCommand,
8157 				phba->pport ? phba->pport->port_state : 0xff,
8158 				psli->sli_flag, flag);
8159 
8160 		psli->slistat.mbox_busy++;
8161 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8162 
8163 		if (pmbox->vport) {
8164 			lpfc_debugfs_disc_trc(pmbox->vport,
8165 				LPFC_DISC_TRC_MBOX_VPORT,
8166 				"MBOX Bsy vport:  cmd:x%x mb:x%x x%x",
8167 				(uint32_t)mbx->mbxCommand,
8168 				mbx->un.varWords[0], mbx->un.varWords[1]);
8169 		}
8170 		else {
8171 			lpfc_debugfs_disc_trc(phba->pport,
8172 				LPFC_DISC_TRC_MBOX,
8173 				"MBOX Bsy:        cmd:x%x mb:x%x x%x",
8174 				(uint32_t)mbx->mbxCommand,
8175 				mbx->un.varWords[0], mbx->un.varWords[1]);
8176 		}
8177 
8178 		return MBX_BUSY;
8179 	}
8180 
8181 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8182 
8183 	/* If we are not polling, we MUST be in SLI2 mode */
8184 	if (flag != MBX_POLL) {
8185 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
8186 		    (mbx->mbxCommand != MBX_KILL_BOARD)) {
8187 			psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8188 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8189 			/* Mbox command <mbxCommand> cannot issue */
8190 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8191 					"(%d):2531 Mailbox command x%x "
8192 					"cannot issue Data: x%x x%x\n",
8193 					pmbox->vport ? pmbox->vport->vpi : 0,
8194 					pmbox->u.mb.mbxCommand,
8195 					psli->sli_flag, flag);
8196 			goto out_not_finished;
8197 		}
8198 		/* timeout active mbox command */
8199 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8200 					   1000);
8201 		mod_timer(&psli->mbox_tmo, jiffies + timeout);
8202 	}
8203 
8204 	/* Mailbox cmd <cmd> issue */
8205 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8206 			"(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
8207 			"x%x\n",
8208 			pmbox->vport ? pmbox->vport->vpi : 0,
8209 			mbx->mbxCommand,
8210 			phba->pport ? phba->pport->port_state : 0xff,
8211 			psli->sli_flag, flag);
8212 
8213 	if (mbx->mbxCommand != MBX_HEARTBEAT) {
8214 		if (pmbox->vport) {
8215 			lpfc_debugfs_disc_trc(pmbox->vport,
8216 				LPFC_DISC_TRC_MBOX_VPORT,
8217 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8218 				(uint32_t)mbx->mbxCommand,
8219 				mbx->un.varWords[0], mbx->un.varWords[1]);
8220 		}
8221 		else {
8222 			lpfc_debugfs_disc_trc(phba->pport,
8223 				LPFC_DISC_TRC_MBOX,
8224 				"MBOX Send:       cmd:x%x mb:x%x x%x",
8225 				(uint32_t)mbx->mbxCommand,
8226 				mbx->un.varWords[0], mbx->un.varWords[1]);
8227 		}
8228 	}
8229 
8230 	psli->slistat.mbox_cmd++;
8231 	evtctr = psli->slistat.mbox_event;
8232 
8233 	/* next set own bit for the adapter and copy over command word */
8234 	mbx->mbxOwner = OWN_CHIP;
8235 
8236 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8237 		/* Populate mbox extension offset word. */
8238 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
8239 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8240 				= (uint8_t *)phba->mbox_ext
8241 				  - (uint8_t *)phba->mbox;
8242 		}
8243 
8244 		/* Copy the mailbox extension data */
8245 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
8246 			lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
8247 					      (uint8_t *)phba->mbox_ext,
8248 					      pmbox->in_ext_byte_len);
8249 		}
8250 		/* Copy command data to host SLIM area */
8251 		lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
8252 	} else {
8253 		/* Populate mbox extension offset word. */
8254 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
8255 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8256 				= MAILBOX_HBA_EXT_OFFSET;
8257 
8258 		/* Copy the mailbox extension data */
8259 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
8260 			lpfc_memcpy_to_slim(phba->MBslimaddr +
8261 				MAILBOX_HBA_EXT_OFFSET,
8262 				pmbox->ctx_buf, pmbox->in_ext_byte_len);
8263 
8264 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8265 			/* copy command data into host mbox for cmpl */
8266 			lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
8267 					      MAILBOX_CMD_SIZE);
8268 
8269 		/* First copy mbox command data to HBA SLIM, skip past first
8270 		   word */
8271 		to_slim = phba->MBslimaddr + sizeof (uint32_t);
8272 		lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
8273 			    MAILBOX_CMD_SIZE - sizeof (uint32_t));
8274 
8275 		/* Next copy over first word, with mbxOwner set */
8276 		ldata = *((uint32_t *)mbx);
8277 		to_slim = phba->MBslimaddr;
8278 		writel(ldata, to_slim);
8279 		readl(to_slim); /* flush */
8280 
8281 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8282 			/* switch over to host mailbox */
8283 			psli->sli_flag |= LPFC_SLI_ACTIVE;
8284 	}
8285 
8286 	wmb();
8287 
8288 	switch (flag) {
8289 	case MBX_NOWAIT:
8290 		/* Set up reference to mailbox command */
8291 		psli->mbox_active = pmbox;
8292 		/* Interrupt board to do it */
8293 		writel(CA_MBATT, phba->CAregaddr);
8294 		readl(phba->CAregaddr); /* flush */
8295 		/* Don't wait for it to finish, just return */
8296 		break;
8297 
8298 	case MBX_POLL:
8299 		/* Set up null reference to mailbox command */
8300 		psli->mbox_active = NULL;
8301 		/* Interrupt board to do it */
8302 		writel(CA_MBATT, phba->CAregaddr);
8303 		readl(phba->CAregaddr); /* flush */
8304 
8305 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8306 			/* First read mbox status word */
8307 			word0 = *((uint32_t *)phba->mbox);
8308 			word0 = le32_to_cpu(word0);
8309 		} else {
8310 			/* First read mbox status word */
8311 			if (lpfc_readl(phba->MBslimaddr, &word0)) {
8312 				spin_unlock_irqrestore(&phba->hbalock,
8313 						       drvr_flag);
8314 				goto out_not_finished;
8315 			}
8316 		}
8317 
8318 		/* Read the HBA Host Attention Register */
8319 		if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8320 			spin_unlock_irqrestore(&phba->hbalock,
8321 						       drvr_flag);
8322 			goto out_not_finished;
8323 		}
8324 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8325 							1000) + jiffies;
8326 		i = 0;
8327 		/* Wait for command to complete */
8328 		while (((word0 & OWN_CHIP) == OWN_CHIP) ||
8329 		       (!(ha_copy & HA_MBATT) &&
8330 			(phba->link_state > LPFC_WARM_START))) {
8331 			if (time_after(jiffies, timeout)) {
8332 				psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8333 				spin_unlock_irqrestore(&phba->hbalock,
8334 						       drvr_flag);
8335 				goto out_not_finished;
8336 			}
8337 
8338 			/* Check if we took a mbox interrupt while we were
8339 			   polling */
8340 			if (((word0 & OWN_CHIP) != OWN_CHIP)
8341 			    && (evtctr != psli->slistat.mbox_event))
8342 				break;
8343 
8344 			if (i++ > 10) {
8345 				spin_unlock_irqrestore(&phba->hbalock,
8346 						       drvr_flag);
8347 				msleep(1);
8348 				spin_lock_irqsave(&phba->hbalock, drvr_flag);
8349 			}
8350 
8351 			if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8352 				/* First copy command data */
8353 				word0 = *((uint32_t *)phba->mbox);
8354 				word0 = le32_to_cpu(word0);
8355 				if (mbx->mbxCommand == MBX_CONFIG_PORT) {
8356 					MAILBOX_t *slimmb;
8357 					uint32_t slimword0;
8358 					/* Check real SLIM for any errors */
8359 					slimword0 = readl(phba->MBslimaddr);
8360 					slimmb = (MAILBOX_t *) & slimword0;
8361 					if (((slimword0 & OWN_CHIP) != OWN_CHIP)
8362 					    && slimmb->mbxStatus) {
8363 						psli->sli_flag &=
8364 						    ~LPFC_SLI_ACTIVE;
8365 						word0 = slimword0;
8366 					}
8367 				}
8368 			} else {
8369 				/* First copy command data */
8370 				word0 = readl(phba->MBslimaddr);
8371 			}
8372 			/* Read the HBA Host Attention Register */
8373 			if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8374 				spin_unlock_irqrestore(&phba->hbalock,
8375 						       drvr_flag);
8376 				goto out_not_finished;
8377 			}
8378 		}
8379 
8380 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8381 			/* copy results back to user */
8382 			lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
8383 						MAILBOX_CMD_SIZE);
8384 			/* Copy the mailbox extension data */
8385 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8386 				lpfc_sli_pcimem_bcopy(phba->mbox_ext,
8387 						      pmbox->ctx_buf,
8388 						      pmbox->out_ext_byte_len);
8389 			}
8390 		} else {
8391 			/* First copy command data */
8392 			lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
8393 						MAILBOX_CMD_SIZE);
8394 			/* Copy the mailbox extension data */
8395 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8396 				lpfc_memcpy_from_slim(
8397 					pmbox->ctx_buf,
8398 					phba->MBslimaddr +
8399 					MAILBOX_HBA_EXT_OFFSET,
8400 					pmbox->out_ext_byte_len);
8401 			}
8402 		}
8403 
8404 		writel(HA_MBATT, phba->HAregaddr);
8405 		readl(phba->HAregaddr); /* flush */
8406 
8407 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8408 		status = mbx->mbxStatus;
8409 	}
8410 
8411 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8412 	return status;
8413 
8414 out_not_finished:
8415 	if (processing_queue) {
8416 		pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
8417 		lpfc_mbox_cmpl_put(phba, pmbox);
8418 	}
8419 	return MBX_NOT_FINISHED;
8420 }
8421 
8422 /**
8423  * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
8424  * @phba: Pointer to HBA context object.
8425  *
8426  * The function blocks the posting of SLI4 asynchronous mailbox commands from
8427  * the driver internal pending mailbox queue. It will then try to wait out the
8428  * possible outstanding mailbox command before return.
8429  *
8430  * Returns:
8431  * 	0 - the outstanding mailbox command completed; otherwise, the wait for
8432  * 	the outstanding mailbox command timed out.
8433  **/
8434 static int
8435 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
8436 {
8437 	struct lpfc_sli *psli = &phba->sli;
8438 	int rc = 0;
8439 	unsigned long timeout = 0;
8440 
8441 	/* Mark the asynchronous mailbox command posting as blocked */
8442 	spin_lock_irq(&phba->hbalock);
8443 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
8444 	/* Determine how long we might wait for the active mailbox
8445 	 * command to be gracefully completed by firmware.
8446 	 */
8447 	if (phba->sli.mbox_active)
8448 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
8449 						phba->sli.mbox_active) *
8450 						1000) + jiffies;
8451 	spin_unlock_irq(&phba->hbalock);
8452 
8453 	/* Make sure the mailbox is really active */
8454 	if (timeout)
8455 		lpfc_sli4_process_missed_mbox_completions(phba);
8456 
8457 	/* Wait for the outstnading mailbox command to complete */
8458 	while (phba->sli.mbox_active) {
8459 		/* Check active mailbox complete status every 2ms */
8460 		msleep(2);
8461 		if (time_after(jiffies, timeout)) {
8462 			/* Timeout, marked the outstanding cmd not complete */
8463 			rc = 1;
8464 			break;
8465 		}
8466 	}
8467 
8468 	/* Can not cleanly block async mailbox command, fails it */
8469 	if (rc) {
8470 		spin_lock_irq(&phba->hbalock);
8471 		psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8472 		spin_unlock_irq(&phba->hbalock);
8473 	}
8474 	return rc;
8475 }
8476 
8477 /**
8478  * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
8479  * @phba: Pointer to HBA context object.
8480  *
8481  * The function unblocks and resume posting of SLI4 asynchronous mailbox
8482  * commands from the driver internal pending mailbox queue. It makes sure
8483  * that there is no outstanding mailbox command before resuming posting
8484  * asynchronous mailbox commands. If, for any reason, there is outstanding
8485  * mailbox command, it will try to wait it out before resuming asynchronous
8486  * mailbox command posting.
8487  **/
8488 static void
8489 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
8490 {
8491 	struct lpfc_sli *psli = &phba->sli;
8492 
8493 	spin_lock_irq(&phba->hbalock);
8494 	if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8495 		/* Asynchronous mailbox posting is not blocked, do nothing */
8496 		spin_unlock_irq(&phba->hbalock);
8497 		return;
8498 	}
8499 
8500 	/* Outstanding synchronous mailbox command is guaranteed to be done,
8501 	 * successful or timeout, after timing-out the outstanding mailbox
8502 	 * command shall always be removed, so just unblock posting async
8503 	 * mailbox command and resume
8504 	 */
8505 	psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8506 	spin_unlock_irq(&phba->hbalock);
8507 
8508 	/* wake up worker thread to post asynchronlous mailbox command */
8509 	lpfc_worker_wake_up(phba);
8510 }
8511 
8512 /**
8513  * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
8514  * @phba: Pointer to HBA context object.
8515  * @mboxq: Pointer to mailbox object.
8516  *
8517  * The function waits for the bootstrap mailbox register ready bit from
8518  * port for twice the regular mailbox command timeout value.
8519  *
8520  *      0 - no timeout on waiting for bootstrap mailbox register ready.
8521  *      MBXERR_ERROR - wait for bootstrap mailbox register timed out.
8522  **/
8523 static int
8524 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8525 {
8526 	uint32_t db_ready;
8527 	unsigned long timeout;
8528 	struct lpfc_register bmbx_reg;
8529 
8530 	timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
8531 				   * 1000) + jiffies;
8532 
8533 	do {
8534 		bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
8535 		db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
8536 		if (!db_ready)
8537 			mdelay(2);
8538 
8539 		if (time_after(jiffies, timeout))
8540 			return MBXERR_ERROR;
8541 	} while (!db_ready);
8542 
8543 	return 0;
8544 }
8545 
8546 /**
8547  * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
8548  * @phba: Pointer to HBA context object.
8549  * @mboxq: Pointer to mailbox object.
8550  *
8551  * The function posts a mailbox to the port.  The mailbox is expected
8552  * to be comletely filled in and ready for the port to operate on it.
8553  * This routine executes a synchronous completion operation on the
8554  * mailbox by polling for its completion.
8555  *
8556  * The caller must not be holding any locks when calling this routine.
8557  *
8558  * Returns:
8559  *	MBX_SUCCESS - mailbox posted successfully
8560  *	Any of the MBX error values.
8561  **/
8562 static int
8563 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8564 {
8565 	int rc = MBX_SUCCESS;
8566 	unsigned long iflag;
8567 	uint32_t mcqe_status;
8568 	uint32_t mbx_cmnd;
8569 	struct lpfc_sli *psli = &phba->sli;
8570 	struct lpfc_mqe *mb = &mboxq->u.mqe;
8571 	struct lpfc_bmbx_create *mbox_rgn;
8572 	struct dma_address *dma_address;
8573 
8574 	/*
8575 	 * Only one mailbox can be active to the bootstrap mailbox region
8576 	 * at a time and there is no queueing provided.
8577 	 */
8578 	spin_lock_irqsave(&phba->hbalock, iflag);
8579 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8580 		spin_unlock_irqrestore(&phba->hbalock, iflag);
8581 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8582 				"(%d):2532 Mailbox command x%x (x%x/x%x) "
8583 				"cannot issue Data: x%x x%x\n",
8584 				mboxq->vport ? mboxq->vport->vpi : 0,
8585 				mboxq->u.mb.mbxCommand,
8586 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8587 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8588 				psli->sli_flag, MBX_POLL);
8589 		return MBXERR_ERROR;
8590 	}
8591 	/* The server grabs the token and owns it until release */
8592 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8593 	phba->sli.mbox_active = mboxq;
8594 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8595 
8596 	/* wait for bootstrap mbox register for readyness */
8597 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8598 	if (rc)
8599 		goto exit;
8600 	/*
8601 	 * Initialize the bootstrap memory region to avoid stale data areas
8602 	 * in the mailbox post.  Then copy the caller's mailbox contents to
8603 	 * the bmbx mailbox region.
8604 	 */
8605 	mbx_cmnd = bf_get(lpfc_mqe_command, mb);
8606 	memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
8607 	lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
8608 			       sizeof(struct lpfc_mqe));
8609 
8610 	/* Post the high mailbox dma address to the port and wait for ready. */
8611 	dma_address = &phba->sli4_hba.bmbx.dma_address;
8612 	writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
8613 
8614 	/* wait for bootstrap mbox register for hi-address write done */
8615 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8616 	if (rc)
8617 		goto exit;
8618 
8619 	/* Post the low mailbox dma address to the port. */
8620 	writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
8621 
8622 	/* wait for bootstrap mbox register for low address write done */
8623 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8624 	if (rc)
8625 		goto exit;
8626 
8627 	/*
8628 	 * Read the CQ to ensure the mailbox has completed.
8629 	 * If so, update the mailbox status so that the upper layers
8630 	 * can complete the request normally.
8631 	 */
8632 	lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
8633 			       sizeof(struct lpfc_mqe));
8634 	mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
8635 	lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
8636 			       sizeof(struct lpfc_mcqe));
8637 	mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
8638 	/*
8639 	 * When the CQE status indicates a failure and the mailbox status
8640 	 * indicates success then copy the CQE status into the mailbox status
8641 	 * (and prefix it with x4000).
8642 	 */
8643 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
8644 		if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
8645 			bf_set(lpfc_mqe_status, mb,
8646 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
8647 		rc = MBXERR_ERROR;
8648 	} else
8649 		lpfc_sli4_swap_str(phba, mboxq);
8650 
8651 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8652 			"(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
8653 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
8654 			" x%x x%x CQ: x%x x%x x%x x%x\n",
8655 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8656 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8657 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8658 			bf_get(lpfc_mqe_status, mb),
8659 			mb->un.mb_words[0], mb->un.mb_words[1],
8660 			mb->un.mb_words[2], mb->un.mb_words[3],
8661 			mb->un.mb_words[4], mb->un.mb_words[5],
8662 			mb->un.mb_words[6], mb->un.mb_words[7],
8663 			mb->un.mb_words[8], mb->un.mb_words[9],
8664 			mb->un.mb_words[10], mb->un.mb_words[11],
8665 			mb->un.mb_words[12], mboxq->mcqe.word0,
8666 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
8667 			mboxq->mcqe.trailer);
8668 exit:
8669 	/* We are holding the token, no needed for lock when release */
8670 	spin_lock_irqsave(&phba->hbalock, iflag);
8671 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8672 	phba->sli.mbox_active = NULL;
8673 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8674 	return rc;
8675 }
8676 
8677 /**
8678  * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
8679  * @phba: Pointer to HBA context object.
8680  * @pmbox: Pointer to mailbox object.
8681  * @flag: Flag indicating how the mailbox need to be processed.
8682  *
8683  * This function is called by discovery code and HBA management code to submit
8684  * a mailbox command to firmware with SLI-4 interface spec.
8685  *
8686  * Return codes the caller owns the mailbox command after the return of the
8687  * function.
8688  **/
8689 static int
8690 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
8691 		       uint32_t flag)
8692 {
8693 	struct lpfc_sli *psli = &phba->sli;
8694 	unsigned long iflags;
8695 	int rc;
8696 
8697 	/* dump from issue mailbox command if setup */
8698 	lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
8699 
8700 	rc = lpfc_mbox_dev_check(phba);
8701 	if (unlikely(rc)) {
8702 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8703 				"(%d):2544 Mailbox command x%x (x%x/x%x) "
8704 				"cannot issue Data: x%x x%x\n",
8705 				mboxq->vport ? mboxq->vport->vpi : 0,
8706 				mboxq->u.mb.mbxCommand,
8707 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8708 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8709 				psli->sli_flag, flag);
8710 		goto out_not_finished;
8711 	}
8712 
8713 	/* Detect polling mode and jump to a handler */
8714 	if (!phba->sli4_hba.intr_enable) {
8715 		if (flag == MBX_POLL)
8716 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8717 		else
8718 			rc = -EIO;
8719 		if (rc != MBX_SUCCESS)
8720 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8721 					"(%d):2541 Mailbox command x%x "
8722 					"(x%x/x%x) failure: "
8723 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8724 					"Data: x%x x%x\n,",
8725 					mboxq->vport ? mboxq->vport->vpi : 0,
8726 					mboxq->u.mb.mbxCommand,
8727 					lpfc_sli_config_mbox_subsys_get(phba,
8728 									mboxq),
8729 					lpfc_sli_config_mbox_opcode_get(phba,
8730 									mboxq),
8731 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8732 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8733 					bf_get(lpfc_mcqe_ext_status,
8734 					       &mboxq->mcqe),
8735 					psli->sli_flag, flag);
8736 		return rc;
8737 	} else if (flag == MBX_POLL) {
8738 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8739 				"(%d):2542 Try to issue mailbox command "
8740 				"x%x (x%x/x%x) synchronously ahead of async "
8741 				"mailbox command queue: x%x x%x\n",
8742 				mboxq->vport ? mboxq->vport->vpi : 0,
8743 				mboxq->u.mb.mbxCommand,
8744 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8745 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8746 				psli->sli_flag, flag);
8747 		/* Try to block the asynchronous mailbox posting */
8748 		rc = lpfc_sli4_async_mbox_block(phba);
8749 		if (!rc) {
8750 			/* Successfully blocked, now issue sync mbox cmd */
8751 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8752 			if (rc != MBX_SUCCESS)
8753 				lpfc_printf_log(phba, KERN_WARNING,
8754 					LOG_MBOX | LOG_SLI,
8755 					"(%d):2597 Sync Mailbox command "
8756 					"x%x (x%x/x%x) failure: "
8757 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8758 					"Data: x%x x%x\n,",
8759 					mboxq->vport ? mboxq->vport->vpi : 0,
8760 					mboxq->u.mb.mbxCommand,
8761 					lpfc_sli_config_mbox_subsys_get(phba,
8762 									mboxq),
8763 					lpfc_sli_config_mbox_opcode_get(phba,
8764 									mboxq),
8765 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8766 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8767 					bf_get(lpfc_mcqe_ext_status,
8768 					       &mboxq->mcqe),
8769 					psli->sli_flag, flag);
8770 			/* Unblock the async mailbox posting afterward */
8771 			lpfc_sli4_async_mbox_unblock(phba);
8772 		}
8773 		return rc;
8774 	}
8775 
8776 	/* Now, interrupt mode asynchrous mailbox command */
8777 	rc = lpfc_mbox_cmd_check(phba, mboxq);
8778 	if (rc) {
8779 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8780 				"(%d):2543 Mailbox command x%x (x%x/x%x) "
8781 				"cannot issue Data: x%x x%x\n",
8782 				mboxq->vport ? mboxq->vport->vpi : 0,
8783 				mboxq->u.mb.mbxCommand,
8784 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8785 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8786 				psli->sli_flag, flag);
8787 		goto out_not_finished;
8788 	}
8789 
8790 	/* Put the mailbox command to the driver internal FIFO */
8791 	psli->slistat.mbox_busy++;
8792 	spin_lock_irqsave(&phba->hbalock, iflags);
8793 	lpfc_mbox_put(phba, mboxq);
8794 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8795 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8796 			"(%d):0354 Mbox cmd issue - Enqueue Data: "
8797 			"x%x (x%x/x%x) x%x x%x x%x\n",
8798 			mboxq->vport ? mboxq->vport->vpi : 0xffffff,
8799 			bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8800 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8801 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8802 			phba->pport->port_state,
8803 			psli->sli_flag, MBX_NOWAIT);
8804 	/* Wake up worker thread to transport mailbox command from head */
8805 	lpfc_worker_wake_up(phba);
8806 
8807 	return MBX_BUSY;
8808 
8809 out_not_finished:
8810 	return MBX_NOT_FINISHED;
8811 }
8812 
8813 /**
8814  * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
8815  * @phba: Pointer to HBA context object.
8816  *
8817  * This function is called by worker thread to send a mailbox command to
8818  * SLI4 HBA firmware.
8819  *
8820  **/
8821 int
8822 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
8823 {
8824 	struct lpfc_sli *psli = &phba->sli;
8825 	LPFC_MBOXQ_t *mboxq;
8826 	int rc = MBX_SUCCESS;
8827 	unsigned long iflags;
8828 	struct lpfc_mqe *mqe;
8829 	uint32_t mbx_cmnd;
8830 
8831 	/* Check interrupt mode before post async mailbox command */
8832 	if (unlikely(!phba->sli4_hba.intr_enable))
8833 		return MBX_NOT_FINISHED;
8834 
8835 	/* Check for mailbox command service token */
8836 	spin_lock_irqsave(&phba->hbalock, iflags);
8837 	if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8838 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8839 		return MBX_NOT_FINISHED;
8840 	}
8841 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8842 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8843 		return MBX_NOT_FINISHED;
8844 	}
8845 	if (unlikely(phba->sli.mbox_active)) {
8846 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8847 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8848 				"0384 There is pending active mailbox cmd\n");
8849 		return MBX_NOT_FINISHED;
8850 	}
8851 	/* Take the mailbox command service token */
8852 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8853 
8854 	/* Get the next mailbox command from head of queue */
8855 	mboxq = lpfc_mbox_get(phba);
8856 
8857 	/* If no more mailbox command waiting for post, we're done */
8858 	if (!mboxq) {
8859 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8860 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8861 		return MBX_SUCCESS;
8862 	}
8863 	phba->sli.mbox_active = mboxq;
8864 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8865 
8866 	/* Check device readiness for posting mailbox command */
8867 	rc = lpfc_mbox_dev_check(phba);
8868 	if (unlikely(rc))
8869 		/* Driver clean routine will clean up pending mailbox */
8870 		goto out_not_finished;
8871 
8872 	/* Prepare the mbox command to be posted */
8873 	mqe = &mboxq->u.mqe;
8874 	mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
8875 
8876 	/* Start timer for the mbox_tmo and log some mailbox post messages */
8877 	mod_timer(&psli->mbox_tmo, (jiffies +
8878 		  msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
8879 
8880 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8881 			"(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
8882 			"x%x x%x\n",
8883 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8884 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8885 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8886 			phba->pport->port_state, psli->sli_flag);
8887 
8888 	if (mbx_cmnd != MBX_HEARTBEAT) {
8889 		if (mboxq->vport) {
8890 			lpfc_debugfs_disc_trc(mboxq->vport,
8891 				LPFC_DISC_TRC_MBOX_VPORT,
8892 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8893 				mbx_cmnd, mqe->un.mb_words[0],
8894 				mqe->un.mb_words[1]);
8895 		} else {
8896 			lpfc_debugfs_disc_trc(phba->pport,
8897 				LPFC_DISC_TRC_MBOX,
8898 				"MBOX Send: cmd:x%x mb:x%x x%x",
8899 				mbx_cmnd, mqe->un.mb_words[0],
8900 				mqe->un.mb_words[1]);
8901 		}
8902 	}
8903 	psli->slistat.mbox_cmd++;
8904 
8905 	/* Post the mailbox command to the port */
8906 	rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
8907 	if (rc != MBX_SUCCESS) {
8908 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8909 				"(%d):2533 Mailbox command x%x (x%x/x%x) "
8910 				"cannot issue Data: x%x x%x\n",
8911 				mboxq->vport ? mboxq->vport->vpi : 0,
8912 				mboxq->u.mb.mbxCommand,
8913 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8914 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8915 				psli->sli_flag, MBX_NOWAIT);
8916 		goto out_not_finished;
8917 	}
8918 
8919 	return rc;
8920 
8921 out_not_finished:
8922 	spin_lock_irqsave(&phba->hbalock, iflags);
8923 	if (phba->sli.mbox_active) {
8924 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
8925 		__lpfc_mbox_cmpl_put(phba, mboxq);
8926 		/* Release the token */
8927 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8928 		phba->sli.mbox_active = NULL;
8929 	}
8930 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8931 
8932 	return MBX_NOT_FINISHED;
8933 }
8934 
8935 /**
8936  * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
8937  * @phba: Pointer to HBA context object.
8938  * @pmbox: Pointer to mailbox object.
8939  * @flag: Flag indicating how the mailbox need to be processed.
8940  *
8941  * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
8942  * the API jump table function pointer from the lpfc_hba struct.
8943  *
8944  * Return codes the caller owns the mailbox command after the return of the
8945  * function.
8946  **/
8947 int
8948 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
8949 {
8950 	return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
8951 }
8952 
8953 /**
8954  * lpfc_mbox_api_table_setup - Set up mbox api function jump table
8955  * @phba: The hba struct for which this call is being executed.
8956  * @dev_grp: The HBA PCI-Device group number.
8957  *
8958  * This routine sets up the mbox interface API function jump table in @phba
8959  * struct.
8960  * Returns: 0 - success, -ENODEV - failure.
8961  **/
8962 int
8963 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8964 {
8965 
8966 	switch (dev_grp) {
8967 	case LPFC_PCI_DEV_LP:
8968 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
8969 		phba->lpfc_sli_handle_slow_ring_event =
8970 				lpfc_sli_handle_slow_ring_event_s3;
8971 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
8972 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
8973 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
8974 		break;
8975 	case LPFC_PCI_DEV_OC:
8976 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
8977 		phba->lpfc_sli_handle_slow_ring_event =
8978 				lpfc_sli_handle_slow_ring_event_s4;
8979 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
8980 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
8981 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
8982 		break;
8983 	default:
8984 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8985 				"1420 Invalid HBA PCI-device group: 0x%x\n",
8986 				dev_grp);
8987 		return -ENODEV;
8988 		break;
8989 	}
8990 	return 0;
8991 }
8992 
8993 /**
8994  * __lpfc_sli_ringtx_put - Add an iocb to the txq
8995  * @phba: Pointer to HBA context object.
8996  * @pring: Pointer to driver SLI ring object.
8997  * @piocb: Pointer to address of newly added command iocb.
8998  *
8999  * This function is called with hbalock held to add a command
9000  * iocb to the txq when SLI layer cannot submit the command iocb
9001  * to the ring.
9002  **/
9003 void
9004 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9005 		    struct lpfc_iocbq *piocb)
9006 {
9007 	lockdep_assert_held(&phba->hbalock);
9008 	/* Insert the caller's iocb in the txq tail for later processing. */
9009 	list_add_tail(&piocb->list, &pring->txq);
9010 }
9011 
9012 /**
9013  * lpfc_sli_next_iocb - Get the next iocb in the txq
9014  * @phba: Pointer to HBA context object.
9015  * @pring: Pointer to driver SLI ring object.
9016  * @piocb: Pointer to address of newly added command iocb.
9017  *
9018  * This function is called with hbalock held before a new
9019  * iocb is submitted to the firmware. This function checks
9020  * txq to flush the iocbs in txq to Firmware before
9021  * submitting new iocbs to the Firmware.
9022  * If there are iocbs in the txq which need to be submitted
9023  * to firmware, lpfc_sli_next_iocb returns the first element
9024  * of the txq after dequeuing it from txq.
9025  * If there is no iocb in the txq then the function will return
9026  * *piocb and *piocb is set to NULL. Caller needs to check
9027  * *piocb to find if there are more commands in the txq.
9028  **/
9029 static struct lpfc_iocbq *
9030 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9031 		   struct lpfc_iocbq **piocb)
9032 {
9033 	struct lpfc_iocbq * nextiocb;
9034 
9035 	lockdep_assert_held(&phba->hbalock);
9036 
9037 	nextiocb = lpfc_sli_ringtx_get(phba, pring);
9038 	if (!nextiocb) {
9039 		nextiocb = *piocb;
9040 		*piocb = NULL;
9041 	}
9042 
9043 	return nextiocb;
9044 }
9045 
9046 /**
9047  * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
9048  * @phba: Pointer to HBA context object.
9049  * @ring_number: SLI ring number to issue iocb on.
9050  * @piocb: Pointer to command iocb.
9051  * @flag: Flag indicating if this command can be put into txq.
9052  *
9053  * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
9054  * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
9055  * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
9056  * flag is turned on, the function returns IOCB_ERROR. When the link is down,
9057  * this function allows only iocbs for posting buffers. This function finds
9058  * next available slot in the command ring and posts the command to the
9059  * available slot and writes the port attention register to request HBA start
9060  * processing new iocb. If there is no slot available in the ring and
9061  * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
9062  * the function returns IOCB_BUSY.
9063  *
9064  * This function is called with hbalock held. The function will return success
9065  * after it successfully submit the iocb to firmware or after adding to the
9066  * txq.
9067  **/
9068 static int
9069 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
9070 		    struct lpfc_iocbq *piocb, uint32_t flag)
9071 {
9072 	struct lpfc_iocbq *nextiocb;
9073 	IOCB_t *iocb;
9074 	struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
9075 
9076 	lockdep_assert_held(&phba->hbalock);
9077 
9078 	if (piocb->iocb_cmpl && (!piocb->vport) &&
9079 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
9080 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
9081 		lpfc_printf_log(phba, KERN_ERR,
9082 				LOG_SLI | LOG_VPORT,
9083 				"1807 IOCB x%x failed. No vport\n",
9084 				piocb->iocb.ulpCommand);
9085 		dump_stack();
9086 		return IOCB_ERROR;
9087 	}
9088 
9089 
9090 	/* If the PCI channel is in offline state, do not post iocbs. */
9091 	if (unlikely(pci_channel_offline(phba->pcidev)))
9092 		return IOCB_ERROR;
9093 
9094 	/* If HBA has a deferred error attention, fail the iocb. */
9095 	if (unlikely(phba->hba_flag & DEFER_ERATT))
9096 		return IOCB_ERROR;
9097 
9098 	/*
9099 	 * We should never get an IOCB if we are in a < LINK_DOWN state
9100 	 */
9101 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
9102 		return IOCB_ERROR;
9103 
9104 	/*
9105 	 * Check to see if we are blocking IOCB processing because of a
9106 	 * outstanding event.
9107 	 */
9108 	if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
9109 		goto iocb_busy;
9110 
9111 	if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
9112 		/*
9113 		 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
9114 		 * can be issued if the link is not up.
9115 		 */
9116 		switch (piocb->iocb.ulpCommand) {
9117 		case CMD_GEN_REQUEST64_CR:
9118 		case CMD_GEN_REQUEST64_CX:
9119 			if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
9120 				(piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
9121 					FC_RCTL_DD_UNSOL_CMD) ||
9122 				(piocb->iocb.un.genreq64.w5.hcsw.Type !=
9123 					MENLO_TRANSPORT_TYPE))
9124 
9125 				goto iocb_busy;
9126 			break;
9127 		case CMD_QUE_RING_BUF_CN:
9128 		case CMD_QUE_RING_BUF64_CN:
9129 			/*
9130 			 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
9131 			 * completion, iocb_cmpl MUST be 0.
9132 			 */
9133 			if (piocb->iocb_cmpl)
9134 				piocb->iocb_cmpl = NULL;
9135 			/*FALLTHROUGH*/
9136 		case CMD_CREATE_XRI_CR:
9137 		case CMD_CLOSE_XRI_CN:
9138 		case CMD_CLOSE_XRI_CX:
9139 			break;
9140 		default:
9141 			goto iocb_busy;
9142 		}
9143 
9144 	/*
9145 	 * For FCP commands, we must be in a state where we can process link
9146 	 * attention events.
9147 	 */
9148 	} else if (unlikely(pring->ringno == LPFC_FCP_RING &&
9149 			    !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
9150 		goto iocb_busy;
9151 	}
9152 
9153 	while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
9154 	       (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
9155 		lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
9156 
9157 	if (iocb)
9158 		lpfc_sli_update_ring(phba, pring);
9159 	else
9160 		lpfc_sli_update_full_ring(phba, pring);
9161 
9162 	if (!piocb)
9163 		return IOCB_SUCCESS;
9164 
9165 	goto out_busy;
9166 
9167  iocb_busy:
9168 	pring->stats.iocb_cmd_delay++;
9169 
9170  out_busy:
9171 
9172 	if (!(flag & SLI_IOCB_RET_IOCB)) {
9173 		__lpfc_sli_ringtx_put(phba, pring, piocb);
9174 		return IOCB_SUCCESS;
9175 	}
9176 
9177 	return IOCB_BUSY;
9178 }
9179 
9180 /**
9181  * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
9182  * @phba: Pointer to HBA context object.
9183  * @piocb: Pointer to command iocb.
9184  * @sglq: Pointer to the scatter gather queue object.
9185  *
9186  * This routine converts the bpl or bde that is in the IOCB
9187  * to a sgl list for the sli4 hardware. The physical address
9188  * of the bpl/bde is converted back to a virtual address.
9189  * If the IOCB contains a BPL then the list of BDE's is
9190  * converted to sli4_sge's. If the IOCB contains a single
9191  * BDE then it is converted to a single sli_sge.
9192  * The IOCB is still in cpu endianess so the contents of
9193  * the bpl can be used without byte swapping.
9194  *
9195  * Returns valid XRI = Success, NO_XRI = Failure.
9196 **/
9197 static uint16_t
9198 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
9199 		struct lpfc_sglq *sglq)
9200 {
9201 	uint16_t xritag = NO_XRI;
9202 	struct ulp_bde64 *bpl = NULL;
9203 	struct ulp_bde64 bde;
9204 	struct sli4_sge *sgl  = NULL;
9205 	struct lpfc_dmabuf *dmabuf;
9206 	IOCB_t *icmd;
9207 	int numBdes = 0;
9208 	int i = 0;
9209 	uint32_t offset = 0; /* accumulated offset in the sg request list */
9210 	int inbound = 0; /* number of sg reply entries inbound from firmware */
9211 
9212 	if (!piocbq || !sglq)
9213 		return xritag;
9214 
9215 	sgl  = (struct sli4_sge *)sglq->sgl;
9216 	icmd = &piocbq->iocb;
9217 	if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
9218 		return sglq->sli4_xritag;
9219 	if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9220 		numBdes = icmd->un.genreq64.bdl.bdeSize /
9221 				sizeof(struct ulp_bde64);
9222 		/* The addrHigh and addrLow fields within the IOCB
9223 		 * have not been byteswapped yet so there is no
9224 		 * need to swap them back.
9225 		 */
9226 		if (piocbq->context3)
9227 			dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
9228 		else
9229 			return xritag;
9230 
9231 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
9232 		if (!bpl)
9233 			return xritag;
9234 
9235 		for (i = 0; i < numBdes; i++) {
9236 			/* Should already be byte swapped. */
9237 			sgl->addr_hi = bpl->addrHigh;
9238 			sgl->addr_lo = bpl->addrLow;
9239 
9240 			sgl->word2 = le32_to_cpu(sgl->word2);
9241 			if ((i+1) == numBdes)
9242 				bf_set(lpfc_sli4_sge_last, sgl, 1);
9243 			else
9244 				bf_set(lpfc_sli4_sge_last, sgl, 0);
9245 			/* swap the size field back to the cpu so we
9246 			 * can assign it to the sgl.
9247 			 */
9248 			bde.tus.w = le32_to_cpu(bpl->tus.w);
9249 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
9250 			/* The offsets in the sgl need to be accumulated
9251 			 * separately for the request and reply lists.
9252 			 * The request is always first, the reply follows.
9253 			 */
9254 			if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
9255 				/* add up the reply sg entries */
9256 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
9257 					inbound++;
9258 				/* first inbound? reset the offset */
9259 				if (inbound == 1)
9260 					offset = 0;
9261 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
9262 				bf_set(lpfc_sli4_sge_type, sgl,
9263 					LPFC_SGE_TYPE_DATA);
9264 				offset += bde.tus.f.bdeSize;
9265 			}
9266 			sgl->word2 = cpu_to_le32(sgl->word2);
9267 			bpl++;
9268 			sgl++;
9269 		}
9270 	} else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
9271 			/* The addrHigh and addrLow fields of the BDE have not
9272 			 * been byteswapped yet so they need to be swapped
9273 			 * before putting them in the sgl.
9274 			 */
9275 			sgl->addr_hi =
9276 				cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
9277 			sgl->addr_lo =
9278 				cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
9279 			sgl->word2 = le32_to_cpu(sgl->word2);
9280 			bf_set(lpfc_sli4_sge_last, sgl, 1);
9281 			sgl->word2 = cpu_to_le32(sgl->word2);
9282 			sgl->sge_len =
9283 				cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
9284 	}
9285 	return sglq->sli4_xritag;
9286 }
9287 
9288 /**
9289  * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
9290  * @phba: Pointer to HBA context object.
9291  * @piocb: Pointer to command iocb.
9292  * @wqe: Pointer to the work queue entry.
9293  *
9294  * This routine converts the iocb command to its Work Queue Entry
9295  * equivalent. The wqe pointer should not have any fields set when
9296  * this routine is called because it will memcpy over them.
9297  * This routine does not set the CQ_ID or the WQEC bits in the
9298  * wqe.
9299  *
9300  * Returns: 0 = Success, IOCB_ERROR = Failure.
9301  **/
9302 static int
9303 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
9304 		union lpfc_wqe128 *wqe)
9305 {
9306 	uint32_t xmit_len = 0, total_len = 0;
9307 	uint8_t ct = 0;
9308 	uint32_t fip;
9309 	uint32_t abort_tag;
9310 	uint8_t command_type = ELS_COMMAND_NON_FIP;
9311 	uint8_t cmnd;
9312 	uint16_t xritag;
9313 	uint16_t abrt_iotag;
9314 	struct lpfc_iocbq *abrtiocbq;
9315 	struct ulp_bde64 *bpl = NULL;
9316 	uint32_t els_id = LPFC_ELS_ID_DEFAULT;
9317 	int numBdes, i;
9318 	struct ulp_bde64 bde;
9319 	struct lpfc_nodelist *ndlp;
9320 	uint32_t *pcmd;
9321 	uint32_t if_type;
9322 
9323 	fip = phba->hba_flag & HBA_FIP_SUPPORT;
9324 	/* The fcp commands will set command type */
9325 	if (iocbq->iocb_flag &  LPFC_IO_FCP)
9326 		command_type = FCP_COMMAND;
9327 	else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
9328 		command_type = ELS_COMMAND_FIP;
9329 	else
9330 		command_type = ELS_COMMAND_NON_FIP;
9331 
9332 	if (phba->fcp_embed_io)
9333 		memset(wqe, 0, sizeof(union lpfc_wqe128));
9334 	/* Some of the fields are in the right position already */
9335 	memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
9336 	if (iocbq->iocb.ulpCommand != CMD_SEND_FRAME) {
9337 		/* The ct field has moved so reset */
9338 		wqe->generic.wqe_com.word7 = 0;
9339 		wqe->generic.wqe_com.word10 = 0;
9340 	}
9341 
9342 	abort_tag = (uint32_t) iocbq->iotag;
9343 	xritag = iocbq->sli4_xritag;
9344 	/* words0-2 bpl convert bde */
9345 	if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9346 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9347 				sizeof(struct ulp_bde64);
9348 		bpl  = (struct ulp_bde64 *)
9349 			((struct lpfc_dmabuf *)iocbq->context3)->virt;
9350 		if (!bpl)
9351 			return IOCB_ERROR;
9352 
9353 		/* Should already be byte swapped. */
9354 		wqe->generic.bde.addrHigh =  le32_to_cpu(bpl->addrHigh);
9355 		wqe->generic.bde.addrLow =  le32_to_cpu(bpl->addrLow);
9356 		/* swap the size field back to the cpu so we
9357 		 * can assign it to the sgl.
9358 		 */
9359 		wqe->generic.bde.tus.w  = le32_to_cpu(bpl->tus.w);
9360 		xmit_len = wqe->generic.bde.tus.f.bdeSize;
9361 		total_len = 0;
9362 		for (i = 0; i < numBdes; i++) {
9363 			bde.tus.w  = le32_to_cpu(bpl[i].tus.w);
9364 			total_len += bde.tus.f.bdeSize;
9365 		}
9366 	} else
9367 		xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
9368 
9369 	iocbq->iocb.ulpIoTag = iocbq->iotag;
9370 	cmnd = iocbq->iocb.ulpCommand;
9371 
9372 	switch (iocbq->iocb.ulpCommand) {
9373 	case CMD_ELS_REQUEST64_CR:
9374 		if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
9375 			ndlp = iocbq->context_un.ndlp;
9376 		else
9377 			ndlp = (struct lpfc_nodelist *)iocbq->context1;
9378 		if (!iocbq->iocb.ulpLe) {
9379 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9380 				"2007 Only Limited Edition cmd Format"
9381 				" supported 0x%x\n",
9382 				iocbq->iocb.ulpCommand);
9383 			return IOCB_ERROR;
9384 		}
9385 
9386 		wqe->els_req.payload_len = xmit_len;
9387 		/* Els_reguest64 has a TMO */
9388 		bf_set(wqe_tmo, &wqe->els_req.wqe_com,
9389 			iocbq->iocb.ulpTimeout);
9390 		/* Need a VF for word 4 set the vf bit*/
9391 		bf_set(els_req64_vf, &wqe->els_req, 0);
9392 		/* And a VFID for word 12 */
9393 		bf_set(els_req64_vfid, &wqe->els_req, 0);
9394 		ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9395 		bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9396 		       iocbq->iocb.ulpContext);
9397 		bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
9398 		bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
9399 		/* CCP CCPE PV PRI in word10 were set in the memcpy */
9400 		if (command_type == ELS_COMMAND_FIP)
9401 			els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
9402 					>> LPFC_FIP_ELS_ID_SHIFT);
9403 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9404 					iocbq->context2)->virt);
9405 		if_type = bf_get(lpfc_sli_intf_if_type,
9406 					&phba->sli4_hba.sli_intf);
9407 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9408 			if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
9409 				*pcmd == ELS_CMD_SCR ||
9410 				*pcmd == ELS_CMD_RSCN_XMT ||
9411 				*pcmd == ELS_CMD_FDISC ||
9412 				*pcmd == ELS_CMD_LOGO ||
9413 				*pcmd == ELS_CMD_PLOGI)) {
9414 				bf_set(els_req64_sp, &wqe->els_req, 1);
9415 				bf_set(els_req64_sid, &wqe->els_req,
9416 					iocbq->vport->fc_myDID);
9417 				if ((*pcmd == ELS_CMD_FLOGI) &&
9418 					!(phba->fc_topology ==
9419 						LPFC_TOPOLOGY_LOOP))
9420 					bf_set(els_req64_sid, &wqe->els_req, 0);
9421 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
9422 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9423 					phba->vpi_ids[iocbq->vport->vpi]);
9424 			} else if (pcmd && iocbq->context1) {
9425 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
9426 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9427 					phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9428 			}
9429 		}
9430 		bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
9431 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9432 		bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
9433 		bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
9434 		bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
9435 		bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
9436 		bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9437 		bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
9438 		wqe->els_req.max_response_payload_len = total_len - xmit_len;
9439 		break;
9440 	case CMD_XMIT_SEQUENCE64_CX:
9441 		bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
9442 		       iocbq->iocb.un.ulpWord[3]);
9443 		bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
9444 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9445 		/* The entire sequence is transmitted for this IOCB */
9446 		xmit_len = total_len;
9447 		cmnd = CMD_XMIT_SEQUENCE64_CR;
9448 		if (phba->link_flag & LS_LOOPBACK_MODE)
9449 			bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
9450 		/* fall through */
9451 	case CMD_XMIT_SEQUENCE64_CR:
9452 		/* word3 iocb=io_tag32 wqe=reserved */
9453 		wqe->xmit_sequence.rsvd3 = 0;
9454 		/* word4 relative_offset memcpy */
9455 		/* word5 r_ctl/df_ctl memcpy */
9456 		bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
9457 		bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
9458 		bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
9459 		       LPFC_WQE_IOD_WRITE);
9460 		bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
9461 		       LPFC_WQE_LENLOC_WORD12);
9462 		bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
9463 		wqe->xmit_sequence.xmit_len = xmit_len;
9464 		command_type = OTHER_COMMAND;
9465 		break;
9466 	case CMD_XMIT_BCAST64_CN:
9467 		/* word3 iocb=iotag32 wqe=seq_payload_len */
9468 		wqe->xmit_bcast64.seq_payload_len = xmit_len;
9469 		/* word4 iocb=rsvd wqe=rsvd */
9470 		/* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
9471 		/* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
9472 		bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
9473 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9474 		bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
9475 		bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
9476 		bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
9477 		       LPFC_WQE_LENLOC_WORD3);
9478 		bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
9479 		break;
9480 	case CMD_FCP_IWRITE64_CR:
9481 		command_type = FCP_COMMAND_DATA_OUT;
9482 		/* word3 iocb=iotag wqe=payload_offset_len */
9483 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9484 		bf_set(payload_offset_len, &wqe->fcp_iwrite,
9485 		       xmit_len + sizeof(struct fcp_rsp));
9486 		bf_set(cmd_buff_len, &wqe->fcp_iwrite,
9487 		       0);
9488 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9489 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9490 		bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
9491 		       iocbq->iocb.ulpFCP2Rcvy);
9492 		bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
9493 		/* Always open the exchange */
9494 		bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
9495 		bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
9496 		       LPFC_WQE_LENLOC_WORD4);
9497 		bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
9498 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
9499 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9500 			bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
9501 			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
9502 			if (iocbq->priority) {
9503 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9504 				       (iocbq->priority << 1));
9505 			} else {
9506 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9507 				       (phba->cfg_XLanePriority << 1));
9508 			}
9509 		}
9510 		/* Note, word 10 is already initialized to 0 */
9511 
9512 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9513 		if (phba->cfg_enable_pbde)
9514 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
9515 		else
9516 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
9517 
9518 		if (phba->fcp_embed_io) {
9519 			struct lpfc_io_buf *lpfc_cmd;
9520 			struct sli4_sge *sgl;
9521 			struct fcp_cmnd *fcp_cmnd;
9522 			uint32_t *ptr;
9523 
9524 			/* 128 byte wqe support here */
9525 
9526 			lpfc_cmd = iocbq->context1;
9527 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9528 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9529 
9530 			/* Word 0-2 - FCP_CMND */
9531 			wqe->generic.bde.tus.f.bdeFlags =
9532 				BUFF_TYPE_BDE_IMMED;
9533 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9534 			wqe->generic.bde.addrHigh = 0;
9535 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9536 
9537 			bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
9538 			bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
9539 
9540 			/* Word 22-29  FCP CMND Payload */
9541 			ptr = &wqe->words[22];
9542 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9543 		}
9544 		break;
9545 	case CMD_FCP_IREAD64_CR:
9546 		/* word3 iocb=iotag wqe=payload_offset_len */
9547 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9548 		bf_set(payload_offset_len, &wqe->fcp_iread,
9549 		       xmit_len + sizeof(struct fcp_rsp));
9550 		bf_set(cmd_buff_len, &wqe->fcp_iread,
9551 		       0);
9552 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9553 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9554 		bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
9555 		       iocbq->iocb.ulpFCP2Rcvy);
9556 		bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
9557 		/* Always open the exchange */
9558 		bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
9559 		bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
9560 		       LPFC_WQE_LENLOC_WORD4);
9561 		bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
9562 		bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
9563 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9564 			bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
9565 			bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
9566 			if (iocbq->priority) {
9567 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9568 				       (iocbq->priority << 1));
9569 			} else {
9570 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9571 				       (phba->cfg_XLanePriority << 1));
9572 			}
9573 		}
9574 		/* Note, word 10 is already initialized to 0 */
9575 
9576 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9577 		if (phba->cfg_enable_pbde)
9578 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
9579 		else
9580 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
9581 
9582 		if (phba->fcp_embed_io) {
9583 			struct lpfc_io_buf *lpfc_cmd;
9584 			struct sli4_sge *sgl;
9585 			struct fcp_cmnd *fcp_cmnd;
9586 			uint32_t *ptr;
9587 
9588 			/* 128 byte wqe support here */
9589 
9590 			lpfc_cmd = iocbq->context1;
9591 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9592 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9593 
9594 			/* Word 0-2 - FCP_CMND */
9595 			wqe->generic.bde.tus.f.bdeFlags =
9596 				BUFF_TYPE_BDE_IMMED;
9597 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9598 			wqe->generic.bde.addrHigh = 0;
9599 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9600 
9601 			bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
9602 			bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
9603 
9604 			/* Word 22-29  FCP CMND Payload */
9605 			ptr = &wqe->words[22];
9606 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9607 		}
9608 		break;
9609 	case CMD_FCP_ICMND64_CR:
9610 		/* word3 iocb=iotag wqe=payload_offset_len */
9611 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9612 		bf_set(payload_offset_len, &wqe->fcp_icmd,
9613 		       xmit_len + sizeof(struct fcp_rsp));
9614 		bf_set(cmd_buff_len, &wqe->fcp_icmd,
9615 		       0);
9616 		/* word3 iocb=IO_TAG wqe=reserved */
9617 		bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
9618 		/* Always open the exchange */
9619 		bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
9620 		bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
9621 		bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
9622 		bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
9623 		       LPFC_WQE_LENLOC_NONE);
9624 		bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
9625 		       iocbq->iocb.ulpFCP2Rcvy);
9626 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9627 			bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
9628 			bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
9629 			if (iocbq->priority) {
9630 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9631 				       (iocbq->priority << 1));
9632 			} else {
9633 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9634 				       (phba->cfg_XLanePriority << 1));
9635 			}
9636 		}
9637 		/* Note, word 10 is already initialized to 0 */
9638 
9639 		if (phba->fcp_embed_io) {
9640 			struct lpfc_io_buf *lpfc_cmd;
9641 			struct sli4_sge *sgl;
9642 			struct fcp_cmnd *fcp_cmnd;
9643 			uint32_t *ptr;
9644 
9645 			/* 128 byte wqe support here */
9646 
9647 			lpfc_cmd = iocbq->context1;
9648 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9649 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9650 
9651 			/* Word 0-2 - FCP_CMND */
9652 			wqe->generic.bde.tus.f.bdeFlags =
9653 				BUFF_TYPE_BDE_IMMED;
9654 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9655 			wqe->generic.bde.addrHigh = 0;
9656 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9657 
9658 			bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
9659 			bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
9660 
9661 			/* Word 22-29  FCP CMND Payload */
9662 			ptr = &wqe->words[22];
9663 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9664 		}
9665 		break;
9666 	case CMD_GEN_REQUEST64_CR:
9667 		/* For this command calculate the xmit length of the
9668 		 * request bde.
