1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 74 struct lpfc_iocbq *); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe); 86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 90 struct lpfc_queue *cq, 91 struct lpfc_cqe *cqe); 92 93 union lpfc_wqe128 lpfc_iread_cmd_template; 94 union lpfc_wqe128 lpfc_iwrite_cmd_template; 95 union lpfc_wqe128 lpfc_icmnd_cmd_template; 96 97 static IOCB_t * 98 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 99 { 100 return &iocbq->iocb; 101 } 102 103 /* Setup WQE templates for IOs */ 104 void lpfc_wqe_cmd_template(void) 105 { 106 union lpfc_wqe128 *wqe; 107 108 /* IREAD template */ 109 wqe = &lpfc_iread_cmd_template; 110 memset(wqe, 0, sizeof(union lpfc_wqe128)); 111 112 /* Word 0, 1, 2 - BDE is variable */ 113 114 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 115 116 /* Word 4 - total_xfer_len is variable */ 117 118 /* Word 5 - is zero */ 119 120 /* Word 6 - ctxt_tag, xri_tag is variable */ 121 122 /* Word 7 */ 123 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 124 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 125 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 126 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 127 128 /* Word 8 - abort_tag is variable */ 129 130 /* Word 9 - reqtag is variable */ 131 132 /* Word 10 - dbde, wqes is variable */ 133 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 134 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 135 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 136 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 137 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 138 139 /* Word 11 - pbde is variable */ 140 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 141 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 142 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 143 144 /* Word 12 - is zero */ 145 146 /* Word 13, 14, 15 - PBDE is variable */ 147 148 /* IWRITE template */ 149 wqe = &lpfc_iwrite_cmd_template; 150 memset(wqe, 0, sizeof(union lpfc_wqe128)); 151 152 /* Word 0, 1, 2 - BDE is variable */ 153 154 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 155 156 /* Word 4 - total_xfer_len is variable */ 157 158 /* Word 5 - initial_xfer_len is variable */ 159 160 /* Word 6 - ctxt_tag, xri_tag is variable */ 161 162 /* Word 7 */ 163 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 164 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 165 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 166 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 167 168 /* Word 8 - abort_tag is variable */ 169 170 /* Word 9 - reqtag is variable */ 171 172 /* Word 10 - dbde, wqes is variable */ 173 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 174 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 175 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 176 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 177 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 178 179 /* Word 11 - pbde is variable */ 180 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 181 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 182 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 183 184 /* Word 12 - is zero */ 185 186 /* Word 13, 14, 15 - PBDE is variable */ 187 188 /* ICMND template */ 189 wqe = &lpfc_icmnd_cmd_template; 190 memset(wqe, 0, sizeof(union lpfc_wqe128)); 191 192 /* Word 0, 1, 2 - BDE is variable */ 193 194 /* Word 3 - payload_offset_len is variable */ 195 196 /* Word 4, 5 - is zero */ 197 198 /* Word 6 - ctxt_tag, xri_tag is variable */ 199 200 /* Word 7 */ 201 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 202 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 203 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 204 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 205 206 /* Word 8 - abort_tag is variable */ 207 208 /* Word 9 - reqtag is variable */ 209 210 /* Word 10 - dbde, wqes is variable */ 211 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 212 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 213 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 214 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 215 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 216 217 /* Word 11 */ 218 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 219 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 220 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 221 222 /* Word 12, 13, 14, 15 - is zero */ 223 } 224 225 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 226 /** 227 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 228 * @srcp: Source memory pointer. 229 * @destp: Destination memory pointer. 230 * @cnt: Number of words required to be copied. 231 * Must be a multiple of sizeof(uint64_t) 232 * 233 * This function is used for copying data between driver memory 234 * and the SLI WQ. This function also changes the endianness 235 * of each word if native endianness is different from SLI 236 * endianness. This function can be called with or without 237 * lock. 238 **/ 239 static void 240 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 241 { 242 uint64_t *src = srcp; 243 uint64_t *dest = destp; 244 int i; 245 246 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 247 *dest++ = *src++; 248 } 249 #else 250 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 251 #endif 252 253 /** 254 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 255 * @q: The Work Queue to operate on. 256 * @wqe: The work Queue Entry to put on the Work queue. 257 * 258 * This routine will copy the contents of @wqe to the next available entry on 259 * the @q. This function will then ring the Work Queue Doorbell to signal the 260 * HBA to start processing the Work Queue Entry. This function returns 0 if 261 * successful. If no entries are available on @q then this function will return 262 * -ENOMEM. 263 * The caller is expected to hold the hbalock when calling this routine. 264 **/ 265 static int 266 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 267 { 268 union lpfc_wqe *temp_wqe; 269 struct lpfc_register doorbell; 270 uint32_t host_index; 271 uint32_t idx; 272 uint32_t i = 0; 273 uint8_t *tmp; 274 u32 if_type; 275 276 /* sanity check on queue memory */ 277 if (unlikely(!q)) 278 return -ENOMEM; 279 280 temp_wqe = lpfc_sli4_qe(q, q->host_index); 281 282 /* If the host has not yet processed the next entry then we are done */ 283 idx = ((q->host_index + 1) % q->entry_count); 284 if (idx == q->hba_index) { 285 q->WQ_overflow++; 286 return -EBUSY; 287 } 288 q->WQ_posted++; 289 /* set consumption flag every once in a while */ 290 if (!((q->host_index + 1) % q->notify_interval)) 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 292 else 293 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 294 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 295 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 296 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 297 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 298 /* write to DPP aperture taking advatage of Combined Writes */ 299 tmp = (uint8_t *)temp_wqe; 300 #ifdef __raw_writeq 301 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 302 __raw_writeq(*((uint64_t *)(tmp + i)), 303 q->dpp_regaddr + i); 304 #else 305 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 306 __raw_writel(*((uint32_t *)(tmp + i)), 307 q->dpp_regaddr + i); 308 #endif 309 } 310 /* ensure WQE bcopy and DPP flushed before doorbell write */ 311 wmb(); 312 313 /* Update the host index before invoking device */ 314 host_index = q->host_index; 315 316 q->host_index = idx; 317 318 /* Ring Doorbell */ 319 doorbell.word0 = 0; 320 if (q->db_format == LPFC_DB_LIST_FORMAT) { 321 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 322 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 323 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 324 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 325 q->dpp_id); 326 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 327 q->queue_id); 328 } else { 329 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 330 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 331 332 /* Leave bits <23:16> clear for if_type 6 dpp */ 333 if_type = bf_get(lpfc_sli_intf_if_type, 334 &q->phba->sli4_hba.sli_intf); 335 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 336 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 337 host_index); 338 } 339 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 340 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 341 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 342 } else { 343 return -EINVAL; 344 } 345 writel(doorbell.word0, q->db_regaddr); 346 347 return 0; 348 } 349 350 /** 351 * lpfc_sli4_wq_release - Updates internal hba index for WQ 352 * @q: The Work Queue to operate on. 353 * @index: The index to advance the hba index to. 354 * 355 * This routine will update the HBA index of a queue to reflect consumption of 356 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 357 * an entry the host calls this function to update the queue's internal 358 * pointers. 359 **/ 360 static void 361 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 362 { 363 /* sanity check on queue memory */ 364 if (unlikely(!q)) 365 return; 366 367 q->hba_index = index; 368 } 369 370 /** 371 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 372 * @q: The Mailbox Queue to operate on. 373 * @mqe: The Mailbox Queue Entry to put on the Work queue. 374 * 375 * This routine will copy the contents of @mqe to the next available entry on 376 * the @q. This function will then ring the Work Queue Doorbell to signal the 377 * HBA to start processing the Work Queue Entry. This function returns 0 if 378 * successful. If no entries are available on @q then this function will return 379 * -ENOMEM. 380 * The caller is expected to hold the hbalock when calling this routine. 381 **/ 382 static uint32_t 383 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 384 { 385 struct lpfc_mqe *temp_mqe; 386 struct lpfc_register doorbell; 387 388 /* sanity check on queue memory */ 389 if (unlikely(!q)) 390 return -ENOMEM; 391 temp_mqe = lpfc_sli4_qe(q, q->host_index); 392 393 /* If the host has not yet processed the next entry then we are done */ 394 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 395 return -ENOMEM; 396 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 397 /* Save off the mailbox pointer for completion */ 398 q->phba->mbox = (MAILBOX_t *)temp_mqe; 399 400 /* Update the host index before invoking device */ 401 q->host_index = ((q->host_index + 1) % q->entry_count); 402 403 /* Ring Doorbell */ 404 doorbell.word0 = 0; 405 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 406 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 407 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 408 return 0; 409 } 410 411 /** 412 * lpfc_sli4_mq_release - Updates internal hba index for MQ 413 * @q: The Mailbox Queue to operate on. 414 * 415 * This routine will update the HBA index of a queue to reflect consumption of 416 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 417 * an entry the host calls this function to update the queue's internal 418 * pointers. This routine returns the number of entries that were consumed by 419 * the HBA. 420 **/ 421 static uint32_t 422 lpfc_sli4_mq_release(struct lpfc_queue *q) 423 { 424 /* sanity check on queue memory */ 425 if (unlikely(!q)) 426 return 0; 427 428 /* Clear the mailbox pointer for completion */ 429 q->phba->mbox = NULL; 430 q->hba_index = ((q->hba_index + 1) % q->entry_count); 431 return 1; 432 } 433 434 /** 435 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 436 * @q: The Event Queue to get the first valid EQE from 437 * 438 * This routine will get the first valid Event Queue Entry from @q, update 439 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 440 * the Queue (no more work to do), or the Queue is full of EQEs that have been 441 * processed, but not popped back to the HBA then this routine will return NULL. 442 **/ 443 static struct lpfc_eqe * 444 lpfc_sli4_eq_get(struct lpfc_queue *q) 445 { 446 struct lpfc_eqe *eqe; 447 448 /* sanity check on queue memory */ 449 if (unlikely(!q)) 450 return NULL; 451 eqe = lpfc_sli4_qe(q, q->host_index); 452 453 /* If the next EQE is not valid then we are done */ 454 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 455 return NULL; 456 457 /* 458 * insert barrier for instruction interlock : data from the hardware 459 * must have the valid bit checked before it can be copied and acted 460 * upon. Speculative instructions were allowing a bcopy at the start 461 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 462 * after our return, to copy data before the valid bit check above 463 * was done. As such, some of the copied data was stale. The barrier 464 * ensures the check is before any data is copied. 465 */ 466 mb(); 467 return eqe; 468 } 469 470 /** 471 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 472 * @q: The Event Queue to disable interrupts 473 * 474 **/ 475 void 476 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 477 { 478 struct lpfc_register doorbell; 479 480 doorbell.word0 = 0; 481 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 482 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 483 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 484 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 485 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 486 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 487 } 488 489 /** 490 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 491 * @q: The Event Queue to disable interrupts 492 * 493 **/ 494 void 495 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 496 { 497 struct lpfc_register doorbell; 498 499 doorbell.word0 = 0; 500 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 501 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 502 } 503 504 /** 505 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 506 * @phba: adapter with EQ 507 * @q: The Event Queue that the host has completed processing for. 508 * @count: Number of elements that have been consumed 509 * @arm: Indicates whether the host wants to arms this CQ. 510 * 511 * This routine will notify the HBA, by ringing the doorbell, that count 512 * number of EQEs have been processed. The @arm parameter indicates whether 513 * the queue should be rearmed when ringing the doorbell. 514 **/ 515 void 516 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 517 uint32_t count, bool arm) 518 { 519 struct lpfc_register doorbell; 520 521 /* sanity check on queue memory */ 522 if (unlikely(!q || (count == 0 && !arm))) 523 return; 524 525 /* ring doorbell for number popped */ 526 doorbell.word0 = 0; 527 if (arm) { 528 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 529 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 530 } 531 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 532 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 533 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 534 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 535 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 536 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 537 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 538 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 539 readl(q->phba->sli4_hba.EQDBregaddr); 540 } 541 542 /** 543 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 544 * @phba: adapter with EQ 545 * @q: The Event Queue that the host has completed processing for. 546 * @count: Number of elements that have been consumed 547 * @arm: Indicates whether the host wants to arms this CQ. 548 * 549 * This routine will notify the HBA, by ringing the doorbell, that count 550 * number of EQEs have been processed. The @arm parameter indicates whether 551 * the queue should be rearmed when ringing the doorbell. 552 **/ 553 void 554 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 555 uint32_t count, bool arm) 556 { 557 struct lpfc_register doorbell; 558 559 /* sanity check on queue memory */ 560 if (unlikely(!q || (count == 0 && !arm))) 561 return; 562 563 /* ring doorbell for number popped */ 564 doorbell.word0 = 0; 565 if (arm) 566 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 567 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 568 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 569 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 570 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 571 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 572 readl(q->phba->sli4_hba.EQDBregaddr); 573 } 574 575 static void 576 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 577 struct lpfc_eqe *eqe) 578 { 579 if (!phba->sli4_hba.pc_sli4_params.eqav) 580 bf_set_le32(lpfc_eqe_valid, eqe, 0); 581 582 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 583 584 /* if the index wrapped around, toggle the valid bit */ 585 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 586 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 587 } 588 589 static void 590 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 591 { 592 struct lpfc_eqe *eqe = NULL; 593 u32 eq_count = 0, cq_count = 0; 594 struct lpfc_cqe *cqe = NULL; 595 struct lpfc_queue *cq = NULL, *childq = NULL; 596 int cqid = 0; 597 598 /* walk all the EQ entries and drop on the floor */ 599 eqe = lpfc_sli4_eq_get(eq); 600 while (eqe) { 601 /* Get the reference to the corresponding CQ */ 602 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 603 cq = NULL; 604 605 list_for_each_entry(childq, &eq->child_list, list) { 606 if (childq->queue_id == cqid) { 607 cq = childq; 608 break; 609 } 610 } 611 /* If CQ is valid, iterate through it and drop all the CQEs */ 612 if (cq) { 613 cqe = lpfc_sli4_cq_get(cq); 614 while (cqe) { 615 __lpfc_sli4_consume_cqe(phba, cq, cqe); 616 cq_count++; 617 cqe = lpfc_sli4_cq_get(cq); 618 } 619 /* Clear and re-arm the CQ */ 620 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 621 LPFC_QUEUE_REARM); 622 cq_count = 0; 623 } 624 __lpfc_sli4_consume_eqe(phba, eq, eqe); 625 eq_count++; 626 eqe = lpfc_sli4_eq_get(eq); 627 } 628 629 /* Clear and re-arm the EQ */ 630 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 631 } 632 633 static int 634 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 635 uint8_t rearm) 636 { 637 struct lpfc_eqe *eqe; 638 int count = 0, consumed = 0; 639 640 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 641 goto rearm_and_exit; 642 643 eqe = lpfc_sli4_eq_get(eq); 644 while (eqe) { 645 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 646 __lpfc_sli4_consume_eqe(phba, eq, eqe); 647 648 consumed++; 649 if (!(++count % eq->max_proc_limit)) 650 break; 651 652 if (!(count % eq->notify_interval)) { 653 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 654 LPFC_QUEUE_NOARM); 655 consumed = 0; 656 } 657 658 eqe = lpfc_sli4_eq_get(eq); 659 } 660 eq->EQ_processed += count; 661 662 /* Track the max number of EQEs processed in 1 intr */ 663 if (count > eq->EQ_max_eqe) 664 eq->EQ_max_eqe = count; 665 666 xchg(&eq->queue_claimed, 0); 667 668 rearm_and_exit: 669 /* Always clear the EQ. */ 670 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 671 672 return count; 673 } 674 675 /** 676 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 677 * @q: The Completion Queue to get the first valid CQE from 678 * 679 * This routine will get the first valid Completion Queue Entry from @q, update 680 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 681 * the Queue (no more work to do), or the Queue is full of CQEs that have been 682 * processed, but not popped back to the HBA then this routine will return NULL. 683 **/ 684 static struct lpfc_cqe * 685 lpfc_sli4_cq_get(struct lpfc_queue *q) 686 { 687 struct lpfc_cqe *cqe; 688 689 /* sanity check on queue memory */ 690 if (unlikely(!q)) 691 return NULL; 692 cqe = lpfc_sli4_qe(q, q->host_index); 693 694 /* If the next CQE is not valid then we are done */ 695 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 696 return NULL; 697 698 /* 699 * insert barrier for instruction interlock : data from the hardware 700 * must have the valid bit checked before it can be copied and acted 701 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 702 * instructions allowing action on content before valid bit checked, 703 * add barrier here as well. May not be needed as "content" is a 704 * single 32-bit entity here (vs multi word structure for cq's). 705 */ 706 mb(); 707 return cqe; 708 } 709 710 static void 711 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 712 struct lpfc_cqe *cqe) 713 { 714 if (!phba->sli4_hba.pc_sli4_params.cqav) 715 bf_set_le32(lpfc_cqe_valid, cqe, 0); 716 717 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 718 719 /* if the index wrapped around, toggle the valid bit */ 720 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 721 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 722 } 723 724 /** 725 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 726 * @phba: the adapter with the CQ 727 * @q: The Completion Queue that the host has completed processing for. 728 * @count: the number of elements that were consumed 729 * @arm: Indicates whether the host wants to arms this CQ. 730 * 731 * This routine will notify the HBA, by ringing the doorbell, that the 732 * CQEs have been processed. The @arm parameter specifies whether the 733 * queue should be rearmed when ringing the doorbell. 734 **/ 735 void 736 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 737 uint32_t count, bool arm) 738 { 739 struct lpfc_register doorbell; 740 741 /* sanity check on queue memory */ 742 if (unlikely(!q || (count == 0 && !arm))) 743 return; 744 745 /* ring doorbell for number popped */ 746 doorbell.word0 = 0; 747 if (arm) 748 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 749 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 750 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 751 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 752 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 753 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 754 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 755 } 756 757 /** 758 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 759 * @phba: the adapter with the CQ 760 * @q: The Completion Queue that the host has completed processing for. 761 * @count: the number of elements that were consumed 762 * @arm: Indicates whether the host wants to arms this CQ. 763 * 764 * This routine will notify the HBA, by ringing the doorbell, that the 765 * CQEs have been processed. The @arm parameter specifies whether the 766 * queue should be rearmed when ringing the doorbell. 767 **/ 768 void 769 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 770 uint32_t count, bool arm) 771 { 772 struct lpfc_register doorbell; 773 774 /* sanity check on queue memory */ 775 if (unlikely(!q || (count == 0 && !arm))) 776 return; 777 778 /* ring doorbell for number popped */ 779 doorbell.word0 = 0; 780 if (arm) 781 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 782 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 783 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 784 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 785 } 786 787 /* 788 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 789 * 790 * This routine will copy the contents of @wqe to the next available entry on 791 * the @q. This function will then ring the Receive Queue Doorbell to signal the 792 * HBA to start processing the Receive Queue Entry. This function returns the 793 * index that the rqe was copied to if successful. If no entries are available 794 * on @q then this function will return -ENOMEM. 795 * The caller is expected to hold the hbalock when calling this routine. 796 **/ 797 int 798 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 799 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 800 { 801 struct lpfc_rqe *temp_hrqe; 802 struct lpfc_rqe *temp_drqe; 803 struct lpfc_register doorbell; 804 int hq_put_index; 805 int dq_put_index; 806 807 /* sanity check on queue memory */ 808 if (unlikely(!hq) || unlikely(!dq)) 809 return -ENOMEM; 810 hq_put_index = hq->host_index; 811 dq_put_index = dq->host_index; 812 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 813 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 814 815 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 816 return -EINVAL; 817 if (hq_put_index != dq_put_index) 818 return -EINVAL; 819 /* If the host has not yet processed the next entry then we are done */ 820 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 821 return -EBUSY; 822 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 823 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 824 825 /* Update the host index to point to the next slot */ 826 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 827 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 828 hq->RQ_buf_posted++; 829 830 /* Ring The Header Receive Queue Doorbell */ 831 if (!(hq->host_index % hq->notify_interval)) { 832 doorbell.word0 = 0; 833 if (hq->db_format == LPFC_DB_RING_FORMAT) { 834 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 835 hq->notify_interval); 836 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 837 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 838 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 839 hq->notify_interval); 840 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 841 hq->host_index); 842 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 843 } else { 844 return -EINVAL; 845 } 846 writel(doorbell.word0, hq->db_regaddr); 847 } 848 return hq_put_index; 849 } 850 851 /* 852 * lpfc_sli4_rq_release - Updates internal hba index for RQ 853 * 854 * This routine will update the HBA index of a queue to reflect consumption of 855 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 856 * consumed an entry the host calls this function to update the queue's 857 * internal pointers. This routine returns the number of entries that were 858 * consumed by the HBA. 859 **/ 860 static uint32_t 861 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 862 { 863 /* sanity check on queue memory */ 864 if (unlikely(!hq) || unlikely(!dq)) 865 return 0; 866 867 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 868 return 0; 869 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 870 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 871 return 1; 872 } 873 874 /** 875 * lpfc_cmd_iocb - Get next command iocb entry in the ring 876 * @phba: Pointer to HBA context object. 877 * @pring: Pointer to driver SLI ring object. 878 * 879 * This function returns pointer to next command iocb entry 880 * in the command ring. The caller must hold hbalock to prevent 881 * other threads consume the next command iocb. 882 * SLI-2/SLI-3 provide different sized iocbs. 883 **/ 884 static inline IOCB_t * 885 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 886 { 887 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 888 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 889 } 890 891 /** 892 * lpfc_resp_iocb - Get next response iocb entry in the ring 893 * @phba: Pointer to HBA context object. 894 * @pring: Pointer to driver SLI ring object. 895 * 896 * This function returns pointer to next response iocb entry 897 * in the response ring. The caller must hold hbalock to make sure 898 * that no other thread consume the next response iocb. 899 * SLI-2/SLI-3 provide different sized iocbs. 900 **/ 901 static inline IOCB_t * 902 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 903 { 904 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 905 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 906 } 907 908 /** 909 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 910 * @phba: Pointer to HBA context object. 911 * 912 * This function is called with hbalock held. This function 913 * allocates a new driver iocb object from the iocb pool. If the 914 * allocation is successful, it returns pointer to the newly 915 * allocated iocb object else it returns NULL. 916 **/ 917 struct lpfc_iocbq * 918 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 919 { 920 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 921 struct lpfc_iocbq * iocbq = NULL; 922 923 lockdep_assert_held(&phba->hbalock); 924 925 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 926 if (iocbq) 927 phba->iocb_cnt++; 928 if (phba->iocb_cnt > phba->iocb_max) 929 phba->iocb_max = phba->iocb_cnt; 930 return iocbq; 931 } 932 933 /** 934 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 935 * @phba: Pointer to HBA context object. 936 * @xritag: XRI value. 937 * 938 * This function clears the sglq pointer from the array of acive 939 * sglq's. The xritag that is passed in is used to index into the 940 * array. Before the xritag can be used it needs to be adjusted 941 * by subtracting the xribase. 942 * 943 * Returns sglq ponter = success, NULL = Failure. 944 **/ 945 struct lpfc_sglq * 946 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 947 { 948 struct lpfc_sglq *sglq; 949 950 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 951 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 952 return sglq; 953 } 954 955 /** 956 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 957 * @phba: Pointer to HBA context object. 958 * @xritag: XRI value. 959 * 960 * This function returns the sglq pointer from the array of acive 961 * sglq's. The xritag that is passed in is used to index into the 962 * array. Before the xritag can be used it needs to be adjusted 963 * by subtracting the xribase. 964 * 965 * Returns sglq ponter = success, NULL = Failure. 966 **/ 967 struct lpfc_sglq * 968 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 969 { 970 struct lpfc_sglq *sglq; 971 972 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 973 return sglq; 974 } 975 976 /** 977 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 978 * @phba: Pointer to HBA context object. 979 * @xritag: xri used in this exchange. 980 * @rrq: The RRQ to be cleared. 981 * 982 **/ 983 void 984 lpfc_clr_rrq_active(struct lpfc_hba *phba, 985 uint16_t xritag, 986 struct lpfc_node_rrq *rrq) 987 { 988 struct lpfc_nodelist *ndlp = NULL; 989 990 if (rrq->vport) 991 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 992 993 /* The target DID could have been swapped (cable swap) 994 * we should use the ndlp from the findnode if it is 995 * available. 996 */ 997 if ((!ndlp) && rrq->ndlp) 998 ndlp = rrq->ndlp; 999 1000 if (!ndlp) 1001 goto out; 1002 1003 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 1004 rrq->send_rrq = 0; 1005 rrq->xritag = 0; 1006 rrq->rrq_stop_time = 0; 1007 } 1008 out: 1009 mempool_free(rrq, phba->rrq_pool); 1010 } 1011 1012 /** 1013 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1014 * @phba: Pointer to HBA context object. 1015 * 1016 * This function is called with hbalock held. This function 1017 * Checks if stop_time (ratov from setting rrq active) has 1018 * been reached, if it has and the send_rrq flag is set then 1019 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1020 * then it will just call the routine to clear the rrq and 1021 * free the rrq resource. 1022 * The timer is set to the next rrq that is going to expire before 1023 * leaving the routine. 1024 * 1025 **/ 1026 void 1027 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1028 { 1029 struct lpfc_node_rrq *rrq; 1030 struct lpfc_node_rrq *nextrrq; 1031 unsigned long next_time; 1032 unsigned long iflags; 1033 LIST_HEAD(send_rrq); 1034 1035 spin_lock_irqsave(&phba->hbalock, iflags); 1036 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1037 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1038 list_for_each_entry_safe(rrq, nextrrq, 1039 &phba->active_rrq_list, list) { 1040 if (time_after(jiffies, rrq->rrq_stop_time)) 1041 list_move(&rrq->list, &send_rrq); 1042 else if (time_before(rrq->rrq_stop_time, next_time)) 1043 next_time = rrq->rrq_stop_time; 1044 } 1045 spin_unlock_irqrestore(&phba->hbalock, iflags); 1046 if ((!list_empty(&phba->active_rrq_list)) && 1047 (!(phba->pport->load_flag & FC_UNLOADING))) 1048 mod_timer(&phba->rrq_tmr, next_time); 1049 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1050 list_del(&rrq->list); 1051 if (!rrq->send_rrq) { 1052 /* this call will free the rrq */ 1053 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1054 } else if (lpfc_send_rrq(phba, rrq)) { 1055 /* if we send the rrq then the completion handler 1056 * will clear the bit in the xribitmap. 1057 */ 1058 lpfc_clr_rrq_active(phba, rrq->xritag, 1059 rrq); 1060 } 1061 } 1062 } 1063 1064 /** 1065 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1066 * @vport: Pointer to vport context object. 1067 * @xri: The xri used in the exchange. 1068 * @did: The targets DID for this exchange. 1069 * 1070 * returns NULL = rrq not found in the phba->active_rrq_list. 1071 * rrq = rrq for this xri and target. 1072 **/ 1073 struct lpfc_node_rrq * 1074 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1075 { 1076 struct lpfc_hba *phba = vport->phba; 1077 struct lpfc_node_rrq *rrq; 1078 struct lpfc_node_rrq *nextrrq; 1079 unsigned long iflags; 1080 1081 if (phba->sli_rev != LPFC_SLI_REV4) 1082 return NULL; 1083 spin_lock_irqsave(&phba->hbalock, iflags); 1084 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1085 if (rrq->vport == vport && rrq->xritag == xri && 1086 rrq->nlp_DID == did){ 1087 list_del(&rrq->list); 1088 spin_unlock_irqrestore(&phba->hbalock, iflags); 1089 return rrq; 1090 } 1091 } 1092 spin_unlock_irqrestore(&phba->hbalock, iflags); 1093 return NULL; 1094 } 1095 1096 /** 1097 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1098 * @vport: Pointer to vport context object. 1099 * @ndlp: Pointer to the lpfc_node_list structure. 1100 * If ndlp is NULL Remove all active RRQs for this vport from the 1101 * phba->active_rrq_list and clear the rrq. 1102 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1103 **/ 1104 void 1105 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1106 1107 { 1108 struct lpfc_hba *phba = vport->phba; 1109 struct lpfc_node_rrq *rrq; 1110 struct lpfc_node_rrq *nextrrq; 1111 unsigned long iflags; 1112 LIST_HEAD(rrq_list); 1113 1114 if (phba->sli_rev != LPFC_SLI_REV4) 1115 return; 1116 if (!ndlp) { 1117 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1118 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1119 } 1120 spin_lock_irqsave(&phba->hbalock, iflags); 1121 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 1122 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 1123 list_move(&rrq->list, &rrq_list); 1124 spin_unlock_irqrestore(&phba->hbalock, iflags); 1125 1126 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1127 list_del(&rrq->list); 1128 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1129 } 1130 } 1131 1132 /** 1133 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1134 * @phba: Pointer to HBA context object. 1135 * @ndlp: Targets nodelist pointer for this exchange. 1136 * @xritag: the xri in the bitmap to test. 1137 * 1138 * This function returns: 1139 * 0 = rrq not active for this xri 1140 * 1 = rrq is valid for this xri. 1141 **/ 1142 int 1143 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1144 uint16_t xritag) 1145 { 1146 if (!ndlp) 1147 return 0; 1148 if (!ndlp->active_rrqs_xri_bitmap) 1149 return 0; 1150 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1151 return 1; 1152 else 1153 return 0; 1154 } 1155 1156 /** 1157 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1158 * @phba: Pointer to HBA context object. 1159 * @ndlp: nodelist pointer for this target. 1160 * @xritag: xri used in this exchange. 1161 * @rxid: Remote Exchange ID. 1162 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1163 * 1164 * This function takes the hbalock. 1165 * The active bit is always set in the active rrq xri_bitmap even 1166 * if there is no slot avaiable for the other rrq information. 1167 * 1168 * returns 0 rrq actived for this xri 1169 * < 0 No memory or invalid ndlp. 1170 **/ 1171 int 1172 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1173 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1174 { 1175 unsigned long iflags; 1176 struct lpfc_node_rrq *rrq; 1177 int empty; 1178 1179 if (!ndlp) 1180 return -EINVAL; 1181 1182 if (!phba->cfg_enable_rrq) 1183 return -EINVAL; 1184 1185 spin_lock_irqsave(&phba->hbalock, iflags); 1186 if (phba->pport->load_flag & FC_UNLOADING) { 1187 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1188 goto out; 1189 } 1190 1191 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1192 goto out; 1193 1194 if (!ndlp->active_rrqs_xri_bitmap) 1195 goto out; 1196 1197 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1198 goto out; 1199 1200 spin_unlock_irqrestore(&phba->hbalock, iflags); 1201 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1202 if (!rrq) { 1203 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1204 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1205 " DID:0x%x Send:%d\n", 1206 xritag, rxid, ndlp->nlp_DID, send_rrq); 1207 return -EINVAL; 1208 } 1209 if (phba->cfg_enable_rrq == 1) 1210 rrq->send_rrq = send_rrq; 1211 else 1212 rrq->send_rrq = 0; 1213 rrq->xritag = xritag; 1214 rrq->rrq_stop_time = jiffies + 1215 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1216 rrq->ndlp = ndlp; 1217 rrq->nlp_DID = ndlp->nlp_DID; 1218 rrq->vport = ndlp->vport; 1219 rrq->rxid = rxid; 1220 spin_lock_irqsave(&phba->hbalock, iflags); 1221 empty = list_empty(&phba->active_rrq_list); 1222 list_add_tail(&rrq->list, &phba->active_rrq_list); 1223 phba->hba_flag |= HBA_RRQ_ACTIVE; 1224 if (empty) 1225 lpfc_worker_wake_up(phba); 1226 spin_unlock_irqrestore(&phba->hbalock, iflags); 1227 return 0; 1228 out: 1229 spin_unlock_irqrestore(&phba->hbalock, iflags); 1230 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1231 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1232 " DID:0x%x Send:%d\n", 1233 xritag, rxid, ndlp->nlp_DID, send_rrq); 1234 return -EINVAL; 1235 } 1236 1237 /** 1238 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1239 * @phba: Pointer to HBA context object. 1240 * @piocbq: Pointer to the iocbq. 1241 * 1242 * The driver calls this function with either the nvme ls ring lock 1243 * or the fc els ring lock held depending on the iocb usage. This function 1244 * gets a new driver sglq object from the sglq list. If the list is not empty 1245 * then it is successful, it returns pointer to the newly allocated sglq 1246 * object else it returns NULL. 1247 **/ 1248 static struct lpfc_sglq * 1249 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1250 { 1251 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1252 struct lpfc_sglq *sglq = NULL; 1253 struct lpfc_sglq *start_sglq = NULL; 1254 struct lpfc_io_buf *lpfc_cmd; 1255 struct lpfc_nodelist *ndlp; 1256 struct lpfc_sli_ring *pring = NULL; 1257 int found = 0; 1258 1259 if (piocbq->iocb_flag & LPFC_IO_NVME_LS) 1260 pring = phba->sli4_hba.nvmels_wq->pring; 1261 else 1262 pring = lpfc_phba_elsring(phba); 1263 1264 lockdep_assert_held(&pring->ring_lock); 1265 1266 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1267 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1268 ndlp = lpfc_cmd->rdata->pnode; 1269 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1270 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1271 ndlp = piocbq->context_un.ndlp; 1272 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1273 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1274 ndlp = NULL; 1275 else 1276 ndlp = piocbq->context_un.ndlp; 1277 } else { 1278 ndlp = piocbq->context1; 1279 } 1280 1281 spin_lock(&phba->sli4_hba.sgl_list_lock); 1282 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1283 start_sglq = sglq; 1284 while (!found) { 1285 if (!sglq) 1286 break; 1287 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1288 test_bit(sglq->sli4_lxritag, 1289 ndlp->active_rrqs_xri_bitmap)) { 1290 /* This xri has an rrq outstanding for this DID. 1291 * put it back in the list and get another xri. 1292 */ 1293 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1294 sglq = NULL; 1295 list_remove_head(lpfc_els_sgl_list, sglq, 1296 struct lpfc_sglq, list); 1297 if (sglq == start_sglq) { 1298 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1299 sglq = NULL; 1300 break; 1301 } else 1302 continue; 1303 } 1304 sglq->ndlp = ndlp; 1305 found = 1; 1306 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1307 sglq->state = SGL_ALLOCATED; 1308 } 1309 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1310 return sglq; 1311 } 1312 1313 /** 1314 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1315 * @phba: Pointer to HBA context object. 1316 * @piocbq: Pointer to the iocbq. 1317 * 1318 * This function is called with the sgl_list lock held. This function 1319 * gets a new driver sglq object from the sglq list. If the 1320 * list is not empty then it is successful, it returns pointer to the newly 1321 * allocated sglq object else it returns NULL. 1322 **/ 1323 struct lpfc_sglq * 1324 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1325 { 1326 struct list_head *lpfc_nvmet_sgl_list; 1327 struct lpfc_sglq *sglq = NULL; 1328 1329 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1330 1331 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1332 1333 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1334 if (!sglq) 1335 return NULL; 1336 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1337 sglq->state = SGL_ALLOCATED; 1338 return sglq; 1339 } 1340 1341 /** 1342 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1343 * @phba: Pointer to HBA context object. 1344 * 1345 * This function is called with no lock held. This function 1346 * allocates a new driver iocb object from the iocb pool. If the 1347 * allocation is successful, it returns pointer to the newly 1348 * allocated iocb object else it returns NULL. 1349 **/ 1350 struct lpfc_iocbq * 1351 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1352 { 1353 struct lpfc_iocbq * iocbq = NULL; 1354 unsigned long iflags; 1355 1356 spin_lock_irqsave(&phba->hbalock, iflags); 1357 iocbq = __lpfc_sli_get_iocbq(phba); 1358 spin_unlock_irqrestore(&phba->hbalock, iflags); 1359 return iocbq; 1360 } 1361 1362 /** 1363 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1364 * @phba: Pointer to HBA context object. 1365 * @iocbq: Pointer to driver iocb object. 1366 * 1367 * This function is called to release the driver iocb object 1368 * to the iocb pool. The iotag in the iocb object 1369 * does not change for each use of the iocb object. This function 1370 * clears all other fields of the iocb object when it is freed. 1371 * The sqlq structure that holds the xritag and phys and virtual 1372 * mappings for the scatter gather list is retrieved from the 1373 * active array of sglq. The get of the sglq pointer also clears 1374 * the entry in the array. If the status of the IO indiactes that 1375 * this IO was aborted then the sglq entry it put on the 1376 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1377 * IO has good status or fails for any other reason then the sglq 1378 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1379 * asserted held in the code path calling this routine. 1380 **/ 1381 static void 1382 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1383 { 1384 struct lpfc_sglq *sglq; 1385 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1386 unsigned long iflag = 0; 1387 struct lpfc_sli_ring *pring; 1388 1389 if (iocbq->sli4_xritag == NO_XRI) 1390 sglq = NULL; 1391 else 1392 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1393 1394 1395 if (sglq) { 1396 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1397 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1398 iflag); 1399 sglq->state = SGL_FREED; 1400 sglq->ndlp = NULL; 1401 list_add_tail(&sglq->list, 1402 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1403 spin_unlock_irqrestore( 1404 &phba->sli4_hba.sgl_list_lock, iflag); 1405 goto out; 1406 } 1407 1408 pring = phba->sli4_hba.els_wq->pring; 1409 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1410 (sglq->state != SGL_XRI_ABORTED)) { 1411 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1412 iflag); 1413 1414 /* Check if we can get a reference on ndlp */ 1415 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1416 sglq->ndlp = NULL; 1417 1418 list_add(&sglq->list, 1419 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1420 spin_unlock_irqrestore( 1421 &phba->sli4_hba.sgl_list_lock, iflag); 1422 } else { 1423 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1424 iflag); 1425 sglq->state = SGL_FREED; 1426 sglq->ndlp = NULL; 1427 list_add_tail(&sglq->list, 1428 &phba->sli4_hba.lpfc_els_sgl_list); 1429 spin_unlock_irqrestore( 1430 &phba->sli4_hba.sgl_list_lock, iflag); 1431 1432 /* Check if TXQ queue needs to be serviced */ 1433 if (!list_empty(&pring->txq)) 1434 lpfc_worker_wake_up(phba); 1435 } 1436 } 1437 1438 out: 1439 /* 1440 * Clean all volatile data fields, preserve iotag and node struct. 1441 */ 1442 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1443 iocbq->sli4_lxritag = NO_XRI; 1444 iocbq->sli4_xritag = NO_XRI; 1445 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1446 LPFC_IO_NVME_LS); 1447 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1448 } 1449 1450 1451 /** 1452 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1453 * @phba: Pointer to HBA context object. 1454 * @iocbq: Pointer to driver iocb object. 1455 * 1456 * This function is called to release the driver iocb object to the 1457 * iocb pool. The iotag in the iocb object does not change for each 1458 * use of the iocb object. This function clears all other fields of 1459 * the iocb object when it is freed. The hbalock is asserted held in 1460 * the code path calling this routine. 1461 **/ 1462 static void 1463 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1464 { 1465 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1466 1467 /* 1468 * Clean all volatile data fields, preserve iotag and node struct. 1469 */ 1470 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1471 iocbq->sli4_xritag = NO_XRI; 1472 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1473 } 1474 1475 /** 1476 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1477 * @phba: Pointer to HBA context object. 1478 * @iocbq: Pointer to driver iocb object. 1479 * 1480 * This function is called with hbalock held to release driver 1481 * iocb object to the iocb pool. The iotag in the iocb object 1482 * does not change for each use of the iocb object. This function 1483 * clears all other fields of the iocb object when it is freed. 1484 **/ 1485 static void 1486 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1487 { 1488 lockdep_assert_held(&phba->hbalock); 1489 1490 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1491 phba->iocb_cnt--; 1492 } 1493 1494 /** 1495 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1496 * @phba: Pointer to HBA context object. 1497 * @iocbq: Pointer to driver iocb object. 1498 * 1499 * This function is called with no lock held to release the iocb to 1500 * iocb pool. 1501 **/ 1502 void 1503 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1504 { 1505 unsigned long iflags; 1506 1507 /* 1508 * Clean all volatile data fields, preserve iotag and node struct. 1509 */ 1510 spin_lock_irqsave(&phba->hbalock, iflags); 1511 __lpfc_sli_release_iocbq(phba, iocbq); 1512 spin_unlock_irqrestore(&phba->hbalock, iflags); 1513 } 1514 1515 /** 1516 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1517 * @phba: Pointer to HBA context object. 1518 * @iocblist: List of IOCBs. 1519 * @ulpstatus: ULP status in IOCB command field. 1520 * @ulpWord4: ULP word-4 in IOCB command field. 1521 * 1522 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1523 * on the list by invoking the complete callback function associated with the 1524 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1525 * fields. 1526 **/ 1527 void 1528 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1529 uint32_t ulpstatus, uint32_t ulpWord4) 1530 { 1531 struct lpfc_iocbq *piocb; 1532 1533 while (!list_empty(iocblist)) { 1534 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1535 if (piocb->wqe_cmpl) { 1536 if (piocb->iocb_flag & LPFC_IO_NVME) 1537 lpfc_nvme_cancel_iocb(phba, piocb, 1538 ulpstatus, ulpWord4); 1539 else 1540 lpfc_sli_release_iocbq(phba, piocb); 1541 1542 } else if (piocb->iocb_cmpl) { 1543 piocb->iocb.ulpStatus = ulpstatus; 1544 piocb->iocb.un.ulpWord[4] = ulpWord4; 1545 (piocb->iocb_cmpl) (phba, piocb, piocb); 1546 } else { 1547 lpfc_sli_release_iocbq(phba, piocb); 1548 } 1549 } 1550 return; 1551 } 1552 1553 /** 1554 * lpfc_sli_iocb_cmd_type - Get the iocb type 1555 * @iocb_cmnd: iocb command code. 1556 * 1557 * This function is called by ring event handler function to get the iocb type. 1558 * This function translates the iocb command to an iocb command type used to 1559 * decide the final disposition of each completed IOCB. 1560 * The function returns 1561 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1562 * LPFC_SOL_IOCB if it is a solicited iocb completion 1563 * LPFC_ABORT_IOCB if it is an abort iocb 1564 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1565 * 1566 * The caller is not required to hold any lock. 1567 **/ 1568 static lpfc_iocb_type 1569 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1570 { 1571 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1572 1573 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1574 return 0; 1575 1576 switch (iocb_cmnd) { 1577 case CMD_XMIT_SEQUENCE_CR: 1578 case CMD_XMIT_SEQUENCE_CX: 1579 case CMD_XMIT_BCAST_CN: 1580 case CMD_XMIT_BCAST_CX: 1581 case CMD_ELS_REQUEST_CR: 1582 case CMD_ELS_REQUEST_CX: 1583 case CMD_CREATE_XRI_CR: 1584 case CMD_CREATE_XRI_CX: 1585 case CMD_GET_RPI_CN: 1586 case CMD_XMIT_ELS_RSP_CX: 1587 case CMD_GET_RPI_CR: 1588 case CMD_FCP_IWRITE_CR: 1589 case CMD_FCP_IWRITE_CX: 1590 case CMD_FCP_IREAD_CR: 1591 case CMD_FCP_IREAD_CX: 1592 case CMD_FCP_ICMND_CR: 1593 case CMD_FCP_ICMND_CX: 1594 case CMD_FCP_TSEND_CX: 1595 case CMD_FCP_TRSP_CX: 1596 case CMD_FCP_TRECEIVE_CX: 1597 case CMD_FCP_AUTO_TRSP_CX: 1598 case CMD_ADAPTER_MSG: 1599 case CMD_ADAPTER_DUMP: 1600 case CMD_XMIT_SEQUENCE64_CR: 1601 case CMD_XMIT_SEQUENCE64_CX: 1602 case CMD_XMIT_BCAST64_CN: 1603 case CMD_XMIT_BCAST64_CX: 1604 case CMD_ELS_REQUEST64_CR: 1605 case CMD_ELS_REQUEST64_CX: 1606 case CMD_FCP_IWRITE64_CR: 1607 case CMD_FCP_IWRITE64_CX: 1608 case CMD_FCP_IREAD64_CR: 1609 case CMD_FCP_IREAD64_CX: 1610 case CMD_FCP_ICMND64_CR: 1611 case CMD_FCP_ICMND64_CX: 1612 case CMD_FCP_TSEND64_CX: 1613 case CMD_FCP_TRSP64_CX: 1614 case CMD_FCP_TRECEIVE64_CX: 1615 case CMD_GEN_REQUEST64_CR: 1616 case CMD_GEN_REQUEST64_CX: 1617 case CMD_XMIT_ELS_RSP64_CX: 1618 case DSSCMD_IWRITE64_CR: 1619 case DSSCMD_IWRITE64_CX: 1620 case DSSCMD_IREAD64_CR: 1621 case DSSCMD_IREAD64_CX: 1622 case CMD_SEND_FRAME: 1623 type = LPFC_SOL_IOCB; 1624 break; 1625 case CMD_ABORT_XRI_CN: 1626 case CMD_ABORT_XRI_CX: 1627 case CMD_CLOSE_XRI_CN: 1628 case CMD_CLOSE_XRI_CX: 1629 case CMD_XRI_ABORTED_CX: 1630 case CMD_ABORT_MXRI64_CN: 1631 case CMD_XMIT_BLS_RSP64_CX: 1632 type = LPFC_ABORT_IOCB; 1633 break; 1634 case CMD_RCV_SEQUENCE_CX: 1635 case CMD_RCV_ELS_REQ_CX: 1636 case CMD_RCV_SEQUENCE64_CX: 1637 case CMD_RCV_ELS_REQ64_CX: 1638 case CMD_ASYNC_STATUS: 1639 case CMD_IOCB_RCV_SEQ64_CX: 1640 case CMD_IOCB_RCV_ELS64_CX: 1641 case CMD_IOCB_RCV_CONT64_CX: 1642 case CMD_IOCB_RET_XRI64_CX: 1643 type = LPFC_UNSOL_IOCB; 1644 break; 1645 case CMD_IOCB_XMIT_MSEQ64_CR: 1646 case CMD_IOCB_XMIT_MSEQ64_CX: 1647 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1648 case CMD_IOCB_RCV_ELS_LIST64_CX: 1649 case CMD_IOCB_CLOSE_EXTENDED_CN: 1650 case CMD_IOCB_ABORT_EXTENDED_CN: 1651 case CMD_IOCB_RET_HBQE64_CN: 1652 case CMD_IOCB_FCP_IBIDIR64_CR: 1653 case CMD_IOCB_FCP_IBIDIR64_CX: 1654 case CMD_IOCB_FCP_ITASKMGT64_CX: 1655 case CMD_IOCB_LOGENTRY_CN: 1656 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1657 printk("%s - Unhandled SLI-3 Command x%x\n", 1658 __func__, iocb_cmnd); 1659 type = LPFC_UNKNOWN_IOCB; 1660 break; 1661 default: 1662 type = LPFC_UNKNOWN_IOCB; 1663 break; 1664 } 1665 1666 return type; 1667 } 1668 1669 /** 1670 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1671 * @phba: Pointer to HBA context object. 1672 * 1673 * This function is called from SLI initialization code 1674 * to configure every ring of the HBA's SLI interface. The 1675 * caller is not required to hold any lock. This function issues 1676 * a config_ring mailbox command for each ring. 1677 * This function returns zero if successful else returns a negative 1678 * error code. 1679 **/ 1680 static int 1681 lpfc_sli_ring_map(struct lpfc_hba *phba) 1682 { 1683 struct lpfc_sli *psli = &phba->sli; 1684 LPFC_MBOXQ_t *pmb; 1685 MAILBOX_t *pmbox; 1686 int i, rc, ret = 0; 1687 1688 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1689 if (!pmb) 1690 return -ENOMEM; 1691 pmbox = &pmb->u.mb; 1692 phba->link_state = LPFC_INIT_MBX_CMDS; 1693 for (i = 0; i < psli->num_rings; i++) { 1694 lpfc_config_ring(phba, i, pmb); 1695 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1696 if (rc != MBX_SUCCESS) { 1697 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1698 "0446 Adapter failed to init (%d), " 1699 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1700 "ring %d\n", 1701 rc, pmbox->mbxCommand, 1702 pmbox->mbxStatus, i); 1703 phba->link_state = LPFC_HBA_ERROR; 1704 ret = -ENXIO; 1705 break; 1706 } 1707 } 1708 mempool_free(pmb, phba->mbox_mem_pool); 1709 return ret; 1710 } 1711 1712 /** 1713 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1714 * @phba: Pointer to HBA context object. 1715 * @pring: Pointer to driver SLI ring object. 1716 * @piocb: Pointer to the driver iocb object. 1717 * 1718 * The driver calls this function with the hbalock held for SLI3 ports or 1719 * the ring lock held for SLI4 ports. The function adds the 1720 * new iocb to txcmplq of the given ring. This function always returns 1721 * 0. If this function is called for ELS ring, this function checks if 1722 * there is a vport associated with the ELS command. This function also 1723 * starts els_tmofunc timer if this is an ELS command. 1724 **/ 1725 static int 1726 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1727 struct lpfc_iocbq *piocb) 1728 { 1729 if (phba->sli_rev == LPFC_SLI_REV4) 1730 lockdep_assert_held(&pring->ring_lock); 1731 else 1732 lockdep_assert_held(&phba->hbalock); 1733 1734 BUG_ON(!piocb); 1735 1736 list_add_tail(&piocb->list, &pring->txcmplq); 1737 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1738 pring->txcmplq_cnt++; 1739 1740 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1741 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1742 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1743 BUG_ON(!piocb->vport); 1744 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1745 mod_timer(&piocb->vport->els_tmofunc, 1746 jiffies + 1747 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1748 } 1749 1750 return 0; 1751 } 1752 1753 /** 1754 * lpfc_sli_ringtx_get - Get first element of the txq 1755 * @phba: Pointer to HBA context object. 1756 * @pring: Pointer to driver SLI ring object. 1757 * 1758 * This function is called with hbalock held to get next 1759 * iocb in txq of the given ring. If there is any iocb in 1760 * the txq, the function returns first iocb in the list after 1761 * removing the iocb from the list, else it returns NULL. 1762 **/ 1763 struct lpfc_iocbq * 1764 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1765 { 1766 struct lpfc_iocbq *cmd_iocb; 1767 1768 lockdep_assert_held(&phba->hbalock); 1769 1770 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1771 return cmd_iocb; 1772 } 1773 1774 /** 1775 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1776 * @phba: Pointer to HBA context object. 1777 * @pring: Pointer to driver SLI ring object. 1778 * 1779 * This function is called with hbalock held and the caller must post the 1780 * iocb without releasing the lock. If the caller releases the lock, 1781 * iocb slot returned by the function is not guaranteed to be available. 1782 * The function returns pointer to the next available iocb slot if there 1783 * is available slot in the ring, else it returns NULL. 1784 * If the get index of the ring is ahead of the put index, the function 1785 * will post an error attention event to the worker thread to take the 1786 * HBA to offline state. 1787 **/ 1788 static IOCB_t * 1789 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1790 { 1791 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1792 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1793 1794 lockdep_assert_held(&phba->hbalock); 1795 1796 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1797 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1798 pring->sli.sli3.next_cmdidx = 0; 1799 1800 if (unlikely(pring->sli.sli3.local_getidx == 1801 pring->sli.sli3.next_cmdidx)) { 1802 1803 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1804 1805 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1806 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1807 "0315 Ring %d issue: portCmdGet %d " 1808 "is bigger than cmd ring %d\n", 1809 pring->ringno, 1810 pring->sli.sli3.local_getidx, 1811 max_cmd_idx); 1812 1813 phba->link_state = LPFC_HBA_ERROR; 1814 /* 1815 * All error attention handlers are posted to 1816 * worker thread 1817 */ 1818 phba->work_ha |= HA_ERATT; 1819 phba->work_hs = HS_FFER3; 1820 1821 lpfc_worker_wake_up(phba); 1822 1823 return NULL; 1824 } 1825 1826 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1827 return NULL; 1828 } 1829 1830 return lpfc_cmd_iocb(phba, pring); 1831 } 1832 1833 /** 1834 * lpfc_sli_next_iotag - Get an iotag for the iocb 1835 * @phba: Pointer to HBA context object. 1836 * @iocbq: Pointer to driver iocb object. 1837 * 1838 * This function gets an iotag for the iocb. If there is no unused iotag and 1839 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1840 * array and assigns a new iotag. 1841 * The function returns the allocated iotag if successful, else returns zero. 1842 * Zero is not a valid iotag. 1843 * The caller is not required to hold any lock. 1844 **/ 1845 uint16_t 1846 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1847 { 1848 struct lpfc_iocbq **new_arr; 1849 struct lpfc_iocbq **old_arr; 1850 size_t new_len; 1851 struct lpfc_sli *psli = &phba->sli; 1852 uint16_t iotag; 1853 1854 spin_lock_irq(&phba->hbalock); 1855 iotag = psli->last_iotag; 1856 if(++iotag < psli->iocbq_lookup_len) { 1857 psli->last_iotag = iotag; 1858 psli->iocbq_lookup[iotag] = iocbq; 1859 spin_unlock_irq(&phba->hbalock); 1860 iocbq->iotag = iotag; 1861 return iotag; 1862 } else if (psli->iocbq_lookup_len < (0xffff 1863 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1864 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1865 spin_unlock_irq(&phba->hbalock); 1866 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 1867 GFP_KERNEL); 1868 if (new_arr) { 1869 spin_lock_irq(&phba->hbalock); 1870 old_arr = psli->iocbq_lookup; 1871 if (new_len <= psli->iocbq_lookup_len) { 1872 /* highly unprobable case */ 1873 kfree(new_arr); 1874 iotag = psli->last_iotag; 1875 if(++iotag < psli->iocbq_lookup_len) { 1876 psli->last_iotag = iotag; 1877 psli->iocbq_lookup[iotag] = iocbq; 1878 spin_unlock_irq(&phba->hbalock); 1879 iocbq->iotag = iotag; 1880 return iotag; 1881 } 1882 spin_unlock_irq(&phba->hbalock); 1883 return 0; 1884 } 1885 if (psli->iocbq_lookup) 1886 memcpy(new_arr, old_arr, 1887 ((psli->last_iotag + 1) * 1888 sizeof (struct lpfc_iocbq *))); 1889 psli->iocbq_lookup = new_arr; 1890 psli->iocbq_lookup_len = new_len; 1891 psli->last_iotag = iotag; 1892 psli->iocbq_lookup[iotag] = iocbq; 1893 spin_unlock_irq(&phba->hbalock); 1894 iocbq->iotag = iotag; 1895 kfree(old_arr); 1896 return iotag; 1897 } 1898 } else 1899 spin_unlock_irq(&phba->hbalock); 1900 1901 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1902 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1903 psli->last_iotag); 1904 1905 return 0; 1906 } 1907 1908 /** 1909 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1910 * @phba: Pointer to HBA context object. 1911 * @pring: Pointer to driver SLI ring object. 1912 * @iocb: Pointer to iocb slot in the ring. 1913 * @nextiocb: Pointer to driver iocb object which need to be 1914 * posted to firmware. 1915 * 1916 * This function is called to post a new iocb to the firmware. This 1917 * function copies the new iocb to ring iocb slot and updates the 1918 * ring pointers. It adds the new iocb to txcmplq if there is 1919 * a completion call back for this iocb else the function will free the 1920 * iocb object. The hbalock is asserted held in the code path calling 1921 * this routine. 1922 **/ 1923 static void 1924 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1925 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1926 { 1927 /* 1928 * Set up an iotag 1929 */ 1930 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1931 1932 1933 if (pring->ringno == LPFC_ELS_RING) { 1934 lpfc_debugfs_slow_ring_trc(phba, 1935 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1936 *(((uint32_t *) &nextiocb->iocb) + 4), 1937 *(((uint32_t *) &nextiocb->iocb) + 6), 1938 *(((uint32_t *) &nextiocb->iocb) + 7)); 1939 } 1940 1941 /* 1942 * Issue iocb command to adapter 1943 */ 1944 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1945 wmb(); 1946 pring->stats.iocb_cmd++; 1947 1948 /* 1949 * If there is no completion routine to call, we can release the 1950 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1951 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1952 */ 1953 if (nextiocb->iocb_cmpl) 1954 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1955 else 1956 __lpfc_sli_release_iocbq(phba, nextiocb); 1957 1958 /* 1959 * Let the HBA know what IOCB slot will be the next one the 1960 * driver will put a command into. 1961 */ 1962 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1963 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1964 } 1965 1966 /** 1967 * lpfc_sli_update_full_ring - Update the chip attention register 1968 * @phba: Pointer to HBA context object. 1969 * @pring: Pointer to driver SLI ring object. 1970 * 1971 * The caller is not required to hold any lock for calling this function. 1972 * This function updates the chip attention bits for the ring to inform firmware 1973 * that there are pending work to be done for this ring and requests an 1974 * interrupt when there is space available in the ring. This function is 1975 * called when the driver is unable to post more iocbs to the ring due 1976 * to unavailability of space in the ring. 1977 **/ 1978 static void 1979 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1980 { 1981 int ringno = pring->ringno; 1982 1983 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1984 1985 wmb(); 1986 1987 /* 1988 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1989 * The HBA will tell us when an IOCB entry is available. 1990 */ 1991 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1992 readl(phba->CAregaddr); /* flush */ 1993 1994 pring->stats.iocb_cmd_full++; 1995 } 1996 1997 /** 1998 * lpfc_sli_update_ring - Update chip attention register 1999 * @phba: Pointer to HBA context object. 2000 * @pring: Pointer to driver SLI ring object. 2001 * 2002 * This function updates the chip attention register bit for the 2003 * given ring to inform HBA that there is more work to be done 2004 * in this ring. The caller is not required to hold any lock. 2005 **/ 2006 static void 2007 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2008 { 2009 int ringno = pring->ringno; 2010 2011 /* 2012 * Tell the HBA that there is work to do in this ring. 2013 */ 2014 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2015 wmb(); 2016 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2017 readl(phba->CAregaddr); /* flush */ 2018 } 2019 } 2020 2021 /** 2022 * lpfc_sli_resume_iocb - Process iocbs in the txq 2023 * @phba: Pointer to HBA context object. 2024 * @pring: Pointer to driver SLI ring object. 2025 * 2026 * This function is called with hbalock held to post pending iocbs 2027 * in the txq to the firmware. This function is called when driver 2028 * detects space available in the ring. 2029 **/ 2030 static void 2031 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2032 { 2033 IOCB_t *iocb; 2034 struct lpfc_iocbq *nextiocb; 2035 2036 lockdep_assert_held(&phba->hbalock); 2037 2038 /* 2039 * Check to see if: 2040 * (a) there is anything on the txq to send 2041 * (b) link is up 2042 * (c) link attention events can be processed (fcp ring only) 2043 * (d) IOCB processing is not blocked by the outstanding mbox command. 2044 */ 2045 2046 if (lpfc_is_link_up(phba) && 2047 (!list_empty(&pring->txq)) && 2048 (pring->ringno != LPFC_FCP_RING || 2049 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2050 2051 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2052 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2053 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2054 2055 if (iocb) 2056 lpfc_sli_update_ring(phba, pring); 2057 else 2058 lpfc_sli_update_full_ring(phba, pring); 2059 } 2060 2061 return; 2062 } 2063 2064 /** 2065 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2066 * @phba: Pointer to HBA context object. 2067 * @hbqno: HBQ number. 2068 * 2069 * This function is called with hbalock held to get the next 2070 * available slot for the given HBQ. If there is free slot 2071 * available for the HBQ it will return pointer to the next available 2072 * HBQ entry else it will return NULL. 2073 **/ 2074 static struct lpfc_hbq_entry * 2075 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2076 { 2077 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2078 2079 lockdep_assert_held(&phba->hbalock); 2080 2081 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2082 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2083 hbqp->next_hbqPutIdx = 0; 2084 2085 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2086 uint32_t raw_index = phba->hbq_get[hbqno]; 2087 uint32_t getidx = le32_to_cpu(raw_index); 2088 2089 hbqp->local_hbqGetIdx = getidx; 2090 2091 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2092 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2093 "1802 HBQ %d: local_hbqGetIdx " 2094 "%u is > than hbqp->entry_count %u\n", 2095 hbqno, hbqp->local_hbqGetIdx, 2096 hbqp->entry_count); 2097 2098 phba->link_state = LPFC_HBA_ERROR; 2099 return NULL; 2100 } 2101 2102 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2103 return NULL; 2104 } 2105 2106 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2107 hbqp->hbqPutIdx; 2108 } 2109 2110 /** 2111 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2112 * @phba: Pointer to HBA context object. 2113 * 2114 * This function is called with no lock held to free all the 2115 * hbq buffers while uninitializing the SLI interface. It also 2116 * frees the HBQ buffers returned by the firmware but not yet 2117 * processed by the upper layers. 2118 **/ 2119 void 2120 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2121 { 2122 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2123 struct hbq_dmabuf *hbq_buf; 2124 unsigned long flags; 2125 int i, hbq_count; 2126 2127 hbq_count = lpfc_sli_hbq_count(); 2128 /* Return all memory used by all HBQs */ 2129 spin_lock_irqsave(&phba->hbalock, flags); 2130 for (i = 0; i < hbq_count; ++i) { 2131 list_for_each_entry_safe(dmabuf, next_dmabuf, 2132 &phba->hbqs[i].hbq_buffer_list, list) { 2133 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2134 list_del(&hbq_buf->dbuf.list); 2135 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2136 } 2137 phba->hbqs[i].buffer_count = 0; 2138 } 2139 2140 /* Mark the HBQs not in use */ 2141 phba->hbq_in_use = 0; 2142 spin_unlock_irqrestore(&phba->hbalock, flags); 2143 } 2144 2145 /** 2146 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2147 * @phba: Pointer to HBA context object. 2148 * @hbqno: HBQ number. 2149 * @hbq_buf: Pointer to HBQ buffer. 2150 * 2151 * This function is called with the hbalock held to post a 2152 * hbq buffer to the firmware. If the function finds an empty 2153 * slot in the HBQ, it will post the buffer. The function will return 2154 * pointer to the hbq entry if it successfully post the buffer 2155 * else it will return NULL. 2156 **/ 2157 static int 2158 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2159 struct hbq_dmabuf *hbq_buf) 2160 { 2161 lockdep_assert_held(&phba->hbalock); 2162 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2163 } 2164 2165 /** 2166 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2167 * @phba: Pointer to HBA context object. 2168 * @hbqno: HBQ number. 2169 * @hbq_buf: Pointer to HBQ buffer. 2170 * 2171 * This function is called with the hbalock held to post a hbq buffer to the 2172 * firmware. If the function finds an empty slot in the HBQ, it will post the 2173 * buffer and place it on the hbq_buffer_list. The function will return zero if 2174 * it successfully post the buffer else it will return an error. 2175 **/ 2176 static int 2177 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2178 struct hbq_dmabuf *hbq_buf) 2179 { 2180 struct lpfc_hbq_entry *hbqe; 2181 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2182 2183 lockdep_assert_held(&phba->hbalock); 2184 /* Get next HBQ entry slot to use */ 2185 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2186 if (hbqe) { 2187 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2188 2189 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2190 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2191 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2192 hbqe->bde.tus.f.bdeFlags = 0; 2193 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2194 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2195 /* Sync SLIM */ 2196 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2197 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2198 /* flush */ 2199 readl(phba->hbq_put + hbqno); 2200 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2201 return 0; 2202 } else 2203 return -ENOMEM; 2204 } 2205 2206 /** 2207 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2208 * @phba: Pointer to HBA context object. 2209 * @hbqno: HBQ number. 2210 * @hbq_buf: Pointer to HBQ buffer. 2211 * 2212 * This function is called with the hbalock held to post an RQE to the SLI4 2213 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2214 * the hbq_buffer_list and return zero, otherwise it will return an error. 2215 **/ 2216 static int 2217 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2218 struct hbq_dmabuf *hbq_buf) 2219 { 2220 int rc; 2221 struct lpfc_rqe hrqe; 2222 struct lpfc_rqe drqe; 2223 struct lpfc_queue *hrq; 2224 struct lpfc_queue *drq; 2225 2226 if (hbqno != LPFC_ELS_HBQ) 2227 return 1; 2228 hrq = phba->sli4_hba.hdr_rq; 2229 drq = phba->sli4_hba.dat_rq; 2230 2231 lockdep_assert_held(&phba->hbalock); 2232 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2233 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2234 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2235 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2236 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2237 if (rc < 0) 2238 return rc; 2239 hbq_buf->tag = (rc | (hbqno << 16)); 2240 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2241 return 0; 2242 } 2243 2244 /* HBQ for ELS and CT traffic. */ 2245 static struct lpfc_hbq_init lpfc_els_hbq = { 2246 .rn = 1, 2247 .entry_count = 256, 2248 .mask_count = 0, 2249 .profile = 0, 2250 .ring_mask = (1 << LPFC_ELS_RING), 2251 .buffer_count = 0, 2252 .init_count = 40, 2253 .add_count = 40, 2254 }; 2255 2256 /* Array of HBQs */ 2257 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2258 &lpfc_els_hbq, 2259 }; 2260 2261 /** 2262 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2263 * @phba: Pointer to HBA context object. 2264 * @hbqno: HBQ number. 2265 * @count: Number of HBQ buffers to be posted. 2266 * 2267 * This function is called with no lock held to post more hbq buffers to the 2268 * given HBQ. The function returns the number of HBQ buffers successfully 2269 * posted. 2270 **/ 2271 static int 2272 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2273 { 2274 uint32_t i, posted = 0; 2275 unsigned long flags; 2276 struct hbq_dmabuf *hbq_buffer; 2277 LIST_HEAD(hbq_buf_list); 2278 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2279 return 0; 2280 2281 if ((phba->hbqs[hbqno].buffer_count + count) > 2282 lpfc_hbq_defs[hbqno]->entry_count) 2283 count = lpfc_hbq_defs[hbqno]->entry_count - 2284 phba->hbqs[hbqno].buffer_count; 2285 if (!count) 2286 return 0; 2287 /* Allocate HBQ entries */ 2288 for (i = 0; i < count; i++) { 2289 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2290 if (!hbq_buffer) 2291 break; 2292 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2293 } 2294 /* Check whether HBQ is still in use */ 2295 spin_lock_irqsave(&phba->hbalock, flags); 2296 if (!phba->hbq_in_use) 2297 goto err; 2298 while (!list_empty(&hbq_buf_list)) { 2299 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2300 dbuf.list); 2301 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2302 (hbqno << 16)); 2303 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2304 phba->hbqs[hbqno].buffer_count++; 2305 posted++; 2306 } else 2307 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2308 } 2309 spin_unlock_irqrestore(&phba->hbalock, flags); 2310 return posted; 2311 err: 2312 spin_unlock_irqrestore(&phba->hbalock, flags); 2313 while (!list_empty(&hbq_buf_list)) { 2314 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2315 dbuf.list); 2316 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2317 } 2318 return 0; 2319 } 2320 2321 /** 2322 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2323 * @phba: Pointer to HBA context object. 2324 * @qno: HBQ number. 2325 * 2326 * This function posts more buffers to the HBQ. This function 2327 * is called with no lock held. The function returns the number of HBQ entries 2328 * successfully allocated. 2329 **/ 2330 int 2331 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2332 { 2333 if (phba->sli_rev == LPFC_SLI_REV4) 2334 return 0; 2335 else 2336 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2337 lpfc_hbq_defs[qno]->add_count); 2338 } 2339 2340 /** 2341 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2342 * @phba: Pointer to HBA context object. 2343 * @qno: HBQ queue number. 2344 * 2345 * This function is called from SLI initialization code path with 2346 * no lock held to post initial HBQ buffers to firmware. The 2347 * function returns the number of HBQ entries successfully allocated. 2348 **/ 2349 static int 2350 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2351 { 2352 if (phba->sli_rev == LPFC_SLI_REV4) 2353 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2354 lpfc_hbq_defs[qno]->entry_count); 2355 else 2356 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2357 lpfc_hbq_defs[qno]->init_count); 2358 } 2359 2360 /* 2361 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2362 * 2363 * This function removes the first hbq buffer on an hbq list and returns a 2364 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2365 **/ 2366 static struct hbq_dmabuf * 2367 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2368 { 2369 struct lpfc_dmabuf *d_buf; 2370 2371 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2372 if (!d_buf) 2373 return NULL; 2374 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2375 } 2376 2377 /** 2378 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2379 * @phba: Pointer to HBA context object. 2380 * @hrq: HBQ number. 2381 * 2382 * This function removes the first RQ buffer on an RQ buffer list and returns a 2383 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2384 **/ 2385 static struct rqb_dmabuf * 2386 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2387 { 2388 struct lpfc_dmabuf *h_buf; 2389 struct lpfc_rqb *rqbp; 2390 2391 rqbp = hrq->rqbp; 2392 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2393 struct lpfc_dmabuf, list); 2394 if (!h_buf) 2395 return NULL; 2396 rqbp->buffer_count--; 2397 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2398 } 2399 2400 /** 2401 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2402 * @phba: Pointer to HBA context object. 2403 * @tag: Tag of the hbq buffer. 2404 * 2405 * This function searches for the hbq buffer associated with the given tag in 2406 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2407 * otherwise it returns NULL. 2408 **/ 2409 static struct hbq_dmabuf * 2410 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2411 { 2412 struct lpfc_dmabuf *d_buf; 2413 struct hbq_dmabuf *hbq_buf; 2414 uint32_t hbqno; 2415 2416 hbqno = tag >> 16; 2417 if (hbqno >= LPFC_MAX_HBQS) 2418 return NULL; 2419 2420 spin_lock_irq(&phba->hbalock); 2421 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2422 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2423 if (hbq_buf->tag == tag) { 2424 spin_unlock_irq(&phba->hbalock); 2425 return hbq_buf; 2426 } 2427 } 2428 spin_unlock_irq(&phba->hbalock); 2429 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2430 "1803 Bad hbq tag. Data: x%x x%x\n", 2431 tag, phba->hbqs[tag >> 16].buffer_count); 2432 return NULL; 2433 } 2434 2435 /** 2436 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2437 * @phba: Pointer to HBA context object. 2438 * @hbq_buffer: Pointer to HBQ buffer. 2439 * 2440 * This function is called with hbalock. This function gives back 2441 * the hbq buffer to firmware. If the HBQ does not have space to 2442 * post the buffer, it will free the buffer. 2443 **/ 2444 void 2445 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2446 { 2447 uint32_t hbqno; 2448 2449 if (hbq_buffer) { 2450 hbqno = hbq_buffer->tag >> 16; 2451 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2452 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2453 } 2454 } 2455 2456 /** 2457 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2458 * @mbxCommand: mailbox command code. 2459 * 2460 * This function is called by the mailbox event handler function to verify 2461 * that the completed mailbox command is a legitimate mailbox command. If the 2462 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2463 * and the mailbox event handler will take the HBA offline. 2464 **/ 2465 static int 2466 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2467 { 2468 uint8_t ret; 2469 2470 switch (mbxCommand) { 2471 case MBX_LOAD_SM: 2472 case MBX_READ_NV: 2473 case MBX_WRITE_NV: 2474 case MBX_WRITE_VPARMS: 2475 case MBX_RUN_BIU_DIAG: 2476 case MBX_INIT_LINK: 2477 case MBX_DOWN_LINK: 2478 case MBX_CONFIG_LINK: 2479 case MBX_CONFIG_RING: 2480 case MBX_RESET_RING: 2481 case MBX_READ_CONFIG: 2482 case MBX_READ_RCONFIG: 2483 case MBX_READ_SPARM: 2484 case MBX_READ_STATUS: 2485 case MBX_READ_RPI: 2486 case MBX_READ_XRI: 2487 case MBX_READ_REV: 2488 case MBX_READ_LNK_STAT: 2489 case MBX_REG_LOGIN: 2490 case MBX_UNREG_LOGIN: 2491 case MBX_CLEAR_LA: 2492 case MBX_DUMP_MEMORY: 2493 case MBX_DUMP_CONTEXT: 2494 case MBX_RUN_DIAGS: 2495 case MBX_RESTART: 2496 case MBX_UPDATE_CFG: 2497 case MBX_DOWN_LOAD: 2498 case MBX_DEL_LD_ENTRY: 2499 case MBX_RUN_PROGRAM: 2500 case MBX_SET_MASK: 2501 case MBX_SET_VARIABLE: 2502 case MBX_UNREG_D_ID: 2503 case MBX_KILL_BOARD: 2504 case MBX_CONFIG_FARP: 2505 case MBX_BEACON: 2506 case MBX_LOAD_AREA: 2507 case MBX_RUN_BIU_DIAG64: 2508 case MBX_CONFIG_PORT: 2509 case MBX_READ_SPARM64: 2510 case MBX_READ_RPI64: 2511 case MBX_REG_LOGIN64: 2512 case MBX_READ_TOPOLOGY: 2513 case MBX_WRITE_WWN: 2514 case MBX_SET_DEBUG: 2515 case MBX_LOAD_EXP_ROM: 2516 case MBX_ASYNCEVT_ENABLE: 2517 case MBX_REG_VPI: 2518 case MBX_UNREG_VPI: 2519 case MBX_HEARTBEAT: 2520 case MBX_PORT_CAPABILITIES: 2521 case MBX_PORT_IOV_CONTROL: 2522 case MBX_SLI4_CONFIG: 2523 case MBX_SLI4_REQ_FTRS: 2524 case MBX_REG_FCFI: 2525 case MBX_UNREG_FCFI: 2526 case MBX_REG_VFI: 2527 case MBX_UNREG_VFI: 2528 case MBX_INIT_VPI: 2529 case MBX_INIT_VFI: 2530 case MBX_RESUME_RPI: 2531 case MBX_READ_EVENT_LOG_STATUS: 2532 case MBX_READ_EVENT_LOG: 2533 case MBX_SECURITY_MGMT: 2534 case MBX_AUTH_PORT: 2535 case MBX_ACCESS_VDATA: 2536 ret = mbxCommand; 2537 break; 2538 default: 2539 ret = MBX_SHUTDOWN; 2540 break; 2541 } 2542 return ret; 2543 } 2544 2545 /** 2546 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2547 * @phba: Pointer to HBA context object. 2548 * @pmboxq: Pointer to mailbox command. 2549 * 2550 * This is completion handler function for mailbox commands issued from 2551 * lpfc_sli_issue_mbox_wait function. This function is called by the 2552 * mailbox event handler function with no lock held. This function 2553 * will wake up thread waiting on the wait queue pointed by context1 2554 * of the mailbox. 2555 **/ 2556 void 2557 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2558 { 2559 unsigned long drvr_flag; 2560 struct completion *pmbox_done; 2561 2562 /* 2563 * If pmbox_done is empty, the driver thread gave up waiting and 2564 * continued running. 2565 */ 2566 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2567 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2568 pmbox_done = (struct completion *)pmboxq->context3; 2569 if (pmbox_done) 2570 complete(pmbox_done); 2571 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2572 return; 2573 } 2574 2575 static void 2576 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2577 { 2578 unsigned long iflags; 2579 2580 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2581 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2582 spin_lock_irqsave(&ndlp->lock, iflags); 2583 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2584 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2585 spin_unlock_irqrestore(&ndlp->lock, iflags); 2586 } 2587 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2588 } 2589 2590 /** 2591 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2592 * @phba: Pointer to HBA context object. 2593 * @pmb: Pointer to mailbox object. 2594 * 2595 * This function is the default mailbox completion handler. It 2596 * frees the memory resources associated with the completed mailbox 2597 * command. If the completed command is a REG_LOGIN mailbox command, 2598 * this function will issue a UREG_LOGIN to re-claim the RPI. 2599 **/ 2600 void 2601 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2602 { 2603 struct lpfc_vport *vport = pmb->vport; 2604 struct lpfc_dmabuf *mp; 2605 struct lpfc_nodelist *ndlp; 2606 struct Scsi_Host *shost; 2607 uint16_t rpi, vpi; 2608 int rc; 2609 2610 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2611 2612 if (mp) { 2613 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2614 kfree(mp); 2615 } 2616 2617 /* 2618 * If a REG_LOGIN succeeded after node is destroyed or node 2619 * is in re-discovery driver need to cleanup the RPI. 2620 */ 2621 if (!(phba->pport->load_flag & FC_UNLOADING) && 2622 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2623 !pmb->u.mb.mbxStatus) { 2624 rpi = pmb->u.mb.un.varWords[0]; 2625 vpi = pmb->u.mb.un.varRegLogin.vpi; 2626 if (phba->sli_rev == LPFC_SLI_REV4) 2627 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2628 lpfc_unreg_login(phba, vpi, rpi, pmb); 2629 pmb->vport = vport; 2630 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2631 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2632 if (rc != MBX_NOT_FINISHED) 2633 return; 2634 } 2635 2636 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2637 !(phba->pport->load_flag & FC_UNLOADING) && 2638 !pmb->u.mb.mbxStatus) { 2639 shost = lpfc_shost_from_vport(vport); 2640 spin_lock_irq(shost->host_lock); 2641 vport->vpi_state |= LPFC_VPI_REGISTERED; 2642 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2643 spin_unlock_irq(shost->host_lock); 2644 } 2645 2646 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2647 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2648 lpfc_nlp_put(ndlp); 2649 pmb->ctx_buf = NULL; 2650 pmb->ctx_ndlp = NULL; 2651 } 2652 2653 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2654 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2655 2656 /* Check to see if there are any deferred events to process */ 2657 if (ndlp) { 2658 lpfc_printf_vlog( 2659 vport, 2660 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2661 "1438 UNREG cmpl deferred mbox x%x " 2662 "on NPort x%x Data: x%x x%x %px x%x x%x\n", 2663 ndlp->nlp_rpi, ndlp->nlp_DID, 2664 ndlp->nlp_flag, ndlp->nlp_defer_did, 2665 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2666 2667 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2668 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2669 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2670 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2671 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2672 } else { 2673 __lpfc_sli_rpi_release(vport, ndlp); 2674 } 2675 2676 /* The unreg_login mailbox is complete and had a 2677 * reference that has to be released. The PLOGI 2678 * got its own ref. 2679 */ 2680 lpfc_nlp_put(ndlp); 2681 pmb->ctx_ndlp = NULL; 2682 } 2683 } 2684 2685 /* Check security permission status on INIT_LINK mailbox command */ 2686 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2687 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2688 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2689 "2860 SLI authentication is required " 2690 "for INIT_LINK but has not done yet\n"); 2691 2692 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2693 lpfc_sli4_mbox_cmd_free(phba, pmb); 2694 else 2695 mempool_free(pmb, phba->mbox_mem_pool); 2696 } 2697 /** 2698 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2699 * @phba: Pointer to HBA context object. 2700 * @pmb: Pointer to mailbox object. 2701 * 2702 * This function is the unreg rpi mailbox completion handler. It 2703 * frees the memory resources associated with the completed mailbox 2704 * command. An additional reference is put on the ndlp to prevent 2705 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2706 * the unreg mailbox command completes, this routine puts the 2707 * reference back. 2708 * 2709 **/ 2710 void 2711 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2712 { 2713 struct lpfc_vport *vport = pmb->vport; 2714 struct lpfc_nodelist *ndlp; 2715 2716 ndlp = pmb->ctx_ndlp; 2717 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2718 if (phba->sli_rev == LPFC_SLI_REV4 && 2719 (bf_get(lpfc_sli_intf_if_type, 2720 &phba->sli4_hba.sli_intf) >= 2721 LPFC_SLI_INTF_IF_TYPE_2)) { 2722 if (ndlp) { 2723 lpfc_printf_vlog( 2724 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2725 "0010 UNREG_LOGIN vpi:%x " 2726 "rpi:%x DID:%x defer x%x flg x%x " 2727 "%px\n", 2728 vport->vpi, ndlp->nlp_rpi, 2729 ndlp->nlp_DID, ndlp->nlp_defer_did, 2730 ndlp->nlp_flag, 2731 ndlp); 2732 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2733 2734 /* Check to see if there are any deferred 2735 * events to process 2736 */ 2737 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2738 (ndlp->nlp_defer_did != 2739 NLP_EVT_NOTHING_PENDING)) { 2740 lpfc_printf_vlog( 2741 vport, KERN_INFO, LOG_DISCOVERY, 2742 "4111 UNREG cmpl deferred " 2743 "clr x%x on " 2744 "NPort x%x Data: x%x x%px\n", 2745 ndlp->nlp_rpi, ndlp->nlp_DID, 2746 ndlp->nlp_defer_did, ndlp); 2747 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2748 ndlp->nlp_defer_did = 2749 NLP_EVT_NOTHING_PENDING; 2750 lpfc_issue_els_plogi( 2751 vport, ndlp->nlp_DID, 0); 2752 } else { 2753 __lpfc_sli_rpi_release(vport, ndlp); 2754 } 2755 2756 lpfc_nlp_put(ndlp); 2757 } 2758 } 2759 } 2760 2761 mempool_free(pmb, phba->mbox_mem_pool); 2762 } 2763 2764 /** 2765 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2766 * @phba: Pointer to HBA context object. 2767 * 2768 * This function is called with no lock held. This function processes all 2769 * the completed mailbox commands and gives it to upper layers. The interrupt 2770 * service routine processes mailbox completion interrupt and adds completed 2771 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2772 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2773 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2774 * function returns the mailbox commands to the upper layer by calling the 2775 * completion handler function of each mailbox. 2776 **/ 2777 int 2778 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2779 { 2780 MAILBOX_t *pmbox; 2781 LPFC_MBOXQ_t *pmb; 2782 int rc; 2783 LIST_HEAD(cmplq); 2784 2785 phba->sli.slistat.mbox_event++; 2786 2787 /* Get all completed mailboxe buffers into the cmplq */ 2788 spin_lock_irq(&phba->hbalock); 2789 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2790 spin_unlock_irq(&phba->hbalock); 2791 2792 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2793 do { 2794 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2795 if (pmb == NULL) 2796 break; 2797 2798 pmbox = &pmb->u.mb; 2799 2800 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2801 if (pmb->vport) { 2802 lpfc_debugfs_disc_trc(pmb->vport, 2803 LPFC_DISC_TRC_MBOX_VPORT, 2804 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2805 (uint32_t)pmbox->mbxCommand, 2806 pmbox->un.varWords[0], 2807 pmbox->un.varWords[1]); 2808 } 2809 else { 2810 lpfc_debugfs_disc_trc(phba->pport, 2811 LPFC_DISC_TRC_MBOX, 2812 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2813 (uint32_t)pmbox->mbxCommand, 2814 pmbox->un.varWords[0], 2815 pmbox->un.varWords[1]); 2816 } 2817 } 2818 2819 /* 2820 * It is a fatal error if unknown mbox command completion. 2821 */ 2822 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2823 MBX_SHUTDOWN) { 2824 /* Unknown mailbox command compl */ 2825 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2826 "(%d):0323 Unknown Mailbox command " 2827 "x%x (x%x/x%x) Cmpl\n", 2828 pmb->vport ? pmb->vport->vpi : 2829 LPFC_VPORT_UNKNOWN, 2830 pmbox->mbxCommand, 2831 lpfc_sli_config_mbox_subsys_get(phba, 2832 pmb), 2833 lpfc_sli_config_mbox_opcode_get(phba, 2834 pmb)); 2835 phba->link_state = LPFC_HBA_ERROR; 2836 phba->work_hs = HS_FFER3; 2837 lpfc_handle_eratt(phba); 2838 continue; 2839 } 2840 2841 if (pmbox->mbxStatus) { 2842 phba->sli.slistat.mbox_stat_err++; 2843 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2844 /* Mbox cmd cmpl error - RETRYing */ 2845 lpfc_printf_log(phba, KERN_INFO, 2846 LOG_MBOX | LOG_SLI, 2847 "(%d):0305 Mbox cmd cmpl " 2848 "error - RETRYing Data: x%x " 2849 "(x%x/x%x) x%x x%x x%x\n", 2850 pmb->vport ? pmb->vport->vpi : 2851 LPFC_VPORT_UNKNOWN, 2852 pmbox->mbxCommand, 2853 lpfc_sli_config_mbox_subsys_get(phba, 2854 pmb), 2855 lpfc_sli_config_mbox_opcode_get(phba, 2856 pmb), 2857 pmbox->mbxStatus, 2858 pmbox->un.varWords[0], 2859 pmb->vport ? pmb->vport->port_state : 2860 LPFC_VPORT_UNKNOWN); 2861 pmbox->mbxStatus = 0; 2862 pmbox->mbxOwner = OWN_HOST; 2863 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2864 if (rc != MBX_NOT_FINISHED) 2865 continue; 2866 } 2867 } 2868 2869 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2870 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2871 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 2872 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2873 "x%x x%x x%x\n", 2874 pmb->vport ? pmb->vport->vpi : 0, 2875 pmbox->mbxCommand, 2876 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2877 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2878 pmb->mbox_cmpl, 2879 *((uint32_t *) pmbox), 2880 pmbox->un.varWords[0], 2881 pmbox->un.varWords[1], 2882 pmbox->un.varWords[2], 2883 pmbox->un.varWords[3], 2884 pmbox->un.varWords[4], 2885 pmbox->un.varWords[5], 2886 pmbox->un.varWords[6], 2887 pmbox->un.varWords[7], 2888 pmbox->un.varWords[8], 2889 pmbox->un.varWords[9], 2890 pmbox->un.varWords[10]); 2891 2892 if (pmb->mbox_cmpl) 2893 pmb->mbox_cmpl(phba,pmb); 2894 } while (1); 2895 return 0; 2896 } 2897 2898 /** 2899 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2900 * @phba: Pointer to HBA context object. 