9669 		 */
9670 		xmit_len = 0;
9671 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9672 			sizeof(struct ulp_bde64);
9673 		for (i = 0; i < numBdes; i++) {
9674 			bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9675 			if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
9676 				break;
9677 			xmit_len += bde.tus.f.bdeSize;
9678 		}
9679 		/* word3 iocb=IO_TAG wqe=request_payload_len */
9680 		wqe->gen_req.request_payload_len = xmit_len;
9681 		/* word4 iocb=parameter wqe=relative_offset memcpy */
9682 		/* word5 [rctl, type, df_ctl, la] copied in memcpy */
9683 		/* word6 context tag copied in memcpy */
9684 		if (iocbq->iocb.ulpCt_h  || iocbq->iocb.ulpCt_l) {
9685 			ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9686 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9687 				"2015 Invalid CT %x command 0x%x\n",
9688 				ct, iocbq->iocb.ulpCommand);
9689 			return IOCB_ERROR;
9690 		}
9691 		bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
9692 		bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
9693 		bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
9694 		bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
9695 		bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
9696 		bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
9697 		bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9698 		bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
9699 		wqe->gen_req.max_response_payload_len = total_len - xmit_len;
9700 		command_type = OTHER_COMMAND;
9701 		break;
9702 	case CMD_XMIT_ELS_RSP64_CX:
9703 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9704 		/* words0-2 BDE memcpy */
9705 		/* word3 iocb=iotag32 wqe=response_payload_len */
9706 		wqe->xmit_els_rsp.response_payload_len = xmit_len;
9707 		/* word4 */
9708 		wqe->xmit_els_rsp.word4 = 0;
9709 		/* word5 iocb=rsvd wge=did */
9710 		bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
9711 			 iocbq->iocb.un.xseq64.xmit_els_remoteID);
9712 
9713 		if_type = bf_get(lpfc_sli_intf_if_type,
9714 					&phba->sli4_hba.sli_intf);
9715 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9716 			if (iocbq->vport->fc_flag & FC_PT2PT) {
9717 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9718 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9719 					iocbq->vport->fc_myDID);
9720 				if (iocbq->vport->fc_myDID == Fabric_DID) {
9721 					bf_set(wqe_els_did,
9722 						&wqe->xmit_els_rsp.wqe_dest, 0);
9723 				}
9724 			}
9725 		}
9726 		bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
9727 		       ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9728 		bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
9729 		bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
9730 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9731 		if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
9732 			bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9733 			       phba->vpi_ids[iocbq->vport->vpi]);
9734 		bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
9735 		bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
9736 		bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
9737 		bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
9738 		       LPFC_WQE_LENLOC_WORD3);
9739 		bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
9740 		bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
9741 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9742 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9743 					iocbq->context2)->virt);
9744 		if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
9745 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9746 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9747 					iocbq->vport->fc_myDID);
9748 				bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
9749 				bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9750 					phba->vpi_ids[phba->pport->vpi]);
9751 		}
9752 		command_type = OTHER_COMMAND;
9753 		break;
9754 	case CMD_CLOSE_XRI_CN:
9755 	case CMD_ABORT_XRI_CN:
9756 	case CMD_ABORT_XRI_CX:
9757 		/* words 0-2 memcpy should be 0 rserved */
9758 		/* port will send abts */
9759 		abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
9760 		if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
9761 			abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
9762 			fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
9763 		} else
9764 			fip = 0;
9765 
9766 		if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
9767 			/*
9768 			 * The link is down, or the command was ELS_FIP
9769 			 * so the fw does not need to send abts
9770 			 * on the wire.
9771 			 */
9772 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
9773 		else
9774 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
9775 		bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
9776 		/* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
9777 		wqe->abort_cmd.rsrvd5 = 0;
9778 		bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
9779 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9780 		abort_tag = iocbq->iocb.un.acxri.abortIoTag;
9781 		/*
9782 		 * The abort handler will send us CMD_ABORT_XRI_CN or
9783 		 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
9784 		 */
9785 		bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
9786 		bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
9787 		bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
9788 		       LPFC_WQE_LENLOC_NONE);
9789 		cmnd = CMD_ABORT_XRI_CX;
9790 		command_type = OTHER_COMMAND;
9791 		xritag = 0;
9792 		break;
9793 	case CMD_XMIT_BLS_RSP64_CX:
9794 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9795 		/* As BLS ABTS RSP WQE is very different from other WQEs,
9796 		 * we re-construct this WQE here based on information in
9797 		 * iocbq from scratch.
9798 		 */
9799 		memset(wqe, 0, sizeof(union lpfc_wqe));
9800 		/* OX_ID is invariable to who sent ABTS to CT exchange */
9801 		bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
9802 		       bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
9803 		if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
9804 		    LPFC_ABTS_UNSOL_INT) {
9805 			/* ABTS sent by initiator to CT exchange, the
9806 			 * RX_ID field will be filled with the newly
9807 			 * allocated responder XRI.
9808 			 */
9809 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9810 			       iocbq->sli4_xritag);
9811 		} else {
9812 			/* ABTS sent by responder to CT exchange, the
9813 			 * RX_ID field will be filled with the responder
9814 			 * RX_ID from ABTS.
9815 			 */
9816 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9817 			       bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
9818 		}
9819 		bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
9820 		bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
9821 
9822 		/* Use CT=VPI */
9823 		bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
9824 			ndlp->nlp_DID);
9825 		bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
9826 			iocbq->iocb.ulpContext);
9827 		bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
9828 		bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
9829 			phba->vpi_ids[phba->pport->vpi]);
9830 		bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
9831 		bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
9832 		       LPFC_WQE_LENLOC_NONE);
9833 		/* Overwrite the pre-set comnd type with OTHER_COMMAND */
9834 		command_type = OTHER_COMMAND;
9835 		if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
9836 			bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
9837 			       bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
9838 			bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
9839 			       bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
9840 			bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
9841 			       bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
9842 		}
9843 
9844 		break;
9845 	case CMD_SEND_FRAME:
9846 		bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9847 		bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9848 		return 0;
9849 	case CMD_XRI_ABORTED_CX:
9850 	case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
9851 	case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
9852 	case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
9853 	case CMD_FCP_TRSP64_CX: /* Target mode rcv */
9854 	case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
9855 	default:
9856 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9857 				"2014 Invalid command 0x%x\n",
9858 				iocbq->iocb.ulpCommand);
9859 		return IOCB_ERROR;
9860 		break;
9861 	}
9862 
9863 	if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
9864 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
9865 	else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
9866 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
9867 	else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
9868 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
9869 	iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
9870 			      LPFC_IO_DIF_INSERT);
9871 	bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9872 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9873 	wqe->generic.wqe_com.abort_tag = abort_tag;
9874 	bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
9875 	bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
9876 	bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
9877 	bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9878 	return 0;
9879 }
9880 
9881 /**
9882  * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
9883  * @phba: Pointer to HBA context object.
9884  * @ring_number: SLI ring number to issue iocb on.
9885  * @piocb: Pointer to command iocb.
9886  * @flag: Flag indicating if this command can be put into txq.
9887  *
9888  * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
9889  * an iocb command to an HBA with SLI-4 interface spec.
9890  *
9891  * This function is called with hbalock held. The function will return success
9892  * after it successfully submit the iocb to firmware or after adding to the
9893  * txq.
9894  **/
9895 static int
9896 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
9897 			 struct lpfc_iocbq *piocb, uint32_t flag)
9898 {
9899 	struct lpfc_sglq *sglq;
9900 	union lpfc_wqe128 wqe;
9901 	struct lpfc_queue *wq;
9902 	struct lpfc_sli_ring *pring;
9903 
9904 	/* Get the WQ */
9905 	if ((piocb->iocb_flag & LPFC_IO_FCP) ||
9906 	    (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
9907 		wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].fcp_wq;
9908 	} else {
9909 		wq = phba->sli4_hba.els_wq;
9910 	}
9911 
9912 	/* Get corresponding ring */
9913 	pring = wq->pring;
9914 
9915 	/*
9916 	 * The WQE can be either 64 or 128 bytes,
9917 	 */
9918 
9919 	lockdep_assert_held(&pring->ring_lock);
9920 
9921 	if (piocb->sli4_xritag == NO_XRI) {
9922 		if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
9923 		    piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
9924 			sglq = NULL;
9925 		else {
9926 			if (!list_empty(&pring->txq)) {
9927 				if (!(flag & SLI_IOCB_RET_IOCB)) {
9928 					__lpfc_sli_ringtx_put(phba,
9929 						pring, piocb);
9930 					return IOCB_SUCCESS;
9931 				} else {
9932 					return IOCB_BUSY;
9933 				}
9934 			} else {
9935 				sglq = __lpfc_sli_get_els_sglq(phba, piocb);
9936 				if (!sglq) {
9937 					if (!(flag & SLI_IOCB_RET_IOCB)) {
9938 						__lpfc_sli_ringtx_put(phba,
9939 								pring,
9940 								piocb);
9941 						return IOCB_SUCCESS;
9942 					} else
9943 						return IOCB_BUSY;
9944 				}
9945 			}
9946 		}
9947 	} else if (piocb->iocb_flag &  LPFC_IO_FCP)
9948 		/* These IO's already have an XRI and a mapped sgl. */
9949 		sglq = NULL;
9950 	else {
9951 		/*
9952 		 * This is a continuation of a commandi,(CX) so this
9953 		 * sglq is on the active list
9954 		 */
9955 		sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
9956 		if (!sglq)
9957 			return IOCB_ERROR;
9958 	}
9959 
9960 	if (sglq) {
9961 		piocb->sli4_lxritag = sglq->sli4_lxritag;
9962 		piocb->sli4_xritag = sglq->sli4_xritag;
9963 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
9964 			return IOCB_ERROR;
9965 	}
9966 
9967 	if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
9968 		return IOCB_ERROR;
9969 
9970 	if (lpfc_sli4_wq_put(wq, &wqe))
9971 		return IOCB_ERROR;
9972 	lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
9973 
9974 	return 0;
9975 }
9976 
9977 /**
9978  * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
9979  *
9980  * This routine wraps the actual lockless version for issusing IOCB function
9981  * pointer from the lpfc_hba struct.
9982  *
9983  * Return codes:
9984  * IOCB_ERROR - Error
9985  * IOCB_SUCCESS - Success
9986  * IOCB_BUSY - Busy
9987  **/
9988 int
9989 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
9990 		struct lpfc_iocbq *piocb, uint32_t flag)
9991 {
9992 	return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9993 }
9994 
9995 /**
9996  * lpfc_sli_api_table_setup - Set up sli api function jump table
9997  * @phba: The hba struct for which this call is being executed.
9998  * @dev_grp: The HBA PCI-Device group number.
9999  *
10000  * This routine sets up the SLI interface API function jump table in @phba
10001  * struct.
10002  * Returns: 0 - success, -ENODEV - failure.
10003  **/
10004 int
10005 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
10006 {
10007 
10008 	switch (dev_grp) {
10009 	case LPFC_PCI_DEV_LP:
10010 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
10011 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
10012 		break;
10013 	case LPFC_PCI_DEV_OC:
10014 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
10015 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
10016 		break;
10017 	default:
10018 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10019 				"1419 Invalid HBA PCI-device group: 0x%x\n",
10020 				dev_grp);
10021 		return -ENODEV;
10022 		break;
10023 	}
10024 	phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
10025 	return 0;
10026 }
10027 
10028 /**
10029  * lpfc_sli4_calc_ring - Calculates which ring to use
10030  * @phba: Pointer to HBA context object.
10031  * @piocb: Pointer to command iocb.
10032  *
10033  * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
10034  * hba_wqidx, thus we need to calculate the corresponding ring.
10035  * Since ABORTS must go on the same WQ of the command they are
10036  * aborting, we use command's hba_wqidx.
10037  */
10038 struct lpfc_sli_ring *
10039 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
10040 {
10041 	struct lpfc_io_buf *lpfc_cmd;
10042 
10043 	if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
10044 		if (unlikely(!phba->sli4_hba.hdwq))
10045 			return NULL;
10046 		/*
10047 		 * for abort iocb hba_wqidx should already
10048 		 * be setup based on what work queue we used.
10049 		 */
10050 		if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10051 			lpfc_cmd = (struct lpfc_io_buf *)piocb->context1;
10052 			piocb->hba_wqidx = lpfc_cmd->hdwq_no;
10053 		}
10054 		return phba->sli4_hba.hdwq[piocb->hba_wqidx].fcp_wq->pring;
10055 	} else {
10056 		if (unlikely(!phba->sli4_hba.els_wq))
10057 			return NULL;
10058 		piocb->hba_wqidx = 0;
10059 		return phba->sli4_hba.els_wq->pring;
10060 	}
10061 }
10062 
10063 /**
10064  * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
10065  * @phba: Pointer to HBA context object.
10066  * @pring: Pointer to driver SLI ring object.
10067  * @piocb: Pointer to command iocb.
10068  * @flag: Flag indicating if this command can be put into txq.
10069  *
10070  * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
10071  * function. This function gets the hbalock and calls
10072  * __lpfc_sli_issue_iocb function and will return the error returned
10073  * by __lpfc_sli_issue_iocb function. This wrapper is used by
10074  * functions which do not hold hbalock.
10075  **/
10076 int
10077 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10078 		    struct lpfc_iocbq *piocb, uint32_t flag)
10079 {
10080 	struct lpfc_sli_ring *pring;
10081 	unsigned long iflags;
10082 	int rc;
10083 
10084 	if (phba->sli_rev == LPFC_SLI_REV4) {
10085 		pring = lpfc_sli4_calc_ring(phba, piocb);
10086 		if (unlikely(pring == NULL))
10087 			return IOCB_ERROR;
10088 
10089 		spin_lock_irqsave(&pring->ring_lock, iflags);
10090 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10091 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
10092 	} else {
10093 		/* For now, SLI2/3 will still use hbalock */
10094 		spin_lock_irqsave(&phba->hbalock, iflags);
10095 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10096 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10097 	}
10098 	return rc;
10099 }
10100 
10101 /**
10102  * lpfc_extra_ring_setup - Extra ring setup function
10103  * @phba: Pointer to HBA context object.
10104  *
10105  * This function is called while driver attaches with the
10106  * HBA to setup the extra ring. The extra ring is used
10107  * only when driver needs to support target mode functionality
10108  * or IP over FC functionalities.
10109  *
10110  * This function is called with no lock held. SLI3 only.
10111  **/
10112 static int
10113 lpfc_extra_ring_setup( struct lpfc_hba *phba)
10114 {
10115 	struct lpfc_sli *psli;
10116 	struct lpfc_sli_ring *pring;
10117 
10118 	psli = &phba->sli;
10119 
10120 	/* Adjust cmd/rsp ring iocb entries more evenly */
10121 
10122 	/* Take some away from the FCP ring */
10123 	pring = &psli->sli3_ring[LPFC_FCP_RING];
10124 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10125 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10126 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10127 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10128 
10129 	/* and give them to the extra ring */
10130 	pring = &psli->sli3_ring[LPFC_EXTRA_RING];
10131 
10132 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10133 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10134 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10135 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10136 
10137 	/* Setup default profile for this ring */
10138 	pring->iotag_max = 4096;
10139 	pring->num_mask = 1;
10140 	pring->prt[0].profile = 0;      /* Mask 0 */
10141 	pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
10142 	pring->prt[0].type = phba->cfg_multi_ring_type;
10143 	pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
10144 	return 0;
10145 }
10146 
10147 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
10148  * @phba: Pointer to HBA context object.
10149  * @iocbq: Pointer to iocb object.
10150  *
10151  * The async_event handler calls this routine when it receives
10152  * an ASYNC_STATUS_CN event from the port.  The port generates
10153  * this event when an Abort Sequence request to an rport fails
10154  * twice in succession.  The abort could be originated by the
10155  * driver or by the port.  The ABTS could have been for an ELS
10156  * or FCP IO.  The port only generates this event when an ABTS
10157  * fails to complete after one retry.
10158  */
10159 static void
10160 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
10161 			  struct lpfc_iocbq *iocbq)
10162 {
10163 	struct lpfc_nodelist *ndlp = NULL;
10164 	uint16_t rpi = 0, vpi = 0;
10165 	struct lpfc_vport *vport = NULL;
10166 
10167 	/* The rpi in the ulpContext is vport-sensitive. */
10168 	vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
10169 	rpi = iocbq->iocb.ulpContext;
10170 
10171 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10172 			"3092 Port generated ABTS async event "
10173 			"on vpi %d rpi %d status 0x%x\n",
10174 			vpi, rpi, iocbq->iocb.ulpStatus);
10175 
10176 	vport = lpfc_find_vport_by_vpid(phba, vpi);
10177 	if (!vport)
10178 		goto err_exit;
10179 	ndlp = lpfc_findnode_rpi(vport, rpi);
10180 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
10181 		goto err_exit;
10182 
10183 	if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
10184 		lpfc_sli_abts_recover_port(vport, ndlp);
10185 	return;
10186 
10187  err_exit:
10188 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10189 			"3095 Event Context not found, no "
10190 			"action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
10191 			iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
10192 			vpi, rpi);
10193 }
10194 
10195 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
10196  * @phba: pointer to HBA context object.
10197  * @ndlp: nodelist pointer for the impacted rport.
10198  * @axri: pointer to the wcqe containing the failed exchange.
10199  *
10200  * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
10201  * port.  The port generates this event when an abort exchange request to an
10202  * rport fails twice in succession with no reply.  The abort could be originated
10203  * by the driver or by the port.  The ABTS could have been for an ELS or FCP IO.
10204  */
10205 void
10206 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
10207 			   struct lpfc_nodelist *ndlp,
10208 			   struct sli4_wcqe_xri_aborted *axri)
10209 {
10210 	struct lpfc_vport *vport;
10211 	uint32_t ext_status = 0;
10212 
10213 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
10214 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10215 				"3115 Node Context not found, driver "
10216 				"ignoring abts err event\n");
10217 		return;
10218 	}
10219 
10220 	vport = ndlp->vport;
10221 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10222 			"3116 Port generated FCP XRI ABORT event on "
10223 			"vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
10224 			ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
10225 			bf_get(lpfc_wcqe_xa_xri, axri),
10226 			bf_get(lpfc_wcqe_xa_status, axri),
10227 			axri->parameter);
10228 
10229 	/*
10230 	 * Catch the ABTS protocol failure case.  Older OCe FW releases returned
10231 	 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
10232 	 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
10233 	 */
10234 	ext_status = axri->parameter & IOERR_PARAM_MASK;
10235 	if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
10236 	    ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
10237 		lpfc_sli_abts_recover_port(vport, ndlp);
10238 }
10239 
10240 /**
10241  * lpfc_sli_async_event_handler - ASYNC iocb handler function
10242  * @phba: Pointer to HBA context object.
10243  * @pring: Pointer to driver SLI ring object.
10244  * @iocbq: Pointer to iocb object.
10245  *
10246  * This function is called by the slow ring event handler
10247  * function when there is an ASYNC event iocb in the ring.
10248  * This function is called with no lock held.
10249  * Currently this function handles only temperature related
10250  * ASYNC events. The function decodes the temperature sensor
10251  * event message and posts events for the management applications.
10252  **/
10253 static void
10254 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
10255 	struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
10256 {
10257 	IOCB_t *icmd;
10258 	uint16_t evt_code;
10259 	struct temp_event temp_event_data;
10260 	struct Scsi_Host *shost;
10261 	uint32_t *iocb_w;
10262 
10263 	icmd = &iocbq->iocb;
10264 	evt_code = icmd->un.asyncstat.evt_code;
10265 
10266 	switch (evt_code) {
10267 	case ASYNC_TEMP_WARN:
10268 	case ASYNC_TEMP_SAFE:
10269 		temp_event_data.data = (uint32_t) icmd->ulpContext;
10270 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
10271 		if (evt_code == ASYNC_TEMP_WARN) {
10272 			temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
10273 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10274 				"0347 Adapter is very hot, please take "
10275 				"corrective action. temperature : %d Celsius\n",
10276 				(uint32_t) icmd->ulpContext);
10277 		} else {
10278 			temp_event_data.event_code = LPFC_NORMAL_TEMP;
10279 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10280 				"0340 Adapter temperature is OK now. "
10281 				"temperature : %d Celsius\n",
10282 				(uint32_t) icmd->ulpContext);
10283 		}
10284 
10285 		/* Send temperature change event to applications */
10286 		shost = lpfc_shost_from_vport(phba->pport);
10287 		fc_host_post_vendor_event(shost, fc_get_event_number(),
10288 			sizeof(temp_event_data), (char *) &temp_event_data,
10289 			LPFC_NL_VENDOR_ID);
10290 		break;
10291 	case ASYNC_STATUS_CN:
10292 		lpfc_sli_abts_err_handler(phba, iocbq);
10293 		break;
10294 	default:
10295 		iocb_w = (uint32_t *) icmd;
10296 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10297 			"0346 Ring %d handler: unexpected ASYNC_STATUS"
10298 			" evt_code 0x%x\n"
10299 			"W0  0x%08x W1  0x%08x W2  0x%08x W3  0x%08x\n"
10300 			"W4  0x%08x W5  0x%08x W6  0x%08x W7  0x%08x\n"
10301 			"W8  0x%08x W9  0x%08x W10 0x%08x W11 0x%08x\n"
10302 			"W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
10303 			pring->ringno, icmd->un.asyncstat.evt_code,
10304 			iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
10305 			iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
10306 			iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
10307 			iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
10308 
10309 		break;
10310 	}
10311 }
10312 
10313 
10314 /**
10315  * lpfc_sli4_setup - SLI ring setup function
10316  * @phba: Pointer to HBA context object.
10317  *
10318  * lpfc_sli_setup sets up rings of the SLI interface with
10319  * number of iocbs per ring and iotags. This function is
10320  * called while driver attach to the HBA and before the
10321  * interrupts are enabled. So there is no need for locking.
10322  *
10323  * This function always returns 0.
10324  **/
10325 int
10326 lpfc_sli4_setup(struct lpfc_hba *phba)
10327 {
10328 	struct lpfc_sli_ring *pring;
10329 
10330 	pring = phba->sli4_hba.els_wq->pring;
10331 	pring->num_mask = LPFC_MAX_RING_MASK;
10332 	pring->prt[0].profile = 0;	/* Mask 0 */
10333 	pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10334 	pring->prt[0].type = FC_TYPE_ELS;
10335 	pring->prt[0].lpfc_sli_rcv_unsol_event =
10336 	    lpfc_els_unsol_event;
10337 	pring->prt[1].profile = 0;	/* Mask 1 */
10338 	pring->prt[1].rctl = FC_RCTL_ELS_REP;
10339 	pring->prt[1].type = FC_TYPE_ELS;
10340 	pring->prt[1].lpfc_sli_rcv_unsol_event =
10341 	    lpfc_els_unsol_event;
10342 	pring->prt[2].profile = 0;	/* Mask 2 */
10343 	/* NameServer Inquiry */
10344 	pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10345 	/* NameServer */
10346 	pring->prt[2].type = FC_TYPE_CT;
10347 	pring->prt[2].lpfc_sli_rcv_unsol_event =
10348 	    lpfc_ct_unsol_event;
10349 	pring->prt[3].profile = 0;	/* Mask 3 */
10350 	/* NameServer response */
10351 	pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10352 	/* NameServer */
10353 	pring->prt[3].type = FC_TYPE_CT;
10354 	pring->prt[3].lpfc_sli_rcv_unsol_event =
10355 	    lpfc_ct_unsol_event;
10356 	return 0;
10357 }
10358 
10359 /**
10360  * lpfc_sli_setup - SLI ring setup function
10361  * @phba: Pointer to HBA context object.
10362  *
10363  * lpfc_sli_setup sets up rings of the SLI interface with
10364  * number of iocbs per ring and iotags. This function is
10365  * called while driver attach to the HBA and before the
10366  * interrupts are enabled. So there is no need for locking.
10367  *
10368  * This function always returns 0. SLI3 only.
10369  **/
10370 int
10371 lpfc_sli_setup(struct lpfc_hba *phba)
10372 {
10373 	int i, totiocbsize = 0;
10374 	struct lpfc_sli *psli = &phba->sli;
10375 	struct lpfc_sli_ring *pring;
10376 
10377 	psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
10378 	psli->sli_flag = 0;
10379 
10380 	psli->iocbq_lookup = NULL;
10381 	psli->iocbq_lookup_len = 0;
10382 	psli->last_iotag = 0;
10383 
10384 	for (i = 0; i < psli->num_rings; i++) {
10385 		pring = &psli->sli3_ring[i];
10386 		switch (i) {
10387 		case LPFC_FCP_RING:	/* ring 0 - FCP */
10388 			/* numCiocb and numRiocb are used in config_port */
10389 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
10390 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
10391 			pring->sli.sli3.numCiocb +=
10392 				SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10393 			pring->sli.sli3.numRiocb +=
10394 				SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10395 			pring->sli.sli3.numCiocb +=
10396 				SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10397 			pring->sli.sli3.numRiocb +=
10398 				SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10399 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10400 							SLI3_IOCB_CMD_SIZE :
10401 							SLI2_IOCB_CMD_SIZE;
10402 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10403 							SLI3_IOCB_RSP_SIZE :
10404 							SLI2_IOCB_RSP_SIZE;
10405 			pring->iotag_ctr = 0;
10406 			pring->iotag_max =
10407 			    (phba->cfg_hba_queue_depth * 2);
10408 			pring->fast_iotag = pring->iotag_max;
10409 			pring->num_mask = 0;
10410 			break;
10411 		case LPFC_EXTRA_RING:	/* ring 1 - EXTRA */
10412 			/* numCiocb and numRiocb are used in config_port */
10413 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
10414 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
10415 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10416 							SLI3_IOCB_CMD_SIZE :
10417 							SLI2_IOCB_CMD_SIZE;
10418 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10419 							SLI3_IOCB_RSP_SIZE :
10420 							SLI2_IOCB_RSP_SIZE;
10421 			pring->iotag_max = phba->cfg_hba_queue_depth;
10422 			pring->num_mask = 0;
10423 			break;
10424 		case LPFC_ELS_RING:	/* ring 2 - ELS / CT */
10425 			/* numCiocb and numRiocb are used in config_port */
10426 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
10427 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
10428 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10429 							SLI3_IOCB_CMD_SIZE :
10430 							SLI2_IOCB_CMD_SIZE;
10431 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10432 							SLI3_IOCB_RSP_SIZE :
10433 							SLI2_IOCB_RSP_SIZE;
10434 			pring->fast_iotag = 0;
10435 			pring->iotag_ctr = 0;
10436 			pring->iotag_max = 4096;
10437 			pring->lpfc_sli_rcv_async_status =
10438 				lpfc_sli_async_event_handler;
10439 			pring->num_mask = LPFC_MAX_RING_MASK;
10440 			pring->prt[0].profile = 0;	/* Mask 0 */
10441 			pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10442 			pring->prt[0].type = FC_TYPE_ELS;
10443 			pring->prt[0].lpfc_sli_rcv_unsol_event =
10444 			    lpfc_els_unsol_event;
10445 			pring->prt[1].profile = 0;	/* Mask 1 */
10446 			pring->prt[1].rctl = FC_RCTL_ELS_REP;
10447 			pring->prt[1].type = FC_TYPE_ELS;
10448 			pring->prt[1].lpfc_sli_rcv_unsol_event =
10449 			    lpfc_els_unsol_event;
10450 			pring->prt[2].profile = 0;	/* Mask 2 */
10451 			/* NameServer Inquiry */
10452 			pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10453 			/* NameServer */
10454 			pring->prt[2].type = FC_TYPE_CT;
10455 			pring->prt[2].lpfc_sli_rcv_unsol_event =
10456 			    lpfc_ct_unsol_event;
10457 			pring->prt[3].profile = 0;	/* Mask 3 */
10458 			/* NameServer response */
10459 			pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10460 			/* NameServer */
10461 			pring->prt[3].type = FC_TYPE_CT;
10462 			pring->prt[3].lpfc_sli_rcv_unsol_event =
10463 			    lpfc_ct_unsol_event;
10464 			break;
10465 		}
10466 		totiocbsize += (pring->sli.sli3.numCiocb *
10467 			pring->sli.sli3.sizeCiocb) +
10468 			(pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
10469 	}
10470 	if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
10471 		/* Too many cmd / rsp ring entries in SLI2 SLIM */
10472 		printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
10473 		       "SLI2 SLIM Data: x%x x%lx\n",
10474 		       phba->brd_no, totiocbsize,
10475 		       (unsigned long) MAX_SLIM_IOCB_SIZE);
10476 	}
10477 	if (phba->cfg_multi_ring_support == 2)
10478 		lpfc_extra_ring_setup(phba);
10479 
10480 	return 0;
10481 }
10482 
10483 /**
10484  * lpfc_sli4_queue_init - Queue initialization function
10485  * @phba: Pointer to HBA context object.
10486  *
10487  * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
10488  * ring. This function also initializes ring indices of each ring.
10489  * This function is called during the initialization of the SLI
10490  * interface of an HBA.
10491  * This function is called with no lock held and always returns
10492  * 1.
10493  **/
10494 void
10495 lpfc_sli4_queue_init(struct lpfc_hba *phba)
10496 {
10497 	struct lpfc_sli *psli;
10498 	struct lpfc_sli_ring *pring;
10499 	int i;
10500 
10501 	psli = &phba->sli;
10502 	spin_lock_irq(&phba->hbalock);
10503 	INIT_LIST_HEAD(&psli->mboxq);
10504 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10505 	/* Initialize list headers for txq and txcmplq as double linked lists */
10506 	for (i = 0; i < phba->cfg_hdw_queue; i++) {
10507 		pring = phba->sli4_hba.hdwq[i].fcp_wq->pring;
10508 		pring->flag = 0;
10509 		pring->ringno = LPFC_FCP_RING;
10510 		pring->txcmplq_cnt = 0;
10511 		INIT_LIST_HEAD(&pring->txq);
10512 		INIT_LIST_HEAD(&pring->txcmplq);
10513 		INIT_LIST_HEAD(&pring->iocb_continueq);
10514 		spin_lock_init(&pring->ring_lock);
10515 	}
10516 	pring = phba->sli4_hba.els_wq->pring;
10517 	pring->flag = 0;
10518 	pring->ringno = LPFC_ELS_RING;
10519 	pring->txcmplq_cnt = 0;
10520 	INIT_LIST_HEAD(&pring->txq);
10521 	INIT_LIST_HEAD(&pring->txcmplq);
10522 	INIT_LIST_HEAD(&pring->iocb_continueq);
10523 	spin_lock_init(&pring->ring_lock);
10524 
10525 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10526 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
10527 			pring = phba->sli4_hba.hdwq[i].nvme_wq->pring;
10528 			pring->flag = 0;
10529 			pring->ringno = LPFC_FCP_RING;
10530 			pring->txcmplq_cnt = 0;
10531 			INIT_LIST_HEAD(&pring->txq);
10532 			INIT_LIST_HEAD(&pring->txcmplq);
10533 			INIT_LIST_HEAD(&pring->iocb_continueq);
10534 			spin_lock_init(&pring->ring_lock);
10535 		}
10536 		pring = phba->sli4_hba.nvmels_wq->pring;
10537 		pring->flag = 0;
10538 		pring->ringno = LPFC_ELS_RING;
10539 		pring->txcmplq_cnt = 0;
10540 		INIT_LIST_HEAD(&pring->txq);
10541 		INIT_LIST_HEAD(&pring->txcmplq);
10542 		INIT_LIST_HEAD(&pring->iocb_continueq);
10543 		spin_lock_init(&pring->ring_lock);
10544 	}
10545 
10546 	spin_unlock_irq(&phba->hbalock);
10547 }
10548 
10549 /**
10550  * lpfc_sli_queue_init - Queue initialization function
10551  * @phba: Pointer to HBA context object.
10552  *
10553  * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
10554  * ring. This function also initializes ring indices of each ring.
10555  * This function is called during the initialization of the SLI
10556  * interface of an HBA.
10557  * This function is called with no lock held and always returns
10558  * 1.
10559  **/
10560 void
10561 lpfc_sli_queue_init(struct lpfc_hba *phba)
10562 {
10563 	struct lpfc_sli *psli;
10564 	struct lpfc_sli_ring *pring;
10565 	int i;
10566 
10567 	psli = &phba->sli;
10568 	spin_lock_irq(&phba->hbalock);
10569 	INIT_LIST_HEAD(&psli->mboxq);
10570 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10571 	/* Initialize list headers for txq and txcmplq as double linked lists */
10572 	for (i = 0; i < psli->num_rings; i++) {
10573 		pring = &psli->sli3_ring[i];
10574 		pring->ringno = i;
10575 		pring->sli.sli3.next_cmdidx  = 0;
10576 		pring->sli.sli3.local_getidx = 0;
10577 		pring->sli.sli3.cmdidx = 0;
10578 		INIT_LIST_HEAD(&pring->iocb_continueq);
10579 		INIT_LIST_HEAD(&pring->iocb_continue_saveq);
10580 		INIT_LIST_HEAD(&pring->postbufq);
10581 		pring->flag = 0;
10582 		INIT_LIST_HEAD(&pring->txq);
10583 		INIT_LIST_HEAD(&pring->txcmplq);
10584 		spin_lock_init(&pring->ring_lock);
10585 	}
10586 	spin_unlock_irq(&phba->hbalock);
10587 }
10588 
10589 /**
10590  * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
10591  * @phba: Pointer to HBA context object.
10592  *
10593  * This routine flushes the mailbox command subsystem. It will unconditionally
10594  * flush all the mailbox commands in the three possible stages in the mailbox
10595  * command sub-system: pending mailbox command queue; the outstanding mailbox
10596  * command; and completed mailbox command queue. It is caller's responsibility
10597  * to make sure that the driver is in the proper state to flush the mailbox
10598  * command sub-system. Namely, the posting of mailbox commands into the
10599  * pending mailbox command queue from the various clients must be stopped;
10600  * either the HBA is in a state that it will never works on the outstanding
10601  * mailbox command (such as in EEH or ERATT conditions) or the outstanding
10602  * mailbox command has been completed.
10603  **/
10604 static void
10605 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
10606 {
10607 	LIST_HEAD(completions);
10608 	struct lpfc_sli *psli = &phba->sli;
10609 	LPFC_MBOXQ_t *pmb;
10610 	unsigned long iflag;
10611 
10612 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10613 	local_bh_disable();
10614 
10615 	/* Flush all the mailbox commands in the mbox system */
10616 	spin_lock_irqsave(&phba->hbalock, iflag);
10617 
10618 	/* The pending mailbox command queue */
10619 	list_splice_init(&phba->sli.mboxq, &completions);
10620 	/* The outstanding active mailbox command */
10621 	if (psli->mbox_active) {
10622 		list_add_tail(&psli->mbox_active->list, &completions);
10623 		psli->mbox_active = NULL;
10624 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10625 	}
10626 	/* The completed mailbox command queue */
10627 	list_splice_init(&phba->sli.mboxq_cmpl, &completions);
10628 	spin_unlock_irqrestore(&phba->hbalock, iflag);
10629 
10630 	/* Enable softirqs again, done with phba->hbalock */
10631 	local_bh_enable();
10632 
10633 	/* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
10634 	while (!list_empty(&completions)) {
10635 		list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
10636 		pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
10637 		if (pmb->mbox_cmpl)
10638 			pmb->mbox_cmpl(phba, pmb);
10639 	}
10640 }
10641 
10642 /**
10643  * lpfc_sli_host_down - Vport cleanup function
10644  * @vport: Pointer to virtual port object.
10645  *
10646  * lpfc_sli_host_down is called to clean up the resources
10647  * associated with a vport before destroying virtual
10648  * port data structures.
10649  * This function does following operations:
10650  * - Free discovery resources associated with this virtual
10651  *   port.
10652  * - Free iocbs associated with this virtual port in
10653  *   the txq.
10654  * - Send abort for all iocb commands associated with this
10655  *   vport in txcmplq.
10656  *
10657  * This function is called with no lock held and always returns 1.
10658  **/
10659 int
10660 lpfc_sli_host_down(struct lpfc_vport *vport)
10661 {
10662 	LIST_HEAD(completions);
10663 	struct lpfc_hba *phba = vport->phba;
10664 	struct lpfc_sli *psli = &phba->sli;
10665 	struct lpfc_queue *qp = NULL;
10666 	struct lpfc_sli_ring *pring;
10667 	struct lpfc_iocbq *iocb, *next_iocb;
10668 	int i;
10669 	unsigned long flags = 0;
10670 	uint16_t prev_pring_flag;
10671 
10672 	lpfc_cleanup_discovery_resources(vport);
10673 
10674 	spin_lock_irqsave(&phba->hbalock, flags);
10675 
10676 	/*
10677 	 * Error everything on the txq since these iocbs
10678 	 * have not been given to the FW yet.
10679 	 * Also issue ABTS for everything on the txcmplq
10680 	 */
10681 	if (phba->sli_rev != LPFC_SLI_REV4) {
10682 		for (i = 0; i < psli->num_rings; i++) {
10683 			pring = &psli->sli3_ring[i];
10684 			prev_pring_flag = pring->flag;
10685 			/* Only slow rings */
10686 			if (pring->ringno == LPFC_ELS_RING) {
10687 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10688 				/* Set the lpfc data pending flag */
10689 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10690 			}
10691 			list_for_each_entry_safe(iocb, next_iocb,
10692 						 &pring->txq, list) {
10693 				if (iocb->vport != vport)
10694 					continue;
10695 				list_move_tail(&iocb->list, &completions);
10696 			}
10697 			list_for_each_entry_safe(iocb, next_iocb,
10698 						 &pring->txcmplq, list) {
10699 				if (iocb->vport != vport)
10700 					continue;
10701 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10702 			}
10703 			pring->flag = prev_pring_flag;
10704 		}
10705 	} else {
10706 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10707 			pring = qp->pring;
10708 			if (!pring)
10709 				continue;
10710 			if (pring == phba->sli4_hba.els_wq->pring) {
10711 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10712 				/* Set the lpfc data pending flag */
10713 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10714 			}
10715 			prev_pring_flag = pring->flag;
10716 			spin_lock_irq(&pring->ring_lock);
10717 			list_for_each_entry_safe(iocb, next_iocb,
10718 						 &pring->txq, list) {
10719 				if (iocb->vport != vport)
10720 					continue;
10721 				list_move_tail(&iocb->list, &completions);
10722 			}
10723 			spin_unlock_irq(&pring->ring_lock);
10724 			list_for_each_entry_safe(iocb, next_iocb,
10725 						 &pring->txcmplq, list) {
10726 				if (iocb->vport != vport)
10727 					continue;
10728 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10729 			}
10730 			pring->flag = prev_pring_flag;
10731 		}
10732 	}
10733 	spin_unlock_irqrestore(&phba->hbalock, flags);
10734 
10735 	/* Cancel all the IOCBs from the completions list */
10736 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10737 			      IOERR_SLI_DOWN);
10738 	return 1;
10739 }
10740 
10741 /**
10742  * lpfc_sli_hba_down - Resource cleanup function for the HBA
10743  * @phba: Pointer to HBA context object.
10744  *
10745  * This function cleans up all iocb, buffers, mailbox commands
10746  * while shutting down the HBA. This function is called with no
10747  * lock held and always returns 1.
10748  * This function does the following to cleanup driver resources:
10749  * - Free discovery resources for each virtual port
10750  * - Cleanup any pending fabric iocbs
10751  * - Iterate through the iocb txq and free each entry
10752  *   in the list.
10753  * - Free up any buffer posted to the HBA
10754  * - Free mailbox commands in the mailbox queue.
10755  **/
10756 int
10757 lpfc_sli_hba_down(struct lpfc_hba *phba)
10758 {
10759 	LIST_HEAD(completions);
10760 	struct lpfc_sli *psli = &phba->sli;
10761 	struct lpfc_queue *qp = NULL;
10762 	struct lpfc_sli_ring *pring;
10763 	struct lpfc_dmabuf *buf_ptr;
10764 	unsigned long flags = 0;
10765 	int i;
10766 
10767 	/* Shutdown the mailbox command sub-system */
10768 	lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
10769 
10770 	lpfc_hba_down_prep(phba);
10771 
10772 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10773 	local_bh_disable();
10774 
10775 	lpfc_fabric_abort_hba(phba);
10776 
10777 	spin_lock_irqsave(&phba->hbalock, flags);
10778 
10779 	/*
10780 	 * Error everything on the txq since these iocbs
10781 	 * have not been given to the FW yet.
10782 	 */
10783 	if (phba->sli_rev != LPFC_SLI_REV4) {
10784 		for (i = 0; i < psli->num_rings; i++) {
10785 			pring = &psli->sli3_ring[i];
10786 			/* Only slow rings */
10787 			if (pring->ringno == LPFC_ELS_RING) {
10788 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10789 				/* Set the lpfc data pending flag */
10790 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10791 			}
10792 			list_splice_init(&pring->txq, &completions);
10793 		}
10794 	} else {
10795 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10796 			pring = qp->pring;
10797 			if (!pring)
10798 				continue;
10799 			spin_lock_irq(&pring->ring_lock);
10800 			list_splice_init(&pring->txq, &completions);
10801 			spin_unlock_irq(&pring->ring_lock);
10802 			if (pring == phba->sli4_hba.els_wq->pring) {
10803 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10804 				/* Set the lpfc data pending flag */
10805 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10806 			}
10807 		}
10808 	}
10809 	spin_unlock_irqrestore(&phba->hbalock, flags);
10810 
10811 	/* Cancel all the IOCBs from the completions list */
10812 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10813 			      IOERR_SLI_DOWN);
10814 
10815 	spin_lock_irqsave(&phba->hbalock, flags);
10816 	list_splice_init(&phba->elsbuf, &completions);
10817 	phba->elsbuf_cnt = 0;
10818 	phba->elsbuf_prev_cnt = 0;
10819 	spin_unlock_irqrestore(&phba->hbalock, flags);
10820 
10821 	while (!list_empty(&completions)) {
10822 		list_remove_head(&completions, buf_ptr,
10823 			struct lpfc_dmabuf, list);
10824 		lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
10825 		kfree(buf_ptr);
10826 	}
10827 
10828 	/* Enable softirqs again, done with phba->hbalock */
10829 	local_bh_enable();
10830 
10831 	/* Return any active mbox cmds */
10832 	del_timer_sync(&psli->mbox_tmo);
10833 
10834 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
10835 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
10836 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
10837 
10838 	return 1;
10839 }
10840 
10841 /**
10842  * lpfc_sli_pcimem_bcopy - SLI memory copy function
10843  * @srcp: Source memory pointer.
10844  * @destp: Destination memory pointer.
10845  * @cnt: Number of words required to be copied.
10846  *
10847  * This function is used for copying data between driver memory
10848  * and the SLI memory. This function also changes the endianness
10849  * of each word if native endianness is different from SLI
10850  * endianness. This function can be called with or without
10851  * lock.
10852  **/
10853 void
10854 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
10855 {
10856 	uint32_t *src = srcp;
10857 	uint32_t *dest = destp;
10858 	uint32_t ldata;
10859 	int i;
10860 
10861 	for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
10862 		ldata = *src;
10863 		ldata = le32_to_cpu(ldata);
10864 		*dest = ldata;
10865 		src++;
10866 		dest++;
10867 	}
10868 }
10869 
10870 
10871 /**
10872  * lpfc_sli_bemem_bcopy - SLI memory copy function
10873  * @srcp: Source memory pointer.
10874  * @destp: Destination memory pointer.
10875  * @cnt: Number of words required to be copied.
10876  *
10877  * This function is used for copying data between a data structure
10878  * with big endian representation to local endianness.
10879  * This function can be called with or without lock.
10880  **/
10881 void
10882 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
10883 {
10884 	uint32_t *src = srcp;
10885 	uint32_t *dest = destp;
10886 	uint32_t ldata;
10887 	int i;
10888 
10889 	for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
10890 		ldata = *src;
10891 		ldata = be32_to_cpu(ldata);
10892 		*dest = ldata;
10893 		src++;
10894 		dest++;
10895 	}
10896 }
10897 
10898 /**
10899  * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
10900  * @phba: Pointer to HBA context object.
10901  * @pring: Pointer to driver SLI ring object.
10902  * @mp: Pointer to driver buffer object.
10903  *
10904  * This function is called with no lock held.
10905  * It always return zero after adding the buffer to the postbufq
10906  * buffer list.
10907  **/
10908 int
10909 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10910 			 struct lpfc_dmabuf *mp)
10911 {
10912 	/* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
10913 	   later */
10914 	spin_lock_irq(&phba->hbalock);
10915 	list_add_tail(&mp->list, &pring->postbufq);
10916 	pring->postbufq_cnt++;
10917 	spin_unlock_irq(&phba->hbalock);
10918 	return 0;
10919 }
10920 
10921 /**
10922  * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
10923  * @phba: Pointer to HBA context object.
10924  *
10925  * When HBQ is enabled, buffers are searched based on tags. This function
10926  * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
10927  * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
10928  * does not conflict with tags of buffer posted for unsolicited events.
10929  * The function returns the allocated tag. The function is called with
10930  * no locks held.
10931  **/
10932 uint32_t
10933 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
10934 {
10935 	spin_lock_irq(&phba->hbalock);
10936 	phba->buffer_tag_count++;
10937 	/*
10938 	 * Always set the QUE_BUFTAG_BIT to distiguish between
10939 	 * a tag assigned by HBQ.
10940 	 */
10941 	phba->buffer_tag_count |= QUE_BUFTAG_BIT;
10942 	spin_unlock_irq(&phba->hbalock);
10943 	return phba->buffer_tag_count;
10944 }
10945 
10946 /**
10947  * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
10948  * @phba: Pointer to HBA context object.
10949  * @pring: Pointer to driver SLI ring object.
10950  * @tag: Buffer tag.
10951  *
10952  * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
10953  * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
10954  * iocb is posted to the response ring with the tag of the buffer.
10955  * This function searches the pring->postbufq list using the tag
10956  * to find buffer associated with CMD_IOCB_RET_XRI64_CX
10957  * iocb. If the buffer is found then lpfc_dmabuf object of the
10958  * buffer is returned to the caller else NULL is returned.
10959  * This function is called with no lock held.
10960  **/
10961 struct lpfc_dmabuf *
10962 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10963 			uint32_t tag)
10964 {
10965 	struct lpfc_dmabuf *mp, *next_mp;
10966 	struct list_head *slp = &pring->postbufq;
10967 
10968 	/* Search postbufq, from the beginning, looking for a match on tag */
10969 	spin_lock_irq(&phba->hbalock);
10970 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10971 		if (mp->buffer_tag == tag) {
10972 			list_del_init(&mp->list);
10973 			pring->postbufq_cnt--;
10974 			spin_unlock_irq(&phba->hbalock);
10975 			return mp;
10976 		}
10977 	}
10978 
10979 	spin_unlock_irq(&phba->hbalock);
10980 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10981 			"0402 Cannot find virtual addr for buffer tag on "
10982 			"ring %d Data x%lx x%p x%p x%x\n",
10983 			pring->ringno, (unsigned long) tag,
10984 			slp->next, slp->prev, pring->postbufq_cnt);
10985 
10986 	return NULL;
10987 }
10988 
10989 /**
10990  * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
10991  * @phba: Pointer to HBA context object.
10992  * @pring: Pointer to driver SLI ring object.
10993  * @phys: DMA address of the buffer.
10994  *
10995  * This function searches the buffer list using the dma_address
10996  * of unsolicited event to find the driver's lpfc_dmabuf object
10997  * corresponding to the dma_address. The function returns the
10998  * lpfc_dmabuf object if a buffer is found else it returns NULL.
10999  * This function is called by the ct and els unsolicited event
11000  * handlers to get the buffer associated with the unsolicited
11001  * event.
11002  *
11003  * This function is called with no lock held.
11004  **/
11005 struct lpfc_dmabuf *
11006 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11007 			 dma_addr_t phys)
11008 {
11009 	struct lpfc_dmabuf *mp, *next_mp;
11010 	struct list_head *slp = &pring->postbufq;
11011 
11012 	/* Search postbufq, from the beginning, looking for a match on phys */
11013 	spin_lock_irq(&phba->hbalock);
11014 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11015 		if (mp->phys == phys) {
11016 			list_del_init(&mp->list);
11017 			pring->postbufq_cnt--;
11018 			spin_unlock_irq(&phba->hbalock);
11019 			return mp;
11020 		}
11021 	}
11022 
11023 	spin_unlock_irq(&phba->hbalock);
11024 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11025 			"0410 Cannot find virtual addr for mapped buf on "
11026 			"ring %d Data x%llx x%p x%p x%x\n",
11027 			pring->ringno, (unsigned long long)phys,
11028 			slp->next, slp->prev, pring->postbufq_cnt);
11029 	return NULL;
11030 }
11031 
11032 /**
11033  * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
11034  * @phba: Pointer to HBA context object.
11035  * @cmdiocb: Pointer to driver command iocb object.
11036  * @rspiocb: Pointer to driver response iocb object.
11037  *
11038  * This function is the completion handler for the abort iocbs for
11039  * ELS commands. This function is called from the ELS ring event
11040  * handler with no lock held. This function frees memory resources
11041  * associated with the abort iocb.
11042  **/
11043 static void
11044 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11045 			struct lpfc_iocbq *rspiocb)
11046 {
11047 	IOCB_t *irsp = &rspiocb->iocb;
11048 	uint16_t abort_iotag, abort_context;
11049 	struct lpfc_iocbq *abort_iocb = NULL;
11050 
11051 	if (irsp->ulpStatus) {
11052 
11053 		/*
11054 		 * Assume that the port already completed and returned, or
11055 		 * will return the iocb. Just Log the message.
11056 		 */
11057 		abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
11058 		abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
11059 
11060 		spin_lock_irq(&phba->hbalock);
11061 		if (phba->sli_rev < LPFC_SLI_REV4) {
11062 			if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
11063 			    irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
11064 			    irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
11065 				spin_unlock_irq(&phba->hbalock);
11066 				goto release_iocb;
11067 			}
11068 			if (abort_iotag != 0 &&
11069 				abort_iotag <= phba->sli.last_iotag)
11070 				abort_iocb =
11071 					phba->sli.iocbq_lookup[abort_iotag];
11072 		} else
11073 			/* For sli4 the abort_tag is the XRI,
11074 			 * so the abort routine puts the iotag  of the iocb
11075 			 * being aborted in the context field of the abort
11076 			 * IOCB.
11077 			 */
11078 			abort_iocb = phba->sli.iocbq_lookup[abort_context];
11079 
11080 		lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
11081 				"0327 Cannot abort els iocb %p "
11082 				"with tag %x context %x, abort status %x, "
11083 				"abort code %x\n",
11084 				abort_iocb, abort_iotag, abort_context,
11085 				irsp->ulpStatus, irsp->un.ulpWord[4]);
11086 
11087 		spin_unlock_irq(&phba->hbalock);
11088 	}
11089 release_iocb:
11090 	lpfc_sli_release_iocbq(phba, cmdiocb);
11091 	return;
11092 }
11093 
11094 /**
11095  * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
11096  * @phba: Pointer to HBA context object.
11097  * @cmdiocb: Pointer to driver command iocb object.
11098  * @rspiocb: Pointer to driver response iocb object.
11099  *
11100  * The function is called from SLI ring event handler with no
11101  * lock held. This function is the completion handler for ELS commands
11102  * which are aborted. The function frees memory resources used for
11103  * the aborted ELS commands.
11104  **/
11105 static void
11106 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11107 		     struct lpfc_iocbq *rspiocb)
11108 {
11109 	IOCB_t *irsp = &rspiocb->iocb;
11110 
11111 	/* ELS cmd tag <ulpIoTag> completes */
11112 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11113 			"0139 Ignoring ELS cmd tag x%x completion Data: "
11114 			"x%x x%x x%x\n",
11115 			irsp->ulpIoTag, irsp->ulpStatus,
11116 			irsp->un.ulpWord[4], irsp->ulpTimeout);
11117 	if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
11118 		lpfc_ct_free_iocb(phba, cmdiocb);
11119 	else
11120 		lpfc_els_free_iocb(phba, cmdiocb);
11121 	return;
11122 }
11123 
11124 /**
11125  * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
11126  * @phba: Pointer to HBA context object.
11127  * @pring: Pointer to driver SLI ring object.
11128  * @cmdiocb: Pointer to driver command iocb object.
11129  *
11130  * This function issues an abort iocb for the provided command iocb down to
11131  * the port. Other than the case the outstanding command iocb is an abort
11132  * request, this function issues abort out unconditionally. This function is
11133  * called with hbalock held. The function returns 0 when it fails due to
11134  * memory allocation failure or when the command iocb is an abort request.
11135  **/
11136 static int
11137 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11138 			   struct lpfc_iocbq *cmdiocb)
11139 {
11140 	struct lpfc_vport *vport = cmdiocb->vport;
11141 	struct lpfc_iocbq *abtsiocbp;
11142 	IOCB_t *icmd = NULL;
11143 	IOCB_t *iabt = NULL;
11144 	int retval;
11145 	unsigned long iflags;
11146 	struct lpfc_nodelist *ndlp;
11147 
11148 	lockdep_assert_held(&phba->hbalock);
11149 
11150 	/*
11151 	 * There are certain command types we don't want to abort.  And we
11152 	 * don't want to abort commands that are already in the process of
11153 	 * being aborted.