2901 * @pring: Pointer to driver SLI ring object. 2902 * @tag: buffer tag. 2903 * 2904 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2905 * is set in the tag the buffer is posted for a particular exchange, 2906 * the function will return the buffer without replacing the buffer. 2907 * If the buffer is for unsolicited ELS or CT traffic, this function 2908 * returns the buffer and also posts another buffer to the firmware. 2909 **/ 2910 static struct lpfc_dmabuf * 2911 lpfc_sli_get_buff(struct lpfc_hba *phba, 2912 struct lpfc_sli_ring *pring, 2913 uint32_t tag) 2914 { 2915 struct hbq_dmabuf *hbq_entry; 2916 2917 if (tag & QUE_BUFTAG_BIT) 2918 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2919 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2920 if (!hbq_entry) 2921 return NULL; 2922 return &hbq_entry->dbuf; 2923 } 2924 2925 /** 2926 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 2927 * containing a NVME LS request. 2928 * @phba: pointer to lpfc hba data structure. 2929 * @piocb: pointer to the iocbq struct representing the sequence starting 2930 * frame. 2931 * 2932 * This routine initially validates the NVME LS, validates there is a login 2933 * with the port that sent the LS, and then calls the appropriate nvme host 2934 * or target LS request handler. 2935 **/ 2936 static void 2937 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 2938 { 2939 struct lpfc_nodelist *ndlp; 2940 struct lpfc_dmabuf *d_buf; 2941 struct hbq_dmabuf *nvmebuf; 2942 struct fc_frame_header *fc_hdr; 2943 struct lpfc_async_xchg_ctx *axchg = NULL; 2944 char *failwhy = NULL; 2945 uint32_t oxid, sid, did, fctl, size; 2946 int ret = 1; 2947 2948 d_buf = piocb->context2; 2949 2950 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2951 fc_hdr = nvmebuf->hbuf.virt; 2952 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 2953 sid = sli4_sid_from_fc_hdr(fc_hdr); 2954 did = sli4_did_from_fc_hdr(fc_hdr); 2955 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 2956 fc_hdr->fh_f_ctl[1] << 8 | 2957 fc_hdr->fh_f_ctl[2]); 2958 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 2959 2960 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 2961 oxid, size, sid); 2962 2963 if (phba->pport->load_flag & FC_UNLOADING) { 2964 failwhy = "Driver Unloading"; 2965 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 2966 failwhy = "NVME FC4 Disabled"; 2967 } else if (!phba->nvmet_support && !phba->pport->localport) { 2968 failwhy = "No Localport"; 2969 } else if (phba->nvmet_support && !phba->targetport) { 2970 failwhy = "No Targetport"; 2971 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 2972 failwhy = "Bad NVME LS R_CTL"; 2973 } else if (unlikely((fctl & 0x00FF0000) != 2974 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 2975 failwhy = "Bad NVME LS F_CTL"; 2976 } else { 2977 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 2978 if (!axchg) 2979 failwhy = "No CTX memory"; 2980 } 2981 2982 if (unlikely(failwhy)) { 2983 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2984 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 2985 sid, oxid, failwhy); 2986 goto out_fail; 2987 } 2988 2989 /* validate the source of the LS is logged in */ 2990 ndlp = lpfc_findnode_did(phba->pport, sid); 2991 if (!ndlp || 2992 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2993 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2994 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2995 "6216 NVME Unsol rcv: No ndlp: " 2996 "NPort_ID x%x oxid x%x\n", 2997 sid, oxid); 2998 goto out_fail; 2999 } 3000 3001 axchg->phba = phba; 3002 axchg->ndlp = ndlp; 3003 axchg->size = size; 3004 axchg->oxid = oxid; 3005 axchg->sid = sid; 3006 axchg->wqeq = NULL; 3007 axchg->state = LPFC_NVME_STE_LS_RCV; 3008 axchg->entry_cnt = 1; 3009 axchg->rqb_buffer = (void *)nvmebuf; 3010 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3011 axchg->payload = nvmebuf->dbuf.virt; 3012 INIT_LIST_HEAD(&axchg->list); 3013 3014 if (phba->nvmet_support) { 3015 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3016 spin_lock_irq(&ndlp->lock); 3017 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3018 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3019 spin_unlock_irq(&ndlp->lock); 3020 3021 /* This reference is a single occurrence to hold the 3022 * node valid until the nvmet transport calls 3023 * host_release. 3024 */ 3025 if (!lpfc_nlp_get(ndlp)) 3026 goto out_fail; 3027 3028 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3029 "6206 NVMET unsol ls_req ndlp %p " 3030 "DID x%x xflags x%x refcnt %d\n", 3031 ndlp, ndlp->nlp_DID, 3032 ndlp->fc4_xpt_flags, 3033 kref_read(&ndlp->kref)); 3034 } else { 3035 spin_unlock_irq(&ndlp->lock); 3036 } 3037 } else { 3038 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3039 } 3040 3041 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3042 if (!ret) 3043 return; 3044 3045 out_fail: 3046 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3047 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3048 "NVMe%s handler failed %d\n", 3049 did, sid, oxid, 3050 (phba->nvmet_support) ? "T" : "I", ret); 3051 3052 /* recycle receive buffer */ 3053 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3054 3055 /* If start of new exchange, abort it */ 3056 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3057 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3058 3059 if (ret) 3060 kfree(axchg); 3061 } 3062 3063 /** 3064 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3065 * @phba: Pointer to HBA context object. 3066 * @pring: Pointer to driver SLI ring object. 3067 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3068 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3069 * @fch_type: the type for the first frame of the sequence. 3070 * 3071 * This function is called with no lock held. This function uses the r_ctl and 3072 * type of the received sequence to find the correct callback function to call 3073 * to process the sequence. 3074 **/ 3075 static int 3076 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3077 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3078 uint32_t fch_type) 3079 { 3080 int i; 3081 3082 switch (fch_type) { 3083 case FC_TYPE_NVME: 3084 lpfc_nvme_unsol_ls_handler(phba, saveq); 3085 return 1; 3086 default: 3087 break; 3088 } 3089 3090 /* unSolicited Responses */ 3091 if (pring->prt[0].profile) { 3092 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3093 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3094 saveq); 3095 return 1; 3096 } 3097 /* We must search, based on rctl / type 3098 for the right routine */ 3099 for (i = 0; i < pring->num_mask; i++) { 3100 if ((pring->prt[i].rctl == fch_r_ctl) && 3101 (pring->prt[i].type == fch_type)) { 3102 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3103 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3104 (phba, pring, saveq); 3105 return 1; 3106 } 3107 } 3108 return 0; 3109 } 3110 3111 /** 3112 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3113 * @phba: Pointer to HBA context object. 3114 * @pring: Pointer to driver SLI ring object. 3115 * @saveq: Pointer to the unsolicited iocb. 3116 * 3117 * This function is called with no lock held by the ring event handler 3118 * when there is an unsolicited iocb posted to the response ring by the 3119 * firmware. This function gets the buffer associated with the iocbs 3120 * and calls the event handler for the ring. This function handles both 3121 * qring buffers and hbq buffers. 3122 * When the function returns 1 the caller can free the iocb object otherwise 3123 * upper layer functions will free the iocb objects. 3124 **/ 3125 static int 3126 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3127 struct lpfc_iocbq *saveq) 3128 { 3129 IOCB_t * irsp; 3130 WORD5 * w5p; 3131 uint32_t Rctl, Type; 3132 struct lpfc_iocbq *iocbq; 3133 struct lpfc_dmabuf *dmzbuf; 3134 3135 irsp = &(saveq->iocb); 3136 3137 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3138 if (pring->lpfc_sli_rcv_async_status) 3139 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3140 else 3141 lpfc_printf_log(phba, 3142 KERN_WARNING, 3143 LOG_SLI, 3144 "0316 Ring %d handler: unexpected " 3145 "ASYNC_STATUS iocb received evt_code " 3146 "0x%x\n", 3147 pring->ringno, 3148 irsp->un.asyncstat.evt_code); 3149 return 1; 3150 } 3151 3152 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3153 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3154 if (irsp->ulpBdeCount > 0) { 3155 dmzbuf = lpfc_sli_get_buff(phba, pring, 3156 irsp->un.ulpWord[3]); 3157 lpfc_in_buf_free(phba, dmzbuf); 3158 } 3159 3160 if (irsp->ulpBdeCount > 1) { 3161 dmzbuf = lpfc_sli_get_buff(phba, pring, 3162 irsp->unsli3.sli3Words[3]); 3163 lpfc_in_buf_free(phba, dmzbuf); 3164 } 3165 3166 if (irsp->ulpBdeCount > 2) { 3167 dmzbuf = lpfc_sli_get_buff(phba, pring, 3168 irsp->unsli3.sli3Words[7]); 3169 lpfc_in_buf_free(phba, dmzbuf); 3170 } 3171 3172 return 1; 3173 } 3174 3175 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3176 if (irsp->ulpBdeCount != 0) { 3177 saveq->context2 = lpfc_sli_get_buff(phba, pring, 3178 irsp->un.ulpWord[3]); 3179 if (!saveq->context2) 3180 lpfc_printf_log(phba, 3181 KERN_ERR, 3182 LOG_SLI, 3183 "0341 Ring %d Cannot find buffer for " 3184 "an unsolicited iocb. tag 0x%x\n", 3185 pring->ringno, 3186 irsp->un.ulpWord[3]); 3187 } 3188 if (irsp->ulpBdeCount == 2) { 3189 saveq->context3 = lpfc_sli_get_buff(phba, pring, 3190 irsp->unsli3.sli3Words[7]); 3191 if (!saveq->context3) 3192 lpfc_printf_log(phba, 3193 KERN_ERR, 3194 LOG_SLI, 3195 "0342 Ring %d Cannot find buffer for an" 3196 " unsolicited iocb. tag 0x%x\n", 3197 pring->ringno, 3198 irsp->unsli3.sli3Words[7]); 3199 } 3200 list_for_each_entry(iocbq, &saveq->list, list) { 3201 irsp = &(iocbq->iocb); 3202 if (irsp->ulpBdeCount != 0) { 3203 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 3204 irsp->un.ulpWord[3]); 3205 if (!iocbq->context2) 3206 lpfc_printf_log(phba, 3207 KERN_ERR, 3208 LOG_SLI, 3209 "0343 Ring %d Cannot find " 3210 "buffer for an unsolicited iocb" 3211 ". tag 0x%x\n", pring->ringno, 3212 irsp->un.ulpWord[3]); 3213 } 3214 if (irsp->ulpBdeCount == 2) { 3215 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 3216 irsp->unsli3.sli3Words[7]); 3217 if (!iocbq->context3) 3218 lpfc_printf_log(phba, 3219 KERN_ERR, 3220 LOG_SLI, 3221 "0344 Ring %d Cannot find " 3222 "buffer for an unsolicited " 3223 "iocb. tag 0x%x\n", 3224 pring->ringno, 3225 irsp->unsli3.sli3Words[7]); 3226 } 3227 } 3228 } 3229 if (irsp->ulpBdeCount != 0 && 3230 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3231 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3232 int found = 0; 3233 3234 /* search continue save q for same XRI */ 3235 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3236 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3237 saveq->iocb.unsli3.rcvsli3.ox_id) { 3238 list_add_tail(&saveq->list, &iocbq->list); 3239 found = 1; 3240 break; 3241 } 3242 } 3243 if (!found) 3244 list_add_tail(&saveq->clist, 3245 &pring->iocb_continue_saveq); 3246 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3247 list_del_init(&iocbq->clist); 3248 saveq = iocbq; 3249 irsp = &(saveq->iocb); 3250 } else 3251 return 0; 3252 } 3253 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3254 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3255 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3256 Rctl = FC_RCTL_ELS_REQ; 3257 Type = FC_TYPE_ELS; 3258 } else { 3259 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3260 Rctl = w5p->hcsw.Rctl; 3261 Type = w5p->hcsw.Type; 3262 3263 /* Firmware Workaround */ 3264 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3265 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3266 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3267 Rctl = FC_RCTL_ELS_REQ; 3268 Type = FC_TYPE_ELS; 3269 w5p->hcsw.Rctl = Rctl; 3270 w5p->hcsw.Type = Type; 3271 } 3272 } 3273 3274 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3275 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3276 "0313 Ring %d handler: unexpected Rctl x%x " 3277 "Type x%x received\n", 3278 pring->ringno, Rctl, Type); 3279 3280 return 1; 3281 } 3282 3283 /** 3284 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3285 * @phba: Pointer to HBA context object. 3286 * @pring: Pointer to driver SLI ring object. 3287 * @prspiocb: Pointer to response iocb object. 3288 * 3289 * This function looks up the iocb_lookup table to get the command iocb 3290 * corresponding to the given response iocb using the iotag of the 3291 * response iocb. The driver calls this function with the hbalock held 3292 * for SLI3 ports or the ring lock held for SLI4 ports. 3293 * This function returns the command iocb object if it finds the command 3294 * iocb else returns NULL. 3295 **/ 3296 static struct lpfc_iocbq * 3297 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3298 struct lpfc_sli_ring *pring, 3299 struct lpfc_iocbq *prspiocb) 3300 { 3301 struct lpfc_iocbq *cmd_iocb = NULL; 3302 uint16_t iotag; 3303 spinlock_t *temp_lock = NULL; 3304 unsigned long iflag = 0; 3305 3306 if (phba->sli_rev == LPFC_SLI_REV4) 3307 temp_lock = &pring->ring_lock; 3308 else 3309 temp_lock = &phba->hbalock; 3310 3311 spin_lock_irqsave(temp_lock, iflag); 3312 iotag = prspiocb->iocb.ulpIoTag; 3313 3314 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3315 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3316 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3317 /* remove from txcmpl queue list */ 3318 list_del_init(&cmd_iocb->list); 3319 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3320 pring->txcmplq_cnt--; 3321 spin_unlock_irqrestore(temp_lock, iflag); 3322 return cmd_iocb; 3323 } 3324 } 3325 3326 spin_unlock_irqrestore(temp_lock, iflag); 3327 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3328 "0317 iotag x%x is out of " 3329 "range: max iotag x%x wd0 x%x\n", 3330 iotag, phba->sli.last_iotag, 3331 *(((uint32_t *) &prspiocb->iocb) + 7)); 3332 return NULL; 3333 } 3334 3335 /** 3336 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3337 * @phba: Pointer to HBA context object. 3338 * @pring: Pointer to driver SLI ring object. 3339 * @iotag: IOCB tag. 3340 * 3341 * This function looks up the iocb_lookup table to get the command iocb 3342 * corresponding to the given iotag. The driver calls this function with 3343 * the ring lock held because this function is an SLI4 port only helper. 3344 * This function returns the command iocb object if it finds the command 3345 * iocb else returns NULL. 3346 **/ 3347 static struct lpfc_iocbq * 3348 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3349 struct lpfc_sli_ring *pring, uint16_t iotag) 3350 { 3351 struct lpfc_iocbq *cmd_iocb = NULL; 3352 spinlock_t *temp_lock = NULL; 3353 unsigned long iflag = 0; 3354 3355 if (phba->sli_rev == LPFC_SLI_REV4) 3356 temp_lock = &pring->ring_lock; 3357 else 3358 temp_lock = &phba->hbalock; 3359 3360 spin_lock_irqsave(temp_lock, iflag); 3361 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3362 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3363 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3364 /* remove from txcmpl queue list */ 3365 list_del_init(&cmd_iocb->list); 3366 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3367 pring->txcmplq_cnt--; 3368 spin_unlock_irqrestore(temp_lock, iflag); 3369 return cmd_iocb; 3370 } 3371 } 3372 3373 spin_unlock_irqrestore(temp_lock, iflag); 3374 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3375 "0372 iotag x%x lookup error: max iotag (x%x) " 3376 "iocb_flag x%x\n", 3377 iotag, phba->sli.last_iotag, 3378 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3379 return NULL; 3380 } 3381 3382 /** 3383 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3384 * @phba: Pointer to HBA context object. 3385 * @pring: Pointer to driver SLI ring object. 3386 * @saveq: Pointer to the response iocb to be processed. 3387 * 3388 * This function is called by the ring event handler for non-fcp 3389 * rings when there is a new response iocb in the response ring. 3390 * The caller is not required to hold any locks. This function 3391 * gets the command iocb associated with the response iocb and 3392 * calls the completion handler for the command iocb. If there 3393 * is no completion handler, the function will free the resources 3394 * associated with command iocb. If the response iocb is for 3395 * an already aborted command iocb, the status of the completion 3396 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3397 * This function always returns 1. 3398 **/ 3399 static int 3400 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3401 struct lpfc_iocbq *saveq) 3402 { 3403 struct lpfc_iocbq *cmdiocbp; 3404 int rc = 1; 3405 unsigned long iflag; 3406 3407 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3408 if (cmdiocbp) { 3409 if (cmdiocbp->iocb_cmpl) { 3410 /* 3411 * If an ELS command failed send an event to mgmt 3412 * application. 3413 */ 3414 if (saveq->iocb.ulpStatus && 3415 (pring->ringno == LPFC_ELS_RING) && 3416 (cmdiocbp->iocb.ulpCommand == 3417 CMD_ELS_REQUEST64_CR)) 3418 lpfc_send_els_failure_event(phba, 3419 cmdiocbp, saveq); 3420 3421 /* 3422 * Post all ELS completions to the worker thread. 3423 * All other are passed to the completion callback. 3424 */ 3425 if (pring->ringno == LPFC_ELS_RING) { 3426 if ((phba->sli_rev < LPFC_SLI_REV4) && 3427 (cmdiocbp->iocb_flag & 3428 LPFC_DRIVER_ABORTED)) { 3429 spin_lock_irqsave(&phba->hbalock, 3430 iflag); 3431 cmdiocbp->iocb_flag &= 3432 ~LPFC_DRIVER_ABORTED; 3433 spin_unlock_irqrestore(&phba->hbalock, 3434 iflag); 3435 saveq->iocb.ulpStatus = 3436 IOSTAT_LOCAL_REJECT; 3437 saveq->iocb.un.ulpWord[4] = 3438 IOERR_SLI_ABORTED; 3439 3440 /* Firmware could still be in progress 3441 * of DMAing payload, so don't free data 3442 * buffer till after a hbeat. 3443 */ 3444 spin_lock_irqsave(&phba->hbalock, 3445 iflag); 3446 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3447 spin_unlock_irqrestore(&phba->hbalock, 3448 iflag); 3449 } 3450 if (phba->sli_rev == LPFC_SLI_REV4) { 3451 if (saveq->iocb_flag & 3452 LPFC_EXCHANGE_BUSY) { 3453 /* Set cmdiocb flag for the 3454 * exchange busy so sgl (xri) 3455 * will not be released until 3456 * the abort xri is received 3457 * from hba. 3458 */ 3459 spin_lock_irqsave( 3460 &phba->hbalock, iflag); 3461 cmdiocbp->iocb_flag |= 3462 LPFC_EXCHANGE_BUSY; 3463 spin_unlock_irqrestore( 3464 &phba->hbalock, iflag); 3465 } 3466 if (cmdiocbp->iocb_flag & 3467 LPFC_DRIVER_ABORTED) { 3468 /* 3469 * Clear LPFC_DRIVER_ABORTED 3470 * bit in case it was driver 3471 * initiated abort. 3472 */ 3473 spin_lock_irqsave( 3474 &phba->hbalock, iflag); 3475 cmdiocbp->iocb_flag &= 3476 ~LPFC_DRIVER_ABORTED; 3477 spin_unlock_irqrestore( 3478 &phba->hbalock, iflag); 3479 cmdiocbp->iocb.ulpStatus = 3480 IOSTAT_LOCAL_REJECT; 3481 cmdiocbp->iocb.un.ulpWord[4] = 3482 IOERR_ABORT_REQUESTED; 3483 /* 3484 * For SLI4, irsiocb contains 3485 * NO_XRI in sli_xritag, it 3486 * shall not affect releasing 3487 * sgl (xri) process. 3488 */ 3489 saveq->iocb.ulpStatus = 3490 IOSTAT_LOCAL_REJECT; 3491 saveq->iocb.un.ulpWord[4] = 3492 IOERR_SLI_ABORTED; 3493 spin_lock_irqsave( 3494 &phba->hbalock, iflag); 3495 saveq->iocb_flag |= 3496 LPFC_DELAY_MEM_FREE; 3497 spin_unlock_irqrestore( 3498 &phba->hbalock, iflag); 3499 } 3500 } 3501 } 3502 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3503 } else 3504 lpfc_sli_release_iocbq(phba, cmdiocbp); 3505 } else { 3506 /* 3507 * Unknown initiating command based on the response iotag. 3508 * This could be the case on the ELS ring because of 3509 * lpfc_els_abort(). 3510 */ 3511 if (pring->ringno != LPFC_ELS_RING) { 3512 /* 3513 * Ring <ringno> handler: unexpected completion IoTag 3514 * <IoTag> 3515 */ 3516 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3517 "0322 Ring %d handler: " 3518 "unexpected completion IoTag x%x " 3519 "Data: x%x x%x x%x x%x\n", 3520 pring->ringno, 3521 saveq->iocb.ulpIoTag, 3522 saveq->iocb.ulpStatus, 3523 saveq->iocb.un.ulpWord[4], 3524 saveq->iocb.ulpCommand, 3525 saveq->iocb.ulpContext); 3526 } 3527 } 3528 3529 return rc; 3530 } 3531 3532 /** 3533 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3534 * @phba: Pointer to HBA context object. 3535 * @pring: Pointer to driver SLI ring object. 3536 * 3537 * This function is called from the iocb ring event handlers when 3538 * put pointer is ahead of the get pointer for a ring. This function signal 3539 * an error attention condition to the worker thread and the worker 3540 * thread will transition the HBA to offline state. 3541 **/ 3542 static void 3543 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3544 { 3545 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3546 /* 3547 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3548 * rsp ring <portRspMax> 3549 */ 3550 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3551 "0312 Ring %d handler: portRspPut %d " 3552 "is bigger than rsp ring %d\n", 3553 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3554 pring->sli.sli3.numRiocb); 3555 3556 phba->link_state = LPFC_HBA_ERROR; 3557 3558 /* 3559 * All error attention handlers are posted to 3560 * worker thread 3561 */ 3562 phba->work_ha |= HA_ERATT; 3563 phba->work_hs = HS_FFER3; 3564 3565 lpfc_worker_wake_up(phba); 3566 3567 return; 3568 } 3569 3570 /** 3571 * lpfc_poll_eratt - Error attention polling timer timeout handler 3572 * @t: Context to fetch pointer to address of HBA context object from. 3573 * 3574 * This function is invoked by the Error Attention polling timer when the 3575 * timer times out. It will check the SLI Error Attention register for 3576 * possible attention events. If so, it will post an Error Attention event 3577 * and wake up worker thread to process it. Otherwise, it will set up the 3578 * Error Attention polling timer for the next poll. 3579 **/ 3580 void lpfc_poll_eratt(struct timer_list *t) 3581 { 3582 struct lpfc_hba *phba; 3583 uint32_t eratt = 0; 3584 uint64_t sli_intr, cnt; 3585 3586 phba = from_timer(phba, t, eratt_poll); 3587 3588 /* Here we will also keep track of interrupts per sec of the hba */ 3589 sli_intr = phba->sli.slistat.sli_intr; 3590 3591 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3592 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3593 sli_intr); 3594 else 3595 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3596 3597 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3598 do_div(cnt, phba->eratt_poll_interval); 3599 phba->sli.slistat.sli_ips = cnt; 3600 3601 phba->sli.slistat.sli_prev_intr = sli_intr; 3602 3603 /* Check chip HA register for error event */ 3604 eratt = lpfc_sli_check_eratt(phba); 3605 3606 if (eratt) 3607 /* Tell the worker thread there is work to do */ 3608 lpfc_worker_wake_up(phba); 3609 else 3610 /* Restart the timer for next eratt poll */ 3611 mod_timer(&phba->eratt_poll, 3612 jiffies + 3613 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3614 return; 3615 } 3616 3617 3618 /** 3619 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3620 * @phba: Pointer to HBA context object. 3621 * @pring: Pointer to driver SLI ring object. 3622 * @mask: Host attention register mask for this ring. 3623 * 3624 * This function is called from the interrupt context when there is a ring 3625 * event for the fcp ring. The caller does not hold any lock. 3626 * The function processes each response iocb in the response ring until it 3627 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3628 * LE bit set. The function will call the completion handler of the command iocb 3629 * if the response iocb indicates a completion for a command iocb or it is 3630 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3631 * function if this is an unsolicited iocb. 3632 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3633 * to check it explicitly. 3634 */ 3635 int 3636 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3637 struct lpfc_sli_ring *pring, uint32_t mask) 3638 { 3639 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3640 IOCB_t *irsp = NULL; 3641 IOCB_t *entry = NULL; 3642 struct lpfc_iocbq *cmdiocbq = NULL; 3643 struct lpfc_iocbq rspiocbq; 3644 uint32_t status; 3645 uint32_t portRspPut, portRspMax; 3646 int rc = 1; 3647 lpfc_iocb_type type; 3648 unsigned long iflag; 3649 uint32_t rsp_cmpl = 0; 3650 3651 spin_lock_irqsave(&phba->hbalock, iflag); 3652 pring->stats.iocb_event++; 3653 3654 /* 3655 * The next available response entry should never exceed the maximum 3656 * entries. If it does, treat it as an adapter hardware error. 3657 */ 3658 portRspMax = pring->sli.sli3.numRiocb; 3659 portRspPut = le32_to_cpu(pgp->rspPutInx); 3660 if (unlikely(portRspPut >= portRspMax)) { 3661 lpfc_sli_rsp_pointers_error(phba, pring); 3662 spin_unlock_irqrestore(&phba->hbalock, iflag); 3663 return 1; 3664 } 3665 if (phba->fcp_ring_in_use) { 3666 spin_unlock_irqrestore(&phba->hbalock, iflag); 3667 return 1; 3668 } else 3669 phba->fcp_ring_in_use = 1; 3670 3671 rmb(); 3672 while (pring->sli.sli3.rspidx != portRspPut) { 3673 /* 3674 * Fetch an entry off the ring and copy it into a local data 3675 * structure. The copy involves a byte-swap since the 3676 * network byte order and pci byte orders are different. 3677 */ 3678 entry = lpfc_resp_iocb(phba, pring); 3679 phba->last_completion_time = jiffies; 3680 3681 if (++pring->sli.sli3.rspidx >= portRspMax) 3682 pring->sli.sli3.rspidx = 0; 3683 3684 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3685 (uint32_t *) &rspiocbq.iocb, 3686 phba->iocb_rsp_size); 3687 INIT_LIST_HEAD(&(rspiocbq.list)); 3688 irsp = &rspiocbq.iocb; 3689 3690 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3691 pring->stats.iocb_rsp++; 3692 rsp_cmpl++; 3693 3694 if (unlikely(irsp->ulpStatus)) { 3695 /* 3696 * If resource errors reported from HBA, reduce 3697 * queuedepths of the SCSI device. 3698 */ 3699 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3700 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3701 IOERR_NO_RESOURCES)) { 3702 spin_unlock_irqrestore(&phba->hbalock, iflag); 3703 phba->lpfc_rampdown_queue_depth(phba); 3704 spin_lock_irqsave(&phba->hbalock, iflag); 3705 } 3706 3707 /* Rsp ring <ringno> error: IOCB */ 3708 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3709 "0336 Rsp Ring %d error: IOCB Data: " 3710 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3711 pring->ringno, 3712 irsp->un.ulpWord[0], 3713 irsp->un.ulpWord[1], 3714 irsp->un.ulpWord[2], 3715 irsp->un.ulpWord[3], 3716 irsp->un.ulpWord[4], 3717 irsp->un.ulpWord[5], 3718 *(uint32_t *)&irsp->un1, 3719 *((uint32_t *)&irsp->un1 + 1)); 3720 } 3721 3722 switch (type) { 3723 case LPFC_ABORT_IOCB: 3724 case LPFC_SOL_IOCB: 3725 /* 3726 * Idle exchange closed via ABTS from port. No iocb 3727 * resources need to be recovered. 3728 */ 3729 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3730 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3731 "0333 IOCB cmd 0x%x" 3732 " processed. Skipping" 3733 " completion\n", 3734 irsp->ulpCommand); 3735 break; 3736 } 3737 3738 spin_unlock_irqrestore(&phba->hbalock, iflag); 3739 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3740 &rspiocbq); 3741 spin_lock_irqsave(&phba->hbalock, iflag); 3742 if (unlikely(!cmdiocbq)) 3743 break; 3744 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3745 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3746 if (cmdiocbq->iocb_cmpl) { 3747 spin_unlock_irqrestore(&phba->hbalock, iflag); 3748 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3749 &rspiocbq); 3750 spin_lock_irqsave(&phba->hbalock, iflag); 3751 } 3752 break; 3753 case LPFC_UNSOL_IOCB: 3754 spin_unlock_irqrestore(&phba->hbalock, iflag); 3755 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3756 spin_lock_irqsave(&phba->hbalock, iflag); 3757 break; 3758 default: 3759 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3760 char adaptermsg[LPFC_MAX_ADPTMSG]; 3761 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3762 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3763 MAX_MSG_DATA); 3764 dev_warn(&((phba->pcidev)->dev), 3765 "lpfc%d: %s\n", 3766 phba->brd_no, adaptermsg); 3767 } else { 3768 /* Unknown IOCB command */ 3769 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3770 "0334 Unknown IOCB command " 3771 "Data: x%x, x%x x%x x%x x%x\n", 3772 type, irsp->ulpCommand, 3773 irsp->ulpStatus, 3774 irsp->ulpIoTag, 3775 irsp->ulpContext); 3776 } 3777 break; 3778 } 3779 3780 /* 3781 * The response IOCB has been processed. Update the ring 3782 * pointer in SLIM. If the port response put pointer has not 3783 * been updated, sync the pgp->rspPutInx and fetch the new port 3784 * response put pointer. 3785 */ 3786 writel(pring->sli.sli3.rspidx, 3787 &phba->host_gp[pring->ringno].rspGetInx); 3788 3789 if (pring->sli.sli3.rspidx == portRspPut) 3790 portRspPut = le32_to_cpu(pgp->rspPutInx); 3791 } 3792 3793 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3794 pring->stats.iocb_rsp_full++; 3795 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3796 writel(status, phba->CAregaddr); 3797 readl(phba->CAregaddr); 3798 } 3799 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3800 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3801 pring->stats.iocb_cmd_empty++; 3802 3803 /* Force update of the local copy of cmdGetInx */ 3804 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3805 lpfc_sli_resume_iocb(phba, pring); 3806 3807 if ((pring->lpfc_sli_cmd_available)) 3808 (pring->lpfc_sli_cmd_available) (phba, pring); 3809 3810 } 3811 3812 phba->fcp_ring_in_use = 0; 3813 spin_unlock_irqrestore(&phba->hbalock, iflag); 3814 return rc; 3815 } 3816 3817 /** 3818 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3819 * @phba: Pointer to HBA context object. 3820 * @pring: Pointer to driver SLI ring object. 3821 * @rspiocbp: Pointer to driver response IOCB object. 3822 * 3823 * This function is called from the worker thread when there is a slow-path 3824 * response IOCB to process. This function chains all the response iocbs until 3825 * seeing the iocb with the LE bit set. The function will call 3826 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3827 * completion of a command iocb. The function will call the 3828 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3829 * The function frees the resources or calls the completion handler if this 3830 * iocb is an abort completion. The function returns NULL when the response 3831 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3832 * this function shall chain the iocb on to the iocb_continueq and return the 3833 * response iocb passed in. 3834 **/ 3835 static struct lpfc_iocbq * 3836 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3837 struct lpfc_iocbq *rspiocbp) 3838 { 3839 struct lpfc_iocbq *saveq; 3840 struct lpfc_iocbq *cmdiocbp; 3841 struct lpfc_iocbq *next_iocb; 3842 IOCB_t *irsp = NULL; 3843 uint32_t free_saveq; 3844 uint8_t iocb_cmd_type; 3845 lpfc_iocb_type type; 3846 unsigned long iflag; 3847 int rc; 3848 3849 spin_lock_irqsave(&phba->hbalock, iflag); 3850 /* First add the response iocb to the countinueq list */ 3851 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3852 pring->iocb_continueq_cnt++; 3853 3854 /* Now, determine whether the list is completed for processing */ 3855 irsp = &rspiocbp->iocb; 3856 if (irsp->ulpLe) { 3857 /* 3858 * By default, the driver expects to free all resources 3859 * associated with this iocb completion. 3860 */ 3861 free_saveq = 1; 3862 saveq = list_get_first(&pring->iocb_continueq, 3863 struct lpfc_iocbq, list); 3864 irsp = &(saveq->iocb); 3865 list_del_init(&pring->iocb_continueq); 3866 pring->iocb_continueq_cnt = 0; 3867 3868 pring->stats.iocb_rsp++; 3869 3870 /* 3871 * If resource errors reported from HBA, reduce 3872 * queuedepths of the SCSI device. 3873 */ 3874 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3875 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3876 IOERR_NO_RESOURCES)) { 3877 spin_unlock_irqrestore(&phba->hbalock, iflag); 3878 phba->lpfc_rampdown_queue_depth(phba); 3879 spin_lock_irqsave(&phba->hbalock, iflag); 3880 } 3881 3882 if (irsp->ulpStatus) { 3883 /* Rsp ring <ringno> error: IOCB */ 3884 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3885 "0328 Rsp Ring %d error: " 3886 "IOCB Data: " 3887 "x%x x%x x%x x%x " 3888 "x%x x%x x%x x%x " 3889 "x%x x%x x%x x%x " 3890 "x%x x%x x%x x%x\n", 3891 pring->ringno, 3892 irsp->un.ulpWord[0], 3893 irsp->un.ulpWord[1], 3894 irsp->un.ulpWord[2], 3895 irsp->un.ulpWord[3], 3896 irsp->un.ulpWord[4], 3897 irsp->un.ulpWord[5], 3898 *(((uint32_t *) irsp) + 6), 3899 *(((uint32_t *) irsp) + 7), 3900 *(((uint32_t *) irsp) + 8), 3901 *(((uint32_t *) irsp) + 9), 3902 *(((uint32_t *) irsp) + 10), 3903 *(((uint32_t *) irsp) + 11), 3904 *(((uint32_t *) irsp) + 12), 3905 *(((uint32_t *) irsp) + 13), 3906 *(((uint32_t *) irsp) + 14), 3907 *(((uint32_t *) irsp) + 15)); 3908 } 3909 3910 /* 3911 * Fetch the IOCB command type and call the correct completion 3912 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3913 * get freed back to the lpfc_iocb_list by the discovery 3914 * kernel thread. 3915 */ 3916 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3917 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3918 switch (type) { 3919 case LPFC_SOL_IOCB: 3920 spin_unlock_irqrestore(&phba->hbalock, iflag); 3921 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3922 spin_lock_irqsave(&phba->hbalock, iflag); 3923 break; 3924 3925 case LPFC_UNSOL_IOCB: 3926 spin_unlock_irqrestore(&phba->hbalock, iflag); 3927 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3928 spin_lock_irqsave(&phba->hbalock, iflag); 3929 if (!rc) 3930 free_saveq = 0; 3931 break; 3932 3933 case LPFC_ABORT_IOCB: 3934 cmdiocbp = NULL; 3935 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { 3936 spin_unlock_irqrestore(&phba->hbalock, iflag); 3937 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3938 saveq); 3939 spin_lock_irqsave(&phba->hbalock, iflag); 3940 } 3941 if (cmdiocbp) { 3942 /* Call the specified completion routine */ 3943 if (cmdiocbp->iocb_cmpl) { 3944 spin_unlock_irqrestore(&phba->hbalock, 3945 iflag); 3946 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3947 saveq); 3948 spin_lock_irqsave(&phba->hbalock, 3949 iflag); 3950 } else 3951 __lpfc_sli_release_iocbq(phba, 3952 cmdiocbp); 3953 } 3954 break; 3955 3956 case LPFC_UNKNOWN_IOCB: 3957 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3958 char adaptermsg[LPFC_MAX_ADPTMSG]; 3959 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3960 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3961 MAX_MSG_DATA); 3962 dev_warn(&((phba->pcidev)->dev), 3963 "lpfc%d: %s\n", 3964 phba->brd_no, adaptermsg); 3965 } else { 3966 /* Unknown IOCB command */ 3967 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3968 "0335 Unknown IOCB " 3969 "command Data: x%x " 3970 "x%x x%x x%x\n", 3971 irsp->ulpCommand, 3972 irsp->ulpStatus, 3973 irsp->ulpIoTag, 3974 irsp->ulpContext); 3975 } 3976 break; 3977 } 3978 3979 if (free_saveq) { 3980 list_for_each_entry_safe(rspiocbp, next_iocb, 3981 &saveq->list, list) { 3982 list_del_init(&rspiocbp->list); 3983 __lpfc_sli_release_iocbq(phba, rspiocbp); 3984 } 3985 __lpfc_sli_release_iocbq(phba, saveq); 3986 } 3987 rspiocbp = NULL; 3988 } 3989 spin_unlock_irqrestore(&phba->hbalock, iflag); 3990 return rspiocbp; 3991 } 3992 3993 /** 3994 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3995 * @phba: Pointer to HBA context object. 3996 * @pring: Pointer to driver SLI ring object. 3997 * @mask: Host attention register mask for this ring. 3998 * 3999 * This routine wraps the actual slow_ring event process routine from the 4000 * API jump table function pointer from the lpfc_hba struct. 4001 **/ 4002 void 4003 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4004 struct lpfc_sli_ring *pring, uint32_t mask) 4005 { 4006 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4007 } 4008 4009 /** 4010 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4011 * @phba: Pointer to HBA context object. 4012 * @pring: Pointer to driver SLI ring object. 4013 * @mask: Host attention register mask for this ring. 4014 * 4015 * This function is called from the worker thread when there is a ring event 4016 * for non-fcp rings. The caller does not hold any lock. The function will 4017 * remove each response iocb in the response ring and calls the handle 4018 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4019 **/ 4020 static void 4021 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4022 struct lpfc_sli_ring *pring, uint32_t mask) 4023 { 4024 struct lpfc_pgp *pgp; 4025 IOCB_t *entry; 4026 IOCB_t *irsp = NULL; 4027 struct lpfc_iocbq *rspiocbp = NULL; 4028 uint32_t portRspPut, portRspMax; 4029 unsigned long iflag; 4030 uint32_t status; 4031 4032 pgp = &phba->port_gp[pring->ringno]; 4033 spin_lock_irqsave(&phba->hbalock, iflag); 4034 pring->stats.iocb_event++; 4035 4036 /* 4037 * The next available response entry should never exceed the maximum 4038 * entries. If it does, treat it as an adapter hardware error. 4039 */ 4040 portRspMax = pring->sli.sli3.numRiocb; 4041 portRspPut = le32_to_cpu(pgp->rspPutInx); 4042 if (portRspPut >= portRspMax) { 4043 /* 4044 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4045 * rsp ring <portRspMax> 4046 */ 4047 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4048 "0303 Ring %d handler: portRspPut %d " 4049 "is bigger than rsp ring %d\n", 4050 pring->ringno, portRspPut, portRspMax); 4051 4052 phba->link_state = LPFC_HBA_ERROR; 4053 spin_unlock_irqrestore(&phba->hbalock, iflag); 4054 4055 phba->work_hs = HS_FFER3; 4056 lpfc_handle_eratt(phba); 4057 4058 return; 4059 } 4060 4061 rmb(); 4062 while (pring->sli.sli3.rspidx != portRspPut) { 4063 /* 4064 * Build a completion list and call the appropriate handler. 4065 * The process is to get the next available response iocb, get 4066 * a free iocb from the list, copy the response data into the 4067 * free iocb, insert to the continuation list, and update the 4068 * next response index to slim. This process makes response 4069 * iocb's in the ring available to DMA as fast as possible but 4070 * pays a penalty for a copy operation. Since the iocb is 4071 * only 32 bytes, this penalty is considered small relative to 4072 * the PCI reads for register values and a slim write. When 4073 * the ulpLe field is set, the entire Command has been 4074 * received. 4075 */ 4076 entry = lpfc_resp_iocb(phba, pring); 4077 4078 phba->last_completion_time = jiffies; 4079 rspiocbp = __lpfc_sli_get_iocbq(phba); 4080 if (rspiocbp == NULL) { 4081 printk(KERN_ERR "%s: out of buffers! Failing " 4082 "completion.\n", __func__); 4083 break; 4084 } 4085 4086 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4087 phba->iocb_rsp_size); 4088 irsp = &rspiocbp->iocb; 4089 4090 if (++pring->sli.sli3.rspidx >= portRspMax) 4091 pring->sli.sli3.rspidx = 0; 4092 4093 if (pring->ringno == LPFC_ELS_RING) { 4094 lpfc_debugfs_slow_ring_trc(phba, 4095 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4096 *(((uint32_t *) irsp) + 4), 4097 *(((uint32_t *) irsp) + 6), 4098 *(((uint32_t *) irsp) + 7)); 4099 } 4100 4101 writel(pring->sli.sli3.rspidx, 4102 &phba->host_gp[pring->ringno].rspGetInx); 4103 4104 spin_unlock_irqrestore(&phba->hbalock, iflag); 4105 /* Handle the response IOCB */ 4106 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4107 spin_lock_irqsave(&phba->hbalock, iflag); 4108 4109 /* 4110 * If the port response put pointer has not been updated, sync 4111 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4112 * response put pointer. 4113 */ 4114 if (pring->sli.sli3.rspidx == portRspPut) { 4115 portRspPut = le32_to_cpu(pgp->rspPutInx); 4116 } 4117 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4118 4119 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4120 /* At least one response entry has been freed */ 4121 pring->stats.iocb_rsp_full++; 4122 /* SET RxRE_RSP in Chip Att register */ 4123 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4124 writel(status, phba->CAregaddr); 4125 readl(phba->CAregaddr); /* flush */ 4126 } 4127 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4128 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4129 pring->stats.iocb_cmd_empty++; 4130 4131 /* Force update of the local copy of cmdGetInx */ 4132 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4133 lpfc_sli_resume_iocb(phba, pring); 4134 4135 if ((pring->lpfc_sli_cmd_available)) 4136 (pring->lpfc_sli_cmd_available) (phba, pring); 4137 4138 } 4139 4140 spin_unlock_irqrestore(&phba->hbalock, iflag); 4141 return; 4142 } 4143 4144 /** 4145 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4146 * @phba: Pointer to HBA context object. 4147 * @pring: Pointer to driver SLI ring object. 4148 * @mask: Host attention register mask for this ring. 4149 * 4150 * This function is called from the worker thread when there is a pending 4151 * ELS response iocb on the driver internal slow-path response iocb worker 4152 * queue. The caller does not hold any lock. The function will remove each 4153 * response iocb from the response worker queue and calls the handle 4154 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4155 **/ 4156 static void 4157 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4158 struct lpfc_sli_ring *pring, uint32_t mask) 4159 { 4160 struct lpfc_iocbq *irspiocbq; 4161 struct hbq_dmabuf *dmabuf; 4162 struct lpfc_cq_event *cq_event; 4163 unsigned long iflag; 4164 int count = 0; 4165 4166 spin_lock_irqsave(&phba->hbalock, iflag); 4167 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4168 spin_unlock_irqrestore(&phba->hbalock, iflag); 4169 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4170 /* Get the response iocb from the head of work queue */ 4171 spin_lock_irqsave(&phba->hbalock, iflag); 4172 list_remove_head(&phba->sli4_hba.sp_queue_event, 4173 cq_event, struct lpfc_cq_event, list); 4174 spin_unlock_irqrestore(&phba->hbalock, iflag); 4175 4176 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4177 case CQE_CODE_COMPL_WQE: 4178 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4179 cq_event); 4180 /* Translate ELS WCQE to response IOCBQ */ 4181 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 4182 irspiocbq); 4183 if (irspiocbq) 4184 lpfc_sli_sp_handle_rspiocb(phba, pring, 4185 irspiocbq); 4186 count++; 4187 break; 4188 case CQE_CODE_RECEIVE: 4189 case CQE_CODE_RECEIVE_V1: 4190 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4191 cq_event); 4192 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4193 count++; 4194 break; 4195 default: 4196 break; 4197 } 4198 4199 /* Limit the number of events to 64 to avoid soft lockups */ 4200 if (count == 64) 4201 break; 4202 } 4203 } 4204 4205 /** 4206 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4207 * @phba: Pointer to HBA context object. 4208 * @pring: Pointer to driver SLI ring object. 4209 * 4210 * This function aborts all iocbs in the given ring and frees all the iocb 4211 * objects in txq. This function issues an abort iocb for all the iocb commands 4212 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4213 * the return of this function. The caller is not required to hold any locks. 4214 **/ 4215 void 4216 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4217 { 4218 LIST_HEAD(completions); 4219 struct lpfc_iocbq *iocb, *next_iocb; 4220 4221 if (pring->ringno == LPFC_ELS_RING) { 4222 lpfc_fabric_abort_hba(phba); 4223 } 4224 4225 /* Error everything on txq and txcmplq 4226 * First do the txq. 4227 */ 4228 if (phba->sli_rev >= LPFC_SLI_REV4) { 4229 spin_lock_irq(&pring->ring_lock); 4230 list_splice_init(&pring->txq, &completions); 4231 pring->txq_cnt = 0; 4232 spin_unlock_irq(&pring->ring_lock); 4233 4234 spin_lock_irq(&phba->hbalock); 4235 /* Next issue ABTS for everything on the txcmplq */ 4236 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4237 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4238 spin_unlock_irq(&phba->hbalock); 4239 } else { 4240 spin_lock_irq(&phba->hbalock); 4241 list_splice_init(&pring->txq, &completions); 4242 pring->txq_cnt = 0; 4243 4244 /* Next issue ABTS for everything on the txcmplq */ 4245 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4246 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4247 spin_unlock_irq(&phba->hbalock); 4248 } 4249 /* Make sure HBA is alive */ 4250 lpfc_issue_hb_tmo(phba); 4251 4252 /* Cancel all the IOCBs from the completions list */ 4253 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 4254 IOERR_SLI_ABORTED); 4255 } 4256 4257 /** 4258 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4259 * @phba: Pointer to HBA context object. 4260 * 4261 * This function aborts all iocbs in FCP rings and frees all the iocb 4262 * objects in txq. This function issues an abort iocb for all the iocb commands 4263 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4264 * the return of this function. The caller is not required to hold any locks. 4265 **/ 4266 void 4267 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4268 { 4269 struct lpfc_sli *psli = &phba->sli; 4270 struct lpfc_sli_ring *pring; 4271 uint32_t i; 4272 4273 /* Look on all the FCP Rings for the iotag */ 4274 if (phba->sli_rev >= LPFC_SLI_REV4) { 4275 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4276 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4277 lpfc_sli_abort_iocb_ring(phba, pring); 4278 } 4279 } else { 4280 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4281 lpfc_sli_abort_iocb_ring(phba, pring); 4282 } 4283 } 4284 4285 /** 4286 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4287 * @phba: Pointer to HBA context object. 4288 * 4289 * This function flushes all iocbs in the IO ring and frees all the iocb 4290 * objects in txq and txcmplq. This function will not issue abort iocbs 4291 * for all the iocb commands in txcmplq, they will just be returned with 4292 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4293 * slot has been permanently disabled. 4294 **/ 4295 void 4296 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4297 { 4298 LIST_HEAD(txq); 4299 LIST_HEAD(txcmplq); 4300 struct lpfc_sli *psli = &phba->sli; 4301 struct lpfc_sli_ring *pring; 4302 uint32_t i; 4303 struct lpfc_iocbq *piocb, *next_iocb; 4304 4305 spin_lock_irq(&phba->hbalock); 4306 if (phba->hba_flag & HBA_IOQ_FLUSH || 4307 !phba->sli4_hba.hdwq) { 4308 spin_unlock_irq(&phba->hbalock); 4309 return; 4310 } 4311 /* Indicate the I/O queues are flushed */ 4312 phba->hba_flag |= HBA_IOQ_FLUSH; 4313 spin_unlock_irq(&phba->hbalock); 4314 4315 /* Look on all the FCP Rings for the iotag */ 4316 if (phba->sli_rev >= LPFC_SLI_REV4) { 4317 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4318 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4319 4320 spin_lock_irq(&pring->ring_lock); 4321 /* Retrieve everything on txq */ 4322 list_splice_init(&pring->txq, &txq); 4323 list_for_each_entry_safe(piocb, next_iocb, 4324 &pring->txcmplq, list) 4325 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4326 /* Retrieve everything on the txcmplq */ 4327 list_splice_init(&pring->txcmplq, &txcmplq); 4328 pring->txq_cnt = 0; 4329 pring->txcmplq_cnt = 0; 4330 spin_unlock_irq(&pring->ring_lock); 4331 4332 /* Flush the txq */ 4333 lpfc_sli_cancel_iocbs(phba, &txq, 4334 IOSTAT_LOCAL_REJECT, 4335 IOERR_SLI_DOWN); 4336 /* Flush the txcmpq */ 4337 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4338 IOSTAT_LOCAL_REJECT, 4339 IOERR_SLI_DOWN); 4340 } 4341 } else { 4342 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4343 4344 spin_lock_irq(&phba->hbalock); 4345 /* Retrieve everything on txq */ 4346 list_splice_init(&pring->txq, &txq); 4347 list_for_each_entry_safe(piocb, next_iocb, 4348 &pring->txcmplq, list) 4349 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4350 /* Retrieve everything on the txcmplq */ 4351 list_splice_init(&pring->txcmplq, &txcmplq); 4352 pring->txq_cnt = 0; 4353 pring->txcmplq_cnt = 0; 4354 spin_unlock_irq(&phba->hbalock); 4355 4356 /* Flush the txq */ 4357 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4358 IOERR_SLI_DOWN); 4359 /* Flush the txcmpq */ 4360 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4361 IOERR_SLI_DOWN); 4362 } 4363 } 4364 4365 /** 4366 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4367 * @phba: Pointer to HBA context object. 4368 * @mask: Bit mask to be checked. 4369 * 4370 * This function reads the host status register and compares 4371 * with the provided bit mask to check if HBA completed 4372 * the restart. This function will wait in a loop for the 4373 * HBA to complete restart. If the HBA does not restart within 4374 * 15 iterations, the function will reset the HBA again. The 4375 * function returns 1 when HBA fail to restart otherwise returns 4376 * zero. 4377 **/ 4378 static int 4379 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4380 { 4381 uint32_t status; 4382 int i = 0; 4383 int retval = 0; 4384 4385 /* Read the HBA Host Status Register */ 4386 if (lpfc_readl(phba->HSregaddr, &status)) 4387 return 1; 4388 4389 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4390 4391 /* 4392 * Check status register every 100ms for 5 retries, then every 4393 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4394 * every 2.5 sec for 4. 4395 * Break our of the loop if errors occurred during init. 4396 */ 4397 while (((status & mask) != mask) && 4398 !(status & HS_FFERM) && 4399 i++ < 20) { 4400 4401 if (i <= 5) 4402 msleep(10); 4403 else if (i <= 10) 4404 msleep(500); 4405 else 4406 msleep(2500); 4407 4408 if (i == 15) { 4409 /* Do post */ 4410 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4411 lpfc_sli_brdrestart(phba); 4412 } 4413 /* Read the HBA Host Status Register */ 4414 if (lpfc_readl(phba->HSregaddr, &status)) { 4415 retval = 1; 4416 break; 4417 } 4418 } 4419 4420 /* Check to see if any errors occurred during init */ 4421 if ((status & HS_FFERM) || (i >= 20)) { 4422 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4423 "2751 Adapter failed to restart, " 4424 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4425 status, 4426 readl(phba->MBslimaddr + 0xa8), 4427 readl(phba->MBslimaddr + 0xac)); 4428 phba->link_state = LPFC_HBA_ERROR; 4429 retval = 1; 4430 } 4431 4432 return retval; 4433 } 4434 4435 /** 4436 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4437 * @phba: Pointer to HBA context object. 4438 * @mask: Bit mask to be checked. 4439 * 4440 * This function checks the host status register to check if HBA is 4441 * ready. This function will wait in a loop for the HBA to be ready 4442 * If the HBA is not ready , the function will will reset the HBA PCI 4443 * function again. The function returns 1 when HBA fail to be ready 4444 * otherwise returns zero. 4445 **/ 4446 static int 4447 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4448 { 4449 uint32_t status; 4450 int retval = 0; 4451 4452 /* Read the HBA Host Status Register */ 4453 status = lpfc_sli4_post_status_check(phba); 4454 4455 if (status) { 4456 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4457 lpfc_sli_brdrestart(phba); 4458 status = lpfc_sli4_post_status_check(phba); 4459 } 4460 4461 /* Check to see if any errors occurred during init */ 4462 if (status) { 4463 phba->link_state = LPFC_HBA_ERROR; 4464 retval = 1; 4465 } else 4466 phba->sli4_hba.intr_enable = 0; 4467 4468 return retval; 4469 } 4470 4471 /** 4472 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4473 * @phba: Pointer to HBA context object. 4474 * @mask: Bit mask to be checked. 4475 * 4476 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4477 * from the API jump table function pointer from the lpfc_hba struct. 4478 **/ 4479 int 4480 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4481 { 4482 return phba->lpfc_sli_brdready(phba, mask); 4483 } 4484 4485 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4486 4487 /** 4488 * lpfc_reset_barrier - Make HBA ready for HBA reset 4489 * @phba: Pointer to HBA context object. 4490 * 4491 * This function is called before resetting an HBA. This function is called 4492 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4493 **/ 4494 void lpfc_reset_barrier(struct lpfc_hba *phba) 4495 { 4496 uint32_t __iomem *resp_buf; 4497 uint32_t __iomem *mbox_buf; 4498 volatile uint32_t mbox; 4499 uint32_t hc_copy, ha_copy, resp_data; 4500 int i; 4501 uint8_t hdrtype; 4502 4503 lockdep_assert_held(&phba->hbalock); 4504 4505 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4506 if (hdrtype != 0x80 || 4507 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4508 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4509 return; 4510 4511 /* 4512 * Tell the other part of the chip to suspend temporarily all 4513 * its DMA activity. 4514 */ 4515 resp_buf = phba->MBslimaddr; 4516 4517 /* Disable the error attention */ 4518 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4519 return; 4520 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4521 readl(phba->HCregaddr); /* flush */ 4522 phba->link_flag |= LS_IGNORE_ERATT; 4523 4524 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4525 return; 4526 if (ha_copy & HA_ERATT) { 4527 /* Clear Chip error bit */ 4528 writel(HA_ERATT, phba->HAregaddr); 4529 phba->pport->stopped = 1; 4530 } 4531 4532 mbox = 0; 4533 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4534 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4535 4536 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4537 mbox_buf = phba->MBslimaddr; 4538 writel(mbox, mbox_buf); 4539 4540 for (i = 0; i < 50; i++) { 4541 if (lpfc_readl((resp_buf + 1), &resp_data)) 4542 return; 4543 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4544 mdelay(1); 4545 else 4546 break; 4547 } 4548 resp_data = 0; 4549 if (lpfc_readl((resp_buf + 1), &resp_data)) 4550 return; 4551 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4552 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4553 phba->pport->stopped) 4554 goto restore_hc; 4555 else 4556 goto clear_errat; 4557 } 4558 4559 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4560 resp_data = 0; 4561 for (i = 0; i < 500; i++) { 4562 if (lpfc_readl(resp_buf, &resp_data)) 4563 return; 4564 if (resp_data != mbox) 4565 mdelay(1); 4566 else 4567 break; 4568 } 4569 4570 clear_errat: 4571 4572 while (++i < 500) { 4573 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4574 return; 4575 if (!(ha_copy & HA_ERATT)) 4576 mdelay(1); 4577 else 4578 break; 4579 } 4580 4581 if (readl(phba->HAregaddr) & HA_ERATT) { 4582 writel(HA_ERATT, phba->HAregaddr); 4583 phba->pport->stopped = 1; 4584 } 4585 4586 restore_hc: 4587 phba->link_flag &= ~LS_IGNORE_ERATT; 4588 writel(hc_copy, phba->HCregaddr); 4589 readl(phba->HCregaddr); /* flush */ 4590 } 4591 4592 /** 4593 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4594 * @phba: Pointer to HBA context object. 4595 * 4596 * This function issues a kill_board mailbox command and waits for 4597 * the error attention interrupt. This function is called for stopping 4598 * the firmware processing. The caller is not required to hold any 4599 * locks. This function calls lpfc_hba_down_post function to free 4600 * any pending commands after the kill. The function will return 1 when it 4601 * fails to kill the board else will return 0. 4602 **/ 4603 int 4604 lpfc_sli_brdkill(struct lpfc_hba *phba) 4605 { 4606 struct lpfc_sli *psli; 4607 LPFC_MBOXQ_t *pmb; 4608 uint32_t status; 4609 uint32_t ha_copy; 4610 int retval; 4611 int i = 0; 4612 4613 psli = &phba->sli; 4614 4615 /* Kill HBA */ 4616 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4617 "0329 Kill HBA Data: x%x x%x\n", 4618 phba->pport->port_state, psli->sli_flag); 4619 4620 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4621 if (!pmb) 4622 return 1; 4623 4624 /* Disable the error attention */ 4625 spin_lock_irq(&phba->hbalock); 4626 if (lpfc_readl(phba->HCregaddr, &status)) { 4627 spin_unlock_irq(&phba->hbalock); 4628 mempool_free(pmb, phba->mbox_mem_pool); 4629 return 1; 4630 } 4631 status &= ~HC_ERINT_ENA; 4632 writel(status, phba->HCregaddr); 4633 readl(phba->HCregaddr); /* flush */ 4634 phba->link_flag |= LS_IGNORE_ERATT; 4635 spin_unlock_irq(&phba->hbalock); 4636 4637 lpfc_kill_board(phba, pmb); 4638 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4639 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4640 4641 if (retval != MBX_SUCCESS) { 4642 if (retval != MBX_BUSY) 4643 mempool_free(pmb, phba->mbox_mem_pool); 4644 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4645 "2752 KILL_BOARD command failed retval %d\n", 4646 retval); 4647 spin_lock_irq(&phba->hbalock); 4648 phba->link_flag &= ~LS_IGNORE_ERATT; 4649 spin_unlock_irq(&phba->hbalock); 4650 return 1; 4651 } 4652 4653 spin_lock_irq(&phba->hbalock); 4654 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4655 spin_unlock_irq(&phba->hbalock); 4656 4657 mempool_free(pmb, phba->mbox_mem_pool); 4658 4659 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4660 * attention every 100ms for 3 seconds. If we don't get ERATT after 4661 * 3 seconds we still set HBA_ERROR state because the status of the 4662 * board is now undefined. 4663 */ 4664 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4665 return 1; 4666 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4667 mdelay(100); 4668 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4669 return 1; 4670 } 4671 4672 del_timer_sync(&psli->mbox_tmo); 4673 if (ha_copy & HA_ERATT) { 4674 writel(HA_ERATT, phba->HAregaddr); 4675 phba->pport->stopped = 1; 4676 } 4677 spin_lock_irq(&phba->hbalock); 4678 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4679 psli->mbox_active = NULL; 4680 phba->link_flag &= ~LS_IGNORE_ERATT; 4681 spin_unlock_irq(&phba->hbalock); 4682 4683 lpfc_hba_down_post(phba); 4684 phba->link_state = LPFC_HBA_ERROR; 4685 4686 return ha_copy & HA_ERATT ? 0 : 1; 4687 } 4688 4689 /** 4690 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4691 * @phba: Pointer to HBA context object. 4692 * 4693 * This function resets the HBA by writing HC_INITFF to the control 4694 * register. After the HBA resets, this function resets all the iocb ring 4695 * indices. This function disables PCI layer parity checking during 4696 * the reset. 4697 * This function returns 0 always. 4698 * The caller is not required to hold any locks. 4699 **/ 4700 int 4701 lpfc_sli_brdreset(struct lpfc_hba *phba) 4702 { 4703 struct lpfc_sli *psli; 4704 struct lpfc_sli_ring *pring; 4705 uint16_t cfg_value; 4706 int i; 4707 4708 psli = &phba->sli; 4709 4710 /* Reset HBA */ 4711 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4712 "0325 Reset HBA Data: x%x x%x\n", 4713 (phba->pport) ? phba->pport->port_state : 0, 4714 psli->sli_flag); 4715 4716 /* perform board reset */ 4717 phba->fc_eventTag = 0; 4718 phba->link_events = 0; 4719 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4720 if (phba->pport) { 4721 phba->pport->fc_myDID = 0; 4722 phba->pport->fc_prevDID = 0; 4723 } 4724 4725 /* Turn off parity checking and serr during the physical reset */ 4726 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 4727 return -EIO; 4728 4729 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4730 (cfg_value & 4731 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4732 4733 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4734 4735 /* Now toggle INITFF bit in the Host Control Register */ 4736 writel(HC_INITFF, phba->HCregaddr); 4737 mdelay(1); 4738 readl(phba->HCregaddr); /* flush */ 4739 writel(0, phba->HCregaddr); 4740 readl(phba->HCregaddr); /* flush */ 4741 4742 /* Restore PCI cmd register */ 4743 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4744 4745 /* Initialize relevant SLI info */ 4746 for (i = 0; i < psli->num_rings; i++) { 4747 pring = &psli->sli3_ring[i]; 4748 pring->flag = 0; 4749 pring->sli.sli3.rspidx = 0; 4750 pring->sli.sli3.next_cmdidx = 0; 4751 pring->sli.sli3.local_getidx = 0; 4752 pring->sli.sli3.cmdidx = 0; 4753 pring->missbufcnt = 0; 4754 } 4755 4756 phba->link_state = LPFC_WARM_START; 4757 return 0; 4758 } 4759 4760 /** 4761 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4762 * @phba: Pointer to HBA context object. 4763 * 4764 * This function resets a SLI4 HBA. This function disables PCI layer parity 4765 * checking during resets the device. The caller is not required to hold 4766 * any locks. 4767 * 4768 * This function returns 0 on success else returns negative error code. 4769 **/ 4770 int 4771 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4772 { 4773 struct lpfc_sli *psli = &phba->sli; 4774 uint16_t cfg_value; 4775 int rc = 0; 4776 4777 /* Reset HBA */ 4778 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4779 "0295 Reset HBA Data: x%x x%x x%x\n", 4780 phba->pport->port_state, psli->sli_flag, 4781 phba->hba_flag); 4782 4783 /* perform board reset */ 4784 phba->fc_eventTag = 0; 4785 phba->link_events = 0; 4786 phba->pport->fc_myDID = 0; 4787 phba->pport->fc_prevDID = 0; 4788 4789 spin_lock_irq(&phba->hbalock); 4790 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4791 phba->fcf.fcf_flag = 0; 4792 spin_unlock_irq(&phba->hbalock); 4793 4794 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4795 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4796 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4797 return rc; 4798 } 4799 4800 /* Now physically reset the device */ 4801 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4802 "0389 Performing PCI function reset!\n"); 4803 4804 /* Turn off parity checking and serr during the physical reset */ 4805 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 4806 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4807 "3205 PCI read Config failed\n"); 4808 return -EIO; 4809 } 4810 4811 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4812 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4813 4814 /* Perform FCoE PCI function reset before freeing queue memory */ 4815 rc = lpfc_pci_function_reset(phba); 4816 4817 /* Restore PCI cmd register */ 4818 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4819 4820 return rc; 4821 } 4822 4823 /** 4824 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4825 * @phba: Pointer to HBA context object. 4826 * 4827 * This function is called in the SLI initialization code path to 4828 * restart the HBA. The caller is not required to hold any lock. 4829 * This function writes MBX_RESTART mailbox command to the SLIM and 4830 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4831 * function to free any pending commands. The function enables 4832 * POST only during the first initialization. The function returns zero. 4833 * The function does not guarantee completion of MBX_RESTART mailbox 4834 * command before the return of this function. 4835 **/ 4836 static int 4837 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4838 { 4839 MAILBOX_t *mb; 4840 struct lpfc_sli *psli; 4841 volatile uint32_t word0; 4842 void __iomem *to_slim; 4843 uint32_t hba_aer_enabled; 4844 4845 spin_lock_irq(&phba->hbalock); 4846 4847 /* Take PCIe device Advanced Error Reporting (AER) state */ 4848 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4849 4850 psli = &phba->sli; 4851 4852 /* Restart HBA */ 4853 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4854 "0337 Restart HBA Data: x%x x%x\n", 4855 (phba->pport) ? phba->pport->port_state : 0, 4856 psli->sli_flag); 4857 4858 word0 = 0; 4859 mb = (MAILBOX_t *) &word0; 4860 mb->mbxCommand = MBX_RESTART; 4861 mb->mbxHc = 1; 4862 4863 lpfc_reset_barrier(phba); 4864 4865 to_slim = phba->MBslimaddr; 4866 writel(*(uint32_t *) mb, to_slim); 4867 readl(to_slim); /* flush */ 4868 4869 /* Only skip post after fc_ffinit is completed */ 4870 if (phba->pport && phba->pport->port_state) 4871 word0 = 1; /* This is really setting up word1 */ 4872 else 4873 word0 = 0; /* This is really setting up word1 */ 4874 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4875 writel(*(uint32_t *) mb, to_slim); 4876 readl(to_slim); /* flush */ 4877 4878 lpfc_sli_brdreset(phba); 4879 if (phba->pport) 4880 phba->pport->stopped = 0; 4881 phba->link_state = LPFC_INIT_START; 4882 phba->hba_flag = 0; 4883 spin_unlock_irq(&phba->hbalock); 4884 4885 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4886 psli->stats_start = ktime_get_seconds(); 4887 4888 /* Give the INITFF and Post time to settle. */ 4889 mdelay(100); 4890 4891 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4892 if (hba_aer_enabled) 4893 pci_disable_pcie_error_reporting(phba->pcidev); 4894 4895 lpfc_hba_down_post(phba); 4896 4897 return 0; 4898 } 4899 4900 /** 4901 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4902 * @phba: Pointer to HBA context object. 4903 * 4904 * This function is called in the SLI initialization code path to restart 4905 * a SLI4 HBA. The caller is not required to hold any lock. 4906 * At the end of the function, it calls lpfc_hba_down_post function to 4907 * free any pending commands. 4908 **/ 4909 static int 4910 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4911 { 4912 struct lpfc_sli *psli = &phba->sli; 4913 uint32_t hba_aer_enabled; 4914 int rc; 4915 4916 /* Restart HBA */ 4917 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4918 "0296 Restart HBA Data: x%x x%x\n", 4919 phba->pport->port_state, psli->sli_flag); 4920 4921 /* Take PCIe device Advanced Error Reporting (AER) state */ 4922 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4923 4924 rc = lpfc_sli4_brdreset(phba); 4925 if (rc) { 4926 phba->link_state = LPFC_HBA_ERROR; 4927 goto hba_down_queue; 4928 } 4929 4930 spin_lock_irq(&phba->hbalock); 4931 phba->pport->stopped = 0; 4932 phba->link_state = LPFC_INIT_START; 4933 phba->hba_flag = 0; 4934 spin_unlock_irq(&phba->hbalock); 4935 4936 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4937 psli->stats_start = ktime_get_seconds(); 4938 4939 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4940 if (hba_aer_enabled) 4941 pci_disable_pcie_error_reporting(phba->pcidev); 4942 4943 hba_down_queue: 4944 lpfc_hba_down_post(phba); 4945 lpfc_sli4_queue_destroy(phba); 4946 4947 return rc; 4948 } 4949 4950 /** 4951 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4952 * @phba: Pointer to HBA context object. 4953 * 4954 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4955 * API jump table function pointer from the lpfc_hba struct. 4956 **/ 4957 int 4958 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4959 { 4960 return phba->lpfc_sli_brdrestart(phba); 4961 } 4962 4963 /** 4964 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4965 * @phba: Pointer to HBA context object. 4966 * 4967 * This function is called after a HBA restart to wait for successful 4968 * restart of the HBA. Successful restart of the HBA is indicated by 4969 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4970 * iteration, the function will restart the HBA again. The function returns 4971 * zero if HBA successfully restarted else returns negative error code. 4972 **/ 4973 int 4974 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4975 { 4976 uint32_t status, i = 0; 4977 4978 /* Read the HBA Host Status Register */ 4979 if (lpfc_readl(phba->HSregaddr, &status)) 4980 return -EIO; 4981 4982 /* Check status register to see what current state is */ 4983 i = 0; 4984 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4985 4986 /* Check every 10ms for 10 retries, then every 100ms for 90 4987 * retries, then every 1 sec for 50 retires for a total of 4988 * ~60 seconds before reset the board again and check every 4989 * 1 sec for 50 retries. The up to 60 seconds before the 4990 * board ready is required by the Falcon FIPS zeroization 4991 * complete, and any reset the board in between shall cause 4992 * restart of zeroization, further delay the board ready. 4993 */ 4994 if (i++ >= 200) { 4995 /* Adapter failed to init, timeout, status reg 4996 <status> */ 4997 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4998 "0436 Adapter failed to init, " 4999 "timeout, status reg x%x, " 5000 "FW Data: A8 x%x AC x%x\n", status, 5001 readl(phba->MBslimaddr + 0xa8), 5002 readl(phba->MBslimaddr + 0xac)); 5003 phba->link_state = LPFC_HBA_ERROR; 5004 return -ETIMEDOUT; 5005 } 5006 5007 /* Check to see if any errors occurred during init */ 5008 if (status & HS_FFERM) { 5009 /* ERROR: During chipset initialization */ 5010 /* Adapter failed to init, chipset, status reg 5011 <status> */ 5012 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5013 "0437 Adapter failed to init, " 5014 "chipset, status reg x%x, " 5015 "FW Data: A8 x%x AC x%x\n", status, 5016 readl(phba->MBslimaddr + 0xa8), 5017 readl(phba->MBslimaddr + 0xac)); 5018 phba->link_state = LPFC_HBA_ERROR; 5019 return -EIO; 5020 } 5021 5022 if (i <= 10) 5023 msleep(10); 5024 else if (i <= 100) 5025 msleep(100); 5026 else 5027 msleep(1000); 5028 5029 if (i == 150) { 5030 /* Do post */ 5031 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5032 lpfc_sli_brdrestart(phba); 5033 } 5034 /* Read the HBA Host Status Register */ 5035 if (lpfc_readl(phba->HSregaddr, &status)) 5036 return -EIO; 5037 } 5038 5039 /* Check to see if any errors occurred during init */ 5040 if (status & HS_FFERM) { 5041 /* ERROR: During chipset initialization */ 5042 /* Adapter failed to init, chipset, status reg <status> */ 5043 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5044 "0438 Adapter failed to init, chipset, " 5045 "status reg x%x, " 5046 "FW Data: A8 x%x AC x%x\n", status, 5047 readl(phba->MBslimaddr + 0xa8), 5048 readl(phba->MBslimaddr + 0xac)); 5049 phba->link_state = LPFC_HBA_ERROR; 5050 return -EIO; 5051 } 5052 5053 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5054 5055 /* Clear all interrupt enable conditions */ 5056 writel(0, phba->HCregaddr); 5057 readl(phba->HCregaddr); /* flush */ 5058 5059 /* setup host attn register */ 5060 writel(0xffffffff, phba->HAregaddr); 5061 readl(phba->HAregaddr); /* flush */ 5062 return 0; 5063 } 5064 5065 /** 5066 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5067 * 5068 * This function calculates and returns the number of HBQs required to be 5069 * configured. 5070 **/ 5071 int 5072 lpfc_sli_hbq_count(void) 5073 { 5074 return ARRAY_SIZE(lpfc_hbq_defs); 5075 } 5076 5077 /** 5078 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5079 * 5080 * This function adds the number of hbq entries in every HBQ to get 5081 * the total number of hbq entries required for the HBA and returns 5082 * the total count. 5083 **/ 5084 static int 5085 lpfc_sli_hbq_entry_count(void) 5086 { 5087 int hbq_count = lpfc_sli_hbq_count(); 5088 int count = 0; 5089 int i; 5090 5091 for (i = 0; i < hbq_count; ++i) 5092 count += lpfc_hbq_defs[i]->entry_count; 5093 return count; 5094 } 5095 5096 /** 5097 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5098 * 5099 * This function calculates amount of memory required for all hbq entries 5100 * to be configured and returns the total memory required. 5101 **/ 5102 int 5103 lpfc_sli_hbq_size(void) 5104 { 5105 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5106 } 5107 5108 /** 5109 * lpfc_sli_hbq_setup - configure and initialize HBQs 5110 * @phba: Pointer to HBA context object. 5111 * 5112 * This function is called during the SLI initialization to configure 5113 * all the HBQs and post buffers to the HBQ. The caller is not 5114 * required to hold any locks. This function will return zero if successful 5115 * else it will return negative error code. 5116 **/ 5117 static int 5118 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5119 { 5120 int hbq_count = lpfc_sli_hbq_count(); 5121 LPFC_MBOXQ_t *pmb; 5122 MAILBOX_t *pmbox; 5123 uint32_t hbqno; 5124 uint32_t hbq_entry_index; 5125 5126 /* Get a Mailbox buffer to setup mailbox 5127 * commands for HBA initialization 5128 */ 5129 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5130 5131 if (!pmb) 5132 return -ENOMEM; 5133 5134 pmbox = &pmb->u.mb; 5135 5136 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5137 phba->link_state = LPFC_INIT_MBX_CMDS; 5138 phba->hbq_in_use = 1; 5139 5140 hbq_entry_index = 0; 5141 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5142 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5143 phba->hbqs[hbqno].hbqPutIdx = 0; 5144 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5145 phba->hbqs[hbqno].entry_count = 5146 lpfc_hbq_defs[hbqno]->entry_count; 5147 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5148 hbq_entry_index, pmb); 5149 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5150 5151 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5152 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5153 mbxStatus <status>, ring <num> */ 5154 5155 lpfc_printf_log(phba, KERN_ERR, 5156 LOG_SLI | LOG_VPORT, 5157 "1805 Adapter failed to init. " 5158 "Data: x%x x%x x%x\n", 5159 pmbox->mbxCommand, 5160 pmbox->mbxStatus, hbqno); 5161 5162 phba->link_state = LPFC_HBA_ERROR; 5163 mempool_free(pmb, phba->mbox_mem_pool); 5164 return -ENXIO; 5165 } 5166 } 5167 phba->hbq_count = hbq_count; 5168 5169 mempool_free(pmb, phba->mbox_mem_pool); 5170 5171 /* Initially populate or replenish the HBQs */ 5172 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5173 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5174 return 0; 5175 } 5176 5177 /** 5178 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5179 * @phba: Pointer to HBA context object. 5180 * 5181 * This function is called during the SLI initialization to configure 5182 * all the HBQs and post buffers to the HBQ. The caller is not 5183 * required to hold any locks. This function will return zero if successful 5184 * else it will return negative error code. 5185 **/ 5186 static int 5187 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5188 { 5189 phba->hbq_in_use = 1; 5190 /** 5191 * Specific case when the MDS diagnostics is enabled and supported. 5192 * The receive buffer count is truncated to manage the incoming 5193 * traffic. 5194 **/ 5195 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5196 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5197 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5198 else 5199 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5200 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5201 phba->hbq_count = 1; 5202 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5203 /* Initially populate or replenish the HBQs */ 5204 return 0; 5205 } 5206 5207 /** 5208 * lpfc_sli_config_port - Issue config port mailbox command 5209 * @phba: Pointer to HBA context object. 5210 * @sli_mode: sli mode - 2/3 5211 * 5212 * This function is called by the sli initialization code path 5213 * to issue config_port mailbox command. This function restarts the 5214 * HBA firmware and issues a config_port mailbox command to configure 5215 * the SLI interface in the sli mode specified by sli_mode 5216 * variable. The caller is not required to hold any locks. 5217 * The function returns 0 if successful, else returns negative error 5218 * code. 5219 **/ 5220 int 5221 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5222 { 5223 LPFC_MBOXQ_t *pmb; 5224 uint32_t resetcount = 0, rc = 0, done = 0; 5225 5226 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5227 if (!pmb) { 5228 phba->link_state = LPFC_HBA_ERROR; 5229 return -ENOMEM; 5230 } 5231 5232 phba->sli_rev = sli_mode; 5233 while (resetcount < 2 && !done) { 5234 spin_lock_irq(&phba->hbalock); 5235 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5236 spin_unlock_irq(&phba->hbalock); 5237 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5238 lpfc_sli_brdrestart(phba); 5239 rc = lpfc_sli_chipset_init(phba); 5240 if (rc) 5241 break; 5242 5243 spin_lock_irq(&phba->hbalock); 5244 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5245 spin_unlock_irq(&phba->hbalock); 5246 resetcount++; 5247 5248 /* Call pre CONFIG_PORT mailbox command initialization. A 5249 * value of 0 means the call was successful. Any other 5250 * nonzero value is a failure, but if ERESTART is returned, 5251 * the driver may reset the HBA and try again. 5252 */ 5253 rc = lpfc_config_port_prep(phba); 5254 if (rc == -ERESTART) { 5255 phba->link_state = LPFC_LINK_UNKNOWN; 5256 continue; 5257 } else if (rc) 5258 break; 5259 5260 phba->link_state = LPFC_INIT_MBX_CMDS; 5261 lpfc_config_port(phba, pmb); 5262 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5263 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5264 LPFC_SLI3_HBQ_ENABLED | 5265 LPFC_SLI3_CRP_ENABLED | 5266 LPFC_SLI3_DSS_ENABLED); 5267 if (rc != MBX_SUCCESS) { 5268 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5269 "0442 Adapter failed to init, mbxCmd x%x " 5270 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5271 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5272 spin_lock_irq(&phba->hbalock); 5273 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5274 spin_unlock_irq(&phba->hbalock); 5275 rc = -ENXIO; 5276 } else { 5277 /* Allow asynchronous mailbox command to go through */ 5278 spin_lock_irq(&phba->hbalock); 5279 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5280 spin_unlock_irq(&phba->hbalock); 5281 done = 1; 5282 5283 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5284 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5285 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5286 "3110 Port did not grant ASABT\n"); 5287 } 5288 } 5289 if (!done) { 5290 rc = -EINVAL; 5291 goto do_prep_failed; 5292 } 5293 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5294 if (!pmb->u.mb.un.varCfgPort.cMA) { 5295 rc = -ENXIO; 5296 goto do_prep_failed; 5297 } 5298 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5299 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5300 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5301 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5302 phba->max_vpi : phba->max_vports; 5303 5304 } else 5305 phba->max_vpi = 0; 5306 if (pmb->u.mb.un.varCfgPort.gerbm) 5307 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5308 if (pmb->u.mb.un.varCfgPort.gcrp) 5309 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5310 5311 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5312 phba->port_gp = phba->mbox->us.s3_pgp.port; 5313 5314 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5315 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5316 phba->cfg_enable_bg = 0; 5317 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5318 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5319 "0443 Adapter did not grant " 5320 "BlockGuard\n"); 5321 } 5322 } 5323 } else { 5324 phba->hbq_get = NULL; 5325 phba->port_gp = phba->mbox->us.s2.port; 5326 phba->max_vpi = 0; 5327 } 5328 do_prep_failed: 5329 mempool_free(pmb, phba->mbox_mem_pool); 5330 return rc; 5331 } 5332 5333 5334 /** 5335 * lpfc_sli_hba_setup - SLI initialization function 5336 * @phba: Pointer to HBA context object. 5337 * 5338 * This function is the main SLI initialization function. This function 5339 * is called by the HBA initialization code, HBA reset code and HBA 5340 * error attention handler code. Caller is not required to hold any 5341 * locks. This function issues config_port mailbox command to configure 5342 * the SLI, setup iocb rings and HBQ rings. In the end the function 5343 * calls the config_port_post function to issue init_link mailbox 5344 * command and to start the discovery. The function will return zero 5345 * if successful, else it will return negative error code. 5346 **/ 5347 int 5348 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5349 { 5350 uint32_t rc; 5351 int i; 5352 int longs; 5353 5354 /* Enable ISR already does config_port because of config_msi mbx */ 5355 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5356 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5357 if (rc) 5358 return -EIO; 5359 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5360 } 5361 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5362 5363 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5364 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5365 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5366 if (!rc) { 5367 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5368 "2709 This device supports " 5369 "Advanced Error Reporting (AER)\n"); 5370 spin_lock_irq(&phba->hbalock); 5371 phba->hba_flag |= HBA_AER_ENABLED; 5372 spin_unlock_irq(&phba->hbalock); 5373 } else { 5374 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5375 "2708 This device does not support " 5376 "Advanced Error Reporting (AER): %d\n", 5377 rc); 5378 phba->cfg_aer_support = 0; 5379 } 5380 } 5381 5382 if (phba->sli_rev == 3) { 5383 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5384 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5385 } else { 5386 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5387 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5388 phba->sli3_options = 0; 5389 } 5390 5391 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5392 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5393 phba->sli_rev, phba->max_vpi); 5394 rc = lpfc_sli_ring_map(phba); 5395 5396 if (rc) 5397 goto lpfc_sli_hba_setup_error; 5398 5399 /* Initialize VPIs. */ 5400 if (phba->sli_rev == LPFC_SLI_REV3) { 5401 /* 5402 * The VPI bitmask and physical ID array are allocated 5403 * and initialized once only - at driver load. A port 5404 * reset doesn't need to reinitialize this memory. 5405 */ 5406 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5407 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5408 phba->vpi_bmask = kcalloc(longs, 5409 sizeof(unsigned long), 5410 GFP_KERNEL); 5411 if (!phba->vpi_bmask) { 5412 rc = -ENOMEM; 5413 goto lpfc_sli_hba_setup_error; 5414 } 5415 5416 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5417 sizeof(uint16_t), 5418 GFP_KERNEL); 5419 if (!phba->vpi_ids) { 5420 kfree(phba->vpi_bmask); 5421 rc = -ENOMEM; 5422 goto lpfc_sli_hba_setup_error; 5423 } 5424 for (i = 0; i < phba->max_vpi; i++) 5425 phba->vpi_ids[i] = i; 5426 } 5427 } 5428 5429 /* Init HBQs */ 5430 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5431 rc = lpfc_sli_hbq_setup(phba); 5432 if (rc) 5433 goto lpfc_sli_hba_setup_error; 5434 } 5435 spin_lock_irq(&phba->hbalock); 5436 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5437 spin_unlock_irq(&phba->hbalock); 5438 5439 rc = lpfc_config_port_post(phba); 5440 if (rc) 5441 goto lpfc_sli_hba_setup_error; 5442 5443 return rc; 5444 5445 lpfc_sli_hba_setup_error: 5446 phba->link_state = LPFC_HBA_ERROR; 5447 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5448 "0445 Firmware initialization failed\n"); 5449 return rc; 5450 } 5451 5452 /** 5453 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5454 * @phba: Pointer to HBA context object. 5455 * 5456 * This function issue a dump mailbox command to read config region 5457 * 23 and parse the records in the region and populate driver 5458 * data structure. 5459 **/ 5460 static int 5461 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5462 { 5463 LPFC_MBOXQ_t *mboxq; 5464 struct lpfc_dmabuf *mp; 5465 struct lpfc_mqe *mqe; 5466 uint32_t data_length; 5467 int rc; 5468 5469 /* Program the default value of vlan_id and fc_map */ 5470 phba->valid_vlan = 0; 5471 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5472 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5473 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5474 5475 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5476 if (!mboxq) 5477 return -ENOMEM; 5478 5479 mqe = &mboxq->u.mqe; 5480 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5481 rc = -ENOMEM; 5482 goto out_free_mboxq; 5483 } 5484 5485 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5486 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5487 5488 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5489 "(%d):2571 Mailbox cmd x%x Status x%x " 5490 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5491 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5492 "CQ: x%x x%x x%x x%x\n", 5493 mboxq->vport ? mboxq->vport->vpi : 0, 5494 bf_get(lpfc_mqe_command, mqe), 5495 bf_get(lpfc_mqe_status, mqe), 5496 mqe->un.mb_words[0], mqe->un.mb_words[1], 5497 mqe->un.mb_words[2], mqe->un.mb_words[3], 5498 mqe->un.mb_words[4], mqe->un.mb_words[5], 5499 mqe->un.mb_words[6], mqe->un.mb_words[7], 5500 mqe->un.mb_words[8], mqe->un.mb_words[9], 5501 mqe->un.mb_words[10], mqe->un.mb_words[11], 5502 mqe->un.mb_words[12], mqe->un.mb_words[13], 5503 mqe->un.mb_words[14], mqe->un.mb_words[15], 5504 mqe->un.mb_words[16], mqe->un.mb_words[50], 5505 mboxq->mcqe.word0, 5506 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5507 mboxq->mcqe.trailer); 5508 5509 if (rc) { 5510 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5511 kfree(mp); 5512 rc = -EIO; 5513 goto out_free_mboxq; 5514 } 5515 data_length = mqe->un.mb_words[5]; 5516 if (data_length > DMP_RGN23_SIZE) { 5517 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5518 kfree(mp); 5519 rc = -EIO; 5520 goto out_free_mboxq; 5521 } 5522 5523 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5524 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5525 kfree(mp); 5526 rc = 0; 5527 5528 out_free_mboxq: 5529 mempool_free(mboxq, phba->mbox_mem_pool); 5530 return rc; 5531 } 5532 5533 /** 5534 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5535 * @phba: pointer to lpfc hba data structure. 5536 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5537 * @vpd: pointer to the memory to hold resulting port vpd data. 5538 * @vpd_size: On input, the number of bytes allocated to @vpd. 5539 * On output, the number of data bytes in @vpd. 5540 * 5541 * This routine executes a READ_REV SLI4 mailbox command. In 5542 * addition, this routine gets the port vpd data. 5543 * 5544 * Return codes 5545 * 0 - successful 5546 * -ENOMEM - could not allocated memory. 5547 **/ 5548 static int 5549 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5550 uint8_t *vpd, uint32_t *vpd_size) 5551 { 5552 int rc = 0; 5553 uint32_t dma_size; 5554 struct lpfc_dmabuf *dmabuf; 5555 struct lpfc_mqe *mqe; 5556 5557 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5558 if (!dmabuf) 5559 return -ENOMEM; 5560 5561 /* 5562 * Get a DMA buffer for the vpd data resulting from the READ_REV 5563 * mailbox command. 5564 */ 5565 dma_size = *vpd_size; 5566 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5567 &dmabuf->phys, GFP_KERNEL); 5568 if (!dmabuf->virt) { 5569 kfree(dmabuf); 5570 return -ENOMEM; 5571 } 5572 5573 /* 5574 * The SLI4 implementation of READ_REV conflicts at word1, 5575 * bits 31:16 and SLI4 adds vpd functionality not present 5576 * in SLI3. This code corrects the conflicts. 5577 */ 5578 lpfc_read_rev(phba, mboxq); 5579 mqe = &mboxq->u.mqe; 5580 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5581 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5582 mqe->un.read_rev.word1 &= 0x0000FFFF; 5583 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5584 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5585 5586 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5587 if (rc) { 5588 dma_free_coherent(&phba->pcidev->dev, dma_size, 5589 dmabuf->virt, dmabuf->phys); 5590 kfree(dmabuf); 5591 return -EIO; 5592 } 5593 5594 /* 5595 * The available vpd length cannot be bigger than the 5596 * DMA buffer passed to the port. Catch the less than 5597 * case and update the caller's size. 5598 */ 5599 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5600 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5601 5602 memcpy(vpd, dmabuf->virt, *vpd_size); 5603 5604 dma_free_coherent(&phba->pcidev->dev, dma_size, 5605 dmabuf->virt, dmabuf->phys); 5606 kfree(dmabuf); 5607 return 0; 5608 } 5609 5610 /** 5611 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5612 * @phba: pointer to lpfc hba data structure. 5613 * 5614 * This routine retrieves SLI4 device physical port name this PCI function 5615 * is attached to. 5616 * 5617 * Return codes 5618 * 0 - successful 5619 * otherwise - failed to retrieve controller attributes 5620 **/ 5621 static int 5622 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5623 { 5624 LPFC_MBOXQ_t *mboxq; 5625 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5626 struct lpfc_controller_attribute *cntl_attr; 5627 void *virtaddr = NULL; 5628 uint32_t alloclen, reqlen; 5629 uint32_t shdr_status, shdr_add_status; 5630 union lpfc_sli4_cfg_shdr *shdr; 5631 int rc; 5632 5633 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5634 if (!mboxq) 5635 return -ENOMEM; 5636 5637 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5638 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5639 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5640 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5641 LPFC_SLI4_MBX_NEMBED); 5642 5643 if (alloclen < reqlen) { 5644 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5645 "3084 Allocated DMA memory size (%d) is " 5646 "less than the requested DMA memory size " 5647 "(%d)\n", alloclen, reqlen); 5648 rc = -ENOMEM; 5649 goto out_free_mboxq; 5650 } 5651 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5652 virtaddr = mboxq->sge_array->addr[0]; 5653 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5654 shdr = &mbx_cntl_attr->cfg_shdr; 5655 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5656 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5657 if (shdr_status || shdr_add_status || rc) { 5658 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5659 "3085 Mailbox x%x (x%x/x%x) failed, " 5660 "rc:x%x, status:x%x, add_status:x%x\n", 5661 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5662 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5663 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5664 rc, shdr_status, shdr_add_status); 5665 rc = -ENXIO; 5666 goto out_free_mboxq; 5667 } 5668 5669 cntl_attr = &mbx_cntl_attr->cntl_attr; 5670 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5671 phba->sli4_hba.lnk_info.lnk_tp = 5672 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5673 phba->sli4_hba.lnk_info.lnk_no = 5674 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5675 5676 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5677 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5678 sizeof(phba->BIOSVersion)); 5679 5680 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5681 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n", 5682 phba->sli4_hba.lnk_info.lnk_tp, 5683 phba->sli4_hba.lnk_info.lnk_no, 5684 phba->BIOSVersion); 5685 out_free_mboxq: 5686 if (rc != MBX_TIMEOUT) { 5687 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5688 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5689 else 5690 mempool_free(mboxq, phba->mbox_mem_pool); 5691 } 5692 return rc; 5693 } 5694 5695 /** 5696 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5697 * @phba: pointer to lpfc hba data structure. 