11154 	 */
11155 	icmd = &cmdiocb->iocb;
11156 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11157 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11158 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11159 		return 0;
11160 
11161 	/* issue ABTS for this IOCB based on iotag */
11162 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
11163 	if (abtsiocbp == NULL)
11164 		return 0;
11165 
11166 	/* This signals the response to set the correct status
11167 	 * before calling the completion handler
11168 	 */
11169 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11170 
11171 	iabt = &abtsiocbp->iocb;
11172 	iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
11173 	iabt->un.acxri.abortContextTag = icmd->ulpContext;
11174 	if (phba->sli_rev == LPFC_SLI_REV4) {
11175 		iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
11176 		iabt->un.acxri.abortContextTag = cmdiocb->iotag;
11177 	} else {
11178 		iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
11179 		if (pring->ringno == LPFC_ELS_RING) {
11180 			ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
11181 			iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
11182 		}
11183 	}
11184 	iabt->ulpLe = 1;
11185 	iabt->ulpClass = icmd->ulpClass;
11186 
11187 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11188 	abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
11189 	if (cmdiocb->iocb_flag & LPFC_IO_FCP)
11190 		abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
11191 	if (cmdiocb->iocb_flag & LPFC_IO_FOF)
11192 		abtsiocbp->iocb_flag |= LPFC_IO_FOF;
11193 
11194 	if (phba->link_state >= LPFC_LINK_UP)
11195 		iabt->ulpCommand = CMD_ABORT_XRI_CN;
11196 	else
11197 		iabt->ulpCommand = CMD_CLOSE_XRI_CN;
11198 
11199 	abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
11200 	abtsiocbp->vport = vport;
11201 
11202 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
11203 			 "0339 Abort xri x%x, original iotag x%x, "
11204 			 "abort cmd iotag x%x\n",
11205 			 iabt->un.acxri.abortIoTag,
11206 			 iabt->un.acxri.abortContextTag,
11207 			 abtsiocbp->iotag);
11208 
11209 	if (phba->sli_rev == LPFC_SLI_REV4) {
11210 		pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
11211 		if (unlikely(pring == NULL))
11212 			return 0;
11213 		/* Note: both hbalock and ring_lock need to be set here */
11214 		spin_lock_irqsave(&pring->ring_lock, iflags);
11215 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11216 			abtsiocbp, 0);
11217 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
11218 	} else {
11219 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11220 			abtsiocbp, 0);
11221 	}
11222 
11223 	if (retval)
11224 		__lpfc_sli_release_iocbq(phba, abtsiocbp);
11225 
11226 	/*
11227 	 * Caller to this routine should check for IOCB_ERROR
11228 	 * and handle it properly.  This routine no longer removes
11229 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11230 	 */
11231 	return retval;
11232 }
11233 
11234 /**
11235  * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
11236  * @phba: Pointer to HBA context object.
11237  * @pring: Pointer to driver SLI ring object.
11238  * @cmdiocb: Pointer to driver command iocb object.
11239  *
11240  * This function issues an abort iocb for the provided command iocb. In case
11241  * of unloading, the abort iocb will not be issued to commands on the ELS
11242  * ring. Instead, the callback function shall be changed to those commands
11243  * so that nothing happens when them finishes. This function is called with
11244  * hbalock held. The function returns 0 when the command iocb is an abort
11245  * request.
11246  **/
11247 int
11248 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11249 			   struct lpfc_iocbq *cmdiocb)
11250 {
11251 	struct lpfc_vport *vport = cmdiocb->vport;
11252 	int retval = IOCB_ERROR;
11253 	IOCB_t *icmd = NULL;
11254 
11255 	lockdep_assert_held(&phba->hbalock);
11256 
11257 	/*
11258 	 * There are certain command types we don't want to abort.  And we
11259 	 * don't want to abort commands that are already in the process of
11260 	 * being aborted.
11261 	 */
11262 	icmd = &cmdiocb->iocb;
11263 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11264 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11265 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11266 		return 0;
11267 
11268 	if (!pring) {
11269 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11270 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11271 		else
11272 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11273 		goto abort_iotag_exit;
11274 	}
11275 
11276 	/*
11277 	 * If we're unloading, don't abort iocb on the ELS ring, but change
11278 	 * the callback so that nothing happens when it finishes.
11279 	 */
11280 	if ((vport->load_flag & FC_UNLOADING) &&
11281 	    (pring->ringno == LPFC_ELS_RING)) {
11282 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11283 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11284 		else
11285 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11286 		goto abort_iotag_exit;
11287 	}
11288 
11289 	/* Now, we try to issue the abort to the cmdiocb out */
11290 	retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
11291 
11292 abort_iotag_exit:
11293 	/*
11294 	 * Caller to this routine should check for IOCB_ERROR
11295 	 * and handle it properly.  This routine no longer removes
11296 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11297 	 */
11298 	return retval;
11299 }
11300 
11301 /**
11302  * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
11303  * @phba: pointer to lpfc HBA data structure.
11304  *
11305  * This routine will abort all pending and outstanding iocbs to an HBA.
11306  **/
11307 void
11308 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
11309 {
11310 	struct lpfc_sli *psli = &phba->sli;
11311 	struct lpfc_sli_ring *pring;
11312 	struct lpfc_queue *qp = NULL;
11313 	int i;
11314 
11315 	if (phba->sli_rev != LPFC_SLI_REV4) {
11316 		for (i = 0; i < psli->num_rings; i++) {
11317 			pring = &psli->sli3_ring[i];
11318 			lpfc_sli_abort_iocb_ring(phba, pring);
11319 		}
11320 		return;
11321 	}
11322 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11323 		pring = qp->pring;
11324 		if (!pring)
11325 			continue;
11326 		lpfc_sli_abort_iocb_ring(phba, pring);
11327 	}
11328 }
11329 
11330 /**
11331  * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
11332  * @iocbq: Pointer to driver iocb object.
11333  * @vport: Pointer to driver virtual port object.
11334  * @tgt_id: SCSI ID of the target.
11335  * @lun_id: LUN ID of the scsi device.
11336  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
11337  *
11338  * This function acts as an iocb filter for functions which abort or count
11339  * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
11340  * 0 if the filtering criteria is met for the given iocb and will return
11341  * 1 if the filtering criteria is not met.
11342  * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
11343  * given iocb is for the SCSI device specified by vport, tgt_id and
11344  * lun_id parameter.
11345  * If ctx_cmd == LPFC_CTX_TGT,  the function returns 0 only if the
11346  * given iocb is for the SCSI target specified by vport and tgt_id
11347  * parameters.
11348  * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
11349  * given iocb is for the SCSI host associated with the given vport.
11350  * This function is called with no locks held.
11351  **/
11352 static int
11353 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
11354 			   uint16_t tgt_id, uint64_t lun_id,
11355 			   lpfc_ctx_cmd ctx_cmd)
11356 {
11357 	struct lpfc_io_buf *lpfc_cmd;
11358 	int rc = 1;
11359 
11360 	if (iocbq->vport != vport)
11361 		return rc;
11362 
11363 	if (!(iocbq->iocb_flag &  LPFC_IO_FCP) ||
11364 	    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ))
11365 		return rc;
11366 
11367 	lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11368 
11369 	if (lpfc_cmd->pCmd == NULL)
11370 		return rc;
11371 
11372 	switch (ctx_cmd) {
11373 	case LPFC_CTX_LUN:
11374 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11375 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
11376 		    (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
11377 			rc = 0;
11378 		break;
11379 	case LPFC_CTX_TGT:
11380 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11381 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
11382 			rc = 0;
11383 		break;
11384 	case LPFC_CTX_HOST:
11385 		rc = 0;
11386 		break;
11387 	default:
11388 		printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
11389 			__func__, ctx_cmd);
11390 		break;
11391 	}
11392 
11393 	return rc;
11394 }
11395 
11396 /**
11397  * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
11398  * @vport: Pointer to virtual port.
11399  * @tgt_id: SCSI ID of the target.
11400  * @lun_id: LUN ID of the scsi device.
11401  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11402  *
11403  * This function returns number of FCP commands pending for the vport.
11404  * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
11405  * commands pending on the vport associated with SCSI device specified
11406  * by tgt_id and lun_id parameters.
11407  * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
11408  * commands pending on the vport associated with SCSI target specified
11409  * by tgt_id parameter.
11410  * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
11411  * commands pending on the vport.
11412  * This function returns the number of iocbs which satisfy the filter.
11413  * This function is called without any lock held.
11414  **/
11415 int
11416 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
11417 		  lpfc_ctx_cmd ctx_cmd)
11418 {
11419 	struct lpfc_hba *phba = vport->phba;
11420 	struct lpfc_iocbq *iocbq;
11421 	int sum, i;
11422 
11423 	spin_lock_irq(&phba->hbalock);
11424 	for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
11425 		iocbq = phba->sli.iocbq_lookup[i];
11426 
11427 		if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
11428 						ctx_cmd) == 0)
11429 			sum++;
11430 	}
11431 	spin_unlock_irq(&phba->hbalock);
11432 
11433 	return sum;
11434 }
11435 
11436 /**
11437  * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11438  * @phba: Pointer to HBA context object
11439  * @cmdiocb: Pointer to command iocb object.
11440  * @rspiocb: Pointer to response iocb object.
11441  *
11442  * This function is called when an aborted FCP iocb completes. This
11443  * function is called by the ring event handler with no lock held.
11444  * This function frees the iocb.
11445  **/
11446 void
11447 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11448 			struct lpfc_iocbq *rspiocb)
11449 {
11450 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11451 			"3096 ABORT_XRI_CN completing on rpi x%x "
11452 			"original iotag x%x, abort cmd iotag x%x "
11453 			"status 0x%x, reason 0x%x\n",
11454 			cmdiocb->iocb.un.acxri.abortContextTag,
11455 			cmdiocb->iocb.un.acxri.abortIoTag,
11456 			cmdiocb->iotag, rspiocb->iocb.ulpStatus,
11457 			rspiocb->iocb.un.ulpWord[4]);
11458 	lpfc_sli_release_iocbq(phba, cmdiocb);
11459 	return;
11460 }
11461 
11462 /**
11463  * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
11464  * @vport: Pointer to virtual port.
11465  * @pring: Pointer to driver SLI ring object.
11466  * @tgt_id: SCSI ID of the target.
11467  * @lun_id: LUN ID of the scsi device.
11468  * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11469  *
11470  * This function sends an abort command for every SCSI command
11471  * associated with the given virtual port pending on the ring
11472  * filtered by lpfc_sli_validate_fcp_iocb function.
11473  * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
11474  * FCP iocbs associated with lun specified by tgt_id and lun_id
11475  * parameters
11476  * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
11477  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11478  * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
11479  * FCP iocbs associated with virtual port.
11480  * This function returns number of iocbs it failed to abort.
11481  * This function is called with no locks held.
11482  **/
11483 int
11484 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11485 		    uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
11486 {
11487 	struct lpfc_hba *phba = vport->phba;
11488 	struct lpfc_iocbq *iocbq;
11489 	struct lpfc_iocbq *abtsiocb;
11490 	struct lpfc_sli_ring *pring_s4;
11491 	IOCB_t *cmd = NULL;
11492 	int errcnt = 0, ret_val = 0;
11493 	int i;
11494 
11495 	/* all I/Os are in process of being flushed */
11496 	if (phba->hba_flag & HBA_FCP_IOQ_FLUSH)
11497 		return errcnt;
11498 
11499 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11500 		iocbq = phba->sli.iocbq_lookup[i];
11501 
11502 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11503 					       abort_cmd) != 0)
11504 			continue;
11505 
11506 		/*
11507 		 * If the iocbq is already being aborted, don't take a second
11508 		 * action, but do count it.
11509 		 */
11510 		if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11511 			continue;
11512 
11513 		/* issue ABTS for this IOCB based on iotag */
11514 		abtsiocb = lpfc_sli_get_iocbq(phba);
11515 		if (abtsiocb == NULL) {
11516 			errcnt++;
11517 			continue;
11518 		}
11519 
11520 		/* indicate the IO is being aborted by the driver. */
11521 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11522 
11523 		cmd = &iocbq->iocb;
11524 		abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11525 		abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
11526 		if (phba->sli_rev == LPFC_SLI_REV4)
11527 			abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
11528 		else
11529 			abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
11530 		abtsiocb->iocb.ulpLe = 1;
11531 		abtsiocb->iocb.ulpClass = cmd->ulpClass;
11532 		abtsiocb->vport = vport;
11533 
11534 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11535 		abtsiocb->hba_wqidx = iocbq->hba_wqidx;
11536 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11537 			abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
11538 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11539 			abtsiocb->iocb_flag |= LPFC_IO_FOF;
11540 
11541 		if (lpfc_is_link_up(phba))
11542 			abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11543 		else
11544 			abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11545 
11546 		/* Setup callback routine and issue the command. */
11547 		abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11548 		if (phba->sli_rev == LPFC_SLI_REV4) {
11549 			pring_s4 = lpfc_sli4_calc_ring(phba, iocbq);
11550 			if (!pring_s4)
11551 				continue;
11552 			ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11553 						      abtsiocb, 0);
11554 		} else
11555 			ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
11556 						      abtsiocb, 0);
11557 		if (ret_val == IOCB_ERROR) {
11558 			lpfc_sli_release_iocbq(phba, abtsiocb);
11559 			errcnt++;
11560 			continue;
11561 		}
11562 	}
11563 
11564 	return errcnt;
11565 }
11566 
11567 /**
11568  * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
11569  * @vport: Pointer to virtual port.
11570  * @pring: Pointer to driver SLI ring object.
11571  * @tgt_id: SCSI ID of the target.
11572  * @lun_id: LUN ID of the scsi device.
11573  * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11574  *
11575  * This function sends an abort command for every SCSI command
11576  * associated with the given virtual port pending on the ring
11577  * filtered by lpfc_sli_validate_fcp_iocb function.
11578  * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
11579  * FCP iocbs associated with lun specified by tgt_id and lun_id
11580  * parameters
11581  * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
11582  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11583  * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
11584  * FCP iocbs associated with virtual port.
11585  * This function returns number of iocbs it aborted .
11586  * This function is called with no locks held right after a taskmgmt
11587  * command is sent.
11588  **/
11589 int
11590 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11591 			uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
11592 {
11593 	struct lpfc_hba *phba = vport->phba;
11594 	struct lpfc_io_buf *lpfc_cmd;
11595 	struct lpfc_iocbq *abtsiocbq;
11596 	struct lpfc_nodelist *ndlp;
11597 	struct lpfc_iocbq *iocbq;
11598 	IOCB_t *icmd;
11599 	int sum, i, ret_val;
11600 	unsigned long iflags;
11601 	struct lpfc_sli_ring *pring_s4 = NULL;
11602 
11603 	spin_lock_irqsave(&phba->hbalock, iflags);
11604 
11605 	/* all I/Os are in process of being flushed */
11606 	if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) {
11607 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11608 		return 0;
11609 	}
11610 	sum = 0;
11611 
11612 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11613 		iocbq = phba->sli.iocbq_lookup[i];
11614 
11615 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11616 					       cmd) != 0)
11617 			continue;
11618 
11619 		/* Guard against IO completion being called at same time */
11620 		lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11621 		spin_lock(&lpfc_cmd->buf_lock);
11622 
11623 		if (!lpfc_cmd->pCmd) {
11624 			spin_unlock(&lpfc_cmd->buf_lock);
11625 			continue;
11626 		}
11627 
11628 		if (phba->sli_rev == LPFC_SLI_REV4) {
11629 			pring_s4 =
11630 			    phba->sli4_hba.hdwq[iocbq->hba_wqidx].fcp_wq->pring;
11631 			if (!pring_s4) {
11632 				spin_unlock(&lpfc_cmd->buf_lock);
11633 				continue;
11634 			}
11635 			/* Note: both hbalock and ring_lock must be set here */
11636 			spin_lock(&pring_s4->ring_lock);
11637 		}
11638 
11639 		/*
11640 		 * If the iocbq is already being aborted, don't take a second
11641 		 * action, but do count it.
11642 		 */
11643 		if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) ||
11644 		    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) {
11645 			if (phba->sli_rev == LPFC_SLI_REV4)
11646 				spin_unlock(&pring_s4->ring_lock);
11647 			spin_unlock(&lpfc_cmd->buf_lock);
11648 			continue;
11649 		}
11650 
11651 		/* issue ABTS for this IOCB based on iotag */
11652 		abtsiocbq = __lpfc_sli_get_iocbq(phba);
11653 		if (!abtsiocbq) {
11654 			if (phba->sli_rev == LPFC_SLI_REV4)
11655 				spin_unlock(&pring_s4->ring_lock);
11656 			spin_unlock(&lpfc_cmd->buf_lock);
11657 			continue;
11658 		}
11659 
11660 		icmd = &iocbq->iocb;
11661 		abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11662 		abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
11663 		if (phba->sli_rev == LPFC_SLI_REV4)
11664 			abtsiocbq->iocb.un.acxri.abortIoTag =
11665 							 iocbq->sli4_xritag;
11666 		else
11667 			abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
11668 		abtsiocbq->iocb.ulpLe = 1;
11669 		abtsiocbq->iocb.ulpClass = icmd->ulpClass;
11670 		abtsiocbq->vport = vport;
11671 
11672 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11673 		abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
11674 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11675 			abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
11676 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11677 			abtsiocbq->iocb_flag |= LPFC_IO_FOF;
11678 
11679 		ndlp = lpfc_cmd->rdata->pnode;
11680 
11681 		if (lpfc_is_link_up(phba) &&
11682 		    (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
11683 			abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11684 		else
11685 			abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11686 
11687 		/* Setup callback routine and issue the command. */
11688 		abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11689 
11690 		/*
11691 		 * Indicate the IO is being aborted by the driver and set
11692 		 * the caller's flag into the aborted IO.
11693 		 */
11694 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11695 
11696 		if (phba->sli_rev == LPFC_SLI_REV4) {
11697 			ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11698 							abtsiocbq, 0);
11699 			spin_unlock(&pring_s4->ring_lock);
11700 		} else {
11701 			ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
11702 							abtsiocbq, 0);
11703 		}
11704 
11705 		spin_unlock(&lpfc_cmd->buf_lock);
11706 
11707 		if (ret_val == IOCB_ERROR)
11708 			__lpfc_sli_release_iocbq(phba, abtsiocbq);
11709 		else
11710 			sum++;
11711 	}
11712 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11713 	return sum;
11714 }
11715 
11716 /**
11717  * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
11718  * @phba: Pointer to HBA context object.
11719  * @cmdiocbq: Pointer to command iocb.
11720  * @rspiocbq: Pointer to response iocb.
11721  *
11722  * This function is the completion handler for iocbs issued using
11723  * lpfc_sli_issue_iocb_wait function. This function is called by the
11724  * ring event handler function without any lock held. This function
11725  * can be called from both worker thread context and interrupt
11726  * context. This function also can be called from other thread which
11727  * cleans up the SLI layer objects.
11728  * This function copy the contents of the response iocb to the
11729  * response iocb memory object provided by the caller of
11730  * lpfc_sli_issue_iocb_wait and then wakes up the thread which
11731  * sleeps for the iocb completion.
11732  **/
11733 static void
11734 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
11735 			struct lpfc_iocbq *cmdiocbq,
11736 			struct lpfc_iocbq *rspiocbq)
11737 {
11738 	wait_queue_head_t *pdone_q;
11739 	unsigned long iflags;
11740 	struct lpfc_io_buf *lpfc_cmd;
11741 
11742 	spin_lock_irqsave(&phba->hbalock, iflags);
11743 	if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
11744 
11745 		/*
11746 		 * A time out has occurred for the iocb.  If a time out
11747 		 * completion handler has been supplied, call it.  Otherwise,
11748 		 * just free the iocbq.
11749 		 */
11750 
11751 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11752 		cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
11753 		cmdiocbq->wait_iocb_cmpl = NULL;
11754 		if (cmdiocbq->iocb_cmpl)
11755 			(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
11756 		else
11757 			lpfc_sli_release_iocbq(phba, cmdiocbq);
11758 		return;
11759 	}
11760 
11761 	cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
11762 	if (cmdiocbq->context2 && rspiocbq)
11763 		memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
11764 		       &rspiocbq->iocb, sizeof(IOCB_t));
11765 
11766 	/* Set the exchange busy flag for task management commands */
11767 	if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
11768 		!(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
11769 		lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
11770 			cur_iocbq);
11771 		lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY;
11772 	}
11773 
11774 	pdone_q = cmdiocbq->context_un.wait_queue;
11775 	if (pdone_q)
11776 		wake_up(pdone_q);
11777 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11778 	return;
11779 }
11780 
11781 /**
11782  * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
11783  * @phba: Pointer to HBA context object..
11784  * @piocbq: Pointer to command iocb.
11785  * @flag: Flag to test.
11786  *
11787  * This routine grabs the hbalock and then test the iocb_flag to
11788  * see if the passed in flag is set.
11789  * Returns:
11790  * 1 if flag is set.
11791  * 0 if flag is not set.
11792  **/
11793 static int
11794 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
11795 		 struct lpfc_iocbq *piocbq, uint32_t flag)
11796 {
11797 	unsigned long iflags;
11798 	int ret;
11799 
11800 	spin_lock_irqsave(&phba->hbalock, iflags);
11801 	ret = piocbq->iocb_flag & flag;
11802 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11803 	return ret;
11804 
11805 }
11806 
11807 /**
11808  * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
11809  * @phba: Pointer to HBA context object..
11810  * @pring: Pointer to sli ring.
11811  * @piocb: Pointer to command iocb.
11812  * @prspiocbq: Pointer to response iocb.
11813  * @timeout: Timeout in number of seconds.
11814  *
11815  * This function issues the iocb to firmware and waits for the
11816  * iocb to complete. The iocb_cmpl field of the shall be used
11817  * to handle iocbs which time out. If the field is NULL, the
11818  * function shall free the iocbq structure.  If more clean up is
11819  * needed, the caller is expected to provide a completion function
11820  * that will provide the needed clean up.  If the iocb command is
11821  * not completed within timeout seconds, the function will either
11822  * free the iocbq structure (if iocb_cmpl == NULL) or execute the
11823  * completion function set in the iocb_cmpl field and then return
11824  * a status of IOCB_TIMEDOUT.  The caller should not free the iocb
11825  * resources if this function returns IOCB_TIMEDOUT.
11826  * The function waits for the iocb completion using an
11827  * non-interruptible wait.
11828  * This function will sleep while waiting for iocb completion.
11829  * So, this function should not be called from any context which
11830  * does not allow sleeping. Due to the same reason, this function
11831  * cannot be called with interrupt disabled.
11832  * This function assumes that the iocb completions occur while
11833  * this function sleep. So, this function cannot be called from
11834  * the thread which process iocb completion for this ring.
11835  * This function clears the iocb_flag of the iocb object before
11836  * issuing the iocb and the iocb completion handler sets this
11837  * flag and wakes this thread when the iocb completes.
11838  * The contents of the response iocb will be copied to prspiocbq
11839  * by the completion handler when the command completes.
11840  * This function returns IOCB_SUCCESS when success.
11841  * This function is called with no lock held.
11842  **/
11843 int
11844 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
11845 			 uint32_t ring_number,
11846 			 struct lpfc_iocbq *piocb,
11847 			 struct lpfc_iocbq *prspiocbq,
11848 			 uint32_t timeout)
11849 {
11850 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
11851 	long timeleft, timeout_req = 0;
11852 	int retval = IOCB_SUCCESS;
11853 	uint32_t creg_val;
11854 	struct lpfc_iocbq *iocb;
11855 	int txq_cnt = 0;
11856 	int txcmplq_cnt = 0;
11857 	struct lpfc_sli_ring *pring;
11858 	unsigned long iflags;
11859 	bool iocb_completed = true;
11860 
11861 	if (phba->sli_rev >= LPFC_SLI_REV4)
11862 		pring = lpfc_sli4_calc_ring(phba, piocb);
11863 	else
11864 		pring = &phba->sli.sli3_ring[ring_number];
11865 	/*
11866 	 * If the caller has provided a response iocbq buffer, then context2
11867 	 * is NULL or its an error.
11868 	 */
11869 	if (prspiocbq) {
11870 		if (piocb->context2)
11871 			return IOCB_ERROR;
11872 		piocb->context2 = prspiocbq;
11873 	}
11874 
11875 	piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
11876 	piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
11877 	piocb->context_un.wait_queue = &done_q;
11878 	piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
11879 
11880 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11881 		if (lpfc_readl(phba->HCregaddr, &creg_val))
11882 			return IOCB_ERROR;
11883 		creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
11884 		writel(creg_val, phba->HCregaddr);
11885 		readl(phba->HCregaddr); /* flush */
11886 	}
11887 
11888 	retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
11889 				     SLI_IOCB_RET_IOCB);
11890 	if (retval == IOCB_SUCCESS) {
11891 		timeout_req = msecs_to_jiffies(timeout * 1000);
11892 		timeleft = wait_event_timeout(done_q,
11893 				lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
11894 				timeout_req);
11895 		spin_lock_irqsave(&phba->hbalock, iflags);
11896 		if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
11897 
11898 			/*
11899 			 * IOCB timed out.  Inform the wake iocb wait
11900 			 * completion function and set local status
11901 			 */
11902 
11903 			iocb_completed = false;
11904 			piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
11905 		}
11906 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11907 		if (iocb_completed) {
11908 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11909 					"0331 IOCB wake signaled\n");
11910 			/* Note: we are not indicating if the IOCB has a success
11911 			 * status or not - that's for the caller to check.
11912 			 * IOCB_SUCCESS means just that the command was sent and
11913 			 * completed. Not that it completed successfully.
11914 			 * */
11915 		} else if (timeleft == 0) {
11916 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11917 					"0338 IOCB wait timeout error - no "
11918 					"wake response Data x%x\n", timeout);
11919 			retval = IOCB_TIMEDOUT;
11920 		} else {
11921 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11922 					"0330 IOCB wake NOT set, "
11923 					"Data x%x x%lx\n",
11924 					timeout, (timeleft / jiffies));
11925 			retval = IOCB_TIMEDOUT;
11926 		}
11927 	} else if (retval == IOCB_BUSY) {
11928 		if (phba->cfg_log_verbose & LOG_SLI) {
11929 			list_for_each_entry(iocb, &pring->txq, list) {
11930 				txq_cnt++;
11931 			}
11932 			list_for_each_entry(iocb, &pring->txcmplq, list) {
11933 				txcmplq_cnt++;
11934 			}
11935 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11936 				"2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
11937 				phba->iocb_cnt, txq_cnt, txcmplq_cnt);
11938 		}
11939 		return retval;
11940 	} else {
11941 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11942 				"0332 IOCB wait issue failed, Data x%x\n",
11943 				retval);
11944 		retval = IOCB_ERROR;
11945 	}
11946 
11947 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11948 		if (lpfc_readl(phba->HCregaddr, &creg_val))
11949 			return IOCB_ERROR;
11950 		creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
11951 		writel(creg_val, phba->HCregaddr);
11952 		readl(phba->HCregaddr); /* flush */
11953 	}
11954 
11955 	if (prspiocbq)
11956 		piocb->context2 = NULL;
11957 
11958 	piocb->context_un.wait_queue = NULL;
11959 	piocb->iocb_cmpl = NULL;
11960 	return retval;
11961 }
11962 
11963 /**
11964  * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
11965  * @phba: Pointer to HBA context object.
11966  * @pmboxq: Pointer to driver mailbox object.
11967  * @timeout: Timeout in number of seconds.
11968  *
11969  * This function issues the mailbox to firmware and waits for the
11970  * mailbox command to complete. If the mailbox command is not
11971  * completed within timeout seconds, it returns MBX_TIMEOUT.
11972  * The function waits for the mailbox completion using an
11973  * interruptible wait. If the thread is woken up due to a
11974  * signal, MBX_TIMEOUT error is returned to the caller. Caller
11975  * should not free the mailbox resources, if this function returns
11976  * MBX_TIMEOUT.
11977  * This function will sleep while waiting for mailbox completion.
11978  * So, this function should not be called from any context which
11979  * does not allow sleeping. Due to the same reason, this function
11980  * cannot be called with interrupt disabled.
11981  * This function assumes that the mailbox completion occurs while
11982  * this function sleep. So, this function cannot be called from
11983  * the worker thread which processes mailbox completion.
11984  * This function is called in the context of HBA management
11985  * applications.
11986  * This function returns MBX_SUCCESS when successful.
11987  * This function is called with no lock held.
11988  **/
11989 int
11990 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
11991 			 uint32_t timeout)
11992 {
11993 	struct completion mbox_done;
11994 	int retval;
11995 	unsigned long flag;
11996 
11997 	pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
11998 	/* setup wake call as IOCB callback */
11999 	pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
12000 
12001 	/* setup context3 field to pass wait_queue pointer to wake function  */
12002 	init_completion(&mbox_done);
12003 	pmboxq->context3 = &mbox_done;
12004 	/* now issue the command */
12005 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
12006 	if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
12007 		wait_for_completion_timeout(&mbox_done,
12008 					    msecs_to_jiffies(timeout * 1000));
12009 
12010 		spin_lock_irqsave(&phba->hbalock, flag);
12011 		pmboxq->context3 = NULL;
12012 		/*
12013 		 * if LPFC_MBX_WAKE flag is set the mailbox is completed
12014 		 * else do not free the resources.
12015 		 */
12016 		if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
12017 			retval = MBX_SUCCESS;
12018 		} else {
12019 			retval = MBX_TIMEOUT;
12020 			pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12021 		}
12022 		spin_unlock_irqrestore(&phba->hbalock, flag);
12023 	}
12024 	return retval;
12025 }
12026 
12027 /**
12028  * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
12029  * @phba: Pointer to HBA context.
12030  *
12031  * This function is called to shutdown the driver's mailbox sub-system.
12032  * It first marks the mailbox sub-system is in a block state to prevent
12033  * the asynchronous mailbox command from issued off the pending mailbox
12034  * command queue. If the mailbox command sub-system shutdown is due to
12035  * HBA error conditions such as EEH or ERATT, this routine shall invoke
12036  * the mailbox sub-system flush routine to forcefully bring down the
12037  * mailbox sub-system. Otherwise, if it is due to normal condition (such
12038  * as with offline or HBA function reset), this routine will wait for the
12039  * outstanding mailbox command to complete before invoking the mailbox
12040  * sub-system flush routine to gracefully bring down mailbox sub-system.
12041  **/
12042 void
12043 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
12044 {
12045 	struct lpfc_sli *psli = &phba->sli;
12046 	unsigned long timeout;
12047 
12048 	if (mbx_action == LPFC_MBX_NO_WAIT) {
12049 		/* delay 100ms for port state */
12050 		msleep(100);
12051 		lpfc_sli_mbox_sys_flush(phba);
12052 		return;
12053 	}
12054 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
12055 
12056 	/* Disable softirqs, including timers from obtaining phba->hbalock */
12057 	local_bh_disable();
12058 
12059 	spin_lock_irq(&phba->hbalock);
12060 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
12061 
12062 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
12063 		/* Determine how long we might wait for the active mailbox
12064 		 * command to be gracefully completed by firmware.
12065 		 */
12066 		if (phba->sli.mbox_active)
12067 			timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
12068 						phba->sli.mbox_active) *
12069 						1000) + jiffies;
12070 		spin_unlock_irq(&phba->hbalock);
12071 
12072 		/* Enable softirqs again, done with phba->hbalock */
12073 		local_bh_enable();
12074 
12075 		while (phba->sli.mbox_active) {
12076 			/* Check active mailbox complete status every 2ms */
12077 			msleep(2);
12078 			if (time_after(jiffies, timeout))
12079 				/* Timeout, let the mailbox flush routine to
12080 				 * forcefully release active mailbox command
12081 				 */
12082 				break;
12083 		}
12084 	} else {
12085 		spin_unlock_irq(&phba->hbalock);
12086 
12087 		/* Enable softirqs again, done with phba->hbalock */
12088 		local_bh_enable();
12089 	}
12090 
12091 	lpfc_sli_mbox_sys_flush(phba);
12092 }
12093 
12094 /**
12095  * lpfc_sli_eratt_read - read sli-3 error attention events
12096  * @phba: Pointer to HBA context.
12097  *
12098  * This function is called to read the SLI3 device error attention registers
12099  * for possible error attention events. The caller must hold the hostlock
12100  * with spin_lock_irq().
12101  *
12102  * This function returns 1 when there is Error Attention in the Host Attention
12103  * Register and returns 0 otherwise.
12104  **/
12105 static int
12106 lpfc_sli_eratt_read(struct lpfc_hba *phba)
12107 {
12108 	uint32_t ha_copy;
12109 
12110 	/* Read chip Host Attention (HA) register */
12111 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
12112 		goto unplug_err;
12113 
12114 	if (ha_copy & HA_ERATT) {
12115 		/* Read host status register to retrieve error event */
12116 		if (lpfc_sli_read_hs(phba))
12117 			goto unplug_err;
12118 
12119 		/* Check if there is a deferred error condition is active */
12120 		if ((HS_FFER1 & phba->work_hs) &&
12121 		    ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12122 		      HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
12123 			phba->hba_flag |= DEFER_ERATT;
12124 			/* Clear all interrupt enable conditions */
12125 			writel(0, phba->HCregaddr);
12126 			readl(phba->HCregaddr);
12127 		}
12128 
12129 		/* Set the driver HA work bitmap */
12130 		phba->work_ha |= HA_ERATT;
12131 		/* Indicate polling handles this ERATT */
12132 		phba->hba_flag |= HBA_ERATT_HANDLED;
12133 		return 1;
12134 	}
12135 	return 0;
12136 
12137 unplug_err:
12138 	/* Set the driver HS work bitmap */
12139 	phba->work_hs |= UNPLUG_ERR;
12140 	/* Set the driver HA work bitmap */
12141 	phba->work_ha |= HA_ERATT;
12142 	/* Indicate polling handles this ERATT */
12143 	phba->hba_flag |= HBA_ERATT_HANDLED;
12144 	return 1;
12145 }
12146 
12147 /**
12148  * lpfc_sli4_eratt_read - read sli-4 error attention events
12149  * @phba: Pointer to HBA context.
12150  *
12151  * This function is called to read the SLI4 device error attention registers
12152  * for possible error attention events. The caller must hold the hostlock
12153  * with spin_lock_irq().
12154  *
12155  * This function returns 1 when there is Error Attention in the Host Attention
12156  * Register and returns 0 otherwise.
12157  **/
12158 static int
12159 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
12160 {
12161 	uint32_t uerr_sta_hi, uerr_sta_lo;
12162 	uint32_t if_type, portsmphr;
12163 	struct lpfc_register portstat_reg;
12164 
12165 	/*
12166 	 * For now, use the SLI4 device internal unrecoverable error
12167 	 * registers for error attention. This can be changed later.
12168 	 */
12169 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12170 	switch (if_type) {
12171 	case LPFC_SLI_INTF_IF_TYPE_0:
12172 		if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
12173 			&uerr_sta_lo) ||
12174 			lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
12175 			&uerr_sta_hi)) {
12176 			phba->work_hs |= UNPLUG_ERR;
12177 			phba->work_ha |= HA_ERATT;
12178 			phba->hba_flag |= HBA_ERATT_HANDLED;
12179 			return 1;
12180 		}
12181 		if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
12182 		    (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
12183 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12184 					"1423 HBA Unrecoverable error: "
12185 					"uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
12186 					"ue_mask_lo_reg=0x%x, "
12187 					"ue_mask_hi_reg=0x%x\n",
12188 					uerr_sta_lo, uerr_sta_hi,
12189 					phba->sli4_hba.ue_mask_lo,
12190 					phba->sli4_hba.ue_mask_hi);
12191 			phba->work_status[0] = uerr_sta_lo;
12192 			phba->work_status[1] = uerr_sta_hi;
12193 			phba->work_ha |= HA_ERATT;
12194 			phba->hba_flag |= HBA_ERATT_HANDLED;
12195 			return 1;
12196 		}
12197 		break;
12198 	case LPFC_SLI_INTF_IF_TYPE_2:
12199 	case LPFC_SLI_INTF_IF_TYPE_6:
12200 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
12201 			&portstat_reg.word0) ||
12202 			lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
12203 			&portsmphr)){
12204 			phba->work_hs |= UNPLUG_ERR;
12205 			phba->work_ha |= HA_ERATT;
12206 			phba->hba_flag |= HBA_ERATT_HANDLED;
12207 			return 1;
12208 		}
12209 		if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
12210 			phba->work_status[0] =
12211 				readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
12212 			phba->work_status[1] =
12213 				readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
12214 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12215 					"2885 Port Status Event: "
12216 					"port status reg 0x%x, "
12217 					"port smphr reg 0x%x, "
12218 					"error 1=0x%x, error 2=0x%x\n",
12219 					portstat_reg.word0,
12220 					portsmphr,
12221 					phba->work_status[0],
12222 					phba->work_status[1]);
12223 			phba->work_ha |= HA_ERATT;
12224 			phba->hba_flag |= HBA_ERATT_HANDLED;
12225 			return 1;
12226 		}
12227 		break;
12228 	case LPFC_SLI_INTF_IF_TYPE_1:
12229 	default:
12230 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12231 				"2886 HBA Error Attention on unsupported "
12232 				"if type %d.", if_type);
12233 		return 1;
12234 	}
12235 
12236 	return 0;
12237 }
12238 
12239 /**
12240  * lpfc_sli_check_eratt - check error attention events
12241  * @phba: Pointer to HBA context.
12242  *
12243  * This function is called from timer soft interrupt context to check HBA's
12244  * error attention register bit for error attention events.
12245  *
12246  * This function returns 1 when there is Error Attention in the Host Attention
12247  * Register and returns 0 otherwise.
12248  **/
12249 int
12250 lpfc_sli_check_eratt(struct lpfc_hba *phba)
12251 {
12252 	uint32_t ha_copy;
12253 
12254 	/* If somebody is waiting to handle an eratt, don't process it
12255 	 * here. The brdkill function will do this.
12256 	 */
12257 	if (phba->link_flag & LS_IGNORE_ERATT)
12258 		return 0;
12259 
12260 	/* Check if interrupt handler handles this ERATT */
12261 	spin_lock_irq(&phba->hbalock);
12262 	if (phba->hba_flag & HBA_ERATT_HANDLED) {
12263 		/* Interrupt handler has handled ERATT */
12264 		spin_unlock_irq(&phba->hbalock);
12265 		return 0;
12266 	}
12267 
12268 	/*
12269 	 * If there is deferred error attention, do not check for error
12270 	 * attention
12271 	 */
12272 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12273 		spin_unlock_irq(&phba->hbalock);
12274 		return 0;
12275 	}
12276 
12277 	/* If PCI channel is offline, don't process it */
12278 	if (unlikely(pci_channel_offline(phba->pcidev))) {
12279 		spin_unlock_irq(&phba->hbalock);
12280 		return 0;
12281 	}
12282 
12283 	switch (phba->sli_rev) {
12284 	case LPFC_SLI_REV2:
12285 	case LPFC_SLI_REV3:
12286 		/* Read chip Host Attention (HA) register */
12287 		ha_copy = lpfc_sli_eratt_read(phba);
12288 		break;
12289 	case LPFC_SLI_REV4:
12290 		/* Read device Uncoverable Error (UERR) registers */
12291 		ha_copy = lpfc_sli4_eratt_read(phba);
12292 		break;
12293 	default:
12294 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12295 				"0299 Invalid SLI revision (%d)\n",
12296 				phba->sli_rev);
12297 		ha_copy = 0;
12298 		break;
12299 	}
12300 	spin_unlock_irq(&phba->hbalock);
12301 
12302 	return ha_copy;
12303 }
12304 
12305 /**
12306  * lpfc_intr_state_check - Check device state for interrupt handling
12307  * @phba: Pointer to HBA context.
12308  *
12309  * This inline routine checks whether a device or its PCI slot is in a state
12310  * that the interrupt should be handled.
12311  *
12312  * This function returns 0 if the device or the PCI slot is in a state that
12313  * interrupt should be handled, otherwise -EIO.
12314  */
12315 static inline int
12316 lpfc_intr_state_check(struct lpfc_hba *phba)
12317 {
12318 	/* If the pci channel is offline, ignore all the interrupts */
12319 	if (unlikely(pci_channel_offline(phba->pcidev)))
12320 		return -EIO;
12321 
12322 	/* Update device level interrupt statistics */
12323 	phba->sli.slistat.sli_intr++;
12324 
12325 	/* Ignore all interrupts during initialization. */
12326 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
12327 		return -EIO;
12328 
12329 	return 0;
12330 }
12331 
12332 /**
12333  * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
12334  * @irq: Interrupt number.
12335  * @dev_id: The device context pointer.
12336  *
12337  * This function is directly called from the PCI layer as an interrupt
12338  * service routine when device with SLI-3 interface spec is enabled with
12339  * MSI-X multi-message interrupt mode and there are slow-path events in
12340  * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
12341  * interrupt mode, this function is called as part of the device-level
12342  * interrupt handler. When the PCI slot is in error recovery or the HBA
12343  * is undergoing initialization, the interrupt handler will not process
12344  * the interrupt. The link attention and ELS ring attention events are
12345  * handled by the worker thread. The interrupt handler signals the worker
12346  * thread and returns for these events. This function is called without
12347  * any lock held. It gets the hbalock to access and update SLI data
12348  * structures.
12349  *
12350  * This function returns IRQ_HANDLED when interrupt is handled else it
12351  * returns IRQ_NONE.
12352  **/
12353 irqreturn_t
12354 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
12355 {
12356 	struct lpfc_hba  *phba;
12357 	uint32_t ha_copy, hc_copy;
12358 	uint32_t work_ha_copy;
12359 	unsigned long status;
12360 	unsigned long iflag;
12361 	uint32_t control;
12362 
12363 	MAILBOX_t *mbox, *pmbox;
12364 	struct lpfc_vport *vport;
12365 	struct lpfc_nodelist *ndlp;
12366 	struct lpfc_dmabuf *mp;
12367 	LPFC_MBOXQ_t *pmb;
12368 	int rc;
12369 
12370 	/*
12371 	 * Get the driver's phba structure from the dev_id and
12372 	 * assume the HBA is not interrupting.
12373 	 */
12374 	phba = (struct lpfc_hba *)dev_id;
12375 
12376 	if (unlikely(!phba))
12377 		return IRQ_NONE;
12378 
12379 	/*
12380 	 * Stuff needs to be attented to when this function is invoked as an
12381 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12382 	 */
12383 	if (phba->intr_type == MSIX) {
12384 		/* Check device state for handling interrupt */
12385 		if (lpfc_intr_state_check(phba))
12386 			return IRQ_NONE;
12387 		/* Need to read HA REG for slow-path events */
12388 		spin_lock_irqsave(&phba->hbalock, iflag);
12389 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12390 			goto unplug_error;
12391 		/* If somebody is waiting to handle an eratt don't process it
12392 		 * here. The brdkill function will do this.
12393 		 */
12394 		if (phba->link_flag & LS_IGNORE_ERATT)
12395 			ha_copy &= ~HA_ERATT;
12396 		/* Check the need for handling ERATT in interrupt handler */
12397 		if (ha_copy & HA_ERATT) {
12398 			if (phba->hba_flag & HBA_ERATT_HANDLED)
12399 				/* ERATT polling has handled ERATT */
12400 				ha_copy &= ~HA_ERATT;
12401 			else
12402 				/* Indicate interrupt handler handles ERATT */
12403 				phba->hba_flag |= HBA_ERATT_HANDLED;
12404 		}
12405 
12406 		/*
12407 		 * If there is deferred error attention, do not check for any
12408 		 * interrupt.
12409 		 */
12410 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12411 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12412 			return IRQ_NONE;
12413 		}
12414 
12415 		/* Clear up only attention source related to slow-path */
12416 		if (lpfc_readl(phba->HCregaddr, &hc_copy))
12417 			goto unplug_error;
12418 
12419 		writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
12420 			HC_LAINT_ENA | HC_ERINT_ENA),
12421 			phba->HCregaddr);
12422 		writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
12423 			phba->HAregaddr);
12424 		writel(hc_copy, phba->HCregaddr);
12425 		readl(phba->HAregaddr); /* flush */
12426 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12427 	} else
12428 		ha_copy = phba->ha_copy;
12429 
12430 	work_ha_copy = ha_copy & phba->work_ha_mask;
12431 
12432 	if (work_ha_copy) {
12433 		if (work_ha_copy & HA_LATT) {
12434 			if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
12435 				/*
12436 				 * Turn off Link Attention interrupts
12437 				 * until CLEAR_LA done
12438 				 */
12439 				spin_lock_irqsave(&phba->hbalock, iflag);
12440 				phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
12441 				if (lpfc_readl(phba->HCregaddr, &control))
12442 					goto unplug_error;
12443 				control &= ~HC_LAINT_ENA;
12444 				writel(control, phba->HCregaddr);
12445 				readl(phba->HCregaddr); /* flush */
12446 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12447 			}
12448 			else
12449 				work_ha_copy &= ~HA_LATT;
12450 		}
12451 
12452 		if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
12453 			/*
12454 			 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
12455 			 * the only slow ring.
12456 			 */
12457 			status = (work_ha_copy &
12458 				(HA_RXMASK  << (4*LPFC_ELS_RING)));
12459 			status >>= (4*LPFC_ELS_RING);
12460 			if (status & HA_RXMASK) {
12461 				spin_lock_irqsave(&phba->hbalock, iflag);
12462 				if (lpfc_readl(phba->HCregaddr, &control))
12463 					goto unplug_error;
12464 
12465 				lpfc_debugfs_slow_ring_trc(phba,
12466 				"ISR slow ring:   ctl:x%x stat:x%x isrcnt:x%x",
12467 				control, status,
12468 				(uint32_t)phba->sli.slistat.sli_intr);
12469 
12470 				if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
12471 					lpfc_debugfs_slow_ring_trc(phba,
12472 						"ISR Disable ring:"
12473 						"pwork:x%x hawork:x%x wait:x%x",
12474 						phba->work_ha, work_ha_copy,
12475 						(uint32_t)((unsigned long)
12476 						&phba->work_waitq));
12477 
12478 					control &=
12479 					    ~(HC_R0INT_ENA << LPFC_ELS_RING);
12480 					writel(control, phba->HCregaddr);
12481 					readl(phba->HCregaddr); /* flush */
12482 				}
12483 				else {
12484 					lpfc_debugfs_slow_ring_trc(phba,
12485 						"ISR slow ring:   pwork:"
12486 						"x%x hawork:x%x wait:x%x",
12487 						phba->work_ha, work_ha_copy,
12488 						(uint32_t)((unsigned long)
12489 						&phba->work_waitq));
12490 				}
12491 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12492 			}
12493 		}
12494 		spin_lock_irqsave(&phba->hbalock, iflag);
12495 		if (work_ha_copy & HA_ERATT) {
12496 			if (lpfc_sli_read_hs(phba))
12497 				goto unplug_error;
12498 			/*
12499 			 * Check if there is a deferred error condition
12500 			 * is active
12501 			 */
12502 			if ((HS_FFER1 & phba->work_hs) &&
12503 				((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12504 				  HS_FFER6 | HS_FFER7 | HS_FFER8) &
12505 				  phba->work_hs)) {
12506 				phba->hba_flag |= DEFER_ERATT;
12507 				/* Clear all interrupt enable conditions */
12508 				writel(0, phba->HCregaddr);
12509 				readl(phba->HCregaddr);
12510 			}
12511 		}
12512 
12513 		if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
12514 			pmb = phba->sli.mbox_active;
12515 			pmbox = &pmb->u.mb;
12516 			mbox = phba->mbox;
12517 			vport = pmb->vport;
12518 
12519 			/* First check out the status word */
12520 			lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
12521 			if (pmbox->mbxOwner != OWN_HOST) {
12522 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12523 				/*
12524 				 * Stray Mailbox Interrupt, mbxCommand <cmd>
12525 				 * mbxStatus <status>
12526 				 */
12527 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12528 						LOG_SLI,
12529 						"(%d):0304 Stray Mailbox "
12530 						"Interrupt mbxCommand x%x "
12531 						"mbxStatus x%x\n",
12532 						(vport ? vport->vpi : 0),
12533 						pmbox->mbxCommand,
12534 						pmbox->mbxStatus);
12535 				/* clear mailbox attention bit */
12536 				work_ha_copy &= ~HA_MBATT;
12537 			} else {
12538 				phba->sli.mbox_active = NULL;
12539 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12540 				phba->last_completion_time = jiffies;
12541 				del_timer(&phba->sli.mbox_tmo);
12542 				if (pmb->mbox_cmpl) {
12543 					lpfc_sli_pcimem_bcopy(mbox, pmbox,
12544 							MAILBOX_CMD_SIZE);
12545 					if (pmb->out_ext_byte_len &&
12546 						pmb->ctx_buf)
12547 						lpfc_sli_pcimem_bcopy(
12548 						phba->mbox_ext,
12549 						pmb->ctx_buf,
12550 						pmb->out_ext_byte_len);
12551 				}
12552 				if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12553 					pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12554 
12555 					lpfc_debugfs_disc_trc(vport,
12556 						LPFC_DISC_TRC_MBOX_VPORT,
12557 						"MBOX dflt rpi: : "
12558 						"status:x%x rpi:x%x",
12559 						(uint32_t)pmbox->mbxStatus,
12560 						pmbox->un.varWords[0], 0);
12561 
12562 					if (!pmbox->mbxStatus) {
12563 						mp = (struct lpfc_dmabuf *)
12564 							(pmb->ctx_buf);
12565 						ndlp = (struct lpfc_nodelist *)
12566 							pmb->ctx_ndlp;
12567 
12568 						/* Reg_LOGIN of dflt RPI was
12569 						 * successful. new lets get
12570 						 * rid of the RPI using the
12571 						 * same mbox buffer.
12572 						 */
12573 						lpfc_unreg_login(phba,
12574 							vport->vpi,
12575 							pmbox->un.varWords[0],
12576 							pmb);
12577 						pmb->mbox_cmpl =
12578 							lpfc_mbx_cmpl_dflt_rpi;
12579 						pmb->ctx_buf = mp;
12580 						pmb->ctx_ndlp = ndlp;
12581 						pmb->vport = vport;
12582 						rc = lpfc_sli_issue_mbox(phba,
12583 								pmb,
12584 								MBX_NOWAIT);
12585 						if (rc != MBX_BUSY)
12586 							lpfc_printf_log(phba,
12587 							KERN_ERR,
12588 							LOG_MBOX | LOG_SLI,
12589 							"0350 rc should have"
12590 							"been MBX_BUSY\n");
12591 						if (rc != MBX_NOT_FINISHED)
12592 							goto send_current_mbox;
12593 					}
12594 				}
12595 				spin_lock_irqsave(
12596 						&phba->pport->work_port_lock,
12597 						iflag);
12598 				phba->pport->work_port_events &=
12599 					~WORKER_MBOX_TMO;
12600 				spin_unlock_irqrestore(
12601 						&phba->pport->work_port_lock,
12602 						iflag);
12603 				lpfc_mbox_cmpl_put(phba, pmb);
12604 			}
12605 		} else
12606 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12607 
12608 		if ((work_ha_copy & HA_MBATT) &&
12609 		    (phba->sli.mbox_active == NULL)) {
12610 send_current_mbox:
12611 			/* Process next mailbox command if there is one */
12612 			do {
12613 				rc = lpfc_sli_issue_mbox(phba, NULL,
12614 							 MBX_NOWAIT);
12615 			} while (rc == MBX_NOT_FINISHED);
12616 			if (rc != MBX_SUCCESS)
12617 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12618 						LOG_SLI, "0349 rc should be "
12619 						"MBX_SUCCESS\n");
12620 		}
12621 
12622 		spin_lock_irqsave(&phba->hbalock, iflag);
12623 		phba->work_ha |= work_ha_copy;
12624 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12625 		lpfc_worker_wake_up(phba);
12626 	}
12627 	return IRQ_HANDLED;
12628 unplug_error:
12629 	spin_unlock_irqrestore(&phba->hbalock, iflag);
12630 	return IRQ_HANDLED;
12631 
12632 } /* lpfc_sli_sp_intr_handler */
12633 
12634 /**
12635  * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
12636  * @irq: Interrupt number.
12637  * @dev_id: The device context pointer.
12638  *
12639  * This function is directly called from the PCI layer as an interrupt
12640  * service routine when device with SLI-3 interface spec is enabled with
12641  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
12642  * ring event in the HBA. However, when the device is enabled with either
12643  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12644  * device-level interrupt handler. When the PCI slot is in error recovery
12645  * or the HBA is undergoing initialization, the interrupt handler will not
12646  * process the interrupt. The SCSI FCP fast-path ring event are handled in
12647  * the intrrupt context. This function is called without any lock held.
12648  * It gets the hbalock to access and update SLI data structures.
12649  *
12650  * This function returns IRQ_HANDLED when interrupt is handled else it
12651  * returns IRQ_NONE.
12652  **/
12653 irqreturn_t
12654 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
12655 {
12656 	struct lpfc_hba  *phba;
12657 	uint32_t ha_copy;
12658 	unsigned long status;
12659 	unsigned long iflag;
12660 	struct lpfc_sli_ring *pring;
12661 
12662 	/* Get the driver's phba structure from the dev_id and
12663 	 * assume the HBA is not interrupting.
12664 	 */
12665 	phba = (struct lpfc_hba *) dev_id;
12666 
12667 	if (unlikely(!phba))
12668 		return IRQ_NONE;
12669 
12670 	/*
12671 	 * Stuff needs to be attented to when this function is invoked as an
12672 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12673 	 */
12674 	if (phba->intr_type == MSIX) {
12675 		/* Check device state for handling interrupt */
12676 		if (lpfc_intr_state_check(phba))
12677 			return IRQ_NONE;
12678 		/* Need to read HA REG for FCP ring and other ring events */
12679 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12680 			return IRQ_HANDLED;
12681 		/* Clear up only attention source related to fast-path */
12682 		spin_lock_irqsave(&phba->hbalock, iflag);
12683 		/*
12684 		 * If there is deferred error attention, do not check for
12685 		 * any interrupt.
12686 		 */
12687 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12688 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12689 			return IRQ_NONE;
12690 		}
12691 		writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
12692 			phba->HAregaddr);
12693 		readl(phba->HAregaddr); /* flush */
12694 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12695 	} else
12696 		ha_copy = phba->ha_copy;
12697 
12698 	/*
12699 	 * Process all events on FCP ring. Take the optimized path for FCP IO.
12700 	 */
12701 	ha_copy &= ~(phba->work_ha_mask);
12702 
12703 	status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12704 	status >>= (4*LPFC_FCP_RING);
12705 	pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12706 	if (status & HA_RXMASK)
12707 		lpfc_sli_handle_fast_ring_event(phba, pring, status);
12708 
12709 	if (phba->cfg_multi_ring_support == 2) {
12710 		/*
12711 		 * Process all events on extra ring. Take the optimized path
12712 		 * for extra ring IO.
12713 		 */
12714 		status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12715 		status >>= (4*LPFC_EXTRA_RING);
12716 		if (status & HA_RXMASK) {
12717 			lpfc_sli_handle_fast_ring_event(phba,
12718 					&phba->sli.sli3_ring[LPFC_EXTRA_RING],
12719 					status);
12720 		}
12721 	}
12722 	return IRQ_HANDLED;
12723 }  /* lpfc_sli_fp_intr_handler */
12724 
12725 /**
12726  * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
12727  * @irq: Interrupt number.
12728  * @dev_id: The device context pointer.
12729  *
12730  * This function is the HBA device-level interrupt handler to device with
12731  * SLI-3 interface spec, called from the PCI layer when either MSI or
12732  * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
12733  * requires driver attention. This function invokes the slow-path interrupt
12734  * attention handling function and fast-path interrupt attention handling
12735  * function in turn to process the relevant HBA attention events. This
12736  * function is called without any lock held. It gets the hbalock to access
12737  * and update SLI data structures.
12738  *
12739  * This function returns IRQ_HANDLED when interrupt is handled, else it
12740  * returns IRQ_NONE.
12741  **/
12742 irqreturn_t
12743 lpfc_sli_intr_handler(int irq, void *dev_id)
12744 {
12745 	struct lpfc_hba  *phba;
12746 	irqreturn_t sp_irq_rc, fp_irq_rc;
12747 	unsigned long status1, status2;
12748 	uint32_t hc_copy;
12749 
12750 	/*
12751 	 * Get the driver's phba structure from the dev_id and
12752 	 * assume the HBA is not interrupting.
12753 	 */
12754 	phba = (struct lpfc_hba *) dev_id;
12755 
12756 	if (unlikely(!phba))
12757 		return IRQ_NONE;
12758 
12759 	/* Check device state for handling interrupt */
12760 	if (lpfc_intr_state_check(phba))
12761 		return IRQ_NONE;
12762 
12763 	spin_lock(&phba->hbalock);
12764 	if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
12765 		spin_unlock(&phba->hbalock);
12766 		return IRQ_HANDLED;
12767 	}
12768 
12769 	if (unlikely(!phba->ha_copy)) {
12770 		spin_unlock(&phba->hbalock);
12771 		return IRQ_NONE;
12772 	} else if (phba->ha_copy & HA_ERATT) {
12773 		if (phba->hba_flag & HBA_ERATT_HANDLED)
12774 			/* ERATT polling has handled ERATT */
12775 			phba->ha_copy &= ~HA_ERATT;
12776 		else
12777 			/* Indicate interrupt handler handles ERATT */
12778 			phba->hba_flag |= HBA_ERATT_HANDLED;
12779 	}
12780 
12781 	/*
12782 	 * If there is deferred error attention, do not check for any interrupt.
12783 	 */
12784 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12785 		spin_unlock(&phba->hbalock);
12786 		return IRQ_NONE;
12787 	}
12788 
12789 	/* Clear attention sources except link and error attentions */
12790 	if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
12791 		spin_unlock(&phba->hbalock);
12792 		return IRQ_HANDLED;
12793 	}
12794 	writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
12795 		| HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
12796 		phba->HCregaddr);
12797 	writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
12798 	writel(hc_copy, phba->HCregaddr);
12799 	readl(phba->HAregaddr); /* flush */
12800 	spin_unlock(&phba->hbalock);
12801 
12802 	/*
12803 	 * Invokes slow-path host attention interrupt handling as appropriate.
12804 	 */
12805 
12806 	/* status of events with mailbox and link attention */
12807 	status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
12808 
12809 	/* status of events with ELS ring */
12810 	status2 = (phba->ha_copy & (HA_RXMASK  << (4*LPFC_ELS_RING)));
12811 	status2 >>= (4*LPFC_ELS_RING);
12812 
12813 	if (status1 || (status2 & HA_RXMASK))
12814 		sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
12815 	else
12816 		sp_irq_rc = IRQ_NONE;
12817 
12818 	/*
12819 	 * Invoke fast-path host attention interrupt handling as appropriate.
12820 	 */
12821 
12822 	/* status of events with FCP ring */
12823 	status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12824 	status1 >>= (4*LPFC_FCP_RING);
12825 
12826 	/* status of events with extra ring */
12827 	if (phba->cfg_multi_ring_support == 2) {
12828 		status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12829 		status2 >>= (4*LPFC_EXTRA_RING);
12830 	} else
12831 		status2 = 0;
12832 
12833 	if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
12834 		fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
12835 	else
12836 		fp_irq_rc = IRQ_NONE;
12837 
12838 	/* Return device-level interrupt handling status */
12839 	return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
12840 }  /* lpfc_sli_intr_handler */
12841 
12842 /**
12843  * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
12844  * @phba: pointer to lpfc hba data structure.
12845  *
12846  * This routine is invoked by the worker thread to process all the pending
12847  * SLI4 els abort xri events.
12848  **/
12849 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
12850 {
12851 	struct lpfc_cq_event *cq_event;
12852 
12853 	/* First, declare the els xri abort event has been handled */
12854 	spin_lock_irq(&phba->hbalock);
12855 	phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
12856 	spin_unlock_irq(&phba->hbalock);
12857 	/* Now, handle all the els xri abort events */
12858 	while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
12859 		/* Get the first event from the head of the event queue */
12860 		spin_lock_irq(&phba->hbalock);
12861 		list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
12862 				 cq_event, struct lpfc_cq_event, list);
12863 		spin_unlock_irq(&phba->hbalock);
12864 		/* Notify aborted XRI for ELS work queue */
12865 		lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12866 		/* Free the event processed back to the free pool */
12867 		lpfc_sli4_cq_event_release(phba, cq_event);
12868 	}
12869 }
12870 
12871 /**
12872  * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
12873  * @phba: pointer to lpfc hba data structure
12874  * @pIocbIn: pointer to the rspiocbq
12875  * @pIocbOut: pointer to the cmdiocbq
12876  * @wcqe: pointer to the complete wcqe
12877  *
12878  * This routine transfers the fields of a command iocbq to a response iocbq
12879  * by copying all the IOCB fields from command iocbq and transferring the
12880  * completion status information from the complete wcqe.
12881  **/
12882 static void
12883 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
12884 			      struct lpfc_iocbq *pIocbIn,
12885 			      struct lpfc_iocbq *pIocbOut,
12886 			      struct lpfc_wcqe_complete *wcqe)
12887 {
12888 	int numBdes, i;
12889 	unsigned long iflags;
12890 	uint32_t status, max_response;
12891 	struct lpfc_dmabuf *dmabuf;
12892 	struct ulp_bde64 *bpl, bde;
12893 	size_t offset = offsetof(struct lpfc_iocbq, iocb);
12894 
12895 	memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
12896 	       sizeof(struct lpfc_iocbq) - offset);
12897 	/* Map WCQE parameters into irspiocb parameters */
12898 	status = bf_get(lpfc_wcqe_c_status, wcqe);
12899 	pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
12900 	if (pIocbOut->iocb_flag & LPFC_IO_FCP)
12901 		if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
12902 			pIocbIn->iocb.un.fcpi.fcpi_parm =
12903 					pIocbOut->iocb.un.fcpi.fcpi_parm -
12904 					wcqe->total_data_placed;
12905 		else
12906 			pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12907 	else {
12908 		pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12909 		switch (pIocbOut->iocb.ulpCommand) {
12910 		case CMD_ELS_REQUEST64_CR:
12911 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12912 			bpl  = (struct ulp_bde64 *)dmabuf->virt;
12913 			bde.tus.w = le32_to_cpu(bpl[1].tus.w);
12914 			max_response = bde.tus.f.bdeSize;
12915 			break;
12916 		case CMD_GEN_REQUEST64_CR:
12917 			max_response = 0;
12918 			if (!pIocbOut->context3)
12919 				break;
12920 			numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
12921 					sizeof(struct ulp_bde64);
12922 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12923 			bpl = (struct ulp_bde64 *)dmabuf->virt;
12924 			for (i = 0; i < numBdes; i++) {
12925 				bde.tus.w = le32_to_cpu(bpl[i].tus.w);
12926 				if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
12927 					max_response += bde.tus.f.bdeSize;
12928 			}
12929 			break;
12930 		default:
12931 			max_response = wcqe->total_data_placed;
12932 			break;
12933 		}
12934 		if (max_response < wcqe->total_data_placed)
12935 			pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
12936 		else
12937 			pIocbIn->iocb.un.genreq64.bdl.bdeSize =
12938 				wcqe->total_data_placed;
12939 	}
12940 
12941 	/* Convert BG errors for completion status */
12942 	if (status == CQE_STATUS_DI_ERROR) {
12943 		pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
12944 
12945 		if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
12946 			pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
12947 		else
12948 			pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
12949 
12950 		pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
12951 		if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
12952 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12953 				BGS_GUARD_ERR_MASK;
12954 		if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
12955 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12956 				BGS_APPTAG_ERR_MASK;
12957 		if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
12958 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12959 				BGS_REFTAG_ERR_MASK;
12960 
12961 		/* Check to see if there was any good data before the error */
12962 		if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
12963 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12964 				BGS_HI_WATER_MARK_PRESENT_MASK;
12965 			pIocbIn->iocb.unsli3.sli3_bg.bghm =
12966 				wcqe->total_data_placed;
12967 		}
12968 
12969 		/*
12970 		* Set ALL the error bits to indicate we don't know what
12971 		* type of error it is.
12972 		*/
12973 		if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
12974 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12975 				(BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
12976 				BGS_GUARD_ERR_MASK);
12977 	}
12978 
12979 	/* Pick up HBA exchange busy condition */
12980 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
12981 		spin_lock_irqsave(&phba->hbalock, iflags);
12982 		pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
12983 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12984 	}
12985 }
12986 
12987 /**
12988  * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
12989  * @phba: Pointer to HBA context object.
12990  * @wcqe: Pointer to work-queue completion queue entry.
12991  *
12992  * This routine handles an ELS work-queue completion event and construct
12993  * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
12994  * discovery engine to handle.
12995  *
12996  * Return: Pointer to the receive IOCBQ, NULL otherwise.
12997  **/
12998 static struct lpfc_iocbq *
12999 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
13000 			       struct lpfc_iocbq *irspiocbq)
13001 {
13002 	struct lpfc_sli_ring *pring;
13003 	struct lpfc_iocbq *cmdiocbq;
13004 	struct lpfc_wcqe_complete *wcqe;
13005 	unsigned long iflags;
13006 
13007 	pring = lpfc_phba_elsring(phba);
13008 	if (unlikely(!pring))
13009 		return NULL;
13010 
13011 	wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
13012 	pring->stats.iocb_event++;
13013 	/* Look up the ELS command IOCB and create pseudo response IOCB */
13014 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13015 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13016 	if (unlikely(!cmdiocbq)) {
13017 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13018 				"0386 ELS complete with no corresponding "
13019 				"cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
13020 				wcqe->word0, wcqe->total_data_placed,
13021 				wcqe->parameter, wcqe->word3);
13022 		lpfc_sli_release_iocbq(phba, irspiocbq);
13023 		return NULL;
13024 	}
13025 
13026 	spin_lock_irqsave(&pring->ring_lock, iflags);
13027 	/* Put the iocb back on the txcmplq */
13028 	lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
13029 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13030 
13031 	/* Fake the irspiocbq and copy necessary response information */
13032 	lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
13033 
13034 	return irspiocbq;
13035 }
13036 
13037 inline struct lpfc_cq_event *
13038 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
13039 {
13040 	struct lpfc_cq_event *cq_event;
13041 
13042 	/* Allocate a new internal CQ_EVENT entry */
13043 	cq_event = lpfc_sli4_cq_event_alloc(phba);
13044 	if (!cq_event) {
13045 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13046 				"0602 Failed to alloc CQ_EVENT entry\n");
13047 		return NULL;
13048 	}
13049 
13050 	/* Move the CQE into the event */
13051 	memcpy(&cq_event->cqe, entry, size);
13052 	return cq_event;
13053 }
13054 
13055 /**
13056  * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event
13057  * @phba: Pointer to HBA context object.
13058  * @cqe: Pointer to mailbox completion queue entry.
13059  *
13060  * This routine process a mailbox completion queue entry with asynchrous
13061  * event.
13062  *
13063  * Return: true if work posted to worker thread, otherwise false.
13064  **/
13065 static bool
13066 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13067 {
13068 	struct lpfc_cq_event *cq_event;
13069 	unsigned long iflags;
13070 
13071 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13072 			"0392 Async Event: word0:x%x, word1:x%x, "
13073 			"word2:x%x, word3:x%x\n", mcqe->word0,
13074 			mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
13075 
13076 	cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
13077 	if (!cq_event)
13078 		return false;
13079 	spin_lock_irqsave(&phba->hbalock, iflags);
13080 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
13081 	/* Set the async event flag */
13082 	phba->hba_flag |= ASYNC_EVENT;
13083 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13084 
13085 	return true;
13086 }
13087 
13088 /**
13089  * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
13090  * @phba: Pointer to HBA context object.
13091  * @cqe: Pointer to mailbox completion queue entry.
13092  *
13093  * This routine process a mailbox completion queue entry with mailbox
13094  * completion event.
13095  *
13096  * Return: true if work posted to worker thread, otherwise false.
13097  **/
13098 static bool
13099 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13100 {
13101 	uint32_t mcqe_status;
13102 	MAILBOX_t *mbox, *pmbox;
13103 	struct lpfc_mqe *mqe;
13104 	struct lpfc_vport *vport;
13105 	struct lpfc_nodelist *ndlp;
13106 	struct lpfc_dmabuf *mp;
13107 	unsigned long iflags;
13108 	LPFC_MBOXQ_t *pmb;
13109 	bool workposted = false;
13110 	int rc;
13111 
13112 	/* If not a mailbox complete MCQE, out by checking mailbox consume */
13113 	if (!bf_get(lpfc_trailer_completed, mcqe))
13114 		goto out_no_mqe_complete;
13115 
13116 	/* Get the reference to the active mbox command */
13117 	spin_lock_irqsave(&phba->hbalock, iflags);
13118 	pmb = phba->sli.mbox_active;
13119 	if (unlikely(!pmb)) {
13120 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13121 				"1832 No pending MBOX command to handle\n");
13122 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13123 		goto out_no_mqe_complete;
13124 	}
13125 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13126 	mqe = &pmb->u.mqe;
13127 	pmbox = (MAILBOX_t *)&pmb->u.mqe;
13128 	mbox = phba->mbox;
13129 	vport = pmb->vport;
13130 
13131 	/* Reset heartbeat timer */
13132 	phba->last_completion_time = jiffies;
13133 	del_timer(&phba->sli.mbox_tmo);
13134 
13135 	/* Move mbox data to caller's mailbox region, do endian swapping */
13136 	if (pmb->mbox_cmpl && mbox)
13137 		lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
13138 
13139 	/*
13140 	 * For mcqe errors, conditionally move a modified error code to
13141 	 * the mbox so that the error will not be missed.
13142 	 */
13143 	mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
13144 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
13145 		if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
13146 			bf_set(lpfc_mqe_status, mqe,
13147 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
13148 	}
13149 	if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13150 		pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13151 		lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
13152 				      "MBOX dflt rpi: status:x%x rpi:x%x",
13153 				      mcqe_status,
13154 				      pmbox->un.varWords[0], 0);
13155 		if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
13156 			mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
13157 			ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
13158 			/* Reg_LOGIN of dflt RPI was successful. Now lets get
13159 			 * RID of the PPI using the same mbox buffer.
13160 			 */
13161 			lpfc_unreg_login(phba, vport->vpi,
13162 					 pmbox->un.varWords[0], pmb);
13163 			pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
13164 			pmb->ctx_buf = mp;
13165 			pmb->ctx_ndlp = ndlp;
13166 			pmb->vport = vport;
13167 			rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
13168 			if (rc != MBX_BUSY)
13169 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
13170 						LOG_SLI, "0385 rc should "
13171 						"have been MBX_BUSY\n");
13172 			if (rc != MBX_NOT_FINISHED)
13173 				goto send_current_mbox;
13174 		}
13175 	}
13176 	spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
13177 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
13178 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
13179 
13180 	/* There is mailbox completion work to do */
13181 	spin_lock_irqsave(&phba->hbalock, iflags);
13182 	__lpfc_mbox_cmpl_put(phba, pmb);
13183 	phba->work_ha |= HA_MBATT;
13184 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13185 	workposted = true;
13186 
13187 send_current_mbox:
13188 	spin_lock_irqsave(&phba->hbalock, iflags);
13189 	/* Release the mailbox command posting token */
13190 	phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13191 	/* Setting active mailbox pointer need to be in sync to flag clear */
13192 	phba->sli.mbox_active = NULL;
13193 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13194 	/* Wake up worker thread to post the next pending mailbox command */
13195 	lpfc_worker_wake_up(phba);
13196 out_no_mqe_complete:
13197 	if (bf_get(lpfc_trailer_consumed, mcqe))
13198 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13199 	return workposted;
13200 }
13201 
13202 /**
13203  * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
13204  * @phba: Pointer to HBA context object.
13205  * @cqe: Pointer to mailbox completion queue entry.
13206  *
13207  * This routine process a mailbox completion queue entry, it invokes the
13208  * proper mailbox complete handling or asynchrous event handling routine
13209  * according to the MCQE's async bit.
13210  *
13211  * Return: true if work posted to worker thread, otherwise false.
13212  **/
13213 static bool
13214 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13215 			 struct lpfc_cqe *cqe)
13216 {
13217 	struct lpfc_mcqe mcqe;
13218 	bool workposted;
13219 
13220 	cq->CQ_mbox++;
13221 
13222 	/* Copy the mailbox MCQE and convert endian order as needed */
13223 	lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
13224 
13225 	/* Invoke the proper event handling routine */
13226 	if (!bf_get(lpfc_trailer_async, &mcqe))
13227 		workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
13228 	else
13229 		workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
13230 	return workposted;
13231 }
13232 
13233 /**
13234  * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
13235  * @phba: Pointer to HBA context object.
13236  * @cq: Pointer to associated CQ
13237  * @wcqe: Pointer to work-queue completion queue entry.
13238  *
13239  * This routine handles an ELS work-queue completion event.
13240  *
13241  * Return: true if work posted to worker thread, otherwise false.
13242  **/
13243 static bool
13244 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13245 			     struct lpfc_wcqe_complete *wcqe)
13246 {
13247 	struct lpfc_iocbq *irspiocbq;
13248 	unsigned long iflags;
13249 	struct lpfc_sli_ring *pring = cq->pring;
13250 	int txq_cnt = 0;
13251 	int txcmplq_cnt = 0;
13252 	int fcp_txcmplq_cnt = 0;
13253 
13254 	/* Check for response status */
13255 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13256 		/* Log the error status */
13257 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13258 				"0357 ELS CQE error: status=x%x: "
13259 				"CQE: %08x %08x %08x %08x\n",
13260 				bf_get(lpfc_wcqe_c_status, wcqe),
13261 				wcqe->word0, wcqe->total_data_placed,
13262 				wcqe->parameter, wcqe->word3);
13263 	}
13264 
13265 	/* Get an irspiocbq for later ELS response processing use */
13266 	irspiocbq = lpfc_sli_get_iocbq(phba);
13267 	if (!irspiocbq) {
13268 		if (!list_empty(&pring->txq))
13269 			txq_cnt++;
13270 		if (!list_empty(&pring->txcmplq))
13271 			txcmplq_cnt++;
13272 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13273 			"0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
13274 			"fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n",
13275 			txq_cnt, phba->iocb_cnt,
13276 			fcp_txcmplq_cnt,
13277 			txcmplq_cnt);
13278 		return false;
13279 	}
13280 
13281 	/* Save off the slow-path queue event for work thread to process */
13282 	memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
13283 	spin_lock_irqsave(&phba->hbalock, iflags);
13284 	list_add_tail(&irspiocbq->cq_event.list,
13285 		      &phba->sli4_hba.sp_queue_event);
13286 	phba->hba_flag |= HBA_SP_QUEUE_EVT;
13287 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13288 
13289 	return true;
13290 }
13291 
13292 /**
13293  * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
13294  * @phba: Pointer to HBA context object.
13295  * @wcqe: Pointer to work-queue completion queue entry.
13296  *
13297  * This routine handles slow-path WQ entry consumed event by invoking the
13298  * proper WQ release routine to the slow-path WQ.
13299  **/
13300 static void
13301 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
13302 			     struct lpfc_wcqe_release *wcqe)
13303 {
13304 	/* sanity check on queue memory */
13305 	if (unlikely(!phba->sli4_hba.els_wq))
13306 		return;
13307 	/* Check for the slow-path ELS work queue */
13308 	if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
13309 		lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
13310 				     bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13311 	else
13312 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13313 				"2579 Slow-path wqe consume event carries "
13314 				"miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
13315 				bf_get(lpfc_wcqe_r_wqe_index, wcqe),
13316 				phba->sli4_hba.els_wq->queue_id);
13317 }
13318 
13319 /**
13320  * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
13321  * @phba: Pointer to HBA context object.
13322  * @cq: Pointer to a WQ completion queue.
13323  * @wcqe: Pointer to work-queue completion queue entry.
13324  *
13325  * This routine handles an XRI abort event.
13326  *
13327  * Return: true if work posted to worker thread, otherwise false.
13328  **/
13329 static bool
13330 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
13331 				   struct lpfc_queue *cq,
13332 				   struct sli4_wcqe_xri_aborted *wcqe)
13333 {
13334 	bool workposted = false;
13335 	struct lpfc_cq_event *cq_event;
13336 	unsigned long iflags;
13337 
13338 	switch (cq->subtype) {
13339 	case LPFC_FCP:
13340 		lpfc_sli4_fcp_xri_aborted(phba, wcqe, cq->hdwq);
13341 		workposted = false;
13342 		break;
13343 	case LPFC_NVME_LS: /* NVME LS uses ELS resources */
13344 	case LPFC_ELS:
13345 		cq_event = lpfc_cq_event_setup(
13346 			phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
13347 		if (!cq_event)
13348 			return false;
13349 		cq_event->hdwq = cq->hdwq;
13350 		spin_lock_irqsave(&phba->hbalock, iflags);
13351 		list_add_tail(&cq_event->list,
13352 			      &phba->sli4_hba.sp_els_xri_aborted_work_queue);
13353 		/* Set the els xri abort event flag */
13354 		phba->hba_flag |= ELS_XRI_ABORT_EVENT;
13355 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13356 		workposted = true;
13357 		break;
13358 	case LPFC_NVME:
13359 		/* Notify aborted XRI for NVME work queue */
13360 		if (phba->nvmet_support)
13361 			lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
13362 		else
13363 			lpfc_sli4_nvme_xri_aborted(phba, wcqe, cq->hdwq);
13364 
13365 		workposted = false;
13366 		break;
13367 	default:
13368 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13369 				"0603 Invalid CQ subtype %d: "
13370 				"%08x %08x %08x %08x\n",
13371 				cq->subtype, wcqe->word0, wcqe->parameter,
13372 				wcqe->word2, wcqe->word3);
13373 		workposted = false;
13374 		break;
13375 	}
13376 	return workposted;
13377 }
13378 
13379 #define FC_RCTL_MDS_DIAGS	0xF4
13380 
13381 /**
13382  * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
13383  * @phba: Pointer to HBA context object.
13384  * @rcqe: Pointer to receive-queue completion queue entry.
13385  *
13386  * This routine process a receive-queue completion queue entry.
13387  *
13388  * Return: true if work posted to worker thread, otherwise false.
13389  **/
13390 static bool
13391 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
13392 {
13393 	bool workposted = false;
13394 	struct fc_frame_header *fc_hdr;
13395 	struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
13396 	struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
13397 	struct lpfc_nvmet_tgtport *tgtp;
13398 	struct hbq_dmabuf *dma_buf;
13399 	uint32_t status, rq_id;
13400 	unsigned long iflags;
13401 
13402 	/* sanity check on queue memory */
13403 	if (unlikely(!hrq) || unlikely(!drq))
13404 		return workposted;
13405 
13406 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13407 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13408 	else
13409 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13410 	if (rq_id != hrq->queue_id)
13411 		goto out;
13412 
13413 	status = bf_get(lpfc_rcqe_status, rcqe);
13414 	switch (status) {
13415 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13416 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13417 				"2537 Receive Frame Truncated!!\n");
13418 		/* fall through */
13419 	case FC_STATUS_RQ_SUCCESS:
13420 		spin_lock_irqsave(&phba->hbalock, iflags);
13421 		lpfc_sli4_rq_release(hrq, drq);
13422 		dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
13423 		if (!dma_buf) {
13424 			hrq->RQ_no_buf_found++;
13425 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13426 			goto out;
13427 		}
13428 		hrq->RQ_rcv_buf++;
13429 		hrq->RQ_buf_posted--;
13430 		memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
13431 
13432 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13433 
13434 		if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
13435 		    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
13436 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13437 			/* Handle MDS Loopback frames */
13438 			lpfc_sli4_handle_mds_loopback(phba->pport, dma_buf);
13439 			break;
13440 		}
13441 
13442 		/* save off the frame for the work thread to process */
13443 		list_add_tail(&dma_buf->cq_event.list,
13444 			      &phba->sli4_hba.sp_queue_event);
13445 		/* Frame received */
13446 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
13447 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13448 		workposted = true;
13449 		break;
13450 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13451 		if (phba->nvmet_support) {
13452 			tgtp = phba->targetport->private;
13453 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13454 					"6402 RQE Error x%x, posted %d err_cnt "
13455 					"%d: %x %x %x\n",
13456 					status, hrq->RQ_buf_posted,
13457 					hrq->RQ_no_posted_buf,
13458 					atomic_read(&tgtp->rcv_fcp_cmd_in),
13459 					atomic_read(&tgtp->rcv_fcp_cmd_out),
13460 					atomic_read(&tgtp->xmt_fcp_release));
13461 		}
13462 		/* fallthrough */
13463 
13464 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
13465 		hrq->RQ_no_posted_buf++;
13466 		/* Post more buffers if possible */
13467 		spin_lock_irqsave(&phba->hbalock, iflags);
13468 		phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
13469 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13470 		workposted = true;
13471 		break;
13472 	}
13473 out:
13474 	return workposted;
13475 }
13476 
13477 /**
13478  * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
13479  * @phba: Pointer to HBA context object.
13480  * @cq: Pointer to the completion queue.
13481  * @cqe: Pointer to a completion queue entry.
13482  *
13483  * This routine process a slow-path work-queue or receive queue completion queue
13484  * entry.
13485  *
13486  * Return: true if work posted to worker thread, otherwise false.
13487  **/
13488 static bool
13489 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13490 			 struct lpfc_cqe *cqe)
13491 {
13492 	struct lpfc_cqe cqevt;
13493 	bool workposted = false;
13494 
13495 	/* Copy the work queue CQE and convert endian order if needed */
13496 	lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
13497 
13498 	/* Check and process for different type of WCQE and dispatch */
13499 	switch (bf_get(lpfc_cqe_code, &cqevt)) {
13500 	case CQE_CODE_COMPL_WQE:
13501 		/* Process the WQ/RQ complete event */
13502 		phba->last_completion_time = jiffies;
13503 		workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
13504 				(struct lpfc_wcqe_complete *)&cqevt);
13505 		break;
13506 	case CQE_CODE_RELEASE_WQE:
13507 		/* Process the WQ release event */
13508 		lpfc_sli4_sp_handle_rel_wcqe(phba,
13509 				(struct lpfc_wcqe_release *)&cqevt);
13510 		break;
13511 	case CQE_CODE_XRI_ABORTED:
13512 		/* Process the WQ XRI abort event */
13513 		phba->last_completion_time = jiffies;
13514 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13515 				(struct sli4_wcqe_xri_aborted *)&cqevt);
13516 		break;
13517 	case CQE_CODE_RECEIVE:
13518 	case CQE_CODE_RECEIVE_V1:
13519 		/* Process the RQ event */
13520 		phba->last_completion_time = jiffies;
13521 		workposted = lpfc_sli4_sp_handle_rcqe(phba,
13522 				(struct lpfc_rcqe *)&cqevt);
13523 		break;
13524 	default:
13525 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13526 				"0388 Not a valid WCQE code: x%x\n",
13527 				bf_get(lpfc_cqe_code, &cqevt));
13528 		break;
13529 	}
13530 	return workposted;
13531 }
13532 
13533 /**
13534  * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
13535  * @phba: Pointer to HBA context object.
13536  * @eqe: Pointer to fast-path event queue entry.
13537  *
13538  * This routine process a event queue entry from the slow-path event queue.
13539  * It will check the MajorCode and MinorCode to determine this is for a
13540  * completion event on a completion queue, if not, an error shall be logged
13541  * and just return. Otherwise, it will get to the corresponding completion
13542  * queue and process all the entries on that completion queue, rearm the
13543  * completion queue, and then return.
13544  *
13545  **/
13546 static void
13547 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13548 	struct lpfc_queue *speq)
13549 {
13550 	struct lpfc_queue *cq = NULL, *childq;
13551 	uint16_t cqid;
13552 
13553 	/* Get the reference to the corresponding CQ */
13554 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13555 
13556 	list_for_each_entry(childq, &speq->child_list, list) {
13557 		if (childq->queue_id == cqid) {
13558 			cq = childq;
13559 			break;
13560 		}
13561 	}
13562 	if (unlikely(!cq)) {
13563 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
13564 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13565 					"0365 Slow-path CQ identifier "
13566 					"(%d) does not exist\n", cqid);
13567 		return;
13568 	}
13569 
13570 	/* Save EQ associated with this CQ */
13571 	cq->assoc_qp = speq;
13572 
13573 	if (!queue_work_on(cq->chann, phba->wq, &cq->spwork))
13574 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13575 				"0390 Cannot schedule soft IRQ "
13576 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
13577 				cqid, cq->queue_id, raw_smp_processor_id());
13578 }
13579 
13580 /**
13581  * __lpfc_sli4_process_cq - Process elements of a CQ
13582  * @phba: Pointer to HBA context object.
13583  * @cq: Pointer to CQ to be processed
13584  * @handler: Routine to process each cqe
13585  * @delay: Pointer to usdelay to set in case of rescheduling of the handler
13586  *
13587  * This routine processes completion queue entries in a CQ. While a valid
13588  * queue element is found, the handler is called. During processing checks
13589  * are made for periodic doorbell writes to let the hardware know of
13590  * element consumption.
13591  *
13592  * If the max limit on cqes to process is hit, or there are no more valid
13593  * entries, the loop stops. If we processed a sufficient number of elements,
13594  * meaning there is sufficient load, rather than rearming and generating
13595  * another interrupt, a cq rescheduling delay will be set. A delay of 0
13596  * indicates no rescheduling.
13597  *
13598  * Returns True if work scheduled, False otherwise.
13599  **/
13600 static bool
13601 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
13602 	bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
13603 			struct lpfc_cqe *), unsigned long *delay)
13604 {
13605 	struct lpfc_cqe *cqe;
13606 	bool workposted = false;
13607 	int count = 0, consumed = 0;
13608 	bool arm = true;
13609 
13610 	/* default - no reschedule */
13611 	*delay = 0;
13612 
13613 	if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
13614 		goto rearm_and_exit;
13615 
13616 	/* Process all the entries to the CQ */
13617 	cq->q_flag = 0;
13618 	cqe = lpfc_sli4_cq_get(cq);
13619 	while (cqe) {
13620 		workposted |= handler(phba, cq, cqe);
13621 		__lpfc_sli4_consume_cqe(phba, cq, cqe);
13622 
13623 		consumed++;
13624 		if (!(++count % cq->max_proc_limit))
13625 			break;
13626 
13627 		if (!(count % cq->notify_interval)) {
13628 			phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13629 						LPFC_QUEUE_NOARM);
13630 			consumed = 0;
13631 		}
13632 
13633 		if (count == LPFC_NVMET_CQ_NOTIFY)
13634 			cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
13635 
13636 		cqe = lpfc_sli4_cq_get(cq);
13637 	}
13638 	if (count >= phba->cfg_cq_poll_threshold) {
13639 		*delay = 1;
13640 		arm = false;
13641 	}
13642 
13643 	/* Track the max number of CQEs processed in 1 EQ */
13644 	if (count > cq->CQ_max_cqe)
13645 		cq->CQ_max_cqe = count;
13646 
13647 	cq->assoc_qp->EQ_cqe_cnt += count;
13648 
13649 	/* Catch the no cq entry condition */
13650 	if (unlikely(count == 0))
13651 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13652 				"0369 No entry from completion queue "
13653 				"qid=%d\n", cq->queue_id);
13654 
13655 	cq->queue_claimed = 0;
13656 
13657 rearm_and_exit:
13658 	phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13659 			arm ?  LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
13660 
13661 	return workposted;
13662 }
13663 
13664 /**
13665  * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
13666  * @cq: pointer to CQ to process
13667  *
13668  * This routine calls the cq processing routine with a handler specific
13669  * to the type of queue bound to it.
13670  *
13671  * The CQ routine returns two values: the first is the calling status,
13672  * which indicates whether work was queued to the  background discovery
13673  * thread. If true, the routine should wakeup the discovery thread;
13674  * the second is the delay parameter. If non-zero, rather than rearming
13675  * the CQ and yet another interrupt, the CQ handler should be queued so
13676  * that it is processed in a subsequent polling action. The value of
13677  * the delay indicates when to reschedule it.
13678  **/
13679 static void
13680 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
13681 {
13682 	struct lpfc_hba *phba = cq->phba;
13683 	unsigned long delay;
13684 	bool workposted = false;
13685 
13686 	/* Process and rearm the CQ */
13687 	switch (cq->type) {
13688 	case LPFC_MCQ:
13689 		workposted |= __lpfc_sli4_process_cq(phba, cq,
13690 						lpfc_sli4_sp_handle_mcqe,
13691 						&delay);
13692 		break;
13693 	case LPFC_WCQ:
13694 		if (cq->subtype == LPFC_FCP || cq->subtype == LPFC_NVME)
13695 			workposted |= __lpfc_sli4_process_cq(phba, cq,
13696 						lpfc_sli4_fp_handle_cqe,
13697 						&delay);
13698 		else
13699 			workposted |= __lpfc_sli4_process_cq(phba, cq,
13700 						lpfc_sli4_sp_handle_cqe,
13701 						&delay);
13702 		break;
13703 	default:
13704 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13705 				"0370 Invalid completion queue type (%d)\n",
13706 				cq->type);
13707 		return;
13708 	}
13709 
13710 	if (delay) {
13711 		if (!queue_delayed_work_on(cq->chann, phba->wq,
13712 					   &cq->sched_spwork, delay))
13713 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13714 				"0394 Cannot schedule soft IRQ "
13715 				"for cqid=%d on CPU %d\n",
13716 				cq->queue_id, cq->chann);
13717 	}
13718 
13719 	/* wake up worker thread if there are works to be done */
13720 	if (workposted)
13721 		lpfc_worker_wake_up(phba);
13722 }
13723 
13724 /**
13725  * lpfc_sli4_sp_process_cq - slow-path work handler when started by
13726  *   interrupt
13727  * @work: pointer to work element
13728  *
13729  * translates from the work handler and calls the slow-path handler.
13730  **/
13731 static void
13732 lpfc_sli4_sp_process_cq(struct work_struct *work)
13733 {
13734 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
13735 
13736 	__lpfc_sli4_sp_process_cq(cq);
13737 }
13738 
13739 /**
13740  * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
13741  * @work: pointer to work element
13742  *
13743  * translates from the work handler and calls the slow-path handler.
13744  **/
13745 static void
13746 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
13747 {
13748 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
13749 					struct lpfc_queue, sched_spwork);
13750 
13751 	__lpfc_sli4_sp_process_cq(cq);
13752 }
13753 
13754 /**
13755  * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
13756  * @phba: Pointer to HBA context object.
13757  * @cq: Pointer to associated CQ
13758  * @wcqe: Pointer to work-queue completion queue entry.
13759  *
13760  * This routine process a fast-path work queue completion entry from fast-path
13761  * event queue for FCP command response completion.
13762  **/
13763 static void
13764 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13765 			     struct lpfc_wcqe_complete *wcqe)
13766 {
13767 	struct lpfc_sli_ring *pring = cq->pring;
13768 	struct lpfc_iocbq *cmdiocbq;
13769 	struct lpfc_iocbq irspiocbq;
13770 	unsigned long iflags;
13771 
13772 	/* Check for response status */
13773 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13774 		/* If resource errors reported from HBA, reduce queue
13775 		 * depth of the SCSI device.
13776 		 */
13777 		if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
13778 		     IOSTAT_LOCAL_REJECT)) &&
13779 		    ((wcqe->parameter & IOERR_PARAM_MASK) ==
13780 		     IOERR_NO_RESOURCES))
13781 			phba->lpfc_rampdown_queue_depth(phba);
13782 
13783 		/* Log the error status */
13784 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13785 				"0373 FCP CQE error: status=x%x: "
13786 				"CQE: %08x %08x %08x %08x\n",
13787 				bf_get(lpfc_wcqe_c_status, wcqe),
13788 				wcqe->word0, wcqe->total_data_placed,
13789 				wcqe->parameter, wcqe->word3);
13790 	}
13791 
13792 	/* Look up the FCP command IOCB and create pseudo response IOCB */
13793 	spin_lock_irqsave(&pring->ring_lock, iflags);
13794 	pring->stats.iocb_event++;
13795 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13796 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13797 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13798 	if (unlikely(!cmdiocbq)) {
13799 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13800 				"0374 FCP complete with no corresponding "
13801 				"cmdiocb: iotag (%d)\n",
13802 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13803 		return;
13804 	}
13805 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
13806 	cmdiocbq->isr_timestamp = cq->isr_timestamp;
13807 #endif
13808 	if (cmdiocbq->iocb_cmpl == NULL) {
13809 		if (cmdiocbq->wqe_cmpl) {
13810 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13811 				spin_lock_irqsave(&phba->hbalock, iflags);
13812 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13813 				spin_unlock_irqrestore(&phba->hbalock, iflags);
13814 			}
13815 
13816 			/* Pass the cmd_iocb and the wcqe to the upper layer */
13817 			(cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
13818 			return;
13819 		}
13820 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13821 				"0375 FCP cmdiocb not callback function "
13822 				"iotag: (%d)\n",
13823 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13824 		return;
13825 	}
13826 
13827 	/* Fake the irspiocb and copy necessary response information */
13828 	lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
13829 
13830 	if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13831 		spin_lock_irqsave(&phba->hbalock, iflags);
13832 		cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13833 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13834 	}
13835 
13836 	/* Pass the cmd_iocb and the rsp state to the upper layer */
13837 	(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
13838 }
13839 
13840 /**
13841  * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
13842  * @phba: Pointer to HBA context object.
13843  * @cq: Pointer to completion queue.
13844  * @wcqe: Pointer to work-queue completion queue entry.
13845  *
13846  * This routine handles an fast-path WQ entry consumed event by invoking the
13847  * proper WQ release routine to the slow-path WQ.
13848  **/
13849 static void
13850 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13851 			     struct lpfc_wcqe_release *wcqe)
13852 {
13853 	struct lpfc_queue *childwq;
13854 	bool wqid_matched = false;
13855 	uint16_t hba_wqid;
13856 
13857 	/* Check for fast-path FCP work queue release */
13858 	hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
13859 	list_for_each_entry(childwq, &cq->child_list, list) {
13860 		if (childwq->queue_id == hba_wqid) {
13861 			lpfc_sli4_wq_release(childwq,
13862 					bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13863 			if (childwq->q_flag & HBA_NVMET_WQFULL)
13864 				lpfc_nvmet_wqfull_process(phba, childwq);
13865 			wqid_matched = true;
13866 			break;
13867 		}
13868 	}
13869 	/* Report warning log message if no match found */
13870 	if (wqid_matched != true)
13871 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13872 				"2580 Fast-path wqe consume event carries "
13873 				"miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
13874 }
13875 
13876 /**
13877  * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
13878  * @phba: Pointer to HBA context object.
13879  * @rcqe: Pointer to receive-queue completion queue entry.
13880  *
13881  * This routine process a receive-queue completion queue entry.
13882  *
13883  * Return: true if work posted to worker thread, otherwise false.
13884  **/
13885 static bool
13886 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13887 			    struct lpfc_rcqe *rcqe)
13888 {
13889 	bool workposted = false;
13890 	struct lpfc_queue *hrq;
13891 	struct lpfc_queue *drq;
13892 	struct rqb_dmabuf *dma_buf;
13893 	struct fc_frame_header *fc_hdr;
13894 	struct lpfc_nvmet_tgtport *tgtp;
13895 	uint32_t status, rq_id;
13896 	unsigned long iflags;
13897 	uint32_t fctl, idx;
13898 
13899 	if ((phba->nvmet_support == 0) ||
13900 	    (phba->sli4_hba.nvmet_cqset == NULL))
13901 		return workposted;
13902 
13903 	idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
13904 	hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
13905 	drq = phba->sli4_hba.nvmet_mrq_data[idx];
13906 
13907 	/* sanity check on queue memory */
13908 	if (unlikely(!hrq) || unlikely(!drq))
13909 		return workposted;
13910 
13911 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13912 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13913 	else
13914 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13915 
13916 	if ((phba->nvmet_support == 0) ||
13917 	    (rq_id != hrq->queue_id))
13918 		return workposted;
13919 
13920 	status = bf_get(lpfc_rcqe_status, rcqe);
13921 	switch (status) {
13922 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13923 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13924 				"6126 Receive Frame Truncated!!\n");
13925 		/* fall through */
13926 	case FC_STATUS_RQ_SUCCESS:
13927 		spin_lock_irqsave(&phba->hbalock, iflags);
13928 		lpfc_sli4_rq_release(hrq, drq);
13929 		dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
13930 		if (!dma_buf) {
13931 			hrq->RQ_no_buf_found++;
13932 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13933 			goto out;
13934 		}
13935 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13936 		hrq->RQ_rcv_buf++;
13937 		hrq->RQ_buf_posted--;
13938 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13939 
13940 		/* Just some basic sanity checks on FCP Command frame */
13941 		fctl = (fc_hdr->fh_f_ctl[0] << 16 |
13942 		fc_hdr->fh_f_ctl[1] << 8 |
13943 		fc_hdr->fh_f_ctl[2]);
13944 		if (((fctl &
13945 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
13946 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
13947 		    (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
13948 			goto drop;
13949 
13950 		if (fc_hdr->fh_type == FC_TYPE_FCP) {
13951 			dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
13952 			lpfc_nvmet_unsol_fcp_event(
13953 				phba, idx, dma_buf, cq->isr_timestamp,
13954 				cq->q_flag & HBA_NVMET_CQ_NOTIFY);
13955 			return false;
13956 		}
13957 drop:
13958 		lpfc_rq_buf_free(phba, &dma_buf->hbuf);
13959 		break;
13960 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13961 		if (phba->nvmet_support) {
13962 			tgtp = phba->targetport->private;
13963 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13964 					"6401 RQE Error x%x, posted %d err_cnt "
13965 					"%d: %x %x %x\n",
13966 					status, hrq->RQ_buf_posted,
13967 					hrq->RQ_no_posted_buf,
13968 					atomic_read(&tgtp->rcv_fcp_cmd_in),
13969 					atomic_read(&tgtp->rcv_fcp_cmd_out),
13970 					atomic_read(&tgtp->xmt_fcp_release));
13971 		}
13972 		/* fallthrough */
13973 
13974 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
13975 		hrq->RQ_no_posted_buf++;
13976 		/* Post more buffers if possible */
13977 		break;
13978 	}
13979 out:
13980 	return workposted;
13981 }
13982 
13983 /**
13984  * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
13985  * @phba: adapter with cq
13986  * @cq: Pointer to the completion queue.
13987  * @eqe: Pointer to fast-path completion queue entry.
13988  *
13989  * This routine process a fast-path work queue completion entry from fast-path
13990  * event queue for FCP command response completion.
13991  *
13992  * Return: true if work posted to worker thread, otherwise false.
13993  **/
13994 static bool
13995 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13996 			 struct lpfc_cqe *cqe)
13997 {
13998 	struct lpfc_wcqe_release wcqe;
13999 	bool workposted = false;
14000 
14001 	/* Copy the work queue CQE and convert endian order if needed */
14002 	lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
14003 
14004 	/* Check and process for different type of WCQE and dispatch */
14005 	switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
14006 	case CQE_CODE_COMPL_WQE:
14007 	case CQE_CODE_NVME_ERSP:
14008 		cq->CQ_wq++;
14009 		/* Process the WQ complete event */
14010 		phba->last_completion_time = jiffies;
14011 		if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME))
14012 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
14013 				(struct lpfc_wcqe_complete *)&wcqe);
14014 		if (cq->subtype == LPFC_NVME_LS)
14015 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
14016 				(struct lpfc_wcqe_complete *)&wcqe);
14017 		break;
14018 	case CQE_CODE_RELEASE_WQE:
14019 		cq->CQ_release_wqe++;
14020 		/* Process the WQ release event */
14021 		lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
14022 				(struct lpfc_wcqe_release *)&wcqe);
14023 		break;
14024 	case CQE_CODE_XRI_ABORTED:
14025 		cq->CQ_xri_aborted++;
14026 		/* Process the WQ XRI abort event */
14027 		phba->last_completion_time = jiffies;
14028 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14029 				(struct sli4_wcqe_xri_aborted *)&wcqe);
14030 		break;
14031 	case CQE_CODE_RECEIVE_V1:
14032 	case CQE_CODE_RECEIVE:
14033 		phba->last_completion_time = jiffies;
14034 		if (cq->subtype == LPFC_NVMET) {
14035 			workposted = lpfc_sli4_nvmet_handle_rcqe(
14036 				phba, cq, (struct lpfc_rcqe *)&wcqe);
14037 		}
14038 		break;
14039 	default:
14040 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14041 				"0144 Not a valid CQE code: x%x\n",
14042 				bf_get(lpfc_wcqe_c_code, &wcqe));
14043 		break;
14044 	}
14045 	return workposted;
14046 }
14047 
14048 /**
14049  * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
14050  * @phba: Pointer to HBA context object.
14051  * @eqe: Pointer to fast-path event queue entry.
14052  *
14053  * This routine process a event queue entry from the fast-path event queue.
14054  * It will check the MajorCode and MinorCode to determine this is for a
14055  * completion event on a completion queue, if not, an error shall be logged
14056  * and just return. Otherwise, it will get to the corresponding completion
14057  * queue and process all the entries on the completion queue, rearm the
14058  * completion queue, and then return.
14059  **/
14060 static void
14061 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
14062 			 struct lpfc_eqe *eqe)
14063 {
14064 	struct lpfc_queue *cq = NULL;
14065 	uint32_t qidx = eq->hdwq;
14066 	uint16_t cqid, id;
14067 
14068 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
14069 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14070 				"0366 Not a valid completion "
14071 				"event: majorcode=x%x, minorcode=x%x\n",
14072 				bf_get_le32(lpfc_eqe_major_code, eqe),
14073 				bf_get_le32(lpfc_eqe_minor_code, eqe));
14074 		return;
14075 	}
14076 
14077 	/* Get the reference to the corresponding CQ */
14078 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14079 
14080 	/* Use the fast lookup method first */
14081 	if (cqid <= phba->sli4_hba.cq_max) {
14082 		cq = phba->sli4_hba.cq_lookup[cqid];
14083 		if (cq)
14084 			goto  work_cq;
14085 	}
14086 
14087 	/* Next check for NVMET completion */
14088 	if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
14089 		id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
14090 		if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
14091 			/* Process NVMET unsol rcv */
14092 			cq = phba->sli4_hba.nvmet_cqset[cqid - id];
14093 			goto  process_cq;
14094 		}
14095 	}
14096 
14097 	if (phba->sli4_hba.nvmels_cq &&
14098 	    (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
14099 		/* Process NVME unsol rcv */
14100 		cq = phba->sli4_hba.nvmels_cq;
14101 	}
14102 
14103 	/* Otherwise this is a Slow path event */
14104 	if (cq == NULL) {
14105 		lpfc_sli4_sp_handle_eqe(phba, eqe,
14106 					phba->sli4_hba.hdwq[qidx].hba_eq);
14107 		return;
14108 	}
14109 
14110 process_cq:
14111 	if (unlikely(cqid != cq->queue_id)) {
14112 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14113 				"0368 Miss-matched fast-path completion "
14114 				"queue identifier: eqcqid=%d, fcpcqid=%d\n",
14115 				cqid, cq->queue_id);
14116 		return;
14117 	}
14118 
14119 work_cq:
14120 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
14121 	if (phba->ktime_on)
14122 		cq->isr_timestamp = ktime_get_ns();
14123 	else
14124 		cq->isr_timestamp = 0;
14125 #endif
14126 	if (!queue_work_on(cq->chann, phba->wq, &cq->irqwork))
14127 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14128 				"0363 Cannot schedule soft IRQ "
14129 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14130 				cqid, cq->queue_id, raw_smp_processor_id());
14131 }
14132 
14133 /**
14134  * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
14135  * @cq: Pointer to CQ to be processed
14136  *
14137  * This routine calls the cq processing routine with the handler for
14138  * fast path CQEs.
14139  *
14140  * The CQ routine returns two values: the first is the calling status,
14141  * which indicates whether work was queued to the  background discovery
14142  * thread. If true, the routine should wakeup the discovery thread;
14143  * the second is the delay parameter. If non-zero, rather than rearming
14144  * the CQ and yet another interrupt, the CQ handler should be queued so
14145  * that it is processed in a subsequent polling action. The value of
14146  * the delay indicates when to reschedule it.
14147  **/
14148 static void
14149 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq)
14150 {
14151 	struct lpfc_hba *phba = cq->phba;
14152 	unsigned long delay;
14153 	bool workposted = false;
14154 
14155 	/* process and rearm the CQ */
14156 	workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
14157 					     &delay);
14158 
14159 	if (delay) {
14160 		if (!queue_delayed_work_on(cq->chann, phba->wq,
14161 					   &cq->sched_irqwork, delay))
14162 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14163 				"0367 Cannot schedule soft IRQ "
14164 				"for cqid=%d on CPU %d\n",
14165 				cq->queue_id, cq->chann);
14166 	}
14167 
14168 	/* wake up worker thread if there are works to be done */
14169 	if (workposted)
14170 		lpfc_worker_wake_up(phba);
14171 }
14172 
14173 /**
14174  * lpfc_sli4_hba_process_cq - fast-path work handler when started by
14175  *   interrupt
14176  * @work: pointer to work element
14177  *
14178  * translates from the work handler and calls the fast-path handler.
14179  **/
14180 static void
14181 lpfc_sli4_hba_process_cq(struct work_struct *work)
14182 {
14183 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
14184 
14185 	__lpfc_sli4_hba_process_cq(cq);
14186 }
14187 
14188 /**
14189  * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer
14190  * @work: pointer to work element
14191  *
14192  * translates from the work handler and calls the fast-path handler.
14193  **/
14194 static void
14195 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
14196 {
14197 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
14198 					struct lpfc_queue, sched_irqwork);
14199 
14200 	__lpfc_sli4_hba_process_cq(cq);
14201 }
14202 
14203 /**
14204  * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
14205  * @irq: Interrupt number.
14206  * @dev_id: The device context pointer.
14207  *
14208  * This function is directly called from the PCI layer as an interrupt
14209  * service routine when device with SLI-4 interface spec is enabled with
14210  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
14211  * ring event in the HBA. However, when the device is enabled with either
14212  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14213  * device-level interrupt handler. When the PCI slot is in error recovery
14214  * or the HBA is undergoing initialization, the interrupt handler will not
14215  * process the interrupt. The SCSI FCP fast-path ring event are handled in
14216  * the intrrupt context. This function is called without any lock held.
14217  * It gets the hbalock to access and update SLI data structures. Note that,
14218  * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
14219  * equal to that of FCP CQ index.
14220  *
14221  * The link attention and ELS ring attention events are handled
14222  * by the worker thread. The interrupt handler signals the worker thread
14223  * and returns for these events. This function is called without any lock
14224  * held. It gets the hbalock to access and update SLI data structures.
14225  *
14226  * This function returns IRQ_HANDLED when interrupt is handled else it
14227  * returns IRQ_NONE.