5698 * 5699 * This routine retrieves SLI4 device physical port name this PCI function 5700 * is attached to. 5701 * 5702 * Return codes 5703 * 0 - successful 5704 * otherwise - failed to retrieve physical port name 5705 **/ 5706 static int 5707 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5708 { 5709 LPFC_MBOXQ_t *mboxq; 5710 struct lpfc_mbx_get_port_name *get_port_name; 5711 uint32_t shdr_status, shdr_add_status; 5712 union lpfc_sli4_cfg_shdr *shdr; 5713 char cport_name = 0; 5714 int rc; 5715 5716 /* We assume nothing at this point */ 5717 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5718 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5719 5720 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5721 if (!mboxq) 5722 return -ENOMEM; 5723 /* obtain link type and link number via READ_CONFIG */ 5724 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5725 lpfc_sli4_read_config(phba); 5726 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5727 goto retrieve_ppname; 5728 5729 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5730 rc = lpfc_sli4_get_ctl_attr(phba); 5731 if (rc) 5732 goto out_free_mboxq; 5733 5734 retrieve_ppname: 5735 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5736 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5737 sizeof(struct lpfc_mbx_get_port_name) - 5738 sizeof(struct lpfc_sli4_cfg_mhdr), 5739 LPFC_SLI4_MBX_EMBED); 5740 get_port_name = &mboxq->u.mqe.un.get_port_name; 5741 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5742 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5743 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5744 phba->sli4_hba.lnk_info.lnk_tp); 5745 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5746 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5747 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5748 if (shdr_status || shdr_add_status || rc) { 5749 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5750 "3087 Mailbox x%x (x%x/x%x) failed: " 5751 "rc:x%x, status:x%x, add_status:x%x\n", 5752 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5753 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5754 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5755 rc, shdr_status, shdr_add_status); 5756 rc = -ENXIO; 5757 goto out_free_mboxq; 5758 } 5759 switch (phba->sli4_hba.lnk_info.lnk_no) { 5760 case LPFC_LINK_NUMBER_0: 5761 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5762 &get_port_name->u.response); 5763 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5764 break; 5765 case LPFC_LINK_NUMBER_1: 5766 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5767 &get_port_name->u.response); 5768 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5769 break; 5770 case LPFC_LINK_NUMBER_2: 5771 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5772 &get_port_name->u.response); 5773 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5774 break; 5775 case LPFC_LINK_NUMBER_3: 5776 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5777 &get_port_name->u.response); 5778 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5779 break; 5780 default: 5781 break; 5782 } 5783 5784 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5785 phba->Port[0] = cport_name; 5786 phba->Port[1] = '\0'; 5787 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5788 "3091 SLI get port name: %s\n", phba->Port); 5789 } 5790 5791 out_free_mboxq: 5792 if (rc != MBX_TIMEOUT) { 5793 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5794 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5795 else 5796 mempool_free(mboxq, phba->mbox_mem_pool); 5797 } 5798 return rc; 5799 } 5800 5801 /** 5802 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5803 * @phba: pointer to lpfc hba data structure. 5804 * 5805 * This routine is called to explicitly arm the SLI4 device's completion and 5806 * event queues 5807 **/ 5808 static void 5809 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5810 { 5811 int qidx; 5812 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 5813 struct lpfc_sli4_hdw_queue *qp; 5814 struct lpfc_queue *eq; 5815 5816 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 5817 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 5818 if (sli4_hba->nvmels_cq) 5819 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 5820 LPFC_QUEUE_REARM); 5821 5822 if (sli4_hba->hdwq) { 5823 /* Loop thru all Hardware Queues */ 5824 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 5825 qp = &sli4_hba->hdwq[qidx]; 5826 /* ARM the corresponding CQ */ 5827 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 5828 LPFC_QUEUE_REARM); 5829 } 5830 5831 /* Loop thru all IRQ vectors */ 5832 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 5833 eq = sli4_hba->hba_eq_hdl[qidx].eq; 5834 /* ARM the corresponding EQ */ 5835 sli4_hba->sli4_write_eq_db(phba, eq, 5836 0, LPFC_QUEUE_REARM); 5837 } 5838 } 5839 5840 if (phba->nvmet_support) { 5841 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5842 sli4_hba->sli4_write_cq_db(phba, 5843 sli4_hba->nvmet_cqset[qidx], 0, 5844 LPFC_QUEUE_REARM); 5845 } 5846 } 5847 } 5848 5849 /** 5850 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5851 * @phba: Pointer to HBA context object. 5852 * @type: The resource extent type. 5853 * @extnt_count: buffer to hold port available extent count. 5854 * @extnt_size: buffer to hold element count per extent. 5855 * 5856 * This function calls the port and retrievs the number of available 5857 * extents and their size for a particular extent type. 5858 * 5859 * Returns: 0 if successful. Nonzero otherwise. 5860 **/ 5861 int 5862 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5863 uint16_t *extnt_count, uint16_t *extnt_size) 5864 { 5865 int rc = 0; 5866 uint32_t length; 5867 uint32_t mbox_tmo; 5868 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5869 LPFC_MBOXQ_t *mbox; 5870 5871 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5872 if (!mbox) 5873 return -ENOMEM; 5874 5875 /* Find out how many extents are available for this resource type */ 5876 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5877 sizeof(struct lpfc_sli4_cfg_mhdr)); 5878 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5879 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5880 length, LPFC_SLI4_MBX_EMBED); 5881 5882 /* Send an extents count of 0 - the GET doesn't use it. */ 5883 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5884 LPFC_SLI4_MBX_EMBED); 5885 if (unlikely(rc)) { 5886 rc = -EIO; 5887 goto err_exit; 5888 } 5889 5890 if (!phba->sli4_hba.intr_enable) 5891 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5892 else { 5893 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5894 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5895 } 5896 if (unlikely(rc)) { 5897 rc = -EIO; 5898 goto err_exit; 5899 } 5900 5901 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5902 if (bf_get(lpfc_mbox_hdr_status, 5903 &rsrc_info->header.cfg_shdr.response)) { 5904 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5905 "2930 Failed to get resource extents " 5906 "Status 0x%x Add'l Status 0x%x\n", 5907 bf_get(lpfc_mbox_hdr_status, 5908 &rsrc_info->header.cfg_shdr.response), 5909 bf_get(lpfc_mbox_hdr_add_status, 5910 &rsrc_info->header.cfg_shdr.response)); 5911 rc = -EIO; 5912 goto err_exit; 5913 } 5914 5915 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5916 &rsrc_info->u.rsp); 5917 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5918 &rsrc_info->u.rsp); 5919 5920 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5921 "3162 Retrieved extents type-%d from port: count:%d, " 5922 "size:%d\n", type, *extnt_count, *extnt_size); 5923 5924 err_exit: 5925 mempool_free(mbox, phba->mbox_mem_pool); 5926 return rc; 5927 } 5928 5929 /** 5930 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5931 * @phba: Pointer to HBA context object. 5932 * @type: The extent type to check. 5933 * 5934 * This function reads the current available extents from the port and checks 5935 * if the extent count or extent size has changed since the last access. 5936 * Callers use this routine post port reset to understand if there is a 5937 * extent reprovisioning requirement. 5938 * 5939 * Returns: 5940 * -Error: error indicates problem. 5941 * 1: Extent count or size has changed. 5942 * 0: No changes. 5943 **/ 5944 static int 5945 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5946 { 5947 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5948 uint16_t size_diff, rsrc_ext_size; 5949 int rc = 0; 5950 struct lpfc_rsrc_blks *rsrc_entry; 5951 struct list_head *rsrc_blk_list = NULL; 5952 5953 size_diff = 0; 5954 curr_ext_cnt = 0; 5955 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5956 &rsrc_ext_cnt, 5957 &rsrc_ext_size); 5958 if (unlikely(rc)) 5959 return -EIO; 5960 5961 switch (type) { 5962 case LPFC_RSC_TYPE_FCOE_RPI: 5963 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5964 break; 5965 case LPFC_RSC_TYPE_FCOE_VPI: 5966 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5967 break; 5968 case LPFC_RSC_TYPE_FCOE_XRI: 5969 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5970 break; 5971 case LPFC_RSC_TYPE_FCOE_VFI: 5972 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5973 break; 5974 default: 5975 break; 5976 } 5977 5978 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5979 curr_ext_cnt++; 5980 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5981 size_diff++; 5982 } 5983 5984 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5985 rc = 1; 5986 5987 return rc; 5988 } 5989 5990 /** 5991 * lpfc_sli4_cfg_post_extnts - 5992 * @phba: Pointer to HBA context object. 5993 * @extnt_cnt: number of available extents. 5994 * @type: the extent type (rpi, xri, vfi, vpi). 5995 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5996 * @mbox: pointer to the caller's allocated mailbox structure. 5997 * 5998 * This function executes the extents allocation request. It also 5999 * takes care of the amount of memory needed to allocate or get the 6000 * allocated extents. It is the caller's responsibility to evaluate 6001 * the response. 6002 * 6003 * Returns: 6004 * -Error: Error value describes the condition found. 6005 * 0: if successful 6006 **/ 6007 static int 6008 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6009 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6010 { 6011 int rc = 0; 6012 uint32_t req_len; 6013 uint32_t emb_len; 6014 uint32_t alloc_len, mbox_tmo; 6015 6016 /* Calculate the total requested length of the dma memory */ 6017 req_len = extnt_cnt * sizeof(uint16_t); 6018 6019 /* 6020 * Calculate the size of an embedded mailbox. The uint32_t 6021 * accounts for extents-specific word. 6022 */ 6023 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6024 sizeof(uint32_t); 6025 6026 /* 6027 * Presume the allocation and response will fit into an embedded 6028 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6029 */ 6030 *emb = LPFC_SLI4_MBX_EMBED; 6031 if (req_len > emb_len) { 6032 req_len = extnt_cnt * sizeof(uint16_t) + 6033 sizeof(union lpfc_sli4_cfg_shdr) + 6034 sizeof(uint32_t); 6035 *emb = LPFC_SLI4_MBX_NEMBED; 6036 } 6037 6038 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6039 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6040 req_len, *emb); 6041 if (alloc_len < req_len) { 6042 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6043 "2982 Allocated DMA memory size (x%x) is " 6044 "less than the requested DMA memory " 6045 "size (x%x)\n", alloc_len, req_len); 6046 return -ENOMEM; 6047 } 6048 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6049 if (unlikely(rc)) 6050 return -EIO; 6051 6052 if (!phba->sli4_hba.intr_enable) 6053 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6054 else { 6055 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6056 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6057 } 6058 6059 if (unlikely(rc)) 6060 rc = -EIO; 6061 return rc; 6062 } 6063 6064 /** 6065 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6066 * @phba: Pointer to HBA context object. 6067 * @type: The resource extent type to allocate. 6068 * 6069 * This function allocates the number of elements for the specified 6070 * resource type. 6071 **/ 6072 static int 6073 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6074 { 6075 bool emb = false; 6076 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6077 uint16_t rsrc_id, rsrc_start, j, k; 6078 uint16_t *ids; 6079 int i, rc; 6080 unsigned long longs; 6081 unsigned long *bmask; 6082 struct lpfc_rsrc_blks *rsrc_blks; 6083 LPFC_MBOXQ_t *mbox; 6084 uint32_t length; 6085 struct lpfc_id_range *id_array = NULL; 6086 void *virtaddr = NULL; 6087 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6088 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6089 struct list_head *ext_blk_list; 6090 6091 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6092 &rsrc_cnt, 6093 &rsrc_size); 6094 if (unlikely(rc)) 6095 return -EIO; 6096 6097 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6098 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6099 "3009 No available Resource Extents " 6100 "for resource type 0x%x: Count: 0x%x, " 6101 "Size 0x%x\n", type, rsrc_cnt, 6102 rsrc_size); 6103 return -ENOMEM; 6104 } 6105 6106 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6107 "2903 Post resource extents type-0x%x: " 6108 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6109 6110 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6111 if (!mbox) 6112 return -ENOMEM; 6113 6114 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6115 if (unlikely(rc)) { 6116 rc = -EIO; 6117 goto err_exit; 6118 } 6119 6120 /* 6121 * Figure out where the response is located. Then get local pointers 6122 * to the response data. The port does not guarantee to respond to 6123 * all extents counts request so update the local variable with the 6124 * allocated count from the port. 6125 */ 6126 if (emb == LPFC_SLI4_MBX_EMBED) { 6127 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6128 id_array = &rsrc_ext->u.rsp.id[0]; 6129 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6130 } else { 6131 virtaddr = mbox->sge_array->addr[0]; 6132 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6133 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6134 id_array = &n_rsrc->id; 6135 } 6136 6137 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6138 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6139 6140 /* 6141 * Based on the resource size and count, correct the base and max 6142 * resource values. 6143 */ 6144 length = sizeof(struct lpfc_rsrc_blks); 6145 switch (type) { 6146 case LPFC_RSC_TYPE_FCOE_RPI: 6147 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6148 sizeof(unsigned long), 6149 GFP_KERNEL); 6150 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6151 rc = -ENOMEM; 6152 goto err_exit; 6153 } 6154 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6155 sizeof(uint16_t), 6156 GFP_KERNEL); 6157 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6158 kfree(phba->sli4_hba.rpi_bmask); 6159 rc = -ENOMEM; 6160 goto err_exit; 6161 } 6162 6163 /* 6164 * The next_rpi was initialized with the maximum available 6165 * count but the port may allocate a smaller number. Catch 6166 * that case and update the next_rpi. 6167 */ 6168 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6169 6170 /* Initialize local ptrs for common extent processing later. */ 6171 bmask = phba->sli4_hba.rpi_bmask; 6172 ids = phba->sli4_hba.rpi_ids; 6173 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6174 break; 6175 case LPFC_RSC_TYPE_FCOE_VPI: 6176 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6177 GFP_KERNEL); 6178 if (unlikely(!phba->vpi_bmask)) { 6179 rc = -ENOMEM; 6180 goto err_exit; 6181 } 6182 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6183 GFP_KERNEL); 6184 if (unlikely(!phba->vpi_ids)) { 6185 kfree(phba->vpi_bmask); 6186 rc = -ENOMEM; 6187 goto err_exit; 6188 } 6189 6190 /* Initialize local ptrs for common extent processing later. */ 6191 bmask = phba->vpi_bmask; 6192 ids = phba->vpi_ids; 6193 ext_blk_list = &phba->lpfc_vpi_blk_list; 6194 break; 6195 case LPFC_RSC_TYPE_FCOE_XRI: 6196 phba->sli4_hba.xri_bmask = kcalloc(longs, 6197 sizeof(unsigned long), 6198 GFP_KERNEL); 6199 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6200 rc = -ENOMEM; 6201 goto err_exit; 6202 } 6203 phba->sli4_hba.max_cfg_param.xri_used = 0; 6204 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6205 sizeof(uint16_t), 6206 GFP_KERNEL); 6207 if (unlikely(!phba->sli4_hba.xri_ids)) { 6208 kfree(phba->sli4_hba.xri_bmask); 6209 rc = -ENOMEM; 6210 goto err_exit; 6211 } 6212 6213 /* Initialize local ptrs for common extent processing later. */ 6214 bmask = phba->sli4_hba.xri_bmask; 6215 ids = phba->sli4_hba.xri_ids; 6216 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6217 break; 6218 case LPFC_RSC_TYPE_FCOE_VFI: 6219 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6220 sizeof(unsigned long), 6221 GFP_KERNEL); 6222 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6223 rc = -ENOMEM; 6224 goto err_exit; 6225 } 6226 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6227 sizeof(uint16_t), 6228 GFP_KERNEL); 6229 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6230 kfree(phba->sli4_hba.vfi_bmask); 6231 rc = -ENOMEM; 6232 goto err_exit; 6233 } 6234 6235 /* Initialize local ptrs for common extent processing later. */ 6236 bmask = phba->sli4_hba.vfi_bmask; 6237 ids = phba->sli4_hba.vfi_ids; 6238 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6239 break; 6240 default: 6241 /* Unsupported Opcode. Fail call. */ 6242 id_array = NULL; 6243 bmask = NULL; 6244 ids = NULL; 6245 ext_blk_list = NULL; 6246 goto err_exit; 6247 } 6248 6249 /* 6250 * Complete initializing the extent configuration with the 6251 * allocated ids assigned to this function. The bitmask serves 6252 * as an index into the array and manages the available ids. The 6253 * array just stores the ids communicated to the port via the wqes. 6254 */ 6255 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6256 if ((i % 2) == 0) 6257 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6258 &id_array[k]); 6259 else 6260 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6261 &id_array[k]); 6262 6263 rsrc_blks = kzalloc(length, GFP_KERNEL); 6264 if (unlikely(!rsrc_blks)) { 6265 rc = -ENOMEM; 6266 kfree(bmask); 6267 kfree(ids); 6268 goto err_exit; 6269 } 6270 rsrc_blks->rsrc_start = rsrc_id; 6271 rsrc_blks->rsrc_size = rsrc_size; 6272 list_add_tail(&rsrc_blks->list, ext_blk_list); 6273 rsrc_start = rsrc_id; 6274 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6275 phba->sli4_hba.io_xri_start = rsrc_start + 6276 lpfc_sli4_get_iocb_cnt(phba); 6277 } 6278 6279 while (rsrc_id < (rsrc_start + rsrc_size)) { 6280 ids[j] = rsrc_id; 6281 rsrc_id++; 6282 j++; 6283 } 6284 /* Entire word processed. Get next word.*/ 6285 if ((i % 2) == 1) 6286 k++; 6287 } 6288 err_exit: 6289 lpfc_sli4_mbox_cmd_free(phba, mbox); 6290 return rc; 6291 } 6292 6293 6294 6295 /** 6296 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6297 * @phba: Pointer to HBA context object. 6298 * @type: the extent's type. 6299 * 6300 * This function deallocates all extents of a particular resource type. 6301 * SLI4 does not allow for deallocating a particular extent range. It 6302 * is the caller's responsibility to release all kernel memory resources. 6303 **/ 6304 static int 6305 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6306 { 6307 int rc; 6308 uint32_t length, mbox_tmo = 0; 6309 LPFC_MBOXQ_t *mbox; 6310 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6311 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6312 6313 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6314 if (!mbox) 6315 return -ENOMEM; 6316 6317 /* 6318 * This function sends an embedded mailbox because it only sends the 6319 * the resource type. All extents of this type are released by the 6320 * port. 6321 */ 6322 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6323 sizeof(struct lpfc_sli4_cfg_mhdr)); 6324 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6325 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6326 length, LPFC_SLI4_MBX_EMBED); 6327 6328 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6329 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6330 LPFC_SLI4_MBX_EMBED); 6331 if (unlikely(rc)) { 6332 rc = -EIO; 6333 goto out_free_mbox; 6334 } 6335 if (!phba->sli4_hba.intr_enable) 6336 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6337 else { 6338 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6339 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6340 } 6341 if (unlikely(rc)) { 6342 rc = -EIO; 6343 goto out_free_mbox; 6344 } 6345 6346 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6347 if (bf_get(lpfc_mbox_hdr_status, 6348 &dealloc_rsrc->header.cfg_shdr.response)) { 6349 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6350 "2919 Failed to release resource extents " 6351 "for type %d - Status 0x%x Add'l Status 0x%x. " 6352 "Resource memory not released.\n", 6353 type, 6354 bf_get(lpfc_mbox_hdr_status, 6355 &dealloc_rsrc->header.cfg_shdr.response), 6356 bf_get(lpfc_mbox_hdr_add_status, 6357 &dealloc_rsrc->header.cfg_shdr.response)); 6358 rc = -EIO; 6359 goto out_free_mbox; 6360 } 6361 6362 /* Release kernel memory resources for the specific type. */ 6363 switch (type) { 6364 case LPFC_RSC_TYPE_FCOE_VPI: 6365 kfree(phba->vpi_bmask); 6366 kfree(phba->vpi_ids); 6367 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6368 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6369 &phba->lpfc_vpi_blk_list, list) { 6370 list_del_init(&rsrc_blk->list); 6371 kfree(rsrc_blk); 6372 } 6373 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6374 break; 6375 case LPFC_RSC_TYPE_FCOE_XRI: 6376 kfree(phba->sli4_hba.xri_bmask); 6377 kfree(phba->sli4_hba.xri_ids); 6378 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6379 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6380 list_del_init(&rsrc_blk->list); 6381 kfree(rsrc_blk); 6382 } 6383 break; 6384 case LPFC_RSC_TYPE_FCOE_VFI: 6385 kfree(phba->sli4_hba.vfi_bmask); 6386 kfree(phba->sli4_hba.vfi_ids); 6387 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6388 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6389 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6390 list_del_init(&rsrc_blk->list); 6391 kfree(rsrc_blk); 6392 } 6393 break; 6394 case LPFC_RSC_TYPE_FCOE_RPI: 6395 /* RPI bitmask and physical id array are cleaned up earlier. */ 6396 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6397 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6398 list_del_init(&rsrc_blk->list); 6399 kfree(rsrc_blk); 6400 } 6401 break; 6402 default: 6403 break; 6404 } 6405 6406 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6407 6408 out_free_mbox: 6409 mempool_free(mbox, phba->mbox_mem_pool); 6410 return rc; 6411 } 6412 6413 static void 6414 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6415 uint32_t feature) 6416 { 6417 uint32_t len; 6418 6419 len = sizeof(struct lpfc_mbx_set_feature) - 6420 sizeof(struct lpfc_sli4_cfg_mhdr); 6421 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6422 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6423 LPFC_SLI4_MBX_EMBED); 6424 6425 switch (feature) { 6426 case LPFC_SET_UE_RECOVERY: 6427 bf_set(lpfc_mbx_set_feature_UER, 6428 &mbox->u.mqe.un.set_feature, 1); 6429 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6430 mbox->u.mqe.un.set_feature.param_len = 8; 6431 break; 6432 case LPFC_SET_MDS_DIAGS: 6433 bf_set(lpfc_mbx_set_feature_mds, 6434 &mbox->u.mqe.un.set_feature, 1); 6435 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6436 &mbox->u.mqe.un.set_feature, 1); 6437 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6438 mbox->u.mqe.un.set_feature.param_len = 8; 6439 break; 6440 case LPFC_SET_DUAL_DUMP: 6441 bf_set(lpfc_mbx_set_feature_dd, 6442 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6443 bf_set(lpfc_mbx_set_feature_ddquery, 6444 &mbox->u.mqe.un.set_feature, 0); 6445 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6446 mbox->u.mqe.un.set_feature.param_len = 4; 6447 break; 6448 } 6449 6450 return; 6451 } 6452 6453 /** 6454 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6455 * @phba: Pointer to HBA context object. 6456 * 6457 * Disable FW logging into host memory on the adapter. To 6458 * be done before reading logs from the host memory. 6459 **/ 6460 void 6461 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6462 { 6463 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6464 6465 spin_lock_irq(&phba->hbalock); 6466 ras_fwlog->state = INACTIVE; 6467 spin_unlock_irq(&phba->hbalock); 6468 6469 /* Disable FW logging to host memory */ 6470 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6471 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6472 6473 /* Wait 10ms for firmware to stop using DMA buffer */ 6474 usleep_range(10 * 1000, 20 * 1000); 6475 } 6476 6477 /** 6478 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6479 * @phba: Pointer to HBA context object. 6480 * 6481 * This function is called to free memory allocated for RAS FW logging 6482 * support in the driver. 6483 **/ 6484 void 6485 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6486 { 6487 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6488 struct lpfc_dmabuf *dmabuf, *next; 6489 6490 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6491 list_for_each_entry_safe(dmabuf, next, 6492 &ras_fwlog->fwlog_buff_list, 6493 list) { 6494 list_del(&dmabuf->list); 6495 dma_free_coherent(&phba->pcidev->dev, 6496 LPFC_RAS_MAX_ENTRY_SIZE, 6497 dmabuf->virt, dmabuf->phys); 6498 kfree(dmabuf); 6499 } 6500 } 6501 6502 if (ras_fwlog->lwpd.virt) { 6503 dma_free_coherent(&phba->pcidev->dev, 6504 sizeof(uint32_t) * 2, 6505 ras_fwlog->lwpd.virt, 6506 ras_fwlog->lwpd.phys); 6507 ras_fwlog->lwpd.virt = NULL; 6508 } 6509 6510 spin_lock_irq(&phba->hbalock); 6511 ras_fwlog->state = INACTIVE; 6512 spin_unlock_irq(&phba->hbalock); 6513 } 6514 6515 /** 6516 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6517 * @phba: Pointer to HBA context object. 6518 * @fwlog_buff_count: Count of buffers to be created. 6519 * 6520 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6521 * to update FW log is posted to the adapter. 6522 * Buffer count is calculated based on module param ras_fwlog_buffsize 6523 * Size of each buffer posted to FW is 64K. 6524 **/ 6525 6526 static int 6527 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6528 uint32_t fwlog_buff_count) 6529 { 6530 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6531 struct lpfc_dmabuf *dmabuf; 6532 int rc = 0, i = 0; 6533 6534 /* Initialize List */ 6535 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6536 6537 /* Allocate memory for the LWPD */ 6538 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6539 sizeof(uint32_t) * 2, 6540 &ras_fwlog->lwpd.phys, 6541 GFP_KERNEL); 6542 if (!ras_fwlog->lwpd.virt) { 6543 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6544 "6185 LWPD Memory Alloc Failed\n"); 6545 6546 return -ENOMEM; 6547 } 6548 6549 ras_fwlog->fw_buffcount = fwlog_buff_count; 6550 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6551 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6552 GFP_KERNEL); 6553 if (!dmabuf) { 6554 rc = -ENOMEM; 6555 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6556 "6186 Memory Alloc failed FW logging"); 6557 goto free_mem; 6558 } 6559 6560 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6561 LPFC_RAS_MAX_ENTRY_SIZE, 6562 &dmabuf->phys, GFP_KERNEL); 6563 if (!dmabuf->virt) { 6564 kfree(dmabuf); 6565 rc = -ENOMEM; 6566 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6567 "6187 DMA Alloc Failed FW logging"); 6568 goto free_mem; 6569 } 6570 dmabuf->buffer_tag = i; 6571 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6572 } 6573 6574 free_mem: 6575 if (rc) 6576 lpfc_sli4_ras_dma_free(phba); 6577 6578 return rc; 6579 } 6580 6581 /** 6582 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6583 * @phba: pointer to lpfc hba data structure. 6584 * @pmb: pointer to the driver internal queue element for mailbox command. 6585 * 6586 * Completion handler for driver's RAS MBX command to the device. 6587 **/ 6588 static void 6589 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6590 { 6591 MAILBOX_t *mb; 6592 union lpfc_sli4_cfg_shdr *shdr; 6593 uint32_t shdr_status, shdr_add_status; 6594 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6595 6596 mb = &pmb->u.mb; 6597 6598 shdr = (union lpfc_sli4_cfg_shdr *) 6599 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6600 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6601 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6602 6603 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6604 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6605 "6188 FW LOG mailbox " 6606 "completed with status x%x add_status x%x," 6607 " mbx status x%x\n", 6608 shdr_status, shdr_add_status, mb->mbxStatus); 6609 6610 ras_fwlog->ras_hwsupport = false; 6611 goto disable_ras; 6612 } 6613 6614 spin_lock_irq(&phba->hbalock); 6615 ras_fwlog->state = ACTIVE; 6616 spin_unlock_irq(&phba->hbalock); 6617 mempool_free(pmb, phba->mbox_mem_pool); 6618 6619 return; 6620 6621 disable_ras: 6622 /* Free RAS DMA memory */ 6623 lpfc_sli4_ras_dma_free(phba); 6624 mempool_free(pmb, phba->mbox_mem_pool); 6625 } 6626 6627 /** 6628 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6629 * @phba: pointer to lpfc hba data structure. 6630 * @fwlog_level: Logging verbosity level. 6631 * @fwlog_enable: Enable/Disable logging. 6632 * 6633 * Initialize memory and post mailbox command to enable FW logging in host 6634 * memory. 6635 **/ 6636 int 6637 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6638 uint32_t fwlog_level, 6639 uint32_t fwlog_enable) 6640 { 6641 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6642 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6643 struct lpfc_dmabuf *dmabuf; 6644 LPFC_MBOXQ_t *mbox; 6645 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6646 int rc = 0; 6647 6648 spin_lock_irq(&phba->hbalock); 6649 ras_fwlog->state = INACTIVE; 6650 spin_unlock_irq(&phba->hbalock); 6651 6652 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6653 phba->cfg_ras_fwlog_buffsize); 6654 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6655 6656 /* 6657 * If re-enabling FW logging support use earlier allocated 6658 * DMA buffers while posting MBX command. 6659 **/ 6660 if (!ras_fwlog->lwpd.virt) { 6661 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6662 if (rc) { 6663 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6664 "6189 FW Log Memory Allocation Failed"); 6665 return rc; 6666 } 6667 } 6668 6669 /* Setup Mailbox command */ 6670 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6671 if (!mbox) { 6672 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6673 "6190 RAS MBX Alloc Failed"); 6674 rc = -ENOMEM; 6675 goto mem_free; 6676 } 6677 6678 ras_fwlog->fw_loglevel = fwlog_level; 6679 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6680 sizeof(struct lpfc_sli4_cfg_mhdr)); 6681 6682 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6683 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6684 len, LPFC_SLI4_MBX_EMBED); 6685 6686 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6687 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6688 fwlog_enable); 6689 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6690 ras_fwlog->fw_loglevel); 6691 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6692 ras_fwlog->fw_buffcount); 6693 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6694 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6695 6696 /* Update DMA buffer address */ 6697 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6698 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6699 6700 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6701 putPaddrLow(dmabuf->phys); 6702 6703 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 6704 putPaddrHigh(dmabuf->phys); 6705 } 6706 6707 /* Update LPWD address */ 6708 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 6709 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 6710 6711 spin_lock_irq(&phba->hbalock); 6712 ras_fwlog->state = REG_INPROGRESS; 6713 spin_unlock_irq(&phba->hbalock); 6714 mbox->vport = phba->pport; 6715 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 6716 6717 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 6718 6719 if (rc == MBX_NOT_FINISHED) { 6720 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6721 "6191 FW-Log Mailbox failed. " 6722 "status %d mbxStatus : x%x", rc, 6723 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 6724 mempool_free(mbox, phba->mbox_mem_pool); 6725 rc = -EIO; 6726 goto mem_free; 6727 } else 6728 rc = 0; 6729 mem_free: 6730 if (rc) 6731 lpfc_sli4_ras_dma_free(phba); 6732 6733 return rc; 6734 } 6735 6736 /** 6737 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 6738 * @phba: Pointer to HBA context object. 6739 * 6740 * Check if RAS is supported on the adapter and initialize it. 6741 **/ 6742 void 6743 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 6744 { 6745 /* Check RAS FW Log needs to be enabled or not */ 6746 if (lpfc_check_fwlog_support(phba)) 6747 return; 6748 6749 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 6750 LPFC_RAS_ENABLE_LOGGING); 6751 } 6752 6753 /** 6754 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 6755 * @phba: Pointer to HBA context object. 6756 * 6757 * This function allocates all SLI4 resource identifiers. 6758 **/ 6759 int 6760 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 6761 { 6762 int i, rc, error = 0; 6763 uint16_t count, base; 6764 unsigned long longs; 6765 6766 if (!phba->sli4_hba.rpi_hdrs_in_use) 6767 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 6768 if (phba->sli4_hba.extents_in_use) { 6769 /* 6770 * The port supports resource extents. The XRI, VPI, VFI, RPI 6771 * resource extent count must be read and allocated before 6772 * provisioning the resource id arrays. 6773 */ 6774 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6775 LPFC_IDX_RSRC_RDY) { 6776 /* 6777 * Extent-based resources are set - the driver could 6778 * be in a port reset. Figure out if any corrective 6779 * actions need to be taken. 6780 */ 6781 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6782 LPFC_RSC_TYPE_FCOE_VFI); 6783 if (rc != 0) 6784 error++; 6785 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6786 LPFC_RSC_TYPE_FCOE_VPI); 6787 if (rc != 0) 6788 error++; 6789 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6790 LPFC_RSC_TYPE_FCOE_XRI); 6791 if (rc != 0) 6792 error++; 6793 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6794 LPFC_RSC_TYPE_FCOE_RPI); 6795 if (rc != 0) 6796 error++; 6797 6798 /* 6799 * It's possible that the number of resources 6800 * provided to this port instance changed between 6801 * resets. Detect this condition and reallocate 6802 * resources. Otherwise, there is no action. 6803 */ 6804 if (error) { 6805 lpfc_printf_log(phba, KERN_INFO, 6806 LOG_MBOX | LOG_INIT, 6807 "2931 Detected extent resource " 6808 "change. Reallocating all " 6809 "extents.\n"); 6810 rc = lpfc_sli4_dealloc_extent(phba, 6811 LPFC_RSC_TYPE_FCOE_VFI); 6812 rc = lpfc_sli4_dealloc_extent(phba, 6813 LPFC_RSC_TYPE_FCOE_VPI); 6814 rc = lpfc_sli4_dealloc_extent(phba, 6815 LPFC_RSC_TYPE_FCOE_XRI); 6816 rc = lpfc_sli4_dealloc_extent(phba, 6817 LPFC_RSC_TYPE_FCOE_RPI); 6818 } else 6819 return 0; 6820 } 6821 6822 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6823 if (unlikely(rc)) 6824 goto err_exit; 6825 6826 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6827 if (unlikely(rc)) 6828 goto err_exit; 6829 6830 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6831 if (unlikely(rc)) 6832 goto err_exit; 6833 6834 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6835 if (unlikely(rc)) 6836 goto err_exit; 6837 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6838 LPFC_IDX_RSRC_RDY); 6839 return rc; 6840 } else { 6841 /* 6842 * The port does not support resource extents. The XRI, VPI, 6843 * VFI, RPI resource ids were determined from READ_CONFIG. 6844 * Just allocate the bitmasks and provision the resource id 6845 * arrays. If a port reset is active, the resources don't 6846 * need any action - just exit. 6847 */ 6848 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6849 LPFC_IDX_RSRC_RDY) { 6850 lpfc_sli4_dealloc_resource_identifiers(phba); 6851 lpfc_sli4_remove_rpis(phba); 6852 } 6853 /* RPIs. */ 6854 count = phba->sli4_hba.max_cfg_param.max_rpi; 6855 if (count <= 0) { 6856 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6857 "3279 Invalid provisioning of " 6858 "rpi:%d\n", count); 6859 rc = -EINVAL; 6860 goto err_exit; 6861 } 6862 base = phba->sli4_hba.max_cfg_param.rpi_base; 6863 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6864 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6865 sizeof(unsigned long), 6866 GFP_KERNEL); 6867 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6868 rc = -ENOMEM; 6869 goto err_exit; 6870 } 6871 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 6872 GFP_KERNEL); 6873 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6874 rc = -ENOMEM; 6875 goto free_rpi_bmask; 6876 } 6877 6878 for (i = 0; i < count; i++) 6879 phba->sli4_hba.rpi_ids[i] = base + i; 6880 6881 /* VPIs. */ 6882 count = phba->sli4_hba.max_cfg_param.max_vpi; 6883 if (count <= 0) { 6884 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6885 "3280 Invalid provisioning of " 6886 "vpi:%d\n", count); 6887 rc = -EINVAL; 6888 goto free_rpi_ids; 6889 } 6890 base = phba->sli4_hba.max_cfg_param.vpi_base; 6891 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6892 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6893 GFP_KERNEL); 6894 if (unlikely(!phba->vpi_bmask)) { 6895 rc = -ENOMEM; 6896 goto free_rpi_ids; 6897 } 6898 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 6899 GFP_KERNEL); 6900 if (unlikely(!phba->vpi_ids)) { 6901 rc = -ENOMEM; 6902 goto free_vpi_bmask; 6903 } 6904 6905 for (i = 0; i < count; i++) 6906 phba->vpi_ids[i] = base + i; 6907 6908 /* XRIs. */ 6909 count = phba->sli4_hba.max_cfg_param.max_xri; 6910 if (count <= 0) { 6911 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6912 "3281 Invalid provisioning of " 6913 "xri:%d\n", count); 6914 rc = -EINVAL; 6915 goto free_vpi_ids; 6916 } 6917 base = phba->sli4_hba.max_cfg_param.xri_base; 6918 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6919 phba->sli4_hba.xri_bmask = kcalloc(longs, 6920 sizeof(unsigned long), 6921 GFP_KERNEL); 6922 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6923 rc = -ENOMEM; 6924 goto free_vpi_ids; 6925 } 6926 phba->sli4_hba.max_cfg_param.xri_used = 0; 6927 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 6928 GFP_KERNEL); 6929 if (unlikely(!phba->sli4_hba.xri_ids)) { 6930 rc = -ENOMEM; 6931 goto free_xri_bmask; 6932 } 6933 6934 for (i = 0; i < count; i++) 6935 phba->sli4_hba.xri_ids[i] = base + i; 6936 6937 /* VFIs. */ 6938 count = phba->sli4_hba.max_cfg_param.max_vfi; 6939 if (count <= 0) { 6940 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6941 "3282 Invalid provisioning of " 6942 "vfi:%d\n", count); 6943 rc = -EINVAL; 6944 goto free_xri_ids; 6945 } 6946 base = phba->sli4_hba.max_cfg_param.vfi_base; 6947 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6948 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6949 sizeof(unsigned long), 6950 GFP_KERNEL); 6951 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6952 rc = -ENOMEM; 6953 goto free_xri_ids; 6954 } 6955 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 6956 GFP_KERNEL); 6957 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6958 rc = -ENOMEM; 6959 goto free_vfi_bmask; 6960 } 6961 6962 for (i = 0; i < count; i++) 6963 phba->sli4_hba.vfi_ids[i] = base + i; 6964 6965 /* 6966 * Mark all resources ready. An HBA reset doesn't need 6967 * to reset the initialization. 6968 */ 6969 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6970 LPFC_IDX_RSRC_RDY); 6971 return 0; 6972 } 6973 6974 free_vfi_bmask: 6975 kfree(phba->sli4_hba.vfi_bmask); 6976 phba->sli4_hba.vfi_bmask = NULL; 6977 free_xri_ids: 6978 kfree(phba->sli4_hba.xri_ids); 6979 phba->sli4_hba.xri_ids = NULL; 6980 free_xri_bmask: 6981 kfree(phba->sli4_hba.xri_bmask); 6982 phba->sli4_hba.xri_bmask = NULL; 6983 free_vpi_ids: 6984 kfree(phba->vpi_ids); 6985 phba->vpi_ids = NULL; 6986 free_vpi_bmask: 6987 kfree(phba->vpi_bmask); 6988 phba->vpi_bmask = NULL; 6989 free_rpi_ids: 6990 kfree(phba->sli4_hba.rpi_ids); 6991 phba->sli4_hba.rpi_ids = NULL; 6992 free_rpi_bmask: 6993 kfree(phba->sli4_hba.rpi_bmask); 6994 phba->sli4_hba.rpi_bmask = NULL; 6995 err_exit: 6996 return rc; 6997 } 6998 6999 /** 7000 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7001 * @phba: Pointer to HBA context object. 7002 * 7003 * This function allocates the number of elements for the specified 7004 * resource type. 7005 **/ 7006 int 7007 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7008 { 7009 if (phba->sli4_hba.extents_in_use) { 7010 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7011 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7012 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7013 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7014 } else { 7015 kfree(phba->vpi_bmask); 7016 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7017 kfree(phba->vpi_ids); 7018 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7019 kfree(phba->sli4_hba.xri_bmask); 7020 kfree(phba->sli4_hba.xri_ids); 7021 kfree(phba->sli4_hba.vfi_bmask); 7022 kfree(phba->sli4_hba.vfi_ids); 7023 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7024 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7025 } 7026 7027 return 0; 7028 } 7029 7030 /** 7031 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7032 * @phba: Pointer to HBA context object. 7033 * @type: The resource extent type. 7034 * @extnt_cnt: buffer to hold port extent count response 7035 * @extnt_size: buffer to hold port extent size response. 7036 * 7037 * This function calls the port to read the host allocated extents 7038 * for a particular type. 7039 **/ 7040 int 7041 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7042 uint16_t *extnt_cnt, uint16_t *extnt_size) 7043 { 7044 bool emb; 7045 int rc = 0; 7046 uint16_t curr_blks = 0; 7047 uint32_t req_len, emb_len; 7048 uint32_t alloc_len, mbox_tmo; 7049 struct list_head *blk_list_head; 7050 struct lpfc_rsrc_blks *rsrc_blk; 7051 LPFC_MBOXQ_t *mbox; 7052 void *virtaddr = NULL; 7053 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7054 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7055 union lpfc_sli4_cfg_shdr *shdr; 7056 7057 switch (type) { 7058 case LPFC_RSC_TYPE_FCOE_VPI: 7059 blk_list_head = &phba->lpfc_vpi_blk_list; 7060 break; 7061 case LPFC_RSC_TYPE_FCOE_XRI: 7062 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7063 break; 7064 case LPFC_RSC_TYPE_FCOE_VFI: 7065 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7066 break; 7067 case LPFC_RSC_TYPE_FCOE_RPI: 7068 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7069 break; 7070 default: 7071 return -EIO; 7072 } 7073 7074 /* Count the number of extents currently allocatd for this type. */ 7075 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7076 if (curr_blks == 0) { 7077 /* 7078 * The GET_ALLOCATED mailbox does not return the size, 7079 * just the count. The size should be just the size 7080 * stored in the current allocated block and all sizes 7081 * for an extent type are the same so set the return 7082 * value now. 7083 */ 7084 *extnt_size = rsrc_blk->rsrc_size; 7085 } 7086 curr_blks++; 7087 } 7088 7089 /* 7090 * Calculate the size of an embedded mailbox. The uint32_t 7091 * accounts for extents-specific word. 7092 */ 7093 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7094 sizeof(uint32_t); 7095 7096 /* 7097 * Presume the allocation and response will fit into an embedded 7098 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7099 */ 7100 emb = LPFC_SLI4_MBX_EMBED; 7101 req_len = emb_len; 7102 if (req_len > emb_len) { 7103 req_len = curr_blks * sizeof(uint16_t) + 7104 sizeof(union lpfc_sli4_cfg_shdr) + 7105 sizeof(uint32_t); 7106 emb = LPFC_SLI4_MBX_NEMBED; 7107 } 7108 7109 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7110 if (!mbox) 7111 return -ENOMEM; 7112 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7113 7114 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7115 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7116 req_len, emb); 7117 if (alloc_len < req_len) { 7118 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7119 "2983 Allocated DMA memory size (x%x) is " 7120 "less than the requested DMA memory " 7121 "size (x%x)\n", alloc_len, req_len); 7122 rc = -ENOMEM; 7123 goto err_exit; 7124 } 7125 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7126 if (unlikely(rc)) { 7127 rc = -EIO; 7128 goto err_exit; 7129 } 7130 7131 if (!phba->sli4_hba.intr_enable) 7132 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7133 else { 7134 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7135 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7136 } 7137 7138 if (unlikely(rc)) { 7139 rc = -EIO; 7140 goto err_exit; 7141 } 7142 7143 /* 7144 * Figure out where the response is located. Then get local pointers 7145 * to the response data. The port does not guarantee to respond to 7146 * all extents counts request so update the local variable with the 7147 * allocated count from the port. 7148 */ 7149 if (emb == LPFC_SLI4_MBX_EMBED) { 7150 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7151 shdr = &rsrc_ext->header.cfg_shdr; 7152 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7153 } else { 7154 virtaddr = mbox->sge_array->addr[0]; 7155 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7156 shdr = &n_rsrc->cfg_shdr; 7157 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7158 } 7159 7160 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7161 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7162 "2984 Failed to read allocated resources " 7163 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7164 type, 7165 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7166 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7167 rc = -EIO; 7168 goto err_exit; 7169 } 7170 err_exit: 7171 lpfc_sli4_mbox_cmd_free(phba, mbox); 7172 return rc; 7173 } 7174 7175 /** 7176 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7177 * @phba: pointer to lpfc hba data structure. 7178 * @sgl_list: linked link of sgl buffers to post 7179 * @cnt: number of linked list buffers 7180 * 7181 * This routine walks the list of buffers that have been allocated and 7182 * repost them to the port by using SGL block post. This is needed after a 7183 * pci_function_reset/warm_start or start. It attempts to construct blocks 7184 * of buffer sgls which contains contiguous xris and uses the non-embedded 7185 * SGL block post mailbox commands to post them to the port. For single 7186 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7187 * mailbox command for posting. 7188 * 7189 * Returns: 0 = success, non-zero failure. 7190 **/ 7191 static int 7192 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7193 struct list_head *sgl_list, int cnt) 7194 { 7195 struct lpfc_sglq *sglq_entry = NULL; 7196 struct lpfc_sglq *sglq_entry_next = NULL; 7197 struct lpfc_sglq *sglq_entry_first = NULL; 7198 int status, total_cnt; 7199 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7200 int last_xritag = NO_XRI; 7201 LIST_HEAD(prep_sgl_list); 7202 LIST_HEAD(blck_sgl_list); 7203 LIST_HEAD(allc_sgl_list); 7204 LIST_HEAD(post_sgl_list); 7205 LIST_HEAD(free_sgl_list); 7206 7207 spin_lock_irq(&phba->hbalock); 7208 spin_lock(&phba->sli4_hba.sgl_list_lock); 7209 list_splice_init(sgl_list, &allc_sgl_list); 7210 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7211 spin_unlock_irq(&phba->hbalock); 7212 7213 total_cnt = cnt; 7214 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7215 &allc_sgl_list, list) { 7216 list_del_init(&sglq_entry->list); 7217 block_cnt++; 7218 if ((last_xritag != NO_XRI) && 7219 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7220 /* a hole in xri block, form a sgl posting block */ 7221 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7222 post_cnt = block_cnt - 1; 7223 /* prepare list for next posting block */ 7224 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7225 block_cnt = 1; 7226 } else { 7227 /* prepare list for next posting block */ 7228 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7229 /* enough sgls for non-embed sgl mbox command */ 7230 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7231 list_splice_init(&prep_sgl_list, 7232 &blck_sgl_list); 7233 post_cnt = block_cnt; 7234 block_cnt = 0; 7235 } 7236 } 7237 num_posted++; 7238 7239 /* keep track of last sgl's xritag */ 7240 last_xritag = sglq_entry->sli4_xritag; 7241 7242 /* end of repost sgl list condition for buffers */ 7243 if (num_posted == total_cnt) { 7244 if (post_cnt == 0) { 7245 list_splice_init(&prep_sgl_list, 7246 &blck_sgl_list); 7247 post_cnt = block_cnt; 7248 } else if (block_cnt == 1) { 7249 status = lpfc_sli4_post_sgl(phba, 7250 sglq_entry->phys, 0, 7251 sglq_entry->sli4_xritag); 7252 if (!status) { 7253 /* successful, put sgl to posted list */ 7254 list_add_tail(&sglq_entry->list, 7255 &post_sgl_list); 7256 } else { 7257 /* Failure, put sgl to free list */ 7258 lpfc_printf_log(phba, KERN_WARNING, 7259 LOG_SLI, 7260 "3159 Failed to post " 7261 "sgl, xritag:x%x\n", 7262 sglq_entry->sli4_xritag); 7263 list_add_tail(&sglq_entry->list, 7264 &free_sgl_list); 7265 total_cnt--; 7266 } 7267 } 7268 } 7269 7270 /* continue until a nembed page worth of sgls */ 7271 if (post_cnt == 0) 7272 continue; 7273 7274 /* post the buffer list sgls as a block */ 7275 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7276 post_cnt); 7277 7278 if (!status) { 7279 /* success, put sgl list to posted sgl list */ 7280 list_splice_init(&blck_sgl_list, &post_sgl_list); 7281 } else { 7282 /* Failure, put sgl list to free sgl list */ 7283 sglq_entry_first = list_first_entry(&blck_sgl_list, 7284 struct lpfc_sglq, 7285 list); 7286 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7287 "3160 Failed to post sgl-list, " 7288 "xritag:x%x-x%x\n", 7289 sglq_entry_first->sli4_xritag, 7290 (sglq_entry_first->sli4_xritag + 7291 post_cnt - 1)); 7292 list_splice_init(&blck_sgl_list, &free_sgl_list); 7293 total_cnt -= post_cnt; 7294 } 7295 7296 /* don't reset xirtag due to hole in xri block */ 7297 if (block_cnt == 0) 7298 last_xritag = NO_XRI; 7299 7300 /* reset sgl post count for next round of posting */ 7301 post_cnt = 0; 7302 } 7303 7304 /* free the sgls failed to post */ 7305 lpfc_free_sgl_list(phba, &free_sgl_list); 7306 7307 /* push sgls posted to the available list */ 7308 if (!list_empty(&post_sgl_list)) { 7309 spin_lock_irq(&phba->hbalock); 7310 spin_lock(&phba->sli4_hba.sgl_list_lock); 7311 list_splice_init(&post_sgl_list, sgl_list); 7312 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7313 spin_unlock_irq(&phba->hbalock); 7314 } else { 7315 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7316 "3161 Failure to post sgl to port.\n"); 7317 return -EIO; 7318 } 7319 7320 /* return the number of XRIs actually posted */ 7321 return total_cnt; 7322 } 7323 7324 /** 7325 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7326 * @phba: pointer to lpfc hba data structure. 7327 * 7328 * This routine walks the list of nvme buffers that have been allocated and 7329 * repost them to the port by using SGL block post. This is needed after a 7330 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7331 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7332 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7333 * 7334 * Returns: 0 = success, non-zero failure. 7335 **/ 7336 static int 7337 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7338 { 7339 LIST_HEAD(post_nblist); 7340 int num_posted, rc = 0; 7341 7342 /* get all NVME buffers need to repost to a local list */ 7343 lpfc_io_buf_flush(phba, &post_nblist); 7344 7345 /* post the list of nvme buffer sgls to port if available */ 7346 if (!list_empty(&post_nblist)) { 7347 num_posted = lpfc_sli4_post_io_sgl_list( 7348 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7349 /* failed to post any nvme buffer, return error */ 7350 if (num_posted == 0) 7351 rc = -EIO; 7352 } 7353 return rc; 7354 } 7355 7356 static void 7357 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7358 { 7359 uint32_t len; 7360 7361 len = sizeof(struct lpfc_mbx_set_host_data) - 7362 sizeof(struct lpfc_sli4_cfg_mhdr); 7363 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7364 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7365 LPFC_SLI4_MBX_EMBED); 7366 7367 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7368 mbox->u.mqe.un.set_host_data.param_len = 7369 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7370 snprintf(mbox->u.mqe.un.set_host_data.data, 7371 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7372 "Linux %s v"LPFC_DRIVER_VERSION, 7373 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7374 } 7375 7376 int 7377 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7378 struct lpfc_queue *drq, int count, int idx) 7379 { 7380 int rc, i; 7381 struct lpfc_rqe hrqe; 7382 struct lpfc_rqe drqe; 7383 struct lpfc_rqb *rqbp; 7384 unsigned long flags; 7385 struct rqb_dmabuf *rqb_buffer; 7386 LIST_HEAD(rqb_buf_list); 7387 7388 rqbp = hrq->rqbp; 7389 for (i = 0; i < count; i++) { 7390 spin_lock_irqsave(&phba->hbalock, flags); 7391 /* IF RQ is already full, don't bother */ 7392 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7393 spin_unlock_irqrestore(&phba->hbalock, flags); 7394 break; 7395 } 7396 spin_unlock_irqrestore(&phba->hbalock, flags); 7397 7398 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7399 if (!rqb_buffer) 7400 break; 7401 rqb_buffer->hrq = hrq; 7402 rqb_buffer->drq = drq; 7403 rqb_buffer->idx = idx; 7404 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7405 } 7406 7407 spin_lock_irqsave(&phba->hbalock, flags); 7408 while (!list_empty(&rqb_buf_list)) { 7409 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7410 hbuf.list); 7411 7412 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7413 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7414 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7415 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7416 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7417 if (rc < 0) { 7418 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7419 "6421 Cannot post to HRQ %d: %x %x %x " 7420 "DRQ %x %x\n", 7421 hrq->queue_id, 7422 hrq->host_index, 7423 hrq->hba_index, 7424 hrq->entry_count, 7425 drq->host_index, 7426 drq->hba_index); 7427 rqbp->rqb_free_buffer(phba, rqb_buffer); 7428 } else { 7429 list_add_tail(&rqb_buffer->hbuf.list, 7430 &rqbp->rqb_buffer_list); 7431 rqbp->buffer_count++; 7432 } 7433 } 7434 spin_unlock_irqrestore(&phba->hbalock, flags); 7435 return 1; 7436 } 7437 7438 /** 7439 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7440 * @phba: pointer to lpfc hba data structure. 7441 * 7442 * This routine initializes the per-cq idle_stat to dynamically dictate 7443 * polling decisions. 7444 * 7445 * Return codes: 7446 * None 7447 **/ 7448 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7449 { 7450 int i; 7451 struct lpfc_sli4_hdw_queue *hdwq; 7452 struct lpfc_queue *cq; 7453 struct lpfc_idle_stat *idle_stat; 7454 u64 wall; 7455 7456 for_each_present_cpu(i) { 7457 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7458 cq = hdwq->io_cq; 7459 7460 /* Skip if we've already handled this cq's primary CPU */ 7461 if (cq->chann != i) 7462 continue; 7463 7464 idle_stat = &phba->sli4_hba.idle_stat[i]; 7465 7466 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7467 idle_stat->prev_wall = wall; 7468 7469 if (phba->nvmet_support) 7470 cq->poll_mode = LPFC_QUEUE_WORK; 7471 else 7472 cq->poll_mode = LPFC_IRQ_POLL; 7473 } 7474 7475 if (!phba->nvmet_support) 7476 schedule_delayed_work(&phba->idle_stat_delay_work, 7477 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7478 } 7479 7480 static void lpfc_sli4_dip(struct lpfc_hba *phba) 7481 { 7482 uint32_t if_type; 7483 7484 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 7485 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 7486 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 7487 struct lpfc_register reg_data; 7488 7489 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7490 ®_data.word0)) 7491 return; 7492 7493 if (bf_get(lpfc_sliport_status_dip, ®_data)) 7494 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7495 "2904 Firmware Dump Image Present" 7496 " on Adapter"); 7497 } 7498 } 7499 7500 /** 7501 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 7502 * @phba: Pointer to HBA context object. 7503 * 7504 * This function is the main SLI4 device initialization PCI function. This 7505 * function is called by the HBA initialization code, HBA reset code and 7506 * HBA error attention handler code. Caller is not required to hold any 7507 * locks. 7508 **/ 7509 int 7510 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 7511 { 7512 int rc, i, cnt, len, dd; 7513 LPFC_MBOXQ_t *mboxq; 7514 struct lpfc_mqe *mqe; 7515 uint8_t *vpd; 7516 uint32_t vpd_size; 7517 uint32_t ftr_rsp = 0; 7518 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 7519 struct lpfc_vport *vport = phba->pport; 7520 struct lpfc_dmabuf *mp; 7521 struct lpfc_rqb *rqbp; 7522 7523 /* Perform a PCI function reset to start from clean */ 7524 rc = lpfc_pci_function_reset(phba); 7525 if (unlikely(rc)) 7526 return -ENODEV; 7527 7528 /* Check the HBA Host Status Register for readyness */ 7529 rc = lpfc_sli4_post_status_check(phba); 7530 if (unlikely(rc)) 7531 return -ENODEV; 7532 else { 7533 spin_lock_irq(&phba->hbalock); 7534 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 7535 spin_unlock_irq(&phba->hbalock); 7536 } 7537 7538 lpfc_sli4_dip(phba); 7539 7540 /* 7541 * Allocate a single mailbox container for initializing the 7542 * port. 7543 */ 7544 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7545 if (!mboxq) 7546 return -ENOMEM; 7547 7548 /* Issue READ_REV to collect vpd and FW information. */ 7549 vpd_size = SLI4_PAGE_SIZE; 7550 vpd = kzalloc(vpd_size, GFP_KERNEL); 7551 if (!vpd) { 7552 rc = -ENOMEM; 7553 goto out_free_mbox; 7554 } 7555 7556 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 7557 if (unlikely(rc)) { 7558 kfree(vpd); 7559 goto out_free_mbox; 7560 } 7561 7562 mqe = &mboxq->u.mqe; 7563 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 7564 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 7565 phba->hba_flag |= HBA_FCOE_MODE; 7566 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 7567 } else { 7568 phba->hba_flag &= ~HBA_FCOE_MODE; 7569 } 7570 7571 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 7572 LPFC_DCBX_CEE_MODE) 7573 phba->hba_flag |= HBA_FIP_SUPPORT; 7574 else 7575 phba->hba_flag &= ~HBA_FIP_SUPPORT; 7576 7577 phba->hba_flag &= ~HBA_IOQ_FLUSH; 7578 7579 if (phba->sli_rev != LPFC_SLI_REV4) { 7580 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7581 "0376 READ_REV Error. SLI Level %d " 7582 "FCoE enabled %d\n", 7583 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 7584 rc = -EIO; 7585 kfree(vpd); 7586 goto out_free_mbox; 7587 } 7588 7589 /* 7590 * Continue initialization with default values even if driver failed 7591 * to read FCoE param config regions, only read parameters if the 7592 * board is FCoE 7593 */ 7594 if (phba->hba_flag & HBA_FCOE_MODE && 7595 lpfc_sli4_read_fcoe_params(phba)) 7596 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 7597 "2570 Failed to read FCoE parameters\n"); 7598 7599 /* 7600 * Retrieve sli4 device physical port name, failure of doing it 7601 * is considered as non-fatal. 7602 */ 7603 rc = lpfc_sli4_retrieve_pport_name(phba); 7604 if (!rc) 7605 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7606 "3080 Successful retrieving SLI4 device " 7607 "physical port name: %s.\n", phba->Port); 7608 7609 rc = lpfc_sli4_get_ctl_attr(phba); 7610 if (!rc) 7611 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7612 "8351 Successful retrieving SLI4 device " 7613 "CTL ATTR\n"); 7614 7615 /* 7616 * Evaluate the read rev and vpd data. Populate the driver 7617 * state with the results. If this routine fails, the failure 7618 * is not fatal as the driver will use generic values. 7619 */ 7620 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 7621 if (unlikely(!rc)) { 7622 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7623 "0377 Error %d parsing vpd. " 7624 "Using defaults.\n", rc); 7625 rc = 0; 7626 } 7627 kfree(vpd); 7628 7629 /* Save information as VPD data */ 7630 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 7631 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 7632 7633 /* 7634 * This is because first G7 ASIC doesn't support the standard 7635 * 0x5a NVME cmd descriptor type/subtype 7636 */ 7637 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7638 LPFC_SLI_INTF_IF_TYPE_6) && 7639 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 7640 (phba->vpd.rev.smRev == 0) && 7641 (phba->cfg_nvme_embed_cmd == 1)) 7642 phba->cfg_nvme_embed_cmd = 0; 7643 7644 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 7645 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 7646 &mqe->un.read_rev); 7647 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 7648 &mqe->un.read_rev); 7649 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 7650 &mqe->un.read_rev); 7651 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 7652 &mqe->un.read_rev); 7653 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 7654 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 7655 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 7656 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 7657 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 7658 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 7659 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7660 "(%d):0380 READ_REV Status x%x " 7661 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 7662 mboxq->vport ? mboxq->vport->vpi : 0, 7663 bf_get(lpfc_mqe_status, mqe), 7664 phba->vpd.rev.opFwName, 7665 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 7666 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 7667 7668 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7669 LPFC_SLI_INTF_IF_TYPE_0) { 7670 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 7671 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7672 if (rc == MBX_SUCCESS) { 7673 phba->hba_flag |= HBA_RECOVERABLE_UE; 7674 /* Set 1Sec interval to detect UE */ 7675 phba->eratt_poll_interval = 1; 7676 phba->sli4_hba.ue_to_sr = bf_get( 7677 lpfc_mbx_set_feature_UESR, 7678 &mboxq->u.mqe.un.set_feature); 7679 phba->sli4_hba.ue_to_rp = bf_get( 7680 lpfc_mbx_set_feature_UERP, 7681 &mboxq->u.mqe.un.set_feature); 7682 } 7683 } 7684 7685 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 7686 /* Enable MDS Diagnostics only if the SLI Port supports it */ 7687 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 7688 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7689 if (rc != MBX_SUCCESS) 7690 phba->mds_diags_support = 0; 7691 } 7692 7693 /* 7694 * Discover the port's supported feature set and match it against the 7695 * hosts requests. 7696 */ 7697 lpfc_request_features(phba, mboxq); 7698 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7699 if (unlikely(rc)) { 7700 rc = -EIO; 7701 goto out_free_mbox; 7702 } 7703 7704 /* 7705 * The port must support FCP initiator mode as this is the 7706 * only mode running in the host. 7707 */ 7708 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 7709 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7710 "0378 No support for fcpi mode.\n"); 7711 ftr_rsp++; 7712 } 7713 7714 /* Performance Hints are ONLY for FCoE */ 7715 if (phba->hba_flag & HBA_FCOE_MODE) { 7716 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 7717 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 7718 else 7719 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 7720 } 7721 7722 /* 7723 * If the port cannot support the host's requested features 7724 * then turn off the global config parameters to disable the 7725 * feature in the driver. This is not a fatal error. 7726 */ 7727 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 7728 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 7729 phba->cfg_enable_bg = 0; 7730 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 7731 ftr_rsp++; 7732 } 7733 } 7734 7735 if (phba->max_vpi && phba->cfg_enable_npiv && 7736 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7737 ftr_rsp++; 7738 7739 if (ftr_rsp) { 7740 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7741 "0379 Feature Mismatch Data: x%08x %08x " 7742 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 7743 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 7744 phba->cfg_enable_npiv, phba->max_vpi); 7745 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 7746 phba->cfg_enable_bg = 0; 7747 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7748 phba->cfg_enable_npiv = 0; 7749 } 7750 7751 /* These SLI3 features are assumed in SLI4 */ 7752 spin_lock_irq(&phba->hbalock); 7753 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 7754 spin_unlock_irq(&phba->hbalock); 7755 7756 /* Always try to enable dual dump feature if we can */ 7757 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 7758 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7759 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 7760 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 7761 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7762 "6448 Dual Dump is enabled\n"); 7763 else 7764 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 7765 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 7766 "rc:x%x dd:x%x\n", 7767 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7768 lpfc_sli_config_mbox_subsys_get( 7769 phba, mboxq), 7770 lpfc_sli_config_mbox_opcode_get( 7771 phba, mboxq), 7772 rc, dd); 7773 /* 7774 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 7775 * calls depends on these resources to complete port setup. 7776 */ 7777 rc = lpfc_sli4_alloc_resource_identifiers(phba); 7778 if (rc) { 7779 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7780 "2920 Failed to alloc Resource IDs " 7781 "rc = x%x\n", rc); 7782 goto out_free_mbox; 7783 } 7784 7785 lpfc_set_host_data(phba, mboxq); 7786 7787 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7788 if (rc) { 7789 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7790 "2134 Failed to set host os driver version %x", 7791 rc); 7792 } 7793 7794 /* Read the port's service parameters. */ 7795 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 7796 if (rc) { 7797 phba->link_state = LPFC_HBA_ERROR; 7798 rc = -ENOMEM; 7799 goto out_free_mbox; 7800 } 7801 7802 mboxq->vport = vport; 7803 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7804 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 7805 if (rc == MBX_SUCCESS) { 7806 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 7807 rc = 0; 7808 } 7809 7810 /* 7811 * This memory was allocated by the lpfc_read_sparam routine. Release 7812 * it to the mbuf pool. 7813 */ 7814 lpfc_mbuf_free(phba, mp->virt, mp->phys); 7815 kfree(mp); 7816 mboxq->ctx_buf = NULL; 7817 if (unlikely(rc)) { 7818 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7819 "0382 READ_SPARAM command failed " 7820 "status %d, mbxStatus x%x\n", 7821 rc, bf_get(lpfc_mqe_status, mqe)); 7822 phba->link_state = LPFC_HBA_ERROR; 7823 rc = -EIO; 7824 goto out_free_mbox; 7825 } 7826 7827 lpfc_update_vport_wwn(vport); 7828 7829 /* Update the fc_host data structures with new wwn. */ 7830 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 7831 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 7832 7833 /* Create all the SLI4 queues */ 7834 rc = lpfc_sli4_queue_create(phba); 7835 if (rc) { 7836 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7837 "3089 Failed to allocate queues\n"); 7838 rc = -ENODEV; 7839 goto out_free_mbox; 7840 } 7841 /* Set up all the queues to the device */ 7842 rc = lpfc_sli4_queue_setup(phba); 7843 if (unlikely(rc)) { 7844 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7845 "0381 Error %d during queue setup.\n ", rc); 7846 goto out_stop_timers; 7847 } 7848 /* Initialize the driver internal SLI layer lists. */ 7849 lpfc_sli4_setup(phba); 7850 lpfc_sli4_queue_init(phba); 7851 7852 /* update host els xri-sgl sizes and mappings */ 7853 rc = lpfc_sli4_els_sgl_update(phba); 7854 if (unlikely(rc)) { 7855 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7856 "1400 Failed to update xri-sgl size and " 7857 "mapping: %d\n", rc); 7858 goto out_destroy_queue; 7859 } 7860 7861 /* register the els sgl pool to the port */ 7862 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 7863 phba->sli4_hba.els_xri_cnt); 7864 if (unlikely(rc < 0)) { 7865 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7866 "0582 Error %d during els sgl post " 7867 "operation\n", rc); 7868 rc = -ENODEV; 7869 goto out_destroy_queue; 7870 } 7871 phba->sli4_hba.els_xri_cnt = rc; 7872 7873 if (phba->nvmet_support) { 7874 /* update host nvmet xri-sgl sizes and mappings */ 7875 rc = lpfc_sli4_nvmet_sgl_update(phba); 7876 if (unlikely(rc)) { 7877 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7878 "6308 Failed to update nvmet-sgl size " 7879 "and mapping: %d\n", rc); 7880 goto out_destroy_queue; 7881 } 7882 7883 /* register the nvmet sgl pool to the port */ 7884 rc = lpfc_sli4_repost_sgl_list( 7885 phba, 7886 &phba->sli4_hba.lpfc_nvmet_sgl_list, 7887 phba->sli4_hba.nvmet_xri_cnt); 7888 if (unlikely(rc < 0)) { 7889 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7890 "3117 Error %d during nvmet " 7891 "sgl post\n", rc); 7892 rc = -ENODEV; 7893 goto out_destroy_queue; 7894 } 7895 phba->sli4_hba.nvmet_xri_cnt = rc; 7896 7897 /* We allocate an iocbq for every receive context SGL. 7898 * The additional allocation is for abort and ls handling. 7899 */ 7900 cnt = phba->sli4_hba.nvmet_xri_cnt + 7901 phba->sli4_hba.max_cfg_param.max_xri; 7902 } else { 7903 /* update host common xri-sgl sizes and mappings */ 7904 rc = lpfc_sli4_io_sgl_update(phba); 7905 if (unlikely(rc)) { 7906 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7907 "6082 Failed to update nvme-sgl size " 7908 "and mapping: %d\n", rc); 7909 goto out_destroy_queue; 7910 } 7911 7912 /* register the allocated common sgl pool to the port */ 7913 rc = lpfc_sli4_repost_io_sgl_list(phba); 7914 if (unlikely(rc)) { 7915 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7916 "6116 Error %d during nvme sgl post " 7917 "operation\n", rc); 7918 /* Some NVME buffers were moved to abort nvme list */ 7919 /* A pci function reset will repost them */ 7920 rc = -ENODEV; 7921 goto out_destroy_queue; 7922 } 7923 /* Each lpfc_io_buf job structure has an iocbq element. 7924 * This cnt provides for abort, els, ct and ls requests. 7925 */ 7926 cnt = phba->sli4_hba.max_cfg_param.max_xri; 7927 } 7928 7929 if (!phba->sli.iocbq_lookup) { 7930 /* Initialize and populate the iocb list per host */ 7931 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7932 "2821 initialize iocb list with %d entries\n", 7933 cnt); 7934 rc = lpfc_init_iocb_list(phba, cnt); 7935 if (rc) { 7936 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7937 "1413 Failed to init iocb list.\n"); 7938 goto out_destroy_queue; 7939 } 7940 } 7941 7942 if (phba->nvmet_support) 7943 lpfc_nvmet_create_targetport(phba); 7944 7945 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 7946 /* Post initial buffers to all RQs created */ 7947 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 7948 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 7949 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 7950 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 7951 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 7952 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 7953 rqbp->buffer_count = 0; 7954 7955 lpfc_post_rq_buffer( 7956 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 7957 phba->sli4_hba.nvmet_mrq_data[i], 7958 phba->cfg_nvmet_mrq_post, i); 7959 } 7960 } 7961 7962 /* Post the rpi header region to the device. */ 7963 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7964 if (unlikely(rc)) { 7965 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7966 "0393 Error %d during rpi post operation\n", 7967 rc); 7968 rc = -ENODEV; 7969 goto out_destroy_queue; 7970 } 7971 lpfc_sli4_node_prep(phba); 7972 7973 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7974 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7975 /* 7976 * The FC Port needs to register FCFI (index 0) 7977 */ 7978 lpfc_reg_fcfi(phba, mboxq); 7979 mboxq->vport = phba->pport; 7980 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7981 if (rc != MBX_SUCCESS) 7982 goto out_unset_queue; 7983 rc = 0; 7984 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7985 &mboxq->u.mqe.un.reg_fcfi); 7986 } else { 7987 /* We are a NVME Target mode with MRQ > 1 */ 7988 7989 /* First register the FCFI */ 7990 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 7991 mboxq->vport = phba->pport; 7992 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7993 if (rc != MBX_SUCCESS) 7994 goto out_unset_queue; 7995 rc = 0; 7996 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 7997 &mboxq->u.mqe.un.reg_fcfi_mrq); 7998 7999 /* Next register the MRQs */ 8000 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8001 mboxq->vport = phba->pport; 8002 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8003 if (rc != MBX_SUCCESS) 8004 goto out_unset_queue; 8005 rc = 0; 8006 } 8007 /* Check if the port is configured to be disabled */ 8008 lpfc_sli_read_link_ste(phba); 8009 } 8010 8011 /* Don't post more new bufs if repost already recovered 8012 * the nvme sgls. 8013 */ 8014 if (phba->nvmet_support == 0) { 8015 if (phba->sli4_hba.io_xri_cnt == 0) { 8016 len = lpfc_new_io_buf( 8017 phba, phba->sli4_hba.io_xri_max); 8018 if (len == 0) { 8019 rc = -ENOMEM; 8020 goto out_unset_queue; 8021 } 8022 8023 if (phba->cfg_xri_rebalancing) 8024 lpfc_create_multixri_pools(phba); 8025 } 8026 } else { 8027 phba->cfg_xri_rebalancing = 0; 8028 } 8029 8030 /* Allow asynchronous mailbox command to go through */ 8031 spin_lock_irq(&phba->hbalock); 8032 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8033 spin_unlock_irq(&phba->hbalock); 8034 8035 /* Post receive buffers to the device */ 8036 lpfc_sli4_rb_setup(phba); 8037 8038 /* Reset HBA FCF states after HBA reset */ 8039 phba->fcf.fcf_flag = 0; 8040 phba->fcf.current_rec.flag = 0; 8041 8042 /* Start the ELS watchdog timer */ 8043 mod_timer(&vport->els_tmofunc, 8044 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 8045 8046 /* Start heart beat timer */ 8047 mod_timer(&phba->hb_tmofunc, 8048 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 8049 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 8050 phba->last_completion_time = jiffies; 8051 8052 /* start eq_delay heartbeat */ 8053 if (phba->cfg_auto_imax) 8054 queue_delayed_work(phba->wq, &phba->eq_delay_work, 8055 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 8056 8057 /* start per phba idle_stat_delay heartbeat */ 8058 lpfc_init_idle_stat_hb(phba); 8059 8060 /* Start error attention (ERATT) polling timer */ 8061 mod_timer(&phba->eratt_poll, 8062 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 8063 8064 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 8065 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 8066 rc = pci_enable_pcie_error_reporting(phba->pcidev); 8067 if (!rc) { 8068 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8069 "2829 This device supports " 8070 "Advanced Error Reporting (AER)\n"); 8071 spin_lock_irq(&phba->hbalock); 8072 phba->hba_flag |= HBA_AER_ENABLED; 8073 spin_unlock_irq(&phba->hbalock); 8074 } else { 8075 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8076 "2830 This device does not support " 8077 "Advanced Error Reporting (AER)\n"); 8078 phba->cfg_aer_support = 0; 8079 } 8080 rc = 0; 8081 } 8082 8083 /* 8084 * The port is ready, set the host's link state to LINK_DOWN 8085 * in preparation for link interrupts. 8086 */ 8087 spin_lock_irq(&phba->hbalock); 8088 phba->link_state = LPFC_LINK_DOWN; 8089 8090 /* Check if physical ports are trunked */ 8091 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 8092 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 8093 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 8094 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 8095 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 8096 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 8097 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 8098 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 8099 spin_unlock_irq(&phba->hbalock); 8100 8101 /* Arm the CQs and then EQs on device */ 8102 lpfc_sli4_arm_cqeq_intr(phba); 8103 8104 /* Indicate device interrupt mode */ 8105 phba->sli4_hba.intr_enable = 1; 8106 8107 if (!(phba->hba_flag & HBA_FCOE_MODE) && 8108 (phba->hba_flag & LINK_DISABLED)) { 8109 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8110 "3103 Adapter Link is disabled.\n"); 8111 lpfc_down_link(phba, mboxq); 8112 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8113 if (rc != MBX_SUCCESS) { 8114 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8115 "3104 Adapter failed to issue " 8116 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 8117 goto out_io_buff_free; 8118 } 8119 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 8120 /* don't perform init_link on SLI4 FC port loopback test */ 8121 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 8122 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 8123 if (rc) 8124 goto out_io_buff_free; 8125 } 8126 } 8127 mempool_free(mboxq, phba->mbox_mem_pool); 8128 return rc; 8129 out_io_buff_free: 8130 /* Free allocated IO Buffers */ 8131 lpfc_io_free(phba); 8132 out_unset_queue: 8133 /* Unset all the queues set up in this routine when error out */ 8134 lpfc_sli4_queue_unset(phba); 8135 out_destroy_queue: 8136 lpfc_free_iocb_list(phba); 8137 lpfc_sli4_queue_destroy(phba); 8138 out_stop_timers: 8139 lpfc_stop_hba_timers(phba); 8140 out_free_mbox: 8141 mempool_free(mboxq, phba->mbox_mem_pool); 8142 return rc; 8143 } 8144 8145 /** 8146 * lpfc_mbox_timeout - Timeout call back function for mbox timer 8147 * @t: Context to fetch pointer to hba structure from. 8148 * 8149 * This is the callback function for mailbox timer. The mailbox 8150 * timer is armed when a new mailbox command is issued and the timer 8151 * is deleted when the mailbox complete. The function is called by 8152 * the kernel timer code when a mailbox does not complete within 8153 * expected time. This function wakes up the worker thread to 8154 * process the mailbox timeout and returns. All the processing is 8155 * done by the worker thread function lpfc_mbox_timeout_handler. 8156 **/ 8157 void 8158 lpfc_mbox_timeout(struct timer_list *t) 8159 { 8160 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 8161 unsigned long iflag; 8162 uint32_t tmo_posted; 8163 8164 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 8165 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 8166 if (!tmo_posted) 8167 phba->pport->work_port_events |= WORKER_MBOX_TMO; 8168 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 8169 8170 if (!tmo_posted) 8171 lpfc_worker_wake_up(phba); 8172 return; 8173 } 8174 8175 /** 8176 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 8177 * are pending 8178 * @phba: Pointer to HBA context object. 8179 * 8180 * This function checks if any mailbox completions are present on the mailbox 8181 * completion queue. 8182 **/ 8183 static bool 8184 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 8185 { 8186 8187 uint32_t idx; 8188 struct lpfc_queue *mcq; 8189 struct lpfc_mcqe *mcqe; 8190 bool pending_completions = false; 8191 uint8_t qe_valid; 8192 8193 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8194 return false; 8195 8196 /* Check for completions on mailbox completion queue */ 8197 8198 mcq = phba->sli4_hba.mbx_cq; 8199 idx = mcq->hba_index; 8200 qe_valid = mcq->qe_valid; 8201 while (bf_get_le32(lpfc_cqe_valid, 8202 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8203 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8204 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8205 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8206 pending_completions = true; 8207 break; 8208 } 8209 idx = (idx + 1) % mcq->entry_count; 8210 if (mcq->hba_index == idx) 8211 break; 8212 8213 /* if the index wrapped around, toggle the valid bit */ 8214 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8215 qe_valid = (qe_valid) ? 0 : 1; 8216 } 8217 return pending_completions; 8218 8219 } 8220 8221 /** 8222 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8223 * that were missed. 8224 * @phba: Pointer to HBA context object. 8225 * 8226 * For sli4, it is possible to miss an interrupt. As such mbox completions 8227 * maybe missed causing erroneous mailbox timeouts to occur. This function 8228 * checks to see if mbox completions are on the mailbox completion queue 8229 * and will process all the completions associated with the eq for the 8230 * mailbox completion queue. 8231 **/ 8232 static bool 8233 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8234 { 8235 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8236 uint32_t eqidx; 8237 struct lpfc_queue *fpeq = NULL; 8238 struct lpfc_queue *eq; 8239 bool mbox_pending; 8240 8241 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8242 return false; 8243 8244 /* Find the EQ associated with the mbox CQ */ 8245 if (sli4_hba->hdwq) { 8246 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8247 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8248 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8249 fpeq = eq; 8250 break; 8251 } 8252 } 8253 } 8254 if (!fpeq) 8255 return false; 8256 8257 /* Turn off interrupts from this EQ */ 8258 8259 sli4_hba->sli4_eq_clr_intr(fpeq); 8260 8261 /* Check to see if a mbox completion is pending */ 8262 8263 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8264 8265 /* 8266 * If a mbox completion is pending, process all the events on EQ 8267 * associated with the mbox completion queue (this could include 8268 * mailbox commands, async events, els commands, receive queue data 8269 * and fcp commands) 8270 */ 8271 8272 if (mbox_pending) 8273 /* process and rearm the EQ */ 8274 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 8275 else 8276 /* Always clear and re-arm the EQ */ 8277 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 8278 8279 return mbox_pending; 8280 8281 } 8282 8283 /** 8284 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 8285 * @phba: Pointer to HBA context object. 8286 * 8287 * This function is called from worker thread when a mailbox command times out. 8288 * The caller is not required to hold any locks. This function will reset the 8289 * HBA and recover all the pending commands. 8290 **/ 8291 void 8292 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 8293 { 8294 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 8295 MAILBOX_t *mb = NULL; 8296 8297 struct lpfc_sli *psli = &phba->sli; 8298 8299 /* If the mailbox completed, process the completion */ 8300 lpfc_sli4_process_missed_mbox_completions(phba); 8301 8302 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 8303 return; 8304 8305 if (pmbox != NULL) 8306 mb = &pmbox->u.mb; 8307 /* Check the pmbox pointer first. There is a race condition 8308 * between the mbox timeout handler getting executed in the 8309 * worklist and the mailbox actually completing. When this 8310 * race condition occurs, the mbox_active will be NULL. 8311 */ 8312 spin_lock_irq(&phba->hbalock); 8313 if (pmbox == NULL) { 8314 lpfc_printf_log(phba, KERN_WARNING, 8315 LOG_MBOX | LOG_SLI, 8316 "0353 Active Mailbox cleared - mailbox timeout " 8317 "exiting\n"); 8318 spin_unlock_irq(&phba->hbalock); 8319 return; 8320 } 8321 8322 /* Mbox cmd <mbxCommand> timeout */ 8323 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8324 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 8325 mb->mbxCommand, 8326 phba->pport->port_state, 8327 phba->sli.sli_flag, 8328 phba->sli.mbox_active); 8329 spin_unlock_irq(&phba->hbalock); 8330 8331 /* Setting state unknown so lpfc_sli_abort_iocb_ring 8332 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 8333 * it to fail all outstanding SCSI IO. 8334 */ 8335 spin_lock_irq(&phba->pport->work_port_lock); 8336 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 8337 spin_unlock_irq(&phba->pport->work_port_lock); 8338 spin_lock_irq(&phba->hbalock); 8339 phba->link_state = LPFC_LINK_UNKNOWN; 8340 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 8341 spin_unlock_irq(&phba->hbalock); 8342 8343 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8344 "0345 Resetting board due to mailbox timeout\n"); 8345 8346 /* Reset the HBA device */ 8347 lpfc_reset_hba(phba); 8348 } 8349 8350 /** 8351 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 8352 * @phba: Pointer to HBA context object. 8353 * @pmbox: Pointer to mailbox object. 8354 * @flag: Flag indicating how the mailbox need to be processed. 8355 * 8356 * This function is called by discovery code and HBA management code 8357 * to submit a mailbox command to firmware with SLI-3 interface spec. This 8358 * function gets the hbalock to protect the data structures. 8359 * The mailbox command can be submitted in polling mode, in which case 8360 * this function will wait in a polling loop for the completion of the 8361 * mailbox. 8362 * If the mailbox is submitted in no_wait mode (not polling) the 8363 * function will submit the command and returns immediately without waiting 8364 * for the mailbox completion. The no_wait is supported only when HBA 8365 * is in SLI2/SLI3 mode - interrupts are enabled. 8366 * The SLI interface allows only one mailbox pending at a time. If the 8367 * mailbox is issued in polling mode and there is already a mailbox 8368 * pending, then the function will return an error. If the mailbox is issued 8369 * in NO_WAIT mode and there is a mailbox pending already, the function 8370 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 8371 * The sli layer owns the mailbox object until the completion of mailbox 8372 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 8373 * return codes the caller owns the mailbox command after the return of 8374 * the function. 8375 **/ 8376 static int 8377 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 8378 uint32_t flag) 8379 { 8380 MAILBOX_t *mbx; 8381 struct lpfc_sli *psli = &phba->sli; 8382 uint32_t status, evtctr; 8383 uint32_t ha_copy, hc_copy; 8384 int i; 8385 unsigned long timeout; 8386 unsigned long drvr_flag = 0; 8387 uint32_t word0, ldata; 8388 void __iomem *to_slim; 8389 int processing_queue = 0; 8390 8391 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8392 if (!pmbox) { 8393 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8394 /* processing mbox queue from intr_handler */ 8395 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8396 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8397 return MBX_SUCCESS; 8398 } 8399 processing_queue = 1; 8400 pmbox = lpfc_mbox_get(phba); 8401 if (!pmbox) { 8402 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8403 return MBX_SUCCESS; 8404 } 8405 } 8406 8407 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 8408 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 8409 if(!pmbox->vport) { 8410 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8411 lpfc_printf_log(phba, KERN_ERR, 8412 LOG_MBOX | LOG_VPORT, 8413 "1806 Mbox x%x failed. No vport\n", 8414 pmbox->u.mb.mbxCommand); 8415 dump_stack(); 8416 goto out_not_finished; 8417 } 8418 } 8419 8420 /* If the PCI channel is in offline state, do not post mbox. */ 8421 if (unlikely(pci_channel_offline(phba->pcidev))) { 8422 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8423 goto out_not_finished; 8424 } 8425 8426 /* If HBA has a deferred error attention, fail the iocb. */ 8427 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 8428 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8429 goto out_not_finished; 8430 } 8431 8432 psli = &phba->sli; 8433 8434 mbx = &pmbox->u.mb; 8435 status = MBX_SUCCESS; 8436 8437 if (phba->link_state == LPFC_HBA_ERROR) { 8438 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8439 8440 /* Mbox command <mbxCommand> cannot issue */ 8441 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8442 "(%d):0311 Mailbox command x%x cannot " 8443 "issue Data: x%x x%x\n", 8444 pmbox->vport ? pmbox->vport->vpi : 0, 8445 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8446 goto out_not_finished; 8447 } 8448 8449 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 8450 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 8451 !(hc_copy & HC_MBINT_ENA)) { 8452 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8453 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8454 "(%d):2528 Mailbox command x%x cannot " 8455 "issue Data: x%x x%x\n", 8456 pmbox->vport ? pmbox->vport->vpi : 0, 8457 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8458 goto out_not_finished; 8459 } 8460 } 8461 8462 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8463 /* Polling for a mbox command when another one is already active 8464 * is not allowed in SLI. Also, the driver must have established 8465 * SLI2 mode to queue and process multiple mbox commands. 8466 */ 8467 8468 if (flag & MBX_POLL) { 8469 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8470 8471 /* Mbox command <mbxCommand> cannot issue */ 8472 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8473 "(%d):2529 Mailbox command x%x " 8474 "cannot issue Data: x%x x%x\n", 8475 pmbox->vport ? pmbox->vport->vpi : 0, 8476 pmbox->u.mb.mbxCommand, 8477 psli->sli_flag, flag); 8478 goto out_not_finished; 8479 } 8480 8481 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 8482 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8483 /* Mbox command <mbxCommand> cannot issue */ 8484 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8485 "(%d):2530 Mailbox command x%x " 8486 "cannot issue Data: x%x x%x\n", 8487 pmbox->vport ? pmbox->vport->vpi : 0, 8488 pmbox->u.mb.mbxCommand, 8489 psli->sli_flag, flag); 8490 goto out_not_finished; 8491 } 8492 8493 /* Another mailbox command is still being processed, queue this 8494 * command to be processed later. 