14228  **/
14229 irqreturn_t
14230 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
14231 {
14232 	struct lpfc_hba *phba;
14233 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
14234 	struct lpfc_queue *fpeq;
14235 	unsigned long iflag;
14236 	int ecount = 0;
14237 	int hba_eqidx;
14238 	struct lpfc_eq_intr_info *eqi;
14239 	uint32_t icnt;
14240 
14241 	/* Get the driver's phba structure from the dev_id */
14242 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14243 	phba = hba_eq_hdl->phba;
14244 	hba_eqidx = hba_eq_hdl->idx;
14245 
14246 	if (unlikely(!phba))
14247 		return IRQ_NONE;
14248 	if (unlikely(!phba->sli4_hba.hdwq))
14249 		return IRQ_NONE;
14250 
14251 	/* Get to the EQ struct associated with this vector */
14252 	fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
14253 	if (unlikely(!fpeq))
14254 		return IRQ_NONE;
14255 
14256 	/* Check device state for handling interrupt */
14257 	if (unlikely(lpfc_intr_state_check(phba))) {
14258 		/* Check again for link_state with lock held */
14259 		spin_lock_irqsave(&phba->hbalock, iflag);
14260 		if (phba->link_state < LPFC_LINK_DOWN)
14261 			/* Flush, clear interrupt, and rearm the EQ */
14262 			lpfc_sli4_eq_flush(phba, fpeq);
14263 		spin_unlock_irqrestore(&phba->hbalock, iflag);
14264 		return IRQ_NONE;
14265 	}
14266 
14267 	eqi = phba->sli4_hba.eq_info;
14268 	icnt = this_cpu_inc_return(eqi->icnt);
14269 	fpeq->last_cpu = raw_smp_processor_id();
14270 
14271 	if (icnt > LPFC_EQD_ISR_TRIGGER &&
14272 	    phba->cfg_irq_chann == 1 &&
14273 	    phba->cfg_auto_imax &&
14274 	    fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
14275 	    phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
14276 		lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
14277 
14278 	/* process and rearm the EQ */
14279 	ecount = lpfc_sli4_process_eq(phba, fpeq);
14280 
14281 	if (unlikely(ecount == 0)) {
14282 		fpeq->EQ_no_entry++;
14283 		if (phba->intr_type == MSIX)
14284 			/* MSI-X treated interrupt served as no EQ share INT */
14285 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14286 					"0358 MSI-X interrupt with no EQE\n");
14287 		else
14288 			/* Non MSI-X treated on interrupt as EQ share INT */
14289 			return IRQ_NONE;
14290 	}
14291 
14292 	return IRQ_HANDLED;
14293 } /* lpfc_sli4_fp_intr_handler */
14294 
14295 /**
14296  * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
14297  * @irq: Interrupt number.
14298  * @dev_id: The device context pointer.
14299  *
14300  * This function is the device-level interrupt handler to device with SLI-4
14301  * interface spec, called from the PCI layer when either MSI or Pin-IRQ
14302  * interrupt mode is enabled and there is an event in the HBA which requires
14303  * driver attention. This function invokes the slow-path interrupt attention
14304  * handling function and fast-path interrupt attention handling function in
14305  * turn to process the relevant HBA attention events. This function is called
14306  * without any lock held. It gets the hbalock to access and update SLI data
14307  * structures.
14308  *
14309  * This function returns IRQ_HANDLED when interrupt is handled, else it
14310  * returns IRQ_NONE.
14311  **/
14312 irqreturn_t
14313 lpfc_sli4_intr_handler(int irq, void *dev_id)
14314 {
14315 	struct lpfc_hba  *phba;
14316 	irqreturn_t hba_irq_rc;
14317 	bool hba_handled = false;
14318 	int qidx;
14319 
14320 	/* Get the driver's phba structure from the dev_id */
14321 	phba = (struct lpfc_hba *)dev_id;
14322 
14323 	if (unlikely(!phba))
14324 		return IRQ_NONE;
14325 
14326 	/*
14327 	 * Invoke fast-path host attention interrupt handling as appropriate.
14328 	 */
14329 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
14330 		hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
14331 					&phba->sli4_hba.hba_eq_hdl[qidx]);
14332 		if (hba_irq_rc == IRQ_HANDLED)
14333 			hba_handled |= true;
14334 	}
14335 
14336 	return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
14337 } /* lpfc_sli4_intr_handler */
14338 
14339 /**
14340  * lpfc_sli4_queue_free - free a queue structure and associated memory
14341  * @queue: The queue structure to free.
14342  *
14343  * This function frees a queue structure and the DMAable memory used for
14344  * the host resident queue. This function must be called after destroying the
14345  * queue on the HBA.
14346  **/
14347 void
14348 lpfc_sli4_queue_free(struct lpfc_queue *queue)
14349 {
14350 	struct lpfc_dmabuf *dmabuf;
14351 
14352 	if (!queue)
14353 		return;
14354 
14355 	if (!list_empty(&queue->wq_list))
14356 		list_del(&queue->wq_list);
14357 
14358 	while (!list_empty(&queue->page_list)) {
14359 		list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
14360 				 list);
14361 		dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
14362 				  dmabuf->virt, dmabuf->phys);
14363 		kfree(dmabuf);
14364 	}
14365 	if (queue->rqbp) {
14366 		lpfc_free_rq_buffer(queue->phba, queue);
14367 		kfree(queue->rqbp);
14368 	}
14369 
14370 	if (!list_empty(&queue->cpu_list))
14371 		list_del(&queue->cpu_list);
14372 
14373 	kfree(queue);
14374 	return;
14375 }
14376 
14377 /**
14378  * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
14379  * @phba: The HBA that this queue is being created on.
14380  * @page_size: The size of a queue page
14381  * @entry_size: The size of each queue entry for this queue.
14382  * @entry count: The number of entries that this queue will handle.
14383  * @cpu: The cpu that will primarily utilize this queue.
14384  *
14385  * This function allocates a queue structure and the DMAable memory used for
14386  * the host resident queue. This function must be called before creating the
14387  * queue on the HBA.
14388  **/
14389 struct lpfc_queue *
14390 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
14391 		      uint32_t entry_size, uint32_t entry_count, int cpu)
14392 {
14393 	struct lpfc_queue *queue;
14394 	struct lpfc_dmabuf *dmabuf;
14395 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14396 	uint16_t x, pgcnt;
14397 
14398 	if (!phba->sli4_hba.pc_sli4_params.supported)
14399 		hw_page_size = page_size;
14400 
14401 	pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
14402 
14403 	/* If needed, Adjust page count to match the max the adapter supports */
14404 	if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
14405 		pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
14406 
14407 	queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
14408 			     GFP_KERNEL, cpu_to_node(cpu));
14409 	if (!queue)
14410 		return NULL;
14411 
14412 	INIT_LIST_HEAD(&queue->list);
14413 	INIT_LIST_HEAD(&queue->wq_list);
14414 	INIT_LIST_HEAD(&queue->wqfull_list);
14415 	INIT_LIST_HEAD(&queue->page_list);
14416 	INIT_LIST_HEAD(&queue->child_list);
14417 	INIT_LIST_HEAD(&queue->cpu_list);
14418 
14419 	/* Set queue parameters now.  If the system cannot provide memory
14420 	 * resources, the free routine needs to know what was allocated.
14421 	 */
14422 	queue->page_count = pgcnt;
14423 	queue->q_pgs = (void **)&queue[1];
14424 	queue->entry_cnt_per_pg = hw_page_size / entry_size;
14425 	queue->entry_size = entry_size;
14426 	queue->entry_count = entry_count;
14427 	queue->page_size = hw_page_size;
14428 	queue->phba = phba;
14429 
14430 	for (x = 0; x < queue->page_count; x++) {
14431 		dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
14432 				      dev_to_node(&phba->pcidev->dev));
14433 		if (!dmabuf)
14434 			goto out_fail;
14435 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14436 						  hw_page_size, &dmabuf->phys,
14437 						  GFP_KERNEL);
14438 		if (!dmabuf->virt) {
14439 			kfree(dmabuf);
14440 			goto out_fail;
14441 		}
14442 		dmabuf->buffer_tag = x;
14443 		list_add_tail(&dmabuf->list, &queue->page_list);
14444 		/* use lpfc_sli4_qe to index a paritcular entry in this page */
14445 		queue->q_pgs[x] = dmabuf->virt;
14446 	}
14447 	INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
14448 	INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
14449 	INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
14450 	INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
14451 
14452 	/* notify_interval will be set during q creation */
14453 
14454 	return queue;
14455 out_fail:
14456 	lpfc_sli4_queue_free(queue);
14457 	return NULL;
14458 }
14459 
14460 /**
14461  * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
14462  * @phba: HBA structure that indicates port to create a queue on.
14463  * @pci_barset: PCI BAR set flag.
14464  *
14465  * This function shall perform iomap of the specified PCI BAR address to host
14466  * memory address if not already done so and return it. The returned host
14467  * memory address can be NULL.
14468  */
14469 static void __iomem *
14470 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
14471 {
14472 	if (!phba->pcidev)
14473 		return NULL;
14474 
14475 	switch (pci_barset) {
14476 	case WQ_PCI_BAR_0_AND_1:
14477 		return phba->pci_bar0_memmap_p;
14478 	case WQ_PCI_BAR_2_AND_3:
14479 		return phba->pci_bar2_memmap_p;
14480 	case WQ_PCI_BAR_4_AND_5:
14481 		return phba->pci_bar4_memmap_p;
14482 	default:
14483 		break;
14484 	}
14485 	return NULL;
14486 }
14487 
14488 /**
14489  * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
14490  * @phba: HBA structure that EQs are on.
14491  * @startq: The starting EQ index to modify
14492  * @numq: The number of EQs (consecutive indexes) to modify
14493  * @usdelay: amount of delay
14494  *
14495  * This function revises the EQ delay on 1 or more EQs. The EQ delay
14496  * is set either by writing to a register (if supported by the SLI Port)
14497  * or by mailbox command. The mailbox command allows several EQs to be
14498  * updated at once.
14499  *
14500  * The @phba struct is used to send a mailbox command to HBA. The @startq
14501  * is used to get the starting EQ index to change. The @numq value is
14502  * used to specify how many consecutive EQ indexes, starting at EQ index,
14503  * are to be changed. This function is asynchronous and will wait for any
14504  * mailbox commands to finish before returning.
14505  *
14506  * On success this function will return a zero. If unable to allocate
14507  * enough memory this function will return -ENOMEM. If a mailbox command
14508  * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
14509  * have had their delay multipler changed.
14510  **/
14511 void
14512 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
14513 			 uint32_t numq, uint32_t usdelay)
14514 {
14515 	struct lpfc_mbx_modify_eq_delay *eq_delay;
14516 	LPFC_MBOXQ_t *mbox;
14517 	struct lpfc_queue *eq;
14518 	int cnt = 0, rc, length;
14519 	uint32_t shdr_status, shdr_add_status;
14520 	uint32_t dmult;
14521 	int qidx;
14522 	union lpfc_sli4_cfg_shdr *shdr;
14523 
14524 	if (startq >= phba->cfg_irq_chann)
14525 		return;
14526 
14527 	if (usdelay > 0xFFFF) {
14528 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
14529 				"6429 usdelay %d too large. Scaled down to "
14530 				"0xFFFF.\n", usdelay);
14531 		usdelay = 0xFFFF;
14532 	}
14533 
14534 	/* set values by EQ_DELAY register if supported */
14535 	if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
14536 		for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14537 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
14538 			if (!eq)
14539 				continue;
14540 
14541 			lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
14542 
14543 			if (++cnt >= numq)
14544 				break;
14545 		}
14546 		return;
14547 	}
14548 
14549 	/* Otherwise, set values by mailbox cmd */
14550 
14551 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14552 	if (!mbox) {
14553 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_FCP | LOG_NVME,
14554 				"6428 Failed allocating mailbox cmd buffer."
14555 				" EQ delay was not set.\n");
14556 		return;
14557 	}
14558 	length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
14559 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14560 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14561 			 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
14562 			 length, LPFC_SLI4_MBX_EMBED);
14563 	eq_delay = &mbox->u.mqe.un.eq_delay;
14564 
14565 	/* Calculate delay multiper from maximum interrupt per second */
14566 	dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
14567 	if (dmult)
14568 		dmult--;
14569 	if (dmult > LPFC_DMULT_MAX)
14570 		dmult = LPFC_DMULT_MAX;
14571 
14572 	for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14573 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
14574 		if (!eq)
14575 			continue;
14576 		eq->q_mode = usdelay;
14577 		eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
14578 		eq_delay->u.request.eq[cnt].phase = 0;
14579 		eq_delay->u.request.eq[cnt].delay_multi = dmult;
14580 
14581 		if (++cnt >= numq)
14582 			break;
14583 	}
14584 	eq_delay->u.request.num_eq = cnt;
14585 
14586 	mbox->vport = phba->pport;
14587 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14588 	mbox->ctx_buf = NULL;
14589 	mbox->ctx_ndlp = NULL;
14590 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14591 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
14592 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14593 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14594 	if (shdr_status || shdr_add_status || rc) {
14595 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14596 				"2512 MODIFY_EQ_DELAY mailbox failed with "
14597 				"status x%x add_status x%x, mbx status x%x\n",
14598 				shdr_status, shdr_add_status, rc);
14599 	}
14600 	mempool_free(mbox, phba->mbox_mem_pool);
14601 	return;
14602 }
14603 
14604 /**
14605  * lpfc_eq_create - Create an Event Queue on the HBA
14606  * @phba: HBA structure that indicates port to create a queue on.
14607  * @eq: The queue structure to use to create the event queue.
14608  * @imax: The maximum interrupt per second limit.
14609  *
14610  * This function creates an event queue, as detailed in @eq, on a port,
14611  * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
14612  *
14613  * The @phba struct is used to send mailbox command to HBA. The @eq struct
14614  * is used to get the entry count and entry size that are necessary to
14615  * determine the number of pages to allocate and use for this queue. This
14616  * function will send the EQ_CREATE mailbox command to the HBA to setup the
14617  * event queue. This function is asynchronous and will wait for the mailbox
14618  * command to finish before continuing.
14619  *
14620  * On success this function will return a zero. If unable to allocate enough
14621  * memory this function will return -ENOMEM. If the queue create mailbox command
14622  * fails this function will return -ENXIO.
14623  **/
14624 int
14625 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
14626 {
14627 	struct lpfc_mbx_eq_create *eq_create;
14628 	LPFC_MBOXQ_t *mbox;
14629 	int rc, length, status = 0;
14630 	struct lpfc_dmabuf *dmabuf;
14631 	uint32_t shdr_status, shdr_add_status;
14632 	union lpfc_sli4_cfg_shdr *shdr;
14633 	uint16_t dmult;
14634 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14635 
14636 	/* sanity check on queue memory */
14637 	if (!eq)
14638 		return -ENODEV;
14639 	if (!phba->sli4_hba.pc_sli4_params.supported)
14640 		hw_page_size = SLI4_PAGE_SIZE;
14641 
14642 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14643 	if (!mbox)
14644 		return -ENOMEM;
14645 	length = (sizeof(struct lpfc_mbx_eq_create) -
14646 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14647 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14648 			 LPFC_MBOX_OPCODE_EQ_CREATE,
14649 			 length, LPFC_SLI4_MBX_EMBED);
14650 	eq_create = &mbox->u.mqe.un.eq_create;
14651 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
14652 	bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
14653 	       eq->page_count);
14654 	bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
14655 	       LPFC_EQE_SIZE);
14656 	bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
14657 
14658 	/* Use version 2 of CREATE_EQ if eqav is set */
14659 	if (phba->sli4_hba.pc_sli4_params.eqav) {
14660 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
14661 		       LPFC_Q_CREATE_VERSION_2);
14662 		bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
14663 		       phba->sli4_hba.pc_sli4_params.eqav);
14664 	}
14665 
14666 	/* don't setup delay multiplier using EQ_CREATE */
14667 	dmult = 0;
14668 	bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
14669 	       dmult);
14670 	switch (eq->entry_count) {
14671 	default:
14672 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14673 				"0360 Unsupported EQ count. (%d)\n",
14674 				eq->entry_count);
14675 		if (eq->entry_count < 256) {
14676 			status = -EINVAL;
14677 			goto out;
14678 		}
14679 		/* fall through - otherwise default to smallest count */
14680 	case 256:
14681 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14682 		       LPFC_EQ_CNT_256);
14683 		break;
14684 	case 512:
14685 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14686 		       LPFC_EQ_CNT_512);
14687 		break;
14688 	case 1024:
14689 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14690 		       LPFC_EQ_CNT_1024);
14691 		break;
14692 	case 2048:
14693 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14694 		       LPFC_EQ_CNT_2048);
14695 		break;
14696 	case 4096:
14697 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14698 		       LPFC_EQ_CNT_4096);
14699 		break;
14700 	}
14701 	list_for_each_entry(dmabuf, &eq->page_list, list) {
14702 		memset(dmabuf->virt, 0, hw_page_size);
14703 		eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14704 					putPaddrLow(dmabuf->phys);
14705 		eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14706 					putPaddrHigh(dmabuf->phys);
14707 	}
14708 	mbox->vport = phba->pport;
14709 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14710 	mbox->ctx_buf = NULL;
14711 	mbox->ctx_ndlp = NULL;
14712 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14713 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14714 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14715 	if (shdr_status || shdr_add_status || rc) {
14716 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14717 				"2500 EQ_CREATE mailbox failed with "
14718 				"status x%x add_status x%x, mbx status x%x\n",
14719 				shdr_status, shdr_add_status, rc);
14720 		status = -ENXIO;
14721 	}
14722 	eq->type = LPFC_EQ;
14723 	eq->subtype = LPFC_NONE;
14724 	eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
14725 	if (eq->queue_id == 0xFFFF)
14726 		status = -ENXIO;
14727 	eq->host_index = 0;
14728 	eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
14729 	eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
14730 out:
14731 	mempool_free(mbox, phba->mbox_mem_pool);
14732 	return status;
14733 }
14734 
14735 /**
14736  * lpfc_cq_create - Create a Completion Queue on the HBA
14737  * @phba: HBA structure that indicates port to create a queue on.
14738  * @cq: The queue structure to use to create the completion queue.
14739  * @eq: The event queue to bind this completion queue to.
14740  *
14741  * This function creates a completion queue, as detailed in @wq, on a port,
14742  * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
14743  *
14744  * The @phba struct is used to send mailbox command to HBA. The @cq struct
14745  * is used to get the entry count and entry size that are necessary to
14746  * determine the number of pages to allocate and use for this queue. The @eq
14747  * is used to indicate which event queue to bind this completion queue to. This
14748  * function will send the CQ_CREATE mailbox command to the HBA to setup the
14749  * completion queue. This function is asynchronous and will wait for the mailbox
14750  * command to finish before continuing.
14751  *
14752  * On success this function will return a zero. If unable to allocate enough
14753  * memory this function will return -ENOMEM. If the queue create mailbox command
14754  * fails this function will return -ENXIO.
14755  **/
14756 int
14757 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
14758 	       struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
14759 {
14760 	struct lpfc_mbx_cq_create *cq_create;
14761 	struct lpfc_dmabuf *dmabuf;
14762 	LPFC_MBOXQ_t *mbox;
14763 	int rc, length, status = 0;
14764 	uint32_t shdr_status, shdr_add_status;
14765 	union lpfc_sli4_cfg_shdr *shdr;
14766 
14767 	/* sanity check on queue memory */
14768 	if (!cq || !eq)
14769 		return -ENODEV;
14770 
14771 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14772 	if (!mbox)
14773 		return -ENOMEM;
14774 	length = (sizeof(struct lpfc_mbx_cq_create) -
14775 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14776 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14777 			 LPFC_MBOX_OPCODE_CQ_CREATE,
14778 			 length, LPFC_SLI4_MBX_EMBED);
14779 	cq_create = &mbox->u.mqe.un.cq_create;
14780 	shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
14781 	bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
14782 		    cq->page_count);
14783 	bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
14784 	bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
14785 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
14786 	       phba->sli4_hba.pc_sli4_params.cqv);
14787 	if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
14788 		bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
14789 		       (cq->page_size / SLI4_PAGE_SIZE));
14790 		bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
14791 		       eq->queue_id);
14792 		bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
14793 		       phba->sli4_hba.pc_sli4_params.cqav);
14794 	} else {
14795 		bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
14796 		       eq->queue_id);
14797 	}
14798 	switch (cq->entry_count) {
14799 	case 2048:
14800 	case 4096:
14801 		if (phba->sli4_hba.pc_sli4_params.cqv ==
14802 		    LPFC_Q_CREATE_VERSION_2) {
14803 			cq_create->u.request.context.lpfc_cq_context_count =
14804 				cq->entry_count;
14805 			bf_set(lpfc_cq_context_count,
14806 			       &cq_create->u.request.context,
14807 			       LPFC_CQ_CNT_WORD7);
14808 			break;
14809 		}
14810 		/* fall through */
14811 	default:
14812 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14813 				"0361 Unsupported CQ count: "
14814 				"entry cnt %d sz %d pg cnt %d\n",
14815 				cq->entry_count, cq->entry_size,
14816 				cq->page_count);
14817 		if (cq->entry_count < 256) {
14818 			status = -EINVAL;
14819 			goto out;
14820 		}
14821 		/* fall through - otherwise default to smallest count */
14822 	case 256:
14823 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14824 		       LPFC_CQ_CNT_256);
14825 		break;
14826 	case 512:
14827 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14828 		       LPFC_CQ_CNT_512);
14829 		break;
14830 	case 1024:
14831 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14832 		       LPFC_CQ_CNT_1024);
14833 		break;
14834 	}
14835 	list_for_each_entry(dmabuf, &cq->page_list, list) {
14836 		memset(dmabuf->virt, 0, cq->page_size);
14837 		cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14838 					putPaddrLow(dmabuf->phys);
14839 		cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14840 					putPaddrHigh(dmabuf->phys);
14841 	}
14842 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14843 
14844 	/* The IOCTL status is embedded in the mailbox subheader. */
14845 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14846 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14847 	if (shdr_status || shdr_add_status || rc) {
14848 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14849 				"2501 CQ_CREATE mailbox failed with "
14850 				"status x%x add_status x%x, mbx status x%x\n",
14851 				shdr_status, shdr_add_status, rc);
14852 		status = -ENXIO;
14853 		goto out;
14854 	}
14855 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14856 	if (cq->queue_id == 0xFFFF) {
14857 		status = -ENXIO;
14858 		goto out;
14859 	}
14860 	/* link the cq onto the parent eq child list */
14861 	list_add_tail(&cq->list, &eq->child_list);
14862 	/* Set up completion queue's type and subtype */
14863 	cq->type = type;
14864 	cq->subtype = subtype;
14865 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14866 	cq->assoc_qid = eq->queue_id;
14867 	cq->assoc_qp = eq;
14868 	cq->host_index = 0;
14869 	cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
14870 	cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
14871 
14872 	if (cq->queue_id > phba->sli4_hba.cq_max)
14873 		phba->sli4_hba.cq_max = cq->queue_id;
14874 out:
14875 	mempool_free(mbox, phba->mbox_mem_pool);
14876 	return status;
14877 }
14878 
14879 /**
14880  * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
14881  * @phba: HBA structure that indicates port to create a queue on.
14882  * @cqp: The queue structure array to use to create the completion queues.
14883  * @hdwq: The hardware queue array  with the EQ to bind completion queues to.
14884  *
14885  * This function creates a set of  completion queue, s to support MRQ
14886  * as detailed in @cqp, on a port,
14887  * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
14888  *
14889  * The @phba struct is used to send mailbox command to HBA. The @cq struct
14890  * is used to get the entry count and entry size that are necessary to
14891  * determine the number of pages to allocate and use for this queue. The @eq
14892  * is used to indicate which event queue to bind this completion queue to. This
14893  * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
14894  * completion queue. This function is asynchronous and will wait for the mailbox
14895  * command to finish before continuing.
14896  *
14897  * On success this function will return a zero. If unable to allocate enough
14898  * memory this function will return -ENOMEM. If the queue create mailbox command
14899  * fails this function will return -ENXIO.
14900  **/
14901 int
14902 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
14903 		   struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
14904 		   uint32_t subtype)
14905 {
14906 	struct lpfc_queue *cq;
14907 	struct lpfc_queue *eq;
14908 	struct lpfc_mbx_cq_create_set *cq_set;
14909 	struct lpfc_dmabuf *dmabuf;
14910 	LPFC_MBOXQ_t *mbox;
14911 	int rc, length, alloclen, status = 0;
14912 	int cnt, idx, numcq, page_idx = 0;
14913 	uint32_t shdr_status, shdr_add_status;
14914 	union lpfc_sli4_cfg_shdr *shdr;
14915 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14916 
14917 	/* sanity check on queue memory */
14918 	numcq = phba->cfg_nvmet_mrq;
14919 	if (!cqp || !hdwq || !numcq)
14920 		return -ENODEV;
14921 
14922 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14923 	if (!mbox)
14924 		return -ENOMEM;
14925 
14926 	length = sizeof(struct lpfc_mbx_cq_create_set);
14927 	length += ((numcq * cqp[0]->page_count) *
14928 		   sizeof(struct dma_address));
14929 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14930 			LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
14931 			LPFC_SLI4_MBX_NEMBED);
14932 	if (alloclen < length) {
14933 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14934 				"3098 Allocated DMA memory size (%d) is "
14935 				"less than the requested DMA memory size "
14936 				"(%d)\n", alloclen, length);
14937 		status = -ENOMEM;
14938 		goto out;
14939 	}
14940 	cq_set = mbox->sge_array->addr[0];
14941 	shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
14942 	bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
14943 
14944 	for (idx = 0; idx < numcq; idx++) {
14945 		cq = cqp[idx];
14946 		eq = hdwq[idx].hba_eq;
14947 		if (!cq || !eq) {
14948 			status = -ENOMEM;
14949 			goto out;
14950 		}
14951 		if (!phba->sli4_hba.pc_sli4_params.supported)
14952 			hw_page_size = cq->page_size;
14953 
14954 		switch (idx) {
14955 		case 0:
14956 			bf_set(lpfc_mbx_cq_create_set_page_size,
14957 			       &cq_set->u.request,
14958 			       (hw_page_size / SLI4_PAGE_SIZE));
14959 			bf_set(lpfc_mbx_cq_create_set_num_pages,
14960 			       &cq_set->u.request, cq->page_count);
14961 			bf_set(lpfc_mbx_cq_create_set_evt,
14962 			       &cq_set->u.request, 1);
14963 			bf_set(lpfc_mbx_cq_create_set_valid,
14964 			       &cq_set->u.request, 1);
14965 			bf_set(lpfc_mbx_cq_create_set_cqe_size,
14966 			       &cq_set->u.request, 0);
14967 			bf_set(lpfc_mbx_cq_create_set_num_cq,
14968 			       &cq_set->u.request, numcq);
14969 			bf_set(lpfc_mbx_cq_create_set_autovalid,
14970 			       &cq_set->u.request,
14971 			       phba->sli4_hba.pc_sli4_params.cqav);
14972 			switch (cq->entry_count) {
14973 			case 2048:
14974 			case 4096:
14975 				if (phba->sli4_hba.pc_sli4_params.cqv ==
14976 				    LPFC_Q_CREATE_VERSION_2) {
14977 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14978 					       &cq_set->u.request,
14979 						cq->entry_count);
14980 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14981 					       &cq_set->u.request,
14982 					       LPFC_CQ_CNT_WORD7);
14983 					break;
14984 				}
14985 				/* fall through */
14986 			default:
14987 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14988 						"3118 Bad CQ count. (%d)\n",
14989 						cq->entry_count);
14990 				if (cq->entry_count < 256) {
14991 					status = -EINVAL;
14992 					goto out;
14993 				}
14994 				/* fall through - otherwise default to smallest */
14995 			case 256:
14996 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14997 				       &cq_set->u.request, LPFC_CQ_CNT_256);
14998 				break;
14999 			case 512:
15000 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15001 				       &cq_set->u.request, LPFC_CQ_CNT_512);
15002 				break;
15003 			case 1024:
15004 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15005 				       &cq_set->u.request, LPFC_CQ_CNT_1024);
15006 				break;
15007 			}
15008 			bf_set(lpfc_mbx_cq_create_set_eq_id0,
15009 			       &cq_set->u.request, eq->queue_id);
15010 			break;
15011 		case 1:
15012 			bf_set(lpfc_mbx_cq_create_set_eq_id1,
15013 			       &cq_set->u.request, eq->queue_id);
15014 			break;
15015 		case 2:
15016 			bf_set(lpfc_mbx_cq_create_set_eq_id2,
15017 			       &cq_set->u.request, eq->queue_id);
15018 			break;
15019 		case 3:
15020 			bf_set(lpfc_mbx_cq_create_set_eq_id3,
15021 			       &cq_set->u.request, eq->queue_id);
15022 			break;
15023 		case 4:
15024 			bf_set(lpfc_mbx_cq_create_set_eq_id4,
15025 			       &cq_set->u.request, eq->queue_id);
15026 			break;
15027 		case 5:
15028 			bf_set(lpfc_mbx_cq_create_set_eq_id5,
15029 			       &cq_set->u.request, eq->queue_id);
15030 			break;
15031 		case 6:
15032 			bf_set(lpfc_mbx_cq_create_set_eq_id6,
15033 			       &cq_set->u.request, eq->queue_id);
15034 			break;
15035 		case 7:
15036 			bf_set(lpfc_mbx_cq_create_set_eq_id7,
15037 			       &cq_set->u.request, eq->queue_id);
15038 			break;
15039 		case 8:
15040 			bf_set(lpfc_mbx_cq_create_set_eq_id8,
15041 			       &cq_set->u.request, eq->queue_id);
15042 			break;
15043 		case 9:
15044 			bf_set(lpfc_mbx_cq_create_set_eq_id9,
15045 			       &cq_set->u.request, eq->queue_id);
15046 			break;
15047 		case 10:
15048 			bf_set(lpfc_mbx_cq_create_set_eq_id10,
15049 			       &cq_set->u.request, eq->queue_id);
15050 			break;
15051 		case 11:
15052 			bf_set(lpfc_mbx_cq_create_set_eq_id11,
15053 			       &cq_set->u.request, eq->queue_id);
15054 			break;
15055 		case 12:
15056 			bf_set(lpfc_mbx_cq_create_set_eq_id12,
15057 			       &cq_set->u.request, eq->queue_id);
15058 			break;
15059 		case 13:
15060 			bf_set(lpfc_mbx_cq_create_set_eq_id13,
15061 			       &cq_set->u.request, eq->queue_id);
15062 			break;
15063 		case 14:
15064 			bf_set(lpfc_mbx_cq_create_set_eq_id14,
15065 			       &cq_set->u.request, eq->queue_id);
15066 			break;
15067 		case 15:
15068 			bf_set(lpfc_mbx_cq_create_set_eq_id15,
15069 			       &cq_set->u.request, eq->queue_id);
15070 			break;
15071 		}
15072 
15073 		/* link the cq onto the parent eq child list */
15074 		list_add_tail(&cq->list, &eq->child_list);
15075 		/* Set up completion queue's type and subtype */
15076 		cq->type = type;
15077 		cq->subtype = subtype;
15078 		cq->assoc_qid = eq->queue_id;
15079 		cq->assoc_qp = eq;
15080 		cq->host_index = 0;
15081 		cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15082 		cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
15083 					 cq->entry_count);
15084 		cq->chann = idx;
15085 
15086 		rc = 0;
15087 		list_for_each_entry(dmabuf, &cq->page_list, list) {
15088 			memset(dmabuf->virt, 0, hw_page_size);
15089 			cnt = page_idx + dmabuf->buffer_tag;
15090 			cq_set->u.request.page[cnt].addr_lo =
15091 					putPaddrLow(dmabuf->phys);
15092 			cq_set->u.request.page[cnt].addr_hi =
15093 					putPaddrHigh(dmabuf->phys);
15094 			rc++;
15095 		}
15096 		page_idx += rc;
15097 	}
15098 
15099 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15100 
15101 	/* The IOCTL status is embedded in the mailbox subheader. */
15102 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15103 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15104 	if (shdr_status || shdr_add_status || rc) {
15105 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15106 				"3119 CQ_CREATE_SET mailbox failed with "
15107 				"status x%x add_status x%x, mbx status x%x\n",
15108 				shdr_status, shdr_add_status, rc);
15109 		status = -ENXIO;
15110 		goto out;
15111 	}
15112 	rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
15113 	if (rc == 0xFFFF) {
15114 		status = -ENXIO;
15115 		goto out;
15116 	}
15117 
15118 	for (idx = 0; idx < numcq; idx++) {
15119 		cq = cqp[idx];
15120 		cq->queue_id = rc + idx;
15121 		if (cq->queue_id > phba->sli4_hba.cq_max)
15122 			phba->sli4_hba.cq_max = cq->queue_id;
15123 	}
15124 
15125 out:
15126 	lpfc_sli4_mbox_cmd_free(phba, mbox);
15127 	return status;
15128 }
15129 
15130 /**
15131  * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
15132  * @phba: HBA structure that indicates port to create a queue on.
15133  * @mq: The queue structure to use to create the mailbox queue.
15134  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
15135  * @cq: The completion queue to associate with this cq.
15136  *
15137  * This function provides failback (fb) functionality when the
15138  * mq_create_ext fails on older FW generations.  It's purpose is identical
15139  * to mq_create_ext otherwise.
15140  *
15141  * This routine cannot fail as all attributes were previously accessed and
15142  * initialized in mq_create_ext.
15143  **/
15144 static void
15145 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
15146 		       LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
15147 {
15148 	struct lpfc_mbx_mq_create *mq_create;
15149 	struct lpfc_dmabuf *dmabuf;
15150 	int length;
15151 
15152 	length = (sizeof(struct lpfc_mbx_mq_create) -
15153 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15154 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15155 			 LPFC_MBOX_OPCODE_MQ_CREATE,
15156 			 length, LPFC_SLI4_MBX_EMBED);
15157 	mq_create = &mbox->u.mqe.un.mq_create;
15158 	bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
15159 	       mq->page_count);
15160 	bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
15161 	       cq->queue_id);
15162 	bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
15163 	switch (mq->entry_count) {
15164 	case 16:
15165 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15166 		       LPFC_MQ_RING_SIZE_16);
15167 		break;
15168 	case 32:
15169 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15170 		       LPFC_MQ_RING_SIZE_32);
15171 		break;
15172 	case 64:
15173 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15174 		       LPFC_MQ_RING_SIZE_64);
15175 		break;
15176 	case 128:
15177 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15178 		       LPFC_MQ_RING_SIZE_128);
15179 		break;
15180 	}
15181 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15182 		mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15183 			putPaddrLow(dmabuf->phys);
15184 		mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15185 			putPaddrHigh(dmabuf->phys);
15186 	}
15187 }
15188 
15189 /**
15190  * lpfc_mq_create - Create a mailbox Queue on the HBA
15191  * @phba: HBA structure that indicates port to create a queue on.
15192  * @mq: The queue structure to use to create the mailbox queue.
15193  * @cq: The completion queue to associate with this cq.
15194  * @subtype: The queue's subtype.
15195  *
15196  * This function creates a mailbox queue, as detailed in @mq, on a port,
15197  * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
15198  *
15199  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15200  * is used to get the entry count and entry size that are necessary to
15201  * determine the number of pages to allocate and use for this queue. This
15202  * function will send the MQ_CREATE mailbox command to the HBA to setup the
15203  * mailbox queue. This function is asynchronous and will wait for the mailbox
15204  * command to finish before continuing.
15205  *
15206  * On success this function will return a zero. If unable to allocate enough
15207  * memory this function will return -ENOMEM. If the queue create mailbox command
15208  * fails this function will return -ENXIO.
15209  **/
15210 int32_t
15211 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
15212 	       struct lpfc_queue *cq, uint32_t subtype)
15213 {
15214 	struct lpfc_mbx_mq_create *mq_create;
15215 	struct lpfc_mbx_mq_create_ext *mq_create_ext;
15216 	struct lpfc_dmabuf *dmabuf;
15217 	LPFC_MBOXQ_t *mbox;
15218 	int rc, length, status = 0;
15219 	uint32_t shdr_status, shdr_add_status;
15220 	union lpfc_sli4_cfg_shdr *shdr;
15221 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15222 
15223 	/* sanity check on queue memory */
15224 	if (!mq || !cq)
15225 		return -ENODEV;
15226 	if (!phba->sli4_hba.pc_sli4_params.supported)
15227 		hw_page_size = SLI4_PAGE_SIZE;
15228 
15229 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15230 	if (!mbox)
15231 		return -ENOMEM;
15232 	length = (sizeof(struct lpfc_mbx_mq_create_ext) -
15233 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15234 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15235 			 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
15236 			 length, LPFC_SLI4_MBX_EMBED);
15237 
15238 	mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
15239 	shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
15240 	bf_set(lpfc_mbx_mq_create_ext_num_pages,
15241 	       &mq_create_ext->u.request, mq->page_count);
15242 	bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
15243 	       &mq_create_ext->u.request, 1);
15244 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
15245 	       &mq_create_ext->u.request, 1);
15246 	bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
15247 	       &mq_create_ext->u.request, 1);
15248 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
15249 	       &mq_create_ext->u.request, 1);
15250 	bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
15251 	       &mq_create_ext->u.request, 1);
15252 	bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
15253 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15254 	       phba->sli4_hba.pc_sli4_params.mqv);
15255 	if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
15256 		bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
15257 		       cq->queue_id);
15258 	else
15259 		bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
15260 		       cq->queue_id);
15261 	switch (mq->entry_count) {
15262 	default:
15263 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15264 				"0362 Unsupported MQ count. (%d)\n",
15265 				mq->entry_count);
15266 		if (mq->entry_count < 16) {
15267 			status = -EINVAL;
15268 			goto out;
15269 		}
15270 		/* fall through - otherwise default to smallest count */
15271 	case 16:
15272 		bf_set(lpfc_mq_context_ring_size,
15273 		       &mq_create_ext->u.request.context,
15274 		       LPFC_MQ_RING_SIZE_16);
15275 		break;
15276 	case 32:
15277 		bf_set(lpfc_mq_context_ring_size,
15278 		       &mq_create_ext->u.request.context,
15279 		       LPFC_MQ_RING_SIZE_32);
15280 		break;
15281 	case 64:
15282 		bf_set(lpfc_mq_context_ring_size,
15283 		       &mq_create_ext->u.request.context,
15284 		       LPFC_MQ_RING_SIZE_64);
15285 		break;
15286 	case 128:
15287 		bf_set(lpfc_mq_context_ring_size,
15288 		       &mq_create_ext->u.request.context,
15289 		       LPFC_MQ_RING_SIZE_128);
15290 		break;
15291 	}
15292 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15293 		memset(dmabuf->virt, 0, hw_page_size);
15294 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
15295 					putPaddrLow(dmabuf->phys);
15296 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
15297 					putPaddrHigh(dmabuf->phys);
15298 	}
15299 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15300 	mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15301 			      &mq_create_ext->u.response);
15302 	if (rc != MBX_SUCCESS) {
15303 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15304 				"2795 MQ_CREATE_EXT failed with "
15305 				"status x%x. Failback to MQ_CREATE.\n",
15306 				rc);
15307 		lpfc_mq_create_fb_init(phba, mq, mbox, cq);
15308 		mq_create = &mbox->u.mqe.un.mq_create;
15309 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15310 		shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
15311 		mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15312 				      &mq_create->u.response);
15313 	}
15314 
15315 	/* The IOCTL status is embedded in the mailbox subheader. */
15316 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15317 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15318 	if (shdr_status || shdr_add_status || rc) {
15319 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15320 				"2502 MQ_CREATE mailbox failed with "
15321 				"status x%x add_status x%x, mbx status x%x\n",
15322 				shdr_status, shdr_add_status, rc);
15323 		status = -ENXIO;
15324 		goto out;
15325 	}
15326 	if (mq->queue_id == 0xFFFF) {
15327 		status = -ENXIO;
15328 		goto out;
15329 	}
15330 	mq->type = LPFC_MQ;
15331 	mq->assoc_qid = cq->queue_id;
15332 	mq->subtype = subtype;
15333 	mq->host_index = 0;
15334 	mq->hba_index = 0;
15335 
15336 	/* link the mq onto the parent cq child list */
15337 	list_add_tail(&mq->list, &cq->child_list);
15338 out:
15339 	mempool_free(mbox, phba->mbox_mem_pool);
15340 	return status;
15341 }
15342 
15343 /**
15344  * lpfc_wq_create - Create a Work Queue on the HBA
15345  * @phba: HBA structure that indicates port to create a queue on.
15346  * @wq: The queue structure to use to create the work queue.
15347  * @cq: The completion queue to bind this work queue to.
15348  * @subtype: The subtype of the work queue indicating its functionality.
15349  *
15350  * This function creates a work queue, as detailed in @wq, on a port, described
15351  * by @phba by sending a WQ_CREATE mailbox command to the HBA.
15352  *
15353  * The @phba struct is used to send mailbox command to HBA. The @wq struct
15354  * is used to get the entry count and entry size that are necessary to
15355  * determine the number of pages to allocate and use for this queue. The @cq
15356  * is used to indicate which completion queue to bind this work queue to. This
15357  * function will send the WQ_CREATE mailbox command to the HBA to setup the
15358  * work queue. This function is asynchronous and will wait for the mailbox
15359  * command to finish before continuing.
15360  *
15361  * On success this function will return a zero. If unable to allocate enough
15362  * memory this function will return -ENOMEM. If the queue create mailbox command
15363  * fails this function will return -ENXIO.
15364  **/
15365 int
15366 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
15367 	       struct lpfc_queue *cq, uint32_t subtype)
15368 {
15369 	struct lpfc_mbx_wq_create *wq_create;
15370 	struct lpfc_dmabuf *dmabuf;
15371 	LPFC_MBOXQ_t *mbox;
15372 	int rc, length, status = 0;
15373 	uint32_t shdr_status, shdr_add_status;
15374 	union lpfc_sli4_cfg_shdr *shdr;
15375 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15376 	struct dma_address *page;
15377 	void __iomem *bar_memmap_p;
15378 	uint32_t db_offset;
15379 	uint16_t pci_barset;
15380 	uint8_t dpp_barset;
15381 	uint32_t dpp_offset;
15382 	unsigned long pg_addr;
15383 	uint8_t wq_create_version;
15384 
15385 	/* sanity check on queue memory */
15386 	if (!wq || !cq)
15387 		return -ENODEV;
15388 	if (!phba->sli4_hba.pc_sli4_params.supported)
15389 		hw_page_size = wq->page_size;
15390 
15391 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15392 	if (!mbox)
15393 		return -ENOMEM;
15394 	length = (sizeof(struct lpfc_mbx_wq_create) -
15395 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15396 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15397 			 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
15398 			 length, LPFC_SLI4_MBX_EMBED);
15399 	wq_create = &mbox->u.mqe.un.wq_create;
15400 	shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
15401 	bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
15402 		    wq->page_count);
15403 	bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
15404 		    cq->queue_id);
15405 
15406 	/* wqv is the earliest version supported, NOT the latest */
15407 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15408 	       phba->sli4_hba.pc_sli4_params.wqv);
15409 
15410 	if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
15411 	    (wq->page_size > SLI4_PAGE_SIZE))
15412 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15413 	else
15414 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15415 
15416 
15417 	if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT)
15418 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15419 	else
15420 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15421 
15422 	switch (wq_create_version) {
15423 	case LPFC_Q_CREATE_VERSION_1:
15424 		bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
15425 		       wq->entry_count);
15426 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
15427 		       LPFC_Q_CREATE_VERSION_1);
15428 
15429 		switch (wq->entry_size) {
15430 		default:
15431 		case 64:
15432 			bf_set(lpfc_mbx_wq_create_wqe_size,
15433 			       &wq_create->u.request_1,
15434 			       LPFC_WQ_WQE_SIZE_64);
15435 			break;
15436 		case 128:
15437 			bf_set(lpfc_mbx_wq_create_wqe_size,
15438 			       &wq_create->u.request_1,
15439 			       LPFC_WQ_WQE_SIZE_128);
15440 			break;
15441 		}
15442 		/* Request DPP by default */
15443 		bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
15444 		bf_set(lpfc_mbx_wq_create_page_size,
15445 		       &wq_create->u.request_1,
15446 		       (wq->page_size / SLI4_PAGE_SIZE));
15447 		page = wq_create->u.request_1.page;
15448 		break;
15449 	default:
15450 		page = wq_create->u.request.page;
15451 		break;
15452 	}
15453 
15454 	list_for_each_entry(dmabuf, &wq->page_list, list) {
15455 		memset(dmabuf->virt, 0, hw_page_size);
15456 		page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
15457 		page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
15458 	}
15459 
15460 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15461 		bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
15462 
15463 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15464 	/* The IOCTL status is embedded in the mailbox subheader. */
15465 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15466 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15467 	if (shdr_status || shdr_add_status || rc) {
15468 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15469 				"2503 WQ_CREATE mailbox failed with "
15470 				"status x%x add_status x%x, mbx status x%x\n",
15471 				shdr_status, shdr_add_status, rc);
15472 		status = -ENXIO;
15473 		goto out;
15474 	}
15475 
15476 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
15477 		wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
15478 					&wq_create->u.response);
15479 	else
15480 		wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
15481 					&wq_create->u.response_1);
15482 
15483 	if (wq->queue_id == 0xFFFF) {
15484 		status = -ENXIO;
15485 		goto out;
15486 	}
15487 
15488 	wq->db_format = LPFC_DB_LIST_FORMAT;
15489 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
15490 		if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15491 			wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
15492 					       &wq_create->u.response);
15493 			if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
15494 			    (wq->db_format != LPFC_DB_RING_FORMAT)) {
15495 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15496 						"3265 WQ[%d] doorbell format "
15497 						"not supported: x%x\n",
15498 						wq->queue_id, wq->db_format);
15499 				status = -EINVAL;
15500 				goto out;
15501 			}
15502 			pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
15503 					    &wq_create->u.response);
15504 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15505 								   pci_barset);
15506 			if (!bar_memmap_p) {
15507 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15508 						"3263 WQ[%d] failed to memmap "
15509 						"pci barset:x%x\n",
15510 						wq->queue_id, pci_barset);
15511 				status = -ENOMEM;
15512 				goto out;
15513 			}
15514 			db_offset = wq_create->u.response.doorbell_offset;
15515 			if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
15516 			    (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
15517 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15518 						"3252 WQ[%d] doorbell offset "
15519 						"not supported: x%x\n",
15520 						wq->queue_id, db_offset);
15521 				status = -EINVAL;
15522 				goto out;
15523 			}
15524 			wq->db_regaddr = bar_memmap_p + db_offset;
15525 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15526 					"3264 WQ[%d]: barset:x%x, offset:x%x, "
15527 					"format:x%x\n", wq->queue_id,
15528 					pci_barset, db_offset, wq->db_format);
15529 		} else
15530 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15531 	} else {
15532 		/* Check if DPP was honored by the firmware */
15533 		wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
15534 				    &wq_create->u.response_1);
15535 		if (wq->dpp_enable) {
15536 			pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
15537 					    &wq_create->u.response_1);
15538 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15539 								   pci_barset);
15540 			if (!bar_memmap_p) {
15541 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15542 						"3267 WQ[%d] failed to memmap "
15543 						"pci barset:x%x\n",
15544 						wq->queue_id, pci_barset);
15545 				status = -ENOMEM;
15546 				goto out;
15547 			}
15548 			db_offset = wq_create->u.response_1.doorbell_offset;
15549 			wq->db_regaddr = bar_memmap_p + db_offset;
15550 			wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
15551 					    &wq_create->u.response_1);
15552 			dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
15553 					    &wq_create->u.response_1);
15554 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15555 								   dpp_barset);
15556 			if (!bar_memmap_p) {
15557 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15558 						"3268 WQ[%d] failed to memmap "
15559 						"pci barset:x%x\n",
15560 						wq->queue_id, dpp_barset);
15561 				status = -ENOMEM;
15562 				goto out;
15563 			}
15564 			dpp_offset = wq_create->u.response_1.dpp_offset;
15565 			wq->dpp_regaddr = bar_memmap_p + dpp_offset;
15566 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15567 					"3271 WQ[%d]: barset:x%x, offset:x%x, "
15568 					"dpp_id:x%x dpp_barset:x%x "
15569 					"dpp_offset:x%x\n",
15570 					wq->queue_id, pci_barset, db_offset,
15571 					wq->dpp_id, dpp_barset, dpp_offset);
15572 
15573 			/* Enable combined writes for DPP aperture */
15574 			pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
15575 #ifdef CONFIG_X86
15576 			rc = set_memory_wc(pg_addr, 1);
15577 			if (rc) {
15578 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15579 					"3272 Cannot setup Combined "
15580 					"Write on WQ[%d] - disable DPP\n",
15581 					wq->queue_id);
15582 				phba->cfg_enable_dpp = 0;
15583 			}
15584 #else
15585 			phba->cfg_enable_dpp = 0;
15586 #endif
15587 		} else
15588 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15589 	}
15590 	wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
15591 	if (wq->pring == NULL) {
15592 		status = -ENOMEM;
15593 		goto out;
15594 	}
15595 	wq->type = LPFC_WQ;
15596 	wq->assoc_qid = cq->queue_id;
15597 	wq->subtype = subtype;
15598 	wq->host_index = 0;
15599 	wq->hba_index = 0;
15600 	wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
15601 
15602 	/* link the wq onto the parent cq child list */
15603 	list_add_tail(&wq->list, &cq->child_list);
15604 out:
15605 	mempool_free(mbox, phba->mbox_mem_pool);
15606 	return status;
15607 }
15608 
15609 /**
15610  * lpfc_rq_create - Create a Receive Queue on the HBA
15611  * @phba: HBA structure that indicates port to create a queue on.
15612  * @hrq: The queue structure to use to create the header receive queue.
15613  * @drq: The queue structure to use to create the data receive queue.
15614  * @cq: The completion queue to bind this work queue to.
15615  *
15616  * This function creates a receive buffer queue pair , as detailed in @hrq and
15617  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15618  * to the HBA.
15619  *
15620  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15621  * struct is used to get the entry count that is necessary to determine the
15622  * number of pages to use for this queue. The @cq is used to indicate which
15623  * completion queue to bind received buffers that are posted to these queues to.
15624  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15625  * receive queue pair. This function is asynchronous and will wait for the
15626  * mailbox command to finish before continuing.
15627  *
15628  * On success this function will return a zero. If unable to allocate enough
15629  * memory this function will return -ENOMEM. If the queue create mailbox command
15630  * fails this function will return -ENXIO.
15631  **/
15632 int
15633 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
15634 	       struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
15635 {
15636 	struct lpfc_mbx_rq_create *rq_create;
15637 	struct lpfc_dmabuf *dmabuf;
15638 	LPFC_MBOXQ_t *mbox;
15639 	int rc, length, status = 0;
15640 	uint32_t shdr_status, shdr_add_status;
15641 	union lpfc_sli4_cfg_shdr *shdr;
15642 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15643 	void __iomem *bar_memmap_p;
15644 	uint32_t db_offset;
15645 	uint16_t pci_barset;
15646 
15647 	/* sanity check on queue memory */
15648 	if (!hrq || !drq || !cq)
15649 		return -ENODEV;
15650 	if (!phba->sli4_hba.pc_sli4_params.supported)
15651 		hw_page_size = SLI4_PAGE_SIZE;
15652 
15653 	if (hrq->entry_count != drq->entry_count)
15654 		return -EINVAL;
15655 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15656 	if (!mbox)
15657 		return -ENOMEM;
15658 	length = (sizeof(struct lpfc_mbx_rq_create) -
15659 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15660 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15661 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15662 			 length, LPFC_SLI4_MBX_EMBED);
15663 	rq_create = &mbox->u.mqe.un.rq_create;
15664 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15665 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15666 	       phba->sli4_hba.pc_sli4_params.rqv);
15667 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15668 		bf_set(lpfc_rq_context_rqe_count_1,
15669 		       &rq_create->u.request.context,
15670 		       hrq->entry_count);
15671 		rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
15672 		bf_set(lpfc_rq_context_rqe_size,
15673 		       &rq_create->u.request.context,
15674 		       LPFC_RQE_SIZE_8);
15675 		bf_set(lpfc_rq_context_page_size,
15676 		       &rq_create->u.request.context,
15677 		       LPFC_RQ_PAGE_SIZE_4096);
15678 	} else {
15679 		switch (hrq->entry_count) {
15680 		default:
15681 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15682 					"2535 Unsupported RQ count. (%d)\n",
15683 					hrq->entry_count);
15684 			if (hrq->entry_count < 512) {
15685 				status = -EINVAL;
15686 				goto out;
15687 			}
15688 			/* fall through - otherwise default to smallest count */
15689 		case 512:
15690 			bf_set(lpfc_rq_context_rqe_count,
15691 			       &rq_create->u.request.context,
15692 			       LPFC_RQ_RING_SIZE_512);
15693 			break;
15694 		case 1024:
15695 			bf_set(lpfc_rq_context_rqe_count,
15696 			       &rq_create->u.request.context,
15697 			       LPFC_RQ_RING_SIZE_1024);
15698 			break;
15699 		case 2048:
15700 			bf_set(lpfc_rq_context_rqe_count,
15701 			       &rq_create->u.request.context,
15702 			       LPFC_RQ_RING_SIZE_2048);
15703 			break;
15704 		case 4096:
15705 			bf_set(lpfc_rq_context_rqe_count,
15706 			       &rq_create->u.request.context,
15707 			       LPFC_RQ_RING_SIZE_4096);
15708 			break;
15709 		}
15710 		bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
15711 		       LPFC_HDR_BUF_SIZE);
15712 	}
15713 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15714 	       cq->queue_id);
15715 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15716 	       hrq->page_count);
15717 	list_for_each_entry(dmabuf, &hrq->page_list, list) {
15718 		memset(dmabuf->virt, 0, hw_page_size);
15719 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15720 					putPaddrLow(dmabuf->phys);
15721 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15722 					putPaddrHigh(dmabuf->phys);
15723 	}
15724 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15725 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15726 
15727 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15728 	/* The IOCTL status is embedded in the mailbox subheader. */
15729 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15730 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15731 	if (shdr_status || shdr_add_status || rc) {
15732 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15733 				"2504 RQ_CREATE mailbox failed with "
15734 				"status x%x add_status x%x, mbx status x%x\n",
15735 				shdr_status, shdr_add_status, rc);
15736 		status = -ENXIO;
15737 		goto out;
15738 	}
15739 	hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15740 	if (hrq->queue_id == 0xFFFF) {
15741 		status = -ENXIO;
15742 		goto out;
15743 	}
15744 
15745 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15746 		hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
15747 					&rq_create->u.response);
15748 		if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
15749 		    (hrq->db_format != LPFC_DB_RING_FORMAT)) {
15750 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15751 					"3262 RQ [%d] doorbell format not "
15752 					"supported: x%x\n", hrq->queue_id,
15753 					hrq->db_format);
15754 			status = -EINVAL;
15755 			goto out;
15756 		}
15757 
15758 		pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
15759 				    &rq_create->u.response);
15760 		bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
15761 		if (!bar_memmap_p) {
15762 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15763 					"3269 RQ[%d] failed to memmap pci "
15764 					"barset:x%x\n", hrq->queue_id,
15765 					pci_barset);
15766 			status = -ENOMEM;
15767 			goto out;
15768 		}
15769 
15770 		db_offset = rq_create->u.response.doorbell_offset;
15771 		if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
15772 		    (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
15773 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15774 					"3270 RQ[%d] doorbell offset not "
15775 					"supported: x%x\n", hrq->queue_id,
15776 					db_offset);
15777 			status = -EINVAL;
15778 			goto out;
15779 		}
15780 		hrq->db_regaddr = bar_memmap_p + db_offset;
15781 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15782 				"3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
15783 				"format:x%x\n", hrq->queue_id, pci_barset,
15784 				db_offset, hrq->db_format);
15785 	} else {
15786 		hrq->db_format = LPFC_DB_RING_FORMAT;
15787 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15788 	}
15789 	hrq->type = LPFC_HRQ;
15790 	hrq->assoc_qid = cq->queue_id;
15791 	hrq->subtype = subtype;
15792 	hrq->host_index = 0;
15793 	hrq->hba_index = 0;
15794 	hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
15795 
15796 	/* now create the data queue */
15797 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15798 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15799 			 length, LPFC_SLI4_MBX_EMBED);
15800 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15801 	       phba->sli4_hba.pc_sli4_params.rqv);
15802 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15803 		bf_set(lpfc_rq_context_rqe_count_1,
15804 		       &rq_create->u.request.context, hrq->entry_count);
15805 		if (subtype == LPFC_NVMET)
15806 			rq_create->u.request.context.buffer_size =
15807 				LPFC_NVMET_DATA_BUF_SIZE;
15808 		else
15809 			rq_create->u.request.context.buffer_size =
15810 				LPFC_DATA_BUF_SIZE;
15811 		bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
15812 		       LPFC_RQE_SIZE_8);
15813 		bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
15814 		       (PAGE_SIZE/SLI4_PAGE_SIZE));
15815 	} else {
15816 		switch (drq->entry_count) {
15817 		default:
15818 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15819 					"2536 Unsupported RQ count. (%d)\n",
15820 					drq->entry_count);
15821 			if (drq->entry_count < 512) {
15822 				status = -EINVAL;
15823 				goto out;
15824 			}
15825 			/* fall through - otherwise default to smallest count */
15826 		case 512:
15827 			bf_set(lpfc_rq_context_rqe_count,
15828 			       &rq_create->u.request.context,
15829 			       LPFC_RQ_RING_SIZE_512);
15830 			break;
15831 		case 1024:
15832 			bf_set(lpfc_rq_context_rqe_count,
15833 			       &rq_create->u.request.context,
15834 			       LPFC_RQ_RING_SIZE_1024);
15835 			break;
15836 		case 2048:
15837 			bf_set(lpfc_rq_context_rqe_count,
15838 			       &rq_create->u.request.context,
15839 			       LPFC_RQ_RING_SIZE_2048);
15840 			break;
15841 		case 4096:
15842 			bf_set(lpfc_rq_context_rqe_count,
15843 			       &rq_create->u.request.context,
15844 			       LPFC_RQ_RING_SIZE_4096);
15845 			break;
15846 		}
15847 		if (subtype == LPFC_NVMET)
15848 			bf_set(lpfc_rq_context_buf_size,
15849 			       &rq_create->u.request.context,
15850 			       LPFC_NVMET_DATA_BUF_SIZE);
15851 		else
15852 			bf_set(lpfc_rq_context_buf_size,
15853 			       &rq_create->u.request.context,
15854 			       LPFC_DATA_BUF_SIZE);
15855 	}
15856 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15857 	       cq->queue_id);
15858 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15859 	       drq->page_count);
15860 	list_for_each_entry(dmabuf, &drq->page_list, list) {
15861 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15862 					putPaddrLow(dmabuf->phys);
15863 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15864 					putPaddrHigh(dmabuf->phys);
15865 	}
15866 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15867 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15868 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15869 	/* The IOCTL status is embedded in the mailbox subheader. */
15870 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15871 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15872 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15873 	if (shdr_status || shdr_add_status || rc) {
15874 		status = -ENXIO;
15875 		goto out;
15876 	}
15877 	drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15878 	if (drq->queue_id == 0xFFFF) {
15879 		status = -ENXIO;
15880 		goto out;
15881 	}
15882 	drq->type = LPFC_DRQ;
15883 	drq->assoc_qid = cq->queue_id;
15884 	drq->subtype = subtype;
15885 	drq->host_index = 0;
15886 	drq->hba_index = 0;
15887 	drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
15888 
15889 	/* link the header and data RQs onto the parent cq child list */
15890 	list_add_tail(&hrq->list, &cq->child_list);
15891 	list_add_tail(&drq->list, &cq->child_list);
15892 
15893 out:
15894 	mempool_free(mbox, phba->mbox_mem_pool);
15895 	return status;
15896 }
15897 
15898 /**
15899  * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
15900  * @phba: HBA structure that indicates port to create a queue on.
15901  * @hrqp: The queue structure array to use to create the header receive queues.
15902  * @drqp: The queue structure array to use to create the data receive queues.
15903  * @cqp: The completion queue array to bind these receive queues to.
15904  *
15905  * This function creates a receive buffer queue pair , as detailed in @hrq and
15906  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15907  * to the HBA.
15908  *
15909  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15910  * struct is used to get the entry count that is necessary to determine the
15911  * number of pages to use for this queue. The @cq is used to indicate which
15912  * completion queue to bind received buffers that are posted to these queues to.
15913  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15914  * receive queue pair. This function is asynchronous and will wait for the
15915  * mailbox command to finish before continuing.
15916  *
15917  * On success this function will return a zero. If unable to allocate enough
15918  * memory this function will return -ENOMEM. If the queue create mailbox command
15919  * fails this function will return -ENXIO.
15920  **/
15921 int
15922 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
15923 		struct lpfc_queue **drqp, struct lpfc_queue **cqp,
15924 		uint32_t subtype)
15925 {
15926 	struct lpfc_queue *hrq, *drq, *cq;
15927 	struct lpfc_mbx_rq_create_v2 *rq_create;
15928 	struct lpfc_dmabuf *dmabuf;
15929 	LPFC_MBOXQ_t *mbox;
15930 	int rc, length, alloclen, status = 0;
15931 	int cnt, idx, numrq, page_idx = 0;
15932 	uint32_t shdr_status, shdr_add_status;
15933 	union lpfc_sli4_cfg_shdr *shdr;
15934 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15935 
15936 	numrq = phba->cfg_nvmet_mrq;
15937 	/* sanity check on array memory */
15938 	if (!hrqp || !drqp || !cqp || !numrq)
15939 		return -ENODEV;
15940 	if (!phba->sli4_hba.pc_sli4_params.supported)
15941 		hw_page_size = SLI4_PAGE_SIZE;
15942 
15943 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15944 	if (!mbox)
15945 		return -ENOMEM;
15946 
15947 	length = sizeof(struct lpfc_mbx_rq_create_v2);
15948 	length += ((2 * numrq * hrqp[0]->page_count) *
15949 		   sizeof(struct dma_address));
15950 
15951 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15952 				    LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
15953 				    LPFC_SLI4_MBX_NEMBED);
15954 	if (alloclen < length) {
15955 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15956 				"3099 Allocated DMA memory size (%d) is "
15957 				"less than the requested DMA memory size "
15958 				"(%d)\n", alloclen, length);
15959 		status = -ENOMEM;
15960 		goto out;
15961 	}
15962 
15963 
15964 
15965 	rq_create = mbox->sge_array->addr[0];
15966 	shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
15967 
15968 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
15969 	cnt = 0;
15970 
15971 	for (idx = 0; idx < numrq; idx++) {
15972 		hrq = hrqp[idx];
15973 		drq = drqp[idx];
15974 		cq  = cqp[idx];
15975 
15976 		/* sanity check on queue memory */
15977 		if (!hrq || !drq || !cq) {
15978 			status = -ENODEV;
15979 			goto out;
15980 		}
15981 
15982 		if (hrq->entry_count != drq->entry_count) {
15983 			status = -EINVAL;
15984 			goto out;
15985 		}
15986 
15987 		if (idx == 0) {
15988 			bf_set(lpfc_mbx_rq_create_num_pages,
15989 			       &rq_create->u.request,
15990 			       hrq->page_count);
15991 			bf_set(lpfc_mbx_rq_create_rq_cnt,
15992 			       &rq_create->u.request, (numrq * 2));
15993 			bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
15994 			       1);
15995 			bf_set(lpfc_rq_context_base_cq,
15996 			       &rq_create->u.request.context,
15997 			       cq->queue_id);
15998 			bf_set(lpfc_rq_context_data_size,
15999 			       &rq_create->u.request.context,
16000 			       LPFC_NVMET_DATA_BUF_SIZE);
16001 			bf_set(lpfc_rq_context_hdr_size,
16002 			       &rq_create->u.request.context,
16003 			       LPFC_HDR_BUF_SIZE);
16004 			bf_set(lpfc_rq_context_rqe_count_1,
16005 			       &rq_create->u.request.context,
16006 			       hrq->entry_count);
16007 			bf_set(lpfc_rq_context_rqe_size,
16008 			       &rq_create->u.request.context,
16009 			       LPFC_RQE_SIZE_8);
16010 			bf_set(lpfc_rq_context_page_size,
16011 			       &rq_create->u.request.context,
16012 			       (PAGE_SIZE/SLI4_PAGE_SIZE));
16013 		}
16014 		rc = 0;
16015 		list_for_each_entry(dmabuf, &hrq->page_list, list) {
16016 			memset(dmabuf->virt, 0, hw_page_size);
16017 			cnt = page_idx + dmabuf->buffer_tag;
16018 			rq_create->u.request.page[cnt].addr_lo =
16019 					putPaddrLow(dmabuf->phys);
16020 			rq_create->u.request.page[cnt].addr_hi =
16021 					putPaddrHigh(dmabuf->phys);
16022 			rc++;
16023 		}
16024 		page_idx += rc;
16025 
16026 		rc = 0;
16027 		list_for_each_entry(dmabuf, &drq->page_list, list) {
16028 			memset(dmabuf->virt, 0, hw_page_size);
16029 			cnt = page_idx + dmabuf->buffer_tag;
16030 			rq_create->u.request.page[cnt].addr_lo =
16031 					putPaddrLow(dmabuf->phys);
16032 			rq_create->u.request.page[cnt].addr_hi =
16033 					putPaddrHigh(dmabuf->phys);
16034 			rc++;
16035 		}
16036 		page_idx += rc;
16037 
16038 		hrq->db_format = LPFC_DB_RING_FORMAT;
16039 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16040 		hrq->type = LPFC_HRQ;
16041 		hrq->assoc_qid = cq->queue_id;
16042 		hrq->subtype = subtype;
16043 		hrq->host_index = 0;
16044 		hrq->hba_index = 0;
16045 		hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16046 
16047 		drq->db_format = LPFC_DB_RING_FORMAT;
16048 		drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16049 		drq->type = LPFC_DRQ;
16050 		drq->assoc_qid = cq->queue_id;
16051 		drq->subtype = subtype;
16052 		drq->host_index = 0;
16053 		drq->hba_index = 0;
16054 		drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16055 
16056 		list_add_tail(&hrq->list, &cq->child_list);
16057 		list_add_tail(&drq->list, &cq->child_list);
16058 	}
16059 
16060 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16061 	/* The IOCTL status is embedded in the mailbox subheader. */
16062 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16063 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16064 	if (shdr_status || shdr_add_status || rc) {
16065 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16066 				"3120 RQ_CREATE mailbox failed with "
16067 				"status x%x add_status x%x, mbx status x%x\n",
16068 				shdr_status, shdr_add_status, rc);
16069 		status = -ENXIO;
16070 		goto out;
16071 	}
16072 	rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16073 	if (rc == 0xFFFF) {
16074 		status = -ENXIO;
16075 		goto out;
16076 	}
16077 
16078 	/* Initialize all RQs with associated queue id */
16079 	for (idx = 0; idx < numrq; idx++) {
16080 		hrq = hrqp[idx];
16081 		hrq->queue_id = rc + (2 * idx);
16082 		drq = drqp[idx];
16083 		drq->queue_id = rc + (2 * idx) + 1;
16084 	}
16085 
16086 out:
16087 	lpfc_sli4_mbox_cmd_free(phba, mbox);
16088 	return status;
16089 }
16090 
16091 /**
16092  * lpfc_eq_destroy - Destroy an event Queue on the HBA
16093  * @eq: The queue structure associated with the queue to destroy.
16094  *
16095  * This function destroys a queue, as detailed in @eq by sending an mailbox
16096  * command, specific to the type of queue, to the HBA.
16097  *
16098  * The @eq struct is used to get the queue ID of the queue to destroy.
16099  *
16100  * On success this function will return a zero. If the queue destroy mailbox
16101  * command fails this function will return -ENXIO.
16102  **/
16103 int
16104 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
16105 {
16106 	LPFC_MBOXQ_t *mbox;
16107 	int rc, length, status = 0;
16108 	uint32_t shdr_status, shdr_add_status;
16109 	union lpfc_sli4_cfg_shdr *shdr;
16110 
16111 	/* sanity check on queue memory */
16112 	if (!eq)
16113 		return -ENODEV;
16114 
16115 	mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
16116 	if (!mbox)
16117 		return -ENOMEM;
16118 	length = (sizeof(struct lpfc_mbx_eq_destroy) -
16119 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16120 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16121 			 LPFC_MBOX_OPCODE_EQ_DESTROY,
16122 			 length, LPFC_SLI4_MBX_EMBED);
16123 	bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
16124 	       eq->queue_id);
16125 	mbox->vport = eq->phba->pport;
16126 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16127 
16128 	rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
16129 	/* The IOCTL status is embedded in the mailbox subheader. */
16130 	shdr = (union lpfc_sli4_cfg_shdr *)
16131 		&mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
16132 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16133 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16134 	if (shdr_status || shdr_add_status || rc) {
16135 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16136 				"2505 EQ_DESTROY mailbox failed with "
16137 				"status x%x add_status x%x, mbx status x%x\n",
16138 				shdr_status, shdr_add_status, rc);
16139 		status = -ENXIO;
16140 	}
16141 
16142 	/* Remove eq from any list */
16143 	list_del_init(&eq->list);
16144 	mempool_free(mbox, eq->phba->mbox_mem_pool);
16145 	return status;
16146 }
16147 
16148 /**
16149  * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
16150  * @cq: The queue structure associated with the queue to destroy.
16151  *
16152  * This function destroys a queue, as detailed in @cq by sending an mailbox
16153  * command, specific to the type of queue, to the HBA.
16154  *
16155  * The @cq struct is used to get the queue ID of the queue to destroy.
16156  *
16157  * On success this function will return a zero. If the queue destroy mailbox
16158  * command fails this function will return -ENXIO.
16159  **/
16160 int
16161 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
16162 {
16163 	LPFC_MBOXQ_t *mbox;
16164 	int rc, length, status = 0;
16165 	uint32_t shdr_status, shdr_add_status;
16166 	union lpfc_sli4_cfg_shdr *shdr;
16167 
16168 	/* sanity check on queue memory */
16169 	if (!cq)
16170 		return -ENODEV;
16171 	mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
16172 	if (!mbox)
16173 		return -ENOMEM;
16174 	length = (sizeof(struct lpfc_mbx_cq_destroy) -
16175 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16176 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16177 			 LPFC_MBOX_OPCODE_CQ_DESTROY,
16178 			 length, LPFC_SLI4_MBX_EMBED);
16179 	bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
16180 	       cq->queue_id);
16181 	mbox->vport = cq->phba->pport;
16182 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16183 	rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
16184 	/* The IOCTL status is embedded in the mailbox subheader. */
16185 	shdr = (union lpfc_sli4_cfg_shdr *)
16186 		&mbox->u.mqe.un.wq_create.header.cfg_shdr;
16187 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16188 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16189 	if (shdr_status || shdr_add_status || rc) {
16190 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16191 				"2506 CQ_DESTROY mailbox failed with "
16192 				"status x%x add_status x%x, mbx status x%x\n",
16193 				shdr_status, shdr_add_status, rc);
16194 		status = -ENXIO;
16195 	}
16196 	/* Remove cq from any list */
16197 	list_del_init(&cq->list);
16198 	mempool_free(mbox, cq->phba->mbox_mem_pool);
16199 	return status;
16200 }
16201 
16202 /**
16203  * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
16204  * @qm: The queue structure associated with the queue to destroy.
16205  *
16206  * This function destroys a queue, as detailed in @mq by sending an mailbox
16207  * command, specific to the type of queue, to the HBA.
16208  *
16209  * The @mq struct is used to get the queue ID of the queue to destroy.
16210  *
16211  * On success this function will return a zero. If the queue destroy mailbox
16212  * command fails this function will return -ENXIO.
16213  **/
16214 int
16215 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
16216 {
16217 	LPFC_MBOXQ_t *mbox;
16218 	int rc, length, status = 0;
16219 	uint32_t shdr_status, shdr_add_status;
16220 	union lpfc_sli4_cfg_shdr *shdr;
16221 
16222 	/* sanity check on queue memory */
16223 	if (!mq)
16224 		return -ENODEV;
16225 	mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
16226 	if (!mbox)
16227 		return -ENOMEM;
16228 	length = (sizeof(struct lpfc_mbx_mq_destroy) -
16229 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16230 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16231 			 LPFC_MBOX_OPCODE_MQ_DESTROY,
16232 			 length, LPFC_SLI4_MBX_EMBED);
16233 	bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
16234 	       mq->queue_id);
16235 	mbox->vport = mq->phba->pport;
16236 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16237 	rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
16238 	/* The IOCTL status is embedded in the mailbox subheader. */
16239 	shdr = (union lpfc_sli4_cfg_shdr *)
16240 		&mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
16241 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16242 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16243 	if (shdr_status || shdr_add_status || rc) {
16244 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16245 				"2507 MQ_DESTROY mailbox failed with "
16246 				"status x%x add_status x%x, mbx status x%x\n",
16247 				shdr_status, shdr_add_status, rc);
16248 		status = -ENXIO;
16249 	}
16250 	/* Remove mq from any list */
16251 	list_del_init(&mq->list);
16252 	mempool_free(mbox, mq->phba->mbox_mem_pool);
16253 	return status;
16254 }
16255 
16256 /**
16257  * lpfc_wq_destroy - Destroy a Work Queue on the HBA
16258  * @wq: The queue structure associated with the queue to destroy.
16259  *
16260  * This function destroys a queue, as detailed in @wq by sending an mailbox
16261  * command, specific to the type of queue, to the HBA.
16262  *
16263  * The @wq struct is used to get the queue ID of the queue to destroy.
16264  *
16265  * On success this function will return a zero. If the queue destroy mailbox
16266  * command fails this function will return -ENXIO.
16267  **/
16268 int
16269 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
16270 {
16271 	LPFC_MBOXQ_t *mbox;
16272 	int rc, length, status = 0;
16273 	uint32_t shdr_status, shdr_add_status;
16274 	union lpfc_sli4_cfg_shdr *shdr;
16275 
16276 	/* sanity check on queue memory */
16277 	if (!wq)
16278 		return -ENODEV;
16279 	mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
16280 	if (!mbox)
16281 		return -ENOMEM;
16282 	length = (sizeof(struct lpfc_mbx_wq_destroy) -
16283 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16284 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16285 			 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
16286 			 length, LPFC_SLI4_MBX_EMBED);
16287 	bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
16288 	       wq->queue_id);
16289 	mbox->vport = wq->phba->pport;
16290 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16291 	rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
16292 	shdr = (union lpfc_sli4_cfg_shdr *)
16293 		&mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
16294 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16295 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16296 	if (shdr_status || shdr_add_status || rc) {
16297 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16298 				"2508 WQ_DESTROY mailbox failed with "
16299 				"status x%x add_status x%x, mbx status x%x\n",
16300 				shdr_status, shdr_add_status, rc);
16301 		status = -ENXIO;
16302 	}
16303 	/* Remove wq from any list */
16304 	list_del_init(&wq->list);
16305 	kfree(wq->pring);
16306 	wq->pring = NULL;
16307 	mempool_free(mbox, wq->phba->mbox_mem_pool);
16308 	return status;
16309 }
16310 
16311 /**
16312  * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
16313  * @rq: The queue structure associated with the queue to destroy.
16314  *
16315  * This function destroys a queue, as detailed in @rq by sending an mailbox
16316  * command, specific to the type of queue, to the HBA.
16317  *
16318  * The @rq struct is used to get the queue ID of the queue to destroy.
16319  *
16320  * On success this function will return a zero. If the queue destroy mailbox
16321  * command fails this function will return -ENXIO.
16322  **/
16323 int
16324 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16325 		struct lpfc_queue *drq)
16326 {
16327 	LPFC_MBOXQ_t *mbox;
16328 	int rc, length, status = 0;
16329 	uint32_t shdr_status, shdr_add_status;
16330 	union lpfc_sli4_cfg_shdr *shdr;
16331 
16332 	/* sanity check on queue memory */
16333 	if (!hrq || !drq)
16334 		return -ENODEV;
16335 	mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
16336 	if (!mbox)
16337 		return -ENOMEM;
16338 	length = (sizeof(struct lpfc_mbx_rq_destroy) -
16339 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16340 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16341 			 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
16342 			 length, LPFC_SLI4_MBX_EMBED);
16343 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16344 	       hrq->queue_id);
16345 	mbox->vport = hrq->phba->pport;
16346 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16347 	rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
16348 	/* The IOCTL status is embedded in the mailbox subheader. */
16349 	shdr = (union lpfc_sli4_cfg_shdr *)
16350 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16351 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16352 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16353 	if (shdr_status || shdr_add_status || rc) {
16354 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16355 				"2509 RQ_DESTROY mailbox failed with "
16356 				"status x%x add_status x%x, mbx status x%x\n",
16357 				shdr_status, shdr_add_status, rc);
16358 		if (rc != MBX_TIMEOUT)
16359 			mempool_free(mbox, hrq->phba->mbox_mem_pool);
16360 		return -ENXIO;
16361 	}
16362 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16363 	       drq->queue_id);
16364 	rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
16365 	shdr = (union lpfc_sli4_cfg_shdr *)
16366 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16367 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16368 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16369 	if (shdr_status || shdr_add_status || rc) {
16370 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16371 				"2510 RQ_DESTROY mailbox failed with "
16372 				"status x%x add_status x%x, mbx status x%x\n",
16373 				shdr_status, shdr_add_status, rc);
16374 		status = -ENXIO;
16375 	}
16376 	list_del_init(&hrq->list);
16377 	list_del_init(&drq->list);
16378 	mempool_free(mbox, hrq->phba->mbox_mem_pool);
16379 	return status;
16380 }
16381 
16382 /**
16383  * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
16384  * @phba: The virtual port for which this call being executed.
16385  * @pdma_phys_addr0: Physical address of the 1st SGL page.
16386  * @pdma_phys_addr1: Physical address of the 2nd SGL page.
16387  * @xritag: the xritag that ties this io to the SGL pages.
16388  *
16389  * This routine will post the sgl pages for the IO that has the xritag
16390  * that is in the iocbq structure. The xritag is assigned during iocbq
16391  * creation and persists for as long as the driver is loaded.
16392  * if the caller has fewer than 256 scatter gather segments to map then
16393  * pdma_phys_addr1 should be 0.
16394  * If the caller needs to map more than 256 scatter gather segment then
16395  * pdma_phys_addr1 should be a valid physical address.
16396  * physical address for SGLs must be 64 byte aligned.
16397  * If you are going to map 2 SGL's then the first one must have 256 entries
16398  * the second sgl can have between 1 and 256 entries.
16399  *
16400  * Return codes:
16401  * 	0 - Success
16402  * 	-ENXIO, -ENOMEM - Failure
16403  **/
16404 int
16405 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
16406 		dma_addr_t pdma_phys_addr0,
16407 		dma_addr_t pdma_phys_addr1,
16408 		uint16_t xritag)
16409 {
16410 	struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
16411 	LPFC_MBOXQ_t *mbox;
16412 	int rc;
16413 	uint32_t shdr_status, shdr_add_status;
16414 	uint32_t mbox_tmo;
16415 	union lpfc_sli4_cfg_shdr *shdr;
16416 
16417 	if (xritag == NO_XRI) {
16418 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16419 				"0364 Invalid param:\n");
16420 		return -EINVAL;
16421 	}
16422 
16423 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16424 	if (!mbox)
16425 		return -ENOMEM;
16426 
16427 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16428 			LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16429 			sizeof(struct lpfc_mbx_post_sgl_pages) -
16430 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
16431 
16432 	post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
16433 				&mbox->u.mqe.un.post_sgl_pages;
16434 	bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
16435 	bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
16436 
16437 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo	=
16438 				cpu_to_le32(putPaddrLow(pdma_phys_addr0));
16439 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
16440 				cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
16441 
16442 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo	=
16443 				cpu_to_le32(putPaddrLow(pdma_phys_addr1));
16444 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
16445 				cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
16446 	if (!phba->sli4_hba.intr_enable)
16447 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16448 	else {
16449 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16450 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16451 	}
16452 	/* The IOCTL status is embedded in the mailbox subheader. */
16453 	shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
16454 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16455 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16456 	if (rc != MBX_TIMEOUT)
16457 		mempool_free(mbox, phba->mbox_mem_pool);
16458 	if (shdr_status || shdr_add_status || rc) {
16459 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16460 				"2511 POST_SGL mailbox failed with "
16461 				"status x%x add_status x%x, mbx status x%x\n",
16462 				shdr_status, shdr_add_status, rc);
16463 	}
16464 	return 0;
16465 }
16466 
16467 /**
16468  * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
16469  * @phba: pointer to lpfc hba data structure.
16470  *
16471  * This routine is invoked to post rpi header templates to the
16472  * HBA consistent with the SLI-4 interface spec.  This routine
16473  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
16474  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
16475  *
16476  * Returns
16477  *	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
16478  *	LPFC_RPI_ALLOC_ERROR if no rpis are available.
16479  **/
16480 static uint16_t
16481 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
16482 {
16483 	unsigned long xri;
16484 
16485 	/*
16486 	 * Fetch the next logical xri.  Because this index is logical,
16487 	 * the driver starts at 0 each time.
16488 	 */
16489 	spin_lock_irq(&phba->hbalock);
16490 	xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
16491 				 phba->sli4_hba.max_cfg_param.max_xri, 0);
16492 	if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
16493 		spin_unlock_irq(&phba->hbalock);
16494 		return NO_XRI;
16495 	} else {
16496 		set_bit(xri, phba->sli4_hba.xri_bmask);
16497 		phba->sli4_hba.max_cfg_param.xri_used++;
16498 	}
16499 	spin_unlock_irq(&phba->hbalock);
16500 	return xri;
16501 }
16502 
16503 /**
16504  * lpfc_sli4_free_xri - Release an xri for reuse.
16505  * @phba: pointer to lpfc hba data structure.
16506  *
16507  * This routine is invoked to release an xri to the pool of
16508  * available rpis maintained by the driver.
16509  **/
16510 static void
16511 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16512 {
16513 	if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
16514 		phba->sli4_hba.max_cfg_param.xri_used--;
16515 	}
16516 }
16517 
16518 /**
16519  * lpfc_sli4_free_xri - Release an xri for reuse.
16520  * @phba: pointer to lpfc hba data structure.
16521  *
16522  * This routine is invoked to release an xri to the pool of
16523  * available rpis maintained by the driver.
16524  **/
16525 void
16526 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16527 {
16528 	spin_lock_irq(&phba->hbalock);
16529 	__lpfc_sli4_free_xri(phba, xri);
16530 	spin_unlock_irq(&phba->hbalock);
16531 }
16532 
16533 /**
16534  * lpfc_sli4_next_xritag - Get an xritag for the io
16535  * @phba: Pointer to HBA context object.
16536  *
16537  * This function gets an xritag for the iocb. If there is no unused xritag
16538  * it will return 0xffff.
16539  * The function returns the allocated xritag if successful, else returns zero.
16540  * Zero is not a valid xritag.
16541  * The caller is not required to hold any lock.
16542  **/
16543 uint16_t
16544 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
16545 {
16546 	uint16_t xri_index;
16547 
16548 	xri_index = lpfc_sli4_alloc_xri(phba);
16549 	if (xri_index == NO_XRI)
16550 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
16551 				"2004 Failed to allocate XRI.last XRITAG is %d"
16552 				" Max XRI is %d, Used XRI is %d\n",
16553 				xri_index,
16554 				phba->sli4_hba.max_cfg_param.max_xri,
16555 				phba->sli4_hba.max_cfg_param.xri_used);
16556 	return xri_index;
16557 }
16558 
16559 /**
16560  * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
16561  * @phba: pointer to lpfc hba data structure.
16562  * @post_sgl_list: pointer to els sgl entry list.
16563  * @count: number of els sgl entries on the list.
16564  *
16565  * This routine is invoked to post a block of driver's sgl pages to the
16566  * HBA using non-embedded mailbox command. No Lock is held. This routine
16567  * is only called when the driver is loading and after all IO has been
16568  * stopped.
16569  **/
16570 static int
16571 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
16572 			    struct list_head *post_sgl_list,
16573 			    int post_cnt)
16574 {
16575 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
16576 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16577 	struct sgl_page_pairs *sgl_pg_pairs;
16578 	void *viraddr;
16579 	LPFC_MBOXQ_t *mbox;
16580 	uint32_t reqlen, alloclen, pg_pairs;
16581 	uint32_t mbox_tmo;
16582 	uint16_t xritag_start = 0;
16583 	int rc = 0;
16584 	uint32_t shdr_status, shdr_add_status;
16585 	union lpfc_sli4_cfg_shdr *shdr;
16586 
16587 	reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
16588 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16589 	if (reqlen > SLI4_PAGE_SIZE) {
16590 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16591 				"2559 Block sgl registration required DMA "
16592 				"size (%d) great than a page\n", reqlen);
16593 		return -ENOMEM;
16594 	}
16595 
16596 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16597 	if (!mbox)
16598 		return -ENOMEM;
16599 
16600 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16601 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16602 			 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
16603 			 LPFC_SLI4_MBX_NEMBED);
16604 
16605 	if (alloclen < reqlen) {
16606 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16607 				"0285 Allocated DMA memory size (%d) is "
16608 				"less than the requested DMA memory "
16609 				"size (%d)\n", alloclen, reqlen);
16610 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16611 		return -ENOMEM;
16612 	}
16613 	/* Set up the SGL pages in the non-embedded DMA pages */
16614 	viraddr = mbox->sge_array->addr[0];
16615 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16616 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
16617 
16618 	pg_pairs = 0;
16619 	list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
16620 		/* Set up the sge entry */
16621 		sgl_pg_pairs->sgl_pg0_addr_lo =
16622 				cpu_to_le32(putPaddrLow(sglq_entry->phys));
16623 		sgl_pg_pairs->sgl_pg0_addr_hi =
16624 				cpu_to_le32(putPaddrHigh(sglq_entry->phys));
16625 		sgl_pg_pairs->sgl_pg1_addr_lo =
16626 				cpu_to_le32(putPaddrLow(0));
16627 		sgl_pg_pairs->sgl_pg1_addr_hi =
16628 				cpu_to_le32(putPaddrHigh(0));
16629 
16630 		/* Keep the first xritag on the list */
16631 		if (pg_pairs == 0)
16632 			xritag_start = sglq_entry->sli4_xritag;
16633 		sgl_pg_pairs++;
16634 		pg_pairs++;
16635 	}
16636 
16637 	/* Complete initialization and perform endian conversion. */
16638 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16639 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
16640 	sgl->word0 = cpu_to_le32(sgl->word0);
16641 
16642 	if (!phba->sli4_hba.intr_enable)
16643 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16644 	else {
16645 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16646 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16647 	}
16648 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
16649 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16650 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16651 	if (rc != MBX_TIMEOUT)
16652 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16653 	if (shdr_status || shdr_add_status || rc) {
16654 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16655 				"2513 POST_SGL_BLOCK mailbox command failed "
16656 				"status x%x add_status x%x mbx status x%x\n",
16657 				shdr_status, shdr_add_status, rc);
16658 		rc = -ENXIO;
16659 	}
16660 	return rc;
16661 }
16662 
16663 /**
16664  * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
16665  * @phba: pointer to lpfc hba data structure.
16666  * @nblist: pointer to nvme buffer list.
16667  * @count: number of scsi buffers on the list.
16668  *
16669  * This routine is invoked to post a block of @count scsi sgl pages from a
16670  * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
16671  * No Lock is held.
16672  *
16673  **/
16674 static int
16675 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
16676 			    int count)
16677 {
16678 	struct lpfc_io_buf *lpfc_ncmd;
16679 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16680 	struct sgl_page_pairs *sgl_pg_pairs;
16681 	void *viraddr;
16682 	LPFC_MBOXQ_t *mbox;
16683 	uint32_t reqlen, alloclen, pg_pairs;
16684 	uint32_t mbox_tmo;
16685 	uint16_t xritag_start = 0;
16686 	int rc = 0;
16687 	uint32_t shdr_status, shdr_add_status;
16688 	dma_addr_t pdma_phys_bpl1;
16689 	union lpfc_sli4_cfg_shdr *shdr;
16690 
16691 	/* Calculate the requested length of the dma memory */
16692 	reqlen = count * sizeof(struct sgl_page_pairs) +
16693 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16694 	if (reqlen > SLI4_PAGE_SIZE) {
16695 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
16696 				"6118 Block sgl registration required DMA "
16697 				"size (%d) great than a page\n", reqlen);
16698 		return -ENOMEM;
16699 	}
16700 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16701 	if (!mbox) {
16702 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16703 				"6119 Failed to allocate mbox cmd memory\n");
16704 		return -ENOMEM;
16705 	}
16706 
16707 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16708 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16709 				    LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16710 				    reqlen, LPFC_SLI4_MBX_NEMBED);
16711 
16712 	if (alloclen < reqlen) {
16713 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16714 				"6120 Allocated DMA memory size (%d) is "
16715 				"less than the requested DMA memory "
16716 				"size (%d)\n", alloclen, reqlen);
16717 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16718 		return -ENOMEM;
16719 	}
16720 
16721 	/* Get the first SGE entry from the non-embedded DMA memory */
16722 	viraddr = mbox->sge_array->addr[0];
16723 
16724 	/* Set up the SGL pages in the non-embedded DMA pages */
16725 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16726 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
16727 
16728 	pg_pairs = 0;
16729 	list_for_each_entry(lpfc_ncmd, nblist, list) {
16730 		/* Set up the sge entry */
16731 		sgl_pg_pairs->sgl_pg0_addr_lo =
16732 			cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
16733 		sgl_pg_pairs->sgl_pg0_addr_hi =
16734 			cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
16735 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
16736 			pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
16737 						SGL_PAGE_SIZE;
16738 		else
16739 			pdma_phys_bpl1 = 0;
16740 		sgl_pg_pairs->sgl_pg1_addr_lo =
16741 			cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
16742 		sgl_pg_pairs->sgl_pg1_addr_hi =
16743 			cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
16744 		/* Keep the first xritag on the list */
16745 		if (pg_pairs == 0)
16746 			xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
16747 		sgl_pg_pairs++;
16748 		pg_pairs++;
16749 	}
16750 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16751 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
16752 	/* Perform endian conversion if necessary */
16753 	sgl->word0 = cpu_to_le32(sgl->word0);
16754 
16755 	if (!phba->sli4_hba.intr_enable) {
16756 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16757 	} else {
16758 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16759 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16760 	}
16761 	shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
16762 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16763 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16764 	if (rc != MBX_TIMEOUT)
16765 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16766 	if (shdr_status || shdr_add_status || rc) {
16767 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16768 				"6125 POST_SGL_BLOCK mailbox command failed "
16769 				"status x%x add_status x%x mbx status x%x\n",
16770 				shdr_status, shdr_add_status, rc);
16771 		rc = -ENXIO;
16772 	}
16773 	return rc;
16774 }
16775 
16776 /**
16777  * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
16778  * @phba: pointer to lpfc hba data structure.
16779  * @post_nblist: pointer to the nvme buffer list.
16780  *
16781  * This routine walks a list of nvme buffers that was passed in. It attempts
16782  * to construct blocks of nvme buffer sgls which contains contiguous xris and
16783  * uses the non-embedded SGL block post mailbox commands to post to the port.
16784  * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
16785  * embedded SGL post mailbox command for posting. The @post_nblist passed in
16786  * must be local list, thus no lock is needed when manipulate the list.
16787  *
16788  * Returns: 0 = failure, non-zero number of successfully posted buffers.
16789  **/
16790 int
16791 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
16792 			   struct list_head *post_nblist, int sb_count)
16793 {
16794 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
16795 	int status, sgl_size;
16796 	int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
16797 	dma_addr_t pdma_phys_sgl1;
16798 	int last_xritag = NO_XRI;
16799 	int cur_xritag;
16800 	LIST_HEAD(prep_nblist);
16801 	LIST_HEAD(blck_nblist);
16802 	LIST_HEAD(nvme_nblist);
16803 
16804 	/* sanity check */
16805 	if (sb_count <= 0)
16806 		return -EINVAL;
16807 
16808 	sgl_size = phba->cfg_sg_dma_buf_size;
16809 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
16810 		list_del_init(&lpfc_ncmd->list);
16811 		block_cnt++;
16812 		if ((last_xritag != NO_XRI) &&
16813 		    (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
16814 			/* a hole in xri block, form a sgl posting block */
16815 			list_splice_init(&prep_nblist, &blck_nblist);
16816 			post_cnt = block_cnt - 1;
16817 			/* prepare list for next posting block */
16818 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
16819 			block_cnt = 1;
16820 		} else {
16821 			/* prepare list for next posting block */
16822 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
16823 			/* enough sgls for non-embed sgl mbox command */
16824 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
16825 				list_splice_init(&prep_nblist, &blck_nblist);
16826 				post_cnt = block_cnt;
16827 				block_cnt = 0;
16828 			}
16829 		}
16830 		num_posting++;
16831 		last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
16832 
16833 		/* end of repost sgl list condition for NVME buffers */
16834 		if (num_posting == sb_count) {
16835 			if (post_cnt == 0) {
16836 				/* last sgl posting block */
16837 				list_splice_init(&prep_nblist, &blck_nblist);
16838 				post_cnt = block_cnt;
16839 			} else if (block_cnt == 1) {
16840 				/* last single sgl with non-contiguous xri */
16841 				if (sgl_size > SGL_PAGE_SIZE)
16842 					pdma_phys_sgl1 =
16843 						lpfc_ncmd->dma_phys_sgl +
16844 						SGL_PAGE_SIZE;
16845 				else
16846 					pdma_phys_sgl1 = 0;
16847 				cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
16848 				status = lpfc_sli4_post_sgl(
16849 						phba, lpfc_ncmd->dma_phys_sgl,
16850 						pdma_phys_sgl1, cur_xritag);
16851 				if (status) {
16852 					/* Post error.  Buffer unavailable. */
16853 					lpfc_ncmd->flags |=
16854 						LPFC_SBUF_NOT_POSTED;
16855 				} else {
16856 					/* Post success. Bffer available. */
16857 					lpfc_ncmd->flags &=
16858 						~LPFC_SBUF_NOT_POSTED;
16859 					lpfc_ncmd->status = IOSTAT_SUCCESS;
16860 					num_posted++;
16861 				}
16862 				/* success, put on NVME buffer sgl list */
16863 				list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
16864 			}
16865 		}
16866 
16867 		/* continue until a nembed page worth of sgls */
16868 		if (post_cnt == 0)
16869 			continue;
16870 
16871 		/* post block of NVME buffer list sgls */
16872 		status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
16873 						     post_cnt);
16874 
16875 		/* don't reset xirtag due to hole in xri block */
16876 		if (block_cnt == 0)
16877 			last_xritag = NO_XRI;
16878 
16879 		/* reset NVME buffer post count for next round of posting */
16880 		post_cnt = 0;
16881 
16882 		/* put posted NVME buffer-sgl posted on NVME buffer sgl list */
16883 		while (!list_empty(&blck_nblist)) {
16884 			list_remove_head(&blck_nblist, lpfc_ncmd,
16885 					 struct lpfc_io_buf, list);
16886 			if (status) {
16887 				/* Post error.  Mark buffer unavailable. */
16888 				lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
16889 			} else {
16890 				/* Post success, Mark buffer available. */
16891 				lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
16892 				lpfc_ncmd->status = IOSTAT_SUCCESS;
16893 				num_posted++;
16894 			}
16895 			list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
16896 		}
16897 	}
16898 	/* Push NVME buffers with sgl posted to the available list */
16899 	lpfc_io_buf_replenish(phba, &nvme_nblist);
16900 
16901 	return num_posted;
16902 }
16903 
16904 /**
16905  * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
16906  * @phba: pointer to lpfc_hba struct that the frame was received on
16907  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16908  *
16909  * This function checks the fields in the @fc_hdr to see if the FC frame is a
16910  * valid type of frame that the LPFC driver will handle. This function will
16911  * return a zero if the frame is a valid frame or a non zero value when the
16912  * frame does not pass the check.
16913  **/
16914 static int
16915 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
16916 {
16917 	/*  make rctl_names static to save stack space */
16918 	struct fc_vft_header *fc_vft_hdr;
16919 	uint32_t *header = (uint32_t *) fc_hdr;
16920 
16921 	switch (fc_hdr->fh_r_ctl) {
16922 	case FC_RCTL_DD_UNCAT:		/* uncategorized information */
16923 	case FC_RCTL_DD_SOL_DATA:	/* solicited data */
16924 	case FC_RCTL_DD_UNSOL_CTL:	/* unsolicited control */
16925 	case FC_RCTL_DD_SOL_CTL:	/* solicited control or reply */
16926 	case FC_RCTL_DD_UNSOL_DATA:	/* unsolicited data */
16927 	case FC_RCTL_DD_DATA_DESC:	/* data descriptor */
16928 	case FC_RCTL_DD_UNSOL_CMD:	/* unsolicited command */
16929 	case FC_RCTL_DD_CMD_STATUS:	/* command status */
16930 	case FC_RCTL_ELS_REQ:	/* extended link services request */
16931 	case FC_RCTL_ELS_REP:	/* extended link services reply */
16932 	case FC_RCTL_ELS4_REQ:	/* FC-4 ELS request */
16933 	case FC_RCTL_ELS4_REP:	/* FC-4 ELS reply */
16934 	case FC_RCTL_BA_NOP:  	/* basic link service NOP */
16935 	case FC_RCTL_BA_ABTS: 	/* basic link service abort */
16936 	case FC_RCTL_BA_RMC: 	/* remove connection */
16937 	case FC_RCTL_BA_ACC:	/* basic accept */
16938 	case FC_RCTL_BA_RJT:	/* basic reject */
16939 	case FC_RCTL_BA_PRMT:
16940 	case FC_RCTL_ACK_1:	/* acknowledge_1 */
16941 	case FC_RCTL_ACK_0:	/* acknowledge_0 */
16942 	case FC_RCTL_P_RJT:	/* port reject */
16943 	case FC_RCTL_F_RJT:	/* fabric reject */
16944 	case FC_RCTL_P_BSY:	/* port busy */
16945 	case FC_RCTL_F_BSY:	/* fabric busy to data frame */
16946 	case FC_RCTL_F_BSYL:	/* fabric busy to link control frame */
16947 	case FC_RCTL_LCR:	/* link credit reset */
16948 	case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
16949 	case FC_RCTL_END:	/* end */
16950 		break;
16951 	case FC_RCTL_VFTH:	/* Virtual Fabric tagging Header */
16952 		fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16953 		fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
16954 		return lpfc_fc_frame_check(phba, fc_hdr);
16955 	default:
16956 		goto drop;
16957 	}
16958 
16959 	switch (fc_hdr->fh_type) {
16960 	case FC_TYPE_BLS:
16961 	case FC_TYPE_ELS:
16962 	case FC_TYPE_FCP:
16963 	case FC_TYPE_CT:
16964 	case FC_TYPE_NVME:
16965 		break;
16966 	case FC_TYPE_IP:
16967 	case FC_TYPE_ILS:
16968 	default:
16969 		goto drop;
16970 	}
16971 
16972 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
16973 			"2538 Received frame rctl:x%x, type:x%x, "
16974 			"frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
16975 			fc_hdr->fh_r_ctl, fc_hdr->fh_type,
16976 			be32_to_cpu(header[0]), be32_to_cpu(header[1]),
16977 			be32_to_cpu(header[2]), be32_to_cpu(header[3]),
16978 			be32_to_cpu(header[4]), be32_to_cpu(header[5]),
16979 			be32_to_cpu(header[6]));
16980 	return 0;
16981 drop:
16982 	lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
16983 			"2539 Dropped frame rctl:x%x type:x%x\n",
16984 			fc_hdr->fh_r_ctl, fc_hdr->fh_type);
16985 	return 1;
16986 }
16987 
16988 /**
16989  * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
16990  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16991  *
16992  * This function processes the FC header to retrieve the VFI from the VF
16993  * header, if one exists. This function will return the VFI if one exists
16994  * or 0 if no VSAN Header exists.
16995  **/
16996 static uint32_t
16997 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
16998 {
16999 	struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17000 
17001 	if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
17002 		return 0;
17003 	return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
17004 }
17005 
17006 /**
17007  * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
17008  * @phba: Pointer to the HBA structure to search for the vport on
17009  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17010  * @fcfi: The FC Fabric ID that the frame came from
17011  *
17012  * This function searches the @phba for a vport that matches the content of the
17013  * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
17014  * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
17015  * returns the matching vport pointer or NULL if unable to match frame to a
17016  * vport.
17017  **/
17018 static struct lpfc_vport *
17019 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
17020 		       uint16_t fcfi, uint32_t did)
17021 {
17022 	struct lpfc_vport **vports;
17023 	struct lpfc_vport *vport = NULL;
17024 	int i;
17025 
17026 	if (did == Fabric_DID)
17027 		return phba->pport;
17028 	if ((phba->pport->fc_flag & FC_PT2PT) &&
17029 		!(phba->link_state == LPFC_HBA_READY))
17030 		return phba->pport;
17031 
17032 	vports = lpfc_create_vport_work_array(phba);
17033 	if (vports != NULL) {
17034 		for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
17035 			if (phba->fcf.fcfi == fcfi &&
17036 			    vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
17037 			    vports[i]->fc_myDID == did) {
17038 				vport = vports[i];
17039 				break;
17040 			}
17041 		}
17042 	}
17043 	lpfc_destroy_vport_work_array(phba, vports);
17044 	return vport;
17045 }
17046 
17047 /**
17048  * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
17049  * @vport: The vport to work on.
17050  *
17051  * This function updates the receive sequence time stamp for this vport. The
17052  * receive sequence time stamp indicates the time that the last frame of the
17053  * the sequence that has been idle for the longest amount of time was received.
17054  * the driver uses this time stamp to indicate if any received sequences have
17055  * timed out.
17056  **/
17057 static void
17058 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
17059 {
17060 	struct lpfc_dmabuf *h_buf;
17061 	struct hbq_dmabuf *dmabuf = NULL;
17062 
17063 	/* get the oldest sequence on the rcv list */
17064 	h_buf = list_get_first(&vport->rcv_buffer_list,
17065 			       struct lpfc_dmabuf, list);
17066 	if (!h_buf)
17067 		return;
17068 	dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17069 	vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
17070 }
17071 
17072 /**
17073  * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
17074  * @vport: The vport that the received sequences were sent to.
17075  *
17076  * This function cleans up all outstanding received sequences. This is called
17077  * by the driver when a link event or user action invalidates all the received
17078  * sequences.
17079  **/
17080 void
17081 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
17082 {
17083 	struct lpfc_dmabuf *h_buf, *hnext;
17084 	struct lpfc_dmabuf *d_buf, *dnext;
17085 	struct hbq_dmabuf *dmabuf = NULL;
17086 
17087 	/* start with the oldest sequence on the rcv list */
17088 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17089 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17090 		list_del_init(&dmabuf->hbuf.list);
17091 		list_for_each_entry_safe(d_buf, dnext,
17092 					 &dmabuf->dbuf.list, list) {
17093 			list_del_init(&d_buf->list);
17094 			lpfc_in_buf_free(vport->phba, d_buf);
17095 		}
17096 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17097 	}
17098 }
17099 
17100 /**
17101  * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
17102  * @vport: The vport that the received sequences were sent to.
17103  *
17104  * This function determines whether any received sequences have timed out by
17105  * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
17106  * indicates that there is at least one timed out sequence this routine will
17107  * go through the received sequences one at a time from most inactive to most
17108  * active to determine which ones need to be cleaned up. Once it has determined
17109  * that a sequence needs to be cleaned up it will simply free up the resources
17110  * without sending an abort.
17111  **/
17112 void
17113 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
17114 {
17115 	struct lpfc_dmabuf *h_buf, *hnext;
17116 	struct lpfc_dmabuf *d_buf, *dnext;
17117 	struct hbq_dmabuf *dmabuf = NULL;
17118 	unsigned long timeout;
17119 	int abort_count = 0;
17120 
17121 	timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17122 		   vport->rcv_buffer_time_stamp);
17123 	if (list_empty(&vport->rcv_buffer_list) ||
17124 	    time_before(jiffies, timeout))
17125 		return;
17126 	/* start with the oldest sequence on the rcv list */
17127 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17128 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17129 		timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17130 			   dmabuf->time_stamp);
17131 		if (time_before(jiffies, timeout))
17132 			break;
17133 		abort_count++;
17134 		list_del_init(&dmabuf->hbuf.list);
17135 		list_for_each_entry_safe(d_buf, dnext,
17136 					 &dmabuf->dbuf.list, list) {
17137 			list_del_init(&d_buf->list);
17138 			lpfc_in_buf_free(vport->phba, d_buf);
17139 		}
17140 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17141 	}
17142 	if (abort_count)
17143 		lpfc_update_rcv_time_stamp(vport);
17144 }
17145 
17146 /**
17147  * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
17148  * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
17149  *
17150  * This function searches through the existing incomplete sequences that have
17151  * been sent to this @vport. If the frame matches one of the incomplete
17152  * sequences then the dbuf in the @dmabuf is added to the list of frames that
17153  * make up that sequence. If no sequence is found that matches this frame then
17154  * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
17155  * This function returns a pointer to the first dmabuf in the sequence list that
17156  * the frame was linked to.
17157  **/
17158 static struct hbq_dmabuf *
17159 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17160 {
17161 	struct fc_frame_header *new_hdr;
17162 	struct fc_frame_header *temp_hdr;
17163 	struct lpfc_dmabuf *d_buf;
17164 	struct lpfc_dmabuf *h_buf;
17165 	struct hbq_dmabuf *seq_dmabuf = NULL;
17166 	struct hbq_dmabuf *temp_dmabuf = NULL;
17167 	uint8_t	found = 0;
17168 
17169 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17170 	dmabuf->time_stamp = jiffies;
17171 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17172 
17173 	/* Use the hdr_buf to find the sequence that this frame belongs to */
17174 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17175 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17176 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17177 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17178 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17179 			continue;
17180 		/* found a pending sequence that matches this frame */
17181 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17182 		break;
17183 	}
17184 	if (!seq_dmabuf) {
17185 		/*
17186 		 * This indicates first frame received for this sequence.
17187 		 * Queue the buffer on the vport's rcv_buffer_list.
17188 		 */
17189 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17190 		lpfc_update_rcv_time_stamp(vport);
17191 		return dmabuf;
17192 	}
17193 	temp_hdr = seq_dmabuf->hbuf.virt;
17194 	if (be16_to_cpu(new_hdr->fh_seq_cnt) <
17195 		be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17196 		list_del_init(&seq_dmabuf->hbuf.list);
17197 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17198 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17199 		lpfc_update_rcv_time_stamp(vport);
17200 		return dmabuf;
17201 	}
17202 	/* move this sequence to the tail to indicate a young sequence */
17203 	list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
17204 	seq_dmabuf->time_stamp = jiffies;
17205 	lpfc_update_rcv_time_stamp(vport);
17206 	if (list_empty(&seq_dmabuf->dbuf.list)) {
17207 		temp_hdr = dmabuf->hbuf.virt;
17208 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17209 		return seq_dmabuf;
17210 	}
17211 	/* find the correct place in the sequence to insert this frame */
17212 	d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
17213 	while (!found) {
17214 		temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17215 		temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
17216 		/*
17217 		 * If the frame's sequence count is greater than the frame on
17218 		 * the list then insert the frame right after this frame
17219 		 */
17220 		if (be16_to_cpu(new_hdr->fh_seq_cnt) >
17221 			be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17222 			list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
17223 			found = 1;
17224 			break;
17225 		}
17226 
17227 		if (&d_buf->list == &seq_dmabuf->dbuf.list)
17228 			break;
17229 		d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
17230 	}
17231 
17232 	if (found)
17233 		return seq_dmabuf;
17234 	return NULL;
17235 }
17236 
17237 /**
17238  * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
17239  * @vport: pointer to a vitural port
17240  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17241  *
17242  * This function tries to abort from the partially assembed sequence, described
17243  * by the information from basic abbort @dmabuf. It checks to see whether such
17244  * partially assembled sequence held by the driver. If so, it shall free up all
17245  * the frames from the partially assembled sequence.