8495 */ 8496 lpfc_mbox_put(phba, pmbox); 8497 8498 /* Mbox cmd issue - BUSY */ 8499 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8500 "(%d):0308 Mbox cmd issue - BUSY Data: " 8501 "x%x x%x x%x x%x\n", 8502 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 8503 mbx->mbxCommand, 8504 phba->pport ? phba->pport->port_state : 0xff, 8505 psli->sli_flag, flag); 8506 8507 psli->slistat.mbox_busy++; 8508 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8509 8510 if (pmbox->vport) { 8511 lpfc_debugfs_disc_trc(pmbox->vport, 8512 LPFC_DISC_TRC_MBOX_VPORT, 8513 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 8514 (uint32_t)mbx->mbxCommand, 8515 mbx->un.varWords[0], mbx->un.varWords[1]); 8516 } 8517 else { 8518 lpfc_debugfs_disc_trc(phba->pport, 8519 LPFC_DISC_TRC_MBOX, 8520 "MBOX Bsy: cmd:x%x mb:x%x x%x", 8521 (uint32_t)mbx->mbxCommand, 8522 mbx->un.varWords[0], mbx->un.varWords[1]); 8523 } 8524 8525 return MBX_BUSY; 8526 } 8527 8528 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8529 8530 /* If we are not polling, we MUST be in SLI2 mode */ 8531 if (flag != MBX_POLL) { 8532 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 8533 (mbx->mbxCommand != MBX_KILL_BOARD)) { 8534 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8535 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8536 /* Mbox command <mbxCommand> cannot issue */ 8537 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8538 "(%d):2531 Mailbox command x%x " 8539 "cannot issue Data: x%x x%x\n", 8540 pmbox->vport ? pmbox->vport->vpi : 0, 8541 pmbox->u.mb.mbxCommand, 8542 psli->sli_flag, flag); 8543 goto out_not_finished; 8544 } 8545 /* timeout active mbox command */ 8546 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8547 1000); 8548 mod_timer(&psli->mbox_tmo, jiffies + timeout); 8549 } 8550 8551 /* Mailbox cmd <cmd> issue */ 8552 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8553 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 8554 "x%x\n", 8555 pmbox->vport ? pmbox->vport->vpi : 0, 8556 mbx->mbxCommand, 8557 phba->pport ? phba->pport->port_state : 0xff, 8558 psli->sli_flag, flag); 8559 8560 if (mbx->mbxCommand != MBX_HEARTBEAT) { 8561 if (pmbox->vport) { 8562 lpfc_debugfs_disc_trc(pmbox->vport, 8563 LPFC_DISC_TRC_MBOX_VPORT, 8564 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8565 (uint32_t)mbx->mbxCommand, 8566 mbx->un.varWords[0], mbx->un.varWords[1]); 8567 } 8568 else { 8569 lpfc_debugfs_disc_trc(phba->pport, 8570 LPFC_DISC_TRC_MBOX, 8571 "MBOX Send: cmd:x%x mb:x%x x%x", 8572 (uint32_t)mbx->mbxCommand, 8573 mbx->un.varWords[0], mbx->un.varWords[1]); 8574 } 8575 } 8576 8577 psli->slistat.mbox_cmd++; 8578 evtctr = psli->slistat.mbox_event; 8579 8580 /* next set own bit for the adapter and copy over command word */ 8581 mbx->mbxOwner = OWN_CHIP; 8582 8583 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8584 /* Populate mbox extension offset word. */ 8585 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 8586 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8587 = (uint8_t *)phba->mbox_ext 8588 - (uint8_t *)phba->mbox; 8589 } 8590 8591 /* Copy the mailbox extension data */ 8592 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 8593 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 8594 (uint8_t *)phba->mbox_ext, 8595 pmbox->in_ext_byte_len); 8596 } 8597 /* Copy command data to host SLIM area */ 8598 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 8599 } else { 8600 /* Populate mbox extension offset word. */ 8601 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 8602 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8603 = MAILBOX_HBA_EXT_OFFSET; 8604 8605 /* Copy the mailbox extension data */ 8606 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 8607 lpfc_memcpy_to_slim(phba->MBslimaddr + 8608 MAILBOX_HBA_EXT_OFFSET, 8609 pmbox->ctx_buf, pmbox->in_ext_byte_len); 8610 8611 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8612 /* copy command data into host mbox for cmpl */ 8613 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 8614 MAILBOX_CMD_SIZE); 8615 8616 /* First copy mbox command data to HBA SLIM, skip past first 8617 word */ 8618 to_slim = phba->MBslimaddr + sizeof (uint32_t); 8619 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 8620 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 8621 8622 /* Next copy over first word, with mbxOwner set */ 8623 ldata = *((uint32_t *)mbx); 8624 to_slim = phba->MBslimaddr; 8625 writel(ldata, to_slim); 8626 readl(to_slim); /* flush */ 8627 8628 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8629 /* switch over to host mailbox */ 8630 psli->sli_flag |= LPFC_SLI_ACTIVE; 8631 } 8632 8633 wmb(); 8634 8635 switch (flag) { 8636 case MBX_NOWAIT: 8637 /* Set up reference to mailbox command */ 8638 psli->mbox_active = pmbox; 8639 /* Interrupt board to do it */ 8640 writel(CA_MBATT, phba->CAregaddr); 8641 readl(phba->CAregaddr); /* flush */ 8642 /* Don't wait for it to finish, just return */ 8643 break; 8644 8645 case MBX_POLL: 8646 /* Set up null reference to mailbox command */ 8647 psli->mbox_active = NULL; 8648 /* Interrupt board to do it */ 8649 writel(CA_MBATT, phba->CAregaddr); 8650 readl(phba->CAregaddr); /* flush */ 8651 8652 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8653 /* First read mbox status word */ 8654 word0 = *((uint32_t *)phba->mbox); 8655 word0 = le32_to_cpu(word0); 8656 } else { 8657 /* First read mbox status word */ 8658 if (lpfc_readl(phba->MBslimaddr, &word0)) { 8659 spin_unlock_irqrestore(&phba->hbalock, 8660 drvr_flag); 8661 goto out_not_finished; 8662 } 8663 } 8664 8665 /* Read the HBA Host Attention Register */ 8666 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8667 spin_unlock_irqrestore(&phba->hbalock, 8668 drvr_flag); 8669 goto out_not_finished; 8670 } 8671 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8672 1000) + jiffies; 8673 i = 0; 8674 /* Wait for command to complete */ 8675 while (((word0 & OWN_CHIP) == OWN_CHIP) || 8676 (!(ha_copy & HA_MBATT) && 8677 (phba->link_state > LPFC_WARM_START))) { 8678 if (time_after(jiffies, timeout)) { 8679 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8680 spin_unlock_irqrestore(&phba->hbalock, 8681 drvr_flag); 8682 goto out_not_finished; 8683 } 8684 8685 /* Check if we took a mbox interrupt while we were 8686 polling */ 8687 if (((word0 & OWN_CHIP) != OWN_CHIP) 8688 && (evtctr != psli->slistat.mbox_event)) 8689 break; 8690 8691 if (i++ > 10) { 8692 spin_unlock_irqrestore(&phba->hbalock, 8693 drvr_flag); 8694 msleep(1); 8695 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8696 } 8697 8698 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8699 /* First copy command data */ 8700 word0 = *((uint32_t *)phba->mbox); 8701 word0 = le32_to_cpu(word0); 8702 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 8703 MAILBOX_t *slimmb; 8704 uint32_t slimword0; 8705 /* Check real SLIM for any errors */ 8706 slimword0 = readl(phba->MBslimaddr); 8707 slimmb = (MAILBOX_t *) & slimword0; 8708 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 8709 && slimmb->mbxStatus) { 8710 psli->sli_flag &= 8711 ~LPFC_SLI_ACTIVE; 8712 word0 = slimword0; 8713 } 8714 } 8715 } else { 8716 /* First copy command data */ 8717 word0 = readl(phba->MBslimaddr); 8718 } 8719 /* Read the HBA Host Attention Register */ 8720 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8721 spin_unlock_irqrestore(&phba->hbalock, 8722 drvr_flag); 8723 goto out_not_finished; 8724 } 8725 } 8726 8727 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8728 /* copy results back to user */ 8729 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 8730 MAILBOX_CMD_SIZE); 8731 /* Copy the mailbox extension data */ 8732 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8733 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 8734 pmbox->ctx_buf, 8735 pmbox->out_ext_byte_len); 8736 } 8737 } else { 8738 /* First copy command data */ 8739 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 8740 MAILBOX_CMD_SIZE); 8741 /* Copy the mailbox extension data */ 8742 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8743 lpfc_memcpy_from_slim( 8744 pmbox->ctx_buf, 8745 phba->MBslimaddr + 8746 MAILBOX_HBA_EXT_OFFSET, 8747 pmbox->out_ext_byte_len); 8748 } 8749 } 8750 8751 writel(HA_MBATT, phba->HAregaddr); 8752 readl(phba->HAregaddr); /* flush */ 8753 8754 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8755 status = mbx->mbxStatus; 8756 } 8757 8758 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8759 return status; 8760 8761 out_not_finished: 8762 if (processing_queue) { 8763 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 8764 lpfc_mbox_cmpl_put(phba, pmbox); 8765 } 8766 return MBX_NOT_FINISHED; 8767 } 8768 8769 /** 8770 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 8771 * @phba: Pointer to HBA context object. 8772 * 8773 * The function blocks the posting of SLI4 asynchronous mailbox commands from 8774 * the driver internal pending mailbox queue. It will then try to wait out the 8775 * possible outstanding mailbox command before return. 8776 * 8777 * Returns: 8778 * 0 - the outstanding mailbox command completed; otherwise, the wait for 8779 * the outstanding mailbox command timed out. 8780 **/ 8781 static int 8782 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 8783 { 8784 struct lpfc_sli *psli = &phba->sli; 8785 int rc = 0; 8786 unsigned long timeout = 0; 8787 8788 /* Mark the asynchronous mailbox command posting as blocked */ 8789 spin_lock_irq(&phba->hbalock); 8790 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 8791 /* Determine how long we might wait for the active mailbox 8792 * command to be gracefully completed by firmware. 8793 */ 8794 if (phba->sli.mbox_active) 8795 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 8796 phba->sli.mbox_active) * 8797 1000) + jiffies; 8798 spin_unlock_irq(&phba->hbalock); 8799 8800 /* Make sure the mailbox is really active */ 8801 if (timeout) 8802 lpfc_sli4_process_missed_mbox_completions(phba); 8803 8804 /* Wait for the outstnading mailbox command to complete */ 8805 while (phba->sli.mbox_active) { 8806 /* Check active mailbox complete status every 2ms */ 8807 msleep(2); 8808 if (time_after(jiffies, timeout)) { 8809 /* Timeout, marked the outstanding cmd not complete */ 8810 rc = 1; 8811 break; 8812 } 8813 } 8814 8815 /* Can not cleanly block async mailbox command, fails it */ 8816 if (rc) { 8817 spin_lock_irq(&phba->hbalock); 8818 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8819 spin_unlock_irq(&phba->hbalock); 8820 } 8821 return rc; 8822 } 8823 8824 /** 8825 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 8826 * @phba: Pointer to HBA context object. 8827 * 8828 * The function unblocks and resume posting of SLI4 asynchronous mailbox 8829 * commands from the driver internal pending mailbox queue. It makes sure 8830 * that there is no outstanding mailbox command before resuming posting 8831 * asynchronous mailbox commands. If, for any reason, there is outstanding 8832 * mailbox command, it will try to wait it out before resuming asynchronous 8833 * mailbox command posting. 8834 **/ 8835 static void 8836 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 8837 { 8838 struct lpfc_sli *psli = &phba->sli; 8839 8840 spin_lock_irq(&phba->hbalock); 8841 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8842 /* Asynchronous mailbox posting is not blocked, do nothing */ 8843 spin_unlock_irq(&phba->hbalock); 8844 return; 8845 } 8846 8847 /* Outstanding synchronous mailbox command is guaranteed to be done, 8848 * successful or timeout, after timing-out the outstanding mailbox 8849 * command shall always be removed, so just unblock posting async 8850 * mailbox command and resume 8851 */ 8852 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8853 spin_unlock_irq(&phba->hbalock); 8854 8855 /* wake up worker thread to post asynchronous mailbox command */ 8856 lpfc_worker_wake_up(phba); 8857 } 8858 8859 /** 8860 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 8861 * @phba: Pointer to HBA context object. 8862 * @mboxq: Pointer to mailbox object. 8863 * 8864 * The function waits for the bootstrap mailbox register ready bit from 8865 * port for twice the regular mailbox command timeout value. 8866 * 8867 * 0 - no timeout on waiting for bootstrap mailbox register ready. 8868 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 8869 **/ 8870 static int 8871 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8872 { 8873 uint32_t db_ready; 8874 unsigned long timeout; 8875 struct lpfc_register bmbx_reg; 8876 8877 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 8878 * 1000) + jiffies; 8879 8880 do { 8881 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 8882 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 8883 if (!db_ready) 8884 mdelay(2); 8885 8886 if (time_after(jiffies, timeout)) 8887 return MBXERR_ERROR; 8888 } while (!db_ready); 8889 8890 return 0; 8891 } 8892 8893 /** 8894 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 8895 * @phba: Pointer to HBA context object. 8896 * @mboxq: Pointer to mailbox object. 8897 * 8898 * The function posts a mailbox to the port. The mailbox is expected 8899 * to be comletely filled in and ready for the port to operate on it. 8900 * This routine executes a synchronous completion operation on the 8901 * mailbox by polling for its completion. 8902 * 8903 * The caller must not be holding any locks when calling this routine. 8904 * 8905 * Returns: 8906 * MBX_SUCCESS - mailbox posted successfully 8907 * Any of the MBX error values. 8908 **/ 8909 static int 8910 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8911 { 8912 int rc = MBX_SUCCESS; 8913 unsigned long iflag; 8914 uint32_t mcqe_status; 8915 uint32_t mbx_cmnd; 8916 struct lpfc_sli *psli = &phba->sli; 8917 struct lpfc_mqe *mb = &mboxq->u.mqe; 8918 struct lpfc_bmbx_create *mbox_rgn; 8919 struct dma_address *dma_address; 8920 8921 /* 8922 * Only one mailbox can be active to the bootstrap mailbox region 8923 * at a time and there is no queueing provided. 8924 */ 8925 spin_lock_irqsave(&phba->hbalock, iflag); 8926 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8927 spin_unlock_irqrestore(&phba->hbalock, iflag); 8928 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8929 "(%d):2532 Mailbox command x%x (x%x/x%x) " 8930 "cannot issue Data: x%x x%x\n", 8931 mboxq->vport ? mboxq->vport->vpi : 0, 8932 mboxq->u.mb.mbxCommand, 8933 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8934 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8935 psli->sli_flag, MBX_POLL); 8936 return MBXERR_ERROR; 8937 } 8938 /* The server grabs the token and owns it until release */ 8939 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8940 phba->sli.mbox_active = mboxq; 8941 spin_unlock_irqrestore(&phba->hbalock, iflag); 8942 8943 /* wait for bootstrap mbox register for readyness */ 8944 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8945 if (rc) 8946 goto exit; 8947 /* 8948 * Initialize the bootstrap memory region to avoid stale data areas 8949 * in the mailbox post. Then copy the caller's mailbox contents to 8950 * the bmbx mailbox region. 8951 */ 8952 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 8953 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 8954 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 8955 sizeof(struct lpfc_mqe)); 8956 8957 /* Post the high mailbox dma address to the port and wait for ready. */ 8958 dma_address = &phba->sli4_hba.bmbx.dma_address; 8959 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 8960 8961 /* wait for bootstrap mbox register for hi-address write done */ 8962 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8963 if (rc) 8964 goto exit; 8965 8966 /* Post the low mailbox dma address to the port. */ 8967 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 8968 8969 /* wait for bootstrap mbox register for low address write done */ 8970 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8971 if (rc) 8972 goto exit; 8973 8974 /* 8975 * Read the CQ to ensure the mailbox has completed. 8976 * If so, update the mailbox status so that the upper layers 8977 * can complete the request normally. 8978 */ 8979 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 8980 sizeof(struct lpfc_mqe)); 8981 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 8982 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 8983 sizeof(struct lpfc_mcqe)); 8984 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 8985 /* 8986 * When the CQE status indicates a failure and the mailbox status 8987 * indicates success then copy the CQE status into the mailbox status 8988 * (and prefix it with x4000). 8989 */ 8990 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 8991 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 8992 bf_set(lpfc_mqe_status, mb, 8993 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 8994 rc = MBXERR_ERROR; 8995 } else 8996 lpfc_sli4_swap_str(phba, mboxq); 8997 8998 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8999 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 9000 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 9001 " x%x x%x CQ: x%x x%x x%x x%x\n", 9002 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9003 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9004 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9005 bf_get(lpfc_mqe_status, mb), 9006 mb->un.mb_words[0], mb->un.mb_words[1], 9007 mb->un.mb_words[2], mb->un.mb_words[3], 9008 mb->un.mb_words[4], mb->un.mb_words[5], 9009 mb->un.mb_words[6], mb->un.mb_words[7], 9010 mb->un.mb_words[8], mb->un.mb_words[9], 9011 mb->un.mb_words[10], mb->un.mb_words[11], 9012 mb->un.mb_words[12], mboxq->mcqe.word0, 9013 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 9014 mboxq->mcqe.trailer); 9015 exit: 9016 /* We are holding the token, no needed for lock when release */ 9017 spin_lock_irqsave(&phba->hbalock, iflag); 9018 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9019 phba->sli.mbox_active = NULL; 9020 spin_unlock_irqrestore(&phba->hbalock, iflag); 9021 return rc; 9022 } 9023 9024 /** 9025 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 9026 * @phba: Pointer to HBA context object. 9027 * @mboxq: Pointer to mailbox object. 9028 * @flag: Flag indicating how the mailbox need to be processed. 9029 * 9030 * This function is called by discovery code and HBA management code to submit 9031 * a mailbox command to firmware with SLI-4 interface spec. 9032 * 9033 * Return codes the caller owns the mailbox command after the return of the 9034 * function. 9035 **/ 9036 static int 9037 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 9038 uint32_t flag) 9039 { 9040 struct lpfc_sli *psli = &phba->sli; 9041 unsigned long iflags; 9042 int rc; 9043 9044 /* dump from issue mailbox command if setup */ 9045 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 9046 9047 rc = lpfc_mbox_dev_check(phba); 9048 if (unlikely(rc)) { 9049 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9050 "(%d):2544 Mailbox command x%x (x%x/x%x) " 9051 "cannot issue Data: x%x x%x\n", 9052 mboxq->vport ? mboxq->vport->vpi : 0, 9053 mboxq->u.mb.mbxCommand, 9054 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9055 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9056 psli->sli_flag, flag); 9057 goto out_not_finished; 9058 } 9059 9060 /* Detect polling mode and jump to a handler */ 9061 if (!phba->sli4_hba.intr_enable) { 9062 if (flag == MBX_POLL) 9063 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9064 else 9065 rc = -EIO; 9066 if (rc != MBX_SUCCESS) 9067 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9068 "(%d):2541 Mailbox command x%x " 9069 "(x%x/x%x) failure: " 9070 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9071 "Data: x%x x%x\n,", 9072 mboxq->vport ? mboxq->vport->vpi : 0, 9073 mboxq->u.mb.mbxCommand, 9074 lpfc_sli_config_mbox_subsys_get(phba, 9075 mboxq), 9076 lpfc_sli_config_mbox_opcode_get(phba, 9077 mboxq), 9078 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9079 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9080 bf_get(lpfc_mcqe_ext_status, 9081 &mboxq->mcqe), 9082 psli->sli_flag, flag); 9083 return rc; 9084 } else if (flag == MBX_POLL) { 9085 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9086 "(%d):2542 Try to issue mailbox command " 9087 "x%x (x%x/x%x) synchronously ahead of async " 9088 "mailbox command queue: x%x x%x\n", 9089 mboxq->vport ? mboxq->vport->vpi : 0, 9090 mboxq->u.mb.mbxCommand, 9091 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9092 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9093 psli->sli_flag, flag); 9094 /* Try to block the asynchronous mailbox posting */ 9095 rc = lpfc_sli4_async_mbox_block(phba); 9096 if (!rc) { 9097 /* Successfully blocked, now issue sync mbox cmd */ 9098 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9099 if (rc != MBX_SUCCESS) 9100 lpfc_printf_log(phba, KERN_WARNING, 9101 LOG_MBOX | LOG_SLI, 9102 "(%d):2597 Sync Mailbox command " 9103 "x%x (x%x/x%x) failure: " 9104 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9105 "Data: x%x x%x\n,", 9106 mboxq->vport ? mboxq->vport->vpi : 0, 9107 mboxq->u.mb.mbxCommand, 9108 lpfc_sli_config_mbox_subsys_get(phba, 9109 mboxq), 9110 lpfc_sli_config_mbox_opcode_get(phba, 9111 mboxq), 9112 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9113 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9114 bf_get(lpfc_mcqe_ext_status, 9115 &mboxq->mcqe), 9116 psli->sli_flag, flag); 9117 /* Unblock the async mailbox posting afterward */ 9118 lpfc_sli4_async_mbox_unblock(phba); 9119 } 9120 return rc; 9121 } 9122 9123 /* Now, interrupt mode asynchronous mailbox command */ 9124 rc = lpfc_mbox_cmd_check(phba, mboxq); 9125 if (rc) { 9126 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9127 "(%d):2543 Mailbox command x%x (x%x/x%x) " 9128 "cannot issue Data: x%x x%x\n", 9129 mboxq->vport ? mboxq->vport->vpi : 0, 9130 mboxq->u.mb.mbxCommand, 9131 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9132 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9133 psli->sli_flag, flag); 9134 goto out_not_finished; 9135 } 9136 9137 /* Put the mailbox command to the driver internal FIFO */ 9138 psli->slistat.mbox_busy++; 9139 spin_lock_irqsave(&phba->hbalock, iflags); 9140 lpfc_mbox_put(phba, mboxq); 9141 spin_unlock_irqrestore(&phba->hbalock, iflags); 9142 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9143 "(%d):0354 Mbox cmd issue - Enqueue Data: " 9144 "x%x (x%x/x%x) x%x x%x x%x\n", 9145 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 9146 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 9147 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9148 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9149 phba->pport->port_state, 9150 psli->sli_flag, MBX_NOWAIT); 9151 /* Wake up worker thread to transport mailbox command from head */ 9152 lpfc_worker_wake_up(phba); 9153 9154 return MBX_BUSY; 9155 9156 out_not_finished: 9157 return MBX_NOT_FINISHED; 9158 } 9159 9160 /** 9161 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 9162 * @phba: Pointer to HBA context object. 9163 * 9164 * This function is called by worker thread to send a mailbox command to 9165 * SLI4 HBA firmware. 9166 * 9167 **/ 9168 int 9169 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 9170 { 9171 struct lpfc_sli *psli = &phba->sli; 9172 LPFC_MBOXQ_t *mboxq; 9173 int rc = MBX_SUCCESS; 9174 unsigned long iflags; 9175 struct lpfc_mqe *mqe; 9176 uint32_t mbx_cmnd; 9177 9178 /* Check interrupt mode before post async mailbox command */ 9179 if (unlikely(!phba->sli4_hba.intr_enable)) 9180 return MBX_NOT_FINISHED; 9181 9182 /* Check for mailbox command service token */ 9183 spin_lock_irqsave(&phba->hbalock, iflags); 9184 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9185 spin_unlock_irqrestore(&phba->hbalock, iflags); 9186 return MBX_NOT_FINISHED; 9187 } 9188 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9189 spin_unlock_irqrestore(&phba->hbalock, iflags); 9190 return MBX_NOT_FINISHED; 9191 } 9192 if (unlikely(phba->sli.mbox_active)) { 9193 spin_unlock_irqrestore(&phba->hbalock, iflags); 9194 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9195 "0384 There is pending active mailbox cmd\n"); 9196 return MBX_NOT_FINISHED; 9197 } 9198 /* Take the mailbox command service token */ 9199 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9200 9201 /* Get the next mailbox command from head of queue */ 9202 mboxq = lpfc_mbox_get(phba); 9203 9204 /* If no more mailbox command waiting for post, we're done */ 9205 if (!mboxq) { 9206 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9207 spin_unlock_irqrestore(&phba->hbalock, iflags); 9208 return MBX_SUCCESS; 9209 } 9210 phba->sli.mbox_active = mboxq; 9211 spin_unlock_irqrestore(&phba->hbalock, iflags); 9212 9213 /* Check device readiness for posting mailbox command */ 9214 rc = lpfc_mbox_dev_check(phba); 9215 if (unlikely(rc)) 9216 /* Driver clean routine will clean up pending mailbox */ 9217 goto out_not_finished; 9218 9219 /* Prepare the mbox command to be posted */ 9220 mqe = &mboxq->u.mqe; 9221 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9222 9223 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9224 mod_timer(&psli->mbox_tmo, (jiffies + 9225 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9226 9227 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9228 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9229 "x%x x%x\n", 9230 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9231 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9232 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9233 phba->pport->port_state, psli->sli_flag); 9234 9235 if (mbx_cmnd != MBX_HEARTBEAT) { 9236 if (mboxq->vport) { 9237 lpfc_debugfs_disc_trc(mboxq->vport, 9238 LPFC_DISC_TRC_MBOX_VPORT, 9239 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9240 mbx_cmnd, mqe->un.mb_words[0], 9241 mqe->un.mb_words[1]); 9242 } else { 9243 lpfc_debugfs_disc_trc(phba->pport, 9244 LPFC_DISC_TRC_MBOX, 9245 "MBOX Send: cmd:x%x mb:x%x x%x", 9246 mbx_cmnd, mqe->un.mb_words[0], 9247 mqe->un.mb_words[1]); 9248 } 9249 } 9250 psli->slistat.mbox_cmd++; 9251 9252 /* Post the mailbox command to the port */ 9253 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 9254 if (rc != MBX_SUCCESS) { 9255 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9256 "(%d):2533 Mailbox command x%x (x%x/x%x) " 9257 "cannot issue Data: x%x x%x\n", 9258 mboxq->vport ? mboxq->vport->vpi : 0, 9259 mboxq->u.mb.mbxCommand, 9260 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9261 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9262 psli->sli_flag, MBX_NOWAIT); 9263 goto out_not_finished; 9264 } 9265 9266 return rc; 9267 9268 out_not_finished: 9269 spin_lock_irqsave(&phba->hbalock, iflags); 9270 if (phba->sli.mbox_active) { 9271 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 9272 __lpfc_mbox_cmpl_put(phba, mboxq); 9273 /* Release the token */ 9274 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9275 phba->sli.mbox_active = NULL; 9276 } 9277 spin_unlock_irqrestore(&phba->hbalock, iflags); 9278 9279 return MBX_NOT_FINISHED; 9280 } 9281 9282 /** 9283 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 9284 * @phba: Pointer to HBA context object. 9285 * @pmbox: Pointer to mailbox object. 9286 * @flag: Flag indicating how the mailbox need to be processed. 9287 * 9288 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 9289 * the API jump table function pointer from the lpfc_hba struct. 9290 * 9291 * Return codes the caller owns the mailbox command after the return of the 9292 * function. 9293 **/ 9294 int 9295 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 9296 { 9297 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 9298 } 9299 9300 /** 9301 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 9302 * @phba: The hba struct for which this call is being executed. 9303 * @dev_grp: The HBA PCI-Device group number. 9304 * 9305 * This routine sets up the mbox interface API function jump table in @phba 9306 * struct. 9307 * Returns: 0 - success, -ENODEV - failure. 9308 **/ 9309 int 9310 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9311 { 9312 9313 switch (dev_grp) { 9314 case LPFC_PCI_DEV_LP: 9315 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 9316 phba->lpfc_sli_handle_slow_ring_event = 9317 lpfc_sli_handle_slow_ring_event_s3; 9318 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 9319 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 9320 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 9321 break; 9322 case LPFC_PCI_DEV_OC: 9323 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 9324 phba->lpfc_sli_handle_slow_ring_event = 9325 lpfc_sli_handle_slow_ring_event_s4; 9326 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 9327 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 9328 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 9329 break; 9330 default: 9331 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9332 "1420 Invalid HBA PCI-device group: 0x%x\n", 9333 dev_grp); 9334 return -ENODEV; 9335 } 9336 return 0; 9337 } 9338 9339 /** 9340 * __lpfc_sli_ringtx_put - Add an iocb to the txq 9341 * @phba: Pointer to HBA context object. 9342 * @pring: Pointer to driver SLI ring object. 9343 * @piocb: Pointer to address of newly added command iocb. 9344 * 9345 * This function is called with hbalock held for SLI3 ports or 9346 * the ring lock held for SLI4 ports to add a command 9347 * iocb to the txq when SLI layer cannot submit the command iocb 9348 * to the ring. 9349 **/ 9350 void 9351 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9352 struct lpfc_iocbq *piocb) 9353 { 9354 if (phba->sli_rev == LPFC_SLI_REV4) 9355 lockdep_assert_held(&pring->ring_lock); 9356 else 9357 lockdep_assert_held(&phba->hbalock); 9358 /* Insert the caller's iocb in the txq tail for later processing. */ 9359 list_add_tail(&piocb->list, &pring->txq); 9360 } 9361 9362 /** 9363 * lpfc_sli_next_iocb - Get the next iocb in the txq 9364 * @phba: Pointer to HBA context object. 9365 * @pring: Pointer to driver SLI ring object. 9366 * @piocb: Pointer to address of newly added command iocb. 9367 * 9368 * This function is called with hbalock held before a new 9369 * iocb is submitted to the firmware. This function checks 9370 * txq to flush the iocbs in txq to Firmware before 9371 * submitting new iocbs to the Firmware. 9372 * If there are iocbs in the txq which need to be submitted 9373 * to firmware, lpfc_sli_next_iocb returns the first element 9374 * of the txq after dequeuing it from txq. 9375 * If there is no iocb in the txq then the function will return 9376 * *piocb and *piocb is set to NULL. Caller needs to check 9377 * *piocb to find if there are more commands in the txq. 9378 **/ 9379 static struct lpfc_iocbq * 9380 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9381 struct lpfc_iocbq **piocb) 9382 { 9383 struct lpfc_iocbq * nextiocb; 9384 9385 lockdep_assert_held(&phba->hbalock); 9386 9387 nextiocb = lpfc_sli_ringtx_get(phba, pring); 9388 if (!nextiocb) { 9389 nextiocb = *piocb; 9390 *piocb = NULL; 9391 } 9392 9393 return nextiocb; 9394 } 9395 9396 /** 9397 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 9398 * @phba: Pointer to HBA context object. 9399 * @ring_number: SLI ring number to issue iocb on. 9400 * @piocb: Pointer to command iocb. 9401 * @flag: Flag indicating if this command can be put into txq. 9402 * 9403 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 9404 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 9405 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 9406 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 9407 * this function allows only iocbs for posting buffers. This function finds 9408 * next available slot in the command ring and posts the command to the 9409 * available slot and writes the port attention register to request HBA start 9410 * processing new iocb. If there is no slot available in the ring and 9411 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 9412 * the function returns IOCB_BUSY. 9413 * 9414 * This function is called with hbalock held. The function will return success 9415 * after it successfully submit the iocb to firmware or after adding to the 9416 * txq. 9417 **/ 9418 static int 9419 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 9420 struct lpfc_iocbq *piocb, uint32_t flag) 9421 { 9422 struct lpfc_iocbq *nextiocb; 9423 IOCB_t *iocb; 9424 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 9425 9426 lockdep_assert_held(&phba->hbalock); 9427 9428 if (piocb->iocb_cmpl && (!piocb->vport) && 9429 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 9430 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 9431 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9432 "1807 IOCB x%x failed. No vport\n", 9433 piocb->iocb.ulpCommand); 9434 dump_stack(); 9435 return IOCB_ERROR; 9436 } 9437 9438 9439 /* If the PCI channel is in offline state, do not post iocbs. */ 9440 if (unlikely(pci_channel_offline(phba->pcidev))) 9441 return IOCB_ERROR; 9442 9443 /* If HBA has a deferred error attention, fail the iocb. */ 9444 if (unlikely(phba->hba_flag & DEFER_ERATT)) 9445 return IOCB_ERROR; 9446 9447 /* 9448 * We should never get an IOCB if we are in a < LINK_DOWN state 9449 */ 9450 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 9451 return IOCB_ERROR; 9452 9453 /* 9454 * Check to see if we are blocking IOCB processing because of a 9455 * outstanding event. 9456 */ 9457 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 9458 goto iocb_busy; 9459 9460 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 9461 /* 9462 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 9463 * can be issued if the link is not up. 9464 */ 9465 switch (piocb->iocb.ulpCommand) { 9466 case CMD_GEN_REQUEST64_CR: 9467 case CMD_GEN_REQUEST64_CX: 9468 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 9469 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 9470 FC_RCTL_DD_UNSOL_CMD) || 9471 (piocb->iocb.un.genreq64.w5.hcsw.Type != 9472 MENLO_TRANSPORT_TYPE)) 9473 9474 goto iocb_busy; 9475 break; 9476 case CMD_QUE_RING_BUF_CN: 9477 case CMD_QUE_RING_BUF64_CN: 9478 /* 9479 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 9480 * completion, iocb_cmpl MUST be 0. 9481 */ 9482 if (piocb->iocb_cmpl) 9483 piocb->iocb_cmpl = NULL; 9484 fallthrough; 9485 case CMD_CREATE_XRI_CR: 9486 case CMD_CLOSE_XRI_CN: 9487 case CMD_CLOSE_XRI_CX: 9488 break; 9489 default: 9490 goto iocb_busy; 9491 } 9492 9493 /* 9494 * For FCP commands, we must be in a state where we can process link 9495 * attention events. 9496 */ 9497 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 9498 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 9499 goto iocb_busy; 9500 } 9501 9502 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 9503 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 9504 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 9505 9506 if (iocb) 9507 lpfc_sli_update_ring(phba, pring); 9508 else 9509 lpfc_sli_update_full_ring(phba, pring); 9510 9511 if (!piocb) 9512 return IOCB_SUCCESS; 9513 9514 goto out_busy; 9515 9516 iocb_busy: 9517 pring->stats.iocb_cmd_delay++; 9518 9519 out_busy: 9520 9521 if (!(flag & SLI_IOCB_RET_IOCB)) { 9522 __lpfc_sli_ringtx_put(phba, pring, piocb); 9523 return IOCB_SUCCESS; 9524 } 9525 9526 return IOCB_BUSY; 9527 } 9528 9529 /** 9530 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 9531 * @phba: Pointer to HBA context object. 9532 * @piocbq: Pointer to command iocb. 9533 * @sglq: Pointer to the scatter gather queue object. 9534 * 9535 * This routine converts the bpl or bde that is in the IOCB 9536 * to a sgl list for the sli4 hardware. The physical address 9537 * of the bpl/bde is converted back to a virtual address. 9538 * If the IOCB contains a BPL then the list of BDE's is 9539 * converted to sli4_sge's. If the IOCB contains a single 9540 * BDE then it is converted to a single sli_sge. 9541 * The IOCB is still in cpu endianess so the contents of 9542 * the bpl can be used without byte swapping. 9543 * 9544 * Returns valid XRI = Success, NO_XRI = Failure. 9545 **/ 9546 static uint16_t 9547 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 9548 struct lpfc_sglq *sglq) 9549 { 9550 uint16_t xritag = NO_XRI; 9551 struct ulp_bde64 *bpl = NULL; 9552 struct ulp_bde64 bde; 9553 struct sli4_sge *sgl = NULL; 9554 struct lpfc_dmabuf *dmabuf; 9555 IOCB_t *icmd; 9556 int numBdes = 0; 9557 int i = 0; 9558 uint32_t offset = 0; /* accumulated offset in the sg request list */ 9559 int inbound = 0; /* number of sg reply entries inbound from firmware */ 9560 9561 if (!piocbq || !sglq) 9562 return xritag; 9563 9564 sgl = (struct sli4_sge *)sglq->sgl; 9565 icmd = &piocbq->iocb; 9566 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 9567 return sglq->sli4_xritag; 9568 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9569 numBdes = icmd->un.genreq64.bdl.bdeSize / 9570 sizeof(struct ulp_bde64); 9571 /* The addrHigh and addrLow fields within the IOCB 9572 * have not been byteswapped yet so there is no 9573 * need to swap them back. 9574 */ 9575 if (piocbq->context3) 9576 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 9577 else 9578 return xritag; 9579 9580 bpl = (struct ulp_bde64 *)dmabuf->virt; 9581 if (!bpl) 9582 return xritag; 9583 9584 for (i = 0; i < numBdes; i++) { 9585 /* Should already be byte swapped. */ 9586 sgl->addr_hi = bpl->addrHigh; 9587 sgl->addr_lo = bpl->addrLow; 9588 9589 sgl->word2 = le32_to_cpu(sgl->word2); 9590 if ((i+1) == numBdes) 9591 bf_set(lpfc_sli4_sge_last, sgl, 1); 9592 else 9593 bf_set(lpfc_sli4_sge_last, sgl, 0); 9594 /* swap the size field back to the cpu so we 9595 * can assign it to the sgl. 9596 */ 9597 bde.tus.w = le32_to_cpu(bpl->tus.w); 9598 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 9599 /* The offsets in the sgl need to be accumulated 9600 * separately for the request and reply lists. 9601 * The request is always first, the reply follows. 9602 */ 9603 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 9604 /* add up the reply sg entries */ 9605 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 9606 inbound++; 9607 /* first inbound? reset the offset */ 9608 if (inbound == 1) 9609 offset = 0; 9610 bf_set(lpfc_sli4_sge_offset, sgl, offset); 9611 bf_set(lpfc_sli4_sge_type, sgl, 9612 LPFC_SGE_TYPE_DATA); 9613 offset += bde.tus.f.bdeSize; 9614 } 9615 sgl->word2 = cpu_to_le32(sgl->word2); 9616 bpl++; 9617 sgl++; 9618 } 9619 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 9620 /* The addrHigh and addrLow fields of the BDE have not 9621 * been byteswapped yet so they need to be swapped 9622 * before putting them in the sgl. 9623 */ 9624 sgl->addr_hi = 9625 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 9626 sgl->addr_lo = 9627 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 9628 sgl->word2 = le32_to_cpu(sgl->word2); 9629 bf_set(lpfc_sli4_sge_last, sgl, 1); 9630 sgl->word2 = cpu_to_le32(sgl->word2); 9631 sgl->sge_len = 9632 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 9633 } 9634 return sglq->sli4_xritag; 9635 } 9636 9637 /** 9638 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 9639 * @phba: Pointer to HBA context object. 9640 * @iocbq: Pointer to command iocb. 9641 * @wqe: Pointer to the work queue entry. 9642 * 9643 * This routine converts the iocb command to its Work Queue Entry 9644 * equivalent. The wqe pointer should not have any fields set when 9645 * this routine is called because it will memcpy over them. 9646 * This routine does not set the CQ_ID or the WQEC bits in the 9647 * wqe. 9648 * 9649 * Returns: 0 = Success, IOCB_ERROR = Failure. 9650 **/ 9651 static int 9652 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 9653 union lpfc_wqe128 *wqe) 9654 { 9655 uint32_t xmit_len = 0, total_len = 0; 9656 uint8_t ct = 0; 9657 uint32_t fip; 9658 uint32_t abort_tag; 9659 uint8_t command_type = ELS_COMMAND_NON_FIP; 9660 uint8_t cmnd; 9661 uint16_t xritag; 9662 uint16_t abrt_iotag; 9663 struct lpfc_iocbq *abrtiocbq; 9664 struct ulp_bde64 *bpl = NULL; 9665 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 9666 int numBdes, i; 9667 struct ulp_bde64 bde; 9668 struct lpfc_nodelist *ndlp; 9669 uint32_t *pcmd; 9670 uint32_t if_type; 9671 9672 fip = phba->hba_flag & HBA_FIP_SUPPORT; 9673 /* The fcp commands will set command type */ 9674 if (iocbq->iocb_flag & LPFC_IO_FCP) 9675 command_type = FCP_COMMAND; 9676 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 9677 command_type = ELS_COMMAND_FIP; 9678 else 9679 command_type = ELS_COMMAND_NON_FIP; 9680 9681 if (phba->fcp_embed_io) 9682 memset(wqe, 0, sizeof(union lpfc_wqe128)); 9683 /* Some of the fields are in the right position already */ 9684 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 9685 /* The ct field has moved so reset */ 9686 wqe->generic.wqe_com.word7 = 0; 9687 wqe->generic.wqe_com.word10 = 0; 9688 9689 abort_tag = (uint32_t) iocbq->iotag; 9690 xritag = iocbq->sli4_xritag; 9691 /* words0-2 bpl convert bde */ 9692 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9693 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9694 sizeof(struct ulp_bde64); 9695 bpl = (struct ulp_bde64 *) 9696 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 9697 if (!bpl) 9698 return IOCB_ERROR; 9699 9700 /* Should already be byte swapped. */ 9701 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 9702 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 9703 /* swap the size field back to the cpu so we 9704 * can assign it to the sgl. 9705 */ 9706 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 9707 xmit_len = wqe->generic.bde.tus.f.bdeSize; 9708 total_len = 0; 9709 for (i = 0; i < numBdes; i++) { 9710 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9711 total_len += bde.tus.f.bdeSize; 9712 } 9713 } else 9714 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 9715 9716 iocbq->iocb.ulpIoTag = iocbq->iotag; 9717 cmnd = iocbq->iocb.ulpCommand; 9718 9719 switch (iocbq->iocb.ulpCommand) { 9720 case CMD_ELS_REQUEST64_CR: 9721 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 9722 ndlp = iocbq->context_un.ndlp; 9723 else 9724 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9725 if (!iocbq->iocb.ulpLe) { 9726 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9727 "2007 Only Limited Edition cmd Format" 9728 " supported 0x%x\n", 9729 iocbq->iocb.ulpCommand); 9730 return IOCB_ERROR; 9731 } 9732 9733 wqe->els_req.payload_len = xmit_len; 9734 /* Els_reguest64 has a TMO */ 9735 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 9736 iocbq->iocb.ulpTimeout); 9737 /* Need a VF for word 4 set the vf bit*/ 9738 bf_set(els_req64_vf, &wqe->els_req, 0); 9739 /* And a VFID for word 12 */ 9740 bf_set(els_req64_vfid, &wqe->els_req, 0); 9741 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9742 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9743 iocbq->iocb.ulpContext); 9744 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 9745 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 9746 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 9747 if (command_type == ELS_COMMAND_FIP) 9748 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 9749 >> LPFC_FIP_ELS_ID_SHIFT); 9750 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9751 iocbq->context2)->virt); 9752 if_type = bf_get(lpfc_sli_intf_if_type, 9753 &phba->sli4_hba.sli_intf); 9754 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9755 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 9756 *pcmd == ELS_CMD_SCR || 9757 *pcmd == ELS_CMD_RDF || 9758 *pcmd == ELS_CMD_RSCN_XMT || 9759 *pcmd == ELS_CMD_FDISC || 9760 *pcmd == ELS_CMD_LOGO || 9761 *pcmd == ELS_CMD_PLOGI)) { 9762 bf_set(els_req64_sp, &wqe->els_req, 1); 9763 bf_set(els_req64_sid, &wqe->els_req, 9764 iocbq->vport->fc_myDID); 9765 if ((*pcmd == ELS_CMD_FLOGI) && 9766 !(phba->fc_topology == 9767 LPFC_TOPOLOGY_LOOP)) 9768 bf_set(els_req64_sid, &wqe->els_req, 0); 9769 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 9770 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9771 phba->vpi_ids[iocbq->vport->vpi]); 9772 } else if (pcmd && iocbq->context1) { 9773 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 9774 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9775 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9776 } 9777 } 9778 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 9779 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9780 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 9781 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 9782 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 9783 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 9784 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9785 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 9786 wqe->els_req.max_response_payload_len = total_len - xmit_len; 9787 break; 9788 case CMD_XMIT_SEQUENCE64_CX: 9789 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 9790 iocbq->iocb.un.ulpWord[3]); 9791 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 9792 iocbq->iocb.unsli3.rcvsli3.ox_id); 9793 /* The entire sequence is transmitted for this IOCB */ 9794 xmit_len = total_len; 9795 cmnd = CMD_XMIT_SEQUENCE64_CR; 9796 if (phba->link_flag & LS_LOOPBACK_MODE) 9797 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 9798 fallthrough; 9799 case CMD_XMIT_SEQUENCE64_CR: 9800 /* word3 iocb=io_tag32 wqe=reserved */ 9801 wqe->xmit_sequence.rsvd3 = 0; 9802 /* word4 relative_offset memcpy */ 9803 /* word5 r_ctl/df_ctl memcpy */ 9804 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 9805 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 9806 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 9807 LPFC_WQE_IOD_WRITE); 9808 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 9809 LPFC_WQE_LENLOC_WORD12); 9810 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 9811 wqe->xmit_sequence.xmit_len = xmit_len; 9812 command_type = OTHER_COMMAND; 9813 break; 9814 case CMD_XMIT_BCAST64_CN: 9815 /* word3 iocb=iotag32 wqe=seq_payload_len */ 9816 wqe->xmit_bcast64.seq_payload_len = xmit_len; 9817 /* word4 iocb=rsvd wqe=rsvd */ 9818 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 9819 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 9820 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 9821 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9822 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 9823 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 9824 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 9825 LPFC_WQE_LENLOC_WORD3); 9826 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 9827 break; 9828 case CMD_FCP_IWRITE64_CR: 9829 command_type = FCP_COMMAND_DATA_OUT; 9830 /* word3 iocb=iotag wqe=payload_offset_len */ 9831 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9832 bf_set(payload_offset_len, &wqe->fcp_iwrite, 9833 xmit_len + sizeof(struct fcp_rsp)); 9834 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 9835 0); 9836 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9837 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9838 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 9839 iocbq->iocb.ulpFCP2Rcvy); 9840 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 9841 /* Always open the exchange */ 9842 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 9843 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 9844 LPFC_WQE_LENLOC_WORD4); 9845 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 9846 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 9847 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9848 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 9849 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 9850 if (iocbq->priority) { 9851 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9852 (iocbq->priority << 1)); 9853 } else { 9854 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9855 (phba->cfg_XLanePriority << 1)); 9856 } 9857 } 9858 /* Note, word 10 is already initialized to 0 */ 9859 9860 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9861 if (phba->cfg_enable_pbde) 9862 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 9863 else 9864 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 9865 9866 if (phba->fcp_embed_io) { 9867 struct lpfc_io_buf *lpfc_cmd; 9868 struct sli4_sge *sgl; 9869 struct fcp_cmnd *fcp_cmnd; 9870 uint32_t *ptr; 9871 9872 /* 128 byte wqe support here */ 9873 9874 lpfc_cmd = iocbq->context1; 9875 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9876 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9877 9878 /* Word 0-2 - FCP_CMND */ 9879 wqe->generic.bde.tus.f.bdeFlags = 9880 BUFF_TYPE_BDE_IMMED; 9881 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9882 wqe->generic.bde.addrHigh = 0; 9883 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9884 9885 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 9886 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 9887 9888 /* Word 22-29 FCP CMND Payload */ 9889 ptr = &wqe->words[22]; 9890 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9891 } 9892 break; 9893 case CMD_FCP_IREAD64_CR: 9894 /* word3 iocb=iotag wqe=payload_offset_len */ 9895 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9896 bf_set(payload_offset_len, &wqe->fcp_iread, 9897 xmit_len + sizeof(struct fcp_rsp)); 9898 bf_set(cmd_buff_len, &wqe->fcp_iread, 9899 0); 9900 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9901 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9902 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 9903 iocbq->iocb.ulpFCP2Rcvy); 9904 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 9905 /* Always open the exchange */ 9906 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 9907 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 9908 LPFC_WQE_LENLOC_WORD4); 9909 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 9910 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 9911 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9912 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 9913 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 9914 if (iocbq->priority) { 9915 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9916 (iocbq->priority << 1)); 9917 } else { 9918 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9919 (phba->cfg_XLanePriority << 1)); 9920 } 9921 } 9922 /* Note, word 10 is already initialized to 0 */ 9923 9924 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9925 if (phba->cfg_enable_pbde) 9926 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 9927 else 9928 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 9929 9930 if (phba->fcp_embed_io) { 9931 struct lpfc_io_buf *lpfc_cmd; 9932 struct sli4_sge *sgl; 9933 struct fcp_cmnd *fcp_cmnd; 9934 uint32_t *ptr; 9935 9936 /* 128 byte wqe support here */ 9937 9938 lpfc_cmd = iocbq->context1; 9939 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9940 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9941 9942 /* Word 0-2 - FCP_CMND */ 9943 wqe->generic.bde.tus.f.bdeFlags = 9944 BUFF_TYPE_BDE_IMMED; 9945 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9946 wqe->generic.bde.addrHigh = 0; 9947 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9948 9949 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 9950 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 9951 9952 /* Word 22-29 FCP CMND Payload */ 9953 ptr = &wqe->words[22]; 9954 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9955 } 9956 break; 9957 case CMD_FCP_ICMND64_CR: 9958 /* word3 iocb=iotag wqe=payload_offset_len */ 9959 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9960 bf_set(payload_offset_len, &wqe->fcp_icmd, 9961 xmit_len + sizeof(struct fcp_rsp)); 9962 bf_set(cmd_buff_len, &wqe->fcp_icmd, 9963 0); 9964 /* word3 iocb=IO_TAG wqe=reserved */ 9965 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 9966 /* Always open the exchange */ 9967 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 9968 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 9969 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 9970 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 9971 LPFC_WQE_LENLOC_NONE); 9972 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 9973 iocbq->iocb.ulpFCP2Rcvy); 9974 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9975 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 9976 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 9977 if (iocbq->priority) { 9978 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9979 (iocbq->priority << 1)); 9980 } else { 9981 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9982 (phba->cfg_XLanePriority << 1)); 9983 } 9984 } 9985 /* Note, word 10 is already initialized to 0 */ 9986 9987 if (phba->fcp_embed_io) { 9988 struct lpfc_io_buf *lpfc_cmd; 9989 struct sli4_sge *sgl; 9990 struct fcp_cmnd *fcp_cmnd; 9991 uint32_t *ptr; 9992 9993 /* 128 byte wqe support here */ 9994 9995 lpfc_cmd = iocbq->context1; 9996 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9997 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9998 9999 /* Word 0-2 - FCP_CMND */ 10000 wqe->generic.bde.tus.f.bdeFlags = 10001 BUFF_TYPE_BDE_IMMED; 10002 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10003 wqe->generic.bde.addrHigh = 0; 10004 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10005 10006 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 10007 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 10008 10009 /* Word 22-29 FCP CMND Payload */ 10010 ptr = &wqe->words[22]; 10011 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10012 } 10013 break; 10014 case CMD_GEN_REQUEST64_CR: 10015 /* For this command calculate the xmit length of the 10016 * request bde. 10017 */ 10018 xmit_len = 0; 10019 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 10020 sizeof(struct ulp_bde64); 10021 for (i = 0; i < numBdes; i++) { 10022 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 10023 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 10024 break; 10025 xmit_len += bde.tus.f.bdeSize; 10026 } 10027 /* word3 iocb=IO_TAG wqe=request_payload_len */ 10028 wqe->gen_req.request_payload_len = xmit_len; 10029 /* word4 iocb=parameter wqe=relative_offset memcpy */ 10030 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 10031 /* word6 context tag copied in memcpy */ 10032 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 10033 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 10034 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10035 "2015 Invalid CT %x command 0x%x\n", 10036 ct, iocbq->iocb.ulpCommand); 10037 return IOCB_ERROR; 10038 } 10039 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 10040 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 10041 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 10042 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 10043 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 10044 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 10045 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 10046 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 10047 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 10048 command_type = OTHER_COMMAND; 10049 break; 10050 case CMD_XMIT_ELS_RSP64_CX: 10051 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10052 /* words0-2 BDE memcpy */ 10053 /* word3 iocb=iotag32 wqe=response_payload_len */ 10054 wqe->xmit_els_rsp.response_payload_len = xmit_len; 10055 /* word4 */ 10056 wqe->xmit_els_rsp.word4 = 0; 10057 /* word5 iocb=rsvd wge=did */ 10058 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 10059 iocbq->iocb.un.xseq64.xmit_els_remoteID); 10060 10061 if_type = bf_get(lpfc_sli_intf_if_type, 10062 &phba->sli4_hba.sli_intf); 10063 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10064 if (iocbq->vport->fc_flag & FC_PT2PT) { 10065 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10066 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10067 iocbq->vport->fc_myDID); 10068 if (iocbq->vport->fc_myDID == Fabric_DID) { 10069 bf_set(wqe_els_did, 10070 &wqe->xmit_els_rsp.wqe_dest, 0); 10071 } 10072 } 10073 } 10074 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 10075 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10076 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 10077 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 10078 iocbq->iocb.unsli3.rcvsli3.ox_id); 10079 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 10080 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10081 phba->vpi_ids[iocbq->vport->vpi]); 10082 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 10083 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 10084 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 10085 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 10086 LPFC_WQE_LENLOC_WORD3); 10087 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 10088 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 10089 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10090 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 10091 iocbq->context2)->virt); 10092 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 10093 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10094 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10095 iocbq->vport->fc_myDID); 10096 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 10097 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10098 phba->vpi_ids[phba->pport->vpi]); 10099 } 10100 command_type = OTHER_COMMAND; 10101 break; 10102 case CMD_CLOSE_XRI_CN: 10103 case CMD_ABORT_XRI_CN: 10104 case CMD_ABORT_XRI_CX: 10105 /* words 0-2 memcpy should be 0 rserved */ 10106 /* port will send abts */ 10107 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 10108 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 10109 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 10110 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 10111 } else 10112 fip = 0; 10113 10114 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 10115 /* 10116 * The link is down, or the command was ELS_FIP 10117 * so the fw does not need to send abts 10118 * on the wire. 10119 */ 10120 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 10121 else 10122 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 10123 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 10124 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 10125 wqe->abort_cmd.rsrvd5 = 0; 10126 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 10127 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10128 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 10129 /* 10130 * The abort handler will send us CMD_ABORT_XRI_CN or 10131 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 10132 */ 10133 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10134 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 10135 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 10136 LPFC_WQE_LENLOC_NONE); 10137 cmnd = CMD_ABORT_XRI_CX; 10138 command_type = OTHER_COMMAND; 10139 xritag = 0; 10140 break; 10141 case CMD_XMIT_BLS_RSP64_CX: 10142 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10143 /* As BLS ABTS RSP WQE is very different from other WQEs, 10144 * we re-construct this WQE here based on information in 10145 * iocbq from scratch. 10146 */ 10147 memset(wqe, 0, sizeof(*wqe)); 10148 /* OX_ID is invariable to who sent ABTS to CT exchange */ 10149 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 10150 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 10151 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 10152 LPFC_ABTS_UNSOL_INT) { 10153 /* ABTS sent by initiator to CT exchange, the 10154 * RX_ID field will be filled with the newly 10155 * allocated responder XRI. 10156 */ 10157 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10158 iocbq->sli4_xritag); 10159 } else { 10160 /* ABTS sent by responder to CT exchange, the 10161 * RX_ID field will be filled with the responder 10162 * RX_ID from ABTS. 10163 */ 10164 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10165 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 10166 } 10167 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 10168 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 10169 10170 /* Use CT=VPI */ 10171 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 10172 ndlp->nlp_DID); 10173 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 10174 iocbq->iocb.ulpContext); 10175 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 10176 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 10177 phba->vpi_ids[phba->pport->vpi]); 10178 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 10179 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 10180 LPFC_WQE_LENLOC_NONE); 10181 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 10182 command_type = OTHER_COMMAND; 10183 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 10184 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 10185 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 10186 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 10187 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 10188 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 10189 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 10190 } 10191 10192 break; 10193 case CMD_SEND_FRAME: 10194 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); 10195 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ 10196 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ 10197 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); 10198 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); 10199 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10200 bf_set(wqe_xc, &wqe->generic.wqe_com, 1); 10201 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); 10202 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10203 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10204 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10205 return 0; 10206 case CMD_XRI_ABORTED_CX: 10207 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 10208 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 10209 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 10210 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 10211 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 10212 default: 10213 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10214 "2014 Invalid command 0x%x\n", 10215 iocbq->iocb.ulpCommand); 10216 return IOCB_ERROR; 10217 } 10218 10219 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 10220 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 10221 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 10222 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 10223 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 10224 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 10225 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 10226 LPFC_IO_DIF_INSERT); 10227 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10228 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10229 wqe->generic.wqe_com.abort_tag = abort_tag; 10230 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 10231 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 10232 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 10233 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10234 return 0; 10235 } 10236 10237 /** 10238 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10239 * @phba: Pointer to HBA context object. 10240 * @ring_number: SLI ring number to issue wqe on. 10241 * @piocb: Pointer to command iocb. 10242 * @flag: Flag indicating if this command can be put into txq. 10243 * 10244 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10245 * send an iocb command to an HBA with SLI-4 interface spec. 10246 * 10247 * This function takes the hbalock before invoking the lockless version. 10248 * The function will return success after it successfully submit the wqe to 10249 * firmware or after adding to the txq. 10250 **/ 10251 static int 10252 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10253 struct lpfc_iocbq *piocb, uint32_t flag) 10254 { 10255 unsigned long iflags; 10256 int rc; 10257 10258 spin_lock_irqsave(&phba->hbalock, iflags); 10259 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10260 spin_unlock_irqrestore(&phba->hbalock, iflags); 10261 10262 return rc; 10263 } 10264 10265 /** 10266 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10267 * @phba: Pointer to HBA context object. 10268 * @ring_number: SLI ring number to issue wqe on. 10269 * @piocb: Pointer to command iocb. 10270 * @flag: Flag indicating if this command can be put into txq. 10271 * 10272 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10273 * an wqe command to an HBA with SLI-4 interface spec. 10274 * 10275 * This function is a lockless version. The function will return success 10276 * after it successfully submit the wqe to firmware or after adding to the 10277 * txq. 10278 **/ 10279 static int 10280 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10281 struct lpfc_iocbq *piocb, uint32_t flag) 10282 { 10283 int rc; 10284 struct lpfc_io_buf *lpfc_cmd = 10285 (struct lpfc_io_buf *)piocb->context1; 10286 union lpfc_wqe128 *wqe = &piocb->wqe; 10287 struct sli4_sge *sgl; 10288 10289 /* 128 byte wqe support here */ 10290 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10291 10292 if (phba->fcp_embed_io) { 10293 struct fcp_cmnd *fcp_cmnd; 10294 u32 *ptr; 10295 10296 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10297 10298 /* Word 0-2 - FCP_CMND */ 10299 wqe->generic.bde.tus.f.bdeFlags = 10300 BUFF_TYPE_BDE_IMMED; 10301 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10302 wqe->generic.bde.addrHigh = 0; 10303 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10304 10305 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10306 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10307 10308 /* Word 22-29 FCP CMND Payload */ 10309 ptr = &wqe->words[22]; 10310 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10311 } else { 10312 /* Word 0-2 - Inline BDE */ 10313 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10314 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10315 wqe->generic.bde.addrHigh = sgl->addr_hi; 10316 wqe->generic.bde.addrLow = sgl->addr_lo; 10317 10318 /* Word 10 */ 10319 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10320 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10321 } 10322 10323 rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10324 return rc; 10325 } 10326 10327 /** 10328 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10329 * @phba: Pointer to HBA context object. 10330 * @ring_number: SLI ring number to issue iocb on. 10331 * @piocb: Pointer to command iocb. 10332 * @flag: Flag indicating if this command can be put into txq. 10333 * 10334 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10335 * an iocb command to an HBA with SLI-4 interface spec. 10336 * 10337 * This function is called with ringlock held. The function will return success 10338 * after it successfully submit the iocb to firmware or after adding to the 10339 * txq. 10340 **/ 10341 static int 10342 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10343 struct lpfc_iocbq *piocb, uint32_t flag) 10344 { 10345 struct lpfc_sglq *sglq; 10346 union lpfc_wqe128 wqe; 10347 struct lpfc_queue *wq; 10348 struct lpfc_sli_ring *pring; 10349 10350 /* Get the WQ */ 10351 if ((piocb->iocb_flag & LPFC_IO_FCP) || 10352 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10353 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10354 } else { 10355 wq = phba->sli4_hba.els_wq; 10356 } 10357 10358 /* Get corresponding ring */ 10359 pring = wq->pring; 10360 10361 /* 10362 * The WQE can be either 64 or 128 bytes, 10363 */ 10364 10365 lockdep_assert_held(&pring->ring_lock); 10366 10367 if (piocb->sli4_xritag == NO_XRI) { 10368 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 10369 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 10370 sglq = NULL; 10371 else { 10372 if (!list_empty(&pring->txq)) { 10373 if (!(flag & SLI_IOCB_RET_IOCB)) { 10374 __lpfc_sli_ringtx_put(phba, 10375 pring, piocb); 10376 return IOCB_SUCCESS; 10377 } else { 10378 return IOCB_BUSY; 10379 } 10380 } else { 10381 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10382 if (!sglq) { 10383 if (!(flag & SLI_IOCB_RET_IOCB)) { 10384 __lpfc_sli_ringtx_put(phba, 10385 pring, 10386 piocb); 10387 return IOCB_SUCCESS; 10388 } else 10389 return IOCB_BUSY; 10390 } 10391 } 10392 } 10393 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 10394 /* These IO's already have an XRI and a mapped sgl. */ 10395 sglq = NULL; 10396 } 10397 else { 10398 /* 10399 * This is a continuation of a commandi,(CX) so this 10400 * sglq is on the active list 10401 */ 10402 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10403 if (!sglq) 10404 return IOCB_ERROR; 10405 } 10406 10407 if (sglq) { 10408 piocb->sli4_lxritag = sglq->sli4_lxritag; 10409 piocb->sli4_xritag = sglq->sli4_xritag; 10410 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 10411 return IOCB_ERROR; 10412 } 10413 10414 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 10415 return IOCB_ERROR; 10416 10417 if (lpfc_sli4_wq_put(wq, &wqe)) 10418 return IOCB_ERROR; 10419 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10420 10421 return 0; 10422 } 10423 10424 /** 10425 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10426 * 10427 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10428 * or IOCB for sli-3 function. 10429 * pointer from the lpfc_hba struct. 10430 * 10431 * Return codes: 10432 * IOCB_ERROR - Error 10433 * IOCB_SUCCESS - Success 10434 * IOCB_BUSY - Busy 10435 **/ 10436 int 10437 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10438 struct lpfc_iocbq *piocb, uint32_t flag) 10439 { 10440 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10441 } 10442 10443 /* 10444 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10445 * 10446 * This routine wraps the actual lockless version for issusing IOCB function 10447 * pointer from the lpfc_hba struct. 10448 * 10449 * Return codes: 10450 * IOCB_ERROR - Error 10451 * IOCB_SUCCESS - Success 10452 * IOCB_BUSY - Busy 10453 **/ 10454 int 10455 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10456 struct lpfc_iocbq *piocb, uint32_t flag) 10457 { 10458 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10459 } 10460 10461 /** 10462 * lpfc_sli_api_table_setup - Set up sli api function jump table 10463 * @phba: The hba struct for which this call is being executed. 10464 * @dev_grp: The HBA PCI-Device group number. 10465 * 10466 * This routine sets up the SLI interface API function jump table in @phba 10467 * struct. 10468 * Returns: 0 - success, -ENODEV - failure. 10469 **/ 10470 int 10471 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10472 { 10473 10474 switch (dev_grp) { 10475 case LPFC_PCI_DEV_LP: 10476 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 10477 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 10478 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 10479 break; 10480 case LPFC_PCI_DEV_OC: 10481 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 10482 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 10483 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 10484 break; 10485 default: 10486 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10487 "1419 Invalid HBA PCI-device group: 0x%x\n", 10488 dev_grp); 10489 return -ENODEV; 10490 } 10491 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 10492 return 0; 10493 } 10494 10495 /** 10496 * lpfc_sli4_calc_ring - Calculates which ring to use 10497 * @phba: Pointer to HBA context object. 10498 * @piocb: Pointer to command iocb. 10499 * 10500 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 10501 * hba_wqidx, thus we need to calculate the corresponding ring. 10502 * Since ABORTS must go on the same WQ of the command they are 10503 * aborting, we use command's hba_wqidx. 10504 */ 10505 struct lpfc_sli_ring * 10506 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 10507 { 10508 struct lpfc_io_buf *lpfc_cmd; 10509 10510 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 10511 if (unlikely(!phba->sli4_hba.hdwq)) 10512 return NULL; 10513 /* 10514 * for abort iocb hba_wqidx should already 10515 * be setup based on what work queue we used. 10516 */ 10517 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10518 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 10519 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 10520 } 10521 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 10522 } else { 10523 if (unlikely(!phba->sli4_hba.els_wq)) 10524 return NULL; 10525 piocb->hba_wqidx = 0; 10526 return phba->sli4_hba.els_wq->pring; 10527 } 10528 } 10529 10530 /** 10531 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 10532 * @phba: Pointer to HBA context object. 10533 * @ring_number: Ring number 10534 * @piocb: Pointer to command iocb. 10535 * @flag: Flag indicating if this command can be put into txq. 10536 * 10537 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 10538 * function. This function gets the hbalock and calls 10539 * __lpfc_sli_issue_iocb function and will return the error returned 10540 * by __lpfc_sli_issue_iocb function. This wrapper is used by 10541 * functions which do not hold hbalock. 10542 **/ 10543 int 10544 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10545 struct lpfc_iocbq *piocb, uint32_t flag) 10546 { 10547 struct lpfc_sli_ring *pring; 10548 struct lpfc_queue *eq; 10549 unsigned long iflags; 10550 int rc; 10551 10552 if (phba->sli_rev == LPFC_SLI_REV4) { 10553 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 10554 10555 pring = lpfc_sli4_calc_ring(phba, piocb); 10556 if (unlikely(pring == NULL)) 10557 return IOCB_ERROR; 10558 10559 spin_lock_irqsave(&pring->ring_lock, iflags); 10560 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10561 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10562 10563 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 10564 } else { 10565 /* For now, SLI2/3 will still use hbalock */ 10566 spin_lock_irqsave(&phba->hbalock, iflags); 10567 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10568 spin_unlock_irqrestore(&phba->hbalock, iflags); 10569 } 10570 return rc; 10571 } 10572 10573 /** 10574 * lpfc_extra_ring_setup - Extra ring setup function 10575 * @phba: Pointer to HBA context object. 10576 * 10577 * This function is called while driver attaches with the 10578 * HBA to setup the extra ring. The extra ring is used 10579 * only when driver needs to support target mode functionality 10580 * or IP over FC functionalities. 10581 * 10582 * This function is called with no lock held. SLI3 only. 10583 **/ 10584 static int 10585 lpfc_extra_ring_setup( struct lpfc_hba *phba) 10586 { 10587 struct lpfc_sli *psli; 10588 struct lpfc_sli_ring *pring; 10589 10590 psli = &phba->sli; 10591 10592 /* Adjust cmd/rsp ring iocb entries more evenly */ 10593 10594 /* Take some away from the FCP ring */ 10595 pring = &psli->sli3_ring[LPFC_FCP_RING]; 10596 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10597 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10598 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10599 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10600 10601 /* and give them to the extra ring */ 10602 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 10603 10604 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10605 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10606 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10607 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10608 10609 /* Setup default profile for this ring */ 10610 pring->iotag_max = 4096; 10611 pring->num_mask = 1; 10612 pring->prt[0].profile = 0; /* Mask 0 */ 10613 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 10614 pring->prt[0].type = phba->cfg_multi_ring_type; 10615 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 10616 return 0; 10617 } 10618 10619 static void 10620 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 10621 struct lpfc_nodelist *ndlp) 10622 { 10623 unsigned long iflags; 10624 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 10625 10626 spin_lock_irqsave(&phba->hbalock, iflags); 10627 if (!list_empty(&evtp->evt_listp)) { 10628 spin_unlock_irqrestore(&phba->hbalock, iflags); 10629 return; 10630 } 10631 10632 /* Incrementing the reference count until the queued work is done. */ 10633 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 10634 if (!evtp->evt_arg1) { 10635 spin_unlock_irqrestore(&phba->hbalock, iflags); 10636 return; 10637 } 10638 evtp->evt = LPFC_EVT_RECOVER_PORT; 10639 list_add_tail(&evtp->evt_listp, &phba->work_list); 10640 spin_unlock_irqrestore(&phba->hbalock, iflags); 10641 10642 lpfc_worker_wake_up(phba); 10643 } 10644 10645 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 10646 * @phba: Pointer to HBA context object. 10647 * @iocbq: Pointer to iocb object. 10648 * 10649 * The async_event handler calls this routine when it receives 10650 * an ASYNC_STATUS_CN event from the port. The port generates 10651 * this event when an Abort Sequence request to an rport fails 10652 * twice in succession. The abort could be originated by the 10653 * driver or by the port. The ABTS could have been for an ELS 10654 * or FCP IO. The port only generates this event when an ABTS 10655 * fails to complete after one retry. 10656 */ 10657 static void 10658 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 10659 struct lpfc_iocbq *iocbq) 10660 { 10661 struct lpfc_nodelist *ndlp = NULL; 10662 uint16_t rpi = 0, vpi = 0; 10663 struct lpfc_vport *vport = NULL; 10664 10665 /* The rpi in the ulpContext is vport-sensitive. */ 10666 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 10667 rpi = iocbq->iocb.ulpContext; 10668 10669 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10670 "3092 Port generated ABTS async event " 10671 "on vpi %d rpi %d status 0x%x\n", 10672 vpi, rpi, iocbq->iocb.ulpStatus); 10673 10674 vport = lpfc_find_vport_by_vpid(phba, vpi); 10675 if (!vport) 10676 goto err_exit; 10677 ndlp = lpfc_findnode_rpi(vport, rpi); 10678 if (!ndlp) 10679 goto err_exit; 10680 10681 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 10682 lpfc_sli_abts_recover_port(vport, ndlp); 10683 return; 10684 10685 err_exit: 10686 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10687 "3095 Event Context not found, no " 10688 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 10689 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 10690 vpi, rpi); 10691 } 10692 10693 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 10694 * @phba: pointer to HBA context object. 10695 * @ndlp: nodelist pointer for the impacted rport. 10696 * @axri: pointer to the wcqe containing the failed exchange. 10697 * 10698 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 10699 * port. The port generates this event when an abort exchange request to an 10700 * rport fails twice in succession with no reply. The abort could be originated 10701 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 10702 */ 10703 void 10704 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 10705 struct lpfc_nodelist *ndlp, 10706 struct sli4_wcqe_xri_aborted *axri) 10707 { 10708 uint32_t ext_status = 0; 10709 10710 if (!ndlp) { 10711 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10712 "3115 Node Context not found, driver " 10713 "ignoring abts err event\n"); 10714 return; 10715 } 10716 10717 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10718 "3116 Port generated FCP XRI ABORT event on " 10719 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 10720 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 10721 bf_get(lpfc_wcqe_xa_xri, axri), 10722 bf_get(lpfc_wcqe_xa_status, axri), 10723 axri->parameter); 10724 10725 /* 10726 * Catch the ABTS protocol failure case. Older OCe FW releases returned 10727 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 10728 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 10729 */ 10730 ext_status = axri->parameter & IOERR_PARAM_MASK; 10731 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 10732 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 10733 lpfc_sli_post_recovery_event(phba, ndlp); 10734 } 10735 10736 /** 10737 * lpfc_sli_async_event_handler - ASYNC iocb handler function 10738 * @phba: Pointer to HBA context object. 10739 * @pring: Pointer to driver SLI ring object. 10740 * @iocbq: Pointer to iocb object. 10741 * 10742 * This function is called by the slow ring event handler 10743 * function when there is an ASYNC event iocb in the ring. 10744 * This function is called with no lock held. 10745 * Currently this function handles only temperature related 10746 * ASYNC events. The function decodes the temperature sensor 10747 * event message and posts events for the management applications. 10748 **/ 10749 static void 10750 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 10751 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 10752 { 10753 IOCB_t *icmd; 10754 uint16_t evt_code; 10755 struct temp_event temp_event_data; 10756 struct Scsi_Host *shost; 10757 uint32_t *iocb_w; 10758 10759 icmd = &iocbq->iocb; 10760 evt_code = icmd->un.asyncstat.evt_code; 10761 10762 switch (evt_code) { 10763 case ASYNC_TEMP_WARN: 10764 case ASYNC_TEMP_SAFE: 10765 temp_event_data.data = (uint32_t) icmd->ulpContext; 10766 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 10767 if (evt_code == ASYNC_TEMP_WARN) { 10768 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 10769 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10770 "0347 Adapter is very hot, please take " 10771 "corrective action. temperature : %d Celsius\n", 10772 (uint32_t) icmd->ulpContext); 10773 } else { 10774 temp_event_data.event_code = LPFC_NORMAL_TEMP; 10775 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10776 "0340 Adapter temperature is OK now. " 10777 "temperature : %d Celsius\n", 10778 (uint32_t) icmd->ulpContext); 10779 } 10780 10781 /* Send temperature change event to applications */ 10782 shost = lpfc_shost_from_vport(phba->pport); 10783 fc_host_post_vendor_event(shost, fc_get_event_number(), 10784 sizeof(temp_event_data), (char *) &temp_event_data, 10785 LPFC_NL_VENDOR_ID); 10786 break; 10787 case ASYNC_STATUS_CN: 10788 lpfc_sli_abts_err_handler(phba, iocbq); 10789 break; 10790 default: 10791 iocb_w = (uint32_t *) icmd; 10792 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10793 "0346 Ring %d handler: unexpected ASYNC_STATUS" 10794 " evt_code 0x%x\n" 10795 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 10796 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 10797 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 10798 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 10799 pring->ringno, icmd->un.asyncstat.evt_code, 10800 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 10801 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 10802 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 10803 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 10804 10805 break; 10806 } 10807 } 10808 10809 10810 /** 10811 * lpfc_sli4_setup - SLI ring setup function 10812 * @phba: Pointer to HBA context object. 10813 * 10814 * lpfc_sli_setup sets up rings of the SLI interface with 10815 * number of iocbs per ring and iotags. This function is 10816 * called while driver attach to the HBA and before the 10817 * interrupts are enabled. So there is no need for locking. 10818 * 10819 * This function always returns 0. 10820 **/ 10821 int 10822 lpfc_sli4_setup(struct lpfc_hba *phba) 10823 { 10824 struct lpfc_sli_ring *pring; 10825 10826 pring = phba->sli4_hba.els_wq->pring; 10827 pring->num_mask = LPFC_MAX_RING_MASK; 10828 pring->prt[0].profile = 0; /* Mask 0 */ 10829 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10830 pring->prt[0].type = FC_TYPE_ELS; 10831 pring->prt[0].lpfc_sli_rcv_unsol_event = 10832 lpfc_els_unsol_event; 10833 pring->prt[1].profile = 0; /* Mask 1 */ 10834 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10835 pring->prt[1].type = FC_TYPE_ELS; 10836 pring->prt[1].lpfc_sli_rcv_unsol_event = 10837 lpfc_els_unsol_event; 10838 pring->prt[2].profile = 0; /* Mask 2 */ 10839 /* NameServer Inquiry */ 10840 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10841 /* NameServer */ 10842 pring->prt[2].type = FC_TYPE_CT; 10843 pring->prt[2].lpfc_sli_rcv_unsol_event = 10844 lpfc_ct_unsol_event; 10845 pring->prt[3].profile = 0; /* Mask 3 */ 10846 /* NameServer response */ 10847 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10848 /* NameServer */ 10849 pring->prt[3].type = FC_TYPE_CT; 10850 pring->prt[3].lpfc_sli_rcv_unsol_event = 10851 lpfc_ct_unsol_event; 10852 return 0; 10853 } 10854 10855 /** 10856 * lpfc_sli_setup - SLI ring setup function 10857 * @phba: Pointer to HBA context object. 10858 * 10859 * lpfc_sli_setup sets up rings of the SLI interface with 10860 * number of iocbs per ring and iotags. This function is 10861 * called while driver attach to the HBA and before the 10862 * interrupts are enabled. So there is no need for locking. 10863 * 10864 * This function always returns 0. SLI3 only. 10865 **/ 10866 int 10867 lpfc_sli_setup(struct lpfc_hba *phba) 10868 { 10869 int i, totiocbsize = 0; 10870 struct lpfc_sli *psli = &phba->sli; 10871 struct lpfc_sli_ring *pring; 10872 10873 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 10874 psli->sli_flag = 0; 10875 10876 psli->iocbq_lookup = NULL; 10877 psli->iocbq_lookup_len = 0; 10878 psli->last_iotag = 0; 10879 10880 for (i = 0; i < psli->num_rings; i++) { 10881 pring = &psli->sli3_ring[i]; 10882 switch (i) { 10883 case LPFC_FCP_RING: /* ring 0 - FCP */ 10884 /* numCiocb and numRiocb are used in config_port */ 10885 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 10886 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 10887 pring->sli.sli3.numCiocb += 10888 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10889 pring->sli.sli3.numRiocb += 10890 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10891 pring->sli.sli3.numCiocb += 10892 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10893 pring->sli.sli3.numRiocb += 10894 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10895 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10896 SLI3_IOCB_CMD_SIZE : 10897 SLI2_IOCB_CMD_SIZE; 10898 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10899 SLI3_IOCB_RSP_SIZE : 10900 SLI2_IOCB_RSP_SIZE; 10901 pring->iotag_ctr = 0; 10902 pring->iotag_max = 10903 (phba->cfg_hba_queue_depth * 2); 10904 pring->fast_iotag = pring->iotag_max; 10905 pring->num_mask = 0; 10906 break; 10907 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 10908 /* numCiocb and numRiocb are used in config_port */ 10909 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 10910 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 10911 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10912 SLI3_IOCB_CMD_SIZE : 10913 SLI2_IOCB_CMD_SIZE; 10914 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10915 SLI3_IOCB_RSP_SIZE : 10916 SLI2_IOCB_RSP_SIZE; 10917 pring->iotag_max = phba->cfg_hba_queue_depth; 10918 pring->num_mask = 0; 10919 break; 10920 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 10921 /* numCiocb and numRiocb are used in config_port */ 10922 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 10923 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 10924 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10925 SLI3_IOCB_CMD_SIZE : 10926 SLI2_IOCB_CMD_SIZE; 10927 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10928 SLI3_IOCB_RSP_SIZE : 10929 SLI2_IOCB_RSP_SIZE; 10930 pring->fast_iotag = 0; 10931 pring->iotag_ctr = 0; 10932 pring->iotag_max = 4096; 10933 pring->lpfc_sli_rcv_async_status = 10934 lpfc_sli_async_event_handler; 10935 pring->num_mask = LPFC_MAX_RING_MASK; 10936 pring->prt[0].profile = 0; /* Mask 0 */ 10937 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10938 pring->prt[0].type = FC_TYPE_ELS; 10939 pring->prt[0].lpfc_sli_rcv_unsol_event = 10940 lpfc_els_unsol_event; 10941 pring->prt[1].profile = 0; /* Mask 1 */ 10942 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10943 pring->prt[1].type = FC_TYPE_ELS; 10944 pring->prt[1].lpfc_sli_rcv_unsol_event = 10945 lpfc_els_unsol_event; 10946 pring->prt[2].profile = 0; /* Mask 2 */ 10947 /* NameServer Inquiry */ 10948 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10949 /* NameServer */ 10950 pring->prt[2].type = FC_TYPE_CT; 10951 pring->prt[2].lpfc_sli_rcv_unsol_event = 10952 lpfc_ct_unsol_event; 10953 pring->prt[3].profile = 0; /* Mask 3 */ 10954 /* NameServer response */ 10955 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10956 /* NameServer */ 10957 pring->prt[3].type = FC_TYPE_CT; 10958 pring->prt[3].lpfc_sli_rcv_unsol_event = 10959 lpfc_ct_unsol_event; 10960 break; 10961 } 10962 totiocbsize += (pring->sli.sli3.numCiocb * 10963 pring->sli.sli3.sizeCiocb) + 10964 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 10965 } 10966 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 10967 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 10968 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 10969 "SLI2 SLIM Data: x%x x%lx\n", 10970 phba->brd_no, totiocbsize, 10971 (unsigned long) MAX_SLIM_IOCB_SIZE); 10972 } 10973 if (phba->cfg_multi_ring_support == 2) 10974 lpfc_extra_ring_setup(phba); 10975 10976 return 0; 10977 } 10978 10979 /** 10980 * lpfc_sli4_queue_init - Queue initialization function 10981 * @phba: Pointer to HBA context object. 10982 * 10983 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 10984 * ring. This function also initializes ring indices of each ring. 10985 * This function is called during the initialization of the SLI 10986 * interface of an HBA. 10987 * This function is called with no lock held and always returns 10988 * 1. 10989 **/ 10990 void 10991 lpfc_sli4_queue_init(struct lpfc_hba *phba) 10992 { 10993 struct lpfc_sli *psli; 10994 struct lpfc_sli_ring *pring; 10995 int i; 10996 10997 psli = &phba->sli; 10998 spin_lock_irq(&phba->hbalock); 10999 INIT_LIST_HEAD(&psli->mboxq); 11000 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11001 /* Initialize list headers for txq and txcmplq as double linked lists */ 11002 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11003 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11004 pring->flag = 0; 11005 pring->ringno = LPFC_FCP_RING; 11006 pring->txcmplq_cnt = 0; 11007 INIT_LIST_HEAD(&pring->txq); 11008 INIT_LIST_HEAD(&pring->txcmplq); 11009 INIT_LIST_HEAD(&pring->iocb_continueq); 11010 spin_lock_init(&pring->ring_lock); 11011 } 11012 pring = phba->sli4_hba.els_wq->pring; 11013 pring->flag = 0; 11014 pring->ringno = LPFC_ELS_RING; 11015 pring->txcmplq_cnt = 0; 11016 INIT_LIST_HEAD(&pring->txq); 11017 INIT_LIST_HEAD(&pring->txcmplq); 11018 INIT_LIST_HEAD(&pring->iocb_continueq); 11019 spin_lock_init(&pring->ring_lock); 11020 11021 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11022 pring = phba->sli4_hba.nvmels_wq->pring; 11023 pring->flag = 0; 11024 pring->ringno = LPFC_ELS_RING; 11025 pring->txcmplq_cnt = 0; 11026 INIT_LIST_HEAD(&pring->txq); 11027 INIT_LIST_HEAD(&pring->txcmplq); 11028 INIT_LIST_HEAD(&pring->iocb_continueq); 11029 spin_lock_init(&pring->ring_lock); 11030 } 11031 11032 spin_unlock_irq(&phba->hbalock); 11033 } 11034 11035 /** 11036 * lpfc_sli_queue_init - Queue initialization function 11037 * @phba: Pointer to HBA context object. 11038 * 11039 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11040 * ring. This function also initializes ring indices of each ring. 11041 * This function is called during the initialization of the SLI 11042 * interface of an HBA. 11043 * This function is called with no lock held and always returns 11044 * 1. 11045 **/ 11046 void 11047 lpfc_sli_queue_init(struct lpfc_hba *phba) 11048 { 11049 struct lpfc_sli *psli; 11050 struct lpfc_sli_ring *pring; 11051 int i; 11052 11053 psli = &phba->sli; 11054 spin_lock_irq(&phba->hbalock); 11055 INIT_LIST_HEAD(&psli->mboxq); 11056 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11057 /* Initialize list headers for txq and txcmplq as double linked lists */ 11058 for (i = 0; i < psli->num_rings; i++) { 11059 pring = &psli->sli3_ring[i]; 11060 pring->ringno = i; 11061 pring->sli.sli3.next_cmdidx = 0; 11062 pring->sli.sli3.local_getidx = 0; 11063 pring->sli.sli3.cmdidx = 0; 11064 INIT_LIST_HEAD(&pring->iocb_continueq); 11065 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11066 INIT_LIST_HEAD(&pring->postbufq); 11067 pring->flag = 0; 11068 INIT_LIST_HEAD(&pring->txq); 11069 INIT_LIST_HEAD(&pring->txcmplq); 11070 spin_lock_init(&pring->ring_lock); 11071 } 11072 spin_unlock_irq(&phba->hbalock); 11073 } 11074 11075 /** 11076 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11077 * @phba: Pointer to HBA context object. 11078 * 11079 * This routine flushes the mailbox command subsystem. It will unconditionally 11080 * flush all the mailbox commands in the three possible stages in the mailbox 11081 * command sub-system: pending mailbox command queue; the outstanding mailbox 11082 * command; and completed mailbox command queue. It is caller's responsibility 11083 * to make sure that the driver is in the proper state to flush the mailbox 11084 * command sub-system. Namely, the posting of mailbox commands into the 11085 * pending mailbox command queue from the various clients must be stopped; 11086 * either the HBA is in a state that it will never works on the outstanding 11087 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11088 * mailbox command has been completed. 11089 **/ 11090 static void 11091 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11092 { 11093 LIST_HEAD(completions); 11094 struct lpfc_sli *psli = &phba->sli; 11095 LPFC_MBOXQ_t *pmb; 11096 unsigned long iflag; 11097 11098 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11099 local_bh_disable(); 11100 11101 /* Flush all the mailbox commands in the mbox system */ 11102 spin_lock_irqsave(&phba->hbalock, iflag); 11103 11104 /* The pending mailbox command queue */ 11105 list_splice_init(&phba->sli.mboxq, &completions); 11106 /* The outstanding active mailbox command */ 11107 if (psli->mbox_active) { 11108 list_add_tail(&psli->mbox_active->list, &completions); 11109 psli->mbox_active = NULL; 11110 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11111 } 11112 /* The completed mailbox command queue */ 11113 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11114 spin_unlock_irqrestore(&phba->hbalock, iflag); 11115 11116 /* Enable softirqs again, done with phba->hbalock */ 11117 local_bh_enable(); 11118 11119 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11120 while (!list_empty(&completions)) { 11121 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11122 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11123 if (pmb->mbox_cmpl) 11124 pmb->mbox_cmpl(phba, pmb); 11125 } 11126 } 11127 11128 /** 11129 * lpfc_sli_host_down - Vport cleanup function 11130 * @vport: Pointer to virtual port object. 