17246  *
17247  * Return
17248  * true  -- if there is matching partially assembled sequence present and all
17249  *          the frames freed with the sequence;
17250  * false -- if there is no matching partially assembled sequence present so
17251  *          nothing got aborted in the lower layer driver
17252  **/
17253 static bool
17254 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
17255 			    struct hbq_dmabuf *dmabuf)
17256 {
17257 	struct fc_frame_header *new_hdr;
17258 	struct fc_frame_header *temp_hdr;
17259 	struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
17260 	struct hbq_dmabuf *seq_dmabuf = NULL;
17261 
17262 	/* Use the hdr_buf to find the sequence that matches this frame */
17263 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17264 	INIT_LIST_HEAD(&dmabuf->hbuf.list);
17265 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17266 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17267 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17268 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17269 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17270 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17271 			continue;
17272 		/* found a pending sequence that matches this frame */
17273 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17274 		break;
17275 	}
17276 
17277 	/* Free up all the frames from the partially assembled sequence */
17278 	if (seq_dmabuf) {
17279 		list_for_each_entry_safe(d_buf, n_buf,
17280 					 &seq_dmabuf->dbuf.list, list) {
17281 			list_del_init(&d_buf->list);
17282 			lpfc_in_buf_free(vport->phba, d_buf);
17283 		}
17284 		return true;
17285 	}
17286 	return false;
17287 }
17288 
17289 /**
17290  * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
17291  * @vport: pointer to a vitural port
17292  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17293  *
17294  * This function tries to abort from the assembed sequence from upper level
17295  * protocol, described by the information from basic abbort @dmabuf. It
17296  * checks to see whether such pending context exists at upper level protocol.
17297  * If so, it shall clean up the pending context.
17298  *
17299  * Return
17300  * true  -- if there is matching pending context of the sequence cleaned
17301  *          at ulp;
17302  * false -- if there is no matching pending context of the sequence present
17303  *          at ulp.
17304  **/
17305 static bool
17306 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17307 {
17308 	struct lpfc_hba *phba = vport->phba;
17309 	int handled;
17310 
17311 	/* Accepting abort at ulp with SLI4 only */
17312 	if (phba->sli_rev < LPFC_SLI_REV4)
17313 		return false;
17314 
17315 	/* Register all caring upper level protocols to attend abort */
17316 	handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
17317 	if (handled)
17318 		return true;
17319 
17320 	return false;
17321 }
17322 
17323 /**
17324  * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
17325  * @phba: Pointer to HBA context object.
17326  * @cmd_iocbq: pointer to the command iocbq structure.
17327  * @rsp_iocbq: pointer to the response iocbq structure.
17328  *
17329  * This function handles the sequence abort response iocb command complete
17330  * event. It properly releases the memory allocated to the sequence abort
17331  * accept iocb.
17332  **/
17333 static void
17334 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
17335 			     struct lpfc_iocbq *cmd_iocbq,
17336 			     struct lpfc_iocbq *rsp_iocbq)
17337 {
17338 	struct lpfc_nodelist *ndlp;
17339 
17340 	if (cmd_iocbq) {
17341 		ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
17342 		lpfc_nlp_put(ndlp);
17343 		lpfc_nlp_not_used(ndlp);
17344 		lpfc_sli_release_iocbq(phba, cmd_iocbq);
17345 	}
17346 
17347 	/* Failure means BLS ABORT RSP did not get delivered to remote node*/
17348 	if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
17349 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17350 			"3154 BLS ABORT RSP failed, data:  x%x/x%x\n",
17351 			rsp_iocbq->iocb.ulpStatus,
17352 			rsp_iocbq->iocb.un.ulpWord[4]);
17353 }
17354 
17355 /**
17356  * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
17357  * @phba: Pointer to HBA context object.
17358  * @xri: xri id in transaction.
17359  *
17360  * This function validates the xri maps to the known range of XRIs allocated an
17361  * used by the driver.
17362  **/
17363 uint16_t
17364 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
17365 		      uint16_t xri)
17366 {
17367 	uint16_t i;
17368 
17369 	for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
17370 		if (xri == phba->sli4_hba.xri_ids[i])
17371 			return i;
17372 	}
17373 	return NO_XRI;
17374 }
17375 
17376 /**
17377  * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
17378  * @phba: Pointer to HBA context object.
17379  * @fc_hdr: pointer to a FC frame header.
17380  *
17381  * This function sends a basic response to a previous unsol sequence abort
17382  * event after aborting the sequence handling.
17383  **/
17384 void
17385 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
17386 			struct fc_frame_header *fc_hdr, bool aborted)
17387 {
17388 	struct lpfc_hba *phba = vport->phba;
17389 	struct lpfc_iocbq *ctiocb = NULL;
17390 	struct lpfc_nodelist *ndlp;
17391 	uint16_t oxid, rxid, xri, lxri;
17392 	uint32_t sid, fctl;
17393 	IOCB_t *icmd;
17394 	int rc;
17395 
17396 	if (!lpfc_is_link_up(phba))
17397 		return;
17398 
17399 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17400 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
17401 	rxid = be16_to_cpu(fc_hdr->fh_rx_id);
17402 
17403 	ndlp = lpfc_findnode_did(vport, sid);
17404 	if (!ndlp) {
17405 		ndlp = lpfc_nlp_init(vport, sid);
17406 		if (!ndlp) {
17407 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17408 					 "1268 Failed to allocate ndlp for "
17409 					 "oxid:x%x SID:x%x\n", oxid, sid);
17410 			return;
17411 		}
17412 		/* Put ndlp onto pport node list */
17413 		lpfc_enqueue_node(vport, ndlp);
17414 	} else if (!NLP_CHK_NODE_ACT(ndlp)) {
17415 		/* re-setup ndlp without removing from node list */
17416 		ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
17417 		if (!ndlp) {
17418 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17419 					 "3275 Failed to active ndlp found "
17420 					 "for oxid:x%x SID:x%x\n", oxid, sid);
17421 			return;
17422 		}
17423 	}
17424 
17425 	/* Allocate buffer for rsp iocb */
17426 	ctiocb = lpfc_sli_get_iocbq(phba);
17427 	if (!ctiocb)
17428 		return;
17429 
17430 	/* Extract the F_CTL field from FC_HDR */
17431 	fctl = sli4_fctl_from_fc_hdr(fc_hdr);
17432 
17433 	icmd = &ctiocb->iocb;
17434 	icmd->un.xseq64.bdl.bdeSize = 0;
17435 	icmd->un.xseq64.bdl.ulpIoTag32 = 0;
17436 	icmd->un.xseq64.w5.hcsw.Dfctl = 0;
17437 	icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
17438 	icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
17439 
17440 	/* Fill in the rest of iocb fields */
17441 	icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
17442 	icmd->ulpBdeCount = 0;
17443 	icmd->ulpLe = 1;
17444 	icmd->ulpClass = CLASS3;
17445 	icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
17446 	ctiocb->context1 = lpfc_nlp_get(ndlp);
17447 
17448 	ctiocb->iocb_cmpl = NULL;
17449 	ctiocb->vport = phba->pport;
17450 	ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
17451 	ctiocb->sli4_lxritag = NO_XRI;
17452 	ctiocb->sli4_xritag = NO_XRI;
17453 
17454 	if (fctl & FC_FC_EX_CTX)
17455 		/* Exchange responder sent the abort so we
17456 		 * own the oxid.
17457 		 */
17458 		xri = oxid;
17459 	else
17460 		xri = rxid;
17461 	lxri = lpfc_sli4_xri_inrange(phba, xri);
17462 	if (lxri != NO_XRI)
17463 		lpfc_set_rrq_active(phba, ndlp, lxri,
17464 			(xri == oxid) ? rxid : oxid, 0);
17465 	/* For BA_ABTS from exchange responder, if the logical xri with
17466 	 * the oxid maps to the FCP XRI range, the port no longer has
17467 	 * that exchange context, send a BLS_RJT. Override the IOCB for
17468 	 * a BA_RJT.
17469 	 */
17470 	if ((fctl & FC_FC_EX_CTX) &&
17471 	    (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
17472 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17473 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17474 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17475 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17476 	}
17477 
17478 	/* If BA_ABTS failed to abort a partially assembled receive sequence,
17479 	 * the driver no longer has that exchange, send a BLS_RJT. Override
17480 	 * the IOCB for a BA_RJT.
17481 	 */
17482 	if (aborted == false) {
17483 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17484 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17485 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17486 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17487 	}
17488 
17489 	if (fctl & FC_FC_EX_CTX) {
17490 		/* ABTS sent by responder to CT exchange, construction
17491 		 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
17492 		 * field and RX_ID from ABTS for RX_ID field.
17493 		 */
17494 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
17495 	} else {
17496 		/* ABTS sent by initiator to CT exchange, construction
17497 		 * of BA_ACC will need to allocate a new XRI as for the
17498 		 * XRI_TAG field.
17499 		 */
17500 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
17501 	}
17502 	bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
17503 	bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
17504 
17505 	/* Xmit CT abts response on exchange <xid> */
17506 	lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
17507 			 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
17508 			 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
17509 
17510 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
17511 	if (rc == IOCB_ERROR) {
17512 		lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
17513 				 "2925 Failed to issue CT ABTS RSP x%x on "
17514 				 "xri x%x, Data x%x\n",
17515 				 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
17516 				 phba->link_state);
17517 		lpfc_nlp_put(ndlp);
17518 		ctiocb->context1 = NULL;
17519 		lpfc_sli_release_iocbq(phba, ctiocb);
17520 	}
17521 }
17522 
17523 /**
17524  * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
17525  * @vport: Pointer to the vport on which this sequence was received
17526  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17527  *
17528  * This function handles an SLI-4 unsolicited abort event. If the unsolicited
17529  * receive sequence is only partially assembed by the driver, it shall abort
17530  * the partially assembled frames for the sequence. Otherwise, if the
17531  * unsolicited receive sequence has been completely assembled and passed to
17532  * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
17533  * unsolicited sequence has been aborted. After that, it will issue a basic
17534  * accept to accept the abort.
17535  **/
17536 static void
17537 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
17538 			     struct hbq_dmabuf *dmabuf)
17539 {
17540 	struct lpfc_hba *phba = vport->phba;
17541 	struct fc_frame_header fc_hdr;
17542 	uint32_t fctl;
17543 	bool aborted;
17544 
17545 	/* Make a copy of fc_hdr before the dmabuf being released */
17546 	memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
17547 	fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
17548 
17549 	if (fctl & FC_FC_EX_CTX) {
17550 		/* ABTS by responder to exchange, no cleanup needed */
17551 		aborted = true;
17552 	} else {
17553 		/* ABTS by initiator to exchange, need to do cleanup */
17554 		aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
17555 		if (aborted == false)
17556 			aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
17557 	}
17558 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17559 
17560 	if (phba->nvmet_support) {
17561 		lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
17562 		return;
17563 	}
17564 
17565 	/* Respond with BA_ACC or BA_RJT accordingly */
17566 	lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
17567 }
17568 
17569 /**
17570  * lpfc_seq_complete - Indicates if a sequence is complete
17571  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17572  *
17573  * This function checks the sequence, starting with the frame described by
17574  * @dmabuf, to see if all the frames associated with this sequence are present.
17575  * the frames associated with this sequence are linked to the @dmabuf using the
17576  * dbuf list. This function looks for two major things. 1) That the first frame
17577  * has a sequence count of zero. 2) There is a frame with last frame of sequence
17578  * set. 3) That there are no holes in the sequence count. The function will
17579  * return 1 when the sequence is complete, otherwise it will return 0.
17580  **/
17581 static int
17582 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
17583 {
17584 	struct fc_frame_header *hdr;
17585 	struct lpfc_dmabuf *d_buf;
17586 	struct hbq_dmabuf *seq_dmabuf;
17587 	uint32_t fctl;
17588 	int seq_count = 0;
17589 
17590 	hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17591 	/* make sure first fame of sequence has a sequence count of zero */
17592 	if (hdr->fh_seq_cnt != seq_count)
17593 		return 0;
17594 	fctl = (hdr->fh_f_ctl[0] << 16 |
17595 		hdr->fh_f_ctl[1] << 8 |
17596 		hdr->fh_f_ctl[2]);
17597 	/* If last frame of sequence we can return success. */
17598 	if (fctl & FC_FC_END_SEQ)
17599 		return 1;
17600 	list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
17601 		seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17602 		hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17603 		/* If there is a hole in the sequence count then fail. */
17604 		if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
17605 			return 0;
17606 		fctl = (hdr->fh_f_ctl[0] << 16 |
17607 			hdr->fh_f_ctl[1] << 8 |
17608 			hdr->fh_f_ctl[2]);
17609 		/* If last frame of sequence we can return success. */
17610 		if (fctl & FC_FC_END_SEQ)
17611 			return 1;
17612 	}
17613 	return 0;
17614 }
17615 
17616 /**
17617  * lpfc_prep_seq - Prep sequence for ULP processing
17618  * @vport: Pointer to the vport on which this sequence was received
17619  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17620  *
17621  * This function takes a sequence, described by a list of frames, and creates
17622  * a list of iocbq structures to describe the sequence. This iocbq list will be
17623  * used to issue to the generic unsolicited sequence handler. This routine
17624  * returns a pointer to the first iocbq in the list. If the function is unable
17625  * to allocate an iocbq then it throw out the received frames that were not
17626  * able to be described and return a pointer to the first iocbq. If unable to
17627  * allocate any iocbqs (including the first) this function will return NULL.
17628  **/
17629 static struct lpfc_iocbq *
17630 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
17631 {
17632 	struct hbq_dmabuf *hbq_buf;
17633 	struct lpfc_dmabuf *d_buf, *n_buf;
17634 	struct lpfc_iocbq *first_iocbq, *iocbq;
17635 	struct fc_frame_header *fc_hdr;
17636 	uint32_t sid;
17637 	uint32_t len, tot_len;
17638 	struct ulp_bde64 *pbde;
17639 
17640 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17641 	/* remove from receive buffer list */
17642 	list_del_init(&seq_dmabuf->hbuf.list);
17643 	lpfc_update_rcv_time_stamp(vport);
17644 	/* get the Remote Port's SID */
17645 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17646 	tot_len = 0;
17647 	/* Get an iocbq struct to fill in. */
17648 	first_iocbq = lpfc_sli_get_iocbq(vport->phba);
17649 	if (first_iocbq) {
17650 		/* Initialize the first IOCB. */
17651 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
17652 		first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
17653 		first_iocbq->vport = vport;
17654 
17655 		/* Check FC Header to see what TYPE of frame we are rcv'ing */
17656 		if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
17657 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
17658 			first_iocbq->iocb.un.rcvels.parmRo =
17659 				sli4_did_from_fc_hdr(fc_hdr);
17660 			first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
17661 		} else
17662 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
17663 		first_iocbq->iocb.ulpContext = NO_XRI;
17664 		first_iocbq->iocb.unsli3.rcvsli3.ox_id =
17665 			be16_to_cpu(fc_hdr->fh_ox_id);
17666 		/* iocbq is prepped for internal consumption.  Physical vpi. */
17667 		first_iocbq->iocb.unsli3.rcvsli3.vpi =
17668 			vport->phba->vpi_ids[vport->vpi];
17669 		/* put the first buffer into the first IOCBq */
17670 		tot_len = bf_get(lpfc_rcqe_length,
17671 				       &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
17672 
17673 		first_iocbq->context2 = &seq_dmabuf->dbuf;
17674 		first_iocbq->context3 = NULL;
17675 		first_iocbq->iocb.ulpBdeCount = 1;
17676 		if (tot_len > LPFC_DATA_BUF_SIZE)
17677 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17678 							LPFC_DATA_BUF_SIZE;
17679 		else
17680 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
17681 
17682 		first_iocbq->iocb.un.rcvels.remoteID = sid;
17683 
17684 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17685 	}
17686 	iocbq = first_iocbq;
17687 	/*
17688 	 * Each IOCBq can have two Buffers assigned, so go through the list
17689 	 * of buffers for this sequence and save two buffers in each IOCBq
17690 	 */
17691 	list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
17692 		if (!iocbq) {
17693 			lpfc_in_buf_free(vport->phba, d_buf);
17694 			continue;
17695 		}
17696 		if (!iocbq->context3) {
17697 			iocbq->context3 = d_buf;
17698 			iocbq->iocb.ulpBdeCount++;
17699 			/* We need to get the size out of the right CQE */
17700 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17701 			len = bf_get(lpfc_rcqe_length,
17702 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
17703 			pbde = (struct ulp_bde64 *)
17704 					&iocbq->iocb.unsli3.sli3Words[4];
17705 			if (len > LPFC_DATA_BUF_SIZE)
17706 				pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
17707 			else
17708 				pbde->tus.f.bdeSize = len;
17709 
17710 			iocbq->iocb.unsli3.rcvsli3.acc_len += len;
17711 			tot_len += len;
17712 		} else {
17713 			iocbq = lpfc_sli_get_iocbq(vport->phba);
17714 			if (!iocbq) {
17715 				if (first_iocbq) {
17716 					first_iocbq->iocb.ulpStatus =
17717 							IOSTAT_FCP_RSP_ERROR;
17718 					first_iocbq->iocb.un.ulpWord[4] =
17719 							IOERR_NO_RESOURCES;
17720 				}
17721 				lpfc_in_buf_free(vport->phba, d_buf);
17722 				continue;
17723 			}
17724 			/* We need to get the size out of the right CQE */
17725 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17726 			len = bf_get(lpfc_rcqe_length,
17727 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
17728 			iocbq->context2 = d_buf;
17729 			iocbq->context3 = NULL;
17730 			iocbq->iocb.ulpBdeCount = 1;
17731 			if (len > LPFC_DATA_BUF_SIZE)
17732 				iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17733 							LPFC_DATA_BUF_SIZE;
17734 			else
17735 				iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
17736 
17737 			tot_len += len;
17738 			iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17739 
17740 			iocbq->iocb.un.rcvels.remoteID = sid;
17741 			list_add_tail(&iocbq->list, &first_iocbq->list);
17742 		}
17743 	}
17744 	return first_iocbq;
17745 }
17746 
17747 static void
17748 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
17749 			  struct hbq_dmabuf *seq_dmabuf)
17750 {
17751 	struct fc_frame_header *fc_hdr;
17752 	struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
17753 	struct lpfc_hba *phba = vport->phba;
17754 
17755 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17756 	iocbq = lpfc_prep_seq(vport, seq_dmabuf);
17757 	if (!iocbq) {
17758 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17759 				"2707 Ring %d handler: Failed to allocate "
17760 				"iocb Rctl x%x Type x%x received\n",
17761 				LPFC_ELS_RING,
17762 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17763 		return;
17764 	}
17765 	if (!lpfc_complete_unsol_iocb(phba,
17766 				      phba->sli4_hba.els_wq->pring,
17767 				      iocbq, fc_hdr->fh_r_ctl,
17768 				      fc_hdr->fh_type))
17769 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17770 				"2540 Ring %d handler: unexpected Rctl "
17771 				"x%x Type x%x received\n",
17772 				LPFC_ELS_RING,
17773 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17774 
17775 	/* Free iocb created in lpfc_prep_seq */
17776 	list_for_each_entry_safe(curr_iocb, next_iocb,
17777 		&iocbq->list, list) {
17778 		list_del_init(&curr_iocb->list);
17779 		lpfc_sli_release_iocbq(phba, curr_iocb);
17780 	}
17781 	lpfc_sli_release_iocbq(phba, iocbq);
17782 }
17783 
17784 static void
17785 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
17786 			    struct lpfc_iocbq *rspiocb)
17787 {
17788 	struct lpfc_dmabuf *pcmd = cmdiocb->context2;
17789 
17790 	if (pcmd && pcmd->virt)
17791 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17792 	kfree(pcmd);
17793 	lpfc_sli_release_iocbq(phba, cmdiocb);
17794 	lpfc_drain_txq(phba);
17795 }
17796 
17797 static void
17798 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
17799 			      struct hbq_dmabuf *dmabuf)
17800 {
17801 	struct fc_frame_header *fc_hdr;
17802 	struct lpfc_hba *phba = vport->phba;
17803 	struct lpfc_iocbq *iocbq = NULL;
17804 	union  lpfc_wqe *wqe;
17805 	struct lpfc_dmabuf *pcmd = NULL;
17806 	uint32_t frame_len;
17807 	int rc;
17808 	unsigned long iflags;
17809 
17810 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17811 	frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
17812 
17813 	/* Send the received frame back */
17814 	iocbq = lpfc_sli_get_iocbq(phba);
17815 	if (!iocbq) {
17816 		/* Queue cq event and wakeup worker thread to process it */
17817 		spin_lock_irqsave(&phba->hbalock, iflags);
17818 		list_add_tail(&dmabuf->cq_event.list,
17819 			      &phba->sli4_hba.sp_queue_event);
17820 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
17821 		spin_unlock_irqrestore(&phba->hbalock, iflags);
17822 		lpfc_worker_wake_up(phba);
17823 		return;
17824 	}
17825 
17826 	/* Allocate buffer for command payload */
17827 	pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
17828 	if (pcmd)
17829 		pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
17830 					    &pcmd->phys);
17831 	if (!pcmd || !pcmd->virt)
17832 		goto exit;
17833 
17834 	INIT_LIST_HEAD(&pcmd->list);
17835 
17836 	/* copyin the payload */
17837 	memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
17838 
17839 	/* fill in BDE's for command */
17840 	iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
17841 	iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
17842 	iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
17843 	iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
17844 
17845 	iocbq->context2 = pcmd;
17846 	iocbq->vport = vport;
17847 	iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
17848 	iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
17849 
17850 	/*
17851 	 * Setup rest of the iocb as though it were a WQE
17852 	 * Build the SEND_FRAME WQE
17853 	 */
17854 	wqe = (union lpfc_wqe *)&iocbq->iocb;
17855 
17856 	wqe->send_frame.frame_len = frame_len;
17857 	wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
17858 	wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
17859 	wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
17860 	wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
17861 	wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
17862 	wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
17863 
17864 	iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
17865 	iocbq->iocb.ulpLe = 1;
17866 	iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
17867 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
17868 	if (rc == IOCB_ERROR)
17869 		goto exit;
17870 
17871 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17872 	return;
17873 
17874 exit:
17875 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
17876 			"2023 Unable to process MDS loopback frame\n");
17877 	if (pcmd && pcmd->virt)
17878 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17879 	kfree(pcmd);
17880 	if (iocbq)
17881 		lpfc_sli_release_iocbq(phba, iocbq);
17882 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17883 }
17884 
17885 /**
17886  * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
17887  * @phba: Pointer to HBA context object.
17888  *
17889  * This function is called with no lock held. This function processes all
17890  * the received buffers and gives it to upper layers when a received buffer
17891  * indicates that it is the final frame in the sequence. The interrupt
17892  * service routine processes received buffers at interrupt contexts.
17893  * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
17894  * appropriate receive function when the final frame in a sequence is received.
17895  **/
17896 void
17897 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
17898 				 struct hbq_dmabuf *dmabuf)
17899 {
17900 	struct hbq_dmabuf *seq_dmabuf;
17901 	struct fc_frame_header *fc_hdr;
17902 	struct lpfc_vport *vport;
17903 	uint32_t fcfi;
17904 	uint32_t did;
17905 
17906 	/* Process each received buffer */
17907 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17908 
17909 	if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
17910 	    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
17911 		vport = phba->pport;
17912 		/* Handle MDS Loopback frames */
17913 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
17914 		return;
17915 	}
17916 
17917 	/* check to see if this a valid type of frame */
17918 	if (lpfc_fc_frame_check(phba, fc_hdr)) {
17919 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17920 		return;
17921 	}
17922 
17923 	if ((bf_get(lpfc_cqe_code,
17924 		    &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
17925 		fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
17926 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
17927 	else
17928 		fcfi = bf_get(lpfc_rcqe_fcf_id,
17929 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
17930 
17931 	/* d_id this frame is directed to */
17932 	did = sli4_did_from_fc_hdr(fc_hdr);
17933 
17934 	vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
17935 	if (!vport) {
17936 		/* throw out the frame */
17937 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17938 		return;
17939 	}
17940 
17941 	/* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
17942 	if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
17943 		(did != Fabric_DID)) {
17944 		/*
17945 		 * Throw out the frame if we are not pt2pt.
17946 		 * The pt2pt protocol allows for discovery frames
17947 		 * to be received without a registered VPI.
17948 		 */
17949 		if (!(vport->fc_flag & FC_PT2PT) ||
17950 			(phba->link_state == LPFC_HBA_READY)) {
17951 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
17952 			return;
17953 		}
17954 	}
17955 
17956 	/* Handle the basic abort sequence (BA_ABTS) event */
17957 	if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
17958 		lpfc_sli4_handle_unsol_abort(vport, dmabuf);
17959 		return;
17960 	}
17961 
17962 	/* Link this frame */
17963 	seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
17964 	if (!seq_dmabuf) {
17965 		/* unable to add frame to vport - throw it out */
17966 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17967 		return;
17968 	}
17969 	/* If not last frame in sequence continue processing frames. */
17970 	if (!lpfc_seq_complete(seq_dmabuf))
17971 		return;
17972 
17973 	/* Send the complete sequence to the upper layer protocol */
17974 	lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
17975 }
17976 
17977 /**
17978  * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
17979  * @phba: pointer to lpfc hba data structure.
17980  *
17981  * This routine is invoked to post rpi header templates to the
17982  * HBA consistent with the SLI-4 interface spec.  This routine
17983  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
17984  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
17985  *
17986  * This routine does not require any locks.  It's usage is expected
17987  * to be driver load or reset recovery when the driver is
17988  * sequential.
17989  *
17990  * Return codes
17991  * 	0 - successful
17992  *      -EIO - The mailbox failed to complete successfully.
17993  * 	When this error occurs, the driver is not guaranteed
17994  *	to have any rpi regions posted to the device and
17995  *	must either attempt to repost the regions or take a
17996  *	fatal error.
17997  **/
17998 int
17999 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
18000 {
18001 	struct lpfc_rpi_hdr *rpi_page;
18002 	uint32_t rc = 0;
18003 	uint16_t lrpi = 0;
18004 
18005 	/* SLI4 ports that support extents do not require RPI headers. */
18006 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18007 		goto exit;
18008 	if (phba->sli4_hba.extents_in_use)
18009 		return -EIO;
18010 
18011 	list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
18012 		/*
18013 		 * Assign the rpi headers a physical rpi only if the driver
18014 		 * has not initialized those resources.  A port reset only
18015 		 * needs the headers posted.
18016 		 */
18017 		if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
18018 		    LPFC_RPI_RSRC_RDY)
18019 			rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18020 
18021 		rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
18022 		if (rc != MBX_SUCCESS) {
18023 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18024 					"2008 Error %d posting all rpi "
18025 					"headers\n", rc);
18026 			rc = -EIO;
18027 			break;
18028 		}
18029 	}
18030 
18031  exit:
18032 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
18033 	       LPFC_RPI_RSRC_RDY);
18034 	return rc;
18035 }
18036 
18037 /**
18038  * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
18039  * @phba: pointer to lpfc hba data structure.
18040  * @rpi_page:  pointer to the rpi memory region.
18041  *
18042  * This routine is invoked to post a single rpi header to the
18043  * HBA consistent with the SLI-4 interface spec.  This memory region
18044  * maps up to 64 rpi context regions.
18045  *
18046  * Return codes
18047  * 	0 - successful
18048  * 	-ENOMEM - No available memory
18049  *      -EIO - The mailbox failed to complete successfully.
18050  **/
18051 int
18052 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
18053 {
18054 	LPFC_MBOXQ_t *mboxq;
18055 	struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
18056 	uint32_t rc = 0;
18057 	uint32_t shdr_status, shdr_add_status;
18058 	union lpfc_sli4_cfg_shdr *shdr;
18059 
18060 	/* SLI4 ports that support extents do not require RPI headers. */
18061 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18062 		return rc;
18063 	if (phba->sli4_hba.extents_in_use)
18064 		return -EIO;
18065 
18066 	/* The port is notified of the header region via a mailbox command. */
18067 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18068 	if (!mboxq) {
18069 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18070 				"2001 Unable to allocate memory for issuing "
18071 				"SLI_CONFIG_SPECIAL mailbox command\n");
18072 		return -ENOMEM;
18073 	}
18074 
18075 	/* Post all rpi memory regions to the port. */
18076 	hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
18077 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18078 			 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
18079 			 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
18080 			 sizeof(struct lpfc_sli4_cfg_mhdr),
18081 			 LPFC_SLI4_MBX_EMBED);
18082 
18083 
18084 	/* Post the physical rpi to the port for this rpi header. */
18085 	bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
18086 	       rpi_page->start_rpi);
18087 	bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
18088 	       hdr_tmpl, rpi_page->page_count);
18089 
18090 	hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
18091 	hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
18092 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18093 	shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
18094 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18095 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18096 	if (rc != MBX_TIMEOUT)
18097 		mempool_free(mboxq, phba->mbox_mem_pool);
18098 	if (shdr_status || shdr_add_status || rc) {
18099 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18100 				"2514 POST_RPI_HDR mailbox failed with "
18101 				"status x%x add_status x%x, mbx status x%x\n",
18102 				shdr_status, shdr_add_status, rc);
18103 		rc = -ENXIO;
18104 	} else {
18105 		/*
18106 		 * The next_rpi stores the next logical module-64 rpi value used
18107 		 * to post physical rpis in subsequent rpi postings.
18108 		 */
18109 		spin_lock_irq(&phba->hbalock);
18110 		phba->sli4_hba.next_rpi = rpi_page->next_rpi;
18111 		spin_unlock_irq(&phba->hbalock);
18112 	}
18113 	return rc;
18114 }
18115 
18116 /**
18117  * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
18118  * @phba: pointer to lpfc hba data structure.
18119  *
18120  * This routine is invoked to post rpi header templates to the
18121  * HBA consistent with the SLI-4 interface spec.  This routine
18122  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18123  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18124  *
18125  * Returns
18126  * 	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18127  * 	LPFC_RPI_ALLOC_ERROR if no rpis are available.
18128  **/
18129 int
18130 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
18131 {
18132 	unsigned long rpi;
18133 	uint16_t max_rpi, rpi_limit;
18134 	uint16_t rpi_remaining, lrpi = 0;
18135 	struct lpfc_rpi_hdr *rpi_hdr;
18136 	unsigned long iflag;
18137 
18138 	/*
18139 	 * Fetch the next logical rpi.  Because this index is logical,
18140 	 * the  driver starts at 0 each time.
18141 	 */
18142 	spin_lock_irqsave(&phba->hbalock, iflag);
18143 	max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
18144 	rpi_limit = phba->sli4_hba.next_rpi;
18145 
18146 	rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
18147 	if (rpi >= rpi_limit)
18148 		rpi = LPFC_RPI_ALLOC_ERROR;
18149 	else {
18150 		set_bit(rpi, phba->sli4_hba.rpi_bmask);
18151 		phba->sli4_hba.max_cfg_param.rpi_used++;
18152 		phba->sli4_hba.rpi_count++;
18153 	}
18154 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18155 			"0001 rpi:%x max:%x lim:%x\n",
18156 			(int) rpi, max_rpi, rpi_limit);
18157 
18158 	/*
18159 	 * Don't try to allocate more rpi header regions if the device limit
18160 	 * has been exhausted.
18161 	 */
18162 	if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
18163 	    (phba->sli4_hba.rpi_count >= max_rpi)) {
18164 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18165 		return rpi;
18166 	}
18167 
18168 	/*
18169 	 * RPI header postings are not required for SLI4 ports capable of
18170 	 * extents.
18171 	 */
18172 	if (!phba->sli4_hba.rpi_hdrs_in_use) {
18173 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18174 		return rpi;
18175 	}
18176 
18177 	/*
18178 	 * If the driver is running low on rpi resources, allocate another
18179 	 * page now.  Note that the next_rpi value is used because
18180 	 * it represents how many are actually in use whereas max_rpi notes
18181 	 * how many are supported max by the device.
18182 	 */
18183 	rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
18184 	spin_unlock_irqrestore(&phba->hbalock, iflag);
18185 	if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
18186 		rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
18187 		if (!rpi_hdr) {
18188 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18189 					"2002 Error Could not grow rpi "
18190 					"count\n");
18191 		} else {
18192 			lrpi = rpi_hdr->start_rpi;
18193 			rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18194 			lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
18195 		}
18196 	}
18197 
18198 	return rpi;
18199 }
18200 
18201 /**
18202  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18203  * @phba: pointer to lpfc hba data structure.
18204  *
18205  * This routine is invoked to release an rpi to the pool of
18206  * available rpis maintained by the driver.
18207  **/
18208 static void
18209 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18210 {
18211 	if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
18212 		phba->sli4_hba.rpi_count--;
18213 		phba->sli4_hba.max_cfg_param.rpi_used--;
18214 	}
18215 }
18216 
18217 /**
18218  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18219  * @phba: pointer to lpfc hba data structure.
18220  *
18221  * This routine is invoked to release an rpi to the pool of
18222  * available rpis maintained by the driver.
18223  **/
18224 void
18225 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18226 {
18227 	spin_lock_irq(&phba->hbalock);
18228 	__lpfc_sli4_free_rpi(phba, rpi);
18229 	spin_unlock_irq(&phba->hbalock);
18230 }
18231 
18232 /**
18233  * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
18234  * @phba: pointer to lpfc hba data structure.
18235  *
18236  * This routine is invoked to remove the memory region that
18237  * provided rpi via a bitmask.
18238  **/
18239 void
18240 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
18241 {
18242 	kfree(phba->sli4_hba.rpi_bmask);
18243 	kfree(phba->sli4_hba.rpi_ids);
18244 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
18245 }
18246 
18247 /**
18248  * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
18249  * @phba: pointer to lpfc hba data structure.
18250  *
18251  * This routine is invoked to remove the memory region that
18252  * provided rpi via a bitmask.
18253  **/
18254 int
18255 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
18256 	void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
18257 {
18258 	LPFC_MBOXQ_t *mboxq;
18259 	struct lpfc_hba *phba = ndlp->phba;
18260 	int rc;
18261 
18262 	/* The port is notified of the header region via a mailbox command. */
18263 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18264 	if (!mboxq)
18265 		return -ENOMEM;
18266 
18267 	/* Post all rpi memory regions to the port. */
18268 	lpfc_resume_rpi(mboxq, ndlp);
18269 	if (cmpl) {
18270 		mboxq->mbox_cmpl = cmpl;
18271 		mboxq->ctx_buf = arg;
18272 		mboxq->ctx_ndlp = ndlp;
18273 	} else
18274 		mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18275 	mboxq->vport = ndlp->vport;
18276 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18277 	if (rc == MBX_NOT_FINISHED) {
18278 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18279 				"2010 Resume RPI Mailbox failed "
18280 				"status %d, mbxStatus x%x\n", rc,
18281 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18282 		mempool_free(mboxq, phba->mbox_mem_pool);
18283 		return -EIO;
18284 	}
18285 	return 0;
18286 }
18287 
18288 /**
18289  * lpfc_sli4_init_vpi - Initialize a vpi with the port
18290  * @vport: Pointer to the vport for which the vpi is being initialized
18291  *
18292  * This routine is invoked to activate a vpi with the port.
18293  *
18294  * Returns:
18295  *    0 success
18296  *    -Evalue otherwise
18297  **/
18298 int
18299 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
18300 {
18301 	LPFC_MBOXQ_t *mboxq;
18302 	int rc = 0;
18303 	int retval = MBX_SUCCESS;
18304 	uint32_t mbox_tmo;
18305 	struct lpfc_hba *phba = vport->phba;
18306 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18307 	if (!mboxq)
18308 		return -ENOMEM;
18309 	lpfc_init_vpi(phba, mboxq, vport->vpi);
18310 	mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
18311 	rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
18312 	if (rc != MBX_SUCCESS) {
18313 		lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI,
18314 				"2022 INIT VPI Mailbox failed "
18315 				"status %d, mbxStatus x%x\n", rc,
18316 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18317 		retval = -EIO;
18318 	}
18319 	if (rc != MBX_TIMEOUT)
18320 		mempool_free(mboxq, vport->phba->mbox_mem_pool);
18321 
18322 	return retval;
18323 }
18324 
18325 /**
18326  * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
18327  * @phba: pointer to lpfc hba data structure.
18328  * @mboxq: Pointer to mailbox object.
18329  *
18330  * This routine is invoked to manually add a single FCF record. The caller
18331  * must pass a completely initialized FCF_Record.  This routine takes
18332  * care of the nonembedded mailbox operations.
18333  **/
18334 static void
18335 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
18336 {
18337 	void *virt_addr;
18338 	union lpfc_sli4_cfg_shdr *shdr;
18339 	uint32_t shdr_status, shdr_add_status;
18340 
18341 	virt_addr = mboxq->sge_array->addr[0];
18342 	/* The IOCTL status is embedded in the mailbox subheader. */
18343 	shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
18344 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18345 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18346 
18347 	if ((shdr_status || shdr_add_status) &&
18348 		(shdr_status != STATUS_FCF_IN_USE))
18349 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18350 			"2558 ADD_FCF_RECORD mailbox failed with "
18351 			"status x%x add_status x%x\n",
18352 			shdr_status, shdr_add_status);
18353 
18354 	lpfc_sli4_mbox_cmd_free(phba, mboxq);
18355 }
18356 
18357 /**
18358  * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
18359  * @phba: pointer to lpfc hba data structure.
18360  * @fcf_record:  pointer to the initialized fcf record to add.
18361  *
18362  * This routine is invoked to manually add a single FCF record. The caller
18363  * must pass a completely initialized FCF_Record.  This routine takes
18364  * care of the nonembedded mailbox operations.
18365  **/
18366 int
18367 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
18368 {
18369 	int rc = 0;
18370 	LPFC_MBOXQ_t *mboxq;
18371 	uint8_t *bytep;
18372 	void *virt_addr;
18373 	struct lpfc_mbx_sge sge;
18374 	uint32_t alloc_len, req_len;
18375 	uint32_t fcfindex;
18376 
18377 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18378 	if (!mboxq) {
18379 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18380 			"2009 Failed to allocate mbox for ADD_FCF cmd\n");
18381 		return -ENOMEM;
18382 	}
18383 
18384 	req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
18385 		  sizeof(uint32_t);
18386 
18387 	/* Allocate DMA memory and set up the non-embedded mailbox command */
18388 	alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18389 				     LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
18390 				     req_len, LPFC_SLI4_MBX_NEMBED);
18391 	if (alloc_len < req_len) {
18392 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18393 			"2523 Allocated DMA memory size (x%x) is "
18394 			"less than the requested DMA memory "
18395 			"size (x%x)\n", alloc_len, req_len);
18396 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18397 		return -ENOMEM;
18398 	}
18399 
18400 	/*
18401 	 * Get the first SGE entry from the non-embedded DMA memory.  This
18402 	 * routine only uses a single SGE.
18403 	 */
18404 	lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
18405 	virt_addr = mboxq->sge_array->addr[0];
18406 	/*
18407 	 * Configure the FCF record for FCFI 0.  This is the driver's
18408 	 * hardcoded default and gets used in nonFIP mode.
18409 	 */
18410 	fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
18411 	bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
18412 	lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
18413 
18414 	/*
18415 	 * Copy the fcf_index and the FCF Record Data. The data starts after
18416 	 * the FCoE header plus word10. The data copy needs to be endian
18417 	 * correct.
18418 	 */
18419 	bytep += sizeof(uint32_t);
18420 	lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
18421 	mboxq->vport = phba->pport;
18422 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
18423 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18424 	if (rc == MBX_NOT_FINISHED) {
18425 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18426 			"2515 ADD_FCF_RECORD mailbox failed with "
18427 			"status 0x%x\n", rc);
18428 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18429 		rc = -EIO;
18430 	} else
18431 		rc = 0;
18432 
18433 	return rc;
18434 }
18435 
18436 /**
18437  * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
18438  * @phba: pointer to lpfc hba data structure.
18439  * @fcf_record:  pointer to the fcf record to write the default data.
18440  * @fcf_index: FCF table entry index.
18441  *
18442  * This routine is invoked to build the driver's default FCF record.  The
18443  * values used are hardcoded.  This routine handles memory initialization.
18444  *
18445  **/
18446 void
18447 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
18448 				struct fcf_record *fcf_record,
18449 				uint16_t fcf_index)
18450 {
18451 	memset(fcf_record, 0, sizeof(struct fcf_record));
18452 	fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
18453 	fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
18454 	fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
18455 	bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
18456 	bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
18457 	bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
18458 	bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
18459 	bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
18460 	bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
18461 	bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
18462 	bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
18463 	bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
18464 	bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
18465 	bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
18466 	bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
18467 	bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
18468 		LPFC_FCF_FPMA | LPFC_FCF_SPMA);
18469 	/* Set the VLAN bit map */
18470 	if (phba->valid_vlan) {
18471 		fcf_record->vlan_bitmap[phba->vlan_id / 8]
18472 			= 1 << (phba->vlan_id % 8);
18473 	}
18474 }
18475 
18476 /**
18477  * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
18478  * @phba: pointer to lpfc hba data structure.
18479  * @fcf_index: FCF table entry offset.
18480  *
18481  * This routine is invoked to scan the entire FCF table by reading FCF
18482  * record and processing it one at a time starting from the @fcf_index
18483  * for initial FCF discovery or fast FCF failover rediscovery.
18484  *
18485  * Return 0 if the mailbox command is submitted successfully, none 0
18486  * otherwise.
18487  **/
18488 int
18489 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18490 {
18491 	int rc = 0, error;
18492 	LPFC_MBOXQ_t *mboxq;
18493 
18494 	phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
18495 	phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
18496 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18497 	if (!mboxq) {
18498 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18499 				"2000 Failed to allocate mbox for "
18500 				"READ_FCF cmd\n");
18501 		error = -ENOMEM;
18502 		goto fail_fcf_scan;
18503 	}
18504 	/* Construct the read FCF record mailbox command */
18505 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18506 	if (rc) {
18507 		error = -EINVAL;
18508 		goto fail_fcf_scan;
18509 	}
18510 	/* Issue the mailbox command asynchronously */
18511 	mboxq->vport = phba->pport;
18512 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
18513 
18514 	spin_lock_irq(&phba->hbalock);
18515 	phba->hba_flag |= FCF_TS_INPROG;
18516 	spin_unlock_irq(&phba->hbalock);
18517 
18518 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18519 	if (rc == MBX_NOT_FINISHED)
18520 		error = -EIO;
18521 	else {
18522 		/* Reset eligible FCF count for new scan */
18523 		if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
18524 			phba->fcf.eligible_fcf_cnt = 0;
18525 		error = 0;
18526 	}
18527 fail_fcf_scan:
18528 	if (error) {
18529 		if (mboxq)
18530 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
18531 		/* FCF scan failed, clear FCF_TS_INPROG flag */
18532 		spin_lock_irq(&phba->hbalock);
18533 		phba->hba_flag &= ~FCF_TS_INPROG;
18534 		spin_unlock_irq(&phba->hbalock);
18535 	}
18536 	return error;
18537 }
18538 
18539 /**
18540  * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
18541  * @phba: pointer to lpfc hba data structure.
18542  * @fcf_index: FCF table entry offset.
18543  *
18544  * This routine is invoked to read an FCF record indicated by @fcf_index
18545  * and to use it for FLOGI roundrobin FCF failover.
18546  *
18547  * Return 0 if the mailbox command is submitted successfully, none 0
18548  * otherwise.
18549  **/
18550 int
18551 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18552 {
18553 	int rc = 0, error;
18554 	LPFC_MBOXQ_t *mboxq;
18555 
18556 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18557 	if (!mboxq) {
18558 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18559 				"2763 Failed to allocate mbox for "
18560 				"READ_FCF cmd\n");
18561 		error = -ENOMEM;
18562 		goto fail_fcf_read;
18563 	}
18564 	/* Construct the read FCF record mailbox command */
18565 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18566 	if (rc) {
18567 		error = -EINVAL;
18568 		goto fail_fcf_read;
18569 	}
18570 	/* Issue the mailbox command asynchronously */
18571 	mboxq->vport = phba->pport;
18572 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
18573 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18574 	if (rc == MBX_NOT_FINISHED)
18575 		error = -EIO;
18576 	else
18577 		error = 0;
18578 
18579 fail_fcf_read:
18580 	if (error && mboxq)
18581 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18582 	return error;
18583 }
18584 
18585 /**
18586  * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
18587  * @phba: pointer to lpfc hba data structure.
18588  * @fcf_index: FCF table entry offset.
18589  *
18590  * This routine is invoked to read an FCF record indicated by @fcf_index to
18591  * determine whether it's eligible for FLOGI roundrobin failover list.
18592  *
18593  * Return 0 if the mailbox command is submitted successfully, none 0
18594  * otherwise.
18595  **/
18596 int
18597 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18598 {
18599 	int rc = 0, error;
18600 	LPFC_MBOXQ_t *mboxq;
18601 
18602 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18603 	if (!mboxq) {
18604 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18605 				"2758 Failed to allocate mbox for "
18606 				"READ_FCF cmd\n");
18607 				error = -ENOMEM;
18608 				goto fail_fcf_read;
18609 	}
18610 	/* Construct the read FCF record mailbox command */
18611 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18612 	if (rc) {
18613 		error = -EINVAL;
18614 		goto fail_fcf_read;
18615 	}
18616 	/* Issue the mailbox command asynchronously */
18617 	mboxq->vport = phba->pport;
18618 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
18619 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18620 	if (rc == MBX_NOT_FINISHED)
18621 		error = -EIO;
18622 	else
18623 		error = 0;
18624 
18625 fail_fcf_read:
18626 	if (error && mboxq)
18627 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18628 	return error;
18629 }
18630 
18631 /**
18632  * lpfc_check_next_fcf_pri_level
18633  * phba pointer to the lpfc_hba struct for this port.
18634  * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
18635  * routine when the rr_bmask is empty. The FCF indecies are put into the
18636  * rr_bmask based on their priority level. Starting from the highest priority
18637  * to the lowest. The most likely FCF candidate will be in the highest
18638  * priority group. When this routine is called it searches the fcf_pri list for
18639  * next lowest priority group and repopulates the rr_bmask with only those
18640  * fcf_indexes.
18641  * returns:
18642  * 1=success 0=failure
18643  **/
18644 static int
18645 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
18646 {
18647 	uint16_t next_fcf_pri;
18648 	uint16_t last_index;
18649 	struct lpfc_fcf_pri *fcf_pri;
18650 	int rc;
18651 	int ret = 0;
18652 
18653 	last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
18654 			LPFC_SLI4_FCF_TBL_INDX_MAX);
18655 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18656 			"3060 Last IDX %d\n", last_index);
18657 
18658 	/* Verify the priority list has 2 or more entries */
18659 	spin_lock_irq(&phba->hbalock);
18660 	if (list_empty(&phba->fcf.fcf_pri_list) ||
18661 	    list_is_singular(&phba->fcf.fcf_pri_list)) {
18662 		spin_unlock_irq(&phba->hbalock);
18663 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18664 			"3061 Last IDX %d\n", last_index);
18665 		return 0; /* Empty rr list */
18666 	}
18667 	spin_unlock_irq(&phba->hbalock);
18668 
18669 	next_fcf_pri = 0;
18670 	/*
18671 	 * Clear the rr_bmask and set all of the bits that are at this
18672 	 * priority.
18673 	 */
18674 	memset(phba->fcf.fcf_rr_bmask, 0,
18675 			sizeof(*phba->fcf.fcf_rr_bmask));
18676 	spin_lock_irq(&phba->hbalock);
18677 	list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18678 		if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
18679 			continue;
18680 		/*
18681 		 * the 1st priority that has not FLOGI failed
18682 		 * will be the highest.
18683 		 */
18684 		if (!next_fcf_pri)
18685 			next_fcf_pri = fcf_pri->fcf_rec.priority;
18686 		spin_unlock_irq(&phba->hbalock);
18687 		if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18688 			rc = lpfc_sli4_fcf_rr_index_set(phba,
18689 						fcf_pri->fcf_rec.fcf_index);
18690 			if (rc)
18691 				return 0;
18692 		}
18693 		spin_lock_irq(&phba->hbalock);
18694 	}
18695 	/*
18696 	 * if next_fcf_pri was not set above and the list is not empty then
18697 	 * we have failed flogis on all of them. So reset flogi failed
18698 	 * and start at the beginning.
18699 	 */
18700 	if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
18701 		list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18702 			fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
18703 			/*
18704 			 * the 1st priority that has not FLOGI failed
18705 			 * will be the highest.
18706 			 */
18707 			if (!next_fcf_pri)
18708 				next_fcf_pri = fcf_pri->fcf_rec.priority;
18709 			spin_unlock_irq(&phba->hbalock);
18710 			if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18711 				rc = lpfc_sli4_fcf_rr_index_set(phba,
18712 						fcf_pri->fcf_rec.fcf_index);
18713 				if (rc)
18714 					return 0;
18715 			}
18716 			spin_lock_irq(&phba->hbalock);
18717 		}
18718 	} else
18719 		ret = 1;
18720 	spin_unlock_irq(&phba->hbalock);
18721 
18722 	return ret;
18723 }
18724 /**
18725  * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
18726  * @phba: pointer to lpfc hba data structure.
18727  *
18728  * This routine is to get the next eligible FCF record index in a round
18729  * robin fashion. If the next eligible FCF record index equals to the
18730  * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
18731  * shall be returned, otherwise, the next eligible FCF record's index
18732  * shall be returned.
18733  **/
18734 uint16_t
18735 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
18736 {
18737 	uint16_t next_fcf_index;
18738 
18739 initial_priority:
18740 	/* Search start from next bit of currently registered FCF index */
18741 	next_fcf_index = phba->fcf.current_rec.fcf_indx;
18742 
18743 next_priority:
18744 	/* Determine the next fcf index to check */
18745 	next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
18746 	next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18747 				       LPFC_SLI4_FCF_TBL_INDX_MAX,
18748 				       next_fcf_index);
18749 
18750 	/* Wrap around condition on phba->fcf.fcf_rr_bmask */
18751 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18752 		/*
18753 		 * If we have wrapped then we need to clear the bits that
18754 		 * have been tested so that we can detect when we should
18755 		 * change the priority level.
18756 		 */
18757 		next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18758 					       LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
18759 	}
18760 
18761 
18762 	/* Check roundrobin failover list empty condition */
18763 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
18764 		next_fcf_index == phba->fcf.current_rec.fcf_indx) {
18765 		/*
18766 		 * If next fcf index is not found check if there are lower
18767 		 * Priority level fcf's in the fcf_priority list.
18768 		 * Set up the rr_bmask with all of the avaiable fcf bits
18769 		 * at that level and continue the selection process.
18770 		 */
18771 		if (lpfc_check_next_fcf_pri_level(phba))
18772 			goto initial_priority;
18773 		lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
18774 				"2844 No roundrobin failover FCF available\n");
18775 
18776 		return LPFC_FCOE_FCF_NEXT_NONE;
18777 	}
18778 
18779 	if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
18780 		phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
18781 		LPFC_FCF_FLOGI_FAILED) {
18782 		if (list_is_singular(&phba->fcf.fcf_pri_list))
18783 			return LPFC_FCOE_FCF_NEXT_NONE;
18784 
18785 		goto next_priority;
18786 	}
18787 
18788 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18789 			"2845 Get next roundrobin failover FCF (x%x)\n",
18790 			next_fcf_index);
18791 
18792 	return next_fcf_index;
18793 }
18794 
18795 /**
18796  * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
18797  * @phba: pointer to lpfc hba data structure.
18798  *
18799  * This routine sets the FCF record index in to the eligible bmask for
18800  * roundrobin failover search. It checks to make sure that the index
18801  * does not go beyond the range of the driver allocated bmask dimension
18802  * before setting the bit.
18803  *
18804  * Returns 0 if the index bit successfully set, otherwise, it returns
18805  * -EINVAL.
18806  **/
18807 int
18808 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
18809 {
18810 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18811 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18812 				"2610 FCF (x%x) reached driver's book "
18813 				"keeping dimension:x%x\n",
18814 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18815 		return -EINVAL;
18816 	}
18817 	/* Set the eligible FCF record index bmask */
18818 	set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18819 
18820 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18821 			"2790 Set FCF (x%x) to roundrobin FCF failover "
18822 			"bmask\n", fcf_index);
18823 
18824 	return 0;
18825 }
18826 
18827 /**
18828  * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
18829  * @phba: pointer to lpfc hba data structure.
18830  *
18831  * This routine clears the FCF record index from the eligible bmask for
18832  * roundrobin failover search. It checks to make sure that the index
18833  * does not go beyond the range of the driver allocated bmask dimension
18834  * before clearing the bit.
18835  **/
18836 void
18837 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
18838 {
18839 	struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
18840 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18841 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18842 				"2762 FCF (x%x) reached driver's book "
18843 				"keeping dimension:x%x\n",
18844 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18845 		return;
18846 	}
18847 	/* Clear the eligible FCF record index bmask */
18848 	spin_lock_irq(&phba->hbalock);
18849 	list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
18850 				 list) {
18851 		if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
18852 			list_del_init(&fcf_pri->list);
18853 			break;
18854 		}
18855 	}
18856 	spin_unlock_irq(&phba->hbalock);
18857 	clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18858 
18859 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18860 			"2791 Clear FCF (x%x) from roundrobin failover "
18861 			"bmask\n", fcf_index);
18862 }
18863 
18864 /**
18865  * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
18866  * @phba: pointer to lpfc hba data structure.
18867  *
18868  * This routine is the completion routine for the rediscover FCF table mailbox
18869  * command. If the mailbox command returned failure, it will try to stop the
18870  * FCF rediscover wait timer.
18871  **/
18872 static void
18873 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
18874 {
18875 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18876 	uint32_t shdr_status, shdr_add_status;
18877 
18878 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
18879 
18880 	shdr_status = bf_get(lpfc_mbox_hdr_status,
18881 			     &redisc_fcf->header.cfg_shdr.response);
18882 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
18883 			     &redisc_fcf->header.cfg_shdr.response);
18884 	if (shdr_status || shdr_add_status) {
18885 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18886 				"2746 Requesting for FCF rediscovery failed "
18887 				"status x%x add_status x%x\n",
18888 				shdr_status, shdr_add_status);
18889 		if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
18890 			spin_lock_irq(&phba->hbalock);
18891 			phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
18892 			spin_unlock_irq(&phba->hbalock);
18893 			/*
18894 			 * CVL event triggered FCF rediscover request failed,
18895 			 * last resort to re-try current registered FCF entry.
18896 			 */
18897 			lpfc_retry_pport_discovery(phba);
18898 		} else {
18899 			spin_lock_irq(&phba->hbalock);
18900 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
18901 			spin_unlock_irq(&phba->hbalock);
18902 			/*
18903 			 * DEAD FCF event triggered FCF rediscover request
18904 			 * failed, last resort to fail over as a link down
18905 			 * to FCF registration.
18906 			 */
18907 			lpfc_sli4_fcf_dead_failthrough(phba);
18908 		}
18909 	} else {
18910 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18911 				"2775 Start FCF rediscover quiescent timer\n");
18912 		/*
18913 		 * Start FCF rediscovery wait timer for pending FCF
18914 		 * before rescan FCF record table.
18915 		 */
18916 		lpfc_fcf_redisc_wait_start_timer(phba);
18917 	}
18918 
18919 	mempool_free(mbox, phba->mbox_mem_pool);
18920 }
18921 
18922 /**
18923  * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
18924  * @phba: pointer to lpfc hba data structure.
18925  *
18926  * This routine is invoked to request for rediscovery of the entire FCF table
18927  * by the port.
18928  **/
18929 int
18930 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
18931 {
18932 	LPFC_MBOXQ_t *mbox;
18933 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18934 	int rc, length;
18935 
18936 	/* Cancel retry delay timers to all vports before FCF rediscover */
18937 	lpfc_cancel_all_vport_retry_delay_timer(phba);
18938 
18939 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18940 	if (!mbox) {
18941 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18942 				"2745 Failed to allocate mbox for "
18943 				"requesting FCF rediscover.\n");
18944 		return -ENOMEM;
18945 	}
18946 
18947 	length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
18948 		  sizeof(struct lpfc_sli4_cfg_mhdr));
18949 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18950 			 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
18951 			 length, LPFC_SLI4_MBX_EMBED);
18952 
18953 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
18954 	/* Set count to 0 for invalidating the entire FCF database */
18955 	bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
18956 
18957 	/* Issue the mailbox command asynchronously */
18958 	mbox->vport = phba->pport;
18959 	mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
18960 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
18961 
18962 	if (rc == MBX_NOT_FINISHED) {
18963 		mempool_free(mbox, phba->mbox_mem_pool);
18964 		return -EIO;
18965 	}
18966 	return 0;
18967 }
18968 
18969 /**
18970  * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
18971  * @phba: pointer to lpfc hba data structure.
18972  *
18973  * This function is the failover routine as a last resort to the FCF DEAD
18974  * event when driver failed to perform fast FCF failover.
18975  **/
18976 void
18977 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
18978 {
18979 	uint32_t link_state;
18980 
18981 	/*
18982 	 * Last resort as FCF DEAD event failover will treat this as
18983 	 * a link down, but save the link state because we don't want
18984 	 * it to be changed to Link Down unless it is already down.
18985 	 */
18986 	link_state = phba->link_state;
18987 	lpfc_linkdown(phba);
18988 	phba->link_state = link_state;
18989 
18990 	/* Unregister FCF if no devices connected to it */
18991 	lpfc_unregister_unused_fcf(phba);
18992 }
18993 
18994 /**
18995  * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
18996  * @phba: pointer to lpfc hba data structure.
18997  * @rgn23_data: pointer to configure region 23 data.
18998  *
18999  * This function gets SLI3 port configure region 23 data through memory dump
19000  * mailbox command. When it successfully retrieves data, the size of the data
19001  * will be returned, otherwise, 0 will be returned.
19002  **/
19003 static uint32_t
19004 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19005 {
19006 	LPFC_MBOXQ_t *pmb = NULL;
19007 	MAILBOX_t *mb;
19008 	uint32_t offset = 0;
19009 	int rc;
19010 
19011 	if (!rgn23_data)
19012 		return 0;
19013 
19014 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19015 	if (!pmb) {
19016 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19017 				"2600 failed to allocate mailbox memory\n");
19018 		return 0;
19019 	}
19020 	mb = &pmb->u.mb;
19021 
19022 	do {
19023 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
19024 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
19025 
19026 		if (rc != MBX_SUCCESS) {
19027 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19028 					"2601 failed to read config "
19029 					"region 23, rc 0x%x Status 0x%x\n",
19030 					rc, mb->mbxStatus);
19031 			mb->un.varDmp.word_cnt = 0;
19032 		}
19033 		/*
19034 		 * dump mem may return a zero when finished or we got a
19035 		 * mailbox error, either way we are done.
19036 		 */
19037 		if (mb->un.varDmp.word_cnt == 0)
19038 			break;
19039 		if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
19040 			mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
19041 
19042 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
19043 				       rgn23_data + offset,
19044 				       mb->un.varDmp.word_cnt);
19045 		offset += mb->un.varDmp.word_cnt;
19046 	} while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
19047 
19048 	mempool_free(pmb, phba->mbox_mem_pool);
19049 	return offset;
19050 }
19051 
19052 /**
19053  * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
19054  * @phba: pointer to lpfc hba data structure.
19055  * @rgn23_data: pointer to configure region 23 data.
19056  *
19057  * This function gets SLI4 port configure region 23 data through memory dump
19058  * mailbox command. When it successfully retrieves data, the size of the data
19059  * will be returned, otherwise, 0 will be returned.
19060  **/
19061 static uint32_t
19062 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19063 {
19064 	LPFC_MBOXQ_t *mboxq = NULL;
19065 	struct lpfc_dmabuf *mp = NULL;
19066 	struct lpfc_mqe *mqe;
19067 	uint32_t data_length = 0;
19068 	int rc;
19069 
19070 	if (!rgn23_data)
19071 		return 0;
19072 
19073 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19074 	if (!mboxq) {
19075 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19076 				"3105 failed to allocate mailbox memory\n");
19077 		return 0;
19078 	}
19079 
19080 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
19081 		goto out;
19082 	mqe = &mboxq->u.mqe;
19083 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
19084 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19085 	if (rc)
19086 		goto out;
19087 	data_length = mqe->un.mb_words[5];
19088 	if (data_length == 0)
19089 		goto out;
19090 	if (data_length > DMP_RGN23_SIZE) {
19091 		data_length = 0;
19092 		goto out;
19093 	}
19094 	lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
19095 out:
19096 	mempool_free(mboxq, phba->mbox_mem_pool);
19097 	if (mp) {
19098 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
19099 		kfree(mp);
19100 	}
19101 	return data_length;
19102 }
19103 
19104 /**
19105  * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
19106  * @phba: pointer to lpfc hba data structure.
19107  *
19108  * This function read region 23 and parse TLV for port status to
19109  * decide if the user disaled the port. If the TLV indicates the
19110  * port is disabled, the hba_flag is set accordingly.
19111  **/
19112 void
19113 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
19114 {
19115 	uint8_t *rgn23_data = NULL;
19116 	uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
19117 	uint32_t offset = 0;
19118 
19119 	/* Get adapter Region 23 data */
19120 	rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
19121 	if (!rgn23_data)
19122 		goto out;
19123 
19124 	if (phba->sli_rev < LPFC_SLI_REV4)
19125 		data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
19126 	else {
19127 		if_type = bf_get(lpfc_sli_intf_if_type,
19128 				 &phba->sli4_hba.sli_intf);
19129 		if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
19130 			goto out;
19131 		data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
19132 	}
19133 
19134 	if (!data_size)
19135 		goto out;
19136 
19137 	/* Check the region signature first */
19138 	if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
19139 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19140 			"2619 Config region 23 has bad signature\n");
19141 			goto out;
19142 	}
19143 	offset += 4;
19144 
19145 	/* Check the data structure version */
19146 	if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
19147 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19148 			"2620 Config region 23 has bad version\n");
19149 		goto out;
19150 	}
19151 	offset += 4;
19152 
19153 	/* Parse TLV entries in the region */
19154 	while (offset < data_size) {
19155 		if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
19156 			break;
19157 		/*
19158 		 * If the TLV is not driver specific TLV or driver id is
19159 		 * not linux driver id, skip the record.
19160 		 */
19161 		if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
19162 		    (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
19163 		    (rgn23_data[offset + 3] != 0)) {
19164 			offset += rgn23_data[offset + 1] * 4 + 4;
19165 			continue;
19166 		}
19167 
19168 		/* Driver found a driver specific TLV in the config region */
19169 		sub_tlv_len = rgn23_data[offset + 1] * 4;
19170 		offset += 4;
19171 		tlv_offset = 0;
19172 
19173 		/*
19174 		 * Search for configured port state sub-TLV.
19175 		 */
19176 		while ((offset < data_size) &&
19177 			(tlv_offset < sub_tlv_len)) {
19178 			if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
19179 				offset += 4;
19180 				tlv_offset += 4;
19181 				break;
19182 			}
19183 			if (rgn23_data[offset] != PORT_STE_TYPE) {
19184 				offset += rgn23_data[offset + 1] * 4 + 4;
19185 				tlv_offset += rgn23_data[offset + 1] * 4 + 4;
19186 				continue;
19187 			}
19188 
19189 			/* This HBA contains PORT_STE configured */
19190 			if (!rgn23_data[offset + 2])
19191 				phba->hba_flag |= LINK_DISABLED;
19192 
19193 			goto out;
19194 		}
19195 	}
19196 
19197 out:
19198 	kfree(rgn23_data);
19199 	return;
19200 }
19201 
19202 /**
19203  * lpfc_wr_object - write an object to the firmware
19204  * @phba: HBA structure that indicates port to create a queue on.
19205  * @dmabuf_list: list of dmabufs to write to the port.
19206  * @size: the total byte value of the objects to write to the port.
19207  * @offset: the current offset to be used to start the transfer.
19208  *
19209  * This routine will create a wr_object mailbox command to send to the port.
19210  * the mailbox command will be constructed using the dma buffers described in
19211  * @dmabuf_list to create a list of BDEs. This routine will fill in as many
19212  * BDEs that the imbedded mailbox can support. The @offset variable will be
19213  * used to indicate the starting offset of the transfer and will also return
19214  * the offset after the write object mailbox has completed. @size is used to
19215  * determine the end of the object and whether the eof bit should be set.
19216  *
19217  * Return 0 is successful and offset will contain the the new offset to use
19218  * for the next write.
19219  * Return negative value for error cases.
19220  **/
19221 int
19222 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
19223 	       uint32_t size, uint32_t *offset)
19224 {
19225 	struct lpfc_mbx_wr_object *wr_object;
19226 	LPFC_MBOXQ_t *mbox;
19227 	int rc = 0, i = 0;
19228 	uint32_t shdr_status, shdr_add_status, shdr_change_status;
19229 	uint32_t mbox_tmo;
19230 	struct lpfc_dmabuf *dmabuf;
19231 	uint32_t written = 0;
19232 	bool check_change_status = false;
19233 
19234 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19235 	if (!mbox)
19236 		return -ENOMEM;
19237 
19238 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
19239 			LPFC_MBOX_OPCODE_WRITE_OBJECT,
19240 			sizeof(struct lpfc_mbx_wr_object) -
19241 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
19242 
19243 	wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
19244 	wr_object->u.request.write_offset = *offset;
19245 	sprintf((uint8_t *)wr_object->u.request.object_name, "/");
19246 	wr_object->u.request.object_name[0] =
19247 		cpu_to_le32(wr_object->u.request.object_name[0]);
19248 	bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
19249 	list_for_each_entry(dmabuf, dmabuf_list, list) {
19250 		if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
19251 			break;
19252 		wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
19253 		wr_object->u.request.bde[i].addrHigh =
19254 			putPaddrHigh(dmabuf->phys);
19255 		if (written + SLI4_PAGE_SIZE >= size) {
19256 			wr_object->u.request.bde[i].tus.f.bdeSize =
19257 				(size - written);
19258 			written += (size - written);
19259 			bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
19260 			bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
19261 			check_change_status = true;
19262 		} else {
19263 			wr_object->u.request.bde[i].tus.f.bdeSize =
19264 				SLI4_PAGE_SIZE;
19265 			written += SLI4_PAGE_SIZE;
19266 		}
19267 		i++;
19268 	}
19269 	wr_object->u.request.bde_count = i;
19270 	bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
19271 	if (!phba->sli4_hba.intr_enable)
19272 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
19273 	else {
19274 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
19275 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
19276 	}
19277 	/* The IOCTL status is embedded in the mailbox subheader. */
19278 	shdr_status = bf_get(lpfc_mbox_hdr_status,
19279 			     &wr_object->header.cfg_shdr.response);
19280 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19281 				 &wr_object->header.cfg_shdr.response);
19282 	if (check_change_status) {
19283 		shdr_change_status = bf_get(lpfc_wr_object_change_status,
19284 					    &wr_object->u.response);
19285 		switch (shdr_change_status) {
19286 		case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
19287 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19288 					"3198 Firmware write complete: System "
19289 					"reboot required to instantiate\n");
19290 			break;
19291 		case (LPFC_CHANGE_STATUS_FW_RESET):
19292 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19293 					"3199 Firmware write complete: Firmware"
19294 					" reset required to instantiate\n");
19295 			break;
19296 		case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
19297 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19298 					"3200 Firmware write complete: Port "
19299 					"Migration or PCI Reset required to "
19300 					"instantiate\n");
19301 			break;
19302 		case (LPFC_CHANGE_STATUS_PCI_RESET):
19303 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19304 					"3201 Firmware write complete: PCI "
19305 					"Reset required to instantiate\n");
19306 			break;
19307 		default:
19308 			break;
19309 		}
19310 	}
19311 	if (rc != MBX_TIMEOUT)
19312 		mempool_free(mbox, phba->mbox_mem_pool);
19313 	if (shdr_status || shdr_add_status || rc) {
19314 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19315 				"3025 Write Object mailbox failed with "
19316 				"status x%x add_status x%x, mbx status x%x\n",
19317 				shdr_status, shdr_add_status, rc);
19318 		rc = -ENXIO;
19319 		*offset = shdr_add_status;
19320 	} else
19321 		*offset += wr_object->u.response.actual_write_length;
19322 	return rc;
19323 }
19324 
19325 /**
19326  * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
19327  * @vport: pointer to vport data structure.
19328  *
19329  * This function iterate through the mailboxq and clean up all REG_LOGIN
19330  * and REG_VPI mailbox commands associated with the vport. This function
19331  * is called when driver want to restart discovery of the vport due to
19332  * a Clear Virtual Link event.
19333  **/
19334 void
19335 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
19336 {
19337 	struct lpfc_hba *phba = vport->phba;
19338 	LPFC_MBOXQ_t *mb, *nextmb;
19339 	struct lpfc_dmabuf *mp;
19340 	struct lpfc_nodelist *ndlp;
19341 	struct lpfc_nodelist *act_mbx_ndlp = NULL;
19342 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
19343 	LIST_HEAD(mbox_cmd_list);
19344 	uint8_t restart_loop;
19345 
19346 	/* Clean up internally queued mailbox commands with the vport */
19347 	spin_lock_irq(&phba->hbalock);
19348 	list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
19349 		if (mb->vport != vport)
19350 			continue;
19351 
19352 		if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19353 			(mb->u.mb.mbxCommand != MBX_REG_VPI))
19354 			continue;
19355 
19356 		list_del(&mb->list);
19357 		list_add_tail(&mb->list, &mbox_cmd_list);
19358 	}
19359 	/* Clean up active mailbox command with the vport */
19360 	mb = phba->sli.mbox_active;
19361 	if (mb && (mb->vport == vport)) {
19362 		if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
19363 			(mb->u.mb.mbxCommand == MBX_REG_VPI))
19364 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19365 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19366 			act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19367 			/* Put reference count for delayed processing */
19368 			act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
19369 			/* Unregister the RPI when mailbox complete */
19370 			mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19371 		}
19372 	}
19373 	/* Cleanup any mailbox completions which are not yet processed */
19374 	do {
19375 		restart_loop = 0;
19376 		list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
19377 			/*
19378 			 * If this mailox is already processed or it is
19379 			 * for another vport ignore it.
19380 			 */
19381 			if ((mb->vport != vport) ||
19382 				(mb->mbox_flag & LPFC_MBX_IMED_UNREG))
19383 				continue;
19384 
19385 			if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19386 				(mb->u.mb.mbxCommand != MBX_REG_VPI))
19387 				continue;
19388 
19389 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19390 			if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19391 				ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19392 				/* Unregister the RPI when mailbox complete */
19393 				mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19394 				restart_loop = 1;
19395 				spin_unlock_irq(&phba->hbalock);
19396 				spin_lock(shost->host_lock);
19397 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19398 				spin_unlock(shost->host_lock);
19399 				spin_lock_irq(&phba->hbalock);
19400 				break;
19401 			}
19402 		}
19403 	} while (restart_loop);
19404 
19405 	spin_unlock_irq(&phba->hbalock);
19406 
19407 	/* Release the cleaned-up mailbox commands */
19408 	while (!list_empty(&mbox_cmd_list)) {
19409 		list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
19410 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19411 			mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
19412 			if (mp) {
19413 				__lpfc_mbuf_free(phba, mp->virt, mp->phys);
19414 				kfree(mp);
19415 			}
19416 			mb->ctx_buf = NULL;
19417 			ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19418 			mb->ctx_ndlp = NULL;
19419 			if (ndlp) {
19420 				spin_lock(shost->host_lock);
19421 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19422 				spin_unlock(shost->host_lock);
19423 				lpfc_nlp_put(ndlp);
19424 			}
19425 		}
19426 		mempool_free(mb, phba->mbox_mem_pool);
19427 	}
19428 
19429 	/* Release the ndlp with the cleaned-up active mailbox command */
19430 	if (act_mbx_ndlp) {
19431 		spin_lock(shost->host_lock);
19432 		act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19433 		spin_unlock(shost->host_lock);
19434 		lpfc_nlp_put(act_mbx_ndlp);
19435 	}
19436 }
19437 
19438 /**
19439  * lpfc_drain_txq - Drain the txq
19440  * @phba: Pointer to HBA context object.
19441  *
19442  * This function attempt to submit IOCBs on the txq
19443  * to the adapter.  For SLI4 adapters, the txq contains
19444  * ELS IOCBs that have been deferred because the there
19445  * are no SGLs.  This congestion can occur with large
19446  * vport counts during node discovery.
19447  **/
19448 
19449 uint32_t
19450 lpfc_drain_txq(struct lpfc_hba *phba)
19451 {
19452 	LIST_HEAD(completions);
19453 	struct lpfc_sli_ring *pring;
19454 	struct lpfc_iocbq *piocbq = NULL;
19455 	unsigned long iflags = 0;
19456 	char *fail_msg = NULL;
19457 	struct lpfc_sglq *sglq;
19458 	union lpfc_wqe128 wqe;
19459 	uint32_t txq_cnt = 0;
19460 	struct lpfc_queue *wq;
19461 
19462 	if (phba->link_flag & LS_MDS_LOOPBACK) {
19463 		/* MDS WQE are posted only to first WQ*/
19464 		wq = phba->sli4_hba.hdwq[0].fcp_wq;
19465 		if (unlikely(!wq))
19466 			return 0;
19467 		pring = wq->pring;
19468 	} else {
19469 		wq = phba->sli4_hba.els_wq;
19470 		if (unlikely(!wq))
19471 			return 0;
19472 		pring = lpfc_phba_elsring(phba);
19473 	}
19474 
19475 	if (unlikely(!pring) || list_empty(&pring->txq))
19476 		return 0;
19477 
19478 	spin_lock_irqsave(&pring->ring_lock, iflags);
19479 	list_for_each_entry(piocbq, &pring->txq, list) {
19480 		txq_cnt++;
19481 	}
19482 
19483 	if (txq_cnt > pring->txq_max)
19484 		pring->txq_max = txq_cnt;
19485 
19486 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
19487 
19488 	while (!list_empty(&pring->txq)) {
19489 		spin_lock_irqsave(&pring->ring_lock, iflags);
19490 
19491 		piocbq = lpfc_sli_ringtx_get(phba, pring);
19492 		if (!piocbq) {
19493 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19494 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19495 				"2823 txq empty and txq_cnt is %d\n ",
19496 				txq_cnt);
19497 			break;
19498 		}
19499 		sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
19500 		if (!sglq) {
19501 			__lpfc_sli_ringtx_put(phba, pring, piocbq);
19502 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19503 			break;
19504 		}
19505 		txq_cnt--;
19506 
19507 		/* The xri and iocb resources secured,
19508 		 * attempt to issue request
19509 		 */
19510 		piocbq->sli4_lxritag = sglq->sli4_lxritag;
19511 		piocbq->sli4_xritag = sglq->sli4_xritag;
19512 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
19513 			fail_msg = "to convert bpl to sgl";
19514 		else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
19515 			fail_msg = "to convert iocb to wqe";
19516 		else if (lpfc_sli4_wq_put(wq, &wqe))
19517 			fail_msg = " - Wq is full";
19518 		else
19519 			lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
19520 
19521 		if (fail_msg) {
19522 			/* Failed means we can't issue and need to cancel */
19523 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19524 					"2822 IOCB failed %s iotag 0x%x "
19525 					"xri 0x%x\n",
19526 					fail_msg,
19527 					piocbq->iotag, piocbq->sli4_xritag);
19528 			list_add_tail(&piocbq->list, &completions);
19529 		}
19530 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19531 	}
19532 
19533 	/* Cancel all the IOCBs that cannot be issued */
19534 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
19535 				IOERR_SLI_ABORTED);
19536 
19537 	return txq_cnt;
19538 }
19539 
19540 /**
19541  * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
19542  * @phba: Pointer to HBA context object.
19543  * @pwqe: Pointer to command WQE.
19544  * @sglq: Pointer to the scatter gather queue object.
19545  *
19546  * This routine converts the bpl or bde that is in the WQE
19547  * to a sgl list for the sli4 hardware. The physical address
19548  * of the bpl/bde is converted back to a virtual address.
19549  * If the WQE contains a BPL then the list of BDE's is
19550  * converted to sli4_sge's. If the WQE contains a single
19551  * BDE then it is converted to a single sli_sge.
19552  * The WQE is still in cpu endianness so the contents of
19553  * the bpl can be used without byte swapping.
19554  *
19555  * Returns valid XRI = Success, NO_XRI = Failure.
19556  */
19557 static uint16_t
19558 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
19559 		 struct lpfc_sglq *sglq)
19560 {
19561 	uint16_t xritag = NO_XRI;
19562 	struct ulp_bde64 *bpl = NULL;
19563 	struct ulp_bde64 bde;
19564 	struct sli4_sge *sgl  = NULL;
19565 	struct lpfc_dmabuf *dmabuf;
19566 	union lpfc_wqe128 *wqe;
19567 	int numBdes = 0;
19568 	int i = 0;
19569 	uint32_t offset = 0; /* accumulated offset in the sg request list */
19570 	int inbound = 0; /* number of sg reply entries inbound from firmware */
19571 	uint32_t cmd;
19572 
19573 	if (!pwqeq || !sglq)
19574 		return xritag;
19575 
19576 	sgl  = (struct sli4_sge *)sglq->sgl;
19577 	wqe = &pwqeq->wqe;
19578 	pwqeq->iocb.ulpIoTag = pwqeq->iotag;
19579 
19580 	cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
19581 	if (cmd == CMD_XMIT_BLS_RSP64_WQE)
19582 		return sglq->sli4_xritag;
19583 	numBdes = pwqeq->rsvd2;
19584 	if (numBdes) {
19585 		/* The addrHigh and addrLow fields within the WQE
19586 		 * have not been byteswapped yet so there is no
19587 		 * need to swap them back.
19588 		 */
19589 		if (pwqeq->context3)
19590 			dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
19591 		else
19592 			return xritag;
19593 
19594 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
19595 		if (!bpl)
19596 			return xritag;
19597 
19598 		for (i = 0; i < numBdes; i++) {
19599 			/* Should already be byte swapped. */
19600 			sgl->addr_hi = bpl->addrHigh;
19601 			sgl->addr_lo = bpl->addrLow;
19602 
19603 			sgl->word2 = le32_to_cpu(sgl->word2);
19604 			if ((i+1) == numBdes)
19605 				bf_set(lpfc_sli4_sge_last, sgl, 1);
19606 			else
19607 				bf_set(lpfc_sli4_sge_last, sgl, 0);
19608 			/* swap the size field back to the cpu so we
19609 			 * can assign it to the sgl.
19610 			 */
19611 			bde.tus.w = le32_to_cpu(bpl->tus.w);
19612 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
19613 			/* The offsets in the sgl need to be accumulated
19614 			 * separately for the request and reply lists.
19615 			 * The request is always first, the reply follows.
19616 			 */
19617 			switch (cmd) {
19618 			case CMD_GEN_REQUEST64_WQE:
19619 				/* add up the reply sg entries */
19620 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
19621 					inbound++;
19622 				/* first inbound? reset the offset */
19623 				if (inbound == 1)
19624 					offset = 0;
19625 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19626 				bf_set(lpfc_sli4_sge_type, sgl,
19627 					LPFC_SGE_TYPE_DATA);
19628 				offset += bde.tus.f.bdeSize;
19629 				break;
19630 			case CMD_FCP_TRSP64_WQE:
19631 				bf_set(lpfc_sli4_sge_offset, sgl, 0);
19632 				bf_set(lpfc_sli4_sge_type, sgl,
19633 					LPFC_SGE_TYPE_DATA);
19634 				break;
19635 			case CMD_FCP_TSEND64_WQE:
19636 			case CMD_FCP_TRECEIVE64_WQE:
19637 				bf_set(lpfc_sli4_sge_type, sgl,
19638 					bpl->tus.f.bdeFlags);
19639 				if (i < 3)
19640 					offset = 0;
19641 				else
19642 					offset += bde.tus.f.bdeSize;
19643 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19644 				break;
19645 			}
19646 			sgl->word2 = cpu_to_le32(sgl->word2);
19647 			bpl++;
19648 			sgl++;
19649 		}
19650 	} else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
19651 		/* The addrHigh and addrLow fields of the BDE have not
19652 		 * been byteswapped yet so they need to be swapped
19653 		 * before putting them in the sgl.
19654 		 */
19655 		sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
19656 		sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
19657 		sgl->word2 = le32_to_cpu(sgl->word2);
19658 		bf_set(lpfc_sli4_sge_last, sgl, 1);
19659 		sgl->word2 = cpu_to_le32(sgl->word2);
19660 		sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
19661 	}
19662 	return sglq->sli4_xritag;
19663 }
19664 
19665 /**
19666  * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
19667  * @phba: Pointer to HBA context object.
19668  * @ring_number: Base sli ring number
19669  * @pwqe: Pointer to command WQE.
19670  **/
19671 int
19672 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
19673 		    struct lpfc_iocbq *pwqe)
19674 {
19675 	union lpfc_wqe128 *wqe = &pwqe->wqe;
19676 	struct lpfc_nvmet_rcv_ctx *ctxp;
19677 	struct lpfc_queue *wq;
19678 	struct lpfc_sglq *sglq;
19679 	struct lpfc_sli_ring *pring;
19680 	unsigned long iflags;
19681 	uint32_t ret = 0;
19682 
19683 	/* NVME_LS and NVME_LS ABTS requests. */
19684 	if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
19685 		pring =  phba->sli4_hba.nvmels_wq->pring;
19686 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19687 					  qp, wq_access);
19688 		sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
19689 		if (!sglq) {
19690 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19691 			return WQE_BUSY;
19692 		}
19693 		pwqe->sli4_lxritag = sglq->sli4_lxritag;
19694 		pwqe->sli4_xritag = sglq->sli4_xritag;
19695 		if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
19696 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19697 			return WQE_ERROR;
19698 		}
19699 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19700 		       pwqe->sli4_xritag);
19701 		ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
19702 		if (ret) {
19703 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19704 			return ret;
19705 		}
19706 
19707 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19708 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19709 		return 0;
19710 	}
19711 
19712 	/* NVME_FCREQ and NVME_ABTS requests */
19713 	if (pwqe->iocb_flag & LPFC_IO_NVME) {
19714 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
19715 		wq = qp->nvme_wq;
19716 		pring = wq->pring;
19717 
19718 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->nvme_cq_map);
19719 
19720 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19721 					  qp, wq_access);
19722 		ret = lpfc_sli4_wq_put(wq, wqe);
19723 		if (ret) {
19724 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19725 			return ret;
19726 		}
19727 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19728 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19729 		return 0;
19730 	}
19731 
19732 	/* NVMET requests */
19733 	if (pwqe->iocb_flag & LPFC_IO_NVMET) {
19734 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
19735 		wq = qp->nvme_wq;
19736 		pring = wq->pring;
19737 
19738 		ctxp = pwqe->context2;
19739 		sglq = ctxp->ctxbuf->sglq;
19740 		if (pwqe->sli4_xritag ==  NO_XRI) {
19741 			pwqe->sli4_lxritag = sglq->sli4_lxritag;
19742 			pwqe->sli4_xritag = sglq->sli4_xritag;
19743 		}
19744 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19745 		       pwqe->sli4_xritag);
19746 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->nvme_cq_map);
19747 
19748 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19749 					  qp, wq_access);
19750 		ret = lpfc_sli4_wq_put(wq, wqe);
19751 		if (ret) {
19752 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19753 			return ret;
19754 		}
19755 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19756 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19757 		return 0;
19758 	}
19759 	return WQE_ERROR;
19760 }
19761 
19762 #ifdef LPFC_MXP_STAT
19763 /**
19764  * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
19765  * @phba: pointer to lpfc hba data structure.
19766  * @hwqid: belong to which HWQ.
19767  *
19768  * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
19769  * 15 seconds after a test case is running.
19770  *
19771  * The user should call lpfc_debugfs_multixripools_write before running a test
19772  * case to clear stat_snapshot_taken. Then the user starts a test case. During
19773  * test case is running, stat_snapshot_taken is incremented by 1 every time when
19774  * this routine is called from heartbeat timer. When stat_snapshot_taken is
19775  * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
19776  **/
19777 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
19778 {
19779 	struct lpfc_sli4_hdw_queue *qp;
19780 	struct lpfc_multixri_pool *multixri_pool;
19781 	struct lpfc_pvt_pool *pvt_pool;
19782 	struct lpfc_pbl_pool *pbl_pool;
19783 	u32 txcmplq_cnt;
19784 
19785 	qp = &phba->sli4_hba.hdwq[hwqid];
19786 	multixri_pool = qp->p_multixri_pool;
19787 	if (!multixri_pool)
19788 		return;
19789 
19790 	if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
19791 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
19792 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
19793 		txcmplq_cnt = qp->fcp_wq->pring->txcmplq_cnt;
19794 		if (qp->nvme_wq)
19795 			txcmplq_cnt += qp->nvme_wq->pring->txcmplq_cnt;
19796 
19797 		multixri_pool->stat_pbl_count = pbl_pool->count;
19798 		multixri_pool->stat_pvt_count = pvt_pool->count;
19799 		multixri_pool->stat_busy_count = txcmplq_cnt;
19800 	}
19801 
19802 	multixri_pool->stat_snapshot_taken++;
19803 }
19804 #endif
19805 
19806 /**
19807  * lpfc_adjust_pvt_pool_count - Adjust private pool count
19808  * @phba: pointer to lpfc hba data structure.
19809  * @hwqid: belong to which HWQ.
19810  *
19811  * This routine moves some XRIs from private to public pool when private pool
19812  * is not busy.
19813  **/
19814 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
19815 {
19816 	struct lpfc_multixri_pool *multixri_pool;
19817 	u32 io_req_count;
19818 	u32 prev_io_req_count;
19819 
19820 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
19821 	if (!multixri_pool)
19822 		return;
19823 	io_req_count = multixri_pool->io_req_count;
19824 	prev_io_req_count = multixri_pool->prev_io_req_count;
19825 
19826 	if (prev_io_req_count != io_req_count) {
19827 		/* Private pool is busy */
19828 		multixri_pool->prev_io_req_count = io_req_count;
19829 	} else {
19830 		/* Private pool is not busy.
19831 		 * Move XRIs from private to public pool.
19832 		 */
19833 		lpfc_move_xri_pvt_to_pbl(phba, hwqid);
19834 	}
19835 }
19836 
19837 /**
19838  * lpfc_adjust_high_watermark - Adjust high watermark
19839  * @phba: pointer to lpfc hba data structure.
19840  * @hwqid: belong to which HWQ.
19841  *
19842  * This routine sets high watermark as number of outstanding XRIs,
19843  * but make sure the new value is between xri_limit/2 and xri_limit.
19844  **/
19845 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
19846 {
19847 	u32 new_watermark;
19848 	u32 watermark_max;
19849 	u32 watermark_min;
19850 	u32 xri_limit;
19851 	u32 txcmplq_cnt;
19852 	u32 abts_io_bufs;
19853 	struct lpfc_multixri_pool *multixri_pool;
19854 	struct lpfc_sli4_hdw_queue *qp;
19855 
19856 	qp = &phba->sli4_hba.hdwq[hwqid];
19857 	multixri_pool = qp->p_multixri_pool;
19858 	if (!multixri_pool)
19859 		return;
19860 	xri_limit = multixri_pool->xri_limit;
19861 
19862 	watermark_max = xri_limit;
19863 	watermark_min = xri_limit / 2;
19864 
19865 	txcmplq_cnt = qp->fcp_wq->pring->txcmplq_cnt;
19866 	abts_io_bufs = qp->abts_scsi_io_bufs;
19867 	if (qp->nvme_wq) {
19868 		txcmplq_cnt += qp->nvme_wq->pring->txcmplq_cnt;
19869 		abts_io_bufs += qp->abts_nvme_io_bufs;
19870 	}
19871 
19872 	new_watermark = txcmplq_cnt + abts_io_bufs;
19873 	new_watermark = min(watermark_max, new_watermark);
19874 	new_watermark = max(watermark_min, new_watermark);
19875 	multixri_pool->pvt_pool.high_watermark = new_watermark;
19876 
19877 #ifdef LPFC_MXP_STAT
19878 	multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
19879 					  new_watermark);
19880 #endif
19881 }
19882 
19883 /**
19884  * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
19885  * @phba: pointer to lpfc hba data structure.
19886  * @hwqid: belong to which HWQ.
19887  *
19888  * This routine is called from hearbeat timer when pvt_pool is idle.
19889  * All free XRIs are moved from private to public pool on hwqid with 2 steps.
19890  * The first step moves (all - low_watermark) amount of XRIs.
19891  * The second step moves the rest of XRIs.
19892  **/
19893 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
19894 {
19895 	struct lpfc_pbl_pool *pbl_pool;
19896 	struct lpfc_pvt_pool *pvt_pool;
19897 	struct lpfc_sli4_hdw_queue *qp;
19898 	struct lpfc_io_buf *lpfc_ncmd;
19899 	struct lpfc_io_buf *lpfc_ncmd_next;
19900 	unsigned long iflag;
19901 	struct list_head tmp_list;
19902 	u32 tmp_count;
19903 
19904 	qp = &phba->sli4_hba.hdwq[hwqid];
19905 	pbl_pool = &qp->p_multixri_pool->pbl_pool;
19906 	pvt_pool = &qp->p_multixri_pool->pvt_pool;
19907 	tmp_count = 0;
19908 
19909 	lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
19910 	lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
19911 
19912 	if (pvt_pool->count > pvt_pool->low_watermark) {
19913 		/* Step 1: move (all - low_watermark) from pvt_pool
19914 		 * to pbl_pool
19915 		 */
19916 
19917 		/* Move low watermark of bufs from pvt_pool to tmp_list */
19918 		INIT_LIST_HEAD(&tmp_list);
19919 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
19920 					 &pvt_pool->list, list) {
19921 			list_move_tail(&lpfc_ncmd->list, &tmp_list);
19922 			tmp_count++;
19923 			if (tmp_count >= pvt_pool->low_watermark)
19924 				break;
19925 		}
19926 
19927 		/* Move all bufs from pvt_pool to pbl_pool */
19928 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
19929 
19930 		/* Move all bufs from tmp_list to pvt_pool */
19931 		list_splice(&tmp_list, &pvt_pool->list);
19932 
19933 		pbl_pool->count += (pvt_pool->count - tmp_count);
19934 		pvt_pool->count = tmp_count;
19935 	} else {
19936 		/* Step 2: move the rest from pvt_pool to pbl_pool */
19937 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
19938 		pbl_pool->count += pvt_pool->count;
19939 		pvt_pool->count = 0;
19940 	}
19941 
19942 	spin_unlock(&pvt_pool->lock);
19943 	spin_unlock_irqrestore(&pbl_pool->lock, iflag);
19944 }
19945 
19946 /**
19947  * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
19948  * @phba: pointer to lpfc hba data structure
19949  * @pbl_pool: specified public free XRI pool
19950  * @pvt_pool: specified private free XRI pool
19951  * @count: number of XRIs to move
19952  *
19953  * This routine tries to move some free common bufs from the specified pbl_pool
19954  * to the specified pvt_pool. It might move less than count XRIs if there's not
19955  * enough in public pool.
19956  *
19957  * Return:
19958  *   true - if XRIs are successfully moved from the specified pbl_pool to the
19959  *          specified pvt_pool
19960  *   false - if the specified pbl_pool is empty or locked by someone else
19961  **/
19962 static bool
19963 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
19964 			  struct lpfc_pbl_pool *pbl_pool,
19965 			  struct lpfc_pvt_pool *pvt_pool, u32 count)
19966 {
19967 	struct lpfc_io_buf *lpfc_ncmd;
19968 	struct lpfc_io_buf *lpfc_ncmd_next;
19969 	unsigned long iflag;
19970 	int ret;
19971 
19972 	ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
19973 	if (ret) {
19974 		if (pbl_pool->count) {
19975 			/* Move a batch of XRIs from public to private pool */
19976 			lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
19977 			list_for_each_entry_safe(lpfc_ncmd,
19978 						 lpfc_ncmd_next,
19979 						 &pbl_pool->list,
19980 						 list) {
19981 				list_move_tail(&lpfc_ncmd->list,
19982 					       &pvt_pool->list);
19983 				pvt_pool->count++;
19984 				pbl_pool->count--;
19985 				count--;
19986 				if (count == 0)
19987 					break;
19988 			}
19989 
19990 			spin_unlock(&pvt_pool->lock);
19991 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
19992 			return true;
19993 		}
19994 		spin_unlock_irqrestore(&pbl_pool->lock, iflag);
19995 	}
19996 
19997 	return false;
19998 }
19999 
20000 /**
20001  * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20002  * @phba: pointer to lpfc hba data structure.
20003  * @hwqid: belong to which HWQ.
20004  * @count: number of XRIs to move
20005  *
20006  * This routine tries to find some free common bufs in one of public pools with
20007  * Round Robin method. The search always starts from local hwqid, then the next
20008  * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
20009  * a batch of free common bufs are moved to private pool on hwqid.
20010  * It might move less than count XRIs if there's not enough in public pool.
20011  **/
20012 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
20013 {
20014 	struct lpfc_multixri_pool *multixri_pool;
20015 	struct lpfc_multixri_pool *next_multixri_pool;
20016 	struct lpfc_pvt_pool *pvt_pool;
20017 	struct lpfc_pbl_pool *pbl_pool;
20018 	struct lpfc_sli4_hdw_queue *qp;
20019 	u32 next_hwqid;
20020 	u32 hwq_count;
20021 	int ret;
20022 
20023 	qp = &phba->sli4_hba.hdwq[hwqid];
20024 	multixri_pool = qp->p_multixri_pool;
20025 	pvt_pool = &multixri_pool->pvt_pool;
20026 	pbl_pool = &multixri_pool->pbl_pool;
20027 
20028 	/* Check if local pbl_pool is available */
20029 	ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
20030 	if (ret) {
20031 #ifdef LPFC_MXP_STAT
20032 		multixri_pool->local_pbl_hit_count++;
20033 #endif
20034 		return;
20035 	}
20036 
20037 	hwq_count = phba->cfg_hdw_queue;
20038 
20039 	/* Get the next hwqid which was found last time */
20040 	next_hwqid = multixri_pool->rrb_next_hwqid;
20041 
20042 	do {
20043 		/* Go to next hwq */
20044 		next_hwqid = (next_hwqid + 1) % hwq_count;
20045 
20046 		next_multixri_pool =
20047 			phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
20048 		pbl_pool = &next_multixri_pool->pbl_pool;
20049 
20050 		/* Check if the public free xri pool is available */
20051 		ret = _lpfc_move_xri_pbl_to_pvt(
20052 			phba, qp, pbl_pool, pvt_pool, count);
20053 
20054 		/* Exit while-loop if success or all hwqid are checked */
20055 	} while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
20056 
20057 	/* Starting point for the next time */
20058 	multixri_pool->rrb_next_hwqid = next_hwqid;
20059 
20060 	if (!ret) {
20061 		/* stats: all public pools are empty*/
20062 		multixri_pool->pbl_empty_count++;
20063 	}
20064 
20065 #ifdef LPFC_MXP_STAT
20066 	if (ret) {
20067 		if (next_hwqid == hwqid)
20068 			multixri_pool->local_pbl_hit_count++;
20069 		else
20070 			multixri_pool->other_pbl_hit_count++;
20071 	}
20072 #endif
20073 }
20074 
20075 /**
20076  * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
20077  * @phba: pointer to lpfc hba data structure.
20078  * @qp: belong to which HWQ.
20079  *
20080  * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
20081  * low watermark.
20082  **/
20083 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
20084 {
20085 	struct lpfc_multixri_pool *multixri_pool;
20086 	struct lpfc_pvt_pool *pvt_pool;
20087 
20088 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20089 	pvt_pool = &multixri_pool->pvt_pool;
20090 
20091 	if (pvt_pool->count < pvt_pool->low_watermark)
20092 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20093 }
20094 
20095 /**
20096  * lpfc_release_io_buf - Return one IO buf back to free pool
20097  * @phba: pointer to lpfc hba data structure.
20098  * @lpfc_ncmd: IO buf to be returned.
20099  * @qp: belong to which HWQ.
20100  *
20101  * This routine returns one IO buf back to free pool. If this is an urgent IO,
20102  * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
20103  * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
20104  * xri_limit.  If cfg_xri_rebalancing==0, the IO buf is returned to
20105  * lpfc_io_buf_list_put.
20106  **/
20107 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
20108 			 struct lpfc_sli4_hdw_queue *qp)
20109 {
20110 	unsigned long iflag;
20111 	struct lpfc_pbl_pool *pbl_pool;
20112 	struct lpfc_pvt_pool *pvt_pool;
20113 	struct lpfc_epd_pool *epd_pool;
20114 	u32 txcmplq_cnt;
20115 	u32 xri_owned;
20116 	u32 xri_limit;
20117 	u32 abts_io_bufs;
20118 
20119 	/* MUST zero fields if buffer is reused by another protocol */
20120 	lpfc_ncmd->nvmeCmd = NULL;
20121 	lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL;
20122 	lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL;
20123 
20124 	if (phba->cfg_xri_rebalancing) {
20125 		if (lpfc_ncmd->expedite) {
20126 			/* Return to expedite pool */
20127 			epd_pool = &phba->epd_pool;
20128 			spin_lock_irqsave(&epd_pool->lock, iflag);
20129 			list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
20130 			epd_pool->count++;
20131 			spin_unlock_irqrestore(&epd_pool->lock, iflag);
20132 			return;
20133 		}
20134 
20135 		/* Avoid invalid access if an IO sneaks in and is being rejected
20136 		 * just _after_ xri pools are destroyed in lpfc_offline.
20137 		 * Nothing much can be done at this point.
20138 		 */
20139 		if (!qp->p_multixri_pool)
20140 			return;
20141 
20142 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
20143 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
20144 
20145 		txcmplq_cnt = qp->fcp_wq->pring->txcmplq_cnt;
20146 		abts_io_bufs = qp->abts_scsi_io_bufs;
20147 		if (qp->nvme_wq) {
20148 			txcmplq_cnt += qp->nvme_wq->pring->txcmplq_cnt;
20149 			abts_io_bufs += qp->abts_nvme_io_bufs;
20150 		}
20151 
20152 		xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
20153 		xri_limit = qp->p_multixri_pool->xri_limit;
20154 
20155 #ifdef LPFC_MXP_STAT
20156 		if (xri_owned <= xri_limit)
20157 			qp->p_multixri_pool->below_limit_count++;
20158 		else
20159 			qp->p_multixri_pool->above_limit_count++;
20160 #endif
20161 
20162 		/* XRI goes to either public or private free xri pool
20163 		 *     based on watermark and xri_limit
20164 		 */
20165 		if ((pvt_pool->count < pvt_pool->low_watermark) ||
20166 		    (xri_owned < xri_limit &&
20167 		     pvt_pool->count < pvt_pool->high_watermark)) {
20168 			lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
20169 						  qp, free_pvt_pool);
20170 			list_add_tail(&lpfc_ncmd->list,
20171 				      &pvt_pool->list);
20172 			pvt_pool->count++;
20173 			spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20174 		} else {
20175 			lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
20176 						  qp, free_pub_pool);
20177 			list_add_tail(&lpfc_ncmd->list,
20178 				      &pbl_pool->list);
20179 			pbl_pool->count++;
20180 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20181 		}
20182 	} else {
20183 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
20184 					  qp, free_xri);
20185 		list_add_tail(&lpfc_ncmd->list,
20186 			      &qp->lpfc_io_buf_list_put);
20187 		qp->put_io_bufs++;
20188 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
20189 				       iflag);
20190 	}
20191 }
20192 
20193 /**
20194  * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
20195  * @phba: pointer to lpfc hba data structure.
20196  * @pvt_pool: pointer to private pool data structure.
20197  * @ndlp: pointer to lpfc nodelist data structure.
20198  *
20199  * This routine tries to get one free IO buf from private pool.
20200  *
20201  * Return:
20202  *   pointer to one free IO buf - if private pool is not empty
20203  *   NULL - if private pool is empty
20204  **/
20205 static struct lpfc_io_buf *
20206 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
20207 				  struct lpfc_sli4_hdw_queue *qp,
20208 				  struct lpfc_pvt_pool *pvt_pool,
20209 				  struct lpfc_nodelist *ndlp)
20210 {
20211 	struct lpfc_io_buf *lpfc_ncmd;
20212 	struct lpfc_io_buf *lpfc_ncmd_next;
20213 	unsigned long iflag;
20214 
20215 	lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
20216 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20217 				 &pvt_pool->list, list) {
20218 		if (lpfc_test_rrq_active(
20219 			phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
20220 			continue;
20221 		list_del(&lpfc_ncmd->list);
20222 		pvt_pool->count--;
20223 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20224 		return lpfc_ncmd;
20225 	}
20226 	spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20227 
20228 	return NULL;
20229 }
20230 
20231 /**
20232  * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
20233  * @phba: pointer to lpfc hba data structure.
20234  *
20235  * This routine tries to get one free IO buf from expedite pool.
20236  *
20237  * Return:
20238  *   pointer to one free IO buf - if expedite pool is not empty
20239  *   NULL - if expedite pool is empty
20240  **/
20241 static struct lpfc_io_buf *
20242 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
20243 {
20244 	struct lpfc_io_buf *lpfc_ncmd;
20245 	struct lpfc_io_buf *lpfc_ncmd_next;
20246 	unsigned long iflag;
20247 	struct lpfc_epd_pool *epd_pool;
20248 
20249 	epd_pool = &phba->epd_pool;
20250 	lpfc_ncmd = NULL;
20251 
20252 	spin_lock_irqsave(&epd_pool->lock, iflag);
20253 	if (epd_pool->count > 0) {
20254 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20255 					 &epd_pool->list, list) {
20256 			list_del(&lpfc_ncmd->list);
20257 			epd_pool->count--;
20258 			break;
20259 		}
20260 	}
20261 	spin_unlock_irqrestore(&epd_pool->lock, iflag);
20262 
20263 	return lpfc_ncmd;
20264 }
20265 
20266 /**
20267  * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
20268  * @phba: pointer to lpfc hba data structure.
20269  * @ndlp: pointer to lpfc nodelist data structure.
20270  * @hwqid: belong to which HWQ
20271  * @expedite: 1 means this request is urgent.
20272  *
20273  * This routine will do the following actions and then return a pointer to
20274  * one free IO buf.
20275  *
20276  * 1. If private free xri count is empty, move some XRIs from public to
20277  *    private pool.
20278  * 2. Get one XRI from private free xri pool.
20279  * 3. If we fail to get one from pvt_pool and this is an expedite request,
20280  *    get one free xri from expedite pool.
20281  *
20282  * Note: ndlp is only used on SCSI side for RRQ testing.
20283  *       The caller should pass NULL for ndlp on NVME side.
20284  *
20285  * Return:
20286  *   pointer to one free IO buf - if private pool is not empty
20287  *   NULL - if private pool is empty
20288  **/
20289 static struct lpfc_io_buf *
20290 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
20291 				    struct lpfc_nodelist *ndlp,
20292 				    int hwqid, int expedite)
20293 {
20294 	struct lpfc_sli4_hdw_queue *qp;
20295 	struct lpfc_multixri_pool *multixri_pool;
20296 	struct lpfc_pvt_pool *pvt_pool;
20297 	struct lpfc_io_buf *lpfc_ncmd;
20298 
20299 	qp = &phba->sli4_hba.hdwq[hwqid];
20300 	lpfc_ncmd = NULL;
20301 	multixri_pool = qp->p_multixri_pool;
20302 	pvt_pool = &multixri_pool->pvt_pool;
20303 	multixri_pool->io_req_count++;
20304 
20305 	/* If pvt_pool is empty, move some XRIs from public to private pool */
20306 	if (pvt_pool->count == 0)
20307 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20308 
20309 	/* Get one XRI from private free xri pool */
20310 	lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
20311 
20312 	if (lpfc_ncmd) {
20313 		lpfc_ncmd->hdwq = qp;
20314 		lpfc_ncmd->hdwq_no = hwqid;
20315 	} else if (expedite) {
20316 		/* If we fail to get one from pvt_pool and this is an expedite
20317 		 * request, get one free xri from expedite pool.
20318 		 */
20319 		lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
20320 	}
20321 
20322 	return lpfc_ncmd;
20323 }
20324 
20325 static inline struct lpfc_io_buf *
20326 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
20327 {
20328 	struct lpfc_sli4_hdw_queue *qp;
20329 	struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
20330 
20331 	qp = &phba->sli4_hba.hdwq[idx];
20332 	list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
20333 				 &qp->lpfc_io_buf_list_get, list) {
20334 		if (lpfc_test_rrq_active(phba, ndlp,
20335 					 lpfc_cmd->cur_iocbq.sli4_lxritag))
20336 			continue;
20337 
20338 		if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
20339 			continue;
20340 
20341 		list_del_init(&lpfc_cmd->list);
20342 		qp->get_io_bufs--;
20343 		lpfc_cmd->hdwq = qp;
20344 		lpfc_cmd->hdwq_no = idx;
20345 		return lpfc_cmd;
20346 	}
20347 	return NULL;
20348 }
20349 
20350 /**
20351  * lpfc_get_io_buf - Get one IO buffer from free pool
20352  * @phba: The HBA for which this call is being executed.
20353  * @ndlp: pointer to lpfc nodelist data structure.
20354  * @hwqid: belong to which HWQ
20355  * @expedite: 1 means this request is urgent.
20356  *
20357  * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
20358  * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
20359  * a IO buffer from head of @hdwq io_buf_list and returns to caller.
20360  *
20361  * Note: ndlp is only used on SCSI side for RRQ testing.
20362  *       The caller should pass NULL for ndlp on NVME side.
20363  *
20364  * Return codes:
20365  *   NULL - Error
20366  *   Pointer to lpfc_io_buf - Success
20367  **/
20368 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
20369 				    struct lpfc_nodelist *ndlp,
20370 				    u32 hwqid, int expedite)
20371 {
20372 	struct lpfc_sli4_hdw_queue *qp;
20373 	unsigned long iflag;
20374 	struct lpfc_io_buf *lpfc_cmd;
20375 
20376 	qp = &phba->sli4_hba.hdwq[hwqid];
20377 	lpfc_cmd = NULL;
20378 
20379 	if (phba->cfg_xri_rebalancing)
20380 		lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
20381 			phba, ndlp, hwqid, expedite);
20382 	else {
20383 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
20384 					  qp, alloc_xri_get);
20385 		if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
20386 			lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20387 		if (!lpfc_cmd) {
20388 			lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
20389 					  qp, alloc_xri_put);
20390 			list_splice(&qp->lpfc_io_buf_list_put,
20391 				    &qp->lpfc_io_buf_list_get);
20392 			qp->get_io_bufs += qp->put_io_bufs;
20393 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
20394 			qp->put_io_bufs = 0;
20395 			spin_unlock(&qp->io_buf_list_put_lock);
20396 			if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
20397 			    expedite)
20398 				lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20399 		}
20400 		spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
20401 	}
20402 
20403 	return lpfc_cmd;
20404 }
20405