11131 * 11132 * lpfc_sli_host_down is called to clean up the resources 11133 * associated with a vport before destroying virtual 11134 * port data structures. 11135 * This function does following operations: 11136 * - Free discovery resources associated with this virtual 11137 * port. 11138 * - Free iocbs associated with this virtual port in 11139 * the txq. 11140 * - Send abort for all iocb commands associated with this 11141 * vport in txcmplq. 11142 * 11143 * This function is called with no lock held and always returns 1. 11144 **/ 11145 int 11146 lpfc_sli_host_down(struct lpfc_vport *vport) 11147 { 11148 LIST_HEAD(completions); 11149 struct lpfc_hba *phba = vport->phba; 11150 struct lpfc_sli *psli = &phba->sli; 11151 struct lpfc_queue *qp = NULL; 11152 struct lpfc_sli_ring *pring; 11153 struct lpfc_iocbq *iocb, *next_iocb; 11154 int i; 11155 unsigned long flags = 0; 11156 uint16_t prev_pring_flag; 11157 11158 lpfc_cleanup_discovery_resources(vport); 11159 11160 spin_lock_irqsave(&phba->hbalock, flags); 11161 11162 /* 11163 * Error everything on the txq since these iocbs 11164 * have not been given to the FW yet. 11165 * Also issue ABTS for everything on the txcmplq 11166 */ 11167 if (phba->sli_rev != LPFC_SLI_REV4) { 11168 for (i = 0; i < psli->num_rings; i++) { 11169 pring = &psli->sli3_ring[i]; 11170 prev_pring_flag = pring->flag; 11171 /* Only slow rings */ 11172 if (pring->ringno == LPFC_ELS_RING) { 11173 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11174 /* Set the lpfc data pending flag */ 11175 set_bit(LPFC_DATA_READY, &phba->data_flags); 11176 } 11177 list_for_each_entry_safe(iocb, next_iocb, 11178 &pring->txq, list) { 11179 if (iocb->vport != vport) 11180 continue; 11181 list_move_tail(&iocb->list, &completions); 11182 } 11183 list_for_each_entry_safe(iocb, next_iocb, 11184 &pring->txcmplq, list) { 11185 if (iocb->vport != vport) 11186 continue; 11187 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11188 NULL); 11189 } 11190 pring->flag = prev_pring_flag; 11191 } 11192 } else { 11193 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11194 pring = qp->pring; 11195 if (!pring) 11196 continue; 11197 if (pring == phba->sli4_hba.els_wq->pring) { 11198 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11199 /* Set the lpfc data pending flag */ 11200 set_bit(LPFC_DATA_READY, &phba->data_flags); 11201 } 11202 prev_pring_flag = pring->flag; 11203 spin_lock(&pring->ring_lock); 11204 list_for_each_entry_safe(iocb, next_iocb, 11205 &pring->txq, list) { 11206 if (iocb->vport != vport) 11207 continue; 11208 list_move_tail(&iocb->list, &completions); 11209 } 11210 spin_unlock(&pring->ring_lock); 11211 list_for_each_entry_safe(iocb, next_iocb, 11212 &pring->txcmplq, list) { 11213 if (iocb->vport != vport) 11214 continue; 11215 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11216 NULL); 11217 } 11218 pring->flag = prev_pring_flag; 11219 } 11220 } 11221 spin_unlock_irqrestore(&phba->hbalock, flags); 11222 11223 /* Make sure HBA is alive */ 11224 lpfc_issue_hb_tmo(phba); 11225 11226 /* Cancel all the IOCBs from the completions list */ 11227 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11228 IOERR_SLI_DOWN); 11229 return 1; 11230 } 11231 11232 /** 11233 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11234 * @phba: Pointer to HBA context object. 11235 * 11236 * This function cleans up all iocb, buffers, mailbox commands 11237 * while shutting down the HBA. This function is called with no 11238 * lock held and always returns 1. 11239 * This function does the following to cleanup driver resources: 11240 * - Free discovery resources for each virtual port 11241 * - Cleanup any pending fabric iocbs 11242 * - Iterate through the iocb txq and free each entry 11243 * in the list. 11244 * - Free up any buffer posted to the HBA 11245 * - Free mailbox commands in the mailbox queue. 11246 **/ 11247 int 11248 lpfc_sli_hba_down(struct lpfc_hba *phba) 11249 { 11250 LIST_HEAD(completions); 11251 struct lpfc_sli *psli = &phba->sli; 11252 struct lpfc_queue *qp = NULL; 11253 struct lpfc_sli_ring *pring; 11254 struct lpfc_dmabuf *buf_ptr; 11255 unsigned long flags = 0; 11256 int i; 11257 11258 /* Shutdown the mailbox command sub-system */ 11259 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11260 11261 lpfc_hba_down_prep(phba); 11262 11263 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11264 local_bh_disable(); 11265 11266 lpfc_fabric_abort_hba(phba); 11267 11268 spin_lock_irqsave(&phba->hbalock, flags); 11269 11270 /* 11271 * Error everything on the txq since these iocbs 11272 * have not been given to the FW yet. 11273 */ 11274 if (phba->sli_rev != LPFC_SLI_REV4) { 11275 for (i = 0; i < psli->num_rings; i++) { 11276 pring = &psli->sli3_ring[i]; 11277 /* Only slow rings */ 11278 if (pring->ringno == LPFC_ELS_RING) { 11279 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11280 /* Set the lpfc data pending flag */ 11281 set_bit(LPFC_DATA_READY, &phba->data_flags); 11282 } 11283 list_splice_init(&pring->txq, &completions); 11284 } 11285 } else { 11286 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11287 pring = qp->pring; 11288 if (!pring) 11289 continue; 11290 spin_lock(&pring->ring_lock); 11291 list_splice_init(&pring->txq, &completions); 11292 spin_unlock(&pring->ring_lock); 11293 if (pring == phba->sli4_hba.els_wq->pring) { 11294 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11295 /* Set the lpfc data pending flag */ 11296 set_bit(LPFC_DATA_READY, &phba->data_flags); 11297 } 11298 } 11299 } 11300 spin_unlock_irqrestore(&phba->hbalock, flags); 11301 11302 /* Cancel all the IOCBs from the completions list */ 11303 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11304 IOERR_SLI_DOWN); 11305 11306 spin_lock_irqsave(&phba->hbalock, flags); 11307 list_splice_init(&phba->elsbuf, &completions); 11308 phba->elsbuf_cnt = 0; 11309 phba->elsbuf_prev_cnt = 0; 11310 spin_unlock_irqrestore(&phba->hbalock, flags); 11311 11312 while (!list_empty(&completions)) { 11313 list_remove_head(&completions, buf_ptr, 11314 struct lpfc_dmabuf, list); 11315 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 11316 kfree(buf_ptr); 11317 } 11318 11319 /* Enable softirqs again, done with phba->hbalock */ 11320 local_bh_enable(); 11321 11322 /* Return any active mbox cmds */ 11323 del_timer_sync(&psli->mbox_tmo); 11324 11325 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 11326 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11327 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 11328 11329 return 1; 11330 } 11331 11332 /** 11333 * lpfc_sli_pcimem_bcopy - SLI memory copy function 11334 * @srcp: Source memory pointer. 11335 * @destp: Destination memory pointer. 11336 * @cnt: Number of words required to be copied. 11337 * 11338 * This function is used for copying data between driver memory 11339 * and the SLI memory. This function also changes the endianness 11340 * of each word if native endianness is different from SLI 11341 * endianness. This function can be called with or without 11342 * lock. 11343 **/ 11344 void 11345 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 11346 { 11347 uint32_t *src = srcp; 11348 uint32_t *dest = destp; 11349 uint32_t ldata; 11350 int i; 11351 11352 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 11353 ldata = *src; 11354 ldata = le32_to_cpu(ldata); 11355 *dest = ldata; 11356 src++; 11357 dest++; 11358 } 11359 } 11360 11361 11362 /** 11363 * lpfc_sli_bemem_bcopy - SLI memory copy function 11364 * @srcp: Source memory pointer. 11365 * @destp: Destination memory pointer. 11366 * @cnt: Number of words required to be copied. 11367 * 11368 * This function is used for copying data between a data structure 11369 * with big endian representation to local endianness. 11370 * This function can be called with or without lock. 11371 **/ 11372 void 11373 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 11374 { 11375 uint32_t *src = srcp; 11376 uint32_t *dest = destp; 11377 uint32_t ldata; 11378 int i; 11379 11380 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 11381 ldata = *src; 11382 ldata = be32_to_cpu(ldata); 11383 *dest = ldata; 11384 src++; 11385 dest++; 11386 } 11387 } 11388 11389 /** 11390 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 11391 * @phba: Pointer to HBA context object. 11392 * @pring: Pointer to driver SLI ring object. 11393 * @mp: Pointer to driver buffer object. 11394 * 11395 * This function is called with no lock held. 11396 * It always return zero after adding the buffer to the postbufq 11397 * buffer list. 11398 **/ 11399 int 11400 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11401 struct lpfc_dmabuf *mp) 11402 { 11403 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 11404 later */ 11405 spin_lock_irq(&phba->hbalock); 11406 list_add_tail(&mp->list, &pring->postbufq); 11407 pring->postbufq_cnt++; 11408 spin_unlock_irq(&phba->hbalock); 11409 return 0; 11410 } 11411 11412 /** 11413 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 11414 * @phba: Pointer to HBA context object. 11415 * 11416 * When HBQ is enabled, buffers are searched based on tags. This function 11417 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 11418 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 11419 * does not conflict with tags of buffer posted for unsolicited events. 11420 * The function returns the allocated tag. The function is called with 11421 * no locks held. 11422 **/ 11423 uint32_t 11424 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 11425 { 11426 spin_lock_irq(&phba->hbalock); 11427 phba->buffer_tag_count++; 11428 /* 11429 * Always set the QUE_BUFTAG_BIT to distiguish between 11430 * a tag assigned by HBQ. 11431 */ 11432 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 11433 spin_unlock_irq(&phba->hbalock); 11434 return phba->buffer_tag_count; 11435 } 11436 11437 /** 11438 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 11439 * @phba: Pointer to HBA context object. 11440 * @pring: Pointer to driver SLI ring object. 11441 * @tag: Buffer tag. 11442 * 11443 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 11444 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 11445 * iocb is posted to the response ring with the tag of the buffer. 11446 * This function searches the pring->postbufq list using the tag 11447 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 11448 * iocb. If the buffer is found then lpfc_dmabuf object of the 11449 * buffer is returned to the caller else NULL is returned. 11450 * This function is called with no lock held. 11451 **/ 11452 struct lpfc_dmabuf * 11453 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11454 uint32_t tag) 11455 { 11456 struct lpfc_dmabuf *mp, *next_mp; 11457 struct list_head *slp = &pring->postbufq; 11458 11459 /* Search postbufq, from the beginning, looking for a match on tag */ 11460 spin_lock_irq(&phba->hbalock); 11461 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11462 if (mp->buffer_tag == tag) { 11463 list_del_init(&mp->list); 11464 pring->postbufq_cnt--; 11465 spin_unlock_irq(&phba->hbalock); 11466 return mp; 11467 } 11468 } 11469 11470 spin_unlock_irq(&phba->hbalock); 11471 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11472 "0402 Cannot find virtual addr for buffer tag on " 11473 "ring %d Data x%lx x%px x%px x%x\n", 11474 pring->ringno, (unsigned long) tag, 11475 slp->next, slp->prev, pring->postbufq_cnt); 11476 11477 return NULL; 11478 } 11479 11480 /** 11481 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 11482 * @phba: Pointer to HBA context object. 11483 * @pring: Pointer to driver SLI ring object. 11484 * @phys: DMA address of the buffer. 11485 * 11486 * This function searches the buffer list using the dma_address 11487 * of unsolicited event to find the driver's lpfc_dmabuf object 11488 * corresponding to the dma_address. The function returns the 11489 * lpfc_dmabuf object if a buffer is found else it returns NULL. 11490 * This function is called by the ct and els unsolicited event 11491 * handlers to get the buffer associated with the unsolicited 11492 * event. 11493 * 11494 * This function is called with no lock held. 11495 **/ 11496 struct lpfc_dmabuf * 11497 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11498 dma_addr_t phys) 11499 { 11500 struct lpfc_dmabuf *mp, *next_mp; 11501 struct list_head *slp = &pring->postbufq; 11502 11503 /* Search postbufq, from the beginning, looking for a match on phys */ 11504 spin_lock_irq(&phba->hbalock); 11505 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11506 if (mp->phys == phys) { 11507 list_del_init(&mp->list); 11508 pring->postbufq_cnt--; 11509 spin_unlock_irq(&phba->hbalock); 11510 return mp; 11511 } 11512 } 11513 11514 spin_unlock_irq(&phba->hbalock); 11515 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11516 "0410 Cannot find virtual addr for mapped buf on " 11517 "ring %d Data x%llx x%px x%px x%x\n", 11518 pring->ringno, (unsigned long long)phys, 11519 slp->next, slp->prev, pring->postbufq_cnt); 11520 return NULL; 11521 } 11522 11523 /** 11524 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 11525 * @phba: Pointer to HBA context object. 11526 * @cmdiocb: Pointer to driver command iocb object. 11527 * @rspiocb: Pointer to driver response iocb object. 11528 * 11529 * This function is the completion handler for the abort iocbs for 11530 * ELS commands. This function is called from the ELS ring event 11531 * handler with no lock held. This function frees memory resources 11532 * associated with the abort iocb. 11533 **/ 11534 static void 11535 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11536 struct lpfc_iocbq *rspiocb) 11537 { 11538 IOCB_t *irsp = &rspiocb->iocb; 11539 uint16_t abort_iotag, abort_context; 11540 struct lpfc_iocbq *abort_iocb = NULL; 11541 11542 if (irsp->ulpStatus) { 11543 11544 /* 11545 * Assume that the port already completed and returned, or 11546 * will return the iocb. Just Log the message. 11547 */ 11548 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 11549 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 11550 11551 spin_lock_irq(&phba->hbalock); 11552 if (phba->sli_rev < LPFC_SLI_REV4) { 11553 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 11554 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 11555 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 11556 spin_unlock_irq(&phba->hbalock); 11557 goto release_iocb; 11558 } 11559 if (abort_iotag != 0 && 11560 abort_iotag <= phba->sli.last_iotag) 11561 abort_iocb = 11562 phba->sli.iocbq_lookup[abort_iotag]; 11563 } else 11564 /* For sli4 the abort_tag is the XRI, 11565 * so the abort routine puts the iotag of the iocb 11566 * being aborted in the context field of the abort 11567 * IOCB. 11568 */ 11569 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 11570 11571 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 11572 "0327 Cannot abort els iocb x%px " 11573 "with tag %x context %x, abort status %x, " 11574 "abort code %x\n", 11575 abort_iocb, abort_iotag, abort_context, 11576 irsp->ulpStatus, irsp->un.ulpWord[4]); 11577 11578 spin_unlock_irq(&phba->hbalock); 11579 } 11580 release_iocb: 11581 lpfc_sli_release_iocbq(phba, cmdiocb); 11582 return; 11583 } 11584 11585 /** 11586 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 11587 * @phba: Pointer to HBA context object. 11588 * @cmdiocb: Pointer to driver command iocb object. 11589 * @rspiocb: Pointer to driver response iocb object. 11590 * 11591 * The function is called from SLI ring event handler with no 11592 * lock held. This function is the completion handler for ELS commands 11593 * which are aborted. The function frees memory resources used for 11594 * the aborted ELS commands. 11595 **/ 11596 static void 11597 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11598 struct lpfc_iocbq *rspiocb) 11599 { 11600 IOCB_t *irsp = &rspiocb->iocb; 11601 11602 /* ELS cmd tag <ulpIoTag> completes */ 11603 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 11604 "0139 Ignoring ELS cmd tag x%x completion Data: " 11605 "x%x x%x x%x\n", 11606 irsp->ulpIoTag, irsp->ulpStatus, 11607 irsp->un.ulpWord[4], irsp->ulpTimeout); 11608 lpfc_nlp_put((struct lpfc_nodelist *)cmdiocb->context1); 11609 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 11610 lpfc_ct_free_iocb(phba, cmdiocb); 11611 else 11612 lpfc_els_free_iocb(phba, cmdiocb); 11613 } 11614 11615 /** 11616 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 11617 * @phba: Pointer to HBA context object. 11618 * @pring: Pointer to driver SLI ring object. 11619 * @cmdiocb: Pointer to driver command iocb object. 11620 * @cmpl: completion function. 11621 * 11622 * This function issues an abort iocb for the provided command iocb. In case 11623 * of unloading, the abort iocb will not be issued to commands on the ELS 11624 * ring. Instead, the callback function shall be changed to those commands 11625 * so that nothing happens when them finishes. This function is called with 11626 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 11627 * when the command iocb is an abort request. 11628 * 11629 **/ 11630 int 11631 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11632 struct lpfc_iocbq *cmdiocb, void *cmpl) 11633 { 11634 struct lpfc_vport *vport = cmdiocb->vport; 11635 struct lpfc_iocbq *abtsiocbp; 11636 IOCB_t *icmd = NULL; 11637 IOCB_t *iabt = NULL; 11638 int retval = IOCB_ERROR; 11639 unsigned long iflags; 11640 struct lpfc_nodelist *ndlp; 11641 11642 /* 11643 * There are certain command types we don't want to abort. And we 11644 * don't want to abort commands that are already in the process of 11645 * being aborted. 11646 */ 11647 icmd = &cmdiocb->iocb; 11648 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11649 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11650 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11651 return IOCB_ABORTING; 11652 11653 if (!pring) { 11654 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11655 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11656 else 11657 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11658 return retval; 11659 } 11660 11661 /* 11662 * If we're unloading, don't abort iocb on the ELS ring, but change 11663 * the callback so that nothing happens when it finishes. 11664 */ 11665 if ((vport->load_flag & FC_UNLOADING) && 11666 pring->ringno == LPFC_ELS_RING) { 11667 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11668 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11669 else 11670 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11671 return retval; 11672 } 11673 11674 /* issue ABTS for this IOCB based on iotag */ 11675 abtsiocbp = __lpfc_sli_get_iocbq(phba); 11676 if (abtsiocbp == NULL) 11677 return IOCB_NORESOURCE; 11678 11679 /* This signals the response to set the correct status 11680 * before calling the completion handler 11681 */ 11682 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 11683 11684 iabt = &abtsiocbp->iocb; 11685 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 11686 iabt->un.acxri.abortContextTag = icmd->ulpContext; 11687 if (phba->sli_rev == LPFC_SLI_REV4) { 11688 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 11689 if (pring->ringno == LPFC_ELS_RING) 11690 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 11691 } else { 11692 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 11693 if (pring->ringno == LPFC_ELS_RING) { 11694 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 11695 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 11696 } 11697 } 11698 iabt->ulpLe = 1; 11699 iabt->ulpClass = icmd->ulpClass; 11700 11701 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11702 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 11703 if (cmdiocb->iocb_flag & LPFC_IO_FCP) { 11704 abtsiocbp->iocb_flag |= LPFC_IO_FCP; 11705 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 11706 } 11707 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 11708 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 11709 11710 if (phba->link_state >= LPFC_LINK_UP) 11711 iabt->ulpCommand = CMD_ABORT_XRI_CN; 11712 else 11713 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 11714 11715 if (cmpl) 11716 abtsiocbp->iocb_cmpl = cmpl; 11717 else 11718 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 11719 abtsiocbp->vport = vport; 11720 11721 if (phba->sli_rev == LPFC_SLI_REV4) { 11722 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 11723 if (unlikely(pring == NULL)) 11724 goto abort_iotag_exit; 11725 /* Note: both hbalock and ring_lock need to be set here */ 11726 spin_lock_irqsave(&pring->ring_lock, iflags); 11727 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11728 abtsiocbp, 0); 11729 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11730 } else { 11731 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11732 abtsiocbp, 0); 11733 } 11734 11735 abort_iotag_exit: 11736 11737 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 11738 "0339 Abort xri x%x, original iotag x%x, " 11739 "abort cmd iotag x%x retval x%x\n", 11740 iabt->un.acxri.abortIoTag, 11741 iabt->un.acxri.abortContextTag, 11742 abtsiocbp->iotag, retval); 11743 11744 if (retval) { 11745 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 11746 __lpfc_sli_release_iocbq(phba, abtsiocbp); 11747 } 11748 11749 /* 11750 * Caller to this routine should check for IOCB_ERROR 11751 * and handle it properly. This routine no longer removes 11752 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11753 */ 11754 return retval; 11755 } 11756 11757 /** 11758 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 11759 * @phba: pointer to lpfc HBA data structure. 11760 * 11761 * This routine will abort all pending and outstanding iocbs to an HBA. 11762 **/ 11763 void 11764 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 11765 { 11766 struct lpfc_sli *psli = &phba->sli; 11767 struct lpfc_sli_ring *pring; 11768 struct lpfc_queue *qp = NULL; 11769 int i; 11770 11771 if (phba->sli_rev != LPFC_SLI_REV4) { 11772 for (i = 0; i < psli->num_rings; i++) { 11773 pring = &psli->sli3_ring[i]; 11774 lpfc_sli_abort_iocb_ring(phba, pring); 11775 } 11776 return; 11777 } 11778 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11779 pring = qp->pring; 11780 if (!pring) 11781 continue; 11782 lpfc_sli_abort_iocb_ring(phba, pring); 11783 } 11784 } 11785 11786 /** 11787 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 11788 * @iocbq: Pointer to driver iocb object. 11789 * @vport: Pointer to driver virtual port object. 11790 * @tgt_id: SCSI ID of the target. 11791 * @lun_id: LUN ID of the scsi device. 11792 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 11793 * 11794 * This function acts as an iocb filter for functions which abort or count 11795 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 11796 * 0 if the filtering criteria is met for the given iocb and will return 11797 * 1 if the filtering criteria is not met. 11798 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 11799 * given iocb is for the SCSI device specified by vport, tgt_id and 11800 * lun_id parameter. 11801 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 11802 * given iocb is for the SCSI target specified by vport and tgt_id 11803 * parameters. 11804 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 11805 * given iocb is for the SCSI host associated with the given vport. 11806 * This function is called with no locks held. 11807 **/ 11808 static int 11809 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 11810 uint16_t tgt_id, uint64_t lun_id, 11811 lpfc_ctx_cmd ctx_cmd) 11812 { 11813 struct lpfc_io_buf *lpfc_cmd; 11814 int rc = 1; 11815 11816 if (!iocbq || iocbq->vport != vport) 11817 return rc; 11818 11819 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 11820 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) 11821 return rc; 11822 11823 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 11824 11825 if (lpfc_cmd->pCmd == NULL) 11826 return rc; 11827 11828 switch (ctx_cmd) { 11829 case LPFC_CTX_LUN: 11830 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11831 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 11832 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 11833 rc = 0; 11834 break; 11835 case LPFC_CTX_TGT: 11836 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11837 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 11838 rc = 0; 11839 break; 11840 case LPFC_CTX_HOST: 11841 rc = 0; 11842 break; 11843 default: 11844 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 11845 __func__, ctx_cmd); 11846 break; 11847 } 11848 11849 return rc; 11850 } 11851 11852 /** 11853 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 11854 * @vport: Pointer to virtual port. 11855 * @tgt_id: SCSI ID of the target. 11856 * @lun_id: LUN ID of the scsi device. 11857 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11858 * 11859 * This function returns number of FCP commands pending for the vport. 11860 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 11861 * commands pending on the vport associated with SCSI device specified 11862 * by tgt_id and lun_id parameters. 11863 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 11864 * commands pending on the vport associated with SCSI target specified 11865 * by tgt_id parameter. 11866 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 11867 * commands pending on the vport. 11868 * This function returns the number of iocbs which satisfy the filter. 11869 * This function is called without any lock held. 11870 **/ 11871 int 11872 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 11873 lpfc_ctx_cmd ctx_cmd) 11874 { 11875 struct lpfc_hba *phba = vport->phba; 11876 struct lpfc_iocbq *iocbq; 11877 int sum, i; 11878 11879 spin_lock_irq(&phba->hbalock); 11880 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 11881 iocbq = phba->sli.iocbq_lookup[i]; 11882 11883 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 11884 ctx_cmd) == 0) 11885 sum++; 11886 } 11887 spin_unlock_irq(&phba->hbalock); 11888 11889 return sum; 11890 } 11891 11892 /** 11893 * lpfc_sli4_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11894 * @phba: Pointer to HBA context object 11895 * @cmdiocb: Pointer to command iocb object. 11896 * @wcqe: pointer to the complete wcqe 11897 * 11898 * This function is called when an aborted FCP iocb completes. This 11899 * function is called by the ring event handler with no lock held. 11900 * This function frees the iocb. It is called for sli-4 adapters. 11901 **/ 11902 void 11903 lpfc_sli4_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11904 struct lpfc_wcqe_complete *wcqe) 11905 { 11906 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11907 "3017 ABORT_XRI_CN completing on rpi x%x " 11908 "original iotag x%x, abort cmd iotag x%x " 11909 "status 0x%x, reason 0x%x\n", 11910 cmdiocb->iocb.un.acxri.abortContextTag, 11911 cmdiocb->iocb.un.acxri.abortIoTag, 11912 cmdiocb->iotag, 11913 (bf_get(lpfc_wcqe_c_status, wcqe) 11914 & LPFC_IOCB_STATUS_MASK), 11915 wcqe->parameter); 11916 lpfc_sli_release_iocbq(phba, cmdiocb); 11917 } 11918 11919 /** 11920 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11921 * @phba: Pointer to HBA context object 11922 * @cmdiocb: Pointer to command iocb object. 11923 * @rspiocb: Pointer to response iocb object. 11924 * 11925 * This function is called when an aborted FCP iocb completes. This 11926 * function is called by the ring event handler with no lock held. 11927 * This function frees the iocb. 11928 **/ 11929 void 11930 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11931 struct lpfc_iocbq *rspiocb) 11932 { 11933 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11934 "3096 ABORT_XRI_CN completing on rpi x%x " 11935 "original iotag x%x, abort cmd iotag x%x " 11936 "status 0x%x, reason 0x%x\n", 11937 cmdiocb->iocb.un.acxri.abortContextTag, 11938 cmdiocb->iocb.un.acxri.abortIoTag, 11939 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 11940 rspiocb->iocb.un.ulpWord[4]); 11941 lpfc_sli_release_iocbq(phba, cmdiocb); 11942 return; 11943 } 11944 11945 /** 11946 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 11947 * @vport: Pointer to virtual port. 11948 * @pring: Pointer to driver SLI ring object. 11949 * @tgt_id: SCSI ID of the target. 11950 * @lun_id: LUN ID of the scsi device. 11951 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11952 * 11953 * This function sends an abort command for every SCSI command 11954 * associated with the given virtual port pending on the ring 11955 * filtered by lpfc_sli_validate_fcp_iocb function. 11956 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 11957 * FCP iocbs associated with lun specified by tgt_id and lun_id 11958 * parameters 11959 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 11960 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11961 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 11962 * FCP iocbs associated with virtual port. 11963 * This function returns number of iocbs it failed to abort. 11964 * This function is called with no locks held. 11965 **/ 11966 int 11967 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11968 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 11969 { 11970 struct lpfc_hba *phba = vport->phba; 11971 struct lpfc_iocbq *iocbq; 11972 int errcnt = 0, ret_val = 0; 11973 unsigned long iflags; 11974 int i; 11975 11976 /* all I/Os are in process of being flushed */ 11977 if (phba->hba_flag & HBA_IOQ_FLUSH) 11978 return errcnt; 11979 11980 for (i = 1; i <= phba->sli.last_iotag; i++) { 11981 iocbq = phba->sli.iocbq_lookup[i]; 11982 11983 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11984 abort_cmd) != 0) 11985 continue; 11986 11987 spin_lock_irqsave(&phba->hbalock, iflags); 11988 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 11989 lpfc_sli_abort_fcp_cmpl); 11990 spin_unlock_irqrestore(&phba->hbalock, iflags); 11991 if (ret_val != IOCB_SUCCESS) 11992 errcnt++; 11993 } 11994 11995 return errcnt; 11996 } 11997 11998 /** 11999 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12000 * @vport: Pointer to virtual port. 12001 * @pring: Pointer to driver SLI ring object. 12002 * @tgt_id: SCSI ID of the target. 12003 * @lun_id: LUN ID of the scsi device. 12004 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12005 * 12006 * This function sends an abort command for every SCSI command 12007 * associated with the given virtual port pending on the ring 12008 * filtered by lpfc_sli_validate_fcp_iocb function. 12009 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12010 * FCP iocbs associated with lun specified by tgt_id and lun_id 12011 * parameters 12012 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12013 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12014 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12015 * FCP iocbs associated with virtual port. 12016 * This function returns number of iocbs it aborted . 12017 * This function is called with no locks held right after a taskmgmt 12018 * command is sent. 12019 **/ 12020 int 12021 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12022 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12023 { 12024 struct lpfc_hba *phba = vport->phba; 12025 struct lpfc_io_buf *lpfc_cmd; 12026 struct lpfc_iocbq *abtsiocbq; 12027 struct lpfc_nodelist *ndlp; 12028 struct lpfc_iocbq *iocbq; 12029 IOCB_t *icmd; 12030 int sum, i, ret_val; 12031 unsigned long iflags; 12032 struct lpfc_sli_ring *pring_s4 = NULL; 12033 12034 spin_lock_irqsave(&phba->hbalock, iflags); 12035 12036 /* all I/Os are in process of being flushed */ 12037 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12038 spin_unlock_irqrestore(&phba->hbalock, iflags); 12039 return 0; 12040 } 12041 sum = 0; 12042 12043 for (i = 1; i <= phba->sli.last_iotag; i++) { 12044 iocbq = phba->sli.iocbq_lookup[i]; 12045 12046 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12047 cmd) != 0) 12048 continue; 12049 12050 /* Guard against IO completion being called at same time */ 12051 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12052 spin_lock(&lpfc_cmd->buf_lock); 12053 12054 if (!lpfc_cmd->pCmd) { 12055 spin_unlock(&lpfc_cmd->buf_lock); 12056 continue; 12057 } 12058 12059 if (phba->sli_rev == LPFC_SLI_REV4) { 12060 pring_s4 = 12061 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12062 if (!pring_s4) { 12063 spin_unlock(&lpfc_cmd->buf_lock); 12064 continue; 12065 } 12066 /* Note: both hbalock and ring_lock must be set here */ 12067 spin_lock(&pring_s4->ring_lock); 12068 } 12069 12070 /* 12071 * If the iocbq is already being aborted, don't take a second 12072 * action, but do count it. 12073 */ 12074 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 12075 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { 12076 if (phba->sli_rev == LPFC_SLI_REV4) 12077 spin_unlock(&pring_s4->ring_lock); 12078 spin_unlock(&lpfc_cmd->buf_lock); 12079 continue; 12080 } 12081 12082 /* issue ABTS for this IOCB based on iotag */ 12083 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12084 if (!abtsiocbq) { 12085 if (phba->sli_rev == LPFC_SLI_REV4) 12086 spin_unlock(&pring_s4->ring_lock); 12087 spin_unlock(&lpfc_cmd->buf_lock); 12088 continue; 12089 } 12090 12091 icmd = &iocbq->iocb; 12092 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 12093 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 12094 if (phba->sli_rev == LPFC_SLI_REV4) 12095 abtsiocbq->iocb.un.acxri.abortIoTag = 12096 iocbq->sli4_xritag; 12097 else 12098 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 12099 abtsiocbq->iocb.ulpLe = 1; 12100 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 12101 abtsiocbq->vport = vport; 12102 12103 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12104 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12105 if (iocbq->iocb_flag & LPFC_IO_FCP) 12106 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 12107 if (iocbq->iocb_flag & LPFC_IO_FOF) 12108 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 12109 12110 ndlp = lpfc_cmd->rdata->pnode; 12111 12112 if (lpfc_is_link_up(phba) && 12113 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 12114 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 12115 else 12116 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 12117 12118 /* Setup callback routine and issue the command. */ 12119 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 12120 12121 /* 12122 * Indicate the IO is being aborted by the driver and set 12123 * the caller's flag into the aborted IO. 12124 */ 12125 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 12126 12127 if (phba->sli_rev == LPFC_SLI_REV4) { 12128 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12129 abtsiocbq, 0); 12130 spin_unlock(&pring_s4->ring_lock); 12131 } else { 12132 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12133 abtsiocbq, 0); 12134 } 12135 12136 spin_unlock(&lpfc_cmd->buf_lock); 12137 12138 if (ret_val == IOCB_ERROR) 12139 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12140 else 12141 sum++; 12142 } 12143 spin_unlock_irqrestore(&phba->hbalock, iflags); 12144 return sum; 12145 } 12146 12147 /** 12148 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12149 * @phba: Pointer to HBA context object. 12150 * @cmdiocbq: Pointer to command iocb. 12151 * @rspiocbq: Pointer to response iocb. 12152 * 12153 * This function is the completion handler for iocbs issued using 12154 * lpfc_sli_issue_iocb_wait function. This function is called by the 12155 * ring event handler function without any lock held. This function 12156 * can be called from both worker thread context and interrupt 12157 * context. This function also can be called from other thread which 12158 * cleans up the SLI layer objects. 12159 * This function copy the contents of the response iocb to the 12160 * response iocb memory object provided by the caller of 12161 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12162 * sleeps for the iocb completion. 12163 **/ 12164 static void 12165 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12166 struct lpfc_iocbq *cmdiocbq, 12167 struct lpfc_iocbq *rspiocbq) 12168 { 12169 wait_queue_head_t *pdone_q; 12170 unsigned long iflags; 12171 struct lpfc_io_buf *lpfc_cmd; 12172 12173 spin_lock_irqsave(&phba->hbalock, iflags); 12174 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 12175 12176 /* 12177 * A time out has occurred for the iocb. If a time out 12178 * completion handler has been supplied, call it. Otherwise, 12179 * just free the iocbq. 12180 */ 12181 12182 spin_unlock_irqrestore(&phba->hbalock, iflags); 12183 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 12184 cmdiocbq->wait_iocb_cmpl = NULL; 12185 if (cmdiocbq->iocb_cmpl) 12186 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 12187 else 12188 lpfc_sli_release_iocbq(phba, cmdiocbq); 12189 return; 12190 } 12191 12192 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 12193 if (cmdiocbq->context2 && rspiocbq) 12194 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 12195 &rspiocbq->iocb, sizeof(IOCB_t)); 12196 12197 /* Set the exchange busy flag for task management commands */ 12198 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 12199 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 12200 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 12201 cur_iocbq); 12202 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) 12203 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 12204 else 12205 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 12206 } 12207 12208 pdone_q = cmdiocbq->context_un.wait_queue; 12209 if (pdone_q) 12210 wake_up(pdone_q); 12211 spin_unlock_irqrestore(&phba->hbalock, iflags); 12212 return; 12213 } 12214 12215 /** 12216 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 12217 * @phba: Pointer to HBA context object.. 12218 * @piocbq: Pointer to command iocb. 12219 * @flag: Flag to test. 12220 * 12221 * This routine grabs the hbalock and then test the iocb_flag to 12222 * see if the passed in flag is set. 12223 * Returns: 12224 * 1 if flag is set. 12225 * 0 if flag is not set. 12226 **/ 12227 static int 12228 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 12229 struct lpfc_iocbq *piocbq, uint32_t flag) 12230 { 12231 unsigned long iflags; 12232 int ret; 12233 12234 spin_lock_irqsave(&phba->hbalock, iflags); 12235 ret = piocbq->iocb_flag & flag; 12236 spin_unlock_irqrestore(&phba->hbalock, iflags); 12237 return ret; 12238 12239 } 12240 12241 /** 12242 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 12243 * @phba: Pointer to HBA context object.. 12244 * @ring_number: Ring number 12245 * @piocb: Pointer to command iocb. 12246 * @prspiocbq: Pointer to response iocb. 12247 * @timeout: Timeout in number of seconds. 12248 * 12249 * This function issues the iocb to firmware and waits for the 12250 * iocb to complete. The iocb_cmpl field of the shall be used 12251 * to handle iocbs which time out. If the field is NULL, the 12252 * function shall free the iocbq structure. If more clean up is 12253 * needed, the caller is expected to provide a completion function 12254 * that will provide the needed clean up. If the iocb command is 12255 * not completed within timeout seconds, the function will either 12256 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 12257 * completion function set in the iocb_cmpl field and then return 12258 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 12259 * resources if this function returns IOCB_TIMEDOUT. 12260 * The function waits for the iocb completion using an 12261 * non-interruptible wait. 12262 * This function will sleep while waiting for iocb completion. 12263 * So, this function should not be called from any context which 12264 * does not allow sleeping. Due to the same reason, this function 12265 * cannot be called with interrupt disabled. 12266 * This function assumes that the iocb completions occur while 12267 * this function sleep. So, this function cannot be called from 12268 * the thread which process iocb completion for this ring. 12269 * This function clears the iocb_flag of the iocb object before 12270 * issuing the iocb and the iocb completion handler sets this 12271 * flag and wakes this thread when the iocb completes. 12272 * The contents of the response iocb will be copied to prspiocbq 12273 * by the completion handler when the command completes. 12274 * This function returns IOCB_SUCCESS when success. 12275 * This function is called with no lock held. 12276 **/ 12277 int 12278 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 12279 uint32_t ring_number, 12280 struct lpfc_iocbq *piocb, 12281 struct lpfc_iocbq *prspiocbq, 12282 uint32_t timeout) 12283 { 12284 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 12285 long timeleft, timeout_req = 0; 12286 int retval = IOCB_SUCCESS; 12287 uint32_t creg_val; 12288 struct lpfc_iocbq *iocb; 12289 int txq_cnt = 0; 12290 int txcmplq_cnt = 0; 12291 struct lpfc_sli_ring *pring; 12292 unsigned long iflags; 12293 bool iocb_completed = true; 12294 12295 if (phba->sli_rev >= LPFC_SLI_REV4) 12296 pring = lpfc_sli4_calc_ring(phba, piocb); 12297 else 12298 pring = &phba->sli.sli3_ring[ring_number]; 12299 /* 12300 * If the caller has provided a response iocbq buffer, then context2 12301 * is NULL or its an error. 12302 */ 12303 if (prspiocbq) { 12304 if (piocb->context2) 12305 return IOCB_ERROR; 12306 piocb->context2 = prspiocbq; 12307 } 12308 12309 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 12310 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 12311 piocb->context_un.wait_queue = &done_q; 12312 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 12313 12314 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12315 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12316 return IOCB_ERROR; 12317 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 12318 writel(creg_val, phba->HCregaddr); 12319 readl(phba->HCregaddr); /* flush */ 12320 } 12321 12322 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 12323 SLI_IOCB_RET_IOCB); 12324 if (retval == IOCB_SUCCESS) { 12325 timeout_req = msecs_to_jiffies(timeout * 1000); 12326 timeleft = wait_event_timeout(done_q, 12327 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 12328 timeout_req); 12329 spin_lock_irqsave(&phba->hbalock, iflags); 12330 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 12331 12332 /* 12333 * IOCB timed out. Inform the wake iocb wait 12334 * completion function and set local status 12335 */ 12336 12337 iocb_completed = false; 12338 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 12339 } 12340 spin_unlock_irqrestore(&phba->hbalock, iflags); 12341 if (iocb_completed) { 12342 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12343 "0331 IOCB wake signaled\n"); 12344 /* Note: we are not indicating if the IOCB has a success 12345 * status or not - that's for the caller to check. 12346 * IOCB_SUCCESS means just that the command was sent and 12347 * completed. Not that it completed successfully. 12348 * */ 12349 } else if (timeleft == 0) { 12350 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12351 "0338 IOCB wait timeout error - no " 12352 "wake response Data x%x\n", timeout); 12353 retval = IOCB_TIMEDOUT; 12354 } else { 12355 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12356 "0330 IOCB wake NOT set, " 12357 "Data x%x x%lx\n", 12358 timeout, (timeleft / jiffies)); 12359 retval = IOCB_TIMEDOUT; 12360 } 12361 } else if (retval == IOCB_BUSY) { 12362 if (phba->cfg_log_verbose & LOG_SLI) { 12363 list_for_each_entry(iocb, &pring->txq, list) { 12364 txq_cnt++; 12365 } 12366 list_for_each_entry(iocb, &pring->txcmplq, list) { 12367 txcmplq_cnt++; 12368 } 12369 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12370 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 12371 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 12372 } 12373 return retval; 12374 } else { 12375 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12376 "0332 IOCB wait issue failed, Data x%x\n", 12377 retval); 12378 retval = IOCB_ERROR; 12379 } 12380 12381 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12382 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12383 return IOCB_ERROR; 12384 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 12385 writel(creg_val, phba->HCregaddr); 12386 readl(phba->HCregaddr); /* flush */ 12387 } 12388 12389 if (prspiocbq) 12390 piocb->context2 = NULL; 12391 12392 piocb->context_un.wait_queue = NULL; 12393 piocb->iocb_cmpl = NULL; 12394 return retval; 12395 } 12396 12397 /** 12398 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 12399 * @phba: Pointer to HBA context object. 12400 * @pmboxq: Pointer to driver mailbox object. 12401 * @timeout: Timeout in number of seconds. 12402 * 12403 * This function issues the mailbox to firmware and waits for the 12404 * mailbox command to complete. If the mailbox command is not 12405 * completed within timeout seconds, it returns MBX_TIMEOUT. 12406 * The function waits for the mailbox completion using an 12407 * interruptible wait. If the thread is woken up due to a 12408 * signal, MBX_TIMEOUT error is returned to the caller. Caller 12409 * should not free the mailbox resources, if this function returns 12410 * MBX_TIMEOUT. 12411 * This function will sleep while waiting for mailbox completion. 12412 * So, this function should not be called from any context which 12413 * does not allow sleeping. Due to the same reason, this function 12414 * cannot be called with interrupt disabled. 12415 * This function assumes that the mailbox completion occurs while 12416 * this function sleep. So, this function cannot be called from 12417 * the worker thread which processes mailbox completion. 12418 * This function is called in the context of HBA management 12419 * applications. 12420 * This function returns MBX_SUCCESS when successful. 12421 * This function is called with no lock held. 12422 **/ 12423 int 12424 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 12425 uint32_t timeout) 12426 { 12427 struct completion mbox_done; 12428 int retval; 12429 unsigned long flag; 12430 12431 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12432 /* setup wake call as IOCB callback */ 12433 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12434 12435 /* setup context3 field to pass wait_queue pointer to wake function */ 12436 init_completion(&mbox_done); 12437 pmboxq->context3 = &mbox_done; 12438 /* now issue the command */ 12439 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 12440 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 12441 wait_for_completion_timeout(&mbox_done, 12442 msecs_to_jiffies(timeout * 1000)); 12443 12444 spin_lock_irqsave(&phba->hbalock, flag); 12445 pmboxq->context3 = NULL; 12446 /* 12447 * if LPFC_MBX_WAKE flag is set the mailbox is completed 12448 * else do not free the resources. 12449 */ 12450 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 12451 retval = MBX_SUCCESS; 12452 } else { 12453 retval = MBX_TIMEOUT; 12454 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12455 } 12456 spin_unlock_irqrestore(&phba->hbalock, flag); 12457 } 12458 return retval; 12459 } 12460 12461 /** 12462 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 12463 * @phba: Pointer to HBA context. 12464 * @mbx_action: Mailbox shutdown options. 12465 * 12466 * This function is called to shutdown the driver's mailbox sub-system. 12467 * It first marks the mailbox sub-system is in a block state to prevent 12468 * the asynchronous mailbox command from issued off the pending mailbox 12469 * command queue. If the mailbox command sub-system shutdown is due to 12470 * HBA error conditions such as EEH or ERATT, this routine shall invoke 12471 * the mailbox sub-system flush routine to forcefully bring down the 12472 * mailbox sub-system. Otherwise, if it is due to normal condition (such 12473 * as with offline or HBA function reset), this routine will wait for the 12474 * outstanding mailbox command to complete before invoking the mailbox 12475 * sub-system flush routine to gracefully bring down mailbox sub-system. 12476 **/ 12477 void 12478 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 12479 { 12480 struct lpfc_sli *psli = &phba->sli; 12481 unsigned long timeout; 12482 12483 if (mbx_action == LPFC_MBX_NO_WAIT) { 12484 /* delay 100ms for port state */ 12485 msleep(100); 12486 lpfc_sli_mbox_sys_flush(phba); 12487 return; 12488 } 12489 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 12490 12491 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12492 local_bh_disable(); 12493 12494 spin_lock_irq(&phba->hbalock); 12495 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 12496 12497 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 12498 /* Determine how long we might wait for the active mailbox 12499 * command to be gracefully completed by firmware. 12500 */ 12501 if (phba->sli.mbox_active) 12502 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 12503 phba->sli.mbox_active) * 12504 1000) + jiffies; 12505 spin_unlock_irq(&phba->hbalock); 12506 12507 /* Enable softirqs again, done with phba->hbalock */ 12508 local_bh_enable(); 12509 12510 while (phba->sli.mbox_active) { 12511 /* Check active mailbox complete status every 2ms */ 12512 msleep(2); 12513 if (time_after(jiffies, timeout)) 12514 /* Timeout, let the mailbox flush routine to 12515 * forcefully release active mailbox command 12516 */ 12517 break; 12518 } 12519 } else { 12520 spin_unlock_irq(&phba->hbalock); 12521 12522 /* Enable softirqs again, done with phba->hbalock */ 12523 local_bh_enable(); 12524 } 12525 12526 lpfc_sli_mbox_sys_flush(phba); 12527 } 12528 12529 /** 12530 * lpfc_sli_eratt_read - read sli-3 error attention events 12531 * @phba: Pointer to HBA context. 12532 * 12533 * This function is called to read the SLI3 device error attention registers 12534 * for possible error attention events. The caller must hold the hostlock 12535 * with spin_lock_irq(). 12536 * 12537 * This function returns 1 when there is Error Attention in the Host Attention 12538 * Register and returns 0 otherwise. 12539 **/ 12540 static int 12541 lpfc_sli_eratt_read(struct lpfc_hba *phba) 12542 { 12543 uint32_t ha_copy; 12544 12545 /* Read chip Host Attention (HA) register */ 12546 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12547 goto unplug_err; 12548 12549 if (ha_copy & HA_ERATT) { 12550 /* Read host status register to retrieve error event */ 12551 if (lpfc_sli_read_hs(phba)) 12552 goto unplug_err; 12553 12554 /* Check if there is a deferred error condition is active */ 12555 if ((HS_FFER1 & phba->work_hs) && 12556 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12557 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 12558 phba->hba_flag |= DEFER_ERATT; 12559 /* Clear all interrupt enable conditions */ 12560 writel(0, phba->HCregaddr); 12561 readl(phba->HCregaddr); 12562 } 12563 12564 /* Set the driver HA work bitmap */ 12565 phba->work_ha |= HA_ERATT; 12566 /* Indicate polling handles this ERATT */ 12567 phba->hba_flag |= HBA_ERATT_HANDLED; 12568 return 1; 12569 } 12570 return 0; 12571 12572 unplug_err: 12573 /* Set the driver HS work bitmap */ 12574 phba->work_hs |= UNPLUG_ERR; 12575 /* Set the driver HA work bitmap */ 12576 phba->work_ha |= HA_ERATT; 12577 /* Indicate polling handles this ERATT */ 12578 phba->hba_flag |= HBA_ERATT_HANDLED; 12579 return 1; 12580 } 12581 12582 /** 12583 * lpfc_sli4_eratt_read - read sli-4 error attention events 12584 * @phba: Pointer to HBA context. 12585 * 12586 * This function is called to read the SLI4 device error attention registers 12587 * for possible error attention events. The caller must hold the hostlock 12588 * with spin_lock_irq(). 12589 * 12590 * This function returns 1 when there is Error Attention in the Host Attention 12591 * Register and returns 0 otherwise. 12592 **/ 12593 static int 12594 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 12595 { 12596 uint32_t uerr_sta_hi, uerr_sta_lo; 12597 uint32_t if_type, portsmphr; 12598 struct lpfc_register portstat_reg; 12599 12600 /* 12601 * For now, use the SLI4 device internal unrecoverable error 12602 * registers for error attention. This can be changed later. 12603 */ 12604 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12605 switch (if_type) { 12606 case LPFC_SLI_INTF_IF_TYPE_0: 12607 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 12608 &uerr_sta_lo) || 12609 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 12610 &uerr_sta_hi)) { 12611 phba->work_hs |= UNPLUG_ERR; 12612 phba->work_ha |= HA_ERATT; 12613 phba->hba_flag |= HBA_ERATT_HANDLED; 12614 return 1; 12615 } 12616 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 12617 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 12618 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12619 "1423 HBA Unrecoverable error: " 12620 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 12621 "ue_mask_lo_reg=0x%x, " 12622 "ue_mask_hi_reg=0x%x\n", 12623 uerr_sta_lo, uerr_sta_hi, 12624 phba->sli4_hba.ue_mask_lo, 12625 phba->sli4_hba.ue_mask_hi); 12626 phba->work_status[0] = uerr_sta_lo; 12627 phba->work_status[1] = uerr_sta_hi; 12628 phba->work_ha |= HA_ERATT; 12629 phba->hba_flag |= HBA_ERATT_HANDLED; 12630 return 1; 12631 } 12632 break; 12633 case LPFC_SLI_INTF_IF_TYPE_2: 12634 case LPFC_SLI_INTF_IF_TYPE_6: 12635 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 12636 &portstat_reg.word0) || 12637 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 12638 &portsmphr)){ 12639 phba->work_hs |= UNPLUG_ERR; 12640 phba->work_ha |= HA_ERATT; 12641 phba->hba_flag |= HBA_ERATT_HANDLED; 12642 return 1; 12643 } 12644 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 12645 phba->work_status[0] = 12646 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 12647 phba->work_status[1] = 12648 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 12649 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12650 "2885 Port Status Event: " 12651 "port status reg 0x%x, " 12652 "port smphr reg 0x%x, " 12653 "error 1=0x%x, error 2=0x%x\n", 12654 portstat_reg.word0, 12655 portsmphr, 12656 phba->work_status[0], 12657 phba->work_status[1]); 12658 phba->work_ha |= HA_ERATT; 12659 phba->hba_flag |= HBA_ERATT_HANDLED; 12660 return 1; 12661 } 12662 break; 12663 case LPFC_SLI_INTF_IF_TYPE_1: 12664 default: 12665 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12666 "2886 HBA Error Attention on unsupported " 12667 "if type %d.", if_type); 12668 return 1; 12669 } 12670 12671 return 0; 12672 } 12673 12674 /** 12675 * lpfc_sli_check_eratt - check error attention events 12676 * @phba: Pointer to HBA context. 12677 * 12678 * This function is called from timer soft interrupt context to check HBA's 12679 * error attention register bit for error attention events. 12680 * 12681 * This function returns 1 when there is Error Attention in the Host Attention 12682 * Register and returns 0 otherwise. 12683 **/ 12684 int 12685 lpfc_sli_check_eratt(struct lpfc_hba *phba) 12686 { 12687 uint32_t ha_copy; 12688 12689 /* If somebody is waiting to handle an eratt, don't process it 12690 * here. The brdkill function will do this. 12691 */ 12692 if (phba->link_flag & LS_IGNORE_ERATT) 12693 return 0; 12694 12695 /* Check if interrupt handler handles this ERATT */ 12696 spin_lock_irq(&phba->hbalock); 12697 if (phba->hba_flag & HBA_ERATT_HANDLED) { 12698 /* Interrupt handler has handled ERATT */ 12699 spin_unlock_irq(&phba->hbalock); 12700 return 0; 12701 } 12702 12703 /* 12704 * If there is deferred error attention, do not check for error 12705 * attention 12706 */ 12707 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12708 spin_unlock_irq(&phba->hbalock); 12709 return 0; 12710 } 12711 12712 /* If PCI channel is offline, don't process it */ 12713 if (unlikely(pci_channel_offline(phba->pcidev))) { 12714 spin_unlock_irq(&phba->hbalock); 12715 return 0; 12716 } 12717 12718 switch (phba->sli_rev) { 12719 case LPFC_SLI_REV2: 12720 case LPFC_SLI_REV3: 12721 /* Read chip Host Attention (HA) register */ 12722 ha_copy = lpfc_sli_eratt_read(phba); 12723 break; 12724 case LPFC_SLI_REV4: 12725 /* Read device Uncoverable Error (UERR) registers */ 12726 ha_copy = lpfc_sli4_eratt_read(phba); 12727 break; 12728 default: 12729 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12730 "0299 Invalid SLI revision (%d)\n", 12731 phba->sli_rev); 12732 ha_copy = 0; 12733 break; 12734 } 12735 spin_unlock_irq(&phba->hbalock); 12736 12737 return ha_copy; 12738 } 12739 12740 /** 12741 * lpfc_intr_state_check - Check device state for interrupt handling 12742 * @phba: Pointer to HBA context. 12743 * 12744 * This inline routine checks whether a device or its PCI slot is in a state 12745 * that the interrupt should be handled. 12746 * 12747 * This function returns 0 if the device or the PCI slot is in a state that 12748 * interrupt should be handled, otherwise -EIO. 12749 */ 12750 static inline int 12751 lpfc_intr_state_check(struct lpfc_hba *phba) 12752 { 12753 /* If the pci channel is offline, ignore all the interrupts */ 12754 if (unlikely(pci_channel_offline(phba->pcidev))) 12755 return -EIO; 12756 12757 /* Update device level interrupt statistics */ 12758 phba->sli.slistat.sli_intr++; 12759 12760 /* Ignore all interrupts during initialization. */ 12761 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 12762 return -EIO; 12763 12764 return 0; 12765 } 12766 12767 /** 12768 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 12769 * @irq: Interrupt number. 12770 * @dev_id: The device context pointer. 12771 * 12772 * This function is directly called from the PCI layer as an interrupt 12773 * service routine when device with SLI-3 interface spec is enabled with 12774 * MSI-X multi-message interrupt mode and there are slow-path events in 12775 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 12776 * interrupt mode, this function is called as part of the device-level 12777 * interrupt handler. When the PCI slot is in error recovery or the HBA 12778 * is undergoing initialization, the interrupt handler will not process 12779 * the interrupt. The link attention and ELS ring attention events are 12780 * handled by the worker thread. The interrupt handler signals the worker 12781 * thread and returns for these events. This function is called without 12782 * any lock held. It gets the hbalock to access and update SLI data 12783 * structures. 12784 * 12785 * This function returns IRQ_HANDLED when interrupt is handled else it 12786 * returns IRQ_NONE. 12787 **/ 12788 irqreturn_t 12789 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 12790 { 12791 struct lpfc_hba *phba; 12792 uint32_t ha_copy, hc_copy; 12793 uint32_t work_ha_copy; 12794 unsigned long status; 12795 unsigned long iflag; 12796 uint32_t control; 12797 12798 MAILBOX_t *mbox, *pmbox; 12799 struct lpfc_vport *vport; 12800 struct lpfc_nodelist *ndlp; 12801 struct lpfc_dmabuf *mp; 12802 LPFC_MBOXQ_t *pmb; 12803 int rc; 12804 12805 /* 12806 * Get the driver's phba structure from the dev_id and 12807 * assume the HBA is not interrupting. 12808 */ 12809 phba = (struct lpfc_hba *)dev_id; 12810 12811 if (unlikely(!phba)) 12812 return IRQ_NONE; 12813 12814 /* 12815 * Stuff needs to be attented to when this function is invoked as an 12816 * individual interrupt handler in MSI-X multi-message interrupt mode 12817 */ 12818 if (phba->intr_type == MSIX) { 12819 /* Check device state for handling interrupt */ 12820 if (lpfc_intr_state_check(phba)) 12821 return IRQ_NONE; 12822 /* Need to read HA REG for slow-path events */ 12823 spin_lock_irqsave(&phba->hbalock, iflag); 12824 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12825 goto unplug_error; 12826 /* If somebody is waiting to handle an eratt don't process it 12827 * here. The brdkill function will do this. 12828 */ 12829 if (phba->link_flag & LS_IGNORE_ERATT) 12830 ha_copy &= ~HA_ERATT; 12831 /* Check the need for handling ERATT in interrupt handler */ 12832 if (ha_copy & HA_ERATT) { 12833 if (phba->hba_flag & HBA_ERATT_HANDLED) 12834 /* ERATT polling has handled ERATT */ 12835 ha_copy &= ~HA_ERATT; 12836 else 12837 /* Indicate interrupt handler handles ERATT */ 12838 phba->hba_flag |= HBA_ERATT_HANDLED; 12839 } 12840 12841 /* 12842 * If there is deferred error attention, do not check for any 12843 * interrupt. 12844 */ 12845 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12846 spin_unlock_irqrestore(&phba->hbalock, iflag); 12847 return IRQ_NONE; 12848 } 12849 12850 /* Clear up only attention source related to slow-path */ 12851 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 12852 goto unplug_error; 12853 12854 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 12855 HC_LAINT_ENA | HC_ERINT_ENA), 12856 phba->HCregaddr); 12857 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 12858 phba->HAregaddr); 12859 writel(hc_copy, phba->HCregaddr); 12860 readl(phba->HAregaddr); /* flush */ 12861 spin_unlock_irqrestore(&phba->hbalock, iflag); 12862 } else 12863 ha_copy = phba->ha_copy; 12864 12865 work_ha_copy = ha_copy & phba->work_ha_mask; 12866 12867 if (work_ha_copy) { 12868 if (work_ha_copy & HA_LATT) { 12869 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 12870 /* 12871 * Turn off Link Attention interrupts 12872 * until CLEAR_LA done 12873 */ 12874 spin_lock_irqsave(&phba->hbalock, iflag); 12875 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 12876 if (lpfc_readl(phba->HCregaddr, &control)) 12877 goto unplug_error; 12878 control &= ~HC_LAINT_ENA; 12879 writel(control, phba->HCregaddr); 12880 readl(phba->HCregaddr); /* flush */ 12881 spin_unlock_irqrestore(&phba->hbalock, iflag); 12882 } 12883 else 12884 work_ha_copy &= ~HA_LATT; 12885 } 12886 12887 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 12888 /* 12889 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 12890 * the only slow ring. 12891 */ 12892 status = (work_ha_copy & 12893 (HA_RXMASK << (4*LPFC_ELS_RING))); 12894 status >>= (4*LPFC_ELS_RING); 12895 if (status & HA_RXMASK) { 12896 spin_lock_irqsave(&phba->hbalock, iflag); 12897 if (lpfc_readl(phba->HCregaddr, &control)) 12898 goto unplug_error; 12899 12900 lpfc_debugfs_slow_ring_trc(phba, 12901 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 12902 control, status, 12903 (uint32_t)phba->sli.slistat.sli_intr); 12904 12905 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 12906 lpfc_debugfs_slow_ring_trc(phba, 12907 "ISR Disable ring:" 12908 "pwork:x%x hawork:x%x wait:x%x", 12909 phba->work_ha, work_ha_copy, 12910 (uint32_t)((unsigned long) 12911 &phba->work_waitq)); 12912 12913 control &= 12914 ~(HC_R0INT_ENA << LPFC_ELS_RING); 12915 writel(control, phba->HCregaddr); 12916 readl(phba->HCregaddr); /* flush */ 12917 } 12918 else { 12919 lpfc_debugfs_slow_ring_trc(phba, 12920 "ISR slow ring: pwork:" 12921 "x%x hawork:x%x wait:x%x", 12922 phba->work_ha, work_ha_copy, 12923 (uint32_t)((unsigned long) 12924 &phba->work_waitq)); 12925 } 12926 spin_unlock_irqrestore(&phba->hbalock, iflag); 12927 } 12928 } 12929 spin_lock_irqsave(&phba->hbalock, iflag); 12930 if (work_ha_copy & HA_ERATT) { 12931 if (lpfc_sli_read_hs(phba)) 12932 goto unplug_error; 12933 /* 12934 * Check if there is a deferred error condition 12935 * is active 12936 */ 12937 if ((HS_FFER1 & phba->work_hs) && 12938 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12939 HS_FFER6 | HS_FFER7 | HS_FFER8) & 12940 phba->work_hs)) { 12941 phba->hba_flag |= DEFER_ERATT; 12942 /* Clear all interrupt enable conditions */ 12943 writel(0, phba->HCregaddr); 12944 readl(phba->HCregaddr); 12945 } 12946 } 12947 12948 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 12949 pmb = phba->sli.mbox_active; 12950 pmbox = &pmb->u.mb; 12951 mbox = phba->mbox; 12952 vport = pmb->vport; 12953 12954 /* First check out the status word */ 12955 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 12956 if (pmbox->mbxOwner != OWN_HOST) { 12957 spin_unlock_irqrestore(&phba->hbalock, iflag); 12958 /* 12959 * Stray Mailbox Interrupt, mbxCommand <cmd> 12960 * mbxStatus <status> 12961 */ 12962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12963 "(%d):0304 Stray Mailbox " 12964 "Interrupt mbxCommand x%x " 12965 "mbxStatus x%x\n", 12966 (vport ? vport->vpi : 0), 12967 pmbox->mbxCommand, 12968 pmbox->mbxStatus); 12969 /* clear mailbox attention bit */ 12970 work_ha_copy &= ~HA_MBATT; 12971 } else { 12972 phba->sli.mbox_active = NULL; 12973 spin_unlock_irqrestore(&phba->hbalock, iflag); 12974 phba->last_completion_time = jiffies; 12975 del_timer(&phba->sli.mbox_tmo); 12976 if (pmb->mbox_cmpl) { 12977 lpfc_sli_pcimem_bcopy(mbox, pmbox, 12978 MAILBOX_CMD_SIZE); 12979 if (pmb->out_ext_byte_len && 12980 pmb->ctx_buf) 12981 lpfc_sli_pcimem_bcopy( 12982 phba->mbox_ext, 12983 pmb->ctx_buf, 12984 pmb->out_ext_byte_len); 12985 } 12986 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12987 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12988 12989 lpfc_debugfs_disc_trc(vport, 12990 LPFC_DISC_TRC_MBOX_VPORT, 12991 "MBOX dflt rpi: : " 12992 "status:x%x rpi:x%x", 12993 (uint32_t)pmbox->mbxStatus, 12994 pmbox->un.varWords[0], 0); 12995 12996 if (!pmbox->mbxStatus) { 12997 mp = (struct lpfc_dmabuf *) 12998 (pmb->ctx_buf); 12999 ndlp = (struct lpfc_nodelist *) 13000 pmb->ctx_ndlp; 13001 13002 /* Reg_LOGIN of dflt RPI was 13003 * successful. new lets get 13004 * rid of the RPI using the 13005 * same mbox buffer. 13006 */ 13007 lpfc_unreg_login(phba, 13008 vport->vpi, 13009 pmbox->un.varWords[0], 13010 pmb); 13011 pmb->mbox_cmpl = 13012 lpfc_mbx_cmpl_dflt_rpi; 13013 pmb->ctx_buf = mp; 13014 pmb->ctx_ndlp = ndlp; 13015 pmb->vport = vport; 13016 rc = lpfc_sli_issue_mbox(phba, 13017 pmb, 13018 MBX_NOWAIT); 13019 if (rc != MBX_BUSY) 13020 lpfc_printf_log(phba, 13021 KERN_ERR, 13022 LOG_TRACE_EVENT, 13023 "0350 rc should have" 13024 "been MBX_BUSY\n"); 13025 if (rc != MBX_NOT_FINISHED) 13026 goto send_current_mbox; 13027 } 13028 } 13029 spin_lock_irqsave( 13030 &phba->pport->work_port_lock, 13031 iflag); 13032 phba->pport->work_port_events &= 13033 ~WORKER_MBOX_TMO; 13034 spin_unlock_irqrestore( 13035 &phba->pport->work_port_lock, 13036 iflag); 13037 13038 /* Do NOT queue MBX_HEARTBEAT to the worker 13039 * thread for processing. 13040 */ 13041 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13042 /* Process mbox now */ 13043 phba->sli.mbox_active = NULL; 13044 phba->sli.sli_flag &= 13045 ~LPFC_SLI_MBOX_ACTIVE; 13046 if (pmb->mbox_cmpl) 13047 pmb->mbox_cmpl(phba, pmb); 13048 } else { 13049 /* Queue to worker thread to process */ 13050 lpfc_mbox_cmpl_put(phba, pmb); 13051 } 13052 } 13053 } else 13054 spin_unlock_irqrestore(&phba->hbalock, iflag); 13055 13056 if ((work_ha_copy & HA_MBATT) && 13057 (phba->sli.mbox_active == NULL)) { 13058 send_current_mbox: 13059 /* Process next mailbox command if there is one */ 13060 do { 13061 rc = lpfc_sli_issue_mbox(phba, NULL, 13062 MBX_NOWAIT); 13063 } while (rc == MBX_NOT_FINISHED); 13064 if (rc != MBX_SUCCESS) 13065 lpfc_printf_log(phba, KERN_ERR, 13066 LOG_TRACE_EVENT, 13067 "0349 rc should be " 13068 "MBX_SUCCESS\n"); 13069 } 13070 13071 spin_lock_irqsave(&phba->hbalock, iflag); 13072 phba->work_ha |= work_ha_copy; 13073 spin_unlock_irqrestore(&phba->hbalock, iflag); 13074 lpfc_worker_wake_up(phba); 13075 } 13076 return IRQ_HANDLED; 13077 unplug_error: 13078 spin_unlock_irqrestore(&phba->hbalock, iflag); 13079 return IRQ_HANDLED; 13080 13081 } /* lpfc_sli_sp_intr_handler */ 13082 13083 /** 13084 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13085 * @irq: Interrupt number. 13086 * @dev_id: The device context pointer. 13087 * 13088 * This function is directly called from the PCI layer as an interrupt 13089 * service routine when device with SLI-3 interface spec is enabled with 13090 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13091 * ring event in the HBA. However, when the device is enabled with either 13092 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13093 * device-level interrupt handler. When the PCI slot is in error recovery 13094 * or the HBA is undergoing initialization, the interrupt handler will not 13095 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13096 * the intrrupt context. This function is called without any lock held. 13097 * It gets the hbalock to access and update SLI data structures. 13098 * 13099 * This function returns IRQ_HANDLED when interrupt is handled else it 13100 * returns IRQ_NONE. 13101 **/ 13102 irqreturn_t 13103 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13104 { 13105 struct lpfc_hba *phba; 13106 uint32_t ha_copy; 13107 unsigned long status; 13108 unsigned long iflag; 13109 struct lpfc_sli_ring *pring; 13110 13111 /* Get the driver's phba structure from the dev_id and 13112 * assume the HBA is not interrupting. 13113 */ 13114 phba = (struct lpfc_hba *) dev_id; 13115 13116 if (unlikely(!phba)) 13117 return IRQ_NONE; 13118 13119 /* 13120 * Stuff needs to be attented to when this function is invoked as an 13121 * individual interrupt handler in MSI-X multi-message interrupt mode 13122 */ 13123 if (phba->intr_type == MSIX) { 13124 /* Check device state for handling interrupt */ 13125 if (lpfc_intr_state_check(phba)) 13126 return IRQ_NONE; 13127 /* Need to read HA REG for FCP ring and other ring events */ 13128 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13129 return IRQ_HANDLED; 13130 /* Clear up only attention source related to fast-path */ 13131 spin_lock_irqsave(&phba->hbalock, iflag); 13132 /* 13133 * If there is deferred error attention, do not check for 13134 * any interrupt. 13135 */ 13136 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13137 spin_unlock_irqrestore(&phba->hbalock, iflag); 13138 return IRQ_NONE; 13139 } 13140 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13141 phba->HAregaddr); 13142 readl(phba->HAregaddr); /* flush */ 13143 spin_unlock_irqrestore(&phba->hbalock, iflag); 13144 } else 13145 ha_copy = phba->ha_copy; 13146 13147 /* 13148 * Process all events on FCP ring. Take the optimized path for FCP IO. 13149 */ 13150 ha_copy &= ~(phba->work_ha_mask); 13151 13152 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13153 status >>= (4*LPFC_FCP_RING); 13154 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13155 if (status & HA_RXMASK) 13156 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13157 13158 if (phba->cfg_multi_ring_support == 2) { 13159 /* 13160 * Process all events on extra ring. Take the optimized path 13161 * for extra ring IO. 13162 */ 13163 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13164 status >>= (4*LPFC_EXTRA_RING); 13165 if (status & HA_RXMASK) { 13166 lpfc_sli_handle_fast_ring_event(phba, 13167 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13168 status); 13169 } 13170 } 13171 return IRQ_HANDLED; 13172 } /* lpfc_sli_fp_intr_handler */ 13173 13174 /** 13175 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 13176 * @irq: Interrupt number. 13177 * @dev_id: The device context pointer. 13178 * 13179 * This function is the HBA device-level interrupt handler to device with 13180 * SLI-3 interface spec, called from the PCI layer when either MSI or 13181 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 13182 * requires driver attention. This function invokes the slow-path interrupt 13183 * attention handling function and fast-path interrupt attention handling 13184 * function in turn to process the relevant HBA attention events. This 13185 * function is called without any lock held. It gets the hbalock to access 13186 * and update SLI data structures. 13187 * 13188 * This function returns IRQ_HANDLED when interrupt is handled, else it 13189 * returns IRQ_NONE. 13190 **/ 13191 irqreturn_t 13192 lpfc_sli_intr_handler(int irq, void *dev_id) 13193 { 13194 struct lpfc_hba *phba; 13195 irqreturn_t sp_irq_rc, fp_irq_rc; 13196 unsigned long status1, status2; 13197 uint32_t hc_copy; 13198 13199 /* 13200 * Get the driver's phba structure from the dev_id and 13201 * assume the HBA is not interrupting. 13202 */ 13203 phba = (struct lpfc_hba *) dev_id; 13204 13205 if (unlikely(!phba)) 13206 return IRQ_NONE; 13207 13208 /* Check device state for handling interrupt */ 13209 if (lpfc_intr_state_check(phba)) 13210 return IRQ_NONE; 13211 13212 spin_lock(&phba->hbalock); 13213 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 13214 spin_unlock(&phba->hbalock); 13215 return IRQ_HANDLED; 13216 } 13217 13218 if (unlikely(!phba->ha_copy)) { 13219 spin_unlock(&phba->hbalock); 13220 return IRQ_NONE; 13221 } else if (phba->ha_copy & HA_ERATT) { 13222 if (phba->hba_flag & HBA_ERATT_HANDLED) 13223 /* ERATT polling has handled ERATT */ 13224 phba->ha_copy &= ~HA_ERATT; 13225 else 13226 /* Indicate interrupt handler handles ERATT */ 13227 phba->hba_flag |= HBA_ERATT_HANDLED; 13228 } 13229 13230 /* 13231 * If there is deferred error attention, do not check for any interrupt. 13232 */ 13233 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13234 spin_unlock(&phba->hbalock); 13235 return IRQ_NONE; 13236 } 13237 13238 /* Clear attention sources except link and error attentions */ 13239 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 13240 spin_unlock(&phba->hbalock); 13241 return IRQ_HANDLED; 13242 } 13243 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 13244 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 13245 phba->HCregaddr); 13246 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 13247 writel(hc_copy, phba->HCregaddr); 13248 readl(phba->HAregaddr); /* flush */ 13249 spin_unlock(&phba->hbalock); 13250 13251 /* 13252 * Invokes slow-path host attention interrupt handling as appropriate. 13253 */ 13254 13255 /* status of events with mailbox and link attention */ 13256 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 13257 13258 /* status of events with ELS ring */ 13259 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 13260 status2 >>= (4*LPFC_ELS_RING); 13261 13262 if (status1 || (status2 & HA_RXMASK)) 13263 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 13264 else 13265 sp_irq_rc = IRQ_NONE; 13266 13267 /* 13268 * Invoke fast-path host attention interrupt handling as appropriate. 13269 */ 13270 13271 /* status of events with FCP ring */ 13272 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13273 status1 >>= (4*LPFC_FCP_RING); 13274 13275 /* status of events with extra ring */ 13276 if (phba->cfg_multi_ring_support == 2) { 13277 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13278 status2 >>= (4*LPFC_EXTRA_RING); 13279 } else 13280 status2 = 0; 13281 13282 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 13283 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 13284 else 13285 fp_irq_rc = IRQ_NONE; 13286 13287 /* Return device-level interrupt handling status */ 13288 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 13289 } /* lpfc_sli_intr_handler */ 13290 13291 /** 13292 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 13293 * @phba: pointer to lpfc hba data structure. 13294 * 13295 * This routine is invoked by the worker thread to process all the pending 13296 * SLI4 els abort xri events. 13297 **/ 13298 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 13299 { 13300 struct lpfc_cq_event *cq_event; 13301 unsigned long iflags; 13302 13303 /* First, declare the els xri abort event has been handled */ 13304 spin_lock_irqsave(&phba->hbalock, iflags); 13305 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 13306 spin_unlock_irqrestore(&phba->hbalock, iflags); 13307 13308 /* Now, handle all the els xri abort events */ 13309 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13310 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 13311 /* Get the first event from the head of the event queue */ 13312 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 13313 cq_event, struct lpfc_cq_event, list); 13314 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13315 iflags); 13316 /* Notify aborted XRI for ELS work queue */ 13317 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 13318 13319 /* Free the event processed back to the free pool */ 13320 lpfc_sli4_cq_event_release(phba, cq_event); 13321 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13322 iflags); 13323 } 13324 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13325 } 13326 13327 /** 13328 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 13329 * @phba: pointer to lpfc hba data structure 13330 * @pIocbIn: pointer to the rspiocbq 13331 * @pIocbOut: pointer to the cmdiocbq 13332 * @wcqe: pointer to the complete wcqe 13333 * 13334 * This routine transfers the fields of a command iocbq to a response iocbq 13335 * by copying all the IOCB fields from command iocbq and transferring the 13336 * completion status information from the complete wcqe. 13337 **/ 13338 static void 13339 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 13340 struct lpfc_iocbq *pIocbIn, 13341 struct lpfc_iocbq *pIocbOut, 13342 struct lpfc_wcqe_complete *wcqe) 13343 { 13344 int numBdes, i; 13345 unsigned long iflags; 13346 uint32_t status, max_response; 13347 struct lpfc_dmabuf *dmabuf; 13348 struct ulp_bde64 *bpl, bde; 13349 size_t offset = offsetof(struct lpfc_iocbq, iocb); 13350 13351 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 13352 sizeof(struct lpfc_iocbq) - offset); 13353 /* Map WCQE parameters into irspiocb parameters */ 13354 status = bf_get(lpfc_wcqe_c_status, wcqe); 13355 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 13356 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 13357 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 13358 pIocbIn->iocb.un.fcpi.fcpi_parm = 13359 pIocbOut->iocb.un.fcpi.fcpi_parm - 13360 wcqe->total_data_placed; 13361 else 13362 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13363 else { 13364 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13365 switch (pIocbOut->iocb.ulpCommand) { 13366 case CMD_ELS_REQUEST64_CR: 13367 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13368 bpl = (struct ulp_bde64 *)dmabuf->virt; 13369 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 13370 max_response = bde.tus.f.bdeSize; 13371 break; 13372 case CMD_GEN_REQUEST64_CR: 13373 max_response = 0; 13374 if (!pIocbOut->context3) 13375 break; 13376 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 13377 sizeof(struct ulp_bde64); 13378 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13379 bpl = (struct ulp_bde64 *)dmabuf->virt; 13380 for (i = 0; i < numBdes; i++) { 13381 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 13382 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 13383 max_response += bde.tus.f.bdeSize; 13384 } 13385 break; 13386 default: 13387 max_response = wcqe->total_data_placed; 13388 break; 13389 } 13390 if (max_response < wcqe->total_data_placed) 13391 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 13392 else 13393 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 13394 wcqe->total_data_placed; 13395 } 13396 13397 /* Convert BG errors for completion status */ 13398 if (status == CQE_STATUS_DI_ERROR) { 13399 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 13400 13401 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 13402 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 13403 else 13404 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 13405 13406 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 13407 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 13408 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13409 BGS_GUARD_ERR_MASK; 13410 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 13411 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13412 BGS_APPTAG_ERR_MASK; 13413 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 13414 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13415 BGS_REFTAG_ERR_MASK; 13416 13417 /* Check to see if there was any good data before the error */ 13418 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 13419 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13420 BGS_HI_WATER_MARK_PRESENT_MASK; 13421 pIocbIn->iocb.unsli3.sli3_bg.bghm = 13422 wcqe->total_data_placed; 13423 } 13424 13425 /* 13426 * Set ALL the error bits to indicate we don't know what 13427 * type of error it is. 13428 */ 13429 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 13430 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13431 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 13432 BGS_GUARD_ERR_MASK); 13433 } 13434 13435 /* Pick up HBA exchange busy condition */ 13436 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13437 spin_lock_irqsave(&phba->hbalock, iflags); 13438 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 13439 spin_unlock_irqrestore(&phba->hbalock, iflags); 13440 } 13441 } 13442 13443 /** 13444 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 13445 * @phba: Pointer to HBA context object. 13446 * @irspiocbq: Pointer to work-queue completion queue entry. 13447 * 13448 * This routine handles an ELS work-queue completion event and construct 13449 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 13450 * discovery engine to handle. 13451 * 13452 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13453 **/ 13454 static struct lpfc_iocbq * 13455 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 13456 struct lpfc_iocbq *irspiocbq) 13457 { 13458 struct lpfc_sli_ring *pring; 13459 struct lpfc_iocbq *cmdiocbq; 13460 struct lpfc_wcqe_complete *wcqe; 13461 unsigned long iflags; 13462 13463 pring = lpfc_phba_elsring(phba); 13464 if (unlikely(!pring)) 13465 return NULL; 13466 13467 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13468 pring->stats.iocb_event++; 13469 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13470 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13471 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13472 if (unlikely(!cmdiocbq)) { 13473 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13474 "0386 ELS complete with no corresponding " 13475 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13476 wcqe->word0, wcqe->total_data_placed, 13477 wcqe->parameter, wcqe->word3); 13478 lpfc_sli_release_iocbq(phba, irspiocbq); 13479 return NULL; 13480 } 13481 13482 spin_lock_irqsave(&pring->ring_lock, iflags); 13483 /* Put the iocb back on the txcmplq */ 13484 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13485 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13486 13487 /* Fake the irspiocbq and copy necessary response information */ 13488 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 13489 13490 return irspiocbq; 13491 } 13492 13493 inline struct lpfc_cq_event * 13494 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13495 { 13496 struct lpfc_cq_event *cq_event; 13497 13498 /* Allocate a new internal CQ_EVENT entry */ 13499 cq_event = lpfc_sli4_cq_event_alloc(phba); 13500 if (!cq_event) { 13501 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13502 "0602 Failed to alloc CQ_EVENT entry\n"); 13503 return NULL; 13504 } 13505 13506 /* Move the CQE into the event */ 13507 memcpy(&cq_event->cqe, entry, size); 13508 return cq_event; 13509 } 13510 13511 /** 13512 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 13513 * @phba: Pointer to HBA context object. 13514 * @mcqe: Pointer to mailbox completion queue entry. 13515 * 13516 * This routine process a mailbox completion queue entry with asynchronous 13517 * event. 13518 * 13519 * Return: true if work posted to worker thread, otherwise false. 13520 **/ 13521 static bool 13522 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13523 { 13524 struct lpfc_cq_event *cq_event; 13525 unsigned long iflags; 13526 13527 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13528 "0392 Async Event: word0:x%x, word1:x%x, " 13529 "word2:x%x, word3:x%x\n", mcqe->word0, 13530 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13531 13532 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13533 if (!cq_event) 13534 return false; 13535 13536 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 13537 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13538 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 13539 13540 /* Set the async event flag */ 13541 spin_lock_irqsave(&phba->hbalock, iflags); 13542 phba->hba_flag |= ASYNC_EVENT; 13543 spin_unlock_irqrestore(&phba->hbalock, iflags); 13544 13545 return true; 13546 } 13547 13548 /** 13549 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 13550 * @phba: Pointer to HBA context object. 13551 * @mcqe: Pointer to mailbox completion queue entry. 13552 * 13553 * This routine process a mailbox completion queue entry with mailbox 13554 * completion event. 13555 * 13556 * Return: true if work posted to worker thread, otherwise false. 13557 **/ 13558 static bool 13559 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13560 { 13561 uint32_t mcqe_status; 13562 MAILBOX_t *mbox, *pmbox; 13563 struct lpfc_mqe *mqe; 13564 struct lpfc_vport *vport; 13565 struct lpfc_nodelist *ndlp; 13566 struct lpfc_dmabuf *mp; 13567 unsigned long iflags; 13568 LPFC_MBOXQ_t *pmb; 13569 bool workposted = false; 13570 int rc; 13571 13572 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 13573 if (!bf_get(lpfc_trailer_completed, mcqe)) 13574 goto out_no_mqe_complete; 13575 13576 /* Get the reference to the active mbox command */ 13577 spin_lock_irqsave(&phba->hbalock, iflags); 13578 pmb = phba->sli.mbox_active; 13579 if (unlikely(!pmb)) { 13580 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13581 "1832 No pending MBOX command to handle\n"); 13582 spin_unlock_irqrestore(&phba->hbalock, iflags); 13583 goto out_no_mqe_complete; 13584 } 13585 spin_unlock_irqrestore(&phba->hbalock, iflags); 13586 mqe = &pmb->u.mqe; 13587 pmbox = (MAILBOX_t *)&pmb->u.mqe; 13588 mbox = phba->mbox; 13589 vport = pmb->vport; 13590 13591 /* Reset heartbeat timer */ 13592 phba->last_completion_time = jiffies; 13593 del_timer(&phba->sli.mbox_tmo); 13594 13595 /* Move mbox data to caller's mailbox region, do endian swapping */ 13596 if (pmb->mbox_cmpl && mbox) 13597 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 13598 13599 /* 13600 * For mcqe errors, conditionally move a modified error code to 13601 * the mbox so that the error will not be missed. 13602 */ 13603 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 13604 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 13605 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 13606 bf_set(lpfc_mqe_status, mqe, 13607 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 13608 } 13609 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13610 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13611 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 13612 "MBOX dflt rpi: status:x%x rpi:x%x", 13613 mcqe_status, 13614 pmbox->un.varWords[0], 0); 13615 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 13616 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 13617 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 13618 /* Reg_LOGIN of dflt RPI was successful. Now lets get 13619 * RID of the PPI using the same mbox buffer. 13620 */ 13621 lpfc_unreg_login(phba, vport->vpi, 13622 pmbox->un.varWords[0], pmb); 13623 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 13624 pmb->ctx_buf = mp; 13625 13626 /* No reference taken here. This is a default 13627 * RPI reg/immediate unreg cycle. The reference was 13628 * taken in the reg rpi path and is released when 13629 * this mailbox completes. 13630 */ 13631 pmb->ctx_ndlp = ndlp; 13632 pmb->vport = vport; 13633 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 13634 if (rc != MBX_BUSY) 13635 lpfc_printf_log(phba, KERN_ERR, 13636 LOG_TRACE_EVENT, 13637 "0385 rc should " 13638 "have been MBX_BUSY\n"); 13639 if (rc != MBX_NOT_FINISHED) 13640 goto send_current_mbox; 13641 } 13642 } 13643 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 13644 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 13645 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 13646 13647 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 13648 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13649 spin_lock_irqsave(&phba->hbalock, iflags); 13650 /* Release the mailbox command posting token */ 13651 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13652 phba->sli.mbox_active = NULL; 13653 if (bf_get(lpfc_trailer_consumed, mcqe)) 13654 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13655 spin_unlock_irqrestore(&phba->hbalock, iflags); 13656 13657 /* Post the next mbox command, if there is one */ 13658 lpfc_sli4_post_async_mbox(phba); 13659 13660 /* Process cmpl now */ 13661 if (pmb->mbox_cmpl) 13662 pmb->mbox_cmpl(phba, pmb); 13663 return false; 13664 } 13665 13666 /* There is mailbox completion work to queue to the worker thread */ 13667 spin_lock_irqsave(&phba->hbalock, iflags); 13668 __lpfc_mbox_cmpl_put(phba, pmb); 13669 phba->work_ha |= HA_MBATT; 13670 spin_unlock_irqrestore(&phba->hbalock, iflags); 13671 workposted = true; 13672 13673 send_current_mbox: 13674 spin_lock_irqsave(&phba->hbalock, iflags); 13675 /* Release the mailbox command posting token */ 13676 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13677 /* Setting active mailbox pointer need to be in sync to flag clear */ 13678 phba->sli.mbox_active = NULL; 13679 if (bf_get(lpfc_trailer_consumed, mcqe)) 13680 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13681 spin_unlock_irqrestore(&phba->hbalock, iflags); 13682 /* Wake up worker thread to post the next pending mailbox command */ 13683 lpfc_worker_wake_up(phba); 13684 return workposted; 13685 13686 out_no_mqe_complete: 13687 spin_lock_irqsave(&phba->hbalock, iflags); 13688 if (bf_get(lpfc_trailer_consumed, mcqe)) 13689 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13690 spin_unlock_irqrestore(&phba->hbalock, iflags); 13691 return false; 13692 } 13693 13694 /** 13695 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 13696 * @phba: Pointer to HBA context object. 13697 * @cq: Pointer to associated CQ 13698 * @cqe: Pointer to mailbox completion queue entry. 13699 * 13700 * This routine process a mailbox completion queue entry, it invokes the 13701 * proper mailbox complete handling or asynchronous event handling routine 13702 * according to the MCQE's async bit. 13703 * 13704 * Return: true if work posted to worker thread, otherwise false. 13705 **/ 13706 static bool 13707 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13708 struct lpfc_cqe *cqe) 13709 { 13710 struct lpfc_mcqe mcqe; 13711 bool workposted; 13712 13713 cq->CQ_mbox++; 13714 13715 /* Copy the mailbox MCQE and convert endian order as needed */ 13716 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 13717 13718 /* Invoke the proper event handling routine */ 13719 if (!bf_get(lpfc_trailer_async, &mcqe)) 13720 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 13721 else 13722 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 13723 return workposted; 13724 } 13725 13726 /** 13727 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 13728 * @phba: Pointer to HBA context object. 13729 * @cq: Pointer to associated CQ 13730 * @wcqe: Pointer to work-queue completion queue entry. 13731 * 13732 * This routine handles an ELS work-queue completion event. 13733 * 13734 * Return: true if work posted to worker thread, otherwise false. 13735 **/ 13736 static bool 13737 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13738 struct lpfc_wcqe_complete *wcqe) 13739 { 13740 struct lpfc_iocbq *irspiocbq; 13741 unsigned long iflags; 13742 struct lpfc_sli_ring *pring = cq->pring; 13743 int txq_cnt = 0; 13744 int txcmplq_cnt = 0; 13745 13746 /* Check for response status */ 13747 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13748 /* Log the error status */ 13749 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13750 "0357 ELS CQE error: status=x%x: " 13751 "CQE: %08x %08x %08x %08x\n", 13752 bf_get(lpfc_wcqe_c_status, wcqe), 13753 wcqe->word0, wcqe->total_data_placed, 13754 wcqe->parameter, wcqe->word3); 13755 } 13756 13757 /* Get an irspiocbq for later ELS response processing use */ 13758 irspiocbq = lpfc_sli_get_iocbq(phba); 13759 if (!irspiocbq) { 13760 if (!list_empty(&pring->txq)) 13761 txq_cnt++; 13762 if (!list_empty(&pring->txcmplq)) 13763 txcmplq_cnt++; 13764 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13765 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 13766 "els_txcmplq_cnt=%d\n", 13767 txq_cnt, phba->iocb_cnt, 13768 txcmplq_cnt); 13769 return false; 13770 } 13771 13772 /* Save off the slow-path queue event for work thread to process */ 13773 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 13774 spin_lock_irqsave(&phba->hbalock, iflags); 13775 list_add_tail(&irspiocbq->cq_event.list, 13776 &phba->sli4_hba.sp_queue_event); 13777 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13778 spin_unlock_irqrestore(&phba->hbalock, iflags); 13779 13780 return true; 13781 } 13782 13783 /** 13784 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 13785 * @phba: Pointer to HBA context object. 13786 * @wcqe: Pointer to work-queue completion queue entry. 13787 * 13788 * This routine handles slow-path WQ entry consumed event by invoking the 13789 * proper WQ release routine to the slow-path WQ. 13790 **/ 13791 static void 13792 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 13793 struct lpfc_wcqe_release *wcqe) 13794 { 13795 /* sanity check on queue memory */ 13796 if (unlikely(!phba->sli4_hba.els_wq)) 13797 return; 13798 /* Check for the slow-path ELS work queue */ 13799 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 13800 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 13801 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13802 else 13803 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13804 "2579 Slow-path wqe consume event carries " 13805 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 13806 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 13807 phba->sli4_hba.els_wq->queue_id); 13808 } 13809 13810 /** 13811 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 13812 * @phba: Pointer to HBA context object. 13813 * @cq: Pointer to a WQ completion queue. 13814 * @wcqe: Pointer to work-queue completion queue entry. 13815 * 13816 * This routine handles an XRI abort event. 13817 * 13818 * Return: true if work posted to worker thread, otherwise false. 13819 **/ 13820 static bool 13821 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 13822 struct lpfc_queue *cq, 13823 struct sli4_wcqe_xri_aborted *wcqe) 13824 { 13825 bool workposted = false; 13826 struct lpfc_cq_event *cq_event; 13827 unsigned long iflags; 13828 13829 switch (cq->subtype) { 13830 case LPFC_IO: 13831 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 13832 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13833 /* Notify aborted XRI for NVME work queue */ 13834 if (phba->nvmet_support) 13835 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 13836 } 13837 workposted = false; 13838 break; 13839 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 13840 case LPFC_ELS: 13841 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 13842 if (!cq_event) { 13843 workposted = false; 13844 break; 13845 } 13846 cq_event->hdwq = cq->hdwq; 13847 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13848 iflags); 13849 list_add_tail(&cq_event->list, 13850 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 13851 /* Set the els xri abort event flag */ 13852 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 13853 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13854 iflags); 13855 workposted = true; 13856 break; 13857 default: 13858 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13859 "0603 Invalid CQ subtype %d: " 13860 "%08x %08x %08x %08x\n", 13861 cq->subtype, wcqe->word0, wcqe->parameter, 13862 wcqe->word2, wcqe->word3); 13863 workposted = false; 13864 break; 13865 } 13866 return workposted; 13867 } 13868 13869 #define FC_RCTL_MDS_DIAGS 0xF4 13870 13871 /** 13872 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 13873 * @phba: Pointer to HBA context object. 13874 * @rcqe: Pointer to receive-queue completion queue entry. 13875 * 13876 * This routine process a receive-queue completion queue entry. 13877 * 13878 * Return: true if work posted to worker thread, otherwise false. 13879 **/ 13880 static bool 13881 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 13882 { 13883 bool workposted = false; 13884 struct fc_frame_header *fc_hdr; 13885 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 13886 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 13887 struct lpfc_nvmet_tgtport *tgtp; 13888 struct hbq_dmabuf *dma_buf; 13889 uint32_t status, rq_id; 13890 unsigned long iflags; 13891 13892 /* sanity check on queue memory */ 13893 if (unlikely(!hrq) || unlikely(!drq)) 13894 return workposted; 13895 13896 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13897 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13898 else 13899 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13900 if (rq_id != hrq->queue_id) 13901 goto out; 13902 13903 status = bf_get(lpfc_rcqe_status, rcqe); 13904 switch (status) { 13905 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13906 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13907 "2537 Receive Frame Truncated!!\n"); 13908 fallthrough; 13909 case FC_STATUS_RQ_SUCCESS: 13910 spin_lock_irqsave(&phba->hbalock, iflags); 13911 lpfc_sli4_rq_release(hrq, drq); 13912 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 13913 if (!dma_buf) { 13914 hrq->RQ_no_buf_found++; 13915 spin_unlock_irqrestore(&phba->hbalock, iflags); 13916 goto out; 13917 } 13918 hrq->RQ_rcv_buf++; 13919 hrq->RQ_buf_posted--; 13920 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 13921 13922 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13923 13924 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 13925 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 13926 spin_unlock_irqrestore(&phba->hbalock, iflags); 13927 /* Handle MDS Loopback frames */ 13928 if (!(phba->pport->load_flag & FC_UNLOADING)) 13929 lpfc_sli4_handle_mds_loopback(phba->pport, 13930 dma_buf); 13931 else 13932 lpfc_in_buf_free(phba, &dma_buf->dbuf); 13933 break; 13934 } 13935 13936 /* save off the frame for the work thread to process */ 13937 list_add_tail(&dma_buf->cq_event.list, 13938 &phba->sli4_hba.sp_queue_event); 13939 /* Frame received */ 13940 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13941 spin_unlock_irqrestore(&phba->hbalock, iflags); 13942 workposted = true; 13943 break; 13944 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13945 if (phba->nvmet_support) { 13946 tgtp = phba->targetport->private; 13947 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13948 "6402 RQE Error x%x, posted %d err_cnt " 13949 "%d: %x %x %x\n", 13950 status, hrq->RQ_buf_posted, 13951 hrq->RQ_no_posted_buf, 13952 atomic_read(&tgtp->rcv_fcp_cmd_in), 13953 atomic_read(&tgtp->rcv_fcp_cmd_out), 13954 atomic_read(&tgtp->xmt_fcp_release)); 13955 } 13956 fallthrough; 13957 13958 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13959 hrq->RQ_no_posted_buf++; 13960 /* Post more buffers if possible */ 13961 spin_lock_irqsave(&phba->hbalock, iflags); 13962 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 13963 spin_unlock_irqrestore(&phba->hbalock, iflags); 13964 workposted = true; 13965 break; 13966 } 13967 out: 13968 return workposted; 13969 } 13970 13971 /** 13972 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 13973 * @phba: Pointer to HBA context object. 13974 * @cq: Pointer to the completion queue. 13975 * @cqe: Pointer to a completion queue entry. 13976 * 13977 * This routine process a slow-path work-queue or receive queue completion queue 13978 * entry. 13979 * 13980 * Return: true if work posted to worker thread, otherwise false. 13981 **/ 13982 static bool 13983 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13984 struct lpfc_cqe *cqe) 13985 { 13986 struct lpfc_cqe cqevt; 13987 bool workposted = false; 13988 13989 /* Copy the work queue CQE and convert endian order if needed */ 13990 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 13991 13992 /* Check and process for different type of WCQE and dispatch */ 13993 switch (bf_get(lpfc_cqe_code, &cqevt)) { 13994 case CQE_CODE_COMPL_WQE: 13995 /* Process the WQ/RQ complete event */ 13996 phba->last_completion_time = jiffies; 13997 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 13998 (struct lpfc_wcqe_complete *)&cqevt); 13999 break; 14000 case CQE_CODE_RELEASE_WQE: 14001 /* Process the WQ release event */ 14002 lpfc_sli4_sp_handle_rel_wcqe(phba, 14003 (struct lpfc_wcqe_release *)&cqevt); 14004 break; 14005 case CQE_CODE_XRI_ABORTED: 14006 /* Process the WQ XRI abort event */ 14007 phba->last_completion_time = jiffies; 14008 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14009 (struct sli4_wcqe_xri_aborted *)&cqevt); 14010 break; 14011 case CQE_CODE_RECEIVE: 14012 case CQE_CODE_RECEIVE_V1: 14013 /* Process the RQ event */ 14014 phba->last_completion_time = jiffies; 14015 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14016 (struct lpfc_rcqe *)&cqevt); 14017 break; 14018 default: 14019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14020 "0388 Not a valid WCQE code: x%x\n", 14021 bf_get(lpfc_cqe_code, &cqevt)); 14022 break; 14023 } 14024 return workposted; 14025 } 14026 14027 /** 14028 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14029 * @phba: Pointer to HBA context object. 14030 * @eqe: Pointer to fast-path event queue entry. 14031 * @speq: Pointer to slow-path event queue. 14032 * 14033 * This routine process a event queue entry from the slow-path event queue. 14034 * It will check the MajorCode and MinorCode to determine this is for a 14035 * completion event on a completion queue, if not, an error shall be logged 14036 * and just return. Otherwise, it will get to the corresponding completion 14037 * queue and process all the entries on that completion queue, rearm the 14038 * completion queue, and then return. 14039 * 14040 **/ 14041 static void 14042 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14043 struct lpfc_queue *speq) 14044 { 14045 struct lpfc_queue *cq = NULL, *childq; 14046 uint16_t cqid; 14047 int ret = 0; 14048 14049 /* Get the reference to the corresponding CQ */ 14050 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14051 14052 list_for_each_entry(childq, &speq->child_list, list) { 14053 if (childq->queue_id == cqid) { 14054 cq = childq; 14055 break; 14056 } 14057 } 14058 if (unlikely(!cq)) { 14059 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14060 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14061 "0365 Slow-path CQ identifier " 14062 "(%d) does not exist\n", cqid); 14063 return; 14064 } 14065 14066 /* Save EQ associated with this CQ */ 14067 cq->assoc_qp = speq; 14068 14069 if (is_kdump_kernel()) 14070 ret = queue_work(phba->wq, &cq->spwork); 14071 else 14072 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14073 14074 if (!ret) 14075 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14076 "0390 Cannot schedule queue work " 14077 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14078 cqid, cq->queue_id, raw_smp_processor_id()); 14079 } 14080 14081 /** 14082 * __lpfc_sli4_process_cq - Process elements of a CQ 14083 * @phba: Pointer to HBA context object. 14084 * @cq: Pointer to CQ to be processed 14085 * @handler: Routine to process each cqe 14086 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14087 * @poll_mode: Polling mode we were called from 14088 * 14089 * This routine processes completion queue entries in a CQ. While a valid 14090 * queue element is found, the handler is called. During processing checks 14091 * are made for periodic doorbell writes to let the hardware know of 14092 * element consumption. 14093 * 14094 * If the max limit on cqes to process is hit, or there are no more valid 14095 * entries, the loop stops. If we processed a sufficient number of elements, 14096 * meaning there is sufficient load, rather than rearming and generating 14097 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14098 * indicates no rescheduling. 14099 * 14100 * Returns True if work scheduled, False otherwise. 14101 **/ 14102 static bool 14103 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14104 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14105 struct lpfc_cqe *), unsigned long *delay, 14106 enum lpfc_poll_mode poll_mode) 14107 { 14108 struct lpfc_cqe *cqe; 14109 bool workposted = false; 14110 int count = 0, consumed = 0; 14111 bool arm = true; 14112 14113 /* default - no reschedule */ 14114 *delay = 0; 14115 14116 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14117 goto rearm_and_exit; 14118 14119 /* Process all the entries to the CQ */ 14120 cq->q_flag = 0; 14121 cqe = lpfc_sli4_cq_get(cq); 14122 while (cqe) { 14123 workposted |= handler(phba, cq, cqe); 14124 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14125 14126 consumed++; 14127 if (!(++count % cq->max_proc_limit)) 14128 break; 14129 14130 if (!(count % cq->notify_interval)) { 14131 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14132 LPFC_QUEUE_NOARM); 14133 consumed = 0; 14134 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14135 } 14136 14137 if (count == LPFC_NVMET_CQ_NOTIFY) 14138 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14139 14140 cqe = lpfc_sli4_cq_get(cq); 14141 } 14142 if (count >= phba->cfg_cq_poll_threshold) { 14143 *delay = 1; 14144 arm = false; 14145 } 14146 14147 /* Note: complete the irq_poll softirq before rearming CQ */ 14148 if (poll_mode == LPFC_IRQ_POLL) 14149 irq_poll_complete(&cq->iop); 14150 14151 /* Track the max number of CQEs processed in 1 EQ */ 14152 if (count > cq->CQ_max_cqe) 14153 cq->CQ_max_cqe = count; 14154 14155 cq->assoc_qp->EQ_cqe_cnt += count; 14156 14157 /* Catch the no cq entry condition */ 14158 if (unlikely(count == 0)) 14159 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14160 "0369 No entry from completion queue " 14161 "qid=%d\n", cq->queue_id); 14162 14163 xchg(&cq->queue_claimed, 0); 14164 14165 rearm_and_exit: 14166 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14167 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14168 14169 return workposted; 14170 } 14171 14172 /** 14173 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14174 * @cq: pointer to CQ to process 14175 * 14176 * This routine calls the cq processing routine with a handler specific 14177 * to the type of queue bound to it. 14178 * 14179 * The CQ routine returns two values: the first is the calling status, 14180 * which indicates whether work was queued to the background discovery 14181 * thread. If true, the routine should wakeup the discovery thread; 14182 * the second is the delay parameter. If non-zero, rather than rearming 14183 * the CQ and yet another interrupt, the CQ handler should be queued so 14184 * that it is processed in a subsequent polling action. The value of 14185 * the delay indicates when to reschedule it. 14186 **/ 14187 static void 14188 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14189 { 14190 struct lpfc_hba *phba = cq->phba; 14191 unsigned long delay; 14192 bool workposted = false; 14193 int ret = 0; 14194 14195 /* Process and rearm the CQ */ 14196 switch (cq->type) { 14197 case LPFC_MCQ: 14198 workposted |= __lpfc_sli4_process_cq(phba, cq, 14199 lpfc_sli4_sp_handle_mcqe, 14200 &delay, LPFC_QUEUE_WORK); 14201 break; 14202 case LPFC_WCQ: 14203 if (cq->subtype == LPFC_IO) 14204 workposted |= __lpfc_sli4_process_cq(phba, cq, 14205 lpfc_sli4_fp_handle_cqe, 14206 &delay, LPFC_QUEUE_WORK); 14207 else 14208 workposted |= __lpfc_sli4_process_cq(phba, cq, 14209 lpfc_sli4_sp_handle_cqe, 14210 &delay, LPFC_QUEUE_WORK); 14211 break; 14212 default: 14213 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14214 "0370 Invalid completion queue type (%d)\n", 14215 cq->type); 14216 return; 14217 } 14218 14219 if (delay) { 14220 if (is_kdump_kernel()) 14221 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14222 delay); 14223 else 14224 ret = queue_delayed_work_on(cq->chann, phba->wq, 14225 &cq->sched_spwork, delay); 14226 if (!ret) 14227 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14228 "0394 Cannot schedule queue work " 14229 "for cqid=%d on CPU %d\n", 14230 cq->queue_id, cq->chann); 14231 } 14232 14233 /* wake up worker thread if there are works to be done */ 14234 if (workposted) 14235 lpfc_worker_wake_up(phba); 14236 } 14237 14238 /** 14239 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14240 * interrupt 14241 * @work: pointer to work element 14242 * 14243 * translates from the work handler and calls the slow-path handler. 14244 **/ 14245 static void 14246 lpfc_sli4_sp_process_cq(struct work_struct *work) 14247 { 14248 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14249 14250 __lpfc_sli4_sp_process_cq(cq); 14251 } 14252 14253 /** 14254 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14255 * @work: pointer to work element 14256 * 14257 * translates from the work handler and calls the slow-path handler. 14258 **/ 14259 static void 14260 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 14261 { 14262 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14263 struct lpfc_queue, sched_spwork); 14264 14265 __lpfc_sli4_sp_process_cq(cq); 14266 } 14267 14268 /** 14269 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 14270 * @phba: Pointer to HBA context object. 14271 * @cq: Pointer to associated CQ 14272 * @wcqe: Pointer to work-queue completion queue entry. 14273 * 14274 * This routine process a fast-path work queue completion entry from fast-path 14275 * event queue for FCP command response completion. 14276 **/ 14277 static void 14278 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14279 struct lpfc_wcqe_complete *wcqe) 14280 { 14281 struct lpfc_sli_ring *pring = cq->pring; 14282 struct lpfc_iocbq *cmdiocbq; 14283 struct lpfc_iocbq irspiocbq; 14284 unsigned long iflags; 14285 14286 /* Check for response status */ 14287 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14288 /* If resource errors reported from HBA, reduce queue 14289 * depth of the SCSI device. 14290 */ 14291 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 14292 IOSTAT_LOCAL_REJECT)) && 14293 ((wcqe->parameter & IOERR_PARAM_MASK) == 14294 IOERR_NO_RESOURCES)) 14295 phba->lpfc_rampdown_queue_depth(phba); 14296 14297 /* Log the cmpl status */ 14298 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14299 "0373 FCP CQE cmpl: status=x%x: " 14300 "CQE: %08x %08x %08x %08x\n", 14301 bf_get(lpfc_wcqe_c_status, wcqe), 14302 wcqe->word0, wcqe->total_data_placed, 14303 wcqe->parameter, wcqe->word3); 14304 } 14305 14306 /* Look up the FCP command IOCB and create pseudo response IOCB */ 14307 spin_lock_irqsave(&pring->ring_lock, iflags); 14308 pring->stats.iocb_event++; 14309 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14310 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14311 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14312 if (unlikely(!cmdiocbq)) { 14313 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14314 "0374 FCP complete with no corresponding " 14315 "cmdiocb: iotag (%d)\n", 14316 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14317 return; 14318 } 14319 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 14320 cmdiocbq->isr_timestamp = cq->isr_timestamp; 14321 #endif 14322 if (cmdiocbq->iocb_cmpl == NULL) { 14323 if (cmdiocbq->wqe_cmpl) { 14324 /* For FCP the flag is cleared in wqe_cmpl */ 14325 if (!(cmdiocbq->iocb_flag & LPFC_IO_FCP) && 14326 cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 14327 spin_lock_irqsave(&phba->hbalock, iflags); 14328 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 14329 spin_unlock_irqrestore(&phba->hbalock, iflags); 14330 } 14331 14332 /* Pass the cmd_iocb and the wcqe to the upper layer */ 14333 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 14334 return; 14335 } 14336 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14337 "0375 FCP cmdiocb not callback function " 14338 "iotag: (%d)\n", 14339 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14340 return; 14341 } 14342 14343 /* Only SLI4 non-IO commands stil use IOCB */ 14344 /* Fake the irspiocb and copy necessary response information */ 14345 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 14346 14347 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 14348 spin_lock_irqsave(&phba->hbalock, iflags); 14349 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 14350 spin_unlock_irqrestore(&phba->hbalock, iflags); 14351 } 14352 14353 /* Pass the cmd_iocb and the rsp state to the upper layer */ 14354 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 14355 } 14356 14357 /** 14358 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 14359 * @phba: Pointer to HBA context object. 14360 * @cq: Pointer to completion queue. 14361 * @wcqe: Pointer to work-queue completion queue entry. 14362 * 14363 * This routine handles an fast-path WQ entry consumed event by invoking the 14364 * proper WQ release routine to the slow-path WQ. 14365 **/ 14366 static void 14367 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14368 struct lpfc_wcqe_release *wcqe) 14369 { 14370 struct lpfc_queue *childwq; 14371 bool wqid_matched = false; 14372 uint16_t hba_wqid; 14373 14374 /* Check for fast-path FCP work queue release */ 14375 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 14376 list_for_each_entry(childwq, &cq->child_list, list) { 14377 if (childwq->queue_id == hba_wqid) { 14378 lpfc_sli4_wq_release(childwq, 14379 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14380 if (childwq->q_flag & HBA_NVMET_WQFULL) 14381 lpfc_nvmet_wqfull_process(phba, childwq); 14382 wqid_matched = true; 14383 break; 14384 } 14385 } 14386 /* Report warning log message if no match found */ 14387 if (wqid_matched != true) 14388 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14389 "2580 Fast-path wqe consume event carries " 14390 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 14391 } 14392 14393 /** 14394 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 14395 * @phba: Pointer to HBA context object. 14396 * @cq: Pointer to completion queue. 14397 * @rcqe: Pointer to receive-queue completion queue entry. 14398 * 14399 * This routine process a receive-queue completion queue entry. 14400 * 14401 * Return: true if work posted to worker thread, otherwise false. 14402 **/ 14403 static bool 14404 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14405 struct lpfc_rcqe *rcqe) 14406 { 14407 bool workposted = false; 14408 struct lpfc_queue *hrq; 14409 struct lpfc_queue *drq; 14410 struct rqb_dmabuf *dma_buf; 14411 struct fc_frame_header *fc_hdr; 14412 struct lpfc_nvmet_tgtport *tgtp; 14413 uint32_t status, rq_id; 14414 unsigned long iflags; 14415 uint32_t fctl, idx; 14416 14417 if ((phba->nvmet_support == 0) || 14418 (phba->sli4_hba.nvmet_cqset == NULL)) 14419 return workposted; 14420 14421 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 14422 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 14423 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 14424 14425 /* sanity check on queue memory */ 14426 if (unlikely(!hrq) || unlikely(!drq)) 14427 return workposted; 14428 14429 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14430 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14431 else 14432 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14433 14434 if ((phba->nvmet_support == 0) || 14435 (rq_id != hrq->queue_id)) 14436 return workposted; 14437 14438 status = bf_get(lpfc_rcqe_status, rcqe); 14439 switch (status) { 14440 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14441 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14442 "6126 Receive Frame Truncated!!\n"); 14443 fallthrough; 14444 case FC_STATUS_RQ_SUCCESS: 14445 spin_lock_irqsave(&phba->hbalock, iflags); 14446 lpfc_sli4_rq_release(hrq, drq); 14447 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 14448 if (!dma_buf) { 14449 hrq->RQ_no_buf_found++; 14450 spin_unlock_irqrestore(&phba->hbalock, iflags); 14451 goto out; 14452 } 14453 spin_unlock_irqrestore(&phba->hbalock, iflags); 14454 hrq->RQ_rcv_buf++; 14455 hrq->RQ_buf_posted--; 14456 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14457 14458 /* Just some basic sanity checks on FCP Command frame */ 14459 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 14460 fc_hdr->fh_f_ctl[1] << 8 | 14461 fc_hdr->fh_f_ctl[2]); 14462 if (((fctl & 14463 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 14464 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 14465 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 14466 goto drop; 14467 14468 if (fc_hdr->fh_type == FC_TYPE_FCP) { 14469 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 14470 lpfc_nvmet_unsol_fcp_event( 14471 phba, idx, dma_buf, cq->isr_timestamp, 14472 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 14473 return false; 14474 } 14475 drop: 14476 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 14477 break; 14478 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14479 if (phba->nvmet_support) { 14480 tgtp = phba->targetport->private; 14481 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14482 "6401 RQE Error x%x, posted %d err_cnt " 14483 "%d: %x %x %x\n", 14484 status, hrq->RQ_buf_posted, 14485 hrq->RQ_no_posted_buf, 14486 atomic_read(&tgtp->rcv_fcp_cmd_in), 14487 atomic_read(&tgtp->rcv_fcp_cmd_out), 14488 atomic_read(&tgtp->xmt_fcp_release)); 14489 } 14490 fallthrough; 14491 14492 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14493 hrq->RQ_no_posted_buf++; 14494 /* Post more buffers if possible */ 14495 break; 14496 } 14497 out: 14498 return workposted; 14499 } 14500 14501 /** 14502 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 14503 * @phba: adapter with cq 14504 * @cq: Pointer to the completion queue. 14505 * @cqe: Pointer to fast-path completion queue entry. 14506 * 14507 * This routine process a fast-path work queue completion entry from fast-path 14508 * event queue for FCP command response completion. 14509 * 14510 * Return: true if work posted to worker thread, otherwise false. 14511 **/ 14512 static bool 14513 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14514 struct lpfc_cqe *cqe) 14515 { 14516 struct lpfc_wcqe_release wcqe; 14517 bool workposted = false; 14518 14519 /* Copy the work queue CQE and convert endian order if needed */ 14520 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 14521 14522 /* Check and process for different type of WCQE and dispatch */ 14523 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 14524 case CQE_CODE_COMPL_WQE: 14525 case CQE_CODE_NVME_ERSP: 14526 cq->CQ_wq++; 14527 /* Process the WQ complete event */ 14528 phba->last_completion_time = jiffies; 14529 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 14530 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14531 (struct lpfc_wcqe_complete *)&wcqe); 14532 break; 14533 case CQE_CODE_RELEASE_WQE: 14534 cq->CQ_release_wqe++; 14535 /* Process the WQ release event */ 14536 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 14537 (struct lpfc_wcqe_release *)&wcqe); 14538 break; 14539 case CQE_CODE_XRI_ABORTED: 14540 cq->CQ_xri_aborted++; 14541 /* Process the WQ XRI abort event */ 14542 phba->last_completion_time = jiffies; 14543 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14544 (struct sli4_wcqe_xri_aborted *)&wcqe); 14545 break; 14546 case CQE_CODE_RECEIVE_V1: 14547 case CQE_CODE_RECEIVE: 14548 phba->last_completion_time = jiffies; 14549 if (cq->subtype == LPFC_NVMET) { 14550 workposted = lpfc_sli4_nvmet_handle_rcqe( 14551 phba, cq, (struct lpfc_rcqe *)&wcqe); 14552 } 14553 break; 14554 default: 14555 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14556 "0144 Not a valid CQE code: x%x\n", 14557 bf_get(lpfc_wcqe_c_code, &wcqe)); 14558 break; 14559 } 14560 return workposted; 14561 } 14562 14563 /** 14564 * lpfc_sli4_sched_cq_work - Schedules cq work 14565 * @phba: Pointer to HBA context object. 14566 * @cq: Pointer to CQ 14567 * @cqid: CQ ID 14568 * 14569 * This routine checks the poll mode of the CQ corresponding to 14570 * cq->chann, then either schedules a softirq or queue_work to complete 14571 * cq work. 14572 * 14573 * queue_work path is taken if in NVMET mode, or if poll_mode is in 14574 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 14575 * 14576 **/ 14577 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 14578 struct lpfc_queue *cq, uint16_t cqid) 14579 { 14580 int ret = 0; 14581 14582 switch (cq->poll_mode) { 14583 case LPFC_IRQ_POLL: 14584 irq_poll_sched(&cq->iop); 14585 break; 14586 case LPFC_QUEUE_WORK: 14587 default: 14588 if (is_kdump_kernel()) 14589 ret = queue_work(phba->wq, &cq->irqwork); 14590 else 14591 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 14592 if (!ret) 14593 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14594 "0383 Cannot schedule queue work " 14595 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14596 cqid, cq->queue_id, 14597 raw_smp_processor_id()); 14598 } 14599 } 14600 14601 /** 14602 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 14603 * @phba: Pointer to HBA context object. 14604 * @eq: Pointer to the queue structure. 14605 * @eqe: Pointer to fast-path event queue entry. 14606 * 14607 * This routine process a event queue entry from the fast-path event queue. 14608 * It will check the MajorCode and MinorCode to determine this is for a 14609 * completion event on a completion queue, if not, an error shall be logged 14610 * and just return. Otherwise, it will get to the corresponding completion 14611 * queue and process all the entries on the completion queue, rearm the 14612 * completion queue, and then return. 14613 **/ 14614 static void 14615 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 14616 struct lpfc_eqe *eqe) 14617 { 14618 struct lpfc_queue *cq = NULL; 14619 uint32_t qidx = eq->hdwq; 14620 uint16_t cqid, id; 14621 14622 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 14623 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14624 "0366 Not a valid completion " 14625 "event: majorcode=x%x, minorcode=x%x\n", 14626 bf_get_le32(lpfc_eqe_major_code, eqe), 14627 bf_get_le32(lpfc_eqe_minor_code, eqe)); 14628 return; 14629 } 14630 14631 /* Get the reference to the corresponding CQ */ 14632 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14633 14634 /* Use the fast lookup method first */ 14635 if (cqid <= phba->sli4_hba.cq_max) { 14636 cq = phba->sli4_hba.cq_lookup[cqid]; 14637 if (cq) 14638 goto work_cq; 14639 } 14640 14641 /* Next check for NVMET completion */ 14642 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 14643 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 14644 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 14645 /* Process NVMET unsol rcv */ 14646 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 14647 goto process_cq; 14648 } 14649 } 14650 14651 if (phba->sli4_hba.nvmels_cq && 14652 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 14653 /* Process NVME unsol rcv */ 14654 cq = phba->sli4_hba.nvmels_cq; 14655 } 14656 14657 /* Otherwise this is a Slow path event */ 14658 if (cq == NULL) { 14659 lpfc_sli4_sp_handle_eqe(phba, eqe, 14660 phba->sli4_hba.hdwq[qidx].hba_eq); 14661 return; 14662 } 14663 14664 process_cq: 14665 if (unlikely(cqid != cq->queue_id)) { 14666 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14667 "0368 Miss-matched fast-path completion " 14668 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 14669 cqid, cq->queue_id); 14670 return; 14671 } 14672 14673 work_cq: 14674 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 14675 if (phba->ktime_on) 14676 cq->isr_timestamp = ktime_get_ns(); 14677 else 14678 cq->isr_timestamp = 0; 14679 #endif 14680 lpfc_sli4_sched_cq_work(phba, cq, cqid); 14681 } 14682 14683 /** 14684 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 14685 * @cq: Pointer to CQ to be processed 14686 * @poll_mode: Enum lpfc_poll_state to determine poll mode 14687 * 14688 * This routine calls the cq processing routine with the handler for 14689 * fast path CQEs. 14690 * 14691 * The CQ routine returns two values: the first is the calling status, 14692 * which indicates whether work was queued to the background discovery 14693 * thread. If true, the routine should wakeup the discovery thread; 14694 * the second is the delay parameter. If non-zero, rather than rearming 14695 * the CQ and yet another interrupt, the CQ handler should be queued so 14696 * that it is processed in a subsequent polling action. The value of 14697 * the delay indicates when to reschedule it. 14698 **/ 14699 static void 14700 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 14701 enum lpfc_poll_mode poll_mode) 14702 { 14703 struct lpfc_hba *phba = cq->phba; 14704 unsigned long delay; 14705 bool workposted = false; 14706 int ret = 0; 14707 14708 /* process and rearm the CQ */ 14709 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 14710 &delay, poll_mode); 14711 14712 if (delay) { 14713 if (is_kdump_kernel()) 14714 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 14715 delay); 14716 else 14717 ret = queue_delayed_work_on(cq->chann, phba->wq, 14718 &cq->sched_irqwork, delay); 14719 if (!ret) 14720 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14721 "0367 Cannot schedule queue work " 14722 "for cqid=%d on CPU %d\n", 14723 cq->queue_id, cq->chann); 14724 } 14725 14726 /* wake up worker thread if there are works to be done */ 14727 if (workposted) 14728 lpfc_worker_wake_up(phba); 14729 } 14730 14731 /** 14732 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 14733 * interrupt 14734 * @work: pointer to work element 14735 * 14736 * translates from the work handler and calls the fast-path handler. 14737 **/ 14738 static void 14739 lpfc_sli4_hba_process_cq(struct work_struct *work) 14740 { 14741 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 14742 14743 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 14744 } 14745 14746 /** 14747 * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer 14748 * @work: pointer to work element 14749 * 14750 * translates from the work handler and calls the fast-path handler. 14751 **/ 14752 static void 14753 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 14754 { 14755 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14756 struct lpfc_queue, sched_irqwork); 14757 14758 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 14759 } 14760 14761 /** 14762 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 14763 * @irq: Interrupt number. 14764 * @dev_id: The device context pointer. 14765 * 14766 * This function is directly called from the PCI layer as an interrupt 14767 * service routine when device with SLI-4 interface spec is enabled with 14768 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 14769 * ring event in the HBA. However, when the device is enabled with either 14770 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 14771 * device-level interrupt handler. When the PCI slot is in error recovery 14772 * or the HBA is undergoing initialization, the interrupt handler will not 14773 * process the interrupt. The SCSI FCP fast-path ring event are handled in 14774 * the intrrupt context. This function is called without any lock held. 14775 * It gets the hbalock to access and update SLI data structures. Note that, 14776 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 14777 * equal to that of FCP CQ index. 14778 * 14779 * The link attention and ELS ring attention events are handled 14780 * by the worker thread. The interrupt handler signals the worker thread 14781 * and returns for these events. This function is called without any lock 14782 * held. It gets the hbalock to access and update SLI data structures. 14783 * 14784 * This function returns IRQ_HANDLED when interrupt is handled else it 14785 * returns IRQ_NONE. 14786 **/ 14787 irqreturn_t 14788 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 14789 { 14790 struct lpfc_hba *phba; 14791 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14792 struct lpfc_queue *fpeq; 14793 unsigned long iflag; 14794 int ecount = 0; 14795 int hba_eqidx; 14796 struct lpfc_eq_intr_info *eqi; 14797 14798 /* Get the driver's phba structure from the dev_id */ 14799 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14800 phba = hba_eq_hdl->phba; 14801 hba_eqidx = hba_eq_hdl->idx; 14802 14803 if (unlikely(!phba)) 14804 return IRQ_NONE; 14805 if (unlikely(!phba->sli4_hba.hdwq)) 14806 return IRQ_NONE; 14807 14808 /* Get to the EQ struct associated with this vector */ 14809 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 14810 if (unlikely(!fpeq)) 14811 return IRQ_NONE; 14812 14813 /* Check device state for handling interrupt */ 14814 if (unlikely(lpfc_intr_state_check(phba))) { 14815 /* Check again for link_state with lock held */ 14816 spin_lock_irqsave(&phba->hbalock, iflag); 14817 if (phba->link_state < LPFC_LINK_DOWN) 14818 /* Flush, clear interrupt, and rearm the EQ */ 14819 lpfc_sli4_eqcq_flush(phba, fpeq); 14820 spin_unlock_irqrestore(&phba->hbalock, iflag); 14821 return IRQ_NONE; 14822 } 14823 14824 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 14825 eqi->icnt++; 14826 14827 fpeq->last_cpu = raw_smp_processor_id(); 14828 14829 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 14830 fpeq->q_flag & HBA_EQ_DELAY_CHK && 14831 phba->cfg_auto_imax && 14832 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 14833 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 14834 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 14835 14836 /* process and rearm the EQ */ 14837 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 14838 14839 if (unlikely(ecount == 0)) { 14840 fpeq->EQ_no_entry++; 14841 if (phba->intr_type == MSIX) 14842 /* MSI-X treated interrupt served as no EQ share INT */ 14843 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14844 "0358 MSI-X interrupt with no EQE\n"); 14845 else 14846 /* Non MSI-X treated on interrupt as EQ share INT */ 14847 return IRQ_NONE; 14848 } 14849 14850 return IRQ_HANDLED; 14851 } /* lpfc_sli4_fp_intr_handler */ 14852 14853 /** 14854 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 14855 * @irq: Interrupt number. 14856 * @dev_id: The device context pointer. 14857 * 14858 * This function is the device-level interrupt handler to device with SLI-4 14859 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 14860 * interrupt mode is enabled and there is an event in the HBA which requires 14861 * driver attention. This function invokes the slow-path interrupt attention 14862 * handling function and fast-path interrupt attention handling function in 14863 * turn to process the relevant HBA attention events. This function is called 14864 * without any lock held. It gets the hbalock to access and update SLI data 14865 * structures. 14866 * 14867 * This function returns IRQ_HANDLED when interrupt is handled, else it 14868 * returns IRQ_NONE. 14869 **/ 14870 irqreturn_t 14871 lpfc_sli4_intr_handler(int irq, void *dev_id) 14872 { 14873 struct lpfc_hba *phba; 14874 irqreturn_t hba_irq_rc; 14875 bool hba_handled = false; 14876 int qidx; 14877 14878 /* Get the driver's phba structure from the dev_id */ 14879 phba = (struct lpfc_hba *)dev_id; 14880 14881 if (unlikely(!phba)) 14882 return IRQ_NONE; 14883 14884 /* 14885 * Invoke fast-path host attention interrupt handling as appropriate. 14886 */ 14887 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 14888 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 14889 &phba->sli4_hba.hba_eq_hdl[qidx]); 14890 if (hba_irq_rc == IRQ_HANDLED) 14891 hba_handled |= true; 14892 } 14893 14894 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 14895 } /* lpfc_sli4_intr_handler */ 14896 14897 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 14898 { 14899 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 14900 struct lpfc_queue *eq; 14901 int i = 0; 14902 14903 rcu_read_lock(); 14904 14905 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 14906 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 14907 if (!list_empty(&phba->poll_list)) 14908 mod_timer(&phba->cpuhp_poll_timer, 14909 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14910 14911 rcu_read_unlock(); 14912 } 14913 14914 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 14915 { 14916 struct lpfc_hba *phba = eq->phba; 14917 int i = 0; 14918 14919 /* 14920 * Unlocking an irq is one of the entry point to check 14921 * for re-schedule, but we are good for io submission 14922 * path as midlayer does a get_cpu to glue us in. Flush 14923 * out the invalidate queue so we can see the updated 14924 * value for flag. 14925 */ 14926 smp_rmb(); 14927 14928 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 14929 /* We will not likely get the completion for the caller 14930 * during this iteration but i guess that's fine. 14931 * Future io's coming on this eq should be able to 14932 * pick it up. As for the case of single io's, they 14933 * will be handled through a sched from polling timer 14934 * function which is currently triggered every 1msec. 14935 */ 14936 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 14937 14938 return i; 14939 } 14940 14941 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 14942 { 14943 struct lpfc_hba *phba = eq->phba; 14944 14945 /* kickstart slowpath processing if needed */ 14946 if (list_empty(&phba->poll_list)) 14947 mod_timer(&phba->cpuhp_poll_timer, 14948 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14949 14950 list_add_rcu(&eq->_poll_list, &phba->poll_list); 14951 synchronize_rcu(); 14952 } 14953 14954 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 14955 { 14956 struct lpfc_hba *phba = eq->phba; 14957 14958 /* Disable slowpath processing for this eq. Kick start the eq 14959 * by RE-ARMING the eq's ASAP 14960 */ 14961 list_del_rcu(&eq->_poll_list); 14962 synchronize_rcu(); 14963 14964 if (list_empty(&phba->poll_list)) 14965 del_timer_sync(&phba->cpuhp_poll_timer); 14966 } 14967 14968 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 14969 { 14970 struct lpfc_queue *eq, *next; 14971 14972 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 14973 list_del(&eq->_poll_list); 14974 14975 INIT_LIST_HEAD(&phba->poll_list); 14976 synchronize_rcu(); 14977 } 14978 14979 static inline void 14980 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 14981 { 14982 if (mode == eq->mode) 14983 return; 14984 /* 14985 * currently this function is only called during a hotplug 14986 * event and the cpu on which this function is executing 14987 * is going offline. By now the hotplug has instructed 14988 * the scheduler to remove this cpu from cpu active mask. 14989 * So we don't need to work about being put aside by the 14990 * scheduler for a high priority process. Yes, the inte- 14991 * rrupts could come but they are known to retire ASAP. 14992 */ 14993 14994 /* Disable polling in the fastpath */ 14995 WRITE_ONCE(eq->mode, mode); 14996 /* flush out the store buffer */ 14997 smp_wmb(); 14998 14999 /* 15000 * Add this eq to the polling list and start polling. For 15001 * a grace period both interrupt handler and poller will 15002 * try to process the eq _but_ that's fine. We have a 15003 * synchronization mechanism in place (queue_claimed) to 15004 * deal with it. This is just a draining phase for int- 15005 * errupt handler (not eq's) as we have guranteed through 15006 * barrier that all the CPUs have seen the new CQ_POLLED 15007 * state. which will effectively disable the REARMING of 15008 * the EQ. The whole idea is eq's die off eventually as 15009 * we are not rearming EQ's anymore. 15010 */ 15011 mode ? lpfc_sli4_add_to_poll_list(eq) : 15012 lpfc_sli4_remove_from_poll_list(eq); 15013 } 15014 15015 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15016 { 15017 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15018 } 15019 15020 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15021 { 15022 struct lpfc_hba *phba = eq->phba; 15023 15024 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15025 15026 /* Kick start for the pending io's in h/w. 15027 * Once we switch back to interrupt processing on a eq 15028 * the io path completion will only arm eq's when it 15029 * receives a completion. But since eq's are in disa- 15030 * rmed state it doesn't receive a completion. This 15031 * creates a deadlock scenaro. 15032 */ 15033 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15034 } 15035 15036 /** 15037 * lpfc_sli4_queue_free - free a queue structure and associated memory 15038 * @queue: The queue structure to free. 15039 * 15040 * This function frees a queue structure and the DMAable memory used for 15041 * the host resident queue. This function must be called after destroying the 15042 * queue on the HBA. 15043 **/ 15044 void 15045 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15046 { 15047 struct lpfc_dmabuf *dmabuf; 15048 15049 if (!queue) 15050 return; 15051 15052 if (!list_empty(&queue->wq_list)) 15053 list_del(&queue->wq_list); 15054 15055 while (!list_empty(&queue->page_list)) { 15056 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15057 list); 15058 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15059 dmabuf->virt, dmabuf->phys); 15060 kfree(dmabuf); 15061 } 15062 if (queue->rqbp) { 15063 lpfc_free_rq_buffer(queue->phba, queue); 15064 kfree(queue->rqbp); 15065 } 15066 15067 if (!list_empty(&queue->cpu_list)) 15068 list_del(&queue->cpu_list); 15069 15070 kfree(queue); 15071 return; 15072 } 15073 15074 /** 15075 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15076 * @phba: The HBA that this queue is being created on. 15077 * @page_size: The size of a queue page 15078 * @entry_size: The size of each queue entry for this queue. 15079 * @entry_count: The number of entries that this queue will handle. 15080 * @cpu: The cpu that will primarily utilize this queue. 15081 * 15082 * This function allocates a queue structure and the DMAable memory used for 15083 * the host resident queue. This function must be called before creating the 15084 * queue on the HBA. 15085 **/ 15086 struct lpfc_queue * 15087 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15088 uint32_t entry_size, uint32_t entry_count, int cpu) 15089 { 15090 struct lpfc_queue *queue; 15091 struct lpfc_dmabuf *dmabuf; 15092 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15093 uint16_t x, pgcnt; 15094 15095 if (!phba->sli4_hba.pc_sli4_params.supported) 15096 hw_page_size = page_size; 15097 15098 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15099 15100 /* If needed, Adjust page count to match the max the adapter supports */ 15101 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15102 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15103 15104 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15105 GFP_KERNEL, cpu_to_node(cpu)); 15106 if (!queue) 15107 return NULL; 15108 15109 INIT_LIST_HEAD(&queue->list); 15110 INIT_LIST_HEAD(&queue->_poll_list); 15111 INIT_LIST_HEAD(&queue->wq_list); 15112 INIT_LIST_HEAD(&queue->wqfull_list); 15113 INIT_LIST_HEAD(&queue->page_list); 15114 INIT_LIST_HEAD(&queue->child_list); 15115 INIT_LIST_HEAD(&queue->cpu_list); 15116 15117 /* Set queue parameters now. If the system cannot provide memory 15118 * resources, the free routine needs to know what was allocated. 15119 */ 15120 queue->page_count = pgcnt; 15121 queue->q_pgs = (void **)&queue[1]; 15122 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15123 queue->entry_size = entry_size; 15124 queue->entry_count = entry_count; 15125 queue->page_size = hw_page_size; 15126 queue->phba = phba; 15127 15128 for (x = 0; x < queue->page_count; x++) { 15129 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15130 dev_to_node(&phba->pcidev->dev)); 15131 if (!dmabuf) 15132 goto out_fail; 15133 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15134 hw_page_size, &dmabuf->phys, 15135 GFP_KERNEL); 15136 if (!dmabuf->virt) { 15137 kfree(dmabuf); 15138 goto out_fail; 15139 } 15140 dmabuf->buffer_tag = x; 15141 list_add_tail(&dmabuf->list, &queue->page_list); 15142 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15143 queue->q_pgs[x] = dmabuf->virt; 15144 } 15145 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15146 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15147 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15148 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15149 15150 /* notify_interval will be set during q creation */ 15151 15152 return queue; 15153 out_fail: 15154 lpfc_sli4_queue_free(queue); 15155 return NULL; 15156 } 15157 15158 /** 15159 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15160 * @phba: HBA structure that indicates port to create a queue on. 15161 * @pci_barset: PCI BAR set flag. 15162 * 15163 * This function shall perform iomap of the specified PCI BAR address to host 15164 * memory address if not already done so and return it. The returned host 15165 * memory address can be NULL. 15166 */ 15167 static void __iomem * 15168 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15169 { 15170 if (!phba->pcidev) 15171 return NULL; 15172 15173 switch (pci_barset) { 15174 case WQ_PCI_BAR_0_AND_1: 15175 return phba->pci_bar0_memmap_p; 15176 case WQ_PCI_BAR_2_AND_3: 15177 return phba->pci_bar2_memmap_p; 15178 case WQ_PCI_BAR_4_AND_5: 15179 return phba->pci_bar4_memmap_p; 15180 default: 15181 break; 15182 } 15183 return NULL; 15184 } 15185 15186 /** 15187 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15188 * @phba: HBA structure that EQs are on. 15189 * @startq: The starting EQ index to modify 15190 * @numq: The number of EQs (consecutive indexes) to modify 15191 * @usdelay: amount of delay 15192 * 15193 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15194 * is set either by writing to a register (if supported by the SLI Port) 15195 * or by mailbox command. The mailbox command allows several EQs to be 15196 * updated at once. 15197 * 15198 * The @phba struct is used to send a mailbox command to HBA. The @startq 15199 * is used to get the starting EQ index to change. The @numq value is 15200 * used to specify how many consecutive EQ indexes, starting at EQ index, 15201 * are to be changed. This function is asynchronous and will wait for any 15202 * mailbox commands to finish before returning. 15203 * 15204 * On success this function will return a zero. If unable to allocate 15205 * enough memory this function will return -ENOMEM. If a mailbox command 15206 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15207 * have had their delay multipler changed. 15208 **/ 15209 void 15210 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15211 uint32_t numq, uint32_t usdelay) 15212 { 15213 struct lpfc_mbx_modify_eq_delay *eq_delay; 15214 LPFC_MBOXQ_t *mbox; 15215 struct lpfc_queue *eq; 15216 int cnt = 0, rc, length; 15217 uint32_t shdr_status, shdr_add_status; 15218 uint32_t dmult; 15219 int qidx; 15220 union lpfc_sli4_cfg_shdr *shdr; 15221 15222 if (startq >= phba->cfg_irq_chann) 15223 return; 15224 15225 if (usdelay > 0xFFFF) { 15226 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15227 "6429 usdelay %d too large. Scaled down to " 15228 "0xFFFF.\n", usdelay); 15229 usdelay = 0xFFFF; 15230 } 15231 15232 /* set values by EQ_DELAY register if supported */ 15233 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15234 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15235 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15236 if (!eq) 15237 continue; 15238 15239 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15240 15241 if (++cnt >= numq) 15242 break; 15243 } 15244 return; 15245 } 15246 15247 /* Otherwise, set values by mailbox cmd */ 15248 15249 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15250 if (!mbox) { 15251 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15252 "6428 Failed allocating mailbox cmd buffer." 15253 " EQ delay was not set.\n"); 15254 return; 15255 } 15256 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15257 sizeof(struct lpfc_sli4_cfg_mhdr)); 15258 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15259 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15260 length, LPFC_SLI4_MBX_EMBED); 15261 eq_delay = &mbox->u.mqe.un.eq_delay; 15262 15263 /* Calculate delay multiper from maximum interrupt per second */ 15264 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15265 if (dmult) 15266 dmult--; 15267 if (dmult > LPFC_DMULT_MAX) 15268 dmult = LPFC_DMULT_MAX; 15269 15270 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15271 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15272 if (!eq) 15273 continue; 15274 eq->q_mode = usdelay; 15275 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 15276 eq_delay->u.request.eq[cnt].phase = 0; 15277 eq_delay->u.request.eq[cnt].delay_multi = dmult; 15278 15279 if (++cnt >= numq) 15280 break; 15281 } 15282 eq_delay->u.request.num_eq = cnt; 15283 15284 mbox->vport = phba->pport; 15285 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15286 mbox->ctx_buf = NULL; 15287 mbox->ctx_ndlp = NULL; 15288 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15289 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 15290 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15291 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15292 if (shdr_status || shdr_add_status || rc) { 15293 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15294 "2512 MODIFY_EQ_DELAY mailbox failed with " 15295 "status x%x add_status x%x, mbx status x%x\n", 15296 shdr_status, shdr_add_status, rc); 15297 } 15298 mempool_free(mbox, phba->mbox_mem_pool); 15299 return; 15300 } 15301 15302 /** 15303 * lpfc_eq_create - Create an Event Queue on the HBA 15304 * @phba: HBA structure that indicates port to create a queue on. 15305 * @eq: The queue structure to use to create the event queue. 15306 * @imax: The maximum interrupt per second limit. 15307 * 15308 * This function creates an event queue, as detailed in @eq, on a port, 15309 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 15310 * 15311 * The @phba struct is used to send mailbox command to HBA. The @eq struct 15312 * is used to get the entry count and entry size that are necessary to 15313 * determine the number of pages to allocate and use for this queue. This 15314 * function will send the EQ_CREATE mailbox command to the HBA to setup the 15315 * event queue. This function is asynchronous and will wait for the mailbox 15316 * command to finish before continuing. 15317 * 15318 * On success this function will return a zero. If unable to allocate enough 15319 * memory this function will return -ENOMEM. If the queue create mailbox command 15320 * fails this function will return -ENXIO. 15321 **/ 15322 int 15323 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 15324 { 15325 struct lpfc_mbx_eq_create *eq_create; 15326 LPFC_MBOXQ_t *mbox; 15327 int rc, length, status = 0; 15328 struct lpfc_dmabuf *dmabuf; 15329 uint32_t shdr_status, shdr_add_status; 15330 union lpfc_sli4_cfg_shdr *shdr; 15331 uint16_t dmult; 15332 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15333 15334 /* sanity check on queue memory */ 15335 if (!eq) 15336 return -ENODEV; 15337 if (!phba->sli4_hba.pc_sli4_params.supported) 15338 hw_page_size = SLI4_PAGE_SIZE; 15339 15340 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15341 if (!mbox) 15342 return -ENOMEM; 15343 length = (sizeof(struct lpfc_mbx_eq_create) - 15344 sizeof(struct lpfc_sli4_cfg_mhdr)); 15345 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15346 LPFC_MBOX_OPCODE_EQ_CREATE, 15347 length, LPFC_SLI4_MBX_EMBED); 15348 eq_create = &mbox->u.mqe.un.eq_create; 15349 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 15350 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 15351 eq->page_count); 15352 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 15353 LPFC_EQE_SIZE); 15354 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 15355 15356 /* Use version 2 of CREATE_EQ if eqav is set */ 15357 if (phba->sli4_hba.pc_sli4_params.eqav) { 15358 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15359 LPFC_Q_CREATE_VERSION_2); 15360 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 15361 phba->sli4_hba.pc_sli4_params.eqav); 15362 } 15363 15364 /* don't setup delay multiplier using EQ_CREATE */ 15365 dmult = 0; 15366 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 15367 dmult); 15368 switch (eq->entry_count) { 15369 default: 15370 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15371 "0360 Unsupported EQ count. (%d)\n", 15372 eq->entry_count); 15373 if (eq->entry_count < 256) { 15374 status = -EINVAL; 15375 goto out; 15376 } 15377 fallthrough; /* otherwise default to smallest count */ 15378 case 256: 15379 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15380 LPFC_EQ_CNT_256); 15381 break; 15382 case 512: 15383 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15384 LPFC_EQ_CNT_512); 15385 break; 15386 case 1024: 15387 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15388 LPFC_EQ_CNT_1024); 15389 break; 15390 case 2048: 15391 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15392 LPFC_EQ_CNT_2048); 15393 break; 15394 case 4096: 15395 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15396 LPFC_EQ_CNT_4096); 15397 break; 15398 } 15399 list_for_each_entry(dmabuf, &eq->page_list, list) { 15400 memset(dmabuf->virt, 0, hw_page_size); 15401 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15402 putPaddrLow(dmabuf->phys); 15403 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15404 putPaddrHigh(dmabuf->phys); 15405 } 15406 mbox->vport = phba->pport; 15407 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15408 mbox->ctx_buf = NULL; 15409 mbox->ctx_ndlp = NULL; 15410 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15411 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15412 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15413 if (shdr_status || shdr_add_status || rc) { 15414 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15415 "2500 EQ_CREATE mailbox failed with " 15416 "status x%x add_status x%x, mbx status x%x\n", 15417 shdr_status, shdr_add_status, rc); 15418 status = -ENXIO; 15419 } 15420 eq->type = LPFC_EQ; 15421 eq->subtype = LPFC_NONE; 15422 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 15423 if (eq->queue_id == 0xFFFF) 15424 status = -ENXIO; 15425 eq->host_index = 0; 15426 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 15427 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 15428 out: 15429 mempool_free(mbox, phba->mbox_mem_pool); 15430 return status; 15431 } 15432 15433 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 15434 { 15435 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 15436 15437 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 15438 15439 return 1; 15440 } 15441 15442 /** 15443 * lpfc_cq_create - Create a Completion Queue on the HBA 15444 * @phba: HBA structure that indicates port to create a queue on. 15445 * @cq: The queue structure to use to create the completion queue. 15446 * @eq: The event queue to bind this completion queue to. 15447 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15448 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15449 * 15450 * This function creates a completion queue, as detailed in @wq, on a port, 15451 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 15452 * 15453 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15454 * is used to get the entry count and entry size that are necessary to 15455 * determine the number of pages to allocate and use for this queue. The @eq 15456 * is used to indicate which event queue to bind this completion queue to. This 15457 * function will send the CQ_CREATE mailbox command to the HBA to setup the 15458 * completion queue. This function is asynchronous and will wait for the mailbox 15459 * command to finish before continuing. 15460 * 15461 * On success this function will return a zero. If unable to allocate enough 15462 * memory this function will return -ENOMEM. If the queue create mailbox command 15463 * fails this function will return -ENXIO. 15464 **/ 15465 int 15466 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 15467 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 15468 { 15469 struct lpfc_mbx_cq_create *cq_create; 15470 struct lpfc_dmabuf *dmabuf; 15471 LPFC_MBOXQ_t *mbox; 15472 int rc, length, status = 0; 15473 uint32_t shdr_status, shdr_add_status; 15474 union lpfc_sli4_cfg_shdr *shdr; 15475 15476 /* sanity check on queue memory */ 15477 if (!cq || !eq) 15478 return -ENODEV; 15479 15480 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15481 if (!mbox) 15482 return -ENOMEM; 15483 length = (sizeof(struct lpfc_mbx_cq_create) - 15484 sizeof(struct lpfc_sli4_cfg_mhdr)); 15485 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15486 LPFC_MBOX_OPCODE_CQ_CREATE, 15487 length, LPFC_SLI4_MBX_EMBED); 15488 cq_create = &mbox->u.mqe.un.cq_create; 15489 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 15490 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 15491 cq->page_count); 15492 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 15493 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 15494 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15495 phba->sli4_hba.pc_sli4_params.cqv); 15496 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 15497 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 15498 (cq->page_size / SLI4_PAGE_SIZE)); 15499 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 15500 eq->queue_id); 15501 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 15502 phba->sli4_hba.pc_sli4_params.cqav); 15503 } else { 15504 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 15505 eq->queue_id); 15506 } 15507 switch (cq->entry_count) { 15508 case 2048: 15509 case 4096: 15510 if (phba->sli4_hba.pc_sli4_params.cqv == 15511 LPFC_Q_CREATE_VERSION_2) { 15512 cq_create->u.request.context.lpfc_cq_context_count = 15513 cq->entry_count; 15514 bf_set(lpfc_cq_context_count, 15515 &cq_create->u.request.context, 15516 LPFC_CQ_CNT_WORD7); 15517 break; 15518 } 15519 fallthrough; 15520 default: 15521 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15522 "0361 Unsupported CQ count: " 15523 "entry cnt %d sz %d pg cnt %d\n", 15524 cq->entry_count, cq->entry_size, 15525 cq->page_count); 15526 if (cq->entry_count < 256) { 15527 status = -EINVAL; 15528 goto out; 15529 } 15530 fallthrough; /* otherwise default to smallest count */ 15531 case 256: 15532 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15533 LPFC_CQ_CNT_256); 15534 break; 15535 case 512: 15536 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15537 LPFC_CQ_CNT_512); 15538 break; 15539 case 1024: 15540 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15541 LPFC_CQ_CNT_1024); 15542 break; 15543 } 15544 list_for_each_entry(dmabuf, &cq->page_list, list) { 15545 memset(dmabuf->virt, 0, cq->page_size); 15546 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15547 putPaddrLow(dmabuf->phys); 15548 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15549 putPaddrHigh(dmabuf->phys); 15550 } 15551 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15552 15553 /* The IOCTL status is embedded in the mailbox subheader. */ 15554 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15555 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15556 if (shdr_status || shdr_add_status || rc) { 15557 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15558 "2501 CQ_CREATE mailbox failed with " 15559 "status x%x add_status x%x, mbx status x%x\n", 15560 shdr_status, shdr_add_status, rc); 15561 status = -ENXIO; 15562 goto out; 15563 } 15564 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15565 if (cq->queue_id == 0xFFFF) { 15566 status = -ENXIO; 15567 goto out; 15568 } 15569 /* link the cq onto the parent eq child list */ 15570 list_add_tail(&cq->list, &eq->child_list); 15571 /* Set up completion queue's type and subtype */ 15572 cq->type = type; 15573 cq->subtype = subtype; 15574 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15575 cq->assoc_qid = eq->queue_id; 15576 cq->assoc_qp = eq; 15577 cq->host_index = 0; 15578 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15579 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 15580 15581 if (cq->queue_id > phba->sli4_hba.cq_max) 15582 phba->sli4_hba.cq_max = cq->queue_id; 15583 15584 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 15585 out: 15586 mempool_free(mbox, phba->mbox_mem_pool); 15587 return status; 15588 } 15589 15590 /** 15591 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 15592 * @phba: HBA structure that indicates port to create a queue on. 15593 * @cqp: The queue structure array to use to create the completion queues. 15594 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 15595 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15596 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15597 * 15598 * This function creates a set of completion queue, s to support MRQ 15599 * as detailed in @cqp, on a port, 15600 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 15601 * 15602 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15603 * is used to get the entry count and entry size that are necessary to 15604 * determine the number of pages to allocate and use for this queue. The @eq 15605 * is used to indicate which event queue to bind this completion queue to. This 15606 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 15607 * completion queue. This function is asynchronous and will wait for the mailbox 15608 * command to finish before continuing. 15609 * 15610 * On success this function will return a zero. If unable to allocate enough 15611 * memory this function will return -ENOMEM. If the queue create mailbox command 15612 * fails this function will return -ENXIO. 15613 **/ 15614 int 15615 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 15616 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 15617 uint32_t subtype) 15618 { 15619 struct lpfc_queue *cq; 15620 struct lpfc_queue *eq; 15621 struct lpfc_mbx_cq_create_set *cq_set; 15622 struct lpfc_dmabuf *dmabuf; 15623 LPFC_MBOXQ_t *mbox; 15624 int rc, length, alloclen, status = 0; 15625 int cnt, idx, numcq, page_idx = 0; 15626 uint32_t shdr_status, shdr_add_status; 15627 union lpfc_sli4_cfg_shdr *shdr; 15628 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15629 15630 /* sanity check on queue memory */ 15631 numcq = phba->cfg_nvmet_mrq; 15632 if (!cqp || !hdwq || !numcq) 15633 return -ENODEV; 15634 15635 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15636 if (!mbox) 15637 return -ENOMEM; 15638 15639 length = sizeof(struct lpfc_mbx_cq_create_set); 15640 length += ((numcq * cqp[0]->page_count) * 15641 sizeof(struct dma_address)); 15642 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15643 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 15644 LPFC_SLI4_MBX_NEMBED); 15645 if (alloclen < length) { 15646 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15647 "3098 Allocated DMA memory size (%d) is " 15648 "less than the requested DMA memory size " 15649 "(%d)\n", alloclen, length); 15650 status = -ENOMEM; 15651 goto out; 15652 } 15653 cq_set = mbox->sge_array->addr[0]; 15654 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 15655 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 15656 15657 for (idx = 0; idx < numcq; idx++) { 15658 cq = cqp[idx]; 15659 eq = hdwq[idx].hba_eq; 15660 if (!cq || !eq) { 15661 status = -ENOMEM; 15662 goto out; 15663 } 15664 if (!phba->sli4_hba.pc_sli4_params.supported) 15665 hw_page_size = cq->page_size; 15666 15667 switch (idx) { 15668 case 0: 15669 bf_set(lpfc_mbx_cq_create_set_page_size, 15670 &cq_set->u.request, 15671 (hw_page_size / SLI4_PAGE_SIZE)); 15672 bf_set(lpfc_mbx_cq_create_set_num_pages, 15673 &cq_set->u.request, cq->page_count); 15674 bf_set(lpfc_mbx_cq_create_set_evt, 15675 &cq_set->u.request, 1); 15676 bf_set(lpfc_mbx_cq_create_set_valid, 15677 &cq_set->u.request, 1); 15678 bf_set(lpfc_mbx_cq_create_set_cqe_size, 15679 &cq_set->u.request, 0); 15680 bf_set(lpfc_mbx_cq_create_set_num_cq, 15681 &cq_set->u.request, numcq); 15682 bf_set(lpfc_mbx_cq_create_set_autovalid, 15683 &cq_set->u.request, 15684 phba->sli4_hba.pc_sli4_params.cqav); 15685 switch (cq->entry_count) { 15686 case 2048: 15687 case 4096: 15688 if (phba->sli4_hba.pc_sli4_params.cqv == 15689 LPFC_Q_CREATE_VERSION_2) { 15690 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15691 &cq_set->u.request, 15692 cq->entry_count); 15693 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15694 &cq_set->u.request, 15695 LPFC_CQ_CNT_WORD7); 15696 break; 15697 } 15698 fallthrough; 15699 default: 15700 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15701 "3118 Bad CQ count. (%d)\n", 15702 cq->entry_count); 15703 if (cq->entry_count < 256) { 15704 status = -EINVAL; 15705 goto out; 15706 } 15707 fallthrough; /* otherwise default to smallest */ 15708 case 256: 15709 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15710 &cq_set->u.request, LPFC_CQ_CNT_256); 15711 break; 15712 case 512: 15713 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15714 &cq_set->u.request, LPFC_CQ_CNT_512); 15715 break; 15716 case 1024: 15717 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15718 &cq_set->u.request, LPFC_CQ_CNT_1024); 15719 break; 15720 } 15721 bf_set(lpfc_mbx_cq_create_set_eq_id0, 15722 &cq_set->u.request, eq->queue_id); 15723 break; 15724 case 1: 15725 bf_set(lpfc_mbx_cq_create_set_eq_id1, 15726 &cq_set->u.request, eq->queue_id); 15727 break; 15728 case 2: 15729 bf_set(lpfc_mbx_cq_create_set_eq_id2, 15730 &cq_set->u.request, eq->queue_id); 15731 break; 15732 case 3: 15733 bf_set(lpfc_mbx_cq_create_set_eq_id3, 15734 &cq_set->u.request, eq->queue_id); 15735 break; 15736 case 4: 15737 bf_set(lpfc_mbx_cq_create_set_eq_id4, 15738 &cq_set->u.request, eq->queue_id); 15739 break; 15740 case 5: 15741 bf_set(lpfc_mbx_cq_create_set_eq_id5, 15742 &cq_set->u.request, eq->queue_id); 15743 break; 15744 case 6: 15745 bf_set(lpfc_mbx_cq_create_set_eq_id6, 15746 &cq_set->u.request, eq->queue_id); 15747 break; 15748 case 7: 15749 bf_set(lpfc_mbx_cq_create_set_eq_id7, 15750 &cq_set->u.request, eq->queue_id); 15751 break; 15752 case 8: 15753 bf_set(lpfc_mbx_cq_create_set_eq_id8, 15754 &cq_set->u.request, eq->queue_id); 15755 break; 15756 case 9: 15757 bf_set(lpfc_mbx_cq_create_set_eq_id9, 15758 &cq_set->u.request, eq->queue_id); 15759 break; 15760 case 10: 15761 bf_set(lpfc_mbx_cq_create_set_eq_id10, 15762 &cq_set->u.request, eq->queue_id); 15763 break; 15764 case 11: 15765 bf_set(lpfc_mbx_cq_create_set_eq_id11, 15766 &cq_set->u.request, eq->queue_id); 15767 break; 15768 case 12: 15769 bf_set(lpfc_mbx_cq_create_set_eq_id12, 15770 &cq_set->u.request, eq->queue_id); 15771 break; 15772 case 13: 15773 bf_set(lpfc_mbx_cq_create_set_eq_id13, 15774 &cq_set->u.request, eq->queue_id); 15775 break; 15776 case 14: 15777 bf_set(lpfc_mbx_cq_create_set_eq_id14, 15778 &cq_set->u.request, eq->queue_id); 15779 break; 15780 case 15: 15781 bf_set(lpfc_mbx_cq_create_set_eq_id15, 15782 &cq_set->u.request, eq->queue_id); 15783 break; 15784 } 15785 15786 /* link the cq onto the parent eq child list */ 15787 list_add_tail(&cq->list, &eq->child_list); 15788 /* Set up completion queue's type and subtype */ 15789 cq->type = type; 15790 cq->subtype = subtype; 15791 cq->assoc_qid = eq->queue_id; 15792 cq->assoc_qp = eq; 15793 cq->host_index = 0; 15794 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15795 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 15796 cq->entry_count); 15797 cq->chann = idx; 15798 15799 rc = 0; 15800 list_for_each_entry(dmabuf, &cq->page_list, list) { 15801 memset(dmabuf->virt, 0, hw_page_size); 15802 cnt = page_idx + dmabuf->buffer_tag; 15803 cq_set->u.request.page[cnt].addr_lo = 15804 putPaddrLow(dmabuf->phys); 15805 cq_set->u.request.page[cnt].addr_hi = 15806 putPaddrHigh(dmabuf->phys); 15807 rc++; 15808 } 15809 page_idx += rc; 15810 } 15811 15812 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15813 15814 /* The IOCTL status is embedded in the mailbox subheader. */ 15815 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15816 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15817 if (shdr_status || shdr_add_status || rc) { 15818 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15819 "3119 CQ_CREATE_SET mailbox failed with " 15820 "status x%x add_status x%x, mbx status x%x\n", 15821 shdr_status, shdr_add_status, rc); 15822 status = -ENXIO; 15823 goto out; 15824 } 15825 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 15826 if (rc == 0xFFFF) { 15827 status = -ENXIO; 15828 goto out; 15829 } 15830 15831 for (idx = 0; idx < numcq; idx++) { 15832 cq = cqp[idx]; 15833 cq->queue_id = rc + idx; 15834 if (cq->queue_id > phba->sli4_hba.cq_max) 15835 phba->sli4_hba.cq_max = cq->queue_id; 15836 } 15837 15838 out: 15839 lpfc_sli4_mbox_cmd_free(phba, mbox); 15840 return status; 15841 } 15842 15843 /** 15844 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 15845 * @phba: HBA structure that indicates port to create a queue on. 15846 * @mq: The queue structure to use to create the mailbox queue. 15847 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 15848 * @cq: The completion queue to associate with this cq. 15849 * 15850 * This function provides failback (fb) functionality when the 15851 * mq_create_ext fails on older FW generations. It's purpose is identical 15852 * to mq_create_ext otherwise. 15853 * 15854 * This routine cannot fail as all attributes were previously accessed and 15855 * initialized in mq_create_ext. 15856 **/ 15857 static void 15858 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 15859 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 15860 { 15861 struct lpfc_mbx_mq_create *mq_create; 15862 struct lpfc_dmabuf *dmabuf; 15863 int length; 15864 15865 length = (sizeof(struct lpfc_mbx_mq_create) - 15866 sizeof(struct lpfc_sli4_cfg_mhdr)); 15867 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15868 LPFC_MBOX_OPCODE_MQ_CREATE, 15869 length, LPFC_SLI4_MBX_EMBED); 15870 mq_create = &mbox->u.mqe.un.mq_create; 15871 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 15872 mq->page_count); 15873 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 15874 cq->queue_id); 15875 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 15876 switch (mq->entry_count) { 15877 case 16: 15878 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15879 LPFC_MQ_RING_SIZE_16); 15880 break; 15881 case 32: 15882 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15883 LPFC_MQ_RING_SIZE_32); 15884 break; 15885 case 64: 15886 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15887 LPFC_MQ_RING_SIZE_64); 15888 break; 15889 case 128: 15890 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15891 LPFC_MQ_RING_SIZE_128); 15892 break; 15893 } 15894 list_for_each_entry(dmabuf, &mq->page_list, list) { 15895 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15896 putPaddrLow(dmabuf->phys); 15897 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15898 putPaddrHigh(dmabuf->phys); 15899 } 15900 } 15901 15902 /** 15903 * lpfc_mq_create - Create a mailbox Queue on the HBA 15904 * @phba: HBA structure that indicates port to create a queue on. 15905 * @mq: The queue structure to use to create the mailbox queue. 15906 * @cq: The completion queue to associate with this cq. 15907 * @subtype: The queue's subtype. 15908 * 15909 * This function creates a mailbox queue, as detailed in @mq, on a port, 15910 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 15911 * 15912 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15913 * is used to get the entry count and entry size that are necessary to 15914 * determine the number of pages to allocate and use for this queue. This 15915 * function will send the MQ_CREATE mailbox command to the HBA to setup the 15916 * mailbox queue. This function is asynchronous and will wait for the mailbox 15917 * command to finish before continuing. 15918 * 15919 * On success this function will return a zero. If unable to allocate enough 15920 * memory this function will return -ENOMEM. If the queue create mailbox command 15921 * fails this function will return -ENXIO. 15922 **/ 15923 int32_t 15924 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 15925 struct lpfc_queue *cq, uint32_t subtype) 15926 { 15927 struct lpfc_mbx_mq_create *mq_create; 15928 struct lpfc_mbx_mq_create_ext *mq_create_ext; 15929 struct lpfc_dmabuf *dmabuf; 15930 LPFC_MBOXQ_t *mbox; 15931 int rc, length, status = 0; 15932 uint32_t shdr_status, shdr_add_status; 15933 union lpfc_sli4_cfg_shdr *shdr; 15934 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15935 15936 /* sanity check on queue memory */ 15937 if (!mq || !cq) 15938 return -ENODEV; 15939 if (!phba->sli4_hba.pc_sli4_params.supported) 15940 hw_page_size = SLI4_PAGE_SIZE; 15941 15942 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15943 if (!mbox) 15944 return -ENOMEM; 15945 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 15946 sizeof(struct lpfc_sli4_cfg_mhdr)); 15947 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15948 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 15949 length, LPFC_SLI4_MBX_EMBED); 15950 15951 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 15952 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 15953 bf_set(lpfc_mbx_mq_create_ext_num_pages, 15954 &mq_create_ext->u.request, mq->page_count); 15955 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 15956 &mq_create_ext->u.request, 1); 15957 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 15958 &mq_create_ext->u.request, 1); 15959 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 15960 &mq_create_ext->u.request, 1); 15961 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 15962 &mq_create_ext->u.request, 1); 15963 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 15964 &mq_create_ext->u.request, 1); 15965 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 15966 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15967 phba->sli4_hba.pc_sli4_params.mqv); 15968 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 15969 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 15970 cq->queue_id); 15971 else 15972 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 15973 cq->queue_id); 15974 switch (mq->entry_count) { 15975 default: 15976 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15977 "0362 Unsupported MQ count. (%d)\n", 15978 mq->entry_count); 15979 if (mq->entry_count < 16) { 15980 status = -EINVAL; 15981 goto out; 15982 } 15983 fallthrough; /* otherwise default to smallest count */ 15984 case 16: 15985 bf_set(lpfc_mq_context_ring_size, 15986 &mq_create_ext->u.request.context, 15987 LPFC_MQ_RING_SIZE_16); 15988 break; 15989 case 32: 15990 bf_set(lpfc_mq_context_ring_size, 15991 &mq_create_ext->u.request.context, 15992 LPFC_MQ_RING_SIZE_32); 15993 break; 15994 case 64: 15995 bf_set(lpfc_mq_context_ring_size, 15996 &mq_create_ext->u.request.context, 15997 LPFC_MQ_RING_SIZE_64); 15998 break; 15999 case 128: 16000 bf_set(lpfc_mq_context_ring_size, 16001 &mq_create_ext->u.request.context, 16002 LPFC_MQ_RING_SIZE_128); 16003 break; 16004 } 16005 list_for_each_entry(dmabuf, &mq->page_list, list) { 16006 memset(dmabuf->virt, 0, hw_page_size); 16007 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16008 putPaddrLow(dmabuf->phys); 16009 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16010 putPaddrHigh(dmabuf->phys); 16011 } 16012 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16013 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16014 &mq_create_ext->u.response); 16015 if (rc != MBX_SUCCESS) { 16016 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16017 "2795 MQ_CREATE_EXT failed with " 16018 "status x%x. Failback to MQ_CREATE.\n", 16019 rc); 16020 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16021 mq_create = &mbox->u.mqe.un.mq_create; 16022 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16023 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16024 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16025 &mq_create->u.response); 16026 } 16027 16028 /* The IOCTL status is embedded in the mailbox subheader. */ 16029 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16030 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16031 if (shdr_status || shdr_add_status || rc) { 16032 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16033 "2502 MQ_CREATE mailbox failed with " 16034 "status x%x add_status x%x, mbx status x%x\n", 16035 shdr_status, shdr_add_status, rc); 16036 status = -ENXIO; 16037 goto out; 16038 } 16039 if (mq->queue_id == 0xFFFF) { 16040 status = -ENXIO; 16041 goto out; 16042 } 16043 mq->type = LPFC_MQ; 16044 mq->assoc_qid = cq->queue_id; 16045 mq->subtype = subtype; 16046 mq->host_index = 0; 16047 mq->hba_index = 0; 16048 16049 /* link the mq onto the parent cq child list */ 16050 list_add_tail(&mq->list, &cq->child_list); 16051 out: 16052 mempool_free(mbox, phba->mbox_mem_pool); 16053 return status; 16054 } 16055 16056 /** 16057 * lpfc_wq_create - Create a Work Queue on the HBA 16058 * @phba: HBA structure that indicates port to create a queue on. 16059 * @wq: The queue structure to use to create the work queue. 16060 * @cq: The completion queue to bind this work queue to. 16061 * @subtype: The subtype of the work queue indicating its functionality. 16062 * 16063 * This function creates a work queue, as detailed in @wq, on a port, described 16064 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16065 * 16066 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16067 * is used to get the entry count and entry size that are necessary to 16068 * determine the number of pages to allocate and use for this queue. The @cq 16069 * is used to indicate which completion queue to bind this work queue to. This 16070 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16071 * work queue. This function is asynchronous and will wait for the mailbox 16072 * command to finish before continuing. 16073 * 16074 * On success this function will return a zero. If unable to allocate enough 16075 * memory this function will return -ENOMEM. If the queue create mailbox command 16076 * fails this function will return -ENXIO. 16077 **/ 16078 int 16079 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16080 struct lpfc_queue *cq, uint32_t subtype) 16081 { 16082 struct lpfc_mbx_wq_create *wq_create; 16083 struct lpfc_dmabuf *dmabuf; 16084 LPFC_MBOXQ_t *mbox; 16085 int rc, length, status = 0; 16086 uint32_t shdr_status, shdr_add_status; 16087 union lpfc_sli4_cfg_shdr *shdr; 16088 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16089 struct dma_address *page; 16090 void __iomem *bar_memmap_p; 16091 uint32_t db_offset; 16092 uint16_t pci_barset; 16093 uint8_t dpp_barset; 16094 uint32_t dpp_offset; 16095 uint8_t wq_create_version; 16096 #ifdef CONFIG_X86 16097 unsigned long pg_addr; 16098 #endif 16099 16100 /* sanity check on queue memory */ 16101 if (!wq || !cq) 16102 return -ENODEV; 16103 if (!phba->sli4_hba.pc_sli4_params.supported) 16104 hw_page_size = wq->page_size; 16105 16106 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16107 if (!mbox) 16108 return -ENOMEM; 16109 length = (sizeof(struct lpfc_mbx_wq_create) - 16110 sizeof(struct lpfc_sli4_cfg_mhdr)); 16111 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16112 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16113 length, LPFC_SLI4_MBX_EMBED); 16114 wq_create = &mbox->u.mqe.un.wq_create; 16115 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16116 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16117 wq->page_count); 16118 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16119 cq->queue_id); 16120 16121 /* wqv is the earliest version supported, NOT the latest */ 16122 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16123 phba->sli4_hba.pc_sli4_params.wqv); 16124 16125 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16126 (wq->page_size > SLI4_PAGE_SIZE)) 16127 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16128 else 16129 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16130 16131 switch (wq_create_version) { 16132 case LPFC_Q_CREATE_VERSION_1: 16133 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16134 wq->entry_count); 16135 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16136 LPFC_Q_CREATE_VERSION_1); 16137 16138 switch (wq->entry_size) { 16139 default: 16140 case 64: 16141 bf_set(lpfc_mbx_wq_create_wqe_size, 16142 &wq_create->u.request_1, 16143 LPFC_WQ_WQE_SIZE_64); 16144 break; 16145 case 128: 16146 bf_set(lpfc_mbx_wq_create_wqe_size, 16147 &wq_create->u.request_1, 16148 LPFC_WQ_WQE_SIZE_128); 16149 break; 16150 } 16151 /* Request DPP by default */ 16152 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16153 bf_set(lpfc_mbx_wq_create_page_size, 16154 &wq_create->u.request_1, 16155 (wq->page_size / SLI4_PAGE_SIZE)); 16156 page = wq_create->u.request_1.page; 16157 break; 16158 default: 16159 page = wq_create->u.request.page; 16160 break; 16161 } 16162 16163 list_for_each_entry(dmabuf, &wq->page_list, list) { 16164 memset(dmabuf->virt, 0, hw_page_size); 16165 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16166 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16167 } 16168 16169 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16170 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16171 16172 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16173 /* The IOCTL status is embedded in the mailbox subheader. */ 16174 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16175 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16176 if (shdr_status || shdr_add_status || rc) { 16177 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16178 "2503 WQ_CREATE mailbox failed with " 16179 "status x%x add_status x%x, mbx status x%x\n", 16180 shdr_status, shdr_add_status, rc); 16181 status = -ENXIO; 16182 goto out; 16183 } 16184 16185 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16186 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16187 &wq_create->u.response); 16188 else 16189 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16190 &wq_create->u.response_1); 16191 16192 if (wq->queue_id == 0xFFFF) { 16193 status = -ENXIO; 16194 goto out; 16195 } 16196 16197 wq->db_format = LPFC_DB_LIST_FORMAT; 16198 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16199 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16200 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16201 &wq_create->u.response); 16202 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16203 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16204 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16205 "3265 WQ[%d] doorbell format " 16206 "not supported: x%x\n", 16207 wq->queue_id, wq->db_format); 16208 status = -EINVAL; 16209 goto out; 16210 } 16211 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16212 &wq_create->u.response); 16213 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16214 pci_barset); 16215 if (!bar_memmap_p) { 16216 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16217 "3263 WQ[%d] failed to memmap " 16218 "pci barset:x%x\n", 16219 wq->queue_id, pci_barset); 16220 status = -ENOMEM; 16221 goto out; 16222 } 16223 db_offset = wq_create->u.response.doorbell_offset; 16224 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 16225 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 16226 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16227 "3252 WQ[%d] doorbell offset " 16228 "not supported: x%x\n", 16229 wq->queue_id, db_offset); 16230 status = -EINVAL; 16231 goto out; 16232 } 16233 wq->db_regaddr = bar_memmap_p + db_offset; 16234 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16235 "3264 WQ[%d]: barset:x%x, offset:x%x, " 16236 "format:x%x\n", wq->queue_id, 16237 pci_barset, db_offset, wq->db_format); 16238 } else 16239 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16240 } else { 16241 /* Check if DPP was honored by the firmware */ 16242 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 16243 &wq_create->u.response_1); 16244 if (wq->dpp_enable) { 16245 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 16246 &wq_create->u.response_1); 16247 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16248 pci_barset); 16249 if (!bar_memmap_p) { 16250 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16251 "3267 WQ[%d] failed to memmap " 16252 "pci barset:x%x\n", 16253 wq->queue_id, pci_barset); 16254 status = -ENOMEM; 16255 goto out; 16256 } 16257 db_offset = wq_create->u.response_1.doorbell_offset; 16258 wq->db_regaddr = bar_memmap_p + db_offset; 16259 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 16260 &wq_create->u.response_1); 16261 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 16262 &wq_create->u.response_1); 16263 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16264 dpp_barset); 16265 if (!bar_memmap_p) { 16266 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16267 "3268 WQ[%d] failed to memmap " 16268 "pci barset:x%x\n", 16269 wq->queue_id, dpp_barset); 16270 status = -ENOMEM; 16271 goto out; 16272 } 16273 dpp_offset = wq_create->u.response_1.dpp_offset; 16274 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 16275 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16276 "3271 WQ[%d]: barset:x%x, offset:x%x, " 16277 "dpp_id:x%x dpp_barset:x%x " 16278 "dpp_offset:x%x\n", 16279 wq->queue_id, pci_barset, db_offset, 16280 wq->dpp_id, dpp_barset, dpp_offset); 16281 16282 #ifdef CONFIG_X86 16283 /* Enable combined writes for DPP aperture */ 16284 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 16285 rc = set_memory_wc(pg_addr, 1); 16286 if (rc) { 16287 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16288 "3272 Cannot setup Combined " 16289 "Write on WQ[%d] - disable DPP\n", 16290 wq->queue_id); 16291 phba->cfg_enable_dpp = 0; 16292 } 16293 #else 16294 phba->cfg_enable_dpp = 0; 16295 #endif 16296 } else 16297 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16298 } 16299 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 16300 if (wq->pring == NULL) { 16301 status = -ENOMEM; 16302 goto out; 16303 } 16304 wq->type = LPFC_WQ; 16305 wq->assoc_qid = cq->queue_id; 16306 wq->subtype = subtype; 16307 wq->host_index = 0; 16308 wq->hba_index = 0; 16309 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 16310 16311 /* link the wq onto the parent cq child list */ 16312 list_add_tail(&wq->list, &cq->child_list); 16313 out: 16314 mempool_free(mbox, phba->mbox_mem_pool); 16315 return status; 16316 } 16317 16318 /** 16319 * lpfc_rq_create - Create a Receive Queue on the HBA 16320 * @phba: HBA structure that indicates port to create a queue on. 16321 * @hrq: The queue structure to use to create the header receive queue. 16322 * @drq: The queue structure to use to create the data receive queue. 16323 * @cq: The completion queue to bind this work queue to. 16324 * @subtype: The subtype of the work queue indicating its functionality. 16325 * 16326 * This function creates a receive buffer queue pair , as detailed in @hrq and 16327 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16328 * to the HBA. 16329 * 16330 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16331 * struct is used to get the entry count that is necessary to determine the 16332 * number of pages to use for this queue. The @cq is used to indicate which 16333 * completion queue to bind received buffers that are posted to these queues to. 16334 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16335 * receive queue pair. This function is asynchronous and will wait for the 16336 * mailbox command to finish before continuing. 16337 * 16338 * On success this function will return a zero. If unable to allocate enough 16339 * memory this function will return -ENOMEM. If the queue create mailbox command 16340 * fails this function will return -ENXIO. 16341 **/ 16342 int 16343 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16344 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 16345 { 16346 struct lpfc_mbx_rq_create *rq_create; 16347 struct lpfc_dmabuf *dmabuf; 16348 LPFC_MBOXQ_t *mbox; 16349 int rc, length, status = 0; 16350 uint32_t shdr_status, shdr_add_status; 16351 union lpfc_sli4_cfg_shdr *shdr; 16352 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16353 void __iomem *bar_memmap_p; 16354 uint32_t db_offset; 16355 uint16_t pci_barset; 16356 16357 /* sanity check on queue memory */ 16358 if (!hrq || !drq || !cq) 16359 return -ENODEV; 16360 if (!phba->sli4_hba.pc_sli4_params.supported) 16361 hw_page_size = SLI4_PAGE_SIZE; 16362 16363 if (hrq->entry_count != drq->entry_count) 16364 return -EINVAL; 16365 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16366 if (!mbox) 16367 return -ENOMEM; 16368 length = (sizeof(struct lpfc_mbx_rq_create) - 16369 sizeof(struct lpfc_sli4_cfg_mhdr)); 16370 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16371 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16372 length, LPFC_SLI4_MBX_EMBED); 16373 rq_create = &mbox->u.mqe.un.rq_create; 16374 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16375 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16376 phba->sli4_hba.pc_sli4_params.rqv); 16377 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16378 bf_set(lpfc_rq_context_rqe_count_1, 16379 &rq_create->u.request.context, 16380 hrq->entry_count); 16381 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 16382 bf_set(lpfc_rq_context_rqe_size, 16383 &rq_create->u.request.context, 16384 LPFC_RQE_SIZE_8); 16385 bf_set(lpfc_rq_context_page_size, 16386 &rq_create->u.request.context, 16387 LPFC_RQ_PAGE_SIZE_4096); 16388 } else { 16389 switch (hrq->entry_count) { 16390 default: 16391 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16392 "2535 Unsupported RQ count. (%d)\n", 16393 hrq->entry_count); 16394 if (hrq->entry_count < 512) { 16395 status = -EINVAL; 16396 goto out; 16397 } 16398 fallthrough; /* otherwise default to smallest count */ 16399 case 512: 16400 bf_set(lpfc_rq_context_rqe_count, 16401 &rq_create->u.request.context, 16402 LPFC_RQ_RING_SIZE_512); 16403 break; 16404 case 1024: 16405 bf_set(lpfc_rq_context_rqe_count, 16406 &rq_create->u.request.context, 16407 LPFC_RQ_RING_SIZE_1024); 16408 break; 16409 case 2048: 16410 bf_set(lpfc_rq_context_rqe_count, 16411 &rq_create->u.request.context, 16412 LPFC_RQ_RING_SIZE_2048); 16413 break; 16414 case 4096: 16415 bf_set(lpfc_rq_context_rqe_count, 16416 &rq_create->u.request.context, 16417 LPFC_RQ_RING_SIZE_4096); 16418 break; 16419 } 16420 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 16421 LPFC_HDR_BUF_SIZE); 16422 } 16423 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16424 cq->queue_id); 16425 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16426 hrq->page_count); 16427 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16428 memset(dmabuf->virt, 0, hw_page_size); 16429 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16430 putPaddrLow(dmabuf->phys); 16431 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16432 putPaddrHigh(dmabuf->phys); 16433 } 16434 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16435 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16436 16437 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16438 /* The IOCTL status is embedded in the mailbox subheader. */ 16439 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16440 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16441 if (shdr_status || shdr_add_status || rc) { 16442 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16443 "2504 RQ_CREATE mailbox failed with " 16444 "status x%x add_status x%x, mbx status x%x\n", 16445 shdr_status, shdr_add_status, rc); 16446 status = -ENXIO; 16447 goto out; 16448 } 16449 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16450 if (hrq->queue_id == 0xFFFF) { 16451 status = -ENXIO; 16452 goto out; 16453 } 16454 16455 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16456 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 16457 &rq_create->u.response); 16458 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 16459 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 16460 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16461 "3262 RQ [%d] doorbell format not " 16462 "supported: x%x\n", hrq->queue_id, 16463 hrq->db_format); 16464 status = -EINVAL; 16465 goto out; 16466 } 16467 16468 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 16469 &rq_create->u.response); 16470 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 16471 if (!bar_memmap_p) { 16472 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16473 "3269 RQ[%d] failed to memmap pci " 16474 "barset:x%x\n", hrq->queue_id, 16475 pci_barset); 16476 status = -ENOMEM; 16477 goto out; 16478 } 16479 16480 db_offset = rq_create->u.response.doorbell_offset; 16481 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 16482 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 16483 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16484 "3270 RQ[%d] doorbell offset not " 16485 "supported: x%x\n", hrq->queue_id, 16486 db_offset); 16487 status = -EINVAL; 16488 goto out; 16489 } 16490 hrq->db_regaddr = bar_memmap_p + db_offset; 16491 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16492 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 16493 "format:x%x\n", hrq->queue_id, pci_barset, 16494 db_offset, hrq->db_format); 16495 } else { 16496 hrq->db_format = LPFC_DB_RING_FORMAT; 16497 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16498 } 16499 hrq->type = LPFC_HRQ; 16500 hrq->assoc_qid = cq->queue_id; 16501 hrq->subtype = subtype; 16502 hrq->host_index = 0; 16503 hrq->hba_index = 0; 16504 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16505 16506 /* now create the data queue */ 16507 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16508 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16509 length, LPFC_SLI4_MBX_EMBED); 16510 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16511 phba->sli4_hba.pc_sli4_params.rqv); 16512 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16513 bf_set(lpfc_rq_context_rqe_count_1, 16514 &rq_create->u.request.context, hrq->entry_count); 16515 if (subtype == LPFC_NVMET) 16516 rq_create->u.request.context.buffer_size = 16517 LPFC_NVMET_DATA_BUF_SIZE; 16518 else 16519 rq_create->u.request.context.buffer_size = 16520 LPFC_DATA_BUF_SIZE; 16521 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 16522 LPFC_RQE_SIZE_8); 16523 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 16524 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16525 } else { 16526 switch (drq->entry_count) { 16527 default: 16528 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16529 "2536 Unsupported RQ count. (%d)\n", 16530 drq->entry_count); 16531 if (drq->entry_count < 512) { 16532 status = -EINVAL; 16533 goto out; 16534 } 16535 fallthrough; /* otherwise default to smallest count */ 16536 case 512: 16537 bf_set(lpfc_rq_context_rqe_count, 16538 &rq_create->u.request.context, 16539 LPFC_RQ_RING_SIZE_512); 16540 break; 16541 case 1024: 16542 bf_set(lpfc_rq_context_rqe_count, 16543 &rq_create->u.request.context, 16544 LPFC_RQ_RING_SIZE_1024); 16545 break; 16546 case 2048: 16547 bf_set(lpfc_rq_context_rqe_count, 16548 &rq_create->u.request.context, 16549 LPFC_RQ_RING_SIZE_2048); 16550 break; 16551 case 4096: 16552 bf_set(lpfc_rq_context_rqe_count, 16553 &rq_create->u.request.context, 16554 LPFC_RQ_RING_SIZE_4096); 16555 break; 16556 } 16557 if (subtype == LPFC_NVMET) 16558 bf_set(lpfc_rq_context_buf_size, 16559 &rq_create->u.request.context, 16560 LPFC_NVMET_DATA_BUF_SIZE); 16561 else 16562 bf_set(lpfc_rq_context_buf_size, 16563 &rq_create->u.request.context, 16564 LPFC_DATA_BUF_SIZE); 16565 } 16566 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16567 cq->queue_id); 16568 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16569 drq->page_count); 16570 list_for_each_entry(dmabuf, &drq->page_list, list) { 16571 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16572 putPaddrLow(dmabuf->phys); 16573 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16574 putPaddrHigh(dmabuf->phys); 16575 } 16576 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16577 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16578 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16579 /* The IOCTL status is embedded in the mailbox subheader. */ 16580 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16581 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16582 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16583 if (shdr_status || shdr_add_status || rc) { 16584 status = -ENXIO; 16585 goto out; 16586 } 16587 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16588 if (drq->queue_id == 0xFFFF) { 16589 status = -ENXIO; 16590 goto out; 16591 } 16592 drq->type = LPFC_DRQ; 16593 drq->assoc_qid = cq->queue_id; 16594 drq->subtype = subtype; 16595 drq->host_index = 0; 16596 drq->hba_index = 0; 16597 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16598 16599 /* link the header and data RQs onto the parent cq child list */ 16600 list_add_tail(&hrq->list, &cq->child_list); 16601 list_add_tail(&drq->list, &cq->child_list); 16602 16603 out: 16604 mempool_free(mbox, phba->mbox_mem_pool); 16605 return status; 16606 } 16607 16608 /** 16609 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 16610 * @phba: HBA structure that indicates port to create a queue on. 16611 * @hrqp: The queue structure array to use to create the header receive queues. 16612 * @drqp: The queue structure array to use to create the data receive queues. 16613 * @cqp: The completion queue array to bind these receive queues to. 16614 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16615 * 16616 * This function creates a receive buffer queue pair , as detailed in @hrq and 16617 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16618 * to the HBA. 16619 * 16620 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16621 * struct is used to get the entry count that is necessary to determine the 16622 * number of pages to use for this queue. The @cq is used to indicate which 16623 * completion queue to bind received buffers that are posted to these queues to. 16624 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16625 * receive queue pair. This function is asynchronous and will wait for the 16626 * mailbox command to finish before continuing. 16627 * 16628 * On success this function will return a zero. If unable to allocate enough 16629 * memory this function will return -ENOMEM. If the queue create mailbox command 16630 * fails this function will return -ENXIO. 16631 **/ 16632 int 16633 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 16634 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 16635 uint32_t subtype) 16636 { 16637 struct lpfc_queue *hrq, *drq, *cq; 16638 struct lpfc_mbx_rq_create_v2 *rq_create; 16639 struct lpfc_dmabuf *dmabuf; 16640 LPFC_MBOXQ_t *mbox; 16641 int rc, length, alloclen, status = 0; 16642 int cnt, idx, numrq, page_idx = 0; 16643 uint32_t shdr_status, shdr_add_status; 16644 union lpfc_sli4_cfg_shdr *shdr; 16645 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16646 16647 numrq = phba->cfg_nvmet_mrq; 16648 /* sanity check on array memory */ 16649 if (!hrqp || !drqp || !cqp || !numrq) 16650 return -ENODEV; 16651 if (!phba->sli4_hba.pc_sli4_params.supported) 16652 hw_page_size = SLI4_PAGE_SIZE; 16653 16654 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16655 if (!mbox) 16656 return -ENOMEM; 16657 16658 length = sizeof(struct lpfc_mbx_rq_create_v2); 16659 length += ((2 * numrq * hrqp[0]->page_count) * 16660 sizeof(struct dma_address)); 16661 16662 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16663 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 16664 LPFC_SLI4_MBX_NEMBED); 16665 if (alloclen < length) { 16666 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16667 "3099 Allocated DMA memory size (%d) is " 16668 "less than the requested DMA memory size " 16669 "(%d)\n", alloclen, length); 16670 status = -ENOMEM; 16671 goto out; 16672 } 16673 16674 16675 16676 rq_create = mbox->sge_array->addr[0]; 16677 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 16678 16679 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 16680 cnt = 0; 16681 16682 for (idx = 0; idx < numrq; idx++) { 16683 hrq = hrqp[idx]; 16684 drq = drqp[idx]; 16685 cq = cqp[idx]; 16686 16687 /* sanity check on queue memory */ 16688 if (!hrq || !drq || !cq) { 16689 status = -ENODEV; 16690 goto out; 16691 } 16692 16693 if (hrq->entry_count != drq->entry_count) { 16694 status = -EINVAL; 16695 goto out; 16696 } 16697 16698 if (idx == 0) { 16699 bf_set(lpfc_mbx_rq_create_num_pages, 16700 &rq_create->u.request, 16701 hrq->page_count); 16702 bf_set(lpfc_mbx_rq_create_rq_cnt, 16703 &rq_create->u.request, (numrq * 2)); 16704 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 16705 1); 16706 bf_set(lpfc_rq_context_base_cq, 16707 &rq_create->u.request.context, 16708 cq->queue_id); 16709 bf_set(lpfc_rq_context_data_size, 16710 &rq_create->u.request.context, 16711 LPFC_NVMET_DATA_BUF_SIZE); 16712 bf_set(lpfc_rq_context_hdr_size, 16713 &rq_create->u.request.context, 16714 LPFC_HDR_BUF_SIZE); 16715 bf_set(lpfc_rq_context_rqe_count_1, 16716 &rq_create->u.request.context, 16717 hrq->entry_count); 16718 bf_set(lpfc_rq_context_rqe_size, 16719 &rq_create->u.request.context, 16720 LPFC_RQE_SIZE_8); 16721 bf_set(lpfc_rq_context_page_size, 16722 &rq_create->u.request.context, 16723 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16724 } 16725 rc = 0; 16726 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16727 memset(dmabuf->virt, 0, hw_page_size); 16728 cnt = page_idx + dmabuf->buffer_tag; 16729 rq_create->u.request.page[cnt].addr_lo = 16730 putPaddrLow(dmabuf->phys); 16731 rq_create->u.request.page[cnt].addr_hi = 16732 putPaddrHigh(dmabuf->phys); 16733 rc++; 16734 } 16735 page_idx += rc; 16736 16737 rc = 0; 16738 list_for_each_entry(dmabuf, &drq->page_list, list) { 16739 memset(dmabuf->virt, 0, hw_page_size); 16740 cnt = page_idx + dmabuf->buffer_tag; 16741 rq_create->u.request.page[cnt].addr_lo = 16742 putPaddrLow(dmabuf->phys); 16743 rq_create->u.request.page[cnt].addr_hi = 16744 putPaddrHigh(dmabuf->phys); 16745 rc++; 16746 } 16747 page_idx += rc; 16748 16749 hrq->db_format = LPFC_DB_RING_FORMAT; 16750 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16751 hrq->type = LPFC_HRQ; 16752 hrq->assoc_qid = cq->queue_id; 16753 hrq->subtype = subtype; 16754 hrq->host_index = 0; 16755 hrq->hba_index = 0; 16756 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16757 16758 drq->db_format = LPFC_DB_RING_FORMAT; 16759 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16760 drq->type = LPFC_DRQ; 16761 drq->assoc_qid = cq->queue_id; 16762 drq->subtype = subtype; 16763 drq->host_index = 0; 16764 drq->hba_index = 0; 16765 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16766 16767 list_add_tail(&hrq->list, &cq->child_list); 16768 list_add_tail(&drq->list, &cq->child_list); 16769 } 16770 16771 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16772 /* The IOCTL status is embedded in the mailbox subheader. */ 16773 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16774 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16775 if (shdr_status || shdr_add_status || rc) { 16776 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16777 "3120 RQ_CREATE mailbox failed with " 16778 "status x%x add_status x%x, mbx status x%x\n", 16779 shdr_status, shdr_add_status, rc); 16780 status = -ENXIO; 16781 goto out; 16782 } 16783 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16784 if (rc == 0xFFFF) { 16785 status = -ENXIO; 16786 goto out; 16787 } 16788 16789 /* Initialize all RQs with associated queue id */ 16790 for (idx = 0; idx < numrq; idx++) { 16791 hrq = hrqp[idx]; 16792 hrq->queue_id = rc + (2 * idx); 16793 drq = drqp[idx]; 16794 drq->queue_id = rc + (2 * idx) + 1; 16795 } 16796 16797 out: 16798 lpfc_sli4_mbox_cmd_free(phba, mbox); 16799 return status; 16800 } 16801 16802 /** 16803 * lpfc_eq_destroy - Destroy an event Queue on the HBA 16804 * @phba: HBA structure that indicates port to destroy a queue on. 16805 * @eq: The queue structure associated with the queue to destroy. 16806 * 16807 * This function destroys a queue, as detailed in @eq by sending an mailbox 16808 * command, specific to the type of queue, to the HBA. 16809 * 16810 * The @eq struct is used to get the queue ID of the queue to destroy. 16811 * 16812 * On success this function will return a zero. If the queue destroy mailbox 16813 * command fails this function will return -ENXIO. 16814 **/ 16815 int 16816 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 16817 { 16818 LPFC_MBOXQ_t *mbox; 16819 int rc, length, status = 0; 16820 uint32_t shdr_status, shdr_add_status; 16821 union lpfc_sli4_cfg_shdr *shdr; 16822 16823 /* sanity check on queue memory */ 16824 if (!eq) 16825 return -ENODEV; 16826 16827 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 16828 if (!mbox) 16829 return -ENOMEM; 16830 length = (sizeof(struct lpfc_mbx_eq_destroy) - 16831 sizeof(struct lpfc_sli4_cfg_mhdr)); 16832 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16833 LPFC_MBOX_OPCODE_EQ_DESTROY, 16834 length, LPFC_SLI4_MBX_EMBED); 16835 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 16836 eq->queue_id); 16837 mbox->vport = eq->phba->pport; 16838 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16839 16840 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 16841 /* The IOCTL status is embedded in the mailbox subheader. */ 16842 shdr = (union lpfc_sli4_cfg_shdr *) 16843 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 16844 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16845 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16846 if (shdr_status || shdr_add_status || rc) { 16847 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16848 "2505 EQ_DESTROY mailbox failed with " 16849 "status x%x add_status x%x, mbx status x%x\n", 16850 shdr_status, shdr_add_status, rc); 16851 status = -ENXIO; 16852 } 16853 16854 /* Remove eq from any list */ 16855 list_del_init(&eq->list); 16856 mempool_free(mbox, eq->phba->mbox_mem_pool); 16857 return status; 16858 } 16859 16860 /** 16861 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 16862 * @phba: HBA structure that indicates port to destroy a queue on. 16863 * @cq: The queue structure associated with the queue to destroy. 16864 * 16865 * This function destroys a queue, as detailed in @cq by sending an mailbox 16866 * command, specific to the type of queue, to the HBA. 16867 * 16868 * The @cq struct is used to get the queue ID of the queue to destroy. 16869 * 16870 * On success this function will return a zero. If the queue destroy mailbox 16871 * command fails this function will return -ENXIO. 16872 **/ 16873 int 16874 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 16875 { 16876 LPFC_MBOXQ_t *mbox; 16877 int rc, length, status = 0; 16878 uint32_t shdr_status, shdr_add_status; 16879 union lpfc_sli4_cfg_shdr *shdr; 16880 16881 /* sanity check on queue memory */ 16882 if (!cq) 16883 return -ENODEV; 16884 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 16885 if (!mbox) 16886 return -ENOMEM; 16887 length = (sizeof(struct lpfc_mbx_cq_destroy) - 16888 sizeof(struct lpfc_sli4_cfg_mhdr)); 16889 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16890 LPFC_MBOX_OPCODE_CQ_DESTROY, 16891 length, LPFC_SLI4_MBX_EMBED); 16892 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 16893 cq->queue_id); 16894 mbox->vport = cq->phba->pport; 16895 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16896 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 16897 /* The IOCTL status is embedded in the mailbox subheader. */ 16898 shdr = (union lpfc_sli4_cfg_shdr *) 16899 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 16900 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16901 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16902 if (shdr_status || shdr_add_status || rc) { 16903 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16904 "2506 CQ_DESTROY mailbox failed with " 16905 "status x%x add_status x%x, mbx status x%x\n", 16906 shdr_status, shdr_add_status, rc); 16907 status = -ENXIO; 16908 } 16909 /* Remove cq from any list */ 16910 list_del_init(&cq->list); 16911 mempool_free(mbox, cq->phba->mbox_mem_pool); 16912 return status; 16913 } 16914 16915 /** 16916 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 16917 * @phba: HBA structure that indicates port to destroy a queue on. 16918 * @mq: The queue structure associated with the queue to destroy. 16919 * 16920 * This function destroys a queue, as detailed in @mq by sending an mailbox 16921 * command, specific to the type of queue, to the HBA. 16922 * 16923 * The @mq struct is used to get the queue ID of the queue to destroy. 16924 * 16925 * On success this function will return a zero. If the queue destroy mailbox 16926 * command fails this function will return -ENXIO. 16927 **/ 16928 int 16929 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 16930 { 16931 LPFC_MBOXQ_t *mbox; 16932 int rc, length, status = 0; 16933 uint32_t shdr_status, shdr_add_status; 16934 union lpfc_sli4_cfg_shdr *shdr; 16935 16936 /* sanity check on queue memory */ 16937 if (!mq) 16938 return -ENODEV; 16939 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 16940 if (!mbox) 16941 return -ENOMEM; 16942 length = (sizeof(struct lpfc_mbx_mq_destroy) - 16943 sizeof(struct lpfc_sli4_cfg_mhdr)); 16944 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16945 LPFC_MBOX_OPCODE_MQ_DESTROY, 16946 length, LPFC_SLI4_MBX_EMBED); 16947 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 16948 mq->queue_id); 16949 mbox->vport = mq->phba->pport; 16950 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16951 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 16952 /* The IOCTL status is embedded in the mailbox subheader. */ 16953 shdr = (union lpfc_sli4_cfg_shdr *) 16954 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 16955 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16956 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16957 if (shdr_status || shdr_add_status || rc) { 16958 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16959 "2507 MQ_DESTROY mailbox failed with " 16960 "status x%x add_status x%x, mbx status x%x\n", 16961 shdr_status, shdr_add_status, rc); 16962 status = -ENXIO; 16963 } 16964 /* Remove mq from any list */ 16965 list_del_init(&mq->list); 16966 mempool_free(mbox, mq->phba->mbox_mem_pool); 16967 return status; 16968 } 16969 16970 /** 16971 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 16972 * @phba: HBA structure that indicates port to destroy a queue on. 16973 * @wq: The queue structure associated with the queue to destroy. 16974 * 16975 * This function destroys a queue, as detailed in @wq by sending an mailbox 16976 * command, specific to the type of queue, to the HBA. 16977 * 16978 * The @wq struct is used to get the queue ID of the queue to destroy. 16979 * 16980 * On success this function will return a zero. If the queue destroy mailbox 16981 * command fails this function will return -ENXIO. 16982 **/ 16983 int 16984 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 16985 { 16986 LPFC_MBOXQ_t *mbox; 16987 int rc, length, status = 0; 16988 uint32_t shdr_status, shdr_add_status; 16989 union lpfc_sli4_cfg_shdr *shdr; 16990 16991 /* sanity check on queue memory */ 16992 if (!wq) 16993 return -ENODEV; 16994 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 16995 if (!mbox) 16996 return -ENOMEM; 16997 length = (sizeof(struct lpfc_mbx_wq_destroy) - 16998 sizeof(struct lpfc_sli4_cfg_mhdr)); 16999 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17000 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17001 length, LPFC_SLI4_MBX_EMBED); 17002 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17003 wq->queue_id); 17004 mbox->vport = wq->phba->pport; 17005 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17006 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17007 shdr = (union lpfc_sli4_cfg_shdr *) 17008 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17009 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17010 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17011 if (shdr_status || shdr_add_status || rc) { 17012 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17013 "2508 WQ_DESTROY mailbox failed with " 17014 "status x%x add_status x%x, mbx status x%x\n", 17015 shdr_status, shdr_add_status, rc); 17016 status = -ENXIO; 17017 } 17018 /* Remove wq from any list */ 17019 list_del_init(&wq->list); 17020 kfree(wq->pring); 17021 wq->pring = NULL; 17022 mempool_free(mbox, wq->phba->mbox_mem_pool); 17023 return status; 17024 } 17025 17026 /** 17027 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17028 * @phba: HBA structure that indicates port to destroy a queue on. 17029 * @hrq: The queue structure associated with the queue to destroy. 17030 * @drq: The queue structure associated with the queue to destroy. 17031 * 17032 * This function destroys a queue, as detailed in @rq by sending an mailbox 17033 * command, specific to the type of queue, to the HBA. 17034 * 17035 * The @rq struct is used to get the queue ID of the queue to destroy. 17036 * 17037 * On success this function will return a zero. If the queue destroy mailbox 17038 * command fails this function will return -ENXIO. 17039 **/ 17040 int 17041 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17042 struct lpfc_queue *drq) 17043 { 17044 LPFC_MBOXQ_t *mbox; 17045 int rc, length, status = 0; 17046 uint32_t shdr_status, shdr_add_status; 17047 union lpfc_sli4_cfg_shdr *shdr; 17048 17049 /* sanity check on queue memory */ 17050 if (!hrq || !drq) 17051 return -ENODEV; 17052 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17053 if (!mbox) 17054 return -ENOMEM; 17055 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17056 sizeof(struct lpfc_sli4_cfg_mhdr)); 17057 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17058 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17059 length, LPFC_SLI4_MBX_EMBED); 17060 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17061 hrq->queue_id); 17062 mbox->vport = hrq->phba->pport; 17063 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17064 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17065 /* The IOCTL status is embedded in the mailbox subheader. */ 17066 shdr = (union lpfc_sli4_cfg_shdr *) 17067 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17068 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17069 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17070 if (shdr_status || shdr_add_status || rc) { 17071 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17072 "2509 RQ_DESTROY mailbox failed with " 17073 "status x%x add_status x%x, mbx status x%x\n", 17074 shdr_status, shdr_add_status, rc); 17075 if (rc != MBX_TIMEOUT) 17076 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17077 return -ENXIO; 17078 } 17079 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17080 drq->queue_id); 17081 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17082 shdr = (union lpfc_sli4_cfg_shdr *) 17083 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17084 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17085 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17086 if (shdr_status || shdr_add_status || rc) { 17087 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17088 "2510 RQ_DESTROY mailbox failed with " 17089 "status x%x add_status x%x, mbx status x%x\n", 17090 shdr_status, shdr_add_status, rc); 17091 status = -ENXIO; 17092 } 17093 list_del_init(&hrq->list); 17094 list_del_init(&drq->list); 17095 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17096 return status; 17097 } 17098 17099 /** 17100 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17101 * @phba: The virtual port for which this call being executed. 17102 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17103 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17104 * @xritag: the xritag that ties this io to the SGL pages. 17105 * 17106 * This routine will post the sgl pages for the IO that has the xritag 17107 * that is in the iocbq structure. The xritag is assigned during iocbq 17108 * creation and persists for as long as the driver is loaded. 17109 * if the caller has fewer than 256 scatter gather segments to map then 17110 * pdma_phys_addr1 should be 0. 17111 * If the caller needs to map more than 256 scatter gather segment then 17112 * pdma_phys_addr1 should be a valid physical address. 17113 * physical address for SGLs must be 64 byte aligned. 17114 * If you are going to map 2 SGL's then the first one must have 256 entries 17115 * the second sgl can have between 1 and 256 entries. 17116 * 17117 * Return codes: 17118 * 0 - Success 17119 * -ENXIO, -ENOMEM - Failure 17120 **/ 17121 int 17122 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17123 dma_addr_t pdma_phys_addr0, 17124 dma_addr_t pdma_phys_addr1, 17125 uint16_t xritag) 17126 { 17127 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17128 LPFC_MBOXQ_t *mbox; 17129 int rc; 17130 uint32_t shdr_status, shdr_add_status; 17131 uint32_t mbox_tmo; 17132 union lpfc_sli4_cfg_shdr *shdr; 17133 17134 if (xritag == NO_XRI) { 17135 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17136 "0364 Invalid param:\n"); 17137 return -EINVAL; 17138 } 17139 17140 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17141 if (!mbox) 17142 return -ENOMEM; 17143 17144 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17145 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17146 sizeof(struct lpfc_mbx_post_sgl_pages) - 17147 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17148 17149 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17150 &mbox->u.mqe.un.post_sgl_pages; 17151 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17152 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17153 17154 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17155 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17156 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17157 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17158 17159 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17160 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17161 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17162 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17163 if (!phba->sli4_hba.intr_enable) 17164 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17165 else { 17166 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17167 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17168 } 17169 /* The IOCTL status is embedded in the mailbox subheader. */ 17170 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17171 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17172 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17173 if (rc != MBX_TIMEOUT) 17174 mempool_free(mbox, phba->mbox_mem_pool); 17175 if (shdr_status || shdr_add_status || rc) { 17176 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17177 "2511 POST_SGL mailbox failed with " 17178 "status x%x add_status x%x, mbx status x%x\n", 17179 shdr_status, shdr_add_status, rc); 17180 } 17181 return 0; 17182 } 17183 17184 /** 17185 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17186 * @phba: pointer to lpfc hba data structure. 17187 * 17188 * This routine is invoked to post rpi header templates to the 17189 * HBA consistent with the SLI-4 interface spec. This routine 17190 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17191 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17192 * 17193 * Returns 17194 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17195 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17196 **/ 17197 static uint16_t 17198 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17199 { 17200 unsigned long xri; 17201 17202 /* 17203 * Fetch the next logical xri. Because this index is logical, 17204 * the driver starts at 0 each time. 17205 */ 17206 spin_lock_irq(&phba->hbalock); 17207 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 17208 phba->sli4_hba.max_cfg_param.max_xri, 0); 17209 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17210 spin_unlock_irq(&phba->hbalock); 17211 return NO_XRI; 17212 } else { 17213 set_bit(xri, phba->sli4_hba.xri_bmask); 17214 phba->sli4_hba.max_cfg_param.xri_used++; 17215 } 17216 spin_unlock_irq(&phba->hbalock); 17217 return xri; 17218 } 17219 17220 /** 17221 * lpfc_sli4_free_xri - Release an xri for reuse. 17222 * @phba: pointer to lpfc hba data structure. 17223 * @xri: xri to release. 17224 * 17225 * This routine is invoked to release an xri to the pool of 17226 * available rpis maintained by the driver. 17227 **/ 17228 static void 17229 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17230 { 17231 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 17232 phba->sli4_hba.max_cfg_param.xri_used--; 17233 } 17234 } 17235 17236 /** 17237 * lpfc_sli4_free_xri - Release an xri for reuse. 17238 * @phba: pointer to lpfc hba data structure. 17239 * @xri: xri to release. 17240 * 17241 * This routine is invoked to release an xri to the pool of 17242 * available rpis maintained by the driver. 17243 **/ 17244 void 17245 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17246 { 17247 spin_lock_irq(&phba->hbalock); 17248 __lpfc_sli4_free_xri(phba, xri); 17249 spin_unlock_irq(&phba->hbalock); 17250 } 17251 17252 /** 17253 * lpfc_sli4_next_xritag - Get an xritag for the io 17254 * @phba: Pointer to HBA context object. 17255 * 17256 * This function gets an xritag for the iocb. If there is no unused xritag 17257 * it will return 0xffff. 17258 * The function returns the allocated xritag if successful, else returns zero. 17259 * Zero is not a valid xritag. 17260 * The caller is not required to hold any lock. 17261 **/ 17262 uint16_t 17263 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 17264 { 17265 uint16_t xri_index; 17266 17267 xri_index = lpfc_sli4_alloc_xri(phba); 17268 if (xri_index == NO_XRI) 17269 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17270 "2004 Failed to allocate XRI.last XRITAG is %d" 17271 " Max XRI is %d, Used XRI is %d\n", 17272 xri_index, 17273 phba->sli4_hba.max_cfg_param.max_xri, 17274 phba->sli4_hba.max_cfg_param.xri_used); 17275 return xri_index; 17276 } 17277 17278 /** 17279 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 17280 * @phba: pointer to lpfc hba data structure. 17281 * @post_sgl_list: pointer to els sgl entry list. 17282 * @post_cnt: number of els sgl entries on the list. 17283 * 17284 * This routine is invoked to post a block of driver's sgl pages to the 17285 * HBA using non-embedded mailbox command. No Lock is held. This routine 17286 * is only called when the driver is loading and after all IO has been 17287 * stopped. 17288 **/ 17289 static int 17290 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 17291 struct list_head *post_sgl_list, 17292 int post_cnt) 17293 { 17294 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 17295 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17296 struct sgl_page_pairs *sgl_pg_pairs; 17297 void *viraddr; 17298 LPFC_MBOXQ_t *mbox; 17299 uint32_t reqlen, alloclen, pg_pairs; 17300 uint32_t mbox_tmo; 17301 uint16_t xritag_start = 0; 17302 int rc = 0; 17303 uint32_t shdr_status, shdr_add_status; 17304 union lpfc_sli4_cfg_shdr *shdr; 17305 17306 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 17307 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17308 if (reqlen > SLI4_PAGE_SIZE) { 17309 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17310 "2559 Block sgl registration required DMA " 17311 "size (%d) great than a page\n", reqlen); 17312 return -ENOMEM; 17313 } 17314 17315 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17316 if (!mbox) 17317 return -ENOMEM; 17318 17319 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17320 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17321 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 17322 LPFC_SLI4_MBX_NEMBED); 17323 17324 if (alloclen < reqlen) { 17325 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17326 "0285 Allocated DMA memory size (%d) is " 17327 "less than the requested DMA memory " 17328 "size (%d)\n", alloclen, reqlen); 17329 lpfc_sli4_mbox_cmd_free(phba, mbox); 17330 return -ENOMEM; 17331 } 17332 /* Set up the SGL pages in the non-embedded DMA pages */ 17333 viraddr = mbox->sge_array->addr[0]; 17334 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17335 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17336 17337 pg_pairs = 0; 17338 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 17339 /* Set up the sge entry */ 17340 sgl_pg_pairs->sgl_pg0_addr_lo = 17341 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 17342 sgl_pg_pairs->sgl_pg0_addr_hi = 17343 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 17344 sgl_pg_pairs->sgl_pg1_addr_lo = 17345 cpu_to_le32(putPaddrLow(0)); 17346 sgl_pg_pairs->sgl_pg1_addr_hi = 17347 cpu_to_le32(putPaddrHigh(0)); 17348 17349 /* Keep the first xritag on the list */ 17350 if (pg_pairs == 0) 17351 xritag_start = sglq_entry->sli4_xritag; 17352 sgl_pg_pairs++; 17353 pg_pairs++; 17354 } 17355 17356 /* Complete initialization and perform endian conversion. */ 17357 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17358 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 17359 sgl->word0 = cpu_to_le32(sgl->word0); 17360 17361 if (!phba->sli4_hba.intr_enable) 17362 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17363 else { 17364 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17365 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17366 } 17367 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 17368 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17369 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17370 if (rc != MBX_TIMEOUT) 17371 lpfc_sli4_mbox_cmd_free(phba, mbox); 17372 if (shdr_status || shdr_add_status || rc) { 17373 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17374 "2513 POST_SGL_BLOCK mailbox command failed " 17375 "status x%x add_status x%x mbx status x%x\n", 17376 shdr_status, shdr_add_status, rc); 17377 rc = -ENXIO; 17378 } 17379 return rc; 17380 } 17381 17382 /** 17383 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 17384 * @phba: pointer to lpfc hba data structure. 17385 * @nblist: pointer to nvme buffer list. 17386 * @count: number of scsi buffers on the list. 17387 * 17388 * This routine is invoked to post a block of @count scsi sgl pages from a 17389 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 17390 * No Lock is held. 17391 * 17392 **/ 17393 static int 17394 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 17395 int count) 17396 { 17397 struct lpfc_io_buf *lpfc_ncmd; 17398 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17399 struct sgl_page_pairs *sgl_pg_pairs; 17400 void *viraddr; 17401 LPFC_MBOXQ_t *mbox; 17402 uint32_t reqlen, alloclen, pg_pairs; 17403 uint32_t mbox_tmo; 17404 uint16_t xritag_start = 0; 17405 int rc = 0; 17406 uint32_t shdr_status, shdr_add_status; 17407 dma_addr_t pdma_phys_bpl1; 17408 union lpfc_sli4_cfg_shdr *shdr; 17409 17410 /* Calculate the requested length of the dma memory */ 17411 reqlen = count * sizeof(struct sgl_page_pairs) + 17412 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17413 if (reqlen > SLI4_PAGE_SIZE) { 17414 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 17415 "6118 Block sgl registration required DMA " 17416 "size (%d) great than a page\n", reqlen); 17417 return -ENOMEM; 17418 } 17419 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17420 if (!mbox) { 17421 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17422 "6119 Failed to allocate mbox cmd memory\n"); 17423 return -ENOMEM; 17424 } 17425 17426 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17427 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17428 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17429 reqlen, LPFC_SLI4_MBX_NEMBED); 17430 17431 if (alloclen < reqlen) { 17432 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17433 "6120 Allocated DMA memory size (%d) is " 17434 "less than the requested DMA memory " 17435 "size (%d)\n", alloclen, reqlen); 17436 lpfc_sli4_mbox_cmd_free(phba, mbox); 17437 return -ENOMEM; 17438 } 17439 17440 /* Get the first SGE entry from the non-embedded DMA memory */ 17441 viraddr = mbox->sge_array->addr[0]; 17442 17443 /* Set up the SGL pages in the non-embedded DMA pages */ 17444 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17445 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17446 17447 pg_pairs = 0; 17448 list_for_each_entry(lpfc_ncmd, nblist, list) { 17449 /* Set up the sge entry */ 17450 sgl_pg_pairs->sgl_pg0_addr_lo = 17451 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 17452 sgl_pg_pairs->sgl_pg0_addr_hi = 17453 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 17454 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 17455 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 17456 SGL_PAGE_SIZE; 17457 else 17458 pdma_phys_bpl1 = 0; 17459 sgl_pg_pairs->sgl_pg1_addr_lo = 17460 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 17461 sgl_pg_pairs->sgl_pg1_addr_hi = 17462 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 17463 /* Keep the first xritag on the list */ 17464 if (pg_pairs == 0) 17465 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 17466 sgl_pg_pairs++; 17467 pg_pairs++; 17468 } 17469 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17470 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 17471 /* Perform endian conversion if necessary */ 17472 sgl->word0 = cpu_to_le32(sgl->word0); 17473 17474 if (!phba->sli4_hba.intr_enable) { 17475 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17476 } else { 17477 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17478 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17479 } 17480 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 17481 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17482 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17483 if (rc != MBX_TIMEOUT) 17484 lpfc_sli4_mbox_cmd_free(phba, mbox); 17485 if (shdr_status || shdr_add_status || rc) { 17486 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17487 "6125 POST_SGL_BLOCK mailbox command failed " 17488 "status x%x add_status x%x mbx status x%x\n", 17489 shdr_status, shdr_add_status, rc); 17490 rc = -ENXIO; 17491 } 17492 return rc; 17493 } 17494 17495 /** 17496 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 17497 * @phba: pointer to lpfc hba data structure. 17498 * @post_nblist: pointer to the nvme buffer list. 17499 * @sb_count: number of nvme buffers. 17500 * 17501 * This routine walks a list of nvme buffers that was passed in. It attempts 17502 * to construct blocks of nvme buffer sgls which contains contiguous xris and 17503 * uses the non-embedded SGL block post mailbox commands to post to the port. 17504 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 17505 * embedded SGL post mailbox command for posting. The @post_nblist passed in 17506 * must be local list, thus no lock is needed when manipulate the list. 17507 * 17508 * Returns: 0 = failure, non-zero number of successfully posted buffers. 17509 **/ 17510 int 17511 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 17512 struct list_head *post_nblist, int sb_count) 17513 { 17514 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 17515 int status, sgl_size; 17516 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 17517 dma_addr_t pdma_phys_sgl1; 17518 int last_xritag = NO_XRI; 17519 int cur_xritag; 17520 LIST_HEAD(prep_nblist); 17521 LIST_HEAD(blck_nblist); 17522 LIST_HEAD(nvme_nblist); 17523 17524 /* sanity check */ 17525 if (sb_count <= 0) 17526 return -EINVAL; 17527 17528 sgl_size = phba->cfg_sg_dma_buf_size; 17529 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 17530 list_del_init(&lpfc_ncmd->list); 17531 block_cnt++; 17532 if ((last_xritag != NO_XRI) && 17533 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 17534 /* a hole in xri block, form a sgl posting block */ 17535 list_splice_init(&prep_nblist, &blck_nblist); 17536 post_cnt = block_cnt - 1; 17537 /* prepare list for next posting block */ 17538 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17539 block_cnt = 1; 17540 } else { 17541 /* prepare list for next posting block */ 17542 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17543 /* enough sgls for non-embed sgl mbox command */ 17544 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 17545 list_splice_init(&prep_nblist, &blck_nblist); 17546 post_cnt = block_cnt; 17547 block_cnt = 0; 17548 } 17549 } 17550 num_posting++; 17551 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17552 17553 /* end of repost sgl list condition for NVME buffers */ 17554 if (num_posting == sb_count) { 17555 if (post_cnt == 0) { 17556 /* last sgl posting block */ 17557 list_splice_init(&prep_nblist, &blck_nblist); 17558 post_cnt = block_cnt; 17559 } else if (block_cnt == 1) { 17560 /* last single sgl with non-contiguous xri */ 17561 if (sgl_size > SGL_PAGE_SIZE) 17562 pdma_phys_sgl1 = 17563 lpfc_ncmd->dma_phys_sgl + 17564 SGL_PAGE_SIZE; 17565 else 17566 pdma_phys_sgl1 = 0; 17567 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17568 status = lpfc_sli4_post_sgl( 17569 phba, lpfc_ncmd->dma_phys_sgl, 17570 pdma_phys_sgl1, cur_xritag); 17571 if (status) { 17572 /* Post error. Buffer unavailable. */ 17573 lpfc_ncmd->flags |= 17574 LPFC_SBUF_NOT_POSTED; 17575 } else { 17576 /* Post success. Bffer available. */ 17577 lpfc_ncmd->flags &= 17578 ~LPFC_SBUF_NOT_POSTED; 17579 lpfc_ncmd->status = IOSTAT_SUCCESS; 17580 num_posted++; 17581 } 17582 /* success, put on NVME buffer sgl list */ 17583 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17584 } 17585 } 17586 17587 /* continue until a nembed page worth of sgls */ 17588 if (post_cnt == 0) 17589 continue; 17590 17591 /* post block of NVME buffer list sgls */ 17592 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 17593 post_cnt); 17594 17595 /* don't reset xirtag due to hole in xri block */ 17596 if (block_cnt == 0) 17597 last_xritag = NO_XRI; 17598 17599 /* reset NVME buffer post count for next round of posting */ 17600 post_cnt = 0; 17601 17602 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 17603 while (!list_empty(&blck_nblist)) { 17604 list_remove_head(&blck_nblist, lpfc_ncmd, 17605 struct lpfc_io_buf, list); 17606 if (status) { 17607 /* Post error. Mark buffer unavailable. */ 17608 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 17609 } else { 17610 /* Post success, Mark buffer available. */ 17611 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 17612 lpfc_ncmd->status = IOSTAT_SUCCESS; 17613 num_posted++; 17614 } 17615 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17616 } 17617 } 17618 /* Push NVME buffers with sgl posted to the available list */ 17619 lpfc_io_buf_replenish(phba, &nvme_nblist); 17620 17621 return num_posted; 17622 } 17623 17624 /** 17625 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 17626 * @phba: pointer to lpfc_hba struct that the frame was received on 17627 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17628 * 17629 * This function checks the fields in the @fc_hdr to see if the FC frame is a 17630 * valid type of frame that the LPFC driver will handle. This function will 17631 * return a zero if the frame is a valid frame or a non zero value when the 17632 * frame does not pass the check. 17633 **/ 17634 static int 17635 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 17636 { 17637 /* make rctl_names static to save stack space */ 17638 struct fc_vft_header *fc_vft_hdr; 17639 uint32_t *header = (uint32_t *) fc_hdr; 17640 17641 #define FC_RCTL_MDS_DIAGS 0xF4 17642 17643 switch (fc_hdr->fh_r_ctl) { 17644 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 17645 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 17646 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 17647 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 17648 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 17649 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 17650 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 17651 case FC_RCTL_DD_CMD_STATUS: /* command status */ 17652 case FC_RCTL_ELS_REQ: /* extended link services request */ 17653 case FC_RCTL_ELS_REP: /* extended link services reply */ 17654 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 17655 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 17656 case FC_RCTL_BA_NOP: /* basic link service NOP */ 17657 case FC_RCTL_BA_ABTS: /* basic link service abort */ 17658 case FC_RCTL_BA_RMC: /* remove connection */ 17659 case FC_RCTL_BA_ACC: /* basic accept */ 17660 case FC_RCTL_BA_RJT: /* basic reject */ 17661 case FC_RCTL_BA_PRMT: 17662 case FC_RCTL_ACK_1: /* acknowledge_1 */ 17663 case FC_RCTL_ACK_0: /* acknowledge_0 */ 17664 case FC_RCTL_P_RJT: /* port reject */ 17665 case FC_RCTL_F_RJT: /* fabric reject */ 17666 case FC_RCTL_P_BSY: /* port busy */ 17667 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 17668 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 17669 case FC_RCTL_LCR: /* link credit reset */ 17670 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 17671 case FC_RCTL_END: /* end */ 17672 break; 17673 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 17674 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17675 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 17676 return lpfc_fc_frame_check(phba, fc_hdr); 17677 default: 17678 goto drop; 17679 } 17680 17681 switch (fc_hdr->fh_type) { 17682 case FC_TYPE_BLS: 17683 case FC_TYPE_ELS: 17684 case FC_TYPE_FCP: 17685 case FC_TYPE_CT: 17686 case FC_TYPE_NVME: 17687 break; 17688 case FC_TYPE_IP: 17689 case FC_TYPE_ILS: 17690 default: 17691 goto drop; 17692 } 17693 17694 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 17695 "2538 Received frame rctl:x%x, type:x%x, " 17696 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 17697 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 17698 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 17699 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 17700 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 17701 be32_to_cpu(header[6])); 17702 return 0; 17703 drop: 17704 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 17705 "2539 Dropped frame rctl:x%x type:x%x\n", 17706 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17707 return 1; 17708 } 17709 17710 /** 17711 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 17712 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17713 * 17714 * This function processes the FC header to retrieve the VFI from the VF 17715 * header, if one exists. This function will return the VFI if one exists 17716 * or 0 if no VSAN Header exists. 17717 **/ 17718 static uint32_t 17719 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 17720 { 17721 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17722 17723 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 17724 return 0; 17725 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 17726 } 17727 17728 /** 17729 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 17730 * @phba: Pointer to the HBA structure to search for the vport on 17731 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17732 * @fcfi: The FC Fabric ID that the frame came from 17733 * @did: Destination ID to match against 17734 * 17735 * This function searches the @phba for a vport that matches the content of the 17736 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 17737 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 17738 * returns the matching vport pointer or NULL if unable to match frame to a 17739 * vport. 17740 **/ 17741 static struct lpfc_vport * 17742 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 17743 uint16_t fcfi, uint32_t did) 17744 { 17745 struct lpfc_vport **vports; 17746 struct lpfc_vport *vport = NULL; 17747 int i; 17748 17749 if (did == Fabric_DID) 17750 return phba->pport; 17751 if ((phba->pport->fc_flag & FC_PT2PT) && 17752 !(phba->link_state == LPFC_HBA_READY)) 17753 return phba->pport; 17754 17755 vports = lpfc_create_vport_work_array(phba); 17756 if (vports != NULL) { 17757 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 17758 if (phba->fcf.fcfi == fcfi && 17759 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 17760 vports[i]->fc_myDID == did) { 17761 vport = vports[i]; 17762 break; 17763 } 17764 } 17765 } 17766 lpfc_destroy_vport_work_array(phba, vports); 17767 return vport; 17768 } 17769 17770 /** 17771 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 17772 * @vport: The vport to work on. 17773 * 17774 * This function updates the receive sequence time stamp for this vport. The 17775 * receive sequence time stamp indicates the time that the last frame of the 17776 * the sequence that has been idle for the longest amount of time was received. 17777 * the driver uses this time stamp to indicate if any received sequences have 17778 * timed out. 17779 **/ 17780 static void 17781 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 17782 { 17783 struct lpfc_dmabuf *h_buf; 17784 struct hbq_dmabuf *dmabuf = NULL; 17785 17786 /* get the oldest sequence on the rcv list */ 17787 h_buf = list_get_first(&vport->rcv_buffer_list, 17788 struct lpfc_dmabuf, list); 17789 if (!h_buf) 17790 return; 17791 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17792 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 17793 } 17794 17795 /** 17796 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 17797 * @vport: The vport that the received sequences were sent to. 17798 * 17799 * This function cleans up all outstanding received sequences. This is called 17800 * by the driver when a link event or user action invalidates all the received 17801 * sequences. 17802 **/ 17803 void 17804 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 17805 { 17806 struct lpfc_dmabuf *h_buf, *hnext; 17807 struct lpfc_dmabuf *d_buf, *dnext; 17808 struct hbq_dmabuf *dmabuf = NULL; 17809 17810 /* start with the oldest sequence on the rcv list */ 17811 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17812 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17813 list_del_init(&dmabuf->hbuf.list); 17814 list_for_each_entry_safe(d_buf, dnext, 17815 &dmabuf->dbuf.list, list) { 17816 list_del_init(&d_buf->list); 17817 lpfc_in_buf_free(vport->phba, d_buf); 17818 } 17819 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17820 } 17821 } 17822 17823 /** 17824 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 17825 * @vport: The vport that the received sequences were sent to. 17826 * 17827 * This function determines whether any received sequences have timed out by 17828 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 17829 * indicates that there is at least one timed out sequence this routine will 17830 * go through the received sequences one at a time from most inactive to most 17831 * active to determine which ones need to be cleaned up. Once it has determined 17832 * that a sequence needs to be cleaned up it will simply free up the resources 17833 * without sending an abort. 17834 **/ 17835 void 17836 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 17837 { 17838 struct lpfc_dmabuf *h_buf, *hnext; 17839 struct lpfc_dmabuf *d_buf, *dnext; 17840 struct hbq_dmabuf *dmabuf = NULL; 17841 unsigned long timeout; 17842 int abort_count = 0; 17843 17844 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17845 vport->rcv_buffer_time_stamp); 17846 if (list_empty(&vport->rcv_buffer_list) || 17847 time_before(jiffies, timeout)) 17848 return; 17849 /* start with the oldest sequence on the rcv list */ 17850 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17851 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17852 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17853 dmabuf->time_stamp); 17854 if (time_before(jiffies, timeout)) 17855 break; 17856 abort_count++; 17857 list_del_init(&dmabuf->hbuf.list); 17858 list_for_each_entry_safe(d_buf, dnext, 17859 &dmabuf->dbuf.list, list) { 17860 list_del_init(&d_buf->list); 17861 lpfc_in_buf_free(vport->phba, d_buf); 17862 } 17863 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17864 } 17865 if (abort_count) 17866 lpfc_update_rcv_time_stamp(vport); 17867 } 17868 17869 /** 17870 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 17871 * @vport: pointer to a vitural port 17872 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 17873 * 17874 * This function searches through the existing incomplete sequences that have 17875 * been sent to this @vport. If the frame matches one of the incomplete 17876 * sequences then the dbuf in the @dmabuf is added to the list of frames that 17877 * make up that sequence. If no sequence is found that matches this frame then 17878 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 17879 * This function returns a pointer to the first dmabuf in the sequence list that 17880 * the frame was linked to. 17881 **/ 17882 static struct hbq_dmabuf * 17883 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17884 { 17885 struct fc_frame_header *new_hdr; 17886 struct fc_frame_header *temp_hdr; 17887 struct lpfc_dmabuf *d_buf; 17888 struct lpfc_dmabuf *h_buf; 17889 struct hbq_dmabuf *seq_dmabuf = NULL; 17890 struct hbq_dmabuf *temp_dmabuf = NULL; 17891 uint8_t found = 0; 17892 17893 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17894 dmabuf->time_stamp = jiffies; 17895 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17896 17897 /* Use the hdr_buf to find the sequence that this frame belongs to */ 17898 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17899 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17900 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17901 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17902 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17903 continue; 17904 /* found a pending sequence that matches this frame */ 17905 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17906 break; 17907 } 17908 if (!seq_dmabuf) { 17909 /* 17910 * This indicates first frame received for this sequence. 17911 * Queue the buffer on the vport's rcv_buffer_list. 17912 */ 17913 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17914 lpfc_update_rcv_time_stamp(vport); 17915 return dmabuf; 17916 } 17917 temp_hdr = seq_dmabuf->hbuf.virt; 17918 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 17919 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17920 list_del_init(&seq_dmabuf->hbuf.list); 17921 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17922 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17923 lpfc_update_rcv_time_stamp(vport); 17924 return dmabuf; 17925 } 17926 /* move this sequence to the tail to indicate a young sequence */ 17927 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 17928 seq_dmabuf->time_stamp = jiffies; 17929 lpfc_update_rcv_time_stamp(vport); 17930 if (list_empty(&seq_dmabuf->dbuf.list)) { 17931 temp_hdr = dmabuf->hbuf.virt; 17932 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17933 return seq_dmabuf; 17934 } 17935 /* find the correct place in the sequence to insert this frame */ 17936 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 17937 while (!found) { 17938 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17939 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 17940 /* 17941 * If the frame's sequence count is greater than the frame on 17942 * the list then insert the frame right after this frame 17943 */ 17944 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 17945 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17946 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 17947 found = 1; 17948 break; 17949 } 17950 17951 if (&d_buf->list == &seq_dmabuf->dbuf.list) 17952 break; 17953 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 17954 } 17955 17956 if (found) 17957 return seq_dmabuf; 17958 return NULL; 17959 } 17960 17961 /** 17962 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 17963 * @vport: pointer to a vitural port 17964 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17965 * 17966 * This function tries to abort from the partially assembed sequence, described 17967 * by the information from basic abbort @dmabuf. It checks to see whether such 17968 * partially assembled sequence held by the driver. If so, it shall free up all 17969 * the frames from the partially assembled sequence. 17970 * 17971 * Return 17972 * true -- if there is matching partially assembled sequence present and all 17973 * the frames freed with the sequence; 17974 * false -- if there is no matching partially assembled sequence present so 17975 * nothing got aborted in the lower layer driver 17976 **/ 17977 static bool 17978 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 17979 struct hbq_dmabuf *dmabuf) 17980 { 17981 struct fc_frame_header *new_hdr; 17982 struct fc_frame_header *temp_hdr; 17983 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 17984 struct hbq_dmabuf *seq_dmabuf = NULL; 17985 17986 /* Use the hdr_buf to find the sequence that matches this frame */ 17987 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17988 INIT_LIST_HEAD(&dmabuf->hbuf.list); 17989 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17990 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17991 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17992 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17993 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17994 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17995 continue; 17996 /* found a pending sequence that matches this frame */ 17997 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17998 break; 17999 } 18000 18001 /* Free up all the frames from the partially assembled sequence */ 18002 if (seq_dmabuf) { 18003 list_for_each_entry_safe(d_buf, n_buf, 18004 &seq_dmabuf->dbuf.list, list) { 18005 list_del_init(&d_buf->list); 18006 lpfc_in_buf_free(vport->phba, d_buf); 18007 } 18008 return true; 18009 } 18010 return false; 18011 } 18012 18013 /** 18014 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18015 * @vport: pointer to a vitural port 18016 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18017 * 18018 * This function tries to abort from the assembed sequence from upper level 18019 * protocol, described by the information from basic abbort @dmabuf. It 18020 * checks to see whether such pending context exists at upper level protocol. 18021 * If so, it shall clean up the pending context. 18022 * 18023 * Return 18024 * true -- if there is matching pending context of the sequence cleaned 18025 * at ulp; 18026 * false -- if there is no matching pending context of the sequence present 18027 * at ulp. 18028 **/ 18029 static bool 18030 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18031 { 18032 struct lpfc_hba *phba = vport->phba; 18033 int handled; 18034 18035 /* Accepting abort at ulp with SLI4 only */ 18036 if (phba->sli_rev < LPFC_SLI_REV4) 18037 return false; 18038 18039 /* Register all caring upper level protocols to attend abort */ 18040 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18041 if (handled) 18042 return true; 18043 18044 return false; 18045 } 18046 18047 /** 18048 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18049 * @phba: Pointer to HBA context object. 18050 * @cmd_iocbq: pointer to the command iocbq structure. 18051 * @rsp_iocbq: pointer to the response iocbq structure. 18052 * 18053 * This function handles the sequence abort response iocb command complete 18054 * event. It properly releases the memory allocated to the sequence abort 18055 * accept iocb. 18056 **/ 18057 static void 18058 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18059 struct lpfc_iocbq *cmd_iocbq, 18060 struct lpfc_iocbq *rsp_iocbq) 18061 { 18062 struct lpfc_nodelist *ndlp; 18063 18064 if (cmd_iocbq) { 18065 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 18066 lpfc_nlp_put(ndlp); 18067 lpfc_nlp_not_used(ndlp); 18068 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18069 } 18070 18071 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18072 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18073 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18074 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18075 rsp_iocbq->iocb.ulpStatus, 18076 rsp_iocbq->iocb.un.ulpWord[4]); 18077 } 18078 18079 /** 18080 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18081 * @phba: Pointer to HBA context object. 18082 * @xri: xri id in transaction. 18083 * 18084 * This function validates the xri maps to the known range of XRIs allocated an 18085 * used by the driver. 18086 **/ 18087 uint16_t 18088 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18089 uint16_t xri) 18090 { 18091 uint16_t i; 18092 18093 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18094 if (xri == phba->sli4_hba.xri_ids[i]) 18095 return i; 18096 } 18097 return NO_XRI; 18098 } 18099 18100 /** 18101 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18102 * @vport: pointer to a vitural port. 18103 * @fc_hdr: pointer to a FC frame header. 18104 * @aborted: was the partially assembled receive sequence successfully aborted 18105 * 18106 * This function sends a basic response to a previous unsol sequence abort 18107 * event after aborting the sequence handling. 18108 **/ 18109 void 18110 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18111 struct fc_frame_header *fc_hdr, bool aborted) 18112 { 18113 struct lpfc_hba *phba = vport->phba; 18114 struct lpfc_iocbq *ctiocb = NULL; 18115 struct lpfc_nodelist *ndlp; 18116 uint16_t oxid, rxid, xri, lxri; 18117 uint32_t sid, fctl; 18118 IOCB_t *icmd; 18119 int rc; 18120 18121 if (!lpfc_is_link_up(phba)) 18122 return; 18123 18124 sid = sli4_sid_from_fc_hdr(fc_hdr); 18125 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18126 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18127 18128 ndlp = lpfc_findnode_did(vport, sid); 18129 if (!ndlp) { 18130 ndlp = lpfc_nlp_init(vport, sid); 18131 if (!ndlp) { 18132 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18133 "1268 Failed to allocate ndlp for " 18134 "oxid:x%x SID:x%x\n", oxid, sid); 18135 return; 18136 } 18137 /* Put ndlp onto pport node list */ 18138 lpfc_enqueue_node(vport, ndlp); 18139 } 18140 18141 /* Allocate buffer for rsp iocb */ 18142 ctiocb = lpfc_sli_get_iocbq(phba); 18143 if (!ctiocb) 18144 return; 18145 18146 /* Extract the F_CTL field from FC_HDR */ 18147 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18148 18149 icmd = &ctiocb->iocb; 18150 icmd->un.xseq64.bdl.bdeSize = 0; 18151 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 18152 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 18153 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 18154 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 18155 18156 /* Fill in the rest of iocb fields */ 18157 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 18158 icmd->ulpBdeCount = 0; 18159 icmd->ulpLe = 1; 18160 icmd->ulpClass = CLASS3; 18161 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 18162 ctiocb->context1 = lpfc_nlp_get(ndlp); 18163 if (!ctiocb->context1) { 18164 lpfc_sli_release_iocbq(phba, ctiocb); 18165 return; 18166 } 18167 18168 ctiocb->vport = phba->pport; 18169 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18170 ctiocb->sli4_lxritag = NO_XRI; 18171 ctiocb->sli4_xritag = NO_XRI; 18172 18173 if (fctl & FC_FC_EX_CTX) 18174 /* Exchange responder sent the abort so we 18175 * own the oxid. 18176 */ 18177 xri = oxid; 18178 else 18179 xri = rxid; 18180 lxri = lpfc_sli4_xri_inrange(phba, xri); 18181 if (lxri != NO_XRI) 18182 lpfc_set_rrq_active(phba, ndlp, lxri, 18183 (xri == oxid) ? rxid : oxid, 0); 18184 /* For BA_ABTS from exchange responder, if the logical xri with 18185 * the oxid maps to the FCP XRI range, the port no longer has 18186 * that exchange context, send a BLS_RJT. Override the IOCB for 18187 * a BA_RJT. 18188 */ 18189 if ((fctl & FC_FC_EX_CTX) && 18190 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18191 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18192 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18193 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18194 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18195 } 18196 18197 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18198 * the driver no longer has that exchange, send a BLS_RJT. Override 18199 * the IOCB for a BA_RJT. 18200 */ 18201 if (aborted == false) { 18202 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18203 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18204 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18205 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18206 } 18207 18208 if (fctl & FC_FC_EX_CTX) { 18209 /* ABTS sent by responder to CT exchange, construction 18210 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18211 * field and RX_ID from ABTS for RX_ID field. 18212 */ 18213 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 18214 } else { 18215 /* ABTS sent by initiator to CT exchange, construction 18216 * of BA_ACC will need to allocate a new XRI as for the 18217 * XRI_TAG field. 18218 */ 18219 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 18220 } 18221 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 18222 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 18223 18224 /* Xmit CT abts response on exchange <xid> */ 18225 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 18226 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 18227 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 18228 18229 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 18230 if (rc == IOCB_ERROR) { 18231 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 18232 "2925 Failed to issue CT ABTS RSP x%x on " 18233 "xri x%x, Data x%x\n", 18234 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 18235 phba->link_state); 18236 lpfc_nlp_put(ndlp); 18237 ctiocb->context1 = NULL; 18238 lpfc_sli_release_iocbq(phba, ctiocb); 18239 } 18240 } 18241 18242 /** 18243 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 18244 * @vport: Pointer to the vport on which this sequence was received 18245 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18246 * 18247 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 18248 * receive sequence is only partially assembed by the driver, it shall abort 18249 * the partially assembled frames for the sequence. Otherwise, if the 18250 * unsolicited receive sequence has been completely assembled and passed to 18251 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 18252 * unsolicited sequence has been aborted. After that, it will issue a basic 18253 * accept to accept the abort. 18254 **/ 18255 static void 18256 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 18257 struct hbq_dmabuf *dmabuf) 18258 { 18259 struct lpfc_hba *phba = vport->phba; 18260 struct fc_frame_header fc_hdr; 18261 uint32_t fctl; 18262 bool aborted; 18263 18264 /* Make a copy of fc_hdr before the dmabuf being released */ 18265 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 18266 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 18267 18268 if (fctl & FC_FC_EX_CTX) { 18269 /* ABTS by responder to exchange, no cleanup needed */ 18270 aborted = true; 18271 } else { 18272 /* ABTS by initiator to exchange, need to do cleanup */ 18273 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 18274 if (aborted == false) 18275 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 18276 } 18277 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18278 18279 if (phba->nvmet_support) { 18280 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 18281 return; 18282 } 18283 18284 /* Respond with BA_ACC or BA_RJT accordingly */ 18285 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 18286 } 18287 18288 /** 18289 * lpfc_seq_complete - Indicates if a sequence is complete 18290 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18291 * 18292 * This function checks the sequence, starting with the frame described by 18293 * @dmabuf, to see if all the frames associated with this sequence are present. 18294 * the frames associated with this sequence are linked to the @dmabuf using the 18295 * dbuf list. This function looks for two major things. 1) That the first frame 18296 * has a sequence count of zero. 2) There is a frame with last frame of sequence 18297 * set. 3) That there are no holes in the sequence count. The function will 18298 * return 1 when the sequence is complete, otherwise it will return 0. 18299 **/ 18300 static int 18301 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 18302 { 18303 struct fc_frame_header *hdr; 18304 struct lpfc_dmabuf *d_buf; 18305 struct hbq_dmabuf *seq_dmabuf; 18306 uint32_t fctl; 18307 int seq_count = 0; 18308 18309 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18310 /* make sure first fame of sequence has a sequence count of zero */ 18311 if (hdr->fh_seq_cnt != seq_count) 18312 return 0; 18313 fctl = (hdr->fh_f_ctl[0] << 16 | 18314 hdr->fh_f_ctl[1] << 8 | 18315 hdr->fh_f_ctl[2]); 18316 /* If last frame of sequence we can return success. */ 18317 if (fctl & FC_FC_END_SEQ) 18318 return 1; 18319 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 18320 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18321 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18322 /* If there is a hole in the sequence count then fail. */ 18323 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 18324 return 0; 18325 fctl = (hdr->fh_f_ctl[0] << 16 | 18326 hdr->fh_f_ctl[1] << 8 | 18327 hdr->fh_f_ctl[2]); 18328 /* If last frame of sequence we can return success. */ 18329 if (fctl & FC_FC_END_SEQ) 18330 return 1; 18331 } 18332 return 0; 18333 } 18334 18335 /** 18336 * lpfc_prep_seq - Prep sequence for ULP processing 18337 * @vport: Pointer to the vport on which this sequence was received 18338 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 18339 * 18340 * This function takes a sequence, described by a list of frames, and creates 18341 * a list of iocbq structures to describe the sequence. This iocbq list will be 18342 * used to issue to the generic unsolicited sequence handler. This routine 18343 * returns a pointer to the first iocbq in the list. If the function is unable 18344 * to allocate an iocbq then it throw out the received frames that were not 18345 * able to be described and return a pointer to the first iocbq. If unable to 18346 * allocate any iocbqs (including the first) this function will return NULL. 18347 **/ 18348 static struct lpfc_iocbq * 18349 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 18350 { 18351 struct hbq_dmabuf *hbq_buf; 18352 struct lpfc_dmabuf *d_buf, *n_buf; 18353 struct lpfc_iocbq *first_iocbq, *iocbq; 18354 struct fc_frame_header *fc_hdr; 18355 uint32_t sid; 18356 uint32_t len, tot_len; 18357 struct ulp_bde64 *pbde; 18358 18359 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18360 /* remove from receive buffer list */ 18361 list_del_init(&seq_dmabuf->hbuf.list); 18362 lpfc_update_rcv_time_stamp(vport); 18363 /* get the Remote Port's SID */ 18364 sid = sli4_sid_from_fc_hdr(fc_hdr); 18365 tot_len = 0; 18366 /* Get an iocbq struct to fill in. */ 18367 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 18368 if (first_iocbq) { 18369 /* Initialize the first IOCB. */ 18370 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 18371 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 18372 first_iocbq->vport = vport; 18373 18374 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 18375 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 18376 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 18377 first_iocbq->iocb.un.rcvels.parmRo = 18378 sli4_did_from_fc_hdr(fc_hdr); 18379 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 18380 } else 18381 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 18382 first_iocbq->iocb.ulpContext = NO_XRI; 18383 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 18384 be16_to_cpu(fc_hdr->fh_ox_id); 18385 /* iocbq is prepped for internal consumption. Physical vpi. */ 18386 first_iocbq->iocb.unsli3.rcvsli3.vpi = 18387 vport->phba->vpi_ids[vport->vpi]; 18388 /* put the first buffer into the first IOCBq */ 18389 tot_len = bf_get(lpfc_rcqe_length, 18390 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 18391 18392 first_iocbq->context2 = &seq_dmabuf->dbuf; 18393 first_iocbq->context3 = NULL; 18394 first_iocbq->iocb.ulpBdeCount = 1; 18395 if (tot_len > LPFC_DATA_BUF_SIZE) 18396 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18397 LPFC_DATA_BUF_SIZE; 18398 else 18399 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 18400 18401 first_iocbq->iocb.un.rcvels.remoteID = sid; 18402 18403 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18404 } 18405 iocbq = first_iocbq; 18406 /* 18407 * Each IOCBq can have two Buffers assigned, so go through the list 18408 * of buffers for this sequence and save two buffers in each IOCBq 18409 */ 18410 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 18411 if (!iocbq) { 18412 lpfc_in_buf_free(vport->phba, d_buf); 18413 continue; 18414 } 18415 if (!iocbq->context3) { 18416 iocbq->context3 = d_buf; 18417 iocbq->iocb.ulpBdeCount++; 18418 /* We need to get the size out of the right CQE */ 18419 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18420 len = bf_get(lpfc_rcqe_length, 18421 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18422 pbde = (struct ulp_bde64 *) 18423 &iocbq->iocb.unsli3.sli3Words[4]; 18424 if (len > LPFC_DATA_BUF_SIZE) 18425 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 18426 else 18427 pbde->tus.f.bdeSize = len; 18428 18429 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 18430 tot_len += len; 18431 } else { 18432 iocbq = lpfc_sli_get_iocbq(vport->phba); 18433 if (!iocbq) { 18434 if (first_iocbq) { 18435 first_iocbq->iocb.ulpStatus = 18436 IOSTAT_FCP_RSP_ERROR; 18437 first_iocbq->iocb.un.ulpWord[4] = 18438 IOERR_NO_RESOURCES; 18439 } 18440 lpfc_in_buf_free(vport->phba, d_buf); 18441 continue; 18442 } 18443 /* We need to get the size out of the right CQE */ 18444 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18445 len = bf_get(lpfc_rcqe_length, 18446 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18447 iocbq->context2 = d_buf; 18448 iocbq->context3 = NULL; 18449 iocbq->iocb.ulpBdeCount = 1; 18450 if (len > LPFC_DATA_BUF_SIZE) 18451 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18452 LPFC_DATA_BUF_SIZE; 18453 else 18454 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 18455 18456 tot_len += len; 18457 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18458 18459 iocbq->iocb.un.rcvels.remoteID = sid; 18460 list_add_tail(&iocbq->list, &first_iocbq->list); 18461 } 18462 } 18463 /* Free the sequence's header buffer */ 18464 if (!first_iocbq) 18465 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 18466 18467 return first_iocbq; 18468 } 18469 18470 static void 18471 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 18472 struct hbq_dmabuf *seq_dmabuf) 18473 { 18474 struct fc_frame_header *fc_hdr; 18475 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 18476 struct lpfc_hba *phba = vport->phba; 18477 18478 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18479 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 18480 if (!iocbq) { 18481 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18482 "2707 Ring %d handler: Failed to allocate " 18483 "iocb Rctl x%x Type x%x received\n", 18484 LPFC_ELS_RING, 18485 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18486 return; 18487 } 18488 if (!lpfc_complete_unsol_iocb(phba, 18489 phba->sli4_hba.els_wq->pring, 18490 iocbq, fc_hdr->fh_r_ctl, 18491 fc_hdr->fh_type)) 18492 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18493 "2540 Ring %d handler: unexpected Rctl " 18494 "x%x Type x%x received\n", 18495 LPFC_ELS_RING, 18496 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18497 18498 /* Free iocb created in lpfc_prep_seq */ 18499 list_for_each_entry_safe(curr_iocb, next_iocb, 18500 &iocbq->list, list) { 18501 list_del_init(&curr_iocb->list); 18502 lpfc_sli_release_iocbq(phba, curr_iocb); 18503 } 18504 lpfc_sli_release_iocbq(phba, iocbq); 18505 } 18506 18507 static void 18508 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 18509 struct lpfc_iocbq *rspiocb) 18510 { 18511 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 18512 18513 if (pcmd && pcmd->virt) 18514 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18515 kfree(pcmd); 18516 lpfc_sli_release_iocbq(phba, cmdiocb); 18517 lpfc_drain_txq(phba); 18518 } 18519 18520 static void 18521 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 18522 struct hbq_dmabuf *dmabuf) 18523 { 18524 struct fc_frame_header *fc_hdr; 18525 struct lpfc_hba *phba = vport->phba; 18526 struct lpfc_iocbq *iocbq = NULL; 18527 union lpfc_wqe *wqe; 18528 struct lpfc_dmabuf *pcmd = NULL; 18529 uint32_t frame_len; 18530 int rc; 18531 unsigned long iflags; 18532 18533 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18534 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 18535 18536 /* Send the received frame back */ 18537 iocbq = lpfc_sli_get_iocbq(phba); 18538 if (!iocbq) { 18539 /* Queue cq event and wakeup worker thread to process it */ 18540 spin_lock_irqsave(&phba->hbalock, iflags); 18541 list_add_tail(&dmabuf->cq_event.list, 18542 &phba->sli4_hba.sp_queue_event); 18543 phba->hba_flag |= HBA_SP_QUEUE_EVT; 18544 spin_unlock_irqrestore(&phba->hbalock, iflags); 18545 lpfc_worker_wake_up(phba); 18546 return; 18547 } 18548 18549 /* Allocate buffer for command payload */ 18550 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 18551 if (pcmd) 18552 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 18553 &pcmd->phys); 18554 if (!pcmd || !pcmd->virt) 18555 goto exit; 18556 18557 INIT_LIST_HEAD(&pcmd->list); 18558 18559 /* copyin the payload */ 18560 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 18561 18562 /* fill in BDE's for command */ 18563 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 18564 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 18565 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 18566 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 18567 18568 iocbq->context2 = pcmd; 18569 iocbq->vport = vport; 18570 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 18571 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 18572 18573 /* 18574 * Setup rest of the iocb as though it were a WQE 18575 * Build the SEND_FRAME WQE 18576 */ 18577 wqe = (union lpfc_wqe *)&iocbq->iocb; 18578 18579 wqe->send_frame.frame_len = frame_len; 18580 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 18581 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 18582 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 18583 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 18584 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 18585 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 18586 18587 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 18588 iocbq->iocb.ulpLe = 1; 18589 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 18590 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 18591 if (rc == IOCB_ERROR) 18592 goto exit; 18593 18594 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18595 return; 18596 18597 exit: 18598 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18599 "2023 Unable to process MDS loopback frame\n"); 18600 if (pcmd && pcmd->virt) 18601 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18602 kfree(pcmd); 18603 if (iocbq) 18604 lpfc_sli_release_iocbq(phba, iocbq); 18605 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18606 } 18607 18608 /** 18609 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 18610 * @phba: Pointer to HBA context object. 18611 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 18612 * 18613 * This function is called with no lock held. This function processes all 18614 * the received buffers and gives it to upper layers when a received buffer 18615 * indicates that it is the final frame in the sequence. The interrupt 18616 * service routine processes received buffers at interrupt contexts. 18617 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 18618 * appropriate receive function when the final frame in a sequence is received. 18619 **/ 18620 void 18621 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 18622 struct hbq_dmabuf *dmabuf) 18623 { 18624 struct hbq_dmabuf *seq_dmabuf; 18625 struct fc_frame_header *fc_hdr; 18626 struct lpfc_vport *vport; 18627 uint32_t fcfi; 18628 uint32_t did; 18629 18630 /* Process each received buffer */ 18631 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18632 18633 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 18634 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 18635 vport = phba->pport; 18636 /* Handle MDS Loopback frames */ 18637 if (!(phba->pport->load_flag & FC_UNLOADING)) 18638 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18639 else 18640 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18641 return; 18642 } 18643 18644 /* check to see if this a valid type of frame */ 18645 if (lpfc_fc_frame_check(phba, fc_hdr)) { 18646 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18647 return; 18648 } 18649 18650 if ((bf_get(lpfc_cqe_code, 18651 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 18652 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 18653 &dmabuf->cq_event.cqe.rcqe_cmpl); 18654 else 18655 fcfi = bf_get(lpfc_rcqe_fcf_id, 18656 &dmabuf->cq_event.cqe.rcqe_cmpl); 18657 18658 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 18659 vport = phba->pport; 18660 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 18661 "2023 MDS Loopback %d bytes\n", 18662 bf_get(lpfc_rcqe_length, 18663 &dmabuf->cq_event.cqe.rcqe_cmpl)); 18664 /* Handle MDS Loopback frames */ 18665 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18666 return; 18667 } 18668 18669 /* d_id this frame is directed to */ 18670 did = sli4_did_from_fc_hdr(fc_hdr); 18671 18672 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 18673 if (!vport) { 18674 /* throw out the frame */ 18675 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18676 return; 18677 } 18678 18679 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 18680 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 18681 (did != Fabric_DID)) { 18682 /* 18683 * Throw out the frame if we are not pt2pt. 18684 * The pt2pt protocol allows for discovery frames 18685 * to be received without a registered VPI. 18686 */ 18687 if (!(vport->fc_flag & FC_PT2PT) || 18688 (phba->link_state == LPFC_HBA_READY)) { 18689 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18690 return; 18691 } 18692 } 18693 18694 /* Handle the basic abort sequence (BA_ABTS) event */ 18695 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 18696 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 18697 return; 18698 } 18699 18700 /* Link this frame */ 18701 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 18702 if (!seq_dmabuf) { 18703 /* unable to add frame to vport - throw it out */ 18704 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18705 return; 18706 } 18707 /* If not last frame in sequence continue processing frames. */ 18708 if (!lpfc_seq_complete(seq_dmabuf)) 18709 return; 18710 18711 /* Send the complete sequence to the upper layer protocol */ 18712 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 18713 } 18714 18715 /** 18716 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 18717 * @phba: pointer to lpfc hba data structure. 18718 * 18719 * This routine is invoked to post rpi header templates to the 18720 * HBA consistent with the SLI-4 interface spec. This routine 18721 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18722 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18723 * 18724 * This routine does not require any locks. It's usage is expected 18725 * to be driver load or reset recovery when the driver is 18726 * sequential. 18727 * 18728 * Return codes 18729 * 0 - successful 18730 * -EIO - The mailbox failed to complete successfully. 18731 * When this error occurs, the driver is not guaranteed 18732 * to have any rpi regions posted to the device and 18733 * must either attempt to repost the regions or take a 18734 * fatal error. 18735 **/ 18736 int 18737 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 18738 { 18739 struct lpfc_rpi_hdr *rpi_page; 18740 uint32_t rc = 0; 18741 uint16_t lrpi = 0; 18742 18743 /* SLI4 ports that support extents do not require RPI headers. */ 18744 if (!phba->sli4_hba.rpi_hdrs_in_use) 18745 goto exit; 18746 if (phba->sli4_hba.extents_in_use) 18747 return -EIO; 18748 18749 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 18750 /* 18751 * Assign the rpi headers a physical rpi only if the driver 18752 * has not initialized those resources. A port reset only 18753 * needs the headers posted. 18754 */ 18755 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 18756 LPFC_RPI_RSRC_RDY) 18757 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18758 18759 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 18760 if (rc != MBX_SUCCESS) { 18761 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18762 "2008 Error %d posting all rpi " 18763 "headers\n", rc); 18764 rc = -EIO; 18765 break; 18766 } 18767 } 18768 18769 exit: 18770 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 18771 LPFC_RPI_RSRC_RDY); 18772 return rc; 18773 } 18774 18775 /** 18776 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 18777 * @phba: pointer to lpfc hba data structure. 18778 * @rpi_page: pointer to the rpi memory region. 18779 * 18780 * This routine is invoked to post a single rpi header to the 18781 * HBA consistent with the SLI-4 interface spec. This memory region 18782 * maps up to 64 rpi context regions. 18783 * 18784 * Return codes 18785 * 0 - successful 18786 * -ENOMEM - No available memory 18787 * -EIO - The mailbox failed to complete successfully. 18788 **/ 18789 int 18790 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 18791 { 18792 LPFC_MBOXQ_t *mboxq; 18793 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 18794 uint32_t rc = 0; 18795 uint32_t shdr_status, shdr_add_status; 18796 union lpfc_sli4_cfg_shdr *shdr; 18797 18798 /* SLI4 ports that support extents do not require RPI headers. */ 18799 if (!phba->sli4_hba.rpi_hdrs_in_use) 18800 return rc; 18801 if (phba->sli4_hba.extents_in_use) 18802 return -EIO; 18803 18804 /* The port is notified of the header region via a mailbox command. */ 18805 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18806 if (!mboxq) { 18807 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18808 "2001 Unable to allocate memory for issuing " 18809 "SLI_CONFIG_SPECIAL mailbox command\n"); 18810 return -ENOMEM; 18811 } 18812 18813 /* Post all rpi memory regions to the port. */ 18814 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 18815 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18816 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 18817 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 18818 sizeof(struct lpfc_sli4_cfg_mhdr), 18819 LPFC_SLI4_MBX_EMBED); 18820 18821 18822 /* Post the physical rpi to the port for this rpi header. */ 18823 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 18824 rpi_page->start_rpi); 18825 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 18826 hdr_tmpl, rpi_page->page_count); 18827 18828 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 18829 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 18830 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18831 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 18832 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18833 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18834 if (rc != MBX_TIMEOUT) 18835 mempool_free(mboxq, phba->mbox_mem_pool); 18836 if (shdr_status || shdr_add_status || rc) { 18837 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18838 "2514 POST_RPI_HDR mailbox failed with " 18839 "status x%x add_status x%x, mbx status x%x\n", 18840 shdr_status, shdr_add_status, rc); 18841 rc = -ENXIO; 18842 } else { 18843 /* 18844 * The next_rpi stores the next logical module-64 rpi value used 18845 * to post physical rpis in subsequent rpi postings. 18846 */ 18847 spin_lock_irq(&phba->hbalock); 18848 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 18849 spin_unlock_irq(&phba->hbalock); 18850 } 18851 return rc; 18852 } 18853 18854 /** 18855 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 18856 * @phba: pointer to lpfc hba data structure. 18857 * 18858 * This routine is invoked to post rpi header templates to the 18859 * HBA consistent with the SLI-4 interface spec. This routine 18860 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18861 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18862 * 18863 * Returns 18864 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18865 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18866 **/ 18867 int 18868 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 18869 { 18870 unsigned long rpi; 18871 uint16_t max_rpi, rpi_limit; 18872 uint16_t rpi_remaining, lrpi = 0; 18873 struct lpfc_rpi_hdr *rpi_hdr; 18874 unsigned long iflag; 18875 18876 /* 18877 * Fetch the next logical rpi. Because this index is logical, 18878 * the driver starts at 0 each time. 18879 */ 18880 spin_lock_irqsave(&phba->hbalock, iflag); 18881 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 18882 rpi_limit = phba->sli4_hba.next_rpi; 18883 18884 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 18885 if (rpi >= rpi_limit) 18886 rpi = LPFC_RPI_ALLOC_ERROR; 18887 else { 18888 set_bit(rpi, phba->sli4_hba.rpi_bmask); 18889 phba->sli4_hba.max_cfg_param.rpi_used++; 18890 phba->sli4_hba.rpi_count++; 18891 } 18892 lpfc_printf_log(phba, KERN_INFO, 18893 LOG_NODE | LOG_DISCOVERY, 18894 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 18895 (int) rpi, max_rpi, rpi_limit); 18896 18897 /* 18898 * Don't try to allocate more rpi header regions if the device limit 18899 * has been exhausted. 18900 */ 18901 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 18902 (phba->sli4_hba.rpi_count >= max_rpi)) { 18903 spin_unlock_irqrestore(&phba->hbalock, iflag); 18904 return rpi; 18905 } 18906 18907 /* 18908 * RPI header postings are not required for SLI4 ports capable of 18909 * extents. 18910 */ 18911 if (!phba->sli4_hba.rpi_hdrs_in_use) { 18912 spin_unlock_irqrestore(&phba->hbalock, iflag); 18913 return rpi; 18914 } 18915 18916 /* 18917 * If the driver is running low on rpi resources, allocate another 18918 * page now. Note that the next_rpi value is used because 18919 * it represents how many are actually in use whereas max_rpi notes 18920 * how many are supported max by the device. 18921 */ 18922 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 18923 spin_unlock_irqrestore(&phba->hbalock, iflag); 18924 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 18925 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 18926 if (!rpi_hdr) { 18927 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18928 "2002 Error Could not grow rpi " 18929 "count\n"); 18930 } else { 18931 lrpi = rpi_hdr->start_rpi; 18932 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18933 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 18934 } 18935 } 18936 18937 return rpi; 18938 } 18939 18940 /** 18941 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18942 * @phba: pointer to lpfc hba data structure. 18943 * @rpi: rpi to free 18944 * 18945 * This routine is invoked to release an rpi to the pool of 18946 * available rpis maintained by the driver. 18947 **/ 18948 static void 18949 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18950 { 18951 /* 18952 * if the rpi value indicates a prior unreg has already 18953 * been done, skip the unreg. 18954 */ 18955 if (rpi == LPFC_RPI_ALLOC_ERROR) 18956 return; 18957 18958 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 18959 phba->sli4_hba.rpi_count--; 18960 phba->sli4_hba.max_cfg_param.rpi_used--; 18961 } else { 18962 lpfc_printf_log(phba, KERN_INFO, 18963 LOG_NODE | LOG_DISCOVERY, 18964 "2016 rpi %x not inuse\n", 18965 rpi); 18966 } 18967 } 18968 18969 /** 18970 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18971 * @phba: pointer to lpfc hba data structure. 18972 * @rpi: rpi to free 18973 * 18974 * This routine is invoked to release an rpi to the pool of 18975 * available rpis maintained by the driver. 18976 **/ 18977 void 18978 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18979 { 18980 spin_lock_irq(&phba->hbalock); 18981 __lpfc_sli4_free_rpi(phba, rpi); 18982 spin_unlock_irq(&phba->hbalock); 18983 } 18984 18985 /** 18986 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 18987 * @phba: pointer to lpfc hba data structure. 18988 * 18989 * This routine is invoked to remove the memory region that 18990 * provided rpi via a bitmask. 18991 **/ 18992 void 18993 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 18994 { 18995 kfree(phba->sli4_hba.rpi_bmask); 18996 kfree(phba->sli4_hba.rpi_ids); 18997 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 18998 } 18999 19000 /** 19001 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19002 * @ndlp: pointer to lpfc nodelist data structure. 19003 * @cmpl: completion call-back. 19004 * @arg: data to load as MBox 'caller buffer information' 19005 * 19006 * This routine is invoked to remove the memory region that 19007 * provided rpi via a bitmask. 19008 **/ 19009 int 19010 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19011 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19012 { 19013 LPFC_MBOXQ_t *mboxq; 19014 struct lpfc_hba *phba = ndlp->phba; 19015 int rc; 19016 19017 /* The port is notified of the header region via a mailbox command. */ 19018 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19019 if (!mboxq) 19020 return -ENOMEM; 19021 19022 /* Post all rpi memory regions to the port. */ 19023 lpfc_resume_rpi(mboxq, ndlp); 19024 if (cmpl) { 19025 mboxq->mbox_cmpl = cmpl; 19026 mboxq->ctx_buf = arg; 19027 mboxq->ctx_ndlp = ndlp; 19028 } else 19029 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19030 mboxq->vport = ndlp->vport; 19031 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19032 if (rc == MBX_NOT_FINISHED) { 19033 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19034 "2010 Resume RPI Mailbox failed " 19035 "status %d, mbxStatus x%x\n", rc, 19036 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19037 mempool_free(mboxq, phba->mbox_mem_pool); 19038 return -EIO; 19039 } 19040 return 0; 19041 } 19042 19043 /** 19044 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19045 * @vport: Pointer to the vport for which the vpi is being initialized 19046 * 19047 * This routine is invoked to activate a vpi with the port. 19048 * 19049 * Returns: 19050 * 0 success 19051 * -Evalue otherwise 19052 **/ 19053 int 19054 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19055 { 19056 LPFC_MBOXQ_t *mboxq; 19057 int rc = 0; 19058 int retval = MBX_SUCCESS; 19059 uint32_t mbox_tmo; 19060 struct lpfc_hba *phba = vport->phba; 19061 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19062 if (!mboxq) 19063 return -ENOMEM; 19064 lpfc_init_vpi(phba, mboxq, vport->vpi); 19065 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19066 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19067 if (rc != MBX_SUCCESS) { 19068 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19069 "2022 INIT VPI Mailbox failed " 19070 "status %d, mbxStatus x%x\n", rc, 19071 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19072 retval = -EIO; 19073 } 19074 if (rc != MBX_TIMEOUT) 19075 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19076 19077 return retval; 19078 } 19079 19080 /** 19081 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19082 * @phba: pointer to lpfc hba data structure. 19083 * @mboxq: Pointer to mailbox object. 19084 * 19085 * This routine is invoked to manually add a single FCF record. The caller 19086 * must pass a completely initialized FCF_Record. This routine takes 19087 * care of the nonembedded mailbox operations. 19088 **/ 19089 static void 19090 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19091 { 19092 void *virt_addr; 19093 union lpfc_sli4_cfg_shdr *shdr; 19094 uint32_t shdr_status, shdr_add_status; 19095 19096 virt_addr = mboxq->sge_array->addr[0]; 19097 /* The IOCTL status is embedded in the mailbox subheader. */ 19098 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19099 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19100 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19101 19102 if ((shdr_status || shdr_add_status) && 19103 (shdr_status != STATUS_FCF_IN_USE)) 19104 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19105 "2558 ADD_FCF_RECORD mailbox failed with " 19106 "status x%x add_status x%x\n", 19107 shdr_status, shdr_add_status); 19108 19109 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19110 } 19111 19112 /** 19113 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19114 * @phba: pointer to lpfc hba data structure. 19115 * @fcf_record: pointer to the initialized fcf record to add. 19116 * 19117 * This routine is invoked to manually add a single FCF record. The caller 19118 * must pass a completely initialized FCF_Record. This routine takes 19119 * care of the nonembedded mailbox operations. 19120 **/ 19121 int 19122 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19123 { 19124 int rc = 0; 19125 LPFC_MBOXQ_t *mboxq; 19126 uint8_t *bytep; 19127 void *virt_addr; 19128 struct lpfc_mbx_sge sge; 19129 uint32_t alloc_len, req_len; 19130 uint32_t fcfindex; 19131 19132 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19133 if (!mboxq) { 19134 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19135 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19136 return -ENOMEM; 19137 } 19138 19139 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19140 sizeof(uint32_t); 19141 19142 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19143 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19144 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19145 req_len, LPFC_SLI4_MBX_NEMBED); 19146 if (alloc_len < req_len) { 19147 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19148 "2523 Allocated DMA memory size (x%x) is " 19149 "less than the requested DMA memory " 19150 "size (x%x)\n", alloc_len, req_len); 19151 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19152 return -ENOMEM; 19153 } 19154 19155 /* 19156 * Get the first SGE entry from the non-embedded DMA memory. This 19157 * routine only uses a single SGE. 19158 */ 19159 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19160 virt_addr = mboxq->sge_array->addr[0]; 19161 /* 19162 * Configure the FCF record for FCFI 0. This is the driver's 19163 * hardcoded default and gets used in nonFIP mode. 19164 */ 19165 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19166 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19167 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19168 19169 /* 19170 * Copy the fcf_index and the FCF Record Data. The data starts after 19171 * the FCoE header plus word10. The data copy needs to be endian 19172 * correct. 19173 */ 19174 bytep += sizeof(uint32_t); 19175 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19176 mboxq->vport = phba->pport; 19177 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19178 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19179 if (rc == MBX_NOT_FINISHED) { 19180 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19181 "2515 ADD_FCF_RECORD mailbox failed with " 19182 "status 0x%x\n", rc); 19183 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19184 rc = -EIO; 19185 } else 19186 rc = 0; 19187 19188 return rc; 19189 } 19190 19191 /** 19192 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 19193 * @phba: pointer to lpfc hba data structure. 19194 * @fcf_record: pointer to the fcf record to write the default data. 19195 * @fcf_index: FCF table entry index. 19196 * 19197 * This routine is invoked to build the driver's default FCF record. The 19198 * values used are hardcoded. This routine handles memory initialization. 19199 * 19200 **/ 19201 void 19202 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 19203 struct fcf_record *fcf_record, 19204 uint16_t fcf_index) 19205 { 19206 memset(fcf_record, 0, sizeof(struct fcf_record)); 19207 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 19208 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 19209 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 19210 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 19211 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 19212 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 19213 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 19214 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 19215 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 19216 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 19217 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 19218 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 19219 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 19220 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 19221 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 19222 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 19223 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 19224 /* Set the VLAN bit map */ 19225 if (phba->valid_vlan) { 19226 fcf_record->vlan_bitmap[phba->vlan_id / 8] 19227 = 1 << (phba->vlan_id % 8); 19228 } 19229 } 19230 19231 /** 19232 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 19233 * @phba: pointer to lpfc hba data structure. 19234 * @fcf_index: FCF table entry offset. 19235 * 19236 * This routine is invoked to scan the entire FCF table by reading FCF 19237 * record and processing it one at a time starting from the @fcf_index 19238 * for initial FCF discovery or fast FCF failover rediscovery. 19239 * 19240 * Return 0 if the mailbox command is submitted successfully, none 0 19241 * otherwise. 19242 **/ 19243 int 19244 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19245 { 19246 int rc = 0, error; 19247 LPFC_MBOXQ_t *mboxq; 19248 19249 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 19250 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 19251 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19252 if (!mboxq) { 19253 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19254 "2000 Failed to allocate mbox for " 19255 "READ_FCF cmd\n"); 19256 error = -ENOMEM; 19257 goto fail_fcf_scan; 19258 } 19259 /* Construct the read FCF record mailbox command */ 19260 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19261 if (rc) { 19262 error = -EINVAL; 19263 goto fail_fcf_scan; 19264 } 19265 /* Issue the mailbox command asynchronously */ 19266 mboxq->vport = phba->pport; 19267 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 19268 19269 spin_lock_irq(&phba->hbalock); 19270 phba->hba_flag |= FCF_TS_INPROG; 19271 spin_unlock_irq(&phba->hbalock); 19272 19273 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19274 if (rc == MBX_NOT_FINISHED) 19275 error = -EIO; 19276 else { 19277 /* Reset eligible FCF count for new scan */ 19278 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 19279 phba->fcf.eligible_fcf_cnt = 0; 19280 error = 0; 19281 } 19282 fail_fcf_scan: 19283 if (error) { 19284 if (mboxq) 19285 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19286 /* FCF scan failed, clear FCF_TS_INPROG flag */ 19287 spin_lock_irq(&phba->hbalock); 19288 phba->hba_flag &= ~FCF_TS_INPROG; 19289 spin_unlock_irq(&phba->hbalock); 19290 } 19291 return error; 19292 } 19293 19294 /** 19295 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 19296 * @phba: pointer to lpfc hba data structure. 19297 * @fcf_index: FCF table entry offset. 19298 * 19299 * This routine is invoked to read an FCF record indicated by @fcf_index 19300 * and to use it for FLOGI roundrobin FCF failover. 19301 * 19302 * Return 0 if the mailbox command is submitted successfully, none 0 19303 * otherwise. 19304 **/ 19305 int 19306 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19307 { 19308 int rc = 0, error; 19309 LPFC_MBOXQ_t *mboxq; 19310 19311 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19312 if (!mboxq) { 19313 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19314 "2763 Failed to allocate mbox for " 19315 "READ_FCF cmd\n"); 19316 error = -ENOMEM; 19317 goto fail_fcf_read; 19318 } 19319 /* Construct the read FCF record mailbox command */ 19320 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19321 if (rc) { 19322 error = -EINVAL; 19323 goto fail_fcf_read; 19324 } 19325 /* Issue the mailbox command asynchronously */ 19326 mboxq->vport = phba->pport; 19327 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 19328 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19329 if (rc == MBX_NOT_FINISHED) 19330 error = -EIO; 19331 else 19332 error = 0; 19333 19334 fail_fcf_read: 19335 if (error && mboxq) 19336 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19337 return error; 19338 } 19339 19340 /** 19341 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 19342 * @phba: pointer to lpfc hba data structure. 19343 * @fcf_index: FCF table entry offset. 19344 * 19345 * This routine is invoked to read an FCF record indicated by @fcf_index to 19346 * determine whether it's eligible for FLOGI roundrobin failover list. 19347 * 19348 * Return 0 if the mailbox command is submitted successfully, none 0 19349 * otherwise. 19350 **/ 19351 int 19352 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19353 { 19354 int rc = 0, error; 19355 LPFC_MBOXQ_t *mboxq; 19356 19357 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19358 if (!mboxq) { 19359 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19360 "2758 Failed to allocate mbox for " 19361 "READ_FCF cmd\n"); 19362 error = -ENOMEM; 19363 goto fail_fcf_read; 19364 } 19365 /* Construct the read FCF record mailbox command */ 19366 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19367 if (rc) { 19368 error = -EINVAL; 19369 goto fail_fcf_read; 19370 } 19371 /* Issue the mailbox command asynchronously */ 19372 mboxq->vport = phba->pport; 19373 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 19374 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19375 if (rc == MBX_NOT_FINISHED) 19376 error = -EIO; 19377 else 19378 error = 0; 19379 19380 fail_fcf_read: 19381 if (error && mboxq) 19382 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19383 return error; 19384 } 19385 19386 /** 19387 * lpfc_check_next_fcf_pri_level 19388 * @phba: pointer to the lpfc_hba struct for this port. 19389 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 19390 * routine when the rr_bmask is empty. The FCF indecies are put into the 19391 * rr_bmask based on their priority level. Starting from the highest priority 19392 * to the lowest. The most likely FCF candidate will be in the highest 19393 * priority group. When this routine is called it searches the fcf_pri list for 19394 * next lowest priority group and repopulates the rr_bmask with only those 19395 * fcf_indexes. 19396 * returns: 19397 * 1=success 0=failure 19398 **/ 19399 static int 19400 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 19401 { 19402 uint16_t next_fcf_pri; 19403 uint16_t last_index; 19404 struct lpfc_fcf_pri *fcf_pri; 19405 int rc; 19406 int ret = 0; 19407 19408 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 19409 LPFC_SLI4_FCF_TBL_INDX_MAX); 19410 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19411 "3060 Last IDX %d\n", last_index); 19412 19413 /* Verify the priority list has 2 or more entries */ 19414 spin_lock_irq(&phba->hbalock); 19415 if (list_empty(&phba->fcf.fcf_pri_list) || 19416 list_is_singular(&phba->fcf.fcf_pri_list)) { 19417 spin_unlock_irq(&phba->hbalock); 19418 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19419 "3061 Last IDX %d\n", last_index); 19420 return 0; /* Empty rr list */ 19421 } 19422 spin_unlock_irq(&phba->hbalock); 19423 19424 next_fcf_pri = 0; 19425 /* 19426 * Clear the rr_bmask and set all of the bits that are at this 19427 * priority. 19428 */ 19429 memset(phba->fcf.fcf_rr_bmask, 0, 19430 sizeof(*phba->fcf.fcf_rr_bmask)); 19431 spin_lock_irq(&phba->hbalock); 19432 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19433 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 19434 continue; 19435 /* 19436 * the 1st priority that has not FLOGI failed 19437 * will be the highest. 19438 */ 19439 if (!next_fcf_pri) 19440 next_fcf_pri = fcf_pri->fcf_rec.priority; 19441 spin_unlock_irq(&phba->hbalock); 19442 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19443 rc = lpfc_sli4_fcf_rr_index_set(phba, 19444 fcf_pri->fcf_rec.fcf_index); 19445 if (rc) 19446 return 0; 19447 } 19448 spin_lock_irq(&phba->hbalock); 19449 } 19450 /* 19451 * if next_fcf_pri was not set above and the list is not empty then 19452 * we have failed flogis on all of them. So reset flogi failed 19453 * and start at the beginning. 19454 */ 19455 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 19456 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19457 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 19458 /* 19459 * the 1st priority that has not FLOGI failed 19460 * will be the highest. 19461 */ 19462 if (!next_fcf_pri) 19463 next_fcf_pri = fcf_pri->fcf_rec.priority; 19464 spin_unlock_irq(&phba->hbalock); 19465 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19466 rc = lpfc_sli4_fcf_rr_index_set(phba, 19467 fcf_pri->fcf_rec.fcf_index); 19468 if (rc) 19469 return 0; 19470 } 19471 spin_lock_irq(&phba->hbalock); 19472 } 19473 } else 19474 ret = 1; 19475 spin_unlock_irq(&phba->hbalock); 19476 19477 return ret; 19478 } 19479 /** 19480 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 19481 * @phba: pointer to lpfc hba data structure. 19482 * 19483 * This routine is to get the next eligible FCF record index in a round 19484 * robin fashion. If the next eligible FCF record index equals to the 19485 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 19486 * shall be returned, otherwise, the next eligible FCF record's index 19487 * shall be returned. 19488 **/ 19489 uint16_t 19490 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 19491 { 19492 uint16_t next_fcf_index; 19493 19494 initial_priority: 19495 /* Search start from next bit of currently registered FCF index */ 19496 next_fcf_index = phba->fcf.current_rec.fcf_indx; 19497 19498 next_priority: 19499 /* Determine the next fcf index to check */ 19500 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 19501 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19502 LPFC_SLI4_FCF_TBL_INDX_MAX, 19503 next_fcf_index); 19504 19505 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 19506 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19507 /* 19508 * If we have wrapped then we need to clear the bits that 19509 * have been tested so that we can detect when we should 19510 * change the priority level. 19511 */ 19512 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19513 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 19514 } 19515 19516 19517 /* Check roundrobin failover list empty condition */ 19518 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 19519 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 19520 /* 19521 * If next fcf index is not found check if there are lower 19522 * Priority level fcf's in the fcf_priority list. 19523 * Set up the rr_bmask with all of the avaiable fcf bits 19524 * at that level and continue the selection process. 19525 */ 19526 if (lpfc_check_next_fcf_pri_level(phba)) 19527 goto initial_priority; 19528 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 19529 "2844 No roundrobin failover FCF available\n"); 19530 19531 return LPFC_FCOE_FCF_NEXT_NONE; 19532 } 19533 19534 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 19535 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 19536 LPFC_FCF_FLOGI_FAILED) { 19537 if (list_is_singular(&phba->fcf.fcf_pri_list)) 19538 return LPFC_FCOE_FCF_NEXT_NONE; 19539 19540 goto next_priority; 19541 } 19542 19543 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19544 "2845 Get next roundrobin failover FCF (x%x)\n", 19545 next_fcf_index); 19546 19547 return next_fcf_index; 19548 } 19549 19550 /** 19551 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 19552 * @phba: pointer to lpfc hba data structure. 19553 * @fcf_index: index into the FCF table to 'set' 19554 * 19555 * This routine sets the FCF record index in to the eligible bmask for 19556 * roundrobin failover search. It checks to make sure that the index 19557 * does not go beyond the range of the driver allocated bmask dimension 19558 * before setting the bit. 19559 * 19560 * Returns 0 if the index bit successfully set, otherwise, it returns 19561 * -EINVAL. 19562 **/ 19563 int 19564 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 19565 { 19566 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19567 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19568 "2610 FCF (x%x) reached driver's book " 19569 "keeping dimension:x%x\n", 19570 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19571 return -EINVAL; 19572 } 19573 /* Set the eligible FCF record index bmask */ 19574 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19575 19576 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19577 "2790 Set FCF (x%x) to roundrobin FCF failover " 19578 "bmask\n", fcf_index); 19579 19580 return 0; 19581 } 19582 19583 /** 19584 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 19585 * @phba: pointer to lpfc hba data structure. 19586 * @fcf_index: index into the FCF table to 'clear' 19587 * 19588 * This routine clears the FCF record index from the eligible bmask for 19589 * roundrobin failover search. It checks to make sure that the index 19590 * does not go beyond the range of the driver allocated bmask dimension 19591 * before clearing the bit. 19592 **/ 19593 void 19594 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 19595 { 19596 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 19597 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19598 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19599 "2762 FCF (x%x) reached driver's book " 19600 "keeping dimension:x%x\n", 19601 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19602 return; 19603 } 19604 /* Clear the eligible FCF record index bmask */ 19605 spin_lock_irq(&phba->hbalock); 19606 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 19607 list) { 19608 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 19609 list_del_init(&fcf_pri->list); 19610 break; 19611 } 19612 } 19613 spin_unlock_irq(&phba->hbalock); 19614 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19615 19616 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19617 "2791 Clear FCF (x%x) from roundrobin failover " 19618 "bmask\n", fcf_index); 19619 } 19620 19621 /** 19622 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 19623 * @phba: pointer to lpfc hba data structure. 19624 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 19625 * 19626 * This routine is the completion routine for the rediscover FCF table mailbox 19627 * command. If the mailbox command returned failure, it will try to stop the 19628 * FCF rediscover wait timer. 19629 **/ 19630 static void 19631 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 19632 { 19633 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19634 uint32_t shdr_status, shdr_add_status; 19635 19636 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19637 19638 shdr_status = bf_get(lpfc_mbox_hdr_status, 19639 &redisc_fcf->header.cfg_shdr.response); 19640 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19641 &redisc_fcf->header.cfg_shdr.response); 19642 if (shdr_status || shdr_add_status) { 19643 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19644 "2746 Requesting for FCF rediscovery failed " 19645 "status x%x add_status x%x\n", 19646 shdr_status, shdr_add_status); 19647 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 19648 spin_lock_irq(&phba->hbalock); 19649 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 19650 spin_unlock_irq(&phba->hbalock); 19651 /* 19652 * CVL event triggered FCF rediscover request failed, 19653 * last resort to re-try current registered FCF entry. 19654 */ 19655 lpfc_retry_pport_discovery(phba); 19656 } else { 19657 spin_lock_irq(&phba->hbalock); 19658 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 19659 spin_unlock_irq(&phba->hbalock); 19660 /* 19661 * DEAD FCF event triggered FCF rediscover request 19662 * failed, last resort to fail over as a link down 19663 * to FCF registration. 19664 */ 19665 lpfc_sli4_fcf_dead_failthrough(phba); 19666 } 19667 } else { 19668 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19669 "2775 Start FCF rediscover quiescent timer\n"); 19670 /* 19671 * Start FCF rediscovery wait timer for pending FCF 19672 * before rescan FCF record table. 19673 */ 19674 lpfc_fcf_redisc_wait_start_timer(phba); 19675 } 19676 19677 mempool_free(mbox, phba->mbox_mem_pool); 19678 } 19679 19680 /** 19681 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 19682 * @phba: pointer to lpfc hba data structure. 19683 * 19684 * This routine is invoked to request for rediscovery of the entire FCF table 19685 * by the port. 19686 **/ 19687 int 19688 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 19689 { 19690 LPFC_MBOXQ_t *mbox; 19691 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19692 int rc, length; 19693 19694 /* Cancel retry delay timers to all vports before FCF rediscover */ 19695 lpfc_cancel_all_vport_retry_delay_timer(phba); 19696 19697 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19698 if (!mbox) { 19699 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19700 "2745 Failed to allocate mbox for " 19701 "requesting FCF rediscover.\n"); 19702 return -ENOMEM; 19703 } 19704 19705 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 19706 sizeof(struct lpfc_sli4_cfg_mhdr)); 19707 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 19708 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 19709 length, LPFC_SLI4_MBX_EMBED); 19710 19711 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19712 /* Set count to 0 for invalidating the entire FCF database */ 19713 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 19714 19715 /* Issue the mailbox command asynchronously */ 19716 mbox->vport = phba->pport; 19717 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 19718 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 19719 19720 if (rc == MBX_NOT_FINISHED) { 19721 mempool_free(mbox, phba->mbox_mem_pool); 19722 return -EIO; 19723 } 19724 return 0; 19725 } 19726 19727 /** 19728 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 19729 * @phba: pointer to lpfc hba data structure. 19730 * 19731 * This function is the failover routine as a last resort to the FCF DEAD 19732 * event when driver failed to perform fast FCF failover. 19733 **/ 19734 void 19735 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 19736 { 19737 uint32_t link_state; 19738 19739 /* 19740 * Last resort as FCF DEAD event failover will treat this as 19741 * a link down, but save the link state because we don't want 19742 * it to be changed to Link Down unless it is already down. 19743 */ 19744 link_state = phba->link_state; 19745 lpfc_linkdown(phba); 19746 phba->link_state = link_state; 19747 19748 /* Unregister FCF if no devices connected to it */ 19749 lpfc_unregister_unused_fcf(phba); 19750 } 19751 19752 /** 19753 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 19754 * @phba: pointer to lpfc hba data structure. 19755 * @rgn23_data: pointer to configure region 23 data. 19756 * 19757 * This function gets SLI3 port configure region 23 data through memory dump 19758 * mailbox command. When it successfully retrieves data, the size of the data 19759 * will be returned, otherwise, 0 will be returned. 19760 **/ 19761 static uint32_t 19762 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19763 { 19764 LPFC_MBOXQ_t *pmb = NULL; 19765 MAILBOX_t *mb; 19766 uint32_t offset = 0; 19767 int i, rc; 19768 19769 if (!rgn23_data) 19770 return 0; 19771 19772 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19773 if (!pmb) { 19774 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19775 "2600 failed to allocate mailbox memory\n"); 19776 return 0; 19777 } 19778 mb = &pmb->u.mb; 19779 19780 do { 19781 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 19782 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 19783 19784 if (rc != MBX_SUCCESS) { 19785 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19786 "2601 failed to read config " 19787 "region 23, rc 0x%x Status 0x%x\n", 19788 rc, mb->mbxStatus); 19789 mb->un.varDmp.word_cnt = 0; 19790 } 19791 /* 19792 * dump mem may return a zero when finished or we got a 19793 * mailbox error, either way we are done. 19794 */ 19795 if (mb->un.varDmp.word_cnt == 0) 19796 break; 19797 19798 i = mb->un.varDmp.word_cnt * sizeof(uint32_t); 19799 if (offset + i > DMP_RGN23_SIZE) 19800 i = DMP_RGN23_SIZE - offset; 19801 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 19802 rgn23_data + offset, i); 19803 offset += i; 19804 } while (offset < DMP_RGN23_SIZE); 19805 19806 mempool_free(pmb, phba->mbox_mem_pool); 19807 return offset; 19808 } 19809 19810 /** 19811 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 19812 * @phba: pointer to lpfc hba data structure. 19813 * @rgn23_data: pointer to configure region 23 data. 19814 * 19815 * This function gets SLI4 port configure region 23 data through memory dump 19816 * mailbox command. When it successfully retrieves data, the size of the data 19817 * will be returned, otherwise, 0 will be returned. 19818 **/ 19819 static uint32_t 19820 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19821 { 19822 LPFC_MBOXQ_t *mboxq = NULL; 19823 struct lpfc_dmabuf *mp = NULL; 19824 struct lpfc_mqe *mqe; 19825 uint32_t data_length = 0; 19826 int rc; 19827 19828 if (!rgn23_data) 19829 return 0; 19830 19831 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19832 if (!mboxq) { 19833 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19834 "3105 failed to allocate mailbox memory\n"); 19835 return 0; 19836 } 19837 19838 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 19839 goto out; 19840 mqe = &mboxq->u.mqe; 19841 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 19842 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19843 if (rc) 19844 goto out; 19845 data_length = mqe->un.mb_words[5]; 19846 if (data_length == 0) 19847 goto out; 19848 if (data_length > DMP_RGN23_SIZE) { 19849 data_length = 0; 19850 goto out; 19851 } 19852 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 19853 out: 19854 mempool_free(mboxq, phba->mbox_mem_pool); 19855 if (mp) { 19856 lpfc_mbuf_free(phba, mp->virt, mp->phys); 19857 kfree(mp); 19858 } 19859 return data_length; 19860 } 19861 19862 /** 19863 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 19864 * @phba: pointer to lpfc hba data structure. 19865 * 19866 * This function read region 23 and parse TLV for port status to 19867 * decide if the user disaled the port. If the TLV indicates the 19868 * port is disabled, the hba_flag is set accordingly. 19869 **/ 19870 void 19871 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 19872 { 19873 uint8_t *rgn23_data = NULL; 19874 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 19875 uint32_t offset = 0; 19876 19877 /* Get adapter Region 23 data */ 19878 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 19879 if (!rgn23_data) 19880 goto out; 19881 19882 if (phba->sli_rev < LPFC_SLI_REV4) 19883 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 19884 else { 19885 if_type = bf_get(lpfc_sli_intf_if_type, 19886 &phba->sli4_hba.sli_intf); 19887 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 19888 goto out; 19889 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 19890 } 19891 19892 if (!data_size) 19893 goto out; 19894 19895 /* Check the region signature first */ 19896 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 19897 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19898 "2619 Config region 23 has bad signature\n"); 19899 goto out; 19900 } 19901 offset += 4; 19902 19903 /* Check the data structure version */ 19904 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 19905 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19906 "2620 Config region 23 has bad version\n"); 19907 goto out; 19908 } 19909 offset += 4; 19910 19911 /* Parse TLV entries in the region */ 19912 while (offset < data_size) { 19913 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 19914 break; 19915 /* 19916 * If the TLV is not driver specific TLV or driver id is 19917 * not linux driver id, skip the record. 19918 */ 19919 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 19920 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 19921 (rgn23_data[offset + 3] != 0)) { 19922 offset += rgn23_data[offset + 1] * 4 + 4; 19923 continue; 19924 } 19925 19926 /* Driver found a driver specific TLV in the config region */ 19927 sub_tlv_len = rgn23_data[offset + 1] * 4; 19928 offset += 4; 19929 tlv_offset = 0; 19930 19931 /* 19932 * Search for configured port state sub-TLV. 19933 */ 19934 while ((offset < data_size) && 19935 (tlv_offset < sub_tlv_len)) { 19936 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 19937 offset += 4; 19938 tlv_offset += 4; 19939 break; 19940 } 19941 if (rgn23_data[offset] != PORT_STE_TYPE) { 19942 offset += rgn23_data[offset + 1] * 4 + 4; 19943 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 19944 continue; 19945 } 19946 19947 /* This HBA contains PORT_STE configured */ 19948 if (!rgn23_data[offset + 2]) 19949 phba->hba_flag |= LINK_DISABLED; 19950 19951 goto out; 19952 } 19953 } 19954 19955 out: 19956 kfree(rgn23_data); 19957 return; 19958 } 19959 19960 /** 19961 * lpfc_wr_object - write an object to the firmware 19962 * @phba: HBA structure that indicates port to create a queue on. 19963 * @dmabuf_list: list of dmabufs to write to the port. 19964 * @size: the total byte value of the objects to write to the port. 19965 * @offset: the current offset to be used to start the transfer. 19966 * 19967 * This routine will create a wr_object mailbox command to send to the port. 19968 * the mailbox command will be constructed using the dma buffers described in 19969 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 19970 * BDEs that the imbedded mailbox can support. The @offset variable will be 19971 * used to indicate the starting offset of the transfer and will also return 19972 * the offset after the write object mailbox has completed. @size is used to 19973 * determine the end of the object and whether the eof bit should be set. 19974 * 19975 * Return 0 is successful and offset will contain the the new offset to use 19976 * for the next write. 19977 * Return negative value for error cases. 19978 **/ 19979 int 19980 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 19981 uint32_t size, uint32_t *offset) 19982 { 19983 struct lpfc_mbx_wr_object *wr_object; 19984 LPFC_MBOXQ_t *mbox; 19985 int rc = 0, i = 0; 19986 uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf; 19987 uint32_t mbox_tmo; 19988 struct lpfc_dmabuf *dmabuf; 19989 uint32_t written = 0; 19990 bool check_change_status = false; 19991 19992 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19993 if (!mbox) 19994 return -ENOMEM; 19995 19996 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 19997 LPFC_MBOX_OPCODE_WRITE_OBJECT, 19998 sizeof(struct lpfc_mbx_wr_object) - 19999 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20000 20001 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20002 wr_object->u.request.write_offset = *offset; 20003 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20004 wr_object->u.request.object_name[0] = 20005 cpu_to_le32(wr_object->u.request.object_name[0]); 20006 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20007 list_for_each_entry(dmabuf, dmabuf_list, list) { 20008 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20009 break; 20010 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20011 wr_object->u.request.bde[i].addrHigh = 20012 putPaddrHigh(dmabuf->phys); 20013 if (written + SLI4_PAGE_SIZE >= size) { 20014 wr_object->u.request.bde[i].tus.f.bdeSize = 20015 (size - written); 20016 written += (size - written); 20017 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20018 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20019 check_change_status = true; 20020 } else { 20021 wr_object->u.request.bde[i].tus.f.bdeSize = 20022 SLI4_PAGE_SIZE; 20023 written += SLI4_PAGE_SIZE; 20024 } 20025 i++; 20026 } 20027 wr_object->u.request.bde_count = i; 20028 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20029 if (!phba->sli4_hba.intr_enable) 20030 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20031 else { 20032 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20033 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20034 } 20035 /* The IOCTL status is embedded in the mailbox subheader. */ 20036 shdr_status = bf_get(lpfc_mbox_hdr_status, 20037 &wr_object->header.cfg_shdr.response); 20038 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20039 &wr_object->header.cfg_shdr.response); 20040 if (check_change_status) { 20041 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20042 &wr_object->u.response); 20043 20044 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20045 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20046 shdr_csf = bf_get(lpfc_wr_object_csf, 20047 &wr_object->u.response); 20048 if (shdr_csf) 20049 shdr_change_status = 20050 LPFC_CHANGE_STATUS_PCI_RESET; 20051 } 20052 20053 switch (shdr_change_status) { 20054 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20055 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20056 "3198 Firmware write complete: System " 20057 "reboot required to instantiate\n"); 20058 break; 20059 case (LPFC_CHANGE_STATUS_FW_RESET): 20060 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20061 "3199 Firmware write complete: Firmware" 20062 " reset required to instantiate\n"); 20063 break; 20064 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20065 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20066 "3200 Firmware write complete: Port " 20067 "Migration or PCI Reset required to " 20068 "instantiate\n"); 20069 break; 20070 case (LPFC_CHANGE_STATUS_PCI_RESET): 20071 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20072 "3201 Firmware write complete: PCI " 20073 "Reset required to instantiate\n"); 20074 break; 20075 default: 20076 break; 20077 } 20078 } 20079 if (rc != MBX_TIMEOUT) 20080 mempool_free(mbox, phba->mbox_mem_pool); 20081 if (shdr_status || shdr_add_status || rc) { 20082 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20083 "3025 Write Object mailbox failed with " 20084 "status x%x add_status x%x, mbx status x%x\n", 20085 shdr_status, shdr_add_status, rc); 20086 rc = -ENXIO; 20087 *offset = shdr_add_status; 20088 } else 20089 *offset += wr_object->u.response.actual_write_length; 20090 return rc; 20091 } 20092 20093 /** 20094 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20095 * @vport: pointer to vport data structure. 20096 * 20097 * This function iterate through the mailboxq and clean up all REG_LOGIN 20098 * and REG_VPI mailbox commands associated with the vport. This function 20099 * is called when driver want to restart discovery of the vport due to 20100 * a Clear Virtual Link event. 20101 **/ 20102 void 20103 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20104 { 20105 struct lpfc_hba *phba = vport->phba; 20106 LPFC_MBOXQ_t *mb, *nextmb; 20107 struct lpfc_dmabuf *mp; 20108 struct lpfc_nodelist *ndlp; 20109 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20110 LIST_HEAD(mbox_cmd_list); 20111 uint8_t restart_loop; 20112 20113 /* Clean up internally queued mailbox commands with the vport */ 20114 spin_lock_irq(&phba->hbalock); 20115 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 20116 if (mb->vport != vport) 20117 continue; 20118 20119 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20120 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20121 continue; 20122 20123 list_del(&mb->list); 20124 list_add_tail(&mb->list, &mbox_cmd_list); 20125 } 20126 /* Clean up active mailbox command with the vport */ 20127 mb = phba->sli.mbox_active; 20128 if (mb && (mb->vport == vport)) { 20129 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 20130 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 20131 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20132 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20133 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20134 /* Put reference count for delayed processing */ 20135 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 20136 /* Unregister the RPI when mailbox complete */ 20137 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20138 } 20139 } 20140 /* Cleanup any mailbox completions which are not yet processed */ 20141 do { 20142 restart_loop = 0; 20143 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 20144 /* 20145 * If this mailox is already processed or it is 20146 * for another vport ignore it. 20147 */ 20148 if ((mb->vport != vport) || 20149 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 20150 continue; 20151 20152 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20153 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20154 continue; 20155 20156 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20157 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20158 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20159 /* Unregister the RPI when mailbox complete */ 20160 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20161 restart_loop = 1; 20162 spin_unlock_irq(&phba->hbalock); 20163 spin_lock(&ndlp->lock); 20164 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20165 spin_unlock(&ndlp->lock); 20166 spin_lock_irq(&phba->hbalock); 20167 break; 20168 } 20169 } 20170 } while (restart_loop); 20171 20172 spin_unlock_irq(&phba->hbalock); 20173 20174 /* Release the cleaned-up mailbox commands */ 20175 while (!list_empty(&mbox_cmd_list)) { 20176 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 20177 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20178 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 20179 if (mp) { 20180 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 20181 kfree(mp); 20182 } 20183 mb->ctx_buf = NULL; 20184 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20185 mb->ctx_ndlp = NULL; 20186 if (ndlp) { 20187 spin_lock(&ndlp->lock); 20188 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20189 spin_unlock(&ndlp->lock); 20190 lpfc_nlp_put(ndlp); 20191 } 20192 } 20193 mempool_free(mb, phba->mbox_mem_pool); 20194 } 20195 20196 /* Release the ndlp with the cleaned-up active mailbox command */ 20197 if (act_mbx_ndlp) { 20198 spin_lock(&act_mbx_ndlp->lock); 20199 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20200 spin_unlock(&act_mbx_ndlp->lock); 20201 lpfc_nlp_put(act_mbx_ndlp); 20202 } 20203 } 20204 20205 /** 20206 * lpfc_drain_txq - Drain the txq 20207 * @phba: Pointer to HBA context object. 20208 * 20209 * This function attempt to submit IOCBs on the txq 20210 * to the adapter. For SLI4 adapters, the txq contains 20211 * ELS IOCBs that have been deferred because the there 20212 * are no SGLs. This congestion can occur with large 20213 * vport counts during node discovery. 20214 **/ 20215 20216 uint32_t 20217 lpfc_drain_txq(struct lpfc_hba *phba) 20218 { 20219 LIST_HEAD(completions); 20220 struct lpfc_sli_ring *pring; 20221 struct lpfc_iocbq *piocbq = NULL; 20222 unsigned long iflags = 0; 20223 char *fail_msg = NULL; 20224 struct lpfc_sglq *sglq; 20225 union lpfc_wqe128 wqe; 20226 uint32_t txq_cnt = 0; 20227 struct lpfc_queue *wq; 20228 20229 if (phba->link_flag & LS_MDS_LOOPBACK) { 20230 /* MDS WQE are posted only to first WQ*/ 20231 wq = phba->sli4_hba.hdwq[0].io_wq; 20232 if (unlikely(!wq)) 20233 return 0; 20234 pring = wq->pring; 20235 } else { 20236 wq = phba->sli4_hba.els_wq; 20237 if (unlikely(!wq)) 20238 return 0; 20239 pring = lpfc_phba_elsring(phba); 20240 } 20241 20242 if (unlikely(!pring) || list_empty(&pring->txq)) 20243 return 0; 20244 20245 spin_lock_irqsave(&pring->ring_lock, iflags); 20246 list_for_each_entry(piocbq, &pring->txq, list) { 20247 txq_cnt++; 20248 } 20249 20250 if (txq_cnt > pring->txq_max) 20251 pring->txq_max = txq_cnt; 20252 20253 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20254 20255 while (!list_empty(&pring->txq)) { 20256 spin_lock_irqsave(&pring->ring_lock, iflags); 20257 20258 piocbq = lpfc_sli_ringtx_get(phba, pring); 20259 if (!piocbq) { 20260 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20262 "2823 txq empty and txq_cnt is %d\n ", 20263 txq_cnt); 20264 break; 20265 } 20266 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 20267 if (!sglq) { 20268 __lpfc_sli_ringtx_put(phba, pring, piocbq); 20269 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20270 break; 20271 } 20272 txq_cnt--; 20273 20274 /* The xri and iocb resources secured, 20275 * attempt to issue request 20276 */ 20277 piocbq->sli4_lxritag = sglq->sli4_lxritag; 20278 piocbq->sli4_xritag = sglq->sli4_xritag; 20279 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 20280 fail_msg = "to convert bpl to sgl"; 20281 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 20282 fail_msg = "to convert iocb to wqe"; 20283 else if (lpfc_sli4_wq_put(wq, &wqe)) 20284 fail_msg = " - Wq is full"; 20285 else 20286 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 20287 20288 if (fail_msg) { 20289 /* Failed means we can't issue and need to cancel */ 20290 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20291 "2822 IOCB failed %s iotag 0x%x " 20292 "xri 0x%x\n", 20293 fail_msg, 20294 piocbq->iotag, piocbq->sli4_xritag); 20295 list_add_tail(&piocbq->list, &completions); 20296 } 20297 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20298 } 20299 20300 /* Cancel all the IOCBs that cannot be issued */ 20301 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 20302 IOERR_SLI_ABORTED); 20303 20304 return txq_cnt; 20305 } 20306 20307 /** 20308 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 20309 * @phba: Pointer to HBA context object. 20310 * @pwqeq: Pointer to command WQE. 20311 * @sglq: Pointer to the scatter gather queue object. 20312 * 20313 * This routine converts the bpl or bde that is in the WQE 20314 * to a sgl list for the sli4 hardware. The physical address 20315 * of the bpl/bde is converted back to a virtual address. 20316 * If the WQE contains a BPL then the list of BDE's is 20317 * converted to sli4_sge's. If the WQE contains a single 20318 * BDE then it is converted to a single sli_sge. 20319 * The WQE is still in cpu endianness so the contents of 20320 * the bpl can be used without byte swapping. 20321 * 20322 * Returns valid XRI = Success, NO_XRI = Failure. 20323 */ 20324 static uint16_t 20325 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 20326 struct lpfc_sglq *sglq) 20327 { 20328 uint16_t xritag = NO_XRI; 20329 struct ulp_bde64 *bpl = NULL; 20330 struct ulp_bde64 bde; 20331 struct sli4_sge *sgl = NULL; 20332 struct lpfc_dmabuf *dmabuf; 20333 union lpfc_wqe128 *wqe; 20334 int numBdes = 0; 20335 int i = 0; 20336 uint32_t offset = 0; /* accumulated offset in the sg request list */ 20337 int inbound = 0; /* number of sg reply entries inbound from firmware */ 20338 uint32_t cmd; 20339 20340 if (!pwqeq || !sglq) 20341 return xritag; 20342 20343 sgl = (struct sli4_sge *)sglq->sgl; 20344 wqe = &pwqeq->wqe; 20345 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 20346 20347 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 20348 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 20349 return sglq->sli4_xritag; 20350 numBdes = pwqeq->rsvd2; 20351 if (numBdes) { 20352 /* The addrHigh and addrLow fields within the WQE 20353 * have not been byteswapped yet so there is no 20354 * need to swap them back. 20355 */ 20356 if (pwqeq->context3) 20357 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 20358 else 20359 return xritag; 20360 20361 bpl = (struct ulp_bde64 *)dmabuf->virt; 20362 if (!bpl) 20363 return xritag; 20364 20365 for (i = 0; i < numBdes; i++) { 20366 /* Should already be byte swapped. */ 20367 sgl->addr_hi = bpl->addrHigh; 20368 sgl->addr_lo = bpl->addrLow; 20369 20370 sgl->word2 = le32_to_cpu(sgl->word2); 20371 if ((i+1) == numBdes) 20372 bf_set(lpfc_sli4_sge_last, sgl, 1); 20373 else 20374 bf_set(lpfc_sli4_sge_last, sgl, 0); 20375 /* swap the size field back to the cpu so we 20376 * can assign it to the sgl. 20377 */ 20378 bde.tus.w = le32_to_cpu(bpl->tus.w); 20379 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 20380 /* The offsets in the sgl need to be accumulated 20381 * separately for the request and reply lists. 20382 * The request is always first, the reply follows. 20383 */ 20384 switch (cmd) { 20385 case CMD_GEN_REQUEST64_WQE: 20386 /* add up the reply sg entries */ 20387 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 20388 inbound++; 20389 /* first inbound? reset the offset */ 20390 if (inbound == 1) 20391 offset = 0; 20392 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20393 bf_set(lpfc_sli4_sge_type, sgl, 20394 LPFC_SGE_TYPE_DATA); 20395 offset += bde.tus.f.bdeSize; 20396 break; 20397 case CMD_FCP_TRSP64_WQE: 20398 bf_set(lpfc_sli4_sge_offset, sgl, 0); 20399 bf_set(lpfc_sli4_sge_type, sgl, 20400 LPFC_SGE_TYPE_DATA); 20401 break; 20402 case CMD_FCP_TSEND64_WQE: 20403 case CMD_FCP_TRECEIVE64_WQE: 20404 bf_set(lpfc_sli4_sge_type, sgl, 20405 bpl->tus.f.bdeFlags); 20406 if (i < 3) 20407 offset = 0; 20408 else 20409 offset += bde.tus.f.bdeSize; 20410 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20411 break; 20412 } 20413 sgl->word2 = cpu_to_le32(sgl->word2); 20414 bpl++; 20415 sgl++; 20416 } 20417 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 20418 /* The addrHigh and addrLow fields of the BDE have not 20419 * been byteswapped yet so they need to be swapped 20420 * before putting them in the sgl. 20421 */ 20422 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 20423 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 20424 sgl->word2 = le32_to_cpu(sgl->word2); 20425 bf_set(lpfc_sli4_sge_last, sgl, 1); 20426 sgl->word2 = cpu_to_le32(sgl->word2); 20427 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 20428 } 20429 return sglq->sli4_xritag; 20430 } 20431 20432 /** 20433 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 20434 * @phba: Pointer to HBA context object. 20435 * @qp: Pointer to HDW queue. 20436 * @pwqe: Pointer to command WQE. 20437 **/ 20438 int 20439 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20440 struct lpfc_iocbq *pwqe) 20441 { 20442 union lpfc_wqe128 *wqe = &pwqe->wqe; 20443 struct lpfc_async_xchg_ctx *ctxp; 20444 struct lpfc_queue *wq; 20445 struct lpfc_sglq *sglq; 20446 struct lpfc_sli_ring *pring; 20447 unsigned long iflags; 20448 uint32_t ret = 0; 20449 20450 /* NVME_LS and NVME_LS ABTS requests. */ 20451 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 20452 pring = phba->sli4_hba.nvmels_wq->pring; 20453 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20454 qp, wq_access); 20455 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 20456 if (!sglq) { 20457 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20458 return WQE_BUSY; 20459 } 20460 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20461 pwqe->sli4_xritag = sglq->sli4_xritag; 20462 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 20463 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20464 return WQE_ERROR; 20465 } 20466 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20467 pwqe->sli4_xritag); 20468 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 20469 if (ret) { 20470 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20471 return ret; 20472 } 20473 20474 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20475 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20476 20477 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20478 return 0; 20479 } 20480 20481 /* NVME_FCREQ and NVME_ABTS requests */ 20482 if (pwqe->iocb_flag & LPFC_IO_NVME || 20483 pwqe->iocb_flag & LPFC_IO_FCP) { 20484 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20485 wq = qp->io_wq; 20486 pring = wq->pring; 20487 20488 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20489 20490 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20491 qp, wq_access); 20492 ret = lpfc_sli4_wq_put(wq, wqe); 20493 if (ret) { 20494 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20495 return ret; 20496 } 20497 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20498 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20499 20500 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20501 return 0; 20502 } 20503 20504 /* NVMET requests */ 20505 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 20506 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20507 wq = qp->io_wq; 20508 pring = wq->pring; 20509 20510 ctxp = pwqe->context2; 20511 sglq = ctxp->ctxbuf->sglq; 20512 if (pwqe->sli4_xritag == NO_XRI) { 20513 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20514 pwqe->sli4_xritag = sglq->sli4_xritag; 20515 } 20516 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20517 pwqe->sli4_xritag); 20518 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20519 20520 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20521 qp, wq_access); 20522 ret = lpfc_sli4_wq_put(wq, wqe); 20523 if (ret) { 20524 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20525 return ret; 20526 } 20527 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20528 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20529 20530 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20531 return 0; 20532 } 20533 return WQE_ERROR; 20534 } 20535 20536 /** 20537 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 20538 * @phba: Pointer to HBA context object. 20539 * @cmdiocb: Pointer to driver command iocb object. 20540 * @cmpl: completion function. 20541 * 20542 * Fill the appropriate fields for the abort WQE and call 20543 * internal routine lpfc_sli4_issue_wqe to send the WQE 20544 * This function is called with hbalock held and no ring_lock held. 20545 * 20546 * RETURNS 0 - SUCCESS 20547 **/ 20548 20549 int 20550 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 20551 void *cmpl) 20552 { 20553 struct lpfc_vport *vport = cmdiocb->vport; 20554 struct lpfc_iocbq *abtsiocb = NULL; 20555 union lpfc_wqe128 *abtswqe; 20556 struct lpfc_io_buf *lpfc_cmd; 20557 int retval = IOCB_ERROR; 20558 u16 xritag = cmdiocb->sli4_xritag; 20559 20560 /* 20561 * The scsi command can not be in txq and it is in flight because the 20562 * pCmd is still pointing at the SCSI command we have to abort. There 20563 * is no need to search the txcmplq. Just send an abort to the FW. 20564 */ 20565 20566 abtsiocb = __lpfc_sli_get_iocbq(phba); 20567 if (!abtsiocb) 20568 return WQE_NORESOURCE; 20569 20570 /* Indicate the IO is being aborted by the driver. */ 20571 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 20572 20573 abtswqe = &abtsiocb->wqe; 20574 memset(abtswqe, 0, sizeof(*abtswqe)); 20575 20576 if (lpfc_is_link_up(phba)) 20577 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 20578 else 20579 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 0); 20580 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 20581 abtswqe->abort_cmd.rsrvd5 = 0; 20582 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 20583 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 20584 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 20585 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 20586 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 20587 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 20588 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 20589 20590 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 20591 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 20592 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 20593 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 20594 abtsiocb->iocb_flag |= LPFC_IO_FCP; 20595 if (cmdiocb->iocb_flag & LPFC_IO_NVME) 20596 abtsiocb->iocb_flag |= LPFC_IO_NVME; 20597 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 20598 abtsiocb->iocb_flag |= LPFC_IO_FOF; 20599 abtsiocb->vport = vport; 20600 abtsiocb->wqe_cmpl = cmpl; 20601 20602 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 20603 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 20604 20605 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 20606 "0359 Abort xri x%x, original iotag x%x, " 20607 "abort cmd iotag x%x retval x%x\n", 20608 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 20609 20610 if (retval) { 20611 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 20612 __lpfc_sli_release_iocbq(phba, abtsiocb); 20613 } 20614 20615 return retval; 20616 } 20617 20618 #ifdef LPFC_MXP_STAT 20619 /** 20620 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 20621 * @phba: pointer to lpfc hba data structure. 20622 * @hwqid: belong to which HWQ. 20623 * 20624 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 20625 * 15 seconds after a test case is running. 20626 * 20627 * The user should call lpfc_debugfs_multixripools_write before running a test 20628 * case to clear stat_snapshot_taken. Then the user starts a test case. During 20629 * test case is running, stat_snapshot_taken is incremented by 1 every time when 20630 * this routine is called from heartbeat timer. When stat_snapshot_taken is 20631 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 20632 **/ 20633 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 20634 { 20635 struct lpfc_sli4_hdw_queue *qp; 20636 struct lpfc_multixri_pool *multixri_pool; 20637 struct lpfc_pvt_pool *pvt_pool; 20638 struct lpfc_pbl_pool *pbl_pool; 20639 u32 txcmplq_cnt; 20640 20641 qp = &phba->sli4_hba.hdwq[hwqid]; 20642 multixri_pool = qp->p_multixri_pool; 20643 if (!multixri_pool) 20644 return; 20645 20646 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 20647 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20648 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20649 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20650 20651 multixri_pool->stat_pbl_count = pbl_pool->count; 20652 multixri_pool->stat_pvt_count = pvt_pool->count; 20653 multixri_pool->stat_busy_count = txcmplq_cnt; 20654 } 20655 20656 multixri_pool->stat_snapshot_taken++; 20657 } 20658 #endif 20659 20660 /** 20661 * lpfc_adjust_pvt_pool_count - Adjust private pool count 20662 * @phba: pointer to lpfc hba data structure. 20663 * @hwqid: belong to which HWQ. 20664 * 20665 * This routine moves some XRIs from private to public pool when private pool 20666 * is not busy. 20667 **/ 20668 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 20669 { 20670 struct lpfc_multixri_pool *multixri_pool; 20671 u32 io_req_count; 20672 u32 prev_io_req_count; 20673 20674 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20675 if (!multixri_pool) 20676 return; 20677 io_req_count = multixri_pool->io_req_count; 20678 prev_io_req_count = multixri_pool->prev_io_req_count; 20679 20680 if (prev_io_req_count != io_req_count) { 20681 /* Private pool is busy */ 20682 multixri_pool->prev_io_req_count = io_req_count; 20683 } else { 20684 /* Private pool is not busy. 20685 * Move XRIs from private to public pool. 20686 */ 20687 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 20688 } 20689 } 20690 20691 /** 20692 * lpfc_adjust_high_watermark - Adjust high watermark 20693 * @phba: pointer to lpfc hba data structure. 20694 * @hwqid: belong to which HWQ. 20695 * 20696 * This routine sets high watermark as number of outstanding XRIs, 20697 * but make sure the new value is between xri_limit/2 and xri_limit. 20698 **/ 20699 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 20700 { 20701 u32 new_watermark; 20702 u32 watermark_max; 20703 u32 watermark_min; 20704 u32 xri_limit; 20705 u32 txcmplq_cnt; 20706 u32 abts_io_bufs; 20707 struct lpfc_multixri_pool *multixri_pool; 20708 struct lpfc_sli4_hdw_queue *qp; 20709 20710 qp = &phba->sli4_hba.hdwq[hwqid]; 20711 multixri_pool = qp->p_multixri_pool; 20712 if (!multixri_pool) 20713 return; 20714 xri_limit = multixri_pool->xri_limit; 20715 20716 watermark_max = xri_limit; 20717 watermark_min = xri_limit / 2; 20718 20719 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20720 abts_io_bufs = qp->abts_scsi_io_bufs; 20721 abts_io_bufs += qp->abts_nvme_io_bufs; 20722 20723 new_watermark = txcmplq_cnt + abts_io_bufs; 20724 new_watermark = min(watermark_max, new_watermark); 20725 new_watermark = max(watermark_min, new_watermark); 20726 multixri_pool->pvt_pool.high_watermark = new_watermark; 20727 20728 #ifdef LPFC_MXP_STAT 20729 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 20730 new_watermark); 20731 #endif 20732 } 20733 20734 /** 20735 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 20736 * @phba: pointer to lpfc hba data structure. 20737 * @hwqid: belong to which HWQ. 20738 * 20739 * This routine is called from hearbeat timer when pvt_pool is idle. 20740 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 20741 * The first step moves (all - low_watermark) amount of XRIs. 20742 * The second step moves the rest of XRIs. 20743 **/ 20744 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 20745 { 20746 struct lpfc_pbl_pool *pbl_pool; 20747 struct lpfc_pvt_pool *pvt_pool; 20748 struct lpfc_sli4_hdw_queue *qp; 20749 struct lpfc_io_buf *lpfc_ncmd; 20750 struct lpfc_io_buf *lpfc_ncmd_next; 20751 unsigned long iflag; 20752 struct list_head tmp_list; 20753 u32 tmp_count; 20754 20755 qp = &phba->sli4_hba.hdwq[hwqid]; 20756 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20757 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20758 tmp_count = 0; 20759 20760 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 20761 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 20762 20763 if (pvt_pool->count > pvt_pool->low_watermark) { 20764 /* Step 1: move (all - low_watermark) from pvt_pool 20765 * to pbl_pool 20766 */ 20767 20768 /* Move low watermark of bufs from pvt_pool to tmp_list */ 20769 INIT_LIST_HEAD(&tmp_list); 20770 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20771 &pvt_pool->list, list) { 20772 list_move_tail(&lpfc_ncmd->list, &tmp_list); 20773 tmp_count++; 20774 if (tmp_count >= pvt_pool->low_watermark) 20775 break; 20776 } 20777 20778 /* Move all bufs from pvt_pool to pbl_pool */ 20779 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20780 20781 /* Move all bufs from tmp_list to pvt_pool */ 20782 list_splice(&tmp_list, &pvt_pool->list); 20783 20784 pbl_pool->count += (pvt_pool->count - tmp_count); 20785 pvt_pool->count = tmp_count; 20786 } else { 20787 /* Step 2: move the rest from pvt_pool to pbl_pool */ 20788 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20789 pbl_pool->count += pvt_pool->count; 20790 pvt_pool->count = 0; 20791 } 20792 20793 spin_unlock(&pvt_pool->lock); 20794 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20795 } 20796 20797 /** 20798 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20799 * @phba: pointer to lpfc hba data structure 20800 * @qp: pointer to HDW queue 20801 * @pbl_pool: specified public free XRI pool 20802 * @pvt_pool: specified private free XRI pool 20803 * @count: number of XRIs to move 20804 * 20805 * This routine tries to move some free common bufs from the specified pbl_pool 20806 * to the specified pvt_pool. It might move less than count XRIs if there's not 20807 * enough in public pool. 20808 * 20809 * Return: 20810 * true - if XRIs are successfully moved from the specified pbl_pool to the 20811 * specified pvt_pool 20812 * false - if the specified pbl_pool is empty or locked by someone else 20813 **/ 20814 static bool 20815 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20816 struct lpfc_pbl_pool *pbl_pool, 20817 struct lpfc_pvt_pool *pvt_pool, u32 count) 20818 { 20819 struct lpfc_io_buf *lpfc_ncmd; 20820 struct lpfc_io_buf *lpfc_ncmd_next; 20821 unsigned long iflag; 20822 int ret; 20823 20824 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 20825 if (ret) { 20826 if (pbl_pool->count) { 20827 /* Move a batch of XRIs from public to private pool */ 20828 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 20829 list_for_each_entry_safe(lpfc_ncmd, 20830 lpfc_ncmd_next, 20831 &pbl_pool->list, 20832 list) { 20833 list_move_tail(&lpfc_ncmd->list, 20834 &pvt_pool->list); 20835 pvt_pool->count++; 20836 pbl_pool->count--; 20837 count--; 20838 if (count == 0) 20839 break; 20840 } 20841 20842 spin_unlock(&pvt_pool->lock); 20843 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20844 return true; 20845 } 20846 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20847 } 20848 20849 return false; 20850 } 20851 20852 /** 20853 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20854 * @phba: pointer to lpfc hba data structure. 20855 * @hwqid: belong to which HWQ. 20856 * @count: number of XRIs to move 20857 * 20858 * This routine tries to find some free common bufs in one of public pools with 20859 * Round Robin method. The search always starts from local hwqid, then the next 20860 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 20861 * a batch of free common bufs are moved to private pool on hwqid. 20862 * It might move less than count XRIs if there's not enough in public pool. 20863 **/ 20864 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 20865 { 20866 struct lpfc_multixri_pool *multixri_pool; 20867 struct lpfc_multixri_pool *next_multixri_pool; 20868 struct lpfc_pvt_pool *pvt_pool; 20869 struct lpfc_pbl_pool *pbl_pool; 20870 struct lpfc_sli4_hdw_queue *qp; 20871 u32 next_hwqid; 20872 u32 hwq_count; 20873 int ret; 20874 20875 qp = &phba->sli4_hba.hdwq[hwqid]; 20876 multixri_pool = qp->p_multixri_pool; 20877 pvt_pool = &multixri_pool->pvt_pool; 20878 pbl_pool = &multixri_pool->pbl_pool; 20879 20880 /* Check if local pbl_pool is available */ 20881 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 20882 if (ret) { 20883 #ifdef LPFC_MXP_STAT 20884 multixri_pool->local_pbl_hit_count++; 20885 #endif 20886 return; 20887 } 20888 20889 hwq_count = phba->cfg_hdw_queue; 20890 20891 /* Get the next hwqid which was found last time */ 20892 next_hwqid = multixri_pool->rrb_next_hwqid; 20893 20894 do { 20895 /* Go to next hwq */ 20896 next_hwqid = (next_hwqid + 1) % hwq_count; 20897 20898 next_multixri_pool = 20899 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 20900 pbl_pool = &next_multixri_pool->pbl_pool; 20901 20902 /* Check if the public free xri pool is available */ 20903 ret = _lpfc_move_xri_pbl_to_pvt( 20904 phba, qp, pbl_pool, pvt_pool, count); 20905 20906 /* Exit while-loop if success or all hwqid are checked */ 20907 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 20908 20909 /* Starting point for the next time */ 20910 multixri_pool->rrb_next_hwqid = next_hwqid; 20911 20912 if (!ret) { 20913 /* stats: all public pools are empty*/ 20914 multixri_pool->pbl_empty_count++; 20915 } 20916 20917 #ifdef LPFC_MXP_STAT 20918 if (ret) { 20919 if (next_hwqid == hwqid) 20920 multixri_pool->local_pbl_hit_count++; 20921 else 20922 multixri_pool->other_pbl_hit_count++; 20923 } 20924 #endif 20925 } 20926 20927 /** 20928 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 20929 * @phba: pointer to lpfc hba data structure. 20930 * @hwqid: belong to which HWQ. 20931 * 20932 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 20933 * low watermark. 20934 **/ 20935 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 20936 { 20937 struct lpfc_multixri_pool *multixri_pool; 20938 struct lpfc_pvt_pool *pvt_pool; 20939 20940 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20941 pvt_pool = &multixri_pool->pvt_pool; 20942 20943 if (pvt_pool->count < pvt_pool->low_watermark) 20944 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 20945 } 20946 20947 /** 20948 * lpfc_release_io_buf - Return one IO buf back to free pool 20949 * @phba: pointer to lpfc hba data structure. 20950 * @lpfc_ncmd: IO buf to be returned. 20951 * @qp: belong to which HWQ. 20952 * 20953 * This routine returns one IO buf back to free pool. If this is an urgent IO, 20954 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 20955 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 20956 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 20957 * lpfc_io_buf_list_put. 20958 **/ 20959 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 20960 struct lpfc_sli4_hdw_queue *qp) 20961 { 20962 unsigned long iflag; 20963 struct lpfc_pbl_pool *pbl_pool; 20964 struct lpfc_pvt_pool *pvt_pool; 20965 struct lpfc_epd_pool *epd_pool; 20966 u32 txcmplq_cnt; 20967 u32 xri_owned; 20968 u32 xri_limit; 20969 u32 abts_io_bufs; 20970 20971 /* MUST zero fields if buffer is reused by another protocol */ 20972 lpfc_ncmd->nvmeCmd = NULL; 20973 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; 20974 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; 20975 20976 if (phba->cfg_xpsgl && !phba->nvmet_support && 20977 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 20978 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 20979 20980 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 20981 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 20982 20983 if (phba->cfg_xri_rebalancing) { 20984 if (lpfc_ncmd->expedite) { 20985 /* Return to expedite pool */ 20986 epd_pool = &phba->epd_pool; 20987 spin_lock_irqsave(&epd_pool->lock, iflag); 20988 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 20989 epd_pool->count++; 20990 spin_unlock_irqrestore(&epd_pool->lock, iflag); 20991 return; 20992 } 20993 20994 /* Avoid invalid access if an IO sneaks in and is being rejected 20995 * just _after_ xri pools are destroyed in lpfc_offline. 20996 * Nothing much can be done at this point. 20997 */ 20998 if (!qp->p_multixri_pool) 20999 return; 21000 21001 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21002 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21003 21004 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21005 abts_io_bufs = qp->abts_scsi_io_bufs; 21006 abts_io_bufs += qp->abts_nvme_io_bufs; 21007 21008 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21009 xri_limit = qp->p_multixri_pool->xri_limit; 21010 21011 #ifdef LPFC_MXP_STAT 21012 if (xri_owned <= xri_limit) 21013 qp->p_multixri_pool->below_limit_count++; 21014 else 21015 qp->p_multixri_pool->above_limit_count++; 21016 #endif 21017 21018 /* XRI goes to either public or private free xri pool 21019 * based on watermark and xri_limit 21020 */ 21021 if ((pvt_pool->count < pvt_pool->low_watermark) || 21022 (xri_owned < xri_limit && 21023 pvt_pool->count < pvt_pool->high_watermark)) { 21024 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21025 qp, free_pvt_pool); 21026 list_add_tail(&lpfc_ncmd->list, 21027 &pvt_pool->list); 21028 pvt_pool->count++; 21029 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21030 } else { 21031 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21032 qp, free_pub_pool); 21033 list_add_tail(&lpfc_ncmd->list, 21034 &pbl_pool->list); 21035 pbl_pool->count++; 21036 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21037 } 21038 } else { 21039 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21040 qp, free_xri); 21041 list_add_tail(&lpfc_ncmd->list, 21042 &qp->lpfc_io_buf_list_put); 21043 qp->put_io_bufs++; 21044 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21045 iflag); 21046 } 21047 } 21048 21049 /** 21050 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21051 * @phba: pointer to lpfc hba data structure. 21052 * @qp: pointer to HDW queue 21053 * @pvt_pool: pointer to private pool data structure. 21054 * @ndlp: pointer to lpfc nodelist data structure. 21055 * 21056 * This routine tries to get one free IO buf from private pool. 21057 * 21058 * Return: 21059 * pointer to one free IO buf - if private pool is not empty 21060 * NULL - if private pool is empty 21061 **/ 21062 static struct lpfc_io_buf * 21063 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21064 struct lpfc_sli4_hdw_queue *qp, 21065 struct lpfc_pvt_pool *pvt_pool, 21066 struct lpfc_nodelist *ndlp) 21067 { 21068 struct lpfc_io_buf *lpfc_ncmd; 21069 struct lpfc_io_buf *lpfc_ncmd_next; 21070 unsigned long iflag; 21071 21072 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21073 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21074 &pvt_pool->list, list) { 21075 if (lpfc_test_rrq_active( 21076 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21077 continue; 21078 list_del(&lpfc_ncmd->list); 21079 pvt_pool->count--; 21080 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21081 return lpfc_ncmd; 21082 } 21083 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21084 21085 return NULL; 21086 } 21087 21088 /** 21089 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21090 * @phba: pointer to lpfc hba data structure. 21091 * 21092 * This routine tries to get one free IO buf from expedite pool. 21093 * 21094 * Return: 21095 * pointer to one free IO buf - if expedite pool is not empty 21096 * NULL - if expedite pool is empty 21097 **/ 21098 static struct lpfc_io_buf * 21099 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21100 { 21101 struct lpfc_io_buf *lpfc_ncmd; 21102 struct lpfc_io_buf *lpfc_ncmd_next; 21103 unsigned long iflag; 21104 struct lpfc_epd_pool *epd_pool; 21105 21106 epd_pool = &phba->epd_pool; 21107 lpfc_ncmd = NULL; 21108 21109 spin_lock_irqsave(&epd_pool->lock, iflag); 21110 if (epd_pool->count > 0) { 21111 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21112 &epd_pool->list, list) { 21113 list_del(&lpfc_ncmd->list); 21114 epd_pool->count--; 21115 break; 21116 } 21117 } 21118 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21119 21120 return lpfc_ncmd; 21121 } 21122 21123 /** 21124 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21125 * @phba: pointer to lpfc hba data structure. 21126 * @ndlp: pointer to lpfc nodelist data structure. 21127 * @hwqid: belong to which HWQ 21128 * @expedite: 1 means this request is urgent. 21129 * 21130 * This routine will do the following actions and then return a pointer to 21131 * one free IO buf. 21132 * 21133 * 1. If private free xri count is empty, move some XRIs from public to 21134 * private pool. 21135 * 2. Get one XRI from private free xri pool. 21136 * 3. If we fail to get one from pvt_pool and this is an expedite request, 21137 * get one free xri from expedite pool. 21138 * 21139 * Note: ndlp is only used on SCSI side for RRQ testing. 21140 * The caller should pass NULL for ndlp on NVME side. 21141 * 21142 * Return: 21143 * pointer to one free IO buf - if private pool is not empty 21144 * NULL - if private pool is empty 21145 **/ 21146 static struct lpfc_io_buf * 21147 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 21148 struct lpfc_nodelist *ndlp, 21149 int hwqid, int expedite) 21150 { 21151 struct lpfc_sli4_hdw_queue *qp; 21152 struct lpfc_multixri_pool *multixri_pool; 21153 struct lpfc_pvt_pool *pvt_pool; 21154 struct lpfc_io_buf *lpfc_ncmd; 21155 21156 qp = &phba->sli4_hba.hdwq[hwqid]; 21157 lpfc_ncmd = NULL; 21158 multixri_pool = qp->p_multixri_pool; 21159 pvt_pool = &multixri_pool->pvt_pool; 21160 multixri_pool->io_req_count++; 21161 21162 /* If pvt_pool is empty, move some XRIs from public to private pool */ 21163 if (pvt_pool->count == 0) 21164 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21165 21166 /* Get one XRI from private free xri pool */ 21167 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 21168 21169 if (lpfc_ncmd) { 21170 lpfc_ncmd->hdwq = qp; 21171 lpfc_ncmd->hdwq_no = hwqid; 21172 } else if (expedite) { 21173 /* If we fail to get one from pvt_pool and this is an expedite 21174 * request, get one free xri from expedite pool. 21175 */ 21176 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 21177 } 21178 21179 return lpfc_ncmd; 21180 } 21181 21182 static inline struct lpfc_io_buf * 21183 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 21184 { 21185 struct lpfc_sli4_hdw_queue *qp; 21186 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 21187 21188 qp = &phba->sli4_hba.hdwq[idx]; 21189 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 21190 &qp->lpfc_io_buf_list_get, list) { 21191 if (lpfc_test_rrq_active(phba, ndlp, 21192 lpfc_cmd->cur_iocbq.sli4_lxritag)) 21193 continue; 21194 21195 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 21196 continue; 21197 21198 list_del_init(&lpfc_cmd->list); 21199 qp->get_io_bufs--; 21200 lpfc_cmd->hdwq = qp; 21201 lpfc_cmd->hdwq_no = idx; 21202 return lpfc_cmd; 21203 } 21204 return NULL; 21205 } 21206 21207 /** 21208 * lpfc_get_io_buf - Get one IO buffer from free pool 21209 * @phba: The HBA for which this call is being executed. 21210 * @ndlp: pointer to lpfc nodelist data structure. 21211 * @hwqid: belong to which HWQ 21212 * @expedite: 1 means this request is urgent. 21213 * 21214 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 21215 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 21216 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 21217 * 21218 * Note: ndlp is only used on SCSI side for RRQ testing. 21219 * The caller should pass NULL for ndlp on NVME side. 21220 * 21221 * Return codes: 21222 * NULL - Error 21223 * Pointer to lpfc_io_buf - Success 21224 **/ 21225 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 21226 struct lpfc_nodelist *ndlp, 21227 u32 hwqid, int expedite) 21228 { 21229 struct lpfc_sli4_hdw_queue *qp; 21230 unsigned long iflag; 21231 struct lpfc_io_buf *lpfc_cmd; 21232 21233 qp = &phba->sli4_hba.hdwq[hwqid]; 21234 lpfc_cmd = NULL; 21235 21236 if (phba->cfg_xri_rebalancing) 21237 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 21238 phba, ndlp, hwqid, expedite); 21239 else { 21240 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 21241 qp, alloc_xri_get); 21242 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 21243 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21244 if (!lpfc_cmd) { 21245 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 21246 qp, alloc_xri_put); 21247 list_splice(&qp->lpfc_io_buf_list_put, 21248 &qp->lpfc_io_buf_list_get); 21249 qp->get_io_bufs += qp->put_io_bufs; 21250 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 21251 qp->put_io_bufs = 0; 21252 spin_unlock(&qp->io_buf_list_put_lock); 21253 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 21254 expedite) 21255 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21256 } 21257 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 21258 } 21259 21260 return lpfc_cmd; 21261 } 21262 21263 /** 21264 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 21265 * @phba: The HBA for which this call is being executed. 21266 * @lpfc_buf: IO buf structure to append the SGL chunk 21267 * 21268 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 21269 * and will allocate an SGL chunk if the pool is empty. 21270 * 21271 * Return codes: 21272 * NULL - Error 21273 * Pointer to sli4_hybrid_sgl - Success 21274 **/ 21275 struct sli4_hybrid_sgl * 21276 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21277 { 21278 struct sli4_hybrid_sgl *list_entry = NULL; 21279 struct sli4_hybrid_sgl *tmp = NULL; 21280 struct sli4_hybrid_sgl *allocated_sgl = NULL; 21281 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21282 struct list_head *buf_list = &hdwq->sgl_list; 21283 unsigned long iflags; 21284 21285 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21286 21287 if (likely(!list_empty(buf_list))) { 21288 /* break off 1 chunk from the sgl_list */ 21289 list_for_each_entry_safe(list_entry, tmp, 21290 buf_list, list_node) { 21291 list_move_tail(&list_entry->list_node, 21292 &lpfc_buf->dma_sgl_xtra_list); 21293 break; 21294 } 21295 } else { 21296 /* allocate more */ 21297 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21298 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21299 cpu_to_node(hdwq->io_wq->chann)); 21300 if (!tmp) { 21301 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21302 "8353 error kmalloc memory for HDWQ " 21303 "%d %s\n", 21304 lpfc_buf->hdwq_no, __func__); 21305 return NULL; 21306 } 21307 21308 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 21309 GFP_ATOMIC, &tmp->dma_phys_sgl); 21310 if (!tmp->dma_sgl) { 21311 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21312 "8354 error pool_alloc memory for HDWQ " 21313 "%d %s\n", 21314 lpfc_buf->hdwq_no, __func__); 21315 kfree(tmp); 21316 return NULL; 21317 } 21318 21319 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21320 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 21321 } 21322 21323 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 21324 struct sli4_hybrid_sgl, 21325 list_node); 21326 21327 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21328 21329 return allocated_sgl; 21330 } 21331 21332 /** 21333 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 21334 * @phba: The HBA for which this call is being executed. 21335 * @lpfc_buf: IO buf structure with the SGL chunk 21336 * 21337 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 21338 * 21339 * Return codes: 21340 * 0 - Success 21341 * -EINVAL - Error 21342 **/ 21343 int 21344 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21345 { 21346 int rc = 0; 21347 struct sli4_hybrid_sgl *list_entry = NULL; 21348 struct sli4_hybrid_sgl *tmp = NULL; 21349 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21350 struct list_head *buf_list = &hdwq->sgl_list; 21351 unsigned long iflags; 21352 21353 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21354 21355 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 21356 list_for_each_entry_safe(list_entry, tmp, 21357 &lpfc_buf->dma_sgl_xtra_list, 21358 list_node) { 21359 list_move_tail(&list_entry->list_node, 21360 buf_list); 21361 } 21362 } else { 21363 rc = -EINVAL; 21364 } 21365 21366 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21367 return rc; 21368 } 21369 21370 /** 21371 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 21372 * @phba: phba object 21373 * @hdwq: hdwq to cleanup sgl buff resources on 21374 * 21375 * This routine frees all SGL chunks of hdwq SGL chunk pool. 21376 * 21377 * Return codes: 21378 * None 21379 **/ 21380 void 21381 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 21382 struct lpfc_sli4_hdw_queue *hdwq) 21383 { 21384 struct list_head *buf_list = &hdwq->sgl_list; 21385 struct sli4_hybrid_sgl *list_entry = NULL; 21386 struct sli4_hybrid_sgl *tmp = NULL; 21387 unsigned long iflags; 21388 21389 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21390 21391 /* Free sgl pool */ 21392 list_for_each_entry_safe(list_entry, tmp, 21393 buf_list, list_node) { 21394 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 21395 list_entry->dma_sgl, 21396 list_entry->dma_phys_sgl); 21397 list_del(&list_entry->list_node); 21398 kfree(list_entry); 21399 } 21400 21401 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21402 } 21403 21404 /** 21405 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 21406 * @phba: The HBA for which this call is being executed. 21407 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 21408 * 21409 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 21410 * and will allocate an CMD/RSP buffer if the pool is empty. 21411 * 21412 * Return codes: 21413 * NULL - Error 21414 * Pointer to fcp_cmd_rsp_buf - Success 21415 **/ 21416 struct fcp_cmd_rsp_buf * 21417 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21418 struct lpfc_io_buf *lpfc_buf) 21419 { 21420 struct fcp_cmd_rsp_buf *list_entry = NULL; 21421 struct fcp_cmd_rsp_buf *tmp = NULL; 21422 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 21423 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21424 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21425 unsigned long iflags; 21426 21427 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21428 21429 if (likely(!list_empty(buf_list))) { 21430 /* break off 1 chunk from the list */ 21431 list_for_each_entry_safe(list_entry, tmp, 21432 buf_list, 21433 list_node) { 21434 list_move_tail(&list_entry->list_node, 21435 &lpfc_buf->dma_cmd_rsp_list); 21436 break; 21437 } 21438 } else { 21439 /* allocate more */ 21440 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21441 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21442 cpu_to_node(hdwq->io_wq->chann)); 21443 if (!tmp) { 21444 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21445 "8355 error kmalloc memory for HDWQ " 21446 "%d %s\n", 21447 lpfc_buf->hdwq_no, __func__); 21448 return NULL; 21449 } 21450 21451 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 21452 GFP_ATOMIC, 21453 &tmp->fcp_cmd_rsp_dma_handle); 21454 21455 if (!tmp->fcp_cmnd) { 21456 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21457 "8356 error pool_alloc memory for HDWQ " 21458 "%d %s\n", 21459 lpfc_buf->hdwq_no, __func__); 21460 kfree(tmp); 21461 return NULL; 21462 } 21463 21464 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 21465 sizeof(struct fcp_cmnd)); 21466 21467 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21468 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 21469 } 21470 21471 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 21472 struct fcp_cmd_rsp_buf, 21473 list_node); 21474 21475 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21476 21477 return allocated_buf; 21478 } 21479 21480 /** 21481 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 21482 * @phba: The HBA for which this call is being executed. 21483 * @lpfc_buf: IO buf structure with the CMD/RSP buf 21484 * 21485 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 21486 * 21487 * Return codes: 21488 * 0 - Success 21489 * -EINVAL - Error 21490 **/ 21491 int 21492 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21493 struct lpfc_io_buf *lpfc_buf) 21494 { 21495 int rc = 0; 21496 struct fcp_cmd_rsp_buf *list_entry = NULL; 21497 struct fcp_cmd_rsp_buf *tmp = NULL; 21498 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21499 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21500 unsigned long iflags; 21501 21502 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21503 21504 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 21505 list_for_each_entry_safe(list_entry, tmp, 21506 &lpfc_buf->dma_cmd_rsp_list, 21507 list_node) { 21508 list_move_tail(&list_entry->list_node, 21509 buf_list); 21510 } 21511 } else { 21512 rc = -EINVAL; 21513 } 21514 21515 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21516 return rc; 21517 } 21518 21519 /** 21520 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 21521 * @phba: phba object 21522 * @hdwq: hdwq to cleanup cmd rsp buff resources on 21523 * 21524 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 21525 * 21526 * Return codes: 21527 * None 21528 **/ 21529 void 21530 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21531 struct lpfc_sli4_hdw_queue *hdwq) 21532 { 21533 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21534 struct fcp_cmd_rsp_buf *list_entry = NULL; 21535 struct fcp_cmd_rsp_buf *tmp = NULL; 21536 unsigned long iflags; 21537 21538 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21539 21540 /* Free cmd_rsp buf pool */ 21541 list_for_each_entry_safe(list_entry, tmp, 21542 buf_list, 21543 list_node) { 21544 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 21545 list_entry->fcp_cmnd, 21546 list_entry->fcp_cmd_rsp_dma_handle); 21547 list_del(&list_entry->list_node); 21548 kfree(list_entry); 21549 } 21550 21551 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21552 } 21553